

INS IDE

TM

INS IDE

TM

HELEN CUSTER
FOREWORD BY DAVID N. CUTLER

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1993 by Microsoft Press

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Custer, Helen, 1961-

Inside windows NT / Helen Custer.
p. cm.

Includes bibliographical references and index.
ISBN 1-55615-481-X
1. Operating systems (Computers)

QA76.76.063C89 1992
005.4'469--dc20

2. Windows NT. I. Title.

Printed and bound in the United States of America.

6789 AGAG 876543

92-26231
CIP

Distributed to the book trade in Canada by Macmillan of Canada, a division
of Canada Publishing Corporation.

Distributed to the book trade outside the United States and Canada by
Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging-in-Publication Data available.

3Com is a registered trademark of 3Com Corporation. Apple and Macintosh are
registered trademarks of Apple Computer, Inc. Banyan and VINES are registered trade
marks of Banyan Systems, Inc. DEC, PDP-II, VAX, and VMS are registered trademarks
and DECnet and MicroVAX are trademarks of Digital Equipment Corporation. Intel is
a registered trademark and Intel386 and Intel486 are trademarks of Intel Corporation.
Microsoft, MS-DOS, and XENIX are registered trademarks and Windows, and Windows
NT are trademarks of Microsoft Corporation. OS/2 is a registered trademark licensed
to Microsoft Corporation. NetWare and Novell are registered trademarks of Novell, Inc.
Sun, Sun Microsystems, and Sun Workstation are registered trademarks of Sun Mi~rosystems,
Incorporated. UNIX is a registered trademark of UNIX Systems Laboratories.

Acquisitions Editor: Dean Holmes
Manuscript Editor: Nancy Siadek
Project Editors: Nancy Siadek and Deborah Long
Technical Editor: Jeff Carey

This book is dedicated to the members of the Windows NT team,

many of wlwm have made considerable personal sacrifices

to design and construct this operating system.

Long may she run.

Contents Summary

Foreword. xv

Preface. .. xxi

CHAPTER ONE

THE MISSION

CHAPTER TWO

SYSTEM OVERViEW...................................... 15

CHAPTER THREE

THE OBJECT MANAGER AND OBJECT SECURITY. . .. 49

CHAPTER FOUR

PROCESSES AND THREADS. .. 83

CHAPTER FIVE

WINDOWS AND THE PROTECTED SUBSYSTEMS 115

CHAPTER SIX

THE VIRTUAL MEMORY MANAGER 165

CHAPTER SEVEN

THE KERNEL .. 203

CHAPTER EIGHT

THE I/O SySTEM .. 241

CHAPTER NINE

NETWORKING .. 285

Epilogue. .. 327

Glossary of Terms and Acronyms. .. 333

Bibliography. .. 363

Index .. 373

Table of Contents

Foreword. xv

Preface. .. xxi

CHAPTER ONE

THE MiSSiON.. 1

1.1 An Operating System for the 1990s . 2
1.2 Design Goals. 5

1.2.1 Extensibility .. ;. 6
1.2.2 Portability.. 7
1.2.3 Reliability.. 9
1.2.4 Compatibility '. 10
1.2.5 Performance... 11

1.3 The Team. 12
1.4 The Rest of the Book. 13

CHAPTER TWO

SYSTEM OVERViEW..... 15

2.1 Windows NT Models.. 16
2.1.1 Client/Server Model. 16
2.1.2 Object Model .. 21
2.1.3 Symmetric Multiprocessing . 23

2.2 Windows NT Structure. .. 25
2.2.1 Protected Subsystems 25
2.2.2 Executive.. 27
2.2.3 A Brief Tour. .. 30

2.2.3.1 Logon Session .. 30
2.2.3.2 Environment Subsystems. .. 32
2.2.3.3 Native Services. .. 34
2.2.3.4 Objects 35
2.2.3.5 Virtual Memory. .. 37
2.2.3.6 I/O and File Systems .. 38

INSIDE WINDOWS NT

x

2.3 Additional Windows NT Architectures. .. 40
2.3.1 Internationalization.................................... 40

2.3.1.1 Locales .. 41
2.3.1.2 Unicode............. .. 42

2.3.2 Structured Exception Handling. .. 44
2.4 In Conclusion. .. 48

CHAPTER THREE

THE OBJECT MANAGER AND OBJECT SECURITY. . .. 49

3.1 NT Executive Objects. .. 50
3.1.1 Using Objects. .. 51

3.1.1.1 File-Based Model. .. 53
3.1.1.2 NT Object Model 54

3.1.2 Object Structure. .. 57
3.1.3 Object Types. .. 59

I

3.2 Managing Objects. .. 61
3.2.1 Object Names. .. 61

3.2.1.1 Object Directories. .. 63
3.2.1.2 Object Domains. .. 65
3.2.1.3 Symbolic Links. .. 66

3.2.2 Object Handles 68
3.2.2.1 Object Retention. .. 70
3.2.2.2 Resource Accounting 71

3.2.3 Object Methods. .. 72
3.3 Protecting Objects .. 74

3.3.1 Access Tokens. .. 76
3.3.2 Access Control Lists. .. 78
3.3.3 Putting It All Together. .. 79

3.4 In Conclusion. .. 81

CHAPTER FOUR

PROCESSES AND THREADS. .. 83

4.1 What Is a Process? .. 84
4.1.1 Address Space. .. 85
4.1.2 Collection of Resources " 86
4.1.3 Process Object. .. 87

Table of Contents

4.2 What Are Threads? .. 90
4.2.1 Multitasking and Multiprocessing. .. 91
4.2.2 Multithreading.. 94
4.2.3 Thread Object. .. 97

4.2.4 Synchronization .. 100
4.2.5 Alerts and Asynchronous Procedure Calls 103

4.3 Process Structure .. 104
4.3.1 Environment Subsystem Requirements. 105
4.3.2 Native Process Structure. .. 109

4.3.2.1 Managing Client Processes .. 110
4.3.2.2 Preventing Misuse .. 112

4.4 In Conclusion. .. 113

CHAPTER FIVE

WINDOWS AND THE PROTECTED SUBSYSTEMS 115

5.1 Protected Subsystems Overview. 117

5.1.1 Why Use a Client/Server Model? 119
5.1.1.1 Providing Multiple Environments. 120
5.1.1.2 Memory Protection. .. 123

5.1.2 Performance Considerations. .. 126

5.2 Interacting with Windows NT Subsystems. .. 130
5.2.1 Logon ... 131
5.2.2 Running Applications .. 133

5.3 Win32 Subsystem. .. 136

5.3.1 32-Bit API ... 137
5.3.2 Structure. 140
5.3.3 Design Changes .. 141

5.4 MS-DOS and the 16-Bit Windows API 147

5.4.1 Virtual DOS Machines (VDMs) 149
5.4.2 Windows on Win32 (WOW) .. 152

5.5 Message Passing with the Local Procedure Call (LPC) Facility 155
5.5.1 Port Object .. 156

5.5.2 Types of LPC Message Passing. .. 158
5.5.2.1 Copying a/Message to a Port. 158
5.5.2.2 Passing a Message in Shared Memory. 159
5.5.2.3 Callbacks 161

5.5.2.4 Quick LPC .. 162
5.6 In Conclusion. .. 164

xi

INSIDE WINDOWS NT

xii

CHAPTER SIX

THE VIRTUAL MEMORY MANAGER 165

6.1 Virtual Memory .. 167

6.2 User-Mode Features. .. 171
6.2.1 Managing Memory 172
6.2.2 Sharing Memory. .. 174

6.2.2.1 Sections, Views, and Mapped Files 174

6.2.2.2 Section Object .. 177
6.2.3 Protecting Memory 179

6.2.3.1 Process-Private Memory. .. 180
6.2.3.2 Shared Memory .. 182

6.3 Virtual Memory Implementation .. 184

6.3.1 Address Space. 184
6.3.2 Paging 186

6.3.2.1 Paging Mechanisms 187

6.3.2.2 Paging Policies and Working Sets. 191
6.3.3 Page Frame Database .. 194
6.3.4 Virtual Address Descriptors. .. 198
6.3.5 Multiprocessing Considerations 200

6.3.6 Portability Considerations 201
6.4 In Conclusion. .. 202

CHAPTER SEVEN

THE KERNEL .. 203

7.1 Overview .. 204

7.2 Thread Scheduling and Dispatching 206
7.2.1 Kernel Process and Thread Objects. 206

7.2.2 Scheduling Priorities 210
7.2.3 Context Switching 213

7.3 Interrupt and Exception Handling 215
7.3.1 Trap Handler. .. 216

7.3.2 Interrupt Dispatching 217
7.3.2.1 Interrupt Types and Priorities. 218
7.3.2.2 Interrupt Processing 220
7.3.2.3 Software Interrupts. .. 222

7.3.3 Exception Dispatching 227

7.3.4 System Service Dispatching 229

Table of Contents

7.4 Multiprocessor Synchronization 231
7.4.1 Kernel Synchronization. .. 232
7.4.2 Executive Synchronization 234

7.5 Power Failure Recovery 237
7.6 In Conclusion .. 239

CHAPTER EIGHT

THE I/O SYSTEM " 241

8.1 An Overview of NT I/O .. 242
8.1.1 I/O System Components. .. 243
8.1.2 Design Features. .. 244

8.1.2.1 NT Object Model .. 245
8.1.2.2 Uniform Driver Model 247
8.1.2.3 Asynchronous Operation 249
8.1.2.4 Mapped File I/O and File Caching. 252

8.2 I/O Processing ... 253
8.2.1 File Objects .. " 253

8.2.2 I/O Request to a Single-Layered Driver. 257
8.2.2.1 Queuing an I/O Request. .. 257

8.2.2.2 Servicing an Interrupt .. 260
8.2.2.3 Completing an I/O Request. .. 262

8.2.3 I/O Requests to Layered Drivers. .. 265
8.2.4 Considerations in Using Asynchronous I/O 269

8.3 Layered Driver Model. .. 271

8.3.1 Structure of a Driver. .. 272
8.3.2 Driver Object and Device Object. .. 273
8.3.3 I/O Request Packet 275
8.3.4 Adding Layered Drivers. .. 275
8.3.5 Issues in Driver Development. .. 278

8.3.5.1 Multiprocessing .. 278
8.3.5.2 Power Failure Recovery 281

8.4 In Conclusion. .. 282

CHAPTER NINE

NETWORKING .. 285

9.1 Background... 287
9.1.1 History .. 288

xiii

INSIDE WINDOWS NT

xiv

9.1.2 OSI Reference Model. .. 289

9.2 Built-In Networking. .. 292
9.2.1 Network APls .. 294

9.2.2 Built-In Networking Components 297
9.2.2.1 Redirector 298

9.2.2.2 Server.. 300
9.2.3 Name Resolution. .. 302

9.3 Open Architecture .. 304
9.3.1 User-Mode Access to Remote File Systems. 305

9.3.1.1 Multiple Provider Router for the WNet API 305
9.3.1.2 Multiple UNC Provider for Win32 File I/O 307

9.3.2 Transport Protocols 309
9.3.3 NDIS Environment for Network Drivers 312

9.4 Distributed Application Environment 314
9.4.1 Remote Procedure Call 315

9.4.2 Named Pipes .. 320
9.5 Corporation-Wide Networking and Distributed Security. 321
9.6 In Conclusion , .. 326

Epilogue. .. 327

Glossary of Terms and Acronyms. .. 333

Bibliography. .. 363

Index ' 373

FOREWORD

In 1965, I graduated from college with a BA in mathematics, a minor in
physics, and an overwhelming desire to be an engineer and to build things.
So I took a job with DuPont in Wilmington, Delaware, as a materials testing
engineer. Mter about a year of absolute boredom, I was lent to the mathemat
ics and statistics group and assigned to construct a computer simulation
model for a new foam-making process that the Scott Paper Company was de
veloping. Working with machines that never did what I meant them to was
humiliating, but within six months I was hooked, and what I had shunned
coming out of school-computers-turned into my life's vocation.

Soon after, I transferred to DuPont's engineering department, where I
could program full time. DuPont had a small group that built online com
puter system applications. My real motivation for joining this group was to get
closerto computers, and in fact, I wanted to work on implementing an operat
ing system. While in this group, I had the good fortune to work on several
stand-alone real-time systems where the project involved writing the central
control program that scheduled the various tasks and monitored system ac
tivity as well as writing the actual application code.

It soon became apparent that the only way I was going to get the oppor
tunity to work on implementing a real operating system was to join a company
that made computers its business. And so in 1971 I left DuPont for a job in
Maynard, Massachusetts, with Digital Equipment Corporation. As it turned
out, this put me in the operating system business for quite some time to come.
Little did I know that I would be fortunate enough to develop several operat
ing systems in my lifetime; developing one is a rare opportunity for anyone.

My first operating system project was to build a real-time system called
RSX-llM that ran on Digital's PDP-ll16-bit series of minicomputers. At the
time, our goals seemed very ambitious. We were asked to build a multitasking
operating system that would run in 32 KB of memory with a hierarchical file
system, application swapping, real-time scheduling, and a set of development
utilities. The operating system and utilities were to run on the entire line of
PDP-ll platforms, from the very small systems up through the PDP-ll/70,
which had memory-mapping hardware and supported up to 4 MB of memory.

I have many fond memories of how RSX-llM took shape. I had a rubber
stamp made that proclaimed "Size Is the Goal" and proceeded to stamp ev
ery last bit of project correspondence to make sure that all the programmers

xv

INSIDE WINDOWS NT

xvi

and product managers understood how important it was to achieve our goals.
We also learned the power of conditional assembly (high-level language use
in operating systems was in its infancy at this time), and whenever someone
added a feature, we just made it a system-generation option.

While developing RSX-llM, we spent most of our time engineering solu
tions to memory problems. Because the system had to run in 32 KB, we gener
ated a memory budget that divided available memory equally between the
operating system and the utility programs. That left a mere 16 KB for utility
programs and led to long hours tuning overiay structures to achieve accept-
able performance for many of the RSX-llM system programs. .

Although RSX-llM had some very stringent size and performance con
straints, of the systems I've worked on it was probably the easiest one to de
velop. It involved re-implementing an existing system but allowed us the
freedom to change and subset the programming interfaces as long as applica
tions could be reassembled or recompiled with minimal source-code changes.
RSX-llM was introduced in 1973, 18 months after we had started building it. It
proved to be very successful and helped make the PDP-ll the most popular 16-
bit minicomputer of its time.

The PDP-ll provided better price/performance than mainframes, was
affordable at the departmental level, and along with other popular mini
computers of the same era, led to the first wave of "downsizing" in the com
puter industry. Downsizing was an attempt to "bring down" mainframe
applications to the minicomputer systems. Many of the mainframe programs
were larger than the PDP-ll could easily accommodate, and almost immedi
ately Digital was up against what Gordon Bell has deemed the single most im
portant reason that computer architectures become obsolete: the lack of
enough address bits.

Out of this need, the VAX architecture was born, and it became one of
the most popular architectures of the late '70s and remained popular
throughout the '80s. The VAX architecture provided 32 bits of virtual address
space and eliminated the need to wrestle programs into what seemed to be an
ever-decreasing amount of virtual address ·space.

My second opportunity to develop an operating system arrived with the
VAX. I was very fortunate to be chosen to lead the operating system effort for
the VAX-ll architecture, the result of which was the VMS operating system.

VMS was Digital's second general-purpose time-sharing system, devel
oped specifically for the VAX architecture. Because the VAX architecture had
grown out of the tremendous success of the PDP-ll, however, this time it was
mandatory to provide more than source-level compatibility for applications.

Foreword

Thus, the VAX-ll architecture included a PDP-ll compatibility mode in which
PDP-ll instructions were executed directly by hardware. At that time, it was
inconceivable that a single operating system could support more than one
"compatibility" environment. Although it wasn't the best known of the
PDP-ll operating systems (amazingly, Digital had no fewer than 10 PDP-ll
operating systems at one time or another!), RSX-llM was chosen as the operat
ing system interface that would be emulated in PDP-ll compatibility mode on
the VAX. This decision probably didn't make sense to a number of people out
side the company, but RSX-llM had the largest number of application devel
opment tools, had the most general-purpose operating system features,
supported multitasking, and had a file system structure that could be com
patibly extended. Ultimately, the VAX-ll system ran RSX-llM binaries right
off the distribution kit; it allowed RSX-llM volumes to be directly mounted
and their files to be accessed and shared between RSX-llM compatibility
mode programs and native VMS programs.

From a technical perspective, the biggest mistake we made in VMS was
not writing it in a high-level language. At the time, we had a group of very
accomplished assembly language programmers, some stringent size con
straints, and no compiler with the appropriate quality for operating system
development. So, to ensure that we would ship the system in a marketable
time frame, we wrote it in assembly language. Looking back on what hap
pened, it would still be hard to make the decision to write VMS in a high-level
language. (Moral: The right thing to do technically isn't always the best thing
to do financially.)

Early in the '80s, while minicomputers were busy absorbing mainframe
and other new applications, two important technologies were emerging: the
personal computer (PC) and workstations. Mter the VMS project, I spent a few
years developing compilers and then led a group that built Digital's first
MicroVAX workstation-the MicroVAX I.

Workstations like the MicroVAX provided individual, high-performance
computing for applications such as computer-aided design (CAD), whereas
PCs supported business applications aimed at personal productivity, such as
spreadsheets and word processors- two very successful early PC products.
Although workstations were relatively pricey, personal computers had to be
affordable to small businesses.

In order to meet price objectives, the original PCs were built with 8-bit,
and later with 16-bit, microprocessors. They were constrained in much the
same way RSX-llM had been and required considerable effort on the part of
programmers and operating system designers to accommodate their limita
tions. Hardware resources were so scarce that operating systems existed

xvii

INSIDE WINDOWS NT

xviii

mainly to handle a few low-level hardware functions and to provide a set of
file system libraries. But the personal computer offered something that
minicomputers did not-a market in which independent software developers
could sell their programs at a high volume. As a result, the breadth and
variety of applications that run on PCs and exploit their capabilities is truly
amazing.

In the mid-'80s, microprocessors gained 32-bit addressing, and worksta
tions were quick to take advantage of this capability. However, because of the
very large installed base of personal computers and their applications, it was
not easy to simply roll in another computer and then recompile and relink all
the application software. End users of PCs simply didn't have the source code
for their programs, and they demanded binary compatibility.

In the summer of 1988, I received an interesting call from Bill Gates at
Microsoft. He asked whether I'd like to come over and talk about building a
new operating system at Microsoft for personal computers. At the time, I
wasn't too interested in working on personal computers, but I thought this
would be a good opportunity to meet Bill and discuss what he had in mind.
What Bill had to offer was the opportunity to build another operating system,
one that was portable and addressed some of the concerns people had about
using personal computers to run mission-critical applications. For me, it
meant the chance to build another operating system!

Bill finally convinced me that this was an opportunity I couldn't pass up,
and in October of 1988, I came to Microsoft and started to build the team that
would build the new operating system. I didn't realize it at the time, but this
would be the most ambitious operating system project on which I had ever
embarked.

Our goals for the system included portability, security, POSIX com
pliance, compatibility, scalable performance (multiprocessor support), ex
tensibility, and ease of internationalization. Of all these goals, by far the one
that was hardest to achieve and that had the most profound effect on the
structure of the system was compatibility. Hundreds of thousands of PDP-ll
systems had been sold, but tens of millions of personal computers were in
operation! As if that weren't enough, we needed to compatibly support three
separate 16-bit operating environments and add new 32-bit capabilities to free
personal computer applications from the same kind of virtual address con
straints that had existed for the PDP-ll. To top it off, we wanted to support the
UNIX standard interface specification called PO SIX.

Now, almost four years later, we are on the brink of bringing this system,
Windows NT, to market. Helen Custer started work on this book when the

Foreword

operating system design began. As our design has matured, the book has
undergone continual change to track the operating system architecture. This
has been an arduous task-keeping up-to-date and writing and rewriting the
various chapters of the book as the design evolved. Although it is our design,
Helen is the one who has captured the essence of that design and made it
understandable to more than just serious operating system implementers. For
this, we owe Helen a great debt.

It is impossible to acknowledge all the people who contributed to the
design of Windows NT. I must say that I did not design Windows NT - I was
merely one of the contributors to the design of the system. As you read this
book, you will be introduced to some, but not all, of the other contributors.
This has been a team effort and has involved several hundred person-years of
effort. Perhaps the most important contribution of all was that made by the
people who have tested and stressed the system. Without their effort, Win
dows NT could not have achieved the level of quality that it has achieved.

I hope you enjoy this book about Windows NT as much as we enjoyed
designing the system.

•

Dave Cutler
Director, Windows NT Development

xix

PREFACE

I t has been a long road from 1989, when I began writing this book, to now.
Nothing could have prepared me for the all-consuming immersion in operat
ing system theory, design, implementation, and lore that began when I ac
cepted this challenge. Before starting, I reread Tracy Kidder's Soul of a New
Machine for inspiration and for a sense of kinship with at least one other per
son who had traveled a path similar to the one I was about to travel. In many
respects, the construction of Windows NT was a software version of the hard
ware construction documented in Kidder's book, and my experience, I
suspect, bore some resemblance to his.

Creating an operating system, like creating a computer, is an oppor
tunity few engineers ever get. Most operating system engineers spend their
entire careers enhancing or modifying existing operating systems or design
ing new ones that are never built or are never marketed. Computer com
panies fail regularly or undergo financial or managerial difficulties that
require them to cancel projects before they are completed. Those systems
that are completed often don't catch on in the marketplace or are largely
irrelevant because existing applications require the old systems to be sup
ported throughout eternity. Even fewer writers get the opportunity to write a
book such as this one, which documents the design of a significant new
operating system. It has been an unusual privilege to do so.

The background information in this book is not new. Most of it has been
written before in many forms and often with more eloquence than I have
mustered in these pages. However, my goal was not to write a book that
teaches operating system principles better presented in other books, but to
place Windows NT within the context of existing systems. Although I have
not belabored the often complex reasoning behind implementation deci
sions, I have tried to provide glimpses into some of the operating system
history and research that have influenced Windows NT's final form.

This book is not written for operating system designers, who are likely to
want more detail about the inner workings of Windows NT than this forum
can provide. Rather, it is for the rest of us, those who know something about
computers and who want to understand the internal design of this system in
order to write better applications or to simply demystify that black box called
an operating system.

xxi

INSIDE WINDOWS NT

xxii

Inside Windows NT was completed several months before the final
snapshot of Windows NT was taken. Therefore, some of the features de
scribed in this book might not ultimately appear in the first release; some
might be postponed until subsequent releases, and others might be dropped
entirely. I attempted, however, to provide a long-term vision of Windows NT
without resorting to too much' 'pie-in-the-sky" and without relying too heavily
on implementation details that are likely to change. Everything described
herein either is already in the system or exists but might be withheld until it
can be tested further or until the proper mix of software products exists to
complement it. Some topics are necessarily omitted, either because they were
introduced into the system late in its development or because they are likely
to be documented elsewhere. Other topics, such as security and the internal
design of each subsystem, are abbreviated. A notable example is the Win32
subsystem, which is described in Chapter 5, "Windows and the Protected
Subsystems," but whose internal details would fill another volume. Rather
than documenting the Win32 API, which other authors have already begun to
do, this book focuses on the design of Windows NT and on how the Win32
and other API environments "plug into" the NT executive.

It is not necessary to read the book from cover to cover; it is constructed
so that you can read the first two chapters and then jump into whatever topic
you prefer. Terminology and theory tend to build upon themselves, however,
so reading the book from front to back will increase your comprehension in
certain areas.

Over the last three years, I have talked to, cajoled, listened to, and
argued with many people, all of whom deserve my thanks. My greatest thanks
go to Dave Cutler for wanting this book to be written and for giving me the
unprecedented opportunity to write it. His technical and editorial comments
were also extremely valuable to me.

I also owe great thanks to Lou Perazzoli, the only person who read every
draft of everything I wrote along the way, even when his impossible schedule
made this a difficult endeavor. This book would not exist without Lou's as
sistance and support.

Special thanks go to Ron Burk and Gary Kimura for suggesting appro
priate frameworks within which I could organize the enormous amount of in
formation. I collected as this project progressed. Finding an editorial
framework and squeezing such a multifaceted system into it was one of the
toughest hurdles in writing this book.

Thanks also to the software engineers who allowed me to freely borrow
text from their technical specifications and who were patient as I tried to

Preface

reflect their views from a perspective that was not theirs. Although it might
not be written exactly as they would have written it, this book is really their
book; it chronicles the source of their joy, anxiety, frustration, and inspiration
for four years. It has been a privilege and a challenge to work with them and to
share this unique experience. In addition to those listed above, special thanks
for technical, editorial, or moral support go to Darryl Havens, Steve Wood,
Mark Lucovsky, Jim Kelly, Scott Ludwig, Matthew Felton, Mark Zbikowsky,
Chandan Chauhan, Chuck Lenzmeier, Mary Hutton, Asmus Freytag, Dave
Thompson, Larry Osterman, Sanjay Jejurikar, David Gilman, Robert Reichel,
Chad Schwitters, Bryan Willman, Eric Kutter, Lee Smith, Steve Rowe, Paul
Leach, Bruce Hale, Roberta Leibovitz, Gregory Wilson, David Treadwell,
Sudeep Bharati, Chuck Chan, Manny Weiser, Leif Pederson, Dan Hinsley,
Bob Rinne, David McBride, Richard Barth, John Balciunas, Rick Rashid,
Therese Stowell, Dave Hart, Matthew Bradburn, Cliff Van Dyke, David
Thacher,Jane Howell, Lorelei Seifert, Bob Muglia, and Paul Maritz.

My personal thanks to Callie Wilson for handling the internal distribu
tion of the book and to Carl Stork for running interference for me as news of
the manuscript's existence leaked out. It was also a great pleasure to work
with Microsoft Press staff, including Nancy Siadek,Jeff Carey, Deborah Long,
Judith Bloch, Connie Little, Katherine Erickson, Peggy Herman, Jean Tren
ary, Barb Runyan, Kim Eggleston, Wallis Bolz, and Dean Holmes. Thanks to
them for meeting a challenging publication schedule and handling with
aplomb the intricacies of this large and detailed book.

I extend my gratitude to the Microsoft library staff for acquiring all the
articles and many of the books that I used as background and reference mate
rial. They never let me down when I submitted esoteric requests, and they
never yelled at me for keeping anything too long. I also owe a belated thanks
to Daniel Canas, my operating systems instructor at the University of Kansas,
who sparked my interest in operating systems and who taught me the value of
research.

Throughout this book, you will see the names of designers and imple
menters of Windows NT. Many names are omitted, but the omissions are ran
dom, reflecting only that certain parts of the operating system are not
described in this book or that there were too many contributors to a particu
lar component to mention everyone. And although this text cites him pri
marily as the developer of the NT kernel, Dave Cutler, the chief architect of
Windows NT and one of its most prolific coders, provided code or at least
direction for nearly every part of the operating system.

xxiii

INSIDE WINDOWS NT

xxiv

There is a certain beauty in well-designed operating systems, an under
standable order beneath the seemingly endless details its implementation
comprises. My goal in writing this book was to examine this very large body of
software and peel away enough of the details to reveal its inner order. The
paradox of that difficult venture is perhaps best revealed in a brief anecdote:

I sat in Lou Perazzoli's office one afternoon while he described to me
the ins and outs (almost literally) of working-set trimming, a component of
the virtual memory system. As he explained, I listened intently and formed in
my mind an abstraction of his description, one that would fit within the scope
of this book. When he finished, I summarized what he had said from my point
of view and then asked, "Is that right?" He responded earnestly, "Yes, that's
exactly what we sort of do."

This book represents a balancing act between detailed truth and or
dered beauty. As a result, it documents "exactly" what the developers "sort
of" did. I owe them my thanks for sharing with me the contents of their
heads. Any errors in transcribing those contents are mine.

Helen K. Custer
September 1992

C HAP T E R ONE

THE MISSION

I n the world of operating systems, the wheels of progress turn slowly. Operat
ing systems take years to develop. Once complete, they remain lifeless until
applications are written to exploit their capabilities. Even after applications
exist, people must learn how to use them through documentation, training,
and experience. This, coupled with the delays common in developing appli
cations for operating systems, means that ordinary users often own and use
10- or 20-year-old operating system technology.

While operating systems await acceptance, hardware technology
marches forward. Computers with faster processors, more memory, and even
multiple processors become commonplace, while operating system devel
opers scurry to extend their existing systems to take advantage of the new
features.

The Intel 80386 and 80486 chips, along with many other popular pro
cessors, are known as complex instruction set computers (CISC). Their chief char
acteristic is a large number of machine instructions, each of which is
elaborate and powerful. In the last few years, Intel has made major advances
in the speed and power of its processors, and other manufacturers have devel
oped multiprocessor machines based on the Intel CISC technology.

In the mid-1980s, the hardware industry created another type of pro
cessor architecture called reduced instruction set computers (RISC). RISC chips
differ from CISC chips primarily in the small number of simple machine in
structions RISC chips provide. Because of the simplicity of their instruction
sets, the RlSC processors run at increased clock speeds and achieve very fast
execution times.

INSIDE WINDOWS NT

In both the else and RISe arenas, promising processor technologies
have emerged rapidly. Microsoft saw that in order to exploit these and other
hardware advances, it needed to produce an operating system for the 1990s
one that was portable and able to move easily from one hardware platform to
another. Although Microsoft and IBM created the OS/2 operating system in
the 1980s, Microsoft recognized that the system had many shortcomings, the
most obvious being that OS/2 is not portable. It was written in assembly lan
guage to run on single-processor, Intel 80286 computers. Rather than try to
overhaul the OS/2 system software, Microsoft decided to build a new, por
table operating system from the ground up.

1.1 An Operating System for the 1990s

2

In the fall of 1988, Microsoft hired David N. Cutler ("Dave") to lead a new
software development effort: to create Microsoft's operating system for the
1990s. Dave, a well-known architect of minicomputer systems,l quickly assem
bled a team of engineers to design Microsoft's new technology (NT) operating
system. Early in 1989, Bill Gates and key Microsoft strategists met to review the
operating system specifications Dave Cutler's group had defined. Their plans
identified these primary market requirements for the new operating system:

Portability Hardware advancements occur quickly and often unpredictably.
RISC processors represent a great departure from traditional CISC tech
nology, for example. Writing NT in a portable language would allow it to
move freely from one processor architecture to another.

Multiprocessing and Scalability Applications should be able to take advan
tage of the broad range of computers available today. For example, com
puters with more than one processor appear on the market regularly, but few
existing operating systems can fully employ them. Making NT a scalable,
multiprocessing operating system would allow a user to run the same applica
tion on single-processor and multiprocessor computers. At the high end, the
user could run several applications simultaneously at full speed, and compute
intensive applications could deliver improved performance by dividing their
work among several processors.

l. Prior to his work at Microsoft, Dave Cutler was a senior corporate consultant at Digital Equipment
Corporation and had spent 17 years there developi ng a number of operating systems and compilers,
including the VAX/VMS operating system, the MicroVAX I workstation and operating system, the
RSX-llM operating system running on DEC's PDP-ll machine, and the VAX PL/l and VAX C lan
guage compilers.

The Mission

Distributed Computing With the increasing availability of personal com
puters in the 1980s, the nature of computing was irrevocably altered. Where
once a single, large mainframe computer served an entire company, smaller
and cheaper microcomputers proliferated and are now standard issue for
rank-and-file employees. Enhanced networking capabilities allow the smaller
computers to communicate with one another, often sharing hardware re
sources such as disk space or processing power (in the form of file servers,
print servers, or compute servers). To accommodate this change, developers
of the NT system would build networking capabilities directly into the operat
ing system and would provide the means for applications to distribute their
work across multiple computer systems.

POSIX Compliance In the mid-to-Iate 1980s, U.S. government agencies began
specifying POSIX as a procurement standard for government computing con
tracts. POSIX, an acronym rather loosely defined as "a portable operating sys
tem interface based on UNIX," refers to a collection of international
standards for UNIX-style operating system interfaces. The POSIX standard
(IEEE Standard 1003.1-1988) encourages vendors implementing UNIX-style
interfaces to make them compatible so that programmers can move their
applications easily from one system to another. To meet the government's
POSIX procurement requirements, NT would be designed to provide an op
tional POSIX application execution environment.

Government-Certifiable Security In addition to POSIX compliance, the
U.S. government also specifies computer security guidelines for government
applications. Achieving a government-approved security rating allows an
operating system to compete in that arena. Of course, many of these required
capabilities are advantageous features for any multiuser system. The security
guidelines specify required· capabilities such as protecting one user's
resources from another's and establishing resource quotas to prevent one
user from garnering all the system resources (such as memory).

The initial target for NT security is the so-called Class C2 level, defined by
the U.S. Department of Defense as providing "discretionary (need-to-know)
protection and, through the inclusion of audit capabilities, for accountability
of subjects and the actions theyinitiate."2 This means that the owner of a sys
tem resource has the right to decide who can access it and that the operating

2. Department of Defense Trusted Computer System Evaluation Criteria, DoD 5200.28-SID,
December 1985.

3

INSIDE WINDOWS NT

4

system can detect when data is accessed and by whom. U.S. government
security levels extend from level D (least stringent) to level A (most
stringent), with levels Band C each containing several sublevels. Although
NT would initially be written to support the C2 security level, enhancements
in future releases could meet the more stringent requirements of higher
security levels.

With these market requirements in place, the NT development team
had its mission: to create Microsoft's operating system for the 1990s.
Originally, the plan also called for NT to have an OS/2-style user interface
and to provide the OS/2 application programming interface (API) as its primary
programming interface. Midway through the development of the system,
however, Microsoft Windows version 3.0 hit the market and was an instant
success, in contrast to OS/2, which had not caught on with large numbers
of users.

Recognizing this marketplace mandate and the complexities involved in
enhancing and supporting two incompatible operating systems, Microsoft
decided to alter its course and direct its energies toward a single, coherent
operating system strategy. The strategy is to produce a family of
Windows-based operating systems that spans computers from the smallest
notebooks to the largest multiprocessor workstations. Windows NT, as the
next-generation Windows system is named, takes its place at the high end of
the Windows family. It sports a Windows graphical user interface and is
Microsoft's first Windows-based operating system to supply the Win32 API, a
32-bit programming interface for new application development. The Win32
API makes advanced operating system capabilities available to applications
through features such as multithreaded processes, synchronization, security,
I/O, and object management.

Windows NT does not exist in a vacuum. It can interoperate with other
Microsoft systems, with the Apple Macintosh, and with UNIX-based operating
systems on a Microsoft LAN Manager or other network. A sample configura
tion appears in Figure 1-1.

The servers in this configuration can provide operating system facilities,
such as file services, print services, or system management functions, or they
can provide application facilities, such as database services. An application
might even interact with the server on a user's behalf without the user's
knowledge. When configured as a server, Windows NT works as a multiuser
operating system, servicing the needs of numerous users on a network. Each
workstation can support one interactive user and multiple remote users, with
each user (or application) required to log on before accessing the system.

The Mission

Windows NT

SERVERS

Windows NT
OS/2and

LAN Manager UNIX or VMS

Single-processor
or multiprocessor

x86 machine

Single-processor
or multiprocessor

RISC machine

Single-processor
x86 machine

Single-processor
or multiprocessor

RISC machine

DOSlWindows Apple
Macintosh

Single-processor
80386 or 80486

Windows NT
orOS/2

WORKSTATIONS

Figure 1-1. Connecting Multiple Systems

1.2 Design Goals

Single-processor
RISC workstation

Windows NT

The software design of Windows NT required some serious thinking. In order
for the system to fulfill its market requirements, it was crucial that complex
features such as POSIX compliance and security be incorporated from the
beginning.

Before they began writing the several hundred thousand lines of code
that Windows NT would eventually comprise, the system's designers carefully
constructed a set of software design goals. Such design goals facilitate making
the thousands of ancillary decisions that determine the internal structure of
a large software project. When two proposed design options conflict, the
design goals help establish which is best. The following are the Windows NT
design goals:

II Extensibility. The code must be written to comfortably grow and
change as market requirements change.

II Portability. As dictated by market goals, the code must move easily
from one processor to another.

II Reliability and robustness. The system should protect itself from
both internal malfunction and external tampering. It should
behave predictably at all times, and applications should not be able
to harm the operating system or its functioning.

5

INSIDE WINDOWS NT

II Compatibility. Although Windows NT should extend existing tech
nology, its user interface and APIs should be compatible with
existing Microsoft systems.

II Performance. Within the constraints of the other design goals, the
system should be as fast and responsive as possible on each hardware
platform.

The following sections discuss the Windows NT design goals in more
detail and describe their effect on the final form of the operating system.

1.2.1 Extensibility •

6

Operating systems invariably change over time. The changes usually present
themselves incrementally in the form of new features: for example, support
for a new hardware device, such as a CD-ROM reader; the ability to communi
cate over a new type of network; or support for up-and-coming software tech
nologies, such as graphical user interfaces or object-oriented programming
environments.

Ensuring the integrity of the Windows NT code as the operating system
changes over time was a primary design goal. For the Mach operating system
developed at Carnegie-Mellon University, Dr. Richard Rashid and his col
leagues took a unique approach to this problem by creating an operating sys
tem base that provides primitive operating system capabilities. Application
programs called servers3 provide additional operating system capabilities, in
cluding full-featured APIs. The base portion of the system remains stable,
while the servers are enhanced or new ones are created as requirements
change.

Windows NT borrows from this design and consists of a privileged execu
tive and a set of nonprivileged servers called protected subsystems. The term
privileged refers to a processor's modes of operation. Most processors have a
privileged mode (or perhaps several), in which all machine instructions are
allowed and system memory is accessible, and a nonprivileged mode, in
which certain instructions are disallowed and system memory is inaccessible.
In Windows NT terminology, the privileged processor mode is called kernel
mode and the nonprivileged processor mode is called user mode.

Usually an operating system executes only in kernel mode, and applica
tion programs execute only in user mode except when they call operating

3. This type of server refers to a procest on a local computer and should not be confused with sepa
rate computers on a network that provide file services or network services. See Chapter 2 for more
information.

The Mission

system services. Windows NT's design is unique, however, because its pro
tected subsystems execute in user mode like applications do. This structure
allows protected subsystems to be modified or added without affecting the in
tegrity of the executive. (See Chapter 5, "Windows and the Protected Sub
systems," for more information.)

In addition to protected subsystems, Windows NT includes numerous
other features to ensure its extensibility:

• A modular structure. The executive comprises a discrete set of indi
vidual components that interact with one another only through
functional interfaces. New components can be added to the execu
tive in a modular way, accomplishing their work by calling the inter
faces supplied by existing components.

• The use of objects to represent system resources. Objects, abstract
data types that are manipulated only by a special set of object ser
vices, allow system resources to be managed uniformly. Adding new
objects does not undermine existing objects or require existing
code to change. (See Chapter 3, "The Object Manager and Object
Security," for more information.)

• Loadable drivers. The Windows NT I/O system supports drivers that
can be added to the system as it runs. New file systems, devices, and
networks can be supported by writing a device driver, file system
driver, or transport driver and loading it into the system. (See Chap
ter 8, "The I/O System," and Chapter 9, "Networking," for more
information.)

• A remote procedure call (RPC) facility, which allows an application to
call remote services without regard to their locations on the net
work. New services can be added to any machine on the network
and can be immediately available to applications on other machines
on the network. (See Chapter 9, "Networking," for more
information.)

1.2.2 Portability
The second design goal, code portability, is closely related to extensibility. Ex
tensibility allows an operating system to be easily enhanced, whereas por
tability enables the entire operating system to move to a machine based on a
different processor or configuration, with as little recoding as possible.
Although operating systems are often described as either "portable" or
"nonportable," portability is not a binary state, but a matter of degree. The

7

INSIDE WINDOWS NT

8

crucial question is not whether software will port (most will, eventually), but
how difficult it is to port.

Writing an operating system that is easy to port is similar to writing any
portable code-you must follow certain guidelines. First, as much of the code
as possible must be written in a language that is available on all machines to
which you want to port. Usually this means that you must write your code in a
high-level language, preferably one that has been standardized. Assembly lan
guage code is inherently nonportable, unless you plan to port only to ma
chines with upwardly compatible machine instructions (such as moving from
the Intel 80386 to the Intel 80486, for example).

Second, you should consider to which physical environments you want
to port your software. Different hardware imposes different constraints on an
operating system. For example, an operating system built on 32-bit addresses
could not be ported (except with enormous difficulty) to a machine with 16-
bit addresses.

Third, it's important to minimize, or eliminate wherever possible, the
amount of code that interacts directly with the hardware. Hardware depen
dencies can take many forms. Some obvious dependencies include directly
manipulating registers and other hardware structures or assuming a particu
lar hardware configuration or capacity.

Fourth, whenever hardware-dependent code cannot be avoided, it
should be isolated to a few easy-to-Iocate modules. Hardware-dependent code
should not be spread throughout the operating system. These last two guide
lines work hand in hand. For example, you can hide a hardware-dependent
structure within a software-defined, abstract data type. Other modules of the
system manipulate the data type rather than the hardware by using a set of
generic routines. When the operating system is ported, only the data type and
the generic routines that manipulate it must be changed.

Windows NT was designed for easy porting. Some of its features include
the following:

II Portable C. Windows NT is written primarily in the C language,4
with extensions for Windows NT's structured exception handling
<1rchitecture. The developers selected C because it is standardized
and because C compilers and software development tools are widely
available. In addition to C, small portions of the system were written

4. ANSI Standard X3.159-1989.

The Mission

in C++, including the graphics component of the Windows environ
ment and portions of the networking user interface. Assembly lan
guage is used only for parts of the system that must communicate
directly with the hardware (the trap handler, for example) and
for components that require optimum speed (such as multiple
precision integer arithmetic). However, nonportable code is
carefully isolated within the components that use it.

III Processor isolation. Certain low-level portions of the operating sys
tem must access processor-dependent data structures and registers.
However, the code that does so is contained in small modules that
can be replaced by analogous modules for other processors.

III Platform isolation. Windows NT encapsulates platform-dependent
code inside a dynamic-link library known as the hardware abstraction
layer (HAL). Platform dependencies are those that vary between two
vendors' workstations built around the same processor-for example,
the MIPS R4000. The HAL abstracts hardware, such as caches and
I/O interrupt controllers, with a layer of low-level software so that
higher-level code need not change when moving from one platform
to another.

Windows NT was written for ease of porting to machines that use 32-bit
linear addresses and provide virtual memory capabilities. It can move to other
machines as well, but at a greater cost.

1.2.3 Reliability
Reliability was a third design goal for the Windows NT code. Reliability refers
to two different but related ideas. First, an operating system should be robust,
responding predictably to error conditions, even those caused by hardware
failures. Second, the operating system should actively protect itself and its
users from accidental or deliberate damage by user programs.

Structured exception handling is a method for capturing error conditions
and responding to them uniformly. It is Windows NT's primary defense
against errors in software or hardware. Either the operating system or the pro
cessor issues an exception whenever an abnormal event occurs; exception
handling code, which exists throughout the system, is automatically invoked
in response to the condition, ensuring that no undetected error wreaks havoc
on user programs or on the system itself. (See Chapter 2, "System Overview,"
for more information.)

9

INSIDE WINDOWS NT

Robustness is further enhanced by other features of the operating
system:

II A modular design that divides the executive into a series of orderly
packages. The individual system components interact with one
another through carefully specified programming interfaces. A
component such as the memory manager, for example, could be
removed in one piece and replaced by a new memory manager that
implements the same interfaces. (See Chapter 2, "System Over
view," for more information.)

II A new file system designed for Windows NT, called the NT file system
(NTFS). NTFS can recover from all types of disk errors, including
errors that occur in critical disk sectors. It uses redundant storage
and a transaction-based scheme for storing data to ensure
recoverability.

The following features of Windows NT protect it from external assault:

II A U.S. government-certifiable security architecture, which provides a
variety of security mechanisms, such as user logon, resource quotas,
and object protection. (See Chapter 5, "Windows and the Protected
Subsystems," for more information.)

II Virtual memory, which furnishes every program with a large set of
addresses that it can use. When a program accesses these virtual ad
dresses, the memory manager maps, or translates, them into actual
memory locations. Because it controls the placement of every pro
gram in memory, the operating system prevents one user from read
ing or modifying memory occupied by another user, unless the two
users explicitly share memory. (See Chapter 6, "The Virtual
Memory Manager," for more information.)

1.2.4 Compatibility

10

Software compatibility, the fourth design goal for Windows NT code, is a com
plicated subject. In general, compatibility refers to an operating system's
ability to execute programs written for other operating systems or for earlier
versions of the same system. For Windows NT, the compatibility theme takes
several forms.

The Mission

Defining this theme is the issue of binary compatibility versus source
level compatibility of applications. Binary compatibility is achieved when you
can take an executable program and run it successfully on a different operat
ing system. Source-level compatibility requires you to recompile your pro
gram before you can run it on the new system.

Whether a new operating system is binary compatible or source-code
compatible with an existing system depends on several things. Foremost
among them is the architecture of the new system's processor. If the pro
cessor uses the same instruction set (with extensions, perhaps) and the same
size memory addresses as the old, then binary compatibility can be achieved.

Binary compatibility is not as easy between processors based on different
architectures. Each processor architecture ordinarily carries with it a unique
machine language. This means that cross-architecture, binary compatibility
can be achieved only if an emulation program is provided to convert one set
of machine instructions to another. Without an emulator, all applications
moving from the old architecture to the new must be recompiled and
relinked (and likely debugged).

Through use of protected subsystems, Windows NT provides execution
environments for applications other than its primary programming inter
face-the Win32 API. When running on Intel processors, Windows NT's pro
tected subsystems supply binary compatibility with existing Microsoft
applications, including MS-DOS, 16-bit Windows, OS/2, and LAN Manager.
On the MIPS RISC processors, binary-level compatibility is achieved for MS
DOS, 16-bit Windows, and LAN Manager applications (using an emulator).
Windows NT also provides source-level compatibility with POSIX applications
that adhere to the POSIX operating system interfaces defined in IEEE Stan
dard 1003.1.

In addition to compatibility with programming interfaces, Windows NT
supports existing file systems, including the MS-DOS file system (FAT), the
OS/2 high-performancefilesystem (HPFS), the CD-ROMfilesystem (CDFS), and the
new, recoverable NT file system (NTFS).

1.2.5 Performance
Windows NT's final design goal was to achieve great performance. Compute
intensive applications such as graphics packages, simulation packages, and fi
nancial analysis packages require rapid processing in order to give the user
good response times. Fast hardware is not enough to achieve good perfor
mance, however. The operating system must also be fast and efficient.

11

INSIDE WINDOWS NT

Ensuring good performance was a goal throughout Windows NT's devel
opment. The following process helped achieve that goal:

II Each component of Windows NT was designed with an eye toward
performance. Performance testing and modeling were done for the
parts of the system that are critical to performance. System calls,
page faults, and other crucial execution paths were carefully op
timized to ensure the fastest possible processing speeds. (See Chap
ter 6, "The Virtual Memory Manager," and Chapter 7, "The
Kernel," for more information.)

II The protected subsystems (servers) that perform operating system
functions must frequently communicate with one another and with
client applications. To guarantee that this communication does not
hinder the servers' performance, a high-speed message-passing
mechanism called the local procedure call (LPC) facility was included
as an integral part of the operating system. (See Chapter 4, "Pro
cesses and Threads," for more information.)

II Each protected subsystem that provides an operating system envi
ronment (environment subsystem) was carefully designed to maximize
the speed of frequently used system services. (See Chapter 5, "Win
dows and the Protected Subsystems," for more information.)

II Crucial components of Windows NT's networking software were
built into the privileged portion of the operating system to achieve
the best possible performance. Although they are built-in, these
components can also be loaded and unloaded from the system
dynamically. (See Chapter 9, "Networking," for more information.)

1.3 The Team

12

At one time, it was possible for a handful of people to lock themselves away,
emerging with an operating system in a few frenzied months. But times have
changed.

Modern operating systems must satisfy a myriad of new hardware re
quirements, such as supporting multiple network protocols, multiple pro
cessors, multiple file systems, and an ever-increasing number of I/O devices.
In addition to these new demands, a system is considered unusable unless it
arrives with a multitude of software, including libraries, a graphical user
interface, tools, and applications-not to mention documentation.

The Mission

The group that designed the NT executive and its first protected sub
systems was rather small-about 10 people at the beginning, growing to
perhaps 40 or 50 later in the project. This book will introduce some of the
operating system's designers and implementers. These individuals, although
key to the project, could never have succeeded without many others. The con
tributors to Windows NT tools, applications, and device drivers, those respon
sible for porting Windows NT, and a host of software testers, program
managers, marketing personnel, and support staff comprise a group of over
200 people. Ultimately, the creation of Windows NT was an enormous,
multigroup effort.

1.4 The Rest of the Book
The next chapter begins with a grand overview of Windows NT and the
models on which it is based and a summary of its components. Each successive
chapter looks at an individual operating system component, its important
characteristics, the salient features of its design, and its interactions with
other components. The discussion of the system proceeds in a "middle-out"
fashion: It begins in the middle with processes and objects, moves toward the
top to discuss protected subsystems and API environments, and then zigzags
its way to the bottom toward memory management, the kernel, the I/O sys
tem, and networking.

13

C HAP T E R TWO

SYSTEM OVERVIEW

An operating system is a computer program that provides an environment
in which other computer programs can run, allowing them to easily take ad
vantage of the processor and of I/O devices such as disks. Although a great
convenience, an operating system is not strictly necessary for using computer
hardware. In the early days of computing, technicians loaded programs into
memory using antiquated input devices such as buttons and switches or paper
tape. Then they manually entered a program's starting address and directed
the computer to jump to it and begin executing. Modern computer users,
however, have become accustomed to more sophisticated facilities.

Today's operating systems provide two fundamental services for users.
First, they make the computer hardware easier to use. They create a "virtual"
machine that differs markedly from the real machine. Indeed, the computer
revolution of the last two decades is due, in part, to the success that operating
systems have achieved in shielding users from the obscurities of computer
hardware. In addition, programmers no longer need to rewrite an application
for every computer they want to run it on.

Second, an operating system shares hardware resources among its users.
One of the most important resources is the processor. A multitasking operating
system, such as Windows NT, divides the work that needs to be done among
processes, giving each process memory, system resources, and at least one thread
oj executirm, an executable unit within a process. The operating system runs
one thread for a short time and then switches to another, running each
thread in turn. Even on a single-user system, multitasking is extremely helpful
because it enables the computer to perform two tasks at once. For example, a
user can edit a document while another document is printing in the back
ground or while a compiler compiles a large program. Each process gets its
work done, and to the user all the programs appear to run simultaneously.

In addition to sharing the processor, the operating system divvies up
memory and regulates access to files and devices. Every operating system

15

INSIDE WINDOWS NT

differs in the way it presents its virtual machine to users and in how it divides
resources among them. The way in which Windows NT accomplishes this is
the subject of the rest of this book.

The first section of this chapter examines the models that influenced
the operating system's form. The second section takes a glimpse under the
hood of the system, revealing its interior structure. The third section de
scribes two additional system-wide architectures: internationalization and
structured exception handling.

2.1 Windows NT Models
An operating system is a complex program, a layering of detail upon detail.
Indeed, orchestrating these details, these bits and bytes, into a cohesive form
is one of the most important tasks in creating a new operating system. A unify
ing model is required to ensure that the system can accommodate its required
features without compromising its design goals.

What is an operating system model? The dictionary defines model as "a
tentative description of a system or theory that accounts for all its known
properties."l An operating system model is a broad framework that unifies
the many features and services the system provides and the tasks it performs.

The Windows NT design was guided by a combination of several models.
Windows NT uses a client/server model to provide multiple operating system en
vironments (initially, Windows, MS-DOS, OS/2, and POSIX) to its users, and it
uses an object model to uniformly manage operating system resources and dis
pense them to users. A third model, symmetric multiprocessing (SMP) , allows Win
dows NT to achieve maximum performance from multiprocessor computers.

2.1.1 Client/Server Model

16

Operating system code can be structured in a number of different ways. One
approach, particularly common in smaller operating systems such as MS
DOS, organizes the operating system as a set of procedures and allows any
procedure to call any other. This monolithic structure does not enforce data
hiding in the operating system, and it embeds assumptions about how the sys
tem fits together throughout the operating system code. Extending such a sys
tem can be difficult work because modifying a procedure can introduce bugs
in seemingly unrelated parts of the system.

In all but the simplest monolithic operating systems, applications are
separated from the operating system itself. That is, the operating system code

1. American Heritage Dictionary, 2d ed. (Boston: Houghton Mifflin Company, 1985).

System Overview

runs in a privileged processor mode (referred to as kernel rrwde in this book),
with access to system data and to the hardware; applications run in a
nonprivileged processor mode (called user rrwde), with a limited set of inter
faces available and with limited access to system data. When a user-mode pro
gram calls a system service, the processor traps the call and then switches the
calling thread to kernel mode. When the system service completes, the
operating system switches the thread back to user mode and allows the caller
to continue. The monolithic operating system structure with separate user
and kernel processor modes is shown in Figure 2-l.

A different structuring approach divides the operating system into mod
ules and layers them one on top of the other. Each module provides a set of
functions that other modules can call. Code in any particular layer calls code
only in lower layers. On some systems, such as VAXjVMS or the old Multics
operating system, hardware even enforces the layering (using multiple,
hierarchical processor modes). Figure 2-2 on the next page illustrates one
possible layered structure.

Operating
System

Procedures

Application
Program

Figure 2-1. Monolithic Operating System

Application
Program

User Mode

Kernel Mode

17

INSIDE WINDOWS NT

18

Application
Program

Application
Program

Memory and I/O Device Management

Hardware

Figure 2-2. Layered Operating System

User Mode

Kernel Mode

One advantage of a layered operating system structure is that each layer
of code is given access to only the lower-level interfaces (and data structures)
it requires, thus limiting the amount of code that wields unlimited power.
This structure also allows the operating system to be debugged starting at the
lowest layer, adding one layer at a time until the whole system works correctly.
Layering also makes it easier to enhance the operating system; one entire
layer can be replaced without affecting other parts of the system.

A third approach to structuring an operating system is the client/server
model. The idea is to divide the operating system into several processes, each
of which implements a single set of services-for example, memory services,
process creation services, or processor scheduling services. Each server runs in
user mode, executing a loop that checks whether a client has requested one of
its services.2 The client, which can be either another operating system compo
nent or an application program, requests a service by sending a message
to the server. An operating system kernel (or microkernel) running in

2. Some operating systems, such as Clouds and BiiN (see bibliography), operate differently, using
the caller's thread to execute server code but switching address spaces prior to execution.

System Overview

kernel mode delivers the message to the server; the server performs the
operation; and the kernel returns the results to the client in another message,
as illustrated in Figure 2-3.

The client/server approach results in an operating system whose compo
nents are small and self-contained. Because each server runs in a separate
user-mode process, a single server can fail (and perhaps be restarted) without
crashing or corrupting the rest of the operating system. Furthermore, differ
ent servers can run on different processors in a multiprocessor computer or
even on different computers, making the operating system suitable for dis
tributed computing environments.

The theoretical model shown in Figure 2-3 is an idealized depiction of a
client/server system in which the kernel consists of only a message-passing
facility. In reality, client/server systems fall within a spectrum, some doing
very little work in kernel mode and others doing more. For instance, the Mach
operating system, a contemporary example of the client/server architecture,
implements a minimal kernel that comprises thread scheduling, message
passing, virtual memory, and device drivers. Everything else, including
various application programming interfaces (APls), file systems, and net
working, runs in user mode.

. . , , . , . . .
". _-------

Send ..

Reply ---- ---.-

Figure 2·3. Client/Server Operating System

-_ " ..'
, , ,
,
· · · ,

User Mode

Kernel Mode

19

INSIDE WINDOWS NT

20

The structure of Windows NT borrows from both the layered model and
the client/server model. The kernel-mode portion of Windows NT is called
the NT executive. It comprises a series of components that implement virtual
memory management, object (resource) management, I/O and file systems
(including network drivers), interprocess communication, and portions of
the security system. For the most part, these components interact with one an
other in a modular, rather than a layered, fashion. Each component calls the
others through a set of carefully specified internal routines.

However, the layered operating system model comes into play in the NT
executive's I/O system, described shortly, and in the bottommost portions of
the NT executive: the NT kernel and the hardware abstraction layer (HAL). All
other components of the NT executive are layered on these two components.
The NT kernel performs low-level operating system functions, much like
those found in microkernel, client/server operating systems-for example,
thread scheduling, interrupt and exception dispatching, and multiprocessor
synchronization. It also provides a set of routines and basic objects that the
rest of the executive uses to implement higher-level constructs. Below the
kernel is the HAL dynamic-link library (DLL), a layer of code that protects the
kernel and the rest of the NT executive from platform-specific hardware dif
ferences. The HAL manipulates hardware directly.

As Figure 2-4 illustrates, Windows NT uses the client/server model pri
marily to provide APIs and the facilities that one ordinarily regards as an
operating system environment. Although the Win32 protected subsystem
(server) provides the user interface and is fundamental to the system's opera
tion, the other servers "plug into" the executive and can be loaded on a mix
and-match basis, with several in operation at a time if desired. The servers
communicate with application processes through a message-passing facility
provided in the NT executive.

Using the client/server model has several benefits:

.. It simplifies the base operating system, the NT executive. One goal
for Windows NT is to provide Win32, MS-DOS, 16-bit Windows,
POSIX, and OS/2 APIs. Moving each API into a separate server re
moves conflicts and duplications from the executive and allows new
APIs to be added easily.

.. It improves reliability. Each server runs in a separate process, parti
tioned into its own memory, and is thus protected from other pro
cesses. Furthermore, because the servers run in user mode, they
cannot directly access hardware or modify memory in which the ex
ecutive is stored.

System Overview

• It lends itself well to a distributed computing model. Because net
worked computers are based on a client/server model and use mes
sages to communicate, local servers can easily send messages to
remote machines on behalf of client applications. Clients need not
know whether certain requests are being serviced locally or remotely.

User Mode

Kernel Mode

Send •
Reply • __

Figure 2-4. Windows NT's Client/Server Structure

2.1.2 Object Model
Bertrand Meyer, in his book Object-oriented Software Construction, characterizes
operating systems as programs that "have no top."3 As with other large soft
ware systems, it is difficult to identify a single "main program" that drives an
operating system. Therefore, instead of attempting to design such a system
from the top down, object-oriented methodology focuses initially on the data

3. Bertrand Meyer, Object-oriented Software Construction (Hertfordshire, United Kingdom: Prentice
Hall International, 1988), 47.

21

INSIDE WINDOWS NT

22

that the software must manipulate to do its job. For an operating system, such
data takes the form of system resources-files, processes, blocks of memory,
and so on.

The primary goal of designing a system around data is to create software
that is easy (and cheap) to change. The importance of modifiability becomes
evident when you consider the often-quoted statistic that 70 percent of soft
ware cost is attributable to maintenance. Software maintenance includes
changes such as adding new features, modifying data formats, fixing bugs,
and accommodating new hardware.

One way in which object-oriented software minimizes change is by hid
ing the physical representation of data within objects. An object is a data struc
ture whose physical format is hidden behind a type definition. It embodies a
set of formal properties (called attributes) and is manipulated by a set of
services.

Although not strictly an object-oriented system (as Meyer defines it), Win
dows NT uses objects to represent system resources. Any system resource· that
can be shared by more than one process-including files, shared memory,
and physical devices-is implemented as an object and manipulated by using
object services. This approach lessens the impact of changes that will be made
in the system over time. Ifa hardware change, for example, forces a change in
the operating system, only the object that represents the hardware resource
and the services that operate on the object must change; code that merely
uses the object remains the same. Likewise, when the system needs to support
new resources, a new object is created and added to the system without
disturbing the existing code.

In addition to limiting the effects of change, building an operating sys
tem based on objects has some distinct advantages:

II The operating system accesses and manipulates its resources uni
formly. It creates, deletes, and refers to an event object in the same
way it does a process object: by using object handles. And because
each resource is an object, tracking resource usage is done simply by
monitoring the creation and use of objects.

II Security is simplified because all objects are protected in the same
way. When someone tries to access an object, the security system in
tervenes and validates the operation, regardless of whether the ob
ject is a process, a section of shared memory, or a communication
port.

System Overview

• Objects provide a convenient and uniform paradigm for sharing
resources between two or more processes. Object handles are used
to manipulate all types of objects. Two processes share an object
when they each open a handle to it. The operating system can track
how many handles are open to an object to determine whether the
object is still in use. The operating system can then delete the object
when it is no longer in use.

Chapter 3, "The Object Manager and Object Security," describes the
object manager, the NT executive component that implements and manages
Windows NT objects.

2.1.3 Symmetric Multiprocessing
Multitasking is the operating system technique for sharing a single processor
among multiple threads of execution. However, when a computer has more
than one processor, the multitasking model must be upgraded to a multi
processing model. A computer that has two processors can execute two threads
simultaneously. Thus, whereas a multitasking operating system appears to
execute multiple threads at the same time, a multiprocessing operating sys
tem actually does it, executing one thread on each of its processors.

Multiprocessing operating systems fall into one of two categories, sup
porting either asymmetric or symmetric processing, as illustrated in Figure 2-5.

Asymmetric Symmetric

Processor A

lID Devices I/O Devices

Figure 2·5. Asymmetric and Symmetric Multiprocessing

23

INSIDE WINDOWS NT

24

Asymmetric multiprocessing (ASMP) operating systems typically select the
same processor (A, for example) to execute operating system code while
other processors run only user jobs. Because operating system code runs on a
single processor, ASMP operating systems are relatively easy to create by ex
tending existing single-processor operating systems. ASMP operating systems
are especially well suited to running on asymmetric hardware, such as a pro
cessor with an attached coprocessor or two processors that don't share all
available memory. However, it's difficult to make ASMP operating systems
portable. Hardware from different vendors (and even different versions of
hardware from the same vendor) tends to vary in its type and degree of asym
metry. Either the hardware vendors must target their hardware for specific
operating systems or the operating system must be substantially rewritten for
each hardware platform.

Symmetric multiprocessing (SMP) systems, including Windows NT, allow the
operating system to run on any free processor or on all processors simulta
neously, sharing memory among them. This approach better exploits the
power of multiple processors because the operating system itself can use a sig
nificant percentage ofa computer's processing time, depending on the appli
cations it is running. Executing the operating system on only one processor
can tax that processor, leave others idle, and decrease the system's through
put; as the number of processors on the system increases, operating system
activities are more likely to become a bottleneck. In addition to balancing the
system load, SMP systems reduce downtime because operating system code
can execute on other processors if one processor fails. Finally, because sym
metric hardware is implemented similarly from vendor to vendor, it is pos
sible to create a portable SMP operating system.

Unlike ASMP systems, SMP systems are usually designed and written
from the ground up because they must adhere to strict coding guidelines to
ensure correct operation. Resource contention and other performance issues
are more complicated in multiprocessing systems than in ordinary operating
systems and must be accounted for in the system's design.

Windows NT incorporates several features that are crucial to its success
as a multiprocessing operating system:

III The ability to run operating system code on any available processor
and on multiple processors at one time. With the exception of its
kernel component, which handles thread scheduling and interrupts,
all operating system code can be preempted (forced 'to give up a pro
cessor) when a higher-priority thread needs attention.

System Overview

III Multiple threads of execution within a single process. Threads allow
one process to execute different parts of its program on different
processors simultaneously.4

III Server processes that use multiple threads to process requests from
more than one client simultaneously.

III Convenient mechanisms for sharing objects between processes and
flexible interprocess communication capabilities, including shared
memory and an optimized message-passing facility.

Processes and threads are described in Chapter 4, "Processes and
Threads," and Windows NT servers are described in Chapter 5, "Windows
and the Protected Subsystems."

2.2 Windows NT Structure
The structure of Windows NT can be divided into two parts: the user-mode
portion of the system (the Windows NT protected subsystems) and the
kernel-mode portion (the NT executive). A detailed illustration of Windows
NT is shown in Figure 2-6 on the next page.

Windows NT servers are called protected subsystems because each one
resides in a separate process whose memory is protected from other processes
by the NT executive's virtual memory system. Because the subsystems do not
automatically share memory, they communicate by passing messages. The
solid lines in Figure 2-6 represent paths that messages can take between cli
ents and servers or between two servers. All messages pass through the execu
tive, but for simplicity's sake, those paths are not shown in the figure.

As mentioned previously, the NT executive is an operating system
engine capable of supporting any number of server processes. The servers
give the NT executive its user and programming interfaces and provide exe
cution environments for various types of applications. The following two sec
tions take a closer look at the Windows NT structure.

2.2.1 Protected Subsystems
As the term "server" implies, each protected subsystem provides an API that
programs can call. When an application (or another server) calls an API

4. Note that in writing about multithreaded processes, it is often easier to state "a process executes"
rather than "a thread within a process executes." Therefore, this text occasionally refers to a pro
cess as requesting memory or generating an exception, but you should understand that in Windows
NT, the actual agent of execution is always a thread within the process.

25

INSIDE WINDOWS NT

routine, a message is sent to the server that implements the API routine
via the NT executive's local procedure call (LPC) facility, a locally optimized
message-passing mechanism. The server replies by sending a message back to
the caller.

Applications

Protected
Subsystems

(Servers)

NT Executive
Object

Manager
Security

Reference
Monitor

t t
System Services

Process Local Virtual
Manager Procedure Memory

Call Manager
Facility

Kernel

I I Hardware Abstraction Layer (HAL) I

Message Passing •

System Trap ------------------~

Hardware Manipulation - - +

Figure 2·6. Windows NT Block Diagram

26

I

User Mode

Kernel Mode
y

liD Manager
File Systems I
Cache Manager I

Device Drivers I
Network Drivers

I: I
I

System Overview

Windows NT has two types of protected subsystems: environment subsys
tems and integral subsystems. An environment subsystem is a user-mode server
that provides an API specific to an operating system. When an application
calls an API routine, the call is delivered through the LPC facility to the envi
ronment subsystem. The environment subsystem executes the API routine
and returns the result to the application process by sending another LPC.

Windows NT's most important environment subsystem is the Win32 sub
system, which makes Microsoft's 32-bit Windows API available to application
programs. In addition, the Win32 environment subsystem provides Windows
NT's graphical user interface and controls all user input and application out
put. Windows NT also supplies a PO SIX environment subsystem, an OS/2 en
vironment subsystem, a 16-bit Windows subsystem, and an MS-DOS subsystem.
(The latter two are not shown in Figure 2-6.) These subsystems provide APls
but use the Win32 subsystem to receive user input and to display output.

The remaining protected subsystems-the integral subsystems-are
servers that perform important operating system functions. Several integral
subsystems have come and gone during Windows NT's development, but one
has remained throughout: the security subsystem. The security subsystem
runs in user mode and records the security policies in effect on the local com
puter. For example, it keeps track of which user accounts have special privi
leges, which system resources are audited for access, and whether audit alarms
or audit messages should be generated. In addition, the security subsystem
maintains a database of information about user accounts, including account
names, passwords, any groups the user velongs to for security purposes, and
any special privileges the user owns. It also accepts user logon information
and initiates logon authentication.

Several components of the Windows NT networking software are also
implemented as integral subsystems. Two are worth mentioning here: the
workstation service and the server service. Each of these services, as network
ing subsystems are often called, is a user-mode process that implements an
API to access and manage the LAN Manager network redirector and server,
respectively. The redirector is the network component responsible for send
ing (redirecting) I/O requests across a network when the file or device to be
accessed is not local. The server sits on the remote machine and receives such
remote requests. Both the LAN Manager redirector and the LAN Manager
server are implemented as file system drivers-that is, as part of the NT I/O
system, described shortly.

2.2.2 Executive
The NT executive is the kernel-mode portion of Windows NT and, except for
a user interface, is a complete operating system unto itself. The executive con-

27

INSID.E WINDOWS NT

28

sists of a series of components, each of which implements two sets of func
tions: system services, which environment subsystems and other executive
components can call, and internal routines, which are available only to com
ponents within the executive. The interfaces are illustrated in. Figure 2-7.

Although the executive provides API-like system services, it is funda
mentally different from the environment subsystems. It does not run con
tinually in a process of its own but instead runs in the context of an existing
process by taking over an executing thread when important system events oc
cur. For example, when a thread calls a system service and is trapped by the
processor or when an external device interrupts the processor, the NT kernel
gains control of the thread that was running. The kernel calls the appropriate
system code to handle the event, executes it, and then returns control to the
code that was executing before the interruption.

Executive components maintain independence from one another, each
creating and manipulating the system data structures it requires. Because the
interfaces between components are carefully controlled, it is possible to com
pletely remove a component from the operating system and replace it with
one that operates differently. As long as the new version implements all the
system services and internal interfaces correctly, the operating system runs as
before. Maintaining the operating system is also an easier task because the
NT executive components interact in predictable ways.

System Services _

Internal Interfaces ..

Figure 2-7. System Interfaces

System Overview

The responsibilities of the executive components are listed here:

II Object manager. Creates, manages, and deletes NT executive ob
jects, abstract data types that are used to represent operating system
resources.

II Security reference monitor. Enforces security policies on the local
computer. It guards operating system resources, performing run
time object protection and auditing.

II Process manager. Creates and terminates processes and threads. It
also suspends and resumes the execution of threads and stores and
retrieves information about NT processes and threads.

II Local procedure call (LPC) facility. Passes messages between a client
process and a server process on the same computer. LPC is a flex
ible, optimized version of remote procedure call (RPC), an industry
standard communication facility for client and server processes
across a network. (See Chapter 9, "Networking," for more
information.)

II Virtual memory (VM) manager. Implements virtual memory, a
memory management scheme that provides a large, private address
space for each process and protects each process's address space
from other processes. When memory usage is too high, the VM man
ager transfers selected memory contents to disk and reloads the con
tents when they are used again, a practice known as paging.

II Kernel. Responds to interrupts and exceptions, schedules threads
for execution, synchronizes the activities of multiple processors, and
supplies a set of elemental objects and interfaces that the rest of the
NT executive uses to implement higher-level objects.

II I/O system. Comprises a group of components responsible for pro
cessing input from and delivering output to a variety of devices. The
I/O system includes the following subcomponents:

o I/O manager. Implements device-independent input/output
facilities and establishes a model for NT executive I/O.

o File systems. NT drivers that accept file-oriented I/O re
quests and translate them into I/O requests bound for a par
ticular device.

o Network redirector and network server. File system drivers that
transmit remote I/O requests to a machine on the network
and receive such requests, respectively.

29

INSIDE WINDOWS NT

o NT executive device drivers. Low-level drivers that directly
manipulate hardware to write output to or retrieve input
from a physical device or network.

o Cache manager. Improves the performance of file-based I/O
by storing the most recently read disk information in system
memory. The cache manager uses the VM manager's paging
facility to automatically write modifications to the disk in
the background.

• Hardware abstraction layer (HAL). Places a layer of code between
the NT executive and the hardware platform on which Windows NT
is running. It hides hardware-dependent details such as I/O inter
faces, interrupt controllers, and multiprocessor communication
mechanisms. Rather than access hardware directly, NT executive
components maintain maximum portability by calling the HAL rou
tines when they need platform-dependent information.

Windows NT is a portable operating system, designed to limit the
amount of code that relies on a particular hardware architecture. Some
processor-specific code (for instance, Intel 486 or MIPS R4000) is'required,
however, and is located in the lowest layers of the NT kernel, with smaller por
tions located in the VM manager. These components, particularly the NT
kernel, hide processor differences from the rest of the operating system.

Platform-dependent code-that is, code that relies on a particular
manufacturer's implementation of a MIPS R4000 computer, for example-is
located in the HAL and is provided by individual computer manUfacturers.
Device drivers contain device-specific code, of course, but they avoid
processor-dependent and platform-dependent code by calling NT kernel rou
tines and HAL routines.

2.2.3 A Brief Tour
With minor exceptions, Windows NT does not appear to be a unique new
operating system from a user's point of view. It looks like Windows and runs
Windows-based programs. Underneath its user interface, however, it is
radically different. The following sections provide a whirlwind tour of how
the various pieces of Windows NT fit together, beginning at its user interface
and working downward into the NT executive.

2.2.3.1 Logon Session

30

Windows NT is a secure operating system that requires each user to establish
an account and to log onto that account before access to the system is granted.

System Overview

Each user account has associated with it a security profile, which is a collection
of security-related information stored in a system database. The security sub
system employs this information to verify that users are who they claim to be.
The system components involved in logon are highlighted in Figure 2-8.

User Mode

Local Procedure Call (LPC) •

Figure 2-8. Logging On

A security system process, called a logon process, sits waiting for user input.
Several logon processes can be active, each one monitoring a separate class of
logon devices-for example, a keyboard/mouse combination or a network
connection. A thread in the process detects when a user attempts to access the
system and prompts the user for an account name and a password.

From there the logon process passes the user's information to the
security subsystem, which checks the information against a security database.
If the logon is authentic, the subsystem creates an object that uniquely iden
tifies this user in all subsequent transactions. The object, called an access token,
is the key to security in Windows NT: It determines which system resources
the user's threads may access.

After the user's identity is established, the security subsystem creates a
process, attaches the user's access token to it, and then passes the process to
the Win32 subsystem, which runs the Win32 Program Manager in the pro
cess's address space. With that, the user has established a logon session. Win
dows NT supports both local and remote logons, and a server machine
running Windows NT is likely to have numerous logon sessions active at the
same time.

As soon as an interactive user successfully logs onto Windows NT, the
Win32 subsystem takes control of the screen. In its first release, Windows NT
looks like, and is compatible with, Windows 3.1, as depicted in Figure 2-9. With

31

INSIDE WINDOWS NT

Windows NT, users can transparently run Win32 programs and 16-bit Win
dows programs, as well as MS-DOS, OS/2, and PO SIX programs.

Eile Qptions Window !:!elp

1M .. ~
File Manager IIIIIlII Print Manager Notepad

is
Microsoft

E)o:cel

fiHI~
lil!J li!!I

Accessories Games

MS·DOS In a POSIX Shell
Window

II
MS·DOS
Prompt

Figure 2-9. Windows NT's User Interface

Ii
Clipboard
Viewer

2.2.3.2 Environment Subsystems

32

The Win32 environment subsystem provides Windows NT's user interface. It
controls not only the video display but also the keyboard, the mouse, and
other input devices attached to the machine. In addition, it is a server for
Win32 applications, implementing the Win32 API.

Not all applications are Win32 applications, and the Win32 subsystem
does not control the execution of non-Win32 applications. When the user
runs an application that the Win32 subsystem does not recognize, the subsys
tem determines what type of application it is and then either calls another
subsystem to run the application or calls code to initialize an MS-DOS envi
ronment in which to run the application. (See Figure 2-10.)

Each of the environment subsystems supplies an API that its client appli
cations use. For example, the Win32 subsystem supplies 32-bit Windows API
routines, and the OS/2 subsystem supplies OS/2 API routines. Applications
cannot mix and match API routines from different subsystems because each
environment subsystem operates differently. A file handle created by the
Win32 subsystem does not translate to the PO SIX subsystem, for example.
Furthermore, such hybrid applications would not run on MS-DOS/Windows,
PO SIX, or OS/2 operating systems.

Virtual DOS
Machines
(VDMs)

..... <10 f/j "' .. "' .. W \flO '" 11<,. M,. lit *' · . · . · .

Character 110

Local Procedure Call (LPC) •

System Overview

Character 110

... ~---Character 110 --_

User Mode

Kernel Mode

Figure 2·10. Environment Subsystems and Client Applications

MS-DOS and 16-bit Windows emulation are supplied by an environment
subsystem called a virtual DOS machine (VDM) , which provides a complete MS
DOS machine environment. MS-DOS and 16-bit Windows applications run
within the context of VDM processes, which are unlike other environment
subsystems in that multiple VDM processes can be running at one time. (See
Chapter 5, "Windows and the Protected Subsystems," for more information.)

Because the Win32 subsystem handles all video output, the other envi
ronment subsystems must direct the output of their applications to the Win32
subsystem for display. The VDM running 16-bit Windows applications trans
lates the applications' output calls into Win32 calls and sends them in a mes
sage to the Win32 subsystem for display. The OS/2 and POSIX subsystems, as
well as any VDMs running MS-DOS applications, direct their applications'
character-mode output to the Win32 subsystem, which displays the output in
character-mode windows, called consoles.

An environment subsystem can support many client applications. Each
subsystem keeps track of its clients and maintains any global information that
all the client applications share. Although several subsystems and VDMs
might be running, Win32 is the only environment subsystem that makes itself
visible. To the user, it appears that Windows runs all the applications.

33

INSIDE WINDOWS NT

2~2.3.3 Native Services

34

Environment subsystems implement their API routines by calling NT native
services. the system services provided by individual components of the NT ex
ecutive. The VM manager supplies memory allocation and de allocation ser
vices, for example, whereas the process manager provides services to create
and terminate processes and threads. As Figure 2-11 illustrates, when a subsys
tem calls an NT native service, hardware detects the call and transfers control
to the NT executive. The service then runs in kernel mode.

Because the native services are used by different environment subsys
tems, they must be general-even primitive. They must be flexible, without
unnecessary built-in constraints. And they must not generate side effects that
might conflict with the diverse needs of the environment subsystems.

One way in which the native services are flexible is in their ability to act
on any process the caller specifies. The caller supplies a handle to a process,

. User Mode

Kernel Mode

System Trap • - -- -- -~

Figure 2·11. Native System Service Call

System Overview

and the service operates on that process. For example, a subsystem can call a
native service to create a thread or allocate memory for one of its client pro
cesses. Of course, most normal processes cannot perform such operations on
other processes. Environment subsystems have powerful access tokens that
grant them control over their clients.

Protected subsystems, DLLs, and components of the NT executive are
the primary users of NT native services. Applications that run on Windows
NT are written to Win32, MS-DOS, 16-bit Windows, POSIX, and OS/2 pro
gramming interfaces, which are supplied by environment subsystems.

2.2.3.4 Objects
Many, perhaps most, NT native services are object services. That is, they per
form some action on an object in the NT executive. A thread opens a handle
to an object and then uses that handle when calling services to operate on the
object.

Shareable resources, including processes, threads, files, and shared
memory, are implemented as objects in the NT executive. This allows the
operating system to take advantage of the similarities among resources and to
use common code wherever possible in order to manage them. The NT object
system is a focal point for several types of resource management tasks, such as
resource naming, placing limits (called quotas) on the amount of resources
each process can use, sharing resources between two processes, and securing
resources against unauthorized access.

Environment subsystems frequently call object services to create, open a
handle to, manipulate, or delete objects. For example, if the user starts a
Win32 application-Microsoft Excel, for instance-the Win32 subsystem
calls the NT process manager to create a process (the process in which Excel
will run) and open a handle to it. The process manager, in turn, calls the ob
ject manager to create a process object and a thread object. Similarly, if the
user saves a new Excel spreadsheet, the Win32 subsystem calls the NT I/O
manager to create a file object that represents the file in which the spread
sheet is stored and to open a handle to the object. The I/O manager calls the
object manager to do the job. Figure 2-12 on the next page illustrates.

Much of NT's resource management takes place when some process
creates an object and/or opens a handle to an object. For example, when a
process (in this case, the Win32 subsystem) creates an object, it can optionally
give the object a name. Giving an object a name makes that object available
for sharing by other processes. A process that wants to share the object simply
retrieves the object's name by calling the NT object manager and then opens
a handle to that object.

35

INSIDE WINDOWS NT

36

Objects are allocated from operating system memory. To keep anyone
process from using too much system memory, processes are charged a set
amount of their quota each time one of their threads opens a handle to a par
ticular type of object. If a process exhausts its quota, the object manager does
not allow it to open any more object handles. .

In addition to managing resources and facilitating resource sharing, the
NT object system serves as a focal point for resource security. When a process
opens a handle to an NT object, the NT security subsystem is activated. Each
object has attached to it a little database, called an access control list (ACL) , con
taining information regarding which processes can access the object and
what they can do to it. When a process opens a handle to an object, it specifies
the operations it wants to perform. For example, it might open a file for read
access. The security system checks whether the process is allowed read access
to the file object in question, and if so, the object manager returns an object
handle containing read access. The caller can then use the handle to read
from that particular file. If the caller also needs write access to the file, it can
request both read and write access when it opens the first handle or it can
open a second handle for write access. Because a process must open a handle

Create

User Mode

Kernel Mode

Figure 2·12. Creating NT Objects

System Overview

to an object before it can do anything to it and because opening a handle in
vokes the security system, no process can bypass NT security.

2.2.3.5 Virtual Memory
Operating systems adopt different views of physical memory and require
their programs to aCcess memory in specified ways. In Windows NT, applica
tion programs run in an operating system environment that behaves like Win
dows, MS-DOS, POSIX, or OS/2. The challenge is to allow all the different
types of applications to run without being rewritten and without bumping
into each other in memory.

Each of Windows NT's environment subsystems provides a view of
memory that corresponds to what its applications expect. Underneath the en
vironment subsystems, the NT executive has its own memory structure, which
the environment subsystems access by calling NT native services.

The NT memory architecture is a virtual memory system based on 32-bit
addresses in a flat (linear) address space. A process's virtual address space is the
set of addresses available for the process's threads to use. At runtime, the VM
manager, with assistance from hardware, translates, or maps, the virtual ad
dresses into physical addresses, where the data is actually stored. By control
ling the mapping, the operating system can ensure that individual processes
don't bump into one another or overwrite the operating system.

Each process's virtual address space is 4 gigabytes (232 bytes), with 2 giga
bytes reserved for program storage and 2 gigabytes reserved for system
storage. Four gigabytes (or even 2) is much larger than the amount of physical
memory likely to be available on ordinary machines. When physical memory
becomes full, the VM manager transfers, or pages, some of the memory con
tents to disk. Paging data to disk frees physical memory so that it can be used
for other things. When a thread accesses a virtual address that has been paged
to disk, the VM manager loads the information back into memory from disk.
Virtual memory is described in greater detail in Chapter 6, "The Virtual
Memory Manager."

In Windows NT, the operating system resides in high virtual memory
and the user's code and data reside in low virtual memory, as shown in Figure
2-13 on the next page. A user-mode thread cannot read or write to system
memory directly.

A portion of the system memory, called nonpaged pool, is never paged to
disk and is used to store some NT objects and other important data structures.
Another portion of system memory, called paged pool, is paged to disk. All of
user memory can be paged. (See Chapter 6, "The Virtual Memory Manager,"
for more information.)

37

INSIDE WINDOWS NT

FFFFFFFFh

System
(2 GB)

Resident Operating
80000000h System Code

7FFFFFFFh

OOOOOOOOh

User Code
and Data

(2 GB)

T Nonpaged

I Paged

Physical Addressing Range

Paged

Figure 2-13. NT Address Space Layout

2.2.3.6 I/O and File Systems

38

As with memory, environment subsystems provide whatever I/O facilities
their applications expect. They implement those individual facilities by call
ing native NT I/O services.

The native I/O system uses an asynchronous I/O model, but it provides
system services that allow environment subsystems to use either a synchro
nous or an asynchronous model. Asynchronous I/O allows a caller to reque~t an
I/O operation and then do other work while the device finishes transferring
the data. The I/O system automatically notifies the caller when the I/O is
complete so that the caller can do subsequent processing. Because I/O de
vices are generally much slower than processors, a program that does a lot of
I/O can often improve its performance by using asynchronous I/O.

Windows NT supports multiple file systems, including the file allocation
table (FAT) file system, the high-performance file system (HPFS), and a new file sys
tem called the NT file system (NTFS). NTFS extends the capabilities present in
both the FAT file system and the HPFS to add the following new features:

l1li File system recovery that allows for quick restoration of disk-based
data after a system failure.

l1li The ability to handle (ridiculously) large storage media-up to 264

bytes, or approximately 17 billion gigabytes, in size.

l1li Security features, including execute-only files.

System Overview

l1li Unicode filenames, which allow documents to be transferred from
one computer to another internationally, without garbling filenames
and pathnames. (See Section 2.3.1.)

l1li Support for the POSIX operating system environment, including
hard links, case-sensitive names, and information about when a file
was last opened.

l1li Features for future extensibility, such as transaction-based opera
tions to support fault tolerant applications, user-controlled version
numbers for files, multiple data streams per file, flexible options for
file naming and file attributes, and support for popular file servers.

The I/O manager allows device drivers and file systems (which it views as
"device" drivers) to be loaded dynamically into and out of the system, based
on the needs of the user. Drivers are modular and can be layered one on top
of another, which, for example, allows different file systems to call the same
floppy disk driver 0: hard disk driver to access files, as shown in Figure 2-14.

System Services

Figure 2-14. Layered Drivers

Floppy
Disk

Driver

User Mode

Kernel Mode

I/O Manager

Hard
Disk

Driver

39

INSIDE WINDOWS NT

The layered driver model also provides the ability to insert additional
drivers in the hierarchy. For example, logical file system drivers or fault
tolerant drivers can occupy intermediate levels in the driver hierarchy.

Windows NT provides access to files on the LAN Manager network
through a file system driver called the Windows NT redirector. The redirector
accepts requests for remote files and directs them to a LAN Manager server
on another machine.

2.3 Additional Windows NT Architectures
The tour thus far has not captured all the important elements of Windows
NT. Indeed, coverage of many topics is deferred until later in this book, and
other topics will be left for future writings. However, two topics in particular
do not fit conveniently into anyone component of the operating system (or
anyone chapter of this book) but are too important to omit. The first is Win
dows NT's internationalization support, which allows users located in many
different countries to interact with the system in their native languages. It also
gives application developers the tools they need to write international appli
cations. The second topic is structured exception handling, a feature that is
supplied in Microsoft Ca'nd bolstered by the NT kernel. It allows users to
write robust applications. Windows NT, written mostly in Microsoft C, also
uses the features of structured exception handling to make the operating sys
tem reliable.

Neither of these topics can be adequately presented in a few short pages.
However, the following two sections give a glimpse of the issues surrounding
internationalization and structured exception handling and summarize how
both are addressed in Windows NT. Refer to the bibliography for sources of
additional information.

2.3.1 Internationalization

40

With the widespread availability of jet travel and sophisticated telecom
munications, the world is becoming a smaller and smaller place. Conse
quently, international markets are becoming increasingly important to the
computing industry. International sales constitute an ever-larger slice of the
applications market. The goal for Windows NT is to be a truly multilingual
operating system, one that provides a solid foundation for developing and
using international applications.

The user-visible aspects of international support appear in the Win32
control panel, shown in Figure 2-15.

--- ---- - -

In1ernntlonlll

kounlry:

Language: I Engliah lA-ican) II

lI.eyb •• rd l_ul: ~Iu~s ~=====~.:
.!!. emenl: "'IEngIi=·ch"--____ ---'II.
Lisl ,ieparalor: D
~.Fw~--------------'r

1017192 . _

""_ y. Octob .. 07. 1992

,I.imeF at
1:38:27 PM liH F ••••• ;;;;;;;;;;;;;;;

_ ._ 1.234.22 ~

Figure 2-15. International Dialog Box

System Overview

This dialog box has not changed from Windows 3.0. However, under
neath the user interface, much has changed. International support is greatly
streamlined in Windows NT, providing modular facilities for applications as
well as for important system components such as the Win32 subsystem. The
user interface to internationaiization facilities will continue to evolve in fu
ture releases.

2.3.1.1 Locales
Different national or cultural markets, called locales, have different require
ments for software. Chief among the requirements is to allow users to interact
with the software in their native languages, using native conventions for rep
resenting data.

A locale consists of a language, a country, and a code set, the binary codes
used to represent the characters of a particular language. (Windows ANSI is
one such code set.) When installing Windows NT, the user selects a language
to use and is assigned a default locale. The default locale gives the user
culturally correct defaults for keyboard layout, sorting order, currency, and
date and time formatting. The user can override any of these defaults.

Even more flexibility is desirable, however. In multilingual countries such
as Canada, Switzerland, and Belgium, users require the ability to switch among
two or more languages on a regular basis. Moreover, some companies, including
Microsoft, have divisions in which several different languages are routinely
spokeri. Ideally, each user should be able to switch among locales at any time or
to send data among locales without losing information. To accomplish this, ap
plications (and in this case, Windows) must be separated into two pieces:

II Code, which can be used in all locales

II Data, which must be translated for different locales

41

INSIDE WINDOWS NT

In Windows, the data category consists of resources such as menus and
messages. These resources are separated from the main body of the code and
can be attached to or detached from Windows. When the user switches
locales, the resource set changes to represent the new locale. Since the set of
Windows resources is much smaller than Windows itself, many different
resource sets can be loaded at installation time, allowing the user to switch
between locales easily without loading new files from floppy disks. Moreover,
a single Windows NT package can be shipped to all countries with localization
support already built in. The only remaining task is to translate the resource
files and the documentation.

To facilitate localization, Windows NT's Win32 subsystem provides a
national language support (NLS) API that gives applications (and Windows NT)
access to culturally correct string comparisons; collation tables for sorting the
characters of different languages; date, time, and currency formatting rou
tines; and routines for determining the locale that is in effect and the other
locales present on the system. In addition, the NLS API provides routines to
convert between the international code set used by Windows NT and other
commonly used code sets. (More on this topic in the next section.) Both the
Win32 subsystem and the C runtime library provide their own API routines
based on NLS. Using these facilities allows applications to support localiza
tion without having to duplicate the substantial database (tables, code sets,
and so on) required to do so.

2.3.1.2 Unicode

42

The lowest layer of localization support is in the representation of individual
characters, the code sets. The United States has traditionally employed the
ASCII (American Standard Code for Information Interchange) standard for
representing data. For European and other countries, however, ASCII is not
adequate because it lacks common symbols and punctuation. For example,
the British pound sign is omitted, as are the diacritical marks used in French,
German, Dutch, and Spanish.

The International Standards Organization (ISO) established a standard
code set called LatinI (ISO standard 8859-1), which defines codes for all the
European characters omitted by ASCII. Microsoft Windows uses a slight modi
fication of LatinI called the Windows ANSI code set. Windows ANSI is a single
byte coding scheme because it uses 8 bits to represent each character. The maxi
mum number of characters that can be expressed using 8 bits is 256 (28).

A script is the set of letters required to write in a particular language.
The same script is often used for several languages. (For example, the Cyrillic
script is used for both the Russian and Ukrainian languages.) Windows ANSI

System Overview

and other single-byte coding schemes can encode enough characters to ex
press the letters of Western scripts. However, Eastern scripts such as Japanese
and Chinese, which employ thousands of separate characters, cannot be en
coded using a single-byte coding scheme. These scripts are typically stored
using a double-byte coding scheme, which uses 16 bits for each character, or a
multibyte coding scheme, in which some characters are represented by an
8-bit sequence and others are represented by a 16-bit, 24-bit, or 32-bit sequence.
The latter scheme requires complicated parsing algorithms to determine the
storage width of a particular character. Furthermore, a proliferation of dif
ferent code sets means that a particular code might yield entirely different
characters on two different computers, depending on the code set each com
puter uses.

To address the problem of multiple coding schemes and to accommo
date a more comprehensive set of scripts, Windows NT employs the new
Unicode standard for data representation; Unicode, a 16-bit character-coding
scheme, can represent 65,536 (216) characters. This is enough to include all
languages in computer commerce today, as well as several archaic or arcane
languages with limited applications (such as Sanskrit and, eventually, Egyp
tian hieroglyphics). Unicode also includes representations for punctuation
marks, mathematical symbols, and a set of graphical characters called
dingbats,5 with plenty of room remaining for future expansion.

Unicode separates the "essence" of a character from the font and for
matting information used to display it. Each code corresponds to one (and
only one) character; font information is applied to Unicode characters to dis
play them in various styles and shapes. Figure 2-16 illustrates the layout of
scripts and symbols in Unicode.6

Although the Win32 subsystem provides both ANSI and Unicode string
API routines, Unicode is Windows NT's native code set. All character strings
in the system, including object names, pathnames, filenames, and directory
names, are represented with 16-bit Unicode characters. Even the Win32 sub
system converts any ANSI characters it receives to Unicode strings before ma
nipulating them; it converts them back to ANSI, if necessary, upon exit from
the system.

5. I have attempted, unsuccessfully, to determine why these characters are called dingbats. If
anyone knows the answer, please satisfy my curiosity by sending the information to me in care of
Microsoft Press.

6. Figure 2-16 was adapted from an illustration by Asmus Freytag, vice president of marketing for the
Unicode Consortium.

43

INSIDE WINDOWS NT

Punctuation
Math/technical symbols

Dingbats (graphical symbols)

Arabic and
Hebrew scripts Unified

Chinese/Japanese/Korean

OOOOh

Indic scripts
Others

Latin,
Greek,

Cyrillic, and
Armenian scripts

Chinese/Japanese/
Korean symbols

c=J Future use

(Bopomofo,
Hiragana,
Katakana,
Hangul, ...)

raphs
Private

application use

FFFFh

Compatibility
zone

_ Provides compatibility with standard, non-Unicode character sets

Figure 2-16. Unicode Layout

Using Unicode removes all limitations on the set of characters that Win
dows NT can represent. Because Unicode establishes a unique code for every
character of every script, Windows NT can ensure that the round-trip charac
ter translation, into and out of the system, is always accurate.

2.3.2 Structured Exception Handling

44

The second special architecture supported and used by Windows NT is called
structured exception handling. Exceptions are synchronous errors or atypical
events that cause the execution of code outside the normal flow of control.
Unlike interrupts, which are generated from an external source, exceptions
occur when a program executes a particular code sequence, and exceptions
can be reproduced.

For example, when a program calls the C function mallocO, the typical
result is that malloc 0 allocates memory and returns a pointer to it. The ex
ceptional condition occurs when some problem, such as a lack of available
memory, causes the allocation to fail. In.this case, the function returns a NULL
pointer.

System Overview

Returning a special value to indicate an exception is a common but
primitive form of exception handling and has some drawbacks. First, a pro
grammer must religiously check the return value and either act on any errors
or propagate them to a higher layer of software. If one layer omits the check,
bugs can surface in unrelated parts of the program. Second, the code
becomes cluttered with If ... Then ... Else clauses that handle the atypical,
rather than the typical, case. Third, information about why the operation
went wrong might not be easily available to the code that must address the
problem .

.. Exceptions can be detected by either hardware or software. For ex
ample, hardware generally detects divide-by-zero exceptions, whereas soft
ware detects memory access violations. Structured exception handling is the
method used in Windows NT for processing both hardware and software ex
ceptions, using the control structure (hence the name) of a programming
language. Structured exception handling allows any block of code to deter
mine what type or types of exceptions it wants to guard against and to register
a special code sequence (the exception handler) that is executed if such excep
tions occur within the guarded block of code.

The following code is a simple routine written in Microsoft C that in
cludes an exception handler. It is a modified version of the standard C library
function strlen(), which returns the length of a null-terminated string.

1* safelen: return valid length of string s,
even if thee string pointer was bad *1

int safelen(char *s)
{

1.

int count = 0:

e try {
while (*s++ 1= '\0')
1* possible access violation *1

count++;
return (count);
}

except (GetE~cepti onCodeO == ACCESLVIOLATION ?
e EXCEPTION_EXECUTE_HANDLER :

EXCEPTION_CONTINULSEARCH)
{

1* pointer was bad or string was not terminated *1
return (count):
}

45

INSIDE WINDOWS NT

46

The normal strlen() function merrily plods through memory one char
acter at a time until it finds a NULL character. But if the string is not null
terminated or if the string pointer is invalid, strlen 0 c~n terminate
unexpectedly with an access violation exception.

This modified version of the code captures the exception and returns a
valid value (not necessarily correct, merely valid), rather than terminating
the program. The new C keyword, try, is used to mark the beginning of the
block of code that might cause an access violation. If an exception occurs
within this block, control is transferred to the except keyword, which is fol
lowed (in parentheses) by an exception filter. The exception filter allows the
programmer to specify execution of the exception handler only for selected
types of exceptions. If the exception filter resolves to TRUE, the exception
handler-the return (count) statement, in this case-executes. Exception fil
ters are powerful because they can access local data and can be of arbitrary
complexity. They allow the exception handler to be executed under precise
conditions. The transfer of control to an exception handler is called raising an
exception. Notice how the error handling code is removed from the main line
of the program.

Each block of code can have a separate exception handler, and excep
tion handlers can even be nested within one another. When an exception oc
curs, the exception filter can test the type of exception and conditionally tell
the operating system to execute the exception handler, continue the pro
gram, terminate the program, or look for an exception handler in an enclos
ing block of code.

Operating system exceptions aren't the only exceptions to which appli
cations might want to respond. Applications can generate an exception using
the Win32 API routine RaiseException 0, causing control to transfer to a
registered exception handler. The operating system supports this operation
by registering exception handlers and searching for them in the proper order
when exceptions are raised. If no exception handler takes care of the prob
lem, the operating system terminates the program that caused the error. Win
dows NT's exception-handling facility is not language specific; a single
mechanism is used across all languages. Each language defines how the un
derlying exception-handling mechanism is exposed.

Another type of exception handler, known as a termination handler, lets an
application ensure that a particular block of code always executes, even if a
guarded block of code terminates in an unexpected way. Termination han
dlers often contain code that frees allocated resources so that if a ~procedure
terminates unexpectedly, the resources it allocated are released back to the
system. The following is a Win32 code fragment illustrating the purpose of a
termination handler:

1* allocate and initialize a
global critic'al section object *1

LPSTR Buffer:
Buffer = NULL:

1* enter the critical section and
allocate a buffer *1

try {

}

EnterCriticalSection(&CriticalSection)
Buffer = LocalAl1ocCLMEM_FIXED. 10):
if(lBuffer) {

return;
}

strcpy(Buffer. "Hell 0"):

finally {
1* always leave the critical section and

fre~ the allocated buffer *1
if(Buffer 1= NULL)

Local Free(Buffer):
LeaveCriticalSection(&CriticalSection):

}

System Overview

A critical section is a Win32 synchronization object that ensures that one
and only one thread can execute a particular block of code at a time. In this
example, a thread gains access to the critical section, allocates a buffer, and
then modifies the buffer. If something goes awry (an unhandled exception,
perhaps) and causes the routine to terminate while the thread is in the criti
cal section, any other thread waiting to acquire the resource will be per
petually blocked. Furthermore, the buffer that the thread allocated will be
lost, with the operating system unable to recover it. (Developers often refer to
these types of errors as memory leaks. If too many occur, available memory
gradually "drains away.") The termination handler ensures that the thread
releases the critical section object and frees the buffer. Termination handlers
always execute when the flow of control leaves the body of the try ... finally
block no matter how the exit occurs.

47

INSIDE WINDOWS NT

Exception handlers and termination handlers can be used separately or
in combination to achieve robust behavior in any application. Windows NT
uses both to ensure robust behavior at all levels of the system.

2.4 In Conclusion

48

There you have it-some of the highlights of Windows NT. It is a symmetric
multiprocessing operating system base that supports multiple operating sys
tem environments. Windows NT has a Windows graphical user interface and
runs Win32, 16-bit Windows, MS-DOS, POSIX, and OS/2 programs. It employs
advanced operating system principles such as virtual memory, preemptive
multitasking, structured exception handling, and operating system objects. It
is secure, powerful, reliable, and flexible. It has the kind of capabilities that
once were found only in mainframe and minicomputer operating systems.
In other words, Windows NT is an express locomotive squeezed into a
skateboard-sized package-it could very well represent the future of desktop
computing. But you can judge for yourself. The following chapters of this
book flesh out the details of Windows NT, beginning with objects-its means
for representing, managing, and securing its resources.

C HAP T E R T H R E E

THE OBJECT MANAGER
AND OBJECT SECURITY

Object-oriented languages, user interfaces, and operating systems became
hot topics among computing enthusiasts in the latter half of the 1980s. Ob
jects were suddenly touted as a cure-all for every programming affliction.
However, objects are not new. They made their first appearance in the late
1960s in programming languages such as Simula that were developed pri
marily to create simulation programs. Computer simulations model the be
havior of real-world objects. Therefore, object-oriented programming, which
provides a way to represent and manipulate both physical and abstract ob
jects, is a natural approach in that field.

Operating systems also manipulate objects. Their objects take the form
of hardware resources, such as I/O. devices and memory, or software
resources, such as files, processes, and semaphores. Most operating systems
focus on the differences between these shared resources and manipulate each
type of resource differently. Implementing them as objects, however, exploits
their similarities. It concentrates all resource management in one location
and provides a cohesive model for uSIng resources.

The tour inside Windows NT begins with the NT executive and specifi
cally with NT executive objects. It's difficult to start anywhere else because
processes, threads, files, and even the Win32 subsystem (a process) are ob
jects. Hence, understanding the NT object system provides useful insights
into wide-ranging parts of the operating system.

The first section of this chapter examines the types of objects that exist.
in Windows NT and describes how they are used. A discussion of object struc
ture and of how the object manager administers objects is the subject of the
second section. The third section focuses on a fundamental task of the Win
dows NT security system: protecting objects.

49

INSIDE WINDOWS NT

3.1 NT Executive Objects

50

What is an object? In the NT executive, an object is a single, runtime instance
of a statically defined object type. An object type (sometimes called an object
class) comprises a system-defined data type, services that operate on instances
of the data type, and a set of object attributes. If you write Win32 applications,
you encounter process, thread, file, and event objects, to name a few ex
amples. These objects are based on lower-level objects that are created and
managed by the NT executive. In NT, a process is an instance of the process
object type, a file is an instance of the file object type, and so on.

An object attribute is a field of data in an object that partially defines the
object's state'! An object of type stack, for example, would have a stack pointer
as one of its most important attributes. Object services, the means for manipulat
ing objects, usually read or change the object attributes. For example, the
push service for a stack object would change the value of the stack pointer.

The most fundamental difference between an object and an ordinary
data structure is that the internal structure of an object is hidden from view.
You must call an object service to get data out of an object or to put data into
it. You cannot directly read or change data inside an object. This separates the
underlying implementation of the object from code that merely uses it, a tech
nique that allows object implementations to be changed easily over time.

The NT executive design team decided to use objects to represent sys
tem resources because objects provide a centralized means for accomplishing
three important (and often irksome) operating system tasks:

II Providing human-readable names for system resources

III Sharing resources and data among processes

II Protecting resources from unauthorized access

Not all data structures in the NT executive are objects. Only data that needs to
be shared, protected, named, or made visible to user-mode programs (via sys
tem services) is placed in objects. Structures used by only one component of
the executive to implement internal functions, for example, are not objects.

Despite its pervasive use of objects to represent shared system resources,
Windows NT is not an object-oriented system in the strict sense. Most of the
operating system code is written in C for portability and because develop-

1. Although there is a parameter called ObjectAttributes that a caller supplies when creating an object
using either the Win32 API or native object services, that parameter should not be confused with
the more general meaning of the term as used in this book.

The Object Manager and Object Security'

ment tools are widely available. C does not directly support object-oriented
constructs, such as dynamic binding of data types, polymorphic functions, or
class inheritance. Therefore, Windows NT's C-based implementation of ob
jects borrows from, but does not depend on, esoteric features of particular
object-oriented languages.

The object manager is the component of the NT executive responsible for
creating, deleting, protecting, and tracking NT objects. The object manager
centralizes resource control operations that otherwise would be scattered
throughout the operating system. Lou Perazzoli, engineering manager and
project leader for Windows NT development, and Steve Wood, a nine-year
veteran programmer of Microsoft operating systems, designed the object
manager and set the following implementation goals:

• Provide a common, uniform mechanism for using system resources.

• Isolate object protection to one location in the operating system so
that U.S. government Class C2 security compliance can be achieved.

• Establish an object-naming scheme that can readily incorporate
existing objects, such as the devices, files, and directories of a file
system, or other independent collections of objects.

• Create a way to charge processes for their use of objects so that a sys
tem administrator can set limits on the usage of system resources.

• Establish uniform rules for object retention (that is, keeping an ob
ject available until all processes have finished using it).

• Support the requirements of various operating system environ
ments, such as the ability of a process to inherit resources from a
parent process (needed by Windows and POSIX) and the ability to
create case-sensitive filenames (needed by POSIX).

The following subsections present the basics of NT executive objects, in
cluding how these objects are structured and how they are used in the oper
ating system.

3.1.1 Using Objects
The NT executive implements two kinds of objects: executive objects and kernel
objects. Executive objects are objects implemented by various components of
the NT executive. They are available to user-mode code (protected subsys
tems) through native NT services and can be created and manipulated either
by subsystems or by the NT executive.

51

INSIDE WINDOWS NT

52

Kernel objects are a more primitive set of objects implemented by the
NT kernel. These objects are not visible to user-mode code but are created
and used only within the NT executive. Kernel objects provide fundamental
capabilities, such as the ability to alter system scheduling, that can be accom
plished only by the lowest layer of the operating system-the kernel. Many
executive objects contain (encapsulate) one or more kernel objects. For now,
we'll concern ourselves with only the user-visible object types, which are listed
in Table 3-1 along with the executive components that define them.

Each Windows NT environment subsystem projects to its applications a
different image of the operating system. The executive objects and object ser
vices are primitives that the environment subsystems use to construct their
own versions of objects and other resources. The set of objects an environ
ment subsystem supplies to its applications might be larger or smaller than
that provided by the NT executive. Some subsystems, such as POSIX, do not
support objects as objects at all. The POSIX subsystem uses executive objects
and services as the basis for presenting POSIX-style processes, pipes, and
other resources to its applications. Other subsystems, such as the Win32 sub
system, use NT executive objects to create their own versions of objects. The
Win32 subsystem supplies to Win32 applications mutexes and semaphores,
both of which are directly based on NT executive objects. In addition, the
Win32 subsystem supplies named pipes and mailslots, resources that are
based on NT executive file objects.

Executive
Object Type Defined By

Process Process manager

Thread Process manager

Section Memory manager

File I/O manager

Port LPC facility

Access token Security system

Event Executive support
services

Table 3-1. Executive Objects

Represents

A program invocation, including
the address space and resources
required to run the program

An executable entity within a
process

A region of shared memory

An instance of an opened file or
I/O device

A destination for messages passed
between processes

A tamperproof ID containing
security information about a
logged-on user

An announcement that a system
event has occurred

(continued)

Table 3-1. continued

Executive
Object Type

Event pair

Semaphore

Mutant2

Timer

Object directory

Symbolic link

Profile

Key

Defined By

Executive support
services

Executive support
services

Executive support
services

Executive support
services

Object manager

Object manager

Kernel

Configuration
manager

The Object Manager and Object Security

Represents

A notification that a dedicated client
thread has copied a message to the
Win32 server or vice versa (used
only by the Win32 subsystem)

A counter that regulates the number
of threads that can use a resource

A mechanism that provides mutual
exclusion capabilities for the
Win32 and OS/2 environments

A counter that records the passage
of time

A memory-based repository for
object names

A mechanism for indirectly refer
ring to an object name

A mechanism for measuring the
distribution of execution time
within a block of code (for perfor
mance tuning)

An index key for referring to
records in the Windows NT con
figuration database

This chapter focuses on executive objects, those that are provided by the
NT executive. Executive objects should not be confused with the objects
made available to application programs through the Win32 API, the POSIX
API, or the OS/2 API.

3.1.1.1 File-Based Model
From a programming perspective, Windows NT looks like Windows or MS
DOS or POSIX or OS/2. Only system programmers who write an environment

2. The name mutant has a colorful history. Early in Windows NT's development, Dave Cutler created
a kernel mutex object that implemented low-level mutual exclusion. Later he discovered that OS/2
required a version of the mutual exclusion semaphore with additional semantics, which Dave con
sidered "brain-damaged" and which was incompatible with the original object. (Specifically, a
thread could abandon the object and leave it inaccessible.) So he created an OS/2 version of the
mutex and gave it the name mutant. Later Dave modified the mutant object to remove the OS/2
semantics, allowing the Win32 subsystem to use the object. The Win32 API calls the modified object
mutex, but the native services retain the name mutant.

53

INSIDE WINDOWS NT

subsystem, a file system, a native device driver, or another specialized applica
tion are compelled to learn about executive objects and use them directly.

Executive objects are typically created either by a protected subsystem
in direct response to some user activity or by various components of the
operating system as part of their normal operation. For example, to create a
file, a Win32 application calls the Win32 API routine CreateFile (). The Win32
subsystem, in turn, calls a native NT service that creates an executive file ob
ject. When the application later reads or writes to the file, the Win32 subsys
tem and the NT executive use the file object to access the file.

File operations represent an atypical case in the NT object system be
cause files are a persistent resource and are not based in memory. However,
files are important because the model used in most programming languages
to manipulate files is a convenient one for creating and using NT objects. The
relevant characteristics of the file model are these:

l1li In most programming languages, before you can read or write to
a file, you must open it. The open operation can eit,her open an
existing file or create anew file with the name you specify. The file
name can include a directory (or hierarchy of directories) in which
the file is stored.

l1li When you open a file, you specify which operations you want to per
form-for example, read, write, or append to the file.

l1li The file system opens the file and returns a file handle, which you
use in subsequent operations to refer to the opened file. When you
finish with the file, you close the file handle.

l1li Two programs share a file when they both open handles to it at the
same time. Some file systems also allow applications to create tem
porary files, which the file system automatically deletes when all
handles to them are closed.

With a few twists here and there, the Windows NT object model imitates
the file model. The main differences are that the handles are called object
handles and that the objects are stored in memory rather than on a physical
device. The following section provides more details about the NT object model.

3.1.1.2 NT Object Model

54

Like most operating systems, Windows NT uses processes as a division of
labor. Each process is allocated a set of resources that allows it to do its par-

The Object Manager and Object Security

ticular job: a thread so that it can execute programs and an address space in
which to store code and data. When a thread runs, it can acquire additional
resources for its process by creating objects or by opening handles to existing
objects. Object handles are unique to a process and represent the process's
access to system resources. They can be used to call native object services that
manipulate the resources.

The Win32 subsystem is an NT process, one that acts as a server to Win32
applications. When an application calls a Win32 API routine that either di
rectly or indirectly creates an object, the Win32 subsystem calls an NT object
service. The NT object manager takes over from there, performing the follow
ing functions:

II Allocating memory for the object

II Attaching a security descriptor to the object, which specifies who is
allowed to use the object and what they are allowed to do with it

II Creating and maintaining an object directory structure in which
object names are stored

II Creating an object handle and returning it to the caller

All user-mode processes, including the environment subsystems, must
own a handle to an object before their threads can use the object. Using
handles to manipulate system resources is not a new idea. C and Pascal (and
other language) runtime libraries, for example, return handles to opened
files. Similarly, Win32 applications use different types of handles to control
windows, the mouse cursor, and icons. In both cases, handles serve as indirect
pointers to system resources; this indirection keeps application programs
from fiddling directly with system data structures.

In the NT executive, object handles provide additional benefits. First,
except for what they refer to, there is no difference between a file handle, an
event handle, and a process handle. There is no need to remember ten differ
ent mechanisms for using ten different types of objects. Second, the object
manager has the exclusive right to create handles and to locate an object that
a handle refers to. This means that every user-mode action that affects an ob
ject can be scrutinized by the object manager. This gating effect lets the ob
ject manager satisfy three important Windows NT design goals:

II It protects objects. Each time a thread uses a handle, the object
manager performs a security check to validate the thread's right
to use the object in the way it is attempting.

55

INSIDE WINDOWS NT

56

II It monitors who is using an object so that it can delete temporary
objects when they are no longer needed. The object manager will
not delete an object while any process has a handle to it (or while
the system has a pointer to it) .

II It monitors resource usage. Each time a thread opens an object
handle, the object manager charges the thread's process for the
physical memory the object uses. The resource usage ofa process's
threads cannot exceed the memory limits (quotas) a system adminis
trator has assigned to the user represented by the process.

The first task, protecting objects, is the essence of the Windows NT
security system. Its implementation borrows heavily from the file model and
is also somewhat visible to application programs that use the Win32 API. The
following offers a brief introduction to object protection within the NT ex
ecutive, a topic revisited later in this chapter.

To return to the file analogy: When you open a file, you must specify
whether you intend to read or to write. If you try to write to a file that is
opened for read access, you get an error. Likewise, in the NT executive, when
a process creates an object or opens a handle to an existing object, the process
must spedfy a set of desired access rights- that is, what it wants to do with the
object. It can request either a set of standard access rights (such as read, write,
and execute) that apply to all object types or specific access rights that vary
depending on the object type. For example, the process can request delete
access or append access to a file object. Similarly, it might require the ability to
suspend or terminate a thread object.

When a process opens a handle to an object, the object manager calls
the security riferrmce monitor, the kernel-mode portion of the security system,
sending it the process's set of desired access rights. The security reference
monitor checks whether the object's security descriptor permits the type of ac
cess the process is requesting.3 If so, the reference monitor returns a set of
granted access rights that the process is allowed, and the object manager stores
them in the object handle it creates.4

3. The Win32 subsystem allows an application process to assign a security descriptor to objects but
does not require it. If the application does not assign a security descriptor, the Win32 subsystem
does so on behalf of the application.

4. This is a simplification of the actual storage mechanism, which is described in greater detail later
in this chapter.

The Object Manager and Object Security

Thereafter, whenever the process's threads use the handle, the object
manager quickly checks whether the set of granted access rights stored in the
handle corresponds to the usage implied by the object service the threads
have called. For example, if the caller asked for read access to a section object
but then calls a service to write to it, the service fails. How the security system
determines who gets access to which objects is a topic explored in Section 3.3.

The second and third tasks that object handles facilitate-object reten
tion and resource accounting-are described in Sections 3.2.2.1 and 3.2.2.2.

3.1.2 Object Structure
Every NT object is of a particular object type. The type determines the data
the object contains and the native system services that can be applied to the
object. To manage different objects uniformly, the object manager requires
every object to contain several fields of standard information in a known loca
tion. As long as this data is present, the object manager neither knows nor
cares what else is stored in the object. Each object has two parts-an object
header and an object body-that separate the object's standard data from its
variable data. The object manager controls the object header, and other ex
ecutive components control the object bodies of the object types they create.

The object manager uses the data stored in an object's header to
manage objects without regard to their type. Figure 3-1 shows the data, or at
tributes, that all object headers contain. Table 3-2 briefly describes the object
header attributes.

Object
Header

Object name
Object directory
Security descriptor
Quota charges
Open handle counter
Open handle database
Permanent/temporary
Kernel/user mode
Type object pOinter --+-+/

Figure 3-1. Contents of an Object Header

57

INSIDE WINDOWS NT

58

Attribute

Object name

Object directory

Security descriptor

Quota charges

Open handle counter

Open handle database

Permanent!
temporary status

Kernel/user mode

Type object pointer

Purpose

Makes an object visible to other processes for sharing

Provides a hierarchical structure in which to store
object names

Determines who can use the object and what they can
do with it

Lists the resource charges levied against a process
when it opens a handle to the object

Counts the number of times a handle has been
opened to the object

Lists the processes that have opened handles to
the object

Indicates whether the object's name and storage can
be deleted when the object is no longer in use

Indicates whether the object is available in user mode

Points to a type object that contains attributes common
to a set of like objects

Table 3-2. Standard Object Header Attributes

The object manager provides a small set of generic services that operate
on the attributes stored in an object's header and can be used on objects of
any type (although some generic services don't make sense for certain ob
jects). These generic services, some of which the Win32 subsystem makes
available to Win32 applications, are listed in Table 3-3.

Service

Close

Duplicate

Query object

Query security

Set security

Wait for a single object

Wait for multiple objects

Purpose

Closes a handle to an object

Shares an object by duplicating a handle and
giving it to another process

Gets information about an object's standard
attributes

Gets an object's security descriptor

Changes the protection on an object

Synchronizes a thread's execution with one object

Synchronizes a thread's execution with multiple
objects

•
Table 3-3. Generic Object Services

The Object Manager and Object Security

In addition to an object header, each object has an object body whose
format and contents are unique to its object type; all objects of the same type
share the same object body format. By creating an object type and supplying
services for it, an executive component can control the manipulation of data
in all object bodies of that type.

Every component of the NT executive can define object types, and most
do. Defining an object type consists of determining what data will be stored in
the body of each instance of the new type, telling the object manager the
body's size so that it can allocate the proper amount of memory when objects
are created, and supplying services for the new object type. For example, the
process manager defines the body of process objects and provides native ser
vices that manipulate the data stored there. Similarly, the I/O manager
defines the contents of a file object's body and exports services that get or set
that data. The contents of various object bodies are described later in this
book, along with the component of the NT executive that defines them.

3.1.3 Object Types
Object headers contain data that is common to all objects but that can take on
different values for each instance of an object. For example, each object has a
unique name and can have a unique security descriptor. However, objects also
contain some data that remains constant for all objects of a particular type.
For example, you can select from an object-type-specific set of access rights
when you open a handle to objects of a particular type. The NT executive sup
plies terminate and suspend access (among others) for thread objects and
read, write, append, and delete access (among others) for file objects. An
other example of an object-type-specific attribute is synchronization, the
ability of a thread to wait for objects of a particular type to be set to the sig
naled state, described shortly.

In order to save memory and reduce maintenance, the object manager
sets these static, object-type-specific attributes once when creating a new ob
ject type. It uses an object of its own, called a type object, to record this data. As
Figure 3-2 illustrates on the next page, a type object also links together all ob
jects of the same type, allowing the object manager to find and enumerate
them, if necessary.

59

INSIDE WINDOWS NT

60

Figure 3-2. Process Objects and the Process Type Object

Type objects can't be manipulated from user mode because the object
manager supplies no services for them. However, some of the attributes they
define are visible through certain native services and through Win32 API rou
tines. The attributes stored in the bodies of type objects are described in
Table 3-4.

Attribute

Object type name

Access types

Synchronization
capability

Pageablel
nonpageable

Methods

Purpose

The name for objects of this type ("process," "event,"
"port," and so on)

The types of access a thread can request when opening
a handle to an object of this type ("read," "write,"
"terminate," "suspend," and so on)

Whether a thread can wait on objects of this type

Whether objects of this type can be paged out of
memory

One or more routines that the object manager calls
automatically at certain points in an object'S lifetime

Table 3-4. Type Object Attributes

Synchronization, one of the attributes visible to Win32 applications, refers
to a thread's ability to synchronize its execution by waiting for an object to
change from one state to another. A thread can synchronize with executive
process, thread, file, event, event pair, semaphore, mutant, and timer objects.
Section, port, access token, object directory, symbolic-link, profile, and key
objects do not support synchronization.

The Object Manager and Object Security

The last attribute in the list-methods-comprises a set of internal rou
tines that are similar to C++ constructors and destructors, that is, routines
that are automatically called when an object is created or destroyed. The NT
object manager extends this idea by calling an object method in other situa
tions as well, such as when someone opens or closes a handle to an object or
when someone attempts to change the protection on an object. Some object
types specify methods, while others don't, depending on how the object type
is to be used. The methods (sometimes called virtual methods) are described in
Section 3.2.3.

In summary, NT executive objects consist of two parts: an object header,
which is controlled by the object manager, and an object body, which is con
trolled by the component of the operating system that creates an object type.
One of the attributes in the object header is a pointer to a type object, a struc
ture that defines static attributes for objects of the new type. Any component
of the NT executive can define new object types, and each component sup
plies services for the object types it defines.

3.2 Managing Objects
As previously mentioned, the object manager provides a set of generic ser
vices that work on all object types. In addition, other components of the NT
executive supply object-type-specific services for the object types they create.
These services call the object manager by using internal interfaces. Hence, all
services that manipulate an object must pass through the object manager on
one level or another. This allows the object manager to centralize control over
objects and to perform all object management tasks (or to explicitly relin
quish control to a secondary object manager, if appropriate).

This section focuses on the primary functions of the object manager.
How it locates objects and how it dispenses handles to them are the subjects of
the first two subsections. The third subsection takes a closer look at object
methods. The objects and services described are visible to user-mode sub
systems, unless stated otherwise.

3.2.1 Object Names
An important consideration in creating a multitude of objects is devising a
successful system for keeping track of them. The object manager requires the
following in order to do so:

III A way to distinguish one object from another

III A method for finding and retrieving a particular object

61

INSIDE WINDOWS NT

62

The first requirement is served by allowing names to be assigned to ob
jects. This is an extension of what most operating systems provide-the
ability to name selected resources, files, pipes, or a block of shared memory,
for example. The NT executive, in contrast, allows any resource represented
by an object to have a name.

The second requirement, finding an object, is also satisfied by object
names. If the object manager stores objects by name, it can find an object by
looking up its name.

Object names also satisfy a third requirement, allowing processes to
share objects. The NT executive's object namespace is a global one, visible to
all processes in the system. One process can create an object and place its
name in the global namespace, and a second process can open a handle to the
object by specifying the object's name. If an object is not meant to be shared
in this way, its creator need not give it a name.

To increase efficiency, the object manager does not look up an object's
name each time someone uses the object. Instead, it looks up a name under
only two circumstances. The first is when a process creates a named object:
The object manager looks up the name to verify that it doesn't already exist
before storing the new name in the global namespace. The second is when a
process opens a handle to a named object: The object manager looks up the
name, finds the object, and then returns an object handle to the caller;
thereafter, the caller uses the handle to refer to the object. When looking up
a name, the object manager allows the caller to select either a case-sensitive or
a case-insensitive search, a feature that supports POSIX and other environ
ments that use case-sensitive filenames.

Object names are global to a single computer (or to all processors on a
multiprocessor computer), but they are not visible across a network. The object
manager does, however, supply a hook-called a parse method-for accessing
named objects that exist on other computers. For example, the I/O manager,
which supplies file object services, extends the functions of the object man
ager to remote files. When asked to open a remote file object, the object man
ager calls a parse method, which allows the I/O manager to intercept the
request and deliver it to a network redirector, a driver that accesses files across
the network. A server process on the remote Windows NT system calls the ob
ject manager and the I/O manager on that system to find the file object and
return the information back across the network. Future system extensions
can exploit the same object manager hook to manage other remote objects.
(The methods are described further in Secti~n 3.2.3, and Windows NT net
working is described in Chapter 9.)

The Object Manager and Object Security

3.2.1.1 Object Directories
In deciding how to form object names, the developers had as their primary
constraint the MS-DOS and POSIX file systems, which have hierarchical nam
ing schemes for files and file directories. In the NT executive, files and direc
tories are represented as objects; therefore, the object manager had to
understand the format of filenames in order to find file objects. It made sense,
then, that object names should mimic filenames.

NT object names have some characteristics of both MS-DOS and PO SIX
filenames. Figure 3-3 depicts the NT object name hierarchy in tree form.

\

Object Directory 1 Object Directory 4

~ ~
Process1 ... Semaphore 2 Object Directory 5 Process 2

~
Event 1 Event 2

Figure 3-3. Object Name Hierarchy

Notice that the root of the object name tree is an MS-DOS-style backslash
(\). Leaf nodes on the tree represent individual objects, and intermediate
nodes represent names of object directories. Object names are formed by
starting at the root and traversing the path to an object. As in MS-DOS and
OS/2, backslashes are used to separate names in the path.

The object directory object is the object manager's means for supporting this
hierarchical naming structure. It is analogous to a file system directory and
contains the names of other objects, possibly even other object directories.
The Win32 subsystem and other subsystems, as well as components of the NT
executive, can create arbitrary hierarchies of object directories in which to
store the named objects they create.

Figure 3-4 on the next page shows a conceptual summary of the impor
tant, unique characteristics of the object directory object. In this diagram and
in others throughout the book, object type refers to the class of objects being
described. Object body attributes refers to the fields of data stored in the bodies
of objects of that type. Services are the native system services that a component

63

INSIDE WINDOWS NT

64

of the NT executive provides for manipulating the object attributes. (The at
tributes stored in the object headers are not shown because they are the same
for objects of all types. Likewise, the generic object services, described pre
viously, manipulate objects of all types.)

Object Type

Object Body Attributes

Services

Object Directory

List of object names

Create object directory
Open object directory
Query object directory

Figure 3-4. Object Directory ObjectS

The create and open services are used to create object directories and to
open handles to them. Once a thread has opened a handle (with write access)
to an object directory, it Can create other objects and place them in the object
directory.

The query service allows a caller to scan the list of object names stored in
the object directory. The object directory object maintains enough informa
tion to translate these object names into pointers to the objects themselves.
The object manager uses the pointers to construct the object handles that it
returns to user-mode callers.

Both kernel-mode code and user-mode code (such as subsystems) can
create object directories in which to store objects. For example, the I/O man
ager creates an object directory named \Device, which contains the names of
objects representing I/O devices.

The create, open, and query trio of object services is repeated frequently
throughout the NT executive. The I/O system implements a create file service
for its file objects, and the process manager implements a create process ser
vice for its process objects. Although the NT developers considered establish
ing a single, virtual, create object service, such a routine would have been
quite complicated in C because the set of parameters required to initialize a
file object, for example, differs markedly from that required to initialize a
process object. A single C routine would have become more complicated as

5. This depiction of an object is a simplified version of a format developed by Peter Coad and
Edward Yourdon in Object-Oriented Analysis (Englewood Cliffs, N J.: Prentice-Hall, 1990).

The Object Manager and Object Security

new object types were added to the system. Also, the object manager would
have incurred additional processing overhead each time a thread called an
object service to determine the type of object the handle referred to and to
call the appropriate version of the service. For these reasons and others, the
create, open, and query services are implemented separately for each object
type.

3.2.1.2 Object Domains
The object namespace provides an umbrella under which self-contained sets
of objects, called object domains, can be easily incorporated, thus allowing the
object namespace to be extended. The I/O manager, for example, is a second
ary object manager governing an object domain that consists of disk files,
directories, and devices. The object manager allows the I/O system to tuck file
system objects under a leaf node of the object manager namespace. For ex
ample, suppose you have the following directory structure on a floppy disk: ,
~

budget docs

~ ~
accounts.xls assets. xis resume.doc speech.doc

Within the object manager namespace, the directory structure takes the fol
lowing form:

.W.BW •• WWW •• Ma._.

Object Manager ." •••••• "' . • • •• . ,"' •••••••••••
N" ~ •••••
amespac~ • /' ~ ••••• . .

i Device :

... ~ .-
~ ~
·~ ~IO~::O .~~~~.~~~~~

_ # •• M •• ~WW •••

File System .' .' ••• , •• , . " ••••. ' •••.
NamespacE!. ••• •••• • budget docs ••••••••• ~ ~

: accounts.xls assets.xls resume.doc speech.doc =
~ : . .

"''''.
"".or

..... + ...
'ta. _'"

-w.~. ..",.w-"'-*
ww ••••••• M_.M M.a.~·w

65

INSIDE WINDOWS NT

In this tree, each name represents an NT executive object. The file system
namespace has been incorporated into the object namespace under the name
\Device\FloppyO.

When a Microsoft Excel for Windows user attempts to open the file
A:\budget\ accounts.xls, the object manager opens a handle to the file object
named \Device\FloppyO\budget\accounts.xls.6 To do so, the object manager·
searches its namespace until it reaches the object named FloppyO, which is a
special device object that has a parse method associated with it. The object
manager suspends its name search and calls the parse method, passing to it
the name \budget\accounts.xls. The parse method is supplied by the I/O sys
tem, which asks the correct file system to locate and open this file stored on
the floppy disk. Methods are described further in Section 3.2.3.

3.2.1.3 Symbolic Links

66

In certain file systems (on some UNIX systems, for example), a symbolic link
lets a user create a filename or a directory name that, when used, is translated
by the operating system into a different file or directory name. It is a simple
method for allowing users to indirectly share a file or the contents of a direc
tory, creating a cross-link between different directories in the ordinarily
hierarchical directory structure.

The NT object manager implements an object called a symbolic link object,
which performs a similar function for object names in its object namespace.
When a caller refers to a symbolic link object's name, the object manager tra
verses its object namespace until it reaches the symbolic link object. It looks
inside the symbolic link and finds a string that it substitutes for the symbolic
link name. It then restarts its name lookup. A symbolic link can occur any
where within an object name string. Figure 3-5 summarizes the attributes and
services for the symbolic link object type.

One place in which the NT executive uses symbolic link objects is in
translating MS-DOS device names into Windows NT object names. In
MS-DOS, a user refers to floppy and hard disk drives using the names A:, B:,
C:, and so on. Moreover, the user can add new drive or pseudo-drive names by
creating extra partitions on a hard disk, for example, or by defining a drive
name to refer to a disk directory on another computer. Once they are created,
these drive names must be visible to all processes on the system.

6. This is a simplification of a mechanism described in the next section.

Object Type

Object Body Attributes

Services

Symbolic Link

Substitute string
Creation time

Create symbolic link
Open symbolic link
Query symbolic link

Figure 3-5. Symbolic Link Object

The Object Manager and Object Security

The Win32 subsystem makes drive letters protected, global data by plac
ing them in the object manager namespace. A special object directory is cre
ated specifically for this purpose, as shown here:

\

~
DosDevices

~
A: C: X:

When the user or an application creates a new drive letter, the Win32
subsystem adds another object under the \DosDevices object directory. How
ever, the objects that represent the actual physical devices exist elsewhere in
the tree, as depicted here:

\

~
Device

~
FloppyO Floppy1 HardDiskO ...

~
PartitionO Partition 1

The objects named A:, B:, C:, and so on are symbolic link objects. Each of
these symbolic links contains the object name of the physical device to which

67

INSIDE WINDOWS NT·

the drive letter refers. So, for example, if an Excel for Windows user opens the
spreadsheet stored in A:\budget\accounts.xls, the Win32 subsystem translates
that name and opens a handle to the file object named \DosDevices
\A:\budget\accounts.xls. To find this file object, the object manager traverses
the object name tree until it reaches the object known as A: and discovers that
this object is a symbolic link. It checks the contents of the symbolic link ob
ject, finding the string \Device\ FloppyO stored inside, as shown here:

..... \ ~ ~ _# <It",

"'
:~ A DoT '\1

FIOPPYO .. 0 ./ budge0 :·"<!:DsViceIFlopp€}·····

~
. accounts.xls . assets.xls

The object manager takes the string stored in the symbolic link object
and appends the remainder of the original string to it (\Device\FloppyO plus
\budget\accounts.xls). Then it restarts the search for the file object from the
top of the tree.

Symbolic links allow a subsystem (or other code) to create aliases for ex
ecutive objects, which the subsystem can change as its needs change. Further
more, a subsystem can realize performance gains by storing global data, such
as drive names, directly in the NT executive rather than in the subsystem's
address space. The topic of subsystem performance is discussed further in
Chapter 5, "Windows and the Protected Subsystems."

3.2.2 Object Handles

68

Although object names are important for storing objects and for object shar
ing, they aren't used often. A process specifies ·an object's name when it first
creates the object or when it opens a handle to it. Thereafter, the process uses
the object handle. Referring to an object by its handle is faster than using its
name because the object manager can skip the name lookup and find the ob
ject directly.

The Object Manager and Object Security

An NT object handle is an index into a process-specific object table. A pro
cess's object table contains pointers to all the objects that the process has
opened a handle to. Processes acquire handles to objects by creating an ob
ject, by opening a handle to an existing object, by inheriting a handle from
another process, or by receiving a duplicated handle from another process.
Figure 3-6 illustrates the relationship between a process and its object table.

Granted Access

Inheritance
Available
Objects

---l--~ Thread A
H and I e 1 1----1f----1:-----I

---l--~ Thread B
Handle 2 f-----C~:----I

File A
Handle 3 I--~~_-I

Object
Table

Figure 3-6. Object Table Structure

Each entry in the object table contains the corresponding handle's
granted access rights and its inheritance designation- that is, whether processes
created by this process will get a copy of the handle in their object tables.
Although the term handle, strictly speaking, refers only to the index into the
table, the developers use handle to refer also to the data stored in the corre
sponding table entry.

Two processes share an object when they both open handles to it. The
two handles are unique, as illustrated in Figure 3-7 on the next page.

The creator of an object decides whether handles to the object can be
inherited from one process by the processes it creates. This feature supports
those environments, including Win32 and POSIX, that allow resource
inheritance.

When a process terminates, the process object becomes a candidate for
deletion from the system (dependent on whether any other process is still
using it, as will be described shortly). Before deleting a process object, the ob
ject manager calls the delete method for process objects, which closes all

•
69

INSIDE WINDOWS NT

the handles in the process's object table. (See Section 3.2.3 for more
information.)

----i~~ Thread A
Handle 1 1--+-+-_--1

Handle 2 1---'---'-_--1

Handle 3 1--------1

Process A's
Object Table

Figure 3-7. Sharing an Object

Thread B

Event A

Handle 1 1---i----1r-----l

Handle 21---'----.JL----l

Process 8's
Object Table

3.2.2.1 Object Retention

70

Because all user-mode processes that access an object must first open a handle
to it, the object manager can easily track how many of these processes, and
even which ones, are using an object. Tracking these handles represents the
first step in implementing object retention- that is, retaining temporary objects
only as long as they are in use and then deleting them.

The object manager implements object retention in two phases. The
first phase is called name retention, and it is controlled by the number of open
handles that exist to an object. Every time a process opens a handle to an ob
ject, the object manager increments the open handle counter in the object's
header. (Refer to Figure 3-1 on page 57.) As processes finish using the object
and close their handles to it, the object manager decrements the counter.
When the counter drops to zero, the object manager deletes the object's
name from its global namespace. This prevents new processes from opening a
handle to the object. (Permanent object names are not deleted because these
objects represent entities, such as physical devices, that remain in place even
when no process is using them. The operating system must change perma
nent objects into temporary objects before it can delete them.)

The Object Manager and Object Security

The second phase of object retention is to stop retaining objects (that is, to
delete them) when they are no longer in use. Because the operating system usu
ally accesses objects by using pointers instead of handles, the object manager
must also record how many object pointers it has dispensed to operating system
processes. It increments a reference count for an object each time it gives out a
pointer to the object; when operating system threads finish using the pointer,
they call the object manager to decrement the object's reference count. So even
after an object's open handle counter reaches zero, the object's reference count
might remain positive, indicating that the operating system is still using the ob
ject. Ultimately, the reference count also drops to zero. When this happens, the
object manager deletes the object from memory.

Because of the way object retention works, an application can ensure
that an object and its name remain in memory simply by keeping a handle
open to the object. Programmers who write applications that contain two or
more cooperating processes need not be concerned that one process might
delete an object before the other process has finished using it. In additioiJ.,
closing an application's object handles will not cause an object to be deleted if
the operating system is still using it. For example, one process might create a
second process to execute a program in the background; it then immediately
closes its handle to the process. Because the operating system needs the sec
ond process to run the program, it maintains a reference to its process object.
Only when the background program finishes executing does the object man
ager decrement the second process's reference count and then delete it.

3.2.2.2 Resource Accounting
Resource accounting, like object retention, is closely related to the use of ob
ject handles. If an object has a positive open handle count, it indicates that
some process is using that resource. It also indicates that some process is being
charged for the memory the object occupies. When an object's handle count
drops to zero, the· process that was using the object should no longer be
charged for it.

Many operating systems use a quota system to limit processes' access to
system resources. However, the types of quotas imposed on processes are
sometimes diverse and complicated, and the code to track the quotas is
spread throughout the operating system. For example, in some operating sys
tems, an I/O component might record and limit the number of files a process
can open, whereas a memory component might impose a limit on the amount
of memory a process's threads can allocate. A process component might limit
a user to some maximum number of new processes she can create or a maxi
mum number of threads within a process. Each of these limits is tracked and
enforced in different parts of the operating system.

71

INSIDE WINDOWS NT

In contrast, the NT object manager provides a central facility for
resource accounting. Every user is assigned quota limits that restrict the
amount of system memory her processes can collectively use. Likewise, each
object header contains an attribute called quota charges that records how
much the object manager subtracts from a process's allotted quota when a
thread in the process opens a handle to the object. A process's threads can
open many handles during their lifetimes, and the object manager subtracts
the specified amount from their process's quota every time. If a user's pro
cesses open too many handles and exhaust the user's quota, their threads
must close some object handles before they can open any more. The object
manager, therefore, limits a process's (and ultimately, a user's) use of
resources by monitoring the amount of memory occupied by objects that the
process has opened handles to. (In addition to the object-based quotas, the
NT process manager imposes a quota on the amount of processor time each
user's processes can use.)

3.2.3 Object Methods

72

The object manager exploits the similarities of objects so that it can manage
them uniformly. However, objects also have their differences, some of them
significant. The object manager would have to be much bigger and more com
plicated if it were to accommodate the idiosyncrasies of all the different ob
ject types. It would also have to change if a new object type were added to the
system in the future. To prevent this, the object manager supplies hooks that
other NT executive components can use to perform tasks unique to their ob
ject types. These hooks are called object methods.

When an executive component creates a new object type, it can register
one or more methods with the object manager. Thereafter, the object man
ager calls the methods at well-defined points in the lifetime of objects of that
type, usually when an object is created, deleted, or modified in some way. The
methods that the object manager supports are listed in Table 3-5.

An example of the use of a close method occurs in the I/O system. The
I/O manager registers a close method for the file object type, and the object
manager calls the close method each time it closes a file object handle. This
close method checks whether the process that is closing the file handle owns
any outstanding locks on the file and, if so, removes them. Checking for file
locks is not something that the object manager itself could or should do.

The object manager calls a delete method, if one is registered, before it
deletes a temporary object from memory. The virtual memory (VM) man
ager, for example, registers a delete method for the section object type that
frees the physical pages being used by the section. It also verifies that any

Method

Open

Close

Delete

Query name

Parse

Security

The Object Manager and Object Security

When Method Is Called

When an object handle is opened

When an object handle is closed

Before the object manager deletes an object

When a thread requests the name of an object, such as a file,
that exists in a secondary object domain

When the object manager is searching for an
object name that exists in a secondary object domain

When a process reads or changes the protection of an object,
such as a file, that exists in a secondary object domain

Table 3-5. Object Methods

internal data structures the VM manager has allocated for a section are de
leted before the section object is deleted. Once again, this is work the object
manager cannot do because it knows nothing about the internal workings of
the VM manager. Delete methods for other types of objects perform similar
functions.

The parse method (and similarly, the query name method) allows the
object manager to relinquish control of finding an object to a secondary ob
ject manager. The secondary object manager finds an object that exists out
side the object manager namespace in a different object domain. The I/O
system provides the simplest example. Take another look at a figure that ap
peared earlier.

Object Manager
Namespace

File System
Namespace budget

~
accounts.xls assets.xls resume.doc speech.doc

73

INSIDE WINDOWS NT

The object named FloppyO is a device object, a special object type de
fined and used by the I/O system. In the object manager namespace, the de
vice object represents a launching point into a file system's object domain,
one that the object manager knows nothing about.

When the I/O system created the device object type, it registered a parse
method for it. When the object manager looks up an object name, it suspends
its search when it encounters an object in the path that has an associated
parse method. The object manager calls the parse method, passing to it the
remainder of the object name it is looking for.

For example, when· a process opens a handle to the object named
\Device\FloppyO\docs\resume.doc, the object manager traverses its name
tree until it reaches the device object named FloppyO. It sees that a parse
method is associated with this object, and it calls the method, passing to it
the rest of the object name it was searching for-in this case, the string
\docs\resume.doc. The parse method for device objects is an I/O routine. The
routine takes the name string and passes it to the appropriate file system,
which finds the file on the disk and opens it.

The symbolic link objects described in Section 3.2.1.3 are also translated
by a parse method. The symbolic link object type has a parse method associ
ated with it. The method takes one name, substitutes another name for it, and
then calls the object manager to restart its search for the object. (If the new
name also contains a symbolic link object name, the parse method is called
again.)

The security method, which is used by the I/O system, is similar to the
parse method. It is called whenever a thread tries to change the security infor
mation protecting a file. This information is different for files than for other
objects because security information is stored in the file itself rather than in
memory. The I/O system, therefore, must be called in order to find the
security information and change it.

3.3 Protecting Objects

74

Although naming, sharing, and accounting for system resources in a uniform
way are all good reasons for the NT executive to use an object model, probably
the most important reason is to ensure that Windows NT is a secure operating
system.

Operating system security is a battle fought on many fronts. A secure
multiuser system must protect one user's files, memory, and other resources
from other users. It must protect the operating system's data, files, and
memory from user programs. It should monitor attempts to bypass its security
features, and so on. The u.S. Department of Defense has identified features of

The Object Manager and Object Security

an operating system that make it secure. These features are categorized into
seven levels of security, each one more stringent than the last. 7

At the Class C2 level, the initial target for Windows NT, the following
features must be present:

II1II A secure logon facility requires users to identify themselves by entering
a unique logon identifier and a password before they are allowed ac
cess to the system.

II1II Discretionary access control allows an owner of a resource to determine
who can access the resource and what they can do to it. The owner
does this by granting access rights to a user or a group of users.

II1II Auditingprovides the ability to detect and record important security
related events or any attempt to create, access, or delete system
resources. It uses logon identifiers to record the identity of the user
who performed the action.

II1II Memory protection prevents anyone from reading information written
by someone else after a data structure has been released back to the
operating system. Memory is reinitialized before it is reused.

Not all Windows NT installations will require all the security mechanisms that
the system provides. The security system, therefore, allows a system adminis
trator to streamline the logon sequence, for example, or to adjust whether in
formation is collected in an audit log and, if so, how much.

Facilities that are extremely security conscious, such as military installa
tions, require an even higher level of security than Windows NT initially pro
vides. Therefore, Windows NT is designed to evolve toward Class B2 security, a
level known as Mandatory Access Control, in which each user is assigned a
security clearance level and is prevented from giving lower-level users access
to protected resources. For example, in secure U.S. government facilities, one
user might have a "Secret" security clearance and another a "Top Secret"
security clearance. Mandatory access control ensures that the user with the
"Top Secret" clearance can never allow the former user access to any "Top·
Secret" information, even by using discretionary access control. Similarly,
B2 security requires the recognition of "compartments," the separating of
groups of users from one another. This type of protection is useful in indus
tries such as financial security exchanges, in which inappropriate access to
stock offerings or mergers might create conflicts of interest.

7. Department of Defense Trusted Computer System Evaluation Criteria, DOD 5200.28-STD
(December 1985).

75

INSIDE WINDOWS NT

The Windows NT security system is multifaceted, but protecting objects
is the essence of discretionary access control and auditing (and later, of man
datory access control). The idea behind Windows NT security is to create a
gate through which every user of system resources must pass. Because all sys
tem resources that can be compromised are implemented as objects, the NT
object manager becomes the gate. One need not poke around in numerous
dark corners of the operating system to validate the integrity of Windows
NT's security system; the critical security-related operations can be found in a
central location.

The following subsections examine object protection from two perspec
tives: first, verifying the identity of users and, second, controlling which users
can access which objects.

3.3.1 Access Tokens

76

In order to control who can manipulate an object, the security system must
first be sure of each user's identity. Therefore, the first line of protection in
Windows NT is the requirement that every user log onto the system.

As Chapter 2, "System Overview," described, an integral protected sub
system, the security subsystem, is responsi ble for authenticating users~ that is, for
verifying that the logon information a user supplies matches the information
stored in a security database. After the security subsystem determines that a
logon is authentic, it constructs an object that it permanently attaches to the
user's process. This object is called an access token, and it serves as the process's
official identity card whenever it tries to use a system resource. A sample ac
cess token is depicted in Figure 3-8.

The first attribute shown in this example is the user's personal security
ID, an identifier that usually corresponds to the user's logon name. In large
installations, a security ID might also incorporate the name of the user's divi-

Security ID:
Group IDs:

Privileges:
Default owner:
Primary group:
Default ACL:

MARYH
TEAM1
LOCAL
INTERACTIVE
WORLD
None
MARYH
TEAM1

Figure 3-8. Sample Access Token

The Object Manager and Object Security

sion or department (for example, ENGINEERING_MARYH). Group security
IDs are formed from lists of user IDs. The second attribute shown in Figure
3-8 is the list of groups to which MARYH belongs. Windows NT defines several
standard group identifiers that are included in MARYH's token.

When a process tries to open a handle to an object, the object manager
calls the security reference monitor. The security reference monitor gets the
token associated with the process and uses its security ID and list of groups to
determine whether the process can access the object.

A small number of security-sensitive system services (such as create
token) are also protected from use. The privileges attribute lists any of these
special services that a user can call. Most users have no privileges.

The user who creates an object generally becomes its owner and can de
cide who else can use it. The access token's default access control list (ACL) at
tribute is an initial list of protections applied to the objects the user creates.
The primary group attribute provides the capability to collect security IDs
into groups for organizational purposes, a feature of several operating system
environments, including POSIX.

Details about security IDs and ACLs are explained in the next section.
For now, look at Figure 3-9, which summarizes the attributes and services ap
plicable to access token objects.

In addition to the create, open, and query services, the set token service
also appears. Setting attributes in an object is a common service that is pro
vided for many NT executive objects. The remaining three services are in
tended for use primarily by security administration software.

Object Type

Object Body Attributes

Services

Access Token

Security ID
Group IDs
Privileges
Default owner
Primary group
DefaultACL

Create token
Open token
Query token information
Set token information
Duplicate token
Adjust token privileges
Adjust token groups

Figure 3·9. Access Token Object

77

INSIDE WINDOWS NT

3.3.2 Access Control Lists

78

All objects, including files, threads, events, and even access tokens, are as
signed security descriptors when they are created.8 The main feature of a
security descriptor is a list of protections that apply to the object, called an
access control list (ACL). The owner of an object, usually the user who creates
it, has discretionary access control over the object and can change the object's
ACL to allow others to access the object or to disallow them from accessing it.
Figure 3-10 is a simplified picture of a file object and its ACL.

File Object Access Control List
I

Security Allow Allow Allow
Descriptor DAVEC TEAM1 WORLD

Read Data Read Data File Execute
Write Data

ACE ACE ACE

Figure 3-10. Access Control List (ACL)

Each entry in an ACL is known as an access control entry (ACE). An ACE
contains a security ID and a set of access rights. A user with a matching
security ID might be allowed the listed access rights, denied them, or allowed
them with auditing. The accumulation of access rights granted by individual
ACEs forms the set of access rights granted by an ACL.

Suppose you attempt to list a file, for example. If the file object's ACL
contains an ACE with your security ID or one of your group IDs in it, and if
that ACE contains the access right called read data, you are allowed to list the
file. In addition, if the operation you are attempting is a privileged operation,
such as create token, you must have the privilege to create an access token.
Otherwise, accessed is denied.

As shown in Figure 3-10, an ACE can also be created for a group security
ID. DAVEC has read access to the file object, the members of group TEAMl
have read and write access, and all other users have execute access.

8. There are exceptions. Only objects that can be shared by more than one process are required to
have a security descriptor. This group includes all named objects plus all named and unnamed pro
cess, thread, and token objects.

The Object Manager and Object Security

To determine which ACL to assign to a new object, the security system
applies one of three mutually exclusive rules, in the following order:

1. If a caller explicitly provides an ACL when creating the object, the
security system applies that ACL to the object.

2. If a caller does not supply an ACL and the object has a name, the
security system looks at the ACL on the object directory in which
the new object name is stored. Some of the object directory's ACEs
might be marked "inherit," meaning that they should be applied to
new objects created in the object directory. If any of these inherita
ble ACEs are present, the security system forms them into an ACL,
which it attaches to the new object.

3. If neither of the first two cases occurs, the security system retrieves
the default ACL from the caller's access token and applies it to the
new object.

In addition to an ACL, an object's security descriptor contains a field
that regulates auditing of the object. Auditing refers to the security system's
ability to "spy" on selected objects and their users and to generate messages
or alarms when someone attempts a restricted operation on an object. For ex
ample, the security system can audit attempts to read or modify a system
owned file. If someone tries to change the file, the security system writes a
message to the audit log, identifying the user by security ID. The system
manager can generate security reports that retrieve information from the
log. For highly secure systems, the security system is even designed to gener
ate an audible or a visible alarm on a security administrator's machine when
the action occurs. Auditing can help reduce the risk of computer tampering.

3.3.3 Putting It All Together
An access token identifies a process (and its threads) to the operating system,
whereas a security descriptor enumerates which of these processes (or groups
of processes) can access an object. When a thread opens a handle to an object,
the object manager and the security system put this information together to
determine whether the caller should be given the handle it is requesting.

Figure 3-11 on the next page illustrates what happens when user LEES
opens a handle, requesting synchronize access to an event object.

79

INSIDE WINDOWS NT

80

Security Token

Security 10: LEES··········
Group IDs: TEAM1

TEAM2
LOCAL
INTERACTIVE
WORLD

Privileges: None

Event Object

Security _+--+1
Descriptor

Allow
LEES

Synchronize
Modify State

Figure 3·11. Checking an Object's Protection

Access Control List

Allow
TEAM1

Synchronize

\

Deny
TEAM2

Synchronize
Modify State

When checking an ACL, the security system proceeds through the list
from first ACE to last. When it finds the security or group ID of the caller, it
stops its search and checks whether the ACE allows the type of access the user
is attempting. If it finds an ACE that allows the access, it stops searching and
returns a handle to the caller. If it reaches the end of the list without finding
the security or group ID of the caller, the caller's request is denied.

In Figure 3-11, the event object's ACL allows LEES synchronize access in
its first entry. Because LEES requested synchronize access, the security system
immediately stops its search, and the object manager returns to LEES a
handle that contains synchronize access to the event. Notice that the third
ACE explicitly denies LEES synchronize access, based on her membership in
TEAM2. However, because of the order of the ACEs in this access control list,
the third ACE is ignored in this case. (This is a somewhat artificial example
because the system generally places ACEs that deny access at the beginning of
the list.)

It would not be efficient for the security system to make this check every
time a process uses a handle. An ACL can have many entries, a process can
access many objects during its lifetime, and numerous processes can be active
at any time. Therefore, the check takes place only when a handle is opened,

The Object Manager and Object Security

not each time the handle is used. (Note that since kernel-mode code uses
pointers rather than handles to access objects, the access check is not per
formed when the operating system uses objects. In other words, the NT execu
tive "trusts" itself in a security sense.)

The next time LEES uses the event handle, the object manager simply
compares the granted access (synchronize) stored in the handle with the type
of access implied by the service she has called. If she calls a wait service, the
call will succeed. If she calls set event, however, the service will fail. In order to
call set event, either she must have opened the first handle requesting both
synchronize and modify-state access or she must now open a new handle and
request modify-state access;

Note that once a process successfully opens a handle, the access rights
that have been granted cannot be revoked by the security system, even if the
object's ACL changes. The old handle is essentially grandfathered in because
the developers decided efficient security checks were more important than
the ability to revoke granted access rights. The latter capability would have
required a complete security check each time a handle is used, rather than
only when the handle is originally created as the current design specifies. The
performance improvement achieved by storing granted access rights directly
in handles is significant, especially for objects with long ACLs attached.

3.4 In Conclusion
NT executive objects represent a unifying theme in Windows NT. They pro
vide a basis for managing system resources uniformly. They also serve as a fo
cal point for important tasks such as naming, sharing, and protecting
resources. In addition, they supply a set of primitives that environment subsys
tems use to implement their versions of objects and object-like resources.
Each environment subsystem uses executive objects to provide the facilities
and resources that its client applications expect.

The user-mode objects presented in this chapter are based on a set of
more primitive objects implemented by the NT kernel. The discussion of
kernel objects and their capabilities is deferred until Chapter 7, "The
Kernel." In the next chapter, we'll examine two special objects that are in
tegral to Windows NT's functioning: processes and threads.

81

C HAP T E R F 0 U R

PROCESSES AND THREADS

Under early versions of MS-DOS, users could run only one program at a
time. They ran a program, waited for it to finish, and then ran another one.
Under Windows, however, users can execute more than one program at a
time or even multiple copies of the same program at the same time. This
change highlights a subtle distinction that is important to this chapter: the
difference between a program and a process. A program is a static sequence of
instructions, whereas a process is the dynamic invocation of a program along
with the system resources required for the program to run.

A process represents a unit of resource ownership and work to be done.
It's an operating system's means of organizing the many tasks it must per
form. The operating system allocates a portion of the computer's resources to
each process and ensures that each process's program is dispatched for execu
tion in an orderly and timely way.

Operating systems generally have a body of code that manages the crea
tion and deletion of processes and the relationships between processes. This
code is referred to as the process structure and in Windows NT is implemented
by the process manager. Mark Lucovsky, a Windows NT developer who has
written process structure components for both a UNIX system and an object
based operating system, designed and wrote the NT executive's process man
ager. He identifies its fundamental goal in a single sentence: to provide a set
of native process services that environment subsystems can use to emulate
their unique process structures. This goal evolved with the Windows NT
objective of providing multiple operating system environments that run in
user mode.

Different operating systell1s implement processes in different ways. Pro
cesses vary in how they are represented (their data structures), how they are
named, how they are protected, and the relationships that exist among them.

83

INSIDE WINDOWS NT

Native NT processes have several characteristics that differ from processes in
other operating systems:

II NT processes are implemented as objects and are accessed using ob
ject services.

II An NT process can have multiple threads executing within its ad
dress space.

II Both process objects and thread objects have built-in synchroniza
tion capabilities.

II The NT process manager maintains no parenti child or other rela
tionships among the processes it creates.

This chapter examines the nature of processes in general and the struc
ture of NT executive processes in particular. It begins by defining a process
and then examines how NT's process manager implements its version of a
process. An introduction to threads follows, including discussion about why
threads are needed, the terminology relating to threads, and how the NT pro
cess manager implements threads. The chapter closes with a description of
the relationship between the NT executive's version of processes and the ver
sion of processes that NT environment subsystems make available to applica
tion programs.

4.1 What Is a Process?

84

At the highest level of abstraction, a process comprises the following:

II An executable program, which defines initial code and data

II A private address space, which is a set of virtual memory addresses that
the process can use

II System resources, such as semaphores, communication ports, and
files, that the operating system allocates to the process as the pro
gram executes

In Windows NT, a process must include a fourth element before it can
do any work:

II At least one thread of execution

A thread is the entity within a process that the NT kernel schedules for
execution. Without it, the process's program cannot run.

Processes and Threads

The following subsections look at processes in more detail, examining
first a process's address space and then its resources. A subsequent section ex
plores the topic of threads.

4.1.1 Address Space
Common sense dictates that one process should be prevented from wielding
unlimited control over other processes. Using a virtual memory system is one
way in which Windows NT accomplishes this. With virtual memory, program
mers (and the processes they create) have a logical view of memory that does
not correspond to its physical layout. See Figure 4-l.

Each time a process uses a memory address, the virtual memory system
translates the address into a physical address. It also prevents processes from
directly accessing virtual memory occupied by other processes or by the
operating system. To execute operating system code or to access operating
system memory, a thread must be running in the unrestricted processor

-"""' "

Virtual Address
Space

,// FFFFFFFFh

Programmer 1
View CB{""",

"" OOOOOOOOh '--__ --'

//' FFFFFFFFh

-"""' '
Programmer 2 CB <

View"""

"" OOOOOOOOh '--__ --'

/,/ FFFFFFFFh

-"""' ' Programmer 3 CB (

View ""'"

"" OOOOOOOOh '--__ --'

Figure 4-1. Virtual Memory Versus Physical Memory

Physical Memory
Snapshot

Nonpaged
I System ~

User 2
Free

User 1
User 2

)

System
User 1
System
User 3
Free

85

INSIDE WINDOWS NT

mode called kernel mode. However, most processes are user-mode processes
that is, processes whose threads run primarily in the restricted processor
mode called user mode.

A user-mode thread gains access to the operating system by calling a sys
tem service. When the thread calls the service, the processor traps it and
switches its execution from user mode to kernel mode. The operating system
takes control of the thread, validating the arguments the thread passed to the
system service and then executing the service. The operating system switches
the thread back to user mode before returning control to the user's program.
In this way, the operating system protects itself and its data from perusal and
modification by user processes.

This chapter focuses on user-mode processes, which represent the ma
jority of processes in the Windows NT system at any given time. Application
programs run in user mode, but so do Windows NT's protected subsystems.
The latter are user-mode server processes that provide important operating
system capabilities. They are implemented as servers to simplify the base
operating system and to make it extensible. The subsystems run in user mode
so that each one's address space is protected from application processes and
from other subsystems. (See Chapter 5 for more information.)

4.1.2 Collection of Resources

86

In addition to a private address space, each process has a diverse set of system
resources attached to it. Figure 4-2 shows a typical process and its resources.

Virtual Address Space Description

Handle1 1--+-+-_-1
Thread x

Handle2 1--1...-1----1
Filey

---1 ___ ~ Section z ~----
Handle3 I--~~_-I

Figure 4-2. A Process and Its Resources

Processes and Threads

At the top of the diagram is the process's access token, which was de
scribed in Chapter 3, "The Object Manager and Object Security." Notice that
the token object is directly attached to the process by the operating system. If
the process needs to get information about its access token or perhaps change
some of its attributes, the process must open a handle to its token object. The
security system determines whether it can do so. This particular process has
not opened a handle to its access token; hence, there is no arrow extending
from the object table to the access token.

Below the access token is a series of data structures the virtual memory
(VM) manager has created to keep track of the virtual addresses the process is
using. The process cannot read or alter these structures directly; the VM man
ager creates and modifies them indirectly as the program allocates memory.
(These data structures are described in more detail in Chapter 6, "The Vir
tual Memory Manager.")

The process's object table is shown at the bottom of the figure. The pro
cess has opened handles to its one thread, to a file, and to a section of shared
memory. (The virtual· address description records the virtual addresses oc
cupied by the thread's stack and the section object, as indicated by the arrows
from the virtual address description to those objects.)

In addition to the tangible resources shown in the figure, each process
has a set of resource quota limits that restrict how much memory its threads
can use for opening handles to objects. Each process also has a base execution
priority and a default processor affinity, topics described later in this chapter.

4.1.3 Process Object
In the NT executive, processes are simply objects created and deleted by the
object manager. The process object, like other objects, contains a header that
the object manager creates and initializes. The header stores standard object
attributes, such as the process object's security descriptor, the process's name
(if it has one for sharing purposes), and the object directory in which its
name is stored, if applicable.

The process manager defines the attributes stored in the body of pro
cess objects and also supplies system services that retrieve and change these
attributes. The attributes and services for process objects are illustrated in
Figure 4-3 on the next page.

Notice that the object table and the address space description are not
listed as part of the process object. This is because although they are attached
to the process object, they cannot be modified directly by user-mode pro
cesses. The figure depicts only data that user-mode code can read or set by
calling process object services. Table 4-1 on the next page summarizes the at
tributes of the process object.

87

INSIDE WINDOWS NT

88

Object Type

Object Body Attributes

Services

Figure 4-3. Process Object

Attribute

Process ID

Process

Process 10
Access token
Base priority
Default processor affinity
Quota limits
Execution time
I/O counters
VM operation counters
Exception/debugging ports
Exit status

Create process
Open process
Query process information
Set process information
Current process
Terminate process
Allocate/free virtual memory
Read/write virtual memory
Protect virtual memory
Lock/unlock virtual memory
Query virtual memory
Flush virtual memory

Purpose

A unique value that identifies the process to the
operating system

Access token An executive object containing security informa
tion about the logged-on user represented by this
process

Base priority A baseline execution priority for the process's
threads

Default processor affinity The default set of processors on which the pro
cess's threads can run

Quota limits The maximum amount of paged and non paged
system memory, paging file space, and processor
time a user's processes can use

Table 4-1. Process Object Attributes (continued)

Table 4-1. continued

Attribute

Execution time

I/O counters

VM operation counters

Exception/ debugging
ports

Exit status

Processes and Threads

Purpose

The total amount of time all threads in the pro
cess have executed

Variables that record the number and type of I/O
operations the process's threads have performed

Variables that record the number and type of vir
tual memory operations the process's threads have
performed

Interprocess communication channels to which
the process manager sends a message when one of
the process's threads causes an exception

The reason for a process's termination

Several of the process object attributes impose constraints on the
threads that execute within the process. For example, on a multiprocessor
computer, the processor affinity might restrict the process's threads to run
ning on a subset of the available processors. Similarly, the quota limits regu
late how much memory, paging file space, and execution time the process's
threads can collectively use.

The process's base priority helps the NT kernel regulate the execution
priority of threads in the system. The priority of individual threads varies but
always stays within range of their process's base priority. Environment subsys
tems can use the process object's base priority to influence which process's
threads are selected first by the NT kernel. For example, the Win32 subsystem
calls NT services to raise the base priority of the foreground application pro
cess and lower the base priority of the background application processes, giv
ing interactive applications an edge over the others. (See Section 4.2.3.)
Quota limits, processor affinity, and base priority are among the process at
tributes and data structures that can be inherited from one process to an
other. Process inheritance is described in Section 4.3.2.l.

A process's exception and debugging ports are interprocess communi
cation channels to which the operating system sends messages when one of
the process's threads generates an exception or when the process is being
debugged. A thread in another process waits at the port to receive the mes
sage and take suitable action. For example, an environment subsystem thread
can "listen" at the exception port to capture errors generated by its client
processes, and a debugger can capture exceptions such as debugger break
points. (See Chapter 5, "Windows and the Protected Subsystems," for more
information about port objects and environment subsystems.)

89

INSIDE WINDOWS NT

Of the process object services, most are self-explanatory. The create pro
cess service is flexible, allowing different subsystems to create processes with
different initial attributes. The current process service lets a process quickly
acquire a handle to itself without passing through the object manager. The
terminate process service stops a process's threads, closes any open object
handles, and deletes the process's virtual address space.

The virtual memory services shown in Figure 4-2 are actually imple
mented by the VM manager, but each of them requires a process handle as a
parameter, designating a process whose virtual memory will be accessed. The
virtual memory operations are described in Chapter 6, "The Virtual Mem
ory Manager."

4.2 What Are Threads?

90

If you are familiar with the subject of threads, you have likely encountered
various definitions for a thread, including "a unit of execution," "an inde
pendent program counter," or "a schedulable entity within a process."
Although each of these definitions is essentially correct, none of them is satis
fying. What exactly does it mean to be "a unit of execution"? Just what is the
thing that executes on a processor?

While a process logically represents a job the operating system must do,
a thread represents one of possibly many sub tasks needed to accomplish the
job. For example, suppose a user starts a database application in a window.
The operating system represents this invocation of the database as a single
process. Now suppose the user requests that a payroll report be generated
from the database and sent to ~ file-conceivably a lengthy operation. While
this operation is in progress, the user can enter another database query. The
operating system represents each request-the payroll report and the new
database query-as separate threads within the database process. The
threads can be scheduled for execution independently on the processor,
which allows both operations to proceed at the same time (concurrently).
Operating systems provide threads in order to achieve this concurrency in a
convenient and efficient way. More on that topic later.

The following are the essential components of a thread in the NT
executive:

II A unique identifier, called a client ID

II The contents of a set of volatile registers representing the state of
the processor

II Two stacks, one for the thread to use while executing in user mode
and the other for it to use while executing in kernel mode

Processes and Threads

• A private storage area for use by subsystems, runtime libraries, and
dynamic-link libraries (DLLs)

The volatile registers, the stacks, and the private storage area are called
the thread's context. The actual data composing a thread's context varies from
one processor to another.

A thread resides within a process's virtual address space, using the ad
dress space for storage during the thread's execution. If ,]TIore than one
thread exists in the same process, they share the address space and all the pro
cess's resources, including its access token, its base priority, and the object
handles in its object table. The NT kernel schedules threads for execution on
a processor. Therefore, every NT process must have at least one thread before
it can execute.

4.2.1 Multitasking and Multiprocessing
A processor is capable of executing only one thread at a time. However, a multi

tasking operating system allows users to run multiple programs, and it appears
to execute all of them at the same time. It achieves this in the following way:

1. It runs a thread until the thread's execution is interrupted or until
the thread must wait for a resource to become available.

2. It saves the thread's context.

3. It loads another thread's context.

4. It repeats this sequence as long as there are threads waiting to
execute.

Switching the processor's execution from one thread to another in this
manner is called context switching. In Windows NT, context switching is per
formed by the kernel component of the executive.

As illustrated with two threads in Figure 4-4 on the next page, a multi
tasking operating system continually alternates its execution from one thread
to another. Each thread eventually finishes its subtask and then is either ter
minated or given another task. The extraordinary speed of the processor pro
vides the illusion that all the threads execute at the same time.

Multitasking increases the amount of work the system accomplishes be
cauSe most threads cannot execute continuously. Periodically, a thread stops
executing and waits while a slow I/O device completes a data transfer or while
another thread is using a resource it needs, for example. When one thread

91

INSIDE WINDOWS NT

92

Done

Thread 1

Done

Thread 2

----------------------nme----------------------~.

I/O or idle --------

Executing

Figure 4·4. Multitasking

must wait, multitasking allows another thread to execute, taking advantage of
processor cycles that otherwise would be wasted.

Preemptive multitasking is a form of multitasking in which the operating
system does not wait for a thread to voluntarily yield the processor to other
threads. Instead, the operating system interrupts a thread after the thread
has run for a preset amount of time, called a time quantum, or when a higher
priority thread (such as one responding to user input) becomes ready to run.
Preemption prevents one thread from monopolizing the processor and allows
other threads their fair share of execution time. The NT executive is a pre
emptive multitasking system, as is its primary Windows environment, the
Win32 subsystem. In the MS-DOS-based, nonpreemptive versions of Windows,
a thread had to voluntarily relinquish control of the processor in order for
multitasking to occur. Ill-mannered or primitive applications could hoard
the processor to the detriment of other applications or of the system as a
whole.

Sometimes two threads require the ability to communicate with one an
other to coordinate their activities toward achieving a common goal. For ex
ample, a C compiler might have one thread that preprocesses a C program
and another thread that takes the first thread's output and compiles it into
object code. The two threads must have a way to pass data between them.

Until the latter half of the 1980s, most operating systems allowed a pro
cess to have only one thread of execution'! (In fact, most operating systems
used the term process to refer to an executable entity. Thread is a relatively new

1. Dave Cutler, chief architect of Windows NT, notes that VAX ELN, a real-time operating system he
and others on the Windows NT team designed for Digital Equipment Corporation, had threads as
early as 1983.

, , ,
... -~----------- ..

Figure 4·5. Two-Process Compiler

Processes and Threads

term.) Because every process had a separate address space, two pro.cesses had
to establish either a region of shared memory or a shared file if they wanted to
communicate with one another. Pipes were (and are) commonly used to ac
complish this sort of interprocess communication. See Figure 4-5.

Using two processes (each with one thread) to preprocess and compile a
program would likely be faster than using a single process because a multi
tasking operating system can interleave the execution of the preprocessor
thread and the compiler thread. As soon as the preprocessor places some
thing in the shared buffer, the compiler can begin its work. Applications such
as this that execute in two or more locations are called concurrent applications.

Concurrency in an application is useful on a single-processor computer
but becomes even more useful on a multiprocessor computer. With multiple
processors, the preprocessor and the compiler, using this example, can exe
cute concurrently. If a concurrent application is well designed and minimizes
its threads' contention for resources, it can execute faster on a multiprocessor
computer than on a single-processor computer. Figure 4-6, when compared to
Figure 4-4, illustrates this point.

Thread 1

Processor 1

Processor 2

Thread 2

Time
saved

Done

-----------------------nme----------------------~.

I/O or idle

Executing

Figure 4·6. Multiprocessing

93

INSIDE WINDOWS NT

A multiprocessing operating system is one that is specially designed to run
on computers with more than one processor. A symmetric multiprocessing (SMP)
operating system, such as Windows NT, can run both operating system code
and user code on any available processor. When there are more threads to
run than processors to run them on, an SMP operating system also performs
multitasking, dividing each processor's time among all waiting threads. (See
Chapter 7, "The Kernel," for more information about thread scheduling on
Windows NT.)

4.2.2 Multithreading

94

Using two processes to achieve concurrency is not always efficient. On some
UNIX systems, for example, when 'one process creates (or forks) another, the
system must copy everything in the first process's address space to the address
space of the new process. For a large address space, this operation is time-con
suming. Furthermore, the two processes must establish a way to share data, a
job that is fast and easy on some operating systems but not on others. Windows
NT addresses these problems by providing convenient mechanisms for shar
ing memory: by using copy-on-modify memory to avoid copying an entire ad
dress space from one process to another and by implementing a locally
optimized message-passing facility. (The first two capabilities are described in
Chapter 6, "The Virtual Memory Manager," and the third - the local pro
cedure call (LPC) facility-is described in Chapter 5, "Windows and the Pro
tected Subsystems.")

Even with such enhancements, there are times when a different ap
proach to concurrency is beneficial-namely, multithreaded processes. As stated
previously, the term thread refers to the movement of a processor through a
program's instructions; each thread represents a separate program counter.
A multithreaded process has two or more threads (and program counters)
within a single process, sharing the same address space, object handles, and
other resources.

Every NT process is created with a single thread. A program can create
additional threads in the process as it needs to. These additional threads are
often used for asynchronous operations in a program-that is, operations that
can happen at any time without regard to the main flow of the program. I/O
operations often fit into this category. For example, one might use a thread to
periodically save a document being edited or to monitor a device, such as a
keyboard or a mouse, for user input. By using one thread to run the main pro
gram and creating another thread to monitor a device, the system can sched
ule both operations separately on a processor, and multitasking 'occurs. When
running on a multiprocessor computer, the two threads can execute simulta-

Processes and Threads

neously without the overhead of creating a second process and initializing its
address space.

To achieve concurrency using threads, a program creates two or more
threads to execute different parts of its program within the same process. A
multithreaded compiler is depicted in Figure 4-7.

Compiler Process

Preprocessor Preprocessed Compiler
Thread ----"':;s::::o7:uf',~c:-::e:-----i·~ Thread

~ ~

Figure 4-7. Multithreaded Compiler

Multithreaded processes achieve concurrency without the disadvan
tages of using two processes. Threads require less overhead and are faster to
create than are processes. (They are sometimes called "lightweight pro
cesses" for this reason.) Also, because all threads in a process share the same
memory except for their stacks and register contents, no special data-passing
mechanisms are required. One thread simply writes its output to memory,
and another thread reads it as input. Similarly, all the process's resources (ob
jects) are equally available to all the threads in the process.

The NT kernel uses a priority-based scheme to select the order in which
threads execute. Higher-priority threads execute before lower-priority
threads, and the kernel changes a thread's priority periodically to ensure that
all threads will execute. An application can allow its threads to execute on
any processor in a multiprocessor computer, or it can limit their execution to
a subset of the processors.

Creating a multithreaded process is an ideal solution for server applica
tions (such as Windows NT's protected subsystems) that accept requests from
clients and execute the same code for each request. For example, a file server
performs operations on files; it opens files, reads from them, writes to them,
and closes them. Although each request might require the server to operate
on a different file, the server's program is loaded into memory only once.
Each incoming request is received and handled by a separate server thread,
which executes the appropriate server function. All the clients' requests are
serviced concurrently. Figure 4-8 on the next page illustrates this point.

In this figure, two client processes (each with a single thread, repre
sented as a squiggly line) use the message-passing facility to send a message

95

INSIDE WINDOWS NT

96

Client Process

Client Process

Server Process

Server
~ Threads

~ ~

Message-Passing
Facility 1-----,

Figure 4-8. Multithreaded Server

User Mode

Kernel Mode

to the server process. Multiple server threads are available to execute server
code and reply to the clients.

Note that writing multithreaded applications requires great care be
cause all the threads within a process have complete access to the process's
address space. Threads can accidentally get in each other's way, reading or
writing memory out of turn.

Such is not the case for applications that use two processes to achieve
concurrency and that communicate explicitly through messages or pipes.
One process cannot accidentally or deliberately destroy or corrupt another
process's address space. This is the reason why Wim:!ows NT protected subsys
tems are implemented as separate server processes (and why they are called
"protected" subsystems). Each subsystem maintains control over its private
address space, without interference from other subsystems or from user pro
cesses. Within a server, however, it is advantageous for multiple threads to
run, sharing the same address space and resources.

Achieving concurrency by using multiple processes and by using multiple
threads within a process are both useful techniques. The goals of the applica
tion determine which structure is more beneficial in any particular program.

In review, the following terms refer to an operating system's implemen
tation of processes:

l1li Multitasking. Dividing the processor's time among threads waiting
for execution and creating the illusion that all threads are execut
ing simultaneously.

l1li Multiprocessing. Running the same operating system code on both
single-processor and multiprocessor computers. A symmetric
multiprocessing operating system runs system code and user code
on all available processors.

Processes and Threads

• Multithreading. Supporting more than one thread within a single
process.

An advanced operating system should supply all of these capabilities.
And Windows NT does.

4.2.3 Thread Object
An NT process remains inanimate until it has a thread that can be scheduled
for execution. Once a process has a thread, that thread can create additional
threads.

Like processes, NT executive threads are implemented as objects, cre
ated and deleted by the object manager. The process manager defines the
body of thread objects and the system services used to manipulate threads
once they are created. The thread object is depicted in Figure 4-9.

Object Type

Object Body Attributes

Services

Figure 4-9. Thread Object

Thread

Client ID
Thread context
Dynamic priority
Base priority
Thread processor affinity
Thread execution time
Alert status
Suspension count
Impersonation token
Termination port
Thread exit status

Create thread
Open thread
Query thread information
Set thread information
Current thread
Terminate thread
Get context
Set context
Suspend
Resume
Alert thread
Test thread alert
Register termination port

97

INSIDE WINDOWS NT

98

Table 4-2 describes the thread object's attributes.

Attribute

ClientID

Thread context

Dynamic priority

Base priority

Thread processor affinity

Thread execution time

Alert status

Suspension count

Impersonation token

Termination port

Thread exit status

Table 4-2. Thread Object Attributes

Purpose

A unique value that identifies a thread when it
calls a server

The set of register values and other volatile data
that defines the execution state of a thread

The thread's execution priority at any given moment

The lower limit of the thread's dynamic priority

The set of processors on which the thread can
run, a (nonproper) subset of the processor affinity
of the thread's process

The cumulative amount of time a thread has exe
cuted in user mode and in kernel mode

A flag that indicates whether the thread should
execute an asynchronous procedure call (APC)

The number of times the thread's execution has
been suspended without being resumed

A temporary access token allowing a thread to per
form operations on behalf of another process
(used by subsystems)

An interprocess communication channel to which
the process manager sends a message when the
thread terminates (used by subsystems)

The reason for a thread's termination

As you can see, some of the attributes in the thread object resemble
those in the process object. Certain attributes, such as the thread's processor
affinity and dynamic priority, actually restrict or qualify the values applied to
the process as a whole. For example, each thread has a processor affinity that
is a nonproper subset of (equal to or less than) the processor affinity assigned
to its process. Therefore, different threads within a process can be forced to
run on different subsets of processors.

Similarly, each thread has a base execution priority that ranges from two
levels below the process's base priority to two levels above it, as shown in
Figure 4-10.

As shown in the figure, each thread also has a dynamic priority that
begins at the thread's base priority and varies upward depending on the type

Priority

15
14
13
12
11
10
9
8
7
6
5
4 --4.~Process's base priority
3
2
1

I Thread's
base
priority

Processes and Threads

Thread's
dynamic
priority

0 __ __

Controlled By Application Application NT Executive

Figure 4-10. Priority Relationships2

of work the thread is doing. For example, if a thread is responding to user
input, the NT kernel raises its dynamic priority; if it is compute bound, the
kernel gradually lowers its dynamic priority to its base priority. By lowering
one thread's base priority and raising another thread's base priority, subsys
tems can control the relative priorities of threads within a process. The pro
cess's base priority controls how far apart the priorities of threads within the
process can range and how the threads' priorities relate to those of other
processes.

Like thread priorities, other attributes in the thread object exist to allow
the operating system (and particularly the environment subsystems) to con
trol the threads it creates. For example, the thread context attribute contains
everything the operating system needs to know to continue a thread's execu
tion after it has been interrupted--namely, the values stored in the pro
cessor's registers and on the thread's user-mode and kernel-mode stacks. By
suspending a thread, altering its user-mode context, and then restarting the
thread, an environment subsystem can modify the thread's behavior or start it
executing at a location different from where it was suspended. (User-mode
debuggers can also use this capability to control the execution of threads.)

Alerting a thread, another service provided for thread objects, is a capa
bility that allows an envir~nment subsystem or other parts of the operating

2. This figure illustrates only the variable-priority threads, which run at priorities 0 through 15. Real
time threads run at priorities 16 through 31. See Chapter 7, "The Kernel," for more information.

99

INSIDE WINDOWS NT

system to asynchronously notify some thread that it must execute a special
procedure. A thread that expects to be alerted can call a service to test
whether an alert is pending. (See Section 4.2.5.)

A thread's termination port is similar to a process's exception and
debugging ports. The termination port allows an environment subsystem to
be notified when a thread in one of its client processes terminates. It can then
update any information it maintains about the thread or the process in which
the thread resides.

The current thread service allows a thread to quickly acquire a handle to
itself without explicitly opening one. It can use the handle, for instance, to
retrieve information about itself, such as its total execution time, its current
execution priority, and its processor affinity.

Subsequent sections provide more information about both process and
thread services. The next chapter describes the Windows NT protected
subsystems. •

4.2.4 Synchronization

100

When a concurrent application runs, its threads often require a way to com
municate with one another to coordinate their activities. Passing data
through pipes is one example of communication. However, the simplest form
of communication is called synchroniwtion. Synchronization refers to the
ability of one thread to voluntarily stop executing and wait until another
thread performs some operation.

In the compiler examples presented earlier, the preprocessor reads C
source code and writes its output into a memory buffer that it shares with the
compiler. The compiler reads this output as its input, compiles it, andgener
ates object code. When the program starts, the compiler thread must wait un
til the preprocessor thread has put something into the buffer before it tries to
read from the buffer. Likewise, if the buffer becomes full, the preprocessor
must wait until the compiler removes data from the buffer before placing
more data into it.

All multitasking or multiprocessing operating systems must provide a
way for threads to wait for another thread to do something-for example, to
release a tape drive or to finish writing to a shared memory buffer. The
operating system mlist also allow a thread to signal other threads that it has
finished such an operation. Once notified, a waiting thread can continue its
execution.

In the NT executive, these wait and signal capabilities are implemented
as part of the object architecture. Synchronization objects are executive objects

Processes and Threads

with which a thread can synchronize its execution. The synchronization ob
jects include the following:

II Process objects

II Thread objects

II File objects

II Event objects

II Event pair objects

II Semaphore objects

II Timer objects

II Mutant objects

The first three objects listed serve other purposes in addition to synchro
nization, but the last five objects exist solely to support synchronization.
Together, these executive objects allow threads to coordinate their activities
with a variety of system occurrences, applying different rules for different
situations.

At any given moment, a synchronization object is in one of two states,
either the signaled state or the nonsignaled state. The signaled state is defined dif
ferently for different objects. A thread object is in the nonsignaled state dur
ing its lifetime and is set to the signaled state by the NT kernel when the
thread terminates. Similarly, the kernel sets a process object to the signaled
state when the process's last thread terminates. In contrast, the timer object,
like a stopwatch, is set to "go off" at a certain time. When its time expires, the
kernel sets the timer object to the signaled state.

To synchronize with an object, a thread calls one of the wait system ser
vices supplied by the object manager, passing a handle to the object it wants to
synchronize with. The thread can wait on one or several objects and can also
specify that its wait should be canceled if it is not ended within a certain
amount of time. Whenever the kernel sets an object to the signaled state, it
checks to see whether any threads are waiting on the object. If so, the kernel
releases one or more of the threads from their waiting state so that they can
continue executing.

When choosing a synchronization mechanism, a program must take
into account the rules governing the behavior of different synchronization
objects. Whether a thread's wait ends when an object is set to the signaled
state varies with the type of object the thread is waiting on, as Table 4-3 on the
next page illustrates.

101

INSIDE WINDOWS NT

102

Effect on Waiting
Object Type Set to Signaled State When Threads

Process Last thread terminates All released

Thread Thread terminates All released

File I/O operation completes All released

Event Thread sets the event All released

Event pair Dedicated client or server Other dedicated thread
thread sets the event released

Semaphore Semaphore count drops All released
to zero

Timer Set time arrives or All released
time interval expires

Mutant Thread releases the mutant One thread released

Table 4-3. Definitions of the Signaled State

When an object is set to the signaled state, waiting threads are generally
released from their wait states immediately. For example, an event object is
used to announce the occurrence of some event. When the event object is set
to the signaled state, all threads waiting on the event are released. The excep
tion is any thread that is waiting on more than one object at a time; such a
thread might be required to continue waiting until additional objects reach
the signaled state.

In contrast to an event object, a mutant object (made visible as a mutex
object to Win32 programmers) has ownership associated with it. It is used to
gain mutually exclusive access to a resource, and only one thread at a time
can hold the mutant. When the mutant object becomes free, the kernel sets it
to the signaled state and then selects one waiting thread to execute. The
thread selected by the kernel acquires the mutant object, and all other
threads continue waiting. (Chapter 7, "The Kernel," describes synchroniza
tion in greater detail.)

The NT executive's synchronization semantics are visible to Win32
programmers through the WaitForSingleObjectO and WaitForMultiple
ObjectsO API routines, which the Win32 subsystem implements by calling
analogous system services supplied by the NT object manager. A thread in a
Win32 application can synchronize with a Win32 process, thread, event, sema
phore, mutex, or file object. For example, a thread might synchronize with
another thread in a spreadsheet program. Assume that the application has a
main thread that performs ordinary spreadsheet functions and a secondary
thread that spools spreadsheet files to the printer. Now suppose the user
prints a spreadsheet and, before spooling is complete, enters a command to

Processes and Threads

exit the program. The main thread, which accepts the exit request, doesn't
terminate the process immediately (although it might clear the screen). In
stead, it calls the WaitForSingleObject() routine to wait for the spooler thread
to finish spooling and terminate. Mter the spooler thread terminates, the
main thread is released from its wait operation and terminates itself, which
ends the spreadsheet program and terminates the spreadsheet process.

4.2.5 Alerts and Asynchronous Procedure Calls
In some situations, it is useful to allow one thread to asynchronously notify
another thread to stop what it is doing. This operation, called an alert in the
NT executive, is closely related to synchronization. Suppose a database appli
cation is responding to a query operation. It might not know whether the data
it needs is available on a local computer or on a remote computer. To hedge
its bets, it starts two threads; one searches for the data locally, and the other
looks for the data on the network. As soon as one thread finds the data, it
alerts the other thread. In response, the alerted thread stops what it was doing
and returns, ready to work on a new task.

The alert capability is not used extensively in Windows NT except in
combination with another asynchronous notification mechanism, called an
asynchronous procedure call (APe). From time to time, the operating system
needs to notify a thread that the thread must perform some action. Some
times the thread must do the work after an event occurs. For example, a user
can tell Windows to send a message reminding him of a scheduled meeting
time. In Windows NT, this type of asynchronous notification is accomplished
by employing a user-mode APe-that is, the Win32 subsystem calls the NT
executive to set a timer and provides a pointer to a procedure (an APe) that
will send a message to the user. When the timer goes off, the NT executive
prompts a Win32 subsystem thread to execute the APe procedure. Mterward,
the Win32 thread proceeds with what it was doing.

Although some asynchronous operations are generated by user-mode
programs, most are generated by the operating system, and particularly by
the NT I/O system. The NT I/O system is asynchronous, which means that a
caller can start an I/O operation and then do other work while a device com
pletes the operation. When the device finishes transferring data, the I/O sys
tem must interrupt whatever the calling thread is doing and copy the results
of the I/O operation to the thread's address space. The I/O system uses a
kernel-mode APe to perform this action.

User-mode and kernel-mode APes vary in several respects, but one dif
ference is especially notable. A kernel-mode APe can interrupt a user-mode

103

INSIDE WINDOWS NT

thread's execution at any time and force it to execute the procedure. Ordi
narily this happens unbeknownst to an application. A software interrupt oc
curs and, as with a hardware interrupt, the system simply "steals" the
application's thread for a short time and causes it to execute the APC pro
cedure. A user-mode APC, in contrast, can be delivered only at control points
when the thread that requested it is prepared to execute it.

NT provides two ways in which a thread can control when it receives a
user-mode asynchronous notification (an alert or a user-mode APC). The
thread can either call a native service to test whether it has been alerted, or it
can wait on an object handle, specifying that its wait can be interrupted by an
alert. In either case, if a user-mode APC is pending for the thread, the NT
kernel delivers it, and the thread executes the procedure. The kernel then
resumes the thread's execution from the point at which it was interrupted.

The Win32 API makes alerts and APCs visible through its extended (NT
only) I/O routines. The ReadFileExO and WriteFileExO API routines allow a
thread to read from or write to a file asynchronously, supplying an APC rou
tine that the thread will execute after the I/O operation is complete. The
WaitForSingleObjectExO and WaitForMultipleObjectsExO routines let the
thread wait in an alertable state at some point after issuing the I/O call. The
PO SIX subsystem doesn't provide APC capabilities to POSIX applications, but
it uses kernel-mode APCs to emulate the delivery of POSIX signals to PO SIX
processes. Similarly, future environment subsystems can use APCs to imple
ment other asynchronous notification facilities. The topic of APCs reappears
in later discussions of the NT kernel, which controls APC processing, and the
NT I/O system, which uses APCs extensively.

4.3 Process Structure

104

Processes are dynamic entities, created and destroyed as the operating system
runs. One process creates another, which in turn can create others. The term
process structure refers to how an operating system creates, manages, and
discards processes and threads and how one process relates to others while it
exists.

Programmers who write Win32, MS-DOS, OS/2, or PO SIX applications
never see NT's native processes and threads. The Win32 subsystem and other
subsystems shield programmers from them, creating customized environ
ments in which a Win32 programmer sees only Win32-like processes, a PO SIX
programmer sees only POSIX-like processes, and so on. However, it is largely

Processes and Threads

the underlying capabilities of the NT executive's process structure that allow
these disparate environments to coexist in the same operating system.

The next section discusses some of the requirements of various environ
ment subsystems, and the subsequent section describes the mechanisms that
the NT process manager provides for the subsystems.

4.3.1 Environment Subsystem Requirements
One of the main tasks of a Windows NT environment subsystem is to emulate
the API that the subsystem's client applications expect (the Win32 or POSIX
APIs, for example). Another major function is to implement the process
structures required by those clients. Mark Lucovsky and Steve Wood, who de
signed Windows NT's original POSIX and OS/2 environment subsystems,
carefully considered the capabilities these and future subsystems would re
quire in order to emulate their respective APIs. They identified the following
process-related capabilities required of a typical environment:

II1II Creating and terminating processes and threads

II1II Recording and maintaining relationships between processes

II1II Performing operations (both local and network) on behalf of a cli
ent process

II1II Reading to, writing from, and otherwis~ manipulating a client pro
cess's address space

II1II Stopping a client's thread, possibly altering its user-mode context,
and restarting it

II1II Capturing and handling exceptions generated by client processes

Process creation, the first item in the list, is a common operation for a
subsystem and one that illustrates how environment subsystems accomplish
their work using native process services. Figure 4-11, shown on the following
page, depicts the relationship between creating a process from an application
program and creating an NT executive process.

A client application - Win32, POSIX, or OS/2 in this example-creates
a process using the API appropriate for its environment. The process creation
call is transmitted via the NT executive's message-passing facility (described
in Chapter 5, "Windows and the Protected Subsystems") to the appropriate
server, which calls the NT process manager to create a native process.

105

INSIDE WINDOWS NT

106

Create NT
process

CreateProcess()

Create NT
process

Figure 4·11. Creating a Process

DosExecPgm()

Create NT
process

Client
Processes

Server
Processes

User Mode

Kernel Mode

Mter creating a native process, the NT process manager returns a
handle to a process object. The environment subsystem takes the handle and
constructs the appropriate return value expected by the original client appli
cation. What each subsystem returns is shown in Figure 4-12.

Note that an environment subsystem must do some additional work af
ter it receives a process handle from the process manager and before it
returns a result to the client application. For example, the subsystem calls the
process manager again to create a thread for the new process.

As you can see in Figure 4-12, different operating system environments
return different results when a process is created. Similarly, operating systems
vary in the rules and conventions they adopt for managing processes. One of
the fundamental differences among the operating system environments
available on Windows NT is their ability to support multithreaded processes.
Win32 and OS/2, for example, allow multiple threads per process, whereas
POSIX, MS-DOS, and the Windows 16-bit environment do not.

"". Ne~- -",
I '
" Process -' Return

'. - - -~:.' •• '.'.... POSIX-unique process 10

'. --~'----~

Return process
handle

/--Ne~--",
I '

'" ~r_o~~~~.~, '_' __ _

· · · · · · · · · · · · Return process :'
and thread :'

handles •

· · · ·

Return process
handle

Return process
handle

Figure 4-12. Returning from Process Creation

Processes and Threads

User Mode

Kernel Mode

Another example of the differences among operating system environ
ments is the way in which each subsystem's processes relate to one another.
POSIX and OS/2, for example, organize their client processes into
hierarchies, or process trees. They each create an initial process that creates the
so-called child processes. The child processes, in turn, create their own child
processes. Except for the initial process, every process has a parent from
which it inherits certain resources and characteristics. Figure 4-13, shown on
the next page, illustrates these relationships.

Both POSIX and OS/2 use the relationships between their client pro
cesses to manage them. For example, when a POSIX process or an OS/2 pro
cess terminates, the operating system tracks down and terminates all of its
descendant processes. Moreover, a POSIX-compliant operating system main
tains other types of relationships between processes, including process groups
(collections of related processes) and sessions (collections of process groups) .
POSIX systems implement detailed process-control semantics related to

107

INSIDE WINDOWS NT

108

Figure 4-13. POSIX or OS/2 Process Hierarchy

process groups and sessions that have no precise counterparts in other operat
ing systems. The NT executive must allow each of its environment subsystems
to support whatever process relationships it requires.

In addition to differences in process groupings and in the use of single
threaded processes or multithreaded processes, environment subsystems
differ in the rules they use for creating new processes. Table 4-4 details some
of the differences among the process structures of three operating system en
vironments Windows NT supports.

API routine

Process
hierarchy

Inheritance

Windows
(32-bit)

CreateProcessO

Maintains no for
mal parent! child
relationships

Copies to child
process all object
handles that were
opened with the
inheritance
attribute

Table 4-4. Process Creation Semantics

POSIX

forkO

Creates new pro
cess as child of
caller

Copies parent's
file descriptors to
child process

OS/2

DosExecPgm()

Creates new pro
cess as child of
caller

Copies to child
process all of
parent's file, pipe,
and semaphore
handles that were
opened with in
heritance rights

(continued)

Processes and Threads

Table 4-4. continued

Windows
(32-bit) POSIX OS/2

Address space Initializes pro- Initializes child's Initializes child's
initialization cess's address address space by address space with

space with an exe- copying parent's an executable
cutable program address space program

Process Returns a handle Returns process Returns process
identification to the new process ID for new child ID for new child

(if child runs
asynchronously)

Threads Creates one Creates one Creates one
thread and thread but does thread and
supports not support supports
multithreading multithreading multithreading

As you can see, process hierarchies, address space initialization, and pro
cess identification vary in different environments. Although some of the dif
ferences seem minor, the process manager must support all environments
equally well and must allow their differEnt process structures to coexist
without conflicting. The following section explains how this is done.

4.3.2 Native Process Structure
While designing the native NT process structure, the developers quickly real
ized that even if it were possible, providing multiple types of process struc
tures in the base operating system would result in a highly complex and
chaotic system. Fortunately, most details pertaining to process structure are
not fundamental to the operation of the underlying operating system. Pro
cess structures could be implemented in the user-mode environment subsys
tems outside the NT executive. To accomplish this, the NT executive's
process structure does not enforce any set of rules that might preclude an
other. Instead, it supplies a basic set of mechanisms that the subsystems can
use as a foundation for implementing their own process structures. As an ex
ample of this approach, Table 4-5, shown on the next page, details the NT
executive's flexible process creation rules.

The NT executive views process creation as the creation of an object
nothing more. When the process manager finishes creating a new process, it
returns the new process's handle to the environment subsystem. The subsys
tem is responsible for calling the process manager to create a thread in the
process.

109

INSIDE WINDOWS NT

API routine

Process hierarchy

Inheritance

Address space
initialization

Process identification

Threads

NT

N tCreateProcess ()

Creates new process as independent peer of caller and
returns an object handle

Caller specifies a parent from which the new process in
herits object handles that were opened with the
inheritance attribute

Initializes new process's address space with an execut
able program or as a copy of the parent's address space

Returns NT object handle for new process

Does not create a thread in the new process automati
cally, but supports multithreading

Table 4-5. Native NT Process Creation Semantics

The NT process manager does not record which process created which.
Therefore, in order to emulate the unique process relationships required by
their applications, each environment subsystem maintains records of client
processes it has created and the relationships that exist among them. The fol
lowing sections describe some of the facilities the NT executive provides the
subsystems for managing their clients.

4.3.2.1 Managing Client Processes

110

A native NT process must be given a minimal set of resources, in addition to a
thread, before it can do any work. If you refer back to Figure 4-2 on page 86,
you'll see that a process has an access token, address space contents, and
handles to objects. These resources, plus process-specific quotas and other set
tings, are in whole or in part inherited from another process, a "parent
process."

The term "parent process" is enclosed in quotation marks because of
the NT executive's unique notion of an assignable parent. Consider the illus
tration shown in Figure 4-14.

In this figure, a POSIX application calls the POSIX subsystem to create a
new POSIX process. The subsystem, also a process, calls the NT executive to
create a native process. Because the POSIX subsystem is acting on behalf of
the client application, the new process should inherit its resources from the
client, not from the subsystem. The same holds true for Win32 and OS/2 ap
plications that create new processes. To allow the environment subsystems to
emulate the process inheritance semantics their applications require, the NT
executive's create process service lets a caller (the subsystem in this case) op
tionally specify the new process's parent.

Parent process •
for inheritance :

· · · · · ... Create NT process
'. '.

Figure 4·14. Assigning a Parent Process

Processes and Threads

User Mode

Kernel Mode

The new native NT process inherits the parent's access token, quota
limits, base priority, and default processor affinity. It also inherits any handles
in the parent's object table that were opened with an inheritance designation.
The parent's address space can also be inherited if the subsystem requests it.
The POSIX subsystem uses this feature to emulate the POSIX forkO API rou
tine, whereas the Win32 and OS/2 subsystems specify an executable image to
load into the new process's address space.

Before it can execute, a new process must be given a thread. To a Win32
or an OS/2 application, creating a thread is not considered a separate opera
tion from creating a new process. Win32 and OS/2 applications expect the
thread to be there already when the process creation routine returns. The
thread is not automatically created in NT, however, so the subsystems must
call the process manager again to create a thread in the new process. When
creating a thread, the process manager allows subsystems to specify a process
to which the new thread belongs. This lets the Win32 subsystem, for example,
create a process for one of its clients and then place a thread in that client's
address space. The new thread begins executing at the client process's base
priority, on the set of processors listed in the client's processor affinity, and
under the constraints of the client's access token.

In addition to creating processes and threads on behalf of other pro
cesses, the NT process manager provides facilities that allow a subsystem to
attach to a client's address space and read and write to it, to allocate and free a
client's virtual memory, and to suspend a client's threads, alter the threads'

111

INSIDE WINDOWS NT

execution states, and restart them. The subsystem can also duplicate object
handles from its own object table into the client's object table. Furthermore, it
can terminate a client's threads or a client process.

These powerful capabilities give user-mode subsystems control that in
most operating systems is limited to kernel-mode operating system code.
They allow the environment subsystems freedom to control their client appli
cations and to establish an operating system environment for them that
differs from the NT executive's native environment.

4.3.2.2 Preventing Misuse

112

Creating processes and threads on behalf of another process, reading and
writing another process's virtual memory, and controlling another process's
threads are operations that should not be used indiscriminately. To prevent
misuse, the Windows NT security system (specifically its object protection
mechanisms) ensures that such operations are carefully controlled.

At their most basic level, the Windows NT environment subsystems are
simply ordinary processes. Like other processes, they determine what access
rights are granted to the processes they create. Because virtually all user
mode processes are created by environment subsystems, the subsystems con
trol the actions of all user processes in the system.

For example, when creating a client process, a subsystem denies the cli
ent the ability to bypass the subsystem and terminate itself by calling a native
NT service. Were this not the case, the process could leave the subsystem's
global data structures in an inconsistent state, possibly disrupting other pro
cesses that are under the control of that environment. The subsystem pre
vents this by not giving the new process delete access to its own process object
in the object's access control list (ACL). (See Chapter 3, "The Object Manager
and Object Security.") Without delete access, the process can never open an
object handle that lets it terminate itself, and the security system will not
allow the terminate service to succeed unless it is given a valid handle.

Because of the way object security works, unless a subsystem explicitly
gives a client process a capability, the client cannot acquire it. Thus, a subsys
tem designer doesn't need to think of all the devious things a user process
could do and prevent them. Instead, it is enough to decide only what the pro
cess should be able to do and to grant the client those capabilities. For the
most part, this means that no ordinary user-mode process can successfully call
native NT services. A user-mode process can call only the API routines pro
vided by the subsystem that created it.

Processes and Threads

These same mechanisms also prevent user-mode processes from ter
minating or manipulating other processes. A process can call only those API
routines available in its environment (Win32 or POSIX, for example) to ma
nipulate another process. Furthermore, a process's ability to call even those
services is constrained by its access rights to the native objects it would be
affecting. Once again, by not giving a client process access rights to native ob
jects, an environment subsystem can prevent the client from misbehaving.
The Windows NT security architecture, working tirelessly in the background,
guarantees it.

4.4 In Conclusion
Processes are a fundamental division of labor and resources within Windows
NT. They allow the operating system to divide its work into functional units to
achieve efficient use of the processor. Windows NT divides processes into exe
cutable units called threads. Threads allows a single process to concurrently
execute different parts of its program and achieve better processor utiliza
tion, especially on multiprocessor computers. A process consists of an address
space and a set of resources that all of its threads share as they execute.

The NT executive's process structure is primitive and flexible, allowing
environment subsystems to construct whatever semantics they require in
order to support their clients. They are free to establish process hierarchies,
to implement process inheritance, and to initialize the address spaces of their
clients as they see fit. They can also control client processes in other ways, by
performing actions on behalf of their clients and by reading and writing
their clients' virtual memory. All of these capabilities are monitored by the
security system, which checks the access rights a process has on the objects it is
trying to manipulate before allowing such operations.

The next chapter focuses in more detail on the structure of the Win
dows NT subsystems and on the LPC message-passing facility, which allows cli
ent and subsystem processes to communicate with one another.

113

C HAP T E R F V E

WINDOWS AND
THE PROTECTED SUBSYSTEMS

During Windows NT's development, the trade press variously referred to it
as a chameleon operating system, as the mother of all operating systems, and
once as a many-headed Hydra. Its protected subsystems, and specifically its
environment subsystems, were the reason for these whimsical nicknames.

As evidenced by the name Windows NT, a 32-bit version of Windows sup
plies the NT executive's user interface. To a user, Windows NT looks like Win
dows on MS-DOS. To a programmer, however, Windows NT adopts several
personas.

The idea that one operating system can run different types of programs
is not new. Windows NT borrowed the idea from the Mach operating system,
which was designed to support different, incompatible versions of UNIX ap
plication programming interfaces (APIs) within the same operating system.
Mach accomplished this by implementing the different API environments as
user-mode server processes. Windows NT uses the same approach to achieve
different goals.

From the beginning of Windows NT's development, its designers
focused on extending existing Microsoft APIs, not replacing them, so that
existing applications could continue to run as new applications were devel
oped. The most important result of this effort is a new 32-bit Windows inter
face called the Win32 API The Win32 API allows applications to take
advantage of sophisticated operating system capabilities that were not avail
able in the 16-bit Windows API. In addition to running Win32 applications,
however, Windows NT runs existing MS-DOS and 16-bit Windows applications
as well as many OS/2 and all PO SIX-conform ant (IEEE 1003.l) applications.

115

,/

INSIDE WINDOWS NT

116

To achieve this flexibility, the NT executive is necessarily rather generic.
It handles low-level process and thread creation, thread scheduling, memory
management, interrupt handling, and I/O while relying on user~mode servers
to provide the niceties of a graphical user interface and the other features
that applications and users expect. Using NT system services as a base, sepa
rate user-mode servers implement Win32, 16-bit Windows, MS-DOS, POSIX,
and OS/2 APls. Any number of these APlsand application execution environ
ments can coexist in Windows NT.

The servers that provide API environments are called protected subsystems
and, specifically, environment subsystems. Although each subsystem had differ
ent, and sometimes many, designers, the overall client/server approach and
the first two environment subsystems (rudimentary versions of OS/2 and
POSIX) were designed by Steve Wood and Mark Lucovsky. The general goals
they established for the Windows NT environment subsystems are these:

II Make each subsystem robust so that client applications cannot
negatively affect one another or the subsystem as a whole. Also en
sure that one subsystem cannot arbitrarily influence another sub
system or its client applications.

II Ensure that the peiformance of each environment compares favorably
with the performance of the operating system it emulates. For ex
ample, 16-bit Windows applications must run as fast on Windows NT
as they do on 16-bit Windows. Similarly, the execution of MS-DOS
applications on Windows NT must compare favorably with their exe
cution on a native MS-DOS system.

II Ensure that each subsystem meets u.S. government requirements for
a secure operating system environment. This includes fully shielding each
process's memory from other processes and controlling each client
process's access to subsystem resources and to the resources of other
clients.

II Allow the subsystems to interoperatewhen users would expect them
to. For example, 16-bit and 32-bit Windows applications should be
able to pass data to one another via the Clipboard or to communi
cate by using dynamic data exchange (DDE) or object linking and
embedding (OLE). A single character-mode command interpreter
should execute MS-DOS, OS/2, or POSIX programs and allow I/O
redirection between them, when appropriate. Character-mode appli
cations of all types should be able to send their output to standard
I/O and have the system automatically display it in a window.

Windows and the Protected Subsystems

This chapter does not describe each subsystem in detail. Instead, it
focuses on the Win32 environment, the 16-bit Windows environment, and the
MS-DOS environment. The Win32 environment subsystem is a crucial compo
nent of Windows NT and provides the system's user and programming inter
face. The 16-bit Windows and MS-DOS environments are important for
compatibility with existing applications.

The first section of this chapter describes Windows NT's client/server
model and how it was selected. The second section examines the ways in
which the subsystems interact, and the third section focuses on the Win32
subsystem. A section on the MS-DOS and 16-bit Windows environments fol
lows, and a discussion of the system's message-passing facility closes the
chapter.

5.1 Protected Subsystems Overview
Windows NT's protected subsystems are user-mode server processes created
by Windows NT when the operating system is booted. Once created, they run
continually, responding to messages sent to them from application processes
and from other subsystems. Whereas the environment subsystems implement
operating system APIs, another type of subsystem, called an integral subsystem,
performs necessary operating system tasks. Much of Windows NT's security
system is implemented as an integral subsystem, and network servers can also
be implemented as integral subsystems.!

Each protected subsystem does its work in user mode, calling NT exec
utive system services for kernel-mode operating system support. Network
servers can run either in user mode or in kernel mode, depending on how
they are designed. The Windows NT subsystems are shown in Figure 5-1 on
the next page.

Subsystems communicate by passing messages to one another. When a
user application calls an API routine, for example, the environment subsys
tem providing the routine receives a message and implements it by calling NT
system services or by passing messages to other subsystems. When finished,
the environment subsystem sends a message containing the return values
back to the application. The message passing and other activities of the pro
tected subsystems are invisible to the user.

The glue that holds the Windows NT client/server model together is
known as the local procedure call (LPC) facility. It is a message-passing facility

1. Network servers can be implemented either as integral subsystems or as drivers. The built-in Win
dows NT server is implemented as a loadable driver, but future network servers can be created as
subsystems.

117

INSIDE WINDOWS NT

Environment Subsystems

Integral
Subsystems

User Mode

Kernel Mode

LPC •

118

Figure 5·1. Windows NT's Protected Subsystems

through which clients make requests of servers and servers reply. LPC is a
locally optimized version of a more general message-passing facility called
remote procedure caU (RPC), which is used for communication among client and
server processes residing on different computers in a network.

The LPC facility supplies several ways to pass data between clients and
servers: one used to send short messages, another used to send long messages,
and a third that is optimized for use by the Win32 subsystem. Each subsystem
establishes a port-a communication channel through which other processes
can communicate with the subsystem. Ports are implemented as NT executive
objects.

This section examines Windows NT's client/server model from a pri
marily historical perspective-that is, how the model evolved during the
early phases of designing Windows NT. The first subsection focuses on how
the client/server model helps Windows NT achieve its design goals. The sec
ond subsection addresses a major consideration when using a client/server
model: system performance.

Windows and the Protected Subsystems

5.1.1 Why Use a Client/Server Model?
Implementing portions of the operating system in user-mode servers is a sig
nificant part of Windows NT's design and thus has far-reaching implications
for how the system works. Although the client/server approach is not unique
to operating system design, it does break with long-standing tradition. Until
relatively recently, most operating systems were structured around either a
monolithic or a layered model. In both of these models, the operating system
runs ,in a privileged processor mode (or perhaps more than one privileged
mode) that distinguishes the operating system from nonprivileged £!.pplica
tion code. Furthermore, in a monolithic or layered model no part of the
operating system runs in a process of its own. Instead, the operating system
creates user-mode processes to run applications, and the operating system
code executes on behalf of these applications when they call system services
or when external interrupts occur.

In contrast, Windows NT is composed of two parts: a traditional operat
ing system portion and a set of user-mode "applications" that perform
operating system tasks. The "applications" are Windows NT's protected sub
systems. Like ordinary applications, they execute within a process with a pri
vate address space. The NT executive's kernel component schedules their
threads on processors exactly as it does for other applications.

Windows NT uses protected subsystems to meet the following goals:

II To provide multiple application programming interfaces (APIs)
while keeping the base operating system code (the NT executive)
simple and maintainable

II To shield the base operating system from changes in or extensions
to the provided A~Is

II To consolidate the global data required by each API and, at the
same time, separate the global data required by one API from that
required by other APIs

II To protect each API environment from applications and from each
other and to protect the base operating system from the different
environments

II To allow the operating system to be extended with new APIs in the
future

The first item in this list, providing multiple APIs, was an important goal
for Windows NT, and it posed a dilemma for which a solution was not immedi
ately obvious. This subsection chronicles the debate that ensued over how this

119

INSIDE WINDOWS NT

goal could be achieved and documents why the client/server model was
selected.

5.1.1.1 Providing Multiple Environments

120

As discussed in Chapter 1, "The Mission," the original market requirements
for NT called for it to supply primarily OS/2 and POSIX programming inter
faces and to allow other APIs to be added in the future. This was the assump
tion the team members made when they set out to design a structure for NT
(as the system was called in 1988).

When first examining this issue in 1988, the team soon realized that it
wasn't enough merely to implement multiple APIs because APIs do not exist
in a vacuum. For example, an OS/2 application that calls DosExecPgmO to
create a process and run a program rightfully expects the routine to do its
work and return the correct values. In addition, and this is the crux of the
issue, the application also expects the routine to create a process that behaves
exactly as it would on an OS/2 system. The same is true for Windows, MS-DOS,
and PO SIX applications; that is, the API routine and its underlying execution envi
ronmentmust be wholly compatible with the application's native environment.
Each native operating system has a different process structure, different
memory management, different exception and error handling, different
resource protection mechanisms, and different semantics for file access and
I/O. How do you supply an execution environment that is compatible with
several different operating systems? This was the great challenge in designing
Windows NT.

The team started by examining the OS/2 and POSIX APIs and trying to
select a structure for NT that could accommodate both. An additional goal
was to ensure that the system could also provide other, as yet unknown, APIs
for future extensibility. (Windows and MS-DOS APIs, of course, were obvious
choices.)

The first idea centered around making NT a standard layered operating
system that presented one selected API as native system services. The OS/2
API was the first choice at that time. POSIX and other future environments
would exist as runtime interfaces that called the OS/2-like services to do their
work. (See Figure 5-2.)

As this option came under increasing scrutiny, it became clear that the
behavior of nearly all the OS/2 API routines was sufficiently different from
the behavior of the POSIX routines that the OS/2 API routines would need to
change. For example, OS/2's process creation routine DosExecPgmO would
need to support the option of copying an address space from a parent to a
child process. (The routine's normal behavior initializes the child process's
memory with an executable image.) More inconvenient, however, was the fact

Windows and the Protected Subsystems

fork()

DosExecPgm()

User Mode

Kernel Mode

Figure 5-2. Implementing Multiple APls (Option 1)

that the OS/2 and POSIX semantics could not be separated cleanly from one
another or from NT. For example, if a multithreaded OS/2 application acci
dentally called the routine DosExecPgm() and specified a POSIX option, the
operating system could fail because NT would not expect a PO SIX process to
have more than one thread. This first design option was subsequently rejected
because it could not guarantee a robust, maintainable, or extensible operat
ing system.

The second design option was to make NT a dual-API system, placing
both OS/2 and PO SIX APIs directly in NT, running in kernel mode, as illus
trated in Figure 5-3.

fork() DosExecPgm()

User Mode

Kernel Mode

Figure 5-3. Implementing Multiple API Layers (Option 2)

121

INSIDE WINDOWS NT

122

With this option, the API layers would not manage global data or track
the state of processes, memory, and so on but would simply call the NT layer,
which would implement a generic operating system environment that sup
ported both OS/2 and POSIX semantics.

As this idea was examined in detail, it became apparent that it was only a
tiny improvement over the previous option. Although it would be impossible
for a user-mode program to call NT with dangerous parameters, NT would
still need to support two incompatible application execution environments.
For example, the process creation routine would need to implement both
OS/2 and PO SIX semantics, using a flag that indicated which type of process
the caller wanted to create. Similarly, when a process terminated, NT would
need to determine whether it was an OS/2 process created by using the
EXEC_SYNC option. If so, its process identifier could be reused by another
process. If it were a POSIX process and if its parent were not the initial process,
NT would send it a POSIX-style signal; if the process were a session group
leader, the executive would generate a hangup signal to all members of the ses
sion group using the same controlling terminal and would possibly free the
controlling terminal, and so on, and so on, and so on. A complicated mess.

Process structure wasn't the only area of difficulty, however. Problems
arose as a result of subtle differences between OS/2 and POSIX in many areas,
including timers, time-of-day format, file locks, pipes, exception handling,
and others. To support these differences, each process and thread in the sys
tem would need to carry around baggage identifying its characteristics and
pointing to special tables to keep track of possible combinations and actions.
Simple functions, such as waiting for a child process (common to both OS/2
and PO SIX) , would be difficult to implement because NT would need to
manage two slightly different cases (not to mention future ones). As Mark
Lucovsky aptly stated, "The list of 'chicken wire' and 'voodoo' interfaces re
quired by this design threatened the goals of extensibility and maintainability."
Indeed, supporting Windows and MS-DOS applications as well as OS/2
and PO SIX applications using this structure would have been well-nigh
impossible.

The system designers had to explore some new alternatives. What they
needed was a way to separate the basic mechanisms of process and memory
management, exception handling, and so forth from the policies governing
how these mechanisms were presented to application programs. In addition,
the designers needed a way to separate the global data and policies required
by the different API layers from NT in order to keep NT small and
uncluttered.

The Mach operating system successfully solved some of these problems
in the 1980s. It is a client/server implementation of UNIX that separates

Windows and the Protected Subsystems

operating system mechanisms, such as memory management and thread
scheduling, from the various UNIX (and non-UNIX) APIs its servers provide.
The Windows NT designers borrowed from Mach and adapted its approach to
their needs. The resulting design, with the critical addition of the 32-bit Win
dows subsystem, is shown in Figure 5-4.

The NT executive is a generic, all-purpose operating system. It supplies
basic operating system mechanisms and allows the environment subsystems
to establish policies and semantics for the applications they support. Each en
vironment subsystem is a peer of the others and can call the native NT ser
vices it needs to create appropriate execution environments for its client
applications.

Client
Processes

Environment
Subsystems

(Server Processes)

NT Executive

POSIX API calf Win32 API calf

NT calf NT calf

Figure 5-4. Windows NT Protected Subsystem Design

5.1.1.2 Memory Protection

OS/2 API calf

NT call

User Mode

Kernel Mode

Moving the APIs out of the NT executive resulted in a clean separation be
tween the operating system "proper" and the semantics and policies re
quired by the different APIs. An additional benefit of this structure is that it
facilitates another of Windows NT's important goals: to protect each API

123

INSIDE WINDOWS NT

124

environment from user applications and to protect the NT executive from the
environments.

The OS/2 and 16-bit Windows systems use a DLL model to implement
their APIs. In that model, the API is provided in one or more shared DLLs that
application programs link to and call as regular procedure calls. The system
modifies the caller's executable image to point to the shared DLL segments at
runtime. (See Figure 5-5.)

Application 3

DLL Shared Segments

Figure 5-5. DLL Model for APls

Although the OS/2 and Windows systems implement DLLs differently,2
the result is the same: Every application that links to the DLL can modify data
that is in use by all applications. In Windows NT, such a scenario is unaccept
able because two important requirements are robustness and security. An ap
plication program must not be able to negatively affect the operating system
or other applications. For example, Windows code keeps track of how many
windows are on the screen. If a user program were to overwrite that data,
Windows could hang or become erratic, which could stop or even corrupt
executing applications. Windows NT does not shun DLLs, but the way in
which OS/2 and Windows use them illustrates the problem of code and data
protection in an operating system. For an operating system to be fully secure,
operating system code and data should not be accessible to user-mode
applications.

Windows NT's client/server model goes a long way toward solving the
problem of memory protection. Each protected subsystem runs in a process
with a private address space. For an application to gain access to a subsystem,
it must send a message. The server receives the message, validates all parame
ters, executes the required function, and returns the results to the caller.
Using this procedure, the caller never gets direct access to the subsystem's ad
dress space. Any global data the subsystem maintains is accessible only to the
subsystem.

2. The Windows system maps a DLL once into a single address space that is accessible to all applica
tions. OS/2 maps shared DLLs into each process's address space, but all processes share the same
DLLdata.

Windows and the Protected Subsystems

At first glance, it might seem that an application running on Windows
NT would need to be rewritten to pass messages to servers instead of calling
API routines, but this is not the case. Applications still link to DLLs as before.
Each DLL contains API entry points, called stubs, that package the caller's pa
rameters into a message and send the message to the correct server. The
server implements the API routine and then returns the results to the DLL
code via the LPC facility. The DLL returns in the normal way to the applica
tion so that the message passing is invisible to the application programmer.
Figure 5-6 illustrates this round-trip behavior with the Win32 subsystem. The
mechanism works in the same way for the other protected subsystems.

Using this model, it is impossible for a Win32 application, for example,
to corrupt the Win32 subsystem's global data and negatively affect other ap
plications. Moreover, each subsystem is separate and thus protected from the
other subsystems. Each subsystem can independently create and maintain
data structures and establish any special semantics it requires for process
structure, exception and error handling, I/O, and so on.

Furthermore, because the subsystems are user-mode applications, they
cannot modify the NT executive's data structures or call internal operating
system routines. The only way they can gain access to the NT executive is by

NT
Executive

CD Call a Win32
API routine

Win32
Application

Win32 DLL

® Package the parameters
and call NT to pass the
message to the server

Figure 5-6. Windows NT's DLL Model for APls

User Mode

Kernel Mode

125

INSIDE WINDOWS NT

calling system services. No complicated ring structure or other cumbersome
protection mechanism is required. The client/server model enforces the
separation between the subsystems and the kernel-mode portion of the
system.

A final benefit of using the client/server model is that any number of
subsystems can run simultaneously, providing multiple API environments.
Each subsystem is simply a user-mode process whose threads can be scheduled
independently on a processor, improving parallelism in the system. With all
these benefits, the client/server model appeared to be the right design for
Windows NT.

5.1.2 Performance Considerations

126

The biggest worry the developers had in selecting the client/server model for
Windows NT was performance. Calling an API routine or a system service on
a traditional operating system generally requires less overhead than does call
ing an API routine in a client/server configuration.

Monolithic and layered operating systems implement their system ser
vices in the kernel-mode portion of the system. On such systems, when a user
mode thread calls a service, the hardware traps the thread and changes the
processor mode to kernel-mode execution. The operating system then exe
cutes the service. When the service ends, the operating system switches the
processor mode back to user mode and the thread resumes executing in ap
plication code. On most processors, this sequence is quite fast.

In Windows NT, however, when a Win32 application calls the Win32
API, the API routine is not implemented in the kernel-mode portion of the
operating system. If you refer back to Figure 5-6, you'll see that the Win32
DLL calls an NT system service to send a message. The service sends a mes
sage to the server and then waits for the server to receive it, execute the ser
vice, and reply. For the server to get the message and execute it, a context switch
must occur-that is, the NT executive must perform the following sequence:

1. Save the client thread's context (volatile machine state)

2. Select a server thread for execution and load the server thread's
context

3. Execute the Win32 API routine using the server's thread

4. Save the server thread's context

5. Reload the client thread's context and process the results of the API
routine

Windows and the Protected Subsystems

Depending on the hardware on which the operating system is based, a
context switch adds processing overhead to a system trap. Given that, a thread
that calls an API routine implemented in a server would theoretically take a
performance hit each time it called the routine, as compared to calling an
API routine implemented as a system trap. Because performance was con
sidered crucial to Windows NT's success, the designers examined this issue
carefully before proceeding.

Context switching, the process of saving one thread's machine state and
loading another, is a relatively fixed-cost operation. Depending on the pro
cessor, certain optimizations can be performed, such as ordering the load
and store operations intelligently and only loading and storing those portions
of a thread's context that are required. Dave Cutler, who wrote the context
switching code for the MIPS processors, and Bryan Willman and Shie-Lin
Tzong, who rewrote it for the Intel CISC processors, are all highly ex
perienced in this task, so any optimizations that could be achieved in the soft
ware were achieved.

The system's message-passing facility is the other performance variable
in a call from a client to a server and back. Steve Wood, who designed and
implemented the LPC facility, created it with flexible options for the
transmission of data. For example, the LPC facility provides a way to send
short messages easily and a way to send longer messages efficiently. A third
method of message passing was created specifically to optimize performance
in' the Win32 subsystem, an important goal because this subsystem processes
all user input and generates all graphical output on Windows NT.

In addition to a flexible, optimized message-passing facility, the Win
dows NT developers established some "tricks" that reduce the number of
interactions a client must make with a server:

11 Using client-side DLLs to implement the API routines that don't use
or modify global data

11 Storing certain subsystem data in the executive, or caching subsys
tem data in the client-side DLL

11 Batching client API calls and sending them to the server in a single
message

The first strategy provides the biggest benefit of the three. As detailed
previously, one major purpose for using the client/server model is to ensure
that processes cannot modify the global data maintained by a particular envi
ronment. This data includes information such as the number of windows on

127

INSIDE WINDOWS NT

128

the screen for the Win32 subsystem, handle translation tables for the POSIX
or OS/2 subsystems, and environment-specific process or session IDs that all
the subsystems maintain. Because this data resides in the subsystem's address
space, a client must pass a message to gain access to this data.

When you examine the various APIs, however, you realize that API rou
tines can be divided into two categories: those that use or change global data
and those that don't. The API routines in the latter group need not call the
subsystem. That is, they can be implemented directly in a private DLL, as
shown in Figure 5-7. The DLL calls native NT services to do its work, avoiding
context switching and message passing altogether. 3

Developers of the various Windows NT subsystems took pains to imple
ment their most frequently used API routines in DLLs. Win32 API routines
that get information about the executing thread or its process, for example,
or even Win32 API routines that set process or thread characteristics are im
plemented in a Win32 DLL because they can call NT services to get the infor-

NT
Executive

CD Call a Win32
API routine

® Call one or more NT
services to implement
the API routine

Figure 5-7. Implementing an API in a Client-Side DLL

Win32
Subsystem

User Mode

Kernel Mode

3. The DLL code is actually shared among applications by the operating system, but it is protected
with copy-on-write page protection. See Chapter 6, "The Virtual Memory Manager," for more
information.

Windows and the Protected Subsystems

mation they need without going to the Win32 server. A similar approach was
adopted for the other environment subsystems, a strategy that places the per
formance of frequently used API routines within the same ballpark as API
calls on layered or monolithic operating systems.

Close examination revealed that most API routines do not require the
use of global data and therefore do not require a call to the server. Those API
routines that do require it tend to be operations that are infrequently used or
are already "high-cost" services, such as creating a process or opening a file.
The cost of context switching and message passing in these cases is not notice
able to a user.

The second and third client! server optimizations are slightly smaller in
scope but are no less important. The second optimization stores subsystem
data in the NT executive or caches it in the DLL. Drive letters, as mentioned
in Chapter 3, "The Object Manager and Object Security," are an example of
subsystem data that is stored in the NT executive. Both MS-DOS and OS/2 re
quire global symbols for the drive letters A, B, and C, as well as any others the
user might create. To avoid calling the server each time an application refers
to a drive, drive letters are created as NT named objects whose names are
translated by the object manager into device destinations at runtime. Simi
larly, the Win32 subsystem caches global data in the application's address
space. For example, when an application draws an object, the Win32 subsys
tem keeps a copy of the object in the client-side DLL so that the DLL has the
data it needs to execute more API routines without requesting information
from the Win32 server.

The third optimization, devised by Chuck Whitmer, architect of the
graphics portion of the Win32 subsystem, batches information in the client
and sends it as a single message to the server. For example, the application
might call several consecutive line-drawing routines; the DLL collects them
into a batch, sending the calls to the server in a single message. Or the appli
cation might set the pen color; the DLL remembers that the pen color has
changed and only transmits that information to the server the next time it
draws something on the screen. Batching API calls or information in this way
results in fewer large data transmissions between client and server and, thus,
better performance for drawing operations.

The improved protection and robustness guaranteed by the use of the
client! server model in Windows NT was important enough to the developers
that they were willing to accept a 10-percent reduction in application execu
tion speed compared to the speed of applications running on Windows 3.l.
However, the performance enhancements listed here greatly reduce the num
ber of API routines that actually call the server. Those that do are optimized
using batching and caching techniques and a streamlined form of LPC

129

INSIDE WINDOWS NT

(described in Section 5.5). With these techniques (and a few others) in use,
only a handful of API calls carry significant overhead, and that overhead ap
pears to fall well below the 10-percent mark.

5.2 Interacting with Windows NT Subsystems

130

Windows NT's environment subsystems not only interact with client applica
tions when applications call API routines, the subsystems also interact with one
another in predictable ways. Figure 5-8 illustrates some of the Windows NT
protected subsystems and the typical interactions that occur among them.

In addition to other responsibilities, the Win32 subsystem controls the
user interface. It manages the windows on the screen, displays output for
other environment subsystems, and captures input from users and directs it
to the correct subsystem or application. The Win32 subsystem starts applica
tions in response to requests from the Windows Program Manager or the
command shell application (console).

Environment Subsystems
Character I/O Character I/O

Integral Subsystems

Local logon
request

Return
token handle

Remote file
requests

Remote
logon request

Figure 5-8. Subsystem Interactions

User Mode

Kernel Mode

Windows and the Protected Subsystems

In addition to the environment subsystems shown in a row at the top of
the figure, two integral subsystems are depicted. These are system compo
nents that benefit from the protection offered by a client/server structure and
their ability to be scheduled independently for execution. The security sub
system processes user logons, creates security tokens to represent user pro
cesses, and maintains a database of security information about user accounts.
Network subsystems respond to requests that arrive from the network. More
than one network subsystem (commonly called a network server) can be loaded
into Windows NT to handle requests originating from different networks.

The following subsections discuss in more detail two types of interac
tions that occur among subsystems when users enter certain kinds of input.
The first type of subsystem interaction occurs when a user attempts to log on
to Windows NT, and the second type of interaction occurs when a user exe
cutes applications other than Win32 applications.

5.2.1 Logon
User logon is a new feature in Windows NT, designed to help make the operat
ing system truly secure (as defined by the u.s. government). Logon prevents
unauthorized users from accidentally or maliciously doing things they aren't
supposed to do with other people's data.

There are two ways to gain access to Windows NT: through an inter
active logon or by logging on over a network connection. The security subsys
tem ensures that any user who tries to access Windows NT has been given the
authority to do so by a system administrator. In most cases, "authority" means
that an entry exists for the user in Windows NT's security account manager
(SAM), a database containing user names, passwords, and other security
information.

Jim Kelly and Cliff Van Dyke, developers with many years of security and
networking experience, designed the security subsystem. One of many goals
in their design was to ensure that Windows NT be flexible in the number and
types of external logon devices it can support. To accomplish this, the logon
architecture takes the form shown in Figure 5-9 on the next page.

Requests from users can be made either from a keyboard attached to a
Windows NT system or over a network. Network requests generally manifest
themselves as requests to connect to a network resource and/or to perform
I/O operations. For both interactive and network requests, a local process
must intercede and verify that the access is legitimate. The built-in Windows
NT server or other network server performs this task for network requests. For

131

INSIDE WINDOWS NT

132

Interactive
logon

Remote
request

Remote
request

® Call the correct
authentication
package

Other network
Authentication Windows Windows NT or device

Packages Server packages

Figure 5-9. Logon and the Security Subsystem

interactive requests, a Win32 process waits for the user to press the Ctrl-Alt
Del key combination. When it detects this input, the logon process prompts
the user for logon information.

Two types of information are needed to verify a user's identity: identifica
tion information and authentication information. The first is a user's account
name and the second is a password. However, Windows NT's security system is
flexible enough that the ID information could take the form of an ATM card,
for example, and the authentication information could be a personal infor
mation number. Similarly, if a retinal or fingerprint scanner were used to
identify users, the ID information could be a user's name, and the authentica
tion information could be a picture of the user's eyeball or a thumbprint.

After the security subsystem receives the logon information, it uses an
authentication package to verify the information. Differ~ent authentication pack
ages can be plugged into Windows NT's security system so that future input
devices are easily supported. However, in a normal logon, the Windows or net
work authentication package checks the SAM database, and if the entered
password matches one currently in the database, the authentication package
returns the user's ID and a list of the group IDs to which the user belongs.

The security subsystem then obtains additional information about the
user from its local policy database, including any privileges owned and quota
limits. Finally, the security subsystem constructs an access token to represent
the user and passes the token handle to the logon process, as shown in Figure
5-10. With that, the user has established a logon session with Windows NT.

@ Return a token

Security
Subsystem

new process

Windows and the Protected Subsystems

® Start the user's shell

Figure 5-10. Starting an Interactive User Session

For interactive logons, the Win32 logon process calls the Win32 subsys
tem to create a new process and attach the user's token to it. The subsystem
starts a user shell in the process. Typically the shell is the Program Manager,
as Figure 5-lO shows, although it could be a PO SIX or other type of command
shell.

For network logons, the network server uses the access token to imperso
nate the user and gain access to system resources. It can then copy a file or
perform whatever action the remote user requested.

5.2.2 Running Applications
After an interactive user is logged on, the Win32 subsystem creates processes
to run the various applications the user starts. When the user clicks on an
icon, for example, the Win32 subsystem directs that mouse input to the Pro
gram Manager application. As Figure 5-11 on the next page illustrates, the
Program Manager in turn calls the Win32 subsystem to create a new process
and start the application in it. The application then calls the Win32 subsystem
to create windows, send messages, and so forth. When the user enters input,
the Win32 subsystem directs the input to the correct application.

The Win32 subsystem is the link between the user and the rest of the
operating system. Applications that call the Win32 API are clients of the
Win32.subsystem and are "served" directly by it. However, the Win32 subsys
tem cannot run other applications directly because it does not implement
16-bit Windows, MS-DOS, OS/2, or PO SIX APIs. Therefore, whenever a user

133

INSIDE WINDOWS NT

134

® Start the client
application

CD
I

User clicks on an icon
(or enters the

keyboard equivalent)

® Create a new
client process

Figure 5-11. Starting a Win32 Application

starts an application whose image-file format the Win32 subsystem doesn't
recognize,4 the subsystem creates a process in which to run the application,
but instead of starting it, the subsystem passes control of the process to an
other subsystem, as shown in Figure 5-12. Thereafter, that application's API
calls go directly to the subsystem that implements the API that the applica
tion requires.

Windows NT does not allow applications to call API routines from differ
ent operating system environments (Win32 and PO SIX, for example) because
doing so doesn't make sense from the standpoint of application portability
and because it probably wouldn't workcorrectly. Each subsystem maintains its
own notion of what constitutes a process or a file handle, for example, and the
data structures used in one environment are unlikely to match those in other
environments. Therefore, once the Win32 subsystem has assigned an applica
tion process to another subsystem, the application remains a client of that
subsystem until the process exits. The Win32 subsystem continues to direct
user input to the application.

In addition to managing user input, the Win32 subsystem displays appli
cation output on the screen. For output purposes, the Win32 subsystem views
applications as one of two types: graphical or character based. Ordinary

4. The Win32 subsystem actually calls the NT executive's virtual memory (VM) manager to load the
application. The VM manager determines the application's image-file format, returning a status
message to the Win32 subsystem.

@Startthe
application

POSIX
Subsystem

® Send the
process
handle to
another

subsystem

Figure 5·12. Starting a Non-Windows Application

Windows and the Protected Subsystems

CD User clicks on an icon
for a POSIX application

® Createa
new process

Win32 and 16-bit Windows applications are graphical in nature. They use
menus and dialog boxes, they draw text and lines in a window, and so on.
Character-based applications, in contrast, simply write line-or,iented, textual
output to the screen at the current position of the cursor. They are generally
started from a command interpreter and exit to a command interpreter
prompt upon completion. MS-DOS applications, such as CHKDSK and FOR
MAT, are character based, as are character-mode OS/2 applications5 and all
POSIX (IEEE lO03.1-conformant) applications.

In Windows NT, character-based applications are transformed, in a
sense, into graphical applications because their simple, line-oriented output
is displayed inside a window. To achieve this effect without requiring pro
grammers to rewrite character-based applications, Therese Stowell, formerly
a programmer in the OS/2 file systems group, developed a set of Win32 API
routines that direct the output of character-based applications to text win
dows managed by the Win32 subsystem. These windows are called consoles. The
C runtime library, for example, calls the console routines to direct standard
output for PO SIX applications to a console window. Likewise, when an OS/2
application calls VIO functions or an MS-DOS application calls INT(lO) func
tions, the OS/2 or MS-DOS environment subsystem, respectively, calls Win32
console routines to display the textual output.

5. Presentation Manager applications are not supported in Windows NT's first release.

135

INSIDE WINDOWS NT

Console windows sit alongside graphical windows in Windows NT, and
users can pass text between the two via the Win32 Clipboard. Furthermore,
with the availability of the new Win32 console routines, developers can write
32-bit, character-based applications for Windows NT. Most of the command
line utilities shipped with Windows NT are Win32 applications.

5.3 Win32 Subsystem

136

Although it runs different types of applications, Windows NT is first and
foremost a Windows operating system. To be precise, it is the high-end Win
dows operating system in a family of Windows systems. With the release of
Windows NT, computers from the smallest notebooks to large, multi
processor workstation computers can all run Windows applications. For appli
cation developers, this means that one development effort allows their
applications to run on a broad range of computer hardware.

As mentioned earlier in this book, the Windows NT team started writing
the system with the assumption that it would be a high-end OS/2 operating
system that also supported the POSIX API. The switch from OS/2 to Windows
came halfway through Windows NT's development, and although it was pain
ful from a personnel and project-management point of view (that is, the OS/2
team had to scrap its code and begin anew), the change was somewhat incon
sequential from an operating system design point of view. A Windows envi
ronment subsystem would plug into the NT executive and replace the OS/2
subsystem. Because the Windows subsystem would be the primary application
programming and graphical user interface for Windows NT, it needed to pro
vide a "super-Windows" environment, extending the capabilities available in
the 16-bit Windows system with a 32-bit API and other advanced features.

Therefore, when creating the new Windows environment, Scott Ludwig,
Chuck Whitmer, and others in Leif Pederson's 32-bit Windows team began to
examine existing Windows software through the lens of Windows NT. The
Windows environment on NT would have to provide a programming environ
ment suitable for high-end workstations. It would also have to achieve many of
the NT executive's goals, such as the following:

IIIIl Establish a 32-bit, linear (flat) memory model

IIIIl Implement preemptive multitasking

IIIIl Ensure robustness and security

Although these goals represent some far-reaching changes to the 16-bit
Windows system, to an application developer or a user, Windows NT is a

Windows and the Protected Subsystems

familiar environment. Windows NT provides additional capabilities, but
wherever possible it retains existing Windows functionality. To the NT execu
tive, the Win32 subsystem is a native NT application, albeit a sophisticated
one. It is completely rewritten for Windows NT and uses native NT services as
its base. Although the subsystem resides in an application process, Windows
NT is dependent on it to interact with the user and to provide a programming
environment and an API for other applications.

The Win32 subsystem takes its name from Microsoft's new 32-bit Win
dows API. This API, available on Windows NT and MS-DOS, extends the 16-bit
Windows API not only to use a 32-bit flat memory model but also to augment
its operating system capabilities. The Win32 API adds features such as I/O,
sophisticated memory management, object management, multithreaded pro
cesses, and security, as well as enhanced graphics and window management.

The Win32 subsystem is not entirely new. A team of developers took the
window management code and the user interface code from Windows 3.0 and
used as much of it as they could, discarding and rewriting those portions that
could not be made robust, secure, preemptive, and so on. This team also in
corporated Windows 3.1 features so that the user interface of Windows NT
would be compatible with Windows 3.1. In contrast, the graphics portion of
the Win32 subsystem is almost all new; a separate team redesigned the
graphics engine from the ground up, writing it largely in C++.

The following subsections offer some general information about the
Win32 API, outline the basic structure of the Win32 subsystem, and detail
some of the ways in which the design of the Win32 subsystem differs from the
design of the 16-bit Windows system.

5.3.1 32-Bit API
Microsoft put a lot of-energy and resources into establishing Windows as its
preeminent application development environment. In 1990, Steve Ballmer,
then Senior Vice President of Microsoft's Systems division, began· shouting
his favorite new slogans to whomever would listen: "Windows, Windows, Win
dows!" and "Windows Everywhere!"6 Although his exuberant humor always
yielded a laugh at company meetings, his latter slogan has some notable im-

. plications. As Chapter 1, "The Mission," noted, Microsoft saw a need to
create a high-end operating system that could exploit advances in hardware

6. Given his penchant for slogans, Ballmer was appropriately promoted to Executive Vice President
in charge of Worldwide Sales and Support. After the promotion, he updated his slogan to "Win
dows, Windows, Windows for customers, customers, customers!"

137

INSIDE WINDOWS NT

138

technology. The Windows 3.0 API, which was designed for use on top of
MS-DOS, was restricted in this regard. In order to become an advanced
operating system environment, the Windows 3.0 API needed to evolve.

The Windows API needed to provide a complete and sophisticated ap
plication development environment, one not limited by old software tech- .
nology or reliant on any particular hardware architecture. The API needed to
support larger amounts of memory, a variety of processors, and multi
processor computers, and create a secure environment for' 'you bet your busi
ness" applications.

Despite these ambitious goals, Microsoft's number-one priority in the
evolution of the Windows API was the following: Make the new API com
patible with the 16-bit Windows API in function names, semantics, and use of
data types whenever possible. All Win32 API routines must provide an up
wardly mobile path for the migration of existing 16-bit Windows applications
to Windows NT.

With that goal firmly in mind, the Windows and Windows NT devel
opers set about establishing the following additional goals for the new Win
dowsAPI:

II Change the API to use a 32-bit, linear memory architecture. The API
should break its reliance on the segmented memory model estab
lished by the Intel x86 family of processors to free applications from
the constraints of its 64-KB code and data limits and allow them to
maximize their portability to RIse and other nonsegmented hard
ware platforms.

II Make the 32-bit API the same on MS-DOS and on Windows NT so
that developers can run their applications without modification on a
broad range of computers, from the low end to the high end.

II Make the application environment a secure one by instituting a vir
tual memory system in which each application runs in its own ad
dress space and by providing object protection mechanisms in the
API.

II Add advanced operating system capabilities to the API, such as
multithreaded processes, API-based I/O capabilities, process
synchronization, memory management, and national language
(internationalization) support.

To create the new Win32 API, Microsoft developers and program man
agers took the Windows 3.0 API and modified it to meet the goals listed above.

Windows and the Protected Subsystems

Microsoft then recruited "guinea pigs" from both inside and outside the
company to help hone the result for ease of use and ease of porting.

The Win32 subsystem makes the Win32 API available to applications on
Windows NT. Because the NT executive's virtual memory system is based on a
32-bit, per-process, linear address space, applications that call the Win32 API
incur less overhead than those using the 16-bit Windows API or the MS-DOS
API. Therefore, Microsoft encourages programmers writing new applications
to use the Win32 API, which is available on both Windows NT and on MS-DOS.

The Win32 API functions differ in several uniform ways from the same
API functions provided in Windows 3.0. The biggest difference is that certain
data structures, such as handles, pointers, and drawing coordinates, have
been widened from 16 bits to 32 bits and are no longer based on a segmented
view of memory. In cases in which the wider parameters would affect existing
applications, the Win32 API adds a new function that parallels the capabilities
of the existing function so that existing applications do not break and can
migrate to the Win32 API over time. For example, integer parameters and
pointers have been changed from a segment:offset format to a flat, 32-bit for
mat, and coordinates used in drawing functions are 32 bits wide rather than
16 bits wide.

A whole new set of Win32 API routines provides advanced operating
system capabilities, such as I/O, synchronization, memory management,
security, and threads. Although designed to retain the feel of the old Win
dows API, the new services more or less directly export native NT services,
making the power of NT available to Win32 programmers. And although
many of these Win32 features were directly borrowed from the NT executive,
they are also being re-created for MS-DOS. Certain advanced features, such as
asynchronous I/O capabilities, are available only on Windows NT, however.

One new feature the Win32 API provides-security-pervades the
interface. Win32 security was implemented by Jim Anderson, a developer
whose varied software background includes, among other things, building
quality-control computers for Ford Motor Company engine plants. The
security features he developed for the Win32 subsystem are user-mode exten
sions to the security capabilities thatJim Kelly, Robert Reichel, and others de
signed into the NT executive's object architecture.

The Win32 subsystem implements object-based security in the same way
the NT executive does; the Win32 subsystem protects shared Windows objects
from unauthorized access by placing NT security descriptors on them. As in
the NT executive, the first time an application tries to access a shared object,
the Win32 subsystem verifies the application's right to do so. If the security
check succeeds, the Win32 subsystem allows the application to proceed.

139

INSIDE WINDOWS NT

The Win32 subsystem implements object security on a number of shared
objects, some of which were built on top of native NT objects. The Win32 ob
jects include desktop objects, window objects, menu objects, and-as in the
NT executive-files, processes, threads, and several synchronization objects.

Redesigning certain parts of the Windows graphical user interface for
the Win32 subsystem (a topIc described shortly) and adding security features
to the Win32 API make the Win32 subsystems, as well as the NT executive,
secure and robust.

5.3.2 Structure

140

The Win32 subsystem retains the basic structure of the 16~bit Windows sys
tem. It consists of the components shown in Figure 5-13.

The subsystem is divided into five modular pieces: the window manager,
which handles input and manages the screen; the graphics device interface
(GDI) , which is a drawing library for graphics output devices; operating sys
tem functions; the console, which provides text window support; and the
Win32 graphics device drivers.7 Each component implements API routines
that application programmers can use to create graphical applications.
Together, these programming interfaces make up theWin32 API.

The window manager does the work that makes Windows NT look like
Windows. The window manager controls windows on the screen, directs user

Figure 5·13. Win32 Subsystem

Window
Manager

Graphics
Device

Interface
(GOI)

7. Each of these components resides in a separate DLL. The DLL for the window manager is called
User32, and the DLL containing operating system functions is called Kernel32 (not to be confused
with the NT kernel).

Windows and the Protected Subsystems

input to applications, establishes standard Windows objects, transfers data to
and from the clipboard, and handles other visible and invisible tasks. It also
provides API routines that let applications create graphical user interfaces.
For example, it shields applications from dealing directly with devices by pro
viding standard routines they can call to get information from input devices.
The window manager also keeps track of the windows on the. screen, their
sizes, and their layering. When a user makes a window larger or smaller, for
example, the window manager notifies the affected application. Similarly, it
tells applications when they should repaint their windows, and when they do
so, it repaints only the portions of the window that should be visible. The win
dow manager also .allows applications to cut information to the Clipboard
and then places the information in the input stream of the application to
which the user pastes it.

The GDI component of the Win32 subsystem provides a rich set of API
routines for drawing lines, figures, symbols, and text on graphics output de
vices (such as the video display or a plotter) and for performing sophisticated
graphics manipulations. The window manager calls these routines to draw
windows and other symbols, and the console component calls them to draw
text in a window, but applications can also call the GDI API routines directly.
GDI, in turn, calls the graphics device drivers to display figures and text, and
the graphics device drivers call NT device drivers to manipulate device
hardware.

Like the console component, the operating system component of Win32
is largely new. It allows Win32 applications to perform full-featured I/O, ma
nipulate operating system objects (in addition to graphical objects), synchro-

. nize their threads' execution with system events and with other applications,
manage memory in a sophisticated way, share resources securely, and create
multithreaded applications. These Win32 functions are based on features of
the NT executive, and they call NT system services directly.

5.3.3 Design Changes
MS-DOS/Windows is a small, streamlined operating system environment. It
was designed to run on personal computers that did not have large amounts
of memory and certainly didn't have the fast processors Intel and RISC manu
facturers are producing today. On the smaller computers in which every byte
and every CPU cycle counts, it was not practical to make Windows a com
pletely robust environment because doing so carries with it a certain cost in
terms of code size and speed.

Windows NT, on the other hand, is designed as an operating system that
can serve any number of networked users and that can run sophisticated

141

INSIDE WINDOWS NT

142

banking or sensitive government applications. In such environments, it is not
acceptable to allow one application to adversely affect others or to hang the
operating system. Therefore, making the Win32 subsystem robust was an im
portant goal.

To protect the operating system from applications, the Win32 window
manager needed to operate a bit differently than did the original window
manager. Led by Scott Ludwig, an 8-year veteran of Windows and Presenta
tion Manager programming, the Window Manager team set about making
the 32-bit version a more robust and reliable environment than was the 16-bit
window manager. Some key changes include the following:

III Desynchronize the Windows input model

III Institute preemptive thread scheduling

III Add object-handle validation and object locking

The first change refers to how the Win32 subsystem handles user input,
such as keystrokes and mouse clicks. The 16-bit window manager had a
synchronous input model, which means that it placed all user input into a
single queue (first in, first out) and parceled it out to applications as they re
quested it. Mter entering input, the user had to wait until the application pro
cessed it before any subsequent input he entered would be processed. Because
only one application at a time could retrieve its input, each application had to
retrieve input from the queue in a timely way in order for all applications to
execute unhindered. Figure 5-14 illustrates the synchronous input model.

Using this model, things sometimes went wrong. Perhaps an application
got in a muddled state and stopped retrieving input or perhaps it was too busy
doing something else to get its input quickly. When this happened, other ap
plications might stop because they couldn't get the input they needed to con
tinue. To the user, the operating system appeared to hang.

The input model for the 16-bit window manager required significant
redesign, but as a result, the robustness of the Win32 subsystem is greatly im
proved. In the new input model, designed by David Pehrson and Scott Lud
wig, each application gets a private input queue, as shown in Figure 5-15 on
page 144.

When a user enters input, the Win32 subsystem immediately determines
which application the input is intended for (by checking whieh window is cur
rently active or on which window the mouse cursor is positioned). The 32-bit
window manager places the input in the correct application queue, and the
application retrieves the input when it is ready. If the application stops
retrieving its input for some reason, other applications are not affected.

Input Devices

Input Queue

Blocked

Message for
application 1

Message for
a lication 3
Message for
application 2

Get input

Figure 5·14. 16-Bit Windows Input Model

Windows and the Protected Subsystems

Blocked

The Win32 subsystem's second major change from 16-bit Windows is full
preemptive multitasking. In a robust operating system, it is unacceptable for
one application to stop working with no way for the operating system to break
into or terminate the application's execution. The 16-bit Windows system
relies on applications to yield the processor occasionally so that other applica
tions can run, something that doesn't always happen. In Windows NT, the
Win32 subsystem (with crucial support from the NT kernel) forces applica
tions to yield the processor. Each application thread is allowed to run only for
the duration of its time quantum. The NT kernel then interrupts the thread
and checks whether a higher priority thread should run.

With true preemption, the Win32 subsystem not only forces each appli
cation to yield the processor, but it can also force a Win32 application to ter
minate. For example, if an errant application hangs or if the user just doesn't
want it around anymore, he can click on the End Task button in the Windows
Task Manager. When running under the 16-bit Windows system, a poorly
behaved application can prevent itself from being terminated or, in espe
cially nasty cases, can even prevent the Task Manager from coming to the

143

INSIDE WINDOWS NT

144

Input Devices

Input Queues

Message for
a lication 1
Message for
application 1

Get input

Figure 5·15. Win32 Input Model

Message for
application 2
Message for
application 2

Get input

Message for
application 3

Get input

foreground. In Windows NT, however, the Win32 subsystem calls the NT ex
ecutive to force the application to terminate, and it always succeeds. Also, be
cause the application thread is based on an NT thread object, the NT process
manager sends a message to the termination port registered for the thread.
The environment subsystem that is responsible for the application receives
the message and cleans up any global information it was maintaining about
the terminated application.

In addition to desynchronizing the input model and implementing
preemption, the Win32 subsystem validates object handles. Object handles
are sometimes a problem in the 16-bit Windows system because it assumes that
applications always pass valid handles-that is, handles that actually point to
the objects that Windows expects them to point to. If Windows expects a
handle to a window and an application passes it something that doesn't point
to a window, the Windows software can become disastrously confused.

The Win32 subsystem, in contrast, validates the handles that applica
tions pass to it. It does so by examining the contents of the handles it receives.
Like an NT object handle, a Win32 object handle is an index into a table. The
handle and its corresponding table entry contain specific information about

Windows and the Protected Subsystems

the object to which the handle refers. The Win32 subsystem can verify that
the handle points to an object of the type the Win32 subsystem expects. It can
even determine whether the handle points to the correct instance of the
type. In addition to validating object handles, the Win32 subsystem imple
ments a form of object retention similar to that in the NT executive. In the 16-
bit Windows system, it's possible for an application to delete an object while
the operating system is still using it, a situation that can lead to unpleasant
system errors. The Win32 subsystem, however, maintains a reference count
for the objects it needs. An application can still "delete" the object, but the
subsystem won't remove the object from memory until the system has fin
ished using it.

Win32's CDI component wasn't simply a revision of the 16-bit version
it was entirely rewritten. The new version was designed by Chuck Whitmer
and written by a team of developers managed by Kent Diamond. The primary
goals for the CDI component of the Win32 subsystem were to replace assem
bly language code with portable C code and to redesign the CDI's inner work
ings to support some advanced capabilities. The new CDI's features include
Bezier curves, which give users of drawing packages fine-tuned control in draw
ing arcs; paths, which let users create arbitrarily shaped objects using sequences
of drawing commands; object transformation, which lets applications map the
contents of one coordinate space into another; and later, correlation, a way by
which applications can easily determine whether one object or region overlaps
another.

Another design change in Win32's CDI is the new device driver interface,
which borrowed from the CDI team's collective experience with both the 16-
bit Windows and the Presentation Manager graphics engines. This new inter
face improves upon both previous engines, giving Win32 graphics device
drivers (which are responsible for creating device-specific images and send
ing them to output devices) a finer degree of control. For example, the CDI
tailors the input it provides to a driver depending on what operations the
driver understands. For example, if a particular driver understands Bezier
curves, the CDI passes complete Bezier curves to it as input. If a driver doesn't
understand Beziers, the CDI breaks the curve into simple line segments
before sending it to the driver. In addition, the CDI incorporates powerful
new functions for creating bitmap images, which video and printer drivers in
particular can use in lieu of writing their own functions. With this support, it
is easier for developers to get device drivers up and running quickly. Devel
opers can rely on the CDI to do most of the work, adding" only device-specific
enhancements and optimizations to the device driver.

145

INSIDE WINDOWS NT

146

Despite all the improvements mentioned thus far, perhaps the biggest
change in both the window manager and in the GDI was the implementation
of Win32 as a protected subsystem, that is, as a server process. As described
earlier in this chapter, the designers of each Windows NT environment sub
system divided their API routines into two groups: those routines that use
only private data and those that use global data. The former subset can be im
plemented in the client-side DLL to optimize performance. The latter subset,
however, must be implemented in the subsystem's address space so that global
data is protected and yet is available to all clients of the subsystem. This
change in design affects how one might choose to write a Win32 application,
particularly when calling GDI functions.

Although the GDI regards virtually all data as private to a client process,
when drawing objects, all the processes share their output device-the
screen. The screen, then, is effectively "global data," and GDI functions that
change the state of the screen must be implemented in the Win32 server in
stead of in the client-side DLL. To achieve maximum performance for these
functions, the GDI component implements several optimizations. For ex
ample, to change the colors on the screen, a Win32 application might call a
GDI function to set the foreground color, call again to set the background
color, and then perform several other operations before drawing anything on
the screen. Instead of calling the subsystem once for each of these GDI func
tions, the client-side DLL stores the changed information in a buffer. When
the application draws something on the screen, the DLL sends all the
changed data to the subsystem in a single message. In the present example,
the subsystem would update the screen colors in the DLL, waiting to send the
color changes to the server until it draws its first line. Attribute caching, as this
buffering technique is called, minimizes the number of context switches and
the time spent passing messages between the client and the subsystem.

The GDI uses a similar optimization, called batching, to minimize context
switching between the client and the server. Batching is a technique in which,
for example, the GDI DLL stores multiple function calls in a queue, sending
them to the server in a single message when the queue gets full or when the
user enters input. When the Win32 server receives the message, it executes
the functions in sequence before returning control to the client. Before im
plementing this technique, the GDI developers tested it to be sure that screen
output would not appear jumpy or intermittent. Their testing indicated that
function calls are sent to the server frequently enough that output appears
smooth and measured.

Application writers must keep these performance optimizations in mind
when writing new multithreaded Win32 applications. If two threads are work-

Windows and the Protected Subsystems

ing together, they must synchronize their execution to be sure that their
operations execute in the proper order. For example, they must be aware that
simply because a thread has called an API function doesn't mean that the result
is visible on the screen immediately. The function call might be stored in the
thread's buffer, waiting to be flushed to the screen. CDI provides the.
GdiFlush 0 function to let threads force cached function calls to be sent to
the Win32 server.

Another effect of the client/server model is that applications that repeat
edly manipulate and redraw large bitmaps can perform poorly compared to
device-independent figures drawn using GDI calls. Because each object or bit
map is private to the client application, it must be sent in a message to the
server each time the screen is updated. To maintain optimum performance,
applications should either redraw only the modified portions of a bitmap im
age, if possible, or rely on CDI functions to draw all images, taking advantage
of the GDI's caching and batching techniques to optimize performance. The
new Win32 GDI API is better equipped than the 16-bit Windows GDI API to
provide all the drawing capabilities sophisticated applications require.

5.4 MS-DOS and the 16-Bit Windows API
One of the first thoughts a potential Windows NT user is likely to have is,
"Well, the high-end features are nice, but will Windows NT run my favorite
MS-DOS and Windows applications?" It's an important question, given the in
vestment that most users have in existing applications. Clearly, the bulk of po
tential Windows NT users depend heavily on MS-DOS and 16-bit Windows
applications and will continue to do so for a long time. Supporting these users
was an important consideration in Windows NT's development.

Fortunately, Windows NT's client/server model can easily accommodate
multiple application execution environments. Including an MS-DOS environ
ment and a 16-bit Windows environment involved complicated and detailed
work, but it didn't change the design of the operating system.

Matthew Felton, who has an extensive MS-DOS background and who
worked previously on OS/2's MS-DOS compatibility environment, led the
team that created the MS-DOS and 16-bit Windows subsystems on Windows
NT. The two projects are closely related and shared a set of broad goals:

II Allow users to easily migrate from MS-DOS or 16-bit Windows to
Windows NT

II Run all major MS-DOS and 16-bit Windows applications while pro
tecting the rest of the operating system from them

147

INSIDE WINDOWS NT

148

ill! Maintain binary compatibility for applications between else and
RIse hardware platforms

ill! Allow 16-bit Windows applications to run as peers of 32-bit Windows
applications

On MS-DOS, Windows is a sophisticated graphical application that ex
tends the capabilities of the underlying operating system. On Windows NT,
both MS-DOS and 16-bit Windows are applications: They are environment
subsystems that call the Win32 API and occasionally native NT services.
Figure 5-16 illustrates how MS-DOS and 16-bit Windows fit into Windows NT's
system structure.

The MS-DOS and the 16-bit Windows subsystems run in user mode in the
same way that other environment subsystems do. However, unlike the Win32,
OS/2, and POSIX subsystems, they are not server processes, per se. MS-DOS
applications run within the context of a process called a virtual DOS machine
(VDM). A VDM is a Win32 application that establishes a complete virtual com
puter running MS-DOS. For example, it allows MS-DOS applications to issue
machine instructions, to call the BIOS, to directly access certain devices, and
to receive interrupts. Any number of VDM processes can run at the same
time, each within a separate console window.

Separate 16-Bit

16-Bit Windows on
Win32 (WOW)

Windows Applications ~~<~

Figure 5-16. MS-DOS and 16-Bit Windows Subsystems

User Mode

Kernel Mode

Windows and the Protected Subsystems

The 16-bit Windows environment is a hybrid application, one that runs
within the address space of a VDM process. It calls the Win32 API to do most
of its work but occasionally calls NT services as well. The developers of the 16-
bit Windows environment refer to it as WOw, which is short for Windows On
Win32.

Creating MS-DOS and the 16-bit Windows environments as user-mode
subsystems gives them the same code and data protection that the other sub
systems have. It protects the NT executive from problems that might occur in
the environments because they can access the NT executive only by calling
system services. This strategy also protects the MS-DOS applications from the
16-bit Windows applications and vice versa, and it partitions their address
spaces from those of the 32-bit Windows applications.

5.4.1 Virtual DOS Machines (VDMs)
A VDM is an MS-DOS session created whenever a user starts an MS-DOS appli
cation on Windows NT. Windows NT allows any number of MS-DOS applica
tions to run simultaneously, and they can pass textual data to each other and
to Windows applications via the Clipboard.

It is a tricky endeavor to run MS-DOS applications on Windows NT be
cause they are, naturally, written in assembly language, and they assume that
they have free access to memory, devices, and so forth. In a full-fledged,
multiuser operating system, MS-DOS applications can't have free rein, but
they must be allowed to run as if they do. Sudeep Bharati and Dave Hastings,
VDM's primary developers, accomplished this subterfuge by placing each MS
DOS application in its own process-the VDM-with a private virtual address
space containing all the MS-DOS code and the MS-DOS drivers that the appli
cation needs to run.s Within its virtual address space, the application can do
what it likes. The NT executive's virtual memory (VM) manager controls the
physical memory usage of the application and ensures that it doesn't overrun
other processes.

When a user clicks on the MS-DOS icon (or on an MS-DOS application
icon), the Win32 subsystem starts Windows NT's command shell in a console
window. The command shell departs from the OS/2 model of executing 32-
bit commands in lone shell and MS-DOS commands in another. Although it

8. Windows NT's initial· MS-DOS environment uses MS-DOS 5.0 source code and is therefore com
patible with MS-DOS 5.0. It is also compatible with LIM-EMS 4.0, DPMI .9, and XMS 3.0. vePI is
supported on the MIPS processors but not on the Intel x86 processors. Windows NT's MS-DOS envi
ronment also does not support applications that write directly to the hard disk or floppy disk, as
doing so would compromise the integrity of the file system.

149

INSIDE WINDOWS NT

150

looks like the MS-DOS command shell, it is equally capable of executing 32-bit
Windows NT commands and 16-bit MS-DOS commands within the same con
sole window, even piping output between the command-line applications.
When the user enters a command, the command shell simply calls the Win32
CreateProcessO routine to execute the image. If the command is an MS-DOS
image, the Win32 subsystem starts a VDM process, which loads the MS-DOS
application into the VDM's virtual address space and executes it. When the
MS-DOS application generates output, the VDM calls Win32 console routines
to display the output in its console window.

As it runs, an MS-DOS application must have access to the MS-DOS
operating system, or at least to something that looks and works like MS-DOS. A
VDM is, in essence, a virtual MS-DOS operating system running on a virtual,
Intel x86-based computer. Figure 5-17 shows the layout of the VDM's virtual
address space on Intel x86-based machines.9

Virtual Device Drivers

MS-DOS Application

Figure 5-17. Virtual DOS Machine (VDM)

~----- Trap handler

620 KB or
more available

MS-DOS 5.0
----- source code

9. The memory layout and contents are roughly the same on the MIPS platforms with the instruc
tion execution unit replaced. On the MIPS-based platform, the instruction execution unit emulates
Intel instructions using MIPS processor instructions. Insignia Solutions, Ltd., created this code as
well as the virtual device drivers shown in Figure 5-17. Insignia's virtual device drivers are used on
both the Intel and MIPS platforms for compatibility.

Windows and the Protected Subsystems

The 16-bit MS-DOS emulation is derived from MS-DOS 5.0 source code
minus file system support. It resides in the lowest portion of the VDM's virtual
address space, with the MS-DOS application directly above it. The application
has access to at least 620 KB of memory.

Although the code below the 16-MB boundary is based on 16-bit seg
mented addresses, the code above this boundary is written with 32-bit flat ad
dresses, Windows NT's format. The 32-bit portion of the VDM's address space
is sophisticated. It includes a collection of virtual device drivers and 32-bit
MS-DOS emulation code that is the same across different processor architec
tures. The instruction execution unit is a processor-dependent block of code. The
Intel x86 version, written by Microsoft's Dave Hastings, acts as a trap handler
(see Chapter 7, "The Kernel"), capturing instructions that cause hardware
traps and transferring control to the code that handles them, such as the vir
tual device drivers. On the MIPS processors, this code is an instruction emula
tor, converting x86 instructions to MIPS instructions.

The virtual device drivers act as a layer between MS-DOS applications
and the hardware attached to the Windows NT machine. In its first release,
the VDM environment provides virtual device drivers for standard PC devices,
including the mouse, keyboard, printer and COM ports, and so on. The 32-bit
VDM code handles MS-DOS I/O operations by trapping them and calling
either Win32 API functions or the NT executive to carry out the I/O. For ex
ample, the VDM processes COM port requests by opening the COM device
driver and sending it I/O control codes (IOCTLs). To update the video, a
thread within the VDM periodically examines the video RAM in which the
MS-DOS application is writing and calls the Win32 console APls to update the
screen pixels that have changed.

Although many MS-DOS sessions can run at once, their memory usage
remains relatively low. The first 640 KB of virtual memory in each process,
plus any memory the process uses up to the 16-MB boundary, is unique and
not shared among VDMs. Above the boundary, however, the NT executive's
VM manager shares one copy of the 32-bit code among all VDM processes. Fur
thermore, because VDMs are simply user-mode processes, they are entirely
pageable. This means that NT's VM manager loads into physical memory only
those portions of the MS-DOS 5.0 code and the MS-DOS application code that
the application uses, as it uses them. It also temporarily transfers the applica
tions' memory contents to disk if memory usage on the system is high. (See
Chapter 6, "The Virtual Memory Manager," for more information about vir
tual memory management.)

MS-DOS applications are not multitasking because each application
assumes it is the only one running on an MS-DOS machine. However, NT's

151

INSIDE WINDOWS NT

kernel cQmpQnent treats an MS-DOS thread like any Qther thread. When the
thread's time quantum expires, the kernel interrupts it and CQntext switches
to. anQther thread, rescheduling the MS-DOS thread later. Because SQme MS
DOS applicatiQns simply sit in a tight IQQP checking fQr keybQard input (and
hQgging CPU cycles), the VDM environment detects this idle state and, when
it QCcurs, gives Qther waiting threads higher scheduling priQrity.

5.4.2 Windows on Win32 (WOW)

152

One Qf the primary gQals for the 16-bit WindQws envirQnment (WOW) was to.
make no. user-visible distinctiQns between 16-bit and 32-bit WindQws applica
tiQns. Users start 16-bit applicatiQns in the same way they start Win32 applica
tiQns. BQth types Qf applicatiQns run simultaneQusly, indistinguishable from
Qne anQther.

AlthQugh 16-bit and 32-bit applicatiQns IQQk the same to. a user, they ac
tually run under the cQntrol Qf different parts Qf the Qperating system. The
WOW environment, designed and implemented by Jeff ParsQns, Matthew
FeltQn, Chandan Chauhan, and Ramakrishna Nanduri is essentially a
multithreaded VDM, each Qf whQse threads executes a 16-bit WindQws appli
catiQn. Running the applicatiQns within a single virtual address space mimics
the nQrmal behavior Qf 16-bit WindQws, in which all applicatiQns are single
threaded and reside within the same address space. The WOW environment
calls the Win32 API to. create and manage Qn-screen windQws fQr each Qf its
16-bit applicatiQns. With regard to. user input, the WOW envirQnment is
treated as a single Win32 applicatiQn, as shQwn in Figure 5-18.

Like an MS-DOS applicatiQn, the first time the user starts a 16-bit Win
dQWS applicatiQn, the Win32 subsystem detects that the executable image
runs Qn MS-DOS, and it starts a VDM process. Once started, the VDM IQads the
WOW environment. The virtual address space fQr the WOW VDM is shQwn in
Figure 5-19 Qn page 154.

The address space Qf the WOW subsystem is structured similarly to. that
Qf an MS-DOS applicatiQn process. The same MS-DOS cQde resides in the
IQwest PQrtiQn Qf WOW's address space, with the Windows 3.1 kernel code
abQve it. The kernel cQde, with its multitasking supPQrt remQved, handles
WindQws 3.1 memQry management functiQns and IQads executable images
and dynamic-link libraries fQr the 16-bit WindQws applicatiQns. AbQve that
cQde lie the windQw manager and the GDI stub routines, and the 16-bit Win
dQWS applicatiQns reside abQve the stub routines. Any number Qf applicatiQns
can run there, their cQde and data paged into. memQry by NT's VM manager
as the applicatiQns access it.

Input
Devices

Windows and the Protected Subsystems

Input
Queues

Input Queue
for WOW
Environment

Blocked Blocked

Get input Get input

Figure 5-18. Input Model for the WOW Environment

In the WOW subsystem, 16-bit Windows multitasking code is replaced by
WOW code, by calls to the Win32 API, and by the NT executive's multitasking
code. Once the WOW environment is running, the Win32 subsystem sends it a
message each time the user starts a 16-bit application. WOW responds by load
ing the application into memory and calling the Win32 CreateThreadO API
routine to create a thread to run the application. Although all other threads
are scheduled preemptively in Windows NT, the Win32 subsystem schedules
WOW threads nonpreemptively to make the WOW environment compatible
with 16-bit Windows. This does not mean that WOW threads are allowed to
run as long as they want. The NT kernel still interrupts a WOW thread's exe
cution to let non-WOW threads in the system run. However, when it switches
back to WOW, the kernel selects only the interrupted WOW thread to con
tinue; all other WOW threads remain blocked until the current one yields the
processor. This behavior parallels the nonpreemptive multitasking that Win
dows 3.x applications expect, without affecting Win32 or other applications
running on Windows NT.

153

INSIDE WINDOWS NT

154

~16MB

32-Bit Window Manager
and GDI Thunks

32-Bit MS-DOS Emulation

Virtual Device Drivers

Windows 3.x
Applications ~

···640 KBt----------t
Window Manager

and GDI Stubs

Windows 3.1 Kernel

Figure 5-19. 16-Bit Windows on Win32 (WOW)

Above the 16 MB boundary in the WOW subsystem's address space is the
same code found in the MS-DOS application processes: the virtual MS-DOS
device drivers, 32-bit MS-DOS emulation, and the hardware-dependent in
struction execution unit. In addition, there is a block of 32-bit window man
ager and CD! code, which mirrors the 16-bit code in the lower portion of the
address space. This 32-bit code is responsible for translating 16-bit segmented
addresses into 32-bit flat addresses. For example, when a 16-bit Windows appli
cation calls the window manager or the CDI functions, the 16-bit stubs shown
in Figure 5-19 call equivalent 32-bit API functions in the high portion of the
WOW subsystem's address space. The 32-bit window manager and CDI code
takes the 16-bit addresses supplied by the application and modifies (or
"thunks") them to conform to the 32-bit flat addressing model. It then calls
the Win32 API to carry out the operation. When the Win32 subsystem returns
its results, the 32-bit WOW code thunks the 32-bit addresses back to 16-bit seg
mented addresses and returns the results to the application. Because the
16-bit API is not really implemented in WOW, any 16-bit Windows applications
that rely on the internal structure of the 16-bit window manager or CDI are
not guaranteed to work on Windows NT.

Windows and the Protected Subsystems

5.5 Message Passing with the
Local Procedure Call (LPC) Facility
In Windows NT's client/server model, much hinges on the success of the local
procedure call (LPC) facility. Although, ironically, each subsystem does its
best not to send LPC messages (see Section 5.1.2), the subsystems must do so
upon occasion.

When two threads exist within the same process, they share an address
space and can communicate and pass data easily. They use simple synchroni
zation mechanisms to access data in the proper sequence. When two threads
are in different processes, however, they must bridge the gap between their
separate virtual address spaces by copying data from one address space into
another or by creating a region of shared memory that is visible in both ad
dress spaces. LPC is a message-passing facility provided by the NT executive. It
is used in the latter situation-that is, between two processes, a client and a
protected subsystem (server), located on the same computer. The design of
the LPC facility mimics the procedure-call model used by the industry
standard, remote procedure call (RPC) facility, which is used for passing mes
sages between client and server processes on different computers. In the RPC
facility, the application sending the message does not know it is passing a mes
sage; it simply calls an API routine that resembles any other API routine. A
stub procedure repackages the parameters to the routine and calls the RPC
facility to send them to a remote server. Results are returned through the
same channel. (See Chapter 9, "Networking," for more information.)

Windows NT's LPC facility works like the RPC facility but is optimized for
two processes running on the same Windows NT system. An application calls
an API routine in a DLL to which it is linked, and the DLL does the work nec
essary to send the message to a Windows NT protected subsystem. Although
the RPC facility is a general mechanism used on different types of operating
systems, the LPC facility is specific to Windows NT and therefore takes advan
tage of Windows NT features to make it faster and more efficient than a gen
eralized RPC facility.lo

10. The LPC facility is not available directly to Win32 applications on Windows NT, but the RPC
facility is available. Based on the machine's configuration, RPC will use LPC for passing messages
locally and will use named pipes for passing messages between computers. Win32 applications can
use named pipes or RPc.

155

INSIDE WINDOWS NT

The NT executive's LPC facility supplies three different ways to pass
messages, each designed for a different situation:

III Sending a message to a port object, which is associated with a server
process

III Sending a message pointer to a server's port and passing the mes
sage in shared memory

III Passing a message to a particular server thread through a dedicated
shared memory region

In addition, the LPC facility supplies a sophisticated callback mechanism that
allows a server to reply to a message by requesting more information from the
client.!l

The following subsection examines how a client process establishes a
connection with a server process by using a port object. The subsequent sub
section examines the different types of LPC message passing and LPC
callbacks in more detail.

5.5.1 Port Object

156

In all forms of LPC message passing, a client process must establish a commu
nication channel with a protected subsystem before it can send a message to
the subsystem. The NT executive, like the Mach operating system, uses a port
object as its means for establishing and, in most cases, maintaining a connec
tion between two processes.

Any number of clients can call a protected subsystem, and ultimately,
each needs a secure and private communication channel. To accommodate
this need, the NT executive implements two types of ports. They are struc
turally equivalent but differ in their common names and in how NT uses
them. One type of port is called a connection port, and it gives client applica
tions a place to call to set up a communication channel with the server. Con
nection port objects have names, which makes them visible to all NT
processes. Figure 5-20 illustrates, step by step, how a client process initiates
contact with a protected subsystem and how subsequent messages are
transmitted.

To initiate contact with a protected subsystem, a client process opens a
handle to the protected subsystem's connection port object and then sends it

11. Callbacks in the NT executive's LPC facility should not be confused with callback procedures in
Windows applications.

Windows and the Protected Subsystems

® Accept connection request and
create two communication ports

® Send request and wait for reply

Figure 5-20. Connecting to and Communicating with a Protected Subsystem

a connection request. The server, which has one or more threads waiting to
receive such requests, responds by creating two unnamed (and therefore pri
vate) communication port objects, keeping one handle and returning the
other handle to the client. The client uses its communication port handle to
send subsequent messages or callbacks to the protected subsystem and to
listen for replies from the subsystem. The subsystem uses its handle in the
same way to communicate with the client.

Figure 5-21 summarizes the attributes and native NT services for manip
ulating port objects.

Object Type

Object Body Attributes

Services

Figure 5-21. Port Object

Port

Message queue
Section handle

Create connection port
Open port
Listen at port
Accept/complete connection
Send request
Reply
Send request and wait for reply
Reply and wait for reply
Impersonate client

157

INSIDE WINDOWS NT

Handles to port objects, unlike most other NT object handles, cannot be
inherited by a newly created process. If inheritance were allowed, the server
would need to figure out which process was calling it each time it received a
message. By disallowing inheritance, the server always knows which process is
calling it on a particular channel, the server's processing overhead is thus re
duced, and clients get faster service.

5.5.2 Types of LPC Message Passing
When a client process establishes a communication channel with a protected
subsystem, it specifies which of three types of LPC message-passing tech
niques it wants to use:

l1li Passing messages into the port object's message queue is a technique
used for small messages.

l1li Passing messages through a shared memory object is a technique
used for larger messages.

l1li Quick LPC is used exclusively by portions of the Win32 subsystem to
achieve minimum overhead and maximum speed.

These three forms of message passing and the callback mechanism are
the topics of the following subsections.

5.5.2.1 Copying a Message to a Port

158

The first and most common form of message passing bridges the address
spaces of the client and the protected subsystem by copying a client's message
to an intermediary location and then copying it into the subsystem's address
space. The intermediary location it uses is a message queue in the communi
cation port object.

As Figure 5-21 showed, each port object contains a queue of fixed-size
message blocks. (Connection port objects contain a queue for connection re
quests, and communication port objects contain a queue for service re
quests.) When a client sends a message, the LPC facility copies it into one of
the message blocks in the subsystem's port object. After the NT kernel con
text switches from the client to the subsystem process, a subsystem· thread
copies the message into the subsystem's address space and processes it. When
the subsystem is ready to reply, it sends a message back to the client's commu
nication port, as shown in Figure 5-22.

At any given time, the NT executive has access to either the client's ad
dress space or the subsystem's address space, but not both. However, like other

CD Send request
'<---- for service and

wait for reply

Windows and the Protected Subsystems

Connection
Port

_-+--® Reply

Client
Communication Port

Figure 5-22. Message-Copying LPC

Server
Communication Port

objects, port objects are stored in system memory, so access to the message is
not lost when the NT kernel context switches from the client process to the
subsystem process.

When creating a port object, the LPC facility allocates memory for it
from nonpaged pool, that is, system memory that is always resident. Because
nonpaged pool is a finite system resource, the message blocks in a port object
are necessarily limited both in size and in number. The size of a message
block is 256 bytes, enough room to send most ordinary messages.

5.5.2.2 Passing a Message in Shared Memory
When a client needs to pass messages that are greater than 256 bytes in size, it
cannot copy them to the server port's message queue. Instead, it must pass
them through shared memory objects, whose size is limited only by the cli
ent's resource quota limits.

To pass messages by using shared memory, the client creates a shared
memory object, called a section object. A section object (described in more
detail in Chapter 6, "The Virtual Memory Manager") is a block of shared
memory that the LPC facility makes visible in the address spaces of both the
client and the protected subsystem.l2 To send a large message, the client

12. The LPC facility calls the VM manager to double-map the section object into both address spaces.
To accomplish this, the VM manager uses virtual address aliasing, a capability that the processor
must provide.

159

INSIDE WINDOWS NT

places it in the section object and then sends to the server's port a small mes
sage containing a pointer and size information about the larger message. Af
ter the NT kernel context switches to the subsystem process, the subsystem
retrieves the information from the message block and then uses it to find the
message in the section object, as Figure 5-23 illustrates.

Note that a client must decide when it first establishes a communication
channel whether its messages will be large or small. If it expects them to be
small, it doesn't ask for a section object, but if it expects at least cine of its mes
sages to be large, it requests the section object. As the figure shows, the section
object is associated with the client's communication port. If the subsystem
also expects its reply messages to be large, it can create a section object associ
ated with its own communication port in which it stores the large replies when
transmitting them back to the client.

® Send request
for service and
wait for reply

I CD Place message .\L..JL....L..L...L---'--L..L..J/

in section object/'
, , , , . .

Pointer - -. --.-.-

Client
Communication

Port

Server
Communication

Port

./4------® Retrieve message
from section object

Section Object

Figure 5-23. Shared Memory LPC

160

Windows and the Protected Subsystems

Using a section object means that the client must do a bit of extra work.
The LPC facility does not assume any particular format for the section object,
for example, so the client must manage the section object's memory itself,
telling the subsystem the size of the last message and where it is stored within
the section object: This bit of memory management makes passing messages
via shared memory a little more complicated for the client than using the
port object directly. However, it allows large messages to be accommodated
without having to copy them multiple times. Copying a large amount of data
from one address space to another can be a slow operation, and using shared
memory avoids this processirig overhead.

5.5.2.3 Callbacks
Under normal circumstances, a subsystem has several, possibly many, com
munication ports. Each one serves as a communication channel for one client
process. To service the requests it receives on its various communication
ports, the subsystem generally creates a pool of threads that wait to receive
requests and process them; any of the subsystem threads can reply to any re
quest. This gives the subsystem great flexibility but requires the LPC facility to
maintain a careful scheme for identifying client callers and their messages so
that it can reply to the correct client at the correct communication port.

To keep track of which client sent which message, each message con
tains the calling thread's client ID (an attribute of every thread object) and a
serial number that the LPC facility assigns to each message. When the subsys
tem replies to a message, it records in its reply the client ID of the thread the
reply is intended for and the serial number of the message to which it is reply
ing. The LPC facility then verifies that a client with that client ID is waiting for
a reply to that message number. If not, the LPC facility returns an error.

Sometimes, the subsystem might not be able to send a reply immediately.
It might need to request more information from the client The LPC facility
provides a callback mechanism to accommodate this situation. Figure 5-24 on
the next page illustrates a typical exchange. (Step 2 is the callback message.)

Typically a client sends a request and then waits for a reply. If the client
supports callbacks, however, it can handle getting a request from the subsys
tem when it is expecting a reply. Using native LPC routines, the client can re
spond to the request and then continue waiting for the original reply.

Message-passing facilities on many operating systems do not have the NT
executive's flexibility in the implementation of callbacks. For example, NT's
LPC callback mechanism is completely symmetrical. Both the client and the
server can issue callbacks to the other. Moreover, the LPC facility allows an
arbitrary number of outstanding callbacks to exist at one time. In step 3 in
Figure 5-24, for example, instead of replying to the server's callback, the

161

INSIDE WINDOWS NT

r---- CD Send request for service
and wait for reply

® Reply with a request and
wait for reply (CALLBACK)

® Reply to the callback and wait __ ~
for reply to original request r--_~

'----@ Reply to original request -----.....

Figure 5-24. Callbacks

client could have requested more information from the server regarding the
server's callback. If so, the client would send a callback to the server and then
wait for both a reply to its callback and a reply to its original request. In other
words, step 2 can be repeated any number of times by either the client or the
server, and the unresolved callbacks would "stack up" on both sides. One by
one, each callback would be resolved by a reply until all the callbacks are
resolved on both sides. When this happens, the server finally sends a reply to
the client's original request, and the message exchange ends.

5.5.2.4 Quick LPC

162

As you might imagine, Win32 is a high-use subsystem. Because it interacts with
all applications running on Windows NT, it is likely to have many callers at
any given time. Because of the subsystem's potential to be a performance bot
tleneck, its developers, along with Mark Lucovsky and Steve Wood, imple
mented quick LPG, an optimized form of LPC message passing for use by the
Win32 subsystem. The Win32 subsystem's window manager and GDI compo
nent use quick LPC to minimize the time required for a round-trip LPC call
from a client to the Win32 server.

Much of the overhead involved in using LPC message passing is in open
ing a handle to a port object and copying messages to and from the message
queue. Even when a client uses shared-memory LPC, it sends a message to the
message queue, which must be copied to the subsystem's address space.

Windows and the Protected Subsystems

In quick LPC, a client thread sends a message to the server's connection
port to establish contact, indicating that it wishes to use quick LPC message
passing to communicate. In response, the server creates three resources for
the client:

• A dedicated server thread to handle this and subsequent requests

• 64 KB of shared memory (a section object) for passing messages

• An event pair object

Thereafter, the client and server threads using quick LPC bypass ports
altogether and pass their messages via shared memory. The event pair object,
which contains one event for the client thread and one event for the server
thread, provides an implicit synchronization mechanism. The client, for ex
ample, places a message in the section object and then sets the server's event
while simultaneously waiting on its own event. The NT kernel awakens the
dedicated server thread, and because the thread's only job is to service this
one client thread, it knows immediately where to look for the message. When
the server thread finishes processing the message, it sets the client's event and
simultaneously waits on its own event. The communication continues in this
way until the quick LPC connection is closed.

By eliminating the overhead of using the port object and the overhead
of copying messages between the two processes' address spaces, quick LPC
gives the Win32 subsystem a boost in performance. In addition, because a
dedicated server thread is created to service every client thread, the subsys
tem avoids figuring out which client thread is calling it each time it receives a
message. Using quick LPC, context switching from the client to the subsystem
(or vice versa) becomes the delimiting factor in the performance of the mes
sage passing. And the NT kernel minimizes even this by giving these threads
preference in scheduling.

So why limit the use of quick LPC message passing to the Win32 subsys
tem? If it's so fast, why not use this method for all forms of message passing on
Windows NT? The answer is that quick LPC trades one type of system over
head for another. What it gains in speed, it loses in resource usage. Instead of
maintaining a pool of threads, each of which can respond to numerous
clients, quick LPC requires the subsystem to create a server thread for each
client thread that calls it. Not only does this consume system memory (some
of it nonpaged resident memory), but these dedicated threads spend half of
their time waiting to be awakened by the client. Another resource cost is the
use of the section object. In ordinary LPC, each process can create a section

163

INSIDE WINDOWS NT

object for passing messages. If more than one thread in the process passes
messages, the threads share a section object. In quick LPC, each thread has its
own section object.

Some of these resource costs are mitigated by the fact that thread stacks
and the section object memory are pageable and can be transferred to disk
when memory usage is high. However, it would not be practical to use quick
LPC for all message passing. Quick LPC is used only by the Window Manager
and GDI components of the Win32 subsystem. The console and operating sys
tem components, as well as all other Windows NT subsystems, use normal LPC.

5.6 In Conclusion

164

The client/server model is a fundamental part of Windows NT's design,
affecting not only how the system works, but also how applications run. It was
originally selected for its flexibility in providing OS/2 and PO SIX APIs within
the same operating system but became the basis for the Win32 protected sub
system as well. Using the client/server model, MS-DOS and 16-bit Windows ap
plications coexist peacefully with Win32, OS/2, and POSIX applications, and
all applications can pass data to one another via the Clipboard. The client/
server model also protects the different applications from one another and
the protected subsystems from applications.

This chapter examined how Windows NT appears to users and to appli
cation programs. The next chapter takes a step downward, back into the fun
damental workings of the NT executive and, specifically, its VM manager.
Although different environment subsystems present whatever view of
memory their applications expect, underneath the subsystems lies the NT ex
ecutive's virtual memory system. The VM manager, the NT component that
keeps all the applications and protected subsystems from bumping into each
other, is the subject of the next chapter.

C HAP T E R 5 x

THE VIRTUAL
MEMORY MANAGER

At one time, computers were single-process, single-thread systems. Program
mers, both experienced and aspiring, had to reserve time to work from the
computer's one console. The programmer was the operating system, respon
sible for manually loading a program into memory using switches, paper tape,
or keypunched cards. Once a program was loaded, the programmer entered a
starting address and directed the processor to jump to it and begin executing.
Loading and executing more than one program at a time was not possible.
Needless to say, the processor sat idle much of the time.

In operating system technology, advancement has meant finding ways to
keep the processor busy more of the time and, thus, get more work done. Mul
titasking systems load multiple programs into memory and keep the pro
cessor busy by switching among them. How the operating system distributes
the available memory among processes while protecting the code and data of
one process from the other processes is the subject of memory management,
and in the case of Windows NT, virtual memory management.

In the early days of computing, it was not possible to execute a program
that was bigger than the computer's physical memory. Later, programmers
began writing overlays, programs that swap portions of their code to disk and
load other parts of the program into memory. When the code on disk was
needed, the program would load it back into memory, overlaying code that
was not in use. Aside from being tedious to program and difficult to maintain
and update, overlays required each application to recreate the code that
swapped memory contents to disk.

165

INSIDE WINDOWS NT

166

Virtual memory (VM), first implemented in 1959,1 took the onus of
memory management off the programmer and placed it on the operating
system. VM is a centralized system for swapping memory contents to disk
when memory gets full. It allows programmers to create and run programs
that require more memory than is present on their computers, and it has
become the standard memory management technique for all but the simplest
operating systems.

The NT executive's virtual memory component, the VM manager, is the
native memory management system for Windows NT. Any memory manage
ment capabilities an environment subsystem provides are based on NT's VM
manager. The VM manager was designed and implemented by Lou Perazzoli,
who also served as the engineering manager and project leader for NT.
Together with other team members, Lou established the following goals for
the VM manager:

III Make it as portable as possible.

III Make it work reliably and efficiently on all sizes of applications
without requiring system tuning by a user or an administrator.

III Provide modern memory management features, such as mapped
files, copy-on-write memory, and support for applications using
large, possibly sparse, address spaces.

III Allow processes to allocate and manage private memory.

III Provide mechanisms that support environment subsystems, such as
allowing a subsystem (with the proper access rights) to manage the
virtual memory of a client process.

III Balance the needs of multiprocessing with the speed of memory
access. (For example, protecting data structures using multiple
levels of locking can increase parallelism in the VM manager, but
each lock creates additional overhead.)

The next section begins with an introduction to virtual memory sys
tems. Following that is an examination of NT's version of virtual memory
the VM manager-and additional features and services the VM manager

1. The Atlas computer, developed at Manchester University around 1959, provided virtual memory.
However, the concept did not become popular until at least a decade later with the creation of the
Multics operating system.

The Virtual Memory Manager

provides to environment subsystems. A description of the VM manager's
implementation follows, including coverage of key data structures and
algorithms.

6.1 Virtual Memory
Memory has several characteristics: a physical structure, a logical structure,
and the manner in which the operating system translates (or doesn't trans
late) from one structure to the other.

Physical memory is organized as a series of I-byte storage units. Bytes are
numbered starting with 0 and extending to the amount of memory available
in the system configuration (minus 1), as shown in Figure 6-1. This set of num
bers (shown here in hexadecimal form) comprises the physical address space
of the machine.2

Address

003FFFFFh
003FFFFEh
003FFFFDh
003FFFFCh

OOOOOOllh
OOOOOOlOh
OOOOOOOFh
OOOOOOOEh
OOOOOOODh
OOOOOOOCh
OOOOOOOBh
OOOOOOOAh
00000009h
00000008h

00000003h
00000002h
OOOOOOOlh
OOOOOOOOh

Byte
Contents

=4MB

Figure 6-1. Physical Address Space

2. Word-oriented machines also exist, but this chapter is concerned only with byte-oriented
machines.

167

INSIDE WINDOWS NT

168

Logical memory, more commonly called virtual memary, is the way in
which a program views memory, and in modern operating systems it rarely
corresponds to the physical memory structure. Virtual memory systems usu
ally adopt either a segmented view or a linear view of memory. All early per
sonal computers based on Intel chips, from the Intel 8086 through the 80286,
use a segmented model. A segmented addressing system divides physical
memory into units of (usually) contiguous addresses, called segments. A typi
cal address includes the segment number and an offset within the segment.

In contrast, most RIse processors, and even the recent else processors
from Intel, support a linear addressing architecture. Linear addressing coin
cides more closely with the actual physical structure of memory than does
segmented addressing. Addresses in a linear scheme begin at 0 and extend,
byte by byte •. to the uppermost boundary of the address space.

A virtual address space is the set of memory addresses available for a pro
cess's threads to use. Every process has a unique virtual address space that is
generally much larger than physical memory. Although the number of physi
cal addresses on a particular computer is limited by how much memory the
computer has (with each byte claiming a unique address), the number of vir
tual addresses is limited only by the number of bits in a virtual address. Each
bit can be either turned on or turned off; thus, for example, the MIPS R4000
processor, which has 32-bit addresses,3 boasts a virtual address space of 232, or
four billion bytes (4 gigabytes), as illustrated in Figure 6-2.

The discrepancy between a physical address space and a virtual address
space necessitates the two tasks of a virtual memory system:

III To translate, or map, a subset of each process's virtual addresses into
physical memory locations. When'a thread reads or writes its virtual
address space, the virtual memory system (some of which can be im
plemented in hardware) uses the virtual address to find the correct
physical address before transferring data.

III To swap some of the contents of memory to disk when memory
becomes overcommitted-that is, when threads in the system try
to use more memory than is physically available ..

3. The MIPS R4000 actually provides 64-bit addresses but allows an operating system to use either
32-bit or 64-bit addresses. The first version of Windows NT uses 32-bit addresses for compatibility
with the Intel 386.

Address

FFFFFFFFh
FFFFFFFEh
FFFFFFFDh
FFFFFFFCh

FFFFFFF4h
FFFFFFF3h
FFFFFFF2h
FFFFFFFlh

003FFFFFh
003FFFFEh
003FFFFDh
003FFFFCh

OOOOOOllh
OOOOOOlOh
OOOOOOOFh
OOOOOOOEh
OOOOOOODh
OOOOOOOCh
OOOOOOOBh
OOOOOOOAh
00000009h
00000008h

00000003h
00000002h
OOOOOOOlh
OOOOOOOOh

Byte
Contents

~=4GB

~

~
=4MB

Figure 6-2. Linear Virtual Address Space

The Virtual Memory Manager

The first task, mapping virtual addresses to physical addresses, allows a
program to be easily relocated in memory as it is executing. The virtual
memory system moves portions of the program to disk and then back to
memory, possibly locating them in a different place. It then updates the
logical-to-physical memory mappings to point to the new location.

169

INSIDE WINDOWS NT

170

The second task, swapping memory contents to disk, results from the
first task. It's clearly impossible for a process to address 4 GB of memory when
only 4 MB of physical memory is present on a machine. Virtual memory sys
tems accomplish this feat by using the disk drive as backup' 'memory" (called
a backing store). When physical memory becomes overcommitted, the virtual
memory system selects data stored in memory for removal and then transfers
it temporarily to a file on disk. When the data is again required by an execut
ing thread, the virtual memory system transfers it back into memory.

Moving data back and forth between memory and disk would be unac
ceptably slow if the virtual memory manager moved it a byte at a time. There
fore, the virtual address space is divided into blocks of equal size called pages.
Likewise, physical memory is divided into blocks called page frames, which are
used to hold pages. Each process has a set of pages from its virtual address
space that are present in physical memory at any given time. Pages that are in
physical memory and immediately available are called valid pages. Pages that
are stored on disk (or that are in memory but are not immediately available)
are called invalid pages, as illustrated in Figure 6-3.

When an executing thread accesses a virtual address in a page marked
"invalid," the processor issues a system trap called a page fault. The virtual

Virtual Address
Space

,-------, = 4 GB

Physical Address
Page Space

Invalid I. . 4 KB Frame[~=4MB

Valid Jt------' Free Page

Valid]
I------l

• [1L--_4_K_B_--I

Invalid

Free

Invalid

Invalid

Figure 6·3. Mapping Virtual Pages to Physical Page Frames

The Virtual Memory Manager

memory system locates the required page on disk and loads it into a free page
frame in physical memory. When the number of available page frames runs
low, the virtual memory system selects page frames to free and copies their
contents to disk. This activity, known as paging, is imperceptible to the
programmer.

Page faults can be expensive operations, requiring many processor
cycles to complete. Large page sizes offset this cost, however, because more
data is loaded into memory for each page fault, and therefore, fewer page
faults tend to occur. (Of course, too large a page size can result in more data
than necessary being loaded, so a balance between large and small page sizes
must be achieved.) The number of bytes in a page is generally a power of 2
and ~s often determined by hardware. Windows NT adopts the page size estab
lished by the Intel 386, which is 212, or 4 KB. (The MIPS R4000 allows software
to determine the page size.)4

Although mapping virtual addresses to physical addresses and transfer
ring data to and from the backing store are the primary tasks of a virtual
memory system, it must perform several other duties as well:

III It must allow two processes to share memory easily and efficiently.

III It must protect both shared and private memory from unauthorized
access.

III If it runs on multiprocessor computers, as does Windows NT, it must
respond to page faults from more than one thread at a time.

The way in which the NT executive's virtual memory system, the VM
manager, performs these tasks is the subject of the rest of this chapter.

6.2 User-Mode Features
The NT VM manager provides rich functionality to user-mode processes
through its native services. The environment subsystems use the services to
manage their client processes. The Win32 subsystem also exports some of the
capabilities provided by the native memory services in the Win32 API.

The VM manager allows user-mode subsystems to share memory effi
ciently using objects that are protected, named, and manipulated like other
executive objects. The subsystems can set page-level protection on private

4. Unless otherwise indicated, when this chapter refers to the Intel 386, you can assume thatthe
information is also true for 386-compatible processors (such as the AMD386 by Advanced Micro
Devices) and upwardly compatible Intel processors (such as the Intel 486).

171

INSIDE WINDOWS NT

memo.ry, and they can lo.ck selected pages in memo.ry. They can also take ad
vantage o.f mapped files and manage the virtual address spaces o.f their
clients.

The fo.llo.wing subsectio.ns fo.cus o.n the capabilities the VM manager
makes available to. user mo.de: managing a pro.cess's virtual address space,
sharing memory between pro.cesses, and pro.tecting o.ne process's virtual
memo.ry fro.m o.ther pro.cesses,

6.2.1 Managing Memory

172

As'Chapter 4, "Pro.cesses and Threads," sho.wed in the diagram o.f attributes
and services fo.r process o.bjects (Figure 4-3), the VM manager furnishes a set
o.f native services a pro.cess can use to. directly manage its virtual memo.ry.
These services allo.w a process to. do. the fo.llo.wing:

• Allo.cate memo.ry in a two.-stage pro.cess

• Read and write virtual memory

• Lo.ck virtual pages in physical memo.ry

• Get info.rmatio.n abo.ut virtual pages

• Protect virtual pages

• Flush virtual pages to. disk

The VM manager establishes a two.-phased appro.ach to. memo.ry allo.ca
tio.n-reserving it and then co.mmitting it. Reserved memory is a set o.f virtual
addresses that the VM manager has reserved fo.r a pro.cess's future use. Reserv
ing memo.ry (that is, virtual addresses) is a fast and cheap o.peratio.n in Win
do.ws NT. Committed memory is memo.ry fo.r which the VM manager has set aside
space in its paging file, the disk file to. which it writes virtual pages when
remo.ving them from memo.ry. When a thread allo.cates virtual memory, it can
reserve and co.mmit the memo.ry simultaneo.usly, o.r it can simply reserve the
memory, co.mmitting it o.nly as necessary.

Reserving memo.ry is useful when a thread is creating dynamic data
structures. The thread reserves a sequence o.f virtual addresses that it co.m
mits as necessary to. co.ntain data. If the data structure needs to. gro.w, the
thread can co.mmit additio.nal memo.ry fro.m the reserved regio.n. This
strategy guarantees that no. o.ther thread running within the process (a li
brary package, for example) o.r ano.ther pro.cess (such as a Win32 subsystem
thread) can use the co.ntiguo.us virtual addresses that the data structure

The Virtual Memory Manager

might need for expansion. A thread can select the starting virtual address of a
reserved region, or it can allow the VM manager to find a place for it in the
process's virtual address space.

The VM manager deducts from a process's paging file quota for commit
ted memory but not for reserved memory. This dual level of semantics allows
a thread to reserve a large region of virtual memory but avoid being charged
quota for it until the memory is actually needed. It also helps to keep the pag
ing file free for virtual memory pages that are actually being used. When a
particular range of addresses is not being used, a thread can "decommit"
them, thus freeing space in the paging file and restoring the process's paging
file quota. (See Chapter 4, "Processes and Threads," for more information
regarding process quotas.)

For time-critical applications and those with other performance re
quirements, the VM manager allows a user-mode subsystem or other process
with special privileges to lock selected virtual pages in memory. This ensures
that a critical page will not be removed from memory while any thread in the
process is running. For example, a database application that uses a tree struc
ture to maintain its data might choose to lock the root of the tree in memory
so that accessing the database doesn't result in unnecessary page faults.

Like other NT services, the VM services allow the caller to supply a pro
cess handle to indicate a process whose virtual memory is to be manipulated.
The caller can manipulate its own virtual memory or that of another process.
This capability is powerful because it allows one user-mode process to manage
the address space of another. For example, one process can create another
process, giving itself the right to manipulate the new process's virtual
memory. Thereafter, the first process can allocate and free and read and
write memory on behalf of the second process by calling virtual memory
services and passing in the second process's handle. This feature is used
by subsystems to manage the memory of their client processes.

Win32 applications have access to many of these VM manager capabili
ties through the Win32 API. They can allocate and free virtual memory, read
and write virtual memory, flush virtual pages to disk, get information about a
range of virtual pages, lock virtual pages in memory, and protect specified
pages. None of these API routines allow a Win32 program to tweak the virtual
memory of another process, however, with the exception of the Read
ProcessMemoryO routine and the WriteProcessMemoryO routine. These are
intended for use by user-mode debuggers to establish breakpoints and main
tain instance data for a process being debugged.

173

INSIDE WINDOWS NT

6.2.2 Sharing Memory
An important task of any memory management system is to allow processes to
share memory when they require it or when sharing would make the operat
ing system more efficient. For example, if two processes compile C programs,
memory usage can be minimized if only one copy of the C compiler is loaded
into memory. (Of course, each process must also retain private memory areas
in which private code and data are stored.)

Virtual memory provides a convenient mechanism for sharing memory.
Because each process has a separate virtual address space, the operating sys
tem can load the compiler into memory once, and when another process in
vokes the compiler, the VM manager can simply map the second process's
virtual addresses to the physical page frames already occupied by the com
piler, as illustrated in Figure 6-4.

Similarly, if two cooperating processes create a shared memory buffer,
the virtual address space of each can be mapped to the same physical page
frames occupied by the buffer. In the compiler example, the VM manager
allows neither process to modify the pages occupied by the compiler. The vir
tual pages in both processes are designated read-only. In the case of the
buffer, however, threads in both processes might need to write to the shared
buffer. Therefore, the pages are designated read/write. Of course, when shar
ing a data structure in this way, the threads using it must synchronize their
access to the shared memory to prevent simultaneous access and corrupted
data. (Memory protection is described in Section 6.2.3.)

The Win32 subsystem makes the NT executive's memory-sharing capa
bilities available to Win32 applications through its file-mappIng API routines,
a topic described in the next subsection.

6.2.2.1 Sections, Views, and Mapped Files

174

Like all other components of Windows NT, the VM manager is fully parallel.
It runs simultaneously on all processors in a multiprocessor computer and
must share its data structures among threads running on different processors.
Therefore, it was important to create an efficient and secure solution for shar
ing memory in Windows NT, not only for user-mode programs but also for the
system itself.

Shared memmy can be defined as memory that is visible from more than
one process or that is present in more than one virtual address space. Win
dows NT's approach to sharing resources is to implement them as protected
objects, and memory is no exception. The section object, which the Win32 sub
system makes available as a file-mapping object, represents a block of memory

Process 1
Virtual Memory

Process 2
Virtual Memory

Figure 6-4. Sharing Memory

The Virtual Memory Manager

that two or more processes can share. A thread in one process creates a sec
tion object and gives it a name so that threads in other processes can open
handles to it. After opening a handle to a section object, a thread can map the
section or parts of the section into their own (or another process's) virtual
address space.

An NT section object can be quite large, spanning tens, hundreds, or
even thousands of pages. To conserve its virtual address space, a process need

175

INSIDE WINDOWS NT

176

map only the portion of the section object that it requires; the portion it maps
is called a view of the section. A view provides a window into the shared
memory region, and different processes can map different or even multiple
views of a section, as shown in Figure 6-5.

Process 1
Virtual Memory

Process 2
Virtual Memory

Figure 6-5. Mapping Views of a Section

Physical
Memory

Section

The Virtual Memory Manager

Mapping views of a section allows a process to access large blocks of
memory that it otherwise might not have enough virtual address space to
map. For example, a company might have a large database containing infor
mation about its employees. The database program creates a section object to
contain the entire employee database. When a user queries the database, the
program maps a view of the database section into its virtual address space,
gets data from it, unmaps the view, and then maps another view of the section
to get more information. In effect, it "windows" through this large section
object a region at a time, getting data from every part of the database, without
running out of virtual address space.

Like private memory, the contents of shared memory are paged to disk
when demand for memory is high. The VM manager writes most pages, both
private and shared, to the paging file when it removes them from memory.
However, the VM manager also allows section objects to be paged to a mapped
file. The corporate employee database is an example of a mapped file. The
database program uses the section object to bring the contents of the data
base file into virtual memory. The program can then access the file as a large
array by mapping different views of the section object and reading or writing
to memory rather than to the file (an activity called mapped file I/O). When the
program accesses an invalid page (one not in physical memory), a page fault
occurs, and the VM manager automatically brings the page into memory
from the mapped file. If the application modifies the page, the VM manager
writes the changes back to the file during its normal paging operations.

The NT executive uses mapped files to . load executable images into
memory, and the system's cache manager uses mapped files to read and write
cached pages. NT's I/O system uses memory-mapped files to carry out I/O re
quests, allowing the VM' manager to page any changes to disk as part of its
normal paging operations.

Win32 applications can use mapped files to conveniently perform ran
dom I/O (in addition to sequentialI/O) to large files. The application creates
a Win32 file-mapping object (which corresponds to an NT section object) to
contain the file, and then reads or writes to random locations in the file. The
VM manager pages in the needed portions of the file automatically and writes
any changes back to disk.

6.2.2.2 Section Object
Section objects, like other objects, are allocated and deallocated by the object
manager. The object manager creates and initializes an object header, which
it uses to manage the objects; the VM manager defines the body of the section

177

INSIDE WINDOWS NT

178

object. The VM manager also implements services that user-mode threads can
call to retrieve and change the attributes stored in the body of section objects.
The section object is shown in Figure 6-6.

Object Type

Object Body Attributes

Services

Section

Maximum size
Page protection
Paging file/mapped file
Based/not based

Create section
Open section
Extend section
Map/unmap view
Query section

Figure 6·6. Section Object

The following table summarizes the unique attributes stored in section
objects:

Attribute

Maximum size

Page protection

Paging file/
mapped file

Based/not based

Purpose

The largest size to which the section can grow in bytes; if
mapping a file, it is the size of the file.

Page-based memory protection assigned to all pages in the
section when it is created.

Indicates whether the section is created empty (backed by
the paging file) or loaded with a file (backed by the
mapped file).

Indicates whether a section is a based section, which must
appear at the same virtual address for all processes sharing
it, or a nonbased section, which can appear at different vir
tual addresses for different processes.

Table 6·1. Section Object Attributes

Mapping a view of a section object makes a portion of the section visible
in a process's virtual address space. Likewise, unmapping a view of a section
removes it from the process's virtual address space.

The Virtual Memory Manager

Sharing occurs when two processes map portions of the same section
object into their address spaces. When two processes share memory in this
way, they must synchronize their access to it to avoid changing data at the
same time. Events, semaphores, or even hardware-dependent locks can be
used to synchronize access to a shared section. Section objects themselves are
not defined as synchronization objects; that is, a thread cannot synchronize its
execution by waiting on a handle to a section object. Win32 applications can
use mutexes, events, critical sections, or semaphores to synchronize their ac
cess to the file-mapping object-their equivalent of a section object.

To map a view of a section, a process must first acquire a handle to it.
The process that creates the section object always has a handle. Other pro
cesses (those with appropriate access rights) can open handles to the section
object if the section has a name. Alternatively, a process can be given a handle
to a section object through process inheritance or when another process
duplicates its section handle and passes the duplicate handle to the recipient
process. Memory sharing occurs in all of these cases. If a shared section is cre
ated as a temporary object, the object manager deletes the shared memory
when the last reference to the section object is released. Permanent section
objects are not deleted.

6.2.3 Protecting Memory
Memory protection in Windows NT is provided in four forms. The first three
are common to most modern operating systems:

III A separate address space for each process. The hardware disallows
any thread from accessing the virtual addresses of another process.

III Two modes of operation: kernel mode, which allows threads access
to system code and data; and user mode, which doesn't.

III A page-based protection mechanism. Each virtual page has a set of
flags associated with it that determines the types of access allowed
in user mode and in kernel mode.

And the following mechanism, unique to Windows NT, provides one more
form of memory protection:

III Object-based memory protection. Each time a process opens a
handle to a section object or maps a view to it, the Windows NT
security reference monitor checks whether the process attempting
the operation is allowed access to the object.

179

INSIDE WINDOWS NT

The following subsections focus on the two types of memory protection
that these mechanisms support-process-private memory protection and
shared memory protection.

6.2.3.1 Process-Private Memory

180

Each time a thread uses an address, the NT executive's VM manager, along
with hardware, intervenes and translates the virtual address into a physical
address. A virtual memory system, by controlling the translation of virtual ad
dresses, can ensure that threads in one process do not access a page frame of
memory belonging to another process.

In addition to the implicit protection offered by virtual-to-physical ad
dress translation, every processor that supports virtual memory provides
some form of hardware-controlled memory protection. The protections they
provide and their hardware implementations vary, however. Often, hardware
protection is minimal and must be supplemented with mechanisms provided
by the virtual memory software. This fact makes the VM manager in Windows
NT subject to hardware differences more than other parts of the operating
system are.

Hardware-based page protection takes effect each time a thread accesses
memory. On the MIPS R4000 processor, for example, each page of a process's
virtual memory is designated as either a user-mode page (low 2 GB) or a
kernel-mode page (high 2 GB) and either a read-only or a read/write page. If
the executing thread is running in kernel mode, the processor allows it to
read any valid page of memory and write valid pages with the read/write des
ignation. If the thread is running in user mode, it can read only valid user
pages and can write only those valid user pages with the read/write designa
tion. The MIPS R4000 issues a page fault if the accessed page is invalid (not in
memory). It issues an address-error exception (access violation) if a thread
attempts to read or write a valid page in violation of the rules.

The hardware can perform its protection checks only on valid pages
those that are present in memory. If a thread accesses an invalid page (one
that is not in memory), the MIPS R4000 issues a page fault, and the VM man
ager's paging software takes over the page protection task.

The VM manager provides the same page protections that the MIPS
R4000 supplies for valid pages:

II Read-only

II Read/write

The Virtual Memory Manager

The VM manager supplements these basic protections with a few of its own:

l1li Execute-only (if the hardware supports it)

l1li Guard-page

l1li No-access

l1li Copy-on-write

Using native virtual memory services, an environment subsystem can
control the page-level protection on private virtual pages. Controlling page
level protection can lead to more reliable programs by ensuring that threads
do not write to pages that should be read-only. This capability is also useful,
for example, in debugging a multithreaded program in which one thread is
erroneously writing to memory. By temporarily changing the protection of
that page to read-only or no-access, the debugger can catch the thread in
action and find the error.

A thread can neither read from nor write to a page with execute-only
access, but it can jump to an address within the page and begin executing.
This type of protection is appropriate for shared application software, such as
an editor or a compiler. All threads should be able to run the software, but
none should be allowed to read from or write to the executable image. (Note
that neither the MIPS R4000 nor the Intel 386 or 486 support execute-only
protection. Therefore, on these processors, execute access is equivalent to
read-only access.)

The VM manager provides guard-page protection to facilitate automatic
bounds checking on stacks, but this type of page protection can be used to
demarcate other data structures as well. When a thread accesses a guard page,
the VM manager generates a guard-page exception and the caller receives a
message that the guard page was touched. The VM manager then allows the
operation to continue. If a subsystem or other native application places a
guard page at the end of a dynamic array, for example, the subsystem will
receive a warning from the VM manager when it accesses the guard page, and
it can extend the array dynamically.

No-access page protection is used to prevent any thread from reading
from or writing to a particular page. The VM manager issues an exception if
an address in the page is accessed. Virtual pages that have not been allocated
at all or those that have been reserved but not committed are assigned the no
access page protection by the VM manager. No-access page protection is used
primarily by debuggers.

181

INSIDE WINDOWS NT

The Win32 subsystem makes the VM manager's page protection visible
to Win32 applications through its VirtualProtectO routine. This routine
allows applications to designate individual virtual pages as read-only, read/
write, or no-access. Guard-page, execute-only, and copy-on-write protection
are not provided.

6.2.3.2 Shared Memory

182

The copy-un-write page protection, mentioned in the previous subsection, is an
optimization the VM manager uses to save memory. When two processes want
to read and write the same memory contents (but not share them), the VM
manager assigns the copy-on-write page protection to the memory region. It
then shares the physical memory between the processes as long as neither of
them writes to it. If a thread in one of the processes writes to a page, the VM
manager copies the physical page frame to another location in memory, up
dates the process's virtual address space to point to the copy, and sets the new
page's protection to read/write. As shown in Figure 6-7, the copied page is not

Process 1
Virtual Memory

Figure 6-7. Copy-on-Write Protection

Physical
Memory

The Virtual Memory Manager

visible to threads in other processes. Hence, the thread can write to its copy of
the page without affecting other processes that are using the page.

Copy-on-write protection is useful for pages containing code; it ensures
that only the process whose thread modifies the image is affected by the
change. For example, code pages start out as execute-only pages. However, if
a programmer sets a breakpoint while debugging a program, the debugger
must add a breakpoint instruction to the code. To do so, it first changes the
protection on the page to copy-on-write. The VM manager immediately
creates a private copy of the code page for the process whose thread set the
breakpoint. Other processes continue using the unmodified code. The Win32
subsystem does not make copy-on-write page protection directly available to
Win32 applications, but it indirectly uses copy-on-write protection to imple
ment per-process instance data in its dynamic-link libraries (DLLs) and
elsewhere.

Copy-on-write page protection is one example of an optimization tech
nique called lazy evaluation that the VM manager uses whenever possible. Lazy
evaluation algorithms avoid performing an expensive operation until it is
absolutely required. If the operation is never required, then no time is wasted
on it. The POSIX subsystem is one component that takes great advantage of
this optimization. Typically, when a process calls the forkO API routine to
create another process on a POSIX system, the operating system copies the
address space of the first process to the second-a time-consuming opera
tion. The new application frequently calls the execO API routine immedi
ately, which reinitializes the address space with an executable program,
rendering the first copy operation superfluous. The VM manager's lazy
evaluation algorithm, in contrast, simply marks the parent's pages with the
copy-on-write page protection designation and shares the parent's pages with
the child. If the child (or parent) process never writes to its address space, the
two processes continue sharing and no copying is done. If one of them does
write, the VM manager copies only the pages the process has written to, rather
than copying the entire address space.

All the memory protection mechanisms described so far are imple
mented in either hardware or low-level memory management software that is
invoked each time a thread uses an address. The Windows NT object architec
ture provides an additional layer of protection for memory shared between
two processes. The security subsystem protects section objects in the same way
it protects other executive objects-by using access control lists (ACLs). (See
Chapter 3, "The Object Manager and Object Security.") A thread can create
a section object whose ACL specifies which users or groups of users can read,
write, get information about, or extend the size of the section.

183

INSIDE WINDOWS NT

The security reference monitor checks the protection on a section ob
ject whenever a thread tries to open a handle to a section or to map a view of
it. If the ACL doesn't allow the operation, the object manager rejects the call.
Once a thread has successfully opened a handle to a section, its actions are
still subject to the page-based protections previously described.

A thread can change the page-level protection on virtual pages in a sec
tion if the change doesn't violate the ACL on the section object. For example,
the VM manager allows a thread to change the pages of a read-only section to
have copy-on-write access but not to have read/write access. The change to
copy-on-write access is allowed because it has no effect on other processes
sharing the data.

Security also comes into play when a thread creates a section to contain a
mapped file. To do so, the thread must have access to the underlying file ob
ject. For example, a thread that creates a section object to map a file must have
at least read access to the file, or the operation will fail. Once a file is loaded
into a section, the thread can change the ACL on the section object, but only
within the bounds set by the ACL on the file that was mapped.

6.3 Virtual Memory Implementation
Thus far, this chapter has focused on general virtual memory principles and
the user-mode features provided in the NT executive's VM manager. The fol
lowing subsections delve into internal matters-data structures and
algorithms that are not visible to user-mode code but that affect the operation
and performance of virtual memory. The layout of a process's virtual address
space is described first, followed by an explanation of paging mechanisms
and policies governing a process's use of memory. A brief description of the
two primary data structures in the virtual memory component follow. Finally,
the higher-level issues of multiprocessing and portability of the virtual
memory system are addressed.

6.3.1 Address Space

184

Each native NT process has a large virtual address space of 4 GB, 2 GB of
which are reserved for system use.5 The lower half of the virtual address space
is accessible to user-mode and kernel-mode threads and is unique for each
process. The upper half of the virtual address space is accessible only to

5. The MIPS R4000 dictates that 2 GB of address space be reserved for system use. Other processors
require less, but to ensure the system's portability, 2 GB are always reserved.

The Virtual Memory Manager

kernel-mode threads and is the same for every process. A process's virtual ad
dress space is illustrated in Figure 6-8.

FFFFFFFFh -
Nonpaged

COOOOOOOh
Paged

I- System Memory ---------------

Directly
(2 GB)

Mapped
Addresses

80000000h =

Paged User Memory
I- (2 GB)

OOOOOOOOh -
Figure 6-8. Virtual Address Space

Kernel code and data reside in the lower portion of system memory
(from 80000000 through BFFFFFFFh on the MIPS R4000), and they are never
paged out of memory. On the MIPS R4000, this region of memory is directly
mapped by the hardware. That is, the processor zeroes out the three most sig
nificant bits of any virtual address in this range and uses the remaining bits as
a physical address (which has the effect of placing the data in low physical
memory). Because the addresses in this range are translated by the hardware
and are never invalid, data access from this region of memory is extremely
fast. It is used for portions of the kernel that rely on maximum performance,
such as the code that dispatches threads for execution on a processor.

The upper portion of system memory is controlled by the VM. manager
and is used to store other system code and data. A part of this area is reserved
for code and data that can be paged to disk, and another part is reserved for
system code that can never be paged out of memory (the code that does the
paging, for example).

When you create a new process, you can specify that the VM manager
initialize its virtual address space by duplicating the virtual address space of
another process or by mapping a file into its virtual address space. For in
stance, the POSIX subsystem uses the former tactic when one of its clients
creates a child process. The child process's address space is a replica of its

185

INSIDE WINDOWS NT

POSIX parent process. (Actually, the parent and child share copy-on-write
pages, so no copying takes place immediately.) The latter tactic is used when a
new process is created to run an executable program. For example, when a
user runs the chkdsk utility, the NT process manager creates a process and the
VM manager initializes its address space with the chkdsk image, which is then
executed.

Environment subsystems can present to their client processes views of
memory that do not correspond to the virtual address space of a native NT
process. Win32 applications use an address space that is identical to the native
address space, but the 16-bit OS/2 subsystem and the virtual DOS machines
(VDM) subsystem present altered views of memory to their clients.

6.3.2 Paging

186

The design of an operating system component often reveals itself when you
ask two important questions:

lIII What mechanisms does the component use to do its work?

II What policies govern the mechanisms?

Virtual memory mechanisms include the way in which the VM manager
translates virtual addresses into physical addresses and the way in which it
brings pages into physical memory. Virtual memory policies, in contrast, de
termine when to bring a page into memory and where to place it, for
example.

Often the processor provides primitive paging mechanisms, which the
virtual memory system augments. The pager, the VM manager's code that
transfers pages to and from disk, is an important intermediary between hard
ware mechanisms and software policies:

lIII It makes an invalid page valid when a page fault occurs (for ex
ample, by loading a page into memory from disk).

lIII It provides page-based protection for invalid pages and enhances
the protections that the hardware provides for valid pages.

II It updates and maintains memory management data structures.

In addition, the pager enforces the paging policies set by the VM man
ager. The next subsection describes the virtual memory mechanisms supplied
by the MIPS R4000. The subsection that follows it summarizes the paging
policies of the VM manager.

The Virtual Memory Manager

6.3.2.1 Paging Mechanisms
Every processor that supports virtual memory does so differently. Therefore,
code that directly interfaces with virtual memory hardware is not portable
and must be modified for each new hardware platform. In the best of circum
stances, as in Windows NT, such code is small and well isolated.

The information in this section is specific to the MIPS R4000 and pro
vides one example of how the VM manager interoperates with a processor.
Much of this information is also applicable to the Intel CISC processors, but
for simplicity, the Intel processors are not discussed at length here.

The MIPS R4000 contains two modules: the 32-bit RISC processing unit
(called CPl) and a separate on-chip module (called CPO) that handles address
translation and exception handling. CPO automatically captures each address
that a program generates and translates it into a physical address. If the page
containing the address is valid (present in memory), CPO locates it and
retrieves the information. If the page is invalid (not present in memory), CPO
generates a p-age fault, and the VM manager's pager is invoked.

To ensure fast memory access, the MIPS R4000 (as well as the Intel pro
cessors) provides an array of associative memory called the translation lookaside
buffer (TLB) . Associative memory, such as the TLB, is a vector whose cells can
be read simultaneously and compared to a target value. In the case of the
TLB, the vector contains the virtual-to-physical page mappings of the most
recently used pages and the type of page protection applied to each page.
Figure 6-9 is a simplified depiction of the TLB.

Virtual Address Ma\lCh TLB

I Virtual page number: 17 r.:,::.=.:::::-mm- - Virtua?age i pag~~~ame
.. \:.: •••• ::::-----•• " Virtu!:age i Invalid

":::",.
• :.'. 'f-I-"" Virtual page), Page frame
.:. .. \ 17 ' 1004

,.',. ""
Simultaneous '-.\ ".

read and compare \,. "\ ""\.
\ '" ""\., . ., . ..

\ \.
Virtual page

7 Invalid • Virtual page Page frame
'-. 1---:---,6~ __ ~--:=----=-14-'-_--i

• Virtual page Page frame
65 801

Figure 6-9. Accessing the Translation Lookaside Buffer

187

INSIDE WINDOWS NT

188

Virtual addresses that are used frequently are likely to have entries in the
TLB, which provides extremely fast virtual-to-physical address translation
and, therefore, memory access. If a virtual address is not present in the TLB, it
might still be in memory, but virtual memory software, rather than hardware,
must find it, in which case access time is slightly slower. If a virtual page has
been paged out of memory, the virtual memory system makes its TLB entry
invalid. If a process accesses it again, a page fault occurs, and the VM manager
brings the page back into memory and re-creates an entry for it in the TLB.

The kernel and the VM manager use software-created page tables to find
pages that are not present in the TLB. Page tables are found on most virtual
memory systems; sometimes they are implemented by the hardware and
sometimes by the software. Conceptually, a page table resembles the data
structure shown in Figure 6-10.

A page table entry (PTE) contains all the information necessary for the vir
tual memory system to locate a page when a thread uses an address. In a
simple virtual memory system, an invalid entry in a page table means that the
page is not in physical memory and must be loaded from disk. A page fault
exception occurs, and the paging software loads the requested page into

Virtual page
number: 5

Virtual
Page

Number

Figure 6·10. Conceptual Page Table

2

3

4

5

6

7

n

Page Table

Page frame 3

Page frame 10

Invalid

Invalid

Page frame 7

Page frame 5

Invalid: transition

Invalid

-

1-

I-
Page Table
Entries

The Virtual Memory Manager

memory and updates the page table. The processor reissues the instruction
that generated the page fault. This time, however, the page table entry is valid
and the data is successfully retrieved from memory.

The MIPS R4000 has 32-bit addresses, or 232 possible virtual addresses for
each process. It organizes these virtual addresses into pages 212 bytes (4 KB)
long, which yields 220, or 1,048,576, pages per address space. If page table en
tries are 4 bytes wide, it takes 1024 page frames of storage (220 times 22 divided
by 212) to map all of virtual memory. And that takes care of only one address
space! Each process has a separate address space. To avoid consuming all the
memory just for page tables, the VM manager pages the tables in and out of
memory as they are needed.

The MIPS R4000 processor allows the operating system to structure page
tables in whatever format is most convenient. In contrast, the Intel 386 pro
cessor establishes a page table format in hardware. To provide maximum por
tability from MIPS to Intel processors, the VM manager adopts a two-level
page table structure that mimics the Intel format. The first-level table, called
a page directory, points to pages in a second-level page table. The second-level
page table points to actual page frames, as shown in Figure 6-11 on the
next page.

When locating a page table entry, the VM manager (and the NT kernel)
translates a MIPS-style virtual address into an Intel-style address using differ
ent portions of it as offsets into the page table structure. In addition, one en
try in the TLB always contains the virtual base address of the page directory
for the currently executing process. (This is the reason that one user process
cannot "see" the address space of another. They have different page directo
ries, which point to different page tables.)

Entries in a process's page directory and page tables can be either valid
or invalid. If an entry in the page directory is invalid, a page fault occurs to
load the directory page and locate a page table page. After the page table
page has been made valid, the appropriate entry in the page table is checked.
If the page table entry is also invalid, another page fault occurs to locate the
code or data page.

The page table entries in these NT-defined page tables are an improve
ment over the conceptual page table shown earlier. Each page table entry
(and each page directory entry) has a transition flag. If the page table entry is
marked invalid and the transition flag is set, the page is slated to be reused,
but its contents are still valid. Making a transitional page valid is a very fast
operation because the VM manager doesn't need to read the page into
memory from disk. The page table entries also contain flags that record the
page-level protections that the VM manager applies to each page.

189

INSIDE WINDOWS NT

190

Virtual Address

Directory I Page Table I Page
Offset Offset Offset

31 I 21 I 11 L 0

Page Directory Page Table Page
(one per process) Page Frame

'"+
Page frame r-

address

4 Page table - -.... Code or data
address

J J~

I Page Directory Address I
Figure 6-11. Page Table Structure on the Intel 386 and the MIPS R4000 6

When a page frame is shared between two processes, the VM manager
inserts a level of indirection into its page tables, as Figure 6-12 illustrates. The
data structure it inserts is called a prototype page table entry (prototype PTE).

The prototype PTE, a 32-bit structure that looks similar to a normal page
table entry, allows the VM manager to manage shared pages without needing
to update the page tables of each process sharing the page. For example, a
shared code or data page might be paged out to disk at some point. When the
VM manager retrieves the page from disk (pages it in), it needs only to update
the pointer stored in the prototype PTE to point to the page's new physical
location. Each sharing process's page table remains the same. Prototype PTEs
are allocated from paged system space, so, like page table entries, they can be
paged if necessary.

6. This figure is based on Figure 5-9 in the Intel 80386 Processor Reference Manual (Intel Corpora
tion, 1988), 5-8.

The Virtual Memory Manager

Virtual Address

I Directory I Page Table I Page I Offset Offset Offset
31 I 21 I 11 I 0

Page Page Table Page
Directory Page Prototype Frame

Page Table
Entry

... Prototype H Page frame ~ PTE address address

-+ Page table I- ~ Code or data
address

I Page Directory Address I
Figure 6·12. Address Translation for Shared Memory

6.3.2.2 Paging Policies and Working Sets
Virtual memory systems generally define three p9licies that dictate how (or
when) paging is performed: a fetch policy, a placement policy, and a replace
ment policy.

A fetch policy determines when the pager brings a page from disk into
memory~ One type of fetch policy attempts to load the pages a process will
need before it asks for them. Other fetch policies, called demand paging policies,
load a page into physical memory only when a page fault occurs. In a demand
paging system, a process incurs many page faults when its threads first begin
executing, as they reference the initial set of pages they need to get going.
Once this set of pages is loaded into memory, the paging activity of the pro
cess decreases.

NT's VM manager uses a demand paging algorithm with "clustering" to
load pages into memory. When a thread gets a page fault, the VM manager

191

INSIDE WINDOWS NT

192

loads into memory the faulted page plus a small number of pages surround
ing it. This strategy attempts to minimize the number of page faults a thread
will incur. Because programs, especially large ones, tend to execute in small
regions of their address space at any given time, loading clusters of virtual
pages reduces the number of page faults.

When a thread receives a page fault, the memory management system
must also determine where in physical memory to put the virtual page. The
set of rules it uses is called a placement policy. Placement policies, although fre
quently complicated for segmented memory architectures, are USJIally simple
for linear architectures, which require only that a free page frame be found.
In NT, if memory is not full, the VM manager simply selects the first page
frame on a list of free page frames. If the list is empty, it traverses a series of
other page frame lists that it maintains; the order of traversal depends upon
the type of page fault that occurred. (More information about page frame
lists appears in Section 6.3.3.)

If physical memory is full when a page fault occurs, a replacement policy
is used to determine which virtual page must be removed from memory to
make room for the new page. Common replacement policies include /east re
cently used (LRU) and first in, first out (FIFO). The LRU algorithm requires the
virtual memory system to track when a page in memory is used. When a new
page frame is required, the page that has not been used for the greatest
amount of time is paged to disk, and its frame is freed to satisfy the page fault.
The FIFO algorithm is somewhat simpler; it removes the page that has been in
physical memory for the greatest amount of time, regardless of how often it
has been used.

Replacement policies can be further characterized as either global or
local. A local replacement policy allocates a fixed (or, as in NT, a dynamically ad
justable) number of page frames to each process. When a process uses all of
its allotment, the virtual memory software frees (that is, removes from physi
cal memory) one of its pages for every new page fault it incurs. A global re
placement policy allows a page fault to be satisfied by any page frame, whether
or not that frame is owned by another process. For example, a global replace
ment policy using the FIFO algorithm would locate the page that has been in
memory the longest and would free it to satisfy a page fault; a local replace
ment policy would limit its search for the oldest page to the set of pages
already owned by'the process that incurred the page fault.

Global replacement policies have a number of problems. First, they
make processes vulnerable to the behavior of other processes. For example, if
one or more processes in the system are using large amounts of memory~ an
executing application is more likely to incur heavy paging. Execution time

The Virtual Memory Manager

will increase. Second, an ill-behaved application can undermine the entire
operating system by inducing excessive paging activity in all processes. In
Windows NT, it is important that the environment subsystems not compete
with other processes for their fair share of memory. They must keep a certain
number of pages in memory in order to execute efficiently and support their
client applications adequately. For these reasons, the VM manager uses a local
FIFO replacement policy. This approach requires the VM manager to keep
track of the pages currently in memory for each process. This set of pages is
called the process's working set.7

When created, each process is assigned a minimum working-set size,
which is the number of pages the process is guaranteed to have in memory
while it is running. If memory is not overly full, the VM manager allows the
process to have as many pages as its working-set maximum.s If the process re
quires more pages, the VM manager removes one of the process's pages for
each new page fault the process generates.

To determine which page to remove from a process's working set, the
VM man;lger employs a simple FIFO algorithm, removing pages that have
been in memory the longest. (Because replaced working-set pages actually re
main in physical memory for a period of time after the replacement, they can
be brought back into the working set quickly without requiring a disk read
operation. See Section 6.3.3.)

When physical memory runs low, the VM manager uses a technique
called automatic working-set trimming to increase the amount ~f free memory
available in the system. It examines each process in memory, comparing the
current size of its working set to its minimum working-set value. When it finds
processes using more than their minimums, it removes pages from their work
ing sets, making the pages available for other uses. If tl,le amount of free
memory is still too low, the VM manager continues removing pages from pro
cesses' working sets until each process reaches its working-set minimum.

Once a process drops to its working-set minimum, the VM manager
tracks the number of page faults the process incurs. If the process generates
page faults and memory is not overly full, the VM manager increases the size

7. P. J. Denning, who published his seminal paper on virtual memory in 1970, used the term working
set to refer to the minimum number of pages a process must have in physical memory before its exe
cution can progress. A process with less than its working set is susceptible to thrashing (continuous
page faulting). Our definition, "the set of pages in memory at any given time for a process," is
slightly different from Denning's definition, and the two should not be confused.

8. The VM manager can also allow a process to exceed its maximum if ample memory is available.

193

INSIDE WINDOWS NT

of the process's working set. If, however, the process incurs no page faults for
a period of time, either the code the process's threads are executing fits com
fortably within the process's minimum working set or none of the process's
threads are executing. For example, the Windows NT logon process simply
waits for a user to log on. Once the user is logged on, the process waits for the
user to log off. For the logon process, and for other processes that remain idle
much of the time, the VM manager continues lowering the process's working
set until the process incurs a page fault. The page fault indicates either that
the process's threads have awakened or that the process has reached the lower
limit of memory its threads need in order to execute.

A process can change its working-set minimum and maximum by calling
a process object service, but the security system's local policy database sets an
absolute minimum and maximum for each user-mode process. Although this
capability is provided, it is largely unnecessary for individual processes to
modify their working-set values. The memory manager is designed, through
its use of the local replacement policy and automatic working-set trimming,
to track the load on memory and to adjust memory usage accordingly. It
attempts to provide the best possible performance for each process without
requiring system tuning by individual users or an administrator.

6.3.3 Page Frame Database

194

A process's page tables track where in physical memory a virtual page is
stored. The VM manager also needs a data structure to track the state of physi
cal memory. For example, it needs to record whether a page frame is free, and
if not, who is using it. The page frame database fills this need. It is an array of
entries numbered from 0 through the number of page frames of memory in
the system (minus 1). Each entry contains information about the correspond
ing page frame. The page frame database and its relationship to page tables is
depicted in Figure 6-13. As this figure shows, valid page table entries point to
entries in the page frame database, and the page frame database entries point
back to the page table that is using them. The VM manager uses the forward
pointer when a process accesses a valid virtual address. It follows the pointer
to locate the physical page corresponding to a virtual address.

Some invalid page table entries also refer to entries in the page frame
database. These "transitional" page table entries refer to page frames that are
eligible for reuse but have not yet been reused and, therefore, are still intact in
memory. If the process accesses one of these pages before it is reused by an
other process, the VM manager can recover the contents quickly.

Process 1
Page Table

Valid

Invalid:
disk address

Invalid:
transition

Process 2
Page Table

Valid

Invalid:
disk address

Valid

Process 3
Page Table

Valid

Invalid:
transition
Invalid:

disk address

..c •••.•••••••• , I , , .. 1 _______ .. _______

~

~•............

p-pejf
r-::d .. :

I-

~

Forward pointer •

Backward pointer ~ •••••••

The Virtual Memory Manager

Page Frame
Database

In use

Standby list

In use

In use

Modified list

Figure 6-13. Page Tables and the Page Frame Database

Other invalid page table entries contain the disk address where the page
is stored. When a process accesses one of these pages, a page fault occurs and
the VM manager reads the page from the disk.

195

INSIDE WINDOWS NT

196

Page frames can be in one of six states at any given time:

III Valid. The page frame is in use by a process, and a valid page table
entry points to it.

III . Zeroed. The page frame is free and has been initialized with zeros.

III Free. The page frame is free but is not initialized.

III Standby. A process was using the page frame, but the page frame
was removed from the process's working set. The page table entry
for it is invalid but marked with a transition flag.

III Modified. This state is the same as the standby state except that the
process that used the page also wrote to it, and the contents have
not yet been written to disk. The page table entry for it is invalid but
marked with a transition flag.

III Bad. The page frame has generated parity or other hardware errors
and cannot be used.

Of the page frames that are not in use, the page frame database links
together all those that are in the same state, thus creating five separate lists:
the zeroed list, the free list, the standby list, the modified list, and the bad
page list. The relationship between the page frame database and the page lists
is shown in Figure 6-14.

As shown in the figure, these lists account for every page frame in the
computer that is not in use. Those that are in use by a process are pointed to
by that process's page table. When a process finishes with a page frame or
when the VM manager pages its contents to disk, the page frame becomes free
and the VM manager places it back in one of its page frame lists.

When the VM manager needs an initialized page frame (one containing
all zeros) to service a page fault, it attempts to get the first one in the zeroed
page list; if the list is empty, it gets one from the free list and zeroes it.9 When
the VM manager doesn't require a zeroed page, it uses the first one in the free
list; if the free list is empty, it uses one from the zeroed list. In either of these

. cases, the VM manager uses the standby list if both of the other lists are
empty. Whenever the number of pages in the zeroed, free, and standby lists

9. The U.S. Department of Defense specifies that, for C2-level security, user-mode processes must be
given initialized page frames to prevent them from reading a previous process's memory contents.
Therefore, the VM manager gives user-mode processes zeroed page frames unless the process is load
ing data from a disk file, such as an executable image. In the latter case, tile VM manager uses
nonzeroed page frames, initializing them with the disk image.

I Zeroed I

I Free l
I Standby

B
I Modified r-

Page Frame
Database

-
In use

•

In use

In use

•
•

•

..
W

..
~

j

Figure 6-14. Page Lists in the Page Frame Database

The Virtual Memory Manager

shrinks below a minimum threshold, a thread called the modified page writer
"wakes up," writes the contents of the modified pages to disk, and then
moves them to the standby list for reuse.

If even the modified page list becomes too short, the VM manager
begins trimming each process's working set to its minimum working-set size.
The newly freed pages are placed on the modified or standby list to be reused
on demand. A state diagram of page frame transitions is shown in Figure 6-15
on the next page.

Before the VM manager can use a page frame from the standby or modi
fied list, it must first backtrack and update the invalid page table entry (or
prototype PTE) that still points to the page frame. Referring back to Figure
6-13, you can see that entries in the page frame database contain pointers back

197

1 N S I. DEW 1 N DOW S N T

Make a PTE valid,
pointing to this

page frame

Zero page writer

Restore a
~---- disk address

in the PTE

Virtual addresses freed
or unmapped, or address

space deleted

Modified
page writer

Remove a
modified page

from a process's
working set

.------"~---,

Remove a page
from a process's

working set

Figure 6-15. State Diagram for Page Frames

to the previous user's page table (or to a prototype PTE for shared pages),
which allows this updating to occur.

6.3.4 Virtual Address Descriptors

198

An earlier section of this chapter described the paging policies the VM man
ager uses to determine when to bring a page into memory, where to put it, and
which pages to remove when memory gets full.

The VM manager uses a demand-paging algorithm to know when to load
pages into memory. It waits until some thread uses an address and incurs a
page fault before it gets a page from disk. Demand paging such as this is a
form of lazy evaluation. Lazy-evaluation algorithms avoid performing an ex
pensive operation, such as paging, until it is absolutely require~.

The Virtual Memory Manager

The VM manager uses lazy evaluation in another area, that of construct
ing page tables. For example, when a thread allocates a large region of virtual
memory, the VM manager could immediately construct the page tables re
quired to access the entire range of allocated memory. However, if the appli
cation doesn't use all the allocated memory, constructing the page tables is a
wasted effort. Therefore, the VM manager waits to do so until a thread incurs
a page fault. Using lazy evaluation in this way yields a significant performance
gain for applications that reserve a lot of memory but use (commit) it
sparsely.

Allocating memory, even large blocks of it, is extremely fast with the
lazy-evaluation algorithm. The performance gain is not without its trade-offs,
however. When a thread allocates memory, the VM manager must respond
with a range of virtual addresses for the thread to use. However, because the
VM manager doesn't load the process's page table until the thread actually
accesses the memory, it can't look at the page table to determine which vir
tual addresses are free. Therefore, the VM manager must maintain another
set of data structures to keep track of the virtual addresses that have already
been allocated in the process's address space and those that have not. Virtual
address descriptors fill this need.

For each process, the VM manager maintains a set of virtual address de
scriptors that describes the status of the process's virtual address space. See
Figure 6-16.

When a process allocates memory (or maps a view of shared memory),
the VM manager creates a virtual address descriptor in which to store any in
formation supplied in the allocation request, such as the range of addresses

Range: 20000000-2000FFFF
Protection: read/write
Inheritance: yes

/ ~
Range: 0OOO2000-0000FFFF Range:4EOOOOOO-4FOOOOOO
Protection: read-only Protection: copy-on-write
Inheritance: no Inheritance: yes

/ ~
Range: 32000000-3300FFFF Range: 7AAAOOOO-7AAAOOFF
Protection: read-only Protection: read/write
Inheritance: no Inheritance: no

Figure 6-16. Virtual Address Descriptors

199

INSIDE WINDOWS NT

being allocated, whether the range will be shared or private memory, whether
a child process can inherit the contents of the range, and the page protection
applied to pages in the range. It then inserts the virtual address descriptor
into a process-specific splay tree (a self-balancing binary tree) to speed the
process of locating it.

When a thread first accesses an address, the VM manager must create a
page table entry for the page that contains the address. To do so, the VM man
ager finds the virtual address descriptor whose address range also contains
the accessed address and uses the information it finds to fill in the page table
entry. If the address falls outside the range covered by the virtual address de
scriptor, the VM manager knows that the thread did not allocate this memory
address before usingjt; an access violation has occurred.

6.3.5 Multiprocessing Considerations

200

Any code that can be run on more than one processor at the same time is sub
ject to some coding constraints. The code must be reentrant, it must allow
only one thread to access shared data structures at one time, and it must not
permit two threads to acquire resources in such a way that they block each
other's execution (a condition known as deadlock). In addition, performance
considerations arise in multiprocessor systems that do not occur in single
processor systems.

The VM manager is reentrant, so preventing data corruption and
deadlock and achieving good performance were the most important con
cerns for its multiprocessor execution.

The VM manager uses a spin lock to protect its most important data
structure-the page frame database. Whenever a page fault occurs, the
pager takes control of the faulting thread to resolve the page fault and update
the database. Before accessing the database, the thread must gain ownership
of the database spin lock. While the thread owns this spin lock, no other
thread can read from or write to the page frame database. Therefore, when
two page faults occur simultaneously on Windows NT, one thread might be
held up momentarily until the page frame database is free.

Delaying a thread's access to the page frame database is an example of
the trade-off between speed and the needs of multiprocessing systems. The
VM manager could have allowed separate threads to access different parts of
the database simultaneously by carving the database into several data struc
tlJres and guarding each piece with a separate lock. However, acquiring and
releasing locks is an expensive operation, so page faults would take longer if a

The Virtual Memory Manager

thread had to acquire three locks instead of one to access the database. In
balancing this trade-off, Lou Perazzoli, the VM manager's designer, gave pref
erence to fast page faults over increased parallelism in the pager. He chose to
use a single lock to protect the database, assuming that with the lower over
head, a thread would enter and exit the database more quickly, thus freeing it
for other threads.

Using a single database lock means that the page frame database can
become a performance bottleneck when paging activity is high. To avoid this
problem, the VM manager attempts to minimize page faulting in Windows
NT. It does the following to keep the number of page faults low:

III It gives each process enough pages in its working set to prevent ex
cessive faulting.

III It automatically trims processes' working sets to make their unused
or excess pages available for other processes.

6.3.6 Portabil ity Considerations
The VM manager depends on certain hardware features. The following are
processor requirements for the VM manager:

III 32-bit addresses. (64-bit addresses are supported, but they require
. some redesign in the VM manager.)

III Virtual memory and paging support. The processor must provide
the ability to map virtual addresses to physical addresses, and it must
supply paging mechanisms.

III Transparent, coherent hardware caches for multiprocessor systems.
When a thread on one processor updates data in its cache, all other
processors must be notified that the data in their caches is no longer
correct.

III Virtual address aliasing. The processor must allow two page table
entries in the same process to map to the same page frame. The
operating system often shares a page with a user process by map
ping a second page table entry.

Certain parts of the VM manager are dependent on the features of the
processor on which the operating system runs. The parts of the memory man
ager listed at the top of the next page must be modified for each hardware
platform to which it is ported.

201

INSIDE WINDOWS NT

II Page table entries. When a page table entry is valid, the processor di
vides the 32 bits into fields and sets them accordingly. When a page
table entry is invalid, the VM manager uses the remaining 31 bits as
it chooses. The format it selects is based on the virtual memory fa
cilities the processor provides.

II Page size. Different processors use different page sizes. The VM
manager allocates virtual memory on 64-KB boundaries, which en
sures that it can support any page size from 4 KB to 64 KB. Page
sizes smaller than 4 KB are not supported.

II Page-based protection. The way in which the VM manager manipu
lates the hardware-based page protection to perform additional
software-based page protection is hardware dependent.

II Virtual address translation. The algorithm the VM manager uses
to translate a virtual address to a page table entry is hardware
dependent.

6.4 In Conclusion

202

Windows NT's VM manager implements a sophisticated virtual memory sys
tem. It gives each process access to a large number of virtual addresses, pro
tecting one process's memory from another's but allowing processes to share
memory efficiently and with a great degree of control. With appropriate ac
cess rights, a process can also manage the address space of other processes, a
feature exploited by the environment subsystems. Advanced capabilities are
also available, such as mapped files and the ability to sparsely allocate
memory. The Win32 environment subsystem makes many of the NT virtual
memory capabilities available to applications in its 32-bit API.

The VM manager implements page-based memory protection that aug
ments the protection processors provide. Shared memory regions are imple
mented as objects, and their use is thus controlled and monitored by the
security mechanisms that protect all objects. Additionally, a process can add
page-based protections to selected portions of shared memory.

The VM manager's implementation relies on lazy-evaluation techniques
whenever possible to avoid performing unnecessary and time-consuming
operations unless they are required. This is one of several optimizations the
VM manager uses to ensure fast and efficient memory access.

The next chapter takes a step inward and downward to the NT kernel,
the true center of Windows NT.

C HAP T E R S EVE N

THE KERNEL

The developers of the NT executive sometimes describe its kernel compo
nent as "the bottom of the food chain." The metaphor, although imperfect,
is correct in at least one regard: An operating system, like any large body of
software, consists of layer upon layer of code. Higher layers of code rely on
more primitive (but in this case, more powerful) functions and data struc
tures provided by lower layers. Another metaphor, perhaps more apt, likens
the kernel to the hub of a wheel. It is the center of the operating system
around which everything else revolves.

The kernel performs the most fundamental operations in Windows NT,
determining how the operating system uses the processor or processors and
ensuring that they are used prudently. Thus, the success of the entire operat
ing system rides on the kernel's correct and efficient operation.

With this challenge, it was essential that the NT kernel rest in capable
hands. Dave Cutler, director of the Windows NT development group and pri
mary architect of the system, designed and implemented the NT kernel.
Dave, a former senior corporate consultant at Digital Equipment Corporation
(DEC), was instrumental in designing several successful DEC operating sys
tems, among them the VAXjVMS operating system and the RSX-llM operat
ing system for the PDP-ll machine.

Dave's overriding goal for the NT kernel was to provide a low-level base
of well-defined, predictable operating system primitives and mechanisms that
would allow higher-level components of the NT executive to do what they
need to do. Using kernel primitives, the NT executive can build higher-level
abstractions of an infinite variety. It doesn't need to resort to backdoor inter
faces, undocumented side effects, or direct hardware manipulation. The
kernel separates itself from the rest of the executive by implementing

203

The Kernel

In addition to the functions it provides to the NT executive, the kernel
performs four main tasks:

• Schedules threads for execution

• Transfers control to handler routines when interrupts and excep
tions occur

• Performs low-level multiprocessor synchronization

• Implements system recovery procedures after a power failure occurs

The kernel is different from the rest of the executive in several ways.
Unlike other parts of the executive, the kernel is never paged out of memory.
Similarly, although it can be interrupted to execute an interrupt service rou
tine (see Chapter 8, "The I/O System"), its execution is never preempted. In
other words, multitasking ceases for short periods of time while the kernel
runs. The kernel always runs in kernel mode, Windows NT's privileged pro
cessor mode, and is designed to be small, compact, and as portable as perfor
mance and differences in processor architectures allow. The kernel code is
written primarily in C, with assembly code reserved for those tasks that re
quire the fastest possible code or that rely heavily on the capabilities of the
processor.

Outside the kernel, the executive represents threads and other share
able resources as objects. These objects require some policy overhead, such as
object handles to manipulate them, security checks to protect them, resource
quotas to be deducted when they are created, and the prosaic mechanics of
allocating and deallocating memory to hold them. This overhead is elimi
nated in the kernel, which implements a set of simpler objects, called kernel
objects, that helps the kernel control central processing and supports the crea
tion of executive objects. Most executive-level objects encapsulate· one or
~ore kernel objects, incorporating their powerful, kernel-defined attributes.

One set of kernel objects, called control objects, establishes semantics for
controlling various operating system functions. This set includes the kernel
process object, the asynchronous procedure call (APC) object, the deferred procedure
call (DPC) object, and several objects used by the I/O system, including the
interrupt object, the power notify object, and the power status object. Another
set of kernel objects, known as dispatcher objects, incorporates synchronization ca
pabilities and alters or affects thread scheduling. The dispatcher objects in
clude the kernel thread, kernel mutex, kernel mutant, kernel event, kernel
event pair, kernel semaphore, and kernel timer. The executive uses kernel func
tions to create instances of kernel objects, to manipulate them, and to

205

The Kernel

called the kernel thread object. A kernel thread object is contained within an
executive thread object and represents only the information the kernel needs
in order to dispatch the thread for execution. Similarly, the kernel imple
ments a minimal version of a process object, called a kernel process object. Figure
7-1 illustrates the relationship between kernel process and kernel thread ob
jects and their higher-level, executive counterparts.

As shown in Figure 7-2 on the next page, the kernel process object con
tains a pointer to a list of kernel threads. (The kernel has no knowledge
of handles, so it bypasses the object table.) The kernel process object also
points to the process's page table directory (used to keep track of the pro
cess's virtual address space), the total time the process's threads have exe
cuted, the process's default base scheduling priority, .and the default set of
processors on which the threads can run (called their processor affinity). The
kernel maintains control over the information stored in the kernel process
object. The rest of the executive can read or alter the information only by call
ing a kernel function.

Process
Object

Kernel
Process

Handle 1 •

Handle 2 •

Object
Table

Access
Token

Thread
Objects

Figure 7-1. Kernel Process Object and Kernel Thread Objects

207

The Kernel

• Running. Once the dispatcher performs a context switch to a
thread, the thread enters the running state and executes. The
thread's execution continues until either the kernel preempts it to
run a higher priority thread, its time quantum ends, it terminates,
or it voluntarily enters the waiting state.

• Waiting. A thread can enter the waiting state in several ways: A
thread can voluntarily wait on an object to synchronize its execu
tion; the operating system (the I/O system, for example) can wait
on the thread's behalf; or an environment subsystem can direct the
thread to suspend itself. When the thread's wait ends, the thread
moves back to the ready state to be rescheduled.

D Transition. A thread enters the transition state if it is ready for exe
cution but the resources it needs are not available. For example, the
thread's kernel stack might be paged out of memory. Once its
resources are available, the thread enters the ready state.

D Terminated. When a thread finishes executing, it enters the termi
nated state. Once terminated, a thread object might or might not be
deleted. (The object manager sets policy regarding when to delete
the object.) If the executive has a pointer to the thread object, it can
reinitialize the thread object and use it again.

The waiting state bears a little more discussion. A thread is in the wait
ing state when it is waiting for an object or a group of objects to be set to the
signaled state. As discussed in Chapter 4, "Processes and Threads," executive
objects that support synchronization are always in one of two states: either sig
naled or non signaled. Objects remain in the nonsignaled state until some sig
nificant event takes place. A thread, for example, is set to the signaled state
when it terminates. Any user threads that waited on the terminated thread's
handle are released and can continue executing. Similarly, a file object is set
to the signaled state when a requested I/O operation completes. A thread
waiting on the file handle is released from its wait state and can continue
executing.

It is, in fact, the kernel that implements Windows NT's wait and signal
semantics (not to be confused with POSIX signals, which are more closely
akin to NT exceptions). Every synchronization object visible to user mode in
corporates one or more of the kernel's dispatcher objects. For example, a
thread object contains a kernel thread, an event object contains a kernel
event, and a file object contains a kernel event. The kernel is responsible for
setting dispatcher objects to the signaled state according to well-defined

209

The Kernel

In order to make thread-scheduling decisions, the kernel maintains a set
of data structures known collectively as the dispatcher database. The dispatcher
database keeps track of which threads are waiting to execute and which pro
cessors are executing which threads. The most important structure in the dis
patcher database is called the dispatcher ready queue. This queue is really a series
of queues, one queue for each scheduling priority. The queues, shown in
Figure 7-4 on the next page, contain threads that are in the ready state, wait
ing to be scheduled for execution.

As the figure illustrates, the NT executive supports 32 priority levels, di
vided into two classes: real-time and variable-priority. Real-time threads,
those with priorities 16 through 31, are high-priority threads used by time-crit
ical programs-such as an instrument-monitoring application-that require
immediate attention from the processor.

When the dispatcher reschedules a processor, it starts at the highest
priority queue and works its way down until it finds a thread; thus, it schedules
all real-time threads before scheduling any variable-priority threads. Most
threads in the system fall into the variable-priority class, with priorities rang
ing from 1 to 15. (Priority 0 is reserved for system use.) These threads are
called variable priority because the dispatcher adjusts their priorities as they
execute to optimize system response time. For instance, because Windows
NT is a preemptive multitasking system, the dispatcher interrupts a thread
after it has executed for a full time quantum. If the interrupted thread
is a variable-priority thread, the dispatcher lowers the thread's priority.
Thus, the priority of a compute-bound thread gradually decays (down to its
base priority).

In contrast, the dispatcher raises a thread's priority after releasing it
from a wait operation. Executive code outside the kernel usually determines
the size of a thread's priority boost, but the boost size follows a pattern based
on what the thread was waiting for. For example, a thread waiting for key
board input receives a larger boost than one that was waiting for disk I/O to
complete. Overall, interactive threads tend to run at a high variable priority,
I/O-bound threads at an intermediate priority, and compute-bound threads
at a low priority. (A variable-priority thread cannot have its priority boosted
into the real-time class.)

A thread's processor affinity also plays a role in deciding the order in
which threads execute. The kernel selects a thread based on its priority, and
then it checks which processors the thread can run on. If the thread's pro
cessor affinity does not allow it to run on any available processor, then the
kernel selects the next-higher-priority thread.

211

The Kernel

When it detects a thread, the idle thread initiates a context switch to that
thread. The idle thread also checks whether there are any deferred procedure
call (DPC) routines to be executed. (DPCs are described in Section 7.3.2.3.)

7.2.3 Context Switching
Mter a thread executes for a complete time quantum, the kernel preempts it
and reschedules the processor. Time quantum expiration is not the only thing
that initiates thread scheduling, however. Scheduling is event driven, triggered
when the thread that is running can't continue or when the status of a thread
changes and the executing thread is no longer the highest-priority thread.
Some examples of conditions that cause rescheduling are listed below:

II When a thread becomes ready to execute-for instance, a newly ini
tialized thread or one just released from the waiting state

II When a thread's time quantum ends, when it terminates, or when it
enters the waiting state

II . When the dispatcher or the executive (perhaps at the request of an
application program) changes a thread's priority

II When the executive or an application program changes the pro
cessor affinity of a thread that is running

The purpose of rescheduling is to select the thread to execute next on a
particular processor and put it into the standby state. Simply finding the
thread is not enough, however. The dispatcher must also start its execution.

If the thread that was running has terminated or otherwise cannot con
tinue executing, the dispatcher simply performs a context switch to the new
thread. Otherwise, the dispatcher needs to do more. For example, if a high
priority, real-time thread becomes ready to execute but a lower priority
thread is still running, the dispatcher must preempt the executing thread. To
preempt a thread, the dispatcher requests a software interrupt to initiate a
context switch, as shown in Figure 7-5 on the next page.

When rescheduling threads, the kernel uses the dispatcher database to
quickly determine which processors are busy, which are idle (running their
idle thread), and what priority of thread each processor is executing. In this
example, the kernel (running on Processor A) determines that Processor B is
running a thread with a lower priority than that of the newly ready thread.
The kernel requests a dispatch interrupt to preempt the thread running
on Processor B. The kernel running on Processor B responds to the

213

The Kernel

• Other register contents

• User and kernel stack pointers

• A pointer to the address space in which the thread runs (the pro
cess's page table directory)

To make a context switch, the kernel saves this information by pushing
it onto the current thread's kernel-mode stack and updating the stack
pointer. The kernel loads the new thread's context and, if the new thread is in
a different process, loads the address of its page table directory so that its ad
dress space is available. After the kernel does some cleanup, control passes to
the new thread's restored program counter and the thread begins executing.

It is worth repeating here that although a thread running NT executive
code can be preempted by a higher-priority thread, a thread running kernel
code cannot be preempted. When the kernel runs, it effectively runs at a pri
ority higher than that of any other thread in the system. (Actually, it tempo
rarily disables thread dispatching.) Although it can't be preempted, most of
the kernel can be interrupted by high-level interrupts, a topic described later
in this chapter.

7.3 Interrupt and Exception Handling
Interrupts and exceptions are operating system conditions that divert the
processor to code outside the normal flow of control. They can be detected by
either hardware or software. When an interrupt or an exception is detected,
the processor stops what it is doing and transfers control (dispatches) to a spe
ciallocation in memory, the address of the code that deals with the condition.
In NT, this code is called the trap handler.

The NT kernel distinguishes between interrupts and exceptions in the
following way. An interrupt is an asynchronous event, one that can occur at any
time, unrelated to what the processor is executing. Interrupts are generated
primarily by I/O devices, processor clocks, or timers, and they can be enabled
(turned on) or disabled (turned off).

An exception, in contrast, is a synchronous condition, resulting from the
execution of a particular instruction. Exceptions can be reproduced by run
ning the same program with the same data under the same conditions. Ex
amples of exceptions include memory access violations, certain debugger
instructions, and divide-by-zero errors. The NT kernel also regards system ser
vice calls as exceptions (although technically, they are system traps).

The following discussion focuses on interrupt and exception handling
as it is implemented on the MIPS R4000 processor. Implementations of

215

The Kernel

When invoked, the trap handler disables interrupts briefly while it
records the machine state (information that would be wiped out if another
interrupt or exception occurred). It creates a trap frame in which it stores the
execution state of the interrupted thread. This information allows the kernel
to resume execution of the thread after handling the interrupt or the excep
tion. The trap frame is usually a subset of a thread's complete context. As
mentioned in the previous section, a thread's context varies with the architec
ture of the processor.

The trap handler resolves some problems itself, such as some virtual ad
dress exceptions, but in most cases, it determines the condition that occurred
and transfers control to other kernel or executive modules. For example, if
the condition was a device interrupt, the kernel transfers control to the inter
rupt service' routine (ISR) provided by the device driver for the interrupting de
vice. If the condition was caused by a call to a system service, the trap handler
transfers control to the system service code in the NT executive. The remain
ing exceptions are fielded by the kernel's own exception dispatcher. The fol
lowing sections describe interrupt dispatching, system-service dispatching,
and exception handling in greater detail.

7.3.2 Interrupt Dispatching
Hardware-generated interrupts typically ongmate from I/O devices that
must notify the processor when they need service. Interrupt-driven devices
allow the operating system to get the maximum use of the processor by over
lapping central processing with I/O operations. The processor starts an I/O
transfer to or from a device and then executes other threads while the device
completes the transfer. When the device is finished, it interrupts the pro
cessor for service. Pointing devices, printers, keyboards, disk drives, and
network cards are generally interrupt driven.

System software can also generate interrupts. For example, the kernel
can issue a software interrupt to initiate thread dispatching and to asynchro
nously break into the execution of a thread. The kernel can disable interrupts
so that the processor does not receive them, but it does so only infrequently
at critical moments while processing an interrupt or dispatching an excep
tion, for example.

A submodule of the kernel's trap handler, called the interrupt dispatcher,
responds to interrupts. It determines the source of an interrupt and transfers
control either to an external routine that handles the interrupt, called an in
terrupt service routine (ISR), or to an internal kernel routine that responds
to the interrupt. Device drivers supply ISRs to service device interrupts, and
the kernel provides interrupt handling routines for other types of interrupts.

217

IRQL

High level

Power level

I nterprocessor
interrupt level

Clock level

Device level n

Device level 1

Dispatch/DPC level

APClevel

Low level

Type of Interrupt

Machine check or bus error4

Power failure

Work request from another processor

Interval clock

Highest-priority I/O device

Lowest-priority I/O device

The Kernel

Thread dispatching and deferred procedure call
(DPC) processing

Asynchronous procedure call (APC) processing

Normal thread execution

Table 7-1. Interrupt Request Levels (IRQLs)

IRQL Setting

High

Power

Processor A Interprocessor Notification

IIRQL
r-

Clock Clock

Device n

Interrupts Masked _
on Processor A

Processor 8
Device 1

1- IRQL Dispatch/DPC I Dispatch/DPC

APC r Interrupts Masked
on Processor B

Low
L... '-

Figure 7-7. Masking Interrupts

4. These catastrophic hardware errors actually generate exceptions rather than interrupts. However,
when a machine check or bus occurs, the kernel raises the processor's IRQL to high level to mask all
interrupts so that it can shut down the system immediately, preventing damage.

219

Interrupt
Dispatch Table

(lOT)

The Kernel

\ High System Shutdown Routine

CD An interrupt occurs. Power System Power-Down Routine

IPI --+~~ Interprocessor Interrupt Handler

® The interrupt Clock --t-.... Clock Handler
dispatcher retrieves f-------1
the IRQL of the Device n --+--l~~ Device n ISR
interrupt source and
indexes into the lOT.

Dispatch/DPC

APC

Low

Figure 7-8. Servicing an Interrupt

® The interrupt dispatcher
follows the pointer and calls
the correct handling routine.

--+~~ Device 1 ISR

--+--l~ Thread Dispatcher/DPC Handler

--1-'-' APC Handler

--I-.... (none)

Each processor has a separate interrupt dispatch table so that different
processors can run different ISRs, if appropriate. For example, in a
multiprocessor system, each processor receives the clock interrupt but only
one processor updates the system clock in response to this interrupt. How
ever, all the processors use the interrupt to measure time quantum and to
initiate rescheduling when a thread's time quantum ends. Similarly, some sys
tem configurations might require that certain device interrupts be handled
by a particular processor.

Most of the routines that handle interrupts reside in the kernel. The
kernel updates the clock time, for example, and shuts down the system when
a power level interrupt occurs. However, many interrupts are generated by ex
ternal devices, such as keyboards, pointing devices, and disk drives. There
fore, device drivers need a way to tell the kernel which routine to call when a
device interrupt occurs.

The kernel provides a portable mechanism-a kernel control object
called an interrupt object-that allows device drivers to register ISRs for their

221

The Kernel

an object handle, the kernel calls the dispatcher directly to effect an immedi
ate context switch. However, sometimes the kernel detects that rescheduling
should occur when it is deep within many layers of code. In this situation, the
ideal solution is to request dispatching but defer its occurrence until the
kernel completes its current activity. Using a software interrupt is a conve
nient way to achieve this.

For synchronization purposes (see Section 7.4), the kernel always raises
the processor's IRQL to dispatch/DPC level or above when it runs, which
masks software interrupts (and disables thread dispatching). When the
kernel detects that dispatching should occur, it requests a dispatch/DPC level
interrupt, but because the IRQL is at or above that level, the processor holds
the interrupt in check. When the kernel completes its current activity, it
lowers the IRQL below dispatch/DPC level, and the dispatch interrupt
surfaces.

Deferred Procedure Call (DPC) Interrupts Activating the dispatcher by
using a software interrupt is a way to defer dispatching until conditions are
right. NT uses software interrupts to defer other types of processing as well.

Dispatching takes place at the dispatch/DPC IRQL. Interrupts that occur
at this level pass through the trap handler to the dispatcher, which performs
thread scheduling. En route, the kernel also processes deferred procedure
calls (DPCs). A DPC is a function that performs a system task, one that is less
important than the current task. The functions are called "deferred" be
cause they might not execute immediately. Similar to dispatch interrupts,
DPCs execute only after the kernel (or, often, the I/O system) finishes more
important work and lowers the processor's IRQL below dispatch/DPC level.

DPCs provide the operating system with the capability to generate an
interrupt and execute a system function in kernel mode. The kernel uses
DPCs to process timer expiration (and release threads waiting on the timers)
and to reschedule the processor after a thread's time quantum expires.
Device drivers use DPCs to complete I/O requests. (See Chapter 8, "The I/O
System," for more information.)

A DPC is represented by a DPC object, a kernel control object that is not
visible to user-mode programs but is visible to device drivers and other system
code. The most important piece of information the DPC object contains is the
address of the system function that the kernel will call when it processes the
DPC interrupt. DPC routines that are waiting to execute are stored in a kernel
managed queue called the DPC queue. To request a DPC, system code calls the
kernel to initialize a DPC object and then places it in the DPC queue.

223

The Kernel

guarantees that its DPCs behave correctly. (Device drivers must be sure to use
them properly as well.)

DPCs are provided primarily for device drivers, but the kernel uses them
too. The kernel most frequently uses a DPC to handle time-quantum expira
tion. At every tick of the system clock, an interrupt occurs at clock IRQL. The
clock interrupt handler (running at clock IRQL) updates the system time
and then decrements a counter that tracks how long the current thread has
run. When the counter reaches zero, the thread's time quantum has expired
and the kernel might need to reschedule the processor, a lower-priority task
that should be done at dispatch/DPC IRQL. The clock interrupt handler
queues a DPC to initiate thread dispatching and then finishes its work and
lowers the processor's IRQL. Because the DPC interrupt has a lower priority
than do device interrupts, any pending device interrupts that surface are
handled before the DPC interrupt occurs.

Asynchronous Procedure Call (APC) Interrupts When the kernel queues a
DPC object, the ensuing DPC interrupt breaks into the execution of whatever
thread is running. Sometimes it is also handy to be able to interrupt a specific
thread and direct it to execute a procedure.

The kernel provides the means to do that with what is called an asynchro
nous procedure call (APe). Both system code and user-mode code can queue
an APC, although kernel-mode APCs are more powerful. Like the DPC, an
APC executes asynchronously when conditions are right. For user-mode APCs,
the conditions imposed are as follows:

!ill The thread that is to execute the APC must be running.

!ill The processor's IRQL must be at low level.

!ill The thread that is the target of the user-mode APe must have
declared itself to be alertable (a topic discussed shortly).

Kernel-mode APCs do not require "permission" from a target thread to
run in that thread's context, as user-mode APes do. Kernel-mode APCs can
interrupt a thread and execute a procedure without the thread's intervention
or consent.

A program queues an APe to a particular thread by calling the kernel,
either directly (for system code) or indirectly (for user-mode code). The
kernel, in turn, requests a software interrupt at APC level, and when all the
conditions listed above are met, the targeted thread is interrupted, and it exe
cutes the APe.

225

The Kernel

7.3.3 Exception Dispatching
In contrast to interrupts, which can occur at any time, exceptions are condi
tions that result directly from the execution of the program that is running.
Microsoft C defines a software architecture known as structured exception
handling, which allows applications to respond to exceptions uniformly.
Chapter 2, "System Overview," introduced the basic concepts behind struc
tured exception handling. This subsection examines it from another point of
view-how the kernel sees an exception and what it does when one occurs.

All exceptions, except those simple enough to be resolved by the trap
handler, are serviced by a kernel module called the exception dispatcher. (Refer
to Figure 7-6.) This kernel module is dependent on the processor architec
ture, but it is written in C. The exception dispatcher's job is to find an excep
tion handler that can "dispose of" the exception. The following are
architecture-independent exceptions that the kernel defines:

Memory access violation

Integer overflow

Floating point divide by zero

Debugger breakpoint

Illegal instruction

Debugger single step

Page read error

Integer divide by zero

Floating-point overflow/underflow

Floating-point reserved operand

Data-type misalignment

Privileged instruction

Guard page violation

Paging file quota exceeded

The NT kernel traps and handles some of these exceptions, unbe
knownst to user programs. For example, encountering a debugger breakpoint
while executing a program being debugged generates an exception, which
the kernel handles by calling the debugger. The kernel handles certain other
exceptions by returning an unsuccessful status code to the caller.

A few exceptions are allowed to filter back, untouched, to user mode.
For example, a memory access violation or an arithmetic overflow generates
an exception that the operating system does not handle. An environment
subsystem or a native application can establish frame-based exception handlers to
deal with these exceptions by using high-level language statements designed
specifically for exception handling. Microsoft C is the first Microsoft lan
guage to support structured exception handling but Windows NT's exception
handling capabilities are not language-specific.

The term frame-based refers to an exception handler's association with a
particular procedure activation. When a procedure is invoked, a stack frame
representing that activation of the procedure is pushed onto the stack. A stack
frame can have one or more exception handlers associated with it, each

227

The Kernel

Debugger breakpoints are common sources of exceptions. Therefore,
the first action the exception dispatcher takes is to send a message (via LPC)
to the debugger port associated with the process that incurred the exception.
This allows a user to manipulate data structures . and issue debugger
commands.

If no debugger port is registered or if the debugger doesn't handle the
exception, the exception dispatcher switches into user mode and calls a rou
tine to find a frame-based exception handler. If none is found or if none
handles the exception, the exception dispatcher switches back into kernel
mode and calls the debugger again to allow the user to do more debugging.

If the debugger isn't running and no frame-based handlers are found,
the kernel sends a message to the exception port associated with the thread's
process. This exception port, if one exists, was registered by the environment
subsystem that controls this thread. The exception port gives the environ
ment subsystem, which presumably is listening at the port, the opportunity to
translate the NT exception into an environment-specific signal or exception.
For example, when POSIX gets a message from the kernel that one of its
threads generated an exception, the POSIX subsystem sends a PO SIX-style sigc
nal to the thread that caused the exception.

Although by default the PO SIX subsystem associates an exception port
with each of its processes, other subsystems might not supply a port or might
not take action when the kernel informs them of an unhandled exception in
one of their processes. If the kernel progresses this far in processing the ex
ception and the subsystem doesn't handle the exception, the kernel executes
a default exception handler that simply terminates the process whose thread
caused the exception.

7.3.4 System Service Dispatching
As Figure 7-6 illustrated, the NT kernel's trap handler dispatches interrupts,
exceptions, and system service calls. The previous sections described inter
rupt and exception handling, and this section looks briefly at system services.
System service calls, which generate traps that are treated as exceptions in
Windows NT, are interesting from the viewpoint of system extensibility. The
way in which the kernel implements system services allows new services to be
added dynamically to the operating system in future releases.

Whenever a user-mode thread calls a system service, the thread is sud
denly allowed to run privileged operating system code. Ordinarily, this is
anathema to an operating system. A user-mode thread could tamper with sys
tem data structures or move things around in memory, wreaking havoc on

229

The Kernel

Using a system-service dispatch table provides an opportunity to make
native NT services extensible. The kernel can support new system services
simply by expanding the table, without requiring changes to the system or to
applications. After code is written for a new service, a system administrator
could simply run a utility program that dynamically creates a new dispatch
table. The new table would contain another entry that points to the new sys
tem service. Although neither this capability nor its user interface is present
in the first release of Windows NT, it could be added at a later time.

7.4 Multiprocessor Synchronization
The concept of mutual exclusion is a crucial one in operating systems develop
ment. It refers to the guarantee that one, and only one, thread can access a
particular resource at a time. Mutual exclusion is necessary when a resource
does not lend itself to shared access or when sharing would result in an unpre
dictable outcome. For instance, if two threads copy a file to a printer port at
the same time, their output could be interspersed. Similarly, if one thread
reads a memory location while another one writes to it, the first thread will
receive unpredictable data. In general, "writable" resources cannot be shared
without restrictions, whereas resources that are not subject to modification
can be shared. Figure 7-12 illustrates what happens when two threads running
on different processors both write data to a circular queue.

Time

Get queue tail
Insert data at current location

Increment tail pointer

Figure 7·12. Incorrect Sharing of Memory

Get queue tail

Insert data at current location /'ERROR"/
Increment tail pointer

231

00

The Kernel

masks those interrupts whose interrupt handlers also use the resource. It does
so by raising the processor's IRQL to the highest level used by any potential
interrupt source that accesses the global data. For example, an interrupt at
dispatch/DPC level causes the dispatcher, which uses the dispatcher database,
to run. Therefore, any other part of the kernel that uses the dispatcher data
base raises the IRQL to dispatch/DPC level, masking dispatch/DPC level
interrupts before using the dispatcher database.

This strategy is fine for a single-processor system, but it is inadequate for
a multiprocessor configuration. Raising the IRQL on one processor does not
prevent an interrupt from occurring on another processor. The kernel also
needs to guarantee mutually exclusive access across several processors.

The mechanism the kernel uses to achieve multiprocessor mutual exclu
sion is called a spin lock. A spin lock is a locking mechanism associated with a
global data structure, such as the DPC queue, shown in Figure 7-13.

Before entering either critical section shown in the figure, the kernel
must acquire the spin lock associated with the protected DPC queue. If the
spin lock is not free, the kernel keeps trying to acquire the lock until it suc
ceeds. The spin lock is called a "spin lock" because the kernel (and thus, the
processor) is held in limbo, "spinning," until it gets the lock.

Spin locks, like the data structures they protect, reside in global mem
ory. The code to acquire and release a spin lock is written in assembly lan
guage for speed and to exploit whatever locking mechanism the underlying

Processor A Processor 8

Try to acquire -------
00

----- Try to acquire
OPC queue
spin lock

Until SUCCESS

Release OPC queue spin lock

Critical section

Figure 7-13. Using a Spin Lock

ope Queue

OPC queue
spin lock

Until SUCCESS

Release OPC queue spin lock

233

The Kernel

The kernel furnishes additional synchronization mechanisms to the ex
ecutive in the form of kernel objects, known collectively as dispatcher objects.
A thread can synchronize with a dispatcher object by waiting on the object's
handle. Doing so causes the kernel to suspend the thread and change its dis
patcher state from running to waiting, as highlighted in Figure 7-14. The
kernel removes the thread from the dispatcher ready queue and no longer
considers it for execution.

A thread cannot resume its execution until the kernel changes its dis
patcher state from waiting to ready. This change occurs when the dispatcher
object whose handle the thread is waiting on also undergoes a state change,
from the nonsignaled state to the signaled state (when a thread sets an event
object, for example). The kernel is responsible for both types of transitions.
Some of the kernel dispatcher objects and the system events that induce their
state changes are illustrated in Figure 7-15 on the next page.

Each type of dispatcher object provides a specialized type of synchroni
zation capability. For example, mutex objects provide mutual exclusion,
whereas semaphores act as a gate through which a variable number of threads
can pass-useful when a number of identical resources are available. Events
can be used either to announce that some action has occurred or to imple
ment mutual exclusion. Event pairs are the the kernel's means of supporting

-------~-----------•.........•.....
. - """" ",-

/ ~ : ,
~~~~ ~et object to ~ Ready 
11 ~Slgnaledstate //7 t 

Thread W T " :' 
waits on al I,ng ,,",: , 

an object \ f1,~iiGN'~;LuiMktt,H ,:' 1 
handle •••••• ___ •••••• ,/ ~ 

.. ' .. ~ 
L----,r-~~ •••••••••••••••••••••••••••••••••••••••••••••• IIF~~ 

"""" .'" 
••••...•.......................................•......•••• 

Figure 7-14. Waiting on a Dispatcher Object 

.. ' .' 
: 

235 



The Kernel 

quick LPC, the optimized form of message passing used by the Win32 subsys
tem. Timers "go off" when a set amount of clock time has passed. A thread 
can wait on another thread to terminate, which is useful for synchronizing 
the activities of two cooperating threads. Together the kernel dispatcher ob
jects provide the executive with great flexibility in synchronizing its 
execution. 

The user-visible synchronization objects described in Chapter 4, "Pro
cesses and Threads," acquire their synchronization capabilities from kernel 
dispatcher objects. Each user-visible object that supports synchronization 
encapsulates at least one kernel dispatcher object. The following example of 
setting an event illustrates how synchronization interacts with thread 
dispatching: 

l. A user-mode thread waits on an event object's handle. 

2. The kernel changes the thread's scheduling state from ready to wait
ing and then adds the thread to a list of threads waiting for the event. 

3. Another thread sets the event. 

4. The kernel marches down the list of threads waiting on the event. If 
a thread's conditions for waiting are satisfied,5 the kernel changes 
the thread's state from waiting to ready. If it is a variable-priority 
thread, the kernel might also boost its execution priority. 

5. Because a new thread has become ready to execute, the dispatcher 
reschedules. If it finds a running thread with a lower priority than 
that of the newly ready thread, it preempts the lower-priority thread, 
issuing a software interrupt to initiate a context switch to the higher
priority thread. 

6. If no processor can be preempted, the dispatcher places the ready 
thread in the dispatcher ready queue to be scheduled later. 

7.5 Power Failure Recovery 
A major goal in designing Windows NT was to make it a robust, reliable 
operating system. One might ask, then, how far should reliability go? 
Although the exception-handling architecture helps to protect the system's 
reliability from the inside, what happens when external conditions intrude 
and threaten an operating system's integrity? One form of external threat is 
that of lawless users who attempt to bypass system security measures. 

5. Some threads might be waiting for more than one object, so they continue waiting. 

237 



The Kernel 

whether the power has already failed. If it has, the driver does not proceed 
with the operation. Chapter 8 provides more information on these 1/0-
related topics. 

7.6 In Conclusion 
The NT kernel is the hub of all activity in Windows NT. It maintains control 
over the processor by scheduling and dispatching threads for execution, re
sponding to interrupts and exceptions, and implementing low-level synchro
nization mechanisms for use by itself and by other parts of the executive. The 
rest of the NT executive relies on kernel-provided functions and primitives 
upon which it builds its operating system policies and makes capabilities 
available to user mode. 

Kernel primitives include a series of objects that executive objects en
capsulate. The kernel control objects enable a variety of special operating 
system functions, whereas the kernel dispatcher objects are primitives with 
built-in synchronization capabilities. Synchronization, both inside and out
side the kernel, is critical to the correct functioning of the operating system. 
The task is particularly challenging when the operating system runs on 
multiprocessor computers. The kernel synchronizes its own execution to work 
correctly, and the mechanisms· it provides allow the rest of the executive to do 
the same. 

Among its other duties, the kernel lends special assistance to the I/O sys
tem. It provides objects and functions that device drivers use to synchronize 
their execution across multiple processors and to recover I/O operations af
ter power failures occur. The I/O system and its connection to the NT kernel 
are topics explored more fully in the following chapter. 

239 



C HAP T E R E G H T 

THE I/O SYSTEM 

In his book, Fundamentals of Operating Systems, A. M. Lister wrote, "Tradi
tionally, I/O is regarded as one of the more sordid areas of operating system 
design in that it is a field in which generalisation is difficult and ad hoc 
methods abound."l Indeed, it is the sheer number and wildly different na
tures of I/O devices an operating system must support that creates the 
difficulty. The challenge facing an I/O system designer lies in creating a vir
tual interface to I/O devices that allows programmers to simply retrieve or 
store data without concern for the idiosyncrasies of individual devices. 

An I/O system that can condense the vast array of devices into a single 
model must be comprehensive. It must accommodate the needs of existing 
devices, from a simple mouse to keyboards, printers, graphics display termi
nals, disk drives, CD-ROM drives, and even networks. It must consider future 
storage and input technologies as well. The NT I/O system, which provides a 
uniform, high-level interface for executive-level I/O operations, protects ap
plication programs from differences among physical devices. It also shields 
the rest of the operating system from the details of device manipulation and 
thus minimizes and isolates hardware-dependent code. 

Darryl Havens, who has designed and implemented operating system 
components for more than 12 years, designed the I/O manager, which is the 
unifying component of the I/O system. I/O on Windows NT borrows some of 
its characteristics from other systems Darryl has worked on-in particular 
DEC's VAX/VMS and VAX ELN operating systems. Supporting Win32, OS/2, 
and PO SIX also posed some requirements that influenced the I/O design. 

1. A M. Lister, Fundamentals of Operating Systems (New York: Springer-Verlag, 1984), 63. 

241 



The I/O System 

8.1.1 I/O System Components 
To understand the design of the NT I/O system, one must first become famil
iar with its various pieces. Figure 8-1 provides a simplified view of the I/O sys
tem structure. 

The I/O system is packet driven, which means that every I/O request is 
represented by an I/O request packet (IRP) as it travels from one I/O system com
ponent to another. An IRP is a data structure that controls how the I/O opera
tion is processed at each stage along the way. 

The component called the I/O manager defines an orderly framework
a model-within which I/O requests are delivered to file systems and device 
drivers. The I/O manager doesn't actually manage I/O processing. Its job is to 
create an IRP that represents each I/O operation, pass the IRP to the correct 
driver, and dispose of the packet when the I/O operation is complete. In con
trast, a driver receives an IRP, performs the operation the IRP specifies, 

File System and 
Network Drivers 

Device Drivers 

System Services 

D 

Y 

User Mode 

Kernel Mode 

1/0 
Manager 

~~~~~ 
Mouse Video Monitor

and Keyboard
Printer

Figure 8-1. Parts of the 1/0 System

Disk
Drive

CD-ROM
Drive

Tape
Drive

Network
Device

243

The I/O System

8.1.2.1 NT Object Model
When it was originally developed, the UNIX operating system defined a new,
simplified view of I/O. All data that is read or written is regarded as a simple
stream of bytes directed to virtual files, which are represented by file descrip
tors. A virtual file refers to any source or destination for I/O that is treated as if
it were a file. The operating system determines whether the "file" is a console
terminal, a pipe, or a true file located on a disk, and it directs data to the
proper location at runtime.

In Windows NT, programs also perform I/O on virtual files, manipulat
ing them by using file handles. The concept of a file handle is not new, but
within the NT executive, a file handle actually refers to an executive file object.
All potential sources or destinations for I/O are represented by file objects.
User-mode threads call native NT file object services to read from a file, write
to a file, and perform other operations. The I/O manager dynamically directs
these virtual file requests to real files, to file directories, to physical devices, to
pipes, to networks, to mailslots, and to any destinations that are supported in
the future.

As in other operating systems, an application opens a file by using a stan
dard library function in a programming language such as C. Returned to the
application, in one form or another however, is a handle to an NT executive
file object. For example, when a Win32 application calls the fopenO function,
the C runtime library calls the Win32 CreateFileO API routine, which in turn
calls an NT I/O object service. The I/O manager opens a file object and
returns an object handle to the C runtime library, which returns it to the ap
plication program, as shown in Figure 8-2 on the following page.

The sources and destinations for I/O take the form of objects because
they fit the criteria for objects in Windows NT: They are system resources that
can be shared by threads in two or more user-mode processes. File objects,
like other objects, have hierarchical names, are protected by object-based
security, support synchronization, and are manipulated by object services.

When opening a file, a user supplies the file's name and the type of ac
cess required-usually read, write, append, or delete access. The request
passes to an environment subsystem (or DLL), which calls an NT system
service. This launches an object name lookup in the object manager. As de
scribed in Chapter 3, the object manager begins searching its object name
space and then turns over control to the I/O manager to find the file object.

Like other executive objects, file objects are protected by a security de
scriptor that contains an access control list (ACL). When a thread opens a file,

245

The I/O System

8.1.2.2 Uniform Driver Model
A second characteristic of the I/O system is the uniform structure of its
drivers and its broad definition of what constitutes a driver. In the NT execu
tive, a device driver and a file system are built in the same way and present an
identical face to the rest of the operating system. Furthermore, named pipes
and network redirectors (software that directs file requests over various net
works) are viewed as "file systems" and are implemented as file system
drivers. Each driver is a self-contained component that can be added to or
removed from the operating system dynamically.

The I/O manager defines a model around which drivers are con
structed. The chief characteristics of the driver model include the following:

II Drivers are portable and are written in a high-level language. They
are designed to require few or no changes from one processor archi
tecture to another. Top-level drivers, such as file systems, require no
changes at all.

II I/O operations are packet driven, organized around the transmis
sion of IRPs from one driver to another. IRPs can be reused as they
pass through various layers of the I/O system.

!Ill The I/O system can dynamically assign drivers to control additional
or different devices if the system configuration changes.

!Ill Drivers must synchronize their access to global driver data. The exe
cution of a driver can be preempted by higher-priority threads or
can be interrupted by high-priority interrupts. This fact, as well as
NT's ability to run driver code simultaneously on more than one
processor in a multiprocessor computer, requires careful attention
to synchronization.

!Ill Drivers should recover gracefully after a power failure and restart in
terrupted I/O operations.2

The uniform, modular interface that drivers present allows the I/O man
ager to call any driver "blindly," without requiring any special knowledge of
its structure or internal details. Drivers can also call each other (via the I/O
manager) to achieve layered, independent processing of an I/O request.

2. This feature is not expected to appear in NT's first-release drivers but will be added in a subse
quent release.

247

CD-ROM
Drive

Disk
Drive

System Services

File ~
System

..... -~ Driver '. . I/O . · Manager · ·
Device AC'-

Drivers

t
Tape
Drive

· . .
...... "

Network
Device

Figure 8-4. I/O to a Multilayered Driver

The I/O System

driver. More complicated sets of layered drivers can also be constructed. For
example, a computer might have multiple devices, such as disk or tape drives,
attached to a SCSI ("scuzzy," which stands for Small Computer System Inter
face) bus. An I/O request to such a disk drive would travel through the follow
ing drivers:

l1li A file system driver

l1li A disk class driver that issues SCSI requests

l1li A SCSI port driver that sends the requests to the disk using the SCSI
bus protocol

Each of these drivers is modular so that all can be used in other configura
tions as well.

8.1.2.3 Asynchronous Operation
A third feature of the NT I/O system is its asynchronous nature. Asynchronous
I/O is defined most easily by first describing its opposite: synchronous I/O. Most
programmers are familiar with synchronous I/O. You call an I/O service; a
device completes the data transfer and then returns a status code to your pro
gram; the program can access the transferred data immediately. When used
in their simplest form, the Win32 ReadFile 0 and WriteFile 0 API routines,
for example, are executed synchronously. They complete an I/O operation
before returning control to the caller, as illustrated in Figure 8-5 on the fol
lowing page.

249

The I/O System

device driver is filling a buffer with data from a disk file. To use asynchronous
I/O, the thread must specify asynchronous I/O ("overlapped," in Win32
terminology) when it opens a handle. After issuing asynchronous I/O op
erations, the thread must be careful not to access any data from the I/O opera
tion until the device driver has finished the data transfer. In other words, the
thread must synchronize its execution with the completion of the I/O request
by waiting on a handle, as shown in Figure 8-6.

Approximately one-third of the native NT services the I/O manager pro
vides to subsystems and DLLs are asynchronous by default. The asynchronous
services are those likely to be lengthy operations or those of unpredictable
length-for example, reading or writing a file or enumerating the contents
of a file directory. A thread that calls these services must synchronize its exe
cution with their completion. Alternatively, a caller can force all NT services
to behave synchronously by specifying synchronous I/O when opening a file
handle.

Application WriteFile(file_handle,
data, ... ,
overlapped)

Win32
Subsystem

I/O Manager

\
Call NT write
file service

Check parameters
Create IRP
Call device driver

\

<Perform other
work>

Wait(file_handle)

t
Return I/O pending
status

Return

/

<Wait ends>
ReadFile(file_handle,

data, ... ,
overlapped)

User Mode

Kernel Mode

Complete IRP
Set file handle
to signaled state

!
Device Driver Queue I/O Return Handle interrupt IOd9V\j

Device

!
Perform I/O transfer
Interrupt for service

Time--~.~

Figure 8-6. Asynchronous I/O

251

The I/O System

caller uses the file, the VM manager brings accessed pages into the section
object from disk and flushes them back to disk during paging. The pager auto
matically expands the size of the cache (using normal working-set mechanisms)
when plenty of memory is available and shrinks the cache when it needs free
pages. By taking advantage of the VM manager's paging system, the cache
manager avoids duplicating the work that the VM manager already performs.

8.2 I/O Processing
The previous section described the NT I/O system from the exterior, focusing
on its broad design features. The next step in understanding executive-level
I/O is to tour the interior of the I/O system. Because IRPs do precisely that,
this section "hitches a ride" with several IRPs as they travel through the
system.

I/O requests pass through several predictable stages of processing. The
stages vary depending on whether the request is destined for a device oper
ated by a single-layered driver or a device reached through a multilayered
driver. Processing varies further depending on whether the caller specified
synchronous or asynchronous I/O.

Most I/O requests begin the same way. After opening a file handle, an
application calls an I/O routine. The routine is ordinarily one supplied by a
language library or an environment subsystem. A Win32 programmer, for ex
ample, can call the C function readO or it can call the Win32 ReadFileO API
routine. In either case, the Win32 subsystem (or DLL) calls a native I/O sys
tem service.

Although environment subsystems can represent file handles in many
different ways, most user-mode file handles have as their core an NT object
handle. Files in NT are represented as objects, and the NT I/O system supplies
object services to manipulate them. The following tour through the I/O sys
tem begins by describing NT file objects and native file object services. The
second section describes what happens when the NT I/O system is invoked,
using as an example a request to an interrupt-driven device controlled by a
single-layered driver. The third section expands the discussion to multi
layered drivers and shows an I/O request passing through more than one
driver before it is complete. The final section discusses programming issues
surrounding the use of asynchronous I/O services.

8.2.1 File Objects
Although most shared resources in Windows NT are memory-based resources,
most of those that the I/O system manages are either located on or are physi-

253

Object Type

Object Body Attributes

Services

Figure 8-7. File Object

Attribute

File name

Device type

Byte offset

Share mode

Open mode

File disposition

File name
Device type
Byte offset
Share mode
Open mode
File disposition

Create file
Open file
Read file
Write file
Query file information
Set file information
Query extended attributes
Set extended attributes
Lock byte range
Unlock byte range
Cancel 1/0
Flush buffers

Query directory file
Notify caller when directory changes

Get volume information
Set volume information

Purpose

The I/O System

Identifies the physical file that the file object refers to

Indicates the type of device on which the file resides

Identifies the current location in the file (valid only for
synchronous I/O)

Indicates whether other callers can open the file for read,
write, or delete operations while this caller is using it

Indicates whether I/O will be synchronous or asynchronous,
cached or noncached, sequential or random, and so on

Indicates whether to delete the file after closing it

Table 8-1. File Object Attributes

255

The I/O System

8.2.2 1/0 Request to a Single-Layered Driver
The I/O manager's job is to accept an I/O request, use the supplied file
handle to process the I/O request, and send the result back to the caller. To
illustrate the processing of I/O requests in the NT executive, this section ex
amines the path of an IRP into and out of the I/O system. In the first example
that follows, a user-mode caller, such as an environment subsystem or a DLL,
issues a synchronous request to a simple, interrupt-driven device. The device
is controlled by a single-layered driver.

The processing of a synchronous request progresses in three stages:

1. The I/O manager sends the request in the form of an IRP to the
driver (a device driver, in this case), and the driver starts the I/O
operation.

2. The device completes the operation and interrupts, and the device
driver services the interrupt.

3. The I/O manager completes the I/O request.

In the second example that follows, the user-mode caller issues an asyn
chronous I/O request. Processing an asynchronous request differs from pro
cessing a synchronous request primarily in one regard. The asynchronous call
adds a step between steps 1 and 2, in which the I/O manager returns control
to the caller. The caller can then continue with other work while steps 2 and 3
proceed, but it must synchronize with the completion of step 3 in order to
know when the data has been transferred. The three stages of processing for
both synchronous and asynchronous I/O requests are presented in detail in
the following sections.

8.2.2.1 Queuing an 1/0 Request
To begin with a simple example, assume that an application synchronously
writes a buffer of characters to a printer. The printer is attached to the com
puter's parallel port and is operated by a single-layered parallel port driver.
(Ordinarily, printer requests are spooled to disk first, but for simplicity's sake,
this example ignores that step.)

In Windows NT, the printer request first passes through an environment
subsystem or DLL, which in turn calls the I/O manager's NtWriteFileO ser
vice. The first parameter of the NtWriteFile 0 service is a handle to a file ob
ject, which represents the destination of the I/O request. Because the
destination is the parallel port, the subsystem must have previously opened a
handle to the port (a virtual file known as \Device\ParallelO) and specified
synchronous I/O.

257

CD NtWriteFile(file_handle, ... ,
char_buffer)

® Create IRP and call
the device driver

® Place IRP in device's
work queue

~

The I/O System

Return I/O pending status

User Mode

Kernel Mode

Services

I/O Manager

@ Return I/O pending status

Device Queue

--~' .. .
~

Figure 8-10. Queuing an Asynchronous Request

queue and immediately returns the status "I/O pending," which filters back
to the caller. The application (or subsystem) can continue its work while the
printer plods along. For example, the application might prepare more data to
print.6 Because this is asynchronous I/O, the application thread must not
overwrite the contents of the print buffer until the printer has completed the
first I/O request. Therefore, before the thread refills the buffer with new data,

6. Asynchronous I/O requests return immediately to the caller even if there are no IRPs in the de
vice queue.

259

The I/O System

When a device interrupt occurs, the processor that accepts the inter
rupt7 transfers control to the kernel, which indexes into its interrupt dispatch
table to locate the interrupt service routine (ISR) for the device. (Device drivers
for interrupt-driven devices must supply an ISR, a driver routine that stops the
device's interrupt and processes the interrupt request.)

Deyice interrupts are high-priority interrupts on most operating sys
tems, and the operating system generally blocks lower-priority interrupts, or
perhaps all interrupts, until the ISR finishes servicing the device. In Windows
NT, however, ISRs handle device interrupts in two steps. Device interrupts oc
cur at a high interrupt request level (IRQL), but the ISR remains at this level
only long enough to stop the device's interrupt. The thread then lowers the
processor's IRQL and completes interrupt processing. This technique ensures
that software interrupts and lower-level device interrupts are blocked no
longer than necessary.

NT device drivers use deferred procedure calls (DPCs), described in
Chapter 7, to accomplish their two-level interrupt processing. For example,
when a printer interrupt occurs, the ISR stops the interrupt immediately.
Depending on the device, it can do this simply by reading a device status
register. The ISR then saves any device state it will need later, queues a DPC,
and exits. The DPC contains the rest of the code for processing the interrupt.

After the ISR exits, NT kernel code lowers the processor's IRQL to the
level it was at before the interrupt occurred. As mentioned in Chapter 7, plac
ing a DPC in one of the kernel's DPC queues causes a software interrupt to
occur the next time the processor's IRQL drops below dispatch/DPC level.
Figure 8-12 on the following page illustrates the second phase of interrupt ser
vicing. (Figure 8-12 is a continuation of Figure 8-11.)

Like other interrupts, the DPC interrupt causes the kernel's interrupt
dispatcher to gain control. The interrupt dispatcher handles this interrupt by
calling the device driver's DPC routine. The printer's DPC routine might,
among other things, start the next I/O request that is waiting in the printer
queue and then record the status of the just-completed I/O operation. Mter
finishing its work, the DPC calls the I/O manager to complete the I/O and
dispose of the IRP.

The advantage of using a DPC to perform most of the device servicing
is that any blocked interrupt whose priority lies between the device IRQL
and the dispatch/DPC IRQL is allowed to occur before the lower-priority

7. Depending On the processor's architecture, software might or might not be able to control which
processor actually accepts the interrupt.

261

The I/O System

caller's virtual address space, the I/O manager must transfer the data "in the
context of the caller's thread," that is, while the caller's thread is executing. It
does so by queuing a kernel-mode APC to the thread, as shown in Figure 8-13.
(Figure 8-13 is a continuation of Figure 8-12.)

An APC bears some resemblance to a DPC, except that an APC must exe
cute in the context of a particular thread, whereas a DPC can execute in any
thread's context. Furthermore, both APCs and DPCs trigger software inter
rupts, but APC interrupts occur at a lower IRQL than do DPC interrupts.

System code (such as the I/O manager) queues a kernel-mode APC to a
specific thread by calling a kernel routine. The next time that thread begins
to execute at low IRQL, a software interrupt occurs. Figure 8-14 on the next
page illustrates the second stage of I/O completion. (Figure 8-14 is a continua
tion of Figure 8-13.)

When the APC interrupt occurs, the kernel transfers control to the I/O
manager's APC routine, which copies the data (if any) and the return status
into the original caller's address space, deletes the IRP representing the I/O
operation, and sets the caller's file handle (or caller-supplied event, as ex
plained later) to the signaled state. The I/O is complete. The original caller

7 ® The I/O manager queues an
APC to complete the I/O
request in the caller's context

I/O Manager

Device Driver

, OWPD
(j) The DPC routine calls the

I/O manager to complete
the original I/O request

Dispatch Start I/O Interrupt
Service
Routine

DPC
Routine Routine(s)

(ISR)

,-CA_P_C..-/) u~~:)J
Thread's APe Queue

Figure 8-13. Completing an I/O Request (Phase 1)

263

The I/O System

requests. When the I/O is complete, the I/O manager queues the subsystem's
APe back to the subsystem thread, and the processor interrupts the thread.
The subsystem is thus prompted to execute the APe routine, which in this
example sends the results of the read operation back to the client. The NT
kernel then restores the subsyste~ thread's context, and the subsystem con
tinues executing where it left off before it received the APe interrupt. (NT's
user-mode APes are made visible to Win32 programmers as "completion rou
tines" in the ReadFileExO and WriteFileExO API routines.)

8.2.3 1/0 Requests to Layered Drivers
The previous examples were based on I/O requests to a simple device con
trolled by a single device driver. I/O processing for file-based devices or for
requests to other layered drivers is much the same. The major difference is, of
course, that one or more additional layers of processing are added to the
model. Figure 8-15 on the following page shows how an asynchronous I/O re
quest travels through layered drivers. It uses an example of a disk controlled
by a file system.

Once again, the I/O manager receives the request and creates an I/O
request packet to represent it. This time, however, it delivers the packet to a
file system driver. The file system driver exercises great control over the I/O
operation at that point. Depending on the type of request the caller made,
the file system can send the same IRP to the device driver, or it can generate
additionalI/O request packets and send them separately to the device driver.

The file system is most likely to reuse an IRP if the request it receives
translates into a single straightforward request to a device. For example, if an
application issues a read request for the first 512 bytes in a file stored on a
floppy disk, the FAT file system would simply call the disk driver, asking it to
read one sector from the floppy disk, beginning at the file's starting location.

To accommodate its reuse by multiple drivers in a request to layered
drivers, an IRP contains a series of IRP stack locations, as shown in Figure 8-15.
These data areas, one for every driver that will be called, contain· the informa
tion that each driver needs in order to execute its part of the request-for
example, function code, parameters, and driver context information. As
Figure 8-15 illustrates, additional stack locations are filled in as the IRP passes
from one driver to the next. You can think of an IRP as being similar to a
stack in the way data is added to it and removed from it during its lifetime.
However, an IRP is not associated with any particular process, and its allo-

265

Services

110 Manager

File
System
Driver

Disk
Driver

The 1/0 System

@ During 110 completion, results are
returned to the caller's address space

User Mode

Kernel Mode

@ The file system driver performs

~':" •...... '. any necessary cleanup work , current ,.,........,

® The disk driver services the interrupt
and then queues a DPC to complete
the 110, which will "pop" the second

current stack location off the IRP stack and
call the file system priver

Device-level interrupt occurs

Figure 8-16. Completing a Layered 110 Request

As an alternative to reusing a single IRP, a file system can establish a
group of associated IRPs that work in parallel on a single I/O request. For ex
ample, if the data to be read from a file is dispersed across the disk, the file
system driver might create several IRPs, each of which reads some portion of
the request from a different sector. Figure 8-17 on the next page illustrates.

267

Services

I/O Manager

File
System
Driver

Disk
Driver

· The I/O System

@ When all associated IRPs complete, the
originallRP completes, returning status
information or data to the caller

User Mode

Kernel Mode

@ Step 9 repeats, completing IRPs 2
through n, and the file system
performs cleanup after each one

The disk driver services the interrupt
and then queues a DPC, which starts
the next IRP on the device and calls the
I/O manager to complete the first IRP .

After transferring data for one
IRP, the device interrupts

Figure 8-18. Completing Associated IRPs

8.2.4 Considerations in Using Asynchronous I/O
When calling NT I/O services, a developer must choose whether to call them
synchronously or asynchronously. For fast operations, or for those of a predict
able duration, using synchronous I/O is efficient, so the I/O system only sup
plies synchronous operation for those services. Asynchronous I/O is most
beneficial for operations whose time to completion is either long or highly
variable. For example, the number of files stored in a directory can greatly
affect the speed of enumerating its files. Thus, the query directory file service

269

The I/O System

native NT database server receives a client request to read a record from the
database. While this operation is in progress, another client thread requests
the server to read a record from the database. The server, which opened the
database file only once, uses the same handle to refer to the opened file.

In this example, two threads issue I/O requests using the same file
handle, and then both wait on the handle. As Figure 8-19 shows, one of the
I/O operations completes. When it does, the I/O manager sets the file handle
to the signaled state, which releases both threads from their wait operations,
and they continue executing.

Unfortunately, due to the variability involved in scheduling threads on a
processor and the fact that a thread can be preempted by another thread at
any time, it is impossible to know which of the I/O operations actually com
pleted. Asynchronous I/O requests do not necessarily finish in the order in
which they are submitted. In Figure 8-19, only one data transfer is complete,
but both threads return data to their clients. Therefore, one client receives
erroneous data.

One solution to this problem is to avoid synchronizing with a file handle
when more than one thread is issuing requests using the same handle. In
stead, each thread can wait on separate executive event objects, using one for
each I/O request. Appropriately, all the asynchronous NT I/O services allow
the caller to supply a handle to an event object for this purpose. Alternatively,
the caller can specify an APC that will execute a function after a particular
I/O request completes (a function that returns data to the client, for
example).

Another solution is to specify that all I/O services be performed syn
chronously (to ensure that only one I/O is in progress at a time). When the
I/O manager performs synchronous I/O, it also serializes multiple I/O re
quests. That is, if two threads request I/O using the same file handle, the I/O
manager ensures that the second thread stalls until the first thread's I/O
operation is complete. (NT's OS/2 subsystem, which always serializes multiple
I/O requests, uses this feature extensively.)

8.3 Layered Driver Model
The preceding sections focused primarily on the design features of the I/O
system and the way in which an I/O request passes from one place to another
during its processing. This section describes the structure of drivers, the rela
tionship between the I/O manager and the drivers it calls, and how one driver
communicates with another in the layered driver model. The section con
cludes with a discussion of two important system features that affect drivers
and the people who develop them.

271

The I/O System

• A cancel I/O routine. If an I/O operation can be cancelled, a driver
can define one or more cancel I/O routines. The cancel routine that
the I/O manager calls can vary depending on how far along the
operation has progressed when it is cancelled. The IRP records
which cancel I/O routine is active at any given time.

• An unload routine. The unload routine releases any system
resources a driver is using so that the I/O manager can remove it
from memory. A driver can be loaded and unloaded while the sys
tem is running.

II Error logging routines. When unexpected errors occur (for ex
ample, when a disk block goes bad), a driver's error logging routines
note the occurrence and notify the I/O manager. The I/O manager
writes this information to an error log file.

In its simplest form, a device driver has an initialization routine that
loads the driver into the system and an unload routine that removes it. It has
one dispatch routine for each operation it supports (or one dispatch routine
that handles all operations). Device drivers for interrupt-driven devices also
have an optional routine that starts an I/O operation, an interrupt service
routine that stops a device's interrupt, and a DPC routine to perform lower
priority interrupt processing. In addition, a high-level, layered driver usually
has a completion routine.

8.3.2 Driver Object and Device Object
When a thread opens a handle to a file object, the I/O manager must deter
mine from the file object's name which driver (or drivers) it should call to
process the request. Furthermore, the I/O manager must be able to locate this
information the next time a thread uses the same file handle. The following
system objects fill this need:

II A driver object, which represents an individual driver in the system
and records for the I/O manager the address of each of the driver's
dispatch routines (entry points).

II A device object, which represents a physical, logical, or virtual device
on the system and describes its characteristics, such as the align
ment it requires for buffers and the location of its device queue to
hold incoming I/O request packets.

273

The I/O System

A driver object often has multiple device objects associated with it. The
list of device objects represents the physical, logical, and virtual devices that
the driver controls. For example, each partition of a hard disk has a separate
device object that contains partition-specific information. However, the same
hard disk driver is used to access all partitions. When a driver is unloaded
from the system, the I/O manager uses the queue of device objects to deter
mine which devices will be affected by the removal of the driver.

Using objects to record information about drivers prevents the I/O man
ager from needing to know details about individual drivers. The I/O manager
merely follows a pointer to locate a driver, which provides a layer of por
tability and allows new drivers to be loaded easily. Representing devices and
drivers with different objects also makes it easy for the I/O system to assign
drivers to control additional or different devices if the system configuration
changes.

8.3.3 1/0 Request Packet
The IRP is where the I/O system stores information it needs to process an I/O
request. When a thread calls an I/O service, the I/O manager constructs an
IRP to represent the operation as it progresses through the I/O system. The
I/O manager stores a pointer to the caller's file object in the IRP. Figure 8-21
on the following page shows the relationship between an IRP and I/O system
objects.

An IRP consists of two parts: a fixed portion (called a header) and one
or more stack locations. The fixed portion contains information such as the
type and size of the request, whether the request is synchronous or asynchro
nous, a pointer to a buffer for buffered I/O, and state information that
changes as the request progresses. An IRP stack location contains a function
code, function-specific parameters, and a pointer to the caller's file object. In
Figure 8-21, the IRP stack location contains the WRITE function code.

While active, each IRP is stored in an IRP queue associated with the
thread that requested the I/O. This allows the I/O system to find and delete
any outstanding IRPs if a thread terminates or is terminated with outstand
ing I/O requests.

8.3.4 Adding Layered Drivers
Figure 8-21 illustrated how the I/O manager calls a single-layered device
driver. The I/O manager uses the caller's file handle to locate device and
driver objects and then calls the device driver. Most I/O operations are not
this direct, however. Usually more than one driver must be called to process
an I/O request.

275

The I/O System

User Mode

Kernel Mode

CD NtWriteFile(file_handle, char_buffer)

System Services

® Write data at specified
byte offset within a file

I/O
File System Manager

Driver -, , ,

® Translate the file-relative
, · · byte offset into a disk- ·

relative byte offset and
call next driver (via I/O · · manager) · · . . . -.-

Disk @ Driver Call driver to write data at
disk-relative byte offset

® Translate disk-relative
byte offset into physical
location and transfer data

Figure 8-22. Layering a File System Driver and a Disk Driver

This figure illustrates the division of labor between two layered drivers.
The I/O manager receives a write request that is relative to the beginning of a
particular file. The I/O manager passes the request to the file system driver,
which translates the write operation from a file-relative operation to a starting
location (a sector boundary on the disk) and a number of bytes to read. The
file system driver calls the I/O manager to pass the request to the disk driver,
which translates the request to a physical disk location and transfers the data.

277

The I/O System

User Mode

Kernel Mode

CD NtWriteFile(file_handle, char_buffer)

System Services

® Write data at specified
byte offset within a file

File System
Driver ~ ________ -r • I/O

'--------' ® Translate the file-relative Manager

Multivolume
Disk Driver

Disk

byte offset into a disk- \
relative byte offset and ~
call next driver (via lID I

manager)

@ Call next driver to write .:
data at disk-relative byte :'

.L-....::o:::;ff~s:::.etl....-_____ ~ .#/

® Translate disk-relative·
byte offset into disk
number and offset, and
call next driver (via I/O
manager)

.'

. . . · ·
· · · . . .

Driver ® Call next driver to write

2

data to disk 3 at
disk-relative byte offset

Translate disk-relative byte offset into physical
location on disk 3 and transfer data

~
3

Figure 8-23. Adding a Layered Driver

279

The I/O System

interrupts and allows the device driver to execute without the possibility that
the ISR might break in and access the same data.

This strategy is effective on single-processor systems. On multiprocessor
systems, however, disabling interrupts on one processor does not prevent an
interrupt from occurring and being serviced on another processor. For ex
ample, suppose a thread running on Processor 1 disables interrupts and then
begins writing data to the parallel port. While the thread is writing data to
the port's buffer, the printer attached to the port interrupts for service. Pro
cessor 2, on which interrupts are not disabled, takes the interrupt and begins
executing the ISR for the parallel port. This ISR writes data to the port buffer.
The buffer is now in an unknown state.

To avoid this situation, a device driver written for NT must synchronize
its access to any data that the device driver shares with its ISR. Before attempt
ing to update shared data, the device driver must lock out all other threads to
prevent them from updating the same data structure. Furthermore, the lock
it uses must be stored in memory global to all processors. The NT kernel pro
vides special synchronization routines that device drivers must call when they
access data that their ISRs also access. These kernel synchronization routines
keep the ISR from executing while the shared data is being accessed.

It should be apparent after this discussion that, although ISRs require
special attention, any data that a device driver uses is subject to being accessed
by the same device driver running on another processor. Therefore, it is criti
cal for device driver code to synchronize its use of any global or shared data. If
that data is used by the ISR, the device driver must use kernel synchronization
routines; otherwise, the device driver can use a kernel spin lock.

8.3.5.2 Power Failure Recovery
When a power failure occurs, even if the power is restored so quickly that the
outage is imperceptible to people, electronic components-and I/O devices,
in particular-are likely to notice the disruption. Any data stored in a device
register, for example, can be corrupted, and the device itself can be knocked
offline or can be reset to a random state.

Because device drivers execute in kernel mode with access to system
memory, a power failure that affects device operation can cause serious prob
lems in an operating system. To prevent these problems in Windows NT, each
device driver must know when the power has failed, however momentarily,
and must reset the device it operates to a known state after the failure. Also,
any I/O operation that was interrupted should be restarted, but if that is not
possible, at least the I/O manager should be notified that an I/O operation
failed so that an error condition can be returned to the caller.

281

The I/O System

Drivers include not only traditional device drivers, but also file system,
network, named pipe, and other drivers. All drivers adopt a common struc
ture and communicate with one another and the I/O manager by using the
same mechanisms. The I/O manager accepts I/O requests and locates various
drivers by using I/O system objects, including driver and device objects. Be
cause drivers present a common structure to the operating system, they can
be layered one on top of another to achieve modularity and reduce duplica
tion between drivers. Internally, the NT I/O system operates asynchronously
to achieve high performance and provides both synchronous and asynchro
nous I/O capabilities to user-mode subsystems.

Designing drivers for NT is different from designing drivers for other
operating systems because the drivers must work correctly on multiprocessor
systems and can participate in NT's power failure recovery procedures. How
ever, all drivers are written in a high-level language to lessen development
time and to enhance their portability. The following chapter examines net
working in Windows NT, a topic that includes two special NT drivers: the re
director and the Windows NT server.

283

C HAP T E R N N E

NETWORKING

During Windows NT's development, one could walk through the hallways
occupied by the development team and see perhaps half the people wearing
one or another of the many t-shirts given to Microsoft employees at one meet
ing or another, or for achieving one milestone or another. In the networking
group's hallway, the most frequently observed t-shirt carried this image: l

We're building it in.

Until recently, personal computer networks were generally added to
existing operating systems when the need for intercomputer communication
arose. For example, Microsoft LAN Manager is sometimes referred to as a
"network operating system," but it's actually a set of sophisticated applica
tions and drivers that add networking capabilities to existing operating sys
tems-in particular, MS-DOS, OS/2, and UNIX. It supplies facilities such as
user accounts, resource security, and intercomputer communication mecha
nisms, including named pipes and mailslots. Although earlier versions of

l. Reproduced from a logo designed by Joe Belfiore and David Tuniman.

285

Networking

This chapter introduces some of the features that make Windows NT
networking unique. The first section describes the major networking compo
nents and their connections to early Microsoft networking products. The sec
ond section elaborates on the meaning of "built-in networking." The third
section examines Windows NT's open network design, which allows LAN
Manager, NetWare, and other network components to be loaded into the
operating system dynamically. The fourth section describes some of the ways
in which Windows NT is equipped to support distributed applications
through its named pipes, mailslots, and remote procedure call (RPC) facili
ties. The final section describes Windows NT's advanced networking and dis
tributed security facilities, which support the needs oflarge, corporation-wide
computer networks.

9.1 Background
Networking is a complicated topic, steeped in historical footnotes and awash
in acronyms-even though the entire history of computer networking is only
about two decades old. In its infancy, networking simply meant connecting
two computers with a wire and allowing files to be transferred from one com
puter to the other across the wire. Over time, computer manufacturers devel
oped unique network architectures that worked within their own systems but
didn't work across different types of systems. Nowadays, however, it is com
mon for individuals or businesses to own a mishmash of computer hardware,
all of which must communicate.

In some ways, the challenge of intermingling different network archi
tectures resembles the problem posed by the sundry I/O devices that operat
ing systems must support. Incompatibilities abound, and one must establish a
model into which the different components fit. In Windows NT, networking
software is largely implemented as a series of sophisticated extensions to the
NT I/O system. This makes sense if you view networking as the means by
which users and applications can access not only local resources but also
remote resources such as files and devices and, ultimately, processors.

Before examining the Windows NT networking software, the following
two sections look first at the precursors to some of the Windows NT network
ing components and then at how those components fit into the standard
model of networking.

287

Networking

that is set up to accept requests from a remote computer. However, you can
think of a network server as functionally equivalent to a local server (a pro
tected subsystem, in Windows NT terminology) that accepts requests from a
process on another machine rather than from a process on the same
machine.

Windows NT's built-in networking software includes a basic peer-to-peer
network server that speaks the 5MB protocol (making it compatible with MS
NET and LAN Manager). In addition, Windows NT can load other network
servers and run them alongside its built-in server. For high-end or large net
worked enterprises, an additional product, tentatively called LAN Manager
for Windows NT, will be available. It will transform a peer-to-peer networked
workstation into an advanced domain server. A domain server has the ability
to share user accounts and security information with multiple associated sys
tems grouped together in a network domain and with other trusted network do
mains. It also supplies facilities to enable fault tolerant disks and other
advanced features. These capabilities allow Windows NT to support the needs
of large, corporation-wide networks.

Incidentally, MS-NET also included a set of utilities and a command syn
tax for accessing remote disks and printers. As you might have guessed, it in
cluded the NET USE X: \\SERVER\SHARE nomenclature. Names prefixed
with the string \\ still indicate resource names on the network and are called
uniform naming convention (UNC) names.

9.1.2 051 Reference Model
In his classic book titled Computer Networks, Andrew Tanenbaum defines a
computer network as "an interconnected collection of autonomous computers."3
That is, each computer is physically separate and runs its own operating sys
tem. This is the environment for which the Windows NT network architecture
was designed.

The goal of network software is to take a request (usually an I/O request)
from an application on one mdchine, pass it to another machine, execute the
request on the remote machine, and return the results to the first machine.
To accomplish this requires transforming the request several times along the
way. A high-level request such as "read x number of bytes from file y on ma
chine z" requires software to determine how to get to machine z and what

3. Andrew S. Tanenbaum, Computer Networks, 2d ed. (Englewood Cliffs, NJ.: Prentice-Hall, 1989), 2.

289

Networking

• Application layer. Handles information transfer between two net
work applications, including functions such as security checks, iden
tification of the participating machines, and initiation of the data
exchange.

• Presentation layer. Handles data formatting, including issues such as
whether lines end in carriage return/line feed (CR/LF) or just car
riage return (CR) , whether data is to be compressed or encoded,
and so forth.

• Session layer. Manages the connection between cooperating applica
tions, including high-level synchronization and monitoring of which
application is "talking" and which is "listening."

• Transport layer. Divides messages into packets and assigns them se
quence numbers to ensure that they are all received in the proper
order. It also shields the session layer from the effects of changes in
hardware.

!III Network layer. Handles routing, congestion control, and internet
working. It is the highest layer that understands the network's
topology, that is, the physical configuration of the machines in the
network, the type of cabling used to tie them together, and any
limitations in bandwidth, length of cables that can be used, and so
forth.

!III Data-link layer. Transmits low-level data frames, waits for
acknowledgment that they were received, and retransmits frames
that were lost over unreliable lines.

!III Physical layer. Passes bits to the network cable or other physical
transmission medium.

The dashed lines in Figure 9-1 represent protocols used in transmitting a
request to a remote machine. As stated earlier, each layer of the hierarchy
assumes that it is speaking to the same layer on another machine and uses a
common protocol. The collection of actual protocols through which a re
quest passes on its way down and back up the layers of the network is called a
protocol stack.

Figure 9-2 on the next page previews the components of Windows NT
networking, how they fit into the as! reference model, and which protocols
they use between layers. The various components are described later in this
chapter.

291

NT 110 system service

'\
\

, , , ,
,

liD ~
Manager ~

Redirector
File System

.
Transport driver interface

(T£?I) .
Network

Transport
Drivers

, , .

Networking

User Mode

Kernel Mode

NT
Drivers

•••••. ~ To network

Figure 9-3. Simplified Client-Side View of Network liD

User-mode software (the Win32 I/O API, for example) issues a remote
I/O request by calling native NT I/O services. After some initial processing
(described later), the I/O manager creates an I/O request packet (IRP) and
passes the request to one of its registered file system drivers, in this case the
Windows NT redirector. The redirector forwards the IRP to lower-layer
drivers (the transport drivers), which process it and place it on the network.

When the request arrives at a Windows NT destination, it is received by
the transport drivers and then passes through several more drivers. Figure 9-4
on the next page illustrates the receipt of a network write request. A read
operation would follow the same path to the server, with the data returned
through the reverse path. Details about the redirector, server, and transport
drivers are presented later in this chapter.

293

Networking

• Win32 named pipe and mailslot APIs. Named pipes provide a high
level interface for passing data between two processes, regardless of
whether the recipient process is local or remote. Mailslots are simi
lar, except that instead of providing a one-to-one communication
path between the sender and receiver, mailslots provide one-to
many and many-to-one communication mechanisms. Mailslots are
useful for broadcasting messages to any number of processes .

• NetBIOS API. This API provides backward compatibility for those
MS-DOS, 16-bit Windows, and OS/2 applications that pass streams
of data directly across the network. A new 32-bit version is also
supplied.

II Windows Sockets API. This new API provides 16-bit and 32-bit·
sockets, a standard UNIX-style interface for networking. Windows
NT also provides lower layers of code that support UNIX applica
tions and allow Windows NT to easily participate in the wide-area
Internet network.

II Remote procedure call (RPC) facility. This runtime library and the
compiler allow programmers to easily write distributed applications.
(See Section 9.4.1 for more information.)

Each API finds its way to the network through a different route. Figure
9-5 on the next page shows Win32 I/O routines that the Win32 subsystem im
plements by calling NT I/O system services.4 The I/O manager then issues
IRPs to the redirector. The Windows Sockets API and the NetBIOS API, in
contrast, are DLLs that call NT I/O services, and the I/O manager issues IRPs
to the Windows Sockets and NetBIOS drivers, respectively.

As Figure 9-5 shows, calls to the WNet API (implemented as a DLL)
detour through a networking component called the workstation service. In net
working lingo, the term service refers to a server process that provides a
specific function (meaning ajob) and perhaps exports an API to support that
function. The service functions include the following:

II Administering the built-in redirector (the workstation service) and
the server (the server service)

II Sending alert messages to logged-on users (the alerter service) -for
example, when the hard disk becomes full

4. Note that most Win32 API functions are optimized in a client-side DLL and do not actually pass
through the Win32 subsystem. See Chapter 5, "Windows and the Protected Subsystems," for more
information.

295

Networking

A service is a process similar to a Windows NT proteCted subsystem.
Some services simply run in the background, whereas others provide APIs
that other processes' threads can call by sending messages to the service.
Unlike the protected subsystems, services that supply APIs generally use the
RPC message-passing facility rather than the LPC facility to communicate
with clients. Using RPC makes the services available to processes on remote
machines as well as to local processes. (See Section 9.4.1 for more
information.)

The workstation service is essentially a user-mode "wrapper" for the
Windows NT redirector. It performs work to support the WNet API, provides
configuration functions for the redirector, and contains user-mode code for
returning redirector statistics. When an application calls a WNet API func
tion, the call passes first to the workstation service before going to the NT I/O
manager and on to the redirector.

A component called the service controller is responsible for loading and
starting Win40ws NT services. It is also the means by which those drivers that
are not loaded at boot time are loaded into and unloaded from the system.
Many of the networking components are implemented as drivers and are
therefore loaded into the system (or removed from it) by the service
controller.

9.2.2 Built-In Networking Components
Although many software components are involved in Windows NT network
ing, two of the most important are those with the longest history at Microsoft:
the redirector and the network server. As in the original MS-NET software,
the redirector steers locally issued I/O requests to a remote server, and the
server receives and processes such requests.

Of course, except for the names, little else about the redirector or server
resembles the early software. The originals were written in assembly language
and entwined around existing MS-DOS system software. Although the new re
director and server are built into Windows NT, they have no dependencies on
the hardware architecture that the operating system is running on. They are
written in C and implemented as loadable file system drivers, which can be
loaded or unloaded from the system at any time. They can also coexist with
other vendors' redirectors and servers.

Implementing the redirector and server as file system drivers makes
them a part of the NT executive. As such, they have access to the specialized
interfaces that the I/O manager provides for drivers. These interfaces, in
turn, were designed with the needs of the network components in mind. This
access to driver interfaces, plus the ability to call cache manager functions di
rectly, contributes greatly to the performance of the redirector and server.

297

Networking

Like other file system drivers, the redirector must work within the asyn
chronous I/O model, supporting asynchronous I/O operations when they are
issued. When a user-mode request is issued asynchronously (as described in
Chapter 8, "The I/O System"), the network redirector must return immedi
ately whether or not the remote I/O operation is finished. In most cases, an
asynchronous network I/O request doesn't finish immediately, so the redi
rector must wait for its completion after returning control to the caller.
Paradoxically, driver code is always activated by a calling thread, within that
thread's context. It has no address space of its own or any threads. How can
the driver call a routine to wait?

This problem is not unique to redirectors; most file system drivers have
the same dilemma. In the original I/O system design, file system drivers that
needed to perform processing in their own context simply created a kernel
mode process associated with the driver and used its threads to perform asyn
chronous processing. However, this solution was a costly one in terms of
system memory usage. Therefore, a new solution was devised.

Windows NT has a special system process for initializing the operating
system when it is booted. This process has several worker threads that loop,
waiting to execute requests on behalf of drivers and other executive compo
ntrnts that perform asynchronous work. If a file system driver needs a thread
to perform asynchronous work, it queues a work item to this special process
before returning control and a status code to the original caller. A thread in
the system process is awakened and performs the operations necessary to pro
cess the I/O request and complete the original caller's IRP.

The redirector sends and receives 5MBs to perform its work. Although
for simplicity Figure 9-2 depicted the redirector and server as session-layer
components in the OSI model of networking, the 5MB.protocol is really an
application-layer protocol, as illustrated in Figure 9-6 on the next page.

The interface over which the redirector sends its 5MBs is called the
transpart driver interface (TDI). The redirector calls TDI routines to transmit
5MBs to the various transport drivers loaded into Windows NT. In order
to call TDI functions, the redirector must open a channel called a virtual circuit
to the destination machine and then send its 5MBs over that virtual circuit.
The redirector maintains one virtual circuit for each server to which Win
dows NT is connected and multiplexes requests destined for that server across
the same virtual circuit. The transport layer below the redirector determines
how to actually implement the virtual circuit and send the data across the net
work connection.

299

Networking

LAN Manager software. Like the redirector, the server is implemented as a
file system driver.

One might wonder why something named a "server" is not imple
mented as a server process. It could reasonably be expected that a network
server would function like a protected subsystem-a process whose threads
wait for requests to arrive from the network, execute them, and then return
the results over the network. This approach was the most obvious choice, and
Chuck Lenzmeier considered it carefully when he began designing the Win
dows NT server. Chuck, the primary developer of the server, with seven years
of VAX/VMS-based networking and RPC experience behind him, decided in
stead to implement the server as a file system driver. Although the server isn't
a driver in the usual sense and although it doesn't manage a file system, using
the driver model provides advantages over implementing the server as a
process.

The main advantage is that as a driver the server exists within the NT
executive and can call the NT cache manager directly to optimize its data
transfers. For example, if the server receives a request to read a large amount
of data, it calls the cache manager to locate the data in the cache (or to load
the data into the cache if it isn't already there) and to lock the data in
memory. The server then transfers the data directly from the cache to the net
work, thus avoiding unnecessary disk accesses or data copying. Similarly, if
asked to write data, the server calls the cache manager to reserve space for the
incoming data and to be assigned a cache location for it. The server then
writes the data directly into the cache. By writing to the cache rather than to
disk, the server can return control to the client more quickly; the cache man
ager then writes the data to disk in the background (using the VM manager's
paging software).

When calling the cache manager, the server is, in effect, assuming some
of the responsibilities of the I/O manager to achieve more streamlined pro
cessing. Another way in which the server assumes this role is in formatting its
own IRPs and passing them directly to the NTFS, FAT, and HPFS drivers. It
can also choose to copy data into and out of the cache directly instead of
creating IRPs. If it were a user-mode (or even a kernel-mode) subsystem, it
would instead call NT I/O services to process incoming requests, which would
require a little more overhead.

As a file system driver, the server also has a bit more flexibility than it
would as a process. For example, it can register an I/O completion routine,
which allows it to be called immediately after lower-layer drivers finish their
processing, so that it can perform any postprocessing needed. Although the
Windows NT server is implemented as a file system driver, other servers can
be implemented either as drivers or as server processes.

301

Networking

Suppose the user has assigned a drive letter to a remote server by issuing
the command NET USE T: \\ TOOLSERV\TOOLS. The workstation service
creates a symbolic link object called T: in the NT object manager namespace,
as shown in Figure 9-7.

\

Device Dos Devices

~ ~
FloppyO Redirector A: T:

Figure 9-7. Object Manager Namespace

Later a Win32 application opens the remote file T:\editor.exe. The Win32
subsystem translates the name into an NT object, \DosDevices\T:\editor.exe, and
calls the NT executive to open the file. During processing, the object man
ager discovers that \DosDevices\T: is a symbolic link object and substitutes the
specified name for \DosDevices\T:. As shown in Figure 9-8, \Device\Redirector is
the name of the device object representing the Windows NT redirector, and
T: refers to a remote LAN Manager share that the redirector will locate .

...... -...... -\...,.: .. -.-... . ---_......•..
. -' ,.-

" : , . ~

~t."'. Device ~DOsDevices "'\ ..

'. .
"

FloppyO Redirector A: . . . • T: :

Figure 9-8. Resolving a Network Filename

303

Networking

9.3.1 User-Mode Access to Remote File Systems
As stated in Section 9.2.1, the Win32 WNet and I/O APIs provide two ways for
user-mode applications to access files (and other resources) on remote sys
tems. Both of these APIs use the capabilities of the redirector to find their way
to the network. Although the earlier discussion focused on the built-in net
work software, additional redirectors can be loaded into the system to access
different types of networks. This section expands on the original example by
examining the software that decides which redirector to invoke when remote
I/O requests are issued. The responsible components are these:

II Multiple provider router (MPR). A DLL that determines which network
to access when an application uses the Win32 WNet API for browsing
remote file systems

II Multiple UNC provider (MUP). A driver that determines which net
work to access when an application uses the Win32I/O API to open
remote files

9.3.1.1 Multiple Provider Router for the WNet API
The Win32 WNet functions allow applications (including the Windows File
Manager) to connect to network resources, such as file servers and printers,
and to browse the contents of any type of remote file system. Because the API
can be called to work across different networks using different transport pro
tocols, software must be present to send the request correctly over the network
and. to understand the results that the remote server returns. Figure 9-9 on
the next page shows the software responsible for this task.

A provider is software that establishes Windows NT as a client of a remote
network server. Some of the operations performed by a WNet provider in
clude making and breaking network connections, printing remotely, and
transferring data. The built-in WNet provider includes a DLL, the workstation
service, and the built-in redirector. Other network vendors need only supply a
DLL and a redirector.

When an application calls a WNet routine, the call passes directly to the
multiple provider router (MPR) DLL, a networking component designed by
Chuck Chan. The MPR takes the call and determines which WNet provider
recognizes the resource being accessed. Each provider DLL beneath the MPR
supplies a set of standard functions collectively called the provider interface.
This interface allows the MPR to determine which network the application is
trying to access and to direct the request to the appropriate WNet provider
software.

305

Networking

When called by the WNetAddConnection 0 API routine to connect to a
remote network resource, the MPR checks the configuration registry to deter
mine which network providers are loaded. It polls them one at a time in the
order in which they are listed in the registry until a redirector recognizes the
resource or until all available providers have been polled. (The order can also'
be changed by editing the registry database.)

The WNetAddConnectionO routine can also assign a drive letter or de
vice name to a remote resource. When called to do so, WNetAddConnec
tionO routes the call to the appropriate network provider. The provider, in
turn, creates an NT symbolic-link object that maps the drive letter being de
fined to the redirector (that is, the remote file system driver) for that network.
Figure 9-10 illustrates how network resource names fit into the NT object man
ager namespace .

................. _ \
""""

"
• Device Dos Devices \,

A~V) . ./ .1 ..••••••• "0 .
" " Redirector '.:

Figure 9-10. Resolving a Network Resource Name

Like the built-in redirector, other redirectors create a device object in
the object manager namespace when they are loaded into the system and ini
tialized. Then, when the WN et or other API calls the object manager to open a
resource on a different network, the object manager uses the device object as
a jumping-off point into the remote file system. It calls an I/O manager parse
method associated with the device object to locate the redirector file system
driver that can handle the request. (See Chapter 8, "The I/O System," for
more information.)

9.3.1.2 Multiple UNC Provider for Win32 File 110
The multiple UNC provider (MUP), designed by Manny Weiser, is a network
ing component similar to the MPR. It fields I/O requests destined for a file or
a device that has a UNC name (names beginning with the characters \\,

307

....................... \
~- -" .. "" ". ".

,.

: Device Dos Devices •••••• \

A:

Redirector

Figure 9·12. Resolving a UNC Name

· · · ,

Networking

The MUP driver receives the request and sends an IRP asynchronously to
each registered redirector. Then, it waits for one of them to recognize the
resource name and reply. When a redirector recognizes the name, it indicates
how much of the name is unique to it. For example, if the name is
\\HELENC\PUBLIC \inside\scoop. doc, the Windows NT redirector recognizes it
and claims the string \\HELENC\PUBLIC as its own. The MUP driver caches
this information and thereafter sends requests beginning with that string di
rectly to the Windows NT redirector, skipping the "polling" operation. The
MUP driver's cache has a timeout feature, so that after a period of disuse, the
string's association with a particular redirector expires.

If more than one redirector claims a particular resource, the MUP
driver uses the configuration registry's list of loaded redirectors to determine
which redirector takes precedence. The list of redirectors can be reordered by
editing the registry database.

9.3.2 Transport Protocols
After a network-bound request reaches a redirector, the request must be
delivered to the network. During the last decade, many different protocols for
transmitting information across networks have evolved. Windows NT doesn't
provide all the protocols, but it must at least allow them to be provided. And
the easier it is to do, the better.

In Windows NT, transport protocols are implemented as drivers, which,
like redirectors and servers, can be loaded into and out of the system. In a
traditional networking model, a redirector that uses a particular transport
protocol must know which type of input that protocol driver expects and send

309

Networking

I/O manager calls a redirector, passing it an IRP to process. The built-in redi
rector handles such a request by passing 5MBs across a virtual circuit connec
tion to a remote server. Other redirectors can use different means to
communicate with remote servers.

TDI provides a set of functions that redirectors can use to send any type
of data across a transport. The TDI supports both connection-based (virtual
circuit) transmissions and connection less (datagram) transmissions.
Although LAN Manager uses connection-based communication, Novell's IPX
software is an example of a network that uses connection less communica
tions. Microsoft initially supplies the following transports:

IIII! NetBEUI (NetBIOS Extended User Interface) transport. NetBEUI is a
local-area transport protocol developed by IBM to operate under
neath Microsoft's NetBIOS network interface.

IIII! TCP/IP (Transmission Control Protocol/Internet Protocol) transport.
TCP/IP is a protocol developed for the U.S. Department of Defense
to connect heterogenous systems on a wide-area network. TCP/IP is
commorrly used in UNIX-based networks and allows Windows NT to
participate in popular UNIX-based bulletin board, news, and elec
tronic mail services. The TCP/IP transport operates in a STREAMS
compatible environment.

Other transports that exist or that are in development by Microsoft or
other vendors include:

IIII! IPX/SPX (Internet Packet Exchange/Sequenced Packet Exchange).
IPX/SPX is a set of transport protocols used by Novell Corporation's
NetWare software.

IIII! DECnet transport. DECnet is a proprietary protocol used by Digital
Equipment Corporation that is supplied to link Windows NT systems
to DECnet-based networks.

IIII! AppleTalk. A protocol developed by Apple Computer, Inc., that
allows Apple Macintosh systems to communicate with Windows NT.

IIII! XNS (Xerox Network Systems) transport. XNS is a transport pro
tocol developed by Xerox Corporation that was used in early
Ethernet networks.

311

Redirectors and Servers

,'# ~
, "," I ..

.... "'."

Traf1sport driyer in.terface (~Ol)
"..... ..

I ... ~ "

~ ~... . ~

NetBEUI

f

NOIS interface

f
NOIS Wrapper OLL

I N~two~k ?rive:s I
· . · · · · ·

. .

I ca:d 1 I I ca~ 2 I
Figure 9-14. NOIS 3.0 Interface

Y

Networking

I

I

The NDIS interface has been available in LAN Manager but is updated
in Windows NT to NDIS version 3.0.6 Version 3.0 is portable (written in C),
is updated to use 32-bit addresses instead of 16-bit addresses, and is
multiprocessor enabled. Like earlier versions, it can handle multiple indepen
dent network connections and multiple, simultaneously loaded transport
protocols.

Each NDIS network driver is responsible for sending and receiving
packets over its network connection and for managing the physical card on
behalf of the operating system. At its lowest boundary, the NDIS driver com
municates directly with the card or cards it services, using NDIS routines to
access them. The NDIS driver starts I/O on the cards and receives interrupts
from them. It calls upward to protocol drivers to indicate that it has received
data and to notify them of its completion of an outbound data transfer.

6. 3Com Corporation and Microsoft jointly developed NDIS versions 1.0 and 2.0.

313

Networking

leaving the local processor free. The advantage of such applications is that
they extend the computing capacity of a single-user workstation by exploiting
the processor cycles of remote, often more powerful, computers.

This type of computing is an extension of the client/server model pre
sented in Chapter 5, in which a client process sends a request to a server pro
cess for execution. The difference here is that the server process runs on a
different computer. In Windows NT's local client/server model, the two pro
cesses use a message-passing facility called local procedure call (LPC) to com
municate across their address spaces. For distributed processing, a more
generic message-passing facility is needed. Assumptions about which process
the message will be sent to and which computer the process is running on
need to be removed from the facility. Also, because the client and the server
processes are unlikely to share memory (unless they happen to be running on
the same computer), the facility must assume that all data will be copied from
one discrete address space to another over a network.

Client/server computing represents an application (rather than an
operating system) approach to distributed processing, but it cannot succeed
without proper operating system support. The operating system must supply
the following to successfully implement networked client/server computing:

III A way to create and run parts of an application on both local and
remote computers

III Application-level mechanisms for passing information between local
and remote processes

III Support for r.etwork operations, including transport facilities

Much of this chapter has been devoted to describing the third capability.
The following subsections examine the first two.

9.4.1 Remote Procedure Call8

A rerrwte procedure call (RPC) facility is one that allows a programmer to create
an application consisting of any number of procedures, some that execute
locally and others that execute on remote computers via a network. It pro
vides a procedural view of networked operations rather than a transport
centered view, thus simplifying the development of distributed applications.

8. Some information in this section is based on material in Microsoft's Remote Procedure Call
Programmer's Guide and Reference, portions of which are provided under license from Digital
Equipment Corporation. The document was modified at Microsoft by John Murray. The figures
in this section were developed by Paul Leach of Microsoft.

315

Networking

Client Machine

Network

Server Machine 1 Server Machine 2

Figure 9-16. RPe Application Using Libraries

RPC applications work like this: As an application runs, it calls local pro
cedures as well as procedures that are not present on the local machine. To
handle the latter case, the application is linked to a local DLL that contains
stub procedures, one for each remote procedure. The stub procedures have the
same name and use the same interface as the remote procedures, but instead
of performing the required operations, the stub takes the parameters passed
to it and marshals them for transmission across the network. Marshaling pa
rameters means ordering and packaging them in a particular way to suit a
network link, such as resolving references and picking up a copy of any data
structures that a pointer refers to.

317

Networking

writes a series of ordinary function prototypes (assuming a C or C++ applica
tion) that describes the remote routines, and then places the routines in a
file. He then adds to these prototypes some additional information, such as a
network-unique identifier for the package of routines and a version number,
plus attributes that specify whether the parameters are input, output, or both.
The embellished prototypes form the developer's interface definition language
(IDL) file.

Once the IDL file is created, the programmer compiles it with the MIDL
compiler, which produces both client-side and server-side stub routines as
well as header files to be included in the application. When the client-side ap
plication is linked to the stub routines file, all remote procedure references
are resolved. The remote procedures are then installed, using a similar pro
cess, on the server machine. A programmer who wants to call an existing RPC
application need only write the client side of the software and link the appli
cation to the local RPC runtime facility.

The RPC runtime uses a generic RPC transport provider interface to talk to a
transport protocol. The provider interface acts as a thin layer between the
RPC facility and the transport, mapping RPC operations onto the functions
provided by the transport. Windows NT's RPC facility implements transport
provider DLLs for named pipes, NetBIOS, TCP/IP, and DECnet. Additional
transports can be supported by writing new provider DLLs. In a similar
fashion, the RPC facility is designed to work with different network security
facilities. Like the transport provider DLLs, security DLLs can be added be
tween the RPC facility and the network. In the absence of other security DLLs,
Windows NT's RPC software uses the built-in security of named pipes. (Sec
tion 9.4.2 describes named pipes in further detail.)

In order for one RPC facility to interoperate with RPC applications on
other machines, both must use the same RPC conventions. Microsoft's RPC
facility conforms to the RPC standard defined by the Open Software Founda
tion (OSF) in its distributed computing environment (DCE) specification.
Thus, applications written using Microsoft's RPC facility can call remote pro
cedures made available on other systems that use the DCE standard.

Most of the Windows NT networking services are RPC applications,
which means that they can be called by both local processes and processes on
remote computers. Thus, a remote client computer can call your server ser
vice to list shares, open files, print queues, or active users on your server, or it
can call your messenger service to direct messages to you (all subject to
security constraints, of course). Chuck Lenzmeier, who developed the Win
dows NT server, regards RPC-enabled services as one of the most noteworthy
and useful features of Windows NT networking.

319

Win32
. Subsystem

/'N"~~'~~'~~~~""
\. API

Open a UNC
named pipe

Open a local
named pipe

I/O
Manager

Figure 9-18. Client-Side Named Pipe Processing

9.5 Corporation-Wide Networking
and Distributed Security

, , , .

Networking

User Mode

Kernel Mode

....... To network

The standard Windows NT system comes with server capabilities built into it.
The server enables workgroup operations, such as copying files between two
systems or setting up a printer that several workstations can share. This type
of small-scale networking is useful for small offices, home networks, or indi
vidual workstations that connect to networks over phone lines. In larger
offices or labs, however, more facilities might be needed.

Earlier chapters of this book have described various facets of Windows
NT security. Security is an important part of any network operation, neces
sary for protecting one user's data from being accessed by other users, a com
pany's records from being tampered with by outsiders, and so on. Security,
however, has some administration associated with it. For example, Chapter 5,
"Windows and the Protected Subsystems," describes how users must log onto

321

Primary Domain
Controller

Backup Domain

Domain
SAM

Workstation 2

Figure 9·20. Medium-Size Network Configuration

Controllers

Networking

In this figure, the large circle represents a network domain in which all
the computers are linked. The domain includes several workstations and sev
eral server machines; the latter are called domain controlkrs. When a user logs
on, she selects whether to log onto an account defined at her own workstation
or onto an account located in her primary domain, the domain to which her
machine belongs.

If the user logs onto an account on her workstation, the local authentica
tion software uses the information stored in the workstation's SAM database
to authenticate her logon. In contrast, if the user logs onto the domain, the
local authentication software sends the logon request to the domain for
authentication. The primary domain controller has a SAM database that ap
plies to the entire domain, and the backup domain controllers maintain
replicated copies of the database. This convenience frees the user from ac
quiring accounts on each server and improves fault tolerance. If a particular
domain controller goes down, the system can dynamically direct a logon re
quest to a different server.

323

Networking

This network contains three different domains: two for development
groups (named TEAM! and TEAM2) and one for system administrative staff
(named OPERATIONS). Trusted domain relationships exist between both devel
opment domains and between the development domains and the operations
domain. This structure allows a developer from TEAM! to log onto her pri
mary domain from a machine in the TEAM2 domain, for example. More in
terestingly, however, this structure allows a member of the operations group
to log onto his normal account and transparently access resources in both the
TEAM! and TEAM2 domains as if they belonged to the OPERATIONS do
main. Earlier LAN Manager products required operations staff to obtain an
account on each domain it needed to administer, but LAN Manager for Win
dows NT removes this requirement. In this example, after a system adminis
trator logs on, he can access resources on the other domains. When he
connects to the TEAM! domain, the TEAM! security software chec;ks whether
it has a trust relationship with the OPERATIONS domain. The trust relation
ship exists, so the TEAM! domain uses its secure channel to pass an implicit
logon request to the OPERATIONS domain, which authenticates the user by
accessing the OPERATIONS domain's SAM database. If the authentication
succeeds, the system administrator can install software, perform backups, and
complete other maintenance activities. This type of distributed security
allows even a large organization with multiple domains to manage its
resources easily while providing access to all network resources from any
where in the network.

Although the medium and large network configurations allow users
flexibility in accessing resources, each user can set up his own machine to
limit others' access to it in the following ways:

l1li By applying access control lists (ACLs) to files and other local
resources that permit or deny access to individual users or groups
of users

l1li By assigning (or not assigning) privileges to individual users or
groups of users

l1li By explicitly allowing individuals or groups to log on in specific
ways, such as one or more of these:

o Interactive. Logging on from the keyboard

o Network. Logging on across a network connection

o Services. Logging on as a service (such as the messenger ser
vice or the alerter service)

325

EPILOGUE

Windows NT was designed as an extensible operating system-one that
could evolve in a consistent, modular way over time. Indeed, it has already
begun to evolve in directions not highlighted in this book.

The configuration manager, for example, is only briefly mentioned but rep
resents the demise of the AUTOEXEC.BAT file, the CONFIG.SYS file, and all
the INI files that users have become accustomed to seeing, fiddling with, and
sometimes breaking. Designed primarily by Bryan Willman and Keith Logan,
the configuration manager consists of several components, the most impor
tant of which is the configuration registry. The configuration registry is a reposi
tory for all information about the computer hardware the operating system is
running on, the software installed on the system, and the person or persolls
using the system.

The purpose of the registry and its associated software is, first and
. foremost, to make systems easy for people to manage. It does so by examining

the hardware and learning what it can at boot time, by configuring as much of
the system automatically as possible, by asking the user a minimum number
of questions when the operating system is installed, and by storing all the in
formation it gleans in the registry so that the user never has to be bothered
twice for the same information. Device drivers, applications, and users can
also place information in the registry, and they can query the registry to
retrieve the information they need. The user can view, update, or modify con
figuration information by using the graphical Registry Editor. Information
in the configuration registry is stored in key objects, which are subject to the
security mechanisms and other semantics applied to NT executive objects.
This design allows Windows NT to maintain a unified storage facility for this
seemingly random information and, at the same time, to make it available in
a distributed but secure manner on networked systems.

An important component of fault tolerance also made it into the first
release of Windows NT thanks to the Herculean efforts of Bob Rinne and
Mike Glass. Their fault tolerant disk driver is an intermediate driver layered

327

Epilogue

not yet Unicode-enabled, certain new international features are needed, and
the Win32 GDI component needs enhancements to make the system fully us
able in Japan and other Asian markets. Some of the required international
features include an input method API, a new font architecture with search
paths to allow logical combined fonts, the integration of user-defined charac
ters into the font architecture, and enhancements to enable multiscript input.

For the Japanese, Chinese, and Korean versions of the system, addi
tional work must be done. Fonts that support these languages are required,
and an input method editor is needed to translate multiple keystrokes into
individual characters. In addition, cooperative work with OEM partners is
planned to ensure that Windows NT runs well on specialized or proprietary
personal computers. For example, NEe has successfully ported Windows NT
to their 9800-based personal computer. Because this non-AT -compatible
computer is widely used in Japan, it is an important target platform for Win
dowsNT.

Finally, in order to run existing international applications, the 16-bit
Windows and MS-DOS environment subsystems must accommodate the
double-byte coding scheme traditionally used to represent characters in
Japanese and other Asian languages. The MS-DOS environment also must be
made backward-compatible with the Japanese version of MS-DOS, which has
evolved differently from the MS-DOS used in the U.S. and in European coun
tries. A team of 20 u.s. and Japanese engineers, managed in the U ;S. by David
McBride, expects to ship the first international update release of Windows
NT and Windows NT:J (the Japanese version of the system) six months after
the u.S. version ships.

The topic of security is addressed throughout this book-perhaps a fit
ting choice of structure given the distributed nature of Windows NT security.
However, it is a complex topic whose intricacies are only hinted at in discus
sions of its major components (object security, distributed security, and im
personation). An entire book could be written about the details of security.

Directions for future work in the security arena are quite interesting.
The authentication model described briefly in Chapter 5 not only lends itself
to supporting new user interfaces, such as bank teller machines or fingerprint
or retinal scanners, but also allows for implementing different security archi
tectures on top of Windows NT. For example, the popular Kerberos security
model, which issues security "tickets" to entities wishing to communicate or
exchange data, is under development as an authentication package and an
API on Windows NT. Applications that use the Kerberos model would simply
call the Kerberos API, which would be routed through the Windows NT
security subsystem and on to a special, loadable Kerberos authentication

329

Epilogue

I intended to end this book with a definitive chapter about the future of
Windows NT and perhaps even to pontificate about the future of the desktop.
However, this industry is a fast-paced one, and Microsoft is a fast-paced com
pany that responds quickly to changes in the marketplace. Prognostication is,
therefore, a risky endeavor. Suffice it to say that Windows NT provides a well
paved road into the future of computing, whatever twists and turns that road
may take.

331

GLOSSARY OF
TERMS AND ACRONYMS

access control entry (ACE) An entry in an access control list (ACL). It con
tains a security ID (SID) and a set of access rights. A process with a match
ing SID is either allowed the listed access rights, denied them, or allowed
them with auditing. See also access control list.

access control list (ACL) The part of a security descriptor that enumerates
the protections applied to an object. The owner of an object has discretion
ary access control of the object and can change the object's ACL to allow or
disallow others access to the object. Access control lists are made up of
access control entries (ACEs). See also at;cess control entry, diScretionary access
control, and security descriptor.

access right A permission granted to a process to manipulate a particular
object in a particular way (for example, by calling a service). Different ob
ject types support different access rights, which are stored in an object's ac
cess control list (ACL). See also access control entry and access control list.

access token An object that uniquely identifies a user who has logged on.
An access token is attached to all the user's processes and contains the
user's security ID (SID), the names of any groups to which the user
belongs, any privileges the user owns, the default owner of any objects the
user's processes create, and the default access control list (ACL) to be ap
plied to any objects the user's processes create. See also security ID.

ACE access control entry.

ACL access control list.

address space See virtual address space.

alert An asynchronous notification that one thread sends to another. The
alert interrupts the recipient thread at well-defined points in its execution
and causes it to execute an asynchronous procedure call (APC). See also
alertable thread and asynchronous procedure call.

333

Glossary of Terms and Acronyms

asynchronous I/O A model for I/O in which an application issues an I/O re
quest and then continues executing while the device transfers the data.
The application synchronizes with the completion of the data transfer by
waiting on a file handle or an event handle. Compare synchronous I/O.

asynchronous procedure call (APe) A function that executes asynchronously
in the context of a particular thread. The kernel issues a software interrupt
when the thread executes (if other enabling conditions are present) and
directs the thread to execute the APC. See also APC object and APC queue.

attribute caching A technique used in the Win32 subsystem to achieve per
formance gains when a Win32 application calls drawing functions. The
client-side dynamic-link library (DLL) remembers when an application
changes some attribute of the screen display and sends the data to the
Win32 server only when the application draws something on the screen.
See also batching.

auditing The ability to detect and record important security-related events,
particularly any attempt to create, access, or delete objects. The Windows
NT security system uses security IDs (SIDs) to record which process per
formed the action. See also security ID.

authentication Validation of a user's logon information. Performed by an
authentication package in conjunction with the Windows NT security sub
system. See also authentication package.

authentication package A software module that can be plugged into the
Windows NT security system to authenticate user logons for various input
devices. See also authentication.

automatic working set trimming A technique used by the NT virtual memory
(VM) manager to increase the amount of free memory available in the sys
tem. It decreases each process's working-set size when free memory runs
low. See also working set.

backing store A storage medium, such as a disk, that serves as backup' 'mem
ory" for paging when physical memory becomes full. See also paging.

batching A technique used in the Win32 subsystem to achieve performance
gains when a Win32 application calls drawing functions. The client-side
dynamic-link library (DLL) stores drawing application programming
interface (API) calls in a queue, sending them in a single message to the
server when the queue gets full or when the user enters input. See also at
tribute caching.

335

Glossary of Terms and Acronyms

concurrent application An application that can execute in two or more loca
tions. In Windows NT, a concurrent application is one that 'has created
more than one thread of execution, either within a single process or in
separate processes. See also process and thread.

configuration manager A set of software components that simplifies storage
and retrieval of system configuration information. It includes the configu
ration registry, the graphical Registry Editor, and hardware recognizer
firmware/software. See also configuration registry.

configuration registry A database repository for information about a com
puter's configuration-for example, the computer hardware, the software
installed on the system, and environment settings and other information
entered by the person or persons using the system. See also key object.

connecting an interrupt object Associating an interrupt service routine
(ISR) with a particular interrupt request level (IRQL). A device driver calls
the system to connect an interrupt object, which "turns on" interrupt
handling for the device. See also disconnecting an interrupt object, interrupt
object, and interrupt service routine.

console A text-based window managed by the Win32 subsystem. Environ
ment subsystems direct the output of character-mode applications to con
soles.

context See thread context.

context switching Saving the context of an executing thread, loading an
other thre_ad's context, and transferring control to the new thread. Con
'text switching is performed by the kernel's dispatcher. See also dispatcher
and thread context.

control object A kernel object that provides a portable method for control
ling various system tasks. The set of control objects includes the asynchro
nous procedure call (APC) object, the deferred procedure call (DPC)
object, the kernel process object, and several objects used by the I/O sys
tem. See also kernel object.

copy-an-write Page-based (as opposed to object-based) memory protection
that allows two processes to share a page until one of them writes to it. At
that time, the process whose thread modified the page is given a private
copy of the page in its virtual address space.

337

Glossary of Terms and Acronyms

dispatcher A kernel module that keeps track of threads that are ready to exe
cute, selects the order in which they will run, and initiates context switch
ing from one thread to another. See also context switching.

dispatcher database A set of global data structures that the kernel uses to
keep track of which threads are ready to execute and which processors are
executing which threads. The database includes the dispatcher ready
queue. See also dispatcher and dispatcher ready queue.

dispatcher object A kernel object that supports synchronization. The
kernel's dispatcher implements the signaled and nonsignaled synchroniza
tion semantics. See also kffnel object, signaled state, and nonsignaled state.

dispatcher ready queue The data structure in the dispatcher database that
tracks threads that are ready to execute. It is a series of queues, one queue
for each scheduling priority. See also dispatcher and dispatcher database.

domain controller A server in a network domain that accepts user logons and
initiates their authentication. See also authentication.

ope deferred procedure call.

ope object A kernel object used to asynchronously execute a system func
tion. It is a control object that contains the address of a deferred procedure
call (DPC) .to execute. The kernel places DPC objects in a global DPC queue
to await execution. See also diferred procedure call and DPC queue.

ope queue A kernel-managed data structure that contains deferred pro
cedure calls (DPCs) waiting to execute. The presence of a DPC object in the
DPC queue causes the kernel to issue a software interrupt at dispatch/DPC
interrupt request level (IRQL). The processor that takes the interrupt
transfers control to the kernel, which executes all the DPCs in the queue.
See also diferred procedure call and DPC object.

driver object A system object that represents an individual driver on the sys
tem and tells the I/O manager the address of the driver's entry points. A
driver object can be associated with multiple device objects (each one rep
resenting a device the driver operates). See also device object.

dynamic-link library (OLL) An application programming interface (API)
routine that user-mode applications access through ordinary procedure

, calls. The code for the API routine is not included in the user's executable
image. Instead, the operating system automatically modifies the execut
able image to point to DLL procedures at runtime.

339

Glossary of Terms and Acronyms

file-mapping object The Win32 subsystem's version of an NT section object
that is backed by a mapped file.

file object An executive object that represents an open file, a directory, a vol
ume, or a device. See also executive object.

frame-based exception handler An exception handler that is associated with
a particular procedure or part of a procedure. The kernel invokes a frame
based exception handler when an exception occurs within that block of
code. A frame-based exception handler can either resolve the exception,
resignal the exception to a higher layer of code, or ignore the exception
and resume the program's execution. See also exception, structured exception
handling, and termination handler.

granted access rights The set of access rights the security system gives a
thread that opens a handle to an object. The granted access rights are a
nonproper subset of the requester's desired access. The object manager
stores granted access rights in the object handle it returns. See also desired
access rights.

HAL hardware abstraction layer.

handle See object handle.

hardware abstraction layer (HAL) A dynamic-link library (DLL) that protects
the NT executive from variations in different vendors' hardware platforms
in order to maximize the operating system's portability. The HAL imple
ments functions that abstract I/O interfaces, the interrupt controller, hard
ware caches, multiprocessor communication mechanisms, and so forth.

high performance file system (HPFS) A file system designed for OS/2, ver
sion 1.2, which was created to address the limitations of the file allocation
table (FAT) file system used by MS-DOS. It added features such as longer
filenames, the ability to associate attributes with a file, faster searching for
files, and other optimizations.

HPFS high performance file system.

idle thread A system thread that executes when no other thread is ready to
execute. The idle thread executes deferred procedure calls (DPCs) and ini
tiates context switching when another thread becomes ready to execute.
One idle thread exists for each processor in a multiprocessor system.

lOT interrupt dispatch table.

341

Glossary of Terms and Acronyms

Interrupt request level (IRQL) A ranking of interrupts by priority. A pro
cessor has an interrupt request level (IRQL) setting that threads can raise
or lower. Interrupts that occur at or below the processor's IRQL setting are
blocked, or masked, whereas interrupts that occur above the processor's
IRQL setting are not masked. See also masking interrupts.

interrupt service routine (ISR) A device driver routine that the kernel's inter
rupt handler calls when a device issues an interrupt. The routine stops the
device from generating interrupts, saves device status information, and
then queues a device driver deferred procedure call (DPC) to complete in
terrupt servicing. See also deferred procedure call.

invalid page A virtual page that causes a page fault if an address from it is
referenced. The page is either loaded from disk and made valid or
recovered from the standby or modified page list and made valid; other
wise, the reference was an access violation. See also valid page.

I/O completion The final step in the I/O system's processing of an I/O re
quest. Typical operations include deleting internal data structures associ
ated with the request, returning data to the caller, recording the final
status of the operation in an I/O status block, setting a file object and/or
event to the signaled state, and perhaps queuing an asynchronous pro
cedure call (APC). See also asynchronous procedure call.

1/0 manager The Windows NT executive component that unifies the various
'pieces of the I/O system. It defines an orderly framework within which I/O
requests are accepted and delivered to file systems and device drivers. It
also provides code that is common to more than one driver.

1/0 request packet (IRP) A data structure used to represent an I/O request
and to control its processing. The I/O manager creates the IRP and then
passes it to one or more drivers in succession. When the drivers are fin
ished performing the operation, the I/O manager completes the I/O and
deletes the IRP. See also I/O completion.

10SB I/O status block.

1/0 status block (IOSB) A data structure that a caller supplies as a parameter
to an I/O service. The I/O manager records the final status of the opera
tion in the I/O status block when processing is complete.

IRP I/O request packet.

343

Glossary of Terms and Acronyms

locale The national and/or cultural environment in which a system or a
program is running. The locale determines the language used for mes
sages and menus, the sorting order of strings, the keyboard layout, and
date and time formatting conventions.

local procedure call (LPC) facility An optimized message-passing facility that
allows one process to communicate with another process on the same ma
chine. Protected subsystems use LPC to communicate with each other and
with their client processes. LPC is a variation of the remote procedure call
(RPC) message-passing paradigm, optimized for local use. Compare rerrwte
procedure call.

local replacement policy A page replacement algorithm that allocates a
fixed number of page frames to each process. When a process exceeds its
allotment, the virtual memory (VM) manager begins transferring pages in
the process's working set to disk in order to free space for additional page
faults the process generates. See also replacement policy and working set.

logon process A Windows NT process whose threads detect a user's attempt
to log onto the operating system. It verifies the user's logon information
with the security system before granting the user access to the system.

LPC local procedure call.

mandatory access control Protection assigned to an object by a system ad
ministrator. Mandatory access controls typically label objects with a level,
such as "Secret" or "Top Secret." Users wanting to access the objects must
be cleared at the appropriate level. Mandatory access control supersedes
any discretionary access controls that an owner applies to an object. See
also discretionary access control.

map To translate a virtual address into a physical address.

mapped file A file that is loaded into a section object in memory. By map
ping views of the section into its address space, a process can access the file
as a large array stored in virtual memory. The virtual memory (VM) man
ager automatically pages to and from the file, loading pages from disk
when they are used and writing pages to disk when they are modified. See
also map and pagingfile.

mapped file 1/0 File I/O performed by reading and writing to virtual
memory that is backed by a file. See also mapped file.

345

Glossary of Terms and Acronyms

multitasking A processor's execution of more than one thread by context
switching from one to the other, providing the illusion that all threads are
executing simultaneously. See also preemptive multitasking.

multithreading The capability of an application to execute in two or more
locations using multiple threads. The term is sometimes used inter
changeably with multitasking in reference to an operating system that
supports threads.

MUP multiple uniform naming convention (UNC) provider.

mutual exclusion Allowing only one thread at a time to access a resource.
Mutual exclusion is necessary when a system resource does not lend itself
to shared access or when sharing might produce unpredictable results. See
also critical section.

named pipe An interprocess communication mechanism that allows one
process to send data to another local or remote process.

name retention The procedure by which the object manager keeps an ob
ject's name in its namespace. When the last handle to the object is closed,
the object manager deletes the object's name from its namespace, prevent
ing subsequent open operations on that object. See also object retention.

national language support (NLS) An application programming interface
(API) that gives applications access to locale-specific information. See also
locale.

native services System services that the NT executive makes available to
user mode for use by environment subsystems, dynamic-link libraries
(DLLs), and other system applications.

NOIS network driver interface specification.

NetBEUI transport NetBIOS (Network Basic Input/Output System) Ex
tended User Interface. Windows NT's primary local area network transport
protocol. See also NetBIOS inteiface.

NetBIOS interface A programming interface that allows I/O requests to be
sent to and received from a remote computer. It hides networking hard
ware from applications.

347

Glossary of Terms and Acronyms

NT file system (NTFS) An advanced file system designed for use specifically
with the Windows NT operating system. It supports file system recovery, ex
tremely large storage media, and various features for the POSIX subsystem.
It also supports object-oriented applications by treating all files as objects
with user-defined and system-defined attributes.

NTFS NT file system.

NT kernel The component of the NT executive that manages the processor.
It performs thread scheduling and dispatching, interrupt and exception
handling, and multiprocessor synchronization and 'provides primitive ob
jects that the NT executive uses to create user-mode objects.

object A single runtime instance of an NT-defined object type. It contains
data that can be manipulated only by using a set of services provided for
objects of its type. See also object type.

object attribute A field of data in an object that defines or records the
object's state and that can be manipulated by calling an object service.

object class See object type.

object directory object An object that stores the names of other objects,
much as a file directory stores filenames. It provides the means to support a
hierarchical naming structure for Windows NT objects.

object domain A self-contained set of objects that is accessible through the
NT object manager's object name hierarchy but is managed by a secondary
object manager (such as the NT I/O system).

object handle An index into a process-specific object table. It is used to refer
to an opened object and incorporates a set of access rights granted to the
process that owns the handle. It also contains an inheritance designation
that determines whether the handle is inherited by child processes. Pro
grams use handles to refer to objects when calling object services. See also
object table.

object manager The component of the NT executive that creates, deletes,
and names operating system resources, which are stored as objects.

349

Glossary of Terms and Acronyms

page frame database A data structure that the virtual memory (VM) man
ager uses to record the status of all physical page frames. See also page
frame.

pager A component of the virtual memory (VM) manager that performs the
paging operation. See also paging.

page table A process-specific table that the virtual memory (VM) manager
uses to map virtual addresses to physical memory addresses or to disk loca
tions. A page table is made up of page table entries (PTEs). See also page
table entry and paging.

page table entry (PTE) An entry in a process's page table. It contains the in
formation necessary for the virtual memory system to locate a page when a
thread uses an invalid address. The size and format of PTEs are processor
dependent. See also invalid page and page table.

paging A virtual memory operation in which memory management software
transfers pages from memory to disk when physical memory becomes full.
When a thread accesses a page that is not in memory, a page fault occurs
and the memory manager uses page tables to locate the required page on
disk and load it into memory. See also invalid page, page fault, and page table.

paging file A system file containing the contents of virtual pages that have
been paged out of memory. See also backing store and mapped file.

parent process A process that has created another process, called a child
process. The child process inherits some or all of the parent process's
resources. Compare child process.

placement policy The algorithm a virtual memory system uses to decide
where in physical memory to put data it is paging in from disk. The NT vir
tual memory (VM) manager uses a series of first in, first out (FIFO) page
lists to keep track of free pages and to retrieve a free page when loading
information from the disk after a page fault occurs.

port A communication channel through which a client process communi
cates with a protected subsystem. Ports are implemented as Windows NT
objects. See also local procedure call.

power notify object A kernel object that allows device drivers to register a
power recovery routine with the kernel. It is a control object that contains a
pointer to a device driver routine, which the kernel calls when the power
returns after a power failure.

351

Glossary of Terms and Acronyms

prototype page table entry (PPTE) A data structure that looks similar to a
normal page table entry (PTE) but points to a page frame shared by more
than one process. See also page table entry and section object.

provider A generic name for software that establishes Windows NT as a client
of a remote network server.

provider interface A programming interface that allows network vendors to
make their remote file systems available for browsing by applications using
Windows' WNet application programming interface (API). See also mul
tiple provider router.

PTE page table entry.

quick LPC A form of local procedure call (LPC) used by portions of the
Win32 subsystem and its clients. Quick LPC increases the speed of passing
a message by bypassing port objects, storing messages in shared memory,
and using a built-in synchronization mechanism. See also local procedure call
and port.

quota A resource limit imposed on user accounts. The object manager
charges a process some portion of the user's quota each time one of the
process's threads creates or opens a handle to an object. When the quota is
depleted, the user's processes can no longer create objects or open object
handles until the processes release some resources.

raise an exception To deliberately transfer control to an exception handler
when an exception occurs. Software raises an exception when errors or
unexpected conditions occur. See also exception and exception handler.

redirector Networking software that accepts I/O requests for remote files,
named pipes, or mailslots and sends ("redirects") them to a network
server on another machine. Redirectors are implemented as file system
drivers in Windows NT. See also network server.

reduced instruction set computer (RISC) A processor that employs a small
number of simple instructions that are used in conjunction to perform
more powerful operations. Because of the instructions' simplicity and
their use of large numbers of registers, each generally takes only one clock
cycle to execute, and the processor can run at higher clock speeds than can
most complex instruction set compllters (CISCs). Compare complex instruc
tion set computer.

353

Glossary of Terms and Acronyms

security ID A name, unique across time and space, that identifies a logged
on user to the security system. Security IDs (SIDs) can identify either an
individual user or a group of users. An individual security ID usually cor
responds to a user's logon identifier.

security reference monitor A component of the NT executive that compares
the access token of a process to the access control list (ACL) of an object to
determine whether the process's threads should be allowed to open a
handle to the object.

security subsystem An integral subsystem that records the security policies
in effect for the local computer and participates in logging on users. See
also integral subsystem.

server A process with one or more threads that accept requests from client
processes. It implements a set of services that it makes available to clients
running either on the same computer or possibly on various computers in
a distributed network. See also client, weal procedure call, network server, and
remote procedure call.

server message block (SMB) protocol A network protocol used originally in
Microsoft Networks and subsequently adopted in PC networking software.
It defines a specific format for packets of data to be transmitted across the
network. The Windows NT redirector and built-in server use 5MBs to com
municate with each other and with computers on LAN Manager networks.
See also network server, protocol, and redirector.

server service A network service that supplies a user-mode application pro
gramming interface (API) to manage the Windows NT network server. See
also service.

service A server process that performs a specific system function and often
provides an application programming interface (API) for other processes
to call. Windows NT services are RPC-enabled, meaning that their API rou
tines can be called from remote machines.

service controller The networking component that loads and starts Win
dows NT services. It also loads and unloads many Windows NT drivers,
including device drivers and network transport drivers. See also service.

SID security ID.

355

Glossary of Terms and Acronyms

synchronization The ability of one thread to pause during execution and
wait until another thread performs an operation. In Windows NT, a thread
waits for another thread to set a synchronization object to the signaled
state. See also signaled state and synchronization objects.

synchronization objects The collection of user-mode-visible NT executive
objects whose object types support synchronization. They include threads,
processes, events, event pairs, semaphores, timers, mutants, and files. A
thread can wait for a synchronization object to be set to the signaled state
by another thread. Each synchronization object contains within it a kernel
dispatcher object. See also dispatcher object, signaled state, and synchronization.

synchronous Occurring at a particular time as a direct result of the execu
tion of a particular machine instruction. Compare asynchronous.

synchronous 1/0 A model for I/O in which an application issues an I/O re
quest and the I/O system does not return control to the application until
the I/O request completes~ Compare asynchronous I/O.

TCP/IP transport Transmission Control Protocol/Internet Protocol. Win
dows NT's primary wide area network transport protocol. It allows Win
dows NT to communicate with systems on TCP lIP networks and to
participate in popular UNIX-based bulletin board, news, and electronic
mail services.

TOI transport driver interface.

termination handler An exception handler that lets an application ensure
that a particular block of code always executes, even if the code terminates
in an unexpected way. Termination handlers often contain code that frees
allocated resources so that if a procedure terminates unexpectedly, the
resources are released back to the system. See also exception handler.

thread An executable entity that belongs to one (and only one) process. It
comprises a program counter, a user-mode stack, a kernel-mode stack, and
a set of register values. All threads in a process have equal access to the pro
cess's address space, object handles, and other resources. Threads are im
plemented as objects. See also process.

thread context The volatile data associated with the execution of a thread. It
includes the contents of system registers and the virtual address space
belonging to the thread's process. See also context switching.

thread dispatching See context sw#Ching.

357

Glossary of Terms and Acronyms

trusted domain relationship A trust relationship that exists between two net
work domains. See also network domo,in and trust relationship.

trust relationship A security term meaning that one workstation or network
server trusts a domain controller to authenticate a user logon on its behalf.
One domain controller can also trust a domain controller in another do
main to authenticate a logon. See also domain controller.

type object An internal system object that defines common attributes for a
class of objects. Every object instance contains a pointer to its correspond
ing type object. See also object type.

UNC uniform naming convention.

Unicode Afixed-width, 16-bit character encoding standard capable of repre
senting all the world's scripts. See also script.

uniform naming convention (UNC) names Filenames or other resource
names that begin with the string \\, indicating that they exist on a remote
machine.

uninterruptible power supply (UPS) A backup battery module attached to a
computer that allows memory contents to remain intact long enough for the
operating system to perform an orderly system shutdown if a power outage
occurs.

UPS uninterruptible power supply.

user mode The non privileged processor mode in which application code
runs. A thread running in user mode can gain access to the system only by
calling system services. Compare kernel mode.

valid page A virtual page that is in physical memory and immediately avail
able. See also invalid page and page.

VOM virtual DOS machine.

view The portion of a section object that a process maps into its virtual ad
dress space. A process can map multiple, and even overlapping, views of a
section. See also map and section object.

virtual address space The set of addresses available for a process's threads to
use. In Windows NT, every process has a unique virtual address space of 232

bytes (4 GB). See also virtual memory.

359

Glossary of Terms and Acronyms

Windows on Win32 (WOW) A protected subsystem that runs within a virtual
DOS machine (VDM) process. It provides a 16-bit Windows environment
capable of running any number of 16-bit Windows applications on
Windows NT.

working set The set of virtual pages that are in physical memory at any mo
ment for a particular process.

workstation service A network service that supplies user-mode application
programming interface (API) routines to manage the Windows NT redi
rector. See also service.

WOW Windows on Win32.

361

BIBLIOGRAPHY

The following is a partial list of the published texts and papers I read in pre
paring to write this book. These works provided background in operating sys
tem theory as well as details about specific operating system implementations.
This research helped me form a framework for introducing Windows NT's
design and gave me a factual basis for comparing it with other operating
systems. Because Windows NT represents cutting-edge technology in cer
tain respects, some topics had few or no published sources from which I
could draw.

This bibliography includes works used as direct sources and works that
provided background information, although it omits design specifications,
presentations, notes, code and, most important, individual developers; all of
these served as primary sources of information for this book.

Because Inside Windows NT took three years to research and write, some
of the published sources became outdated along the way. I discovered over
the course of the project, however, that at some point one must stop reading
and start writing because the reading can go on forever.

Operating Systems, General

Boykin, Joseph, and Susan j. LoVerso. "Recent Developments ~n Operating
Systems." Computer (May 1990): 5-6. These authors described the entire
history and future of operating systems in two magazine pages, including
acknowledgments, references, personal biographies, and even photo
graphs of the authors. Wow.

Dasgupta, Partha. "The Clouds Distributed Operating System." Computer
(November 1991): 34-44.

Kenah, Lawrence j., Ruth Goldenberg, and Simon F. Bate. VA:fS Internals and
Data Structures: W!rsion 4.4. Maynard, Mass.: Digital Press, 1987. Certain parts
of Windows NT resemble (sometimes only remotely) certain parts of
VMS-for example, exception handling, asynchronous procedure calls,
the I/O system, thread scheduling. I also discovered that much of the ver
biage the Windows NT developers use to describe NT executive facilities
borrows from VMS terminology. With many of the NT executive devel
opers originating from DEC, this is not altogether surprising. (People have

363

Bibliography

Watson, Richard W. "The Architecture of Future Operating Systems." Paper
presented at Cray Users Group Meeting, Tokyo, September 1988.

Exception Handling

Levin, Roy. "Program Structures for Exceptional Condition Handling." Re
search paper, Carnegie-Mellon University Computer Science Department,
June 1977.

Roberts, Eric S. "Implementing Exceptions in c." Systems Research Center
Report, Digital Equipment Corporation, March 1989.

Internationalization and Unicode

Freytag, Asmus. "Program Migration to Unicode." Proceedings of the
Unicode Implementer's Workshop, Mountain View, California, August
1991. Asmus generously assisted me with documents and tutoring on inter
nationalization and Unicode issues. The diagram in Chapter 2 illustrating
the layout of the Unicode code set first appeared in this publication.

Hall, William S. "Adapt Your Program for Worldwide Use with Windows In
ternationalization Support." Microsoft Systems Journal (November/Decem
ber 1991): 29-58. This article explains principles that most authors assume
everyone understands. It and the Sheldon article are good places to start if
you want to learn about writing international software.

Sheldon, Kenneth M. "ASCII Goes Global." Byte (July 1991): 108-16.

The Unicode Consortium. The Unicode Standard: World-Wide Character Encoding,
version 1.0, 2 vols. Reading, Mass.: Addison-Wesley Publishing Company,
1991-92. The Unicode Consortium maintains and promotes this standard
and sponsors an ongoing series of implementer's workshops. (The
Unicode Consortium, 1965 Charleston Road, Mountain View, California
94043.)

1/0 and File Systems

Duncan, Ray. "Design Goals and Implementation of the New High Perfor
mance File System." Microsoft Systems Journal (September 1989): 1-13. This
article, although focused primarily on the HPFS, includes a concise techni
cal explanation of why we've outgrown the FAT file system. It also describes
the meaning of "installable file system," a system feature that Windows NT
updates.

365

Bibliography

Multiprocessing
Multiprocessing was one of those topics that yielded little published informa
tion because there weren't many symmetric multiprocessing (SMP) operat
ing systems in existence when I started this book. Someone needs to write a
book about the complexities of SMP system design. It's a weighty subject.

Maples, Creve, and Douglas Logan. "The Advantages of an Adaptive Multi-
processor Architecture." Proceedings, New Computing Environments:
Parallel, Vector, Systolic, edited by Arthur Wouk. SIAM, 1986.

Oleinick, Peter N. ParallelAlgMithms on a Multiprocessor. Ann Arbor, Mich.: UMI
Research Press, 1982. (Out of print. Provided on microfilm by University
Microfilms International.)

William, Tom. "Real-Time UNIX Develops Multiprocessing Muscle." Com
puter Design (March 1991): 126-30. This article provides a quick overview of
multiprocessing terms and issues, including symmetric multiprocessing,
tightly coupled systems vs. loosely coupled systems, spin locks, and pro
cessor affinities.

Networking

Birrell, A D., and B. J. Nelson. "Implementing Remote Procedure Calls."
ACM Transactions on Computer Systems (February 1984): 39-59. A classic.

Microsoft Corporation. Remote Procedure Call Programmer's Guide and Riference,
1992. A definitive and well-written guide to Microsoft's RPG facility. It is
based on an RPC specification written at Digital Equipment Corporation.
The spec was modified and adapted at Microsoft by John Murray.

Petrosky, Mary. "Microsoft's Master Plan." LAN Technology (April 1991): 71-
76. This article was the source of the reference in Chapter 5 to the unflat
tering name "many-headed Hydra," referring to the fledgling Windows
NT system. Because it makes amusing copy, I borrowed the epithet myself. I
also found the title of this article ... well ... amusing.

Ryan, Ralph. LAN Manager, A Programmer's Guide. Redmond, Wash.: Microsoft
Press, 1990.

Tanenbaum, Andrew S. Computer Networks, 2d ed. Englewood Cliffs, NJ.: Pren
tice-Hall, Inc., 1989. Once again, Tanenbaum lends interest and clarity to
an operating system topic. In this case, the topic is dry and dull, but Tanen
baum isn't. I used this book as a reference for the OSI networking model
and other networking odds and ends.

367

Bibliography

POSIX/UNIX

Bach, Maurice J. The Design of the UNIX operating System. Englewood Cliffs, NJ.:
Prentice-Hall, Inc., 1986.

IEEE. Portable operating System Interface for Computer Environments. IEEE Standard
1003.1-1988, 1988.

Lewine, Donald. POSIX Programmer's Guide, Writing Portable UNIX Programs.
Newton, Mass.: O'Reilly & Associates, Inc., 1991. This book was bequeathed
to me by Ellen Aycock-Wright, formerly Windows NT's POSIX subsystem
developer, when she left Microsoft to seek greener pastures. I wish I had
had it a year earlier-on cursory reading, it looks like a great book.

Processes, Threads, and Concurrency

Birrell, Andrew D. An Introduction to Programming with Threads. Systems Re
search Center (SRC) Report, Digital Equipment Corporation, January 6,
1989. Finding good sources of information on threads was tough in 1989.
Digital's SRC produced several early papers on this topic, this one among
them. This document contained an especially useful discussion about
alerts. The NT executive's alert and APC capabilities were partially based
on work done at SRC.

Birrell, Andrew D., J. V. Guttag, J. J. Horning, and R. Levin. Synchronization
Primitives for a Multiprocessor: A Formal specification. Systems Research Center
Report, Digital Equipment Corporation, August 20,1987.

Processors

Hennessy,John L. VLSI Processor Architecture. IEEE Transactions on Computers
(December 1984). An important work on processor architectures, focusing
on different single-processor architectures and their relationship to
operating systems. It was useful to me as coherent background on RISC and
CISC processors. It also details necessary operating system functions and
how processors support those functions.

Intel Corporation. 80386 Programmer's Reference Manual, 1986.

Intel Corporation. i486 Microprocessor Programmer's Riference Manual, 1990.

Kane, Gerry, and Joe Heinrich. MIPSRISCArchitecture. Englewood Cliffs, NJ.:
Prentice-Hall, Inc., 1992.

369

Bibliography

helped me form my introductory section for the virtual memory chapter.
Unfortunately, the author of this text is not named in the book (a lament
able custom in computer company documentation).

Windows

Petzold, Charles. Programming Windows. Redmond, Wash.: Microsoft Press,
1990. Although I mainly paged through Petzold's book rather than reading
it from cover to cover, in retrospect I wish I had read more of it. Sprinkled
throughout the code fragments and hands-on discussions are bits of lore
regarding the design of various pieces of Windows. If I had realized this, I
could have saved myself some time in writing the chapter on Windows. As
Windows programmers everywhere already know, this book is indispens
able in learning about Windows programming. I hope Petzold writes one
on Win32 programming.

Microsoft Corporation. Win32 Application Programming Interface Reference
Manual. 2 vols. Redmond, Wash.: Microsoft Press, 1992.

371

Index
Italicized page numbers refer to illustrations.

A
access control entries (ACEs), 78, 79,

80
access control lists (ACLs)

ACEs in, 78, 79, 80
defined, 36, 77
illustrated, 79, 80
overview, 78-79

access rights
desired, 56 ///
granted, W-57, 69
overview, 78

access tokens
attributes, 76-77
defined, 31, 52, 76
example, 76-77
overview, 31, 76-77
and security descriptors, 78, 79
services, 77

ACEs. See access control entries
ACLs. See access control lists
address space. See virtual address space
alertable threads, 225, 226
alerter service, 295
alerts

defined, 103
vs. user-mode APCs, 104

Alpha APX processor, 330
Anderson, Jim, 139
ANSI code set. See Windows ANSI

code set
APC objects, 226
APC queues, 226
APCs. See asynchronous procedure

calls

APls. See application programming
interfaces

. AppleTalk, 311
application layer (OSI reference

model),291
application programming interfaces

(APls)
network, 294-95
OS/2, 2; 4, 27, 32, 108
in protected subsystems, 25-26
Win32, 4, 27, 32, 137-40
Win32 I/O API, 294
Win32 network (WNet) API, 294

ASCII character set, 42
ASMP. See asymmetric

multiprocessing
associated IRPs

completing, 268, 269
defined, 267
illustrated, 268, 269
queuing, 268

asymmetric multiprocessing (ASMP)
defined,24
illustrated, 23
vs. symmetric multiprocessing

(SMP), 23,24
asynchronous I/O

defined, 249, 250, 251
vs. synchronous, 38, 249-52
when to use, 94, 269-71

asynchronous procedure calls (APCs)
and alerts, 103-4
defined, 103
interrupts, 225-26
kernel-mode, 103-4, 225, 226

373

delete method, 72, 73
demand paging policies

defined, 191
and lazy evaluation, 198
use by VM manager, 191

Denning, P.]., 193
desired access rights, 56
device drivers. See also drivers

file systems as, 39, 244
NT, defined, 30

device objects
defined, 273
overview, 274-75
and Windows NT networking, 302,

304
Diamond, Kent, 145
Digital Equipment Corporation, 2,

203, 311, 330
directories. See object directory objects
disconnecting interrupt objects, 222
discretionary access control, 75, 76
disk mirroring, 328
disk striping, 328
dispatcher, exception, 227-29
dispatcher, interrupt, 217
dispatcher, thread

context switching, 213-15
defined, 206
overview, 206
scheduling priorities, 210-12

dispatcher database, 211, 213
dispatcher objects

defined, 235
overview, 209-10, 235
types of, 235-37

dispatcher ready queue, 211, 214
dispatch interrupts, 222-23
distributed computing, 3, 19, 21,

314-21. See also networking
Distributed Computing Environment

(DCE) specification, 319

Index

DLLs. See dynamic-link libraries
domain controllers, 323
domain servers, 289
DPC objects, 223
DPC queues, 223-24
DPCs. See deferred procedure calls
driver objects

defined, 273
overview, 274-75

drivers
creating, 278-82
vs. device drivers, 39, 244
layered, 39-40, 265-68, 275-78
and multiprocessing, 278-81
and NDIS, 312-14
network components as, 297-302
NT, defined, 30
and power failure recovery, 281-82
single-Iayered,257-63
standard NT components, 272
structure of, 272-73
transport protocols as, 309-12
uniform model, 247-49

dynamic-link libraries (DLLs)
hardware abstraction layer (HAL),

20,30

E

memory protection, 124-25
multiple provider router (MPR) ,

305-7
subsystems' use of, 124-25, 127-30

environment subsystems
asynchronous vs. synchronous I/O,

38
and client applications, 32-33, 105
defined,27
MS-DOS, 27, 32, 33, 147-52
and object services, 35
OS/2, 27, 32, 108-9
overview, 32-33

375

INI files, 327
integral subsystems

defined, 27, 117-18
security subsystem, 27
server service, 27
workstation service, 27

Intel chips, 30, 168
internal routines, 28
International dialog box, 41
internationalization support, 40-44,

328-29
International Standards Organization

(ISO),290
interrupt dispatcher, 217
interrupt dispatch table (IDT) , 220,

222
interrupt objects, 221-22

connecting, 222
disconnecting, 222

interrupt request levels (IRQLs),
218-20

interrupts
APC, 225-26
defined, 215
device, 260-62
dispatch,222-23
DPC, 223-25
vs. exceptions, 44, 215, 227
masking, 218, 219
overview, 217-18
processing of, 220~22
software, 222-26
types of, 218-20

interrupt service routine (ISR), 217
invalid pages, 186, 189
I/O completion, 262-65
I/O manager, 29, 243-44
I/O request packets (IRPs)

associated, 267-68,269
defined, 243
overview, 275

10SB. See I/O status block
I/O status block (lOSB) , 265
I/O system, -29, 38-40, 242-53
IPX/SPX protocols, 311
IRPs. See I/O request packets
IRP stack locations, 265, 275
IRQLs. See interrupt request levels
ISO. See International Standards

Organization
ISO code set, 42
ISR. See interrupt service routine

K
Kelly,Jim, 131, 139, 322
Kerberos security model, 329
kernel. See also NT executive

defined,29

Index

interrupt and exception handling,
215-31

overview, 18-19,204-6
synchronization mechanisms,

232-37
thread scheduling, 206-15

kernelmode,17,19,20,25
kernel-mode APCs, 103-4, 225, 226
kernel objects, 51, 52, 235-37
kernel process objects, 207, 208
kernel synchronization, 232-34
kernel thread objects, 207, 208-lO
key objects, 53, 327

L
language support, 40-44
LAN Manager, 285-86, 288, 289,

297-302
LAN Manager for Windows NT, 289,

322,325,326
LAN Manager redirector. See network

redirectors
LAN Manager server. See network

servers

377

multithreading, cantinued
overview, 94-97

MUP. See multiple UNe provider
mutant objects, 53, 101, 102, 236

mutex objects, 52, 53, 235, 236
mutual exclusion, 53, 231-32

N
named pipes, 295, 319, 320-21
name retention, 70
names. See object names; uniform

naming convention (UNC)
Nanduri, Ramakrishna, 152
national language support (NLS)

defined,42
overview, 34-35
users of, 35

native services, 34-35
NDIS. See network driver interface

specification
NetBEUI transport, 311
NetBIOS API, 288, 295
network domains, 289, 322-26
network driver interface specification

(NDIS) , 312-14
networking

APIs, 294-97
built-in, 286, 289, 292-304
corporation-wide, 289, 324-26
Microsoft history, 288-89
open architecture, 304-14
overview, 287-89
"plug 'n' play" capabilities, 286,

304
services, defined, 295-97
Windows NT client/server

overview, 293-94
Windows NT goals, 286
Windows NT redirector, 297,

298-300
Windows NT server, 297, 300-302

Index

network layer (OSI reference model),
291

network redirectors
and remote file system access,

305-9
Windows NT built-in, 27, 29, 40,

288,297,298-300
network server, 27, 29, 288-89, 297,

300-302
new technology (NT). See Windows

NT
NLS. See national language support
nonpaged pool, 37
nonprivileged processor mode, 6
non signaled state, 101, 235-36
NT. See Windows NT
NT executive, 20, 27-30
NT file system (NTFS)

defined,lO
overview, 38-39

NTFS. See NT file system
NT kernel. See kernel

o
object attributes

defined, 22, 50, 63
executive objects, 58
process objects, 88-89
section objects, 178
setting, 77
thread objects, 98-100
type objects, 60-61

object classes. See object types
object directory objects

attributes, 63, 64
defined,53
overview, 63
services, 63-64
summary of characteristics, 64

object domains, 65-66

379

pages
valid vs. invalid, 186, 189
working set, 193-94

page table entries (PTEs), 188, 189,
194,195

page tables, 188-89
paging, 29, 37, 186-94

fetch policies, 191-92
placement policies, 192
replacement policies, 192-93

parse method, 62, 73-74
Parsons,Jeff,152
Pederson, Leif, 136
Pehrson, David, 142
Perazzoli, Lou, 51, 166
physical layer (OSI reference model),

291
physical memory. 37
pipes. 93
placement policies, 192
"plug on' play" capabilities, 286, 304
portability, 2, 7-9, 30, 201-2
port objects

defined, 52
and inheritance. 158
message-passing, 158-64
overview, 156-58
summary of characteristics, 157

ports
communication, 157
connection, 156-57

POSIX subsystem, 27, 32, 33, 39, 52,
108-9

and exceptions, 229
POSIX, defined, 3
support for objects, 52

power failure recovery
and driver creation, 281-82
and NT reliability, 237-39

power notify objects, 238

Index

power status objects, 238-39
PPTEs. See prototype page table

entries
preempting, defined, 210
preemptive multitasking, 92
presentation layer (OSI reference

model),291
primary domain, 323
privileged processor mode, 6
process context. See thread context
processes

address space, 85-86
defined,84
elements of, 84-87
overview, 15
system resources, 86-87

process groups, 107, 108
process manager, 29, 35, 105-13
process objects

attributes, 88-89
creating, 35
defined,52
deleting, 70
kernel, 207, 208
overview, 87
services, 88, 90
summary of characteristics, 87, 88
and synchronization, 101, 102

processor affinity, 207
processors, multiple. See

multiprocessing
processor-specific code, 30
process structure

defined, 104
environment subsystem

requirements, 105-9
native, 109-13
overview, 104-5

process trees, 107
profile objects, 53

381

servers
in client/server model, 18, 19, 25
network, defined, 27, 29, 288-89
Windows NT server, 297, 300-302

server service, 27, 295
service controller, 297
services. See also object services

defined,27
networking, defined, 295-97

session layer (OSI reference model),
291

sessions, 107, 108
shared memory

overview, 174-79
protecting, 182-84

SIDs. See security IDs
signaled state, 101, 235-36
single-byte coding scheme, 42-43
5MB. See server message block (SMB)

protocol
SMP. See symmetric multiprocessing
software. See also Windows NT

maintenance, 22
modifiability, 22

spin locks, 233-34
STREAMS, 312
strlenO function (C language), 45-46
structured exception handling

defined,45
examples, 45-46, 47
overview, 40, 44-45

stub procedures, 317-18
symbolic link objects

defined, 53, 66
overview, 66-68
summary of characteristics, 67

symmetric multiprocessing (SMP), 16,
23-25,94,232

synchronization
critical sections, 47, 232

synchronization, continued
defined, 60, 100
executive, 234-37
kernel, 232-34
multiprocessor, 231-37
overview, 100-103

synchronization objects
defined, 100-101
example, 47

Index

and signaled/nonsignaled states,
101-2

synchronous vs. asynchronous, 249-50
system resources

defined,22
of processes, 86-87
sharing, 23, 25

system services, 28
dispatching, 229-31
native services, 34-35

T
Tanenbaum, Andrew, 289
TCP/IP transport, 311
TDI. See transport driver interface
termination handlers, 46-48
Thompson, Dave, 286, 304
thread context, 91
thread objects

attributes, 98-100
creating, 35
defined, 52, 97
kernel,207,208-10
overview, 97
services, 97, 100
summary of characteristics, 97
and synchronization, 101, 102, 236

threads
alertable, 225, 226
defined, 15, 25, 84, 90, 206
dispatcher states, 208-10

383

Win32 I/O API, 294, 305, 307-9
Win32 network (WNet) API, 294,

305-7
Win32 subsystem

APC capabilities, 226
at logon, 31-32
and national language support API,

42
as NT process, 55
overview, 27, 136-47
process structure, 108-9
running non-Win32 applications,

32,133-36
structure, 140-41
support for multithreading, 106, 109

video display, 33
and Win32 API, 139-40

Windows, 16-bit, 27, 32, 33, 138,
147-49. See also Windows on
Win32 (WOW)

Windows 3.0, 4, 138
Windows ANSI code set, 42-43
Windows NT

block diagram, 26
built-in networking, 286, 289,

292-304
client/server model, 20-21, 119-30
compatibility issues, 10-11
defined, 4
design goals, 5-12
and distributed processing, 314-21
environment subsystems, 32-33,

117-18
extensibility issues, 6-7, 39, 327
file system, 38-40
integral subsystems, 27, 117-18
internationalization support,

40-44,328-29
I/O, 38-40, 242-53

Index

Windows NT, continued
layered model, 20
logon, 30-32
multiprocessing features, 16, 24-25,

232,278
native services, 34-35
and NDIS interface, 312-14
networking goals, 286
networking overview, 293-94
network redirector, 297, 298-300
network server, 297, 300-302
objects, 35-37
and OSI reference model, 291-92
overview, 30-40
power failure recovery, 237-39, 278
and remote file systems, 305-9
and RPC-enabled network services,

315-19
structured exception handling,

44-48
structure of, 20-21, 25-40
and transport protocols, 309-12
virtual memory, 37-38

Windows on Win32 (WOW), 152-54
Windows Sockets API, 295
WNetAddConnectionO API routine,

307
WNet API, 294, 297, 305-7
Wood, Steve, 51, 105, 116, 127, 162
working sets, 193-94

automatic trimming, 193
defined, 193
minimum size, 193, 194

workstation service, 27, 295, 297
WOW. See Windows on Win32

x
Xerox Corporation, 311
XNS protocol, 311

385

Helen Custer graduated with Highest Distinction from the

University of Kansas, earning B.A. degrees in computer science,

English, and psychology. Her a-year professional writing career

began when she coauthored Learning Z-BASIC on the Heath/Zenith

Z-100. Priorto joining the Windows NT team to write Inside Windows

NT, she worked at Digital Equipment Corporation, writing C lan

guage manuals and miscellaneous operating system documenta

tion and developing documentation tools. She has written for the

C User's Journal, Windows/DOS Developer's Journal (formerly

Tech Specialist), and Microsoft Systems Journal.

The manuscript for this book was prepared and submitted to Microsoft
Press in electronic form. Text files were processed and formatted using
Microsoft Word.

Principal editorial compositor: Barb Runyan
Principal proofreader/copy editor: Deborah Long
Principal typographer: Katherine Erickson
Interior text designer: Kim Eggleston
Principal illustrator: Connie Little
Cover designer: Rebecca Geisler:Johnson
Cover color separator: Color Service

Text composition by Microsoft Press in New Baskerville with display type in
Helvetica Bold, using the Magna composition system and the Linotronic 300
laser imagesetter.

Essential References for the Windows™ Programmer

-
PROGRAMMING WINDOWS™ 3.1

Charles Petzold
The Classic Guide to Writing Applications for Windows 3.1

. PROGRAMIIG
"The definitive book on Windows programming is, of course, Charles Petzold's
PROGRAMMING WINDOWS." Dr. Dobb's Journal

"If you're going to program for Windows, buy this book. It will pay for itself in a
matter of hours." Computer Language 11 .. ··3.1

Chlrles Petzold

• • • I
I

This new edition of PROGRAMMING WINDOWS--<:ompletely updated and
revised to highlight version 3.1 capabilities-is once again packed with keen
insight, tried-and-true programming techniques, scores of sample programs written
in C (on disk too!), and straightforward explanations of the Microsoft Windows
operating system. The accompanying disk contains more than 1.2-MB of sOurce
code and associated files from the book.

PROGRAMMING WINDOWS 3.1. The most authoritative, example-packed,
and thorough resource for programmers writing applications for the Microsoft
Windows operating system.
1008 pages, softcover with one l.44-MB 3.5-inch disk
$49.95 ($67.95 Canada) ISBN 1-55615-395-3

THE WlNDOWS™ INTERFACE:
AN APPLICATION DESIGN GUIDE

Microsoft Corporation
The Microso~ Guidelines for Designing a User Interface for Windows-based Applications

If you're developing for Microsoft Windows, this is the guide to designing a
world-class user interface. THE WINDOWS INTERFACE is packed with ideas,
answers, and options on all aspects of the Windows GUI-including OLE and DOE.
This near-definitive set of recommended standards promotes visual and functional
consistency within and across Windows-based applications. Compiled by Microsoft,
it's an essential reference for developers regardless of experience or tools used.

Bundled with the book are a set of compaoion disks. They include the
following materials:
Interactive Design Guide-A sample application that provides access to an online

version of this book.
Visual Design Guide-Descriptions, specifications, and online illustrations of

Windows design elements.
Buttons and Cursors-A dynamic link library with standard cursor and toolbar

button images-ready to use.
248 pages, softcover with two l.44-MB 3.5-inch disks
$39.95 ($54.95 Canada) ISBN 1-55615-439-9

Microsoft Press books are available wherever books and software are sold.
To order direct, call1-800-MSPRESS: Refer to campaign BBK .

• In Canada, contact Macmillan Canada, Attn: Microsoft Press Dept., 164 Commander Blvd, Agincourt, Ontario, Canada MIS 3C7, or call (416) 293-8141.
In the U.K., contact Microsoft Press, 27 Wrights Lane, London W8 5TZ.

The inside story

behind the design,

philosophy,

architecture , and

future of MicrosoH's

new technology

I SBN 1-556 15 - 481-X

812

90000

