
Optimizing
Windows NT'·
The information
you need to
become an expert
on Windows NT!

Russ Blake

For Windows NT Workstation and Windows NT Server Version 3.5

Microsoft Press
-~~~~---

Optimizing
Windows NT"

Russ Blake

. RESOURCE KIT
For Windows NT Workstation and
Windows NT Server Version 3.5

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1995 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Optimizing Windows NT / by Microsoft Corporation.

p. cm. -- (Microsoft Windows NT resource kit for Windows NT
workstation and Windows NT server version 3.5 ; 4)

Includes index.
ISBN 1-55615-655-3
1. Operating systems (Computers) 2. Microsoft Windows NT.

I. Microsoft Corporation. II. Series.
QA76.76.063M52455 1995 vol. 4
005.4'469~-dc20

Printed and bound in the United States of America.

2 3 4 5 6 7 8 9 QMQM 0 9 8 7 6 5

94-47261
CIP

r95

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

A CIP catalogue recofd for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or
contact Microsoft Press International directly at fax (206) 936-7329.

Adaptec is a trademark of Adaptec, Inc. AppleTalk and Macintosh are registered trademarks of Apple
Computer, Inc. DEC is a trademark of Digital Equipment Corporation. Olivetti is a registered trade
mark of Ing. C. Olivetti. Intel is a registered trademark and i486 and Pentium are trademarks of Intel
Corporation. Microsoft, MS, MS-DOS, Win32, Windows, and XENIX are registered trademarks and
Windows NT is a trademark of Microsoft Corporation in the U.S.A. and other countries. MIPS is a
registered trademark of MIPS Computer Systems, Inc. NetWare and Novell are registered trademarks
of Novell, Inc. UNIX is a registered trademark of Novell, Inc. in the U.S.A. and other countries,
licensed exclusively through XlOpen Company, Ltd. Unicode is a trademark of Unicode, Inc.

For my son Matthew: may his computers always be swift.

Contributors to this book include the following:

Lead Editor:
Chris Dragich

Technical Editors:
Jeff Angus, Karin Carter, Alan Smith, and Sharon Tighe

Indexer
Jane Dow

Production Team:
Karye Cattrell, Yong Ok Chung, and Cathy Pfarr

Graphic Designer:
Sue Wyble

Graphic Artists:
Tina Anderson, Gwen Grey, Brenda Potts, Elizabeth Read, Steve Winard

Contents

v

Introduction .. xxi

Chapter 1 How to Optimize Windows NT .. 1
Windows NT Is Always in Tune .. 2

Detecting Bottlenecks . 3

Capacity Planning . 4

Optimizing Applications. 4

Perfonnance Monitor and Other Cool Tools to Use . 5

Perfonnance Monitor Is a New Breed of Application. 6

Chapter 2 Zen and the Art of Performance Monitoring .. 7

Computer Architecture 101 ... 8

Bottleneck Defined .. 12

What a Counter Counts. .. 14
Why You Can't Always Get Easy Answers About Perfonnance. 15

How Perfonnance Monitor Sees a Computer. .. 16

Perfonnance Monitor Overview. .. 17

How Perfonnance Counters Are Structured. 21

Selecting Computers . 22

Selecting Objects '. 26

Selecting Counters. 28

Selecting Instances. ',' . 31
Custom Displays ~ . 32

The Four Perfonnance Monitor Views. 35

Chart View .. 36

Report View .. ' ... 43

Alert View . 45

Log View ... 48

Loading and Viewing Log Files 53

Saving Settings. 60
Exporting Perfonnance Data. 62

Perfonnance Monitoring Service. 63

vi Contents

Performance Monitor Limitations. 64

Why You Don't See Any Disk Data 64
Why the Processor Queue Is Always Empty 64
Ways to Print Performance Data 65
The GUI Batch Processor . 65

TCP, SNMP, and Thee ... 66
Crucial Hot Keys . 66

Chapter 3 Detecting Processor Bottlenecks. .. 67
Bottlenecks Are Moving Targets 68
Getting Started: Making an Overview Settings File 70

Charting the Response Surface ... 75
Analyzing Processor Performance 75

Why Performance Monitoring Is Free (Not!) 79

Processor Scheduling on Windows NT. 80
The Mystery of the Sawtooth Queue Length 83
User Mode and Privileged Mode 86

What Multiple Processes and Threads Look Like 91
Bottlenecks at Lower Utilization 98
How the Graphics System Uses the Processor. 100
Processor Usage by 16-bit Windows Applications . 103

Processor Usage by 16-bit MS-DOS Applications 109
Who Started All These Processes? 112

Getting Rid of a Processor Bottleneck . 114
Monitoring Multiple Processors . 116

Chapter 4 Detecting Disk Bottlenecks 127
Making Sure Disk Performance Statistics Are Collected 128
Busy Disks Are Happy Disks ... 130
Uncovering High Disk Throughput 139

Uncovering Even Higher Disk Throughput 142
Getting Rid of a Disk Bottleneck . 149
Looking at Redundant Arrays of Inexpensive Disks : 150

Contents vii

Chapter 5 Detecting Memory Bottlenecks .. 157
How the Windows NT Virtual Memory System Works 158

Configuring Available Memory in Windows NT '. 160

Examples of Memory Activity and Paging 160

Paging with Lots of Processes. .. 171

Monitoring the Nonpaged Pool. .. 176

Lack of Memory Causes Disk to Suffer. .. 177

What a Memory Hog Looks Like. .. 178

Chapter 6 Detecting Cache Bottlenecks. .. 181
File System Cache Overview .. 182

Basic Cache Experiments .. 184

Sequential Reading and Writing. .. 190

Reading and Writing Randomly 197

Mapping Files Into Memory .. 203

Tuning the Cache. 206

Chapter 7 Detecting Network Bottlenecks. .. 207
A Profile of Network Throughput. 208

A Simple Model of a Network Bottleneck 216

The Mystery of the Missing Time 217

Generalizing Network Bottleneck Detection I ••••••••••••••• 219

Using Role Reversal to Compare Platforms. 223

Adding Clients to a Test Server . 226

Server Disk Activity .. 233

Copying a Directory from Server to Client 237

Monitoring TCPIIP Performance ~43

Monitoring NWLink Performance 249

Chapter 8 Capacity Planning. .. 255
Performance Monitoring Service 256

Monitoring Multiple Servers : 258

Archiving and Storing Performance Data 260

Analyzing Trends . 261

Monitoring Desktop Computers . 263

viii Contents

Chapter 9 Writing High-Performance Windows NT Applications. 265
Managing Memory ... 266

Using the Kernel Wisely ... 267

Grappling with Graphics ... 269

Batch Processing for Graphics " 271

High Performance Graphics .. 272

Managing the Device Context. .. 273
Asynchronous Input and the Window Manager 274

Considerations for RISC Computers 274

Choosing Bet~een API Sets .. 275

Chapter 10 Tuning Windows NT Applications . 279
Run Performance Monitor First .. 280

The Windows API Profiler ... 283

Setting Up the Profiling Environment. 286

Profiling an Application ... 286
Listing an Application's DLLs 286

Collecting W AP Data .. 287

Excluding Some APIs from Analysis with W AP 287

Running W AP on Solitaire .. 288
Ending W AP .. 290

The Call Attributed Profiler .. 290

Using CAP ... 292

Capview: a Visual Form of CAP 296
The FIOSAP Profiler .. 298

Using the I/O Profiler ... 301

The Win32 API Logger .. 304

Other Useful Tools .. 305
PView ... 306

PMon : 308

WPerf ... 309

The Symbolic Debugger wt Command 309

Contents ix

Chapter 11 Tuning the Working Set of Your Application. 311
How Working Set Tuning Can Help You 312
How the Working Set Tuner Works 314
Using the Working Set Tuner. 316
Looking Inside Your Working Set . 318

Chapter 12 Writing a Custom Windows NT Performance Monitor. 323
Performance Monitor Source Code 324
Design Philosophy .. 324
Retrieving Performance Data. 325

How the Performance Data Is Structured 327
Navigating Through the Performance Data Structures 330

Retrieving Counter Names and Explanations 330

Retrieving Selected Data. 332

Performance Counter Definitions 333
Monitoring Within an Application. 340

Chapter 13 Adding Application Performance Counters 341
Adding Performance Counters: the Big Picture 342

Object and Counter Design. 343
Setting Up the Registry. 343

Creating the Application's Performance Key 344
Adding Counter Names and Descriptions to the Registry 345

Other Registry Entries. 351
Collecting Performance Data ... 352

Creating the Performance DLL .. 353
How the DLL Interfaces with a Performance Monitor Application 353

Error Handling in the DLL .. 358
Measuring Foreign Computers .. 358

Installing Your Application ... 359
Sample Code . 360

Instrumenting the VGA Driver 360
Data Collection DLL ... 363

x Contents

Appendixes

Appendix A Windows NT Performance Counters 395
AppleTalk Object. .. 396
Browser Object .. 400
Cache Object .. 404

FTP Server Object .. 410
Gateway Service for NetWare Object 413
ICMP Object .. 418
Image Object .. 422

IP Object ... 424
LogicalDisk Object ' 428
MacFile Server Object .. 431
Memory Object .. 434

NBT Connection Object ... 439
NetBEUIObject ... 440
NetBEUI Resource Object ' 448

Network Interface Object .. 449
Network Segment Object. .. 452

NWLink IPX Object .. 453
NWLink NetBIOS Object. ... 460
Objects Object ... 467

Paging File Object .. 469
PhysicalDisk Object .. 469
Process Object ... 472
Process Address Space Object .. 477

Processor Object ... 486
RAS Port Object ... 487
RAS Total Object .. 490
Redirector Object. .. 493

Server Object .. 501
System Object , ... 506
TCP Object. ... 510
Thread Object ... 512

Thread Details Object. .. 515
UDP Object ... 515
WINS Server Object ... 516

Contents xi

Appendix B Registry Value Entries. .. 519
CurrentControlSet\Select Subkey 520

CurrentControlSet\Control Subkeys 521
FileSystem Control Entries : 522

Session Manager Control Entries 523
WOW Startup Control Entries 525

CurrentControlSet\Services Subkeys 526
Serial Subkey Entries in the CurrentControlSet\Services Subkey 527

Mouse and Keyboard Driver Entries 528
SCSI Miniport Driver Entries 532
Video Device Driver Entries 533

Registry Entries for Network Services 535
AppleTalk and MacFile Service Entries for SFM 535

Browser Service Entries .. 537
DiskPerf Service Entries : 539
DLC System Driver Entries " 540
EventLog Service Entries . 541
NBF (NetBEUI) Transport Entries 542

NetLogon Service Entries ... 548
NWLink Transport Entries (lPXlSPX) 552
Redirector (Rdr) Service Entries 563
Remote Access Service (RAS) Entries 564

Replicator Service Entries ... 570

Server Service Entries. 572
TCPIIP Transport Entries ... 579

Workstation Service Entries 594
Registry Entries for Microsoft Mail. 600

Microsoft Mail Entries . 600
MMF Entries for Mail .. 602

Microsoft Schedule+ Entries .. 604
Registry Entries for User Preferences . 605

Console Entries for Users . 605
Cursors Entry Values for Users. 607

Desktop Entry Values for Users . 607
Keyboard and Keyboard Layout .Entries for Users 608

Mouse Entries for Users . 609
Network Entries for Users ... 610

xii Contents

Program Manager Entries for Users 611

Recovery Entries for Users .. 612
Windows Entries for Users .. 613

Registry Entries for Winlogon .. 615
Registry Entries for Fonts' 615

FontCache Entries ... 615
FontDPI Entries ... 616

Registry Entries for Printing .. 616
Registry Entries for Software Classes 619
Registry Entries for Subsystems.' 619

Microsoft OS/2 Version 1.x Software Registration Entries 619

Windows Software Registration Entries 620

Appendix C Using Response Probe , , , , , , , , ',' ... , , , , ., 621
Why You Would Use Response Probe 622
Response Probe Design .. 622

Normal Distribution .. 623

THINK State ... 624
FILE ACCESS State : 625

COMPUTE State .. 625
Response Probe Input Files ... 626

Performing Response Probe Experiments 626
Script Files ... 627

Output Format .. 632

Index ',' 635

xiii

Figures and Tables

Figures
Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.10

Figure 2.11

Figure 2.12

Figure 2.13

Figure 2.14
Figure 2.15

Figure 2.16

Figure 2.17

Figure 2.18

Figure 2.19

Figure 2.20

Figure 2.21

Figure 2.22

Figure 2.23

Figure 2.24

Figure 2.25

Figure 2.26

Figure 2.27

Figure 2.28

Figure 2.29

Figure 2.30
Figure 2.31

Figure 2.32

Figure 2.33

Block diagram of the original IBM personal computer 8

Block diagram of a current Intel 486-based computer 8
Memory bus organization of a current Intel 486-based computer ... 10

Block diagram of a RISC-based personal computer 11

Block diagram of a multiprocessor computer 12

Performance Monitor view of personal computer hardware 17

Performance Monitor Chart view .. 18

Performance Monitor Report view .. 18

Performance Monitor Alert view .. 19

Performance Monitor Log view .. 20
Excel chart of exported Performance Monitor data 20

Add To Chart dialog box .. 22

Computer Selection dialog box ... 23

Overhead of remote monitoring on the monitored computer. 24
Overhead of remote monitoring on the monitoring machine 24

Selecting multiple objects for logging ... 28

Selecting a counter for measurement.. ... 28

Selecting multiple counters for measurement 29

U sing the Explain text. .. 30

Viewing all the counters for an object at one time 31

Performance Monitor display options ... 33

Minimal Performance Monitor chart and report arrangement 34

All chart display options in graph mode of current activity 37
Chart histogram mode: a view of many processes'
% Processor Time ... 41

Report with counters from multiple computers 44

Some common alerts and their alert logs 1 ••••••••• .46

Setting an alert on multiple instances48

Creating a log file ... 49

Analyzing data from a log file .. .49

Add To Log dialog box ... 50

Log Options dialog box ... 50

Log view during data collection .. 51

Chart ofa log file with fewer than 100 snapshots 54

xiv Figures and Tables

Figure 2.34

Figure 2.35

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Figure 3.12

Figure 3.13

Figure 3.14

Figure 3.15

Figure 3.16

Figure 3.17

Figure 3.18

Figure 3.19

Figure 3.20

Figure 3.21

Figure 3.22

Figure 3.23

Figure 324

Figure 3.25

Figure 3.26

Figure 3.27

Figure 3.28

Figure 3.29

Figure 3.30

Figure 3.31

Figure 3.32

Chart of logged data with more than 100 snapshots
in the log file ... 55

Anatomy of the Input Log File Timeframe dialog box 56

Chart of processor and disk usage ; 68

Report of processor and disk usage ... 69

Overview of a busy client ... 73

Overview of a busy server .. 74

Bottleneck on processor utilization ... 75

Processor Queue Length with a processor bottleneck 77

Processes active during a processor bottleneck 78

Windows NT Performance Monitor overhead (not!) 79

Components of processor queue length ... 84

Anatomy of a periodic, blocked thread .. 85

Threads active during a processor bottleneck 86

A self-absorbed application obsessed
with user-mode processing ; .. 87

A process wisely using Windows NT to get its work done 88

Some key indicators of system call activity 89

Multiple processes in a processor bottleneck 92

Processor queue length with multiple processes
consuming the processor ... 93

Comparing processor queue lengths .. 94

Which processes are eating the processor 94

Processor consumption by multiple threads 95
Processor time and queue length with multiple threads
(remote measurement) ... 96

Processes in a multithreaded processor bottleneck 97

Threads in a single process in a multithreaded
processor bottleneck .. 97

Response time to a randomized processor load 99

Graphics architecture on Windows NT ... 100

Processor utilization by a graphics program pumping pixels 101
Thread context switching during graphics processing 102

16-bit Windows applications on Windows NT 103

16-bit Windows NTVDM before application execution 104

16-bit Excel in the WOW NTVDM ... 104

16-bit Excel has calmed down now ... 105

16-bit Excel has stopped ... 106

WowExec NTVDM threads after restarting 16-bit Excel. l07

Figure 3.33

Figure 3.34

Figure 3.35

Figure 3.36

Figure 3.37

Figure 3.38

Figure 3.39

Figure 3.40

Figure 3.41

Figure 3.42

Figure 3.43

Figure 3.44

Figure 3.45

Figure 3.46

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7
Figure 4.8

Figure 4.9

Figure 4.10
Figure 4.11

Figure 4.12

Figure 4.13

Figure 4.14

Figure 4.15

Figure 4.16

Figures and Tables xv

WowExec NTVDM threads after starting Excel
and Word for Windows ... 108

16-bit MS-DOS applications on Windows NT 109

Registry Editor set to change name of NTVDM
for running MS-DOS programs .. :.110

Two MS-DOS applications monitored using
renamed NTVDMs ... 111

Threads in a renamed NTVDM executing
an MS-DOS application .. 112

Object counts on a Windows NT system 113

Eight processes in one processor ... 116

Processor time distribution among eight
processes in one processor .. 117

Eight processes on eight processors .. 118

Processor use by eight processes on eight processors 119

Resource contention by eight graphics programs
on an eight-processor computer ... 120

After the fourth process is added, no more work gets done 121

CSRSS threads with eight graphics programs
and eight processors .. 122

Memory contention in multiprocessor systems 123

Disk driver stack with disk performance driver installed 128

Processor and disk behavior during disk bashing 130

Processor and system activity when reading small
records from disk .. 131

Disk activity while reading short records, logging elsewhere 132

Background disk writing while reading short records 134

Study in contrasts: disk transfer rates ... 135

Five processes reading small records at once, or trying to 137
System overview of five processes reading
small records at once ... 137

Disk behavior of five processes reading small records at once 138

Creating a 100-MB file ... 139

System overview of creating a 100-MB file 140

Cache behavior when creating a large buffered file 141

Disk behavior when creating a large buffered file 141

Transfer rates achieved by various-sized reads 142

Transfer rates and transfer times achieved
with various-sized reads .. 143

System overview during maximum disk throughput 144

xvi Figures and Tables

Figure 4.17

Figure 4.18

Figure 4.19

Figure 4.20

Figure 4.21

Figure 4.22

Figure 4.23

Figure 4.24

Figure 4.25
Figure 4.26

Figure 4.27

Figure 4.28

Figure 4.29

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8
Figure 5.9

Figure 5.10

Figure 5.11
Figure 5.12

Figure 5.13

Figure 5.14

Figure 5.15

Figure 5.16

Figure 5.17

Figure 5.18

Figure 5.19

Figure 5.20

Figure 6.1

Randomly reading successively larger
records of a 500-MB file .. 145

Narrowing down to the case of maximum throughput. 146
Setting the time window to exclude extraneous data points 147

System overview reading across a 500-MB file
with 60K records .. 147

Disk statistics reading across a 500-MB file
with 60K records .. 148
Disk behavior reading 60K records more randomly 149

File creation on a single spindle .. 151

File creation on a three-spindle striped volume without parity 152

'Physical disk statistics for a striped volume 153
Reading from three-spindle striped volume 154

Reading from four-spindle hardware RAID 154

Disk throughput test for a three-spindle striped volume 155

Disk throughput test for a four-spindle hardware RAID 155
Handling page faults on Windows NT .. 159

Processor activity while starting Clock ... 161

Page faults while starting Clock .. 161

Pages input while starting Clock ... 162
Page reads while starting Clock .. 163

Page faults by process while starting Clock 164

Memory and disk reports when starting Clock 165

Working set size growth when starting Clock 166
Available bytes decline when Clock starts 167

Working sets reduced to operating minimums
by the clearmem utility .. 168

Both input and output page traffic during the startup of Clock 169
A working set is trimmed because it is inactive 170

Nested bottlenecks during the startup of Clock 171

Processor usage and page traffic under increasing
memory pressure ... 172

System usage at the onset of paging .. 173

Response Probe working sets as memory pressure increases 174

Memory statistics when paging is excessive 174

Lack of memory causes excessive disk usage 177

Overview of memory hog activity ~ 178

Memory hog innards exposed ... 179

Cache references to absent file pages are resolved
by the memory manager .. 183

Figure 6.2
Figure 6.3

Figure 6.4
Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9
Figure 6.10
Figure 6.11

Figure 6.12

Figure 6.13

Figure 6.14
Figure 6.15

Figure 6.16

Figure 6.17

Figure 6.18
Figure 6.19

Figure 6.20

Figure 6.21
Figure 7.1
Figure 7.2

Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6

Figure 7.7

Figure 7.8
Figure 7.9
Figure 7.10
Figure 7.11

Figure 7.12

Figures and Tables xvii

Disk performance of an example 386SXl25 laptop 184
System behavior during cached reading of a large file 185

Cache statistics during the reading of a large file 186
Copy Read Hits % and Copy Reads/Sec during
reading of a large file ~ 188
Cache and disk activity while reading
and writing a large file sequentially .. 190

Cache statistics for read/writing a large file sequentially 191
Cache and system statistics for read/writing
a large file sequentially ... 192

Lazy writing by the System process is truly lazy 193
System process threads divide the lazy work up 194
Disk response to cache activity during
sequential read/writing .. 195
Memory manager and cache manager make
sweet music together ... 196
Havoc reigns over random read/writing .. 197

The cache steals much needed pages from other working sets 198
Cache statistics for normally distributed read/writing 199

Cache statistics during normally-distributed
reading and writing ... 200
Memory manager and cache during
normally-distributed reading and writing 201
Disk statistics during normally-distributed reading and writing 202
Competing processes using mapped and file system reads 204

More competing processes using mapped
and file system reads ... 205

Response time for mapped and buffered competing processes 206
Client's view of a network throughput test 209
Server's view of a network throughput test. 210

Client's view of unbuffered reading of 2048-byte records 211
Server's view of unbuffered reading of2048-byte records 212

Redirector's view of reading 2048 bytes 214
Server's view of reading 2048 bytes ... 215
Processor usage on the client side while reading 217

Processor usage on the server during client reads 218
Client's view of 14-page reads .. 220
Server's view of 14-page reads ... 221
Pentium client statistics for 2048-byte reads 223

Server statistics when the server is an i486/33 224

xviii Figures and Tables

Figure 7.13

Figure 7.14

Figure 7.15

Figure 7.16

Figure 7.17

Figure 7.18

Figure 7.19
Figure 7.20

Figure 7.21

Figure 7.22

Figure 7.23
Figure 7.24

Figure 7.25

Figure 7.26

Figure 7.27

Figure 7.28

Figure 7.29

Figure 7.30

Figure 7.31
Figure 7.32

Figure 7.33

Figure 7.34
Figure 7.35

Figure 7.36

Figure 7.37

Figure 7.38

Figure 7.39

Figure 7.40
Figure 7.41

Figure 8.1

Figure 8.2

Figure 8.3
Figure 9.1

Figure 10.1

Figure 10.2

Figure 10.3

Two clients on a server, NetBEUI view
from the server's perspective .. 226

Two clients on a server, Server statistics 227
Three clients pile on, NetBEUI statistics on the server 228

Three clients pile on, Server statistics ~ 228

Four clients pile on, NetBEUI statistics on the server 229

Four clients pile on, Server statistics ... 230

Five clients pile on, NetBEUI statistics on the server 231
Five clients pile on, Server statistics : 231

Server activity while reading a large file 233

NetBEUI view of disk access on the server 234

Server and disk view of disk access on the server 235
Memory manager's view of disk access on the server. 236

NetBEUI on the server during directory copy 237

Cache and memory on the server during directory copy 238

Disk activity on the server during directory copy 239

N etBEUI on the client during directory copy 240

Cache and memory on the client during directory copy 241

Disk activity on the client during directory copy 242

Throughput chart for TCPIIP .. 244
Network Interface of TCPIIP doing
2048-byte reads, server side ... 245

Server TCPIIP counters during 2048-byte reads 246

Server NBT statistics during 2048-byte reads 247

Server's Network Interface statistics during
1024-byte writes to the server. .. 248

Server's UDPIIP statistics during 1024-byte writes to server 249

Client's throughput for unbuffered reading
with NWLink NetBIOS .. 250

Server's NWLink NetBIOS statistics for 2048-byte reads 251

General IPX activity as seen by Performance Monitor 252

Connection and disconnection between NWLink SPX partners 253
SPX exerciser inadvertently exercises the graphical subsystem 254

Setting alerts on disk free space for mUltiple drives 259

Creating an archive log file from daily logs 260

Processor-usage growth on a server over several months 262
Windows NT client-server graphics architecture 270

Overview of the Solitaire cascade ... 281

Processor and system statistics during the Solitaire cascade 281

Process activity during the Solitaire cascade 282

Figure lOA

Figure 10.5

Figure 10.6

Figure 10.7

Figure 10.8

Figure 10.9

Figure 10.10

Figure 10.11

Figure 10.12

Figure 10.13

Figure 10.14

Figure 10.15

Figure 10.16

Figure 10.17

Figure 10.18

Figure 10.19

Figure 10.20

Figure 10.21

Figure 10.22

Figure 11.1

Figure 12.1

Figure 12.2

Figure 12.3

Figure 12.4

Figure 12.5

Figure 13.1

Figure 13.2

Figure C.1

Figure C.2

Figures and Tables xix

Thread statistics during the Solitaire cascade 283

Application interface to the system before
and after running apf32cvt .. 284
GDI32.DLL activity during the Solitaire cascade 289

CalUattributed profile of Solitaire cascade,
called functions included ... 294

CAP of Solitaire cascade, excluding called functions 295

Capview tree profile of Solitaire cascade, zoomed out.. 296
Capview tree profile of Solitaire cascade, zoomed in 297

Capview list profile of Solitaire cascade 298

Overview of an application without a processor problem 299

System and processor views of an application
without a processor problem ... 299

Memory and cache views of an application
without a processor problem ... 300

Logical disk view of an application
without a processor problem ... 300

Partial FIOSAP file statistics on the Zapdata application 303

Partial FIOSAP event and semaphore statistics
on the Zapdata application .. 303

Log of API calls made by Performance Monitor
when drawing a chart legend ... 305

File Manager as seen by PView .. 306

File Manager memory details as seen by PView 307

PMon view of the universe .. 308

Windbg wt command of a portion of the Solitaire cascade 309

Partial vadump results of Performance Monitor charting 320

How Performance Monitor collects performance data 326

How to obtain performance data ... 326

Basic structure of performance data .. 327

Performance data structure of an object with no instances 328

Performance data structure of an object
with one or more instances .. 329

How Performance Monitor collects data from
an extended object. .. 342

Collecting performance data from a non-Windows NT
computer .. ; 358
Complete Response Probe cycle .. 623

Normally distributed curves produced
by various standard deviations .. 624

xx Figures and Tables

Tables
Table 2.1 Absolute Counter Values .. 14
Table 2.2 Relative Counter Values ... 15
Table 2.3 Core Objects in Windows NT Performance Monitor 27
Table 2.4 Performance Monitor Toolbar Icons ... 33
Table 2.5 Settings File Suffixes .. 60
Table 3.1 Thread Priorities in Windows NT ... 82
Table 3.2 Thread States in Windows NT .. 83
Table 3.3 Processes in Windows NT with No Network Connection 114
Table 6.1 Cached vs. Non-cached File 110 Times

in Milliseconds per Record ... 185
Table 6.2 Memory Mapped vs. File 110 Times in Milliseconds per Record .. 203
Table 11.1 Code Working Set Tuning of Performance Monitor 313
Table 11.2 Function Reference Patterns Before

and After Working Set Tuning .. 315
Table 12.1 Performance Data Structures .. 329
Table 12.2 Possible Values for IpszValueName ... 333
Table 12.3 Counter Type Field Definitions ... 334
Table 12.4 Predefined Counter Typesand How to Display Them 336
Table 13.1 Performance Counters and Help Values .. 346
Table 13.2 LodCtr-Added Value Names and Descriptions 347
Table 13.3 LodCtr Variables .. 348
Table 13.4 Performance DLL Functions ... 353
Table 13.5 Collect Function Arguments and Descriptions 356
Table 13.6 Collect Function Return Values and Descriptions 357
Table A.1 Performance Counter Reference Information 395

xxi

Introduction

I encountered my first computer performance problem 25 years ago. A professor at
my college wanted to build a tightrope for his children in the backyard. He needed
to know how strong the rope would have to be, so he asked if I could help. Eager to
brandish my new-found programming expertise, I readily volunteered. He told me
the weight of his children and the length he wanted the tightrope to be, and I was off
in a rush to the time-sharing terminal. I created the program, punched in the paper
tape, and soon returned to him with the answer, gleeful with my success.

A few weeks later, another professor managing our link to the time-sharing
computer stopped by and asked me if I knew what had caused the computer service
to bill us an extra $600 that month. I knew we were charged for connect time and
for computation time, but the bill seemed incredible to me and I could think of no
reason for it. A few days later it dawned on me. My little program to compute the
tensile strengt~ of the tightrope iterated repeatedly from 0 to degree x, where x was
the angle of descent of the tightrope. Then x would be increased, but the program
started back at 0 again. A very simple change to the program would have made it
hundreds of times more efficient. $600. Ouch.

So my first performance-measurement tool was a bill. Sometimes a bill is still the
most effective tool, because poor computer performance costs money. And solving a
performance problem by buying the wrong piece of hardware wastes money. But
the biggest cost of poor performance is in the productivity of all the people who use
our systems and our programs. If we could properly tune all the programs and
computers in the country we could payoff the national debt. Well, make a dent
anyway.

We want to help you to avoid that $600 bill, which (given inflation) is likely to be
somewhat larger today. This book describes the dynamic behavior of the
Microsoft® Windows NTTM operating system and its applications, and how that
behavior affects their performance.

xxii Optimizing Windows NT

This book will prove useful to a wide range of computer professionals, including:

Corporate Information Systems and network administration personnel who
evaluate, design, deploy, and administer Windows NT on both servers and
desktop computers.

Corporate departmental administrators who must maintain Windows NT
departmental servers.

Corporate Information Systems personnel who design, implement, and maintain
mission-critical applications deployed on Windows NT.

• Independent software vendors who port 16-bit applications to Windows NT, or
develop 32-bit applications for Windows NT.

• Windows NT users who make decisions concerning the addition of hardware to
their computers to improve performance.

Because we figure that our readers include people with different backgrounds and
with exposure to a wide variety of different systems, we have tried to be careful to
define our terminology as we go along. If we're going to win this game, we need to
start with a level playing field. Hopefully this will not prove too ponderous for those
of you well-versed in computer science. Even if you are, you should stay on your
toes: like all systems, Windows NT has its own terminology.

Once you have read this book, you will be able to:

• Determine hardware requirements for deploying Windows NT.

• Find bottlenecks in networks, servers, and desktop computers.

• Determine accurately what new hardware purchase will best enhance your
productivity.

Gain an understanding of how various activities affect the performance of your
computer hardware.

Perform capacity planning, to determine your future equipment needs for servers
and desktop computers.

Gain an understanding of the performance-critical features of Windows NT.

• Determine the effect of various design tradeoffs for optimally performing
applications.

• Assess the hardware requirements for your applications.

• Determine the bottlenecks in your applications, and remove them if possible.

Introduction xxiii

This book is extremely topical, which is both an asset and a liability. It is tied to
the initial release of Windows NT 3.5, and reveals a host of details that are
extremely important for you to understand if you are to manage the performance
of Windows NT. But such details may change in subsequent releases. If you are
working with a later release of Windows NT, you may find that some algorithms
have been refined and some counter names have changed, and some of the hints we
mention here may no longer apply. We've tried to make sure that you'll have all the
tools in your toolkit to characterize any changes clearly for yourself as they emerge
in new releases.

As you will discover, optimizing Windows NT is not an issue of tweaking many
magic system parameters. Instead you will learn a new set of powerful tools for
analyzing system performance. Each tool will lead you to the next until you have
decimated the bottleneck demon.

On the floppy disk (or CD-ROM) provided with this book, you will find a synthetic
load generator along with quite a few other useful tools. The synthetic load
generator, which helps you perform controlled performance experiments on your
system, is described in Appendix C of this book. The other utilities have online
documentation. We discuss most of these tools in the text as we cover related
topics, but you should browse the floppy disk for tools which might be useful in
your situation. Give them a try. They don't weigh much, so you might as well carry
them around.

There are a few topics we have not tried to cover at all in this book. For example,
we have not tried to help you to minimize the disk space required for Windows NT
on your computer. As already mentioned, we have not tried to provide an
exhaustive treatise on the effects of changing the parameters listed in Appendix B,
mainly because we think you'll never need to change them unless your situation is
quite unusual. And we have not tried to do an exhaustive comparison of the
performance of Windows NT on this or that hardware platform. Instead, we have
enabled you to do that comparison in your own environment.

xxiv Optimizing Windows NT

A book like this is the result of an enormous team effort. It is a book built upon a
great foundation of software. At the base of that foundation is the dedicated team
that built Windows NT (led by Dave Cutler), that tested it (led by Moshe Dunie
and Ken Gregg), and that documented it (led by Chris Brown and Peggy
Etchevers). I designed and helped implement Performance Monitor, but the bulk of
the code was written by Hon-Wah Chan and Mike Moskowitz, with a key
contribution by Bob Watson, and help from Christos Tsollis and all the NT
development team members who added counters to Windows NT. Windows NT
also supports a strong set of application performance tuning tools provided with this
book and in the Windows NT Software Development Kit and Device Driver Kit.
These were implemented by Reza Baghai (lead programmer), with help from
Paramesh Vaidyanathan, Lee Srnith, Tom Zakrajsek, Mark Learning, Mark
Lucovsky, Lou Perazzoli, Mark Enstrom, and Phillip Marino. And I want to give
special thanks to the dedicated editing team for this book. If this book is readable at
all, it is due to their many tireless hours, and if it's not it's because I mangled the
text hopelessly in the first place.

All these dedicated individuals have toiled long and hard to arm you with the most
advanced tools for bottleneck detection and capacity planning. So go forth and slay
those bottlenecks. It's a tough job, but somebody has to do it!

Russ Blake
Fall 1994

CHAPTER 1

How to Optimize Windows NT

There are many ways to make your computer go faster-for example, you can drop
it from a tenth story window, a temptation we have all had. But it's better to figure
out why it is slow, and then do something more reasonable about it.

In this book we'll be picking through the various things that make computers
slow, particularly the things that slow down computers running the Microsoft®
Windows NTTM operating system. And we'll find out how to fix those problems,
because your time, and your computer's or network's time, is precious.

We'll also talk a little about capacity planning, so that the capacity of your
computer or network can stay one step ahead of its necessary workload. And we'll
cover strategies and tools you can use to make sure the applications you write
perform well on Windows NT.

This chapter serves as an overview of Windows NT performance issues, starting
with the tools historically available for tuning a system and how Windows NT
changes the traditional approach. We'll define performance bottlenecks and how
to locate where in your systems they are occurring, and how to anticipate potential
bottlenecks so technology managers can accumulate the right equipment for your
applications' requirements. We'll take a quick look at what programmers can do
with the performance information Windows NT gathers, and finally, we'll glance
at the key performance measuring tools included with this book.

2 Optimizing Windows NT

Windows NT Is Always in Tune
In the old days, operating systems were built with many tuning parameters that
could be adjusted to affect the performance of the system. These parameters
frequently had obscure effects deep within the system. Understanding these effects
meant grasping subtle design details. In fact, operating system designers became
adept at leaving the most difficult decisions about the system's performance to the
users.

Unfortunately, the users rarely had the system's source code at hand to help make
these decisions. In an effort to keep manuals simple and friendly, the documentation
rarely included the information required to set the parameters properly. Tuning an
operating system became the arcane art of somehow understanding the many poorly
documented values and how they affected the system's performance. This task was
made more difficult because the interactions of the parameters were even more
obscure than the parameters themselves.

A major design goal of Windows NT was to eliminate the many obtuse parameters
that characterized earlier systems. Adaptive algorithms were incorporated in
Windows NT so that correct values are determined by the system as it runs. The
32-bit address space removed many limitations on memory and the need for users
to manually adjust parameters to partition memory.

Windows NT has fundamentally changed how computers will be managed in the
future. The task of optimizing Windows NT is not the art of manually adjusting
many conflicting parameters. Optimizing Windows NT is a process of determining
what hardware resource is experiencing the greatest demand, and then adjusting the
operation to relieve that demand. The system comes equipped with elegant (if we do
say so ourselves) tools for accomplishing this task. Teaching you how to use these
tools to make your computer run faster is the primary purpose of this book.

Windows NT did not achieve the goal of automatic tuning in every single case. A
few parameters remain, mainly because it is not possible for us to know precisely
how every computer is used. Default values for all parameters are set for a broad
range of normal system use, and they rarely need to be altered. But there are special
circumstances when changes might be advisable. In this book we will be sure to
mention the few tuning parameters that remain in Windows NT, and when it is
appropriate to change them from their default values.

Chapter 1 How to Optimize Windows NT 3

Detecting Bottlenecks
Of course you never drink bottled beer, but if you did you would notice that the
neck of the bottle is narrower than the base. When you tum the bottle upside-down,
the narrow neck of the bottle restricts the flow so that you can barely get enough
beer to quench your thirst.

With computer bottlenecks, the bottleneck is the part of the computer that is
restricting the flow of work. But unlike the neck on a beer bottle, the bottleneck
in a computer can move around from one part' of the system to another.

Bottleneck detection is the process of isolating the hardware component that is
restricting the flow of your activities. But because it is generally easier to move
software around than it is to move hardware, it is also useful to find the software
component that is generating all the activity.

For example, let's suppose you have a computer that occasionally gives a sluggish
response. You follow the directions in this book, and quickly determine that the
problem is that your main disk is very busy from time to time. You will want to find
the source of this disk activity. Depending on the source of the activity, you might
be able to move it to a second disk drive and thus reduce the interference with your
normal work.

And here's something that you probably didn't know: software sometimes has
bugs. These can cause programs to overconsume your hardware. If you find the
software is the problem, you can replace it or modify it-it is generally true that it
is cheaper to drop your software from the tenth story than your hardware.

Whether you are a single, isolated user with Windows NT on your desktop or
you are managing a great many file and print servers, the questions you ask and
the methods you use to find bottlenecks in your computer are similar. We will
thoroughly discuss bottleneck detection in Chapters 3 through 7. There are a
number of special considerations for computers being used in certain ways, and
we'll look at those as we move along. But generally we all need to approach
bottleneck detection through the same looking glass.

4 Optimizing Windows NT

Capacity Planning
Even if your computer is humming along today, you can be sure that at some point
in the future you will run out of capacity. That's because newer software often uses
more hardware to get its job done. You will find over time that your hardware
resources are not keeping up with your use of the system.

Bosses like to have advance notice of any hardware requirements, along with lots
of documentation showing the need for new equipment. In Chapter 8 we'll discuss
. how to collect data on a regular basis so you can predict your future equipment
needs. Windows NT includes tools for easily archiving the capacity planning data
for your computer or network.

Monitoring your system on a regular basis will also provide you with essential
information for bottleneck detection. One of the topics we will cover in detail in this
book is the equipment-dependent nature of performance counters. For example, the
maximum transfer rate of a disk drive is dependent on many aspects of your system.
No one can just provide you with a "good" number. But by having a record of your
computer in normal operation, you can build an understanding of reasonable values
for your counters. Then, if you make a change or something slows down, you have
a baseline against which to compare your new situation. Without this baseline, the
detection of bottlenecks can be tricky.

Optimizing Applications
If you are developing software for Windows NT, you will want to take advantage
of the advanced features that will make your application hot, hot, hot. It's important
to know that much of the lore that guided the development of Windows-based
applications for 16-bit computers is no longer relevant to the new, 32-bit
architecture of Windows NT. In Chapter 9 we'll cover these issues in some detail.

If you are merely a victim of these ruthless programmers, Chapter 9 will give you
a few weapons to defend yourself. You will be able to determine whether they are
using the correct techniques to get the most out of Windows NT. Imagine the looks
on their faces when you point out to them that they should be mapping the
WIZBANG.DAT file. Send us the videotape!

Chapter 1 How to Optimize Windows NT 5

If you are developing software on Windows NT, you immediately have access
(through the Windows NT Software Development Kit) to a strong set of tools for
application optimization. You can find out how your application is using the system,
and whether it is behaving as you hoped. You can acquire intimate knowledge of
such details as how long it takes to make any given system call on your computer
and how often your program is making that call. For example, you can use the
Windows NT API Profiler to determine which files are most heavily accessed and
which events and semaphores are causing the most delays within the application.
Chapter 10 will give you some guidelines on using these tools wisely, as well as
guidelines for other useful tools that are on the floppy disk accompanying this book.

You will also be able to minimize the memory used by your application; A
tool for automatic working set tuning is included in the Windows NT Software
Development Kit (SDK). Other tools will help you to understand your virtual
memory activity in some detail, so you can find memory and virtual memory
leaks. Chapter 11 discusses all of this.

In Chapters 12 and 13 we will provide information to help you write your own
performance monitor or to incorporate the monitoring technology into your
application so you can produce information about the system's behavior along
with statistics about your application's progress. And you will find out how to add
counters from your application to the performance monitor so that your users can
remotely monitor the progress of y'0ur application and correlate that progress with
computer resource usage.

Performance Monitor and Other Cool Tools to Use
On Windows NT your primary tool will invariably be the Windows NT
Performance Monitor or a similar product. Performance Monitor is designed to
pinpoint the majority of performance problems. You can think of Performance
Monitor as a broad, horizontal tool that lets you look at a wide range of system
components. But some problems require other tools, which you can think of as
specialized, vertical tools for intensive monitoring of specific aspects of your
system or application. Performance Monitor can lead you to the correct tool for
the next phase in your investigation. This method of using Performance Monitor
first, and then a more specialized tool, will always save you time.

6 Optimizing Windows NT

Another tool that is quite handy for quickly assessing the status of programs on
your system is PView, available on the floppy disk provided with this book. PView
shows what programs are currently running and gives some basic information about
each. With the exception of a few items included in PView to aid in debugging
applications, allthe data items in PView are also available in Performance Monitor.
But PView is a bit simpler to start and displays data in a different way that's quite
handy for a quick glance at system status.

As mentioned above, additional tools exist for tuning individual applications. Some ;
of these can also be an aid to tracking down performance problems. So be sure to
familiarize yourself with these tools even if you do not plan to write any
applications yourself.

Performance Monitor Is a New Breed of Application
The microcomputer industry has been built upon a few application types. Word
processors and spreadsheets make up the majority of applications sold. Other
popular application categories include databases, desktop publishing, presentation
graphics, drawing, and myriad games.

Windows NT Performance Monitor is not like any of these. It is an entirely new
type of application, so we are all amateurs in its use. If you invest the time to learn
how to use Performance Monitor, you will be repaid with knowledge of a powerful
tool. You will be able to understand a computer running Windows NT in a way that
few people ever understood the computers they have used. This knowledge will
enable you to do your job more effectively, or at least provide you with a great
conversation topic at parties.

In Chapter 2 we will discuss the rationale behind the Performance Monitor feature
set. This goes beyond just listing features to indicate how and why each one is
useful. In the following chapters we will explore what you can measure on
Windows NT, and what those measurements tell you. Reading this will empower
you to hunt bottlenecks in the densest, darkest networks of computers!

CHAPTER 2

Zen and the Art of
Performance Monitoring

Computer performance bottlenecks are usually typified by the overconsumption
of some hardware resource. Generally this results in the underconsumption of
other hardware resources. If a particular piece of equipment is the bottleneck in
a computer, it is usually true that by purchasing more of that resource you can
eliminate the bottleneck. But buying more of a different resource will not help, and
although we all like to help the economy whenever possible, it is best not to spend
the boss's money needlessly.

To determine the precise location of the bottleneck in your computer, you must
become as one with the computer. There can be no distinction between you as an
individual and the computer as a machine. To achieve this state requires years of
meditation, prayer, and insanity.

Luckily we have an alternative approach, which requires only a little insanity:
Windows NT Performance Monitqr. Performance Monitor is an excellent tool for
optimizing computer performance. With a little background information on how
computers work internally and how Performance Monitor measures performance,
you can make sure you are getting as much as possible from your computer.

You might think that a great deal of complex mathematical theory is required to
work on computer performance, but luckily that is not the case. If you can do
simple arithmetic, you can understand bottlenecks and capacity planning. We'll
present some of the basics in the next few chapters. Anyway, even if you never
use this stuff, you'll have some new terminology to use to impress your boss.

7

In this chapter, we'll start with some of the basics of computer architecture, and
then go over the features of Performance Monitor and how you can use them to
solve various problems. Performance Monitor has online Help to explain how to
invoke its features using various keystrokes and mouse clicks, so we usually won't
repeat those details here. Instead we'll focus on why the various features exist, their
intended use, and their limitations. As any woodworker with fewer than ten fingers
will tell you, it's worth spending some time getting to know your tools.

8 Optimizing Windows NT

Computer Architecture 101
To get a handle on the bottleneck issue, we need to understand just a little about
how our computer is organized internally. Figure 2.1 is a block diagram of the
hardware organization of the original IBM® personal computer. Modern systems
may partition things a bit differently, but the basic idea has not changed much since
the early 1980's.

Optional Random-access Read-only Timer
coprocessor memory (RAM) memory (ROM)

I/O-memory bus I I I To more slots

I I I I
Processor Disc Graphics adapter Keyboard Network

adapter video memory adapter

I 1
I I

I
Floppy ! I Hard

Ii
Display

disk disk

Figure 2.1 Block diagram of the original IBM personal computer

Actually, Windows NT will not execute on one of the original PCs, because those
PCs used a processor that's just too puny-a 16-bit processor, instead of a 32-bit
processor. A more modern system, based on the Intel® 486 chip, is shown in
Figures 2.2 and 2.3.

486 Second-level RAM microprocessor cache

. ".'_h.

I I I
I 32~bit processor/memory bus

EISA
bus

controller

I 8-/16-/32-bit EISA I/O bus

I I I I
Video Serial! Mass EISNISA

graphics parallel storage expansion
controller interfaces connectors

Figure 2.2 Block diagram of a current Intel 486-based computer

Chapter 2 Zen and the Art of Performance Monitoring 9

Just as some perfectly competent auto drivers don't know how spark plugs work,
some perfectly competent computer users might not know how programs execute
on the architectures represented by the illustrations in this section. Programs are
composed of instructions that reside initially on the disk drive or across the network
on some other computer's disk drive. The processor executes these instructions and
follows their logic. It is typical for Intel 486 processors to take about 2.75 processor
cycles per instruction, on average. The processor is running at a cycle rate

. determined by the system clock. Typical cycle rates today vary from 25 MHz to
100 MHz, (megahertz, or millions of cycles per second). A 66-MHz 486 executing
at a rate of, say, 2.75 cycles per instruction will observe an instruction rate of
approximately

(66,000,000 cycles/sec)

(2.75 cycles/instruction)

or 24,000,000 instructions per second.

In RISC architectures, the design goal is to execute one or two instructions in
every clock cycle. The price for this speed is a simpler instruction set, and hence
a compiler needs to generate about 20% more instructions to do a given job.
Achieving this design goal is also heavily dependent on the effectiveness of the
cache hierarchy, and RISC systems tend to benefit from large caches. Because
caches are cheaper than processor chips, this is a reasonable approach.

When told to execute a program, Windows NT must bring the program into RAM.
Windows NT does this in pages so the whole program does not have to be in
memory at one time. This is called demand paging. Why use paging at all? To
efficiently use a scarce resource-RAM. .

Control is transferred to the instructions in the program. Instructions are brought
from RAM into the processor and tell the processor what to do next. The program
can ask Windows NT to read file data from or write file data to the disks or the
network. This causes the data to pass from RAM to the adapter, which takes care
of transferring data to or from the media. On completion of the operation, the
adapter interrupts the processor.

The program can ask Windows NT to draw text or graphical images on the display
using the graphics adapter. In this case, the bits flow from RAM memory to the
video memory on the graphics adapter, or else the image is drawn directly into
video memory. Whatever is in video memory is automatically displayed on the
monitor by the graphics adapter hardware. The program can also ask Windows NT
to notify it when you press a key on the keyboard or move the mouse,. which can
also be attached to the IIO-memory bus.

10 Optimizing Windows NT

You may have guessed by now that all this movement of data is on the I/O-memory
bus. This is not a wheeled vehicle inside your machine that ferries data around,
but there is absolutely nothing wrong with thinking of it as one. The bus is really a
collection of printed circuit board traces along which electrons scream at about half
the speed of light. Unfortunately, the circuitry controlling the bus access and routing
slows things down quite a bit. In the design in Figure 2.1, the processor and the I/O
memory bus run at the same rate: 8 MHz. One big difference between Figures 2.1
and 2.2 is the partitioning of the system hardware into two separate buses, so
slower I/O traffic does not interfere with the high-speed processor memory traffic
of today' s systems. These buses are fast enough that they are seldom a computer
system bottleneck. There are exceptions, however, and we'll mention a few later on.

I
CPU I Numeric I

coprocessor

I I

I Cache memory I 8-Kbyte I ,

controller cache memory Second-level Second-level System
cache controller cache memory memory

486 processor I I
32-bIt processor/memory bus

Figure 2.3 Memory bus organization of a current Intel 486-based computer

The two memory caches detailed in Figure 2.3 help form a memory hierarchy,
which speeds system operation considerably while also reducing bus traffic. The
cache built into the 486 processor is 8K and holds recently used code and data. This
exploits a well-known property of programs-a program uses many of the memory
bytes that it has used in the recent past. This is called locality. By keeping these
bytes near the processor in high-speed (expensive) memory, access to them is much
more rapid. Usually it takes one processor cycle to fetch something from the first
level cache. The second-level cache is larger, slightly cheaper memory that is not in
the processor chip itself. The second-level cache can usually be accessed in two
processor cycles. It is not unusual for a main memory access to take around 10
processor cycles, so you can see the caches provide a huge performance win when
the data is present there. The presence of the cache hierarchy in the 486 is the main
reason for its large performance improvements over the 386. Now that it is
commonplace in the industry, it will be a while before we again see such a large
leap in processor performance from one generation to the next.

Chapter 2 Zen and the Art of Performance Monitoring 11

The block diagram in Figure 2.4 shows a Reduced In&truction Set Computing .
(RISC) system. One important difference between the designs shown in Figures 2.3
and 2.4 is the inclusion of video memory on the high speed memory bus instead of
on the much slower 110 bus. This is a great benefit to graphics performance,
typically improving graphical performance by a factor of between 5 and 10. This
design is beginning to appear in 486-based systems as well as RISC systems.

second:J
cache

- T
,.

I R4000 I / Memory
IjR4000 bus Memory Memory bus

control!
I DMA

Video bus
Serial i chip set

Video
PROM memory

....

I Ethernet
:1

), Remote bus Video
EISA bus 1 control

EISA 1 I
chip set

II I I I

I SCSI II Floppy II Serial/parallel I Keyboard/ I disk ports mouse

Sound II PROM I Real-time n NVRAM i clock

Figure 2.4 Block diagram of a RISe-based personal computer

The main difference between Figure 2.5 and its predecessors is the addition of
multiple processors. This permits mUltiple programs (or parts of programs, called
threads) to execute simultaneously. Because they are all using the same memory,
cache design is very important to reduce memory traffic and the potential for
memory to be a bottleneck in such systems. The common memory usually will
limit the amount of useful concurrence (ability of the multiple processors to work
together) such a design will yield in practice, and the limits are very application
dependent. Although it may be difficult to predict the common memory-imposed
limit, you will at least be able to determine how effective adding a new processor is
once you've done it, so don't stop reading yet.

12 Optimizing Windows NT

486 486
microprocessor microprocessor

I I
Second-level Second-level

cache cache

I I
I

RAM

Figure 2.5 Block diagram of a multiprocessor computer

Bottleneck Defined
Think of an interaction as a unit of work on the system. This could be a user
interaction with an application, a reading of a file from a network server, or a
sending of e-mail across the network. It is best if you define this action yourself,
because you know what your computer is being used to accomplish. (Well, maybe
you don't. But we certainly don't know.) If we know just a few things about this
interaction, there are a lot of things we can say about the performance limitations
of the system.

The first thing we want to know is the total time the interaction uses on each unit
of hardware on the computer. Call this the demand for the device, and measure it
in seconds.

If demand(processor) is the processor time used by the interaction, and
demand(disk) is the disk time used by the interaction, we can invent a natural
law called the Consistency Law that states:

util(processor) = demand(processor)

utile disk) demand(disk)

where utile device) is the utilization of the device (either the disk or the processor in
this case). Utile device) is a number from 0 to 1 which is generally expressed as a
percentage from 0 to 100%. This tells us that the devices will be busy in relation to
the demand for them. A consequence of this law is that a device may not necessarily
be at maximum utilization in order for a system to be achieving maximum
throughput, defined as interactions per second.

Chapter 2 Zen and the Art of Performance Monitoring 13

If a device can achieve utilization of 1 (for reasons why a device may not be
able to achieve utilization of 1, see the discussion of sequencing in Chapter 7),
the maximum throughput for that device is:

max throughput(device) = 1

demand(device)

Clearly, the device with the smallest max throughput in the system for this
interaction will determine the maximum throughput the system can achieve. This
device is the bottleneck. Notice that making any other device faster can never yield
more throughput; it can only make the faster device have lower utilization. This is
why it is so important to discover the bottleneck in a system before signing the
purchase order for new hardware!

For example, suppose that an interaction requires .3 seconds of processor time
and .5 seconds of disk time, and no other device time. The processor can handle 3.3
interactions per second, while the disk can handle 2 interactions per second. So the
overall system can handle only 2 interactions per second, at which point the disk
will be saturated (utilization = 1). By the Consistency Law, the utilization of the
processor at that point is .3/.5 = .6, or 60%. Pretty cool, huh?

This gives rise to a general observation known as the Throughput Law, which
says that for all devices, the overall throughput of the system is measured by the
following:

throughput = utile device)

demand(device)

For certain devices, it is useful to define the demand for the device in terms of the
number of times the device is used by the interaction, and the average amount of
time the device is used on each visit, known in queuing theory as the service time of
the device:

demand(device) = visits(device) * service(device)

Windows NT Performance Monitor is based on these simple yet powerful
principles. For each device, it counts and displays such basic elements as the
utilization, visits, and service time. Sometimes it displays only some of these values
and you can easily compute the others. This is done in those cases when we must
leave it to you to define what constitutes an interaction on your system.

14 Optimizing Windows NT

But we also use a simple trick. Because we don't know what your interaction is, we
define the default interaction on the system as whatever took place during the last
second. With this definition of interaction, demand(device) expressed as a fraction
of a second is the same numerically as utile device) expressed as a number from 0 to
1. So if you don't care to define your interaction too precisely, you can use our
default definition and get meaningful results.

Soon, you will· easily be able to toss these simple formulas around. Your friends
will be amazed.

What a Counter Counts
Someone once said that if you can't measure it, you can't manage it. Unfortunately,
just being able to measure something does not guarantee that you can manage it.
But it's a start.

Fundamental to Performance Monitor is the concept of a counter. On hardware
devices, counters count visits to the device (in the fancy parlance of the previous
section, visits(device)). The Physical Disk device has, for example, a count of disk
transfers made, expressed as Transfers/sec. The service(device) is sometimes also
provided, as in A vg. Disk seclIO in the case of Physical Disks. Often we break
down these visits into categories to better indicate the cause of the activity. To
continue the example, we provide the counters Disk Reads/sec and Disk Writes/sec
so you can gain a better understanding of the cause of disk congestion.

We have a strong bias for expressing counters as rates per second, and timers as the
fraction of time that a device is used (expressed as a percentage). The advantage of
this approach is that if a counter is observed over a five-minute period and then
compared to its value over a 10-second period, the numbers are comparable if they
are expressed as a fraction of time or a rate over time.

You'll have to deal with this a lot, so let's take an example to make this concept
clear. Suppose we have one counter ,that is timing disk operation, and another that is
counting disk transfers. Table 2.1 shows a simple case with absolute counter values.

Table 2.1 Absolute Counter Values

Disk time

Disk transfers

10-second interval

8.654 seconds

258 transfers

5-minute interval

225.621 seconds

9024.8 transfers

Chapter 2 Zen and the Art of Performance Monitoring 15

Looking at these two sets of data, it is actually a bit difficult to see which one has
the busier disk. Look at the same situation in Table 2.2, expressed as rates and
utilizations:

Table 2.2 Relative Counter Values

Disk time

Disk transfers

to-second interval

86.54%

25.800 Transfers/sec

5-minute interval

75.20%

30.080 Transfers/sec

Now we can see that over the five minute interval the disk was slightly less busy,
yet handled more transfers. How can this be? Either there was less seeking/rotation
on each transfer, or fewer bytes per transfer. To determine which, see the Average
Disk Bytes/IO counter for this disk. But we won't fuss with that now because the
real point here is that Table 2.2 is directly relevant, and Table 2.1 is not. Now you
can see why Performance Monitor will display nearly all of its data in the form
shown in Table 2.2.

Why You Can't Always Get Easy Answers About
Performance

You might want to know what a good value is for Physical Disk: Transfers/sec.
We'd love to give a simple answer, but we can't. We don't know anything about
your hardware or applications software, and there are many factors that affect the
answer.

So now you'll ask about the maximum Physical Disk: Transfers/sec. We don't
know that either, for the same reason. Do you know the maximum speed your car
can attain? How would you find out? By driving as fast as you could, of course.
But where? Up a hill, or down? Around a Formula I race car track, or the Daytona
Speedway? All these factors affect the highest speed you can attain with your car.

Similarly, a large set of factors determines the normal operating range for each
Performance Monitor counter. You'll have to drive your system through a large
number of conditions, or at least those of interest to you, and develop a sense for
normal operating ranges for your equipment. You should record these typical values
in Performance Monitor log files for future reference; Then, as you make changes in
your workload or your hardware, you can refer to your earlier experience as a
baseline.

16 Optimizing Windows NT

We can help a little if you want to know the maximum values you can attain on
various counters. Included on the disk that accompanies this book is a·utility called
Response Probe. Response Probe lets you place known, pure, predefined loads on
your equipment. You can then characterize, in a disciplined way, the response
sUlface of your computer-its response to pure loads. You can max out your disk
drive, no problem, and in several different ways. By using Response Probe you can
establish maximum counter numbers under a variety of known conditions and then
use that logged information later when assessing real data.

The only counters that we can say much about immediately are the queue length
counters. A little later on we talk about the relationship between queue lengths and
utilization. But here we can make a simple statement: the apparent speed of the
device is inversely proportional to the length of the waiting line. It's just like at the
grocery store or the bank. In general, waiting lines longer than 2 are bad.

How Performance Monitor Sees a Computer
We need to descend from this ethereal realm of generalizations into the realities of
performance monitor construction. Software performance monitors are great tools,
but they have certain limitations we can't ignore. They measure what they can
without disturbing the system under measurement too much. And some elements
cannot be measured because the current generation of hardware does not support
counters or timers on those elements.

Here's an important example: the processor and the cachelRAM memory
hierarchy are busy during the execution of instructions. Because we don't have
an inexpensive way to partition the activity among these tightly knit elements, we
consider them as a unit when we think of the processor as a device doing work in
the system. When we become concerned about memory being a bottleneck in the
system, we usually are concerned about its size, not its speed. On single processor
systems we just lump memory speed into processor speed, and we won't say much
more about it. From now on when we speak of the processor being busy, we will be
speaking of the group of hardware devices shown in Figure 2.3.

Note The new Intel Pentium ™ processor and other new processors have counters on
some of these low-level items. A Performance Monitor extended object for these
counters is included on the diskette or CD-ROM provided with this book.
(Extended objects are explained in Chapter 13 of this book.) In particular, these
new counters should help with finding memory speed bottlenecks in multiprocessor
systems.

Chapter 2 Zen and the Art of Performance Monitoring 17

B
Processor

Memory c:J
_ LAN

File
cache I-::-l
-U

Figure 2.6 Performance Monitor view of personal computer hardware

So, what does happen when memory is too small? Then there is not enough room in
memory for all the needed pages of program code and data. The system starts to
spend a lot of time moving pages between disk and RAM. Bummer. What you see
is loads and loads of disk utilization. By the definition of bottleneck, you might be
tempted to rush out and buy a faster disk drive. Bad decision! What you really need
is more memory. Although the disk is, strictly speaking, the bottleneck in the
system, the reason it is the bottleneck is lack of memory. There is a Windows NT
counter (Memory: Pages/sec) that clearly shows this to be the case, and a number of
other counters to help you back it up.

Lack of memory is by far the most common cause of serious performance problems
in computer systems. If you stop reading here, you can do better than you should
just by saying "Memory!" whenever someone complains about performance. But if
you have the integrity your parents raised you to have, you'll want to understand
enough about how the system works to draw reasonable conclusions about what you
observe. Don't worry; by the time we're done, you'll be downright dangerous.

Performance Monitor Overview
We can't really say much about Performance Monitor unless we first give a brief
overview of how you can view its data.

You can chart a counter. This will display the counter's values over time. You can
chart many counters at one time. A chart of two counters is displayed in Figure 2.7.
The horizontal axis is time.

18 Optimizing Windows NT

120r-----~--------~,-------~--------~

100 r-------
80 L'_.L_,:: _,,_, ___ _.i:..;:-~L,-;_~--~ !~-G,L-hL-~

Figure 2.7 Performance Monitor Chart view

You can report on a counter. A report shows the value of the counter. You can
create a report of all the counters in Performance Monitor. There are many; you'll
have to scroll to see them all. Figure 2.8 shows a report.

Computer: \\CEREBELLUM
Object: System

% Total Privileged Time
% Total Processor Time
% Total User Time
T otallnterrupts/sec
Context Switches/sec
File Control Bytes/sec
File Control Operations/sec
File Data Operations/sec
File Read Bytes/sec
File Read Operations/sec
File Write Bytes/sec
File Write Operations/sec
System Calls/sec

2.224
2.772
0.556

85.152
180.541
113.155

1.340
17.538

1 077529.706
17.538

0.000
0.000

c::::::::::::::::~:r7.j~t

Figure 2.8 Performance Monitor Report view

Chapter 2 Zen and the Art of Performance Monitoring 19

You can set an alert on a counter. This causes the display of an event when the
counter attains a specified value. You can monitor many alerts at one time.
Figure 2.9 shows some alerts.

.. ..
file .Edit ~iew Qptions .t!.elp

Alert Interval: L-15_0 0_00 _____ ..J

Alert Log:

+

Alert Legend:
Color Value Counter Instance Parent Object Computer

[~I;[~;~~:~:~~~~~~

Figure 2.9 Performance Monitor Alert view

You can (best of all) log counters. Logging causes the counters to be recorded on
disk for further analysis. You can feed log files back into Performance Monitor to
create charts, reports, or alerts from the logged data-and that's just the tip of the
iceberg. Figure 2.10 shows some data being logged.

20 Optimizing Windows NT

log File: I c:\nt\sJ'stem32\perform\amtest.log

File Size: 112.359.836

Object Computer

Server \\SETTER
Objects \\peget1
S,Ystem \\peget1
Process \\peget1

rOata: Current Activit,y, Save File:amtestpml

Figure 2.10 Performance Monitor Log view

Status: I Collecting

log Interval: I 1...5 ___ -.J

If this range of formats does not immediately meet your needs, you are a chronic
malcontent. In this case you can export Performance Monitor counter data to other
products such as spreadsheets and databases for further data reduction and analysis.
Figure 2.11 shows an Excel chart of exported performance data.

~hart Forma! Macro

% Processor Busy and Interrupt Rate J 10

Ready

Figure 2.11 Excel chart of exported Performance Monitor data

Chapter 2 Zen and the Art of Performance Monitoring 21

How Performance Counters Are Structured
If you've played around with Performance Monitor at all, you've noticed it has a
few counters. And a few more. And then some. To cope with this flood of data,
the counters are organized into a logical hierarchy. This hierarchy is defined by the
structure of the (measurable) hardware equipment and (measurable) software
elements.

At the top of the hierarchy is the Domain. Each Domain contains computers.
For our purposes, each computer has distinct elements called objects. There are
objects for physical components such as Processors, Physical Disks, and Memory.
There are other objects, such as Process and Paging File. Each object has a set of
counters defined for it. An object's counters record the activity level of the object.
We use the following typographical convention to name a counter of a particular
object: object: counter.

Some objects have multiple instances. For example, a computer can have multiple
physical disk drives. Each such disk drive is an instance of the Physical Disk object.
Each such disk drive has a name; in the case of Physical Disks it is its physical unit
number. All the instances of a particular object have the same counters defined for
them. The % Disk Time counter is the main indicator of how busy a disk is. Each
physical disk drive has a counter that measures % Disk Time. We use the following
typographical convention to denote a particular counter of an object with instances:
object: counter! instance name 1

This structure is used in the dialog box where you select counters for measurement.
This dialog box is shown in the following section.

22 Optimizing Windows NT

Selecting Computers
The first step in selecting a counter for measurement is to choose Add To Chart
from the Edit menu in Performance Monitor.

I

,l;.omputer: 1\\zENMASTERI

O.!;Uect: I LogicalDisk

Coun!er: % Disk Read Time
d'

% Disk Write
% Free Space
Avg. Disk Bytes/lO
Av . Disk B tes/Read

I :!I instance: 1~,~~~.D""';~1

+

+

1 Colo!, ~I ~~M#~I !!]I ~cale: IL-D_ef_au_It_-"",1 !_I ~idth:II.....-__ -"",1 :!: I

Figure 2.12 Add To Chart dialog box

'Cancel

IE Kplaln> > I
I 'Help 'I

Each time you select a counter you must provide the name of the computer you
want to measure. By default, this is your local computer.

If you don't want to look at an object on your local computer, you can enter the
name of another computer. You must have the Access This Computer From
Network right on that other computer, or you will be unable to monitor it. To
select the computer on which you want to monitor this counter, type its name in
the Computer box. If you type in the name of a Windows NT computer, be sure
to enter the leading backslashes (\\). These are not supplied automatically by
Performance Monitor because they might not be included in the name of foreign
(non-Windows NT) computers. (Extensible objects can be created for measuring
objects on foreign computers. For more details, see Chapter 13, "Adding
Application Performance Counters.")

If you can't remember the name of the Windows NT computer you want to
monitor, you can choose the ellipsis button to the right of the Computer box. This
brings up the Select Computer dialog box. The computers in your own domain are
automatically listed for selection. You can double-click icons representing other
domains to see a list of computers in those domains.

You can start Performance Monitor looking at' a particular remote computer with
the following command syntax:

perfmon -c \\computername

Chapter 2 Zen and the Art of Performance Monitoring 23

I OK I
!;.ompuler: I I I Cancel I
~elecl Compuler: I Help I
I P PERFALPHA ~
I ~PERFAMIGO
I ~PERFCURLY
I ~PERFGROUCHO
l~iERFLARRY I----,

I f PERFMARGE l-

I ~PERFMIPS
I ~iERFMOE f-1'- PETEGNT +

Figure 2.13 Computer Selection dialog box

You can collect data simultaneously from as many computers as you want.
You must point at each computer to select the data you want to collect from it.
Obviously it can be a lot of work to perform this selection process. You can save
your selections in a settings file, and reload those settings later. We'll go into that
in "Saving Settings," later in this chapter.

The Add to Chart dialog remembers which computer you last selected so you will
not have to re-enter the computer name if you need to revisit the dialog.

Remote measurement does not carry a large overhead. Even better, you can
measure that overhead. You should do so to become aware of what you are doing
when you collect data from a remote computer. Each time interval, you will be
visiting that remote computer and gathering data on the objects that you specified.
We call each such visit a snapshot. You can use Performance Monitor to determine
the overhead of a snapshot. You can monitor the n~twork protocol objects to
determine the number of bytes being transferred across the network, and the
processor overhead on each machine. See Figures 2.14 and 2.15 for examples of
overhead. .

24 Optimizing Windows NT

Eile Edit ~iew .Qptions Help

100

80

60

40

20

or---------~------------------------------4---------
Last [2.985 Average I 1.507 Mini 1.483 Maxi 2.985 Graph Timel 100.000

Figure 2.14 Overhead of remote monitoring on the monitored computer

80

60
40~ __ ~ __

20

Or---~--------------~--------------------------~--
Last[~8 Average! 3140.288 Mini 3139.824 Maxi 3140.692 Graph Time~.OOo
Color Scale Counter Instance Parent Object Computer

1.000 % Processor Time 0 Processor \\0 B LO N GAT A
:~::=:~~Q;~QIQQ9I~:~..Y.!iiIQ!~)2~i9~:::=::=~~~:~:::::~:Sp':~y.!£~S:tf.~[[:~::=:~~:=::~~~~::H:~!~1QI~=::~::=:SSiTI~~~j!~=::~:::~~]

Figure 2.15 Overhead of remote monitoring on the monitoring machine

If a computer is shut down while you are monitoring it, Performance Monitor
receives a time-out while attempting to access that computer. Later, it will retry the
access. When the computer starts again, Performance Monitor succeeds during the
operation. During the initial failure, Performance Monitor stops data collection
while it times out. The time-out value defaults to 20 seconds. The time-out time is
also incremented by this amount for every five computers you monitor. The time-out
value can be changed, and is stored in milliseconds in the Registry location
HKEY _ CURRENT_ USER\Software\Microsoft\Perfmon\ DataTimeOut.

Chapter 2 Zen and the Art of Performance Monitoring 25

Measuring Many Computers Without Affecting
Performance
When you measure data from many computers, Performance Monitor starts a
separate thread for each remote computer being measured. The threads concurrently
collect data from the various computers. The computers will most likely respond at
slightly different moments in time. Even though the data is shown as though it was
collected simultaneously, this is only approximately true. It's a fine point, but that's
why you're reading this, right?

There are no intrinsic limits on the number of computers you can monitor
simultaneously, but limited hardware resources can make measuring too many at
once impractical. If you find you are clogging your computer or network with
measurement data, there are a number of tricks you can employ to reduce your
overhead.

First, collect data less frequently by increasing the time interval of your data
collection. Overhead is inversely proportional to the time interval, so doubling the
time interval will halve the overhead. This relationship between time interval and
overhead is a basic design principle of Performance Monitor. You can make an
explicit trade-off between the overhead and the resolution of your measurement.
Greaterresolution (smaller time interval) has greater overhead and thus affects the
measured system's performance more.

Next, reduce the number of objects youare monitoring. The Thread object is the
most expensive to monitor, because a plain vanilla Windows NT system has over
100 threads. Next in line in amount of data collected is the Process object. Remove
objects in a disciplined manner, watching the effect on your network protocol byte
counters. This tells you the impact of your changes.

This brings us to Rule #1. Along the way in this book, we have included a
lighthearted "10 Rules of Bottleneck Detection." These rules are simple guidelines
or reminders about what you should do or watch out for when you hunt bottlenecks
on your computer systems .. And Rule #1 is: When hunting for a bottleneck, make
only one change at a time.

26 Optimizing Windows NT

If the overhead of graphing counters on your system is too high, consider using
alerts instead of charts to monitor a large number of computers simultaneously. The
same amount of data is transferred across the network, but the local cost to display
is lower as long as the alert thresholds are not triggered too frequently. Again, by
measuring your overhead, perhaps with another copy of Performance Monitor, you
can determine the effects of your changes.

If you are charting data from many computers, you may find it useful to run more
than one copy of Performance Monitor. Each copy could be monitoring a particular
type of counter. One could monitor Processor: % Processor Time from each
computer, another could measure Memory: Pages/sec, and so on. This permits
deviant behavior to be spotted easily.

Last but far from least, you may wish to start a Performance Monitor service on
each remote computer. This limits network traffic to the times you desire. See the
section below on the Performance Monitor service for more information.

Selecting O,bjects
In the Add To dialog box, if you click the arrow to the right of the Objects box you
see an alphabetized list of the objects being measured on the computer you selected.
You will have to scroll up to see them all, because Processor is the default object
and it is fairly far down the list alphabetically. The Processor is the object selected
by default, because it is the most commonly selected object. Different computers
have different lists, depending on the hardware and software installed. All
Windows NT systems always have a core set of objects installed. These are
listed in Table 2.3.

Chapter 2 Zen and the Art of Performance Monitoring 27

Table 2.3 Core Objects in Windows NT Performance Monitor

Object name Description

Cache

Logical Disk

Memory

Objects

Paging File

Physical Disk

Process

Processor

Redirector

System

Thread

File system cache used to buffer physical device data

Disk partitions and other logical views of disk space

Random-access memory used to store code. and data

Certain system software objects

File used by system to back up certain virtual memory allocations

Hardware disk unit (spindle or RAID device)

Software object that represents a running program

Hardware unit that executes program instructions

File system that diverts file requests to network servers

Counters that apply to all system hardware and software

Software object inside a process that uses the processor

You use the Add To dialog box to select an object for measurement (see
Figure 2.18). •

Performance Monitor automatically displays any extended objects successfully
installed on your computer. These are objects added after Windows NT was
shipped to you. Extended objects for Performance Monitor are typically installed
automatically when the object manager software for the object is installed. The
ability to add new objects to Performance Monitor is one of its most powerful
features. In Chapter 13 we explain how to create extended objects for your own
applications.

If you are in the Log view you can select multiple objects for measurement (Figure
2.16). In the other views you can only select one object at a time. This determines
the contents of the Counter and Instance boxes so you can complete your selection.

28 Optimizing Windows NT

~ompuler: I\\BLAKERNT Add

Q.biects: Cancel

I· Help

Figure 2.16 Selecting multiple objects for logging

Selecting Counters
If you are in the Chart, Report, or Alert view, you next designate a counter to
measure by choosing its name in the Counter box. Foreach object, what we
consider to be the most important counter is the default selection. The counters
are listed in alphabetical order.

O.!!jecl: L....IM_e_mo....,;rl':.--_______ I!:_1

Counter:

Colo!: 1 ki¥1!iii l fi11fifij 1 +1 ,[cale: 10 ef ault I!:I ~idlh: 1'---__ 1 ! I Sl2le: ,-I __ --"'I ! I

Figure 2.17 Selecting a counter for measurement

If the name of a counter is longer than the box can accommodate, a horizontal scroll
bar appears so you can view the entire name. Once you have clicked anywhere in
the Counter box, you can press the first letter of the counter name to move to its
name more rapidly. Repeatedly pressing a letter scrolls sequentially through
mUltiple counters that begin with that letter.

Chapter 2 Zen and the Art of Performance Monitoring 29

You can select more than one counter at one time. Hold down the CTRL key and
click the counter names to select noncontiguous counters. Then use the Add button
to add them to your view. .

~ompuler: 1\\zENMASTER

Omect:

Coun!er:

Colo!: ~I! ~~~iII +~I ~cale: 1 Default 1 :!:I ~idlh:L-1 __ -10.1 :!:-JI Sll!.le: L-I __ ----'"I :!:-JI

Figure 2.18 Selecting multiple counters for measurement

We have said just a bit about selecting multiple counters. How certain options apply
to multiple counter selections is "intuitive," which is a programmer's word for "not
obvious, but easy·to understand once you know it." We'll cover these details as we
explore the various views later on.

How do you know which counters to measure? Good question!

We'll go into detail about the counters in the next few chapters. Each counter tells a
story about the system's operation on your hardware. Once we understand that
story, selecting a counter is pretty easy.

Selecting the default counter for any given object is often an excellent idea. We
made each of these counters the default because it tells the most about the object's
activity.

30 Optimizing Windows NT

Click the Explain button whenever you are looking at a new counter. This explains
the nature of the counter and its role in monitoring system activity. After you click
the Explain button once, you see the Explain text for every counter you select until
you close the dialog box. See Figure 2.19.

O!!iect: IL-M_e_m_or.;;;..l' ________ --"'I!_1 Instance: D " eancel.,.1
Coun!er: f"'!"I::==\:'!":::'l'=======.,...-:-). '[splain»I

Pag=e~R=ea=d~s/"!"'s~ec~"'~""""""'->~''-~''''1...:..I

Page Writeslsec I Help I
Pages Inputlsec , _
Pages Output/sec
Pa es/sec of.

Counter Definition------------------------,

I
Page Fauhs/sec is a count of the Page Faults in the processor. A page fault occurs when a process ~'
refers to a virtual memory page that is not in its Working Set in main memory. A Page Fault will not cause
the page to be fetched from disk if that page is on the standby list. and hence already in main memory, or if of.

Figure 2.19 Using the Explain text

Appendix A contains a list of the objects, their counters, and their Explain text.
When all you want to do is peruse the names and Explain text of counters in the
system, you may find the appendix easier to use than scrolling through the counters
on-screen.

Sometimes it is desirable to select all counters for an object. It makes sense to do
this in the Report view. Looking at all the counters at one time in the Report view
can illustrate how the counters vary during an operation. To select all counters for
an object, drag all their names with the mouse, or press HOME and then SHIFf +END.

Chapter 2 Zen and the Art of Performance Monitoring 31

=-1 !*!rmmriH'(.r~ !~(iJm!m , ... J ..
Eile .Edit ~iew .Qptions Help

16l10l1l) I~I 1+I~jlx.1 1@1l:m1 ~

Computer: \\PERFCURLY
Object: System

% Total Privileged Time 7.735
% Total Processor Time 38.559
% Total User Time 30.824
Context Switches/sec 114.613
File Control Bytes/sec 176.504
File Control Operations/sec 4.298
File Data Operations/sec 38.538
File Read Bytes/sec 443394.748
File Read Operations/sec 38.495
File Write Bytes/sec 332.071
File Write Operations/sec 0.043
Processor Queue Length 0.000
System Calls/sec 125.036
System Up Time 4139.225
T otallnterrupts/sec C::::::::::::::::~:~:O:.:o.4~i

Figure 2.20 Viewing all the counters for an object at one time

Selecting Instances
If you selected an object with instances, you're not done selecting yet. Many
objects do have instances, which are individual occurrences of the object type. For
example, if you have more than one disk partition on your system, you will have
one instance of the Logical Disk object for each partition. Similarly, each running
program is represented by a Process instance.

Every instance has the same counters defined for it, but each instance has its own
private copy of those counters so you can observe their behavior individually.
In a few cases there are summary counters in another object giving a sum of the
collected instances' counters. One example is the System: % Processor Time which
is an average of the Processor: % Processor Time for all processor instances on a
multiprocessor system.

Some instances have a parent instance that helps to identify them. The Logical
Disk instance has as its parent instance the Physical Disk on which it resides. Each
Process object has one or more threads of execution. Each Thread instance has as
its parent the Process instance that contains it. Instances with parents are denoted in
the list box by the following notation: parent instance = = > child instance.

32 Optimizing Windows NT

In the Instance box in the Add To dialog box, the default instance is the one that is
alphabetically first, because we just can't guess which one you care most about.
You often may want to select a different instance, or multiple instances, to examine.
Do this just as you did for multiple counters, by holding down the SHIFf or CTRL

keys and clicking the contiguous or noncontiguous instances you want to select.
Once you have clicked anywhere in the Instance box, you can press the first letter
of the name of the instance you want to select to move there more rapidly.

If the name of the instance is larger than the Instance box can display, a horizontal
scroll bar appears so you can view the entire name.

Instances are usually identified by name or, if there is a parent, by the
parent==>child name. This makes it impossible to successfully select more than
one instance of an object if there is more than one instance with the same name.
Suppose you have a program named SPLENDID.EXE. If you run two copies of
SPLENDID.EXE and attempt to select them both, Performance Monitor will get
confused about which one you mean. If you run into this relatively rare situation,
you will have to make a copy of the program and give it a different name; say,
EXCELLENT.EXE. Then you will have no difficulty distinguishing between them,
and neither will Performance Monitor.

Some instances are called mortal instances because they are born and then die
during system operation. Typical examples are processes and threads. A mortal
instance must be alive in order for it to appear in a menu and be selected. If you
want to measure your program, you must first start it up. How, then can you
measure startup behavior of a mortal instance? Well, once you have selected your
living mortal instance, it remains selected even if it dies. When dead, all counter
values go to zero. On each snapshot, Performance Monitor continues to look for
that instance. If you start another application with the same name, Performance
Monitor automatically begins measuring it on the first snapshot in which it appears.
There are cases when you may need to log the data in order to capture all the
instances you need to see. When an object is logged, all the instances of that object
occurring in any snapshot are logged. You can then explore the log file to find the
instances of interest.

There are some special considerations for charting and reporting multiple instances.
We'll discuss them as we explore the views in more detail later in this chapter.

Custom Displays
Read this section if you want to astound your coworkers with your Performance
Monitor expertise. Figure 2.21 shows Performance Monitor in Report view with its
several display options marked.

Chapter 2 Zen and the Art of Performance Monitoring 33

Beport... Ctrl-t-O

.,J Menu and Title Ctrl-t-M

;n~~IE~ti~::~'::.~.M:.:=~m:l~.I[~, .
.,J .s.tatus Bar Ctrl-t-S

Always On TOll Ctrl-t-P

Data from ...

!)pdate Now Ctrl+U

flookmark... Ctrl+B

Figure 2.21 Performance Monitor display options

Perfonnance Monitor has a flexible display fonnat you can customize to suit your
needs. These options are available in all views. The options permit you to reduce the
size of Perfonnance Monitor to occupy just a small part of your screen. You can
keep an eye on perfonnance activity while you are working on some other task.
Many of us place Perfonnance Monitor in our Startup Group so it always starts in a
certain spot when we log on to Windows NT. For more details about this option, see
"Saving Settings," later in this chapter.

Perfonnance Monitor has a toolbar to speed execution of the most common
operations. Table 2.4 is a list of thetoolbaricons and their equivalent menu
operations. You can remove the toolbar by choosing the Tool Bar command
from the Options menu.

Table 2.4 Performance Monitor Toolbar Icons

Icon

~ .. '."':. ~

~
[ID
~
[±J
mJ
lE]
I'~
~

r£011 l!:!J

~

Equivalent menu command

Chart, from the View menu

Alert, from the View menu

Log, from the View menu

Report, from the View menu

Add To, from the Edit menu

Edit Chart Line or Edit Alert Entry, from the Edit menu

Delete, from the Edit menu

Chart, Alert, Log, or Report, from the Options menu

Update Now, from the Options menu

Bookmark, from the Options menu

34 Optimizing Windows NT

By default, there is a status bar at the bottom of the window. It displays a brief
explanation for each menu selection, including the current settings file you are
using and the name of the log file you are playing back, if any. If you are logging
data from real-time activity, the current log file size in kilobytes appears here. A
count of any alerts triggered since the last time you looked at the Alert view
appears here. You can remove the status bar by choosing the Status Bar
command from the Options menu.

You can use similar commands from the Options menu to remove the title and
menu bars. You can get them back by double-clicking any portion of the dialog
box that is not otherwise responsive to the mouse. The various hot keys defined in
Performance Monitor menus are still active even if the menu bar is not displayed.
This permits ready access to most of the menu functions.

If you have removed the title bar, you can still move Performance Monitor by
dragging it. Hold the left mouse button down on the portion of the window that is
not otherwise responsive to the mouse and move it.

By removing all these options you can permit Performance Monitor to occupy the
minimum real estate on your display. Figure 2.22 shows two Performance Monitors
running with a minimal chart and report arranged on the screen for handy viewing.

Your company manufactures TVs, stereos and speakers, using a common parts inventory
of power supplies, speaker cones, etc. Parts are in limited suppi}' and you must determine
the most profitable mix of products to build. But your profit per unit built decreases with
volume because extra price incentives are needed to load the distribution channel.

I !

MmJber 1/.1 BuMi,).
HWI.'!/Xrw Nt~ ll.>·ed

450 200
250 100
800 500

TVset S~1 .~ . ·er

100 100 100

:1
1
0
2

Computer: \\zENMASTER
Object: Memory

Page Faults/sec

Object: S }Idem

% Total Processor Time

59.696

L::::::::::::::::::~f~:.:?'Qr +

Figure 2.22 Minimal Performance Monitor char~ and report arrangement

Chapter 2 Zen and the Art of Performance Monitoring 35

Always On Top is another Performance Monitor Option. It keeps Performance
Monitor visible even if you move to another application. This is useful for watching
the performance of full-screen applications. This uses the hot key CTRL+P, so you
can click out of this mode quickly when you need to see the whole display.

Now you're an expert!

The Four Performance Monitor Views
We have already introduced the four Performance Monitor views. In this section
we discuss the details of each view and what each brings to the party. First we will
explore the views as we observe current activity in real time. Then we'll note how
things change when the same views are applied to an existing log file.

The four views operate independently and concurrently, but you can only look at
one at a time. They each fetch data independently from the target computers, so
looking at a counter in . all four views is four times the overhead of looking at the
same counter in just one view. Luckily, this overhead is designed to be small, so
concurrent use of views is not a problem. Although this may seem like a design
flaw, in practice the views typically are looking at different computers or counter
instances so the practical savings o~ combi~ing data retrieval are not typically
impressive.

To switch between the different views, choose the view you want from the View
menu.

We discuss two other features of Performance Monitor in depth at the close of this
chapter, but we introduce them here briefly. These are the Settings Files and the
Export command, both of which ,are in the File menu.

When you use Performance Monitor, you choose which counters to look at. You
also make decisions about the features of the display, the frequency of counter
updates, even the position of Performance Monitor on your screen. All the attributes
of your measurements can be saved in settings files and opened later for instant use.
In fact, whenever you start to make choices in Performance Monitor, it is building
up a record of your selections that you can save at any time. You can save the
settings file of any particular view, such as a chart, independently of the settings
of your other views. You can also save the settings of all your views at once
in a special settings file called a workspace. You will find settings files to be an
important time saver when using Performance Monitor, and we discuss using
them in some detail in "Saving Settings," later in this chapter.

36 Optimizing Windows NT

Chart View

We like to think Performance Monitor will provide an acceptable interface for
viewing data most of the time. But every tool has its limitations. We have therefore
included the capability for exporting performance data, as either tab- or comma
separated ASCII files. You can then feed these files into spreadsheet or database
programs, as well as editors or custom programs you may want to write. Using
these other programs, you can decorate, analyze,· and present the data in any way
you choose. Export capability helped us keep the Performance Monitor interface
relatively simple. We'll discuss exporting in more detail in "Exporting Performance
Data," later in this chapter.

In some sense, the Chart view is the most interesting view. Seeing the system
counters respond in real time as the computer operates is both educational and
visually interesting.

To select various options that govern how the chart appears on the screen, choose
Chart from the Options menu. This brings up the Chart Options dialog box. One
option you can choose here is to select between two basic modes: graph and
histogram. Graphs are useful for looking at a counter value over time. Histograms
lose the historical perspective but are useful for looking at many counters at one
time. First let's take a look at a full-blown graph in all its glory.

Anatomy of a Graph
In Figure 2.23 we show a chart in graph mode. All chart display options are active.

Chapter 2 Zen and the Art of Performance Monitoring 37

file .Edit ~iew .Qptions

100

90 f--+---t-+-+--\--t-

80r-~+--r-+-+-+-+-~-r-r.-r-H--+-+-+-

70f---!-~-+-+-+-+--b--+--~-r1

60

50 l-+--+--l--i

40

30
20 l----t----t-l-H

0.000 Maill

,. ...

68.514 Graph Timel 100.000

Color Scale Counter Instance Parent Object Computer

r·~ i=="~~~"==:l~:::==;i::":~:::piicc~:ii~iii
I Data: Current Activity

Figure 2.23 All chart display options in graph mode of current activity

A PerfonnanceMonitor chart always displays between a and 100 data points for
each counter shown. This is a key attribute of these charts.

Notice the vertical line in the middle of the chart. This is the Time Line. It is always
red and it occupies a space just beyond the last observed value. It moves to the right
when the display is updated at the end of each Time Period. It wraps to the left edge
of the chart at the end of the Time Period following the lOath data point plotted.
This scheme is different from many perfonnance monitors, which scroll the display
to the left on each data point. This scrolling is resource-intensive, adding to the
monitor overhead. Windows NT Perfonnance Monitor works like a hospital's heart
monitor, and causes much less overhead than scrolling.

38 Optimizing Windows NT

The vertical scale to the left of the chart is displayed by default. It always starts at
zero. If you want to have it start elsewhere, export the data to a spreadsheet for
analysis. By always starting at zero, this axis always has a clear meaning. The
default ~pper limit of this axis is 100, but you can change this by selecting Options
from the Chart menu, then typing a different number in the Vertical Maximum box.
For your vertical maximum, you can use any positive number from a decimal
number less than one up to about two billion.

You can add horizontal and vertical gridlines, if you want. You can choose one
or the other or both. They add to the cost of updating the display, and so are not
activated by default. The horizontal gridlines are sometimes useful, but the vertical
gridlines are rarely interesting. To add or remove gridlines, choose Options from
the Chart menu, and then check or'clear the Vertical Grid and Horizontal Grid
boxes.

The legend below the chart is displayed by default, but you can remove it if you
want by clearing the Legend box in the Chart Options dialog box. The legend
describes each chart line. The legend shows the following pieces of information
about the line:

• Color and Width

• Scale Factor

• Counter Name

• Instance Name

• Parent Instance Name

• Object Name

• Computer

When you add a new counter to a chart, that legend item is automatically selected.
, 0

Note By pressing BACKSPACE you can highlight the chart line corresponding to the
current Legend selection. The selected line becomes a wide white line. If you
change your legend selection, the new selection is highlighted. You can change your
legend selection by scrolling with the arrow keys. HOME, END, PAGEUP, and
PAGEDOWN also work within the Legend window. Pressing BACKSPACE a second
time removes the highlight. This is extremely useful if you are charting multiple
lines ..

For the counter currently selected in the legend (whether or not it is highlighted),
the counter's last value, average, maximum, and minimum are shown in the value
bar. The value bar is displayed by default. Pressing the Delete key will delete the
counter currently selected in the legend.

Chapter 2 Zen and the Art of Performance Monitoring 39

The counter's average, maximum, and minimum are calculated using only the
values currently shown on the chart. When you graph real-time activity, once the
Time Line wraps around and starts overwriting previous counter values, these
statistics reflect only the last 100 observations. If you need more history than this,
you should be logging the data (see "Log View," later in this chapter).

If you add a counter while a chart of real-time data is displayed, the zero values up
to the first valid value are not counted in the value bar statistics. If a data value is
too large to fit in its value bar window, it is displayed in scientific notation.

You have to have the Legend displayed in order to display the value bar, because
the Legend is used to select the line displayed by the value bar.

If you make the Performance Monitor window small enough, the Legend (and hence
the value bar) are not displayed. Increasing the size again causes them to reappear.
Try it. Pretty cool, eh?

As you know, you can change the time interval at which the chart is updated. To
change the time interval, choose Chart from the Options menu, and then type the
interval in the Interval box.

Because there are at most 100 data points, you can multiply 100 times the time,
interval to get the number of seconds displayed on the full chart. This product is
shown as the Graph Time in the value bar. Graph Time indicates the time span
(in seconds) the chart currently is capable of displaying.

In the Chart Options dialog box, you can select the Manual Update option instead
of specifying a time interval. In this case, the chart updates only when you specify
taking a snapshot. This is useful for observing counters during a particular event.
You take a snapshot of the counters, then cause the event of interest to occur. Then
take another snapshot. The counter values you observe apply to the event bracketed
by the snapshots. To take a snapshot, choose the Update Now command from the
Options menu, or click the camera icon on the toolbar, or use the CTRL+U hot key.

Even when you are charting data at a regular interval, you can also obtain manual
snapshots between the regular time interval snapshots. If you have time interval
currently set to one minute, for example, you might want to see data sooner if you
notice a particular slowdowQ..

You can clear the current chart data with the Clear Display command from the Edit
menu. This leaves your selections in place but starts the chart over again from the
left edge. You can clear all your selections and stop charting altogether by choosing
the New command from the File menu. This creates a new settings file and clears
your old settings.

·40 Optimizing Windows NT

How Graphs Are Drawn Initially
Here's a fine point for the record. When you add a counter to a chart, you'll notice
a slight delay before the chart begins to draw. In order to display the first point on
the chart, two data snapshots are required. This is because most of the counters
are displayed as a rate or a percentage, as discussed in "What a Counter Counts,"
earlier in this chapter. To form a rate or a percentage, we need the value of the
counter at the start and at the end of a time interval:

rate = counter[endJ - counter[startJ

timer[endJ - timer[startJ

What happens is this: you press the Add button and the first snapshot is taken at
the end of the first time interval. The second snapshot is taken at the end of the
second time interval. Thus the first data point requires two time intervals to elapse
before it can be displayed. After the first point displays, the start of the next time
interval is the end of the previous one. So a new data point displays when each time
interval elapses.

·Anatomy of a Histogram
The other primary mode of looking at counters is a vertical bar chart, the histogram.
This is very useful for looking at many instances of a given counter at one time.
Take a look at Figure 2.24.

Chapter 2 Zen and the Art of Performance Monitoring 41

Eile .Edit ~iew Qptions .!:::!elp

10
9
8
7
6
5
4
3
2

~ - -Color Scale Counter Instance Parent Object Computer

a lOaD % Processor Time PROBE Process \\MEDULLA ..
E::3 1000 % Processor Time ProbePrc Process \\MEDULLA
E::3 1000 % Processor Time progman Process \\MEDULLA
E::3 1.000 % Processor Time screg Process \\MEDULLA
I ~".", I 1.000 % Processor Time smss Process \\M E D U LLA
C:=J 1.000 % Processor Time spoolss Process \\MEDULLA

::::~::::~~~:~:~::l~~r[:i~~:~~f!~I:~il:rn~~S:::~~~~~~~:~~~:::E~~~~~~ITIli!E::~~::::::::::::~:~;:::~:~~:::~~:~:::::]31~~~i;:::~~::~~:~:~:~::::~~~tr~t~~31}}B~~
C:=J 1.000 % Processor Time winlogon Process \\M E D U LLA +

Figure 2.24 Chart histogram mode: a view of many processes' % Processor Time

In Figure 2.24 you see the % Processor Time of many processes. This might be
something we would do if we wanted to see how much the various processes on our
computer were using the processor. What the histogram mode gives up in history, it
makes up for by clarifying the values of many similar counters.

An especially useful feature in histogram mode is the highlighting mentioned in the
previous seCtion. By pressing BACKSPACE, you can tum the bar belonging to the
currently selected counter to white. Because this color is not otherwise used, it
will help you to locate the instance you're interested in.

All the other display options for charts apply to both graph mode and histogram
mode. Mercifully, we won't repeat our descriptions of them.

42 Optimizing Windows NT

Formatting Chart Lines
When you select a counter to chart, you can also specify how the line or bar
representing the counter displays. To do so, use the Color, Scale, Width, and
Style boxes at the bottom of the Add To Chart dialog box, which was shown in
Figure 2.12.

The Color box specifies the color representing the counter. When you add a counter
to the chart, the selection in the Color box automatically advances to the next color.
This lets you add several counters at once, and each is assigned a new color.

Tip If you are adding many counters at once, the color selection wraps and thus
is reused. Each time the colors wrap, the line width increases automatically.
So although there may be two red counters, the second one is thicker. This creates a
potentially annoying side effect: when you select the black color at the end of the
Color list box, the width will increment automatically for the next color.
To manually choose a counter line's width, use the Width box.

If you have a line that is one pixel wide (the default width), you can assign a line
style to distinguish it from other lines.

Our stingy boss won't buy us a color printer, so we have to print all the examples in
this book in black and white. I'm sure your boss is more magnanimous, but in the
off chance that is not the case, you can use line style and width to great advantage
in preparing a chart for printing. You will notice us doing so throughout this text.

Line width and style are ignored in histogram mode. If you have multiple!ed
counters, you will want to use the BACKSPACE highlighting feature mentioned
above to distinguish between them.

We've saved the best for last: the scale factor. Performance Monitor multiplies the
scale factor times the counter value and the resulting product is charted instead of
the original counter value. This applies to both graphs and histograms. The default
scale factor for a counter is assigned by the counter's designer. This multiplier is
chosen so that typical values plotted lie between 0 and 100 and the counter can be
easily viewed on the default vertical axis. For example, Processor: Interrupts/sec is
typically a counter in the range from 125 to 1000. By having a default scale of 0.1,
this counter usually appears in the visible portion of the chart, from 12.5 to 100.
The default scale is only a guess, however, and you may need to adjust a counter's
scale to your situation.

Report View

Chapter 2 Zen and the Art of Performance Monitoring 43

The value bar data are not scaled, so you can always find the unscaled value of a
counter in the value bar.

The scale factor selected when the Add button is pressed is applied to all the
counters currently selected. So if you are selecting multiple counters, the scale
factor is applied to all of them. If the Default scale is chosen, they are all charted
with their individual default scale factors.

The scale factor does not change after adding a counter to the chart. Therefore,
if you select a value of 0.001 for the scale of some counter, remember to change
it to something reasonable for the next counter you select.

The only way to determine the default scale factor for a counter is to chart it. Then
you can read the default value from the Legend. This is usually not a problem, but
in case it is, you can find the default scale factors for the counters included in
Windows NT in Appendix A. .

If you select a counter in the legend, you can alter its display properties by choosing
the Edit Chart Line dialog box from the Edit menu or the toolbar. You can only
alter the properties of one counter at a time.

You can delete a chart counter by selecting the line in the legend and then choosing
Delete from the Edit menu, or by pressing the Delete key.

The report is useful for observing the values of many counters at once. It is helpful
in deciding which counters to place on a chart. As an activity progresses, you can
see how the many values change and which ones are key to the activity you are
observing. Figure 2.25 shows a report with counters from multiple computers.

44 Optimizing Windows NT

Eile .Edit ~iew Qptions .!:!elp

Computer: \\AIRHEAD
Object: logicalDisk

% Free Space

Computer: \\AUEN
Object: logicalDisk

% Free Space

Computer: \\ASSET
Object: logicalD isk

% Free Space

o
C:

i:::::::::::::::::::Ao.::o:o:O]

o
C:

42.222

o
C:

0.333

o
F:

43.062

1
G:

99,052

Figure 2.25 Report with counters from multiple computers

You can select multiple counters and multiple instances for a report just as you can
for a chart. But unlike charts, there are no special display features for reports. In
particular, there is no scale factor because you can always observe the entire
counter value.

As you add objects and counters, they are added to the bottom of the report. Very
soon they will extend beyond the windows, and you will get a vertical scroll bar
which you will have to use 'to see them. Instances are added to the right, with their
names (and, if present, their parent's names) above them. When they will no longer
all fit in the window, you get a horizontal scroll bar. If you want to see many
instances at one time, you might have to start multiple copies of Performance
Monitor and watch several instances in each. At about this point you should
consider using logging, or exporting of the report data, but you'll be sacrificing
the real-time view. Tradeoffs!

The only option in Report view is for the time interval. The default time interval is
five seconds. This gives you time to read several values before they change. You
can set this to any value you want, and as with the chart, you can choose Manual
Update mode. As always, there is more overhead if you update more often.

You may notice a delay before the first counter values appear. In the meantime, you
will see minus signs, indicating that data is missing. As with the chart, a report
needs the snapshot of the counters at the end of two time intervals before you see
any data. By default, it is 10 seconds before you see values. If you get impatient,
take a couple of snapshots with the camera icon on the toolbar to get some
preliminary data.

Alert View

Chapter 2 Zen and the Art of Performance Monitoring 45

All the counters for a particular computer are grouped together. Objects reported
for that computer are listed in the order you select them. Counters for each object
are listed from top to bottom in the order you select them. If you select mUltiple
counters of an object and then choose Add, they are listed in alphabetical order.
Instances for each object are listed in the order in which you select them for
measurement. Likewise, if you select multiple instances of an object and then
choose Add, they are added in alphabetical order.

By heeding these properties, you can arrange reports to your liking. If this lacks the
flexibility you need, you should choose the Export command from the File menu for
manipulation by a spreadsheet or database report writer (for details, see "Exporting
Performance Data," later in this chapter).

You can delete a report counter by selecting it with the mouse and choosing Delete
from the Edit menu, or by using the appropriate toolbar icon. To prevent accidental
deletion, there is no hot key. If you delete all the counters for an instance, the
instance is deleted. But it is quicker to select the instance name and use the Delete
key to delete all its counters. If you delete all the counters for an object, the object
will be deleted. Again, it is simpler to select the object name and delete it. The same
is true for computer name. But there is no way to select multiple counters to delete.

You can clear the current report data by choosing Clear Display from the Edit
menu. This leaves your selections in place but starts the report over again from
the left edge. You can clear all your selections and stop reporting altogether by
choosing the New command from the File menu. This creates a new settings file
and clears your old settings.

The Alert view helps you keep an eye on many counters with minimal overhead.
This view is particularly useful for watching a large number of computers on a
network.

You add counters in the Alert view much as you would to a chart or a report. But
the Alert view has a few unique attributes.

For each counter for which you want an alert, you must supply a threshold value.
For most counters, you want to be alerted if the counter becomes greater than
some value. For a few, you want to be alerted if the value falls below a certain
value. These are counters like Logical Disk: % Free Space, or Memory: Available
Bytes.

In Alert view, the alerts you have created are shown in the legend at the bottom
of the display . You can select an alert counter from the legend and change its
properties, or press the Delete key to remove it. Use CTRL+G to toggle visibility of
the legend.

46 Optimizing Windows NT

When an alert is triggered, it displays a line in the alert log explaining the condition
that caused the alert. The latest alert is at the bottom of the alert log, which can
contain up to 1000 entries. After 1000 entries are logged, earlier entries are
discarded as new entries are added .

Alert log:

$8/2/93
.,8/2/93
$8/2/93
08/2/93
08/2/93
08/2/93'

4:36:52.2 PM
4:36:57.2 PM
4:37:2.2 PM
4:37:32.3 PM
4:37:37.3 PM

. '4:37:42.3 PM

.!::!.elp

95.210 >
91.616 >
90.718 >

623.913 >
618.076 >
639.761 >

90.000
90.000
90.000

600.000
600.000
600.000

% Processor Time. O •• Processor. \\OB
% Processor Time. O •• Processor. \\OB
% Processor Time. O •• Processor. \\OB
Interrupts/sec. O. • Processor. \\OBLO
Interrupts/sec. O. • Processor. \\OBLO
Interiupts/sec.O •• Processor. \\OBLO

1+

Color Value Counter Instance Parent Object Computer

.~._ .. _ m? ~p':.QQ9.Q ... KEtQg.~~~9!.J.li!l~ _ " ... _Q_m_ ... _ .. _ .. _.~_::.:" ... _ _ m!:!.Q~_~1?'Qr ... _ ... _ ~~9..~.~Qt!.G8Iel
o > 600.0000 Interrupts/sec 0 Processor \\OBLONGATA
• < 10.0000 % Free Space C: 0 LogicalD isk \\0 B LO N GAT A
o < 10.0000 % Free Space D: 1 LogicalDisk \\OBLONGATA
o < 10.0000 % Free Space. E: 2 LogicalDisk \\OBLONGAT A

I Data: Current Acti"it,Y. Save File: 02ex003a. pma

Figure 2.26 Some common alerts and their alert logs

You can designate a program to be run either the first time or every time each
different alert is triggered. This program receives the alert log entry on its command
line, and the alert log entry appears in a Unicode™ space-separated format. What
you have your program do at this point is quite open. It might log the data to some
special database, activate a program on a remote computer, or even start another
copy of Performance Monitor to monitor the condition more closely. For more
information, see "The GUI Batch Processor," later in this chapter. (You should
avoid starting a command-line batch file from this dialog box, since the > and <
signs passed to the batch file will be interpreted improperly as a redirection of stdin
and stdout.

You can also elect to have the alert placed in the system Application Event Log by
selecting the Application Log option.

The alert condition applies to the value of the counter over the time interval you
specify. The default time interval is five seconds. If you set an alert on Memory:
Pages/sec> 50 using the default time interVal, the average paging rate for a 5-
second period has to exceed 50 per second before the alert is triggered.

Chapter 2 Zen and the Art of Performance Monitoring 47

If you select Manual Update mode instead of having data collected at intervals, the
alert is checked only when you take a snapshot of the data. The interval in this case
is the time since the last manual snapshot. As with the other views, you can take a
manual snapshot between time interval snapshots to see if any alert conditions have
been triggered.

When you monitor a remote computer, the performance data traverses the network
each time interval, and the alerts are checked on the local computer. It would be
more efficient to have a remote agent checking the alerts, and only sending the data
if an alert condition occurs. To operate in this mode, use the Performance Monitor
Service discussed below.

If you are looking for alert conditions on a remote computer, you will get a special
alert should that computer cease to respond. You will get another alert when the
remote computer comes back online. .

You should use another copy of Performance Monitor to determine the overhead of
your alert setup, and then increase your time interval until the overhead is
acceptable.

You can configure your alerts to send a network message which will appear as a
pop-up window at a chosen location on the network. The destination can be the
name of a computer or the name of a user. If you choose the name of a user, the
alert appears on the first Windows NT computer that user has logged on to, because
the name must be unique in the network. Perhaps more practical is the use of an
arbitrary name. Suppose you choose the name "Perf Alert." When you have chosen
the computer that should receive the alerts, you can enter the following command on
that system to receive the pop-up windows there:

net name perfalert

Caution Generating a large number of remote pop-ups is irritating to the recipient,
who must close each one manually. Furthermore, the alert log is a fairly processor
intensive display to update because of the fancy spacing of the elements on each
line. You should select your alerts so that pop-up windows do not flood the alerted
computer, and so the alert log is not being updated rapidly, or you will be surprised
at the processor overhead of using the alert feature. Because alert values are chosen
precisely because they are urgent bottleneck indicators,. this is not a real problem in
practice, but is still worth noting.

You can choose the color assigned to an alert. When an alert is triggered and you
are in another view, you can observe the colored alert icon in the status bar. The
count of alerts since the last visit to the Alert view is also shown, along with the
colored icon of the most recent alert. As you add alert conditions, the color
advances automatically as an aid in distinguishing multiple alert conditions.

48 Optimizing Windows NT

Log View

If you select multiple counters simultaneously, they must be similar in meaning
because the same alert condition will be applied to each of them. (To set alerts on
multiple counters with different thresholds, set the alerts one at a time.) It is,
however, reasonable to add multiple instances at one time. Setting an alert on all
Logical Disk: Disk Queue Lengths at one time is a reasonable operation, because
the threshold could meaningfully apply to all instances. See Figure 2.27.

Add ~omputer: !\\zENMASTER

Oruect: !logicalDisk ! ::!: I instance: Cancel

Coun!er: Disk Bl'tes/sec +
'IJIll!JIri'T;J7jTIIl~l'II'IL:::Z::====~
Disk Read Byles/sec
Disk Reads/sec
Disk Transfers/sec
Disk Write Bl'les/sec '

I· .[xplain> > I
Help

Run ~rogram on Alert
! 0 first Time

L..----------'·@EyeryTime

Figure 2.27 Setting an alert on multiple instances

You can clear the current alert data by choosing the Clear Display command from
the Edit menu. This leaves your selections in place but starts the alert log over again
from the top. You can clear all your selections and stop alerting altogether by
choosing the New command from the File menu. This creates a new settings file.

When you really get serious about looking for bottlenecks, or doing anything about
capacity planning, or even looking closely at an application's performance, you're
going to be logging the data, possibly in addition to using the other views. The log
permits you to peruse the data·at your leisure, rather than perform a complete
analysis before the data disappears from the screen in real time.

Figures 2.28 and 2.29 diagram how logging works. You ask' Performance Monitor
to place data in a log file. When it is done writing data to the log, you can read that
log file back into Performance Monitor. Now you can chart, report, alert, and even
relog any portion of that log file. You can also export those views of the log file
data for further reporting.

Chapter 2 Zen and the Art of Performance Monitoring 49

Log File: 1 32\perlorm\amt 1 Status: . IColiecting

File Size: 114.700.552 1 Log Interval: ,-15 __ --,

Computer '~E_J Object

Log file

Performance monitor

Figure 2.28 Creating a log file

Charts Alerts

i]~2:§:J~~~;~;2~~7::.

E =4 ~~~!*~~
_----3t----I.~ ::~7-s-'.-'- .. . D20,,~

l\;iilIlM.CJll4l ~ l"'l~J ~

Reports

Log file

Performance monitor

Figure 2.29 Analyzing data from a log file

To create a log file, switch to the Log view, and then choose the Add To Log
command from the Edit menu to select objects to log.

In the Add To Log dialog box, you can log data from many computers into a single
log file. This lets you see how the computers' activities correspond. All you have to
do is enter the name of the computer you want to monitor. Choosing the ellipsis
button brings up a Select Computer dialog box to aid in browsing the network for
likely suspects: We discussed this earlier, as you may remember.

You can select one or more objects to log. Use the SHIFf and CTRL keys as you did
for selecting multiple counters or instances. All the counters for all the instances of
each selected object are logged. This means that you cannot log individual counters
or individual instances. Trust us, this is okay.

50 Optimizing Windows NT

Figure 2.30 Add To Log dialog box

Once you have selected the computers and their objects to log, you can choose the
Log command from the Options menu. This brings up the Log Options dialog box,
which you can use to specify the name of the log file. This can be on a local
computer or across the network. You can use the Network button to connect to a
remote computer for logging to a remote file.

"""'I",,';:':,,':, ':h. ,';<;::,: ; :,. ",i:: !:: : ';,/ :,:;:': "':.'" ,' ',:':)" ".:::.:;;> .. ::;

'""log File I I OK
FileName: .!lirectories:

j; I 17-09-93.1og I c:\perf\logs ' .Canc~1

7-06-93.1og ~ rc. c:\ ~ 7-07-93.1og rc. perf
I £tart log I 7-03-93.1og

f5.logs

~ I f-,

I !!elp ,..
list Files of Ivpe: Driyes:

IlOg Files (-.log) Iii llec: Iii I: Network "I

'""Update Time
interval (seconds):

@ f.eriodic Update 15.000 I[!J
o Manual Update

Figure 2.31 Log Options dialog box

Chapter 2 Zen and the Art of Performance Monitoring 51

If you specify the name of an existing log file, the new data is appended to the end
of the log file. This is a powerful feature which permits the creation of long-term
archives. We'll say more about this in Chapter 8, "Capacity Planning."

You can use the Log Options dialog box to change the time interval, which has a
default of 15 seconds. You can also switch to Manual Update mode, but in this case
nothing is logged unless you choose the Update Now command from the Options
menu, or use the camera icon.

You must remember to press the Start Log button to start logging. If everything is
set up right, the Log view then displays Status: Collecting. Otherwise, if you just
press OK, you return to the Log view, but the Status displays Closed. If the status
is closed, doing one or more of the following starts the logging process:

• Select at least one object to log

• Provide a log file name

• Choose the Start Log button

If your Start Log button is dimmed, go back and pick at least one object to log.
Once you do that, Start Log becomes active.

To stop logging, choose the Stop Log button in the Log Options dialog box.

Eile Edit ~iew Qptions .!:!elp

log Fite: 1 c:\nt\s}'stem32\perform\amtestJog

File Size: 112,359,836

Object Computer

Server \\SETTER
Objects \\peget1
System \\peget1
Process \\peget1

Figure 2.32 Log view during data collection

Status: 1 Collecting

log Interval: 15 ___ -,

9 4 tl12.4M

52 Optimizing Windows NT

The Log view shows the name of the log file and the log status. Although it looks
like an inactive window, you can click in the Log File box and use the HOME, END,

and arrow keys to scroll through the log file name, if it is too long to see at once in
the box. The Log view also shows the file size in bytes and the time interval in
seconds.

You can change the time interval during logging without stopping the log file. So if
you need to bump up the resolution, just do it! But remember, you are using more
disk space, so lower it when you are done.

Because the log file size is displayed in the Log view, you can quickly determine
how much data you are collecting on each snapshot. From the Options menu,
choose Log and then choose Manual Update. Return to Log view by choosing the
OK button. Click the camera a couple of times to take a couple of snapshots.
Record the file size. Click the camera again. Record the file size. The difference is
the amount of data collected in each snapshot. Now try it again to see if you get the
same answer. If it's different, the reason is that Performance Monitor occasionally
writes out an index record which you may not want to include in the size of every
snapshot. This certainly occurs on the very first snapshot in the file, which is why

, we had you start with a couple of initial snapshots. (Counter names are also written
with the initial snapshot.) These index records are infrequent; one is written every
100 snapshots.

'r Other information, in particular counter names, also appears at the start of the log
file, and some new ones may appear when you add new systems to the log. We
mention these details just for completeness.

By adding and deleting objects, you can determine the byte cost of each. Fun and
games!

When you are logging data, you can use the Bookmark command from the Options
menu command and its equivalent icon from the toolbar. These allow you to insert a
comment into the Log File. Such comments can be used later as indexes to different
points in the file. They help you to locate the start or end of interesting events you
have logged~ Use them freely, they are cheap. They automatically include the date
and time, so don't bother to type those into your comment. If you append data to a
log file by supplying the name of a pre-existing log file when you start logging, an
automatic bookmark is placed at the start of the new data. It reads, "New set of Log
data."

Chapter 2 Zen and the Art of Performance Monitoring 53

The current log file size appears on the status bar if you are collecting data, no
matter what view you are in. Keep an eye on this. We're talking disk space here.

You can delete objects from the list of logged objects while you are logging. Select
the object in the Log view legend and use the Delete From Log command from the
Edit menu, or use the equivalent toolbar icon. After you do so, there will be no
more data on that object until you add it back in. It is not terribly likely that you
will need to delete an object, but you can.

Loading and Viewing Log Files
It's sort of boring to log data, but it's very exciting to play it back. To play back a
log file, choose Data From in the Options menu, then choose Log File and type the
log file name or choose the ellipsis button to access the Open Log File dialog box.

Note If you are monitoring current activity, switching to playing back a log file
causes the monitoring of current activity to stop. So if you have spent time setting
up your current measurements, be sure to save your workspace (as explained in
"Saving Settings," later in this chapter) before viewing the log file. Or start another
copy of Performance Monitor to view the log file. Then you can watch the cost of
viewing log files. (Is there no end to this? Don't worry, it's job security.)

Viewing data from a log file is very similar to viewing current activity. You can
create charts, alerts, reports, and even new log files. But because the data already
exists, you don't have to wait for it to materialize, and this changes the views in
subtle but important ways.

Graphing of Logged Data
You select objects, counters, and instances for charts of logged data just as you do
when charting current activity. But the display of time on the chart is different.

54 Optimizing Windows NT

First consider charting in the graph mode. (We talk about histogram mode in
"Histograms of Logged Data," later in this chapter.) There is no vertical time line
in charts of logged data. Instead, Performance Monitor attempts to graph 100
points, which fills the chart window. If there are fewer than 100 data snapshots in
the log ·file, you will see every point graphed, and the graph will not reach the right
hand edge of the window. If you look at the Chart Options dialog box, you will see
that the Update Time group is unavailable because it is not relevant when playing
back a log.

Log files are self-contained. You can take them to any Windows NT machine for
viewing. However, there is no Explain text in the log file, a decision we made to
conserve log file space. To see counter explanations you have to use Performance
~onitor on Current Activity (or see Appendix A of this book).

1801'---------,~,--"-----~-·---~·------------~~-------------·----~

160~--------~-------------------------~------~---------·

140~--------~--------------~------~----------·--------

120~------,--~----------·--------------~----~-----------

100~~~~------------------~---------------------------

80~----------,-----------------------~------------------

60~~------~----------------------~-------------------

o
Last I 736571.438 Average I

Figure 2.33 Chart of a log file with fewer than 100 snapshots

If there are more than 100 snapshots in the log file, the graph fills the window.
Suppose you have a log file with 1000 data points; every tenth point will appear on
the graph. If you need to see every point, you can look at portions of the log file by
choosing the Time Window command from the Edit menu, or you can export the
chart. (For more information on exporting, see "Exporting Performance Data," later
in this chapter.)

Chapter 2 Zen and the Art of Performance Monitoring 55

0:=1
file Edit ~iew Qptions Help

100

90

80

70

60

50
1

~m[.. ~ ~.~
~ ~ ~J U vMV'V!~:~jV~ ~'UU~'~'uU
o

Lastr-D.OOO Averager 451645.913 Mini. 0.000 Max [-e41205.625 Graph Time I 1478.000
Color Scale Counter Instance Parent Object Computer

B:::::::::::::'1.~illI;I::::~~~2~ff;]:'~I~£~:::::::::::::;:::::::=::::;rH~!:::§:2~'i~lIlnr::::~:::::.:::~::::::::::::J:ii1grJf[:::::::::::~::~~~!m.l~TI!lHr~::i
Figure 2.34 Chart of logged data with more than 100 snapshots in the log file

Selecting the Time to View in a Log File
To move around in time in a log file, choose the Time Window command from the
Edit menu. This brings up the Input Log File Timeframe dialog box. Use the slider
bar in this dialog box to change the time window shown in the chart. You can
change the starting time and the ending time of the time window by dragging the
start and end panels of the slide bar. You can move the whole time window by
dragging the center section of the slide bar. You can also click the portions of the
slide control not covered by the current time window to page through the file. The
times above the slide bar are the start and end times of all the data in the log file.
The times below the slide bar are the current start and end times.

You can use the left and right arrow keys to expand the time window. By pressing
the SHIFf key and holding it down while pressing the arrow keys, you can contract
the time window. Even though the chart shows only (at most) 100 of the data points
in the current time window, the arrow keys move only one of the underlying data
points each time they are pressed. This permits precise control of the time window
endpoints.

56 Optimizing Windows NT

7 Feb 93
11:15:06 pm

7 Feb 93
11:22:52 pm

9 Feb 93
1:38:25 pm

9 Feb 93
1:30:44 pm

Cancel]

Help I
Bookmarks-----...,....----------------.,

~~~m~im2i~~~~iliE3E:=m::::r:::::El I· Set As Start I 
1 Set As Stop .1 

Figure 2.35 Anatomy of the Input Log File Timeframe dialog box 

When you move the left end of the time window slide bar, you can see a gray bar 
move across the chart. It shows the current location of the time window start that 
will be set if you press OK. Set the end of the time window the same way. 

Below the slide bar control is a box displaying any bookmarks you've placed in 
your log file. You can select a bookmark and assign it to be the start or the end of 
the current time window . You can't set the end of the time window to be earlier 
than the start. Magic it's not. 

The time window is very important because it determines the start and the stop 
snapshots for all of the following: 

• Charts 

• Reports 

• Alerts 

• Relogged data 

This means that changing the time window on the chart is how you manipUlate 
which data is visible in all four views. 



Chapter 2 Zen and the Art of Performance Monitoring 57 

Gory Details on Charting Log Data 
You'll remember that some instances, like those of the Process or Thread objects, 
are called mortal instances because they start and stop while the system is running. 
Anyway, this can be a bit of a problem, because you need to have your time 
window start while they are alive if you want to see them in the Add To dialog 
boxes. This is one good reason to insert a bookmark saying "Application started" in 
your log file. This will help you to set the time window to a period of time when the 
application is running. You can also use the setedit utility discussed in "Saving 
Settings," later in this chapter. 

Once you have selected the application instance, you can move the time window 
freely. Counters will appear to go to zero during those time intervals when the 
application is not running. 

Now we're going to touch on an even more obscure point regarding the display of 
logged data. As mentioned above, in those cases where there are more than 100 
data points in the log file, you are missing some data in the initial chart because 
some snapshots are skipped over and not displayed. 

To be certain of what you are seeing, you will want to mentally separate counters 
into two types: those which are averages over time, and those which are 
instantaneous values. Most counters are time averages, such as Server: Bytes 
Total/sec or Processor: % Processor Time (which is the ratio of time used to the 
time interval, expressed as a percentage). Counters like these, that are an average 
over time, continue to be proper averages over time even if some time intervals are 
skipped. This is equivalent to smoothing the data by computing a simple average. 
So if you have more than 100 data points, that is, your chart fills its window, you 
can properly think of the chart as smoothing the data in the log file. 

But there are a few counters, such as Memory: Available Bytes, that are not 
averages, but instantaneous values. We call these instantaneous counters. We try to 
be careful about noting that a counter is instantaneous in its Explain text. This fact 
is also noted in Appendix A, where such counters have the counter type Raw Count. 
An instantaneous counter is not an average over the time interval, but rather the 
value of the counter at the end of the time interval. Therefore, skipping data point~ 
can hide peaks and valleys that might be important. 

There are three things you can do about this. Number one is to just forget about it, 
under the assumption you have enough real problems. Number two is to change the 
time window you are viewing in the log file to see fewer than 100 data points. 
Number three is to choose Export from the File menu to export the chart. When you 
export a chart of logged data, all the data points inside the current time window are 
exported whether they appear explicitly in the graph or not. More about this in 
"Exporting Performance Data," later in this chapter. 



58 Optimizing Windows NT 

Histograms of Logged Data 
As when viewing current activity, histograms of logged data are useful f01100king 
at the data from many instances. But the height of each bar in the histogram is a 
function of the time window. If the counter is a time average, the height indicates 
the average over the current time window. If the counter is an instantaneous value, 
the bar height indicates the value at the end of the tim~ window. 

The value bar numbers pertain to the 100 or fewer data points you see when you 
switch to graph mode. The histogram itself is based on the snapshots at the start and 
end of the time windows. If there are more than 100 data points, and the counter is a 
time average, the histogram displays the correct average, and the value bar displays 
an estimate based on the 100 data points you see in graph mode. So if these differ, 
don't panic. 

If you need to be picky about these numbers, you might want to export the data and 
process the values in a spreadsheet. For more fine points on exporting data, see 
"Exporting Performance Data," later in this chapter. 

Reports of Logged Data 
Reports of logged data are the numerical form of histograms of logged data. 
For time-average counters the counter value at the start of the time window is 
subtracted from the counter value at the end of the time window, and the result is 
divided by the time span of the time window. This means all of the considerations 
just mentioned concerning histograms of logged data apply to reports of logged 
data. Suffice it to say that the reported number is an accurate average, whereas the 
graphed number and the value bar values can be estimates because of skipped data 
points. 

For the most part you can ignore these issues. Just set the start of the time window 
on the start of the event of interest, and the end of it at the close of the event. Voila. 

A comment was made in the earlier section "Gory Details on Charting Log Data" 
about selecting mortal instances. That note applies equally to reports on mortal 
instances. 



Chapter 2 Zen and the Art of Performance Monitoring 59 

Alerts of Logged Data 
If you have a lot of logged data, you might want to find the hot spots quickly. You 
can use alerts on logged data to do this. Usually, you would first chart the data, and 
set the time window to some period of interest. Then choose Alert from the View 
menu and set the alert condition you are concerned about. Perhaps this is some 
indicator of heavy load, such as System: Processor Queue Length> 3. The logged 
data is scanned and the alert conditions located and placed in the alert log on your 
screen. You can export the alert log entries for further processing. 

Unlike charts and reports, the time interval is relevant here. Suppose you have 
. logged data at a 15-second time interval. You can look for an alert condition at, for 

example, a one-minute time interval. In this case, the Alert view scans the logged 
data looking for a snapshot that is at least one minute past the start of the time 
window. It then computes the time average for the counter over that minute and 
checks against the condition. Then, using the ending snapshot as the start of the n~xt 
time interval, it looks for another snapshot that is at least one minute later. This 
continues to the end of the log file. If you have set an alert on an instantaneous 
counter, the value at the end of each time interval determines if the condition is met. 

Logging Logged Data 
Once you have chosen a log file in the Data From dialog box, your data source is 
that log file. You can then select the Log command from the View menu and relog 
that data to a new log file. 

Why on earth might you want to do such a thing? Actually, there are a number of 
good reasons for relogging. The first is to create an archive. If you have a file of 
logged data you really care about, you might want to append it to an archival log for 
long-term storage. You can do this, as we mentioned, by supplying the name of the 
archive file as the output log file. This keeps you from having to save lots of 
individual log files, which can be a nuisance. 

You can select a longer time window when you relog. This permits you to condense 
your data. If you collect data at a one-minute time interval, and relog at a five
minute time interval, you condense your data to use only 20% of the space. For this, 
your boss should give you a bonus! 

When you relog data, you can use the time window to limit the data. This means 
that you can log a 24-hour period, but archive only that portion of the day that has 
peak activity. Looks like another bonus! 

A log file of relogged data is just like a log file of new data. Such a file can be 
designated in the Data From dialog box, and can even be relogged itself. 



60 Optimizing Windows NT 

Saving Settings 
You've picked your way through a1l400-plus counters and innumerable instances, 
and configured your measurements with great care. Do you want to do it again 
tomorrow? No way! 

This is what the settings files are all about. You can save what you are measuring 
and how you are measuring it in a settings file by choosing Save or Save As from 
the File menu. The first time you save your settings, you are prompted to assign a 
name to your settings file. The name of your settings file appears in the status bar. 
You use Open from the File menu to install a previously saved settings file. The 
name of your opened settings file appears in the status bar. You can remove all your 
current settings by choosing New from the File menu. 

Usually, you will save your current view. The following file suffixes are, by 
convention, used for the settings files, but you can save and open settings files with 
different extensions. 

Table 2.5 Settings File Suffixes 

Suffix Settings-file type 

.PMC Chart 

.PMR Report 

.PMA Alert 

.PML Log 

.PMW Workspace 

If you choose Save Workspace from the File menu, the current settings for all four 
views are saved in the Workspace settings file. Opening this file restores all four 
views. In addition to the four views, the current screen size and position of 
Performance Monitor are saved in the Workspace. (Otherwise, Performance 
Monitor starts up in the position it held when you last quit.) 

You can move settings files from one computer to another. However, if the 
computers have different hardware and software, the settings file might not apply 
fully on the new machine. For example, if the original machine has one disk 
partition, and the new one has two, the second disk partition is not in the settings 
file. If you want it to be, simply add the second partition to the measurement and 
choose Save from the File menu to save the ~ettings file. 



Chapter 2 Zen and the Art of Performance Monitoring 61 

What if you now move the settings file back to the first machine? The second 
partition will not be found, but it will still appear in the measurement. Because no 
such object or instance could be found, the counters will all drop to zero just as 
though it were a deceased mortal instance. The nonexistent object will remain in the 
measurement and in the settings file even if the settings file is saved again on the 
first computer. Thus you can build up settings files from multiple computers with 
ghosts of mortal and even immortal instances, and share them around with your 
friends. It's like sharing a little bit of heaven. Sort of. 

You can specify. a settings file on the command line of Performance Monitor by 
typing: 

perfmon settings-file-name 

Performance Monitor starts up with that settings file loaded. The appropriate view 
or views start data collection as specified in the settings file. 

If you specify a workspace on the command line, Performance Monitor loads the 
settings for all four views. 

" 

If there is no settings file specified on the cOmlnand line, Performance Monitor 
searches its working directory for the file _DEFAULT.PMC. If found, it loads this 
settings file and it becomes the current view. 

Tip Here's a trick you can use: although the .PMC suffix is used, this file could 
actually be from any view or even a workspace. This is one reason why we do not 
enforce the suffixes: there are times like this when you want to fake them out. 

You can modify computer and instance names in a chart settings file using the 
setedit.exe utility on the diskette or CD-ROM included with this book. The setedit 
utility displays the settings file entries in the chart legend. You select the legend line 
you want to change and double-click, or select Edit Chart Line from the Edit menu. 

If you have a settings file that you can see in File Manager, you can drag it to a 
running copy of Performance Monitor and it will start running. This clears out the 
current settings file in that view (or in all four views for a workspace), so be sure to 
save your current settings if necessary. 



62 Optimizing Windows NT 

Here is another neat thing you should try once you have a few settings files created. 
Start File Manager from Program Manager's Main group, and then select the 
Associate command from the File menu. Press the New Type button. In the File 
Type box, type Performance Monitor Charts. In the Command box, type 
perfmon.exe. In the New Extension box, type PMC, and then press the Add 
button, and the OK button. Do the same for alerts, reports, logs, and workspaces, 
using appropriate file types and extensions. Once this is done, you can double-click 
a settings file in File Manager, and Performance Monitor starts, executing that 
settings file. 

Now some more legerdemain: go back to Program Manager and create a new 
program group called PertMagic using the New menu command on the File 
menu. (It can be either a personal or common program group. If you want other 
people to be able to use it, it must be a common program group. You must be an 
administrator on your computer to create a common program group.) Now restore 
File Manager and Program Manager so that you can see your settings files in File 
Manager, and your new PertMagiC Group in Program Manager. Now you can 
drag your settings files to the PertMagic Group from File Manager. They are 
Performauce Monitor icons and you can double-click them to execute them. Now 
that's cool! 

Exporting Performance Data 
Data export is the Performance Monitor general purpose escape hatch. Just about 
every time we run into a limitation of Performance Monitor, we tell you to export 
the data and use some other tool to format or analyze it. 

This is not necessarily bad. The ability to use software as building blocks was one 
of the fundamental principles in the construction of the very successful UNIX 
operating system. We have used that concept here, and it will serve you in good 
stead. Examining or analyzing the standard deviation of the numerical values of 
many chart points, printing lots of alert log entries or a large report, and making a 
list of all the computers being logged in a large network all rely on data export. 
These are normal activities of performance monitoring, and it is the explicit design 
of Performance Monitor that you export the data to accomplish these activities. So 
don't struggle, export! 



Chapter 2 Zen and the Art of Performance Monitoring 63 

The Export command on the File menu permits you to create either tab-separated or 
comma-separated ASCII files for use by other applications. Which you choose 
depends on which format your other application will best accommodate. If you want 
to look at the data with a simple text editor, tab-separated (the default) is the easiest 
to read. 

Note It's worth repeating that the export of a chart of a large log file does include '" 
every data point in the time window, even though the visible chart displays only 1 00 
data points. If you want to export the data in a log file, you must first chart that 
data. Once you have set up a complex chart for export, consider saving your 
settings in a settings file so you can reuse them. 

Performance Monitoring Service 
If you want to automatically watch for alerts or log data to a log file, you can 
establish Performance Monitor as an unattended service on the computers you want 
to monitor. The Performance Monitor service can be set up to start automatically 
when the computer is started. 

The Performance Monitor service, DATALOG.EXE, runs on the computer on 
which it is started. Alerts are watched locally on that computer, so no data needs to 
travel across the network. You can also set up logging on any computer running the 
service, and the log file is usually located on the same computer. The data can 
remain there until you want to scan the data using Performance Monitor, or move it 
to another computer when the network is not busy. 

There is no direct graphical user interface to the Performance Monitor service. 
Instead, you control the service using the monitor.exe utility. The activity being 
monitored is described in a workspace settings file that you create using 
Performance Monitor. You use monitor.exe to start, stop, and to establish a 
particular workspace settings file describing the measurement. . You can run 
monitor.exe from a remote computer, so complete control of all your Performance 
Monitor services is available from any Windows NT computer on the network. 

The Performance Monitor service utilities are included on the floppy disk or 
CD-ROM provided with this book. For more information on running Performance 
Monitor as a service, see Chapter 8, "Capacity Planning". 



64 Optimizing Windows NT 

Performance Monitor Limitations 
As with any real product, Windows NT Performance Monitor has a few, well, 
warts. We can explain, justify, and rationalize until we're blue in the face, but this 
does not make the warts disappear. We might as well talk about them, or you'll get 
even more annoyed with us. Anyway, we hope you'll forgive us. 

Why You Don't See Any Disk Data 
The dis~ utilization on Windows NT is measured by measuring each disk 
transfer with a high-precision timer. This gives very accurate results, but does 
have some overhead associated with it. In addition to the calls to the timer routines, 
measurement of disk activity involves adding an extra disk driver to the 110 system. 
All this spells overhead. On a 20-MHz 386 this was observed to cost up to 1.5% of 
the disk throughput. On a 33-MHz 486 there is no measurable impact. 

We decided not to burden the system with disk performance measurement unless 
you really want it. Which, believe me, you do. So right away you should activate 
disk performance measurement on your computer of interest by executing the 
following command: 

diskperf -y 

If you need to look at a remote system named, say, \\cerebellum, try 

diskperf -y \\cerebellum 

Unfortunately, that's not the end of the cure. You must now shut down 
Windows NT on the system you are measuring. Next time you start it, you will 
have operational LogicalDisk and PhysicalDisk counters. 

Why the Processor Queue Is Always Empty 
We haven't talked about all Processor counters yet, but if we're going to talk about 
gotchas, we might as well come clean now. The Processor Queue Length is a 
measure of the number of threads ready and waiting to execute program instructions 
when there is no free processor. Because there is only one such queue, the counter 
belongs to the System object (as opposed to each processor object). 

You might be watching a uniprocessor system with lots of threads running and be 
disappointed to see that the Processor Queue Length counter is always zero. The 
reason is that in Windows NT, this counter is measured by counting ready threads. 
This cannot be done unless you also select at least one thread for measurement. 
Once you include some counter from some thread in your measurement, the count 
for the Processor Queue Length will be valid. This is mentioned in the Explain text 
for the Processor Queue Length, but this is a very important counter and a pretty 
subtle wart, so we thought we'd better tell you. 



Chapter 2 Zen and the Art of Performance Monitoring 65 

Ways to Print Performance Data 
Can't find a Print command on the File menu? That's because it isn't there! All of 
the screen shots of Performance Monitor that you see in this book were made by 
pressing the SHIff +ALT +PRINT SCREEN key on the keyboard. This places the screen 
image of the active application in the clipboard. You can then start Paintbrush (it's 
in the Accessories Group) and choose Paste from the Edit menu. Then you can 
save the image as a file or print it directly. 

Pressing ALT+PRINT SCREEN places the entire screen's contents into the clipboard 
for similar processing. 

You may not be happy with this clever trick. In that case, you might consider 
exporting Performance Monitor data using the Export command on the File menu. 
The resulting file can be printed by your favorite spreadsheet program. 

The GUI Batch Processor 
You may want to automate use of Performance Monitor beyond what is possible in 
settings files. If this is the case, we direct your attention to a product known as 
Microsoft Test, known affectionately around here as MS Test. MS Test records 
your keystrokes and mouse movements to drive GUI applications like Performance 
Monitor. 

You need to use the 32-bit version of MS Test to drive Performance Monitor, 
because the latter is a 32-bit application. This is provided in the latest release of the 
Microsoft Test product. 

There is really no limit to what you can do now. You can use MS Test to start and 
stop Performance Monitor at particular times of the day or week, or to change the 
time interval of observations as the day progresses. It can start mUltiple copies of 
Performance Monitor, setting up measurements for a whole network with ease. 
Each copy of Performance Monitor contains the name of its settings file in its title 
bar. MS Test can use this name to select the various copies for control. 

As we promised, you'll be dangerous! 



66 Optimizing Windows NT 

TCP, SNMP, and Thee 
There are a number of objects associated with the TCP/IP protocol. The SNMP 
protocol routines are used to retrieve the statistics for the TCPIIP objects. To see 
any of them, you must install the SNMP protocol as well as the TCPIIP protocol. 
Use the Network option in Control Panel to install SNMP. 

Crucial Hot Keys 
There are a few hot keys that make using Performance Monitor a breeze. 

Hot Key 

BACKSPACE 

CTRL+P 

CTRL+U 

CTRL+E 

TAB 

Function 

Highlight current selection in legend 

Always on top 

Update now 

Bring up time window 

Add To command from the Edit menu 

Here is a list of the remaining hot keys. 

Hot Key Function 

CTRL+C Switch to Chart view 

CTRL+A Switch to Alert view 

CTRL+L Switch to Log view 

CTRL+R Switch to Report view 

CTRL+O Bring up Options dialog box 

CTRL+W Save workspace 

CTRL+B Create bookmark 

CTRL+M Display or hide menu and title bars 

CTRL+T Display or hide toolbar 

CTRL+S Display or hide status line 

CTRL+F12 Open file 

SHIFT+F12 Save file 

F12 Save As file 

Fl Help 



CHAPTER 3 

Detecting Processor Bottlenecks 

If you've read the first two chapters, you should be an expert on the use of 
Windows NT Perfonnance Monitor. It's time to go out and slay those bottleneck 
dragons! 

67 

There is never a shortage of dragons-every computer doing any work at all 
always has a bottleneck. You can see this if-you review the definition of bottleneck 
presented in Chapter 2. The device for which there is the greatest demand is the 
bottleneck. This is the device with the greatest utilization during an activity's 
execution. 

It isn't hard to see that there is frequently a second bottleneck lurking beneath the 
first. This is usually the device with the next lower utilization. We say "usually" 
here because if you remove the first bottleneck, the one to surface could change, 
depending on how the first one is removed. The important thing to remember is 
that just removing one bottleneck does not always tum the dragon's lair into a 
palace. You sometimes have to slay another dragon. 

This leads us to our second rule of bottleneck detection. 

Rule 2. 
One bottleneck may 
mask another. 



68 Optimizing Windows NT 

Bottlenecks Are Moving Targets 
The other thing to keep in mind is that during processing, the bottleneck may shift 
around from one piece of equipment to another. Each second of operation might 
yield a different bottleneck if looked at in isolation. If you want to improve the 
situation as a whole, you'll need to look at the big picture. And even then the 
situation can be tricky. Let's take a look at a real example to illustrate these points. 

The first thing we have to do is run the diskperf -y command to enable disk 
performance counters, as discussed at the end of Chapter 2. (Y ou did read 
Chapter 2, didn't you?) After running diskperf, you'll have to reboot the 
computer being monitored before the disk performance counters can be activated . 

100 

90 

130 

70 

60 

50 

40 

30 

20 

10 

.Edit ~iew .Qptions Help 

Scale Counter Instance Computer 

lOOO % Disk Read Time C: LogicalDisk \\MEDULL6. > 

Figure 3.1 Chart of processor and disk usage 

In Figure 3.1 we have charted data from a Performance Monitor log file. The black 
line is the Logical Disk: % Disk Read Time, and the highlighted, white line is the 
Processor: % Processor Time. Activity is divided into two distinct phases. During 
the first phase, the disk is clearly the bottleneck, with the processor a somewhat 
distant second. During the second phase, the processor becomes the bottleneck, 
with the disk even less in use. The overall data is provided in Figure 3.2. 



Chapter 3 Detecting Processor Bottlenecks 69 

c:;;:al Je{;rtll'ltiWlih(· L~Ii!ilniJ; I .. ·J ... 
file Edit ~iew Qptions .t!elp 

Computer: \\MEDUlLA 
Object: Processor 0 

% Processor Time 53.290 

Object: logicalDisk C: 

% Disk Read Time L::::::::::::::::::~:?]QQi 

Figure 3.2 Report of processor and disk usage 

This disk is utilized at 52.8% and the processor at 53.3%. Because the time 
window is 44 seconds, this means we used 23.23 seconds of disk time (this is 
demand{ disk]) and 23.45 seconds of processor time (demand{processor]). In 
the formal terms of the last chapter, the maximum throughput at which the disk 
can accomplish this task is 1123.23 * 3600 = 155.0 times per hour, and for the 
processor 153.5 times per hour. Technically, the processor is the bottleneck. In 
reality, both components are nearly equally to blame. 

One way to think of this is to imagine how much faster this task would go if either 
component were infinitely fast. In this case, the activity would be accomplished in 
half the time if either component were blindingly fast. Is there a bottleneck? Yes, it 
is the processor. Could you improve performance by attacking either component? 
Yes. But you could only improve the first phase if the disk were improved, whereas 
in this case a faster processor would help the second phase a lot, and the first phase 
a little bit. Which brings us to Rule #3 of Bottleneck Detection. 



70 Optimizing Windows NT 

Rule 3 •. 
The· bottleneck depends 
onwbenyou look. ' 

Getting Started: Making an Overview Settings File 
Before diving in to understand any performance problem it is always best to take a 
step back and get the broad picture. When we first see a problem, we tend to try to 
solve it instantly. A common failing is to dive too deeply, too quickly, and thus miss 
the real problem altogether. We might backtrack and find it eventually, but we'll 
waste time. This gives us Rule #4. 

Rule 4. 



Chapter 3 Detecting Processor Bottlenecks 71 

On computers running Windows NT, there are a number of essential objects and 
counters for those objects you should check out first for any problem. We'll go into 
detail about these counters later, saying just enough here to provide an overview. 

Consider building an OVERVIEW.PMW workspace settings file for each 
computer. In the following paragraphs we discuss useful counters to include 
in this file to monitor the computer's basic hardware components. To have 
Performance Monitor start up automatically using OVERVIEW.PMW whenever 
anyone logs on at the computer, do the following steps. 

1. Create a Startup group in Program Manager, if there isn't already one. 

2. With the Startup group selected, choose New from the File menu. 

3. Type a description in the Description box. In the Command Line box, type 
perfmon overview.pmw. In the Working Directory box, be sure to specify 
the directory containing the OVERVIEW.PMW file. 

4. Choose OK. 

In the overview settings file, measure Processor: % Processor Time. This tells you 
how much processing is happening. If there is work being done and the processor 
is idle, you can be sure there is some other object causing delays. If you have a 
multiprocessor system, you might want to measure System: % Total Processor 
Time. This combines the average processor usage of all processors into a single 
counter. If you have many processors, this is the way to go. 

You may want to measure System: Processor Queue Length. This is a key measure 
of processor congestion. We mentioned in the last chapter that you must include 
the measurement of at least one thread in order for this counter to operate. (Stop 
complaining: this is the type of knowledge that makes you an expert.) 



72 Optimizing Windows NT 

The next counter to include in your OVERVIEW.PMW is Memory: Pages/sec .. This 
tells you how many pages are being moved to and from the disk drives to satisfy 
virtual memory requirements. If the computer does not have enough memory to 
handle its workload, this counter will be consistently high. You will learn later how 
to distinguish between paging activity caused by program code and data accesses 
and paging caused by file accesses. Few computers have room for all their disk 
files in RAM, and paging allows code and data to get into memory initially. But 
sustained paging of code and non-file data because of a memory shortage yields 
particularly poor performance. 

The next counter to include is Physical Disk: % Disk Time, for each physical 
disk unit. This will tell you how active the disk subsystem is. If there is excessive 
paging, it will show up ashigh disk utilization. General disk activity will also show 
up here. 

Next to consider is networking. Here, what you measure depends on what 
protocol(s) you have installed on your system. It also depends on whether the 
computer is primarily a client, a server, or both. 

If you are measuring a client and have NWLink installed, you can look at NWLink 
NetBios: Bytes TotaUsec. If you have TCP/SNMP installed, you can look at 
Network Interface: Bytes TotaUsec. If you have extended object counters for other 
protocols, they will probably have counters indicating total throughput. If you have 
extended object counters for your network adapter cards, you can look at byte 
transfer rates on those objects. 

What you are looking for here is an indication of network activity, because on a 
client you usually deduce a network bottleneck rather than see it. For example, . 
suppose that on a client, the processor and disk are not busy and the network is 
active. You are probably waiting for the network. If the problem is out on the 
network rather than in the local computer, it could be just about anywhere in the 
world, depending on your network. So let's try first to make the decision about 
local versus remote problems when we get the overview . We can search'out the 
real culprit later. 



Chapter 3 Detecting Processor Bottlenecks 73 

If the computer is primarily a server, you might want to use Server: Bytes Total/sec 
to monitor your network activity. This will give you a single counter that shows 
most of your significant network activity. You will want to know how close the 
server's adapters are to being fully utilized. We'll discuss how to determine this 
below. It is also useful to watch Context Blocks Queued/sec and System: Total 
Interrupts/sec. 

There are many other counters you could look at, but this set makes a pretty strong 
OVERVIEW.PMW. You don't want too many counters here because you want to 
get the broad picture. Once you have that, your chances of running off in the wrong 
direction are greatly reduced. 

file .Edit ~iew .Qptions .!:!.elp 

1~~~ ~ \aM ~~' , :., ;~ :v.fll---X-"~Ir'\: "I-f~~-
80 i,i,. : ,:\ ! I :!r r n,1! II I~ Y \ " ,'!! I V,,\ ", I 
70 • • \ I ".}\: ' I \:" : ' !" t' " :" , ' , I , •. ( f I I. ' • ,1*'1' i .1 
60' ; ~ ",,' t, ' '. ' • ' '" ,I, I 

40 1) ,,',: \ I :.~ II n"': \ )"i~~\' 'I t: :1 ~ :/ I I I : 

30 i( ." ~ :: j I f\ ! iri, 1\ \' :":I'I~: ....., n'::, 
20 ,I \ I' i (\1 \l \'\j V-J ~ , II \ I \~ 1,0 i !\~ ) \ ' [l.Y\ 
10 I i I \ / v t 'y ~ \.. 
o '~ . 

Last I 100.000 Average) 64.027 Mini 0.000 Maxi 100.000 Graph Time I 153.000 

Color Scale Counter Instance Parent Object Computer 

lOOO % Processor Time 0 Processor "OBLONGATA 
lOOO Pages/sec Memory "OBLONGATA 

E:3 =~:::~::;:::::::JP~W~;::~~?~~~;:f\~I~L;:::;::::::;::::=:::::::::::~::::!t~:::::::::::::::::::r::::=::=i:::::;:::~:::::::::::::I::!~~t~~~~i::::~;::::::t\~~~~W~~iflm 
c=J 0.000100 Frame Byteslsec NetBEUI "OBLONGATA 

I Data:, (;Iient.log 

Figure 3.3 Overview of a busy client 



74 Optimizing Windows NT 

What a jumble! Can we make sense of such a mess? (Yes, we ~an, as you'll see.) 

160 
144 
128 
112 

96 
80 
64 
48 
32 ~ 

16 
o 

Last r,~o'<~0·25.997 Average L'-"_v '4lSi;s' Min 1"·"'---"21':'984 Max [<''''~-89j57 Graph Time L·.'''''~565:000 

Color Scale Counter Instance Parent Object Computer 

1'·;·1 1.000 % P""", .. nme 0 ; - p",,,,,,, IINTXllS1 
~ lOOO Pages/sec '" ... Memory \\NTX861 
E3 lOOO % Disk Read Time D: 1 LogicalDisk \\NTX861 : 
E3 .. __ 9J!Q.9.:!.Q~L~y.~:".!2!.~!~'s." __ ~_. __ ~~~v.i£~~~",.~...:::...... __ ._~~~.1l1.. __ .. J~10~~._~:: 

. ... ..:_ ..... _ ... __ .. .1:.QQ9_ ... ~.QDJ~~t~.!Q9_~§«g<~~_l:!~g!.§.~9..::: ... _ .. ;_< ....... __ .......... ::.:_ ..... _ ... ~ ..... _ ... _.?_~!.~~[ ..... _ ... _ ..... _ .. ;_\~NJ~_~§l .. _.~._~ .. .J 

Figure 3.4 Overview of a busy server 

That's one busy server! There is a memory bottleneck to the right of center on the 
display. Can you see it? Maybe not yet. This is the kind of problem we will learn 
how to solve. 

These pictures can get pretty confusing, as even the simple example that opened 
this chapter showed, never mind these spaghetti charts. To get a better idea of how 
to approach more complex issues, let's look at each system component in tum, 
exploring how the counters behave under known, well-defined workloads. This will 
help us view the complexities of the real world from a platform of knowledge. 



Chapter 3 Detecting Processor Bottlenecks 75 

Charting the Response Surface 
Computers are only one kind of system; there are many other electrical, mechanical, 
biological, and social systems around us. One favorite method of characterizing 
systems is called the Stimulus-Response model. The system is treated as a black 
box, and stimulated in a known way. The resulting response is noted, and a new 
stimulus is tried. In this way you gradually chart what is called the response 
suiface. 

We can do this with the computer. By applying known workloads and observing the 
response, we can learn about the system, and also about how it is viewed by the 
measurement tool. The program we use to apply known workloads to the computer 
system is called Response Probe. 

We have included a copy of Response Probe on the floppy disk that accompanies 
this book. Appendix C explains how to use Response Probe. 

Analyzing Processor Performance 
Let's first take a look at a simple processor bottleneck. Figure 3.5 shows a 
processor being used to maximum capacity for a while. 

Eile .Edit ~iew Qptions Help 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

o 
Color Scale, Counter Instance Object Computer r--I 1.000 % Pm"",,,,, Hme 0 -- P.o,,,,,,, \\MEDULLA 
~ 1.000 Pages/sec ... ... Memory "MEDULLA. 

r=::3, '1""W""'~, ~O.o~ ,~~,!~j~"l~r.!!'~",,"'"!~'A'.,,~,~.n:"""!~~W~w,:';;'"'r'~'!"r""YT,.t"'?"o/':'::'!'''''''w., .. ''' .. '' •. ".~.,'"'~~~~~,~~'w""'''''.~~~~~'~''~"''':''''':"'; 
, .. ;;~.Lj~.~tl!~ll!U~Zi1l~~~{~;;i;Y~lMi;~j . .1:.~~l::i~:UJ,;:ttK:il~li1iUi::JL:2t22~{.:££t2~~~.~~.iX.li!,$mj:~:.tti}.St;i~~~;.lilb~Y2~£~t.~1.J.:L~~j 

Figure 3.5 Bottleneck -on processor utilization 



76 Optimizing Windows NT 

Processor utilization is 100%. Most of our other overview counters are percolating 
at a low level. Why? Because we are logging the data, in this case at the rather 
rapid rate of once per second. The paging and disk activity is to the Performance 
Monitor log file. Later we'll discuss how to determine this. If we do not want 
this disk activity to interfere with the data, we could log over the network (then 
NetBEUI: Frame Bytesisec would be non-zero), but because the disk activity is not 
really interfering much here, we won't bother this time. Chapter 2 discussed some 
other ways to reduce interference. 

This interference is just the performance monitoring embodiment of the Heisenberg 
Uncertainty Principle: if you measure it, you change it. To make sure you don't 
forget this, we'll make it Rule #5! 

RuleS. 
Heisenberg says: 
measuring it, changes it. 

We do not prevent you from collecting lots of data at a very high rate. There are 
occasions when you may legitimately need to look at something at very high 
resolution. But if you use Performance Monitor in such a way that it becomes 
your bottleneck, we'll tell your boss. 

When we uncover a processor bottleneck, we always want to find out more. Is this 
just one process, or several? If one process, which one? And does it have just one 
thread, or several? Answers will tell us what we can do to solve the problem. This 
leads us to Rule #6. 



Rule 6. 
Any discovery raises 
new questions. 

Chapter 3 Detecting Processor Bottlenecks 77 

So the next step is to look at System: Processor Queue Length to determine how 
many threads are contending for the processor. Luckily we logged the Thread as 
well as the System object, so we get the picture in Figure 3.6. 

Edit ~iew Qptions !!elp 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 /1 
0,";.; 

Color Parent Object Computer 

[ : ,"""'''w'M''I''~,""z"E!~~"~J.~~I~",~~".",.~W%, .... !'\".~"''''''''''''\." ..... ~ .. ""."':,::"" .• ,.'""., ..... "" .. 'w,E!.? .. S~~~,~!., ... " .. 'Y""., .. ~~~~1,~_, .. ,,"", 
,~;:.~:;L.;;.L~~U~~!~W~JtVi~~;!!hlE~~!lf~t£~~~~~liLt;;':.:Lr1:Li{:~r~:~:\:J:~~:i~;~~;i:~;:;:~~~·;:~.~.LL,:,.~Lt.~~:£l1SJt~~:;~.~;:;~;:r~~:::~~~i)~~k~j~l~£~lL~~~L~,~l 

Figure 3.6 Processor Queue Length with a processor bottleneck 

The Processor Queue Length here is scaled by 10 so we can see it better. It looks 
like it has a base of two, which alternates with three, with a peak at four. What are 
these threads? Figure 3.7 shows a chart in histogram mode, selecting the Processor: 
% Processor Time for all processes. 



78 Optimizing Windows NT 

Instance Computer 

E3 1.000 % Processor Time PROBE Process "MEDULLA + 
~ 1.000 % Processor Time ProbePrc Process "MEDULLA 
E3 lOOO % Processor Time progman Process "MEDULLA 
E3 1.000 % Processor Time screg Process "MEDULLA 
f@>&'~~'1 lOOO % Processor Time smss Process "MEDULLA 
c::l lOOO % Processor Time spoolss Process "MEDULLA 

.I~IE;U:;Sr,~:flf.~~l!iiii~~iJlFmR1f2Ttr;Cl~j~~~Jifl;:E:£SS~f.~~::E:2ir~:ZI%rif£¥jSlli~1=~1!.i:~~JB:{mIi1r~; 
[::J lOOO % Processor Time winlogon Process "MEDULLA + 

Figure 3.7 Processes active during a processor bottleneck 

The cUlprits are cast appropriately in black. Here we have changed the Vertical 
Axis Maximum to 10. If we had left it at 100, you would have seen that the tall 
bar has 96.34% of the processor. So using this axis maximum lets us look at the 
remaining amount. On the left is the system graphics process, the Client-Server 
Runtime Subsystem (CSRSS) which has 1.408%. The bar to the left of the tall one 
is perfmon, the Performance Monitor executable, with 1.99%. The one on the far 
right is the System process, with 0.253%. It handles the lazy writing of data from 
the file system cache to the log file and other system functions. These processes 
are all involved in writing the log file. Heisenberg rides again! The overhead would 
have been lower if we had followed our own advice and minimized Performance 
Monitor while logging this data. You should try this and see if you can measure the 
improvement. 

These values total 99.991 % of the processor usage. The main culprit, of course, is 
the Response Probe process called ProbePrc, with 96.34% of the processor. If it 
were a real application, we'd rewrite it to use less processor time. Next we see 
perfmon, CSRSS, and finally the System process. 



Chapter 3 Detecting Processor Bottlenecks 79 

But Figure 3.6 has a strangely periodic, sawtooth flavor. In order to understand 
what we are seeing here, we need to digress for a moment and discuss how the % 
Processor Time is measured on Windows NT, and how the processor is scheduled. 
Then we'll know enough to pursue the Mystery of the Sawtooth Queue Length. 

Why Performance Monitoring Is Free (Not!) 
One design goal of software performance monitors is to keep their overhead low. 
Figure 3.8 shows a chart of the processor used by Windows NT Performance 
Monitor observing an idle system. Look at the value bar. Because the graph time is 
100 seconds, we know the time interval is one second, so the chart is being updated 
every second. 

-=1 
Eile Edit ~iew .Qptions Help 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

o------------------------------~-----------------Last I 0.000 Average I O.OOQ Mini 0.000 Maxi < 0.000 Graph TimeJ .100.000 

Color Scale Counter Instance Parent Object Computer 

E3=_=I~Qp.Q._.~f.!.9.£~~~QrJi~~ .... _ ... _ ... __ ... _ ... 9 ..... _ ... _ ..... _ ... _ ... _ ..... :::. __ ... _ ... _ ... __ ... f.!.Q£~~.?_9.r_ ... _ ..... _ .. \\~.!3I~ .......... .1 
IData: CurrenlActivity 

Figure 3.8 Windows NT Performance Monitor overhead (not!) 



80 Optimizing Windows NT 

Notice how the value bar entries are zero. Wow, no overhead! What a tool! Do we 
think Windows NT Performance Monitor is free? Fat chance! It is good, but it is 
not free. It does have very low overhead, because it was used to tune itself, and 
we also followed all the guidelines we will mention in later chapters about how to 
write fast Windows NT applications. But it is also true that processor utilization 
on Windows NT 3.1 is sampled, not measured; the sample rate depends on the 
hardware platform. Sampling whether the processor is busy is much less expensive 
than timing every processor thread dispatch, because only more advanced 
processors include cheaply readable timers. On the 486 and earlier processors, time 
must be obtained from a relatively slow outboard Timer (See Figure 2.1.) 

Anyway, what sampling means to you is that a process can execute a few 
instructions and stop-all in between samples-and thus not be observed. This 
places a lower bound on the resolution of this counter. On both 486 systems 
and MIPS systems, the sample rate is once every 10 milliseconds. When the timer 
ticks, the interrupt looks to see what the current process and thread are, and then 
effectively bills them for a sample interval's worth of time as though they had 
executed for the entire sample interval. Clearly, this scheme can overcharge if 
the thread started just before the interrupt, or undercharge if the thread stops just 
before the sample interrupt (as is the case repeatedly in Figure 3.8). Programs (like 
Performance Monitor) that are launched by the same interrupt used to sample 
processor usage are particularly difficult to measure perfectly. The utility TOtlProc 
included with this book exports a counter for measuring this sort of deviant 
behavior. In almost all cases, the counter will be correct. The counter is designed 
to tell us about which processes and threads dominate the processor, and it can 
certainly do that with low overhead using this scheme. But if we try to look too· 
closely at deviant or unusual thread behavior, we will see the limits to the resolution 
of this counter. 

Processor Scheduling on Windows NT 
In order to understand how processors are used in Windows NT you need to 
understand how they are scheduled. This is typical of what we will find throughout 
this book: we need to know how the system works and how it is measured to 
properly interpret the data. Otherwise, we're just guessing. Let's avoid that, it's 
what our boss does! 



Chapter 3 Detecting Processor Bottlenecks 81 

Windows NT schedules processors using symmetric multiprocessing with soft 
affinity and preemptive multitasking. What a mouthful! Read on to find out what it 
means. 

Let's look first at a single-processor computer, which is scheduled by preemptive 
multitasking. This means that the highest priority thread that is ready to run will 
execute processor instructions. If another thread is waiting, what happens depends 
on its priority. If it is a lower priority than the executing thread, it will mostly wait, 
only occasionally getting processor time to prevent total starvation. If it has the 
same priority as the executing thread, the two will share the processor. The system 
will periodically switch from one thread to the other in order to let them both have 
processor access. 

Priorities are assigned at two levels. The process is assigned a priority class based 
on how the user starts and interacts with it. Then, within the process's priority 
class, its threads are assigned priorities that can change depending on requests 
by the thread itself, or because of interactions with peripherals or with the user. 
When the thread uses the processor, its priority is lowered; when it accesses 
peripherals, it is raised, and when it accesses such peripherals as the keyboard 
it is boosted even more. But to gain this boost, peripheral access must be through 
direct communication with Windows NT Executive. Windows applications are 
treated somewhat differently, as described shortly. 

If a computer has multiple processors, a ready thread can run on any of them. 
The system attempts to run a thread on the same processor it last ran on, all other 
things being equal. (This is soft affinity.) This helps reuse data left in the 
processor's memory caches from the previous execution of the thread. A thread 
could be restricted to run on only certain processors, but this is uncommon. 

Most applications started by users during system operation run in the Normal 
Priority class. When a user is interacting with an application using the keyboard 
and mouse, that application is in the foreground. The foreground application 
processes get an elevated base priority of nine instead of the level eight assigned to 
other Normal Priority class processes. (A higher number has higher priority.) When 
an application relinquishes the foreground, it becomes a background process and is 
given a base priority of seven. 



82 Optimizing Windows NT 

What all this means is that when the foreground application uses the processor 
heavily, it can lock out all lower priority processes from execution. Because 
responding quickly to the user is usually the goal of the system, this is the 
chosen default for Windows NT operation. If you want to alter this behavior, 
choose the Tasking button in the System option in Control Panel. The setting of 
Best Foreground Application Response Time is the default. If you change this 
to Foreground Application More Responsive Than Background, foreground 
processes will be given a priority of eight. Setting this to Foreground And 
Background Applications Equally Responsive assures that both foreground 
and background processes get priority level seven. 

The following table lists all possible thread priorities. 

Table 3.1 Thread Priorities in Windows NT 

Base Priority class Thread priority 

31 Real-time THREAD_PRIORITY _TIME_CRITICAL 

26 Real-time THREAD_PRIORITY_HIGHEST 

25 Real-time THREAD_PRIORITY_ABOVE_NORMAL 

24 Real-time THREAD_PRIORITY_NORMAL 

23 Real-time THREAD _PRIORITY _BELOW_NORMAL 

22 Real-time . THREAD_PRIORITY_LOWEST 

16 Real-time THREAD_PRIORITY_IDLE 

15 Idle, Normal, or High THREAD_PRIORITY _TIME_CRITICAL 

15 High THREAD_PRIORITY_HIGHEST 

14 High THREAD_PRIORITY_ABOVE_NORMAL 

13 High THREAD_PRIORITY_NORMAL 

12 High THREAD _PRIORITY _BELOW_NORMAL 

11 High THREAD_PRIORITY_LOWEST 

11 Foreground normal THREAD_PRIORITY_HIGHEST 

10 Foreground normal THREAD..:.PRIORITY_ABOVE_NORMAL 

9 Foreground normal THREAD_PRIORITY_NORMAL 

9 Background normal THREAD_PRIORITY_HIGHEST 

8 Foreground normal THREAD _PRIORITY _BELOW_NORMAL 

8 Background normal THREAD_PRIORITY_ABOVE_NORMAL 



Chapter 3 Detecting Processor Bottlenecks 83 

Table 3.1 Thread Priorities in Windows NT (continued) 

Base Priority class Thread priority 

7 Foreground nonnal THREAD_PRIORITY_LOWEST 

7 Background nonnal THREAD_PRIORITY _NORMAL 

6 Background nonnal THREAD _PRIORITY _BELOW_NORMAL 

6 Idle THREAD_PRIORITY_HIGHEST 

5 Background nonnal THREAD_PRIORITY_LOWEST 

5 Idle THREAD_PRIORITY _ABOVE_NORMAL 

4 Idle THREAD_PRIORITY_NORMAL 

3 Idle THREAD _PRIORITY _BELOW_NORMAL 

2 Idle THREAD_PRIORITY_LOWEST 

1 Idle, Nonnal, or High THREAD_PRIORITY _IDLE 

The Mystery of the Sawtooth Queue Length 
Now let's go back to the sawtooth behavior of the processor queue length. Now we 
know enough to understand that % Processor Time may not show the bottleneck. 
One reason is that some of the processes might be so quick that they do not register 
any processor usage. Another reason is that a process in the queue might never 
execute because higher priority processes are dominating the processor. The 
Processor Queue Length counter's Explain text tells us that this counter tracks the 
threads in the Ready State. If we want to know what is in the processor queue, we 
need to look directly at the threads and their thread states. All the possible thread 
states are listed in the following table. 

Table 3.2 Thread States in Windows NT 

Thread state Meaning 

0 Initialized 

1 Ready 

2 Running 

3 Standby 

4 Terminated 

5 Wait 

6 Transition 

7 Unknown 



84 Optimizing Windows NT 

The easiest way to analyze what is happening in Figure 3.6 is to first bracket the 
time period of interest with the time window. Then add the counter Thread: Thread 
State for all threads in the system. This will take a while for Performance Monitor 
to draw, and the resulting picture is not too illuminating. However, we can now 
export the data and use a spreadsheet to analyze it. We look at the thread states of 
all the threads, and eliminate those threads that never have Thread State = 1 (that is, 
ready on the processor queue). We change all the thread states that are not 1 to 0, 
so the remaining thread state Is really stand out. Now we can really see what's 
happening, looking at Figure 3.9. 

4~---------------n--------------~ 

3.5 

3 

2,5 

2 __ 111 1,5~ 

0,5 

O~~~~~~~~~nT~~rin~~~MTU 
~v~o~~mN~OO~V~OM~mN~OO 

~~~~NNN~~MVVVV~~~ 

Figure 3.9 Components of processor queue length

D csrss

D System

.Imsvcs

§ ProbePrc

[J CONTROL

The ProbePrc process is our processor hog. The Control process is Control
Panel, which attempts to wake up and do housekeeping about six times per second.
Because it is in the background, it virtually never executes-it is not getting enough
of a priority boost to get much processor time-but it sits on the processor queue
trying to run. The System process is rarely queued, mainly because it runs briefly
when it runs. CSRSS is rarely active when Performance Monitor is actually
retrieving data. It updates the log file size after the data is written to the log file,
and that is way after the data is collected and the Processor Queue Length is
observed.

Chapter 3 Detecting Processor Bottlenecks 85

We can now see quite clearly that the sawtooth queue length is caused by the
periodic nature of the LAN Manager Services (LMSVCS) process. LMSVCS
handles the Server, the Redirector, the Browser, some TCP/IP functions, and so
on. This process has a thread that wakes up to do housekeeping once per second. If
it cannot run right when it wakes up, it goes into the processor queue. Now that we
know what to observe, we can look at this thread in more detail.

=>1 mmt!mmtrt~:f;~(tJillljl~ ·1 ... '1
file .Edit Yiew .Qptions Help

Last I 0.000 Average! 8.556 Mini 0.000 Maxi 11.000 Graph Time I 143.000
Color Scale Counter Instance Parent Object Computer

~==t!§~~-=t~
Figure 3.10 Anatomy of a periodic, blocked thread

Figure 3.10 shows where the sawtooth comes from. The heavy black line is the
Thread: Current Priority of LMSVCS thread 1. It starts at 8, below the highlighted
foreground priority 9 of the Response Probe process, ProbePrc. It is in Thread State
1, Ready. After a while, the system boosts the priority LMSVCS thread 1 to 11 so it
can get some processor time. At this point several things happen at once. The thread
state switches to 5, because the thread is usually idle when the snapshot is taken.
The Thread: Context Switches go from 0 to 1 per second. (A context switch is when
the processor switches from executing one process or thread to another.) After some
of this level of activity, the thread is returned to its base priority of 8. The next time
it tries to wake up, it goes onto the processor queue, and the cycle repeats. We have
solved the mystery of the sawtooth.

The threads that are observed to be busy when there is a long processor queue may
not be the ones that are in the queue. This may be because they are too quick to be
seen by the timer interrupt that is sampling the processor usage, or they may be at
too Iowa priority to capture any processor cycles, in spite of any priority boost.
The next figure shows the threads that are observed to be getting processor cycles
during this experiment. Note the use of scale factors to show all these threads on
one chart.

86 Optimizing Windows NT

10.000 Context Switches/sec 6
10.000 Context Switches/sec 0

lOOO Context Switches/sec 14 csrss
0.100000 Context Switches/sec 18 csrss

10.000 Context Switches/sec 21 csrss Thread
0.100000 Context Switches/sec 7 csrss Thread

10.000 Context Switches/sec 9 csrss Thread

Figure 3.11 Threads active during a processor bottleneck

User Mode and Privileged Mode
Windows NT uses a couple of different protection mechanisms, and at the root of
them all is the distinction between user mode and privileged mode. In user mode,
the application is restricted in a number of ways. It cannot access the peripherals
directly, but must call Windows NT to get or change peripheral data. This lets
Windows NT assure that one application will not destroy data for another. When
an application is in user mode, it also cannot read or change data maintained by
Windows NT itself. This prevents applications from corrupting Windows NT
either inadvertently or intentionally. When an application needs Windows NT to do
something, it calls one of the system routines. Many of these make the transition
into privileged mode, perform the required operation, and return smoothly to user
mode.

Other protection mechanisms in Windows NT, such as the subsystem model, are
built on the transition between user and privileged mode, and we'll explore that
shortly. The highest level of protection is provided by the Windows NT security
model. We measure it when necessary by looking at these lower levels on which it
is built.

Chapter 3 Detecting Processor Bottlenecks 87

Figure 3.12 shows the processor modes in the previous example. The dotted line is
Processor: % User Time, or the percentage of time spent in user mode. The thin
black line at the bottom of the chart is Processor: % Privileged Time. Almost all of
the processor time is being spent in user mode, and there is very little privileged
mode activity. This application is chewing up the processor in user mode and
requires very few system services.

Eile Edit ~iew Qptions tlelp

100

90

80

70

60

50

40

30

20

Scale Counter Instance Parent Object Computer

Figure 3.12 A self-absorbed application obsessed with user-mode processing

Figure 3.13 tells a different tale. Here we have measured a single process that is
retrieving file data, and consequently spending most of its time in privileged mode.
This is not necessarily bad, it just means that the application is getting its work
done by calling the operating system. When user mode time goes up, privileged
mode time goes down. Together they add up to all the processor time being used, if
we got our arithmetic right when we built Performance Monitor. (And we did; we
checked.)

88 Optimizing Windows NT

40

30

20

10

Scale Counter Indance Parent Object Computer
f=='-~---~----"-~~---'--"'~--'-"'--"----~~---'---"~.--.-----.-.-.. ---.. --.----~--

Figure 3.13 A process wisely using Windows NT to get its work done

Performance Monitor enables you to get an overview of a few basic areas where an
application might be spending its time when it is using the system in this fashion.
Figure 3.14 shows some of the key counters to note in this situation.

You may notice that % Processor Time appears in the report before % Privileged
Time. This is logical, which is why we have doneit here, but it is not what you get
if you just select all Processor counters and add them to a report. Report counters
appear in the order selected. If you select all counters at once, they appear in
alphabetical order. By first selecting % Processor Time, adding it, and then
selecting all Processor counters and adding them, you will get the report shown
here. Adding the % Processor Time a second time has no effect because duplicate
additions are ignored.

Chapter 3 Detecting Processor Bottlenecks 89

=-1 j\tLy-"',.L -L"'I'" '" fV~!

file .Edit ~iew Qptions Help

1611(lllel~1 1+I~jIXI I&$I~' ~

Computer: \\CEREBELLUM
Object: Processor 0

% Processor Time 1::::::::::::::::]00;:0:00]
% Privileged Time 71.714
% User Time 28.285
Interrupts/sec 101.057

Object: System

Context Switcheslsec 107.632
File Control Bytes/sec 557.211
File Control Operations/sec 4.975
File Data Operations/sec 0.024
File Read Bytes/sec 0.000
File Read Operations/sec 0.000
File Write Bytes/sec 599.827
File Write Operations/sec 0.024
System Calls/sec 4327.508

Object: Cache

Copy Read Hits % 100.000
Sync Fast Readslsec 2116.964

Figure 3.14 Some key indicators of system call activity

The Processor: Interrupts/sec counter is near its rest state of 101.057 on the x86
processor. (This rate reflects the rest state because the processor clock interrupts
every 10 milliseconds on x86 computers.) It is a bit higher because we are logging
performance data once each second. A large number of interrupts could press
privileged time up, but that is not happening here. Windows NT is capable of
sustaining thousands of interrupts per second; that's how we know this number
near 66 is low.

The Context Switches/sec rate is quite low, so the application is not switching to
another process, or switching among mUltiple threads within itself. This is another
counter capable of being in the thousands; we'll see examples of this later.

90 Optimizing Windows NT

All the file operation counters are very quiet as well, so we're not beating on the
Windows NT file system for data. (How could that be, when we were getting file
data? Hang on and you'll see.) System: System Calls/sec measures the number of
times the application is calling Windows NT, and thus counts the transitions into
and out of privileged mode from user mode. We can compute the amount of time
between each call: \

Time / System Call = 1 / (System Calls/sec) = 1/4327.508 = 0.000231

or 231 microseconds. User time per system call is the ratio of % User Time
(expressed as a number from 0 to 1, this is the fraction of each second in user
mode) to System Calls/sec

User Time / System Call = 0.28285/4327.508 = 0.000065

or, 65 microseconds. And, finally

Privileged Time / System Call = 0.71714/4327.508 = 0.000166

or~ 166 microseconds.

All this tells us that the application is making a very large number of system calls
each second (on average), and each one is quite fast.

We tum our attention to another key Windows NT component, the file system
cache. Windows NT uses a single cache for all file systems. Before going to fetch
the data from disk or LAN, the file system first asks the Windows NT 110 Manager
if the data is in the cache. If it is, the file system bows out and the request is fielded
by the cache manager. We'll say more about all this later, primarily in Chapter 6,
"Detecting Cache Bottlenecks."

~What we see here is a 100% hit rate in the cache for copy reads, meaning every
time the cache manager is asked for such data, it is there. Copy reads are those in
which the cache manager is directed to satisfy the request by copying the data from
the cache to the application's buffer. (Reminder: this sort of information is in the
Explain text for the counter.) We also see a high rate of Sync Fast Reads/sec. This
is the key to the absence of file system activity in the file counters. Sync here means
the application will wait until the request is finished. Fast reads are special 110
Manager operations which bypass the initial call to the file system and go directly
to the Cache manager. So the file system never got called, and never had a chance
to bump its File Read Operations/sec counter. .

Chapter 3 Detecting Processor Bottlenecks 91

We can see how these cache requests relate to the overall system calls by forming
another ratio:

System Calls / Cache Request = 4327.508/2116.964 = 2.04

Just about every other call is a call to get data from the cache. To get more detail on
the calls and the amount of time spent in them, you would use the Calli Attributed
Profiler (or a similar tool), which is described in Chapter 10, "Tuning Windows NT
Applications. "

We've gotten a pretty good idea what is going on here, and we know what tool to
use to get more information. We've also exposed another important Rule:

Rule 7.
Counter ratios reveal
bottlenecks.

Wh~t Multiple Processes and Threads Look Like
In this last example, we saw what the system looks like when we have a single
process that is hoggi~g a single processor. What if we had more than one process
active? This is visible in the next few figures, starting with Figure 3.15.

92 Optimizing Windows NT

70

60

50

40

30:

~iew Qptions .!:ielp

Etlt:&1I?5] I~I.~I ~

~'A 1~ . ;'.~.uA-~~_A ..f:-"'"'~~,,-,
Color Scale Counter . Instance Parent Object.. Computer r i· 1.000 % p",."" nm, 0 _. p""",,,, \ IMmUUA
E3 1.000 Pages/sec, Memor,Y "MEDULLA
E::3 1.000 % Disk Time C: ••• LogicalDisk "MEDULLA
. :~::::EIFl~11!!!riEirfF}~:i]~1~ffiIi§EEIlrI;;:::;']IJ.Ir.::~::m:I:I:C:;~i1:::;:Ir.:;~III:il~:li1f.!m;:rI:~~1m.r~:41::'i]

Figure 3.15 Multiple processes in a processor bottleneck

Contrast this with Figure 3.5. The only change is in the background activity, and
this is different because we have decided to place the log file on a remote computer,
instead of on the local disk. We thought you would like to see the difference in
usage this would cause. After some initial activity, the disk becomes quiet, and you
see a steady stream of NetBEUI Frame Bytes/sec (the white line at the bottom). We
are still logging this data at a one-second time interval. (This is a very high rate for
logging. Except for making illustrations like this, we do not recommend it.)

To see how this situation is really different from Figure 3.5, we can compare·
Figures 3.6 and 3.16, which show the processor queue length.

Chapter 3 Detecting Processor Bottlenecks 93

I ... J ...
File Edit View Options Help

100 ,
90

80

70

60
;

50 ~ .
I"

40 ;'
I:

30 I,
20

10
100

o
Color Scale Counter Instance Parent Object Computer

~::::~:::::~3:r!11~~i!ii~!il~W312:ni;~E::fi:::::::::::::::::~::::::::::::::~:::::::::i::::::::~]~il~~~::::~::::::::::::~)~~lm~::::::l
Figure 3.16 Processor queue length with multiple processes consuming the
processor

The highlighted queue length in Figure 3.16 is much longer than the one in Figure
3.6. It goes as high as 7 and never drops below 5. Suppose we find the average
queue length in each case. Let's start two copies of Performance Monitor, each
looking at its own log file. We move the time window in on each one to bracket the
time when the processor is 100% utilized. Then we select the Processor Queue
Length in the legend, and note the average value in the value bar. See Figure 3.17.
The average values are 2.5 in one case, and 5.5 in the other. So we would guess
there are three more processes in Figure 3.15 than in Figure 3.5.

94 Optimizing Windows NT

100

20~----------~------~------------------------------~----~'

o
Lastr---4.000 Averagej

Figure 3.17 Comparing processor queue lengths

This is a certain clue that there is more than one culprit hogging the processor.
What are these masked processes? We expose them in Figure 3.18 .

. '
23.029 Min f. 19.326 Maxj,

Color Scale Counter, Instance Parent Object Computer

c::J lOOO % Processor Time progman Process \\MEDULLA +
~ 1.000 % Processor Time screg Process \\MEDULLA
c::J lOOO % Processor Time smss Process \\MEDULLA
~ lOOO % Processor Time spoolss Process \\MEDULLA
E3 lOOO % Processor Time System Process \\MEDULLA

---'~'''~YoOO'%'ProceSsor~Tme--'-'-'--'-thinker'-''':-~-''''--·-"·-·"-'·~·"-proce;s·-'-"'~"·\\M'EDU[t.A
'-"'--'''-'''--';~'60'O-''%''P;~~~'';;-~;''TT~~-'''-''-'''-''''-'ih~~-ght"---"''''''''---'''-'''-'''''-'''-p~~'~~;-~''''-'''-'''-'''''\\M'E-[)'Li'iIA:

E3 lOOO % Processor Time winlogon Process \\MEDULLA +

Figure 3.18 Which processes are eating the processor

Chapter 3 Detecting Processor Bottlenecks 95

Clearly, four processes are consuming the processor in this case. They are sharing it
equally. We see minor usage by two others, the CSRSS and Performance Monitor.
So, we have found the bottleneck!

How would this look different if we had just one process, but with multiple threads?
At this point-you can probably guess. Take a look at Figures 3.19 through 3.22.
This time we have placed Performance Monitor on a remote system. You see the
same network traffic in the background that you saw last time. But Performance
Monitor is remote. We can see the consequence of this indirectly in Figure 3.20.

90

80

70

60

50

40

30

20

10

o "

~iew .Qptions Help

Color Scale Counter Instance Parent Object Computer

r·:i.:21~kT:=::l==:E~TI0·7 ~:~:~~1=:iii8
I Data:. 03e:-:006.log. Save File: overview,Pl1lc

Figure 3.19 Processor cQnsumption by multiple threads

96 Optimizing Windows NT

90

80

70

60

50

40

30

20

10

o
Color Scale Counter Instance Parent Object Computer

~ ___ m: lOOO % Processor Time· 0 ... Processor \\MEDULlJl.

~ :;~~:~;::;:~~~:~!'~JE11!r:~~~J.2i;i:i;i~eJi;lr£tl0~~jf7]J2£~ffl::i~.::~:::[:t~~~~:IT::~~:~I:.:{;~~:::r:rJ:=.i::;:~:};~::~::T~£r:i~!illliZ.~:~IT~IE::::[~1:1!ttm~!lli~r:::Lrrl

Figure 3.20 Processor time and queue length with multiple threads (remote
measurement)

The Processor Queue Length is more erratic and longer than before. We can
analyze this as we did previously, by exporting the Thread: Thread State for all
threads, and finding those with Thread State 1 (Ready). What we see is that
there are two riew, multithreaded processes participating when we do remote
measurement. The first is the Network Server, which lives in the services process.
The second is the Windows Logon process (WINLOGON). Both participate in
handling the remote request for pefformance data, and both have multiple
asynchronous threads that contribute erratically to the queue length.

So we've muddied the waters a little by changing both the way we are collecting
the data as well as the experiment itself, in violation of Rule # 1 of Bottleneck
Detection. But this way we've convinced you of the value of Rule #1, right?

You can look at Figure 3.21 to see which processes are participating in this
bottleneck, and you can see from Figure 3.22 that the Thinker process has four
active threads.

15.0
12.5
10.0

7.5
5.0
2.5
o

Chapter 3 Detecting Processor Bottlenecks 97

.Qptions Help

Color Scale Counter Instance Parent Object Computer
nm~'-----1-.0-0-0-%-o-P-ro-ce-s-so-r-T-im-e------~PR-O-B-E--------------P-ro-c-e-ss-------\\-M~E~D-U-L~--·~+~

iE::3 1.000 % Processor Time progman Process \\MEDUL~
!E:3 1.000 % Processor Time screg Process \\MEDUL~
!E:3 1.000 % Processor Time services Process \\MEDUL~
I~ 1.000 % Processor Time spoolss Process \\MEDUL~
iCJ 1.000 % Processor Time System Process \\MEDUL~

IB:::::::::::::':::V:~~~:::;~::~;:i~,~~~:~~::~i~~~:::::::::::~:::::::::::::i~r~r~~~~::::::~:::::::::::::::::: ::::~:::::::::::::::::::::;~~~~~~::::::::::::::::::::::::Z:(~~~~:at~::: +

Figure 3.21 Processes in a multithreaded processor bottleneck

=1
file Edit ~iew .Qptions Help

25.0
22.5
20.0
17.5
15.0
12.5
10.0

7.5
5.0
2.5 o --- - .. -- - _m' _____ •.. _-' - - •. -.- - -.--.11- _ .. __ - _.m. __

Color Scale Counter Instance Parent Object Computer

W'O"", 1.000 % Processor Time 9 System Thread \\MEDUL~ +:
I~ 1.000 % Processor Time 0 thinker Thread \\MEDUL~
~::::::::~:1=~:8m~[::~£;iE!:f:~~;:'i:::~:i!L:f:r;;~f1~(:::I::}:i:~~::~:.~::[~::~:~}::~~:::::::::~~~.:~:Ii1:~Bif~:~I=~~:~!:Lu~~ji~~::==:~==::11jlBl~rljiLI::::~
I~ 1.000 % Processor Time 2 thinker Thread \\MEDUL~
I~ 1.000 % Processor Time 3 thinker Thread \\MEDUL~
I~ 1.000 % Processor Time 4 thinker Thread \\MEDUL~ _
;~ 1.000 % Processor Time 0 winlogon Thread \\MEDUL~ -:
ICJ 1.000 % Processor Time 1 winlogon Thread \\M EDU L~ .!

Figure 3.22 Threads in a single process in a multithreaded processor bottleneck

98 Optimizing Windows NT

What you want to remember is that although we tend to think of processes as the
executing programs on a system, it really is the threads that use the processor. The
process is the address space, and the threads inside that process share that address
space and actually execute the instructions.

Bottlenecks at Lower Utilization
Does a device have to be at 100% utilization to be the bottleneck? Unfortunately,
no, or our lives would be much simpler.

Two important issues contribute to the relationship between queue lengths and
utilization. The first is the arrival patterns of requests for the device service, and
the second is the amount of work the device is requested to do on each arrival.

Suppose we had ten threads that each wanted exactly 0.9 seconds of processor time
in a continuous block, just once every 10 seconds. Further imagine that exactly 1
second after the first one arrived to ask for its 0.9 seconds, the second one arrived,
and in the next second the third one arrived, and so on. The processor would be
90% busy, and there would be no queue. If each thread needed precisely 0.95
seconds of processor time, the processor would be utilized at 95%. If 0.999, then
99.9%. Note there is no queuing in this situation, and no interference between the
threads.

In queuing theory this is called a constant arrival and constant service distribution.
In a carefully engineered situation, a device can be nearly 100% busy without
creating a queue. How delicate the balance between arrivals and service to achieve
this state!

It is not hard to see that, if the second thread arrives just a little bit early, it has to
wait for the first one to at least complete a time slice before it can run. Likewise, if
the first thread requires just a little more than a second of processor time, it will get
in the way of the next thread. A processor queue will start to form. Once arrival
rates and service requests become unpredictable, a queue can build up, and there
can be delays.

Chapter 3 Detecting Processor Bottlenecks 99

=-1 1~lJHt~Fm(lr:f:1.;;£ff. ~ f~r*{~'fql\f!jt}::~L£k 1 ... 1'"
"'1 Eile .Edit §allery ~hart Forma! Macro Window Help I~

I I

Response Time vs. Number of Threads
Processor-Only Workload

150
Q) 140
~ ~ 130
O"C 120 c.c
en 0 110 Q) u a: Q) 100
Q)~ 90 elQ)

E E 80
~i= 70
.« 60 ..

50
0 5 10 15 20 25

Number of Threads

Ready II ! ! 1 1 .1

Figure 3.23 Response time to a randomized processor load

Figure 3.23 shows how the response time can grow for a number of threads if the
arrivals and service requests are less regular. These threads ask for a somewhat
random amount of processor time after an irregular delay. The utilization of the
processor in the 25 threads on the right was 76%. Yet the delays experienced
were almost three times that of the stand-alone thread. This means the length of
the processor queue was almost 2.

According to queuing theory, if the arrival pattern is random and the service
pattern is random, the length of the queue is 2 when the device utilization is 66%,
or two-thirds utilized. We are using the word "random" somewhat loosely to mean
unpredictable. For example, in a large telephone exchange, the length of the phone
calls is found to be random in this way. (In fact, what we mean is that interarrival
and service distributions are exponential, but that is more formal than we need to be
here.)

Distributions can be worse than this, in the sense that queues can form at even
lower utilizations. The most commonly occurring situation like this is a bimodal
distribution of service, when most requests are very short or long with few that
are medium length. We don't see these too often in computer systems, but they
do occur. If your queue length is large and the utilization is low, you may be
experiencing this type of usage pattern. If you want to impress your boss, say
that your device is experiencing hyper-exponential service distributions.

100 Optimizing Windows NT

So how a device is used determines the length of the queue that will fonn for a
given utilization of the device. When looking for bottlenecks in real systems, you
must be aware of this. It won't be hard to remember because it will apply at the
bank and the supennarket as well as on your computer. So next time you are
standing in line somewhere, you can quote Rule #8:

Random usage forms longer queues
at lower utilization.

How the Graphics System Uses the Processor
We mentioned in passing that the client-server runtime subsystem, affectionately

~ known as CSRSS, handles graphics on Windows NT. Actually it handles all
window manipulation as well as graphics, and thus makes up an important portion
of processor activity on the system. This architecture is illustrated in Figure 3.24.

Application process

Application
code API

CSRSS process

- - ~
Windows

and graphics
Privileged Privileged I-------i'l

mode mode
~1;::-_-rV Graphical

device driver

y

User mode

"""'~""' ___ -"y __ t;,;,_"M' __ "~

Privileged mode User mode

Figure 3.24 Graphics architecture on Windows NT
I

Chapter 3 Detecting Processor Bottlenecks 101

The Windows NT SDK contains a graphical device interface demonstration
program called Gdidemo. As shipped in the SDK, Gdidemo pauses between
drawings. For this experiment, we modified the Gdidemo program to remove
that pause so that it will spend all its time drawing. Figure 3.25 shows processor
utilization for the processor, the modified Gdidemo program bouncing balls around
the screen, and the CSRSS process .

.Eile .Edit ~iew Qptions Help

100

90

80

70

60

50

40

30

20

10

Figure 3.25 Processor utilization by a graphics program pumping pixels

The processor is 100% busy, and most of the time is in CSRSS, which makes
sense because it is doing most of the work. On Windows NT you need to think
beyond the application process itself and look at other processes in the system
that the application may be using. CSRSS is a primary candidate for consuming
processor cycles on behalf of an application. Usually this is pretty obvious, because
the display changing rapidly is a primary clue. But some tasks that manipulate
windows do not change the visible display: they may be operating on windows
that are hidden behind others. So taking a look at CSRSS is a good basic policy.

102 Optimizing Windows NT

The graphics application communicates with CSRSS using a fast form of the local
interprocess procedure call. What makes it fast is dedicating one thread in CSRSS
for each application thread that communicates with CSRSS. So you'll see lots of
CSRSS threads. An application sends graphics commands to CSRSS in batches to
amortize the cost of the process switch over a number of graphical operations. Each
such context switch is counted by System: Context Switches, and by Thread:
Context Switches as well. You can see from the report in Figure 3.26 that the
context switches between Gdidemo and a thread in CSRSS account for nearly all
the context switches in the system. (Remember Heisenberg: Performance Monitor
is logging at one-second intervals here. You can see its communication with CSRSS
in the two threads at the right of Figure 3.26.)

Computer: \\MEDULLA
Object: System

% Total Processor Time
Context Switches/sec

Object: Thread

% Processor Time
Context Switches/sec

100.000

C:::::::~:J~8~Ji~
o

17.000
650.773

csrss
20

79.786
691.286

csrss
7

0.000
69.980

csrss PERFMON
18 0

0.845 2.206
40.468 40.326

Figure 3.26 Thread context switching during graphics processing

Thread 7 of CSRSS is waking up about 70 times per second to do some
housekeeping, but shows no processor activity. This thread is slipping through our
processor usage sampling crack. Context switches are a more positive indication of
activity than processor utilization because they are always counted. Look at them if
you want to know for certain whether a thread is active. We used this technique in
Figure 3.11.

Chapter 3 Detecting Processor Bottlenecks 103

Processor Usage by 16·bit Windows Applications
All of the 16-bit Windows applications are run by default as separate threads in a
single process named NTVDM (NT virtual DOS machine.) This process is known
as the WOW subsystem, which stands for Windows-16 on Windows-32. This
architecture permits 16-bit applications to share the address space the same way
they did under 16-bit Windows. It is illustrated in Figure 3.27.

WOWExec NTVDM process CSRSS process

16-bit 0 1 Windows
OWindows - and graphics
applications Privileged Privileged

16-32 0
Worker bits
threads
0 0

\! y '"
User mode

mode
~ --

.
y

Privileged mode

mode
Graphical

device driver

User mode

Figure 3.27 16-bit Windows applications on Windows NT

If you want to run a 16-bit application in its own address space, you can use
Program Manager to set the application to "Run In a Separate Memory Space," or
you can start the application using the /separate option on the start command.

The default single address space architecture obscures Performance Monitor's
measurement of these applications in two ways. First, the name of all such
applications is that of the single process, NTVDM. Second, if you have two or
more such applications running, it is hard to tell them apart because they are
identified only by thread number inside that NTVDM.

It can require a little disciplined experimenting to determine which thread is which
application. The NTVDM process that handles 16-bit Windows applications is
started automatically when Windows NT starts~ Before starting any 16-bit
applications, use Performance Monitor to look at the NTVDM to see how many
threads it has initially. Figure 3.28 shows such a report.

104 Optimizing Windows NJI

1~lrnl~Ir~1

Computer: \\MEDUlLA ntvdm ntvdm ntvdm ntvdm
Object: Thread 0 1 2 3

% Privileged Time 0.000 0.000 0.000 0.000
% Processor Time 0.000 0.000 0.000 0.000
% User Time 0.000 0.000 0.000 0.000
Context Switches/sec 0.000 0.000 0.000 0.000
Elapsed Time 178.020 177.300 176.640 170.790
10 Process 85.000 85.000 85.000 85.000
10 Thread 126.000 167.000 166.000 121.000
Priority Base 7.000 7.000 15.000 9.000
Priority Current 0.000 0.000 0.000 0.000
S tart Address 2003979228 2003979216 2003979216 2003979216
Thread State 5.000 5.000 5.000 5.000
Thread Wait Reason 7.000 6.000 6.000 i::::::::::::::::::::::::s.::O:O:O)

Figure 3.28 16-bit Windows NTVDM before application execution

Now let's start another thread, 16-bit Excel. Here's what we see as a result:

..... 1 .c",. ,;', Zit), ;:'cf:,'"i,";;;';' ", ,;::;,;,'<'1"'1 ~ ,'c";;;

File Edit View Options Help

1~IWL~Ifi}1 Itlg~]r.] I@I~I ~

Computer: \\MEDUlLA ntvdm ntvdm ntvdm ntvdm
Object: Thread 2 3 .(5

% Privileged Time 0.000 0.000 13.477 0.000
% Processor Time 0.000 0.000 70.082 0.000
% User Time 0.000 0.000 56.605 0.000
Context Switches/sec 29.151 0.000 386.945 0.000
Elapsed Time 293.730 287.880 71.820 66.810
10 Process 85.000 85.000 85.000 85.000
10 Thread 166.000 121.000 114.000 49.000
Priority Base 13.000 9.000 7.000 13.000
Priority Current 0.000 0.000 0.000 0.000
S tart Address 2003979216 2003979216 2003979216 2003979216
Thread State 5.000 5.000 1.000 5.000
Thread Wait Reason 6.000 6.000 7.000 i::::::::::::::::::::::::s.::O:O:O)

Figure 3.29 16-bit Excel in the WOW NTVDM

Chapter 3 Detecting Processor Bottlenecks 105

There is not room in the illustration for all the threads, so we show the last four.
The last two are new. Thread 4, with ID Thread 114, is actually Excel. We can tell
this because it is looping. We might as well 'fess up now: this is a bug (oh, no!) in
16-bit Excel 4.0, which causes it to consume processor cycles needlessly under
some conditions, one of which is startup. (Because of the Windows NT preemptive
multitasking ability, this looping activity is not a problem. Just put Excel in the
background and carry on.) Notice the high Context Switch rate of Thread 4. Excel
is talking to CSRSS (which is not shown here). Moving the focus to Excel and
away again removes the loop. Figure 3.30 shows Excel in the NTVDM after it has
stopped looping. (Of course the next version of Excel will not do this. By the way,
this bug in Excel was discovered with Windows NT Performance Monitor.)

=>1 ,

l~t'lttiJt"t;'lrr'l?l:;pr;IHif; ," , 1 ... 1'"
file f.dit ~iew Qptions .!::::!.elp

1~lwl~I~1 1+1~lxl 1@1!;s1 ~

Compuler: \\MEDUlLA nlvdm nlvdm nlvdm nlvdm
Object: Thread 2 3 " 5

% Privileged Time 0.000 0.000 0.000 0.000
% Processor Time 0.000 0.000 0.000 0.000
% User Time 0.000 0.000 0.000 0.000
Context Switches/sec 36.101 0.000 0.000 0.000
Elapsed Time 393.930 388.080 172.020 167.010
ID Process 85.000 85.000 85.000 85.000
ID Thread 166.000 121.000 114.000 49.000
Priority Base 13.000 9.000 7.000 13.000
Priority Current 0.000 0.000 0.000 0.000
Start Address 2003979216 2003979216 2003979216 2003979216
Thread State 5.000 5.000 5.000 5.000
Thread Wait Reason 6.000 6.000 7.000 i::::::::::::::::::::::::~;:O:QO]

'\

Figure 3.30 16-bit Excel has calmed down now

Looking at Figure 3.30 you can see that the elapsed times for Threads 4 and 5 are
shorter than those of 2 and 3 because the application was started after Wow Exec
was executed. This is another clue about which application thread is which in the
WowExec NTVDM. Now let's stop Excel and look at what changes.

106 Optimizing Windows NT

Computer: \\MEDUlLA ntvdm ntvdm ntvdm ntvdm
Object: Thread 2 3 4 5

% Privileged Time 0.000 0.000 0.000 0.000
% Processor Time 0.000 0.000 0.000 0.000
% User Time 0.000 0.000 0.000 0.000
Context Switches/sec 0.000 0.000 0.000 0.000
Elapsed Time 464.145 458.295 237.225 0.000
ID Process 85.000 85.000 85.000 0.000
ID Thread 166.000 121.000 49.000 0.000
Priority Base 13.000 9.000 13.000 0.000
Priority Current 0.000 0.000 0.000 0.000
Start Address 2003979216 2003979216 2003979216 0.000
Thread State 5.000 5.000 5.000 0.000
Thread Wait Reason 6.000 6.000 6.000 i::::::::::::::::::::::::g::O:QO]

. Figure 3.31 16-bit Excel has stopped

Can you see that ID Thread 114 is gone now? Notice that Thread 4 is still there,
but it is now the thread that was Thread 5 before (its ID Thread is still 49). In
Performance Monitor, threads are named sequentially, starting with O. If one in
the middle disappears, the numbers of following threads decrease. So you should
use ID Thread to make a positive identification. Because ID Thread numbers get
reused, they won't be proof positive, but they do last for the life of the thread, at
least. In this example, there is no longer a Thread 5, as indicated by its zeroed
counters. Performance Monitor continues to search for any instance selected for
measurement, but if an instance cannot be found, its counters are all set to zero.

You can use the PView tool to stop the WowExec NTVDM if you want to get a
fresh start on identifying 16-bit Windows applications. Be sure to stop the NTVDM
with at least 4 threads! Other NTVDMs run separate 16-bit Windows or non
Windows MS-DOS® applications, as we'll discuss shortly. You can restart the
WowExec NTVDM by using CTRL+ESC to bring up Task Manager, pressing
TAB to get to the Run box, and entering wowexec. WowExec will also start
automatically when you run the first 16-bit Windows application.

Chapter 3 Detecting Processor Bottlenecks 107

In Figure 3.32 we show what happens if we start 16-bit Excel again. Here you'll
see a new Thread 5 with ID Thread 163. Notice that the ID Thread is not 114 as
before. The ID Thread assignments appear somewhat arbitrary. But here, as long
as we keep Excel alive, it will retain the ID Thread 163.

-=1 j ~~~'!ilfmt;ll(;;:;: iii; ('lilt (ii! I ... t ...
Eile Edit ~iew Qptions .!:ielp

16l1[1l1C}1~1 1+IE~jlx.1 1~11131 ~

Computer: \\tdEOUlLA ntvdm ntvdm ntvdm ntvdm
Obiect: Thread 2 3 4 5

% Privileged Time 0.000 0.000 0.000 0.000
% Processor Time 0.000 0.000 0.000 0.000
% User Time 0.000 0.000 0.000 0.000
Context Switches/sec 36.514 0.000 0.000 0.000
Elapsed Time 519.255 513.405 292.335 26.745
ID Process 85.000 85.000 85.000 85.000
ID Thread 166.000 121.000 49.000 163.000
Priority Base 13.000 9.000 13.000 7.000
Priority Current 0.000 0.000 0.000 0.000
Start Address 2003979216 2003979216 2003979216 2003979216
Thread State 5.000 5.000 5.000 5.000
Thread Wait Reason 6.000 6.000 6.000 i::::::::::::::::::::::::Z::QQ:O]

Figure 3.32 WowExec NTVDM threads after restarting 16-bit Excel

Okay, let's start another application. We have a copy of 16-bit Word for Windows
handy, so we'll fire that up.

108 Optimizing Windows NT

Computer: \\MEDUlLA ntvdm ntvdm ntvdm ntvdm
Object: Thread 3 .(5 6

% Privileged Time 0.000 0.000 0.000 0.000
. % Processor Time 0.000 0.000 0.000 0.000

% User Time 0.000 0.000 0.000 0.000
CQntext Switches/sec 0.000 0.000 0.000 0.000
Elapsed Time 971.625 750.555 484.965 63.900
ID Process 85.000 85.000 85.000 85.000
ID Thread 121.000 49.000 163.000 114.000
Priority Base 9.000 13.000 7.000 7.000
Priority Current 0.000 0.000 0.000 0.000
Start Address 2003979216 2003979216 2003979216 2003979216
Thread State 5.000 5.000 5.000 5.000
Thread Wait Re~son 6.000 6.000 7.000 i::::::::::::::::::::::::Z::O:O:O]

Figure 3.33 WowExec NTVDM threads after starting Excel and Word for
Windows

So we see the new Thread 6 with ill Thread 114. This must be Word for Windows.
By looking at Thread: Elapsed Time, we can tell which thread belongs to which
application.

You get the idea. By executing or stimulating the application of interest and
watching the reaction in Performance Monitor, you can isolate which WowExec
NTVDM thread is executing its code. From that point until you exit the application,
you have a positive identification of the thread.

Chapter 3 Detecting Processor Bottlenecks 109

Processor Usage by 16-bit MS-DOS Applications
Each MS-DOS application runs in its own NTVDM process on Windows NT. If
you have been following along carefully you will realize that this creates a bit of a
challenge for us, because we can only monitor one program of a given name at a
time. Not only are all MS-DOS applications given the same name, they have the
same name as the process running all the 16-bit Windows applications. Could it
get any worse than this?

MS· DOS application #1 NTVDM process

16-bit 0
MS-DOS

application
16-32

bits

Privileged
mode o

Worker
threads CSRSS process --:;: -...

~,,============*,====~S----t- Windows
I I
I I
I I and graphics
: : Privileged
: : m~e
I I

: MS·DOS application #2 NTVDM process
I ,_

Graphical
device driver

,.. -.....
o 16-bit 1!-__ -"4-;:==~=======!j

MS-DOS I
M-_~

"Y
I I

application Privileged
o 16-32 mode

Worker bits

I I , I
I I
I . I
I I
I I
I I
I I

threads I I
I I
I I
I I
I I

~~~=··====~===~=··5··~~~~~~~ __ y ______ ~ 
User mode Privileged mode User mode 

Figure 3.34 16·bit MS-DOS applications on Windows NT 

Yes, it could, because this isn't really so bad. What we can do is change the 
name of the program used to execute MS-DOS applications. Go to the directory 
%SystemRoot%\SYSTEM32 on the volume holding your copy of Windows NT. 
Copy NTVDM.EXE to a file name of your choice. (Be sure to copy it to another 
filename instead of renaming it, because you want to leave NTVDM.EXE around 
for WowExec to work with.) You then tell Windows NT to use the new program 
copy for executing MS-DOS programs. You do this by making a slight change in 
the Configuration Registry using the Registry Editor, REGEDT32.EXE. You can 
do this between starting the applications, and you do not have to shut down the 
system to have this change take effect. The value to change is 



110 Optimizing Windows NT 

HKEY_LOCAL_MACHINE 
SYSTEM 

CurrentControlSet 
Control 

WOW 
cmdline: 

Double-click the cmdline entry to change it. Modify the spelling of NTVDM.EXE 
to that of your copied NTVDM.EXE. Then start an MS-DOS application. If you 
need to start another one and measure it separately, you can repeat this process. 
You can leave the Registry Editor running and positioned at the cmdline value to 
make repeated changes easy. Figure 3.35 shows the Registry Editor in this position. 

=-1 Registry Editor -IHKEY LOCAL MACHINEon Local Machine] 1. ... 1 ... 
QI Registry .Edit Iree ~iew .security Qptions Window .!::::f.elp l~ 

L..t:::J SYSTEM ~ cmdline : REG EXPAND _SZ : %Sy.§!emR_Qo~§YJ!!em! 
t-Ll Clone KnownDLLs : REG_SZ : shell.dll commdlg.dll mmsyste 
t-(!) ControlSetOO1 LPT timeout: REG SZ: 15 
t-(!) ControlSetOO2 size-: REG SZ: 0 -
t- t:::J CurrentControlSe wowcmdline : REG_EXPAND_SZ: ntvdm -m -w-f%Syste 

-t:::J Control wowsize : REG_SZ : 0 
t- Ll BootVerifi 
t-(!) Computer 
-Ll DisplayDr 
-Ll 
- Ll t.=>ni : :;. ~'.~ )';;;<: >/> .::;; >::; .... ;'. V. ;';' :,:~::: ·.;i; ~;I 

t-(!)t Siring: 
t-Lll I %Sl'slemRool%\sl'stem32~~ -f%Sl'slemRoot%\sl'stem32 -a I -(!)r 
-(!)r 
-(!)J I OK I I Cancer 'I I Help I t-Ll[ 
r--Ll Product~J 
:-Ll ServiceGr 
'-(!) Session t.. 
-Ll Setup 
,Ll TimeZone . 
t-Ll VirtualDe\ 
~LlWindows 

f---, e>wowl .. 
+1 ] L+ +1. J 1+ 

Figure 3.35 Registry Editor set to change name of NTVDM for running MS-DOS 
programs 

Note We recommend that you set cmdline back to NTVDM.EXE when your 
experiment is over. If you are very ambitious and this is a big issue for you, you 
might want to write an application to perform these changes before and after the 
execution of your MS-DOS applications. 



Chapter 3 Detecting Processor Bottlenecks 111 

Figure 3.36 shows two MS-DOS applications being monitored concurrently by 
Perfonnance Monitor using this technique. The threads in one of them are shown 
in Figure 3.37. There are two worker threads and one for the application. By 
stimulating the application you might be able to distinguish between them, but this 
is not really crucial because unlike in WowExec, there is only one application per 
process, and you know what the process is. 

<=1 m~!1!iJtii.f:)il;j.J~rif!l!!lfr L ... J.. 
file fdit View Qptions Help 

lalwlC3I~1 1+IEfjIXI 1"4' 1lJ31 \'4J ' !.@ 

Computer: \\MEDULLA 
Object: Process edit16 xfer16 

% Privileged Time 0.000 0.000 
% Processor Time 0.000 0.000 
% User Time 0.000 0.000 
Elapsed Time 73.260 347.340 
File Control Bytes/sec 0.000 0.000 
File Control Operations/sec 0.000 0.000 
File Read Byteslsec 0.000 0.000 
File Read Operations/sec 0.000 0.000 
File Write Bytes/sec 0.000 0.000 
File Write Operations/sec 0.000 0.000 
ID Process 161.000 148.000 
Page Faultslsec 0.000 0.000 
Page File Bytes 1593344.000 1593344.000 
Page File Bytes Peak 1593344.000 1593344.000 
Pool Nonpaged Bytes 74914.000 77510.000 
Pool Paged Bytes 49347.000 57539.000 
Priority Base 7.000 7.000 
Private Bytes 1413120.000 1413120.000 
Thread Count 3.000 3.000 
Virtual Bytes 29446144.000 29446144.000 
Virtual Bytes Peak 29446144.000 29446144.000 
Working Set 1134592.000 1257472. 000 
Working Set Peak 1626112.000 !::::]?'~~§9.a;:QQ:Qj 

Figure 3.36 Two MS-DOS applications monitored using renamed NTVDMs 



112 Optimizing Windows NT 

0;;:;;01,<:: ;Y:>:<i:::<; \'; :'<;{;ii 'i;;,<:;::<;;,\.;:\>;('; :;:\;~:;::: I .. J .... 
File Edit View Options Help 

16}1~1 t} I~I 1+ 11:!.j! 'X I 1~1r.m1 [@ZJ 
; 

Computer: \\MEDULLA xferlG xferlG xferlG 
Obiect: Thread 0 1 2 

% Privileged Time 0<000 0.000 0.000 
% Processor Time 0.299 0.000 0.000 
%User Time 0.299 0.000 0.000 
Context Switches/sec 15.966 0.000 18.361 
Elapsed Time 496.845 496.260 495.630 
ID Process 148.000 148.000 148.000 
ID Thread 152.000 146.000 145.000 
Priority Base 7.000 7.000 13.000 
Priority Current 0.000 0.000 0.000 
Start Address 2003979228 2003979216 2003979216 
Thread State lOOO 5.000 5.000 
Thread Wait Reason 6.000 6.000 f::::::::::::::::::::::::KQQQi 

Figure 3.37 Threads in a renamed NTVDM executing an MS-DOS application 

See? Piece of cake. 

Who Started All These Processes? 
Maybe you thought all you wanted to do was run a program, but Windows NT 
starts many processes as a normal matter of doing business. Few of these ever 
become a system bottleneck because all they do is provide numerous housekeeping 
and bookkeeping functions in the background. Figure 3.38 shows the number of 
each of several important object types, as counted in the Object object. 



Chapter 3 Detecting Processor Bottlenecks 113 

=-1 , ': I, ... J· 
Eile Edit ~iew Qptions t!.elp 

1~)0l1C}1~1 1+IBJIx.1 1~1t;m1 ~ 

Computer: \\WALKINGDOG 
Object: Objects 

Events 143.000 
Mutexes 6.000 
Processes 14.000 
Sections 178.000 
Semaphores 50.000 
Threads 1:::::::::::::::::::::§~::Q:QQ] 

Figure 3.38 Object counts on a Windows NT system 

Here's a brief introduction to those objects not already mentioned. Event objects 
are used by Windows NT and its applications to synchronize operations by 
permitting a thread to suspend execution until an anticipated event occurs, such 
as the completion of an asynchronous file operation. Mutex objects are used to 
assure that only one thread is executing a particular piece of code at a time, such as 
updating a common data structure. Section objects are areas of memory that can be 
viewed as a contiguous sequence of addresses. A semaphore object grants a limited 
number of threads concurrent access to a shared resource, such as a buffer pool 
with limited entries; if more threads than the specified limit try to access the 
resource, they are automatically suspended until a resource becomes available. If 
these objects are given a name when they are created, they can be shared by 
multiple processes. 

Object counts are important because each object takes space in nonpaged memory, 
which we'll talk about more in Chapter 5, "Detecting Memory Bottlenecks." Also, 
we unfortunately don't have a counter for Open File objects. However, the Server 
object does have an Files Open counter, and we have a tool which monitors 
application file activity. We'll discuss that tool in Chapter 10, "Tuning 
Windows NT Applications." 

There are 14 processes and 88 threads in Figure 3.38. That's just about as few as 
you can get, because this snapshot is taken on a laptop that is not connected to a 
network. One of these processes is Performance Monitor, so let's be sure we 
understand who the others are, and what role they play in the operation of 
Windows NT. . 



114 Optimizing Windows NT 

Table 3.3 Processes in Windows NT with No Network Connection 

Process name 

clipsrv 

csrss 

EventLog 

Idle 

lsass 

nddeagnt 

netdde 

progman 

screg 

spoolss 

System 

winlogon 

Function 

Clipbook Server' 

Client Server Runtime Subsystem, handles windows and graphics 
functions for all subsystems 

Fields all requests to enter events into the system event log 

Provides an idle thread for each processor that gets control when 
the processor is not executing programs 

Local Security Administration Subsystem, handles certain security 
administration functions on the local computer 

Network nnE Agent, handles requests for network nnE services 

Handles requests for network nnE data 

Program Manager handles application startup, switching, and 
termination functions 

Service ControllerlRegistry, handles network API service control 
functions and remote Registry requests 

Spooler Subsystem handles despooling of printer data from disk to 
printer 

Contains system threads that handle lazy writing by the file system 
cache, virtual memory modified page writing, working set 
trimming, and similar system functions 

Handles logon and logoff of users and remote Performance Monitor 
data requests 

When connected to a network there are additional processes. The number varies 
from system to system. 

Getting Rid of a Processor Bottleneck 
What can you do once you determine you have a processor bottleneck? The answer 
depends partly on the context. 

You can try to fix the application, using the tools we discuss in Chapter 10. Let's 
assume you've already done this. 

If you have an 386 processor, you can upgrade the computer to one with a 486, 
Pentium, or RISe processor. 



Chapter 3 Detecting Processor Bottlenecks 115 

Assuming you have at least a 486, if you are in a server environment, part of your 
problem may be the network or disk adapter cards you have chosen. 8-bit cards use 
more processor time than 16-bit or 32-bit cards. The number of bits here refers to 
the amount of data moved to memory from the adapter on each transfer. The most 
efficient cards use 32-bit transfers to adapter memory or direct memory access 
(DMA) to move their data. Adapters that don't use memory-mapped buffers or 
DMA must use processor instructions to move data, and that makes the processor 
busy. DMA uses the memory, and that can slow the processor down, but it is still 
more efficient than individual instructions. Also, some inexpensive disk controllers 
do not support DMA. 

If you have fixed the adapters and you still have a problem, you might be able to 
increase the processor clock speed. One method is to multiply the processor clock 
speed while leaving the rest of the memory and I/O bus speeds alone. Clock doubler 
and tripler processors do this. This can be very beneficial, although the results in 
practice are usually less than the multiplier, because real applications do more than 
just use the processor. 

Another thing you can do is increase the size of your secondary cache. Many 
computers accept a range of secondary cache sizes, and those that do so seldom 
ship with the maximum installed. 

Adding memory without upgrading the secondary cache size sometimes degrades 
processor performance. This is because the secondary cache now has to map the 
larger memory space, usually resulting in lowered hit rates in the cache. This slows 
down processor-bound programs because they are scattered more widely in memory 
after memory has been added. If you suspect such a slowdown, create a processor
bound test with Response Probe that touches a lot of memory, but fits in the original 
memory size without sustained paging. Run this test before and after adding the 
memory, and you may well see that the test is slower with more memory. Disable 
the secondary cache using the BIOS setup utility, and repeat the experiment with 
both memory sizes. They should now perform the same. If they do, you have 
isolated the problem to the secondary cache design. 

Finally, you might benefit from adding additional processors. This will help only if 
you have a bottleneck involving more than one thread capable of asynchronous 
execution. To the extent that threads can execute in parallel, adding processors 
provides relief. 



116 Optimizing Windows NT 

Monitoring Multiple Processors 
In the previous chapter we illustrated multiple processors as just additional 
hardware resources, and so they are. If you are a product of the personal computer 
era, thinking of multiple processors as you think of multiple disk drives might be a 
bit of a strain at first, but you'll get used to it. In the next example we are running 
eight processes on an eight-processor system, which we started artificially with only 
one processor running, and we see the expected contention. 

70 

50 

o 
last rW"','~MW··O:OOO Average r"T"M'·''""'7:758 Min !-"'·'···~O:·ijOO: Max r·""····,-s:OOO Graph Time r·>··~-1>1·2:000' 

Color Scale Counter Instance Parent Object Computer 

Figure 3.39 Eight processes in one processor 



Chapter 3 Detecting Processor Bottlenecks 117 

We see the processor utilization at 100% in black and the highlighted queue length 
in white. In the next figure, we see the processor is indeed shared equally among the 
eight processes. Unfortunately they are all running at about 12.5% of full speed, 
and if we were waiting for them we'd probably be complaining about how slow 
they were. The output from Response Probe tells us that on average they are taking 
8.05 times longer than the response time of a single process running in a single 
processor doing the same amount of work. 

File Edit View Options Help 

100 
90 
80 
70 
60 
50 
40 
30 
20 

1~ ___ "c·._I1-.........,_~ " .• ; :l~M~ ___ _ 
Last I 10.449 Average I 12.314 Mini 8.955 Maxi' --'-7.-9'-0 Graph Time! 

I 
32.000 

Figure 3.40 Processor time distribution among eight processes in one processor 



118 Optimizing Windows NT 

Let's restart the same system with all eight processors active and redo the 
experiment. 

1-................................................................................. " 
~ \ t, 

I " 

70 

60 

50 
40 
30 
20 

10 
• .. __________________ 1 a. ........ 

0~~~=""""""""""':::::;,,61 

, 
I 

Color Scale Counter Instance Parent Object Computer 

E:::3---"---"1~BOo % Processor Time 0 Processor '\B6rt:MOi- .. 
E:::3 1.000 % Processor Time 1 Processor \\BEHEMOT 
E:::3 1.000 % Processor Time 2 Processor \\BEHEMOT 
~ 1.000 % Processor Time 3 Processor \\BEHEMOT 
~ 1.000 % Processor Time 4 Processor \\BEHEMOT 
~ 1.000 % Processor Time 5 Processor \\BEHEMOT 
~ 1.000 % Processor Time 6 Processor \\BEHEMOT 
E3:~~:SI~r~j~r:E!m!!~~~~L~f~Ji£1!IilIl~~:irl:~2~:~:Z~~1:][l1::j:TJ.:r.~r:~~~~t~:>:~G:i:}2I!.=!i:~::T:~~·::Iij1i;!~~rjiI~:::~i::Ji:i~ll~~i~T~}i}Ti + 

-Figure 3.41 Eight processes on eight processors 

The first processor busy at 100% is a single processor handling Response Probe 
while it is doing its processor calibration. During this phase, Response Probe 
determines the number of times it must execute its basic computation loop to use up 
one millisecond of processing time. Later it will use this information to apply the 
amount of processing you request. Once it has calibrated, the probe starts the eight 
processes. Each one starts executing. The processor queue length (the dotted line) 
goes way down from our last example. On closer inspection, we'd find that the 
threads waiting in the processor queue are system processes waiting to complete 
housekeeping functions at a lower priority. 



Chapter 3 Detecting Processor Bottlenecks 119 

Eile Edit ~iew .Qptions !!elp 

100- 1'-" 

90 
80 
70 
60 
50 
40 
30 
20 
10 
0-

Color 

w-.. ~ __ , .. ". 

Scale Counter 

! 
1 __ .. J .......... ______ _ 

Instance Parent 

I ........ 

'----

. Object Computer 

I·--~i 1.000 % Processor Time EventLog ..• Process \\BEHEMOTI- ..!. 

ief::;:::=:::~::~:::1(j]1[EI,:~ftli~~;[i~~rZi~;:::::=~:::::::~:liil1llijtj:::::;,::::X:~:::::=:=:~~::::::::~:::rr;i~2Il~~:::~::::::::Srrfiilii~il:t. -
1-- I 1.000 % Processor Time Idle Process \\BEHEMOTl--
E:::3 lOOO % Processor Time Imsvcs Process \\BEHEMOTl-
E:::3 lOOO % Processor Time Isass Process \\BEHEMOTl-
E:::3 lOOO % Processor Time mcsxnsvc Process \\BEHEMOTl-~ 
E:::3 lOOO % Processor Time MsgSvc Process \\8EHEMOTI- ..!. 

Figure 3.42 Processor use by eight processes on eight processors 

Figure 3.42 shows that each process is using 100% of a processor. This time the 
output of Response Probe tells us that each one is getting exactly the same response 
time as a single process running on a single processor. We are getting eight times 
the work done. 

For each processor we added, we got 100% of a processor's worth of work done. 
Life is not always this rosy in mUltiprocessor land. There are a number of reasons 
why adding processors might not yield the response time improvements we see in 
this idealized experiment. For example, if the bottleneck is not in the processors at 
all, adding more does not help. If the disk subsystem is maxed out, adding a 
processor does not increase work done. (If this isn't obvious to you, it's time to 
reread the beginning of this chapter.) 



120 Optimizing Windows NT 

More subtle problems can occur. These all revolve around the contention for shared 
resources. The processes in the example above were selfish in the extreme: the only 
thing they shared was their code. Because code is only read and not written, each 
processor can have a copy of the code in its primary and secondary memory caches; 
as they execute they don't even have to share access to the RAM that holds the I 

code. Programs frequently operate independently like this, but unlike this example 
they tend to use shared system resources and thus mutually develop bottlenecks as 
they contend for those resources. 

Here's a different example that quickly illustrates the contention for shared 
resources. We again use our modified copy of Gdidemo that draws balls 
continuously on the screen. This program does minimal computation and maximal 
drawing. Because there is only one display subsystem, contention develops for 
resources surrounding writing on the display. We'll start eight copies of this 
program, one after the other, and see how they fare on the eight-processor 
computer. But let's be clear: eight-processor computers do not normally sit on a' 
desktop and get used for drawing pictures. This is not something you'll normally 
do but it serves to illustrate the conflicts that can arise. 

o Processor \\BEHEMOT .. 
1 Processor \\BEHEMOT 

1.000 ~ Processor Time 2 Processor \\BEHEMOT 
1.000 % Processor Time 3 Processor \\BEHEMOT 
1.000 % Processor Time 4 Processor \\BEHEMOT 
lOOO % Processor Time 5 Processor \\BEHEMOT 

~7T\~~(lTI~3li!!itfj]E;~j~Tifja[JE[:J.TI~]ailI~]~TI~!iliITr~1]I[s~]]:jJ2jr2£1rri~q~iil~;i.Irj!y.~:mmlf1:f 
E3 1.000 % Processor Time 7 Processor \\BEHEMOT+ 

Figure 3.43 Resource contention by eight graphics programs on an eight-processor 
computer 



Chapter 3 Detecting Processor Bottlenecks 121 

Spaghetti? No, poetry! The thin black lines are the utilizations of the eight
processors. The high black dotted line is the processor utilization of CSRSS, the 
graphics subsystem process. The first program starts and two processors leap into 
action, with a third contributing a little effort, around 8 to 9%. When the second 
program starts, the third processor picks up considerably. Now CSRSS is using 

. 100% of a processor. As each program gets going, another processor kicks in, 
although at decreasing utilization. 

The next figure shows that by the time we have four drawing programs running, 
we have reached ~ firm bottleneck. The heavy black line is the System: % Total 
Processor Time. This is the aggregate sum of processor utilizations. By the time the 
third program starts, we are nearly maxed out. With the fourth program, it's the end 
of the line. The highlighted line is System: Context Switches/sec. This reaches a 
maximum (see value bar) of 14,256 switches per second. Because there is a context 
switch each time a program sends a batch of drawing commands to CSRSS, this is 
a pretty good measure of drawing throughput. It is not quite as jittery as the total 
processor utilization, and shows the bottleneck very clearly. After the fourth 
program, even though we are adding more processors, there is no more work getting 
done. Bottleneck defined. Once we get to this point we could add processors all day. 

40 
36r····· .. ···················· .. ·· .... · .... · .. ·· .. ············ ............................................................................................................. .. 
32f----------------~----~.-=-----~~~J\~~~~~~~~~ 

28~------------~jF_--~----~----~----------------

24~------------1~--------------------------------~ 
20~-------rl----------------------------------------

16~------,~----------------------------------------

12~-~~~------~~~~~~~--~~~~~~~~~ 

8 
4 
o 

Last IF" -1-38-72.-25-3 Average! 10837,269 Minr--2T.957 Maxi 14256,161 Graph Time! 542,000 
Color Scale Counter Instance Parent Object Computer 

f~~~:~~~::Q;9~Q;~~~:~~Q.6f.~m:~~J~~h~~2:iJ.~=:=:::~:~~~::=::=~:~~:::~:::~:::~~~::~~:~~:::~~:~~:::~~*:~~~:::~:~~~::::~~S~~8~~FJ~~Hl:J 
Figure 3.44 After the fourth process is added, no more work gets done 

What is the cause of this bottleneck? CSRSS has to protect the common data 
structures that surround drawing on the display. This includes the video RAM itself 
which holds the drawn images for the display, but also numerous internal structures 
involved in drawing. Once these are 100% in use, we're at maximum throughput. 



122 Optimizing Windows NT 

We noted that when the second drawing program started, CSRSS jumped to 
using 100% of a processor. Untrue. Actually, it is using more. On a multiprocessor 
computer, 100% is not really the maximum percentage of processor time that a 
process can have, but Performance Monitor artificially restricts the value to 100% 
anyway. It takes the meaning of "percent" a bit too literally. Are we embarrassed? 
A little. Will we survive? Probably. Anyway, to see how busy such a process really 
is on a multiprocessor system, you have to look at the utilization of processors by a 
process's individual threads. This we do in the next figure. 

) ) 

8.136 Average I 7.534 Minr-I --0.-00-0 Maxi 19.748 Graph Time I 527.000 
Color Scale Counter Instance Parent Object Computer 

~ 1.000 % Processor Time 20 csrss Thread \\BEHEMOTH 
E:3 1.000 % Processor Time 21 csrss Thread \\BEHEMOTH 
E:3 1.000 % Processor Time 22 csrss Thread \\BEHEMOTH 
E:3 1.000 % Processor Time 23 csrss Thread \\BEHEMOTH 
E:3 lOOO % Processor Time 24 csrss Thread \\BEHEMOTH 
E:3 1.000 % Processor Time 25 csrss Thread \\BEHEMOTH 
E:3 lOOO % Processor Time 26 csrss Thread \\BEHEMOTH. 

~~~[TI:::~::~r.:IIn!~!i!~:E{~~i5rw.Hlii~I.::;l}IT:;=::~~i:~}~IEIJL~~2;::l:~:IlJ1igi~~~:?~;~~;~~~ITi:~~~2JIr::1T~:~iS!M[mrvI91~1r.:1:~ 

Figure 3.45 CSRSS threads with eight graphics programs and eight processors

This shows thread 7 highlighted and solves the minor mystery of who it was that
used the 8 to 9% of a processor when we first started. This is a CSRSS
housekeeping thread doing background work as a result of the primary activity.

Now when the second drawing program starts, we see two CSRSS threads equally
active at about 72.5% processor utilization. That's almost 150% for the CSRSS
process as a whole even if we ignore thread 7. We know the bottleneck is at four
programs, and at that point the four CSRSS threads are at a little over 50%
utilization, or 200% for CSRSS as a whole.

This shows that system hardware or software resource contention can lead
to a bottleneck in a multiprocessor system. To understand what is going on you
need knowledge of the application, the hardware, and the operating system.
Unfortunately, there is no substitute for this knowledge. If you don't know what's
going on inside, all guesses are equally poor.

Chapter 3 Detecting Processor Bottlenecks 123

Here is another example of how contention can arise in multiprocessor systems.
This example is extreme but again illustrates the point nicely.

Response Time vs. Number of Threads.

4000

Response 3000
Time

(milliseconds) 2000

Number of threads in a single process 8

Figure 3.46 Memory contention in multiprocessor systems

• 2-Processor Computer

This figure shows the output of Response· Probe in two different computers: a
two-processor system and an eight-processor system. Each thread of the probe is
being asked to compute for one second, with no file or special memory activity, and
to measure the time it takes to do that one second of computation. Remember that
the number of instructions the probe needs to execute to use up a second of
computation is determined by the main probe process before starting the child
process that applies the load. This number is then communicated to its children.

In this experiment there is only one process. In successive trials, a thread is added
to the process. The response time is observed each time.

In the first experiment in this section, we saw that eight probe processes doing this
same workload got the same response time on eight processors as one process did.
Here, this is not so. Each thread added slows the aggregate down. The response
time grows. Moreover, it degrades more on the two-processor computer than on
the eight-processor.

124 Optimizing Windows NT

Why are the results for multiple threads in one process different from multiple
threads in separate processes? Because they are in the same process, these threads
are sharing the same address space. They are writing frequently to the same
memory location. This is a big bummer for multiprocessor systems.

First let's take a brief look at how Response Probe works and the source of all this
contention. Response Probe is basically in a loop trying to determine how much of
what load to place next on the system. It uses a normal number generator to find out
how much processor load is being requested. The normal number generator returns
a number which, over a sequence of calls, will be normally distributed (on a bell
shaped curve) with the mean and standard deviation you supply (see Appendix C
for details). Inside the processor load loop, Response Probe looks at where in the
pseudo-code space the next read from "code" memory is to take place. Then it
generates another normally distributed number and looks at where in its data space
you want the next words to be written. This causes yet another call to the normal
number generator. Each call to the normal number generator causes seven calls to a
random number generator. And each call to the random number generator returns a
random number which, as a side effect, is stored in a global cell of memory for use
on the next call. This memory cell is the spot'where all the contention takes place.

When a memory cell is written in a multiprocessor system, care must be taken to
make sure that cell is kept consistent in the memory caches of each processor. This
is done by the cache controller hardware in the multiprocessor computer. A number
of algorithms can do this, and they vary in cost of implementation. The idea is the
same in each, however: when a processor needs to write to memory, the hardware
must determine whether that memory location is in the cache of some other
processor(s). If so, the other caches must be invalidated (cheap solution) or given
the new data (expensive solution).

At this point, the cache controller writing the data may update main memory so that
other caches will get the updated data from memory if they need that word in the
future; this is called write-through caching. Alternatively, the cache controller can
wait to update main memory until it needs to reuse the cache location. This is called
write-back. If the location is rewritten frequently, write-back caching obviously can
cause fewer writes to main memory, and thus less contention on the memory bus.
But if another cache needs the data (as is increasingly likely as we add threads in
this case), it must have the logic to get the data from the other cache instead of from
main memory. In this case, the original cache must listen in on bus requests and
respond before main memory to requests for data which it has but which is not yet
valid in main memory.

Chapter 3 Detecting Processor Bottlenecks 125

This is the briefest possible introduction to the rich and interesting topic of
mUltiprocessor cache coherency. There are lots of schemes with varying tradeoffs in
cost and performance. Obviously, two quite different schemes were used in the two
processor and the eight-processor computers measured here. In fact, we get no
particular benefit from adding the second processor in the two-processor system for
this test. That does not mean that this is a bad implementation of multiprocessors,
although it is likely a cheap one. You need to keep in mind that this is an extreme
example. The test of mUltiple drawing programs ran quite well on this two
processor computer, and because it was designed more to handle this sort of desktop
application, all is well. But this example illustrates that the investment in more
sophisticated hardware in the eight-processor system paid off in improved
performance when memory contention is a big factor. It also shows that Response
Probe is a pretty brutal test of cache coherency hardware designs.

It is quite difficult to see cache and memory contention with Performance Monitor
because the conflicts are in hardware at a level where there are no counters visible.
It just looks like the processors are busy. It is not possible to see that they are being
stalled on cache and memory accesses. The only test that works is the addition of a
processor and the observation of throughput or response time. And being sure
the problem is cache/memory and not some other resource is also tricky. There
is just no substitute for doing controlled experiments like those in this section to
characterize the system. Alternatively, you can buy another processor and hope for
the best.

127

CHAPTER 4

Detecting Disk Bottlenecks

Disks store programs and the data that programs process. When you are waiting
for your computer to respond, it is frequently the disk that is the bottleneck. And if
memory is tight, it is the disk that takes the beating. In this chapter, we'll take a
look at how disks behave when they are used heavily, and how you can spot a disk
bottleneck.

128 Optimizing Windows NT

Making Sure Disk Performance Statistics Are Collected
First let's review the important point we covered briefly in Chapter 2: you must run
the diskperf utility to activate disk performance statistics on your computer. To
activate disk performance statistics on the local computer, type the following, and
shut down and restart the computer.

diskperf -y

To activate disk performance statistics on a remote computer, specify the computer
name when you start diskperf; for example, to collect statistics on a computer
named AARDVARK, you would type:

diskperf -y \\aardvark

After typing this, you must restart the remote computer before disk statistics are
collected.

You must be a member of the Administrators local group on a computer to run
diskperf on it.

The diskperf utility installs the disk performance statistics driver,
DISKPERF.SYS, in the 110 Manager's disk driver stack. See Figure 4.1, showing
the stack with the disk performance statistics driver installed.

Disk performance statistics driver

UnitO Unit1 Unit2

Figure 4.1 Disk driver stack with disk performance driver installed

Chapter 4 Detecting Disk Bottlenecks 129

The reason we put you through the bother of installing diskperf manually is
because it causes a little performance-degrading overhead that you may not always
want. Let's use Response Probe to do a quick experiment to see if it's worth it.

Note By the way, be sure when doing these experiments to let your Windows NT
computer settle for a while after logging on. Various background startup activities
can interfere with your experiment. You might also want to disconnect the network
if it is not involved in the experiment. Network drivers may respond to network
events even if they are not directed to your computer.

By setting the FILEACCESSMODE parameter in Response Probe to UNBUFFER,
we are guaranteed to bypass the cache and go directly to disk. (For more
information about Response Probe and its parameters, see Appendix C, "Using
Response Probe.") We'll set up Response Probe to do 100 reads of 512 bytes
from a file. We want to transfer a small amount of data because we want to see the
maximum distortion caused by the diskperf overhead. Unbuffered access to disk
must be a multiple of a sector in size, so 512 is as small as we can go.

We'll use a file that is lOOK in length. To create the file, we'll use the createfil
utility, which is on the floppy disk provided with this book. To create a lOOK file
with the name FILENAME. EXT, type:

createfil filename. ext 100

We'll set the Response Probe FILESEEK to a mean of 100 and a standard
deviation of 30. Because this is in units of 512-byte records, it means our accesses
will be normally distributed around a point near the middle of the file. It is a
property of normal distributions that about 99% of the access will be within plus
or-minus 3 standard deviations, so we should get a nice bell-shaped distribution of
accesses across the length of the file. (For more information about using bell
shaped distributions in Response Probe experiments, see Appendix C of this book.)

On our 486 computer with a 50 MHz clock, we get consistent average times from
Response Probe of 1666 milliseconds for the 100 reads, or 16.66 milliseconds/read,
with diskperf enabled. This is probably close to the rotation time of the disk. The
standard deviation of the response time to the 100 reads is 1 millisecond, so this is a
very repeatable experiment. With diskperf disabled, we get the same number:
1666 milliseconds. There's no visible degradation in performance! So why did we
make diskperf optional? Because if you do this same experiment on an 386 20
MHz computer, you see a degradation in disk performance of about 1.5%. On a
386/25SX laptop computer we observe a 0.9% (nine-tenths of 1 %) degradation in
disk throughput. Because we don't know what sort of system you are going to place
Windows NT on, we prefer that you elect whether to collect disk performance
statistics, rather than force you to do so by default.

130 Optimizing Windows NT

Busy Disks Are Happy Disks
Let's take a look at the damage we inflict on a disk with the preceding Response
Probe experiment. Naturally, we crank up Performance Monitor, and we'll set up
Performance Monitor to write its log file on another disk, to minimize the
interference it might cause.

Figure 4.2 shows Processor: % Processor Time as a thin black line, and Logical
Disk: % Disk Time as a thick black line during the above experiment. To get this
data, you must have installed diskperf, or the % Disk Time will remain at zero.

What is the difference between a physical disk and a logical disk? A physical disk
is the unit number of a single physical disk unit, while a logical disk is the drive
letter of a disk partition. (For example, a single disk drive with two partitions would
be a single physical disk instance, such as 0, with two logical disk instances, such
as C and D.) The parent instance of a logical disk is the unit number of the physical
disk on which it resides.

100

90

80

70

60

50

40

30

20

10

0'
Color Scale Counter Instance Parent Object Computer

. . ·"~·--·--"-1·:o6o"%~Pr~~';;;;~;·fi~-;"-"'---"~-~-o-"·"-~·-··-·-·-·-"--"---"··~-·--""Pr~~;;~;"--"-·-·\\CEREBEiLU M~
:::E~0::~:~~~Cr~~:filil?r!I:Ji£:~L~I~!]!~~~:~:i:~[:r::I~~:~~~;:;~Ii~=~1¥J~;'~:~~~::~~=~::1rJr~:rf.I::~:~::::::~:~:~2~~uJ;]§'E1!·~~1~:::;~f::;~1t1l§Ifiv1(&[fJ

Figure 4.2 Processor and disk behavior during disk bashing

One thing that is pretty clear is that the processor is no longer the bottleneck, .
and the disk certainly is. Boy, this is easy!

Chapter 4 Detecting Disk Bottlenecks 131

In Figure 4.3 we show a bit more detail about overall performance. Average
Processor utilization is only 7.2%, but the interrupt rate is well above the 100
Interrupts/second we expect from the clock on an idle system isolated from the
network. We see an additional 60.194 Interrupts/sec. Could they be from the disk?
Let's find out.

=>1)~Lq;I'fin1i!!r.;;:j:~hmWn 1 ... 1 :
file Edit ~iew Qptions Help

I~I(QI~I~I 1+IBJJxl 1@ltmf ~ ~::,

Computer: \\CEREBELLUM
Object: Processor 0

% Privileged Time C:::::::::::::::::::::::~J~s.t
% Processor Time 7.222
% User Time 1.525
Interrupts/sec 160.194

Object: System

Context Switches/sec 281.978
File Control B yteslsec 557.216
File Control Operations/sec 4.975
File Data Operations/sec 58.910
File Read Bytes/sec 30140.008
File Read Operations/sec 58.867
File Write Bytes/sec 562.865
File Write Operations/sec 0.043
System Calls/sec 427.435

Figure 4.~ Processor and system activity when reading small records from disk

If we divide File Read Bytes/sec by File Reads/sec, we get 30140/58.867 = 512
bytes per read, which is what we told Response Probe to do, so this is good. Other
than the elevated system call rate, the remainder of the System counters show a
small amount of background activity, which we shall not explore further.

132 Optimizing Windows NT

Figure 4.4 contrasts the activity on drive D, from which we are reading the 512
byte records, and the C drive, on which we are logging the Performance Monitor
data. (We omitted the % Free Space and Free Megabytes counters because they
don't playa role here.)

"""'1:<:<',-" ':,>'::',; 'i;;' >, ",' ;.":,:::::;<::i<;' ;/:> c: :,< J ".1·
File Edit View Options Help

1~10l1C}1~1 1+1[~)IXll~I~1 "'~

Computer: \\CEREBELLUM 1 0
Object: LogicalDisk D: C:

% Disk Read Time 94.892 0.049
% Disk Time 95.876 2.619
% Disk Write Time 0.984 2.569
Avg. Disk Bytes/Read 512.000 4096.000
Avg. Disk Bytes/Transfer 617.144 13132.351
Avg. Disk ByteslWrite 46080.000 13212.319
Avg. Disk sec/Read 0.016 0.047
Avg. Disk sec/Transfer 0.016 0.022
Avg. Disk seclWrite 0.072 0.022
Disk Bytes/sec '36417.979 15680.484
Disk Queue Length 1.000 i:::::::::::::::::::::J;j;:O:O:O)
Disk Read Bytes/sec 30143.640 42.901
Disk Reads/sec 58.874 0.010
Disk Transfers/sec 59.010 1.194
Disk Write Bytes/sec 6274.339 15637.583
Disk Writes/sec 0.136 1.184

Figure 4.4 Disk activity while reading short records, logging elsewhere

Drive D is, basically, pegged to the wall and preoccupied with reading. Drive C is
barely perturbed and focused on writing. What a grand study in contrasts! There's
really quite a lot to look at here. In both cases, we see that % Disk Read Time and
% Disk Write Time sum to % Disk Time. You might have expected this but it is not
always true, as we will see shortly.

Remember the 60.194 extra interrupts discovered in Figure 4.3? If we add the
Transfers/sec from Drive D and Drive C, we get 60.204. This is close enough
that we should suspect more than a coincidence. Why aren't they identical? When
collecting data, the system polls each object manager in tum for its statistics.
Because the system is still running during this process, we might expect System
counters to be off slightly from Disk counters. So now you know a new Rule.

Rule 9.
Close counts in
horseshoes and
bottleneck detection.

Chapter 4 Detecting Disk Bottlenecks 133

Average Disk ByteslRead on drive Dare 512 as expected in this experiment. On
drive D we see an Avg. Disk seclRead of 0.016, quite near the 16.85 milliseconds
observed by Response Probe in this case. This means Performance Monitor
interferes with the experiment only 1.1 % as measured by the time to do the 100
unbuffered disk reads. Because we were logging at a one-second time interval,
this is impressively low.

This number of 0.016 Avg. Disk seclRead is bothersome. Because the counters
of average disk transfer times (such as Avg. Disk seclRead) are rounded to the
millisecond, some interesting details may be omitted. What can you do? Remember
that the % Disk Read Time is 100 times the average number of milliseconds the
disk was busy during a second. So we can eke out a few more digits of precision:

Avg. Disk sec/Read = % Disk Time / Disk Reads/sec = .94892/58.874 = 0.016118

So we were quite close to 16 milliseconds after all. There are times when it is worth
\ checking. But a word of caution is definitely in order: this calculation only works
when the queue length is one or less, as we see shortly.

Reversing our perspective for a moment, we see a very small Disk Writes/sec on
drive D (0.136), but a very large Avg. Disk ByteslWrite (46080). We don't write
very often, but when we do, it's a whopper! This gives an Avg. Disk seclWrite of
0.072 (72 milliseconds), much larger than the 0.016 Avg. Disk seclRead. This
activity is due to system directory maintenance. It's unclear whether this large 72
millisecond transfer time is due to the large transfer size or to the disk having to do
a seek operation away from our experimental file. How could we find out?
Construct a quick experiment to read 46080 bytes repeatedly.

134 Optimizing Windows NT

Let's look into this a little further, because we sense another Rule about to emerge.
Let's plot the Avg. Disk ByteslWrite on drive D and see what is happening here.
Take a gander at Figure 4.5.

60~----~~-----------------------~------------------~·

501-'-----

40

30Hr--~~-~------------------~-----'-----~-------------4-

20HI----~--~----~----------------~~------------------1

10

0,
Color Scale Counter Instance Parent Object Computer

E3 lOOO % Processor Time 0 Processor \\CEREBELLUM
E3 lOOO % Disk Time D: 1 LogicalDisk \\CEREBELLUM
-.---.. :r~::if~~!1l11l~gt~~il£1mri[~if!?i~;'¥'{~11I:i~~:2I~m~~:I:~:I:~;J:l~t2II:::jJ~if.:'i:8J:Z;~!~I~rn:~~}X~1~1~~:;'=:I~~\!mmJmrru]

Figure 4.5 Background disk writing while reading short records

The 40K number reported in Figure 4.4 did not give us much of a clue. Now we
can see that what is really happening here is that 65K writes are taking place, along
with some smaller ones. The file system is updating its directory information during
our experiment, and there's really no stopping it. This is not significant, as far as
interference with our experiment goes. But the 40K number is a bit misleading, and
the rate of 0.136 writes/sec contains no clue that this is really a few isolated large
writes instead of a steady stream of writes of various sizes. Because Performance
Monitor is built on lots of averages, it is wise to remember Rule # 10:

Chapter 4 Detecting Disk Bottlenecks 135

Rule 10.
Averages reveal basic truths
while hiding crucial deta~ils;~.~ ~1f)~{5Q

You can divide Disk Read Bytes/sec (30143.640).by Disk Reads/sec (58.874) to
get the Avg. Disk Bytes/Read of 512.002. This differs from the 512.000 reported,
because the reported numbers are truncated to 3.decimal digits. There's no point in
getting bogged down in the fine print-what's 0.002 bytes among friends?

There is an interesting difference between the data on drive D and that on drive C.
Look at Figure 4.6, which isolates the issue.

file Edit Yiew Options Help

Computer: \\CEREBElLUM
Object: LogicalDisk

% Disk Time
Avg. Disk Bytes/Transfer
Avg. Disk sec/Transfer
Disk Bytes/sec
Disk Transfers/sec

1
D:

o
C:

95.876 2.619
617.144 13132.351

0.016 0.022
36417.979 15680.484

59.010 C:::::::::::::::::::::IJ:$:4]

Figure 4.6 Study in contrasts: disk transfer rates

136 Optimizing Windows NT

Drive D is 96% busy, doing 59 transfers and moving 36K a second. Drive C is
2.6% busy, doing 1.1 transfers a second, and still moving almost half as many bytes
per second. Clearly drive C is operating more efficiently. The reason is that Drive C
has a higher value for Avg. Disk Bytesffransfer, 20 times higher. Yet each transfer
is taking only 6 milliseconds more time. When you try to locate a disk bottleneck,
after noting that the disk is busy, look at the average transfer size. It is a key to
efficient use of the disk.

Looking again at Figure 4.4, the Disk Queue Length on drive D is 1. This is an
instantaneous count-just the value at the endpoint of the time interval of the report.
But the probability that there is someone in the disk queue is 95.876%, the same as
the disk utilization. Unlike System: Processor Queue Length, the Disk Queue
Length counter includes the request in service at the disk as well as any requests
that are waiting. In fact, all the disk statistics are collected by the DISKPERF.SYS
driver, which is located above the normal disk driver in the driver stack. When a
file system request comes into DISKPERF.SYS, it gets a time stamp and is added
to the queue count. Then it gets handed to the next level of driver. This may be a
fault tolerant (software RAID) disk driver, or the "real" disk driver. Any processor
cycles consumed by the drivers go into %. Disk Time.

Given the low processor utilization shown in Figure 4.2, it seems obvious that
we have plenty of spare horsepower to drive the queue length up. Let's get five
processes to do the same experiment at once and see what happens to the disk
statistics.

Figures 4.7 through 4.9 show five processes doing the same thing the one did
above: unbuffered reading of 512 byte records from a small file. Figure 4.7
includes the Disk Queue Length, which varies between 4 and 5, depending on
when we take the snapshot. The % Disk Time is now pegged to the max.
Comparing Figures 4.3 and 4.8 shows they are remarkably similar.

We have chosen to use the System counters instead of the Processor counters in
Figure 4.8, but because this is a single processor system the processor statistics for
processor 0 are the same as those for the system overall. In a sense Figure 4.8 is the
"correct" style, because if we had a multiprocessor system Figure 4.3 would be
showing the data for just one of the processors. And yes, we have manua~ly placed
Total Interrupts/sec out of order to make comparing these two figures easier.

Chapter 4 Detecting Disk Bottlenecks 137

...

file Edit ~iew Qptions Help

100

90

80

70

60

501
!

40;

.......... , r-\,t\ /' '\ /.\ r·~. :,-\ / ;-\ ;--\/.\.:' \ /- -\,t\. (\.: --'I'I~I-\I' "'''-II. / '\ /_ \:' -" .. /"'\,.'-\ /1, ,,'~I,/"\
.. I ~ ,_: '.1 -I '_t '.' '.' v 't ': ~f .J ~ '.' ~ 't ,['.' ':.,... It \: v ~

i
30

20

10

o
Color Scale Counter Instance Parent Object Computer

I

I

[--I 1.000 % F1oc"", T", 0 .- F1oe,"" "CEREBELLUM
~ 1.000 % Disk Time D: 1 LogicalDisk \\CEREBELLUM

~ --.-... ::~::~:::~~::::~::ii!~~I11~~~:I!f.[i:~~:~:tr~:E~~:j~d~i£nI:~~~::~~~::~::.:::·:::~::iE:~:=:~~:~~:::~:~~~~:::::~~:::~::~:~~~:::~:::::=:~=::::r.~?~;R~;~i:!r.!~~.=~:::~::::~~;s)ImE[£€liir£([:J

Figure 4.7 Five processes reading small records at once, or trying to

=-1 ;" '. 1 ... 1'"
file .Edit ~iew Qptions Help

I~!(QI (] I~I I+I~IXI 1@1lJ31 ~ -.-

Computer: \\CEREBEllUM
Obiect: System

% Total Privileged Time L:::::::::::::::::::::~5~~i
% Total Processor Time 6.632
% Total User Time 1.493
T otallnterrupts/sec 127.373
Context Switches/sec 283.572
File Control Bytes/sec 557.706
File Control Operations/sec 5.098
File Data Operations/sec 59.301
File Read Bytes/sec 30341.329
File Read Operations/sec 59.260
File Write Byteslsec 559.840
File Write Operations/sec 0.041
System Calls/sec 430.979

Figure 4.8 System overview of five processes reading small records at once

138 Optimizing Windows NT

Computer: \\CEREBElLUM
Object: logicalDisk

% Disk Read Time
% Disk Time
% Disk Write Time
Avg. Disk Bytes/Read
Avg. Disk Bytes/Transfer
Avg. Disk BytesMrite
Avg. Disk sec/Read
Avg. Disk sec/Transfer
Avg. Disk secMrite
Disk Bytes/sec
Disk Queue Length
Disk Read Bytes/sec
Disk Reads/sec
Disk Transfers/sec
Disk Write Bytes/sec
Disk Writes/sec

1
D:

[:::::::::::::::::J:O:Q.:QQQi
100.000

3.430
512.000
647.932

49728.000
0.083
0.084
0.209

38503.078
5.000

30341.329
59.260
59.425

8161.749
0.164

Fi.gure 4.9 Disk behavior of five processes reading small records at once

But we digress. The main point here is that the statistics are nearly identical, even
though we have added four more processes to the mix. But this should not surprise
you. This is what we mean by the word bottleneck! The disk statistics don't change
because the disk was already maxed out. All we have really done is dumped these
poor processes into the disk queue. Figure 4.7 shows that this has taken up the
remaining 4% slack in disk utilization, yielding about 112 more transfer per second.

So we see pretty much what we might expect in Figure 4.9, except for one thing.
The sum of the % Disk Write Time and the % Disk Read Time exceed the % Disk
Time. This is because DISKPERF.SYS begins timing a request when the request is
delivered to the next driver layer. You can see this pretty clearly by comparing
A vg. Disk seclRead in Figure 4.9 to that in Figure 4.4. Let's use the trick we
learned above to get a more accurate number for read transfer time:

Avg. Disk sec/Read = % Disk Time / Disk Reads/sec = 1/59.260 = 0.016875

Chapter 4 Detecting Disk Bottlenecks 139

Wow, this result of 16.875 milliseconds is very different from the Figure 4.9 Avg.
Disk seclRead of 0.083. What's going on? The 16.875 millisecond number is the time
it is taking us to get each request from. the disk. But the reported 0.083 number is the
time spent in the queue plus the time to get the data from the disk. Dividing 0.083 by
0.016875 gives 4.9, which is an excellent measure of average queue length, and a
better one than the instantaneous counter value Disk Queue Length.

Uncovering High Disk Throughput
To tell you the truth, we've been slacking. This disk is capable of much more than this
level of throughput. Let's build a large file so we can simulate a more realistic load
with more seek operations. We'll use createfil to make a 500-MB sandbox for us to
play in. We'll turn on Performance Monitor while we're at it to see what createfil is
doing.

Figure 4.10 was logged at five-second intervals while we created the 500 MB file.
Obviously the disk was quite busy, and the processor was loafing. Must be its day off.

100

90

80

70

60

50

20

10

o
Color Scale Counter Instance Parent Object Computer

~:~::;J;:::.I:;::;;t~~E[::~mIILj~~~&j:=::::.::'~::::::Zl;:r::;;i1GI:I::i::::~:~I:::::::::ji::'~::;;:;::;':~:::::::;1:gJ1i;1~~IE;::C:;.:.~~m~ff~m~~1t.!Xn
Figure 4.10 Creating a 100-MB file

140 Optimizing Windows NT

The system overview in the next figure reveals a rather surprising lack of file
activity. File bytes are being written at about 51K per second. We knew from the
Graph Time on the value bar in the chart represented by Figure 4.10 (value bar not
shown) that it takes about 722 seconds to create this file. (We subtracted one time
interval, or five seconds, from each end because the chart starts before and ends
after the file is created.) Multiplying the File Write Bytes/sec times 722 seconds
give us a result of only around 37 million bytes. But the file is over 524 million
bytes in length. We've seen this before, right? This must be .the old fast path to the
cache that bypasses the file system altogether. While we can tell Response Probe to
use unbuffered access, createfil always uses buffered file system calls. In fact this
is the default, and because it is almost always faster, almost all applications use
buffered file access. The principal exceptions are network server applications which
do their own caching.

Eile fdit ~iew ,Q,ptions Help

Computer: \\CEREBELLUM
Object: System

% Total Privileged Time
% Total Processor Time
% Total User Time
T otallnterrupts/sec
Context Switches/sec
File Control Bytes/sec
File Control Operations/sec
File Data Operations/sec
File Read Bytes/sec
File Read Operations/sec
File Write Bytes/sec
File Write Operations/sec
System Calls/sec

C::::::::::::::::::IDgs,i
17.858

0.551
90.337
77.135

112.032
1.034

10.295
1.076
0.030

52609.462
10.265

159.266

Figure 4.11 System overview of creating a 100·MB file

Chapter 4 Detecting Disk Bottlenecks 141

.Eile .Edit ~iew Qptions Help

Computer: \\CEREBELLUM
Object: Cache

Data Flush Pages/sec
Data Flushes/sec
Lazy Write Flushes/sec
Lazy Write Pages/sec

167.382
14.839
11.869

!:::::::::~:::::]a2I~:8)

Figure 4.12 Cache behavior when creating a large buffered file

The cache statistics in Figure 4.12 show that the lazy writer is launched frequently to
help clear the cache, and in addition the cache is rapidly flushing dirty pages to make
room for new ones. (Lazy writes and data flushes have an interesting relationship,
detailed in Chapter 6, "Detecting Cache Bottlenecks.") Multiplying the number of
Lazy Write Pages/sec times the page size (4096 bytes on this machine), we see a byte
rate of 746,275 bytes/sec. This is close to the disk transfer rate we see on drive D in
the next figure.

-=1 " ! :(,yltniil'firr{;r.: j ~ fmfHift ,:'," t ... J ...
.Eile .Edit View Qptions Help

lf5}lliJl~I~1 1+1~lxl 1~1t;m1 [@!I "

Computer: "CEREBELLUM 1
Object: LogicalDisk 0:

% Disk Read Time 13.926
% Disk Time 100,000
% Disk Write Time 100.000
Avg. Disk Bytes/Read 4096,000
Avg. Disk Bytes/Transfer 34549.716
Avg. Disk ByteslWrite 37992.947
Avg. Disk sec/Read 0.062
Avg. Disk sec/Transfer 0.061
Avg. Disk seclWrite 0.061
Disk Bytes/sec 762317.107
Disk Queue Length 1.000
Disk Read Bytes/sec 9180.298
Disk Reads/sec 2.241
Disk Transfers/sec 22.064
Disk Write Bytes/sec 753136.810
Disk Writes/sec i::::::::::::::::::::j:s.;:$.:?~)

Figure 4.13 Disk behavior when creating a large buffered file

142 Optimizing Windows NT

Now we've got a disk really pumping bytes. Compare this to the rate achieved by
reading small records in Figure 4.7. The large transfer size here, 37993 bytes per
write, is the key to' the high efficiency the system achieved. And we can do even better
than this.

Uncovering Even Higher Disk Throughput
Let's try to discover the maximum rate at which we can get data from this disk. We'll
read the same record over and over, increasing its size, until we maximize throughput.
We'll read from the beginning of the file so we know we will be starting at the same
point on the disk every time. We'll start by reading 1 page, and increase the size of the
read 1 page at a time until the reads reach 64K. The results appear in Figure 4.14. The
highlighted (white) line is the disk throughput in Disk Bytes/sec, while the black line is
the size of the record that is read. This goes from 4096K per read (1 page) to 65536K
per read (16 pages).

fdit ~iew .Qptions Help

200

180r---------~------------~--------·--~---------------

160

140r-------------------~--~------~~~-

120r-~----

'OOr------·-~~--~' ·--..l __ k~~-.~~;~_~~ __ ~~:_

801--------~~~-.· __ .~.~~~ .. ~_L_ ___ ~_~~~~;;.J~_~L.

544.960 Average 1640987.439 Min r~ MaKj 1451708 Graph Time I
Scale Counter Instance Parent

0.001000 Avg. Disk B.vtes/Read D: 1 LogicalDisk "CEREBELLUM

Figure 4.14 Transfer rates achieved by various-sized reads

Its not hard to see the highest transfer rate occurs in the case of 12-page records. As
the size of the read operations grows, the transfer rate climbs, but something happens
between the record size of 5 pages and that of 6 pages. Then it rises to a peak at 12
pages, and falls again for 13. It rises thereafter until the final fall at 16 pages. Very
suspicious. Anyway, .the maximum throughput we have achieved (see the value bar) is
1.4 MB per second. Finally, some decent throughput!

Chapter 4 Detecting Disk Bottlenecks 143

Now let this sink in: in this situation the disk is nearly 100% busy and transferring
1.4 MB/sec, while in Figure 4.2 the disk is nearly 100% busy and transferring
36K1sec. You may be able to tell how busy the disk is by looking at the utilization, but
you don't know how much work it is doing unless you look at the transfer rate. In this
respect, disk performance isn't that different from employee performance. We all have
a coworker or three who is frantically busy all the time but doesn't get much actual
work done. How hard a disk or person labors and how much they achieve are not
always directly related.

The next figure shows pretty clearly why our transfer rates are not increasing
monotonically.

=-1
File .Edit View Qptions Help

200

180r---

160~--1I

140~··--------·-------------------------~ ... ~.-~-----~·---------

120 ~-------------;

100 r-------

80r------:-:~-----·---------------------- -

00' ~-~~~--~--~~~j-~-. ~-~~~~-/~-

: ~r\~~n~i4~nl--\F\F\p~F)Rrjtltli~i ,:
o' .. .' ,.. ., i.

Last I 544.960 Average f 640987.438 Min I 0.000 Max I 1451708 Graph Time I 1263.000

Figure 4.15 Transfer rates and transfer times achieved with various-sized reads

Aha! The transfer times are jumping just when the transfer rates fall off. And if
you look closely you can see that they jump by 16.7 milliseconds each time. We've
seen this number before, and here's why. Many disks rotate at 3600 rpm, or 60
revolutions per second. That's one revolution every 16.666 milliseconds. When we
go from 5 to 6 page records, we suddenly need an extra revolution to read the entire
record. This is quite damaging to our transfer rate.

The next two figures show the system overview and disk data for the read operation
using 12-page records. We got this data by shrinking the time window to the case of
interest, then viewing the report. The system data shows that all the bytes are going
through the file system because we are unbuffered. The results are quite a contrast
to those in Figure 4.3.

144 Optimizing Windows NT

Computer: \\CEREBELLUM
Object: System

T otallnterrupts/sec
Context Switches/sec
File Control Bytes/sec
File Control Operations/sec
File Data Operations/sec
File Read Bytes/sec
File Read Operations/sec
File Vlrite Bytes/sec
File Vlrite Operations/sec
System Calls/sec

C:::::::::::::::::::~:~:.:~~2i
203.768
111.777

0.998
29.491

1448320.099
29.466

324.053
0.025

340.670

Figure 4.16 System overview during maximum disk throughput

The file statistics are just about as good as they get on this computer. Transfer size
is exactly 48K per second, giving throughput of 1.4 MB per second. This puppy is
hummin'!

But is this realistic? Recall that we are reading the same record over and over
again, something we're not likely to see in the real world. Let's take another look at
maximizing disk throughput, but this time let's use all of the 500 MB file we took
so much time to create.

Chapter 4 Detecting Disk Bottlenecks 145

0::::;0\ r~/i':ntWnWH'1:~ l(;finHfiF I ~ I"'·
file ,Edit Yiew .Qptions .tlelp

200

180~---

160~---

140f--

120~--

100 ~---------------------------- ---------

80 ------------------

:~ -: .. ,-.· .. ;c~.-·~==FtF~A~t;~~I'===\~E· -rptl
20 i····'d=d,....,i ... b-~Ar4iq-f-\l-\:-L\1 -.J1 ~~ -'It-.\I_I
o ~E ,\j \. . ..', \. I. ' '.' •• ' .~ '.. '..' , ! .~ .. .

Last I 545.058 Average I 489082.719 Mini 272.520 Max[1085431 Graph Timel 1251.000

Color Scale Counter Instance Parent Object Compute.

~~rT-==:F:=~:~!!!

Figure 4.17 Randomly reading successively larger records of a 500-MB file

Now when we integrate seeking across the disk we see a linear increase in disk
throughput as a function of record size, until we reach 64K. In this case, we lose
another rotation every time, and throughput falls off accordingly. If we are not
forcing a rereading of the same record over and over, we do not have to wait for
the disk to rotate around to the start of the record each time. By accessing more
randomly, the cost of the extra rotations that do occur is too small to notice.

In Figure 4.18 we narrow the time window to the case where throughput is
maximum. Now we see all the data points collected during this time, and a slightly
higher maximum is uncovered. If you really care about the details, be sure to
narrow your time window to fewer than 100 data points so you don't skip any
data points.

146 Optimizing Windows NT

Edit ~iew Qptions Help

200
180r-----------------------~--~--------------~--~-------

160r---------------~---------------------------------------

140r-----------~----------~----------~----------~-------

120r---~----~-----

100

80r-4~--------------------------~--------------~--~----

60

40~·.~--~--------------------------~--------------------

20r-:------4~~------~--------------------------~---------

o
Lastl·.132604.250 Average I 581431.563: Min!

Figure 4.18 Narrowing down to the case of maximum throughput

Now we'll reveal a step we have been doing in many of these experiments,
especially when we've shown you reports. This step is the further narrowing of the
time window to include only the data of interest: the actual transfers themselves. If
we fail to do this, the next few figures would include the end regions of Figure 4.18,
and the averages would be lower . Worse, any instantaneous counters would show
their idle values corresponding to the final data point in Figure 4.18. Always be
careful to set the time window to include only the data of interest before looking at
your detailed reports.

Chapter 4 Detecting Disk Bottlenecks 147

c;;:;;ll jji{;~n'f;fif;rt(M;: .. a'J1Ht';ff 1 1
File ,Edit View .Qptions Help

200
180 ---... --------.---.-----.. -.-.---------.----.. ----.---.--.-----"------------.-

160r-----------------------"---------------------------------

140r----·---

120f---------------------"----------------------------------

100r--------------------·--------------------------------------

80r---

60 ' ..
40~--

20~---

o
Lastl 736571.438 Averagel 1077889 Mini 736571.438 Maxi 1116688 GraphTimei"35.000

Color Scale Counter Instance Parent Object Computer

~
. ::~:~~:~fI;:IiJ2IjETIEi;g~i;;;;:=~::=:::::::::~:::=~:::~:::::=J.::::~:~:::::~:::G:;;;i;i0PJ.GC::~::::;n~;~:IT;J!.illdfi]!3TI
~ 0.001000 Avg. Disk Bytes/Read D: 1 LogicalDisk "CEREBELLUM
~ 1000.000 Avg. Disk sec/Read D: 1 LogicalDisk "CEREBELLUM

Figure 4.19 Setting the time window to exclude extraneous data points

Now we are set up to produce the usual detailed reports.

c;;:;;ll . . 1 1
Eile ,Edit ~iew .Qptions Help

1~I(Y1 (j I~I 1+lc&lX.1 ~ It;; ~

Computer: \\CEREBEllUM
Object: System

% Total Privileged Time 2.224
% Total Processor Time 2.772
% Total User Time 0.556
T otallnterrupts/sec 85.152
Context Switches/sec 180.541
File Control Bytes/sec 113.155
File Control Operations/sec 1.340
File Data Operations/sec 17.538
File Read Bytes/sec 1 077529.706
File Read Operations/sec 17.538
File Write Bytes/sec 0.000
File Write Operations/sec 0.000
System Calls/sec c:::::::::::::::::~Iz:.J~?i

Figure 4.20 System overview reading across a 500-MB file with 60K records

148' Optimizing Windows NT

Edit ~iew Qptions Help =........,=,...-,----------------11
1~IWlftlill H:J~I?5I~

Computer: \\CEREBELLUM 1
Object: logicalDisk D:

% Disk Read Time
% Disk Time
% Disk Write Time
Avg. Disk Bytes/Read
Avg. Disk Bytes/Transfer
Avg. Disk ByteslWrite
Avg. Disk sec/Read
Avg. Disk sec/Transfer
Avg. Disk seclWrite
Disk Byteslsec
Disk Queue Length
Disk Read Bytes/sec
Disk Reads/sec
Disk Transfers/sec
Disk Write Bytes/sec
Disk Writes/sec

100.000
100.000

0.136
59424.201
59337.344
4096.000

0.056
0.056
0.048

1 077880.122
lOOO

1077763.317
18.137
18.165

116.805
i::::::::::::::::::::::::Q::O:~:$;

Figure 4.21 Disk statistics reading across a SOO-MB file with 60K records

What do we learn from all this? This tells us that 56 milliseconds is a reasonable
transfer time for large records with fairly substantial seek activity. Because
Response Probe distributes access normally (a bell-shaped curve) aCross the
500 MB file, this might be considered an easier task than real random seek activity.
We could repeat the experiment with real random seek activity, but by now you get
the idea. You need to characterize the performance of your processor/disk
adapter/drive subsystems in this sort of controlled fashion if you want to understand
the bottlenecks on your systems. Response Probe permits the construction of a wide
range of access patterns, as this and the previous example show . You can use these
controlled experiments to understand observations from real-life systems.

Let's try one more experiment to make this point clear. We'll set up an experiment
that does read operations in 60K chunks, but instead of distributing the read
operations normally across the 500 MB, we'll distribute them randomly. We do
this by increasing the standard deviation of the file seek position in Response Probe,
making it equal to the mean. (Response Probe folds any attempts to access the disk
beyond the end of the file back into the file. For more information on this, see
Appendix C, "Using Response Probe.") The result of this change is displayed in
Figure 4.22.

Chapter 4 Detecting Disk Bottlenecks 149

=-1 iftJ!hfmFmi{;'~t'ffl(!ll; . L"'J. ...
file fdit Yiew .Qptions Help

16llrnl ~ llill I+IE'~IXI I@IIDI ~ ::':">

Computer: \\CEREBELLUM 1
Object: LogicalOisk D:

% Disk Read Time [::::::::::::::::::t:O:Q.:QQQi
% Disk Time 100.000
% Disk Write Time 0.595
Avg. Disk Bytes/Read 59597.601
Avg. Disk Bytes/Transfer 59309.655
Avg. Disk BytesMrite 4096.000
Avg. Disk sec/Read 0.059
Avg. Disk sec/Transfer 0.059
Avg. Disk seeMrite 0.067
Disk Bytes/sec 1014214.243
Disk Queue Length lOOO
Disk Read Bytes/sec 1 013850.856
Disk Reads/sec 17.012
Disk Transfers/sec 17.100
Disk Write Bytes/sec 363.387
Disk Writes/sec 0.089

Figure 4.22 Disk behavior reading 60K records more randomly

The average time per read operation has gone from 56 to 59 milliseconds, and the
throughput has fallen from about 1.08 MB per second to about 1.01 MB per second.
That's a pretty substantial loss of throughput-about 6%. If we were to increase the
file size, we would see more erosion in throughput as the disk spends more time
seeking. Keep up this sort of nonsense, and you'll really know your disk!

Getting Rid of a Disk Bottleneck
If you discover a disk bottleneck, what can you do? The first thing you need to
determine is whether it's really more memory that you need. To restate a critical
truth, if you are short on memory, you will see the lost performance reflected as
a disk bottleneck. We'll take a look at that issue in the next chapter.

If memory isn't the problem, there are a number of possible avenues to pursue to
improve disk throughput. First, think about your controller card. Find out from
the manufacturer if it does 8-bit, 16-bit, or 32-bit transfers. The more bits in the
transfer operation, the faster the controller moves data.

150 Optimizing Windows NT

Your 110 bus architecture comes into play here. EISA and MCA buses transfer data
at much higher rates than ISA buses. Some computers also have a "turbo switch"
that affects bus speed. Make sure it is set to on if you have such a switch. ISA buses
cannot see above 16 MB of RAM. To place data above 16 MB of RAM, the driver
must arrange a copy of the data from the area below 16 MB. This can slow you
down. Changing the bus within a computer is usually not an option. But it's about
time you got that new computer anyway, and now if you've isolated your
performance problems to the bus, you have a reason!

Also determine if your disk adapter uses direct memory access (DMA) or not.
DMA can noticeably improve transfer speeds.

Some disk adapters feature built-in caches. The benefit of this depends a lot on the
access patterns of your system. If you are going to purchase the RAM anyway,
you might want to consider putting it in the computer's main memory instead of
on the adapter card. Because Windows NT features adaptive disk cache size, when
memory is needed for something besides disk caching, it is available. It is also
available to disk drives on other adapters, as well as to the LAN file systems. But
some computers are limited on the amount of main memory they can use, in which
case adding memory to a disk adapter may be just the ticket.

If you've done the best you can with your adapter, you might want to think about
your disk subsystem configuration. If you have all your activity focused on one disk
and one adapter, consider getting a second disk and even a second adapter. Try to
spread the load across them. This idea segues into our next topic.

Looking at Redundant Arrays of Inexpensive Disks
What we touch on here is how Performance Monitor sees various redundant
arrays of inexpensive disks (RAID) and fault-tolerant disk configurations. We'll
also mention some issues relating to their relative performance as observed on one
computer, but it would be an error to extrapolate these results to some other system.
You need to perform these experiments on your own configurations and under your
own real or anticipated workloads to make judgments about optimal disk
configuration.

Chapter 4 Detecting Disk Bottlenecks 151

In our example, we have (as physical unit 0) a hardware RAID array of 4 spindles
and 800 MB capacity. We partitioned this into drive C (300 MB), and drives Fand
G, which are 250 MB each. We also have three other disk units with about 340 MB
capacity each to play with. We created a 200 MB file on a single partitioned drive
D, and another one on a mirrored partition on the other two disks, drive E. After we
finished the experiments on drives D and E, we rearranged those three spindles as a
single striped partition for drive D (no parity) and created a 200 MB file on that.

We had two disk controllers, one for the hardware RAID array, and another for all
three of the other disk units.

All the 200-MB file creation times were 420 seconds, except for the striped
partition on drive D which created itself in 314 seconds. In the next two figures we
show the difference in behavior of drive D as a single drive and as a striped volume.

=-1 .
Eile Edit ~iew .Qptions Help

Computer: \\STEVEK05
Object: logicalDisk

% Disk Read Time
% Disk Time
% Disk Write Time
% Free Space
Avg. Disk Bytes/Read
Avg. Disk Bytes/Transfer
Avg. Disk ByteslWrite
Avg. Disk sec/Read
Avg. Disk sec/Transfer
Avg. Disk seclWrite
Disk Bytes/sec
Disk Queue Length
Disk Read Bytes/sec
Disk Reads/sec
Disk Transfers/sec
Disk Write Bytes/sec
Disk Writes/sec
Free Megabytes

1
D:

0.258
100.000
100.000
38.080

4096.000
33853.354
33910.903

0.090
0.081
0.081

499259.920
0.000

116.596
0.028

14.748
499143.323

14.719
!::::::::::::::::::j:?'~;:Q:Q:Qj

Figure 4.23 File creation on a single spindle

152 Optimizing Windows NT

Computer: \\STEVEK05
Object logicalDisk

% Disk Read Time
% Disk Time
% Disk Write Time
% Free Space
Avg. Disk Bytes/Read
Avg. Disk Bytes/Transfer
Avg. Disk BytesMrite
Avg. Disk sec/Read
Avg. Disk sec/Transfer
Avg. Disk secMrite
Disk Bytes/sec
Disk Queue Length
Disk Read Byteslsec
Disk Readslsec
Disk Transfers/sec
Disk Write Bytes/sec
Disk Writeslsec
Free Megabytes

1
D:

0.077
100.000
100.000
79.403

4096.000
36122.619
36155.625

0.044
0.061
0.061

611435.923
0.000

71.378
0.017

16.927
611364.545

16.909
i::::::::::::::::::m:::O:O:O}

Figure 4.24 File creation on a three-spindle striped volume without parity

Notice the Avg. Disk seclWrite is 0.081 for the single unit and 0.061 for the striped
set. This results in higher Disk Bytes/sec. Striping reduces seeking and therefore
improves performance.

In Figure 4.24, drive D is striped across units 1,2, and 3. Let's look at the
performance of the Physical Disks.

Chapter 4 Detecting Disk Bottlenecks 153

<=1' jn;rU!Hri@l'l;:l~mnfWi t ... J·
file .Edit ~iew Qptions Help

1~IUlI~I~1 l+i[*JIXI 1~~IlJ:91 ~

Compuler: \\STEVEK05
Object: PhysicalDisk 1 2 3

% Disk Read Time 0.077 0.000 0.000
% Disk Time 100.000 0.000 0.000
% Disk Write Time 100.000 0.000 0.000
Avg. Disk Bytes/Read 4096.000 0.000 0.000
Avg. Disk Bytes/Transfer 36122.619 0.000 0.000
Avg. Disk ByteslWrite 36155.625 0.000 0.000
Avg. Disk sec/Read 0.044 0.000 0.000
Avg. Disk sec/Transfer 0.061 0.000 0.000
Avg. Disk seclWrite 0.061 0.000 0.000
Disk Bytes/sec 611435.923 0.000 0.000
Disk Queue Length 0.000 0.000 0.000
Disk Read Bytes/sec 71.378 0.000 0.000
Disk Reads/sec 0.017 0.000 0.000
Disk Transfers/sec 16.927 0.000 0.000
Disk Write Bytes/sec 611364.545 0.000 0.000
Disk Writeslsec 16.909 0.000 i::::::::::::::::::::::::g;:O:O:O]

Figure 4.25 Physical disk statistics for a striped volume

Whoops. What happened to units 2 and 3? Well, DISKPERF.SYS cannot see
which physical volume the write operation executes on. This is because
DISKPERF.SYS is located above the fault-tolerant disk driver FfDISK.SYS in the
driver stack, as shown in Figure 4.1. The decision as to which spindle will get the
data is made by FfDISK.SYS and therefore is invisible to DISKPERF.SYS. The
only way to get visibility would be to add another measurement driver below
FfDISK.SYS on the stack. But this would increase the overhead, and we elected
not to do it. The additional information is not important enough to warrant the
overhead.

Mirrors, stripes, and hardware RAID devices all share this Performance Monitor
characteristic: Performance Monitor summarizes all Physical Disk statistics under
the first unit assigned to the disk array.

The next experiment was to read 100 unbuffered (with no file system cache),
normally distributed records of 8192 bytes from the file on each drive type.

, 154 Optimizing Windows NT

Computer: \\STEVEK05
Object: logicalDisk

% Disk Read Time
% Disk Time
% Disk Write Time
% Free Space
Avg. Disk Bytes/Read
Avg. Disk Bytes/Transfer
Avg. Disk ByteslWrite
Avg. Disk sec/Read
Avg. Disk sec/Transfer
Avg. Disk seclWrite
Disk Bytes/sec
Disk Queue Length
Disk Read Bytes/sec
Disk Reads/sec
Disk Transfers/sec
Disk Write Bytes/sec
Disk Writeslsec
Free Megabytes

1
D:

95.509
95.509
0.000

79.403
8192.000
8192.000

0.000
0.025
0.025
0.000

318531.195
1.000

318531.195
38.883
38.883
0.000
0.000

i::::::::::::::::::m:::o.:o.:o.)

Figure 4.26 Reading from three-spindle striped volume

=1··.··.
.... ::.::•..........

••
File .Edit View .Qptions Help

~J(MI~I~I 1+1~lxl I@I~I ~ ~;;,>"

Computer: \\STEVEK05 0
Object: logicalDisk F:

% Disk Read Time 97.486
% Disk Time 97.486
% Disk Write Time 0.000
% Free Space 19.679
Avg. Disk Bytes/Read 8134.995
Avg. Disk Bytes/Transfer 8134.995
Avg. Disk ByteslWrite 0.000
Avg. Disk sec/Read 0.033
Avg. Disk sec/Transfer 0.033
Avg. Disk seclWrite 0.000
Disk Bytes/sec 241676.677
Disk Queue Length lOOO
Disk Read Bytes/sec 241676.677
Disk Reads/sec 29.708
Disk Transfers/sec 29.708
Disk Write Bytes/sec 0.000
Disk Writes/sec 0.000
Free Megabytes i:::::::::::::::::::]~::o.:o.:o.)

Figure 4.27 Reading from four-spindle hardware RAID

::: .. t·.1A

/
Chapter 4 Detecting Disk Bottlenecks 155

The hardware RAID is slower at this, for some reason. Perhaps its physical drives
are slower. The next two figures show our old test of rereading records of various
sizes to determine maximum disk throughput. The first figure shows the striped
volume, the next one shows the hardware RAID.

=-1
Eile .Edit ~iew Qptions Help

250

225f----------------------·--,-------
200' ... w.w'w ... • ·.w.w.w·.·.··········.··· ' .. w .w.w .. ···.·.·.· .. ·.··.·.···•................ ,.w.'ww ,.,

175 1 ..., n

751-~ - - 1"- - _.. - - -- - -- -A--n--~- ----- -... --- -
50 t-- - - - - - - - - - - - - -1-\- - -- J - - - - I --~-
2511~ - ,- - ,1-\1- J-\ -}-:- -V~t- -\---
oj :: .. .

Color Scale Counter Instance Parent Object Computer

~:::~:::~:::~i:Q[Q;:~~K~~l~~:~J~~~~~~2R~~~:::::~:~~::=:::§f.:::=::~:::~~:::~:::~::3:~:::~::::::::~:::~:~~:t~~J~:l§){~~:::~:::~::~~:~f~:9.H:~:~:::]
Figure 4.28 Disk throughput test for a three-spindle striped volume

, 1·1 '
Eile .Edit ~iew Qptions Help

~ Itl~10.l ~ ~
225i---------------.. -------r-.I-,.,-~-J"I---

..., " 200 I'" 1,1·""", "

175 • ~ 1- ,- f-J - -- ,-.... ----

150f--·-------n~·n-.-.~-~~r+-rlr.-I--I,f-~-~I~-~II-~-I~I----
125 ,

1~~fI! __ ---~-=
50 c---. -

25 - - .. - ~ - ---; -111--.--1' '- - --

oj" 1

Color Scale Counter Instance Parent Object Computer

r~:=:::~:::I[gQ;1~~:ri~~~::~i~~~~~2R~~~~::::~=:~_~:=::£_~:~~::~~::~_~:~~:::.~:==~=::::::::=:::=::~::::=t~~t~~§)~~:::~:::~:§~U~~E:~:~:]
Figure 4.29 Disk throughput test for a four-spindle hardware RAID

156 Optimizing Windows NT

Well, now isn't that interesting! The RAID device is quite impressive at higher
transfer sizes, and increases monotonically in performance as the transfer size does.
The striped volume is not so pretty. It has spots where the performance degrades
due to missed revolutions. (Because we are rereading the same record over and
over, only one spindle participates in this test.) But there is a serendipitous node at
the 8192 transfer size, which just happened to be the size in our test case.

Which of these two technologies would you rather spend your money on? You
need to understand the transfer size characteristics of your traffic to be sure. For
4096- or 8192-byte transfers, the striped volume wins; for transfers larger than
5 pages, the hardware RAID is the clear winner. Now don't get us in trouble by
trying to use these results directly in your shop. There are a lot of variables. With a
different controller, drive, or processor you get different results.

Another way to alter the outcome is to try writing instead of reading. When we
substitute writing for reading in the above test, we get 0.016 seconds per record for
the striped volume, 0.028 for the single spindle, 0.030 for the hardware RAID, and
0.041 for the mirror. Writing is slower on the mirror because both spindles must be
written. If we had another controller for one half of the mirrored pair we would
have possibly seen an improvement, not to mention better fault tolerance.

For detailed information on configuring your hardware for RAID access, refer to
.the RAID.DOC file on the floppy disk included with this book.

157

CHAPTER 5

Detecting Memory Bottlenecks

Memory shortage leads to poor performance faster than any other single resource
shortage. Why? Memory shortages can cause the computer to have to read and
write from the disk more often, and accessing the disk is much slower than just
executing instructions in the processor.

We briefly mentioned in Chapter 2 that Windows NT is a virtual-memory system
and uses paging so when it executes a program it doesn't have to store the entire
program in memory at one time. Instead, only part of the program, divided into
chunks of memory called pages, is in memory at anyone instant. When the
program instructions call for a page of code or data that is not currently in memory,
Windows NT must bring in that page from somewhere, usually a disk. It is possible
that a single instruction execution can cause one, two, or more page I/O operations.

The average instruction in today's computers takes something in the order of a
hundred nanoseconds to execute. (A nanosecond is one-billionth of a second.) We
saw in Chapter 4 that disk accesses range in orders around tens of milliseconds.
Even one missing page per instruction would make the machine run 100,000 times
slower than normal. Now that would be the mother of all bottlenecks!

Things do not usually get that bad. But they can get very bad, and when they do you
need to know what you can do about it. (Besides find another job; our boss calls
this Option 7, because if we haven't solved a problem in six tries, we're told that
Option 7 is no longer optional.)

158 Optimizing Windows NT

How the Windows NT Virtual Memory System Works

,

You probably know that Windows NT is a 32-bit operating system that runs both
16-bit and 32-bit applications. Even the system calls of 16-bit applications are
translated to 32 bits.

What does this mean? A program can see 32 bits worth of address space. This
translates to 4 gigabytes (4 billion bytes) of virtual memory. The upper half of this
is devoted to system code and data and is only visible to the process when it is in
privileged mode. The lower half-2 billion bytes-is available to the user program
when it is in user mode, and to those user-mode system services called by the
program.

Furthermore, the RAM on your Windows NT computer is divided into two
categories: nonpaged and paged. Nonpaged code or data must stay in memory
and cannot be written to or retrieved from peripherals. Peripherals include disks,
the LAN, a CD-ROM, and other devices. Paged memory is RAM which the system
can use and later reuse to hold various pages of memory from peripherals. Paged
memory is divided into page frames, that hold various pages from time to time
much as a picture frame can hold various pictures.

Page size varies with the computer's processor type. Page size is 4096 bytes (4K)
for 386, 486, and Pentium processors, the same for MIPS® processors, and
8192 (8K) for DEC® Alpha processors. Varying page size is the reason many
Performance Monitor counters are in bytes: 100 pages of data is not the same
amount of data on all computers.

When a page of code or data is required from a peripheral, the Windows NT
memory manager finds a free page frame in which to place the required page. The
system transfers the required page, and processing can continue. If no page frame is
free, the memory manager must select one to reuse. The memory manager tries to
find a page frame whose contents have not been referenced for a while. When the
memory manager finds a suitable page frame, it discards the page in it if that page
has not been modified since it was placed into RAM. Otherwise, the changed page
must be written back to its original location on the peripheral before the new page
can replace it. The memory manager has lots of tricks to minimize and anticipate
the flow of pages and thus reduce the possibility that paging traffic will beat the
peripherals into abject misery. We'll discuss a few of these as we go along.

Normally, programs execute by fetching one instruction after another from a
code page (a page that contains program instructions) until they call or return to a
routine in some other code page, or make a jump to code in another page. Or, they
can simply run off the end of the current page and need the next one. Such a transfer
of instruction control to a new page causes a page fault if the needed page is not
currently in the working set of the process. The working set of the process is the set
of pages currently visible to the process in RAM.

Chapter 5 Detecting Memory Bottlenecks 159

A page fault can be resolved quickly if the memory manager finds the page
elsewhere in RAM. It might be in the working set of some other process or
processes, or it might have been removed from this process's working set by the
memory manager in an overzealous attempt to keep the process trim and fit. The
memory manager places such pages on a list of page frames called the standby list,
and they can be reinserted into a process's working set lickety-split. But if the page
is not in RAM somewhere, the memory manager must find a free page frame, or
make one free as described above, and then fetch the required page from the
peripheral. One characteristic of code pages is it isn't normal for code to be
modified while in RAM, so code pages can be discarded without being written back
to disk.

Data pages, which contain data used by a program, are accessed in a somewhat
more random fashion than code pages. Each instruction in a program can reference
data allocated anywhere in the address space of a process. The principle, however,
is much the same. If an attempt is made to access a data page not in the working
set of the process, a page fault occurs. From that point on, the process is just as
described for code pages. The only difference between data pages and code pages is
that data pages are frequently changed by the processes that access them, and so the
memory manager must take care to write them on the peripheral before replacing
them with another page. A general page fault handling diagram appears in Figure
5.1.

Get page from disk or LAN. I+--~

Figure 5.1 Handling page faults on Windows NT

160 Optimizing Windows NT

Configuring Available Memory in Windows NT

[boot loader]

To see how much RAM Windows NT thinks your system has, switch to Program
Manager and choose About Program Manager from the Help menu. For testing
purposes, you can reduce the amount of memory that Windows NT thinks you have
by modifying the BOOT.INI file. This file has protected attributes. If you want to
modify it, make a copy of BOOT.INI first, and then use attrib to tum off the Read
Only, Hidden, and System attributes for BOOT.INI.

Caution By turning off the protected attributes, you can now overwrite BOOT.INI.
Some mistakes written to BOOT.INI can prevent Windows NT from starting.

To observe paging in action, it's useful to fool your system into thinking it has less
memory. This forces the memory manager into more activity that we can easily
observe. Find the line indicating the Windows NT operating system you want to
boot with. We'll add a IMAXMEM=n parameter to the end of your Windows NT
version line. The n is the number of megabytes you want to test. It is important that
you do not make this less than eight. Following is an example of a BOOT.INI file
set up with four versions of Windows NT, each configured to use different amounts
of memory.

timeout=30
default=multi(0)disk(0)rdisk(0)partition(1)\winnt

[operating systems]
multi(0)disk(0)rdisk(0)partition(1)\winnt"'''Windows NT Version 3.5"
multi(0)disk(0)rdisk(0)partition(1)\winnt-"Windows NT 3.5, 12Mb" IMAXMEM-12
multi(0)disk(0)rdisk(0)partition(1)\winnt-"Windows NT 3.5, 10Mb" IMAXMEM-10
multi(0)disk(0)rdisk(0)partition(1)\winnt-"Windows NT 3.5, BMb" IMAXMEM-B
c:\-"MS-DOS"

Examples of Memory Activity and Paging
This has been a fairly abstract discussion, so let's look at some concrete examples.
We'll start Clock, a Windows NT accessory, and see what kind of memory activity
occurs. Starting applications is relatively quick, so we'd better log at one-second
intervals if we want to see what's happening. We'll let the system settle down for a
few seconds, and then choose Clock from the Accessories Group.

Chapter 5 Detecting Memory Bottlenecks 161

=-1 Irr,r;frfmi!IWR;"j\~li'J!l!iil; I ... J ..
Eile Edit ~iew Qptions Help

leillWIl] I~I I+I~I~I I~Jlbl ~
100--

90

80

70

60

50

40

30

20

10~
-" -- -A}

0
Color Scale Counter Instance Parent Object Computer
lI--f .. i:;lii'J .;.c,. "." .. , "!'ii"" I;; ':;I+)£<;; ." ',»vi

Figure 5.2 Processor activity while starting Clock

Now let's add Memory: Page Faults/sec to the picture in Figure 5.3, it's the thick
black line. There are two bursts of page faulting, a large one followed by a small
one.

~

90

80

70

60

50

40

30

20

10

o~~-=~~~~~~

Color Scale Counter Instance Parent Object Computer
j~'-"-'--l~OOO~ % Proc~~~-~-T;'~'--'-""'-"""O"'-"""-"""-'-''''''--''''-~-":"--"'-""---'-"'--p;~~~;~;"----''''''''''\\C'E''REB'ELCU"M .. ··

Figure 5.3 Page faults while starting Clock

162 Optimizing Windows NT

Because page faults may not involve peripheral activity, it is important to look at
how many of these pages faults actually resulted in pages coming in from the disk.
In the next figure we have Page Faults/sec in a solid black line, and Pages Input/sec
in a dashed line. During the first peak of activity, there is a lot of page fault action
that does not result in disk activity. In the second peak, however, every page fault
seems to need a new page from disk.

90

80

70

60

50

40 I
f , ,',

~ ~, ,'.
20 :::

" 10 ::
r-----'""-_~---"__... l _,--""'---" ___ o .., __ _--;..-' (.. --:...- .. --~-,.. :.:. ! .. ".""'---------

Last I 2.983· Average I 12,443 Mini
Color. Scale Counter Instance Parent Object Computer

w;t;.J?%!lj~:~~;~jt~'l:{;;;.;~ii.;.;.:':;;:;2:';.~:~.~,::,~;;lL .. :;.;.; .. :;.:..;.i!~:;:.,.;;.2L:;,~.:L;:~:.:t~r;:~l:.;,,:.;.i:'i"·;:":;;!\'!1~:rrf1f}ji

Figure 5.4 Pages input while starting Clock

In the next figure, we can see how many times per second the memory manager
asked the disk driver for pages. We can see that this is less than the number of
pages input. The memory manager is asking for multiple pages on each request
to the disk driver. We told you the· memory manager was tricky!

Chapter 5 Detecting Memory Bottlenecks 163

=-1 j~r'liJ!InHmtH;:l;V;ll'mJ(,} I ... t ...
file Edit Yiew .Qptions Help

100

90

80

70

60

50

40

30

20

10
"

O~---------:'~----~

I ,
"
"
"
"
" "
" I::

f "
~ " I',' ,',' ,f" ,'.' .'.1\
tt, I

, " , '

Last 1--0.000 Averager-- 0.899 Min,-:---O.OOO Max[--.2M99 Graph Timer-- 52.000

Color Scale Counter Instance Parent Object Computer

[::'-'1 lOOO Pages Input/sec --0 Memory \\CEREBELLUM
~~~::::~:;:~::~:.:.:jI{[(ill:~jiiD~~b~~IiiiKtlI~:±~;:~C~:~~::~~~~.:::~::~:::~~~::::~~:~:~~::~::~::.::~~~:.:~~:':~~:~~::~:~.:::~::~:.~:::::::~~::::~.::~~:::~;~I~~5r~~~!~~:~::::~::,:~:·~~:~~::~~C~I~i!Fitlif.K1Si~~:i) 

Figure 5.5 Page reads while starting Clock 

Presumably Clock causes all this activity, but we'd better check. We can switch 
over to Report view and look at page faults committed by all the processes. When 
we do this we see there are three processes that have page faults during this time: 
Program Manager, Clock, and our old buddy CSRSS. Their faults are charted in 
Figur~ 5.6. Clock is highlighted, Program Manager is the thick black line, and 
CSRSS is the thin black line. 



164 Optimizing Windows NT 

Ii 
I, 

60 :1 
;'j' 

50 ~ , 

40 

30 " 

20 

10

1 o ' 
Last r--. 0,000 Avetage~7,124'; Min! 351.522. Graph Time! 52,000 

Color Scale Counter Instance Parent Object Computer 

~ lOOO Page Faults/sec progman ... Process \\CEREBELLUM ; 
r i 1.000 Po" Foultd,.., "'" - p""" \\CEREBELlUM ! 

~~I:::2:r:::':~~:IIlf&~~~jri1f!di~t21~[C:~::;.~?~::fn:~~TIE:=::~r4?E:::::}?~TIiDi1!:~illJ=~~:J:$!~m~~I~ 

Figure 5.6 Page faults by process while starting Clock 

Now we are getting somewhere. First, the little blip on the left is CSRSS. These 
page faults occurred when we switched focus to Program Manager to get ready to 
select Clock. Apparently not all the pages needed to perform this action were in the 
CSRSS working set at that point. It is also clear that the first peak of page fault 
activity was caused by Clock and to a much lesser extent, Program Manager. 
During this period we saw that most of the pages faulted were already in memory 
and we did not have to go to disk for them. How can that be? Clock is likely to use 
a lot of system windows and graphics routines which are already in use by other 
processes. These get put into the Clock working set through the page fault process, 
but they are probably already in memory because other processes are using them. 

CSRSS is generating a few page faults during the first peak, but it is largely 
responsible for the second peak. Because we saw that page faults and pages input 
were closely correlated during the second peak, we can deduce that the pages that 
CSRSS needed to bring in to handle the Clock startup were not in memory. This 
makes sense, really, because Clock uses a very large font for its digits, and such 
a large font is not likely to be lying around in memory. 

Now let's look at the disk activity this set of actions causes. We'll narrow our focus 
to the period of active paging, and look at some memory and disk statistics. 



.Eile fdit Yiew gptions tlelp 

Computer: \\CEREBEllUM 
Obiect: Memory 

Pages Input/sec 
Page Reads/sec 

o biect: logicalD isk 

21.685 
8.953 

Chapter 5 Detecting Memory Bottlenecks 165 

o 1 
C: D: 

Avg. Disk Bytes/Read 
Disk Reads/sec 

12024.242 4096.000 
6. 565 C:::::::::::::::::::::::~:.:~~~i 

Figure 5.7 Memory and disk reports when starting Clock 

By adding the values of LogicalDisk: Disk Reads/sec from the two drives involved 
we ,see their sum is just a little higher than the value of Memory: Page Reads/sec. 
On:' drive C we are reading almost 3 pages (12K) on every read request. Multiplying 
three times the Disk Reads/sec and adding the drive D Disk Reads/sec, we get the 
total Pages Input/sec of 21 +. So the paging statistics from the disk and memory are 
pretty closely related. Close enough for bottleneck detection, according to Rule #9. 
We had narrowed the time window down to five seconds here, so we have brought 
in about 105 pages. 

But we're just getting started! Let's take a look at the working set sizes of these 
processes. If they are faulting in a lot of pages, they are probably increasing their 
working sets. Figure 5.8 shows the working set sizes for each process that is 
causing page faults. 



166 Optimizing Windows NT 

100 

90 

80 

70 

60 

50 

40 

r---·-

30~--~ __________ ~ ~------

~~I 
Last! 663552.000 Averager 229218.469 Minr 0,000 Maxi 663552.000 GraphTime! 52.000 

Color Scale Counter Instance Parent Object Computer 

E3 0.000100 Working Set progman Process \\CEREBELLUM 
E::::3 0.000010 Working Set csrss Process \\CEREBELLUM . 

::~:~:::::~;:fR~ILrt1]~1:~1:r:i~!~~k;,~i£i;rs::I~::I::f:I::i::::;~~::~:=2.1~i~ilill~;:~~~~:~:~:~):~:I:~:~':~~~:::~~:~:~:~{::~~~:~;:Ji{{iI±~;E1;:2:::·:I]~:::~i~;EtI!~lliiSil[~a] 

Figure 5.8 Working set size growth when starting Clock 

Pay close attention to the scale factors used in this chart. Both Program Manager 
and Clock have working sets that rise to about 600K, but CSRSS is up to nearly 3 
MB. Sure enough, the working set sizes rise just as one might expect. At the start 
of the test, Program Manager has a fair number of p~ges lying in memory. The first 
thing that happens in our experiment is Program Manager brings into its working 
set whatever pages are required to launch Clock. Total growth in working set is 
84K (21 pages), which we can calculate by subtracting the Minimum from the 
Maximum on the value bar when selecting Program Manager. 

Then Clock, starting at ground zero, brings in its working set. A lot of these pages 
were already in memory, and are just being added to the Clock's working set so 
Clock can share them. Or perhaps they are fresh data pages that Clock needs, in 
which case the memory manager will provide Clock with a zeroed page frame, 
which also does not require disk input. 

As soon as Clock starts to use CSRSS to draw the large numerals on the clock face, 
CSRSS starts to bring in its pages. Although it looks like CSRSS has not increased 
much here, in fact it looks that way because its scale factor is ten times smaller; it 
has grown here by 88K, or 22 pages. Recall from Figure 5.4 that most of the 
CSRSS fault activity resulted in real pages from disk. Because we faulted in a total 
of 105 pages and we know that 22 went into CSRSS, we calculate that 83 went 
in to Clock and Program Manager. Because we know that Program Manager's 
working set grew by no more than 21 pages, that leaves at least 62 pages brought 
in from the disk by Clock itself. 



Chapter 5 Detecting Memory Bottlenecks 167 

Can these processes really need all this space? Perhaps not ~ll at once. The memory 
manager lets processes grow their working sets until memory pressure develops. 
This is indicated by the decline of another key counter, Memory: Available Bytes. 
In the next figure we add Available Bytes to the above chart to see how much free 
memory we have before and after the test. 

file ,Edit ~iew .Qptions .!::f.elp 

100 

90 

80 

70 

60--------

50 

40 

30~----------------~---------

20 

10 

O~----------------
Lastl 1044480 Average I 1446970 Mini 1044480 Maxi 1757184 Graph Time I . 53.000 

Figure 5.9 Available bytes decline when Clock starts 

From the value bar you can see that Memory: Available Bytes starts at about 1.7 
MB and ends right near 1 MB. When Memory: Available Bytes gets too low, the 
memory manager begins to take pages more aggressively from the working sets 
of inactive processes. It also makes different choices in which pages it replaces. 
Instead of allowing the working set of a process to grow and use up the remaining 
free memory, it takes pages from other parts of the working set of that process. 

This is a change from a global page replacement policy to a local one. When 
enough space becomes available, the memory manager again reverts to global 
replacement. On a Windows NT Server computer, you can fine-tune at which point 
this transition occurs. To do so, choose the Network option in Control Panel, and 
then select Server in the Installed Network Software list and choose Configure. You 
can play with the various options, but for normal system use we recommend using 
the Balanced option. We ran this experiment on a server system tuned to Maximize 
Throughput For File Sharing. We'll discuss the implications of the settings when 
we cover cache behavior in the next chapter .. 



168 Optimizing Windows NT 

Until memory pressure is significant, working sets grow and you can't tell by 
looking at them how much space they actually need. But we can create memory 
pressure, and we can empty memory fairly effectively with a little utility we call 
c1earmem. The c1earmem utility, which is on the floppy disk provided with this 
book, determines the size of your computer's RAM and allocates enough data to fill 
it. It then references all this data as quickly as possible, which will toss most other 
pages out of memory. It also accesses files to clear the cache, in case that is 
important to you. Let's run c1earmem on a system after we start Clock and see 
how large the working sets are after we have taken away all the unused pages. 

10 
01 .,~::~.:~.:-;:-;;,,~~ 

Last[ '229376.000 Average I 364651.781' Minr-I --- 52.000 

Color Scale Counter Instance Parent . Object Computer 

~ 0.00001 0 Available Bytes Memory \\CEREBELLUM 
E3 0.000010 Working Set progman Process \\CEREBELLUM , 

E::::3."~"w~EE!l,9Lq""~~!~.i[,l,~,2,~~.",",.","~WW~"'''''''w",,",9J.!!;''~,,.W"'.,M.'.' .. '.,. .• "., ..• "' .• "., ...... w." ... .,~!2£~~,,:."" ... ~"'"w.""'"~~!~.B E.!±"U ~,",: 
;:U~:Ltl~t$.R+~1~A~Jl;.~~4trl~jR~g~1.4:~:].;;]~j~~L.;};:Li::~:;,~::,;;.::.:.LiEl~J1;li%::~:i~.;~;'i~;~;.Jiii:~:L;;~;:.;;.:;~:~:\;~;lai£rdf.t;I:~;.:.L:;.,~:v.L:.: .. ~·::.;:i)!13.j.L;1illie.g.~.ttli 

Figure 5.10 Working sets reduced to operating minimums by the clearmem utility 

You can see Available Bytes, the thick black line, really climb as a result of 
c1earmem. Clock, highlighted, is reduced from its initial 648K to 224K. That's 
quite a difference. Program Manager has followed a parallel path. CSRSS has 
dropped back to 1.7 MB, about half the space it occupied previously. 

So we can see that the working sets were much larger than they needed to be to 
run Clock (and Performance Monitor). Isn't all this inefficient? No, it's not. The 
memory manager constantly makes tradeoffs between using the processor cycles to 
keep working sets trimmed up, and not using those cycles when it is not necessary. 
If there is plenty of memory, there is really no point in consuming processor time to 
trim working sets. You can see from this figure that, when memory is in demand, 
the trimming process occurs in high gear. 



Chapter 5 Detecting Memory Bottlenecks 169 

Let's return to the issue of starting Clock. We have left something out. We brought 
in a bunch of pages. It looked like they went into free page frames, because we saw 
the Available Bytes drop. But we have looked only at pages brought in to memory. 
What about the pages memory manager ejects? Figure 5.11 shows all page traffic, 
in and out, during and around the startup of Clock. 

-=[ 
Eile .Edit ~iew Qptions .t!.elp 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

o A .... -
Color Scale Counter Instance Parent Object Computer 

\~:::::::::::::::::::::::~:::~;IiJ:·:::Y~I~~::::fi1~;;i2~:~:::::::::::::::::::::::::::::::;::::::::~::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::fif[~!(::::::::::::::::::::::::::~\jE~~li;Ij~D;ll~::! 
Figure 5.11 Both input and output page traffic during the startup of Clock 

The input pages are the wide black line and the pages being written are the 
highlighted white line. It looks like some pages were written in response to our 
starting clock, right in the center of the figure. But it also looks like some were 
written both before our activity and after. What's going on? Pages that have been 
changed in RAM but are not yet updated on the peripheral they came from are 
called dirty pages. When changed pages are removed from a working set when 
there is not much memory pressure, the memory manager may not write those pages 
back to disk right away. Instead they are placed on a modified page list maintained· 
by the memory manager. Periodically a thread in the System process, called the 
modified page writer, examines the modified page list and writes some of the pages 
out to free up the space. This strategy prevents excessive writing of pages that are 
removed from working sets, only to be quickly reclaimed by the process using them. 
As free space becomes scarce, the modified page thread is awakened more often. 



170 Optimizing Windows NT 

We went through the working sets of all the processes in the system during this test. 
We found only one that had been trimmed during the test: the Imsvscs process. This 
process controls LAN Manager services such as the Workstation service, and is the 
agent for starting, stopping, and querying the status of such beasties. It has been 
idle on this system for quite some time, and the memory manager has removed a 
few pages from its working set just as we started logging activity. Clean pages 
went to the standby list, from which Imsvcs could retrieve them if they were 
needed. Those which are dirty go to the modified page list. When free page frames 
become scarce, pages on the standby list are cleared and added to the free list. If 
they are needed after that, they must come from the peripheral source. When the 
writing of a modified page is completed, the page-now clean-goes onto the 
standby list. 

70 

60 

50 

,40 

30 

20 

10 

o 

Help 

1~llbl ~ 

~-----------------1--------

Color Scale Counter Instance Parent Object Computer 

1.000 Pages Input/sec Memory "CEREBELLUM : 

0.000100 Working Set Imsvcs Process "CEREBELLUM; 

Figure 5.12 A working set is trimmed because it is inactive 

To see all the page traffic in both directions, use the Memory: Pages/sec counter. 
This counter indicates the overall level of paging activity. It is iInportant to watch 
both input and output pages, even though a page fault only results directly in page 
input. This is because a process could be flooding the system with dirty pages 
(which is what clearmem does to the extreme) and this can cause the memory 
manager to trim the working sets of lots of other processes. 



Chapter 5 Detecting Memory Bottlenecks 171 

Paging with Lots of Processes 
When we start Clock, it has to get into memory somehow (assuming it is not 
already there). When not in use, the program and those mondo fonts it uses are 
certainly better left on disk. Paging is the price we pay for being able to execute and 
address much more memory than will fit in RAM at one time. Usually, the price is 
quite reasonable, as in this case. Where is the bottleneck? Take a look at the next 
figure, where we've narrowed the time window to the three seconds of Clock 
startup activity. 

-=1 
File Edit View Qptions Help 

Computer: \\CEREBELlUtd 
Object: Processor 0 

% Processor Time C::::::::::::::::::::4.DQ~i 
o 1 

Object: logicalDisk C: 0: 

% Disk Time 33.833 16.836 

Figure 5.13 Nested bottlenecks during the startup of Clock 

The combined disk activity is 50.669%, while the processor is a close second at 
nearly 41.303%. The disk is the bottleneck. The system is fairly balanced, and if 
we got a faster disk subsystem we would quickly hit the processor bottleneck. We 
use 3 * 0.50669 = 1.520 seconds of disk time and 3 * 0.41303 = 1.239 seconds of 
processor time. The real elapsed time for Clock to start is the sum of these, or 2.759 
seconds. A bit more than half of that is disk time. Paging has certainly cost us 
something here but we're not going to hit the boss up for a new disk drive to solve 
this particular bottleneck. 

This is an important point. Paging is not inherently evil. It provides a very flexible 
system that uses memory in a reasonable way. It relieves the programmer of lots 
of memory management tasks-tasks which, if not performed carefully, can lead 
to unreliable programs that are difficult to maintain. But there are times when the 
computer simply does not have enough memory for all the necessary pages. Then 
we're in trouble. 



172 Optimizing Windows NT 

Let's take a look at a more extreme case. We'll crank up the old Response Probe 
and start adding processes to the mix. We'll set up each one to write to one 
megabyte of memory in a bell-shaped distribution of references. This should give 
us some idea of what things look like when life is not so rosy. Figure 5.14 shows 
processor usage and page traffic during this experiment. 

Figure 5.14 Processor usage and page traffic under increasing memory pressure 

As the experiment proceeds, we see processor usage start to fall and Memory: 
Pages/sec start to rise. These trends are not even because if a process can get 
enough pages into memory to make some progress it will grab the processor and 
execute for a while. Overall, however, things are going from fine on the left to 
awful on the right. 

But there's something else going on here which we should mention. On the right 
you can see some downward spikes in paging traffic. In the next figure we focus 
in on this section of activity. 



=al 
file .Edit ~iew Qptions t!.elp 

60 

50 

40 

30 

20 

10 

o 
Color Scale Counter 

Chapter 5 Detecting Memory Bottlenecks 173 

Instance Parent 0 biect Computer 

I \~::::::::::::::::::::::~::~:~D:::~:5JIRf]:1~:::=:::::::::::~:::::::::::::::::~:::~:::::::::::~:::::::::::~:::::::::::::::::::::::::::::::::::::]~r.fr.~~f;~:~:::::::;.::::.::::;)~~~Yf;ffi]~¥i~Ij 
Figure 5.15 System usage at the onset of paging 

The downward spikes in paging activity are accompanied by periods of full 
processor utilization. This is where a new copy of Response Probe is starting and 
calibrating the processor. 'Because this occurs at High Priority class, the other probe 
child processes are pretty much brought to a halt and their paging activity stops. 
When calibration completes, the child processes begin to compete for pages again. 

In the next figure we show the working sets of these processes as they apply 
increasing pressure on the system. By the time the third process has entered the mix, 
it looks as though they are settling down at their desired working sets, which seem 
to be at about 1.2 MB. Things go pretty well until the eighth process enters the mix, 
and then they degrade badly. To the right of the chart some processes are being 
forced out of memory for a while, and others are taking over. If we let them fight it 
out they would equalize to some extent, but the fact is there is just not enough room 
for everybody. From the previous chart we see that Pages/sec winds up in the 70s 
for sustained periods; that's just about as fast as this machine can execute page 
transfer. 



174 Optimizing Windows NT 

.!::::!.elp 

20 

18r----------------------------------------------------------------
16r-----------~------------------------------~~------------

14 

12 

10 

8 r---j'----I 
6r---I---~----1~-4----_+----_f-------r_--"f-~-~~~~~~~~~~. 

4 

2 ----
O~~----~--~--~----~----~----~----~~------~· 

Color Scale' Counter Instance Computer 
E=::r--"--o~o060100~rlJ~g·s~------"-pRff8-E2-------"-----"-Pr~~~;;----"···--·\\CEREBELL + 
E:::3 0.000010 Working Set PROBE3 Process \\CEREBELL 
E:::3 0.000010 Working Set PROBE4 Process \\CEREBELL 
E:::3 0.000010 Working Set PROBE5 Process \\CEREBELL 
E:::3 0.000010 Working Set PROBE6 Process \\CEREBELL 
E:::3 0.000010 Working Set PROBE? Process \\CEREBELL 
E:::3 0.000010 Working Set PROBE8 Process \\CEREBELL 

:I;;;:::::;ri!i~,~~I!mn:~:;J.iIf.[ljI!;rE;I:3;I2;:;;:i;E~:::::.r!!J!}rm;€lI:~::Zr~:~mEi~:m~I::I~I~?,~ll~iEI::::::;j~:m:rulri[{m • 

Figure 5.16 Response Probe working sets as memory pressure increases 

We need to focus on some of the activity on the right of the chart and look at the 
Memory object data that indicates excessive paging. 

Computer: \\CEREBELLUM 
o biect: to! emory 

Available Bytes 
Demand Zero Faults/sec 
Page Faults/sec 
Page Reads/sec 
Page Writes/sec 
Pages Input/sec 
Pages Output/sec 
Pages/sec 
Pool N onpaged Allocs 
Pool Nonpaged Bytes 
Pool Paged Allocs 
Pool Paged Bytes 
Transition Faults/sec 

L:::::::~:~~:?f~:.:QQQi 
2.616 

180.498 
25.824 
9.963 

29.793 
35.551 
65.345 

5696.000 
1204224.000 

2929.000 
1916928.000 

151.732 

Figure 5.17 Memory statistics when paging is excessive 



Chapter 5 Detecting Memory Bottlenecks 175 

We've already said that Pages/sec is a key indicator and here we see 65 per second 
moving to and from the disk. Paging rates like this, when not due to file activity, are 
more than a system can sustain and still perform well. Available Bytes are down to 
400K. Because the memory manager likes this number to hover in the 4-MB range, 
this is another indicator that we are extremely short of memory. 

There are 180 Page Faults per second. Notice that there are 151 Transition Faults 
per second. This means that most of the page faults are being resolved by retrieving 
a transition page-a page that is in memory but is being written to disk to update 
the disk copy at the time of the fault. Why does this happen here? 

Each probe process writes to a 1 MB data space with a normal distribution of 
references. As the memory manager attempts to retrieve space from the probe 
processes, it trims some pages from their working sets and, because the pages are 
dirty, the memory manager puts them on the modified page list. Because memory is 
so tight, it starts to write them to disk right away in hopes of freeing the frames 
holding them and satisfying the backlog of page faults. Once a write starts on a 
page it becomes a transition page. But the probe processes quickly re-reference 
many of the pages, because the bell-shaped reference pattern causes many pages 
in the middle of the curve to be touched repeatedly. A re-reference of such a page 
causes a page fault, because the page was trimmed from the working set. The page 
is found by the memory manager on the transition list, and replaced in the process's 
working set. The disk write process may stop·if caught in time; in this case, most of 
them are caught in time, as we'll see shortly. This is why the modified page writer 
tries to delay the writes, so it doesn't have to rewrite the pages, but when there is so 
little free memory it has no chance to delay. It must write pages to free up space as 
quickly as possible. 

Of the 180 Page Faults/sec, 151 are satisfied by these Transition Faults/sec, and 29 
of them are satisfied by Pages Input/sec. This is close enough to count in horseshoes 
and bottleneck detection. 

The demand zero faults come from the startup of new processes which require new 
cleared memory pages for their stacks and global data areas. These are satisfied by 
finding free page frames and filling them with zeros. We see that Page Reads/sec 
and Pages Input/sec are about equal, which means the memory manager is not 
having much luck bringing in multiple pages on a page fault. On the output side, 
however, the Page Writes/sec of 9.9 is causing Pages Output/sec of 35.5, or about 
3.5 pages on each page write. 



176 Optimizing Windows NT 

Monitoring the Nonpaged Pool 
Pools are where the operating system and its components obtain data storage, and 
we need to divert our attention to them for a moment. The data structures that 
represent system objects created and used by applications (and by the system itself) 
reside in these pools. Pools are accessible only in privileged mode, so you must 
transition to the operating system to see the objects stored in the pools. 

The paged pool is where the system allocates data that can be paged out to disk. In 
the nonpaged pool, pages do not leave memory. Space is obtained here if the data 
structures stored there can be touched by interrupt routines or inside the spinlock 
critical sections which prevent multiprocessor conflicts within the operating system. 
These pages must remain in memory because page faults are not permitted within 
interrupts or spinlocks. 

Uncontrolled growth in nonpaged pool space is a bug which you must watch for. If 
a computer is short of memory, you should check non paged pool size. This can vary 
quite a bit from one computer to the next, depending on the use of system services. 
You should note the nonpaged pool size at system startup, and compare that to its 
present value. It should not grow spontaneously during 'system operation, although 
each new object a program creates will use some nonpaged pool space. Gradual 
growth of nonpaged pool space is called a pool leak but, unlike pool leaks in the 
backyard, these pools get larger if there is a leak: stuff leaks in instead of out. A' 
typical cause for a pool leak is an application's repeated inadvertent opening of a 
file or some other object. 

The Memory: Nonpaged Pool Allocs indicate the total number of allocations 
currently in the pool. A division indicates the average size of the allocations, 211 
bytes in this case. This quotient trends in the direction of the size of a leak if there 
is a pool leak. If there is a pool leak, the current number of allocations rises. Total 
allocations will certainly grow. You may have to watch these values for hours 
before you catch a pool leak. 

Luckily, each process also has counters for Pool Nonpaged Bytes and Pool Paged 
Bytes. These are not precise counts, but rather estimates by the system Object 
Manager, which bills for pool usage based on object addressability rather than 
creation and destruction. In other words, a process is billed for the space to hold 
a thread object when the object is created and also when the handle to the object is 
duplicated. So process pool statistics tend to be overestimates, which we tell you 
so that you don't expect them to add up to the totals of the pool counters in the 
Memory object. The important thing is that if you have a pool leak you probably are 
able to discover which process is leaking by looking at the Process pool statistics. 



Chapter 5 Detecting Memory Bottlenecks 177 

As well as watching for leaks, we recommend you don't add protocols and drivers 
to your computer unless you need them. Windows NT is so easy to configure it is 
sometimes tempting to start everything possible. But there's no free lunch. Even 
idle protocols use pool space. 

Lack of Memory Causes Disk to Suffer 
When your computer is memory poor, it's the disk that pays. Look at the poor C 
drive in the next figure. 

=1 i,f;ti)1111iJ> 1 ... 1'" 
Eile Edit ~iew Options Help 

lal~I(jI~1 1+I~jIXI I@if,m~ ~ ~ ::; 

Computer: \\CEREBELLUM 
Obiect: Memorv 

Page Faults/sec c::::::::::::::]e.QA~:~j 
Page Reads/sec 25.824 
Page Writes/sec 9.963 
Pages Input/sec 29.793 
Pages Output/sec 35.551 
Pages/sec 65.345 
Transition Faults/sec 151.732 

0 
Obiect: LogicalDisk. C: 

% Disk Read Time 100.000 
% Disk Time 100.000 
% Disk Write Time 100.000 
Avg. Disk Bytes/Read 4703.836 
Avg. Disk Bytes/Transfer 7445.408 
Avg. Disk Byteslw'rite 14536.725 
Avg. Disk sec/Read 0.235 
Avg. Disk sec/Transfer 0.211 
Avg. Disk seclw'rite 0.151 
Disk Bytes/sec 267829.342 
Disk Queue Length 6.000 
Disk Read Bytes/sec 122030.276 
Disk Reads/sec 25.943 
Disk Transfers/sec 35.972 
Disk Write Bytes/sec 145799.066 
Disk Writes/sec 10.030 

Figure 5.18 Lack of memory causes excessive disk usage 

Did your eyes snap first to the disk utilization, then to the queue length? This disk 
is maxed out. And look at those transfer times. Almost a quarter of a second on 
average. This disk is seeking its brains out. 

There are 9.963 Page Writes/sec, and 10.030 Disk Writes/sec. Once again, values 
this close are good enough for bottleneck detection. Similarly we see 25.824 Page 
Reads/sec and 25.943 Disk Reads/sec. Looks like the memory manager is certainly 
dominating the use of this disk drive, and that all its' activity is directed to this 
volume. This situation would be a good candidate for splitting the paging file onto 
separate volumes, to reduce the excessive seeking that we see. 



178 Optimizing Windows NT 

There are some related figures. Dividing the value of Pages Output/sec by Page 
Writes/sec gives 3.578 pages per write. Multiplying that by 4096 bytes per page 
gives us 14655 bytes per disk write, which is remarkably close to the 14537 value 
of Avg. Disk ByteslWrite. You can't expect these to match perfectly, because 
Performance Monitor is writing to this disk once every ten seconds. Similarly, 
dividing Pages Input/sec by Page reads/sec yields a result of 1.154 pages per read. 
Multiplying this by the bytes per page gives us 4726 bytes per read, which is very 
close to the 4704 value for Avg. Disk ByteslRead. 

What a Memory Hog Looks Like 
A memory hog is an application that either through self-indulgent design or sheer 
complexity of mission, absorbs large amounts of memory. Let's take a look at a 
memory hog application, in Figure 5.19. There is a little paging activity on the left 
(highlighted in white) and then the processor (thin black line) saturates for a bit, 
and then kablooey, the disk is pegged and Pages/sec goes crazy, while the processor 
is suppressed and only gradually regains some ground as paging subsides a bit. 

90 

80 

70 

60 

50 

40 

30 

20 

10 

o 
Color Scale Counter Instance Parent Object Computer L"-'... ~:ooo % P,,,,,,~or~T;im~e ~~~o ~~~~~~]p~ro~ce~ss~or~~\\~C~ER~E~BE~L~LUriM~' 

Figure 5.19 Overview of memory hog activity 

We know enough already to know that this system is memory bound. The sustained 
high paging rate is the only clue we need. But who's the culprit? Let's take a closer 
look. 



file ,Edit ~iew Qptions .t!.elp 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

o 

Chapter 5 Detecting Memory Bottlenecks 179 

,..... ........ ----, 
Lastl'---o.OOO Averagel63.058 Minr--O-.OOO Max[--305.308 Graph Time [---;-5S.000 

Color Scale Counter Instance Parent Object Computer 

~l:q~~~~!i~==:~=:=:=~="~~~!f=~=.:~~ 
~ 0.000010 Working Set MEMHOG Process \\CEREBELLUM 
~ 0.000010 Working Set ntvdm Process \\CEREBELLUM 
E3 0.000010 Working Set CJl.LC Process \\CEREBELLUM 

Figure 5.20 Memory hog innards exposed 

On the left we see the processor utilization (thin black line) shoot up to the max 
during Response Probe calibration. There is some paging activity (highlighted) as 
Response Probe is first brought into memory. The NTVDM running Word for 
Windows loses a bit of its working set at this time as indicated by the black dotted 
line. During calibration there is some more paging activity as the memory manager 
seeks to get back to 4 MB of free space. The NTVDM loses a bit more, and 
presumably some other process not shown because we see a nice gain in Available 
Bytes (thick black line). Things are pretty quiet during calibration, but when the 
probe starts the MemHog process, life gets exciting. 

Pages/sec goes wild, up to 305 as the value bar indicates. The rising thick black line 
of the MemHog working set creeps up across the display, destroying everything in 
its path. The working sets of NTVDM and Calc get trimmed, as well as those of 
other processes not shown. This causes some momentary increases in Available 
Bytes (the other thick black line), which are short lived as the counter eventually 
succumbs to memory demands and yields most of its gains to the MemHog. In the 
face of all this paging activity, the processor usage has dropped quite low. This is 
more typical of severe paging than the previous example, where some of the probe 
processes were able to make some processor headway in between page faults. This 
example illustrates the inability of the applications to use the processor in the face 
of the heavy disk demands imposed by excessive paging. 



180 Optimizing Windows NT 

Calc has the working set indicated by the dashed black line. Notice that it is level 
until about halfway across the screen. Why? Because Calc was in the foreground 
before the test started. The memory manager favors the working set of the 
foreground process. Both Program Manager and, in particular, CSRSS get favored 
treatment also. The memory manager waits until things are quite desperate before 
trimming pages from the working sets of these favored processes. In this case, the 
memory manager is forced eventually to abandon this policy and give the memory 

. used by the Calc working set to MemHog. Bummer. Now when you switch back 
to Calc, expect a delay and some disk rattling. 

As MemHog builds up its working set, paging softens a bit and the processor 
utilization improves. But there is no real relief until the MemHog program ends. 
Then Available Bytes soars as all that memory is returned for other uses. What a 
relief! 



181 

CHAPTER 6 

Detecting Cache Bottlenecks 

On MS-DOS® systems, the primary tuning parameter in the system is the size of 
the disk cache. Recent versions of MS-DOS and Windows® have reduced the need 
for you to tweak this parameter because they adapt a bit to the memory size of the 
machine. Still, few users of those systems can resist the temptation to display their 
computer prowess by tuning the cache size. 

As we shall see shortly, the Windows NT cache adapts itself automatically to 
memory size and pressure in the computer and has few tuning controls. In this 
chapter we'll explore how the file system cache works on Windows NT and 
show how you can determine if it is the primary focus of system activity. 



182 Optimizing Windows NT 

File System Cache Overview 
The file system cache is a buffer that holds data coming from or destined for disks, 
LANs, and other peripherals (such as CD-ROM drives). Windows NT uses a single 
file system cache for all cachable peripheral devices. For simplicity we'll refer 
primarily to the disk as the source of data, but keep in mind this is a simplification, 
and any time we use the word "disk" in this chapter you may substitute LAN or 
CD-ROM or the high speed peripheral of your choice. 

Unless an application specifies the FILE_FLAG_NO_BUFFERING parameter in 
its call when opening a file, the file system cache is used when the disk is accessed. 
On reads from the device, the data is first placed into the cache. On writes, the data 
goes into the cache before going to the disk. 

Unbuffered I/O requests have a quaint restriction; the I/O must be done in a 
multiple of the sector size of the disk device. Because buffering usually helps 
performance a lot, it is rather unusual for a file to be opened without buffering 
enabled. The applications that do this are typically server applications (like SQL 
Server, for example) that manage their own buffers. For the purposes of this 
chapter, we will consider all file activity to be buffered by the file system cache. 

When Windows NT first opens a file, the cache maps the file into its address 
space, and can then read the file as if it were an array of records in memory. When 
an application requests file data, the file system first looks in the cache to see if the 
data is there, and the cache tries to copy the record to the application's buffer. If 
the page is not in the working set of the cache, a page fault occurs, as shown in 
Figure 6.1. 



Chapter 6 Detecting Cache Bottlenecks 183 

Gel page from disk or LAN. 

Figure 6.1 Cache references to absent file pages are resolved by the memory 
manager 

If the page is in memory, it is mapped (not copied) into the cache's working set. 
This means a page table entry is validated to point to the correct page frame in 
memory. If the page is not in memory, the memory manager gets the page from 
the correct file on the peripheral. This is how the cache manager uses the memory 
manager to do its input. The cache is treated much like the working set of a process. 
It will grow and shrink as demand dictates. 

Let's see how this looks to Performance Monitor. 



184 Optimizing Windows NT 

Basic Cache Experiments 
The experiments in this chapter were done on a 386SXl25 laptop with 12 MB 
RAM and a 120-MB hard drive. The first thing we do is see how the disk performs. 

=1 ... .. .... .... .••. ,<L;;IH!F •.. ... ... ..•.. ...•.•.. .... ....., . d ..... 1 .... 
Eile Edit :\!:iew .Qptions .!::::!.elp 

200 

180~--------------------~-------------'----------------

160r---------------------------------------------------

140r---------------------------------------------------

120 . "---------------------~.------

~~- -~ I_~c -1-·· _. . .-v-.. - --._-
o . 

Color Scale Counter Instance Parent Object Computer 

1~:~;:~~:~]~81~Ir~:~i.~f~~~~~~~~;~i:;~~:;:;~::~;;:;fI:~:;;:~:~:;~t~~ji;~:~~;;,~~8.0t~~:[!ii~~~ 
Figure 6.2 Disk performance of an example 386SXl25 laptop 

Hey, that's not bad performance for a carry-on. 

Let's take a quick look at why we might want to use caching in the first place. 
We'll do some tests, and run cIearmem before each trial to make sure the cache 
is clear of file data before the test begins. In the first, we'll read a 1 MB file 
sequentially using 4096 byte records. In the second, we'll write the same file 
sequentially. (When Response Probe reaches the end of the file while doing 
sequential disk access, it restarts at the beginning.) In the third test, we'll read the 
file randomly with our usual bell-shaped normal distribution. In the last we'll read a 
record under normal distribution, and then write that record. In the next table we 
see the results of these tests, expressed as the response time to do one file operation 
of the type specified. 



Chapter 6 Detecting Cache Bottlenecks 185 

Table 6.1 Cached vs. Non-cached File 110 Times in Milliseconds per Record 

Type of file access Operation Non-cached time Cached time 

Sequential Read 6.58 1.32 

Sequential Write 22.91 1.70 

Random Read 20.45 1.51 

Random ReadlWrite 40.66 3.16 

Okay, you were probably convinced anyway, but now we know for sure. Caching 
is good for performance. 

So now let's take a look at what's going on inside. We'll create a 10 MB file and 
we'll read from it 8192 byte records spread over about 4 MB in the middle of the 
file in, you guessed it, a normal distribution. The following picture emerges. 

I 
\ '. " 
" ttl' \. If 

• \ J "', '1 I", I, 
II .... I, 

' ... '. 'U • t 'I 

I • t " 

" , 
" , .' . . ' . . ' , 
" , 
" -
~ 

30 i~ A : n 
20,: -" 'I v 

10 f t/V 
o 

Last I 688128.000 Average I 2601765 Mini 589824.000 Maxi 3801088 Graph Timel 56.000 

Figure 6.3 System behavior during cached reading of a large file 

At the beginning, the processor utilization goes way down and the disk utilization 
goes way up, while the cache (highlighted in white) grows. When the cache gets to 
about 3 MB, the ,disk and processor utilization lines cross, disk activity drops off, 
and the processor activity picks up. 



186 Optimizing Windows NT 

The dark black line is Memory: Available Bytes. There is meaning behind the /, 
sawtooth in this line. When Available Bytes drops below 4 MB, the memory 
manager wanders about the system trimming working sets in the off chance that 
some pages are not in active use. You can see the cache is also trimmed. Available 
Bytes jumps as a result of the trimmed pages becoming available. The cache 
quickly recovers its trimmed pages because they are in active use. It continues to 
expand and takes more of the Available Bytes as it does. As the cache settles to its 
necessary size, it has suppressed Available Bytes to about 2.75 MB, and the system 
stabilizes here until the experiment ends. 

The next figure shows the cache statistics for this test case. Starting at the top, the 
asynchronous counters show activity for asynchronous I/O requests (you could have 
guessed that, right?). When it does asynchronous I/O, an application fires off a file 
request and keeps on processing other stuff, checking the status of an event to 
detennine completion of the request. This pennits applications to overlap file 
operations with each other and with other processing. This could also be done by 
assigning a separate thread to handle the file operation, but that is quite expensive 
in terms of memory used compared to asynchronous I/O. Many applications do 
synchronous file operations, in which case the application waits until input data is 
available. 

"""I ""'<': :>:'::., .:: ...... : .... :.'.,:::::: "',, "'. " 1 .... 1 ... 
File Edit View Options Help 

~I~I(}I~I [±:I~~lxl 1@lllsf ~ ," 

Computer: \\WAlKINGDOG 
Object: Cache , 

Async Copy Reads/sec 0.000 
Async Data Maps/sec 0.000 
Async Fast Reads/sec 0.000 
Async MDl Reads/sec 0.000 
Async Pin Reads/sec 0.000 
Copy Read Hits % 95.598 
Copy Readslsec 423.046 
Data Flush Pages/sec 5.935 
Data Flusheslsec 1.137 
Data Map Hits % 90.909 
Data Map Pins/sec 0.000 
Data Maps/sec 0.195 
Fast Read Not Possibles/sec 0.000 
Fast Read Resource Misses/sec 0.000 
Fast Reads/sec 422.957 
lazy Write Flushes/sec 1.137 
lazy Write Pages/sec 5.935 
MDl Read Hits % 0.000 
MDl Readslsec 0.000 
Pin Read Hits % 97.143 
Pin Reads/sec 1.244 
Sync Copy Reads/sec 423.046 
Sync Data Maps/sec 0.195 
Sync Fast Reads/sec 422.957 
Sync MDl Reads/sec 0.000 
Sync Pin Reads/sec 1::::::::::::::::::::::::1:::2:4:41 

Figure 6.4 Cache statistics during the reading of a large file 



Chapter 6 Detecting Cache Bottlenecks 187 

The first counter with activity is the hit ratio for copy reads, Copy Read Hits %. 
This is the normal file system read. It causes data to be copied from the cache to 
the application buffer. A hit occurs when a request is made by the file system for 
data and the data is already in the cache. We see a high hit rate and an impressive 
number of operations per second. We'll take another look at this. 

There is a little bit of file output activity, indicated by the two Data Flush counters 
monitoring cache output. Data flushing occurs when the cache manager is told to 
make room by writing some modified pages out to the peripheral(s). There are a 
number of code paths that can trigger a data flush: 

• The cache manager's lazy writer thread (in the System process) wakes up 
periodically looking for modified cache pages to flush to disk. The two lazy 
writer counters reflect this activity. 

• The memory manager's mapped page writer can cause data flushes if memory 
becomes tight or if the number of modified pages mapped into the cache's 
address space becomes large. (The mapped page writer is a System process 
thread that handles dirty file pages mapped into the address space of some 
process or the cache. The mapped page writer thread is kin to the modified page 
writer mentioned in the previous chapter. The difference is the modified page 
writer writes dirty pages only for the paging files. We'll say more about mapped 
files shortly.) 

• An application can instruct the file system to flush the cache for a particular file. 

All of these actions call the data flush operation, which in tum invokes a memory 
manager routine to build an output request for the file system to actually place the 
data onto the peripheral(s). By the way, it's Performance Monitor that is writing the 
data here. Heisenberg in a laptop! 

Look at the high percentage of Data Map Hits. Wow, what a great cache hit rate! 
Wrong! True enough, the hit rate is high, but the operation count as measured by 
Data Maps/sec is small. It is very important to watch the operation counts when 
trying to interpret the hit rates. Data maps are used to map in file system meta-data 
such as directories, the File Allocation Table in the FAT file system, Fnodes in 
HPFS, or the Master File Table in NTFS. If this count is high, you are burdened 
with directory operations and the like. This may indicate the copying of many small 
files, for example. You'll see Data Map Pins when the mapped data is pinned in 
memory preparatory to writing it, indicating the system is making changes to file 
system data structures. 



188 Optimizing Windows NT 

To emphasize the importance of looking at both the hit rate and the operation 
frequency, in the next figure we illustrate the relationship between Copy Read 
Hits % and Copy Reads/sec. On the far left there is a spike in Copy Read Hits % 

. but the low operation rate renders this unimportant. Then, as the cache grows in 
size to accommodate the file, the counters rise together. The result is the lower disk 
traffic and better processor utilization numbers seen on the right half of Figure 6.3. 

90 

80 

70 

60 

50
1 

401 

30 1 

20 
~I 

10 

0 d 
Last I 0.000 Averagei 423.002 Mini 0.000 Max I 905.476 Graph Time I 56.000 
Color Scale Counter Instance Parent Object Computer --... - ......... ---....~.------............................ -------

1.000 Copy Read Hits % Cache \\WALKINGDOG: 
.v ..... ~::;~lf:.rtEirfE1EL~~ItItljJfl17iii;~J.E~~~~~:::~::i:I:;:~=[~i~:::~:~I,:~~:~::r~~II~~::~::=~~;::~~~I~~:~:~~~~::~~~]!:gJili[~l:r~:l;~:~:~:::I~]£l~!l;!!k~~fi(il 

E:::3 0.000010 Cache Bytes Memory \\WALKINGDOG' 

Figure 6.5 Copy Read Hits % and Copy Reads/Sec during reading of a large file 

We mentioned in an earlier chapter that Fast Reads are the 110 manager look-aside 
mechanism which can bypass the file system and obtain data directly from the 
cache. Ideally, most application file requests are handled,in this fashion because it 
is very efficient. 



Chapter 6 Detecting Cache Bottlenecks 189 

A multiple data list (MDL) request is a way for a file system to deliver large blocks 
of cache data using direct memory access (DMA). The MDL provides a physical 
memory address for each page involved in the transfer. The Windows NT server 
process sometimes uses this method for large transfers of data from cache. 

In a Pin Reads operation, the cache is reading data with the objective of writing it. 
To do the write to a partial page, the cache must first read the entire page off the 
peripheral. The page is "pinned" in memory until the write takes place. The hits 
occur when the data is already in the cache at the time of the read request. 
Because of pinning, writes always hit the cache, or else go into new page frames 
materialized for the purpose when written to new space. 

The Sync counters exist just to break out which requests are synchronous versus 
which ones are asynchronous, as described previously. This breakdown is not going 
to be of vital concern to you often. If you have a lot of cache activity and you have 
an application mix that uses these two different access modes, the hit rates of the 
two might give you a clue as to which applications were hitting the cache and which 
were missing. Usually your powerful server application will be using asynchronous 
file access to get the best concurrency for the least system cost, and you will be able 
to determine if that application is the one that is getting the cache hits (or misses). 

The upshot of all this is that for normal file read operations you watch Copy Read 
counters to judge activity. For normal file write operations you watch the Data 
Flush counters to judge activity. Data Map operations generally indicate directory 
activity, or activity on lots of files. It's really not as complicated as it looks. 



190 Optimizing Windows NT 

Sequential Reading and Writing 
Let's take a look at another very common case. Let's process this file sequentially, 
first reading a record and then writing it. We'll set the record size to 512 bytes this 
time. We still have a 10-MB file. The next figure tells the tale. 

100 

90 

SO 

70 

60 

50 

40 

o 
Last I ·962560.000 Average I 2965504. Graph Timer 

Figure 6.6 Cache and disk activity while reading and writing a large file 
sequentially 

Processor utilization is the heavy black line at the top of the chart: it's pinned at 
100%. The disk is quite busy both reading (dotted line) and writing (thin black 
line). The cache does not grow as large even though we are processing the entire 
10MB file, much more data than in the last example. Why? The cache manager 
detects that the file is being read sequentially and realizes that retaining lots of file 
data in the cache will not help much, because it is probably not being re-referenced. 
The next figure shows the cache statistics for this case. 



Eile .Edit View Options .!::J.elp 

Computer: \\WALKINGDOG 
Object: Cache 

Async Copy Reads/sec 
Async Data Maps/sec 
Async Fast Reads/sec 
Async MDL Reads/sec 
Async Pin Reads/sec 
Copy Read Hits % 
Copy Reads/sec 
Data Flush Pages/sec 
Data Flushes/sec 
Data Map Hits % 
Data Map Pins/sec 
Data Maps/sec 
Fast Read Not Possibles/sec 
Fast Read Resource Misses/sec 
Fast Reads/sec 
Lazy Write Flushes/sec 
Lazy Write Pages/sec 
MDL Read Hits % 
MDL Reads/sec 
Pin Read Hits % 
Pin Reads/sec 
Sync Copy Reads/sec 
Sync Data Maps/sec 
Sync Fast Reads/sec 
Sync MDL Reads/sec 
Sync Pin Reads/sec 

Chapter 6 Detecting Cache Bottlenecks 191 

0.000 
0.000 
0.000 
0.000 
0.000 

99.945 
338.329 
45.439 
2.964 
0.000 
0.000 
0.000 
0.000 
0.000 

338.329 
2.944 

46.227 
0.000 
0.000 

100.000 
0.145 

338.329 
0.000 

338.329 
0.000 

i::::::::::::::::::::::::QI4:~] 

Figure 6.7 Cache statistics for read/writing a large file sequentially 

The high Copy Reads/sec of the example in the previous section are lower here 
because now we are writing the data as well as reading it. There are 45 Data Flush 
Pages/sec, but the flush is only occurring 2.9 times per second. This means we 
are sending out 45/2.9 or about 15 pages on each flush. This also tells us that 
the cache manager has discovered the sequential nature of our file access and 
is grouping together lots of pages to expel at once. As we have seen previously, 
large transfer blocks are very efficient. The lazy writer would like to write 
the sequential data in 64K chunks. However, the lazy writer is not doing all the 
writing here because there are just a few more Data Flushes/sec than Lazy Write 
Flushes/sec. This means the mapped page writer has become concerned about 
memory from time to time and does a little page output of its own. This can 
interfere with the sequential nature of the lazy write output and slightly reduce 
the number of pages per write. 



192 Optimizing Windows NT 

Eile .Edit ~iew Qptions Help 

Computer: \\WAlKINGDOG 
Object: Cache 

Copy Read Hits % 
Copy Reads/sec 
Data Flush Pages/sec 
Data Flushes/sec 
Fast Reads/sec 
Lazy \.IIrite Flushes/sec 
Lazy\.llrite Pages/sec 
Pin Read Hits % 
Pin Reads/sec 
Sync Copy Reads/sec 
Sync Fast Reads/sec 
Sync Pin Reads/sec 

Object: System 

Context Switches/sec 
File Control Bytes/sec 
File Control Operations/sec 
File Data Operations/sec 
File Read Bytes/sec 
File Read Operations/sec 
File \.IIrite Bytes/sec 
File \.IIrite Operations/sec 
Processor Queue Length 
System Calls/sec 

99.942 
337.865 

45.761 
2.984 

337.887 
2.963 

46.583 
100.000 

0.130 
337.865 
337.887 

0.130 

48.897 
119.376 

2.984 
0.130 
0.000 
0.000 

2978.698 
0.130 
1.000 

!::::::::::::]AQ~;:~7.:~] 

Figure 6.8 Cache and system statistics for read/writing a large file sequentially 

We can tell for sure from Figure 6.8 that we are on the fast read path because the 
file operation counts in the System object are nearly all zero. This means the 110 
manager is diverting requests to the cache and it rarely needs to get the file system 
involved in data retrieval or deposit. We see 1405 system calls for every 338 reads, 
for four system calls per read. We happen to know that there is a write for every 
read because that is what we told the probe to do, and we'll get a seek for every 
read because that's what the general algorithm in the probe does. 

The system needs to perform a seek for the write to get back to the start of the latest 
read so we can rewrite the record. It's not hard to see why there are four system 
calls per read. The W AP tool we discuss later in Chapter 10 would be a more direct 
way to determine application file activity. 



Chapter 6 Detecting Cache Bottlenecks 193 

Look at how efficient data flushing is. Although we are doing almost 338 reads per 
second and the same number of writes, the lazy writer is only waking up about 3 
times per second and writing 15 pages each time. The System process is only 
using 3.3% of the time to do all this. The following figure shows the threads of the 
System process. That process is using very little processor time to eject these pages. 
The threads most involved here are the lazy writer thread, the mapped page writer 
thread, and the modified page writer thread (clearing memory for the cache). If the 
system is creating a file, the demand zero thread works to create page frames filled 
with zeros. If memory is tight, the working set manager thread . works to trim 
working sets to make space. 

-=1 " ; f~~t(il1mi}i1Jl!{~ l:~t)llm\r, I ... J ... 
file fdit View Options Help 

1(5]IUlI(jI~1 1+1~lxl 1@ll;m1 ~ ~~. 

Computer: \\WALKINGDOG 
Object: Process System 

% Privileged Time 3.309 
% Processor Time 3.309 
% User Time 0.000 
Elapsed Time 0.000 
File Control Bytes/sec 0.000 
File Control Operations/sec 0.000 
File Read Bytes/sec 0.000 
File Read Operations/sec 0.000 
File Write Bytes/sec 0.000 
File Write Operations/sec 0.000 
ID Process 7.000 
Page Faults/sec 0.000 
Page File Bytes 32768.000 
Page File Bytes Peak 98304.000 
Pool Nonpaged Bytes 194676.000 
Pool Paged Bytes 61746.000 
Priority Base 8.000 
Private Bytes 32768.000 
Thread Count 15.000 
Virtual Bytes 516096.000 
Virtual Bytes Peak 589824.000 
Working Set 12288.000 
Working Set Peak t:::::::::~:$.:~:~:$.:~:QQQi 

Figure 6.9 Lazy writing by the System process is truly lazy 



194 Optimizing Windows NT 

1~lwl(jllill ~ 

Computer: \\WALKINGDOG System System System System System 
Object: Thread 1 2 3 B 9 

% Privileged Time 1.103 1.103 0.714 0.227 0.195 
% Processor Time 1.103 1.103 0.714 0.227 0.195 
% User Time 0.000 0.000 0.000 0.000 0.000 
Context Switcheslsec 2.855 3.179 2.984 0.800 1.146 
Elapsed Time 2655.600 2655.600 2655.600 . 2655.570 2655.570 
ID Process 7.000 7.000 7.000 7.000 7.000 
ID Thread 6.000 5.000 4.000 39.000 38.000 
Priority Base 8.000 8.000 8.000 8.000 8.000 
Priority Current 16.000 16.000 16.000 17.000 16.000 
S tart Address 2148793542 2148793542 2148793542 2148840710 2148852502 
Thread State 5.000 5.000 5.000 5.000 5.000 
Thread Wait Reason 0.000 0.000 0.000 7.000 l::::::::::::::::::::::J:Lo.:o.:o.: 

Figure 6.10 System process threads divide the lazy work up 

Let's see how the disk fares under all this pressure. Figure 6.11 shows disk 
behavior and how that behavior relates to cache and virtual memory activity. Let's 
continue to look at the output side. If we add Cache: Data Flush Pages/sec and . 
Memory: Pages Output/sec we get 50.605 per second. Multiplying by 4096 
bytes/page gives 207208 bytes per second, quite close to the 210955 Write 
Bytes/sec the disk drive is seeing. The reason the lazy writer thinks more pages are 
written is that after they have been handed to the data flusher, they are handed to 
the memory manager. It's the memory manager that makes the ultimate decision 
about whether the page is still dirty or not. So some lazy write flushed pages may 
already have been written by the memory manager by the time the data flusher tries 
to write them. 



Chapter 6 Detecting Cache Bottlenecks 195 

=-1 !fJ;:l1mmmWFj~flmi(if' l"J .... 
Eile .Edit ~iew Qptions Help 

1~1(ll1 C?llfill 1+1E-t.-1lxJ I~I~I ~ 
Computer: \\WALKINIiDOIi 0 

Object: LogicalDisk C: 

% Disk Read Time [:::::::::::::::::::A~:$.~~i 
% Disk Write Time 100.000 
Avg. Disk Bytes/Read 52051.117 
Avg. Disk ByteslWrite 42045.793 
Avg. Disk sec/Read 0.141 
Avg. Disk seclWrite 0.207 
Disk Read Bytes/sec 173352.368 
Disk Reads/sec 3.330 
Disk Transfers/sec 8.348 
Disk Write Bytes/sec 210954.862 
Disk Writes/sec 5.017 

Object: Memory 

Page Reads/sec 2.790 
Page Writes/sec 0.303 
Pages Input/sec 42.322 
Pages Output/sec 4.844 
Pages/sec 47.167 

Object: Cache 

Data Flush Pages/sec 45.761 
Data Flushes/sec 2.984 
Lazy Write Flushes/sec 2.963 
Lazy Write Pages/sec 46.583 

Figure 6.11 Disk response to cache activity during sequential read/writing 

On the read side of the fence, we see the Memory: Pages Input/sec = 42.322, which, 
multiplied by the page size, gives 173392 bytes input per second. This is so close to 
the 173352 Disk Read Bytes/sec that we are in ecstasy (recall the 9th Rule of 
Bottleneck Detection). 

Looking at Avg. Disk ByteslRead and Avg. Disk ByteslWrite we see fairly high 
numbers, which is good. But because the lazy writer is trying to write 64K chunks 
on sequential output, it's a shame the Avg. Disk ByteslWrite are not that high. 
What's going on here? The next figure really ties a bow around this issue. 



196 Optimizing Windows NT 

90 

80 

70 

60 

50 

Color Scale Counter Instance Parent Object Computer 

i~~iIiii~~~:::-:1~:ih:iii 
Figure 6.12 Memory manager and cache manager make sweet music together 

The memory manager's work is shown as Memory: Pages Output/sec in the thin 
black line. Notice how it has five spikes. Let's consider them one at a till1e, moving 
from left to right. The first spike emits 48 pages (in three writes but we can't show 
everything on one chart), adds to Available Bytes, and takes little from the cache. 
The cache manager is trying to write 48 pages each second (also in three data 
flushes, as we have seen) but right after the memory manager writes its 48 pages, 
the cache manager backs off to 30 pages for a second. In the next spike, the memory 
manager writes some more data, this time having taken some pages from the cache 
(white line). But we know it took pages from other working sets as well because the 
increase in Available Bytes is greater than the decrease in Cache Bytes. In reaction 
the cache manager again writes fewer than the normal 48 pages as a net result of 
the next three seconds of activity. 

In the third output, the memory manager backs off to writing out only 32 pages. 
This time the cache supplied most of the Available Bytes. In the fourth spike of 32 
pages, nearly all of the memory taken comes from the cache. The memory manager 
sees that it is not making headway, but gives it one last try, extracting 16 pages 
from the cache, and a few seconds later the cache manager again writes fewer pages 
to the disk in its flush. 



Chapter 6 Detecting Cache Bottlenecks 197 

Reading and Writing Randomly 
So much for sequential file processing, now that we understand its cache behavior 
better than we ever wanted to. Let's look at how the cache behaves when we access 
about 3 MB of this file with a normal distribution, first reading a 4096 byte record 
and then writing it. This wreaks the havoc shown in Figure 6.13. 

Eile 

100 

90 

80 

70 

60 

..... ..... 

, . 
"II f 

\".":".\.:: '.:~! 
~ " ,I ,t "'" t I • I 'I f 

~; I' ~: • ',; ~,. ,':: : 
\ ' .. : ~ ~,~:\o:: .: 

I -I .. " i • I 

~ I L.! 
Last! 2555904 Average I 2157475 Mini 1015808 Maxi 2883584 Graph Timel 117.000 
Color Scale Counter Instance Parent Object Computer 

lOOO % Processor Time 0 Processor \\WALKINGDOG 
0.000010 Available Bytes Memory \\WALKINGDOG 

~~~~~~:~~:::lJ~~1:t1I~!fjl~~~I;~~~is~il~:~~~~~:~~~:::::~~:~:::~::~~~::~~:.:::::~:::~:::::~:::~::~~:::~~:~~~:~:~~::::':~~~:·::~::·:~~::·::~~~::~:~::~:~·~~ftE:~:(:Ei.~~:~~~~:~:~::~:~::~~~~~~~~;i~qiE:dririjlr!ffij 
lE3 lOOO % Disk Read Time C: 0 LogicalDisk \\WALKINGDOG
rE:::3 lOOO % Disk Write Time C: 0 LogicalDisk \\WALKINGDOG

Figure 6.13 Havoc reigns over random read/writing

198 Optimizing Windows NT

The scary thing is that Figure 6.13 might make sense to you now. The highlighted
line is Memory: Cache Bytes and we see the cache growing as the test case
proceeds. The dotted line is % Disk Read Time. It starts out at a quite busy level
and, as the cache is filled with data, it drops off. The thin black line is % Disk
Write Time. It spends more time near 100% as the cache is filled with data. This is
because the less time we spend going to disk to read the data (because it is in the
cache), the more rapidly we write the records, and the more output activity we
create. The heavy black line measuring % Processor Time increases steadily as we
fill the cache and we wait less for the disk. The other heavy black line measuring
Available Bytes stays relatively level, indicating the cache is getting its new space
from inactive working sets, as shown in the next chart.

2179734 Min I. 1069056 ;Max I 2883584 Graph Time I 112,000

Scale. Counter Instance Parent Object Computer

0.000010 Available Byt;;-- Memory \\WALKINGDOG i
IlE]jj"1J!,:t'€tiif.;~m~llfjl11::ImICmIm:::::nE::ITrsrTi!fi;IIr:::;I~:[:r:jTI~::a!::!fJj)illiE[Ia:;:Ei;~1i{gmrm!a

E:3 0.000010 Working Set csrss Process \\WALKINGDOG
E:3 0.000010 Working Set PERFMON Process \\WALKINGDOG
E:3 0.000010 Working Set PROBE Process \\WALKINGDOG

Figure 6.14 The cache steals much needed pages from other working sets

Chapter 6 Detecting Cache Bottlenecks 199

In Figure 6.14 it is clear where the cache is getting its space. You can see that each
time space is trimmed from the working sets, it is added to Available Bytes. The
CSRSS working set is reduced in size until it is held by the memory manager at
about 2 MB to assure some screen responsiveness. The working set of Perfonnance
Monitor is reduced until it reaches the level it needs to maintain logging. The
working set is trimmed a bit too far, and you can see a little blip where a few pages
are retrieved (by a soft fault) back into the working set. Pages trimmed after that
are immediately retrieved so we see no further trimming. The Probe process is the
master process controlling Response Probe, and is inactive during the test, so it
completely loses its page allocation. We see the process wake up and bring them
back in (causing page faults) at the end of the test on the right of the chart.

file fdit ~iew Qptions .!:::!.elp

Computer: \\WALKINGDOG
I.Object: Cache

Async Copy Readslsec
Async Data Maps/sec
Async Fast Reads/sec
Async MDL Reads/sec
Async Pin Reads/sec
Copy Read Hits %
Copy Reads/sec
Data Flush Pages/sec
Data Flushes/sec
Data Map Hits %
Data Map Pins/sec
Data Maps/sec
Fast Read Not Possibles/sec
Fast Read Resource Misses/sec
Fast Reads/sec
Lazy Write Flushes/sec
Lazy Write Pages/sec
MDL Read Hits %
MDL Reads/sec
Pin Read Hits %
Pin Reads/sec
Sync Copy Reads/sec
Sync Data Maps/sec
Sync Fast Reads/sec
Sync MDL Reads/sec
Sync Pin Reads/sec

0.000
0.000
0.000
0.000
0.000

95.089
157.570

42.346
9.101

94.872
0.000
0.377
0.000
0.000

157.541
9.101

42.569
0.000
0.000

97.403
0.744

157.570
0.377

157.541
0.000

1:::::::::::::::::::::::J1::1.:4:4)

Figure 6.15 Cache statistics for normally distributed read/writing

· 200 Optimizing Windows NT

The next two figures display cache statistics. We see a lower Copy Reads/sec in
this case than during sequential reading, because the cache manager can anticipate
sequential read requests more effectively than this normal distribution. Figure 6.15
is also a strong exemplar of the 10th Rule of Bottleneck Detection: Averages reveal
basic truths while hiding important details. Figure 6.16 shows why.

100

90

80

70

60

50

: .(ljMXiJ<' < < <:\ '~.\:
10 Alll\ '&l~" :' ',: ~ ,,:'J~:
;:/. ;,./ "'''''... ' .. J ", I 'It o t-t-'" '\0 ... ",",........., ,,..

Color Scale Counter Instance

~ lOOO Copy Read Hits %
E3 0.100000 Copy Reads/sec

Parent Object

Cache
Cache

Computer

\\WALKINGDOG
\\WALKINGDOG

Figure 6.16 Cache statistics during normally-distributed reading and writing

Here we can see the heavy black line of the Copy Read Hits % rising nicely as the
experiment progresses. The Copy Reads/sec starts out quite low, but rises as the hit
rate improves. Likewise, the Data Flush Pages/sec (in white) rises on the right side
of the chart. They also continue beyond the end of the experiment as the lazy writer
clears the cache of dirty data.

Chapter 6 Detecting Cache Bottlenecks 201

=-1 Jf{4';liljijW!j,';,·I;~!lfl!ni!' 1 ... 1'"
file Edit ~iew Qptions .!::f.elp

1~IQlI6JI~1 I+Jt1iJlx) I(fljl~t ~
Computer: \\WAlKINGDOG

o biect: Cache

Copy Read Hits % C:::::::::::::::::]:~:.:Qe.~j
Copy Reads/sec 157.570
Data Flush Pages/sec 42.346
Data Flushes/sec 9.101
Data Map Hits % 94.872
Data Maps/sec 0.377
Fast Reads/sec 157.541
Lazy Write Flushes/sec 9.101
Lazy Write Pages/sec 42.569
Pin Read Hits % 97.403
Pin Reads/sec 0.744
Sync Copy Reads/sec 157.570
Sync Data Maps/sec 0.377
Sync Fast Reads/sec 157.541
Sync Pin Reads/sec 0.744

o biect: tot emory

Cache Faults/sec 38.839
Page Faults/sec 44.791
Page Reads/sec 8.019
Page Writes/sec 0.193
Pages Input/sec 8.406
Pages Output/sec 3.092
Pages/sec 11.497
Transition Faults/sec 8.019

Figure 6.17 Memory manager and cache during normally-distributed reading and
writing

Figure 6.17 shows how the memory manager's statistics compare'to those of the
cache. Cache Faults/sec are a subset of the Page Faults/sec. You can tell the bulk
of the memory management activity is due to the cache activity because the Cache
Faults/sec at 38.8 account for most of the 44.8 Page Faults/sec. Obviously, quite a
few of these are soft faults, because the number of Page Reads/sec is only 8.0.
Furthermore, we can see the lack of sequentiality in the read operation because
there are 8.4 Pages Input/sec. Not many pages are being acquired on each read.

202 Optimizing Windows NT

Looking at the output side, because Data Flush Pages/sec is at 42.3 and Pages
Output/sec is at 3.1, the cache is clearly doing almost all the output. In fact, we
have seen this pattern before: because Page Writes/sec is only 0.2 and Pages
Output/sec is 3.1, there are really 3.110.2 or 15.5 pages written on each memory
management output. The memory manager is getting in there and occasionally
trimming working sets again, and getting almost 16 pages to write each time to disk.

Computer: \\WALKINGDOG
Object: Cache

Data Flush Pages/sec
Data Flushes/sec
Lazy Write Flushes/sec
Lazy Write Pages/sec

Object: Memory

Cache Faults/sec
Page Faults/sec
Page Reads/sec
Page Writes/sec
Pages Input/sec
Pages Output/sec
Pages/sec
Transition Faults/sec

Object: LogicalDisk

%Disk Time
Avg. Disk Bytes/Read
Avg. Disk BytesMrite
Avg. Disk sec/Read
Avg. Disk secMrite
Disk Bytes/sec
Disk Reads/sec
Disk Writes/sec

42.346
9.101
9.101

42.569

38.839
44.791
8.019
0.193
8.406
3.092

11.497
8.019

o
C:

100.000
4176.290

17544.502
0.069
0.119

219737.483
8.009

[:::::::::::::::::::::1:0:.:~]:e.i

Figure 6.18 Disk statistics during normally-distributed reading and writing

Disk statistics for this test are illustrated in Figure 6.18. Notice the relatively long
Avg. Disk seclWrite. Hey, it's just a laptop, remember? But looking back to Figure
6.2, when we characterized the disk speed by reading a single record, we can see
that simple read time is not bad. Looks like it's seeking that slowed us down here.
In the design of this laptop, the manufacturer made a tradeoff to seek a little less
quickly than on desktop systems. Just think of all those extra hours of battery life
they got in return for this decision!

Chapter 6 Detecting Cache Bottlenecks 203

Mapping Files Into Memory
There is a way for applications to access file data that is even faster than using the
file system cache. By mapping a file directly into its address space, an application
can access the data in the file like an array and need never call the file system at all.
This avoids all the overhead associated with the file system call and the search of
the cache. The next table shows our little laptop's performance while accessing the
file as we did earlier in the chapter, this time adding memory mapping as an access
mode. The times shown are

Table 6.2 Memory Mapped vs. File 110 Times in Milliseconds per Record

Type of Non-cached
file access Operation time Cached time Mapped time

Sequential Read 6.58 1.32 0.75

Sequential Write 22.91 1.70 0.64

Random Read 20.45 1.51 0.97

Random ReadlWrite 40.66 3.16 1.31

File activity just doesn't get any faster than that! But memory mapping of files is
not always advisable. For one thing, you'd have to recode an existing application
to get rid of all those old-fashioned file system calls. Although the resulting code
would be simpler, you must weigh this against taking the time and effort to recode
an existing application. Another tricky tradeoff occurs when access is strictly
sequential; the cache uses much less memory to read the file, as we have seen.
Also, using memory mapping means that you lose access to the file system
synchronil{ation modes such as file locking or the more exotic opportunistic locking.
This means that any multiple writers of the file, whether they be threads inside a
process or multiple processes sharing the file, must coordinate their access using
mutexes. And if there is any possibility that the file might be remotely accessed by
multiple processes which are writing to the file from different computers, you must
invent an inter-process synchronization mechanism which might obviate the
performance advantage you got from memory mapping in the first place.

In cases where you decide to map files into memory, it's a clear winner in speed.
Performance Monitor uses memory mapping for accessing the log file when it is
reading it for reprocessing. Because access to the file might be random, this is just
the sort of task which benefits from memory mapping. Conversely, output of log
files is done through the normal file system calls because the cache can detect the
sequential nature of the output and can therefore use memory more efficiently
writing files created in this fashion.

204 Optimizing Windows NT

The principal difference in the behavior of the system between using mapped and
unmapped files is that mapped files go directly into the working set of the process,
while, as we have seen, buffered files go into the "working set" of the file system
cache. When a process maps a file into its address space, it might use quite a bit of
RAM to hold the file. But from the memory manager's viewpoint, it really doesn't
make too much difference whether the working set of the process or the working
set of the cache gets the page that's faulted in. The real elegance of the memory
management scheme on Windows NT is exemplified in this point, which is
illustrated by the next experiment.

We start two processes, each accessing a file with normally distributed record
access. First the distribution covers 1 MB, then 2 MB, 3 MB, and so on up to 8
MB. One process reads the file using the file system calls, and the other maps the
file into its address space. The results are displayed in the next two charts. The first
four trials with working sets from 1 to 4 MB are shown in Figure 6.19, and the next
four trials with working sets from 5 to 8 MB are shown in Figure 6.20.

90~--1I

sO~-----------------------------I·----------~--------~

70H---------------~--~---------+----------,~--------~·

so
50

40
1

30~h~~--~----~I_4~~r_------~r-~~~~-~+--~

20~~~--------~~~~~

Figure 6.19 Competing processes using mapped and file system reads

Chapter 6 Detecting Cache Bottlenecks 205

file Edit ~iew Qptions .!:!elp

100-------"

90r---------------------------------------~~-------

80~~--------_.::---------------,~q--~-------r------------

70 l---H---------r.!, ; -----::----------t ·~l-~--'
----------,~. :~.f~-r~------~;-:~+r-----

50 f--'!--.------: ''''{---r--- : ~

40
~.':,

~-:'1.~: --t;r -T'\

30

20

Figure 6.20 More competing processes using mapped and file system reads

In the beginning, the highlighted cache has a slight size advantage, but as the
working sets get larger, the process in heavy black begins to get ahead. The
thin black line shows Available Bytes declining, and the dotted line shows that
Pages/sec are rising as the experiment progresses. By the time the nonnal
distribution covers 8 MB, the paging rate on this laptop is shaking it right off
your lap.

These charts seem to indicate that the memory manager is favoring the process's
working set over that of the cache. To some extent this is true. In general, the
code and data referenced directly by processes is more crucial to good application,
perfonnance than the file data in the cache. The cache tends to get the space not '
needed by processes. It certainly gets any unused space, as we saw when it took
pages trimmed from inactive working sets. When processes are active, however,
they tend to do a bit better than the cache, as in this case. But the result is not
overwhelmingly in favor of the process, as the next figure shows.

206 Optimizing Windows NT

~hart Forma! Macro

Response Time vs. Working Set Size

700

600

500

Time 400

(milliseconds) ~~~ ilJdlibl~J "
R.ead

2345678

Normal Distribution (megabytes)

o Mapped

• Buffered

Figure 6.21 Response time for mapped and buffered competing processes

Figure 6.21 shows each process's response time as measured by Response Probe
during this experiment. The mapped access is faster in the beginning, as we saw in
Table 6.2. Then, as the paging increases, and disk access time becomes a significant
component of the response time; the two processes' performance evens up. The
fact that the working set of the process doing mapped access is a bit larger is not a
significant advantage. This indicates that the policy of the memory manager is
perfectly balanced.

In the next chapter we discuss how you tune memory manager to favor either the
cache or the application in specific circumstances.

Tuning the Cache
If you are running Windows NT Server, you can tune cache vs. process working set
behavior by using the Network option of Control Panel. After choosing the Network
icon, in the Installed Network Software list box select Server and choose the
Configure button. In the Server dialog box, select Maximize Throughput for File
Sharing, to favor the cache. To favor process working sets, select Maximize
Throughput for Network Applications.

207

CHAPTER 7

Detecting Network Bottlenecks

When Pandora opened her box, the first form of Chaos to emerge was the computer
network. To begin with you've got your client and your server, or possibly hundreds
or thousands of them. To this you add the transmission media, the network adapter
cards, and possibly multiple network protocols. Inside this complex mixture of
equipment and logic lurks the bottleneck.

One good thing about searching for network bottlenecks is that everything we have
covered in the previous chapters of this book still applies. A server that has a disk
bottleneck because memory is too tight is still a computer that has a disk bottleneck
because memory is too tight. The fact that it is a server just makes it more annoying
because more people are affected. So what you've learned thus far is not wasted,
we just have to add a bit more knowledge. We need to look at the counters that
reflect on network traffic and gain some understanding of their capacities under
various configurations. Only then can we submit our application for the Nobel Prize
for Bottleneck Detection.

We are limiting the scope of this chapter so it does not become a book in itself
(which it easily could be). We want to cover the principles and techniques of
network bottleneck detection for a few common cases so that you will be able
to apply these techniques in your own case. For example, we won't be trying to
cover wide-area networks (WANs). The analysis of W ANs is much the same as the
analysis of local-area networks (LANs), although the choice of a protocol's window
sizes (the number of packets within which a response is expected) is a crucial
determinant of performance when crossing from LANs to lower-bandwidth W ANs.

208 . Optimizing Windows NT

The most common transmission media ofLANs are Ethernet and token ring. We'll
only look at Ethernet here but the principles also apply to token ring.

In Appendix B we list the Configuration Registry parameters that control many
details of how the network runs. These are only provided for reference. In general
you will never have to change these values. If you suspect you might want to adjust
a value listed there, we urge you to experiment with your configuration using the
techniques and tools presented here.

Windows NT ships with a number of protocols. The ones with counters in
Performance Monitor include NetBEUI, TCP/lP, AppleTalk, and a Novell®
NetWare®-compatible protocol providing NWLink IPXlSPX capabilities. Mostly
we'll be using NetBEUI for illustration but we'll glance briefly at the counters used
by TCP/IP and NWLink. You may even be using a protocol that had extended
object counters added into Performance Monitor when it was installed. If so, you
will undoubtedly find that the guidelines discussed here apply to your situation.

We also cannot possibly discuss all the counters in all the network protocols.
We will try to expose the essential counters. Then you will be able to solve the
important problems, and become familiar with the other counters over time as
they vary in your environment.

A Profile of Network Throughput
First, let's see how the client and the server look when we have an isolated network
with just the two computers connected. We want to use unbuffered reads from a file
so we can bypass the cache on the client side. This will not bypass the cache on the
server, however, so if we reread the same record over and over, we'll hit the cache
on the server side every time. By increasing the record size we can get a pretty clear
view of how much data a single client can pump across this isolated network. The
server is a 66-MHz Intel Pentium with 32 MB of RAM, and a Novell NE3200
Ethernet controller on the motherboard. The client is a 486/33 with 16 MB of RAM
and a Novell NE3200 network adapter. The media is thin cable Ethernet. We've
selected the NetBEUI protocol for now.

Chapter 7 Detecting Network Bottlenecks 209

Since we are doing unbuffered reading, we must read in multiples of our disk sector
size. We'll start with 512-, 1024-,2048-, and 4096-byte reads, and then increase in
4096-byte increments up to 64K records. The resulting NetBEUI: Bytes Total/sec
from the client's side is shown in Figure 7.1.

Eile Edit ~iew Qptions Help

Figure 7.1 Client's view of a network throughput test

The throughput as measured by NetBEUI: Bytes- Total/sec climbs as we increase
the record size. (If we had multiple network cards installed, each would be an
object instance and we would see a different such value for each card.) We have
charted % Privileged Time, which we shall see accounts for nearly all the processor
time. During application of the test cases, the processor usage rises to a plateau.

210 Optimizing Windows NT

Before we take a closer look at what is going on here, let's see how the server fares.

File .Edit View Options Help

100
95~----~~------------~1l----~-ft~~w-~>~.~~--~1I

90 f '. ! I

r

(- rl Ii
II

85~-----------+t--.~I~I.~lH-~~>-i-II-1~-11--f~
~,-80~--~-------+II~I.'I~I~-~--rll-J+-f

75~~----~---+I-1lrlr'-f+-!I~--14-1"'1-1~1-1~1"'-141-

70 ~----------I-I-I>.-I'-J-I
-- --1--

-- I- -.
-1-- ... ;_. --

-- i-65 'I "' - -1-'-+--''''rlH->'-I-l

60 - I-- -- - r- I-- -- - -1-- -rt,-l-II-
55 ,- -- 1- - - -- - - - 1-
50r-----,--- ,- - ... - - - - '- -1- ,,_ - - ... - rt- -1-,:" - _ ... - ._, '-1-

:~ 1 ., ~~'" ~ --, "--1=__"- i- ... -- --"- '- - ... - --"M""

35 1 . I ,_"" :__ ' 'w_ ,., "_" ., 'I""" "M I~"-'" M 1' __ '

30 1"· --"'·,,·-··,"' .. , ' ·_·1-·_····-
25 ft, .. ,'" , .. ",,, ,.",,·1 I--·"· ... --H·---'. " .•. -"-""

~ ~~'~;; ., - c" , ;c' " __ •. " :~~
~ d~t,,~ .. ~.' ... , " I." ." '.~ I'; '."'-" .\' "'.- .1-,- ."'~ t,,·,

Color Scale Counter Instance Parent Object Computer

\~~~~i.;~~~~;~~~~~~~~~~~:~-;~:~~~;~~~~~-~~~1f.~E~~'~'~~~:~~

Figure 7.2 Server's view of a network throughput test

Notice the throughput matches the client side (it had better!), but the processor
utilization is much lower on this side. Unlike on the client, the processor utilization
on the server is pretty constant.

Let's begin by explaining what is in these throughput charts. The throughput rises
in an almost linear way up to a record size of 4096 bytes. Then at 8192 bytes we
get just little more throughput than at 4096 bytes. This is because the Redirector
file system treats a request of 8192 bytes as two 4096-byte requests. Since we don't
have to go back through the application program and the I/O system for the second
4096 bytes, we get only a very slight boost over the 4096-byte case. But with 3-
page transfers we get a significant jump, because the protocol switches to what are
called large reads. This is a more efficient protocol as long as the server has buffer
space to handle the request, which is surely the case in this test. We'll look closely
at a case of large reads later in this chapter.

Chapter 7 Detecting Network Bottlenecks 211

First let's look at the 2048-byte transfer. We narrow the time window to focus in on
the 2048-byte case. In the next two figures we present first the client's view of this
activity, then the server's view.

Note For NetBEUI we are showing only the non-zero counters in these
illustrations. This does not mean the other counters are not useful. In fact, knowing
that the failure counters are zero removes an important potential bottleneck source
from consideration. It just means these counters are not useful for the analysis of
this rather sterile environment test case.

NetBEUI: Bytes Total/sec normally includes both frame-based activity and
datagram activity. (Whenframes are sent across the network, they are expected
to be acknowledged by the receiver, and are re-sent by the sender if not
acknowledged, while datagrams are just sent with no expectation of an
acknowledgment and no retransmission in case of failure.) Datagram counters can
be a major indicator of activity. By knowing which applications use datagrams, you
can get a clue about which ones are causing the majority of your network activity.
Because no process is sending datagrams in our example, we omitted the datagram
counters from Figure 7.3 .

.... \, > •• f. " > :c, .. ;;; ;); :-: <J:mnrrttm..r01ttmHr..fr >.... ,.;;:,;,; .. , .i';' .T.-I ...
file Edit Y:iew .Qptions .!::!.elp

Compuler: \\MERCURY
Object: NelBEUI

Bytes Total/sec
Connections 0 pen
Frame Bytes Received/sec
Frame Bytes Sent/sec
Frame Bytes/sec
Frames R eceivedlsec
Frames Sent/sec
Frames/sec
Packets Received/sec
Packets Sent/sec
Packets/sec
Piggyback Ack Queued/sec
Piggyback Ack T imeouts

Object: Cache

Copy Reads/sec

Object: Processor

% Privileged Time
% Processor Time
Interrupts/sec

Object: System

File Read Operations/sec

\Oevice\N bCN E20001

c:::::::m:o.:~:~:.:~Q~!
1.000

411345.938
11709.636

423055.563
390:271
195.161
585.432
390.471
195.186
585.657
195.211
93.000

0.000

36.398
37.678

512.141

195.560

Figure 7.3 Client's view of unbuffered reading of 2048-byte records

212 Optimizing Windows NT

=[:,,'< ;'i": t< i;(' ,<t: >,;:;;:.:'i;'Y:>;' , 'f'lini.u;:;,y:·,:/::,: "\,.;'''J'''': 'oJ.'"
Eile Edit :!liew Qptlons Help

1~IQsI ~
.

Computer: \\SOL ~
Object: NetBEUI \Oevice\NbCNE32001 Ii

Bytes T otallsec 1:::::::]~J.4S.j:::~:$.:Q)
Connections 0 pen 1.000
Frame Bytes Received/sec 11719.122
Frame Bytes Sent/sec 411731,813
Frame Bytes/sec 423450.938
Frames Received/sec 195.319
Frames Sent/sec 390.637
Frames/sec 585.956
Packets Received/sec 195.394
Packets Sent/sec 390.712
P acketslsec 586.106
Piggyback Ack Queued/sec 195.319
Piggyback Ack T imeouts 9.000
Window Send Average 1.000
Window Send Maximum 10.000

Object: Cache

Copy Read Hits % 100.000
Copy Reads/sec 195.319

Object: Processor 0

% Privileged Time 7.950
% Processor Time 7.950 r
Interrupts/sec 795.779 i-' •

Figure 7.4 Server's view of unbuffered reading of 2048-byte records

NetBEUI: Bytes Total/sec is a key indicator of network throughput. This only
includes bytes in data frames and not other bytes sent as part of the protocol,
such as stand-alone acknowledgments (called ACKs). Bytes Total/sec includes both
incoming and outgoing data frame bytes. As an average, it's a victim of Rule #10:
it reveals basics while hiding details.

Since the Response Probe does not use the cache on the client side, the System:
File Read Operations/sec value gives us a clear indication of the file read activity.
This is nearly identical to the Frames Received/sec. Dividing Frame Bytes Sent/sec
by the Frames Received/sec we get 59.9999; perhaps we can take a risk and invoke
Rule #9 and call that 60. This is the basic minimal data frame for NetBEUI. This
frame holds the entire request for our data. Similarly, dividing Frame Bytes
Received/sec by Frames Received/sec we get 2107.7, which is 2047.7 + 60, or
within Rule #9 of our requested record size of 2048 plus the basic frame size.

Chapter 7 Detecting Network Bottlenecks 213

There is one packet sent for each frame sent, but there are two packets received
for each read request (390.4711195.560 = 1.9967). That's because Ethernet has a
maximum packet size of 1514, so it takes two packets to send the 2108 bytes back.

Average packet size received is Frame Bytes Received/sec divided by Packets
Received/sec, or 1053.46, or about half of the 2108 as we might expect for an
average. We can also see that we are not hitting the cache on the client at all,
which is good, because that is what we want to do in this experiment. We are using
37.678% of the client processor to do all this, and have a pretty healthy interrupt
rate (the at-rest interrupt rate on this system with Performance Monitor running at
five-second intervals is 114 interrupts per second). We'll get back to the issue of
interrupts in a moment. It turns out to be a key point.

Let's take a look at the server. The server side is a close mirror of the client side.
We did not collect both systems' data into one log file because we did not want to
add to the network traffic during this test, so the two time windows do not coincide
precisely. (Even if we had, exact synchronization of Performance Monitor data
from two computers is not possible, as we noted in Chapter 2.) Nonetheless, we
see pretty good agreement between the client and the server, as we expect in such a
steady-state test. The server is hitting the cache on every read request. It is getting
just a few more interrupts but has significantly lower processor utilization.

The next two figures show how the redirector and the server software see this
activity. On the client side we divide the Redirector: Bytes Received/sec by
Redirector: Packets Received/sec and get 2108, which must be the 2048 bytes
we are requesting plus the 60-byte basic frame. The redirector considers the whole
request and the whole reply as a single "packet." This is obviously not a packet in
the NetBEUI sense. Keep this in mind when looking at these statistics.

214 Optimizing Windows NT

The redirector is also not a separate process. Very nearly all the % Processor Time
spent in processes is accounted for by the Ideagen process, which is the name of our
probe application process reading the records. The redirector is just a file system
invoked by the I/O manager inside the address space of Ideagen. Yet there is a large
gap between the Processor: % Processor Time and the Process: % Processor Time
of Ideagen. We'll have to come back to this, but let's take a look at the server
software's view first.

Eile Edit View .Qptions Help

16UQJIt}I~II+I~lxll~I~1 ~
Computer: \\MERCURY

Object: Redirector

Bytes Received/sec
Bytes Total/sec
Bytes Transmitted/sec
Connects Windows NT
Current Commands
File Data Operations/sec
File Read Operations/sec
Packets Received/sec
Packets Transmitted/sec
Packets/sec
Read Bytes Network/sec
Read Bytes Non-Paging/sec
Read Operations Random/sec
Read Packets/sec
Server Sessions

Object: Processor

% Privileged Time
% Processor Time
% User Time

Object: Process

% Privileged Time
% Processor Time
% User Time

411398.563
423108.188
11709.636

3.000
lOOO

195.161
195.161
195.161
195.161
390.321

399688.906
399688.906

195.161
195.161

1::::::::::::::::::::::~:Ji.Qo.}

o
36.398
37.678
l275

ideagen

10.275
11.200
0.925

I I

PERFMON

0.275
0.475
0.200

Figure 7.5 Redirector's view of reading 2048 bytes

Chapter 7 Detecting Network Bottlenecks 215

.... t " .. «: : .. U{~.I 'Ull. ,w .. .1I~fmmm
., :.: j"'I"

file Edit ~Iew Options Help

Computer: \\SOL ~
Object: Server

Byles R eceivedlsec 11719.122
Byles T olal/sec 423450.938
Bytes T ransmilledlsec 411731.813
Context Blocks Queued/sec 195.319
Files Open 5.000
Files 0 pened T olal 768.000
Pool Nonpaged Byles 178436.000
Pool N onpaged Peak 183108.000
Pool Paged Byles 11246.000
Pool Paged Peak 31468.000
5 erver 5 essions 1.000

Object: Processor 0

~ Privileged Time 7.950
~ Processor Time 7.950
~UserTime 0.000

Object: Process System PERFloION services

~ Privileged Time 3.550 1.275 0.225
~ Processor Time 3.550 1.275 0.225
~UserTime 0.000 0.000 0.000

Object: Network Segment \Oevice\bh_NEl2001 I-

C::::J1.Z.J.s..tft$.·Q]
f-

T olal byles received/second r;
+1 j 1+

Figure 7.6 Server's view of reading 2048 by'tes

The server's side of things holds no surprises. As we noted in an earlier chapter,
the server process has the name System. Dividing the Bytes Transmitted/sec by the
Context Blocks Queued/sec gives the number 2108. By now, this is a familiar
number. The Processor: % Processor Time is over 50% higher than that of the
server process, so we see a gap similar to the one we saw on the redirector side.

The Network Segment object measures all traffic on the segment of the network
attached to the indicated adapter, independent of which system sends or receives it.
This object can be monitored from any computer on the segment. The Network
Segment Object measures the effects of all packets~ Network Segment: Total
Bytes/sec is a bit higher than Server: or NetBEill:Total Bytes/sec, because ACK
(acknowledgment) packets are included.

216 Optimizing Windows NT

A Simple Model of a Network Bottleneck
Figures 7.3 and 7.4 correspond to the third peak on the left of Figures 7.1 and 7.2.
(The first two were for 512 and 1024 bytes, respectively, and this one is for 2048
bytes.) Clearly, if we increase the record size requested, throughput increases. Can
we determine what the bottleneck is from this data? Let's give it a try. (If you
thought Rule #7 about counter ratios wasn't important before this, just wait!)

Let's define our interaction as one read. The time for this read is one divided by
the System: File Read Operations/sec, or 0.005114 seconds. A simple model of this
interaction would be:

• Some processor time on the client

• Some media time to transmit the data request to the server

• Some processor time on the server

• Some media time to transmit the 2108 bytes back

• Finally, some processor time on the client to get the data into the application's
buffer.

Assuming for the moment there is no overlap between media transmission and
processor time, this reduces to just (client processor time) plus (media time) plus
(server processor time).

The server processor time used in one second is just the Processor: % Processor
Time expressed as a number between 0 to 1, or 0.07950 seconds. On the client this
is 0.37678 seconds. Dividing each of these by the number of reads per second gives
the server and client processor time per read as 0.0004065 seconds and 0.0019267
seconds, respectively.

Each read transfers 2266.793 bytes, (we get this by dividing Network
Segment:Bytes Total/sec by Frames Total/sec). The media (Ethernet in this case)
transmits at 800 nanoseconds per byte, so we multiply that by the number of bytes
per read and get 0.001813 seconds per interaction. Now, summing server processor
time, client processor time, and media time, according to our simple model, we get
0.004147.

This 0.004147 is 0.000967 or 967 microseconds less than the 0.005114 seconds
for each file read operation. We must conclude that o~r simple model is a bit
too simple. It seems that we forgot the network adapter cards. Since these are
identical on both client and server systems, we can assume each takes half of 967
or 483.5 microseconds to process the packets for each record. By doing a similar
computation on 512-byte records and fitting a line to the result using linear
regression (for once we won't bore you with the details) we determine that the
network adapters are taking 50 microseconds per packet and 216 nanoseconds for
each byte in the file operation.

Chapter 7 Detecting Network Bottlenecks 217

The Mystery of the Missing Time
This is all well and good, but we don't yet know who is really using all that
processor time. We can see that it is used, but we can't see it all in any process.
The answer is in the high interrupt rates observed during network or serial data
communications activity. Time in interrupts is not billed to the thread or process
that is running, but it is counted in overall processor usage. When there are lots of
interrupts, this can grow to be the majority of the Processor: % Processor Time. In
the following figure we show the relationship between overall processor usage and
time in the user process, as well as interrupt rate. Since most of the time is in
privileged mode, we can chart privileged mode time, and thus avoid some annoying
user mode spikes caused by the Response Probe calibration.

file Edit View Options Help

Figure 7.7 Processor usage on the client side while reading

We see the Ideagen privileged mode processor time (thick black line) fall off as the
record size increases. But overall processor utilization increases. We can conclude
from this that we are spending more and more time in each interrupt. Why? The
larger records must be copied to Ideagen's buffer, and this is done at interrupt time.
As the average transmission size increases, so does the amount of time in the
client's interrupt handler. The Interrupts/sec declines slightly until we start doing
the large read protocol, at which time it levels off. Now let's take a look at the
server to see what's happening there.

218 Optimizing Windows NT

100
95f''''~'*'''''''"-"'''"'''''"'>''''"'''H'~''"'""""'"'"''''""''''~"""'",W'W""_"".,", .. ,C"'~H","'m'"'""""m.""".""".""",,.,.

90
85
eo
75
70
65
60r-~0"~~~~~~~~-~-~~:~~~~---·-~>-~--~~-~-~~~'~'-~~~·-·---
55 r---,,- -, \- \- ;-; '~ 0. - '-',-.,

50 I'".""" " .. , ," ,"m ;, •• " '."' •.• ->or". -'_'. ,., ' •. m •.• " "

. 45 ;.. .• ;.,; ~.+ ~". , .. ,,-, ",; _,~ '" , .. ~ .~ 0>". ,_ ~"m. '"" ~"".

40
35
30
251·""""" ::-""". ~m" .. ~' "."j i' "i~' " i·'"'' \': ;, .. ,":
20 I"·,,,,,,.,,:,,",,,,:·,',"',,,""_mm;; ,,, •. ,,,, ", ' "' ..•• "m •. ,.

15 f'·,-·mm'~" -,;:::,,-... ,,-

10 [.. "",··",,,,,, .. ,,·::;·"",1 \, ~ •• ".J::A.'.".m" .. ·'_··'''','-·r ... ··~ .. ;:·"m~;;:;m'' ••.• "~"'-'~'····"·~A'··m'" ... " .. , .. ' .. ~'.m"A ... ";"_."""_","m._.:.I"\".",.,:::",_,c...;

5
0,.'--"'.··,

Colot Scale Counter Instance Parent Obiect Computer

fj,~::=QI~~i~i~f~~~~~~~~=::::==:=J~::=:=:===:=i;~::==:=:=J.i{t.i:'~=:~~:==~igt~==:==:==)
Figure 7.S Processor usage on the server during client reads

In this chart we changed the scale factor for Interrupts/sec to 0.1 from the
default value of 0.01, or it would have blocked the % Processor Time line. ?
Qualitatively, the picture is similar to the picture of the client side; more work in the
interrupt handler when the records are longer. But especially at the larger transfer
sizes, the work split is not quite so dramatic.

Where is the bottleneck here? The definition of bottleneck is the device with the
most demand during the interaction. In this case, the bottleneck is the client
processor with 0.0019267 seconds per interaction. It is not, however, utilized
100%, but only 37.678%.

Why? Its activity is in sequence with the media, the adapter cards, and the
server. Sequencing is an important limitation on the utilization rate of hardware
components. When devices operate in sequence, they cannot be fully utilized.
Or, looking at it another way, 37.678% is in this case fully utilized if the other
devices are held constant, because the other two devices take 1 - 0.37678 =
0.62322 seconds out of every second. And until they finish, the client is in a forced
idle state. When there is sequencing, the bottleneck is still the device with the
greatest demand. Making one of the other devices faster can improve throughput,
but to a lesser degree than improving the bottlenecking device.

Chapter 7 Detecting Network Bottlenecks 219

Generalizing Network Bottleneck Detection
Stay with us for a moment longer and we'll get the rest of this network bottleneck
detection sorted out. Let's take a look at those interrupt rates. Let's assume for a
moment that the interrupts afways occur when the processor is idle. This is not a
good assumption in all cases, but it mostly holds in this experiment.

On the server side we have total processor utilization of 7.950%, and processor
utilization by the System process of 3.550%. Subtracting the utilization by the
server process from the total processor utilization tells us that the interrupts
took 0.04400 seconds. When the system is at rest logging at 5-second intervals, the
interrupt overhead is negligible. So let's subtract the at-rest interrupt rate
of 106 interrupts/sec on the server from the interrupt rate of 795.779, giving
689.779 interrupts/sec due to the experimental activity. Since there were 689.779
interrupts per second, we can divide 0.04400 by this amount and get 0.000063789
seconds, or 63.789 microseconds per interrupt.

On the client side we saw 37.678% processor utilization with 11.200% in the
Ideagen process, giving us 0.26478 seconds of interrupt time. Again subtracting an
at rest interrupt rate of 114 from 512.141 gives 398.141 interrupts per second from
the experiment. Dividing 0.26478 seconds of interrupt time by 398.141 client
Interrupts/sec gives us 665.051 microseconds per interrupt. The reason
this is so much larger is because on the client side the data must be copied to the
application's buffer, whereas on the server side the data can be read onto the
network directly from the file system cache. They are also different processors,
which is something we want to revisit in a moment.

220 Optimizing Windows NT

It's worth mentioning that most of this interrupt time does not actually occur
in the interrupt handler itself. That would delay lower-priority interrupts for a
prohibitively long period of time. The Windows NT interrupt architecture permits
the bulk of work normally done in an interrupt handler to be handled instead at a
level just between interrupts and threads called the deferred procedure call or DPC
level. The interrupt handler puts into a queue a DPC packet that describes the work
to be done and then exits. When there are no more interrupts to service, the system
looks for DPCs to execute. A DPC executes below interrupt priority and thus
permits other interrupts to occur. No thread executes any code until all the pending
DPCs execute. This design gives Windows NT an extremely responsive interrupt
system capable of very high interrupt rates.

Let's now take a look at a case on the right hand side of Figure 7.1 and see how the
result changes. We've chosen the 14-page transfer because it is in fact the one with
the greatest throughput, although all the cases on that side of Figure 7.1 are pretty
near the maximum.

=I'J':::> .'".:; ,'C' :;:::·':·':·",.:;:<l~· , ";,<;:<;,~",:,:·.,;<,:·<:::'::;(.·/:·"::I"I'"

File Edit View Options Help

161lcgl~lill 1+1~lxl 1~1tJ:nI'~ ,

Computer: \\MERCURY r.!. Object: NetBEUI \Device\Nb,-NE20001

Bytes Total/sec 968399.125
Connections 0 pen lOOO
Frame Bytes Received/sec 967469.500
Frame Bytes Sent/sec 928.007
Frame Bytes/sec 968397.500
Frames Received/sec 657.982
Frames Sent/sec 16.873
Frames/sec 674.855
Packets Received/sec 658.071
Packets Sent/sec 84.360
Packets/sec 742.432
Piggyback Ack Queued/sec 0.000
Piggyback Ack T imeouts 150.000

Object: Cache

Copy Reads/sec 0.000

Object: Processor 0

% Privileged Time 81.517
% Processor Time 82.148
Interrupts/sec 813.874

Object: System

File Read Operations/sec
I-

C:.::.:·::::::::::::J.Ut.~·! I-
+

Figure 7.9 Client's view of 14-page reads

Chapter 7 Detecting Network Bottlenecks 221

=L" .. ., U:tt!1:rmrnf:r;I~tm1frrrf .···j·l ...
Eile Edit View Options Help

Compuler: \\SOL ~ Object: NetBEUI \Device\Nb,-NE32001

Bytes T ot~I/$ec 1:::::::::~§e.~~M:~e;
Connections 0 pen 1.000
Flame Bytes R eceivedlsec 927.907
Flame Bytes Sent/sec 967397.250
Flame B yteslsec 968325.125
Flames R eceivedlsec 16.871
Flames S entlsec 657.933
Flames/sec 674.804
Packets Received/sec 84.407
Packets Sent/sec 657.950
P acketslsec 742.357
Piggyback Ack Queued/sec 16.871
Piggyback Ack Timeouts 18.000
Window Send Average 1.000
Window Send Maximum 10.000

Objecl: Cache

MOL Read Hits 4 100.000
Sync MOL R e~dslsec 236.194 f-:

Objecl: Processor 0
I-

4 Plivileged Time 8.415
4 Plocessor Time 8.529
Interrupts/sec 850.803

Object: Network Segment \D evice\bh_N E32001

Total bytes received/second 994847.063 ..
Figure 7.10 Server's view of 14-page reads

Looking at client File Read Operations/sec, we are getting 17.276 reads per second.
The inverse, which is the time per read, is therefore 0.05788 seconds. Can we
account for the time?

On the server side we are using 8.529% of the processor, so dividing this by the
client's File Read Operations/sec gives us 0.004937 seconds per read. On the client
we are using 82.148% of the processor or 0.04755 seconds per read. Accounting
for the network media, we divide the Network Segment: Bytes Totallsec by 17.276
to get 57585 bytes per read, which is only 241 bytes over the 57344 requested per
read. (You might recall that at 12K we saw a shift to a more efficient protocol for
large transfers.) And mUltiplying 57585 by the Ethernet transmission time we
mentioned previously gives 0.046068 seconds per read. The adapters should now
account for .012488 seconds each if we use the formula we derived for adapter
overhead in the last example. Adding client, server, and media gives 0.123523
seconds.

222 Optimizing Windows NT

Whoops. This is much larger than the time per read of 0.05788 we computed by
simply inverting the read time. Why? Our more efficient protocol combined with
the fact that we have many packets per read is now permitting an overlap of
processing time on the server with transmission and processing time on the client.
The data transfer is now broken up into 657.933 / 17.276 = 38.08 frames. (Be
generous, invoke Rule #9, and call it 38 frames.) And 57585 / 38.08 = 1512, just
two bytes short of the maximum Ethernet packet size. So transmission of these
frames on the server is overlapping with receipt ~m the client side using a very
efficient protocol.

Now let's take a look at how this larger transfer size affects time per interrupt.
Continue to assume the interrupts occur when the server and Ideagen processes are
idle, although the assumption is becoming dubious. On the server, we see 850.803
interrupts per second. We should subtract the at-rest interrupt rate of 106/sec,
giving 744.803 interrupts/sec due to the transfer. Knowing we are using 8.529% of
the processor, and subtracting 1.604% spent in the System process (not shown),
gives us 6.925% in the interrupts. Dividing that number by interrupts per second
gives us 0.00009298 seconds, or 92.98 microseconds. This is almost 50% more
than the 63.789 microseconds for the time per server interrupt during the 2048-byte
transfer.

On the client side we have 82.148% of the processor with only 1.774 % of the
processor time in Ideagen (not shown). This means 0.80374seconds of each second
are in the interrupt handler. Since the client is seeing 813.874 - 114 or 699.874
interrupts per second from the experimental activity, the same calculation that we
performed for the server side gives us 0.0011484, or 1.148 milliseconds/interrupt.
This is almost double the 665.051 microseconds per interrupt we saw in the 2048-
byte case. In addition there are almost twice as many interrupts per second in the
14-page case.

As these cases illustrate, there is no "good" or "bad" interrupt rate or time per
interrupt. By now it should be obvious: in order to understand the performance
counters of your various systems in real working situations, you must first establish
a clear picture of their operating characteristics under these types of pure
workloads.

Chapter 7 Detecting Network Bottlenecks 223

Using Role Reversal to Compare Platforms
Let's take a step back for a moment. We see a big difference in the processor usage
on the client and the processor usage on the server. This is reflected in overall
processor usage as well as in such details as the calculated time in the interrupt
handler. There are two fundamentally separate sources for this difference, and we
should try to separate them. One is that the client and the server are not doing
exactly the same work. The other is that they have different hardware: one
computer has an Intel Pentium, and the other is an Intel i486™.

One way to get a handle on how these separate factors influence what we are seeing
is to reverse their roles. Windows NT is pleasantly flexible in this regard. We can
make the i486 computer be the server and the Pentium computer be the client with a
couple of mouse clicks in File Manager.

The next figure shows the client side of the 2048-byte read case when the client is
the Pentium computer. It is followed by the server's view of the same case with the
server being the i486 computer.

File .Edit View Options Help

Computer: \\SOL
Object: NetBEUI

Bytes T otallsec
Frame Bytes Received/sec
Frame Bytes Sent/sec
Frame Bytes/sec
Frames R eceivedlsec
Frames Sentlsec
Frames/sec
Packets Receivedlsec
Packets S entlsec
Packetslsec

Object: Processor

% Privileged Time
% Processor Time
Interrupts/sec

Object: Process

% Privileged Time
% Processor Time
%UserTime

Object: System

File Read Operations/sec

\Oevice\NbCNE32001

[::::::4s:~~~:~;:e.7.~i
475779.031
13542.098

489321.125
451.403
225.702
677.105
451.543
225.702
677.245

o
19.793
21.180

897.934

IDEAGEN

10.847
12.007
1.160

226.108

Figure 7.11 Pentium client statistics for 2048-byte reads

224 Optimizing Windows NT

Looking at NetBEUI: Bytes TotaVsec, we see an increase of about 70K per second.
Sure, you say, because the bottleneck was the client processor and we replaced it
with a faster one. But we also violated Rule #1 because we changed the server at
the same time. To some extent, we just got lucky with this guess, as we shall see.

What we wanted to do was distinguish between the change in the roles of client and
server and the different processor types. How can we do this? When the Pentium
computer was the server, we saw that it handled 195.560 reads per second using
7.950% of the processor, which gave 460.5 microseconds per read. Now that it's
the client, we are doing 226.108 reads using 21.180% of the processor, or 936.7
microseconds per read. We have two times the number of processor cycles being
used on the client side of the transaction. Clearly it is more expensive for the
Pentium to be a client than to be a server. Let's double-check this on the other
side of the fence.

Elle fdit ~iew Qptions Help

Compuler: \\MERCURY
Object: NelBEUI

Bytes Total/sec
Frame Bytes Received/sec
Frame Bytes Sent/sec
Frame Bytes/sec
Frames Received/sec
Frames Sent/sec
Frames/sec
Packets Received/sec
Packets Sent/sec
Packets/sec

Object: Processor

% Privileged lime
% Processor Time
Interrupts/sec

Object: Process

% Privileged Time
% Processor Time
% User Time

\Device\NbCNE20001

C:::::::1~~~g:~:~~!i
476091.563
489642.563

225.850
451.700
677.550
225.987
451.743
677.731

45.075
45.419

793.938

System

34.881
34.881
0.000

lervices

0.169
0.225
0.056

Figure 7.12 Server statistics when the server is an i486/33

c

Chapter 7 Detecting Network Bottlenecks 225

On the i486 it looks like the situation is reversed. Unlike the Pentium there has been
an increase in processor usage as we switched from client to server. But we need to
invoke Rule #7 and look at the counter ratios before leaping to a conclusion. As we
switch from client to server on the i486, the processor utilization has increased from
37.678% to 45.419%, but the number of reads per second has also increased. The
server per read processor time is 2009microseconds. The client per read processor
time is 1927. Unlike the Pentium, it is almost the same being a client or a server on
the i486 ..

What can we say about the relative behavior of the two processors?

The Pentium is 2 times faster at doing the client work because it uses 0.9367
milliseconds per read, versus 1.927 on the 486/33. And the Pentium is over 4 times
faster at doing this simple server work than the i486/33 (0.4605 milliseconds versus
2.009 milliseconds for the I486/33). It appears that the Pentium is better at both
workloads, but is much better at handling the server workload. Since the Pentium is
running at twice the clock rate of the i486, we might expect it to be about twice as
fast, all other things being equal. We might conjecture that the larger cache of the
Pentium accommodates this simple server test case more easily than it can handle
the client workload.

This leads to an important lesson that is well illustrated here. Relative processor
performance-or relative computer hardware performance in general-is
extremely sensitive to the workload applied. Here we are using a simple synthetic
workload, so generalizing it to a real application workload would be improper.
Once you get your own applications running on these servers, you can compare the
processors in the way we have here. At that point other important mitigating factors
like disk subsystem performance will enable you to get a realistic picture of relative
platform performance. What we've tried to do here is make sure that when you get
to that point, you'll know precisely how to proceed.

And finally, where is the bottleneck now? Well, the media time hasn't changed; it is
still taking 1.734 milliseconds per read plus adapter time. We have shifted the
bottleneck over to the server, or left it on the i486/33, depending on how you want
to look at it.

226 Optimizing Windows NT

Adding Clients to a Test Server
Let's have several clients simultaneously access our server to test its mettle. We'll
revert to the 2048-byte transfer case, since it seems a bit more realistic for normal
network traffic than the 14-page transfer. But it's not entirely realistic, because all
the clients will simultaneously try to copy the same record from the server, over and
over, without causing any server disk activity or doing any processing on the client
side. So we'll be hammering the server in an unrealistic manller, but we'll see how
the additional clients affect overall performance. We'll add two, three, four, and
then five clients, each doing the above unbuffered read over NetBEUI on the
Ethernet network.

Eile fdit ~iew Qptions .!::!.elp

Computer: \\SOL
Object: NetBEUI

Bytes Total/sec
Frame Bytes R eceivedlsec
Frame Bytes S entlsec
Frame B yteslsec
Frames Received/sec
Frames Sent/sec
Frames/sec
Packets Received/sec
Packets Sent/sec
Packets/sec

Object: Processor

% Privileged Time
% Processor Time
%UserTime
Interrupts/sec

Object: Process

% Privileged Time
% Processor Time
%User Time

\Device\Nb,-NE32001

792053.875
21926.922

770126.938
792053.875

365.410
730.736

1096.146
365.507
730.839

1096.346

26.607
26.780
0.174

1319.986

System

15.755
15.755

C:::::::::::::::::::::XfQQQi

Figure 7.13 Two clients on a server, NetBEUI view from the server's perspective

=1
file Edit View Options Help

Computer: \\S 0 L
Object: Server

Blocking Requests R eiected
Bytes R eceivedlsec
Bytes Total/sec
Bytes Transmitted/sec
Context Block Queue Time
Context Blocks Queued/sec
Errors Access Permissions
Errors Granted Access
Errors Logon
E rrars System
File Directory Searches
Files Open
F~es 0 pened Total
Pool Nonpaged Bytes
Pool N onpaged Failures
Pool N onpaged Peak
Pool Paged Bytes
Pool Paged Failures
Pool Paged Peak
Server Sessions
Sessions E rrored 0 ut
Sessions Forced Off
Sessions Logged 0 ff
Sessions Timed Out
Work Item Shortages

0.000
21926.535

[::::::?~?o.?I~OOi
770126.938

0.001
365.616

0.000
0.000
0.000
0.000
0.000
7.000

397.000
180036.000

0.000
184547.000
15028.000

0.000
31572.000

3.000
0.000
0.000
0.000
0.000
0.000

Chapter 7 Detecting Network Bottlenecks 227

-
...:
+

Figure 7.14 Two clients on a server, Server statistics

Let's look first at the two-client case. What we see is nearly double the throughput
of the single client case. Boy, how we love these controlled experiments! Actually,
both number of reads as counted by Frames Received/sec and Total Bytes/sec have
increased by about 87%. Interrupts have only increased by 66%, however, so the
server is handling more work on each interrupt. The interesting thing is that the
processor usage is up over a factor of three from the single-client case from 7.950%
to 26.780%. Most of this increase is in the System process's processor usage,
which rose from 3.55% to 15.755%, so having multiple concurrent clients must
complicate System's life quite a bit.

Let's take a closer look at this. System process processor time has gone from
182 microseconds per read to 431. This is a 137% increase. Interrupt time was
calculated above as 64 microseconds per interrupt in the single client case, and
since there were just over four interrupts per read this was 260 microseconds per
read. In this 2-client test case it is 84 microseconds/interrupt, and with 3.61
interrupts per read, this gives us 303 microseconds of interrupt time per read. So
while System process tie is up 137% from the single client case, interrupt time is up
only 17%. Between these two sources of delay, there are 292 new microseconds in
the server on each request. The single client response time is 1 / 195.550 = 0.00511
seconds per read, while for each of the two clients we get 1 / 364.41 / 2 = 0.00547
for a difference of 360 microseconds. So we conclude the other 68 microseconds of
delay must be in the line and the server adapter card. Clearly most of the new delay
is in the server processor .

. Let's add another client.

228 Optimizing Windows NT

=(H;

Eile fdit :\liew Qptions Help

1+1~Ix.r 1@l11JE1 ~

Compuler: \\SOL
Object NelBEUI

Bytes Total/sec
F r eme Bytes R eceivedlsec
Frame Bytes Sent/sec
Frame Bytes/sec
Frames Received/sec
Frames Sent/sec
Frames/sec
Packets Received/sec
Packets Sent/sec
Packets/sec

Object Processor

~ Privileged Time
~ Processor Time
~UserTime
Interrupts/sec

Object Process

~ Privileged Time
~ Processor Time
~UserTime

\Oevice\Nb,-NE32001

[:::]:():~:s.~:t:()J:!Z~i
28412.135

997457.813
1 025869.875

473.437
946.606

1420.043
473.606
946.668

1420.274

o
27.475
27.606

0.131
1643.577

Syslem

14.150
14.150
0.000

"'1"

Figure 7.15 Three clients pile on, NetBEUI statistics on the server

Eile fdit View Options Help

Compuler: \\SOL
Object Server

Blocking Requests Reiected
Bytes Received/sec
Bytes Total/sec
Bytes Transmitted/sec
Context Block Queue Time
Context Blocks Queued/sec
Files Open
Files 0 pened Total
Pool N onpaged Bytes
Pool Nonpaged Peak
Pool Paged Bytes
Pool Paged Peak
Server Sessions

0.000
28412.135

C::l():~S.~:G~:s.Z~i
997457.813

0.003
473.718
11.000

480.000
181612.000
186004.000

20740.000
39690.000

4.000

Figure 7.16 Three clients pile on, Server statistics

Chapter 7 Detecting Network Bottlenecks 229

We already see something interesting with just three clients. Note that the
NetBEUI: Bytes Total/sec is not three times the individual client transfer rate of
423461.250 we saw in the single-client case. As an increment over the 2-client
case it is only about 20%. Also, the increase in processor usage is actually rather
modest. Yet we have three clients each getting 1/3 of the 473.437 requests/sec, or
157.812 each, for 0.00634 seconds per read. That's an additional 867 microseconds
of delay per request. There must be some new source of conflict. Where is it?

Let's look first at the server's processor usage. The processor itself is now 27.606%
busy handling the server work. This is quite a bit more than we had in the single
client case, but only a shade more than we had in the 2-client case, and is
furthermore unlikely to be the bottleneck. Why? Because the more concurrency we
have, the less sequencing we have, and the utilization of the bottlenecking device
should be closer to 100%. And we now have 27.606 % processor usage handling
473.437 requests per second, giving 583 microseconds of processor per request.
That's noticeably less than the 734 microseconds per request we saw in the 2-client
case, indicating that an economy of scale is building up: we must be getting more
work done on a thread dispatch or a DPC call as concurrency increases, since more
work is pending in our queues.

Now let's take a look at four clients.

Eile fdit ~iew .Qptions Help

Computer: \\S 0 L
Object: NelBEUI

Bytes Total/sec
Frame Bytes Received/sec
Frame Bytes Sent/sec
Frame Bytes/sec
Frames Received/sec
Frames Sent/sec
Frames/sec
Packets Received/sec
Packets Sent/sec
Packets/sec

Object: Processor

4 Privileged Time
% Processor Time
% User Time
Interrupts/sec

Object: Process

% Privileged Time
4 Processor Time
%UserTime

\0 evice\NbCNE32001

C:::::jj:n:~O:Z;:QQQi
30763.979

1080841.125
1111605.125

512.733
1025.466
1538.199
512.952

1025.505
1538.457

o
30.529
30.755
0.226

1761.317

System

17.639
17.639
0.000

Figure 7.17 Four clients pile on, NetBEUI statistics on the server

230 Optimizing Windows NT

Computer: \\SOL
Object: Server

Bytes R eceivedlsec
Bytes T otallsec
Bytes Transmittedlsec
Context Blocks Queued/sec
Files Open
F~es 0 pened Total
Pool Nonpaged Bytes
Pool N onpaged Peak
Pool P IIged Bytes
Pool PlIged Pellk
Server Sessions

30763.979
I:::::HD:~Q~):~$.]

1080841.125
512.707
15.000

560.000
183172.000
187844.000
26418.000
46492.000

5.000

Figure 7.18 Four clients pile on, Server statistics

The total byte throughput is up somewhat, although certainly not by another 423461
bytes per second, which is what our new client would like to be doing. The %
Processor Time is within a Rule #9 of being unchanged from the 3-client case, and
the interrupt rate has not increased much either. We have not been able to add a lot
of work to this mix, even though we have added more clients. Dividing the Frames
Received/sec by'4clients, and then inverting, we see each request is taking
0.007801 seconds, or 1.48 milliseconds more than in the 3-client case. Delays are

. increasing, but we don't see much more work being done inside the server. By now
it should be dawning on us that the queue might be forming outside the server.

Chapter 7 Detecting Network Bottlenecks 231

.... 1
file Edit ~iew Qptions Help

Computer: \\SOL
Object: NelBEUI

Bytes Total/sec
Fr~me Bytes Received/sec
Frame Bytes Sent/sec
Frame Bytes/sec
Frames Received/sec
Frames Sent/sec
Frames/sec
Packets Received/sec
Packets Sent/sec
Packets/sec

Object: Processor

~ Privileged Time
~ Processor Time
~UserTime
Interrupts/sec

Object: Process

~ Privileged Time
4 Processor Time
~UserTime

\Oevice\Nb,-NE32001

[::::::nB~~~:s.~~1
30855.143

1084031.250
1114886.375

514.252
1028.493
1542.745
514.343

1028.529
1542.872

o
29.842
30.152
0.309

1764.916

System

17.018
17.018

0.000

Figure 7.19 Five clients pile on, NetBEUI statistics on the server

file Edit View Options Help

Computer: \\SOL
Object: Server

Bytes Received/sec
Bytes Total/sec
Bytes Transmitted/sec
Context Blocks Queued/sec
Files Open
Files 0 pened Total
Pool Nonpaged Bytes
Pool N onpaged Peak
Pool Paged Bytes
Pool Paged Peak
Server Sessions

Object: Network Segment

Total bytes received/second

30854.779
1114898.750
1084044.000

514.264
21.000

631.000
184788.000
189099.000

34068.000
46482.000

5.000

\Oevice\bh_NE32001

C::II:G:n~:5:.:z5Qi

Figure 7.20 Five clients pile on, Server statistics

: .·1 ... 1·

232 Optimizing Windows NT

Now we see a very slight increase in byte throughput. The % Processor Time
and the interrupt rate are essentially unchanged, and more importantly the Frames
Received/sec are also unchanged. Since this request rate is now divided between 5
clients, we observe that 1 / (514.252/5) = 0.009723 tells us that each request is
now taking 9.72 milliseconds, or 1.93 milliseconds more than each 4-client request.
Notice how each additional delay is escalating at a rate greater than the linear rate
of increase in number of clients, as we illustrated in our discussion of Rule #8.
Have you figured out the truth yet?

What is happening here is we have saturated the network media. How can that
be, you say? We are not yet transmitting 1.25 million bytes/second, which is the
capacity of an Ethernet network. Well, we are pretty darn close. There are two
reasons why we are not reaching the theoretical maximum.

• Frame Bytes/sec does not include all the bytes on the wire. Performance
Monitor doesn't count low level protocol bytes, just the bytes in frames
associated with data transfer. Look at the Network Segment: Total Bytes
received/second to see a number closer to the maximum.

• We are starting to experience collisions on the wire, which the adapter cards
detect. A collision on Ethernet causes the adapter to retry the transmission after
a random delay. Lore has it that Ethernet networks start to have significant
collisions at about 66.67% utilization, or 833375 bytes per second. This is
derived from the same considerations from queuing theory that we discussed
early in Chapter 2. Our network throughput is quite a bit higher than that here,
but our traffic pattern is quite regular so we can do a bit better than one might
expect in the general case. (Recall Rule #8: if our traffic were random instead
of regular, there would be trouble.)

Chapter 7 Detecting Network Bottlenecks 233

Server Disk Activity
Up to now we have looked at some pretty simplistic stuff. Now let's add some
serious server disk activity. Let's get Response Probe to read a large file, say
40 MB, using the normal distribution on 512-byte records to span the file. The
reason we choose this file size is that our server has 32 MB of RAM and we would
like to keep the experiment from fitting the whole file into the file system cache in
RAM.

100 1 ..

90!
!

80!
70\

j

Last: 204854.469 Aveiagel 168100.313 Minr-o:ooo Maxi 205359.703 Graph Timel 506.000
Coiol Scale Counter Instance Parent Object Computer

. ___ .. j:L9.Q.Q.1!lL~.Y.~.~IQt~lt.~L._._._._w .. _._._\P.J!y.i£~\t!'9U:-!.s.;.;;:.._._""._ ... _. __ I':l.ll!.~.~!!L._w ... _ _w.\Y?'Q.k._. __ _:::J
lOOO % Disk Time D: 1 LogicalDisk \\SOL

0.000001 Cache Bytes Memory \\50 L

Figure 7.21 Server activity while reading a large file

234 Optimizing Windows NT

The heavy black line shows the % Disk Read Time, while the highlighted white line
shows NetBEUI: Bytes Total/sec. At the left of the figure, the disk is quite busy,
but as the cache (the dotted line) fills, the disk activity falls off and the NetBEUI:
Bytes Total/sec rises parallel to the increase in cache size to a maximum near
205,000 bytes per second. Referring to Figure 7.1, we can see the 512-byte read
case gives a maximum of about 206,000 bytes per second. Disk activity never quite
dies out, but it does taper off as the cache fills with the center records of the file
where the normally distributed access is concentrated.

Let's focus on the 20 second period of heavy disk usage on the left of the chart. The
next two figures display the statistics during this phase.

. , I •

file .Edit ~iew Qptions Help

Computer: \\SOL
Object: NetBEUI

Bytes Totllilsec
Frllme Bytes Received/sec
Frllme Bytes Sent/sec
Frame B yteslsec
Frames Receivedlsec
Frllmes Sentlsec
Frames/sec
Packets Received/sec
Pllckets Sent/sec
Pllckets/sec

Object: Procenor

% Privileged Time
% Processor Time
Interrupts/sec

Object: Process

% Privileged Time
% Processor Time
%UserTime

\Device\NbCNE32001

C~::::::~~:~~:~:~7.Qi
5970.406

56917.875
62888.281

99.507
99.507

199.014
100.056
102.403
202.459

o
8.100
8.100

672.832

System

4.100
4.100
0.000

Figure 7.22 NetBEUI view of disk access on the server

·1'"

Chapter 7 Detecting Network Bottlenecks 235

We are getting only one-third of the NetBEUI throughput possible at this record
size from this client. The processor is not very busy, and the interrupt rate is
moderate.

Computer: \\SOl
Object: Server

Bytes Received/sec
Bytes Total/sec
Bytes Transmitted/sec
Context Blocks Queued/sec
Files Open
Files 0 pened Total
Pool Nonpaged Bytes
Pool Nonpaged Peak
Pool Paged 8ytes
Pool Paged Peak
Server Sessions

Object: logicalDisk

4 Disk Read Time
Avg. Disk B ytes/R ead
Avg. Disk sec/Read
Disk Bytes/sec
Disk Queue Length
Disk Read Bytes/sec
Disk Reads/sec

Object: Cache

Copy Read Hits 4
Fast Reads/sec

5976.397
62951.391
56974.992

99.856
26.000

772.000
186268.000
191004.000

40722.000
61106.000

5.000

1
D:

67.492
4058.856

[::::::::::::::::::::::::O;:QJ:rl
256577.891

1.000
245815.781

60.563

39.749
99.607

Figure 7.23 Server and disk view of disk access on the server

We can see that every record goes through the cache (NetBEUI: Frames
Received/sec = Cache: Fast Reads/sec). The cache hit rate is 39.749%. So the miss
fraction is 0.60251, and 0.60251 times the Cache: Fast Reads/sec rate gives us
60.014, which is within Rule #9 of Disk Reads/sec. In other words, when we miss
the cache we go to disk. This is not a surprise. We are getting full pages off the
disk, and we can tell we are reading randomly because the memory manager cannot
find any opportunity to do sequential input. Let's take a quick look at the memory
manager's statistics, too.

236 Optimizing Windows NT

File Edit View Options Help

Computer: \\SOL
Object: Cache

COP!! Read Hits %
Fast Reads/sec

Object: Memory

Cache Faults/sec
Demand Zero Faults/sec
Free S!!stem Page Table Entries
Page Faults/sec
Page Reads/sec
Page Writes/sec
Pages Input/sec
Pages 0 utput/sec
Pages/sec
Transition Faults/sec
Write Copies/sec

39.749
99.607

I:::::::::::::::::::::s.~:r~:i)
0.399

9278.000
62.560
60.014
0.000

60.014
0.000

60.014
0.000
0.000

Figure 7.24 Memory manager's view of disk access on the server

All page faults are for cache activity, and the number of Pages Input/sec matches
the Disk Reads/sec. At this point, while the cache is first being filled, only a few
cache faults are satisfied by soft faulting an existing page in memory; most cache
faults have to go to disk for the data.

What about the bottleneck? Well, the disk is busy 67.492% of the time, or 0.67492
seconds out of each second. If we divide this by the number of reads from the client
each second, we get 0.006819 seconds of disk activity per interaction. The inverse
of the interaction rate is 1 divided by Cache: Fast Reads/sec, or 0.010039, so we
already have over half of the time spent going to disk. This makes the disk the
bottleneck, even without going into all the other pieces of this particular puzzle.

But we can only make this declarative statement because all the pieces of the puzzle
are in sequence. Because of sequencing, once we find a device with over half the
time, we know no other device can have more than half. If there were any chance of
parallelism among the processors, media, network adapters, and disk, then we
would have to look more closely at the demand for each device.

Chapter 7 Detecting Network Bottlenecks 237

Copying a Directory from Server to Client
We have explored processor, network, cache, and disk behavior using controlled
experiments. Now we are prepared to look at a more realistic case. We'll have a
client copy the %SystemRoot%\SYSTEM32 directory from the Windows NT
server, and see what the result looks like. The first three figures are for the server
side, and the next three are for the client side.

Computer: \\SOL
Object: NetBEUI

Bytes Total/sec
Connections NoR etries
Connections Open
E ~pir ations Ack
Failures Not Found
Frame Bytes R eceivedlsec
Frame Bytes Sent/sec
Frame Bytes/sec
Frames Received/sec
Frames Sent/sec
Frames/sec
Packets Received/sec
Packets Sent/sec
Packets/sec
Piggyback Ack Queued/sec
Window Send Average

Object: Processor

% Privileged Time
% Processor Time
%UserTime
I nterruptslsec

Object: Process

% Privileged Time
% Processor Time
% User Time

\Oevice\NbCNE32001

[::::::]$.:~~t:~:;~~~i
4.000
6.000

173.000
15.000

7489.418
352175.438
359664.875

110.731
294.868
405.599
119.629
295.527
415.156
110.741

1.000

o
12.880
13.129

0.250
685.169

System

7.430
7.430
0.000

Figure 7.25 NetBEUI on the server during directory copy

The first thing to note is the number of bytes sent per frame is 1220, which (you
know by now) we get from dividing the Frame Bytes Sent/sec by the Frames
Sent/sec.

The observable processor time is low, and the value of Interrupts/sec is moderate.
Whatever else we have done, we have not saturated the server's processor.

238 Optimizing Windows NT

Copy Read Hits %
Copy Reads/sec
Data Map Hits %
Data Map Pins/sec
Data Maps/sec
Fast Read Not Possibles/sec
Fast Reads/sec
Lazy Write Flusheslsec
Lazy Write Pageslsec
MDL Read Hits %
MDL Reads/sec
Pin Read Hits %
Pin Reads/sec
Sync Copy Reads/sec
Sync Data Maps/sec
Sync Fast Reads/sec
Sync MDL Reads/sec
Sync Pin Reads/sec

Object: Memory

Cache Faults/sec
Demand Zero Faults/sec
Page F aultslsec
Page Reads/sec
Page Writes/sec
Pages Input/sec
Pages Output/sec
Pages/sec
Transition Faults/sec

r:::::::::::::::::::$:l::QZ.Si
66.665
99.744
1.110

23.387
66.665
66.665
0.449
2.247

98.779
21.260

100.000
11.873
66.665
23.387
66.665
21.260
11.873

95.913
6.850

96.272
14.699

0.000
87.225
0.000

87.225
0.040

Figure 7.26 Cache and memory on the server during directory copy

The cache statistics show something we have not seen before. The bulk of the
activity is in mUltiple data list (MDL) reads. MDL reads use the physical memory
locations of cache pages to obtain multiple disk pages from disk in one operation.
The server used MDL reads to get data from the disk. Nearly all of these requests
are satisfied by data already in the cache, as indicated by the 98.779 MDL Read
Hits %. The Data Map Hits % is high at 99.744%, for 23.387 Data Maps/sec.
These are probably directory operations, which is not surprising since we are
reading a large directory that contains many small files. You can also see the
interaction of the cache with the memory manager. Nearly all of the Page Faults/sec
are Cache Faults/sec. Many are resolved in memory with soft faults, but some
14.699 Page Reads/sec result from the 96.272 Page Faults/sec. Dividing the Pages
Input/sec by the Page Reads/sec shows 5.934 pages are being read each time the
memory manager goes to disk. This accounts for the high cache hit rates: the
memory manager is reading ahead of requests effectively. Let's take a look at the
disk.

Compuler: \\SOL

o bjecl: LogicalD isk

4 Disk Read Time
4 Disk Time
4 Disk Write Time
4 Free Space
Avg. Disk B ytes/R ead
Avg. Disk Bytes/Transfer
Avg. Disk ByteslWrite
Avg. Disk sec/Read
Avg. Disk sec/Transfer
Avg. Disk seclWrite
Disk Byteslsec
Disk Queue Length
Disk Read Bytes/sec
Disk Reads/sec
Disk Transfers/sec
Disk Write Bytes/sec
Disk Writes/sec
Free Megabytes

o
c:

16.984
[::::::::::::]:t:~~~:

0.251
16.388

20952.115
20815.713
4681.143

0.010
0.010
0.018

347125.438
0.000

346471.000
16.536
16.676

654.423
0.140

49.000

Chapter 7 Detecting Network Bottlenecks 239

Figure 7.27 Disk activity on the server during directory copy

We see right away that there are 16.536 Disk Reads/sec, 1.837 reads per second
over the Memory: Page Reads/sec. Also Avg. Disk ByteslRead are 5.1 times the
page size which the memory manager was reading. The extra reads are probably
for directory information, bringing down the average number of pages read per
disk access.

To make our bottleneck detection a little less painful, let's just see how much of
each resource is used per second. For the processor we saw 0.13129 seconds, for
the disk it's 0.17235, for the media we multiply the media transmission speed by
Bytes Total/sec to get 0.28773 seconds, and for the adapter we have 0.077739. So
far, the vote is for the Ethernet. But that's just the server side. Let's take a look at
the client, too.

240 Optimizing Windows NT

Compuler: \\MERCURY
Object NelBEUI

Bytes Total/sec
Frame Bytes Received/sec
Frame Bytes Sent/sec
Frame Bytes/sec
Frames Received/sec
Frames Sent/sec
Frames/sec
Packets Received/sec
Packets Sent/sec
Packets/sec

Object Processor

% Privileged Time
% Processor Time
% User Time
Interrupts/sec

Object System

File Control Bytes/sec
File Control Operations/sec
File Read Bytes/sec
File Read Operations/sec

\Device\Nb,-NE20001

(:::::::::~:$~:4:~~:.:S.I~i
350953.969

7515.464
358469.438

294.152
111.098
405.250
294.761
119.256
414.017

o
69.839
72.910
3.070

1067.106

2598.985
149.622

17452.930
6.660

Figure 7.28 NetBEUI on the client during directory copy

These statistics naturally mirror the ones on the server side. There are some slight
differences since we are not looking at precisely the same time intervals. The
interrupt rate is a quite a bit higher here, and the processor usage is right up there at
72.910%.

Computer: \\NERCURY
Object: Cache

Copy Read Hits ~
Copy Reads/sec
Data Flush Pages/sec
Data Flushes/sec
Data Map Hits ~
Data Maps/sec
Fast Reads/sec
Lazy Write Flushes/sec
Lazy Write Pages/sec
Pin Read H~s ~
Pin Reads/sec
Sync Copy Reads/sec
Sync Data Maps/sec
Sync Fast Readslsec
Sync Pin Reads/sec

Object: Nemory

Cache Faults/sec
Demand Zero Faults/sec
Page Faults/sec
Page Reads/sec
Pages Input/sec
Pages/sec
Transition Faults/sec

Object: Process

~ Privileged Time
~ Processor Time
Paoe Faults/sec

4.049
29.597
88.591
9.686

99.900
49.817
23.855
9.686

88.591
99.765
42.578
29.597
49.817
23.855
42.578

[::::::::::::::::::D:~;:l.~Zi
5.023

188.396
67.352
88.331
88.331
21.628

CND

23.530
25.180
68.710

Chapter 7 Detecting Network Bottlenecks 241

Figure 7.29 Cache and memory on the client during directory copy

On the client side, the cache- and memory-management story is a bit more complex.
That is because we are reading into the cache across the network, copying from
the cache into the application (in this case, CMD.EXE for the copy command),
and then writing the data back into the cache to get it on the disk. This involves
directory operations (Data Maps/sec) for both the server' sdirectory and the
client's, and we see the client rate is about double that of the server's. The hit rate
on these directory operations is within Rule #9 of 100%.

There are 29.597 Cache: Copy Reads/sec by CMD.EXE. Very few hit the cache,
which means one or more cache page faults are taken to resolve them. It looks like
more than one, because the Memory: Cache Faults/sec is quite high at 118.757. The
other Page Faults/sec are coming from CMD.EXE. A little careful thought sorts this
all out. Many of the' faults are resolved by mapping in existing page frames into the
cache's working set, since they result in only 67.352 Page Reads/sec. This is
because the memory manager and the cache manager are working together to bring
sequential groups of pages into memory in single operations. It is also because
many of the faults, 21.628/sec, are being resolved by transition faults, meaning they
are pages which had been flushed from the cache and were being written to disk.

242 Optimizing Windows NT

The 67.352 Page reads/sec result in.88.331 Pages Input/sec, which when multiplied
by the page size is 361804bytes/sec, very close to the input NetBEUI data rate of
359665bytes/sec. These 67.352 Page Reads/sec tum into 111.098 NetBEUI Frames
Sent/sec since directory operations are intermingled with the requests for file data.
We conclude that only a few of the pages are coming from the client's disk. We see
that CMD.EXE is generating soft faults at the rate of 68.710 Page Faults/sec,
accessing buffers allocated and deallocated for the transfer of each file in the
directory. This is also nearly equal to Page Faults/sec - Cache Faults/sec, so
CMD.EXE accounts for all the page fault activity outside the cache.

Y:iew Qptions Help

1+I~HXI IP!I~] @iI

Computer: \\MERCURY

Object: logicalOisk

~ Disk Read Time
~Disk Time
~ Disk Write Time
~ Free Space
Avg. Disk Bytes/Read
Avg. Disk B ytes/T r ansfer
Avg. Disk ByteslWrite
Avg. Disk sec/Read
Avg. Disk sec/T r ansfer
Avg. Disk seclWrite
Disk Bytes/sec
Disk Queue Length
Disk R ead Bytes/sec
Disk Reads/sec
Disk Transfers/sec
Disk Write Bytes/sec
Disk Writes/sec
Free Megabytes

o
c:

1.430
[~~:::::::::::::6:~.:~~~i

68.164
40.481

4096.000
34417.445
35868.676

0.030
0.068
0.070

353640.469
0.000

1922.320
0.469

10.275
351718.125

9.806
202.000

~igure 7.30 Disk activity on the client during directory copy

The disk itself on the client side is rather busy at 69.595 % Disk Time. Virtually all
of this activity is writing.

Chapter 7 Detecting Network Bottlenecks 243

The 35868.676 Avg. Disk Bytes/write is quite high, and the 9.806 Disk Writes/sec
come from the 9.686 Cache: Data Flushes/sec. The values of Disk Write Bytes/sec
and NetBEUI: Frame Bytes Received/sec are almost identical. This disk is a lot
busier than the one on the server side because the Avg. Disk sec/write is 0.070
compared to an Avg. Disk seclRead of 0.010 on the server. Even though there are
more reads on the server per second,. its overall access is more efficient. This may
be for a variety of reasons: disk layout of the files, disk hardware, controller
hardware, and who knows what all else. To isolate the issues, we'd have to study
the disk subsystems as we did in Chapter 4, "Detecting Disk Bottlenecks."
Alternatively we could just accept the fact that we paid a lot more for the server
and, for once, we got what we paid for. Better tell the boss!

What about bottleneck detection on the client side? We've got processor utilization
of 72.910%, and disk utilization of 68.164%. In a second of activity this means
0.72910 seconds of processor and 0.68164 seconds of disk. The processor wins the
bottleneck award by a small margin. A classic case of one bottleneck masking
another (remember the 2nd rule of Bottleneck Detection?) In both cases the device
demands are larger than the demands on those devices on the server. This is as one
might hope, since the server clearly has bandwidth to serve other clients
simultaneously. Notice in passing the excellent overlap of processor and disk
activity, since the sum of these device demands is just about 1.5 seconds/second.

Let's pause for a moment and regroup. We are now able to look at real
systems doing real work and identify the bottleneck in a simplified client-server
environment. We see it is not a foregone conclusion that the media is the bottleneck.
We have found we must keep an eye on the disk and on the processor. We have
learned when disk activity is the result of cache activity and we can recognize when
it is not. We know enough to be able to look at statistics on a server and determine,
by looking at processor, disk, protocol bytes, and interrupt rate, whether it is
creating a bottleneck. We have reached one of those rare, hard-fought pinnacles of
analysis from which we can leisurely survey the magnificent landscape. What a
view!

Monitoring TCP/IP Performance
Lest we wax overconfident, let's take a quick look at how life might change if the
protocol were different-TCP/IP, for example. (Recall that we must have SNMP
installed to see the TCPIIP counters in Performance Monitor.) If there are multiple
protocols installed, the client must have TCPIIP as the highest priority protocol, or
it must be the only one available on the server. The highest-priority protocol is the
first protocol the workstation uses when it attempts to make a connection.

244 Optimizing Windows NT

To set protocol priority

1. In Control Panel, choose the Network option.

2. In the Network Settings dialog box, choose Bindings.

3. In the Network Bindings dialog box, choose Workstation in the Show Bindings
For box.

The protocols currently being used on the workstation are listed in the large box.
The one on top has the highest priority.

4. To change the priority of a protocol, select it and use the arrow buttons at the
right of the dialog box to move it up and down in the list.

5. When finished, choose OK.

In Figure 7.31, we show the throughput chart for TCPIIP from the client's
perspective. Again we are bypassing the cache on the client side and are reading
512-, 1024-,2048-, and 4096-byte amounts, and then page size increments of
record sizes up to 16 pages. We've changed the Vertical Maximum to view all the
chart values.

Eile fdit Y:iew Qptlons Help

Color Scale· Counter Instance Parent Object Computer

r~:==~=]]~[:~[~~~~~~tj~~:=======:[=:======~=====~!~~~J====3~~~W~~=J:
Figure 7.31 Throughput chart for TCPIIP

We get similar throughput with TCPIIP as we did with NetBEUI in Figure 7.1. At
higher record sizes the TCPIIP throughput is actually a bit higher than what can be
achieved with NetBEUI.

Chapter 7 Detecting Network Bottlenecks 245

The TCPIIP counters in Performance Monitor implement Management Information
Base II (MIB-II) for use with protocols in TCPIIP-basedinternets. So we can get
some idea of what is happening here, let's look more closely at the 2048-byte read
(like we did for NetBEUI). First we look at the Network Interface level. This is the
closest to the media that we get with the TCPIIP counters.

=1 f:l;r!tn'ffi8"if.pf ~l;:rilittrf·' " I
Eile &dit ~iew Qptlons !!elp

Computer: \\SOL ~
Object: Network Interface 5

Bytes Received/sec 25929.459
Bytes Sent/sec 383593.563
Bytes Total/sec 409512.000
Current Bandwidth 1 0000000.000
Output Queue Length 0.000
Packets 0 utbound Discarded 0.000
Packets Outbound Errors 0.000
Packets Received Discarded 0.000
Packets Received Errors 0.000
Packets Received Non·Unicast/sec 0.000
Packets Received Unicastlsec 345.571
Packets Received Unknown 441.000
Packets Received/sec 345.637
Packets Sent Non-Unicast/sec 0.000
Packets Sent Unicast/sec 345.571
Packets Sent/sec 345.571
Packets/sec 691.209

Object: Processor 0

7. Privileged Time 10.133
7. Processor Time 10.466
Interrupts/sec 797.799

Object: Process. System

7. Privileged Time 6.200 i-;
7. Processor Time 1::::::::::::::::::::::s.::?:O:O] I""'"

+

Figure 7.32 Network Interface of TCPIIP doing 2048-byte reads, server side

Dividing both Bytes Received/sec by Packets Received/sec and Bytes Sent/sec by
Packets Sent/sec, we find that the packets are 75 bytes each on the receiving side
and 1110 bytes on the send side. The value of Bytes Total/sec is slightly below the
comparable value for NetBEUI. The Current Bandwidth is a constant for Ethernet
measured in bits per second. The term "Unicast" means the packets were addressed
to this particular computer (as opposed to "broadcast to all on the subnet" or
"multicast to several on the subnet"). The other packet categories refer to
undelivered packets. Protocols so.metimes discard packets even if there are no
errors; for example, to free up buffer space. Errors indicate the packet contained
problems that prevented the delivery to a higher level protocol (meaning IP). The
Output Queue Length refers to the current number of packets pending output and is
an instantaneous counter.

As you can see from Figure 7.31, processor usage for TCPIIP is higher than it is
for NetBEUI, as we would expect for this more complex, layered, routing protocol.
Interrupt rate is almost identical to the NetBEUI case.

246 Optimizing Windows NT

.... "~I , . " , , q;,; ... 1·
Eile Edit ~ew Qptlons Help

Computer: \\SOl ..t
Object: TCP

Connection Failures 0,000
Connections Active 0.000
Connections Established lOOO
Connections Passive lOOO
Connections Reset 0.000
Segments Received/sec 345,571
Segments Retransmitted/sec 0.000
Segments S ent/sec 345.571
S egments/sec i::::::::::::::::~~jJI~]

Object: IP

Datagrams Forwarded/sec 0.000
D atagr ams 0 utbound Discarded 0.000
Datagrams Outbound No Route 0.000
Datagrams Received Address Errors 2.000
Datagrams Received Delivered/sec 345.571
D atagr ams Received Discarded 0.000
Datagrams Received Header Errors 988.000
D stagr ems Received Unknown Protocol 0.000
Datagrams Received/sec 345.571
Datagrams Sent/sec 345,571
Datagrams/sec 691.142
Fragment Re·assembll' Failures 0.000
Fragmentation Failures 0.000
Fragmented Datagrams/sec 0.000
Fragments Created/sec 0.000
Fragments Re·assembled/sec 0,000 -
Fragments R eceived/sec 0,000 -;

Figure 7.33 Server TCP/IP counters during 2048-byte reads

The next layer above the Network Interface is the IP (Internet Protocol) layer. This
layer sees only datagrams. Higher-level protocols (TCP in this case) supply the
end-to~end integrity to assure there are no out of sequence or missing packets. At
this level, a variety of different dispositions of datagrams are counted. If there are
data integrity problems you can often detect them here.

Datagrams Forwarded/sec is the rate at which this node is acting as an IP gateway,
forwarding packets received by, but not addressed to, this node. This includes any
for which No Route could be found and so were discarded (DataGrams Outbound
No Route.) The IP layer can reassemble long transmissions sent as fragments, and a
number of counters are devoted to tracking this activity. Reassembly can fail due to
errors or time-outs.

The Transmission Control Protocol (TCP) supplies end-to-end connections using IP
and assures all packets are delivered. If they are not, retransmission is invoked.
This object provides a simple high-level view of the number of packets sent and
received.

The User Datagram Protocol (UDP) provides a direct, rapid interface to IP without
the need to first establish a connection with the recipient. However, the delivery of
packets can be out of sequence or duplicated, or packets can be dropped. Usually a
given application will use either TCP or UDP to communicate with IP. So these
counters were all zero in this test case.

Chapter 7 Detecting Network Bottlenecks 247

The Internet Control Message Protocol (ICMP) is an ancillary protocol layer
attached just above IP. It handles a number of special internet message tasks:

• Echoing messages to verify that communication is possible (used by the ping
utility)

• Redirecting a node to use a preferred route

• Directing a node to lower the transmission rate to relieve network congestion
(source quench)

• Sending Destination Unreachable messages if a datagram cannot be delivered as
requested.

These counters are also all 0 in this case, so they are not shown.

..... 1 :;",." ~:; <., c • ;: .li:, :;.:il~ ';:, .• c,' :1.,; :';C.:;". :;: , ;::i.,': :<J",I'"
file Edit View Options Help

laltnl~Ii)1 1+I"'tlIXI I~I~I ~

Computer: \\SOL
Object: NOT Connection MERCURY Total

Bytes Received/sec 10367.123 10367.123
Bytes Sent/sec 364922.719 364922.719
Bytes Total/sec 375289.844 [:::::3:Z:~?e:~]44!

Figure 7.34 Server NBT statistics during 2048-byte reads

The NetBEUI TCP/IP Connection (NBT Connection) object individually records
transmissions to all connection points and is an extremely useful item on congested
servers. NBT Connection resides qn top of the TCP layer in the protocol stack.
NBT counts inbound and outbound byte rates, and has an instance for each open
connection and a total for all connections. You can use it to determine which of
several connections is sourcing a load, and in which direction. It's handy, handy,
handy. We wish every protocol had it.

248 Optimizing Windows NT

We generated a little UDP traffic so that it wouldn't be left out. UDP always gets a
bum rap because its known in Internet circles as being unreliable. Imagine, value
judgments on protocols. Anyway, the next few figures show some UDP action from
the server's perspective. Weare sending 1024-byte writes from a 'process on the
client to a process on the server using Windows Sockets (WinSock) to connect to
UDP. In this case WinSock provides the end-to-end packet integrity and so can use
the "unreliable" UDP. This does not invoke the server process on the server at all,
but acts more like an application such as SQL server might.

Computer: \\SOL
Object Network Interlace

Bytes Received/sec
Bytes Sent/sec
Bytes T otallsec
Current Bandwidth
Output Queue Length
Packets Outbound Discarded
Packets 0 utbound E nors
Packets Received Discarded
Packets Received E nors
Packets Received Non·Unicast/sec
Packets Received Unicast/sec
Packets Received Unknown
Packets Received/sec
Packets Sent Non·Unicast/sec
Packets Sent Unicast/sec
Packets Sent/sec
Packets/sec

Object Processor

% Privileged Time
% Processor Time
% User Time
Interrupts/sec

Object Process

% Privileged Time
% Processor Time
%User Time

C::::::::~:~:~:4:~~::ej:~!
0.000

892436.813
1 0000000 000

0.000
0.000
3.000
0.000
0.000
0.000

848.324
298.000
848.324

0.000
0000
0000

848.324

28.891
33.618
4.727

956.042

TTCP

11.127
15.018

3.891

System

0.018
0.018
0.000

Figure 7.35 Server's Network Interface statistics during l024-byte writes to the
server

Now that's one cookin' protocol. That is as fast as we have seen bytes fly for
this record size. And that's as high an interrupt rate as we have seen, too. It has
resulted in a correspondingly high processor usage. All just as pretty as can be!

Chapter 7 Detecting Network Bottlenecks 249

=1 .'. «.(;.,.,'>'; <, lk-1I' ;J1l.'!A.~r:m.f!rt! .·'C·.··";>;'i ·\·':<1"'1'"
Eile Edit ~iew .Q.ptions Help

laiwl () I~I 1+!rx~lxl liSOl~1 ~
r-!;

Compute,: \\SOl
Object: UDP

Datagrams No Port/sec 0.000
D atagr ams Received Errors 0.000
D atagr ams R eceivedlsec 848.342
Datagrams Sent/sec 0.000
Datagrams/sec 1:::::=:::::~4S.:::H:~1

Object: IP

Datagrams Forwarded/sec 0.000
D atagr ams 0 utbound Discarded 0.000
Datagrams Outbound No Route 0.000
D atagr ams Received Address Errors 42.000
Datagrams Received Delivered/sec 848.342
Datagrams Received Discarded 0.000
D atagr ams Received Header Errors 15212.000
Datagrams Received Unknown Protocol 0.000
D atagr ams Received/sec 848.342
Datagrams Sent/sec 0.000
Datagrams/sec 848.342
Fragment R e-assembly Failures 0.000
Fragmentation Failures 0.000
Fragmented Datagrams/sec 0.000
Fragments Created/sec 0.000
Fragments Re-assembled/sec 0.000 r--,
Fragments Received/sec 0.000 7

Figure 7.36 Server's UDPIIP statistics during 1024-byte writes to server

After all that blazing speed, the UDP counters are a little anti-climactic. Don't
worry about those 42 IP: Datagrams Received Address Errors. They all occurred
during the setup of the test. Since this is an instantaneous count of the current total
number of such errors, we just have to chart it during the test. If it does not change
while we are testing, then all the errors occurred before the test. We checked, and
they did.

Anyway, there's a brief rundown of the TCPIIP counter set. You can get all the
basic throughput information you need to determine your throughput ceilings. And
you get that wonderful NBT Connection object thrown in, not to mention some
pretty special performance from the WinSocklUDPIIP protocol stack.

Monitoring NWLink Performance
The NWLink protocol stack provides Windows NT with a method of
communicating on Novell NetWare-compatible networks. Much like the
NBTffCPIUDP stack, NWLink provides analogous NWLink NetBIOS, NWLink
IPX, and NWLink SPX services. The first figure shows our throughput test where
the client is reading unbuffered data from the server's cache for a variety of record
sizes, starting at 512, 1024, and 2048 bytes and then proceeding in 4096-byte page
multiples.

250 Optimizing Windows NT

Color Scale Counler In,lance Parent Objecl Compuler

Figure 7.37 Client's throughput for unbuffered reading with NWLink NetBIOS

NWLink NetBios has throughput and processor overhead much like NetBEUI in
the smaller record sizes, but at larger record sizes it has a lower maximum
throughput than the other two protocols we have considered.

Let's take a look at the counters for NWLink NetBIOS. Here we have to make
something of an apology, because the fact is we used the counters that were already
defined by the NetBIOS protocol. The minor crime we committed here is that if you
are used to using the IPXlSPX protocol in another context, the labeling of the
counters will be quite strange to you. Cut us a little slack on this one. We figured
providing the data was more important than getting the nomenclature just so.

Chapter 7 Detecting Network Bottlenecks 251
--~------------~-

IralUJI () I~I 1+!r?ijIXI 1~lt:ol ~
Com puler: \\MERCURY ..!.

Object: NWLink NelBIOS \Device\NwlnkNb

Bytes T otallsec [::::m:~:~~]1.§:
Connections NoR etries 1.000
Connections 0 pen 1.000
E xpir ations Ack 4.000
E xpir ations Response 14.000
Frame Bytes R eceivedlsec 411925.719
Frame Bytes Sent/sec 11726.641
Frame Bytes/sec 423652.375
Frames Received/sec 390.821
Frames Sent/sec 195.444
Frames/sec 586.265
Packets Received/sec 390.488
Packets Sent/sec 195.244
P acketslsec 585.732
Piggyback Ack Queued/sec 195.244
Piggyback Ack T imeouts 4.000
Window Send Average 4.000
Window Send Maximum 4.000

Object: Processor 0

% Privileged Time 49.482
% Processor Time 51.319
% User Time 1.835
Interrupts/sec 498.639

Object: Syslem
--c

File Read Operations/sec 195.444 ..
Figure 7.38 Server's NWLink NetBIOS statistics for 2048-byte reads

In the 2048 size transfer, the NWLink NetBios statistics are amazingly similar to
the data in Figure 7.3. There is a bit more processor usage, but network throughput
and record rates are virtually identical.

Let's generate some random NWLink IPX activity. We have a test program that
uses multiple threads communicating with another computer in which a receiving
process resides. These threads send and receive data simultaneously and also
connect and disconnect from the other computer. This tweaks just about all the
counters active from IPX, which gives the data you see in Figure 7.39.

252 Optimizing Windows NT

Eile fdit ~lew .Qptions Help

Computer: \\SOL
Object: NWlink IPX

+lJ

Packets Received/sec
Packets Sent/sec
Packets/sec

Object: Network Segment

Total bytes received/second
Total frames received/second

Object: Processor

% Privileged Time
% Processor Time
% User Time
Interrupts/sec

'.

\Device\N wlnklpK

58.858
58.802

117.660

\0 evice\bh_NE32001

174466.563
118.545

31.915
99.964
68.049

1::::::::::::::::::?'~~Ji.~o.)

Figure 7.39 General IPX activity as seen by Performance Monitor

The processor is saturated, spending most of its time in User Mode as the
application generates the workload. Since the IPX exerciser had multiple threads,
sequencing has disappeared. They're sure talking a lot, although they're not moving
a lot of data. Sounds like some people we know!

We can generate so~e similar NWLink SPX traffic with a WinSock utility . WASP
is a little exerciser for applying a workload using the SPX protocol.

Eile Edit View Options Help

Computer: \\SOL
Object: NWLink IPX

+1 J

Packets Received/sec
Packets Sent/sec
Packets/sec

Object: Network Segment

Total bytes received/second
Total frames receivedlsecond

Object: Procenor

~ Privileged Time
~ Processor Time
~UserTime
Interrupts/sec

Object: Procen

~ Privileged Time
~ Processor Time
~UserTime

Chapter 7 Detecting Network Bottlenecks 253

\Device\Nwlnklpx

439.843
433.652
873.495

\Device\bh_NE32001

570095.438
875.357

o
32.794
65.118
32.324

987.454

1::::::::::::::::::::w.As.:13

14.812
36.441
21.629

1"'1'"

1+

Figure 7.40 Connection and disconnection between NWLink SPX partners

WASP generates a lot more network traffic. Processor usage is evenly split between
User Mode and Privileged Mode. But wait a minute, the WASP program is only
spending 21.629% of the time in User Mode. Yet 32.324% of the overall system
time is in User Mode. Who is using the rest of those cycles?

The next Figure shows that most of the remaining cycles are being used by CSRSS,
the Client-Server Run Time Subsystem. You may recall from an earlier chapter that
this is the process that handles graphics and windows on behalf of applications
running on Windows NT. This is client-process in the interprocess sense, not in the
inter-system sense. With this clue we·observe that WASP is continually updating
the screen with status information during its test, and this involves the graphics
process. A graphics process sapping server horsepower? Well, life's just like that
sometimes: it's not always fair but it beats the alternative.

254 Optimizing Windows NT

File Edit View Options Help

Computer: \\SOL
Object: NWLink IPX

Packets Received/sec
Packets Sent/sec
Packets/sec

Object: Network Segment

Total bytes received/second
Total frames received/second

Object: Processor

% Privileged Time
% Processor Time
%UserTime
Interrupts/sec

Object: Process

% Privileged Time
% Processor Time
% User Time

\Device\Nwlnklpx

439.843
433.652
873.495

\Device\btLNE32001

570095.438
875.357

o
32.794
65.118
32.324

987.454

WASP csrss

14.812 2.194
36.441 12.147
21 .629 C:::::::::::::::::::::::~:S.~~i

PERFt.lON

0.765
1.429
0.665

.. L+

Figure 7.41 SPX exerciser inadvertently exercises the graphical subsystem

So don't pass over those other innocuous counters hanging around. Look at
everything; ignore nothing. Only you can determine what is important for your
application environment. Just try to imagine what those programmers have done to
your system! That ought to scare you. No counter is irrelevant when hunting
bottlenecks. The fact that a counter is not changing can be just as important as the
fact that it is. In the past few chapters we have focused on afew of the critical
issues surrounding the hunting of bottlenecks. If you deal with this issue in the real
world you know we have but scratched the surface. Don't oversimplify. Be patient.
Be suspicious. Be fearless. Be relentless. And happy hunting!

255

CHAPTER 8

Capacity Planning

You might think that capacity planning is something that only large Infonnation
Systems organizations need to do, but actually aJI of us change our work habits
over time as we acquire new software. It can be fascinating to watch the computer
system become taxed over time. But this fascination has its practical side-if we
watch closely enough, we'll know exactly what to do to improve the perfonnance
of the system as the demand for it increases.

In this chapter, we'll give you some tips on how to stay one step ahead of the
demand for your system, whether it's a network server or a desktop computer.
Capacity planning begins with keeping records of the perfonnance of your system
over time. These records can become so huge as to be practically useless if you're
not careful, so a significant part of capacity planning is thoughtful and organized
record keeping. Once you have good records to sift through, you can get to the
analysis of those records.

The analysis is really just the application of the concepts of bottleneck detection we
have explained in Chapters 3 through 7, from the perspective of watching how your
computer usage habits have changed in the past, and where they are heading.
Mercifully, we will not repeat those chapters here.

As a fringe benefit, the whole task of bottleneck detection is greatly simplified with
even a little capacity planning. It's easier to see what's changed than to start from
scratch to detennine what's wrong. That Memory: Non-Paged Pool Bytes, didn't
that used to be lower? Was it that new application we got, or was it adding TCP/IP
to the network protocols? Just a little history is worth its weight in charts here.

256 Optimizing Windows NT

Performance Monitoring Service
In Chapter 2 we introduced the facility for establishing Performance Monitor as a
service running on any computer. This keeps network traffic for performance
monitoring to a minimum, allows unattended automatic alerting and logging, and
permits you to control when log or alert data move across the network. A principal
feature of this approach is that data from each computer will appear in its own log
file and application event log.

The utilities for establishing the Performance Monitor service are included on the
floppy disk or CD-ROM provided with this book. Let's take a quick look at how we
set up the service on some computer, which we'll call the "target" computer, named
\\TARGET.

First you need to determine what counters you want to set alerts on, if any, and
what events you want to trigger when those alerts occur. You do this using our good
old friend Performance Monitor, and selecting the target computer in the Add to
Alert dialog. You may also elect to log ce~ain objects, again pointing the Add to
Log dialog at the target computer. Be sure the path that you set up for the log file
exists on the target computer. Set your time interval for logging by the service, but
don't start logging. You may then save your settings in a workspace settings file,
which we'll call TARGET.PMW.

You'll need to copy both DATALOG.EXE and TARGET.PMW to the
%SystemRoot%\System32 directory on \\TARGET. You can then use the
monitor.exe utility to control the service. The monitor.exe utility is a command
line application created just for this purpose. It has the following syntax:

monitor [\ \compute rname] [command]

If \\computername is omitted, the local computer is assumed. If command is
omitted, the current setup and status of the service are reported. The following list
shows the commands you can use as a command in the monitor command line:

setup Sets up the Performance Monitor service registry variables and installs
the service in the Service Controller

filename.pmw Establishes the file as the current workspace settings file

start Starts the service

stop Stops the service

pause Sends a pause control to the service, and data collection is suspended

continue . Sends a continue control to the service, and data collection is resumed

automatic

manual

disable

Chapter 8 Capacity Planning 257

Sets the service to start automatically when the computer starts

Sets the service to require a manual start using the Control Panel's
Services applet or the monitor START command (this is the default)

Disables the service: commands like start will be ignored; reset this
mode by using automatic or manual

If you want to watch for alerts or log data to a log file automatically, you can
establish the Performance Monitor as an unattended service on the computers you
want to' monitor. The Performance Monitor service can be set up to start
automatically when the computer starts.

The Performance Monitor service, called DATALOG.EXE, always runs locally
on the computer on which it is started. Alerts are watched locally on that computer,
so no data needs to travel across the network. You can also set up logging on any
computer running the service. The log file is usually located on the same computer.
The data can remain there until you wish to scan the data using the Performance
Monitor, or pull it to another computer when the network is not busy.

You can enhance your control of the service with the use of the at command. (For
the at command to operate, you must first start the Schedule service using the
Control Panel's Services applet.) For example suppose you only want to log data
during the morning hours of peak usage. You might issue the following commands:

at \\TARGET 9:30 Idate:M,T,W,Th,F "monitor START"

at \\TARGET 11:00 Idate:M,T,W,Th,F "monitor STOP"

Of course you can scale this up to handle many computers instead of just one. The
thought of all those computers automatically filling their disks with data just makes
us giggle. Until the boss gives us the bill for a new disk drive for each one. So let's
take a look at managing all this performance data. It won't really matter whether
it's gathered by the Performance Monitoring Service or the actual Performance
Monitor: the log file is the same, and manage it we must.

258 Optimizing Windows NT

Monitoring Multiple Servers
First, let's take a look at a few ways to monitor multiple servers. This is a common
need for keeping records of performance on computer networks. (In "Monitoring
Desktop Computers," later in this chapter, we'll discuss what you should do
differently when you monitor workstations.)

It's usually easier to log the servers' performance data. If you don't log, you have
to be pretty quick on the PRINT SCREEN key. If you're not using the Performance
Monitoring service, you can log from mUltiple servers into a single log file. How
many servers? That depends on how much data you collect from each one and how
often you collect it.

Typically, you'll be doing bottleneck detection on your servers on a daily basis
anyway. It's actually quite easy to take the information you're gathering for
bottleneck detection and use it later for capacity planning.

Let's talk about what data you want to collect from your servers for bottleneck
detection. At first, you might want to log just the following objects: Processor,
System, Memory, Cache, Logical Disk, and the protocol at the adapter card level if
possible. You'll want to log the Network Segment object from one server on each
segment. This is quite economical, and it is very easy to see exactly how much disk
space this costs you. Switch Performance Monitor to Log view, set up to log these
objects, and set logging to manual update mode. Then click the camera icon a few
times. Note the file size. Click again. Note the new size. The difference is the cost
of logging this data on that system. On a typical system, this is under 7K. If you
have 10 such systems you have 70K, and if you have 100 systems, you have 700K
(ouch).

Now, how often should you collect data? Let's suppose we have 25 servers so we
are collecting 175K with each snapshot of the data, and that we collect data every
minute. At the end of an eight-hour shift we'll have about 84 MB of data. As long
as you reduce the data as described below so you don't have to save this much after
each day's activity, it might not be considered prohibitive. But we aren't the ones
buying the disks, so you might want to collect a little bit less. If you know how
much disk space you can use for this each day, you can use the procedures we've
just outlined to determine which objects to monitor, and at what time interval.

If you have an application server, you might want to collect some additional objects
such as processes or even threads (so you can see the critical System: Processor
Queue Length counter). The application itself might provide some extended object
counters for Performance Monitor. If so, these might be worth keeping an eye on.

Chapter 8 Capacity Planning 259

Another way to watch lots of systems is to use the Alert view. We've said little
about alerts so far in this book, but nothing handles the monitoring of lots of
systems (without taking up lots of disk space) quite as well. And your own
creativity is the limit. That's because, as we mention in Chapter 2, you can use
Microsoft Test or a similar product to change Performance Monitor's settings in
response to an alert. You can reduce the time interval, add objects, and start or stop
logging, all in response to alerts.

You can have the alert messages sent to you anywhere on the network just by
adding a special name to the system you are using. For example, typing net name
wizard ladd adds the name "wizard" to the system you are on. If you then direct
the alert to send a message to "wizard," it will find you no matter where you

. are-even out on a RAS client laptop somewhere over the South Pole.

One thing you will surely want to do is set an alert on the % Free Space on your
file server logical drives; You do not have to enable DISKPERF.SYS to see the
free space on your logical drives, but you already have DISKPERF.SYS enabled
on all your servers because you ran some experiments after reading the previous
chapters (right?), so this is not an issue. The next figure shows how you can set an
alert on several drives at once. After setting this alert, we will get an alert as soon
as the free space on any of the logical disk drives falls below five percent.

!;.omputer: I\\OBLONGATA

OQject: !LogicalDisk

Counter: % Disk Read Time
% Disk Time
% Disk Write Time
%JreeSpace . ~... .
Avg. Disk Bytes/Read
Av . Disk B teslTransfer

Colo!: 1~~~~!1

! :!I instance: 0 ==> C:
1 ==> D:
2==> E;

Run Erogram on Alert-------,

IL-b...,;;uy_a_dis_k_.e_xe ___ ----I! ~ i~~:~~;:~!~

Figure 8.1 Setting alerts on disk free space for multiple drives

260 Optimizing Windows NT

Archiving and Storing Performance Data
Let's continue with the example we started in the previous section. We collected
data on 25 servers using a one-minute time interval. Most server bottlenecks can be
found at this resolution. After all, if the server is slow only for a minute or less, it's
not that inconvenient for the server's users.

Once the day is over, or perhaps the week, we no longer need that much detail.
Now it's time to relog the data to a Performance Monitor archive. An archive is just
a log file with data from multiple days that we'd like to keep around for a while.
Internally it has the same format as the original log file.

Suppose we use Performance Monitor to open the first daily log file. The sensible
thing to do here is to set the time window on a couple of busy periods of the day,
such as mid-morning and mid-afternoon. (Alternatively, you might want to chart a
key value such as System: Total Interrupts/sec to find where to set the time
window.) If you are collecting from multiple servers, it is usually better to collect
the data from them all at the same time of day.

After you've set the time window, open the log settings file with which you created
the original log (here's where you're glad you saved that settings file). The settings
file selects all the computers and objects you logged the first time. An alternative is
to have a separate settings file for archiving the logged data, in which only a subset
of the original objects are logged. For example, you probably don't need the Cache
object in the archive, and you might not need all levels of the TCPIIP protocol if
you logged them originally.

Having selected the objects to archive, use the Log Options dialog box to name the
archive file. In this file you are building up a history of network activity during peak
hours. Each day's peak activity is appended to the end of this file when you relog it,
as shown in Figure 8.2.

Figure 8.2 Creating an archive log file from daily logs

Chapter 8 Capacity Planning 261

Before you append today's data to the archive, change the time interval to
something like 600 seconds or whatever suits you. This reduces the data to one
tenth its original size (assuming the original log was made with a one-minute time
interval). If you also archive only half of your workday (such as two hours of
peak activity in the morning and two more in the afternoon), the size of the data is
reduced to 4.2 MB from your original 84 MB, assuming we keep all those original
objects in the archive. This is not an outrageous amount of data for a daily record of
45 systems. This is about 20 MB per work week, or one gigabyte for the year.

One gigabyte is not to be sneezed at, and Performance Monitor would be slow
(to say the least) to process such a large file. So once a month we should engage
in some further data reduction. You will want to browse through the counters to
determine the ones you think best indicate system usage growth. System: % Total
Processor Time, System: Total Interrupts/sec, Total Bytes/sec of the protocol, %
Disk Time, and % Disk Free Space suggest themselves immediately. Number of
connections and files open might also be interesting. To monitor system memory,
you'll want to watch Pages/sec, but also keep an eye on Page Faults/sec and Cache
Faults/sec so you can determine whether your paging is due to disk file activity or
too many large processes.

You then chart the counters you selected over the month's time. At this point, we
have 4 hours per day times 6 observations per hour, or 24 data points per day. With
22 working days in a month, this gives 528 data points for the month for each chart
line. Of course, on a Performance Monitor chart you will see only 100 points, but
as they say Down Under, no worries.

Analyzing Trends
Continuing our example, the next thing you'll do is export the chart. Now you have
all 528 data points in a format suitable for a spreadsheet or database application.
It's trend analysis time! Once you import this file into your application, you will get
another huge reduction in data storage requirements. You are now in a position to
plot 3-D charts, annotate them with sound and videos of your network humming
along, and so on.

262 Optimizing Windows NT

The next figure is an example showing the growth in processor utilization and
interrupt rate on a server over a period of several months. The processor usage
has climbed to near 75% at the right of the chart, and the interrupt rate is 1,180 per
second. Time to order that second processor!

~hart Forma! Macro

% Processor Busy and Interrupt Rate J 10

Reedy

Figure 8.3 Processor-~sage growth on a server over several months

You can automate a lot of this using Microsoft Test for Windows NT or a
similar tool. If you do this by recording your actions, then wherever you can, use
keystrokes instead of mouse movements to navigate. This makes the MS Test script
more readily portable to different display resolutions. .

Chapter 8 Capacity Planning 263

Monitoring Desktop Computers
On clients, we recommend collecting less data. The same objects could be collected,
but an hour's activity each day should be enough. Use the at command to schedule
the monitor utility to log the data each day. You can skip a step by recording at
6-minute intervals initially. This gives ten data points, or 70K, per day. Use an MS
Test script to append these directly to your archive. This will grow to 1.5 MB in a
month, which could be compressed and placed on a floppy disk after it is exported,
so it can be used by a spreadsheet or database application. (Utilities to compress
and expand files are shipped on the Windows NT SDK.) Log files compress to
about 30-40% of their original size. Again, all of this can be automated with MS
Test with a little effort.

Once you have all this data, the chances that you will be able to get that next piece
of equipment when you need it are greatly improved. Bosses are easily swayed by
3-D charts. If that doesn't work, add music, or a full-motion video of you working
in slow motion. On second thought, maybe that last idea wasn't so great.

CHAPTER 9

Writing High-Performance
Windows NT Applications "f.

It's time to talk about how to avoid lots of problems. An ounce of prevention is
worth a pound of charts. (Catc;hy phrase, isn't it?)

265

In this chapter, we go over some guidelines and hints to help you write high
performance Windows NT applications. For years, a body of lore has accumulated
surrounding the creation of high-performance and well-behaved 16-bit Windows
applications. However, Windows NT is a completely new operating system, and the
rules have changed. (For example, the constraints of a 16-bit address space have
been removed within the operating system, so there are fewer limits on internally
stored objects.) .

The sophisticated virtual memory manager in Windows NT permits applications
to have direct access to very large data structures. Increased protection permits
applications to be less concerned about cooperating with other applications, and
more focused on being responsive to the user. But costs associated with increased
protection and with portability to multiple processors necessitate a rejection of some
coding styles of the past.

If you think this chapter is only for programmers, think again. There is nothing
more satisfying than going to your lead programmer and pointing out a more
efficient way to do something. So if you're a programmer you'd better read this
in self defense, and if you're not, this is your chance to get even.

266 Optimizing Windows NT

Managing Memory
You have at your disposal a large virtual address space and probably more physical
memory than in the old days, too. With 32 bits of address space, you can address 4
gigabytes. Each application program on Windows NT has the lower 2 gigabytes
of linear virtual address space at its disposal. You don't get quite all of it, of course.
If you have a console application, the system will use 5.5 MB of that lower 2
gigabytes to permit you to view portions of the system that reside elsewhere. If
you have a Windows application, that number rises to 9 MB. But these are small
potatoes compared to 2 gigabytes, so think of yourself as owning it all.

If your application is being ported from another operating system or from an earlier
version of Windows, you might have developed a special virtual memory scheme
for your own private use. Get rid of it. Otherwise you will be paying the price of
having two virtual memory systems operating at one time, and believe me, one is
enough.

You should consider using memory mapped files under certain conditions. Do this
if you are going to randomly access the file .read-only or read-share write-exclusive.
Shared writing to memory-mapped files from multiple processes requires quite a bit
of internal system structure and does not work well if the file is remote, because you
will have to manage your own remote synchronization. There are better ways to
spend your time, because this problem is automatically solved by facilities in each
of the various file systems.

For s~quential file access, memory-mapped access is a bit faster but uses more
memory than does access through the file system cache. And if you are going to
access a file sequentially, be certain to tell that to the file system in the CreateFile
call by setting FILE_FLAG_SEQUENTIAL_SCAN. (In general, use CreateFile
instead of the obsolete OpenFile call.) This increases the size of the read-ahead by
the cache manager. If, however, you are going to access the file randomly and
sparsely, you definitely should use file mapping. You do this by first calling
CreateFile to open the file, and then CreateFileMapping to place it directly into
your address space. This is what Performance Monitor does when reading in log
files, because sparse random access to a log file is common.

You should also get rid of your temporary files if you know their maximum size.
You can map a large temporary space which is backed by the· system paging files
instead of by a pre-existing file. Simply pass Oxffffffff as the file handle to
CreateFileMapping, and specify the size you need.

Chapter 9 Writing High·Performance Windows NT Applications 267

You can also create large tracts of space to play in with the VirtualAlloc call. This
is space backed by the paging file(s), but because it has no name it is not sharable
with another process, so it's a little different from CreateFileMapping. You can
form some really large private data spaces backed by the paging file with this much
address space, but it may not be wise to reserve disk space for all that area. You
may need your application to run on machines that are short on disk space. There's
no point in taking more than you need.

What you can do is tell the system how much you might need in the worst case,
and have it reserve that amount of linear address space. Then you can commit only
those pages which you actually need to use as you go along. The reserved virtual
space will be contiguous, but disk space will only be obtained in the paging file
for the committed bytes. To reserve memory, call VirtualAlloc specifying the
MEM_RESERVE flag, and later you can commit the memory with another call to
VirtualAlloc, specifying MEM_COMMIT.

One useful thing about the CreateFileMapping call that we alluded to above is you
can share the memory section you create or map with other processes on the same
computer. All they need to do is a CreateFileMapping on the same filename. This is
a much faster way to share information between multiple processes than named
pipes, RPC, or shared file access. For example, it is how Performance Monitor
would prefer to get its data from extended objects. You might need a mutex to
protect access to the shared section, but hey, we got those too, and they're priced
at a bargain.

Using the Kernel Wisely
If you decide to use the file system to access your file data, get a reasonable chunk
of data at a time. If you are processing a file sequentially, get 4K or 8K at a time to
reduce the number of calls you have to make to the file system. There is no point in
crossing the boundary between user mode and privileged mode and going through a
slew of protection and security checks unnecessarily. Of course, if you randomly
access small amounts of data, you are probably better off not reading or writing
large numbers of bytes you don't need. In that case try to map the file.

Think about using multiple threads to improve your performance on multiple
processor computers. Just because you have a desktop application does not mean
you cannot take advantage of multiple threads. First, you can use multiple threads
as a technique to get back to the user quickly when the user has requested a task
that takes a little time. Second, the day is not far off when we will see multiple
processors on the desktop.

268 Optimizing Windows NT

If you are working on a server application, you certainly.want to use multiple
threads, because multiprocessor servers will soon be commonplace.

Note It may not be wise to use mUltiple threads to get lots of concurrency in your
file access. Be aware that Windows NT supports asynchronous file access. This
means you can fire off many file requests, and the system .will notify you when they
complete. This is much more efficient than having a separate thread for each
concurrent file request that you might have outstanding.

In MS-DOS systems, there was a limit on the number of files the system could have
open at one time. This led to a coding style of opening and closing files frequently.
Because of the additional protection and security in Windows NT, the action of
opening a file uses more resources, and we don't encourage this coding style. Open
files and leave them open for access. There is no limit on how many can be opened
at one time, other than the size of non-paged pool; it cannot be allocated so large as
to take all of physical memory. But we are talking many thousands of files before
this is a consideration. So don't be afraid to leave your files open.

In Windows there was a distinction between memory obtained using LocalAlloc
versus memory obtained with GlobalAlloc. Windows NT supports both allocation
calls to make porting to Windows NT easier, but for 32-bit applications they
execute the identical underlying code. The memory allocated is local to your
process, and will be deleted by the system when your process dies. You cannot
share it with another process; that's what CreateFileMapping is for. The one place
where this is not true is when the memory is flagged as GMEM_DDESHARE,
which Windows NT handles differently. Only applications using dynamic data
exchange (DDE) or the clipboard will specify this flag. For 16-bit applications the
calls appear to work as they did on 16-bit Windows, because these all execute in
the NTVDM process.

If you're looking for the acme of performance on short.bursts of activity, use the
Real-Time Priority class. It's most useful for an application which is processing
data in real time or doing time-sensitive communication with an external device.
Your application must run in short bursts and not keep the processor for very long
before waiting for the device to deliver more data. This is because you will be
preempting all activity on the system, including the work of Windows NT system
processes.

I

Chapter 9 Writing High·Performance Windows NT Applications 269

Another useful facility for development of real-time applications is the VirtualLock
call. This permits you to identify a small number of pages to retain in memory so
you will not have to wait for pages to come in from the disk when attempting to
respond to a real-time device. You should implement a design that minimizes the
amount of code that executes in the Real-Time Priority class with locked pages.
You can use Event objects and shared named memory to exchange information
with processes running at normal priority and thus minimize the real-time code.

One way to improve your performance when storing and retrieving data from the
Configuration Registry is to use the new data type MUL TI_SZ. This data type
permits you to store a set of data values under the name of a single value by
concatenating the strings into a single "multistring." A multi string has multiple
individual strings separated by TEXT('/O'), with the last one followed by an
additional TEXT('/O'). One call to the registry will retrieve all the strings. This is
very efficient, especially if the value is accessed remotely. Performance Monitor
counter names and Explain text are stored in two giant MUL TI_SZ multistrings.
Performance Monitor retrieves them all with just two RPC calls to the remote
registry during remote monitoring.

This touches on another point. Internally, Windows NT uses Unicode™. (Unicode
is a 16-bit character-coding standard which includes symbols for all international
languages.) When an application passes ASCII text strings to the system (to be
stored in the Configuration Registry for example), they are translated to Unicode
right off the bat. They must be translated in the reverse direction if the application
is coded to deal with ASCII. So the obvious right thing to do, at least from a
performance viewpoint, is to write the application to work with Unicode. This will
avoid some unnecessary overhead and make the application easier to port to foreign
languages, especially in the Far East. So if you want those trips to the Far East to
work on the Asian versions of your application, use Unicode.

Grappling with Graphics
In Chapter 3 we discussed the graphics architecture of Windows NT. The
illustration is reproduced here to jog your memory. When an application wants to
write to the display it must send its request to the Client Server Runtime System
(CSRSS). (This is called a client-server architecture because it mimics the network
client-server model we covered in detail in Chapter 7. However, the client and the
server for graphics in Windows NT must be on the same computer because, as
we shall see, they share common data.) This provides a high degree of portable
protection to the windowing and graphics managers, but there is a cost of about a
thousand instructions for each call. This fact dominates life in graphics land on
Windows NT and has important implications for how you code your application.

270 Optimizing Windows NT

Application process CSRSS process

Windows I
Application

code API

- -I" and graphics j

Privileged Privileged 1-------tIIJ
mode mode

~I.~--o~ Graphical I
device driver' I

\.. ","",,,,,,,,,,,,",' '" "",,,*,;,;.,,_,.,,~.w"'''''''/'.:!:::

y ------v
k~~",;;.",,,;.~J

User mode Privileged mode User mode

Figure 9.1 Windows NT client-server graphics architecture

You might wonder why we did not just use another protection ring and place the
windowing system there. This would have kept it out of privileged mode and still
protected it from the applications. The reason is that many machines only have the
two protection levels: user and privileged modes. If we had tried to use a third
level, Windows NT would not have been portable.

One way the system improves on the effective per-call cost of the client-server
transition is to batch up calls and send them together. This gets them over to CSRSS
at a "bulk rate." Several events can trigger the release of a batch of calls to CSRSS.
If too much time passes between calls, the current batch is released. If too many
calls pile up, the batch is released (ten is the default batch limit). And certain calls
(those that require the graphics display to be updated in order to return their values)
will "flush the batch." We'll discuss these in a moment.

In order to minimize the number of transitions to the CSRSS process, the system
caches quite a bit of information in the application procesS. For example, the first
time the application requests font metrics much of the information for responding ,
to questions about the metrics on the font is copied to the application process for
further reference. Another thing that applications do a lot is compute transforms
between the logical and physical display coordinates, so the information for these
transforms is cached in the application. Basically, anything frequently used that can
be changed only by the application is cached. Anything that other applications using
the windows and graphics subsystems can change cannot be cached in the
application, but must be retained in CSRSS.

Another thing Windows NT does to minimize the need to cross over to CSRSS is
to share, as read-only, some of the CSRSS address space with the application. This
permits windows calls which need to read information in CSRSS data structures to
do so without having to transfer to the CSRSS process to look at the data. An
example here is the application's message queue. By mapping it to the address
space of the application, the system can avoid a transition to CSRSS to determine if
a message is waiting in the queue, as is done in a PeekMessage call. The system
also maps data about such commonly-referenced items as existing windows, menus,
and system colors.

Chapter 9 Writing High·Performance Windows NT Applications 271

Batch Processing for Graphics
You can see why effective Windows NT programming largely is about managing
the batch of calls routed to CSRSS. Making sure this batch is as large as possible,
when appropriate, is the goal.

When is it not appropriate? When you need the display to immediately reflect the
drawing you do, you want to flush the batch explicitly no matter how large or
small it is. Performance Monitor does this as soon as it has updated the display
with a new chart data point. Failing to do this causes the data to be updated
with noticeably odd timing. Also, you want to minimize the batch when you are
debugging your application. Otherwise, an error returned to an application
programming interface (API) call in the middle of a batch may not be returned until
some other call flushes the batch; it will appear then that the wrong call failed. This
seems pretty serious until you learn that debugged applications cannot get failures
on API calls which can be batched. This is one of the criteria the system designers
used for determining if an API can be batched. Finally, if you are doing certain
performance measurements on your application, you will want to set the batch to
one. We'll discuss this in the next chapter.

In general, you can batch graphical output functions that return a Boolean value
indicating success or failure. A few frequently used APIs that return non-Boolean
results which were seldom used have new replacement calls that just return Boolean
results. SetPixelV and MoveToEx are the new calls in two important cases.
(Remember this: there will be a test later.)

Three new API calls help you manage the batch. They are all optional; the default
works fine except in rather odd cases, such as Performance Monitor updating a
display in real time. GdiSetBatchLimit allows you to raise and lower the batch limit
which, as we mentioned, defaults to ten. For best performance, you should set the
limit as high as possible while avoiding jerky drawing on the display. You will
want to test any changes to the batch limit on a very slow machine and a very fast
one to be sure you have not introduced a problem which will only appear in one
environment or the other. You can call GdiGetBatchLimit to determine the current
limit. And you can call GdiFlush to flush the batch to CSRSS at the end of an
operation you would like to see displayed immediately.

272 Optimizing Windows NT

Most calls that manipulate the window system flush the batch. One reason is
that much of the window system is visible to all processes on the desktop and
so the central data repository for the common information is within CSRSS. We
mentioned that PeekMessage does not flush the batch, but GetMessage does. So
do graphics calls that return a handle or a number. An important exception to this is
the group of calls for selecting fonts, brushes, and pens. These are batched. But
selecting bitmaps and regions flush the batch. So do SetWorldTransform and
SetMapMode. We are telling you all this so that (when possible) you will try to
organize your code to group graphical calls together, and then make the calls that
flush the batch.

Another way to reduce the overhead for the client-server architecture is to write
your appliCation to take advantage of the several calls beginning with "Poly." These
exploit the fact that many drawing calls use identical attributes, and so multiple
items can be drawn in a single call once the brushes, pens, colors, and fonts have
been selected. Whenever possible be sure to use PolyTextOut, PolyPolyline,
PolylineTo, PolyDraw, PolyBezier and PolyBezierTo. The Windows NT console
window uses PolyTextOut. This change reduced scrolling time in a console window
by 30% when it was implemented during the development of Windows NT.

High Performance Graphics
If you are writing an application that draws on the display, then there is a new
facility in the Win32® API set which can really speed things up. We're talking
about the CreateDIBSection call. (The DIB here stands for "Device-Independent"
bitmap.) This allows you to share a memory section directly with CSRSS, and thus
avoid having it copied from your process to CSRSS each time there is a change. In
the old days you might have called GetDIBits, made the required changes, then
SetDIBits. You might have had to do this several times on different scan lines of the
bitmap before the image was ready for updating. The new call avoids all that. You
will first need to call CreateCompatibleDC to get a Device Context to select it into
in order to access it with the GDI API's. You can then make the changes directly in
the memory section holding the bits, and then call BitBlt or StretchBlt to transfer
the changes to the display.

One word of caution if you decide to use CreateDIBSection. You need to be sure
that any calls that might affect your bitmap have completed before you start to draw
in it. This is because the batching of GDI calls may cause their delayed execution.
Suppose you make a PatBlt call to clear your bitmap. Then you start to change the
bits in your DIB section. If the PatBlt call was batched it might not actually get to
CSRSSuntil after you start to make the bitmap changes. So, before you start to
twiddle the bits on your own side of the fence, be sure to call GdiFlush if you have
made changes to the bimap with earlier GDI calls.

Chapter 9 Writing High·Performance Windows NT Applications 273

Managing the Device Context
Windows NT provides a veritable sea of memory. Boy, this feels different
compared to 16-bit Windows. Not only can our applications stretch their legs,
the system itself no longer has to fit inside 16-bit-addressable blocks, and we have
room for lots and lots of pens and brushes and fonts. In the 16-bit Windows
programming environment, it was important to conserve the use of drawing objects.
In the 32-bit world we have to have richer data structures to hold this new wealth of
data. And that means it takes longer to look things up.

The old limitations gave rise to a coding style which created, selected, used, and
destroyed objects (like pens and brushes) constantly. Create, select, use, destroy;
create, select, use, destroy. This limited the number of objects in the system and
kept the application from bouncing into the address space walls, or worse, forcing
another application into them. Because of the client-server transition, object
creation and destruction are much more expensive on Windows NT. Because of the
new capacity for large numbers of objects, selecting objects is a bit slower too. So
create all your objects when you first need them. Then try to.get into the pattern of
select, use, use, use; select, use, use, use. Don't destroy them at all until you really
are done with them.

Let's take an example from real life. We had someone porting to Windows NT
complaining that their graphics were slower than before. We had them use the API
logger (which we'll cover in the next chapter) to see what was wrong. We found
them using the following pattern: select(grey); patblt(oo.); select(black); patblt(oo.);
select(grey); patblt(oo.); select(black); patblt(oo.).

We had them change this to select(grey); patblt(oo.); patblt(oo.); patblt(oo.);
select(black); patblt(oo.); patblt(oo.); patblt(oo.). This solved the problem because it
avoids the repeated lookups in the new data structures. This technique is applicable
to pens, fonts, colors, palettes, and brushes.

While we're on the topic of graphical device contents (DCs), into which we've
been selecting these objects, let's blow away another piece of lore. If you were a
16-bit Windows programmer, you were told to avoid the use of your own DC's
because the system could only support a few. This is not true on Windows NT. Use
the creation style CS_OWNDC as much as you can in your RegisterClass API call.
This avoids repeated use of the relatively expensive GetDC and ReleaseDC calls
every time you have to draw. It also preserves the selected objects in your own DC
in between calls, eliminating the need to select them again after each call to GetDC.

274 Optimizing Windows NT

Asynchronous Input and the Window Manager
The elimination of address space constraints permeates many aspects of the
windows environment as well. For example, timers are no longer precious objects.
Feel free to create and use as many as you like (but be aware that they are a poor
man's substitute for threads in certain cases).

Arguably the biggest difference between the 16-bit and 32-bit window manager is
the asynchronous input model. On 16-bit Windows you have a synchronous input
model, sometimes called "cooperative multitasking." In this model, each application
must always process its messages because every applicatfon saw every message and
if you did not process each one and yield to another program quickly, you would
hold up all the other programs on the system. This necessitated a coding style where
the most frequently called API was PeekMessage, because every application
constantly had to check the message queue for messages and pass them on. If they
did not, the system would appear to hang. (This also gave rise to a generation of
applications that, by default, loop in the processor checking for messages with
PeekMessage instead of calling GetMessage which will return control to the
window system until a message arrives. This does not really hurt anything, but as a
coding style we find it offensive. We'll have no more of that, thank you.)

On Windows NT, messages are sent only to the processes that need to see them. If
one process ceases to deal with its messages it may become unresponsive and may
cease to update its display area, but the rest of the system will carry on just fine.
This means PeekMessage no longer has to be the most popular API in the system.
You still want to remain responsive to the user, of course, so you should still call it,
but maybe not so often.

For the window manager, it is more important than ever that you write your
application using Unicode. Having to translate everything that goes onto the display
from ASCII to Unicode slows the important path from your application to the user's
vision. Unicode, Unicode, Unicode. We love Unicode.

Considerations for RISC Computers
One thing that surprises designers porting applications to, or writing applications
for, Windows NT is how easy it is to get their application to run on RISe
processors. There are virtually no processor dependencies in the Win32™ API layer.

However, you can give up a lot of performance in your applications if your data is
not properly aligned. The right way to handle this problem is to align the data in
your source for both RISe and non-RISe machines. You want to assure that you
have DWORDs on DWORD boundaries, and LARGE_INTEGERS on 8-byte
boundaries. Normally the compiler makes this happen, but there are cases when
you need to force .unalignment, such as data coming in from a file or from over a
network. Such structures may not follow these alignment rules.

Chapter 9 Writing High-Performance Windows NT Applications 275

In this case, you will want to use the pragmas PACK and UNPACK to define the
structures, and the modifier UNALIGNED to declare pointers to them. This will get
the compiler to generate the appropriate code. If you do not do this you will get
alignment faults. On some systems these will simply trap and you can fix your
program. We are more concerned about the systems that handle your unaligned
references with a trap handler. This will slow your application down in a way that
is not very obvious.

Choosing Between API Sets
The number of Win32 implementations the application designer might be
considering is growing. At present these consist of Windows NT and Win32s™. As
you certainly know by now, Win32s is implemented on top of 16-bit Windows so
that Win32s applications can gain the benefits of a 32-bit address space, but still
execute on existing 16-bit Windows systems. The existence of these two flavors of
the Win32 API complicates the design decisions for the application programmer
primarily in the performance arena. This is because Win32s offers the application
the advantages of the 32-bit address space, but continues to be subject to the
internal restrictions of 16-bit Windows (and to some extent, MS-DOS).

Therefore optimizations made for Windows NT will not always porf to Win32s,
and vice versa. Here we'll summarize which optimizations apply to which Win32
implementations.

The following table lists the various optimizations and tools presented in this
chapter, and indicates where they apply. (Many of the tools listed at the end of
the table are discussed in Chapter 10, "Tuning Windows NT Applications," and
Chapter 11, "Tuning the Working Set of Your Application.") The abbreviations
used in the table are:

Yes

N/A

No-op

No

Optimization

OK to use in this implementation

Not applicable, does not apply to Win32s

You can do this without effect on Win32s

No, don't do this on Win32s

Kernel optimizations:

Large address space

Discard old custom virtual memory schemes

Use memory-mapped files for file access

Reserve large data address spaces, but commit only
what you need

Windows NT

Yes

Yes

Yes

Yes

Win32s

Yes

Yes

Yes

Yes

276 Optimizing Windows NT

Optimization Windows NT Win32s

Kernel optimizations (continued):

Use named shared virtual memory Yes Yes

For sequential IJO, use 4K or 8K blocks Yes Yes

Use threads to enhance concurrency Yes No

Keep files open Yes No

Global and Local allocation are the same Yes No

Real-time priority for data communications Yes No

Page-Locking API is provided Yes Yes

Use new data type MULTCSZ in Registry Yes No

Write the application using Unicode Yes No

No disk cache tuning required Yes No

Graphics:

Client-server protection dominates Yes N/A
Batching of calls amortizes cost Yes N/A
Caching of values on client side reduces cost Yes N/A
Mapping of server data read-only to client Yes N/A
Batch output functions that return a Boolean result Yes N/A

SetPixelV and MoveToEx are batched Yes No-op

New APIs Gdi{GetlSet}BatchLimit, GdiFlush help Yes No-op

Set batch limit as high as possible while avoiding jerky Yes No-op
display

Most "user" (that is, Windows management) calls Yes No-op
flush the batch

GDI calls that return a number or a handle flush Yes No-op
the batch

. Selecting fonts, brushes, and pens do not flush Yes No-op
the batch

Selecting bitmaps and regions flush the batch Yes No-op

SetWorldTransfonn and SetMapMode flush the batch Yes No-op

GdiSetBatchLimit(1) only to see errors, or Yes No-op

GdiSetBatchLimit(l) only to profile API calls Yes No-op

Use new Poly calls as much as possible Yes Yes

Avoid Create, Select, Use, Select fonner, Destroy Yes No

Chapter 9 Writing High·Performance Windows NT Applications 277

Optimization

Graphics (continued):

Create, Create, Create; Select and Use, Use, Use ...

Richer structures to hold unlimited objects

Group attribute usage: gray, gray, gray, red, red

Grouping avoids cache lookup for pens, fonts, colors,
palettes, brushes

Use CS_OWNDC in RegisterClass

CreateWindow, Get(Own)DC set DC attributes only
once

Timers are no longer precious

Less need to use PeekMessage frequently

Write to Unicode

RIse:
Be sure to align data

Compiler pragma for handling file/net data

Exception handling for data alignment not supported

Tools:

Win32 API Profiler

Win32 CalVAttributed Pro filer

Working Set Tuner

VADump

PView

Debugger wt command

Performance Monitor

Windows NT

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

varies

Yes

Yes

Yes

Yes

Yes

Yes

Yes

! There are two Win32 API Profilers: one for Windows NT, and another for Win32s.

Win32s

No

N/A

Yes

Yes

No

No

No

No

No

No

Yes

N/A

Yes!

No

2

2

No

No

No

2 Working set tuning done on Windows NT will apply without further effort to the same application
running on Win32s.

279

CHAPTER 10

Tuning Windows NT Applications

If you've done everything we mentioned in the last chapter and you're as good a
programmer as you claim, you can, of course, skip this chapter. If instead you are
mortal like the rest of us, you may discover that your application's performance
could use a bit of improvement.

When you set out to make that improvement, having the perfect knowledge of the
static structure of your program is not enough to lead you down the right path. No
one is surprised more often by the dynamic behavior of a program than its author.

You need tools for performance tuning. In this chapter we discuss the tools you can
use to help you find performance problems in your application. The tools we discuss
here are flexible and can address a wide variety of tuning issues. To cover them all
completely would give us yet another volume. So instead, we'll show you how to
use each tool and what it can tell you, and refer you to the documentation supplied
with each one for the gory details.

280 Optimizing Windows NT

Run Performance Monitor First
Usually you can tell you have a performance problem because someone is beating
down your door complaining about it. (And that someone may well be yourself.)
What to do then?

Your first reaction should always be to run Performance Monitor. The objective of
Performance Monitor is not to solve all performance problems, but rather to make
sure no one wastes any time barking up the wrong tree. The Windows NT SDK
provides a number of tools you can use to tune your application, and running
Performance Monitor before tuning helps you make sure you pick up the right
tools to use next.

Let's take an example from the early days of the development of Windows NT. We
ported the Solitaire program to Windows NT from l6-bit Windows. Initial users of
the game complained about its performance when the cards cascade at the end of a
winning game. You've never seen this because you've never beaten Solitaire? Well,
on Windows NT we have built this in as a graphics demo. To see it, start Solitaire
from the Games group and press SHIFf+ALT+2. That's the number 2, not the F2 key.
We hope you're not disappointed with the speed, because the tuning work we are
about to demonstrate has already been done on the copy of Solitaire you are
running.

When we heard complaints about Solitaire, our first step was to run Performance
Monitor. Because we didn't think Solitaire used the network, we logged the data
across the LAN so we didn't interfere with any possible disk activity. We set the
time interval to five seconds because the operation we wanted to time takes about
90 seconds. This gave us only 18 data points, which we figured was probably
enough. If it wasn't, we could have built a version of Solitaire that performs the
cascade operation repeatedly. You can't get too far exploring application
performance problems unless you can isolate the problem.

Chapter 10 Tuning Windows NT Applications 281

File Edit View Options Help

100
90
80
70
60
50
40
30
20

_ ..
I

10~ _
o

Last! 3706.523 Average! 3586.833 Minr3142.373 Max! 4091.300 Graph Time! 340.000

Color Scale Counter Instance Parent Object Computer

rB 1.000 % Processor Time 0 Processor "OBLONGATA
1E:::::3 1.000 Pages/sec Memory "OBLONGATA
IF· ---I ~::::::::~Q;:Q:9:QIQQ::::~Y.:!~i.:t9:(~iZ?~9.::~::::~~::~~::~~:::~:::~:p.~~Yf.iiSU.~[(:;'~:~::~::~~:::~::~~:JJ~i:@~Qr:~~::~~::~~:SS:~i:~~Q:u.§6.tAJ
1E:::::3 1.000 % Disk Time C: 0 LogicalDisk "OBLONGATA
1E:::::3 1.000 % Disk Time D: 1 LogicalDisk "OBLONGATA
iE:::::3 1.000 % Disk Time E: 2 LogicalDisk "OBLONGATA

Figure 10.1 Overview of the Solitaire cascade

The overview from our log file of Solitaire is plotted in Figure 10.1. It's pretty clear
that we have a processor bottleneck. All the other chart lines are flat, except for the
LAN activity generated by Performance Monitor. How can we be sure this activity
is caused by Performance Monitor? The average NetBEUI: Bytes Total/sec (3587)
times the length of the run in seconds (340) is just about the size of the Performance
Monitor log file (1120260 bytes; we learned this from the dir command).

Computer: \\0 B LO N GA T A
Object: Processor

% Privileged Time
% Processor Time
% User Time
Interrupts/sec

Object: S ,stem

Context Switches/sec
File Control Bytes/sec
File Control Operations/sec
File Data Operations/sec
File Read Bytes/sec
File Read Operations/sec
File Write Bytes/sec
File Write 0 per ations/sec
Processor Queue Length
System Calls/sec

o

C::::::::::::::::::::4rA~~i
100.000
58.555

385.990

3494.828
1920.747

16.392
0.100
0.000
0.000

3055.283
0.100
1.000

389.969

Figure 10.2 Processor and system statistics during the Solitaire cascade

282 Optimizing Windows NT

We're spending 41.445% of the time in privileged mode, and we see a pretty high
context switch rate for this computer, a 486/33. Because the value of File Write
Bytes/sec is close to the NetBEUI: Bytes Total/sec we saw in Figure 10.1, we can
tell that the File Write Bytes/sec rate was caused by the redirector when it wrote
Performance Monitor data. The interrupt rate is consistent with a system connected
to a busy network, but not too active on it. We followed our own advice from
Chapter 3, and looked at which processes were eating up the processor.

I~IQJ[~]~I I±]~I?SI [@]~I ~
Computer: \\OBLONGATA ~ Object: Process SOL csrss

% Privileged Time 11.985 28.139
% Processor Time 19.003 78.664
% User Time \ 7.018 50.525
Elapsed Time 333.510 4418.280
File Control Bytes/sec 0.000 0.000
File Control Operations/sec 0.000 0.000
File Read Bytes/sec 0.000 0.000
File Read Operations/sec 0.000 0.000
File Write Bytes/sec 0.000 0.000
File Write Operations/sec 0.000 0.000
ID Process 138.000 24.000
Page Faults/sec 0.062 0.056
Page File Bytes 245760.000 5513216.000
Page File Bytes Peak 245760.000 5533696.000
Pool Nonpaged Bytes 12920.000 1562868.000
Pool Paged Bytes 37655.000 407588.000
Priority Base 7.000 13.000
Private Bytes 241664.000 5341184.000
Thread Count lOOO 26.000
Virtual Bytes 8560640.000 32227328.000
Virtual Bytes Peak 8560640.000 32358400.000
Working Set 696320.000 2756608. 000 -
Working Set Peak 696320.000 C:::::J~:Q~:4:1.?:.:QQQi .-

+;

Figure 10.3 Process activity during the Solitaire cascade

Looks like CSRSS was doing all the work. Between Sol and CSRSS, the processor
was maxed out. We decided to see if looking at the threads could give us any more
information about what was going on here.

Chapter 10 Tuning Windows NT Applications 283

Eile Edit ~iew .Qptions Help

tJ. ~ I+IBJIX' 1@ltol ~

Computer: \\OBLONGATA
Object: Thread

% Privileged Time
% Processor Time
% User Time
Context Switches/sec
Elapsed Time
ID Process
ID Thread
Priority Base
Priority Current
Start Address
Thread 5 tate
Thread Wait Reason

SOL
o

11.985
19.003
7.018

1675.450
333.495
138.000
162.000

7.000
7.000

2005487756
1.000
7.000

csrss
25

27.849
78.036
50.188

1677.342
332.655
24.000

184.000
13.000
14.000

2005487744
5.000

i::::::::::::::::::::::::Z;:O:O:O)

Figure 10.4 Thread statistics during the Solitaire cascade

...

Now we can see where all those context switches were going. Solitaire is calling
CSRSS constantly, and most of the time is spent in CSRSS in a single thread.
(For clarity, we omitted the 25 idle or near-idle CSRSS threads from the report
shown here.)

We're not spending a great deal of time in the Solitaire program. So it must be
Windows NT that has the problem, right? Let's make sure that's true by using
the next indicated tool, the Windows API Profiler.

The Windows API Profiler
The Windows API Profiler, affectionately known as W AP, is useful for determining
which Windows 32-bit API calls are taking up time. W AP can effectively profile
any number of processes and threads concurrently. You can run it on a program
without having to recompile the program. W AP intercepts the calls from the
application to the system and counts and times them. W AP is available in the
Windows NT SDK.

W AP modifies the executable image to point to a set of measurement DLLs that
sandwich themselves between the application and the system DLLs. See Figure
10.5. If your application performs a checksum on its executable, you must disable
the checksum to run W AP.

284 Optimizing Windows NT

Application process before API profiler is started

GDI

User
Application

Kernel
Privileged

code mode
CRTdll

AdvAPI32

\.. .I
y

System API

Application process while API profiler is running

ZDI GDI

Zser User
Application

Zernel Kernel
Privileged

code mode
ZRTdll CRTdll

ZdvAPI32 AdvAPI32
L ;::,.,,""';" ~ AA-,J.;,.;;.: -' ~ ~;:;.".~

~
API System API

profiler
or

logger

Figure 10.5 Application interface to the system before and after running apf32cvt

W AP sets the client-server batch size to one before taking any measurements. This
assures that the proper API call gets billed for its time. If W AP did not do this, the
time for all the API calls in the batch would be counted against the last one in the
batch,Jotally confusing the data (not to mention confusing you). Setting the batch
limit to one is a good idea, but you may notice a slowdown in the operation of the
application because there ate many more client-server transitions. Set another plate:
Heisenberg invited himself to the party again.

If you are concerned about the impact of setting the batch level to one for your
application, you can get an idea of the cost of a client-server transition on your
computer by looking in the W AP data for a call to SetWindowLong. It's a pretty
common call. If you don't see a SetWindowLong call, use W AP to find such a call
in another application, such as WinHlp32.

Chapter 10 Tuning Windows NT Applications 285

The Win32 APIs are contained in the following dynamic link libraries:
KERNEL32.DLL, ADV API32.DLL, GDI32.DLL, USER32.DLL, and
CRTDLL.DLL. The profiler is in the fonn of five DLL files, one for each DLL
to be profiled. As shown in Figure 10.5, these DLLs sit between an application and
the Win32 DLL to be profiled, intercept" API calls to them, and then make and time
a call to the Win32 API. The profiling DLL records the following infonnation for
each API:

• The number of times the API is called

• The total time spent executing the API during those calls

• The average time per call, computed by dividing the total time spent in the API
by the number of times the API is called

• The time of the first call to the API

• After the first call, the maximum time spent in the API on anyone call

• After the first call, the minimum time spent in the API on anyone call

• The number of calls that were not timed, due to a timer overflow (timer
overflows should not happen)

All result times are in microseconds.

The profiler determines overhead by reading the timer 2000 times upon
initialization of the profiling DLL. The minimum time of these calls obtained during
this process is subtracted from the time for each API call, thus eliminating the
majority of timer overhead from the final results. For accurate timing, it is
important that the system be inactive during the calibration process.

286 Optimizing Windows NT ,

Setting Up the Profiling Environment
There are a few utilities that assist the profiler. You must place APF32CVT.EXE
and APF32DMP.EXE in the path of the measurement computer. You use apf32cvt
to prepare the application for profiling.Y ou also use apf32cvt again after profiling,
to restore the application to its original state.

The apf32dmp utility is used to collect the profiling data during and after the
profiling run.

The following DLLs are required and must also be placed somewhere on the
operating system's path:

• ZDV API32.DLL, the profiling DLL for ADV API32.DLL

• ZERNAL.DLL, the profiling DLL for KERNAL32.DLL

• ZDI32.DLL, the profiling DLL for GDI32.DLL

• ZSER32.DLL, the profiling DLL for USER32.DLL

• ZRTDLL.DLL, the profiling DLL for CRTDLL.DLL

• FASTIMER.DLL, the timing DLL

Profiling an Application
The apf32cvt utility prepares an application for a profiling run. It does this by
modifying the application to load the profiling DLLs instead of the system DLLs.
It displays a list of all the DLLs loaded by an application as well as any changes to
this list.

To prepare a group of applications for the profiling of all system DLLs with W AP,
type:

apf32cvt win32 <app list>

where <app list> is a list of one or more names of the executable applications or
DLLs to be profiled during the profiling run. The argument <app list> must be the
last argument to apf32cvt. You must include the file extensions in the application
list; for example, to prepare the Solitaire program for profiling, type:

apf32cvt win32 sol.exe

Listing an Application's DLLs
You can also use the apf32cvt utility to simply display the DLLs that an
application loads. To display the DLL list of an application or applications, type:

apf32cvt. <app list>

Chapter 10 Tuning Windows NT Applications 287

Collecting WAP Data
If you want to collect profile data while an application is running, you must start
apf32dmp before you start the application, and it must remain running throughout
the execution of the application. The apf32dmp utility also provides a means to
collect data during selected phases of the profiling run (see below). The application
may now be executed normally. Profiling will begin as soon as the application is
started.

When you stop apf32dmp, it writes the profiling data to ASCII files. The data is
written to DLLNAME.END, where DLLNAME is the name of the system DLL that
is being profiled. For example, KERNEL32.END would contain data from the last
profiling run of KERNEL32.DLL. After each run, you should rename the .END
data files so that they aren't overwritten with the data from the next run.

Data from concurrent processes and threads is written to the same data file, and
there is no method for separating that data. If you need separate data on different
processes, profile them individually in separate runs. If you need separate data on
different threads, use the CAP tool discussed later in this chapter.

The program apf32dmp also allows data to be dumped to a file or cleared from
memory at any time during th~ profiling run. By default, the data is dumped to a file
but not cleared from memory. If you choose both options, the data is first dumped
and then cleared. If you clear any data without first dumping it to a file, the data
will be lost. Then you'll get to do the experiment again. Some fun, huh?

To specify whether data is dumped to a file or cleared, choose the option you want
in the apf32dmp dialog box.

The utility data dumps to a file DLLNAME.EXT, where DLLNAME is the name
of the system DLL being profiled, and . EXT is a file extension you define. By
default, this extension is .WAP, but you may change it if you want. (Do not use
the extension .END, as the profiler uses this extension.) DLLNAME.EXTis placed
in the working directory of apf32dmp.

Excluding Some APls from Analysis with WAP
When you use WAP, you should exclude certain APIs from analysis because they
either make callbacks into the application or wait for some event to take place. You
shouldn't concern yourself with time spent in these APIs.

Certain parent APIs call back into the application to complete their task. It may so
happen that, in this process, the application might make certain other child API
calls. The times for executing the child APIs are included in the time for the parent
API in addition to being reported for the child API.

288 Optimizing Windows NT

There are other APIs that wait on events; for example, user input. An example
of this is DialogBox, which waits for the user to respond. Another example is
WaitMessage, where the application is suspended and control is yielded to other
applications until a message is placed in the queue of the application under
consideration.

Representative APIs in these categories include the following:

• DispatchMessage

• WaitMessage

• GetMessage

• SendMessage

• DialogBox

• WaitEvent

• CallWindowProc

• DefWindowProc

• DefFrameProc

• Escape

• Update Window

• Create Window

• ShowWindow

• DestroyWindow

• MoveWindow

• Enable Window

Running WAP on Solitaire
In Figure 10.6, we show the essential data we found when we ran WAP on the
Solitaire cascade. We start apf32cvt, and then SOL.EXE. We clear the counters
fIrst with apf32dmp because we don't want to see all those API calls that occur
during the initialization of Solitaire (that's another performance problem to deal
with separately). Then we press SHIFf+ALT+2 to start the cascade. When the
cascade is complete, we dump the data.

Chapter 10 Tuning Windows NT Applications 289

=-1 . . j~(iHJi:t:lll.; {tftllil:j:i~I(@\ I
Eile fdit .search Help
gdi32.wap: Api p~ofile of gdi32. ~
All times a~e in mic~oseconds (us) I-Excess Time~ Oue~head ; 1 us
Fi~st Time is not included in Max/Min computation

API Hame Hum Calls J:otal Time Time/Call

BitBlt 4127 19482143 4720
C~eateCompatibleBitmap 19 155764 8198
C~eateCompatibleDC 4146 3132590 755
C~eateSolidB~ush 2 583 291
DeleteDC 4146 2669705 643
DeleteObject 21 7275 346
GetPixel 49296 24762415 502
GetTextExtentPointA 93 6969 74
PatBlt 3676 1960444 533
SelectObject 8314 3152617 379
SetB~ushO~gEx 9 16212 1801
SetPixel 52928 20594375 389
SetTextColo~ 62 5222 84
TextOutA 2 2288 1144 +"

+J J 1+

Figure 10.6 GDI32.DLL activity during the Solitaire cascade

Very interesting. We would have guessed that the program was spending a lot of
time in the BitBlt routine putting the card images on the display, and it is. But what
about all that time in GetPixel and SetPixel? There were almost 12 calls to each
routine for every BitBlt call! Most of the time was spent there. And by the rules
outlined in the last chapter, both of these calls cross the client-server boundary so
they will be flushing the batch in the bargain.

It's time to take a step back and think about what we've discovered. We have card
images flowing all over the screen, and on top of that we set individual pixels. No
way could a user see those individual pixels, so this definitely seems an excessive
refinement. We want to want to find out why Solitaire is making so many of these
calls during the cascade. To do that we have to move on to another tool called CAP.
But first, we clean up the W AP conversion.

290 Optimizing Windows NT

Ending WAP
You use apf32cvt to restore the application executables to their original state after
you are done profiling. To remove all profiling DLLs from a list of applications,
type:

apf32cvt undo <app list>

where <app list> is the list of applications to be restored. In our example,
we typed:

apf32cvt undo sol.exe

The Call Attributed Profiler
The Call Attributed Profiler, or CAP, details the internal function calls within an
application. You use it to see how much time is spent in each function and in the
functions called by that function. You can also use it to see how much time is spent
in the function itself, ignoring the functions that it calls. This gives a complete
picture of how time is spent throughout the application.

Many older-generation application profilers were sampling profilers. They would
interrupt the processor at high frequency and take a snapshot of the instruction
pointer. The areas in the program most heavily hit during sampling were the
program's "hot spots." Tuning the application consisted of recoding its hot spots.
This approach is very successful in programs that are computationally rich. Modem
applications tend to be highly structured, having thousands of functions-none of
which are computationally intensive. Such programs yield a flat sampled profile and
thus do not lend themselves to tuning with such profilers.

A different approach was needed to help resolve this issue, and this led to the
evolution of CAP. In CAP, each function call is timed. The start time is stored in a
data structure allocated to the function when it is called (suppose it's named "foo"),
and attached to the calling function's structure (call this one "sweet"). A count is
incremented so we'll know how many times the function foo was called by the
function sweet, as well as total time in the function. When another function, say
"bar," is first called, a new data structure is allocated. (Now you know what we
do with all that memory.) The result is a dynamic call tree showing the sequence
sweet->foo->bar with counts and times at each level. This permits the entire
structure and not just the individual functions to be tuned.

Chapter 10 Tuning Windows NT Applications 291

Initial proposals for call attributed profiling on Windows NT involved using the
debugging APIs to intercept the function calls. This design would have had the
advantage of not requiring you to recompile the application to measure it with the
profiler. While older systems with simple debuggers could probably get away with
this, the extra protection and security features of Windows NT made the debugging
APIs, well, rich. Using them would have used all the space in the processor's cache
and thus greatly distorted the execution time of the functions. Cousin Heisenberg
again. Initial estimates indicated this would severely degrade the accuracy of the
results. So instead, the module is recompiled with the -Gb compiler option, and a
special call is inserted by the compiler at the start of every function. This invokes
a measurement module called CAP.DLL which takes the measurement. It still
interferes with the processor's caches, but nowhere near as much as using the
debugging APIs would have.

CAP uses an elapsed time clock to measure time in functions. This has both benefits
and liabilities. The benefit is that you see where time is spent during disk or LAN
activity. The flip side is that if your thread gets switched out while the national debt
is being computed by another application, it will appear as though the preempted
function used all that time. So it is important to control the environment when using
CAP. (Actually the principle is not unique to CAP: it applies equally to W AP.)

CAP can be used to measure the functions within one or more executable programs
and/or dynamic-link libraries. The activity in each thread of each process is tracked
in a separate call tree. It can also monitor the calls from one such module to
another, just as W AP does. Unlike W AP, however, CAP is not restricted to
measuring only the calls to system DLLs. Calls to any DLL can be monitored
with CAP, whether the DLL belongs to the application or to Windows NT.

By default, CAP collects data only on functions written in Microsoft C or C++ or a
compatible product from another vendor. Data is collected from assembly language
procedures only if you provide some special support in those routines.

292 Optimizing Windows NT

Using CAP
Windows NT does not ship with debugging symbols in its modules because it takes
many megabytes of disk space to provide them. So, as discussed previously, you
should run apf32cvt on your application with no action specified. This will give
you a list of the system DLLs (modules) you need to have with symbols. You can
get the versions with symbols from the SUPPOR1\DEBUG directory in the
Windows NT SDK. First you rename the current system module; for example, type
ren gdi32.dlI gdi32.nsm. Then copy the one from the SDK to GDI32.DLL. Once
you have done this for all the DLLs you want to measure, you must shut down and
restart Windows NT so the modules with symbols get loaded.

Next we need to set up an initialization file called CAP.INI in the root directory
of the C drive. CAP.INI has four sections that control the set of .EXEs and
DLLs profiled. Each .EXE or .DLL listed must be placed on a separate line. It is
important that you get the fonnat of this file right, because otherwise Windows NT
might not start. The four sections of CAP.INI are as follows:

• [EXES] A list of applications to be profiled. When CAP.DLL initializes, it
checks the current executable name against this list and will start profiling if
the name is on the list. If the name is not on the list, CAP doesn't profile that
process.

• [PATCH IMPORTS] A list of .DLLs and .EXEs to be profiled for imported
entries. That is, listing a .DLL or .EXE here causes the profiling of all functions
(located in other modules) called by the listed .DLLs and .EXEs.

• [PATCH CALLERS] A list of .DLLs to be profiled for exported entries. That
is, .DLLs listed here are profiled when called by the applications listed in the
[EXE] section, or by any of their .DLLs.

• [NAME LENGTH] The maximum length of a symbol. This number must be in
the range from 20 to 2048. We recommend for C++ program this value be set
to at least 128 due to the name elaboration that is perfonned by the linker. If a
symbol is longer than this value, it is truncated. If the field is not specified or is I
0, the value defaults to 40. This field is optional.

Headers for the first three sections ([EXES], [PATCH IMPORTS], and [PATCH
CALLERS]) are required to be in the CAP.INI file, but the contents of any section
may be left blank. An additional section contains options for controlling
measurement overhead in unusual situations. See the README file provided \yith
CAP for details.

Chapter 10 Tuning Windows NT Applications 293

In our example we want to profile the Solitaire program, so our CAP.INI file looks
like this:

[EXES]
501.exe

[PATCH IMPORTS]
501.exe

[PATCH CALLERS]

This profiles SOL.EXE and measures any calls it makes to functions in other
modules, including the system DLLs. In our case, there is nothing after the
[PATCH CALLERS] header. You'll want to use that section to profile particular
DLLs that ycu've developed when you have listed in the [EXES] section the
applications that call your DLLs.

We also want to measure the functions inside the Solitaire program, because we
want to know where all those calls to GetPixel and SetPixel are coming from. And
no, we can't just search the source for the calls, because they are called from many
functions (nice try, though). So we'll recompile Solitaire specifying the -Gb and
Zd compiler options, and we'll link specifying the CAP.LID library and using the
debugtype:coff and -debug: full linker options.

Important You must slip a call to GdiSetBatchLimit(l) into the initialization code
for each thread before you recompile, or batching will really confuse the data. W AP
does this for you but with CAP you're on your own.

It's measurement time! We provide a Capdump program allowing you to control
which application activity you measure. First we start Capdump, and then we
start the recompiled version of Solitaire. We'll tell Capdump to clear the counters
because we are not·concemed at present about the performance while Solitaire
starts. Once Capdump clears the counters, we press SHIFf+ALT+2 to activate the
cascade. After the cascade is done, we shift to Capdump to dump the data. Data
files with the default .CAP extension appear in the directory where each measured
application resides.

294 Optimizing Windows NT

A center section of the results from the SOL.CAP file produced by this run are
shown in Figure 10.7 for function times including called functions, and in Figure
10.8 for function calls excluding called functions.

"""'I,,> >";;t',); ::" . ':,::' :: ' c' •• ,:;;;:::, ,<:c.>: .::;: ':0>''':>1 ... 1''''
file Edit ~earch Help

(pidltid=Ox6fIOx40 Client:pidltid=OxOIOxO)
~

T h t' e a d 11 :
----- Rtn + C~llees -----

Depth Routine Calls Tot Tillie Tillie/Call
7 SOl.EXE: Dt'awCat'dPt 4267 89561181 20989 I-

8 SOl.EXE:
-

cdtDt'awExt 4267 89359010 20941 I-
-9 SOl.EXE: HblllFt'olllCd 4267 166394 38

10 USER32.Dll: _loadBitlllapA 4 43754 10937
10 CDI32.Dll: _Ct'eateColllpatibleDC 8 3940 492
10 CDI32.Dll: _Ct'eateColllpatibleBitlllap 4 4959 1239
10 CDI32.Dll: _SelectObject 16 6485 404
10 CDI32.Dll: BitBlt 4 31462 7865
10 CDI32.Dll: =DeleteObject 4 1563 390
10 CDI32.Dll: DeleteDC 8 3728 466

9 CDI32.Dll: =ct'eateColllpatibleDC 4267 2849629 667
9 CDI32.Dll: _SelectObject 8534 3495921 409
9 SOl.HE: SaueCot'net's 4267 29082632 6815

10 CDI32.Dll: CetPixel 51204 25928990 506 -9 CDI32.Dll: BitBlt 4267 19896612 4662
9 SOl.EXE: Restot'eCot'net's 4267 23112842 5416

10 CDI32.Dll: SetPixel 51204 20224631 394 -9 CDI32.Dll: DeleteDC 4267 2892566 677 -9 CDI32.Dll: PatBlt 5776 2863906 495 -9 CDI32.Dll: SetPixel 5776 2273112 393
7 ~Ol.EXE : FAbot't 4267 2632621 616 ~

+1 J 1+

Figure 10.7 CalVattributed profile of Solitaire cascade, called functions included

Chapter 10 Tuning Windows NT Applications 295

=-1 If mIH !:i:'(li . !HHo}:1 (i!: 1: ! .1"'1-"
file Edit ,S.earch .t!elp
T h t" e a d 11 : (pidltid=Ox6f lox40 Client:pidltid=OxOIOxO) .!.

----- Rtn - Cal lees ----
Depth Routine Tot Tillie Tillie/Call

7 SOL.EXE: Dt"awCat"dPt 202170 46 -8 SOL.EXE: cdtDt"awExt 2725391 637 --
9 SOL.EXE: HblllFt"olllCd 70500 15 -

10 USER32.DLl: _LoadBitllIapA 43754 10937
10 CDI32.DLL: _Ct"eateCollIpatibleDC 3940 492
10 CDI32.DLL: _Ct"eateCollIpatibleBitlllap 4959 1239
10 CDI32.DLL: _SelectObject 6485 404
10 CDI32.DLL: BitBlt 31462 7865
10 CDI32.DLL: =DeleteObject 1563 390
10 CDI32.DLL: DeleteDC 3728 466

9 CDI32.DLL: =Ct"eateCollIpatibleDC 2849629 667
9 CDI32.DLL: _SelectObject 3495921 409
9 SOL.EXE: SaueCot"net"s 3153642 738

10 CDI32.DLL: CetPixel 25928990 506 -9 CDI32.DLL: BitBlt 19896612 4662
9 SOL.EXE: Restot"eCot"net"s 2888211 676

10 CDI32.DLL: SetPixel 20224631 394 -9 CDI32.DLL: DeleteDC 2892566 677 -9 CDI32.DLL: PatBlt 2863906 495 -9 CDI32.DLL: SetPixel 2273112 393
7 SOl.EXE: -FAbot"t 347749 81 t-:

+
., .. 1 l+

Figure 10.8 CAP of Solitaire cascade, excluding called functions

In the leftmost column is the function call nesting depth. This starts at zero with the
first function call that CAP encounters. If a function is called but has not returned
when the data is dumped, there will be an asterisk to the left of this number. Next
we have a column with the module name followed by the function name. If the
function is not known because the coff symbols with the function names in·them
are not contained in the module, ???: ??? will appear instead of module: function.

This section of the results, where SOL.EXE executed for 89 seconds, starts at call
level 7 with _DrawCardPt, which was called 4267 times. It called _cdtDrawExt
each time it was called, and that called _HbrnFromCd. We didn't spend much time
here: only 1.6 out of the 89 seconds. This called the USER32.DLL Win32 API call
_LoadBitMapA four times. The final "A" in this function name means this is the
ASCII form of the call, so right away we know that Solitaire is not a Unicode
application (in which case it would have been a final "W"). But Solitaire does
almost no text output, so maybe we can let that pass. The _HbmFromCd call used
some graphics primitives in GDI32.DLL, but only a few times even though it was
called 4267 times. So this is not the central cause of the poor performance.

296 Optimizing Windows NT

The call level returns to 9 which means _cdtDrawExt at level 8 is back in control.
We see from Figure 10.7 that even though we spent 89 seconds in this routine and
the routines it called, we spent only 2.7 seconds in the routine itself. The other
86-plus seconds were in the functions it called.

Let's see where. It calls _CreateCompatibleDC each time it is called, and then
_SelectObject twice on every call. We have over 6 seconds between them.
Looks like we should investigate an own DC for Solitaire. Then there is a call to
_SaveCorners, which takes 29 seconds. Looking at Figure 10.8 we see only 3.1
seconds in _SaveCorners itself, so the rest must be in GetPixel. A similar story
applies to _RestoreCorners and _SetPixel right after the call to _BitBlt.

We went to the developer porting Solitaire at this point and asked what on earth
_SaveCorner and _RestoreCorners were up to. It turned out that they modify three
pixels on each comer of the bitmap of a card to make the corner look a little more
rounded. We shared our observation that this was excessive refinement when cards
were cascading on the screen, and how each call forced a client-server transition.
We discussed using SetPixelV to remove one of the client-server transitions, but
decided the real solution was to remove the calls altogether during a cascade. This
was a very small change, just a few lines of code, but it made the Solitaire cascade
twice as fast.

Capview: a Visual Form of CAP
Looking at Figures 10.7 and 10.8 is educational but a mite tedious if you have a
large program with hundreds or thousands of functions. There is a great alternative:
Capview. Figures 10.9 through 10.11 show some of the data from running the
repaired Solitaire as it is seen by Capview.

+ +

Figure 10.9 Capview tree profile of Solitaire cascade, zoomed out

+

Chapter 10 Tuning Windows NT Applications 297

Cl .Eile .Qptions Windows Help

1671567
63619028

55
8496793

SOL.EXE
_SaveCorners
3413
10% 0%
33% 6%

GDl32.DLL
BitBIt

3413
100% 4%
23% 4%

GDl32.DLL
GetPixel

--40956
2209124 100% 5%
21371301 89% 5%

GDl32.DLL
_SetPixel
40956

15054287 87% 4%
15054287 / 100% 4%

SOL.EXE USER32.DLL
_Restore Corners _MessageBoxA
3413 1

12% 0% 2174430 /99%
27% 4% 17263297 . 99%

SOL.EXE
. FYesNoAlert
1 '
0% 0%

99% 2%
288
8496738

2%
2%

19162176
19162176

15088867
15088867

8476989
8496087

Figure 10.10 Capview tree profile of Solitaire cascade, zoomed in

+
+

Each box in the Capview tree represents a line in the SOL.CAP file. If you zoom
out you get the overview, and if you zoom in you can see the details of each line.

The first figure in the box is the number of calls made to that routine.

The rightmost number in the next line of figures is the time spent in the function
itself, expressed in microseconds. The left number is the attributed time. This is
the time spent in the function expressed as a percentage of the time in the function
plus the time in the functions it calls. The middle figure is time in the function as a
percentage of time in the entire program.

In the last line, the rightmost number is the attributed time. The middle number is
the attributed time in this function as a percentage of time in the program. And the
leftmost number is the time in this function as a percentage of attributed time in the
calling function.

298 Optimizing Windows NT

5359914
4437802

35161318
2847372
2300735
2254741
1594291

25775781
552594

Figure 10.11 Capview list profile of Solitaire cascade

5359914
4437802

35161318
445
722
708
489

8167 0%
511' 0%

The List view of Capview is illustrated in Figure 10.11. The attributed columns are
shown but the function-only columns are also available.

The FIOSAP Profiler
Let's take a look at another case. You know so much now, we can present
Performance Monitor information without comment. Look this over and form
your own conclusions, and then read on.

Chapter 10 Tuning Windows NT Applications 299

Figure 10.12 Overview of an application without a processor problem

==1> .::" ::;;.' ::;1'\'.;, "<.,> ;,. ''>:'i''?;>;', <I'" ...
File Edit View .Qptions Help

1§l1!D1 C) Ifill I+I~[E] I@I~I ~ .
Computer: \\CEREBELLUM .!.

Obiect: Processor 0

% Privileged Time 19,946
% Processor Time 23,810
% User Time 3.867
Interrupts/sec 99.732

Obiect: System

Conte)(t Switches/sec 326.651
File Control Bytes/sec 953,087
File Control Operations/sec 10.493
File Data Operations/sec 0.498
File Read Bytes/sec 2941.037
File Read Operations/sec 0.045
File Write Bytes/sec 26209.712
File Write Operations/sec 0,452 .'
Processor Queue Length 0.000
System Calls/sec 383.234 --,

T otallnterrupts/sec !:::::=::::::::::::::~~::Z:~~j ..
Figure 10.13 System and processor views of an application without a processor
problem

300 Optimizing Windows NT

Object: Memory

Cache Faults/sec
Demand Zero Faults/sec
Page Faults/sec
Page Reads/sec
Page Writes/sec
Pages Input/sec
Pages Output/sec
Pages/sec
Transition Faults/sec

Object: Cache

Copy Read Hits %
Copy Reads/sec
Data Flush Pages/sec
Data Flushes/sec
Data Map Hits %
Data Maps/sec
Fast Reads/sec
Lazy Write Flushes/sec
Lazy Write Pages/sec
Pin Read Hits %
Pin Reads/sec

i::::::::::::::::::~J:~::~:~:~]
0.407

218.642
9.408
1.040

102.491
10.312

112.804
12.212

80.692
105.883

69.473
11.308
75.000
0.362

106.110
6.558

101.632
96.000
1.131

+

Figure 10.14 Memory and cache views of an application without a processor
problem

Computer: \\CEREBELLUM
Object: logicalDisk

% Disk Read Time
% Disk Time
% Disk Write Time
% Free Space
Avg. Disk Bytes/Read
Avg. Disk Bytes/Transfer
Avg. Disk Bytes/Write
Avg. Disk sec/Read
Avg. Disk sec/Transfer
Avg. Disk seclWrite
Disk Bytes/sec
Disk Queue Length
Disk Read Bytes/sec
Disk Reads/sec
Disk Transfers/sec
Disk Write Bytes/sec
Disk Writes/sec
Free Megabytes

o
C:

12.116
19.403
7.287

14.953
4166.621

14512.988
40603.826

0.046
0.053
0.070

53170.242
0.000

10930.468
2.623
3.664

42239.774
1.040

48.000

1
0:

90.542
100.000
100.000
33.635

57891.873
29282.765
20134.843

0.128
0.107
0.101

858250.150
3.000

411096.750
7.101

29.309
447153.400

22.208
L::::::::::::::::J~:~:'QQQi

+

Figure 10.15 Logical disk view of an application without a processor problem

You've convinced me, the disk is the bottleneck here. Now what can we do about
it? It's not going to do us a great deal of good to use the tools we've shown so
far, although we might be able to deduce which files are in play by seeing which
functions of the program are busy. (There's a bit of fun detective work to try.) We
have an easier, softer way.

Chapter 10 Tuning Windows NT Applications 301

Using the 1/0 Profiler
The File I/O and Synchronization Win32 API Profiler (FIOSAP) is an outgrowth
of W AP designed to profile applications that possibly have multiple concurrent
threads. The Windows NT File I/O and Synchronization APIs are contained in
the KERNEL32.DLL. The profiler is in the form of a single FERNEL32.DLL,
corresponding to the KERNEL32 DLL. This DLL sits between an application
and KERNEL32.DLL, intercepts file I/O and synchronization API calls to
KERNEL32.DLL, and then makes and times a call to the actual API. It also
collects various statistics useful in monitoring the overall file, event, mutex and
semaphore activity of the application(s).

FERNEL32.DLL reports the number of operations, total time and average time in
each operation, as well as the additional statistics for some of these operations. The
following list shows exactly what additional operations are measured. Times are
expressed in microseconds.

• Statistics summed over all operations on all files

• Open file operations

• Create file operations

• Write file operations

• Total number of bytes written

• Average number of bytes written per operation

• Standard deviation of the number of bytes written per operation

• Read file operations

• Total number of bytes read

• Average number of bytes read per operation

• Standard deviation of the number of bytes read per operation

• Flush file buffers operations

• Set file pointer operations

• Get file information operations

• Lock and unlock file operations

• Total number of bytes locked

• Average number of bytes locked

• Standard deviation of the number of bytes locked

• Set end of file operations

• Close file operations

302 Optimizing Windows NT

The profiling DtL also records the following information for each synchronization
(event, mutex, or semaphore object) handle that
the process uses:

• Statistics summed over all operatio~s on all semaphores, all events,
and all mutexes

• Open operations

• Create operations

• Release operations (only for mutex and semaphore objects)

• Set event operations (only for event objects)

• Reset event operations (only for event objects)

• Pulse event operations (only for event objects)

• Wait operations (the statistics are kept separately for Single, Multiple-All, and
Multiple-Any Wait operations)

• Close file operations

To profile a list of applications with FIOSAP, type:

apf32cvt fernel32 <app list>

where <app list> is a list of one or more names of the executable applications or
DLLs that are to be profiled during the profiling run. As with W AP, <app list>
must be the last argument to apf32cvt. For the Zapdata application we are looking
at in this example, we type:

apf32cvt fernel32 zapdata.exe

In the next two figures we show part of the results of the run of FIOSAP on
Zapdata.

(

Chapter 10 Tuning Windows NT Applications 303

~------------------No-te-p-8d---F-ER-N-E-L-32-.o-o-1-----------------a-1I1

file fdit ~e8rch !:lelp
File: E:\1993\wimblton.dat

Operation 1 Total IHumber of 1 Ruera~e 1 Total 1 Mean 1 Std Deu
Hame 1 Time loperationsl Time 1 Bytes 1 Bytes 1 Bytes

----------+----------+----------+----------+----------+----------+--------- ~
Ouerall 1 9727261 211 463201 -I -I ~
Create 1 15781 11 15781 -I -I
Read 1 9703341 181 539071 11704321 650241
Info 1 3481 11 3481 -I -I
Close 1 4661 11 466 1 -I -I

Statistics for all file actiuity (Humber of files used: 6)
----------+----------+----------+----------+----------+----------+---------
Operation 1 Total IHumber of 1 Ruerage 1 Total 1 Mean 1 Std Deu

Hame 1 Time loperationsl Time 1 Bytes 1 Bytes 1 Bytes
----------+----------+----------+--~-------+----------+----------+---------
Ouerall 1 23965469 1 3751 639071 -I -I
Create 1 94046 1 61 156741 -I -I
Read 1 17244253 1 1801 958011 117043201 650241
Write 1 64325261 1771 363411 114552981 647191 762713
Info 1 1175361 61 195891 -I -I
Close 1 771081 61 128511 -I -I

+J J L ..

Figure 10.16 Partial FlO SAP file statistics on the Zap data application

"

file Edit ~earch !:lelp

~

',1'"

--- ~
Euent: Type: Auto Reset
--------------------+----------+----------+----------+---------------

Operation
Name

1 Total
1 Time

INumber of 1 Auerage
loperationsl Time

1 Successful
1 \'laits

--------------------+----------+----------+----------+----------
Ouerall 1 94822711 2311 410481 -
Create 1 2651 11 2651 -
Set 1 4108761 1291 31851 -
Wait 1 90709851 1001 907091 100

Single 1 90709851 1001 907091 100
Close 1 1451 11 1451 -

Semaphore: Duplicate Semaphore Max Count: 0
--------------------+----------+----------+----------+---------------

Operation 1 Total INumber of 1 Auerage 1 Successful
Name 1 Time 1 operations 1 Time 1 \~aits

--------------------+----------+----------+----------+----------
Ouerall 1 499721 21 249861 -
Close 1 499721 21 249861 -

+1 j

Figure 10.17 Partial FlO SAP event and semaphore statistics on the Zapdata
application

:-

-+

304 Optimizing Windows NT

Data from FIOSAP.is written to FERNEL32.END, in, the working directory of the
application. FIOSAP will write data from concurrent multiple threads to the same
data file, and there is no method for separating the data based upon threads.
However, FIOSAP will write data from concurrent multiple processes to different
data files, as long as the profiled concurrent processes have different working .
directories. If you have two concurrent processes with the same working directory,
the data for one of them will be lost.

So now, if you have an application and you want to know what it is waiting for
when it is not burning up the processor, you know just what to do.

The Win32 API Logger
We've all had those discouraging moments when summary statistics of API calls
just won't solve our problems. We've got the solution for those darned old API
summation blues. Just install the Windows NT 32-bit API logger and you can look
at every single API call and the parameters that are passed to it. There's hardly a
better way to spend a summer afternoon.

The Win32 API Logger comes on the Windows NT SDK but is not automatically
installed by the SDK setup. You'll find it in \MSTOOLS\BIN\LOGGER32.

Currently, the API Logger works only on Intel processors, and there is no logger
DLL for CRTDLL.DLL. The W AP and logging measurement DLLs have the same
names, so be sure not to get them mixed up.

Like FIOSAP, the Win32 API Logger is an outgrowth of the W AP technology. You
use the same program, apf32cvt, to install the API profiler. The API logger also
has the identical measurement DLL names for ZSER32.DLL, ZERNEL.DLL, and
so on. But apf32dmp has no role to play here. The logger just spews out data about
API calls as soon as· your application starts. It can chew up disk space faster than
Performance Monitor. So, API logging noticeably slows down the application.

The API Logger writes a line for every API call and every return. It logs this
information to two files: OUTPUT.LOG and OUTPUT.DAT. These go into the
working directory of the application. OUTPUT.LOG is an ASCII file with the log
of the API calls, the ·parameters to each call, and the return values. If a parameter is
a pointer to a structure defined in the API, the structure will be output, enclosed in
braces. OUTPUT.DAT is a binary file containing any parameters that are more
than 128 characters long. In this case, the parameter in OUTPUT.LOG is
"DATAFILE offset" where offset is the parameter's offset into OUTPUT.DAT.

Chapter 10 Tuning Windows NT Applications 305

The next figure shows a fragment of an API log file of Performance Monitor
drawing a chart legend.

<=1 i(Uj(.jlr\k iii I ... J ..
File Edit Search Help
P4!APIRET:SetTextAlign 0 ~
04!APICALL:lstrlenH "Instance" I-
04!APIRET:lstrlenH 8
04!APICALL:ExtTextOutH 760028 15D 1 2 {15D 1 201 11} "Instance" 8 Hl
04!APIRET:ExtTextOutW TRUE
04!APICALL:SetTextAlign 760028 0
04!APIRET:SetTextAlign 0
04! AP I CALL: lstrlenl" "Parent"
04!APIRET:lstrlenH 6
04!APICALL:ExtTextOutH 760028 204 1 2 {204 1 29C 11} "Parent" 6 HULL
04!APIRET:ExtTextOutW TRUE
04!APICALL:SetTextAlign 760028 0
04!APIRET:SetTextAlign 0
04! AP I CALL: lstrlenl" "Object"
04!APIRET:lstrlenW 6
04!APICALL:ExtTextOutH 760028 29F 1 2 {29F 1 348 11} "Object" 6 HULL ~

+1 f L+

Figure 10.18 Log of API calls made by Performance Monitor when drawing a chart
legend

Other Useful Tools
We have included on the floppy disk with this book a number of additional tools
which you should find handy from time to time when you look at the performance
of Windows NT systems and their applications. You'll want to refer to the
documentation on the Windows SDK for the full details; here we'll just make sure
you know they exist. They are:

• PView

• PMon

• WPerf

• wt command in the Windbg debugger

306 Optimizing Windows NT

PView
PView is useful for getting a quick view of what programs are running in a system
and how they are using their virtual memory space. You can see their priority, and
the priority of their threads. You can look at the modules the application calls, and
see how much virtual address space they have allocated. The next two figures show
the PView display for File Manager.

1.a.1:_"_" 'E ... '.!!. il_ ·..,a···f Compyter: 1L-'_'c_e_re_b_e_lIu_m _______ ----l

Process CPU Time Privileged User
screg (Oxa) 0:00:04.050 74% 26% ~ smss (Ox20) 0:00:01.020 44% 56%
spoolss (Ox43) 0:00:00.345 87% 13% "-

S,stem (Ox7] 0:00:05.264 100%
''<'',

0% •• WINFILE(Ox6bl"·"····· ··0:00:01.095·· 59%' 41%'

Process t.f emor, Used Priority

Working Set: 1480 KB o Y.er, High

Heap Usage: 144 KB @ N.ormal
Oldie

I.hread(s) CPU Time Privileged User
Thread Priorit, 0 0:00:00.689 48% 52 % o Highest 1 0:00:00.015 100% 0% o Above Normal 2 0:00:00.285 68% 32 %
@NQrmal
o Below Normal
o 1!!le

Thread Information

User PC Value: Ox76e73b4d Context Switches: 3730
Start Address: Ox77764c2c Dynamic Priorit,: 8

Figure 10.19 File Manager as seen by PView

Chapter 10 Tuning Windows NT Applications 307

<=>1 , i

Process: WINFILE (Ox6b) I OK I
r-User Address Space for 1f~.~.I.~.?AJL:·.::·.:·.·.~.::·.~.:·.::·.:·.::::·.JL:!:1

Total: 32 KB Writeable: BKB
Inaccessible: o KB Writeable (Not Written): 4 KB
Read Only: 20 KB Executable: o KB

I
Mapped Commit r- Private Commit
Total: 70B KB Total: 144 KB
Inaccessible: o KB Inaccessible: o KB
Read Only: 460 KB Read Only: OKB
Writeable: 132 KB Writeable: 144 KB
Writeable (Not Written): o KB Writeable (Not Written): OKB
Executable: 116 KB Executable: o KB

r-Virtual Memory Counts

Working Set: 14BO KB Virtual Size: 15412 KB
Peak Working Set: 1560 KB Peak Virtual Size: 15412 KB
Private Pages: BOB KB Fault Count: o KB

Figure 10.20 File Manager memory details as seen by PView

One thing to keep in mind is the Refresh button. PView shows the state of the
system when PView starts. It won't change until you choose to Refresh, even
if you start or stop applications in the meantime. So refresh, refresh, refresh.

308 Optimizing Windows NT

PMon
PMon is another handy program. PMon shows in a console window the memory
usage of each running process, and of the cache. PMon updates its statistics every
five seconds. A sample of the display is in the next figure.

.... • ,- '" , - I II" a:ml:';[' ..
rocess Monitor: Iotal Me~ory: 16064K Auailble: 4156K PageFlts: 0
Co~~it: 22548K/ 15040K Li~it: 36828K Peak: 22548K Pool N: 976K P: 1820K

ss
Me~ Me~ Page FIts Co~~it Usage Pri 1M I~age

;.:CPU Cpuli~e Usage DifE Faults DiEE Charge NonP Page Cnt Na~e
884 2759 File Cache

93 0:13:06 16 0 0 14 4 0 1 I dIe Process
0 0:00:05 20 1001 32 221 140 8 16 Syste~ Process
0 0:00:01 0 757 192 105 52 11 6 s~ss.exe
6 0:03:36 2664 4546 3648 1300 376 13 29 csrss.exe
0 0:00:00 0 620 428 57 43 13 2 win logon .exe
0 0:00:04 0 707 884 179 131 13 4 screg.exe
0 0:00:01 0 1006 492 129 87 10 6 lsass.exe
0 0:00:00 0 1348 556 80 59 7 5 spoo Iss. exe
0 0:00:00 0 992 332 81 79 7 4 EuentLog.exe
0 0:00:00 0 770 464 79 67 7 7 netdde.exe
0 0:00:00 0 489 292 20 45 7 2 clipsru.exe
0 0:00:00 20 5 4 90 21 8 8 No Na~e Found
0 0:00:01 0 1776 0 576 120 108 7 11 l~sucs.exe
0 0:00:00 0 728 0 416 82 71 7 6 MsgSuc.exe
0 0:00:00 0 454. 0 276 18 37 13 1 nddeagnt.exe
0 0:00:01 300 1029 0 360 33 42 13 2 prog~an.exe
0 0:05:03 2064 3533 0 2712 124 187 7 5 ntud~.exe
0 0:00:01 440 564 0 164 10 24 7 1 CMD.EKE
0 0:00:01 0 986 0 808 46 49 7 3 \IINFILE.EKE
0 0:00:02 1196 1310 0 992 20 54 7 1 PBRUSH.EKE
0 0:00:02 1080 802 0 652 47 78 7 2 PUIEW.EKE
0 0:00:00 0 595 0 476 26 42 13 2 PERFMON.EKE
0 0:00:00 432 228 0 284 10 24 9 1 PMON.EKE

Figure 10.21 PMon view of the universe

At the top of the display you see some system global statistics: memory size
and available bytes, the virtual memory commitment, and pool sizes.

Then, for each process, PMon shows processor usage during the last
update interval. The next column is total processor time in the format
hours:minutes:seconds. The third column is how many pages each process is
using, and then the change since the last update. PMon also shows how many Page
Faults have occurred in the process, and the change since the last update. Next is
the virtual memory commitment charge, and then the pool usage estimates for the
process. Finally you see process priority, and number of threads. There's nothing
here that is not in Performance Monitor, but this is a pretty darn handy overview
that requires no selections to be made.

WPerf

Chapter 10 Tuning Windows NT Applications 309

WPerf is another little performance monitor that presents data a little differently
than Windows NT Performance Monitor. Be sure to grab a comer of the window
when it comes up, and enlarge the window. Then double click on the window to get
to the Select menu. This permits the selection of a variety of counters, including two
counting TB fills that are not available in Performance Monitor because they are
only relevant to certain RISC machines. The TB is the page translation buffer in the
processor, which is used to translate virtual addresses to physical addresses without
having to go to memory to do so. On some RISC machines resolving TB misses is a
software operation, and its high frequency is a drain on system performance.

The Symbolic Debugger wt Command
Finally, we'd like to point out that there is a special cool performance feature in the
Windows NT symbolic debugger. The wt command can be used to trace calls in a
program and the number of instructions between them. Just type wt and watch those
instructions fly!

age
44 ntdll!_Cs~ClientSendMessage
33 gdi32!_SelectObject

4 sol!_cdtAninate
1 sol!_SelectObject

96 gdi32!_SelectObject
1 gdi32!_Cs~ClientSendMessage

44 ntdll!_Cs~ClientSendMessage
33 gdi32!_SelectObject
13 sol!_cdtAninate

1 sol! JJitBlt
148 gdi32! JJitBlt

4 sol!_cdtAninate
1 sol!_SelectObject

88 gdi32! _Se lectObject
1 gdi32!_Cs~ClientSendMessage

44 ntdll!_Cs~ClientSendMessage
33 gdi32!_SelectObject

4 sol!_cdtAninate
1 sol!_SelectObject

94 gdi32! _Se lectObject
1 gdi32!_Cs~ClientSendMessage

Figure 10.22 Windbg wt command of a portion of the Solitaire cascade

This is a tool that lets you get right down to the details of what is happening in your
code without the burden of tracing every instruction. In a way it gives you the same
information as CAP, though far less quickly. But it avoids the recompile that CAP
requires, and sometimes you just want to take a quick look at a small issue. That's
when wt is a diamond in the rough. It can help to have those same system DLLs
with debugging symbols that CAP uses. Go get them and have at it.

CHAPTER 11

Tuning the Working Set
of Your Application

311

Space: the final frontier. We're not quite sure whether we programmers get yelled
at more because our programs are slow or because they take up too much space.
We don't understand-hasn't the boss heard that memory is now cheap?

Apparently not. So in this chapter we'll discuss the Windows NT Working Set
Tuner. It can help you reduce the amount of space your program takes in RAM.
You should tune your application's working set even if you are perfectly happy with
its spe~d. It's important to keep in mind that your program will probably have to
coexist with other executing applications, so there's just no point in wasting space if
you don't have to. The code in Windows NT itself has been tuned with the Working
Set Tuner.

Even if you don't care about all the space you are taking away from other
programs, you probably care about the time it takes to load your own program
into RAM from disk. None of us is overjoyed about application load time. The
Working Set Tuner can help with that too.

The Working Set Tuner can improve the speed of your program in another way
you might not have thought of. We've discussed the processor caches, and in the
last chapter we briefly mentioned the translation buffer, which is another processor
cache used for page translation. Working set·tuning can reduce the amount of
space your program requires in both types of caches, in particular in the use of
the translation buffer. Not only will your application code execute faster, it will
interfere less with the code in Windows NT. To see why, we'll have to look under
the covers and see how the Windows NT Working Set Tuner operates.

At the end of this chapter, we'll also describe how to use the vadump tool, which
lets you look inside your application's working set.

312 Optimizing Windows NT

How Working Set Tuning Can Help You
The counter Process: Working Set shows the number of pages in memory for the
process, as we discussed at some length in Chapter 5. The working set includes both
shared and private data. The shared data includes pages containing any instructions
your application executes, including those in your own DLLs and those of the
system. It is efficient that these pages are shared between processes, so that their
working sets overlap to whatever extent sharing is possible. Still, it can amount to a
whole slew of pages.

The Windows NT Working Set Tuner reduces the number of code pages that have
to be in RAM for your program to execute. It reduces them by helping the linker put
your executable together in a way that minimizes the number of pages you use.

Normally your executable image is put together in the order in which address
references are resolved. This has nothing at all to do with the need for particular
routines to reside together in memory, because lots of functions get called only
under error conditions or other unusual situations. The references to these routines
are, of course, right next to references to those routines which are used all the time.
Consider the following example.

status = DoSomethingFirst(...):
while (status == WONDERFUL) {

status = ProcessNormally(...):
else {

PressThePanicButton(...):

Assuming this is the first time the linker has seen these symbols, it would put
DoSomethingFirst in the .EXE, followed by ProcessNormally, and then it
would put in PressThePanicButton. But DoSomethingFirst is only used during
initialization, and PressThePanicButton is only called when the sky is falling. It
would be better if ProcessNormally were placed in the .EXE with other routines
which are used frequently, DoSomethingFirst were placed with routines which
were used to initialize the applications, and PressThePanicButton were placed
somewhere else (and we really don't care where). If the linker sets them up that
way, a page brought in when ProcessNormally is first executed would likely
contain only routines which are used frequently. And the page containing
DoSomethingFirst could be discarded after initialization, because it would likely
be packed with initialization routines. And best of all, the page containing
PressThePanicButton would come into memory only if the error condition arose.

Chapter 11 Tuning the Working Set of Your Application 313

The Working Set Tuner accomplishes precisely these objectives. It provides a
packing list to the linker so the linker can place functions into the executable image
in the order that most reduces paging. It does this by determining which functions
are used together in time. The functions which are used most often are placed
together in the .EXE image. This continues in order of usage until the never
referenced functions are reached. It places these at the end of the .EXE in "don't
care" order.

In order to determine which functions are used together in time, the Working Set
Tuner starts with a measurement of your application. For this utility to do a good
job, you must define your scenario to include all the commonly used functions in
your application. Your scenario should spend the most time on the most commonly
used function, fading to those less frequently used. For example, when we
performed working set tuning on Performance Monitor, our scenario included the
following:

• Logging all objects at 3-second intervals.

• Charting Processor, Memory, and System counters at 5-second intervals.

• Reporting on the same objects at IO-second intervals.

• Alerting on the same objects at 15-second intervals.

The tuned working set that resulted from this set of tasks was smallest for logging,
which we wanted because it is the most serious use of the tool, when we want
Heisenberg in the trunk. For charting, which is quite common, we let Heisenberg
sit in the back seat. And so on.

How good ajob does the Working Set Tuner do? The results for Performance
Monitor executing the scenario described above are in the next table.

Table 11.1 Code Working Set Tuning of Performance Monitor

Executable image pages RAM pages before tuning RAM pages after tuning

41 30 11

That's a pretty dramatic saving. Typically we see between 25% and 50% savings
on code space used. You can normally expect a 30% reduction in your code space
for the scenario that you measure. But the operational results of your efforts depend
almost entirely on how good a job you did at devising your scenario. A quick "let's
just run something" without preparation won't help. So think carefully about that

. test scenario.

314 Optimizing Windows NT

How the Working Set Tuner Works
Here's how it works. Like CAP, the Working Set Tuner gets called every time a
function in your application is called. It assigns each function in your application a
bit. This bit is set when the function is called. Periodically, the Working Set Tuner
takes a snapshot of all the bits, and then clears them. The default time interval is
1000 milliseconds, but you can adjust this. We find the results are not too sensitive
to this parameter, and we rarely change it. If anything, we tend to make it longer if
the scenario is very long, to reduce the time spent in the analysis phase by the
Working Set Tuner.

The snapshot of the bits tells the Working Set Tuner which functions executed
during the last time interval. In sequence, the snapshots give a history of function
references over time. Because the bits are cleared after every snapshot, a function
with all its bits set is referenced on every snapshot. A function with no bits set was
never called during the scenario. Pretty clever, huh?

In the next table we show how this looks. We ran the Working Set Tuner on the
Solitaire cascade of cards we discussed in the last chapter. If we were really trying
to optimize Solitaire, this is not the scenario we would use: playing a game would
have been a much better choice. But playing a game of Solitaire is a tough thing to
automate with MS Test, so we chose this simple case instead. For the purposes of
this illustration it doesn't matter what we do, because we won't relink Solitaire
based on these results. We just want to clarify how the Working Set Tuner operates.

In the next table, each line corresponds to a function. Each function has a row
(left-to-right) and each column of Is and Os represents a snapshot of each function's
activity at that moment.

In the first image, the functions are ordered in the way that they appear in
the executable after a normal compile and link of the application. Not all the
functions in the program are shown, just the ones at the start of the executable
image. Each 0 or 1 corresponds to a Time Interval. The bit is 0 if the function
was not referenced during that particular time interval during the cascade, and
1 if it was.

Chapter 11 Tuning the Working Set of Your Application 315

Table 11.2 Function Reference Patterns Before and After Working Set Tuning

Before tuning After tuning

00000000000000000000000000000000
00000000000000000000000000000000
00100000000000000000000000000000
11111110111011110000100000000000
00101000000000000000000000000000
00001000000000000000000000000000
00000000000000000000000000000000
11111111111111111111111111100000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00001111111111111111111111100000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00001000000000000000000000000000
00001000000000000000000000000000

11111111111111111111111111100000
11111111111111111111111111100000
11111111111111111111111111100000
00001111111111111111111111100000
00001111111111111111111111100000
00001111111111111111111111100000
00001111111111111111111111100000
00001111111111111111111111100000
00001111111111111111111111100000
11111110111011110000100000000000
00101000000000000000000000000000
00101000000000000000000000000000
00100000000000000000000000000000
00001000000000000000000000000000
00001000000000000000000000000000
00001000000000000000000000000000
00001000000000000000000000000000
00001000000000000000000000000000
00001000000000000000000000000000
00001000000000000000000000000000
00001000000000000000000000000000
00001000000000000000000000000000
00001000000000000000000000000000
00100000000000000000000000000000
00001000000000000000000000000000
00001000000000000000000000000000
00001000000000000000000000000000
00001000000000000000000000000000
00100000000000000000000000000000
00001000000000000000000000000000
00001000000000000000000000000000
00001000000000000000000000000000
00001000000000000000000000000000
00001000000000000000000000000000

316 Optimizing Windows NT

In the second column, we show the routines that are at the start of the packing
list after tuning the working set. These are all the routines which have 1 bits set
anytime during the test. All the rest of the routines in the image were not used
during cascade. Notice the string of routines towards the bottom which had only
one bit set. These occurred because we moved the mouse across the cascade while it
was running. If we had not done this, these routines would have remained scattered
throughout the image. If you automate your scenario with MS Test (which you
really must do unless you plan to do it by hand every time your application
changes), this is one time when some use of the mouse is a good idea. For most
applications, you can just pick a screen resolution for the scenario and stick with it.
If the screen resolution affects the operation of your application, you can take the
time to make your script independent of screen resolution with some clever MS
Test programming.

You can see how this works, and that the Working Set tuner does a pretty good job
of ordering routines in a rational way, although it is not perfect. The routines at the
sixth and the eleventh lines from the bottom should probably have been placed
together at the bottom of the list. (If you like, you can fuss with the packing list
after running the Working Set Tuner and before linking. It's probably not worth the
trouble, but suit yourself.) But using the Working Set Tuner beats the heck out of
trying to do it all by hand.

Using the Working Set Tuner
Using the Working Set Tuner is similar to using CAP, from which it is derived. You
must first recompile your application with the -Gb and -Zd switches. Then, you link
it using the WST.LIB and the linker options debugtype:coff and debug:full. This
prepares your executable's C routines to be prepped for the working set tuner.

To run the Working Set Tuner, you first create a WST directory in the root of your
C drive. Into C:\WST you place a WST.INI file. This file contains three required
section headers:

• [EXES] Names of applications to be tuned, each on a separate line.

• [PATCH IMPORTS] This section must be here but must be blank.

• [TIME INTERVAL] The snapshot time interval in milliseconds. If left blank,
1000 is used.

Chapter 11 Tuning the Working Set of Your Application 317

In our case WST.INI looked like this:

[EXES]
sol.exe
[PATCH IMPORTS]
[TIME INTERVAL]

Before you take a measurement you must place the WST.DLL measurement library
on your path.

You use the wstdump utility to specify which portion of your application's
operation is tuned. As with the other measurement control utilities, you can clear
and dump the counters at any time. When the application ends, these data files
are dumped automatically. Dumping the data always places it into the C:\WST
directory in files with names of the form modulename. WSP and modulename. TMI.
If you dump data multiple times, the file extensions from each dump will be
modified to . W ?? and. T ? ?, where ?? is a hexadecimal number between OxO 1 and
OxFF inclusive.

You can concatenate the data from multiple scenarios using the wtscat utility. It
produces composite .WSP and .TMI files after renaming the original ones to .WXX
and . TXX. The weight of the files in the concatenated result depends on the length
of each experiment, or more accurately-because you might have varied the time
interval-on the number of snapshots in each. The bits for each function from the
mUltiple files are concatenated, not or'd together.

When you are done with the measurement, you produce the packing list with the
wstune utility:

wstune /0 modulename. wsp

The principal result of wstune is a modulename.PRF file, which you use when
you recompile your application. You will link with the order:modulename.prf
directive. The wstune utility also produces a .DT file showing the tuned order of
functions with the bitstrings, and a .DN file showing the unordered functions and,
at the bottom, a count of how many pages were touched in the unordered case.

To implement the working set improvements, recompile your application using the
'-Gy compiler option. This option assures the linker knows the location of the start
and end of each function. Then you can link the application using the linker option
by typing:

-order@modulename.prf

That's all there is to it. Next to Performance Monitor, the Working Set Tuner is our
favorite tool.

318 Optimizing Windows NT

Looking Inside Your Working Set
You may want to get a better understanding of the pieces inside the working set of
your application. For example, you may save a lot of code space with the Working
Set Tuner only to discover that the code space is only a small portion of your
overall working set. In fact, this might even be something you want to do before .

,you go to all the trouble to tune your code space. Aren't you glad you read this far?

We put this section here at the end anyway because you have to fuss around a bit to
do the next set of measurements. You probably want to do these on a test computer,
one you don't use for production activity. Choose a computer large enough to hold
your entire working-set tuning test scenario in memory. (You may need to discover
this size through the trial and error process we describe in this section.)

The tool we use for this is called Virtual Address Dump, or vadump. The vadump
tool looks inside the working set of a process and determines the nature of each
page.

The first thing to do is to link your application using the -debug and
-debugtype:coff flags, so that you get the full use out of vadump.

Start your application, then start PView, which you will find on the floppy disk
provided with this book. Use PView to note the Process ID of your application.
You'll need to supply this to vadump. You should convert the Process ID from
hexadecimal to decimal, since vadump expects it in decimal format. (You can
use the Scientific View of the Windows Calculator accessory to perform this
conversion, if you like.) Or you can use the tlist utility to get the Process ID .
directly in decimal form.

Get your application to the point just prior to the scenario whose working set
you want to measure. Start Performance Monitor and leave it running, and get a
command window set up so you can run vadump. Type the following in the
command window, but don't press ENTER yet.

vadump -0 -m -p PID >app.vad

Here -0 tells vadump to monitor the working set in the original style, -m tells
vadump to use the mapped symbols, and -p indicates the next number (PID) is the
decimal Process ID of the process to measure. In our example command line the
output is directed to the file APP.VAD.

Chapter 11 Tuning the Working Set of Your Application 319

But you haven't pressed ENTER yet, right?

In another window, set up c1earmem, a utility that flushes everything from memory
and the disk cache. (It is provided on the floppy disk you got with this book.) It will
drive your application out of memory.

To be sure this happens, use Performance Monitor to chart the working set of your
application. Also chart your application's Page Faults/sec.

Now switch to c1earmem. Run it repeatedly (while keeping an eye on Performance
Monitor) until your application has no pages in memory. Running c1earmem once
or twice typically does the trick. If your application is the type that wakes up
periodically to do some housekeeping chores, it will always have some pages in
memory. In this case, run c1earmem a few times until Performance Monitor shows
your application has reached as Iowa working set as it will attain.

Now switch to your application and execute the test scenario you devised earlier in.
this chapter for working set tuning.

Use Performance Monitor to note the size of your application's working set. Do this
by selecting the Working Set line in the legend and reading the Last value.

Now switch to the vadump window and execute the vadump command set up
above by pressing the ENTER key. The results will be put in APP.V AD if you use
the command line we showed above.

Take a look at Performance Monitor again and get the new size for your
application's working set. This is likely to be a bit larger now than before, because
vadump itself must bring some pages into the working set in order to scan all the
page tables and working set entries for your application.

Run the scenario in your application again. Performance Monitor should get no
page faults in your application during this run. If it does, you may not have enough
memory on the system to hold your application's working set (we know, it's hard to
believe, isn't it?) Add physical memory to the computer and try again.

320 Optimizing Windows NT

The output from vadump shows the nature of each page in the working set of
your process. See Figure 11.1. The System pages are those allocated for the page
tables and for the working set list itself. As indicated above, this might be larger
than your application actually needs because vadump needs to scan them. So use
Performance Monitor as described to determine the difference. For the example in
Figure 11.1, where we looked at the working set of Performance Monitor while
charting, running vadump added 5 pages to the working set. Your mileage may
vary.

III I
.Eile .Edit ,Search Help
Ox00010000 PRIUATE Base Ox00010000
Ox00020000 PRIUATE Base Ox00020000
Ox0012dOOO PRIUATE Base Ox00030000
Ox0012eOOO PRIUATE Base Ox00030000
Ox0012fOOO PRIUATE Base Ox00030000
Ox00130000 PRIUATE Base Ox00130000
Ox00140000 PRIUATE Base Ox00140000
Ox00141000 Process Heap
Ox00142000 Process Heap
Ox00143000 Process Heap
Ox00240000 PAGEFILE MAPPED Base Ox00240000
Ox00250000 DATAFILE=MAPPED Base Ox00250000 unicode.nls
Ox00251000 DATAFILE MAPPED Base Ox00250000 unicode.nls
Ox00253000 DATAFILE-MAPPED Base Ox00250000 unicod~.nls
Ox00260000 DATAFILE-MAPPED Base Ox00260000 locale.nls
Ox00263000 DATAFILE-MAPPED Base Ox00260000 locale.nls
Ox00270000 DATAFILE=MAPPED Base Ox00270000 sortkey.nls
Ox002cOOOO DATAFILE MAPPED Base Ox002cOOOO sorttbls.nls
Ox002dOOOO PRIUATE Base Ox002dOOOO
Ox002eOOOO PAGEFILE_MAPPED Base Ox002eOOOO
Ox002fOOOO PRIUATE Base Ox002fOOOO
Ox01000000 memappl.exe

(1000) _except_list
Ox01001000 memappl.exe

., J

(165) LogDisplayDlgProce16
(24) GetSystemPerfDatae16
(1aO) UpdateSystemDataeS
(1c) MemorySizee4
(29) GetObjectDefByTitleIndexeS
(14) LogCollectinge4
(113) DrawAlertseS
(d2) DrawLogeS
(4c) SmallFileSizeStringeS

..

L+

Figure 11.1 Partial vadump results of Performance Monitor charting

The page virtual addresses '~ppear on the left. For each section of address space,
the base is shown on the right. PRIVATE pages are dynamic data pages that are
private to the process. Process Heap pages are dynamically allocated from the
process heap. It can be difficult to determine who is using this space, and you may
need to look at pointers within your application using the debugger to be sure.

Chapter 11 Tuning the Working Set of Your Application 321

If coff symbols are included and the module was linked with the =debug flag, other
pages that belong to specific modules are indicated by listing which public symbols
occur within the page. This helps you to understand why a particular page has been
brought into memory. If the module was compiled without the correct flags you will
just see the module name.

Any pages listed as belonging to the module "Error" are pages that did not resolve
to a particular module. Frankly, we don't know to whom these belong. When you
find out, please let us know.

You will also find some DATA pages at the upper end of the application's address
space. These are for such system-related items as the Process Environment Block,
the Thread Environment Blocks, the Per-Thread Data Area, and so on and so forth.

Pages in the range starting at OxCOOOOOOO are page table pages. They are listed
showing the range of pages they map, how many of those are in memory (these
are called resident pages), and the range of resident pages and their modules.

Finally, there is a summary of pages and who owns them. These just summarize
the pages already listed, so take care not to count them again.

Remember that all the code pages in your working set may be shared with other
processes, and will appear in their working sets as well, even though a shared code
page takes up only one page frame in RAM.

CHAPTER 12

Writing a Custom Windows NT
Performance Monitor

Windows NT Performance Monitor is one fine tool, but nothing is perfect. You
may find yourself needing to look at performance information not provided in
Performance Monitor. Or maybe you just think you can do better. Go for it!

323

Of course your plans may be a little different. You might just need to look closely at
your own application's behavior in ways our program doesn't. A few API calls are
provided to let you easily measure what is happening inside your application. The
section "Monitoring Within an Application" at the end of this chapter covers those
API calls.

Even if you do not plan to write your own performance monitor, this chapter might
help you understand the tool better. Not to mention, we have first-hand knowledge
that the information in this chapter makes great party conversation.

324 Optimizing Windows NT

Performance·Monitor Source Code
If you do plan to write your own performance monitor, you may want to know that
the source code for the Windows NT Performance Monitor is included as sample
code in the Windows NT SDK. If you have the Windows NT SDK, cut and paste to
suit. This, of course, will void any warranties on the resulting code either expressed
or implied or alluded to in private.

There are also examples in the Win32 API Reference. See Chapter 66,
"Performance Monitoring," in Volume 2 of the Overviews. If you have the
Windows NT SDK, you can cut and paste from these to your favorite editor.
To do so, first type:

winhlp32 win32.hlp

Then choose Functions and Overviews: Performance Monitoring, and choose the
Overview button.

Design Philosophy
Performance Monitor itself is not the be-all end-all system administration tool. We
had hoped to provide a tool that is to bottleneck detection and capacity planning
what NotePad is to word processing. To us this meant a basic ability to view system
information using real-time charts, logs, reports, and alerts. It also meant providing
concurrent monitoring of multiple remote systems. Beyond these basic facilities, we
felt it would be better to expose the interfaces we describe in this chapter than to try
to solve everyone's problems in one fell swoop.

The structure of Performance Monitor is a trifle involved, and it won't make any
sense to you why we did all this unless you have a grasp of what we had hoped to
accomplish. We had some rather lofty goals at the start of this project, and these
greatly influenced the data structures and mechanisms we chose to use.

A key objective was to not tie Performance Monitor to the counter set in anyone
system. It was clear that there would be multiple Win32 system implementations,
and they might support completely different sets of counters. This consideration
permits us to port Performance Monitor to those systems easily, and also lets
Performance Monitor collect and display data from non-Windows systems such
as Novell NetWare® servers or UNIX® systems.

It seemed to be a good idea to allow device drivers, network protocols, and server
applications to add their own objects and counters to Performance Monitor. This
was not a difficult addition to the plan, because the Performance Monitor itself was
already designed to be independent of the counters in the system. This led to the
facility to add extended objects, which is covered in detail in Chapter 13, "Adding
Application Performance Counters."

Chapter 12 Writing a Custom Windows NT Performance Monitor 325

We wanted the overhead ofPerfonnance Monitor to be low, and its level to be
controlled by the user. This led to letting the user select the time interval for
sampling. As the project evolved, we discovered that to really control overhead,
we had to let the user select objects as well. A finer level of selection did not seem
to buy much.

We wanted monitoring of remote systems to be just as easy as monitoring local
systems. Through the magic of remote procedure call (RPC), this was an easy
goal to achieve.

We also wanted it to be relatively easy to write perfonnance monitors. This led to a
certain amount of redundancy in the data. Structures we had dealt with in prototype
monitors were more efficient, but required lots of logic in Perfonnance Monitor and
the system in order to achieve what appeared to be somewhat trivial savings. For
example, the name of a process is returned with each block of data collected for the

. process, so the monitor does not have to keep separate track of object instance
names and somehow tie them to their collected data. This makes operations like '1

appending log files and relogging at longer time intervals much easier. It also makes
it simple to construct perfonnance monitors that limit log file space and reuse space
when it becomes full; although ours does not work that way, yours could.

Finally, we wanted Perfonnance Monitor to be language-independent. All strings
displayed to the user are in resources that can be edited separately from the
program. Because Perfonnance Monitor is independent of t~e system, the names
of the counters are not in the monitor's resources. We nonetheless needed to be
able to translate the counters and Explain text into other languages. This text is
instead stored in the Registry in the languages supported on the system.

Retrieving Performance Data
Perfonnance counters in Windows NT always increment and are never cleared. The
basic mission of a perfonnance monitor in Windows NT is to take a snapshot of the
perfonnance counters at the beginning of a time interval, and then take another
snapshot at the end of the interval. Find the difference between the values in the
first and second snapshots for each counter, and voila, perfonnance data!

When your custom monitor application is ready to retrieve some perfonnance data,
how -it does so depends on whether you are monitoring the local computer or a
remote computer.

326 Optimizing Windows NT

Your first call will open the key for you. To obtain perfonnance data from the local
system, use the RegQueryValueEx function, with the HKEY _PERFORMANCE
_DATA key. You don't need to open the HKEY _PERFORMANCE_DATA handle
or use the RegOpenKey function, but be sure to use RegCloseKey to close the
handle when it has finished running. By closing the key when you are finished,
you allow the software being monitored to be installed or removed. A software
component cannot be installed or removed while it is being monitored. Figure 12.1
shows how Perfonnance Monitor obtains data from the local computer.

System under measurement

Kernel 1
Disk Performance Configuration !

Library Registry ~ { S } ---+ Configuration Performance
~ Registry API Monitor

LAN

Figure 12.1 How Performance Monitor collects performance data

To obtain perfonnance infonnation from a remote system, your monitor should
first use the RegConnectRegistry function with the computer name of the remote
system and the HKEY_PERFORMANCE_DATA key. This function retrieves a
key representing the perfonnance data for the remote system. Then, to retrieve
the data, you call RegQueryValueEx using the key you obtained in the
RegConnectRegistry call, rather than the HKEY _PERFORMANCE_DATA key.

Call RegQueryValueEX using
key 10 gel performance dala.

Call RegConneclRegislry using
HKEY PERFORMANCE DATA 10
gel valUe for Key. -

Figure 12.2 How to obtain performance data

Chapter 12 Writing a Custom Windows NT Performance Monitor 327

Although you use the register-querying function RegQueryValueEx to collect
performance data, the performance data does not come from the Registry database.
Instead, calling this function with the appropriate key causes the system to collect
the data from the appropriate system object managers. The Registry knows that
delegating work to others is a useful skill.

When using the RegQueryValueEx function, your monitor must use the IpcbData
parameter to specify a byte count of the amount of data to retrieve. Estimating this
amount can be tricky. The amount of data varies between systems because of
different configurations, and even different requests on the same system will vary
because of differing amounts of system activity (such as the number of current
threads).

If a RegQueryValueEx call does not provide enough space, the return value will be
ERROR_MORE_DATA. To solve this, your application should include a retry
loop in which it passes increasing amounts of buffer space until it no longer gets the
error. Then, the application should use the successful buffer size as the starting
point for subsequent calls to RegQueryValueEx.

How the Performance Data Is Structured
By now you must be wondering how the data is structured. We have a nifty table
at the end of this section detailing the contents of each of the performance data
structures, and the structures are defined in excruciating detail in the WINPERF.H
header file supplied with the Windows NT SDK.

The structure of the data retrieved by RegQueryValueEx begins with a single
header structure, PERF _DATA_BLOCK. The PERF _DATA_BLOCK structure is
followed by the data for the various object types returning data. For each object
type defined on the system there is a PERF _OBJECT_TYPE structure and the
accompanying data for that object.

PERF DATA BLOCK
(header)

Object type 1

Object type 2

Object type 3
Object type 4

Object type 5

Object type 6

-:

Object type n

Figure 12.3 Basic structure of performance data

328 Optimizing Windows NT

The PERF _DATA_BLOCK structure describes the system and the performance
data. Each PERF _OBJECT_TYPE structure describes the performance data for
one type of object.

. Following the PERF _OBJECT_TYPE structure for each object is a list of
PERF _COUNTER_DEFINITION structures, one for each counter defined
for the object.

How the performance data for each object is structured depellds on whether
the object has instances. You'll remember from earlier in this book that some
objects, such as memory, do not have instances. Objects such as thread, disk, and
processor do have one or more instances. For example, each thread in the system is
an instance of the thread object type.

For an object with no instances, the data following the
PERF _COUNTER_DEFINITION structures consists of a single
PERF _COUNTER_BLOCK structure, followed by the data for each
counter.

PERF _DATA_BLOCK ~
(header)

Object type 1
Object type 2

Object type 3

Object type 4

Object type 5

Object type 6

Object type n

PERF COUNTER DEFINITION
PERF-COUNTER -DEFINITION
PERF =COUNTER=DEFINITION

PERF _COUNTER_DEFINITION
PERF_COUNTER_BLOCK

Counter data

Instance = 0

Figure 12.4 Performance data structure of an object with no instances

For an object type with one or more instances, the list of counter definitions is
followed by a PERF_INSTANCE_DEFINITION structure and a
PERF _COUNTER_BLOCK structure for each instance.

PERF DATA BLOCK

I
(header)

Object type 1
Object type 2

Object type 3
J

Object type 4

Object type 5
Object type 6

1 Object type n I

Chapter 12 Writing a Custom Windows NT Performance Monitor 329

/ PERF_aBJECT_TYPE

PERF _COUNTER_DEFINITION
PERF COUNTER DEFINITION
PERF =COUNTER=DEFINITION

PERF COUNTER DEFINITION
Instance definition 1

// PERF JNSTANCE_DEFINITION

Instance name

PERF_COUNTER_BLOCK

''','. Counter data

\ Instance definition m

Instance> 0

Figure 12.5 Performance data structure of an object with one or more instances

Table 12.1 Performance Data Structures

Data structure Contents

Length of the entire data block, including
all objects and their counters.

Offset to the Unicode system name and its
length.

Time stamp.

Size of entire data structure.

Number of object type definitions contained
in this data.

Offset of the first object type definition.

Size of the structure and the accompanying
data for this object type.

Number of counters defined for the object
type.

Number of instances of this object type.

Parent of this object (if any).

Level of expertise required by t4e user to
understand this object's data.

Offsets to the first definition counter under
this object, and to the next
PERF _OBJECT_TYPE structure.

Indexes to the object name and Explain text
in the title database.

330 Optimizing Windows NT

Table 12.1 Performance Data Structures (continued)

Data structure Contents

Type of counter.

Offset to the counter and its size.

The level of expertise required by the user
to understand this counter.

Indexes to counter name and Explain text.

Length of the PERF _COUNTER_BLOCK
structure and the data that follows it.

Offset to instance name, and its length.

Index to parent instance (if any).

Unique identifier (if any).

Navigating Through the Performance Data Structures
As you can see from the previous table, offsets are used frequently in the
performance data.

The data structures use offsets because the number of object types, instances, and
counters may vary from one RegQueryValueEx call to another. Therefore, the
number and size of structures included in the performance data as well as the size
of the data that follows each structure may vary. To ensure that your application
receives the appropriate performance information, it must use the offsets included in
the performance structures to navigate through the data. Every offset is a count of
bytes relative to the structure containing it.

Retrieving Counter Names and Explanations
Object type names, counter names and Explain text are not returned in the data
structures described in the previous section. Instead, those structures contain indices
to a structure in the Registry where the Unicode names and descriptions for each
object and counter are stored, possibly in multiple languages.

To access object type and counter names and Explain text, an application must open
the following Registry node: .

\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Perflib\<langid>

Chapter 12 Writing a Custom Windows NT Performance Monitor 331

The langid is the ASCII representation of the 3-digit hexadecimal language
identifier. For example, the U.S. English langid is 009. Language Identifiers are
defined in the WINNT.H header file distributed in the Windows NT SDK. On a
non-English version of Windows NT, counters are stored in both the native
language of the system and in English. When a user first adds to a chart or a log, for
example, Performance Monitor tries to find the above Registry node for the user's
language. If it is not there, the langid 009 is used and the counters appear in
English.

The actual text for all these names is not really kept in the Registry. They are in
files in the directory %SystemRoot\SYSTEM32. The filenames for the English
names for these counters are PERFC009.DAT and PERFH009.DAT (for other
languages, 009 is replaced by langid). The Registry fetches the data from these files
when required.

Once your application opens this Registry node, it can query the node for the values
of either 'Counters' or 'Help' (Explain text). The 'Counters' and 'Help' data are
stored in MUL TI_SZ strings, each terminated with UNICODE_NULL. The last
string is followed by an additional UNICODE_NULL.

The MUL TI_SZ strings are listed in pairs. The first string of each pair is the
Unicode string of the index, and the second string is the actual name of the index.

The 'Counters' data contains only indexes with even numbers, while the 'Help'
data has odd-numbered indexes.

The following serves as an example of the 'Counters' list, with object and counter
name strings:

2 System
4 Memory
6 % Processor Time

The next example is from the 'Help' data. To save space in this example, each set
of Explain text is truncated. By convention, we generally alternated counter and
Explain text to aid in checking for any problems.

3 The System object type includes those counters that .. .
S The Memory object type includes those counters that .. .
7 Processor Time is expressed as a percentage of the .. .

If your custom monitor is independent of the system counters (as Performance
Monitor is), it should do the following to retrieve a name or Explain text for an
object type or counter:

1. If the system is remote, use RegConnectRegistry.

332 Optimizing Windows NT

2. Use RegOpenKeyEx, specifying

\sOFTWARE\Microsoft\ Windows NT\CurrentVersion\Perflib\langid,
where langid is the appropriate language identifier.

3. Use RegQueryValueEx, specifying either 'Counters' or 'Help' as the name of
the value to query. This provides MUL TI_SZ data containing either the names
of all the objects and counters, or Explain text for all objects and counters.

4. Convert the appropriate index (PERF _OBJECT_TYPE.ObjectNameTitleIndex,
PERF _OBJECT _ TYPE.ObjectHelpTitlelndex,
PERF _COUNTER_DEFINITION.CounterNameTitlelndex, or
PERF _COUNTER_DEFINITION.CounterHelpTitleIndex) into Unicode
or ASCII, depending on whether the application is Unicode or ASCII.

5. Search the MULTI_SZ data for the appropriate index.

6. Retrieve the string following the matching index. The string contains the object
or counter name or Explain text.

But we know that not all of you want to write a full-blown monitor that is
independent of the system counters. We know that some of you just may not be able
to resist writing tools specifically for Windows NT. For example, you might want
to write a tool that quickly displays the most active processors. In that case, the
program should look up the object name in English (langid 009), and match by
name the one you want to monitor; "Processor" in this example. The previous string
is then the object title index for the Processor object type. Now you can convert this
from Unicode or ASCII to an integer, and scan the returned data for an object type
with this title index. You can do the same for specific counters. Each counter name
is unique even if it appears in multiple objects.

We strongly discourage you from discovering the object title index for your object,
and then embedding it in your program, attempting to bypass the above lookup.
These might change in some future release, and we don't want your efforts to break.
That's why there is no header file defining these for the system. So do the lookup.
The sample code has several variants that you can use.

Retrieving Selected Data
Retrieving the performance data is not without cost to the system, especially in
terms of processor and memory requirements. In cases where your application does
not need all the performance data, you can use the lpszValueName parameter of
RegQueryValueEx to indicate the amount of information to retrieve. The
following table lists the values you can specify for lpszValueName. Note that the
value strings are case-sensitive, and if a string includes more than one word, your
words must be separated by a space.

Chapter 12 Writing a Custom Windows NT Performance Monitor 333

Table 12.2 Possible Values for IpszValueName

String

Global

nnnxxyyy

Foreign ssss

Foreign ssss nnn xx yyy

Costly

Meaning

The function returns all data for counters on the local
computer except those included in the Costly category,
described later in this table.

Each of these is a Unicode string representing the decimal
value for a PERF _OBJECT_TYPE.ObjectNameTitleIndex.
The function only returns data about the specified object
types on the local computer. 1

Using the example above, if your program were to pass
"24" as the lpszValueName the System and Memory
objects would be retrieved.

The string ssss is the name of a foreign computer, such as a
Novell NetWare server or a UNIX system that does not
support the Registry calls for returning data remotely. The
function returns all data for counters on the foreign
computer, if your system is capable of collecting data from
a foreign computer. You may want to try this approach if
RegConnectRegistry fails to connect to a foreign computer.

This format combines Foreign ssss and nnn xx yyy
discussed above, and returns all data for the specified
objects on the foreign computer, if your system is capable of
collecting data from a foreign computer.

Data for object types whose data is expensive to collect (in
terms of processor time or memory usage) is returned. If
you want to respond to the user during data collection, you
may want to start a secondary thread to access this data.
PView does this. Costly data includes all the data normally
returned by Global, and the expensive stuff too. For
example, to return the current instruction pointer, the data
collection code must map into every process's address
space. This is too expensive for routine performance
monitoring but may be useful in other situations.

1 If you request an object type that requires other object types, the required object types will also be
returned. For example, processes are needed to identify threads, so if you request threads you will
also receive data about processes.

Performance Counter Definitions
The perfonnance counters returned by Windows NT each have a type definition
that detennines how a perfomiance monitor is supposed to use the counter to
display data to the user.

334 Optimizing Windows NT

The Counter Type words are divided into a number of fields, each of which defines
a particular attribute of the counter. Each field can contain one of several values.
Most values are mutually exclusive in their fields, with the exception that the values
for the Calculation Modifiers field can be combined. The fields are later or'd into
several basic counter types currently in use in Windows NT.

First, we'll list the Fields and their possible values and definitions in Table 12.3. To
do this clearly we need a little nomenclature. We assume data is available for two
points in time, Time 0 (TO) and Time 1 (T1). Time 1 comes after Time O. (Time
units depend on the counter definition as described below.)

The counter value at TO we'll call CO, and at T1 we call the value Cl. Some
counters are computed using the counter and the one that follows it in the counter
block, which is usually a base of some kind. Call these values BO and B 1
respecti vel y.

DeltaT = T1 - TO.

DeltaC = C1 - CO.

DeltaB = B 1 - BO.

Table 12.3 Counter Type Field Definitions

Field name

Size

Size

Size

Size

Type

Type

Type

Type

SubType of Type
PERF _TYPE_NUMBER

SubType of Type
PERF _TYPE_NUMBER

SubType of Type
PERF _TYPE_NUMBER

SubType of Type
PERF_TYPE_COUNTER

Value name

PERF _SIZE_DWORD

PERF_SIZE_LARGE

PERF_SIZE_ZERO

PERF _SIZE_ VARIABLE_LEN

PERF _TYPE_NUMBER

PERF_TYPE_COUNTER

PERF _ TYPE_TEXT

PERF _TYPE_ZERO

PERF _NUMBER_HEX

Definition

4 bytes long.

8 bytes long.

Size is in CounterLength field of
COUNTER_DEFINITION structure.

Size is in first DWORD of data.

A number (not a counter).

An increasing numeric value.

A text field.

Display a zero always.

Display as hexadecimal number.

Dispiay as decimal number.

Display as decimal number!! 000.

Display DeltaC.

Chapter 12 Writing a Custom Windows NT Performance Monitor 335

Table 12.3 Counter Type Field Definitions (continued)

Field name Value name

SubType of Type PERF_COUNTER_RATE

PERF _TYPE_COUNTER

SubType of Type PERF _COUNTER_FRACTION

PERF_TYPE_COUNTER

SubType of Type PERF_COUNTER_BASE

PERF _TYPE_COUNTER

SubType of Type PERF_COUNTER_ELAPSED

PERF_TYPE_COUNTER

SubType of Type PERF_COUNTER_QUEUELEN

PERF_TYPE_COUNTER

SubType of Type PERF _COUNTER_HISTOGRAM

PERF_TYPE_COUNTER

SubType of Type PERF _TEXT_UNICODE

PERF _TYPE_TEXT

SubType of Type PERF_TEXT_ASCII

PERF_TYPE_TEXT

Timer Subtype PERF _TIMER_TICK

Timer Subtype PERF _TIMER_lOONS

Timer Subtype PERF _OBJECT_TIMER

."
Calculation Modifiers PERF_DELTA_COUNTER

Calculation Modifiers PERF _DELTA_BASE

Calculation Modifiers PERF_INVERSE_COUNTER

Calculation Modifiers PERF _MULTI_COUNTER

Display PERF _DISPLAY_NO_SUFFIX

Display PERF _DISPLAY _PER_SEC

Display PERF _DISPLAY_PERCENT

Display PERF _DISPLAY_SECONDS

Display PERF _DISPLAY _NOSHOW

Definition

Display DeltaClDeltaT.

Display DeltaClDeltaB.

Don't display, just use in calculating other counter.

Display T1 - Cl, meaning subtract counter from

current time.

Space-Time product of queue length.

(Cl + (Tl * B l))lDeltaT

Counter begins or ends a histogram.

Text is Unicode.

ASCII using CodePage as defined by

PERF _OBJECT_TYPE.CodePage.

Uses frequency in PERF _DATA_BLOCK.PerfFreq.

Time is in units of 100 nanoseconds.

Time is in units defined in

PERF _OBJECT_TYPE.PerfFreq.

Compute difference first: DeltaC.

Compute the base difference: DeltaB.

After computing, subtract resulting fraction

from 1.

Sum of multiple instances. Divide by number of

instances (in B l) after computing to get average.

No suffix.

"/second"

"%"

"seconds"

Don't display the value at all.

336 Optimizing Windows NT

In the next table we define a number of pre-existing counter types used in counter
definitions. These are combinations of the above flags. Currently, Performance
Monitor supports only the counter types defined in Table 12.4, except for
PERF _COUNTER_TEXT and PERF _COUNTER~QUEUELEN_TYPE.

Table 12.4 Predefined Counter Types and How to Display Them

C'1unter type name Composition

PERF _SIZE_DWORD I
PERF_TYPE_COUNTERI
PERF_COUNTER_RATEI
PERF_TIMER_TICK I
PERF_DELTA_COUNTERI
PERF _DISPLAY _PER_SEC

PERF_SIZE_LARGE I
PERF _TYPE_COUNTER I
PERF_COUNTER_RATEI
PERF _TIMER_TICK I
PERF_DELTA_COUNTERI
PERF _DISPLAY_PERCENT

PERF _SIZE_DWORD I
PERF _TYPE_COUNTER I
PERF_COUNTER_QUEUELENI
PERF _TIMER_TICK I
PERF_DELTA_COUNTERI
PERF _DISPLAY_NO_SUFFIX

PERF_SIZE_LARGE I
PERF _TYPE_COUNTER I
PERF_COUNTER_RATEI
PERF _TIMER_TICK I
PERF_DELTA_COUNTERI
PERF _DISPLAY _PER_SEC

PERF _SIZE_VARIABLE_LEN I
PERF _TYPE_TEXT I
PERF _TEXT_UNICODE I
PERF _DISPLAY _NO_SUFFIX

PERF _SIZE_DWORD I
PERF _TYPE_NUMBER I
PERF _NUMBER_DECIMAL I
PERF _DISPLAY _NO_SUFFIX

Definition/computation

32-bit rate of counts.

DeItaC / DeltaT

The most common sort of counter.

64-bit Timer.

(DeItaC / DeItaT) * 100

The most common sort of timer.

Space-Time product of queue length.

(Cl + (Tl * Bl»lDeltaT

Not used in the current release of
Windows NT.

64-bit rate of count. Used to count byte
transmission rates.

DeltaC / DeltaT

Indicates the counter is not a counter but
rather Unicode text.

Display as text.

A raw count that should not be averaged.

Used forinstantaneous counts.

Display Bl.

Chapter 12 Writing a Custom Windows NT Performance Monitor 337

Table 12.4 Predefined Counter Types and How to Display Them (continued)

Counter type name Composition

PERF _SIZE_DWORD I
PERF _TYPE_COUNTER I
PERF _COUNTER_FRACTION I
PERF_DELTA_COUNTERI
PERF _DELTA_BASE I
PERF _DISPLA Y _PERCENT

PERF _SIZE_DWORD I
PERF_TYPE_COUNTERI
PERF_COUNTER_RATEI
PERF_TIMER_TICK I
PERF_DELTA_COUNTERI
PERF _DISPLA Y _NO_SUFFIX

PERF_SIZE_ZERO I
PERF _DISPLAY _NOSHOW

PERF_SIZE_LARGE I
PERF _TYPE_COUNTER I
PERF_COUNTER_RATEI
PERF_TIMER_TICK I
PERF_DELTA_COUNTERI
PERF_INVERSE_COUNTER I
PERF _DISPLAY_PERCENT

PERF _SIZE_DWORD I
PERF_TYPE_COUNTERI
PERF _COUNTER_BASE I
PERF _DISPLAY _NOSHOW

PERF_SIZE_LARGE I
PERF _TYPE_COUNTER I
PERF _COUNTER_FRACTION I
PERF_DISPLAY_SECONDS

PERF _SIZE_DWORD I
PERF _TYPE_COUNTER I
PERF_COUNTER_BASEI
PERF _DISPLAY _NOSHOW

PERF_SIZE_LARGE I
PERF_TYPE_COUNTERI
PERF _COUNTER_FRACTION I
PERF_DISPLAY _NO_SUFFIX

Definition/computation

A count that is either 1 or 0 on each
sampling interrupt.

Display as percentage.

(DeltaC / DeltaB) * 100

A count that is sampled on each sampling
interrupt.

Display without a suffix.

DeltaClDeltaB

This is not to be displayed.

This is used to show how busy the
processor is, but it is really time in the idle
process.

(1 - (DeltaClDeltaT» * 100

The divisor for a sample (previous
counter).

Check that this is > 0 before dividing!

Don't display.

A timer which, when divided by a base,
yields a time per operation.

DeltaC / DeltaB

Used as the denominator in the computation
of time or count averages.

Do not display.

A 64-bit count which when divided
(typically) by the number of operations
gives (typically) the bytes/operation.

DeltaC / DeltaB

338 Optimizing Windows NT

Table 12.4 Predefined Counter Types and How to Display Them (continued)

Counter type name Composition

PERF_SIZE_LARGE I

PERF_TYPE_COUNTERI

PERF_COUNTER_RATEI

PERF _TIMER_lOONS I

PERF_DELTA_COUNTERI

PERF _DISPLAY_PERCENT

PERF_SIZE_LARGE I

PERF _TYPE_COUNTER I

PERF_COUNTER_RATEI

PERF_TIMER_lOONS I

PERF_DELTA_COUNTERI

PERF _INVERSE_COUNTER I

PERF _DISPLAY_PERCENT

PERF_SIZE_LARGE I

PERF_TYPE_COUNTERI

PERF_COUNTER_RATEI

PERF_DELTA_COUNTERI

PERF _TIMER_TICK I

PERF _MULTI_COUNTER I

PERF _DISPLAY_PERCENT

PERF _COUNTER_MULTCTIMER_INV PERF_SIZE_LARGE I

PERF_TYPE_COUNTERI

PERF_COUNTER_RATEI

PERF_DELTA_COUNTERI

PERF _MULTCCOUNTER I

PERF _TIMER_TICK I

~ERF _INVERSE_COUNTER I

PERF _DISPLAY_PERCENT

PERF_SIZE_LARGE I

PERF_TYPE_COUNTERI

PERF_COUNTER_BASEI

PERF _MULTI_COUNTER I

PERF _DISPLAY _NOSHOW

PERF _SIZE_LARGE I

PERF _TYPE_COUNTER I

PERF_DELTA_COUNTERI

PERF_COUNTER_RATEI

PERF_TIMER_100NSI

PERF _MULTI_COUNTER I

PERF _DISPLAY_PERCENT

Definition/computation

64-bit timer in 100 nanosecond units.

(DeltaC / DeltaT) * 100

64-bit timer inverse, that is, we measure idle

time, then display

(1-(idle time»

(1 - (DeltaC / DeltaT» * 100

Timer for multiple instances, so sum of result

can exceed 100%. Number of instances is in the

next counter.

1 00 * (DeltaC / DeltaT) / B 1

Display as percentage.

Display inverse of timer for multiple instances.

100 * (1 - «DeltaC / DeltaT) / B 1»

Base for _MULTI_ counters.

Do not display.

Timer for multiple instances, so sum of result

can exceed 100%. Number of i~stances is in the

next counter.

100 * (DeltaC / DeltaT) / B 1

Display as percentage.

Chapter 12 Writing a Custom Windows NT Performance Monitor 339

Table 12.4 Predefined Counter Types and How to Display Them (continued)

Counter type name Composition

PERF_SIZE_LARGE I
PERF _TYPE_COUNTER I
PERF_DELTA_COUNTERI
PERF_COUNTER_RATEI
PERF _TIMER_lOONS I
PERF _MULTI_COUNTER I
PERF_INVERSE_COUNTER I
PERF _DISPLAY_PERCENT

PERF _SIZE_DWORD I
PERF _TYPE_COUNTER I
PERF _COUNTER_FRACTION I
PERF _DISPLA Y _PERCENT

PERF _SIZE_DWORD I
PERF _TYPE_COUNTER I
PERF_COUNTER_BASEI
PERF _DISPLAY _NOSHOW

PERF -,-SIZE_LARGE I
PERF_TYPE_COUNTERI
PERF_COUNTER_ELAPSEDI
PERF _OBJECT_TIMER I
PERF _DISPLAY_SECONDS

Definition/computation

Display inverse of timer for mUltiple instances.

100 * (1 - «DeltaC I DeltaT) I BI))

Fraction of next counter, display as a
percentage.

(C/B) * 100

Used as a base for the preceding counter.

Do not display.

The data collected in this counter is actually the
start time of the item being measured. For
display, this data is subtracted from the
snapshot time to yield the elapsed time (the
difference between the two). In the definition to
the left, the PerfTime field of the
PERF _OBJECT_TYPE contains the sample
time as indicated by the
PERF _OBJECT_TIMER bit and the difference
is scaled by the PertFreq of the
PERF _OBJECT_TYPE to convert the time
units into seconds.

Whew! Okay, now you know how to compute and display all the different types of
counters that come back from the call to the Configuration Registry when you
specify HKEY_PERFORMANCE_DATA as the key. Hey, we said you'd be
stimulating at parties, didn't we? Now get to work on that monitor!

340 Optimizing Windows NT

Monitoring Within an Application
Now that you know what is involved in writing a perfonnance monitor, you may
want to measure your own application to get some understanding of how it is
operating. You can display the data when your application quits.

One thing you can do is simply run the otimer command included on the floppy
disk provided with this book. Typing the following will start the application you
want to time, and then when the application ends, it prints basic execution statistics
of elapsed, user, and kernel time in the application process.

otimer application

For looking inside your application, the high resolution perfonnance timer on the
system is read using the QueryPerfonnanceCounter API call. This returns a 64-bit
counter that contains the current count. The resolution of this counter varies from
one system to the next. You can use the QueryPerfonnanceFrequency call to get
this frequency on the system you are running on. Peruse the API documentation for
the details.

A couple of other calls may also be handy for you. These are GetProcessTimes and
GetThreadTimes. These return the same infonnation printed by the otimer utility.
Realize that these timers are all subject to the granularity of the system clock. Even
though the values returned are in lOa-nanosecond units, the system clocks on the
486 and MIPS tick at la-millisecond intervals, and on the MIPS at la-millisecond
intervals. So calling these more frequently within a program will not yield accurate
results. Beware misleading advertising!

CHAPTER 13

Adding Application
Performance Counters

341

Windows NT provides a mechanism for developers to add performance objects and
counters for their applications and other software components, including non
Windows NT computers. These objects and counters can provide performance data
to Windows NT Performance Monitor or to your customized performance
monitoring programs.

Performance counters specific to your application can help you tune performance
while you develop and debug the application. After your application is complete and
installed on target systems, the counters can help system administrators adjust your
application's configurable settings.

342 Optimizing Windows NT

Adding Performance Counters: the Big Picture
Perfonnance Monitor was designed so that developers could add perfonnance
counters for their own applications to the system. To add perfonnance counters to
the system, you must create an extended object. Your extended object is called
when Perfonnance Monitor collects data, as shown in Figure 13.1. The
Configuration Registry is handled by ADV API32.DLL in the Perfonnance Monitor
process on the local computer, and by SCREG.EXE on remotely monitored
computers.

System under measurement

Kernel

Disk

LAN Performance Configu ration ...
Extended

Library Registry

.. ended I object
object measurement

module

{ §} --. Configuration Performance . g Registry API Monitor

Figure 13.1 How Performance Monitor collects data from an extended object

To add perfonnance objects and counters for your application" follow the basic
steps in the list below. Each of these steps is discussed in detail in following
sections of this chapter.

1. Design the object types and counters for the application.

2. Set up the necessary perfonnance monitoring entries in the Registry. This
includes the following steps:

a. Create a Perfonnance key in the application's Services node in the Registry.
If you don't have such a node you must create one. Create it under
RKEY _LOCAL_MACRINE\SYSTEM\CurrentControISet\Services.

b. Create an .INI file containing the names and descriptions of the counter
objects and counters.

c. Create an .R file containing the relative offsets at which the counter objects
and counters will be installed in the Registry.

d. Use the lodctr utility with the .INI and.R files to install the infonnation in
the Registry. Lodctr succeeds only if a Perfonnance key exists in the
application's Services node.

e. Add Library, Open, Collect, and Close value entries to the application's
Services node in the Registry. These entries specify the name of the
application's perfonnance DLL, and the names of the DLLs required
functions. The Open and Close entries are optional.

Chapter 13 Adding Application Performance Counters 343

3. To your application, add functions and data structures for collecting and storing
performance data, and a mechanism for communicating the data to the
performance DLL.

4. Create a performance DLL containing a set of exported functions that provide
the link between the application and a performance monitoring application (such
as Windows NT Performance Monitor).

5. Modify the application's OEMSETUP.INF file to automate the Registry setup
described in step 2.

Object and Counter Design
A performance counter object is an entity for which performance data is available.
A performance counter defines the type of data that is available for a particular type
of counter object. An application can provide information for multiple counter
objects, each with more than one counter.

Using the Windows NT system to illustrate the relationship between objects and
counters, objects include memory, disk, and cache. Each of these objects has
multiple counters relating to that object: the Memory object includes the counters
Available Bytes and Page Faults/sec, for example.

An application can also define objects that have multiple instances. For example, a
SCSI application could use a single set of counter definitions to define a drive
object with two counters, such as Bytes Read and Bytes Written. Using this object,
the application's performance DLL could report performance data for multiple
instances of the drive object (for example, for each drive controlled by the
application).

Performance Monitor always shows counters denoting raw counts as rates, such as
Page Faults/sec. This gives context to the viewer, who doesn't have to do in.:.the
head calculations to compare data from different time intervals. However, you don't
have to worry about this when you design a counter. Just let the counter count
incrementally, and let the monitor application do the work of converting raw counts
to a rate.

Setting Up the Registry
To enable performance counters for your application, there are two ways you must
modify the Registry.

• Create a Performance key in the application's Services node, and add value
entries under it specifying the name of the application'sperformance DLL and
the names of the DLL functions.

• Use the lodctr utility to install counter names and descriptions into the Re~istry.

344 Optimizing Windows NT

The following sections explain how you can manually enable performance counters
for use as you develop and tune your application.

If you include performance counters with your finished product, you'll want to
include enough information in your application's OEMSETUP.INF file so that the
necessary modifications to the Registry are made automatically when the
application is installed. For more information about this process, see "Installing
Your Application," later in this chapter.

Creating the Application's Performance Key
An application that supports performance counters must have a Performance subkey
in a Services node. For development, an application writer can use Regedt32 to
manually create the Performance key and the Library, Open, Collect, and Close
values.

The following code shows the values under this key:

\HKEY_LOCAL_MACHINE
\SYSTEM

\CurrentControlSet
\Services

\ApplicationName
\Performance

Library == DLL_Name
Open == Open_Function_Name
Collect ~ Collect_Function Name
Close = Close_Function_Name
First Counter ==

First Help -=

Last Counter ==

Last Help ==

The Library, Open, Collect, and Close values provide the name of the
application's performance DLL and the names of the exported functions in the
DLL. When a performance monitoring application requests performance data, the
Registry controller uses these values to determine the performance DLLs to load
and the DLL functions to call. The Open and Close entries are optional.

You do not need to add manually the First Counter, First Help, Last Counter,
and Last Help values. These are created automatically by the lodctr utility when
you add counter names and descriptions to the Registry. These entries are explained
in the following section.

Chapter 13 Adding Application Performance Counters 345

Adding Counter Names and Descriptions to the Registry
The names and Explain text of objects and counters are stored in the Registry. You
must add this information to the Registry for any objects and counters you add to
the system.

The following diagram shows the Registry location where performance counter
names and descriptions are stored.

\HKEY_LOCAL_MACHINE
\SOFTWARE

\Microsoft
\Windows NT

\CurrentVersion
\Perflib

Last Counter ""
Last Help ""
\009

Counters "" 2 System 4 Memory
Help"" 3 The System object type includes ...

\other supported languages
Counters .,.
Help co

The Perflib key has one or more subkeys, representing each language supported on
the computer. The name in each subkey is the language ID: for example, 009 is the
language ID for U.S. English.

Under each language subkey are Counters and Explain text entries that store
multiple Unicode strings containing information about all registered objects and
counters. In the Registry example above, part of the Counters and Help entries for
U.S. English are shown.

As described in the last chapter, for each counter or counter object the Counters
value stores an index and a name that identifies the counter or counter object.
Similarly, the Help value stores an index and a string that describes the counter or
counter object. (The strings in the Help value are shown when you choose the
Explain button in Performance Monitor.)

346 Optimizing Windows NT

The Counters index for each counter is always an even number, and the Help index
is usually one greater than the Counters index for that counter. This convention
makes it easy to associate the help text with its counter during debugging. The
following table shows a fragment from typical Counters and Help values:

Table 13.1 Performance Counters and Help Values

Index

820

822

824

Counters

Name

VGA

BitBlts/sec

TextOuts/sec

Index+l

821

823

825

Help

Description

The VGA Object Type
handles the VGA device
on your system.

BitBlts/sec is the rate at
which your system sends
blocks of pixels to the
display.

TextOuts/sec is the rate
at which your system
sends lines of text to the
display.

Performance monitoring applications and performance DLLs use the Counters
index to identify the counter or counter object. A performance monitoring
application uses the Counters name and the Help description to display information
about a counter.

Also under the Perflib key are the Last Counter and Last Help values. These values
are set to the highest index numbers used in the Counters and Help values.

To add names and descriptions of the objects and counters for your application, use
the lodctr utility included on the diskette provided with this book (it's also in the
Windows NT DDK). The lodctr utility takes strings from an .INI file and adds
them to the Counters and Help values under the appropriate language subkeys under
the Perflib key. It also updates the Last Counter and Last Help values under
PertLib.

You should add all your counters at one time. Running lodctr twice to add more
counters without running unlodctr in between will not work. Avoid this scurrilous
practice.

Chapter 13 Adding Application Performance Counters 347

The .INI file can include strings for any number of languages, but lodctr only
installs the strings for languages that have existing subkeys under PertLib. You
should set up your .INI file to install strings for all languages you might ever want
to see your objects and counters in. If you have not yet translated them, consider
installing the English strings as placeholders until you have time to translate. It's
not perfect, but it's better than nothing.

While it modifies the values in the PertLib node, lodctr creates a value called
'Updating' in the Perflib node to act as a semaphore to synchronize PertLib
modifications. Before it stops, lodctr deletes the Updating value. .

In addition to making the additions under PertLib, the lodctr utility also adds the
following value entries to the Performance subkey in the application's Services
node:

\HKEY LOCAL_MACHINE
\SYSTEM

\CurrentControlSet
\Services

\ApplicationName
\Performance

First Counter =

First,Help ':'"
Last Counter =

Last Help =

The following table explains these values.

Table 13.2 LodCtr-Added Value Names and Descriptions

Value name

First Counter

First Help

Last Counter

Last Help

Description

Counter index of the first counter or counter object that LodCtr
installed for this application.

Help index of the first counter or counter object that LodCtr
installed for this application.

Counter index of the last counter or counter object that LodCtr
installed for this application.

Help index of the last counter or counter object that LodCtr
installed for this application.

The command-line syntax for lodctr is:

lodctr MyApplication.ini

348 Optimizing Windows NT

The .INI file used by lodctr has the following fonnat:

[info]
applicationname-ApplicationName
symbolfile=$ymbolFile

[languages] II one key (value optional). for each language supported
langid-

[text] II name and description for each counter or counter object
offset_langid_NAME-Name II "Counters" name string
offset_langid_HELP-Description II "Help" description string

The .INI file entries are variables with the following meanings:

Table 13.3 LodCtr Variables

Variable

ApplicationName

SymbolFile

langid

offset

Description

The name of the application found under the
CurrentControlSet\Services key.

An .H file containi~g symbolic offsets of counters. The
performance DLL also uses the offsets in this file along with
the First Counter and First Help Registry values to determine
the indexes of the various counters and counter objects.

An ID corresponding to the language subkey in the Registry
(for example, 009 for U.S. English).

A symbolic constant defined in SymbolFile. Offsets must be
consecutive,. even numbers beginning with zero. These offsets
determine the order in which the counters are installed in the
Counters and Help values in the Registry.

Chapter 13 Adding Application Performance Counters 349

The following listings show examples of a SymbolFile and an .INI file:

II begin symfile.h example

#define OBJECT_l 0
#define DEVICE_COUNTER_l 2
#define DEVICE_COUNTER_2 4

II end symfile.h example

II begin .INI file example
[info]
applicationname-ApplicationName
symbolfile-symfile.h

[languages]
009-English
011-0therLanguage

[text]
OBJECT_l_009_NAME-Device Name
OBJECT_l_009_HELP-Displays performance statistics on Device Name
OBJECT_l_011_NAME-Device Name in other language
OBJECT_l_011_HELP-Displays performance of Device Name in other language

DEVICE_COUNTER_l_009_NAME-Counter A
DEVICE_COUNTER_l_009_HELP-Displays the current value of Counter A
DEVICE_COUNTER_l_011_NAME-Counter A in other language
DEVICE_COUNTER_l_011_HELP-Displays the value of Counter A in other
language

DEVICE_COUNTER_2_009_NAME-Counter B
DEVICE_COUNTER_2_009_HELP-Displays the current rate of Device B
DEVICE_COUNTER_2_011_NAME-Counter B in other language
DEVICE_COUNTER_2_011_HELP-Displays the rate of Device B in other
language

II end .INI file

If you run lodctr to add counters for an application and the application does not
have a Performance subkey, lodctr returns without modifying the PertLib values.

350 Optimizing Windows NT

Removing Counter Names and Descriptions from the
Registry
If you need to remove counter names and. Explain text from the Registry, use the
unlodctr utility. This removes the Registry entries made by lodctr. The command
line syntax for unlodctr is:

unlodctr ApplicationName

The unlodctr utility looks up the First Counter and Last Counter values in the
application's Performance key to determine the indexes of the counter objects to
remove. Using these indexes, it makes the following changes to the Last Counter,
Last Help, Counters, and Help values under the Perflib node:

\HKEY_LOCAL_MACHINE
\SOFTWARE

\Microsoft
\Windows NT

\CurrentVersion
\Perflib

Last Counter = (updated if changed)
Last Help - (updated if changed)
\009

Counters (application's text removed)
Help (application's text removed)

\other supported languages
Counters (application's text removed)
Help (application's text removed)

Then, unlodctr removes the First Counter, First Help, Last Counter, and Last Help
value entries from the application's Performance key.

Chapter 13 Adding Application Performance Counters 351

Other Registry Entries
In some cases, additional Registry entries are required.

To obtain the performance data for some applications (those that return counters via
the DeviceIOControlFile call), it is necessary to use the CreateFile function to open
the device associated with the application. In this case, the name specified in
CreateFile must also be installed in the DOS Devices node of the Registry:

\HKEY_LOCAL_MACHINE
\SYSTEM

\CurrentControlSet
\Control

\Session Manager
\DOS Devices

For applications that manage multiple device instances with performance data for
each device, the application's Services node must have a Linkage key containing an
Export value whose data is a list of the device names. For example, a system with
two Etherlink cards could have the following Registry entries:

\HKEY_LOCAL_MACHINE
\SYSTEM\CurrentControlSet\Services

\Elnkii
\Linkage

Export ... "\Device\Elnk01" "\Device\Elnk02"
\Performance

Library ... "ElnkStat.dll"
Open"" "OpenElnkStats"
Collect ... "GetElnkStats"
Close"" "CloseElnkStats"

\Elnk01
Parameters
Linkage

\Elnk02
Parameters
Li nkage

When the Registry controller calls the Open function in an application's
performance DLL, the function's argument is a string containing the list of device
names from the application's Export value (if present). The Open function can then
use these names to determine the devices for which to collect performance data.

352 Optimizing Windows NT

Collecting Performance Data
The next steps are to build functions and data structures into your application to
collect and store perfonnance data, and to provide a mechanism for making the data
available to the perfonnance DLL.

The method you use to collect the data can be as simple as incrementing a counter
each time a particular routine in the application is called, or it can involve time
consuming calculations. Counters and timers should increment and never be
cleared. It's all right for a counter to wrap as long as it does not wrap twice
between two Perfonnance Monitor snapshots. If it might, use a 64-bit counter
instead of a 32-bit counter. Counter types are defined in Table 12.4 in Chapter 12.
Your program can collect and store data during the nonnal course of applicJtion
operations, though you should do it so it doesn't affect the application's
perfonnance. The sample perfonnance code at the end of this chapter shows a
perfonnance counter in a VGA application that uses this method.

For some types of data, it may be more efficient or appropriate to collect the data on
demand. In this situation, the perfonnance DLL must communicate to the
application that the data has been requested. For data that is expensive to collect (in
tenns of processor time or memory usage), consider collecting data only when the
perfonnance monitoring program requests Costly data. This allows a custom
perfonnance monitoring program to routinely request data for all counters that are
not costly. The data can be requested only when needed. Windows NT Perfonnance
Monitor does not collect Costly data.

Communication between an application and its perfonnance DLL differ for user
mode and privileged-mode applications. The application's perfonnance DLL
executes in user mode. Because of this, user-mode applications, such as print and
display applications, can use any of the Win32 techniques for interprocess
communication, such as named file mapping or RPC. For example, the DDK's
sample perfonnance counter code shows a user-mode VGA application that uses a
file mapping object to create shared memory mapped into the address space of both
the application and the perfonnance DLL. The shared memory provides both
storage and interprocess communication. If you use shared memory, consider using
a named mutex object so you don't change the data while it is being collected.

Privileged-mode applications must provide an IOCTL interface that returns the
perfonnance data to the perfonnance DLL.

Chapter 13 Adding Application Performance Counters 353

Creating the Performance DLL
An application's perfonnance DLL defines the counter and object data structures
that it uses to pass perfonnance data to the perfonnance monitor application. The
DLL also provides up to three exported functions-Open, Collect, and Close- that
are called by the Registry controller in response to requests from a perfonnance
monitoring program. The Collect function is required, while Open and Close are
optionaL Whichever ones you provide, be sure to export them in your .DEF file.

The prototypes for these functions, and the structures and constants used to define
counters and counter objects, are defined in the WINPERF.H file distributed with
the Windows NT Software Development Kit (SDK). For more infonnation about
using the structures and constants to define counters and counter objects, refer to
Chapter 12 of this book, the comments in the WINPERF.H file, and to the SDK
documentation on perfonnance monitoring.

Table 13.4 Performance DLL Functions

Function

Open

Collect

Close

Description

Initializes perfonnance monitoring for the application

Reports perfonnance data when requested

Closes perfonnance monitoring

When it is necessary to recompile the DLL during development, stop DLL
perfonnance monitoring between DLL changes. This is necessary because
ADV API32.DLL and WINLOGON.EXE keep the old version open as long as you
are monitoring.

How the Dll Interfaces with a Performance Monitor Application
As discussed in Chapter 12 of this book, a perfonnance monitor program retrieves
perfonnance data by specifying the HKEY _PERFORMANCE_DATA special
handle in a call to the RegQuery V alueEx function. If successful, RegQuery V alueEx
fills a buffer of the application with the requested perfonnance data.

354 Optimizing Windows NT

The first time an application calls RegQueryValueEx, or if the application uses the
RegOpenKey function to open HKEY_PERFORMANCE_DATA, the Registry
controller calls the Open function for ~l applications with the necessary
Performance key entries. This gives each performance DLL an opportunity to
initialize its performance data structures. Then, for performance DLLs whose Open
function returned successfully, or for those with a Collect function but no Open
function, the Registry controller calls the performance DLL's Collect function.

After the initial Open function calls, subsequent application calls to
RegQueryValueEx only cause the Registry controller to call the Collect functions.

When the application has finished collecting performance data, it specifies
HKEY _PERFORMANCE_DATA in a call to the RegCloseKey function. This
causes the Registry controller to call the Close function for all applications. The
performance DLLs will then be unloaded. .

Note that it is possible for multiple programs to collect performance data at the
same time. The Registry controller calls a performance DLL's Open and Close
functions only once for each performance monitoring process. For remote
measurement, the Registry controller limits access to these routines to only one
thread at a time, so synchronization (for example, re-entrancy) is not a problem.

Important For local measurement, because mUltiple processes may be making
simultaneous calls, the program must prevent any conflicts from multiple concurrent
requests for data.

The Open Function
The Registry controller calls the Open function, if one is provided, whenever a
performance monitor application first connects to the Registry to collect
performance data. This function performs whatever initialization is required for the
application to provide performance data. Use the PM_OPEN_PROC function
prototype defined in WINPERF.H:

PM_OPEN_PROC OpenPerformanceData;
DWORD APIENTRY OpenPerformanceData(LPWSTR lpDev;ceNames);

Chapter 13 Adding Application Performance Counters 355

The /pDeviceNames argument points to a buffer containing the REG_MUL TI_SZ
strings stored in the Export value at the ... \Services\ApplicationName\Linkage key
in the Registry. If this entry does not exist, /pDeviceNames is NULL. The strings
are Unicode, separated by a UNICODE_NULL, and terminated by two
UNICODE_NULL characters. The strings are the names of the devices managed
by this application, and the Open function should call CreateFile to open a handle to
each device named. If a CreateFile call fails, the Open function should return the
error code returned by the GetLastError function; otherwise, it should return
ERROR_SUCCESS.

The Open function initializes the data structures it returns to the performance
monitor application. In particular, it examines the Registry to get the Counters and
Help indexes of the objects and counters supported by the application. These
indexes are then stored in the appropriate members of the PERF _OBJECT_TYPE
and PERF _COUNTER_DEFINITION structures, which define the application's
counter objects and counters. The example code at the end of this chapter shows the
technique for using the First Counter and First Help values that the lodctr utility
creates in the program's Performance key to determine the Counters and Help
indexes of the program's counter objects and counters.

Other initialization tasks that might be performed by the Open function include the
following: .

• Open and map a file mapping object used by the program to store performance
data.

• Initialize event logging, if the DLL uses event logging to report errors (it should,
but not on every Collect function call) ..

• Open an internal table of handles to each device instance, to be used by the
Collect function to obtain statistics.

• Perform other initialization tasks necessary for the Collect function to collect
performance data efficiently.

The Collect Function
The Registry controller calls each application's Collect function whenever a .
performance monitor program calls the RegQueryValueEx function to collect
performance data. This function returns the application's performance data in the
format described in Chapter 12, "Writing a Custom Windows NT Performance
Monitor." Use the PM_COLLECT_PROC function prototype defined in
WINPERF.H:

PM_COLLECT_PROC CollectPerformanceData:
DWORD APIENTRY CollectPerformanceData(LPWSTR lpwszValue, LPVOID
*lppData.

LPDWORD lpcbBytes. LPDWORD lpcObjectTypes):

356 Optimizing Windows NT

Table 13.5 Collect Function Arguments and Descriptions

Argument

lpwszValue

Description

Points to a string specified by the performance monitor program in the
RegQueryValueEx call. For an example of code that parses this string,
see the example at the end of this chapter. The string uses one of the
following case-sensitive formats to identify the type of data being
requested:

Global

Requests data for all counters on the local machine except those
included in the Costly category.

indexl index2 ...

Requests data for the specified objects, where index 1, index2,
and so forth, are whitespace-separated Unicode strings
representing the decimal value of an object's Counters index. The
Collect function needs to convert the strings to integers and then
compare them to the Counters indexes of the application's counter
objects. The Collect function returns data for all counters
associated with the specified counter objects.

Foreign ComputerName

Requests data for all counters on a computer that does not support
the Windows NT Registry calls for returning data remotely.
ComputerName identifies the computer. If this application is a
provider of foreign remote statistics, it should keep a handle that
enables access to the foreign system. This avoids reconnection for
each data collection. The Collect function should use the handle to
get the data.

Foreign ComputerName indexl index2 ...

Requests data for the specified objects on a foreign computer.

Costly

Requests data for all counters whose data is expensive to collect.
It is up to the application writer to determine whether any of the
application's counter objects are in this category. Windows NT
Performance Monitor does not use this category.

Chapter 13 Adding Application Performance Counters 357

Table 13.5 Collect Function Arguments and Descriptions (continued)

Argument

IppData

IpcbBytes

IpcObjectTypes

Description

On input, points to a pointer to the location where the data is to be
placed. On successful exit, set *lppData to the next byte in the buffer
available for data, such as one byte past the last byte of your data. The
data returned must be a multiple of a DWORD in length. It must
conform to the PERF_aBJECT_TYPE data definition and its
descendants as specified in WINPERF.H, unless this is a collection
from a foreign computer. If foreign, any PERF_aBJECT_TYPE
structures returned must be preceded by a PERF _DATA_BLOCK
structure for the foreign computer. If the Collect function fails for any
reason, leave *lppData unchanged.

On input, points to a 32-bit value that specifies the size, in bytes, of
the IppData buffer. On successful exit, set *lpcbBytes to the size, in
bytes, of the data written to the IppData buffer. This must be a
multiple of sizeof(DWORD) (a multiple of 4). If the Collect function
fails for any reason, set *lpcbBytes to zero.

On successful exit, set * IpcObjectTypes to the number of object type
definitions being returned. If the Collect function fails for any reason,
it should set *lpcObjectTypes to zero.

If the requested data specified by IpwszValue does not correspond to any of the
object indexes or foreign computers supported by your program, leave * IppData
unchanged, and set *lpcbBytes and *lpcObjectTypes both to zero. This indicates
that no data is returned.

For foreign computer interfaces, the opening of a channel to the foreign computer
must be done in the Collect function because the computer name is not provided to
the Open function. The performance DLL should save a handle to the foreign
computer to avoid reconnecting on each data collection call.

The Collect function must return one of the values shown in the following table.

Table 13.6 Collect Function Return Values and Descriptions

Return value Description

ERROR_MaRE_DATA Indicates that the size of the IppData buffer as specified by
*lpcbBytes is not large enough to store the data to be returned. In
this case, leave *lppData unchanged, and set *lpcbBytes and
*lpcObjectTypes to zero. No attempt is made to indicate the
required buffer size, because this may change before the next call.

Return this value in all other cases, even if no data is returned or
an error occurs. To report errors other than insufficient buffer size,
use the system event log, but do not flood the event log with
errors on every data collection operation.

358 Optimizing Windows NT

The Close Function
The Registry controller calls each application's Close function when a performance
monitor application calls the RegCloseKey function to close the
HKEY _PERFORMANCE_DATA handle. This function performs any cleanup
operations required by the application's performance data collection mechanism.
For example, the function could close device handles opened by CreateFile, or close
a handle to a file mapping object. Use the PM_CLOSE_PROC function prototype
defined in WINPERF .R:

PM_CLOSE_PROC ClosePerformanceData;
DWORD APIENTRY, ClosePerformanceData();

The function should return ERROR_SUCCESS.

Error Handling in the DLL
Use event logging to record errors that occur during any of the functions in the
performance DLL. Logging error events aids in troubleshooting applications
providing performance data during development and after installation. Be careful
not to log error events on every Collect call, however, because data collection can
be frequent. For information about using event logging in the performance DLL or
in a user-mode application, refer to the Windows NT SDK documentation. For
information about using event logging in a kernel-mode application, refer to the
Windows NT Device Driver Kit documentation.

Measuring Foreign Computers
If you are providing an extended object that is returning data from a non
Windows NT computer (as shown in Figure 13.2), there are a few additional
considerations.

System under
measurement

Foreign
computer

~{§} -+

Kernel

Disk

LAN
Extended

object
measurement

module

Performance Configuration ...
Library Registry {

~} Configuration Performance'
tl Registry API Monitor

Figure 13.2 Collecting performance data from a non-Windows NT computer

Chapter 13 Adding Application Performance Counters 359

Unlike other applications with extended object types, you will not know at Open
time what computers you have been asked to monitor. This will only become known
to you at Collection time when you extract the name of the computer following the
keyword "Foreign" in the IpwszValue parameter. After you extract the computer
name, you should look up in a table whether you have opened communication with
that computer. Please do not reconnect to the computer on every data collection, or
you will render Performance Monitor's speed glacial. If you have never connected
with that computer and you need to before you request data, connect, and then store
the computer's "handle" or id in your own system lookup table. Next time data is
requested you'll find its handle in the table and shoot off the request for data
straight away.

Once you get the data, you will have to construct a PERF _DATA_BLOCK as the
first thing in *lppData. This is because you are the computer returning data in this
case, and you must provide the required information such as the time at the system
you are measuring, and so on. If the system you are measuring is not courteous
enough to give it to you, you can fake this stuff out any way you like. You should
use values from the local system for time and counter frequency if they are not
provided remotely. You may need to use the PERF _OBJECT_TYPE.Perffime and
.PerfFreq for some counters as well. Do this if they use a different time base and if
the remote system time is unknown so that you have to use the local times in the
PERF _DATA_BLOCK. This may take a bit of thought, but usually something can
be worked out. ~ey, that's why they pay you the big bucks!

The remainder of your response to the Collect function is just like that for other
applications. You may return multiple objects, of course.

There is nothing that exploits the real power of Windows NT Performance Monitor
more than retrieving and displaying statistics from foreign computers. Your work
will be richly rewarded. Well, we can hope.

Installing Your Application
If you want system administrators to be able to collect performance data from your
finished application, you must use your application's SETDP.INF file. The script in
this file can perform the following tasks:

• Create keys and values in the Registry. Use this to create the application's
Performance key and the Library, Open, Collect, and Close values under this
key.

• Copy the application's performance DLL file into the NT_root directory.

• Run the lodctr utility to install the application's counters and counter objects in
the PerfLib node.

360 Optimizing Windows NT

For more information about writing a SETVP.INF script, see the Windows NT
Device Driver Kit documentation.

Sample Code
There are two parts to the instrumentation of an application. First, you need to count
the activity the application wants to track. Then you need to provide the
measurement DLL which will collect the data for the performance monitor.

In this sample we will place a couple of counters in the VGA driver. This is a pretty
simple case, with one counter that counts BitBlts, and another for counting TextOut
calls. So we can focus on the instrumentation and ignore lots of application issues.

The source for the VGA driver is included in the Windows NT DDK, and the
following sample code is also provided there. So if you want, this· code can be a
starting place for your own instrumentation efforts.

Instrumenting the VGA Driver
In the VGA driver source module ENABLE.C we allocate the data segment into
which the counters will be placed, and from which the VGACTRS.DLL will read
the counters.

First, add the following #include to ENABLE.C:

/linclude "winperf.h" II for Performance API structure definitions

Now add the following global variables to ENABLE.C:

HMODULE ghmodDrv = (HMODULE) 0;
PPERF_COUNTER_BLOCK pCounterBlock; II data structure for counter values

Now add the following .DLL initialization routine to ENABLE.C:

Chapter 13 Adding Application Performance Counters 361

1***\
* BOOL bInitProc(HMODULE hmod)
*
* DLL initialization procedure. Save the module handle and exit.
*
*
*
*
*
*

This routine creates a named mapped memory section that is used
to communicate the driver's performance data to the extensible counter
DLL. This method will only work with "user" mode driver DLL's.
Kernel or privileged drivers need to provide an IOCTL interface that
will communicate the performance data to the extensible counter DLL.

*
**1

BOOL bInitProc(HMODULE hmod, ULONG Reason, LPVOID Reserved)
{ .'~

HANDLE hMappedObject;
TCHAR szMappedObjectName[] - TEXT("VGA_COUNTER_BLOCK");

if (Reason -- DLL_PROCESS_ATTACH) {
II
II create named section for the performance data
II
hMappedObject - CreateFileMapping«HANDLE)0xFFFFFFFF,

NULL,
PAGE_READWRITE,
0,
4096,
szMappedObjectName);

if (hMappedObject -- NULL) {
II Should put out an EventLog error message here
DISPDBG«0, "VGA: Could not Create Mapped Object for Counters %x",

GetLastError(»);
pCounterBlock - NULL;
} eise {
II Mapped object created okay
II
II map the section and assign the counter block pointer
II to this section of memory
II
pCounterBlock - (PPERF_COUNTER_BLOCK)

MapViewOfFile(hMappedObject,
FILE_MAP_ALL_ACCESS,
0,
0,
0);

362 Optimizing Windows NT

if (pCounterBlock -- NULL)
II Failed to Map View of file
DISPDBG«0. "VGA: Failed to Map View of File %x".

GetLastError(»):

ghmodDrv - hmod:
}

return (TRUE) :

Reserved-Reserved:

To the BITBLT.C module, add the following #include:

#include <winperf.h> II include performance API definitions

Add the following external declaration to BITBLT.C:

II Global counter block for performance data
extern PPERF_COUNTER_BLOCK pCounterBlock:

In the DrvBitBlt routine in BITBLT.C, add the following declaration:

PDWORD pdwCounter: II Pointer to counter to increment

Add the following code as the first thing the DrvBitBlt routine does:

II Increment BitBlt counter
pdwCounter - (PDWORD) pCounterBlock:
(*pdwCounter)++:

Chapter 13 Adding Application Performance Counters 363

To the TEXTOUT.C csource module, add the following #include:

//i ncl ude "wi nperf. h" II performance API definitions

Add the external declaration to TEXTOUT.C:

II definition of counter data area for performance counters
extern PPERF_COUNTER_BLOCK pCounterBlock;

Add the following as the last declaration and first code to execute in the
DrvTextOut routine in TEXTOUT.C:

PDWORD pdwCounter; II Pointer to counter to increment

II Increment TextOut counter
pdwCounter - ((PDWORD) pCounterBlock) + 1;
(*pdwCounter)++;

That's all there is to it. The VGA driver is now instrumented for its two most
important calls. These account for about 80% for display driver activity in the
general case. So to heck with the other operations!

Data Collection DLL
The data collection DLL, called VGACTRS.DLL, is included here in the next few
sections. First, lets start with the input to the lodctr utility.

The first file we need is the one giving offsets to the counters, called here
VGACTRNM.H:

364 Optimizing Windows NT

II
II vgactrnm.h
II
II
II
II
II
II
II
II
II
II
II
II
II

Offset definition file for extensible counter objects and counters

These "relative" offsets must start at 0 and be multiples of 2 (i.e.
even numbers). In the Open Procedure~ they will be added to the
"First Counter" and "First Help" values for the device they belong to,
in order to determine the absolute location of the counter and
object names and corresponding Explain text in the registry.

This file is used by the extensible counter DLL code as well as the
counter name and Explain text definition file (.INl) file that is used
by LODCTR to load the names into the registry.

#define VGAOBJ 0
#define BITBLTS 2
#define TEXTOUTS 4

[info]

Next we have the file defining the object name and the counter names, and the
Explain text. Each Explain text line must actually beone (possibly long) line of
text.

drivername-VGA
symbolfile-vgactrnm.h

[languages]
009-English

[text]
VGAOBJ_009_NAME-VGA
VGAOBJ_009_HELP-The VGA Object Type handles the VGA device on your system.
BITBLTS_009_NAME-BitBlts/sec
BITBLTS_009_HELP-BitBlts/sec is the rate your system is sending blocks of pixels to the
display.
TEXTOUTS_009_NAME-TextOuts/sec
TEXTOUTS_009_HELP-TextOuts/sec is the rate your system is sending lines of text to the
display.

The next file defines the data structures that will be returned to the performance
monitor.

Chapter 13 Adding Application Performance Counters 365

1*++ BUILD Version: 0001 II Increment this if a change has global effects

Copyright (c) 1992 Microsoft Corporation

Module Name:

datavga.h

Abstract:

--*1

Header file for the VGA Extensible Object data definitions

This file contains definitions to construct the dynamic data
which is return~d by the Configuration Registry. Data from
various driver API calls is placed into the structures shown
here.

#ifndef _DATAVGA_H_
#define _DATAVGA_H_

I!
II The routines that load these structures assume that all fields
II are packed and aligned on DWORD boundaries. Alpha support may
II change this assumption so the pack pragma is used here to insure
II the DWORD packing assumption remains valid.
I!
#pragma pack (4)

I!
II Extensible Object definitions
I!

II Update the following sort of define when adding an object type.

I

11-- ------~-----------------

I!
II VGA Resource object type counter definitions.
I!
II These are used in the counter definitions to describe the relative
II position of each counter in the returned data.
I!

366 Optimizing Windows NT

#define NUM_BITBLTS_OFFSET sizeof(DWORD)
#define NUM_TEXTOUTS_OFFSET NUM_BITBLTS_OFFSET + sizeof(DWORD)
#define SIZE_OF_VGA_PERFORMANCE_DATA \

NUM~TEXTOUTS_OFFSET + sizeof(DWORD)

II
II This is the counter structure presently returned by VGA.
II

typedef struct _VGA_DATA_DEFINITION {
PERF_OBJECT_TYPE VgaObjectType;
PERF_COUNTER_DEFINITION NumBitBlts;
PERF_COUNTER_DEFINITION NumTextOuts;

. } VGA_DATA_DEFINITION;

#pragma pack ()

In the next file we have the initialization of the object and counter definition
structures with constant data. To understand this file, you will have to dust off your
copy of the WINPERF.H header file where the structures are defined.

Chapter 13 Adding Application Performance Counters 367

1*++ BUILD Version: 0001 II Increment this if a change has global effects

Copyright (c) 1992 Microsoft Corporation

Module Name:

datavga.c

Abstract:

A file containing the constant data structures used by the Performance
Monitor data for the VGA Extensible Objects.

This file contains a set of constant data structures which are
currently defined for the VGA Extensible Objects. This is an
example of how other such objects could be defined.

Revision History:

--*1
II

None.

II Include Files
II

#include <windows.h>
#include <winperf.h>
#include "vgactrnm.h"
#include "datavga.h"

II
II Constant structure initializations
II defined in datavga.h
II

VGA_DATA_DEFINITION VgaDataDefinition - {

{ sizeof(VGA_DATA_DEFINITION) + SIZE_OF_VGA_PERFORMANCE_DATA,
sizeof(VGA_DATA_DEFINITION),
sizeof(PERF_OBJECT_TYPE),
VGAOBJ, ,
0,
VGAOBJ,
0,
PERF_DETAIL_NOVICE,
(sizeof(VGA_DATA_DEFINITION)-sizeof(PERF_OBJECT_TYPE» I

sizeof(PERF_COUNTER_DEFINITION),

368 Optimizing Windows NT

} :

0,
0,
o
},

{ s;zeof(PERF_COUNTER_DEFINITION),
BITBLTS,

. 0,

BITBLTS,
0,
0.
PERF_DETAIL_NOVICE,
PERF_COUNTER_COUNTER,

sizeof(DWORD),
NUM_BITBLTS_OFFSET
},

{ s;zeof(PERF_COUNTER_DEFINITION),
TEXTOUTS,
0,
TEXTOUTS,
0,
0,
PERF_DETAIL_NOVICE,
PERF_COUNTER_COUNTER,

s;zeof(DWORD),
NUM_TEXTOUTS_OFFSET
}

In the next file, PERFUTIL.H, are some useful declarations we have found handy
for performance data collection DLLs:

Chapter 13 Adding Application Performance Counters 369

1*++ BUILD Version: 0001 II Increment this if a change has global effects

Copyright (c) 1992 Microsoft Corporation

Module Name:

perfutil.h

Abstract:

This file supports routines used to' parse and create Performance Monitor Data
Structures. It actually supports Performance Object types with multiple instances

Revision History:

--*1
#ifndef _PERFUTIL_H_
#define _PERFUTIL_H_

II enable this define to log process heap data to the event log
#ifdef PROBE_HEAP_USAGE
#undef PROBE_HEAP_USAGE
#endif
II
II Utility macro. This is used to reserve a DWORD multiple of bytes for Unicode strings
II embedded in the definitional data, viz., object instance names.
II
#define DWORD_MULTIPLE(x) «(x+sizeof(DWORD)-1)/sizeof(DWORD»*sizeof(DWORD»

II (assumes dword is 4 bytes long and pOinter is a dword in size)
#define ALIGN_ON_DWORD(x) «VOID *)(«DWORD) x & 0x00000003) 1 («DWORD) x & 0xFFFFFFFC)
+ 4) : ((DWORD) x) »

extern WCHAR GLOBAL_STRING[];
extern WCHAR FOREIGN_STRING[]:
extern WCHAR COSTLY_STRING[]:
extern WCHAR NULL_STRING[]:

#define QUERY_GLOBAL 1
#define QUERY_ITEMS 2
#define QUERY_FOREIGN 3
#define QUERY_COSTLY 4

II

II Global command (get all local ctrs)
II get data from foreign computers

II The definition of the only routine of perfutil.c, It builds part of a performance data
II instance (PERF_INSTANCE_DEFINITION) as described in winperf.h
II

370 Optimizing Windows NT

HANDLE MonOpenEventLog ();
VOID MonC1oseEventLog ();
DWORD GetQueryType (IN LPWSTR);
BOOL IsNumberInUnicodeList (DWORD, LPWSTR);

typedef struct _LOCAL_HEAP_INFO_BLOCK {
DWOR'D All ocatedEntri es;
DWORD A11ocatedBytes;
DWORD FreeEntries;
DWORD FreeBytes;

} LOCAL_HEAP_INFO, *PLOCAL_HEAP_INFO;

II
II Memory Probe macro
II
#ifdef PROBE_HEAP_USAGE

#define HEAP_PROBE() {\
DWORD dwHeapStatus[S]; \
NTSTATUS Cal1Status; \
dwHeapStatus[4] - __ LINE __ ; \
if (1(Ca11Status - memprobe (dwHeapStatus, 16L, NULL))) { \

REPORT_INFORMATION_DATA (VGA_HEAP_STATUS, LOG_DEBUG, \
&dwHeapStatus, sizeof(dwHeapStatus)); \

else { \
REPORT_ERROR_DATA (VGA_HEAP_STATUS_ERROR, LOG_DEBUG, \

&Cal1Status, sizeof (DWORD)); \
} \

lIe 1 se

#define HEAP_PROBE()

#endif

Similarly, the next file holds functions generally useful to perfonnance data
collection DLLs. These handle two routine chores: handling of the Event Log, and
parsing of the Unicode Value string which tells your DLL what objects are being
collected by the perfonnance monitor. We wanted to be sure to include it, just for
you.

Chapter 13 Adding Application Performance Counters 371

1*++ BUILD Version: 0001 Il'Increment this if a change has global effects

Copyright (c) 1992 Microsoft Corporation

Module Name:

perfutil . c

Abstract:

This file implements the utility routines used to construct the
common parts of a PERF_INSTANCE_DEFINITION (see winperf.h) and

perform event logging functions.

Revision History:

--*1
II
II include files
II
#include <windows.h>
#include <string.h>
#include <winperf.h>
#include "vgactrs.h"
#include "perfmsg.h"
#i ncl ude "perfut il . hOI

#define INITIAL_SIZE
#define EXTEND_SIZE

II

II error message definition

1024L
1024L

II Global data definitions.
II

ULONG ullnfoBufferSize - 0;

HANDLE hEventLog - NULL; II event log handle for reporting events
II initialized in Open ... routines

DWORD dwLogUsers - 0; II count of functions using event log

DWORD MESSAGE_LEVEL - 0;

WCHAR GLOBAL_STRI NG[] "" L"Gl oba 1";
WCHAR FOREIGN_STRING[] - L"Foreign";
WCHAR COSTLY_STRING[] "" L"Costly";

372 Optimizing Windows NT

WCHAR NULL_STRING[] - L"\0"; II pOinter to null string

II test for delimiter. end of line and non-digit characters
II used by IsNumberInUnicodeList routine
/I
#define DIGIT 1
#define DELIMITER 2
#define, INVALID 3

#define EvalThisChar(c,d) \
(c -- d) ? DELIMITER \
(c -- 0) ? DELIMITER \
(c < (WCHAR)'0') ? INVALID \
(c > (WCHAR)'9') ? INVALID \
DIGIT)

HANDLE
MonOpenEventLog
)

1*++

Routine Description:

Reads the level of event logging from the registry and opens the
channel to the event logger for subsequent event log entries.

Arguments:

None

Return Value:

--*1
{

Handle to the event log for reporting events.
NULL if open not successful.

HKEY hAppKey;
TCHAR LogLevelKeyName[] - "SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Perflib";
TCHAR LogLevelValueName[] - "EventLogLevel";

LONG lStatus;

DWORD dwLogLevel;
DWORD dwValueType;
DWORD dwValueSize;

}

Chapter 13 Adding Application Performance Counters 373

II if global value of the logging level not initialized or is disabled.
II check the registry to see if it should be updated.

if (IMESSAGE_LEVEL) {

lStatus - RegOpenKeyEx (HKEY_LOCAL_MACHINE.
Log Level KeyName.
0.
KEY_READ.
&hAppKey) :

dwValueSize - sizeof (dwLogLevel):

if (lStatus -- ERROR_SUCCESS) {

}

lStatus - RegQueryValueEx (hAppKey.
LogLevelValueName.
(LPDWORD)NULL.
&dwValueType.
(LPBYTE)&dwLogLevel.
&dwValueSize):

if (lStatus -- ERROR_SUCCESS) {
MESSAGE_LEVEL - dwLogLevel:

} else {
MESSAGE_LEVEL - MESSAGE_LEVEL_DEFAULT:

RegCloseKey (hAppKey):
else {
MESSAGE_LEVEL - MESSAGE_LEVEL_DEFAULT:

if (hEventLog -- NULL){
hEventLog - RegisterEventSource

(LPTSTR)NULL. II Use Local Machine
APP_NAME): II event log app name to find in registry

if (hEventLog 1- NULL) {
REPORT_INFORMATION (UTIL_LOG_OPEN. LOG_DEBUG):

if (hEventLog 1- NULL) {
dwLogUsers++: II increment count of perfctr log users

}

return (hEventLog):

374 Optimizing Windows NT

VOID
MonCloseEventLog
)

1*++

Routine Description:

Closes the handle to the event logger if this is the last caller

Arguments:

None

Return Value:

--*1
{

None

if (hEventLog 1- NULL) {
dwLogUsers--; II decrement usage
if (dwLogUsers <- 0) { II and if we're the last. then close up log

REPORT_INFORMATION (UTIL_CLOSING_LOG. LOG_DEBUG);
DeregisterEventSource (hEventLog);

DWORD
GetQueryType

IN lPWSTR lpValue

/*++

GetQueryType

Chapter 13 Adding Application Performance Counters 375

returns the type of query described in the lpValue string so that
the appropriate processing method may be .used

Arguments

IN lpValue
string passed to PerfRegQuery Value for processing

Return Value

--*/
{

QUERY_GLOBAL
if lpValue -- 0 (null pointer)

lpValue -- pointer to Null string
lpValue -- pointer to "Global" string

QUERY_FOREIGN
if lpValue -- pointer to "Foreign" string

QUERY_COSTLY
if lpValue -- pointer to "Costly" string

otherwise:

QUERY _ITEMS

WCHAR *pwcArgChar. *pwcTypeChar;
BOOl bFound;

. if (lpValue -- 0) {
return QUERY_GLOBAL;

else if (*lpValue -- 0)
return QUERY_GLOBAL;

}

376 Optimizing Windows NT

II check for "Global" request

pwcArgChar - lpValue:
pwcTypeChar - GLOBAL_STRING:
bFound - TRUE: II assume found until contradicted

II check to the length of the shortest string

while «*pwcArgChar !- 0) && (*pwcTypeChar !- 0» {
if (*pwcArgChar++ !- *pwcTypeChar++) {

bFound - FALSE: II no match
break: II bailout now

if (bFound) return QUERY_GLOBAL:

II check for "Foreign" request

pwcArgChar - lpValue:
pwcTypeChar - FOREIGN_STRING:
bFound - TRUE: II assume found until contradicted

II check to the length of the shortest string

while «*pwcArgChar !- 0) && (*pwcTypeChar !- 0»
if (*pwcArgChar++ !- *pwcTypeChar++) {

bFound - FALSE: II no match
break: II bail o~t now

if (bFound) return QUERY_FOREIGN:

II check for "Costly" request

pwcArgChar - lpValue:
pwcTypeChar - COSTLY_STRING:
bFound - TRUE: II assume found until contradicted

II check to the length of the shortest string

while «*pwcArgChar !- 0) && (*pwcTypeChar !- 0» {
if (*pwcArgChar++ !- *pwcTypeChar++)

bFound - FALSE: II no match
break: II bailout now

}

}

Chapter 13 Adding Application Performance Counters 3n

if (bFound) return QUERY_COSTLY:

II if not Global and not Foreign and not Costly.
II then it must be an item list

return QUERY_ITEMS:

BOOl
IsNumberInUnicodelist

IN DWORD dwNumber.
IN lPWSTR lpwszUnicodelist

1*++

IsNumberInUnicodelist

Arguments:

IN dwNumber
DWORD number to find in list

IN lpwszUnicodelist
Null terminated. Space delimited list of decimal numbers

Return Value:

--*1
{

TRUE:
dwNumber was found in the list of unicode number strings

FALSE:

DWORD
WCHAR
BOOl
BOOl
BOOl

dwNumber was not found in the list.

dwThisNumber:
*pwcThisChar:
bValidNumber:
bNewItem:
bReturnValue:

WCHAR wcDelimiter: II could be an argument to be more flexible

if (lpwszUnicodelist -- 0) return FALSE:

pwcThisChar - lpwszUnicodelist:
dwThisNumber - 0:
wcDel imiter - (WCHAR)' ':
bValidNumber - FALSE:
bNewItem - TRUE;

II null pointer. # not found

378 Optimizing Windows NT

while (TRUE) {

}

switch (EvalThisChar (*pwcThisChar, wcDelimiter» {
case DIGIT:

II if this is the first digit after a delimiter, then
II set flags to start computing the new number
if (bNewItem) {

bNewItem - FALSE;
bValidNumber - TRUE;

if (bValidNumber) {
dwThisNumber *- 10;
dwThisNumber +- (*pwcThisChar - (WCHAR)'0');

break;

case DELIMITER:
II a delimiter is either the delimiter character or the
II end of the string ('\0') if when the delimiter has been
II reached a valid number was found, then compare it to the
II number from the argument list. if this is the end of the
II string and no match was found, then return.
/!
if (bValidNumber) {

if (dwThisNumber -- dwNumber) return TRUE;
bValidNumber - FALSE;

if (*pwcThisChar 0) {
return FALSE;

else {
bNewItem - TRUE;
dwThisNumber - 0;

break;

case INVALID:
II if an invalid character was encountered, ignore all
II characters up to the next delimiter and then start fresh.
II the invalid number is not compared.
bValidNumber - FALSE;
break;

default:
break;

pwcThisChar++;

II IsNumberInUnicodeList

Chapter 13 Adding Application Performance Counters 379

The next file is the one that has all the active code for opening data collection,
collecting data, and closing the DLL. We had to get here eventually. We call the
heart of the matter PERFVGA.C. Creative, huh?

1*++ BUILD Version: 0001 II Increment this if a change has global effects

Copyright (c) 1992 Microsoft Corporation

Module Name:

perfvga.c

Abstract:

This file implements the Extensible Objects for the Vga object type

Revision History

--*1

II
II Include Files
II

#include <windows.h>
#include<string.h>
#include <wcstr.h>
#include <winperf.h>
#include "vgactrs.h" II error message definition
#include "perfmsg.h"
#i ncl ude "perfutil. h"
#include "datavga.h"

II
II References to constants which initialize the Object type definitions
II

extern VGA_DATA_DEFINITION VgaDataDefinition;

DWORD dWOpenCount - 0:
BOOl bInitOK - FALSE;

II
II Vga data structures
II

II count of "Open" threads
II true - Dll initialized OK

380 Optimizing Windows NT

HANDLE hVgaSharedMemory: II Handle of Vga Shared Memory
PPERF_COUNTER_BLOCK pCounterBlock:

II
II Function Prototypes
II
II these are used to insure that the data collection functions
II accessed by Perflib will have the correct calling format.
II

PM_OPEN_PROC OpenVgaPerformanceData:
PM_COLLECT_PROC CollectVgaPerformanceData:
PM_CLOSE_PROC CloseVgaPerformanceData:

DWORD API ENTRY
OpenVgaPerformanceData(

LPWSTR lpDeviceNames
)

1*++

Routine Description:

This routine will open and map the memory used by the VGA driver to
pass performance data in. This routine also initializes the data
structures used to pass data back to the registry

Arguments:

Pointer to object ID of each device to be opened (VGA)

Return Value:

--*1

None.

LONG status:
TCHAR szMappedObject[] - TEXT("VGA_COUNTER_BLOCK"):
HKEY hKeyDriverPerf:
DWORD size:
DWORD type:
DWORD dwFirstCounter:
DWORD dwFirstHelp;

II
II Since SCREG is multi-threaded and will call this routine in
II order to service remote performance queries, this library

Chapter 13 Adding Application Performance Counters 381

II must keep track of how many times it has been opened (i .e.
II how many threads have accessed it). the registry routines will
II limit· access to the initialization routine to only one thread
II at a time so synchronization (i.e. reentrancy) should not be
II a problem
II

if (!dwOpenCount) {
II open Eventlog interface

hEventLog - MonOpenEventLog():

II open shared memory used by device driver to pass performance values

hVgaSharedMemory - OpenFileMapping(FILE_MAP_READ,
FALSE,
szMappedObject):

pCounterBlock - NULL: II initialize pointer to memory

II log error if unsuccessful

if (hVgaSharedMemory -- NULL)

}

REPORT_ERROR (VGAPERF_OPEN_FILE_MAPPING_ERROR, LOG_USER):
II this is fatal, if we can't get data then there's no
II point in continuing.
status - GetLastError(): II return error
goto OpenExitPoint:

else {
II if opened ok, then map pointer to memory
pCounterBlock - (PPERF_COUNTER_BLOCK)

MapViewOfFile(hVgaSharedMemory,
FILE_MAP_READ,
0,
0,
0) :

if (pCounterBlock -- NULL) {

}

REPORT_ERROR (VGAPERF_UNABLE_MAP_VIEW_OF_FILE, LOG_USER):
II this is fatal, if we can't get data then there's no
II point in continuing.
status - GetLastError(): II return error

II get
II

counter and help index base values from registry
Open key to registry entry

II
II
II

read First Counter and First Help values
update static data structures by adding base to

offset value in structure.

status - RegOpenKeyEx (

382 Optimizing Windows NT

HKEY_LOCAL~MACHINE.

"SYSTEM\\CurrentControlSet\\Services\\Vga\\Performance".
0L.
KEY _ALL_ACCESS •
. &hKeyDriverPerf);

if (status !- ERROR_SUCCESS) {
REPORT_ERROR_DATA (VGAPERF_UNABLE_OPEN_DRIVER_KEY. LOG_USER.

&status. sizeof(status»;
II this is fatal. if we can't get the base values of the
II counter or help names. then th names won't be available
II to the requesting application so there's not much
II point in continuing.
goto OpenExitPoint;

size - sizeof (DWORD);
status - RegQueryValueEx(

hKeyDriverPerf.
"First Counter".
0L.
&type.
(LPBYTE)&dwFirstCounter.
&size);

if (status !- ERROR_SUCCESS) {
REPORT_ERROR_DATA (VGAPERF_UNABLE_READ_FIRST_COUNTER. LOG_USER.

&status. sizeof(status»;
II this is fatal. if we can't get the base values of the
II counter or help names. then the names won't be available
II to the requesting application so there's not much
II point in continuing.
goto OpenExitPoint;

size = sizeof (DWORD);
status - RegQueryValueEx(

hKeyDriverPerf.
"First Help".

&size);

0L.
&type.
(LPBYTE)&dwFirstHelp.

Chapter 13 Adding Application Performance Counters 383

if (status !- ERROR_SUCCESS) {

1/

REPORT_ERROR_DATA (VGAPERF_UNABLE_READ_FIRST_HELP, LOG_USER,
&status, sizeof(status»;

II this is fatal, if we can't get the base values of the
II counter or help names, then the names won't be available
II to the requesting application so there's not much
II point in continuing.
goto OpenExitPoint;

II NOTE: the initialization program could also retrieve
II LastCounter and LastHelp if they wanted to do
II bounds checking on the new number. e.g.
II
II counter->CounterNameTitlelndex +- dwFirstCounter;
II if (counter->CounterNameTitlelndex > dwLastCounter)
II LogErrorToEventLog (INDEX_OUT_OF_BOUNDS);
1/

VgaDataDefinition.VgaObjectType.ObjectNameTitlelndex +- dwFirstCounter;
VgaDataDefinition.VgaObjectType.ObjectHelpTitlelndex +- dwFirstHelp;

VgaDataDefinition.NumBitBlts.CounterNameTitlelndex +- dwFirstCounter;
VgaDataDefinition.NumBitBlts.CounterHelpTitlelndex +- dwFirstHelp;

VgaDataDefinition.NumTextOuts.CounterNameTitlelndex +- dwFirstCounter;
VgaDataDefinition.NumTextOuts.CounterHelpTitlelndex +- dwFirstHelp;

RegCloseKey (hKeyDriverPerf); II close key to registry

blnitOK - TRUE; II ok to use this function

dwOpenCount++; II increment OPEN counter

status - ERROR_SUCCESS; II for successful exit

OpenExitPoint:

return status;

384 Optimizing Windows NT

DWORD API ENTRY
CollectVgaPerformanceData(

/*++

IN LPWSTR lpValueName.
IN OUT LPVOID *lppData.
IN OUT LPDWORD lpcbTotalBytes.
IN OUT LPDWORD lpNumObjectTypes

Routine Description:

This routine will return the data for the VGA counters.

Arguments:

IN LPWSTR 1 pVa 1 ueName
pointer to a wide character string passed by registry.

IN OUT LPVOID *lppData
IN: pointer to the address of the buffer to receive the completed

PerfDataBlock and subordinate structures. This routine wtll
append its data to the buffer starting at the point referenced
by *lppData.

OUT: pOints to the first byte after the data structure added by this
routine. This routine updated the value at lppdata after appending
its data.

IN OUT LPDWORD lpcbTotalBytes
IN: the address of the DWORD that tells the size in bytes of the

buffer referenced by the lppData argument
OUT: the number of bytes added by this routine is written to the

DWORD pointed to by this argument

IN OUT LPDWORD NumObjectTypes
IN: the address of the DWORD to receive the number of objects added

by this routine
OUT: the number of objects added by this routine is written to the

DWORD pOinted to by this argument

Return Value:

ERROR_MORE_DATA if buffer passed is too small to hold data
any error conditions encountered are reported to the event log if
event logging is enabled.

ERROR_SUCCESS if success or any other error. Errors. however are
also reported to the event log.

- -* /
{

Chapter 13 Adding Application Performance Counters 385

II Variables for reformatting the data

ULONG SpaceNeeded:
PDWORD pdwCounter:
PERF_COUNTER_BLOCK *pPerfCounterBlock:
VGA_DATA_DEFINITION *pVgaDataDefinition:

II Variables for collecting data about Vga Resouces·

LPWSTR
LPWSTR
INT

1/ variables used for error logging

DWORD
DWORD

II

1 pFromStri ng:
lpToString:
iStringLength:

dwDataReturn[2]:
dwQueryType:

II before doing anything else. see if Open went OK
II
if (!bInitOK) {

II unable to continue because open failed.
*lpcbTotalBytes - (DWORD) 0:
*lpNumObjectTypes - (DWORD) 0:
return ERROR_SUCCESS: II yes. this is a successful exit

II see if this is a foreign (i .e. non-NT) computer data request
II
dwQueryType - GetQueryType (lpValueName):

if (dwQueryType -- QUERY_FOREIGN) {
II this routine does not service requests for data from
II Non-NT computers
*lpcbTotalBytes - (DWORD) 0:
*1 pNumObj ectTypes ,- (DWORD) 0:
return ERROR_SUCCESS:

386 Optimizing Windows NT

if (dwQueryType -- QUERY_ITEMS){
if (!(IsNumberlnUnicodeList (VgaDataDefinition.VgaObjectType.ObjectNameTitlelndex,

lpValueName») {

II request received for data object not provided by this routine
*lpcbTotalBytes - (DWORD) 0:
*lpNumObjectTypes - (DWORD) 0:
return ERROR_SUCCESS:

pVgaDataDefinition - (VGA_DATA_DEFINITION *) *lppData:

SpaceNeeded - sizeof(VGA_DATA_DEFINITION) +
SIZE_OF_VGA_PERFORMANCE_DATA:

if *lpcbTotalBytes < SpaceNeeded
*lpcbTotalBytes - (DWORD) 0:
*lpNumObjectTypes - (DWORD) 0;
return ERROR_MORE_DATA:

II
II Copy the (constant, initialized) Object Type and counter definitions
II to the caller's data buffer
II

memmove(pVgaDataDefinition,
&VgaDataDefinition,
sizeof(VGA_DATA_DEFINITION»:

II
II Format and collect VGA data from shared memory
II

pPerfCounterBlock - (PERF_COUNTER_BLOCK *) &pVgaDataDefinition[1]:

pPerfCounterBlock->ByteLength - SIZE_OF_VGA_PERFORMANCE_DATA:

pdwCounter - (PDWORD) (&pPerfCounterBlock[1]):

*pdwCounter - *«PDWORD) pCounterBlock):
*++pdwCounter - «PDWORD) pCounterBlock)[1]:

*lppData - (PVOID) ++pdwCounter:

II update arguments fore return

*lpNumObjectTypes = 1:

Chapter 13 Adding Application Performance Counters 387

*lpcbTotalBytes - (PBYTE) pdwCounter - (PBYTE) pVgaDataDefinition:

return ERROR_SUCCESS:

DWORD API ENTRY
CloseVgaPerformanceData(
)

1*++

Routine Description:

This routine closes the open handles to VGA device performance counters

Arguments:

None.

Return Value:

ERROR_SUCCESS

--*1

if (!(--dwOpenCount» { II when this is the last thread ...

CloseHandle(hVgaSharedMemory):

pCounterBlock - NULL:

MonCloseEventLog();

return ERROR_SUCCESS:

The next two counters handle declarations for the messages used in the Event Log.

388 Optimizing Windows NT

1*++ BUILD Version: 0001 II Increment this if a change has global effects

Copyright (c) 1992 Microsoft Corporation

Module Name:

perfmsg.h

Abstract:

This file provides the macros and definitions used by the extensible
counters for reporting events to the event logging facility

Revision History:

--*1
#ifndef PERFMSG_H_
#define PERFMSG_H_
/!
II Report error message ID's for Counters
/!

#define APP_NAME "vgactrs"

/!
II The constant below defines how many (if any) messages will be reported
II to the event logger. As the number goes up in value more and more events
II will be reported. The purpose of this is to allow lots of messages during
II development and debugging (e.g. a message level of 3) to a minimum of
II messages (e.g. operational messages with a level of 1) or no messages if
II message logging inflicts too much of a performance penalty. Right now
II this is a compile time constant. but could later become a registry entry.
/!
II Levels: LOG_NONE - No event log messages ever
II LOG_USER - User event log messages (e.g. errors)
II LOG_DEBUG - Minimum Debugging
II LOG_VERBOSE ~ Maximum Debugging
/!

Ildefi ne LOG_NONE 0
#define LOG_USER 1
Ildefi ne LOG_DEBUG 2
#define LOG_VERBOSE 3

Ildefi ne MESSAGE_LEVEL_DEFAULT LOG_USER

II define macros

Chapter 13 Adding Application Performance Counters 389

II ~

II Format for event log calls without corresponding insertion strings is:
II REPORT_xxx (message_value, message_level)
II where:
II xxx is the severity to be displayed in the event log
II message_value is the numeric ID from above
II message_level is the "filtering" level of error reporting
II using the error levels above.
II
II if the message has a corresponding insertion string whose symbol conforms
II to the format CONSTANT - numeric value and CONSTANT_S - string constant for
II that message, then the
II
II REPORT_xxx_STRING (message_value, message_level)
II
II macro may be used.
II

II
II REPORT_SUCCESS was intended to show Success in the error log, rather it
II shows "N/A" so for now it's the same as information, though it could
II (should) be changed in the future
II

#defin~ REPORT_SUCCESS(i,l) (MESSAGE_LEVEL >- 1 ? ReportEvent (hEventLog,
EVENTLOG_INFORMATION_TYPE, \

0, i, (PSID)NULL, 0, 0, NULL, (PVOID)NULl) : FALSE)

#define REPORT_INFORMATION(i ,1) (MESSAGE_LEVEL >- 1 ? ReportEvent (hEventLog,
EVENTLOG_INFORMATION_TYPE, \

0, i, (PSID)NULL, 0, 0, NULL, (PVOID)NULl) FALSE)

#define REPORT_WARNING(i ,1) (MESSAGE_LEVEL >- 1 ? ReportEvent (hEventLog,
EVENTLOG_WARNING_TYPE, \

0, i, (PSID)NULL, 0, 0, NULL, (PVOID)NULl) FALSE)

#define REPORT_ERROR(i ,1) (MESSAGE_LEVEL >- 1 ? ReportEvent (hEventLog,
EVENTLOG_ERROR_TYPE, \

0, i, (PSID)NULL, 0, 0, NULL. (PVOID)NULl) FALSE)

#define REPORT_INFORMATION_DATA(i ,1 ,d,s) (MESSAGE_LEVEL >- 1 ? ReportEvent (hEventLog,
EVENTLOG_INFORMATION_TYPE, \

0, i, (PSID)NULL. 0, s, NULL, (PVOID)(d» : FALSE)

#define REPORT_WARNING_DATA(i ,1 ,d,s) (MESSAGE_LEVEL >- 1 ? ReportEvent (hEventLog,
EVENTLOG_WARNING_TYPE, \

0, i, (PSID)NULL, 0, s, NULL, (PVOID)(d» : FALSE)

390 Optimizing Windows NT

IIdefine REPORT_ERROR_DATA(i,l ,d,s) (MESSAGE_LEVEL >- 1 ? ReportEvent (hEventLog,
EVENTLOG_ERROR_TYPE, \

0, i, (PSID)NULL, 0, s, NULL, (PVOID)(d» : FALSE)

II External Variables

extern HANDLE hEventLog: II handle to event log
extern DWORD dwLogUsers: II counter of event log using routines
extern DWORD MESSAGE_LEVEL: II event logging detail level

Here's some more message stuff:

Chapter 13 Adding Application Performance Counters 391

:Copyright (c) 1992 Microsoft Corporation

:Module Name:

vgactrs.h
(derived from vgactrs.mc by the message compiler

:Abstract:

Event message definitions used by routines in VGACTRS.DLL

:Revisi~n History:

:--*/
://
:#ifndef _VGACTRS_H_
:#define _VGACTRS_H_

. ://
MessageIdTypedef-DWORD
://
:// Perfutil messages
://
MessageId-1900
Severity-Informational
Facility-Application
SymbolicName-UTIL_LOG_OPEN
Language-English
An extensible counter has opened the Event Log for VGACTRS.DLL

://
MessageId-1999
Severity-Informational
Facility-Application
SymbolicName-UTIL_CLOSING_LOG
Language-English
An extensible counter has closed the Event Log for VGACTRS.DLL

://
MessageId-2000
Severity-Error
Facility-Application
SymbolicName-VGAPERF_OPEN_FILE_MAPPING_ERROR
Language-English
Unable to open mapped file containing VGA driver performance data.

392 Optimizing Windows NT

://
Messageld-+l
Severity-Error
Facility-Application
SymbolicName-VGAPERF_UNABLE_MAP_VIEW_OF_FILE
Language-English
Unable to map to shared memory file containing VGA driver performance data.

:11
Messageld-+l
Severity-Error
Facility-Application
SymbolicName-VGAPERF_UNABLE_OPEN_DRIVER_KEY
Language-English
Unable open "Performance" key of VGA driver in registry. Status code is returned in data.

:11
Messageld-+l
Severity-Error
Facility-Application
SymbolicName-VGAPERF_UNABLE_READ_FIRST_COUNTER
Language-English
Unable to read the "First Counter" value under theVga\Performance Key. Status codes
returned in data.

:11
Messageld-+l
Severity-Error
Facility-Application
SymbolicName-VGAPERF_UNABLE_READ_FIRST_HELP
Language-English
Unable to read the "First Help" value under the Vga\Performance Key. Status codes returned
in data.

:11
:#endif II _VGACTRS_H_

The remaining files are used in the process of building the measurement DLL.
First we have VGACTRS.EF.

Chapter 13 Adding Application Performance Counters 393

LI BRARY vgact rs

DESCRIPTION 'Performance Monitor Counter'

EXPORTS
OpenVgaPerformanceData @1
CollectVgaPerformanceData @2
CloseVgaPerformanceData @3

The MAKFILE is crucial to the build process, as you might already suspect:

1f

1f DO NOT EDIT THIS FILE!!! Edit .\sources. if you want to add a new source
1f file to this component. This file merely indirects to the real make file
1f that is shared by all the driver components of the Windows NT DDK
1f

!INCLUDE $(NTMAKEENV)\makefile.def

Next is MAKEFILE.lNC:

.\msg00001.bin : vgactrs.mc
erase .\vgactrs.h
erase .\msg00001.bin
erase .\vgactrs.rc
mc -v -s vgactrs.mc

.\vgactrs.rc : vgactrs.mc
erase .\vgactrs.h
erase .\msg00001.bin
erase .\vgactrs.rc
mc -v -s vgactrs.mc

.\vgactrs.h: vgactrs.mc
erase .\vgactrs.h
erase .\msg00001.bin
erase .\vgactrs.rc
mc -v -s vgactrs.mc

394 Optimizing Windows NT

Finally, the glue that binds it all together, the SOURCES file that describes the
build procedure to the build utility:

TARGETNAME-vgactrs
TARGETPATH=$(BASEDIR)\lib
TARGETTYPE=DYNLINK

TARGETLIBS=$(BASEDIR)\lib*\$(DDKBUILDENV)\kerne132.1ib \
$(BASEDIR)\lib*\$(DDKBUILDENV)\advapi32.1ib

DLLBASE=0x7500000

SQURCES=perfutil.c \
perfvga.c \
datavga.c \
vgactrs.rc

C DEFINES= -DWIN32 -DSTRICT

NTTARGETFILE0=vgactrs.h vgactrs.rc msg00001.bin

Okay, now it's your tum.

APPENDIX A

Windows NT Performance
Counters

This appendix lists the Windows NT object types~ performance counters~ and
explain text.

395

The section headings show where each object type begins. Within each section, the
object type's counters are listed in alphabetical order. The object types are also
listed in alphabetical order.

For the listing of each counter, the following format is used:

Counter Name Complexity

Explain text.

Index: Index Default Scale: Scale Factor

Counter Type: Type Counter Size: Size

The following table explains th'e values in the counter listings.

Table A.I Performance Counter Reference Information

Field

Counter name

Complexity

Explain text

Explanation

Name of the counter.

Level of Windows NT expertise recommended to
effectively use the counter. Ranges from Novice~ for the
simplest counters~ to Wizard~ for the counters of interest
only to serious Windows NT programmers.

Description of the counter.

396 Optimizing Windows NT

Table A.1 Performance Counter Reference Information (continued)

Field

Index

Scale factor

Type

Size

AppleTalk Object

Explanation

Index of the counter in the "Counters" list in the Registry.
Note that the index of the explain text is not shown.

Default number by which Performance Monitor mUltiplies
the actual value of the counter to calculate the value
displayed in Performance Monitor charts ..

I

The type of this counter. For more information on counter
types, see Chapter 12 of this book, "Writing a Custom
Windows NT Performance Monitor."

Size of the counter.

Object: AppleTalk Index: 1050 Advanced
AppleTalk Protocol counters.

AARP Packets/sec Novice
Number of AARP packets per second received by Appletalk on this port.

Index: 1066 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

ATP ALO Response/Sec Novice
Number of ATP At-least-once transaction responses per second on this port.

Index: 1090 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

ATP Packets/sec Novice
Number of ATP packets per second received by Appletalk on this port.

Index: 1070 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

ATP Recvd Release/Sec Novice
Number of ATP transaction release packets per second received on this port.

Index: 1092 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 397·

ATP Response Timouts Novice
Number of ATP release timers that have expired on this port.

Index: 1086 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

ATP Retries Local Novice
Number of ATP requests retransmitted on this port.

Index: 1084 Default Scale: 0.1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

ATP Retries Remote Novice
Number of ATP requests retransmitted to this port.

Index: 1100 Default Scale: 0.1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

ATP XO Response/Sec Novice
Number of ATP Exactly-once transaction responses per second on this port.

Index: 1088 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Average Time/ AARP Packet Novice
Average time in milliseconds to process an AARP packet on this port.

Index: 1064 Default Scale: 1

Counter Type: PERF _A VERAGE_BULK Counter Size: 8 bytes

Average Time/ATP Packet Novice
Average time in milliseconds to process an A TP packet on this port.

Index: 1068 Default Scale: 1

Counter Type: PERF _A VERAGE_BULK Counter Size: 8 bytes

Average TimeIDDP Packet Novice
Average time in milliseconds to process a DDP packet on this port.

Index: 1060 Default Scale: 1

Counter Type: PERF _A VERAGE_BULK Counter Size: 8 bytes

398 Optimizing Windows NT

Average TimelNBP Packet Novice
Average time in milliseconds to process an NBP packet on this port.

Index: 1072 Default Scale: 1

Counter Type: PERF _A VERAGE_BULK Counter'Size: 8 bytes

Average TimelRTMP Packet Novice
Average time in milliseconds to process an RTMP packet on this port.

Index: 1080 Default Scale: 1

Counter Type: PERF _A VERAGE_BULK Cou~ter Size: 8 bytes

Average Time/ZIP Packet Novice
A verage time in milliseconds to process a ZIP packet on this port.

Index: 1076 Default Scale: 1

Counter Type: PERF _A VERAGE_BULK Counter Size: 8 bytes

Bytes In/sec Novice
Number of bytes received per second by Appletalk on this port.

Index: 1056 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Bytes Out/sec Novice
Number of bytes sent per second by Appletalk on this port.

Index: 1058 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Current NonPaged Pool Novice
The current amount of nonpaged memory resources used by AppleTalk.

Index: 1094 Default Scale: 0.0001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

DDP Packets/sec Novice
Number of DDP packets per second received by Appletalk on this port.

Index: 1062 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 399

NBP Packets/sec Novice
Number of NBP packets per second received by Appletalk on this port.

Index: 1074 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Packets dropped Novice
Number of packets dropped due to resource limitations on this port.

Index: 1098 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Packets In/sec Novice
Number of packets received per second by Appletalk on this port.

Index: 1052 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Packets Out/sec Novice
Number of packets sent per second by Appletalk on this port.

Index: 1054 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Packets Routed In/Sec Novice
Number of packets routed in on this port.

Index: 1096 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Packets Routed Out/Sec Novice
Number of packets routed out on this port.

Index: 1102 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

RTMP Packets/sec Novice
Number of RTMP packets per second received by Appletalk on this port.

Index: 1082 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

400 Optimizing Windows NT

ZIP Packets/sec Novice
Number of ZIP packets per second received by Appletalk on this port.

Index: 1078 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Browser Object
Object: Browser Index: 052 Novice

Browser Statistics

Announcements Domain/sec Novice
Announcements Domain/sec is the rate that a Domain has announced itself to
the network.

Index: 078 Default Scale: 1

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Announcements Server/sec Novice
Announcements Server/sec is the rate that the servers in this domain have
announced themselves to this server.

Index: 054 Default Scale: 1

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Announcements Total/sec Novice
Announcements Total/sec is the sum of Announcements Server/sec and
Announcements Domain/sec.

Index: 188 Default Scale: 1

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Duplicate Master Announcements Novice
Duplicate Master Announcements indicates the number of times that the master
browser has detected another master browser on the same domain.

Index: 812 Default Scale: 1

Counter Type: PERF _COVNTER_RA WCOUNT Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 401

Election Packets/sec Novice
Election Packets/sec is the rate of browser election packets that have been
received by this workstation:

Index: 080 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Enumerations Domain/sec Novice
Enumerations Domain/sec is the rate of Domain browse requests that have been
processed by this workstation.

Index: 158 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Enumerations Other/sec Novice
Enumerations Other/sec is the rate of browse requests processed by this
workstation that were not domain or server browse requests.

Index: 160 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Enumerations Server/sec Novice
Enumerations Server/sec is the rate of Server browse requests that have been
processed by this workstation.

Index: 156 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Enumerations Total/sec Novice
Enumerations Total/sec is the rate of browse requests that have been processed
by this workstation. This is the sum of Enumerations Server, Enumerations
Domain, and Enumerations Other.

Index: 190 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Illegal Datagrams/sec Novice
Illegal Datagrams/sec is the rate of incorrectly formatted datagrams that have
been received by the workstation.

Index: 814 Default Scale: 1

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

402 Optimizing Windows NT

Mailslot Allocations Failed Novice
Mailslot Allocations Failed is the number of times the datagram receiver has
failed to allocate a buffer to hold a user mailslot write.

Index: 170. Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Mailslot Opens Failed/sec Novice
Mailslot Opens Failed/sec indicates the rate of mailslot messages received by
this workstation that were to be delivered to mailslots that are not present on this
workstation.

J Index: 810 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Mailslot Receives Failed Novice
Mailslot Receives Failed indicates the number of mailslot messages that couldn't
be received due to transport failures.

Index: 806 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Mailslot Writes Failed Novice
Mailslot Writes Failed is the total number of mailslot messages that have been
successfully received, but that were unable to be written to the mailslot.

Index: 808 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Mailslot Writes/sec Novice
Mailslot Writes/sec is the rate of mailslot messages that have been successfully
received.

Index: 082 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 403

Missed Mailslot Datagrams Novice
Missed Mailslot Datagrams is the number of Mailslot Datagrams that have been
discarded due to configuration or allocation limits.

Index: 164 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Missed Server Announcements Novice
Missed Server Announcements is the number of server announcements that have
been missed due to configuration or allocation limits.

Index: 162 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Missed Server List Requests Novice
Missed Server List Requests is the number of requests to retrieve a list of
browser servers that were received by this workstation, but could not be
processed.

Index: 166 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Server Announce Allocations Failed/sec Novice
Server Announce Allocations Failed/sec is the rate of server (or domain)
announcements that have failed due to lack of memory.

Index: 168 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Server List Requests/sec Novice
Server List Requests/sec is the rate of requests to retrieve a list of browser
servers that have been processed by this workstation.

Index: 084 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

404 Optimizing Windows NT

Cache Object
Object: Cache Index: 086 Advanced

The Cache object type manages memory for rapid access to files. Files on
Windows NT are cached in main memory in units of pages. Main memory not
being used in the working sets of processes is available to the Cache for this
purpose. The Cache preserves file pages in memory for as long as possible to
permit access to the data through the file system without having to access the
disk.

Async Copy Reads/sec Wizard
Async Copy Reads/sec is the frequency of reads from Cache pages that involve
a memory copy of the data from the Cache to the application's buffer. The
application will regain control immediately even if the disk must be accessed to
retrieve the page.

Index: 110 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Async Data Maps/sec Wizard
Async Data Maps/sec is the frequency that an application using a file system
such as NTFS or HPFS to map a page of a file into the Cache to read the page,
and does not wish to wait for the Cache to retrieve the page if it is not in main
memory.

Index: 092 Default Scale: 1

Counter Type: ~ERF _COUNTER_COUNTER Counter Size: 4 bytes

Async Fast Reads/sec Wizard
Async Fast Reads/sec is the frequency of reads from Cache pages that bypass
the installed file system and retrieve the data directly from the Cache. Normally,
file 110 requests will invoke the appropriate file system to retrieve data from a
file, but this path permits direct retrieval of Cache data without file system
involvement if the data is in the Cache. Even if the data is not in the Cache, one
invocation of the file system is avoided. If the data is not in the Cache, the
request (application program call) will not wait until the data has been retrieved
from disk, but will get control immediately.

Index: 128 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 405

Async MDL Reads/sec Wizard
Async MDL Reads/sec is the frequency of reads from Cache pages using a
Memory Descriptor List (MDL) to access the pages. The MDL contains the
physical address of each page in the transfer, thus permitting Direct Memory
Access (DMA) of the pages. If the accessed page(s) are not in main memory, the
calling application program will not wait for the pages to fault in from disk.

Index: 118 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Async Pin Reads/sec Wizard
Async Pin Reads/sec is the frequency of reading data into the Cache preparatory
to writing the data back to disk. Pages read in this fashion are pinned in memory
at the completion of the read. The file system will regain control immediately
even if the disk must be accessed to retrieve the page. While pinned, a page's
physical address will not be altered.

Index: 102 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Copy Read Hits % Expert
Copy Read Hits is the percentage of Cache Copy Read requests that hit the
Cache, that is, did not require a disk read in order to provide access to the page
in the Cache. A Copy Read is a file read operation that is satisfied by a memory
copy from a Cache page to the application's buffer. The LAN Redirector uses
this method for retrieving Cache information, as does the LAN Server for small
transfers. This is a method used by the disk file systems as well.

Index: 112 Default Scale: 1

Counter Type: PERF _SAMPLE_FRACTION Counter Size: 4 bytes

Copy Reads/sec Expert
Copy Reads/sec is the frequency of reads from Cache pages that involve a
memory copy of the data from the Cache to the application's buffer. The LAN
Redirector uses this method for retrieving Cache information, as does the LAN
Server for small transfers. This is a method used by the disk file systems as well.

Index: 106 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

406 Optimizing Windows NT

Data Flush Pages/sec Advanced
Data Flush Pages/sec is the number of pages the Cache has flushed to disk as a
result of a request to flush or to satisfy a write-'through file write request. More
than one page can be transferred on each flush operation.

Index: 140 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Data Flushes/sec Wizard
Data Flushes/sec is the frequency the Cache has flushed its contents to disk as
the result of a request to flush or to satisfy a write-through file write request.
More than one page can be transferred on each flush operation.

Index: 138 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Data Map Hits % Wizard
Data Map Hits is the percentage of Data Maps in the Cache that could be
resolved without having to retrieve a page from the disk, that is the page was
already in physical memory.

Index: 094 Default Scale: 1

Counter Type: PERF _SAMPLE_FRACTION Counter Size: 4 bytes

Data Map Pins/sec Wizard
Data Map Pins/sec is the frequency of Data Maps in the Cache that resulted in
pinning a page in main memory, an action usually preparatory to writing to the
file on disk. While pinned, a page's physical address· in main memory and
virtual address in the Cache will not be altered.

Index: 096 Default Scale: 1

Counter Type: PERF _SAMPLE_FRACTION Counter Size: 4 bytes

Data Maps/sec Expert
Data Maps/sec is the frequency that a file system such as NTFS or HPFS maps
a page of a file into the Cache to read the page.

Index: 088 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 407

Fast Read Not Possibles/sec Wizard
Fast Read Not Possibles/sec is the frequency of attempts by an application
program interface (API) function call to bypass the file system to get at Cache
data, that could not be honored without invoking the file system after all.

Index: 132 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Fast Read Resource Misses/sec Wizard
Fast Read Resource Misses/sec is the frequency of Cache misses necessitated by
the lack of available resources to satisfy the request.

Index: 130 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Fast Reads/sec Expert
Fast Reads/sec is the frequency of reads from Cache pages that bypass the
installed file system and retrieve the data directly from the Cache. Normally, file
110 requests invoke the appropriate file system to retrieve data from a file, but
this path permits direct retrieval of Cache data without file system involvement
if the data is in the Cache. Even if the data is not in the Cache, one invocation of
the file system is avoided.

Index: 124 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size:4 bytes

Lazy Write Flushes/sec Wizard
Lazy Write Flushes/sec is the frequency the Cache's Lazy Write thread has
written to disk. Lazy Writing is the process of updating the disk after the page
has been changed in memory, so the application making the change to the file
does not have to wait for the disk write to complete before proceeding. More
than one page can be transferred on each write operation.

Index: 134 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Lazy Write Pages/sec Advanced
Lazy Write Pages/sec is the frequency the Cache's Lazy Write thread has
written to disk. Lazy Writing is the process of updating the disk after the page
has been changed in memory, so the application making the change to the file
does not have to wait for the disk write to complete before proceeding. More
than one page can be transferred on a single disk write operation.

Index: 136 Default Scale: 1

CounterType:PERF_COUNTER_COUNTER Counter Size: 4 bytes

408 Optimizing Windows NT

MDL Read Hits % Expert
MDL Read Hits is the percentage of Cache Memory Descriptor List (MDL)
Read requests that hit the Cache, that is, did not require disk accesses in order to
provide memory access to the page(s) in the Cache.

Index: 120 Default Scale: 1

Counter Type: PERF _SAMPLE_FRACTION Counter Size: 4 bytes

MDL Reads/sec Expert
MDL Reads/sec is the frequency of reads from Cache pages that use a Memory
Descriptor List (MDL) to access the data. The MDL contains the physical
address of each page involved in the transfer, and thus can employ a hardware
Direct Memory Access (DMA) device to effect the copy. The LAN Server uses
this method for large transfers out of the server.

Index: 114 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER . Counter Size: 4 bytes

Pin Read Hits % Expert
Pin Read Hits is the percentage of Cache Pin Read requests that hit the Cache,
that is, did not require a disk read in order to provide access to the page in the
Cache. While pinned, a page's physical address in the Cache will not be altered.
The LAN Redirector uses this method for retrieving Cache information, as does
the LAN Server for small transfers. This is usually the method used by the disk
file systems as well.

Index: 104 Default Scale: 1

Counter Type: PERF _SAMPLE_FRACTION Counter Size: 4 bytes

Pin Reads/sec Expert
Pin Reads/sec is the frequency of reading data into the Cache preparatory to
writing the data back to disk. Pages read in this fashion are pinned in memory at
the completion of the read. While pinned, a page's physical address in the Cache
will not be altered.

Index: 098 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 409

Sync Copy Reads/sec Wizard
Sync Copy Reads/sec is the frequency of reads from Cache pages that involve a
memory copy of the data from the Cache to the application's buffer. The file
system will not regain control until the copy operation is complete, even if the
disk must be accessed to retrieve the page.

Index: 108 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Sync Data Maps/sec Wizard
Sync Data Maps/sec counts the frequency that a file system such as NTFS or
HPFS maps a page of a file into the Cache to read the page, and wishes to wait
for the Cache to retrieve the page if it is not in main memory.

Index: 090 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Sync Fast Reads/sec Wizard
Sync Fast Reads/sec is the frequency of reads from Cache pages that bypass the
installed file system and retrieve the data directly from the Cache. Normally, file
110 requests invoke the appropriate file system to retrieve data from a file, but
this path permits direct retrieval of Cache data without file system involvement
if the data is in the Cache. Even if the data is not in the Cache, one invocation of
the file system is avoided. If the data is not in the Cache, the request (application
program call) will wait until the data has been retrieved from disk.

Index: 126 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Sync MDL Reads/sec Wizard
Sync MDL Reads/sec is the frequency of reads from Cache pages that use a
Memory Descriptor List (MDL) to access the pages. The MDL contains the
physical address of each page in the transfer, thus permitting Direct Memory
Access (DMA) of the pages. If the accessed page(s) are not in main memory, the
caller will wait for the pages to fault in from the disk.

Index: 116 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Sync Pin Reads/sec Wizard
Sync Pin Reads/sec is the frequency of reading data into the Cache preparatory
to writing the data back to disk. Pages read in this fashion are pinned in memory
at the completion of the read. The file system will not regain control until the
page is pinned in the Cache, in particular if the disk must be accessed to retrieve
the page. While pinned, a page's physical address in the Cache will not be
altered.

410 Optimizing Windows NT

Index: 100 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

FTP Server Object-
Object: FTP Server Index: 824 Advanced

The FrP Server object type includes counters specific to the FrP Server
service.

Bytes Received/sec Advanced
Bytes Received/sec is the rate that data bytes are received by the FrP Server.

Index: 828 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Bytes Sent/sec Advanced
Bytes Sent/sec is the rate that data bytes are sent by the FrP Server.

Index: 826 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Bytes Total/sec Advanced
Bytes Total/sec is the sum of Bytes Sent/sec and Bytes Received/sec. This is the
total rate of bytes transferred by the FrP Server.

Index: 830 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Connection Attempts Advanced
Connection Attempts is the number of connection attempts that have been made
to the FrP Server.

Index: 854 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Current Anonymous Users Advanced
Current Anonymous Users is the number of anonymous users currently
connected to the FrP Server.

Index: 838 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Current Connections Advanced
Current Connections is the current number of connections to the FrP Server.

Appendix A Windows NT Performance Counters 411

Index: 850 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Current NonAnonymous Users Advanced
Current NonAnonymous Users is the number of nonanonymous users currently
connected to the FTP Server.

Index: 840 Default Scale: 1

. Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Files Received Advanced
Files Received is the total number of files received by the FTP Server.

Index: 834 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Files Sent Advanced
Files Sent is the total number of files sent by the FTP Server.

Index: 832 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Files Total Advanced
Files Total is the sum of Files Sent and Files Received. This is the total number
of files transferred by the FTP Server.

Index: 836 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

412 Optimizing Windows NT

Logon Attempts Advanced
Logon Attempts is the number of logon attempts that have been made by the
FTPServer.

Index: 856 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Maximum Anonymous Users Advanced
Maximum Anonymous Users is the maximum number of anonymous users
simultaneously connected to the FTP Server.

Index: 846 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Maximum Connections Advanced
Maximum Connections is the maximum number of simultaneous connections to
the FTP Server.

Index: 852 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Maximum NonAnonymous Users Advanced
Maximum NonAnonymous Users is the maximum number of nonanonymous
users simultaneously connected to the FTP Server.

Index: 848 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Total Anonymous Users Advanced
Total Anonymous Users is the total number of anonymous users that have ever
connected to the FTP Server.

Index: 842 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Total NonAnonymousUsers Advanced
Total NonAnonymous Users is the total number of non anonymous users that
have ever connected to the FTP Server.

Index: 844 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 413

Gateway Service for NetWare Object
Object: Gateway Service For NetWare Index: 1228 Novice

Gateway Service For NetWare object type.

Bytes Received/sec Advanced
Bytes Received/sec is the rate of bytes coming in to the Redirector from the
network. It includes all application data as well as network protocol information
(such as packet headers.)

Index: 264 Default Scale: 0.0001

Counter Type: PERF_COUNTER_BULK_COUNT Counter Size: 8 bytes

Bytes TotaVsec Novice
Bytes Total/sec is the rate the Redirector is processing data bytes. This includes
all application and file data in addition to protocol information such as packet
headers.

Index: 388 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Bytes Transmitted/sec Advanced
Bytes Transmitted/sec is the rate that bytes are leaving the Redirector to the
network. It includes all application data as well as network protocol information
(such as packet headers and the like.)

Index: 276 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Connect NetWare 2.x Advanced
Connect NetWare 2.x counts connections to NetWare 2.x servers.

Index: 1242 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Connect NetWare 3.x Advanced
Connect NetWare 3.x counts connections to NetWare 3.x servers.

Index: 1244 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

414 Optimizing Windows NT

Connect NetWare 4.x Advanced
Connect NetWare 4.x counts connections to NetWare 4.x servers.

Index: 1246 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

File Data Operations/sec Novice
File Data Operations/sec is the rate the Redirector is processing data operations.
One operation includes (hopefully) many bytes. We say hopefully here because
each operation has overhead. You can determine the efficiency of this path by
dividing the Bytes/sec by this counter to determine the average number of bytes
transferred/operation.

Index: 406 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

File Read Operations/sec Novice
File Read Operations/sec is the rate that applications are asking the Redirector
for data. Each call to a file system or similar Application Program Interface
(API) call counts as one operation.

Index: 010 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

File Write Operations/sec Novice
File Write Operations/sec is the rate that applications are sending data to the
Redirector. Each call to a file system or similar Application Program Interface
(API) call counts as one operation.

Index: 012 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Packet Burst IO/sec Advanced
Packet Burst IO/sec is the sum of Packet Burst Read NCPs/sec and Packet Burst
Write NCPs/sec.

Index: 1240 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 415

Packet Burst Read NCP Count/sec Advanced
Packet Burst Read NCP Count/sec is the rate of Netware Core Protocol requests
for Packet Burst Read. Packet Burst is a windowing protocol that improves
performance.

Index: 1232 Default Scale: 1

Counter Type:· PERF _ COUNTER_COUNTER Counter Size: 4 bytes

Packet Burst Read Timeouts/sec Advanced
Packet Burst Read Timeouts/sec is the rate the Netware(R) Workstation
Compatible Service needs to retransmit a Burst Read Request because the
Netware server took too long to respond.

Index: 1234 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Packet Burst Write NCP Count/sec Advanced
Packet Burst Write NCP Count/sec is the rate of Netware Core Protocol
requests for Packet Burst Write. Packet Burst is a windowing protocol that
improves performance.

Index: 1236 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Packet Burst Write Timeouts/sec Advanced
Packet Burst Write Timeouts/sec is the rate the Netware(R) Workstation
Compatible Service needs to retransmit a Burst Write Request because the
N etware server took too long to respond.

Index: 1238 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Packets Received/sec Advanced
Packets Received/sec is the rate that the Redirector is receiving packets (also
called 5MBs or Server Message Blocks). Network transmissions are divided
into packets. The average number of bytes received in a packet can be obtained
by dividing Bytes Received/sec by this counter. Some packets received may not
contain incoming data, for example an acknowledgment to a write made by the
Redirector would count as an incoming packet.

Index: 266 Default Scale: 0.1

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

416 Optimizing Windows NT

Packets Transmitted/sec Advanced
Packets Transmitted/sec is the rate that the Redirector is sending packets (also
called 5MBs or Server Message Blocks). Network transmissions are divided
into packets. The average number of bytes transmitted in a packet can be
obtained by dividing Bytes Transmitted/sec by this counter.

Index: 278 Default Scale: 0.1

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Packets/sec Novice
Packets/sec is the rate the Redirector is processing data packets. One packet
includes (hopefully) many bytes. We say hopefully here because each packet has
protocol overhead. You can determine the efficiency of this path by dividing the
Bytes/sec by this counter to determine the average number of bytes
transferred/packet. You can also divide this counter by Operations/sec to
determine the average number of packets per operation, another measure of
efficiency.

Index: 400 Default Scale: 0.1

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Read Operations Random/sec Advanced
Read Operations Random/sec counts the rate that, on a file-by-file basis, reads
are made that are not sequential. If a read is made using a particular file handle,
and then is followed by another read that is not immediately the contiguous next
byte, this counter is incremented by one.

Index: 290 Default Scale: 0.1

Counter Type: PERF_COUNTER_COUNTER Counter Size: 4 bytes

Read Packets/sec Advanced
Read Packets/sec is the rate that read packets are being placed on the network.
Each time a single packet is sent with a request to read data remotely, this
counter is incremented by one.

Index: 292 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Server Disconnects Advanced
Server Disconnects counts the number of times a Server has disconnected your
Redirector. See also Server Reconnects.

Index: 326 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 417

Server Reconnects Advanced
Server Reconnects counts the number of times your Redirector has had to
reconnect to a server in order to complete a new active request. You can be
disconnected by the Server if you remain inactive for too long. Locally even if
all your remote files are closed, the Redirector will keep your connections intact
for (nominally) ten minutes. Such inactive connections are called Dormant
Connections. Reconnecting is expensive in time.

Index: 316 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Server Sessions Novice
Server Sessions counts the number of active security objects the Redirector is
managing. For example, a Logon to a server followed by a network access to the
same server will establish one connection, but two sessions.

Index: 314 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Write Operations Random/sec Advanced
Write Operations Random/sec is the rate that, on a file-by-file basis, writes are
made that are not sequential. If a write is made using a particular file handle,
and then is followed by another write that is not immediately the next contiguous
byte, this counter is incremented by one.

Index: 300 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Write Packets/sec Advanced
Write Packets/sec is the rate that writes are being sent to the network. Each time
a single packet is sent with a request to write remote data, this counter is
incremented by one.

Index: 302 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

418 Optimizing Windows NT

leMP Object
Object: ICMP Index: 582 Advanced

The ICMP Object Type includes those counters that describe the rates that
ICMP Messages are received and sent by a certain entity using the ICMP
protocol. It also describes various error counts for the ICMP protocol.

Messages Outbound Errors Advanced
Messages Outbound Errors is the number of ICMP messages that this entity did
not send due to problems discovered within ICMP such as lack of buffers. This
value should not include errors discovered outside the ICMP layer such as the
inability of IP to route the resultant datagram. In some implementations there
may be no types of error that contribute to this counter's value.

Index: 614 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Messages Received Errors Atlvanced
Messages Received Errors is the number of ICMP messages that the entity
received but determined as having errors (bad ICMP checksums, bad length, and
so on).

Index: 588 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Messages Received/sec Advanced
Messages Received/sec is the rate that ICMP messages are received by the
entity. The rate includes those messages received in error.

Index: 586 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Messages Sent/sec Advanced
Messages Sent/sec is the rate that ICMP messages are attempted to be sent by
the entity. The rate includes those messages sent in error.

Index: 612 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 419

Messages/sec Advanced
Messages/sec is the total rate that ICMP messages are received and sent by the
entity. The rate includes those messages received or sent in error.

Index: 584 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Received Address Mask Expert
Received Address Mask is the number of ICMP Address Mask Request
messages received.

Index: 608 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Received Address Mask Reply Expert
Received Address Mask Reply is the number of ICMP Address Mask Reply
messages received.

Index: 610 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Received Dest. Unreachable Advanced
Received Destination Unreachable is the number of ICMP Destination
Unreachable messages received.

Index: 590 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Received Echo Reply/sec Expert
Received Echo Reply/sec is the rate of ICMP Echo Reply messages received.

Index: 602 Default Scale: 0.1

Counter Type: PERF COUNTER_COUNTER Counter Size: 4 bytes

Received Echo/sec Expert
Received Echo/sec is the rate of ICMP Echo messages received.

Index: 600 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

420 Optimizing Windows NT

Received Parameter Problem Expert
Received Parameter Problem is the number of ICMP Parameter Problem
messages received.

Index: 594 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Received Redirect/sec Advanced
Received Redirect/sec is the rate of ICMP Redirect messages received.

Index: 598 Default Scale: 0.1
,

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Received Source Quench Wizard
Received Source Quench is the number of ICMP Source Quench messages
received.

Index: 596 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Received Time Exceeded Advanced
Received Time Exceeded is the number of ICMP Time Exceeded messages
received.

Index: 592 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Received Timestamp Reply/sec Expert
Received Timestamp Reply/sec is the rate of ICMP Timestamp Reply messages
received.

Index: 606 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Received Timestamp/sec Expert
Received Timestamp/sec is the rate of ICMP Timestamp (request) messages
received.

Index: 604 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 421

Sent Address Mask Expert
Sent Address Mask is the number of ICMP Address Mask Request messages
sent.

Index: 634 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Sent Address Mask Reply Expert
Sent Address Mask Reply is the number of ICMP Address Mask Reply
messages sent.

Index: 636 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT· Counter Size: 4 bytes

Sent Destination Unreachable Advanced
Sent Destination Unreachable is the number of ICMP Destination Unreachable
messages sent.

Index: 616 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Sent Echo Reply/sec Expert
Sent Echo Reply/sec is the rate of ICMP Echo Reply messages sent.

Index: 628 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Sent Echo/sec Expert
Sent Echo/sec is the rate of ICMP Echo messages sent.

Index: 626 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Sent Parameter Problem Expert
Sent Parameter Problem is the number of ICMP Parameter Problem messages
sent.

Index: 620 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

422 Optimizing Windows NT

. Sent Redirect/sec Advanced
Sent RedIrect/sec is the rate of ICMP Redirect messages sent.

Index: 624 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Sent Source Quench Wizard
Sent Source Quench is the number of ICMP Source Quench messages sent.

Index: 622 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Sent Time Exceeded Advanced
Sent Time Exceeded is the number of ICMP Time Exceeded messages sent.

Index: 618 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Sent Timestamp/sec Expert
Sent Timestamp/sec is the rate of ICMP Timestamp (request) messages sent.

Index: 630 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Sent Timestamp Reply/sec Expert
Sent Timestamp Reply/sec is the rate of ICMP Timestamp Reply messages sent.

Index: 632 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Image Object
Object: Image Index: 740 Wizard

The Image object type displays information about the virtual address usage of
the images being executed by a process on the computer.

Executable Wizard
Image Space is the virtual address space in use by the selected image with this
protection. Executable memory is memory that can be executed by programs,
but may not be read or written. This type of protection is not supported by all
processor types.

Index: 796 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 423

Exec Read Only Wizard
Image Space is the virtual address space in use by the selected image with this
protection. ExecutelRead Only memory is memory that can be executed as well
as read.

Index: 798 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Exec ReadlWrite Wizard
Image Space is the virtual address space in use by the selected image with this
protection. ExecutelReadlWrite memory is memory that can be executed by
programs as well as read and written.

Index: 800 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Exec Write Copy Wizard
Image Space is the virtual address space in use by the selected image with this
protection. Execute Write Copy is memory that can be executed by programs as
well as read and written. This type of protection is used when memory needs to
be shared between processes. If the sharing processes only read the memory,
then they will all use the same memory. If a sharing process desires write
access, then a copy of this memory will be made for that process.

Index: 802 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

No Access Wizard
Image Space is the virtual address space in use by the selected image with this
protection. No A~cess protection prevents a process from writing or reading
these pages and will generate an access violation if either is attempted.

Index: 788 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Read Only Wizard
Image Space is the virtual address space in use by the selected image with this
protection. Read Only protection prevents the contents of these pages from being
modified. Any attempts to write or modify these pages will generate an access
violation.

Index: 790 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

424 Optimizing Windows NT

IP Object

ReadlWrite Wizard
Image Space is the virtual address space in use by the selected image with this
protection. ReadlWrite protection allows a process to read, modify and write to
these pages.

Index: 792 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Write Copy Wizard
Image Space is the virtual address space in use by the selected image with this
protection. Write Copy protection is used when memory is shared for reading
but not for writing. When processes are reading this memory, they can share the
same memory, however, when a sharing process wants to have read/write access
to this shared memory, a copy of that memory is made for writing to.

Index: 794 . Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Object: IP Index: 546 Advanced
The IP Object Type includes those counters that describe the rates that IP
datagrams are received and sent by a certain computer using the IP protocol. It
also describes various error counts for the IP protocol.

Datagrams Forwarded/sec Advanced
Datagrams Forwarded/sec is the rate of input datagrams for that this entity was
not their final IP destination, as a result of which an attempt was made to find a
route to forward them to that final destination. In entities that do not act as IP
Gateways, this rate will include only those packets that were Source-Routed via
this entity, and the Source-Route option processing was successful.

Index: 556 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Datagrams Outbound Discarded Advanced
Datagrams Outbound Discarded is the number of output IP datagrams for which
no problems were encountered to prevent their transmission to their destination,
but which were discarded (for example, for lack of buffer space.) This counter
would include datagrams counted in Datagrams Forwarded if any such packets
met this (discretionary) discard criterion.

Index: 566 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 425

Datagrams Outbound No Route Advanced
Datagrams Outbound No Route is the number of IP datagrams discarded
because no route could be found to transmit them to their destination. This
counter includes any packets counted in Datagrams Forwarded that meet this 'no
route' criterion.

Index: 568 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Datagrams Received Header Errors Advanced
Datagrams Received Header Errors is the number of input datagrams discarded
due to errors in their IP headers, including bad checksums, version number
mismatch, other format errors, time-to-live exceeded, errors discovered in
processing their IP options, and so on.

Index: 552 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Datagrams Received Address Errors Advanced
Datagrams Received Address Errors is the number of input datagrams discarded
because the IP address in their IP header's destination field was not a valid
address to be received at this entity. This count includes invalid addresses (for
example, 0.0. 0.0) and addresses of unsupported Classes (for example, Class E).
For entities that are not IP Gateways and therefore do not forward datagrams,
this counter includes datagrams discarded because the destination address was
not a local address.

Index: 554 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Datagrams Received Delivered/sec Advanced
Datagrams Received Delivered/sec is the rate that input datagrams are
successfully delivered to IP user-protocols (including ICMP).

Index: 562 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Datagrams Received Discarded Advanced
Datagrams Received Discarded is the number of input IP datagrams for which
no problems were encountered to prevent their continued processing, but which
were discarded (for example, for lack of buffer space). This counter does not
include any datagrams discarded while awaiting re-assembly.

Index: 560 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

426 Optimizing Windows NT

Datagrams Received Unknown Protocol Advanced
Datagrams Received Unknown Protocol is the number of locally-addressed
datagrams received successfully but discarded because of an unknown or
unsupported protocol. .

Index: 558 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Datagrams Received/sec Advanced
Datagrams Received/sec is the rate that IP datagrams are received from the
interfaces, including those in error.

Index: 446 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Datagrams Sent/sec Advanced
Datagrams Sent/sec is the rate that IP datagrams are supplied to IP for·
transmission by local IP user-protocols (including ICMP). That this counter does
not include any datagrams counted in Datagrams Forwarded.

Index: 442 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Datagrams/sec Advanced
Datagrams/sec is the rate that IP datagrams are received from or sent to the
interfaces, including those in error. Any forwarded datagrams are not included
in this rate.

Index: 438 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Fragmentation Failures Advanced
Fragmentation Failures is the number of IP datagrams that have been discarded
because they needed to be fragmented at this entity but could not be, for
example, because their 'Don't Fragment' flag was set.

Index: 578 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 427

Fragments Received/sec Advanced
Fragments Received/sec is the rate that IP fragments that need to be re
assembled at this entity are received.

Index: 570 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Fragments Re-assembled/sec Advanced
Fragments Re-assembled/sec is the rate that IP fragments are successfully re
assembled.

Index: 572 Default Scale: 0.1

Counter Type: PERF _COUNTER_CC;>UNTER Counter Size: 4 bytes

Fragment Re-assembly Failures Advanced
Fragment Re-assembly Failures is the number of failures detected by the IP re
assembly algorithm (for whatever reason: timed out, errors, and so on.). This is
not necessarily a count of discarded IP fragments since some algorithms
(notably RFC 815) can lose track of the number of fragments by combining
them as they are received.

Index: 574 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Fragmented Datagrams/sec Advanced
Fragmented Datagrams/sec is the rate that datagrams are successfully
fragmented at this entity.

Index: 576 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER ,Counter Size: 4 bytes

Fragments Created/sec Advanced
Fragments Created/sec is the rate that IP datagram fragments have been
generated as a result of fragmentation at this entity.

Index: 580 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

428 ,Optimizing Windows NT

LogicalDisk Object
Object: LogicalDisk Index:236 Novice

A Logical Disk object type is a partition on a hard or fixed disk drive and
assigned a drive letter, such as C. Disks can be partitioned into distinct sections
where they can store file, program, and page data. The disk is read to retrieve
these items, and written to record changes to them.

% Disk Read Time Novice
Disk Read Time is the percentage of elapsed time that the selected disk drive is
busy servicing read requests.

Index: 202 Default Scale: 1

Counter Type: PERF _COUNTER_TIMER Counter Size: 8 bytes

% Disk Time Novice
Disk Time is the percentage of elapsed time that the selected disk drive is busy
servicing read or write requests. '

Index: 200 Default Scale: 1

Counter Type: PERF _COUNTER_TIMER Counter Size: 8 bytes

% -Disk Write Time Novice
Disk Write Time is the percentage of elapsed time that the selected disk drive is
busy servicing write requests.

Index: 204 Default Scale: 1

Counter Type: PERF _ COUNTER_TIMER Counter Size: 8 bytes

% Free Space Novice
Percent Free Space is the ratio of the free space available on the logical disk unit
to the total usable space provided by the selected logical disk drive.

Index: 408 Default Scale: 1

Counter Type: PERF _RA W _FRACTION Counter Size: 4 bytes

A vg. Disk Bytes/Read Expert
A vg. Disk Bytes/Read is the average number of bytes transferred from the disk
during read operations.

Index: 226 Default Scale: 0.01

Counter Type: PERF _A VERAGE_BULK Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 429

A vg. Disk Bytesffransfer Expert
Avg. Disk Bytesffransfer is the average number of bytes transferred to or from
the disk during write or read operations.

Index: 224 Default Scale: 0.01

Counter Type: PERF _A VERAGE_BULK Counter Size: 4 bytes

Avg. Disk ByteslWrite Expert
A vg. Disk ByteslWrite is the average number of bytes transferred to the disk
during write operations.

Index: 228 Def~ult Scale: 0.01

Counter Type: PERF _A VERAGE_BULK Counter Size: 4 bytes

A vg. Disk secIRead Advanced

A vg. Disk seclRead is the average time in seconds of a read of data from the
disk.

Index: 208 Default Scale: 1000

Counter Type: PERF _A VERAGE_TIMER Counter Size: 8 bytes

A vg. Disk secITransfer Advanced
A vg. Disk secffransfer is the time in seconds of the average disk transfer.

Index: 206 Default Scale: 1000

Counter Type: PERF _A VERAGE_ TIMER Counter Size: 4 bytes

Avg. Disk seclWrite Advanced

A vg. Disk seclWrite is the average time in seconds of a write of data to the disk.

Index: 210 Default Scale: 1000

Counter Type: PERF _A VERAGE_ TIMER Counter Size: 4 bytes

Disk Bytes/sec Advanced·

Disk Bytes/sec is the rate bytes are transferred to or from the disk during write
or read operations.

Index: 218 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

430 Optimizing Windows NT

Disk Queue Length Novice
Disk Queue Length is the number of requests outstanding on the disk at the time
the performance data is collected. It includes requests in service at the time of
the snapshot. This is an instantaneous length, not an average over the time
interval. Multi-spindle disk devices can have multiple requests active at one
time, but other concurrent requests are awaiting service. This counter may
reflect a transitory high or low queue length, but if there is a sustained load on
the disk drive, it is likely that this will be consistently high. Requests are
experiencing delays proportional to the length of this queue minus the number of
spindles on the disks. This difference should average less than 2 for good
performance.

Index: 198 Default Scale: 10

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Disk Read Bytes/sec Advanced
Disk Read Bytes/sec is the rate bytes are transferred from the disk during read
operations.

Index: 220 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Disk Reads/sec Novice
Disk Reads/sec is the rate of read operations on the disk.

Index: 214 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Disk Transfers/sec Novice
Disk Transfers/sec is the rate of read and write operations on the disk.

Index: 212 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Disk W rites/sec Novice
..J,o,

Disk Writes/sec is the rate of write operations on the disk.

Index: 216 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 431

Disk Write Bytes/sec Advanced
Disk Write Bytes is rate bytes are transferred to the disk during write
operations.

Index: 222 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Free Megabytes . Novice
Free Megabytes displays the unallocated space on the disk drive in megabytes.
One megabyte = 1,048,576 bytes.

Index: 410 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

MacFile Server Object
Object: MacFile Server Index: 1000 Novice

Services for Macintosh AFP File Server counters.

Current Files Open Wizard
The number of internal files currently open in the MacFile server. This count
does not include files opened on behalf of Macintosh clients.

Index: 1014 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Current NonPaged memory Novice
The current amount of nonpaged memory resources used by the MacFile Server.

Index: 1008 Default Scale: 0.0001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Current Paged Memory Novice
The current amount of paged memory resources used by the MacFile Server.

Index: 1004 Default Scale: 0.0001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Current Queue Length Novice
The number of outstanding work items waiting ~o be processed.

Index: 1028 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

432 Optimizing Windows NT

Current Sessions Novice
The number of sessions currently connected to the MacFile server. Indicates
current server activity.

Index: 1010 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Current Threads Novice
The current number of threads used by MacFile server. Indicates how busy the
server is.

Index: 1032 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Data Read/sec Novice
The number of bytes read from disk per second.

Index: 1020 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Data Received/sec Novice
The number of bytes received from the network per second. Indicates how busy
the server is.

Index: 1024 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Data Transmitted/sec Novice
The number of bytes sent on the network per second. Indicates how busy the
server is.

Index: 1026 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Data Written/sec . Novice
The number of bytes written to disk per second.

Index: 1022 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Appendix A Windows NT Performance Counters 433

Failed Logons Novice
The number of failed logon attempts to the MacFile server. Can indicate
whether password guessing programs are being used to crack the security on the
server.

Index: 1018 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Max NonPaged Memory Novice
The maximum amount of nonpaged memory resources use by the MacFile
Server.

Index: 1006 Default Scale: 0.0001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Max Paged Memory Novice
The maximum amount of paged memory resources used by the MacFile Server.

Index: 1002 Default Scale: 0.0001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Maximum Files Open Wizard
The maximum number of internal files open at one time in the MacFile server.
This count does not include files opened on behalf of Macintosh clients.

Index: 1016 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Maximum Queue Length Novice·
The maximum number of outstanding work items waiting at one time.

Index: 1030 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Maximum Sessions Novice
The maximum number of sessions connected at one time to the MacFile server.
Indicates usage level of server.

Index: 1012 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

434 Optimizing Windows NT

Maximum Threads Novice
The maximum number of threads used by MacFile server. Indicates peak usage
level of server.

Index: 1034 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Memory Object
Object: Memory Index:004 Novice

The Memory object type includes those counters that describe the behavior of
both real and virtual memory on the computer. Real memory is allocated in units
of pages. Virtual memory may exceed real memory in size, causing page traffic
as virtual pages are moved between disk and real memory.

A vailable Bytes Expert
Available Bytes displays the size of the virtual memory currently on the Zeroed,
Free, and Standby lists. Zeroed and Free memory is ready for use, with Zeroed
memory cleared to zeros. Standby memory is memory removed from a process's
Working Set but still available. Notice that this is an instantaneous count, not an
average over the time interval.

Index: 024 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Cache Bytes Advanced
Cache Bytes measures the number of bytes currently in use by the system
Cache. The system Cache is used to buffer data retrieved from disk or LAN. The
system Cache uses memory not in use by active processes in the computer.

Index: 818 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Cache Bytes Peak Advanced
Cache Bytes Peak measures the maximum number of bytes used by the system
Cache. The system Cache is used to buffer data retrieved from disk or LAN. The
system Cache uses memory not in use by active processes in the computer.

Index: 820 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 435

Cache Faults/sec Wizard
Cache Faults occur whenever the Cache manager does not find a file's page in
the immediate Cache and must ask the memory manager to locate the page
elsewhere in memory or on the disk so that it can be loaded into the immediate
Cache.

Index: 036 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Commit Limit Wizard
Commit Limit is the size (in bytes) of virtual memory that can be committed
without having to extend the paging file(s). If the paging file(s) can be extended,
this is a soft limit.

Index: 030 Default Scale: 0.000001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Committed Bytes Expert
Committed Bytes displays the size of virtual memory (in bytes) that has been
Committed (as opp~sed to simply reserved). Committed memory must have
backing (that is, disk) storage available, or must be assured never to need disk
storage (because main memory is large enough to hold it). Notice that this is an
instantaneous count, not an average over the time interval.

Index: 026 Default Scale: 0.000001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Demand Zero Faults/sec Wizard
Demand Zero Faults are the number of page faults for pages that must be filled
with zeros before the fault is satisfied. If the Zeroed list is not empty, the fault
can be resolved by removing a page from the Zeroed list.

Index: 038 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Free System Page Table Entries Wizard
The number of Page Table Entries not currently in use by the system.

Index: 678 Default Scale: 0.01

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

436 Optimizing Windows NT

Page Faults/sec Novice
Page Faults/sec is a count of the Page Faults in the processor. A page fault
occurs when a process refers to a virtual memory page that is not in its Working
Set in main memory. A Page Fault will not cause the page to be fetched from
disk if that page is on the standby list, and hence already in main memory, or if
it is in use by another process with whom the page is shared.

Index: 028 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Page Reads/sec Expert
Page Reads/sec is the number of times the disk was read to retrieve pages of
virtual memory necessary to resolve page faults. Multiple pages can be read
during a disk read operation.

Index: 042 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Page Writes/sec Expert
Page Writes/sec is a count of the number of times pages have been written to the
disk because they were changed since last retrieved. Each such write operation
may transfer a number of pages.

Index: 050 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Pages Input/sec Novice
Pages Input/sec is the number of pages read from the disk to resolve memory
references to pages that were not in memory at the time of the reference. This
counter includes paging traffic on behalf of the system Cache to access file data
for applications. This is an important counter to observe if you are concerned
about excessive memory pressure (that is, thrashing), and the excessive paging
that may result.

Index: 822 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Pages Output/sec Advanced
Pages Output/sec is a count of the number of pages that are written to disk
because the pages have been modified in main memory.

Index: 048 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 437

Pages/sec Novice
Pages/sec is the number of pages read from the disk or written to the disk to
resolve memory references to pages that were not in memory at the time of the
reference. This is the sum of Pages Input/sec and Pages Output/sec. This counter
includes paging traffic on behalf of the system Cache to access file data for
applications. This is the primary counter to observe if you are concerned about
excessive memory pressure (that is, thrashing), and the excessive paging that
may result.

Index: 040 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Pool Nonpaged Allocs Wizard
Pool Nonpaged Allocs is the number of calls to allocate space in the system
Nonpaged Pool. Nonpaged Pool is a system memory area where space is
acquired by operating system components as they accomplish their appointed
tasks. Nonpaged Pool pages cannot be paged out to the paging file, but instead
remain in main memory as long as they are allocated.

Index: 064 Default Scale: 0.01

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Pool Nonpaged Bytes Advanced
Pool Nonpaged Bytes is the number of bytes in the Nonpaged Pool, a system
memory area where space is acquired by operating system components as they
accomplish their appointed tasks. Nonpaged Pool pages cannot be paged out to
the paging file, but instead remain in main memory as long as they are allocated.

Index: 058 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Pool Paged Allocs Wizard
. Pool Paged Allocs is the number of calls to allocate space in the system Paged
Pool. Paged Pool is a system memory area where space is acquired by operating
system components as they accomplish their appointed tasks. Paged Pool pages
can be paged out to the pagipg file when not accessed by the system for
sustained periods of time.

Index: 060 Default Scale: 0.01

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

438 Optimizing Windows NT

Pool Paged Bytes Advanced
Pool Paged Bytes is the number of bytes in the Paged Pool, a system memory
area where space is acquired by operating system components as they
accomplish their appointed tasks. Paged Pool pages can be paged out to the
paging file when not accessed by the system for sustained periods of time.

Index: 056 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Pool Paged Resident Bytes Advanced
Pool Paged Resident Bytes is the size of paged Pool resident in core memory.
This is the actual cost of the paged Pool allocation, since this is actively in use
and using real physical memory.

Index: 066 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

System Cache Resident Bytes Advanced
System Cache Resident Bytes is the number of bytes currently resident in the
global disk cache.

Index: 076 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

System Code Resident Bytes Advanced
System Code Resident Bytes is the number of bytes of System Code Total Bytes
currently resident in core memory. This is the code working set of the pagable
executive. In addition to this, there is another -300k bytes of non-paged kernel
code.

Index: 070 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

System Code Total Bytes Advanced
System Code Total Bytes is the number of bytes of pagable pages in
ntoskrnl.exe, hal.dll, and the boot driv~rs and file systems loaded by
ntldr/osloader.

Index: 068 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 439

System Driver Resident Bytes Advanced
System Driver Resident Bytes is the number of bytes of System Driver Total
Bytes currently resident in core memory. This I1umber is the code ~orking set of
the pagable drivers. In addition to this, there is another -700k bytes of non
paged driver code.

Index: 074 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

System Driver Total Bytes Advanced
System Driver Total Bytes is the number of bytes of pagable pages in all other
loaded device drivers.

Index: 072 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Transition Faults/sec Wizard
Transition Faults/sec is the number of page faults resolved by recovering pages
that were in transition, that is, being written to disk at the time of the page fault.
The pages were recovered without additional disk activity.

Index: 034 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Write Copies/sec Wizard
Write Copies/sec is the number of page faults that have been satisfied by
making a copy of a page when an attempt to write to the page is made. This is an
economical way of sharing data since the copy of the page is only made on an
attempt to write to the page; otherwise, the page is shared.

Index: 032 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

NBT Connection Object
Object: NBT Connection Index: 502 Advanced

The NBT Connection Object Type includes those counters that describe the
rates that bytes are received and sent over a single NBT connection connecting
the local computer with some remote computer. The connection is identified by
the name of the remote computer.

440 Optimizing Windows NT

Bytes Received/sec Advanced
Bytes Received/sec is the rate that bytes are received by the local computer over
an NBT connection to some remote computer. All the bytes received by the local

. computer over the particular NBT connection are counted.

Index: 264 Default Scale: 0.0001

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Bytes Sent/sec Advanced
Bytes Sent/sec is the rate that bytes are sent by the local computer over an NBT
connection to some remote computer. All the bytes sent by the local computer
over the particular NBT connection are counted.

Index: 506 Default Scale: 0.0001

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Bytes Total/sec Advanced
BytesTotal/sec is the rate that bytes are sent or received by the local computer
over an NBT connection to some remote computer. All the bytes sent or received
by the local computer over the particular NBT connection are counted.

Index: 388 Default Scale: 0.0001

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

NetBEUI Object
Object: NetBEUI Index: 492 Advanced

The NetBEUI protocol handles data transmission for that network activity which
follows the NetBIOS End User Interface standard.

Bytes Total/sec Advanced
Bytes Total/sec is the sum of Frame Bytes/sec and Datagram Bytes/sec. This is
the total rate of bytes sent to or received from the network by the protocol, but
only counts the bytes in frames (that is, packets) which carry data.

Index: 388 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Appendix A Windows NT Performance Counters 441

Connection Session Timeouts Advanced
Connection Session Timeouts is the number of connections that were dropped
due to a session timeout. This number is an accumulator and shows a running
total.

Index: 426 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Connections Canceled Advanced
Connections Canceled is the number of connections that were canceled. This
number is an accumulator and shows a running total.

Index: 428 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Connections No Retries Advanced
Connections No Retries is the total count' of connections that were successfully
made on the first try. This number is an accumulator and shows a running total.

Index: 414 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Connections Open Advanced
Connections Open is the number of connections currently open for this protocol.
This counter shows the current count only and does not accumulate over time.

Index: 412 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Connections With Retries Advanced
Connections With Retries is the total count of connections that were made after
retrying the attempt. A retry occurs when the first connection attempt failed.
This number is an accumulator and shows a running total.

Index: 416 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Datagram Bytes Received/sec Advanced
Datagram Bytes Received/sec is the rate that datagram bytes are received by the
computer. A datagram is a connectionless packet whose delivery to a remote
computer is not guaranteed.

Index: 448 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

442 Optimizing Windows NT

Datagram Bytes Sent/sec Advanced
Datagram Bytes Sent/sec is the rate that datagram bytes are sent from the
computer. A datagram is a connectionless packet whose delivery to a remote
computer is not guaranteed.

Index: 444 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Datagram Bytes/sec Advanced
Datagram Bytes/sec is the rate that datagram bytes are processed by the
computer. This counter is the sum of datagram bytes that are sent as well as
received. A datagram is a connectionless packet whose delivery to a remote is
not guaranteed.

Index: 440 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Datagrams Received/sec Advanced
Datagrams Received/sec is the rate that datagrams are received by the computer.
A datagram is a connectionless packet whose delivery to a remote computer is
not guaranteed.

Index: 446 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Datagrams Sent/sec Advanced
Datagrams Sent/sec is the rate that datagrams are sent from the computer. A
datagram is a connectionless packet whose delivery to a remote computer is not
guaranteed.

Index: 442 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Datagrams/sec Advanced
Datagrams/sec is the rate that datagrams are processed by the computer. This
counter displays the sum of datagrams sent and datagrams received. A datagram
is a connectionless packet whose delivery to a remote is not guaranteed.

Index: 438 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 443

Disconnects Local Advanced
Disconnects Local is the number of session disconnections that were initiated by
the local computer. This number is an accumulator and shows a running total.

Index: 418 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Disconnects Remote Advanced
Disconnects Remote is the number of session disconnections that were initiated
by the remote computer. This number is an accumulator and shows a running
total.

Index: 420 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Expirations Ack Advanced
Expirations Ack is the count of T2 timer expirations

Index: 478 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Expirations Response Wizard
Expirations Response is the count of Tl timer expirations.

Index: 476 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Failures Adapter Advanced
Failures Adapter is the number of connections that were dropped due to an
adapter failure. This number is an accumulator and shows a running total.

Index: 424 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Failures Link Advanced
Failures Link is the number of connections that were dropped due to a link
failure. This number is an accumulator and shows a running total.

Index: 422 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

444 Optimizing Windows NT

Failures No Listen Advanced
Failures No Listen is the number of connections that were rejected because the
remote computer was not listening for connection requests.

Index: 436 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Failures Not Found Advanced
Failures Not Found is the number of connection attempts that failed because the
remote computer could not be found. This number is an accumulator and shows
a running total.

Index: 434 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Failures Resource Local Advanced

Failures Resource Local is the number of connections that failed because of
resource problems or shortages on the local computer. This number is an
accumulator and shows a running total.

Index: 432 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Failures Resource Remote Advanced

Failures Resource Remote is the number of connections that failed because of
resource problems or shortages on the remote computer. This number is an
accumulator and shows a running total.

Index: 430 Default Scale: 1

Counter Type: PERF _ COUNTER_RA WCOUNT Counter Size: 4 bytes

Frame Bytes Received/sec Advanced
Frame Bytes Received/sec is the rate that data bytes are received by the
computer. This counter only counts the frames (packets) that carry data.

Index: 466 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Frame Bytes Rejected/sec Expert
Frame Bytes Rejected/sec is the rate that data bytes are rejected. This counter
only counts the bytes in data frames (packets) that carry data.

Index: 474 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Appendix A Windows NT Performance Counters 445

Frame Bytes Re-Sent/sec Wizard
Frame Bytes Re-Sent/sec is the rate that data bytes· are re-sent by the computer.
This counter only counts the bytes in frames that carry data.

Index: 470 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Frame Bytes Sent/sec Advanced
Frame Bytes Sent/sec is the rate that data bytes are sent by the computer. This
counter only counts the bytes in frames (packets) that carry data.

Index: 462 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Frame Bytes/sec Advanced
Frame Bytes/sec is the rate that data bytes are processed by the computer. This
counter is the sum of data frame bytes sent and received. This counter only
counts the byte in frames (packets) that carry data.

Index: 458 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Frames Received/sec Advanced
Frames Received/sec is the rate that data frames are received by the computer.
This counter only counts the frames (packets) that carry data.

Index: 464 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Frames Rejected/sec Expert
Frames Rejected/sec is the rate that data frames are rejected. This counter only
counts the frames (packets) that carry data.

Index: 472 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Frames Re-Sent/sec Expert
Frames Re-Sent/sec is the rate that data frames (packets) are re-sent by the
computer. This counter only counts the frames or packets that carry data.

Index: 468 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Frames Sent/sec Advanced
Frames Sent/sec is the rate that data frames are sent by the computer. This
counter only counts the frames (packets) that carry data.

446 Optimizing Windows NT

Index: 460 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Frames/sec Advanced
Frames/sec is the rate that data frames (or packets) are processed by the
computer. This counter is the sum of data frames sent and data frames received.
This counter only counts those frames (packets) that carry data.

Index:" 456 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Packets Received/sec Expert
Packets Received/sec is the rate that packets are received by the computer. This
counter counts all packets processed: control as well as data packets.

Index: 266 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Packets Sent/sec Advanced
Packets Sent/sec is the rate that packets are sent by the computer. This counter
counts all packets sent by the computer, control as well as data packets.

Index: 452 Default Scale: 0.1

" Counter Type: PERF _COUNTER~COUNTER " Counter Size: 4 bytes

Packets/sec Advanced
Packets/sec is the rate that packets are processed by the computer. This count is
the sum of Packets Sent and Packets Received per second. This counter includes
all packets processed: control as well as data packets.

Index: 400 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 447

Piggyback Ack Queued/sec Advanced
Piggyback Ack Queued/sec is the rate that piggybacked acknowledgments are
queued. Piggyback acknowledgments are acknowledgments to received packets
that are to be included in the next outgoing packet to the remote computer.

Index: 484 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Piggyback Ack Timeouts Advanced
Piggyback Ack Timeouts is the number of times that a piggyback
acknowledgment could not be sent because there was no outgoing packet to the
remote on which to piggyback. A piggyback ack is an acknowledgment to a
received packet that is sent along in an outgoing data packet to the remote
computer. If no outgoing packet is sent within the timeout period, then an ack
packet is sent and this counter is incremented.

Index: 486 Default Scale: 0.1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Window Send Average Advanced
Window Send Average is the running average number of data bytes that were
sent before waiting for an acknowledgment from the remote computer.

Index: 482 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Window Send Maximum Advanced
Window Send Maximum is the maximum number of bytes of data that will be
sent before waiting for an acknowledgment from the remote computer.

Index: 480 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

448 Optimizing Windows NT

NetBEUI Resource Object
Object: NetBEUI Resource Index: 494 Advanced

The NetBEUI Resource object tracks the use of resources (that is, buffers) by
the NetBEUI protocol.

Times Exhausted Advanced
Times Exhausted is the number of times all the resources (buffers) were in use.
The number in parentheses following the resource name is used to identify the
resource in Event Log messages.

Index: 500 Default Scale: 1

Counter Type: PERF.:...COUNTER_RA WCOUNT Counter Size: 4 bytes

Used Average Advanced
Used Average is the current number of resources (buffers) in use at this time.
The number in parentheses following the resource name is used to identify the
resource in Event Log messages.

Index: 498 Default Scale: 1

Counter Type: PERF _CO~TER_RA WCOUNT Counter Size: 4 bytes

Used Maximum Advanced
Used Maximum is the maximum number of NetBEUI resources (buffers) in use
at any point in time. This value is useful in sizing the maximum resources
provided. The number in parentheses following the resource name is used to
identify the resource in Event Log messages.

Index: 496 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 449

Network Interface Object
Object: Network Interface Index: 510 Advanced

The Network Interface Object Type includes those counters that describe the
rates that bytes and packets are received and sent over a Network TCPIIP
connection. It also describes various error counts for the same connection.

Bytes Received/sec Advanced
Bytes Received/sec is the rate that bytes are received on the interface, including
framing characters.

Index: 264 Default Scale: 0.000 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Bytes Sent/sec Advanced
Bytes Sent/sec is the rate that bytes are sent on the interface, including framing
characters.

Index: 506 Default Scale: 0.000 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Bytes Total/sec Advanced
Bytes Total/sec is the rate that bytes are sent and received on the interface,
including framing characters.

Index: 388 Default Scale: 0.0001

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Current Bandwidth Advanced
Current Bandwidth is an estimate of the interface's current bandwidth in bits per
second (bps). For interfaces that do not vary in bandwidth or for those where no
accurate estimation can be made, this value is the nominal bandwidth.

Index: 520 Default Scale: 0.000001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

450 Optimizing Windows NT

Output Queue Length Advanced
Output Queue Length is the length of the output packet queue (in packets.) If
this is longer than 2, delays are being experienced and the bottleneck should be
found and eliminated if possible. Since the requests are queued by NDIS in this
implementation, this will always be O.

Index: 544 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT . Counter Size: 4 bytes

Packets Outbound Discarded Advanced
Packets Outbound Discarded is the number of outbound packets that were
chosen to be discarded even though no errors had been detected to prevent their
being transmitted. One possible reason for discarding such a packet could be to
free up buffer space.

Index: 540 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Packets Outbound Errors Advanced
Packets Outbound Errors is the number of outbound packets that could not be
transmitted because of errors.

Index: 542 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Packets Received Discarded Advanced
Packets Received Discarded is the number of inbound packets that were chosen
to be discarded even though no errors had been detected to prevent their being
deliverable to a higher-layer protocol. One possible reason for discarding such a
packet could be to free up buffer space.

Index: 528 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Packets Received Errors Advanced
Packets Received Errors is the number of inbound packets that contained errors
preventing them from being deliverable to a higher-layer protocol.

Index: 530 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 451

Packets Received Non-Unicastlsec Expert
Packets Received Non-Unicast/sec is the rate that non-unicast (that is, sub net
broadcast or subnet multicast) packets are delivered to a higher-layer protocol.

Index: 526 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Packets Received Unicastlsec Expert
Packets Received Unicast/sec is the rate that (subnet) unicast packets are
delivered to a higher-layer protocol.

Index: 524 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Packets Received Unknown Advanced
Packets Received Unknown is the number of packets received via the interface
that were discarded because of an unknown or unsupported protocol.

Index: 532 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Packets Received/sec Advanced
Packets Received/sec is the rate that packets are received on the network
interface.

Index: 266 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Packets Sentlsec Advanced
Packets Sent/sec is the rate that packets are sent on the network interface.

Index: 452 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Packets Sent Non-Unicastlsec Expert
Packets Sent Non-Unicast/sec is the rate that packets are requested to be
transmitted to non-unicast (that is, subnet broadcast or subnet multicast)
addresses by higher-level protocols. The rate includes the packets that were
discarded or not sent.

Index: 538 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

452 Optimizing Windows NT

Packets Sent Unicastlsec Expert
Packets Sent Unicastlsec is the rate that packets are requested to be transmitted'
to subnet-unicast addresses by higher-level protocols. The rate includes the
packets that were discarded or not sent.

Index: 536 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Packets/sec Advanced
Packets/sec is the rate that packets are sent and received on the network
interface.

Index: 400 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Network Segment Object
Object: Network Segment Index: 1110 Advanced

Provides Network Statistics for the local network segment via the Network
Monitor Service.

% Broadcast Frames Advanced
Percentage of network bandwidth which is made up of broadcast traffic on this
network segment.

Index: 1122 Default Scale: 1

Counter Type: PERF _A VERAGE_BULK Counter Size: 8 bytes

% Multicast Frames Advanced
Percentage of network bandwidth which is made up of multicast traffic on this
network segment.

Index: 1124 Default Scale: 1

Counter Type: PERF _A VERAGE_BULK Counter Size: 8 bytes

% Network utilization Advanced
Percentage of network bandwidth in use on this network segment.

Index: 1120 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 453

Broadcast frames received/second Advanced
The number of Broadcast frames received per second on this network segment.

Index: 1116 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Multicast frames received/second Advanced
The number of Multicast frames received per second on this network segment.

Index: 1118 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Total bytes received/second Advanced
The number of bytes received per second on this network segment.

Index: 1114 Default Scale: 0.0001

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Total frames received/second Advanced
The total number of frames received per second on this network segment.

Index: 1112 Default Scale: 0.01

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

NWLink IPX Object
Object: NWLink IPX Index: 488 Advanced

The NWLink IPX transport handles datagram transmission to and from
computers using the IPX protocol.

Bytes Total/sec Advanced
Bytes Total/sec is the sum of Frame Bytes/sec and Datagram Bytes/sec. This is
the total rate of bytes sent to or received from the network by the protocol, but
only ·counts the bytes in frames (that is, packets) which carry data.

Index: 388 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

454 Optimizing Windows NT

Connection Session Timeouts Advanced
Connection Session Timeouts is the number of connections that were dropped
due to a session timeout. This number is an accumulator and shows a running
total.

Index: 426 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Connections Canceled Advanced
Connections Canceled is the number of connections that were canceled. This
number is an accumulator and shows a running total.

Index: 428 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Connections No Retries . Advanced
Connections No Retries is the total count of connections that were successfully
made on the first try. This number is an accumulator and shows a running total.

Index: 414 Default Scale: 1

Counter Type: PERF _COUNTER~RA WCOUNT Counter Size: 4 bytes

Connections Open Advanced
Connections Open is the number of connections currently open for this protocol.
This counter shows the current count only and does not accumulate over time.

Index: 412 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Connections With Retries Advanced
Connections With Retries is the total count of connections that were made after
retrying the attempt. A retry occurs when the first connection attempt failed.
This number is an accumulator and shows a running total.

Index: 416 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Datagram Bytes Received/sec Advanced
Datagram Bytes Received/sec is the rate that datagram bytes are received by the
computer. A datagram is a connectionless packet whose delivery to a remote
computer is not guaranteed.

Index: 448 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Appendix A Windows NT Performance Counters 455

Datagram Bytes Sent/sec Advanced
Datagram Bytes Sent/sec is the rate that datagram bytes are sent from the
computer. A datagram is a connectionless packet whose delivery to a remote
computer is not guaranteed.

Index: 444 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Datagram Bytes/sec Advanced
Datagram Bytes/sec is the rate that datagram bytes are processed by the
computer. This counter is the sum of datagram bytes that are sent as well as
received. A datagram is a connectionless packet whose delivery to a remote is
not guaranteed.

Index: 440 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Datagrams Received/sec Advanced
Datagrams Received/sec is the rate that datagrams are received by the computer.
A datagram is a connectionless packet whose delivery to a remote computer is
not guaranteed.

Index: 446 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Datagrams Sent/sec Advanced
Datagrams Sent/sec is the rate that datagrams are sent from the computer. A
datagram is a connectionless packet whose delivery to a remote computer is not
guaranteed.

Index: 442 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Datagrams/sec Advanced
Datagrams/sec is the rate that datagrams are processed by the computer. This
counter displays the sum of datagrams sent and datagrams received. A datagram
is a connectionless packet whose delivery to a remote is not guaranteed.

Index: 438 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

456 Optimizing Windows NT

Disconnects Local. Advanced
Disconnects Local is the number of session disconnections that were initiated by
the local computer. This number is an accumulator and shows a running total.

Index: 418 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Disconnects Remote Advanced
Disconnects Remote is the number of session disconnections that were initiated
by the remote computer. This number is an accumulator and shows a running
total.

Index: 420 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Expirations Ack Advanced
Expirations Ack is the count of T2 timer expirations

Index: 478 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Expirations Response Wizard
Expirations Response is the count of T1 timer expirations.

Index: 476 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Failures Adapter Advanced
Failures Adapter is the number of connections that were dropped due to an
adapter failure. This number is an accumulator and shows a running total.

Index: 424 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Failures Link Advanced
Failures Link is the number of connections -that were dropped due to a link
failure. This number is an accumulator and shows a running total.

Index: 422 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 457

Failures No Listen Advanced
Failures No Listen is the number of connections that were rejected because the
remote computer was not listening for connection requests.

Index: 436 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Failures Not Found Advanced
Failures Not Found is the number of connection attempts that failed because the
remote computer could not be found. This number is an accumulator and shows
a running total.

Index: 434 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Failures Resource Local Advanced
Failures Resource Local is the number of connections that failed because of
resource problems or shortages on the local computer. This number is an
accumulator and shows a running total.

Index: 432 Default Scale: 1

Counter Type: PERF _COUNTER_RA W<;:OUNT Counter Size: 4 bytes

Failures Resource Remote Advanced
. Failures Resource Remote is the number of connections that failed because of

resource problems or shortages on the remote computer. This number is an
accumulator and shows a running total.

Index: 430 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Frame Bytes Received/sec Advanced
Frame Bytes Received/sec is the rate that data bytes are received by the
computer. This counter only counts the frames (packets) that carry data.

Index: 466 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Frame Bytes Rejected/sec Expert
Frame Bytes Rejected/sec is the rate that data bytes are rejected. This counter
only counts the bytes in data frames (packets) that carry data.

Index: 474 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

458 Optimizing Windows NT

Frame Bytes Re-Sentlsec Wizard
Frame Bytes Re-Sentlsec is the rate that data bytes are re-sent by the computer.
This counter only counts the bytes in frames that carry d.ata.

Index: 470 Default Scale: 0.0001

Counter Type: PERF_COUNTER_BULK_COUNT Counter Size: 8 bytes

Frame Bytes Sentlsec Advanced
Frame Bytes Sent/sec is the rate that data bytes are sent by the computer. This
counter only counts the bytes in frames (packets) that carry data.

Index: 462 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Frame Bytes/sec Advanced
Frame Bytes/sec is the rate that data bytes are processed by the computer. This
counter is the sum of data frame bytes sent and received. This counter only
counts the byte in frames (packets) that carry data.

Index: 458 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Frames Received/sec Advanced
Frames Received/sec is the rate that data frames are received by the computer.
This counter only counts the frames (packets) that carry data.

Index: 464 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Frames Rejected/sec Expert
Frames Rejected/sec is the rate that data frames are rejected. This counter only
counts the frames (packets) that carry data.

Index: 472 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Frames Re-Sentlsec Expert
Frames Re-Sentlsec is the rate that data frames (packets) are re-sent by the
computer. This counter only counts the frames or packets that carry data.

Index: 468 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 459

Frames Sent/sec Advanced
Frames Sent/sec is the rate that data frames are sent by the computer. This
counter only counts the frames (packets) that carry data.

Index: 460 . Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Frames/sec Advanced
Frames/sec is the rate that data frames (or packets) are processed by the
computer. This counter is the sum of data frames sent and data frames received.
This counter only counts those frames (packets) that carry data.

Index: 456 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Packets Received/sec Expert
Packets Received/sec is the rate that packets are received by the computer. This
counter counts all packets processed: control as well as data packets.

Index: 266 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Packets Sent/sec Advanced
Packets Sent/sec is the rate that packets are sent by the computer. This counter
counts all packets sent by the computer, control as well as data packets.

Index: 452 Default Scale: 0.1

Co~nterType: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Packets/sec Advanced
Packets/sec is the rate that packets are processed by the computer. This count is
the sum of Packets Sent and Packets Received per second. This counter includes
all packets processed: control as well as _data packets.

Index: 400 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Piggyback Ack Queued/sec Advanced
Piggyback Ack Queued/sec is the rate that piggybacked acknowledgments are
queued. Piggyback acknowledgments are acknowledgments to received packets
that are to be included in the next outgoing packet to the remote computer.

Index: 484 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

460 Optimizing Windows NT

Piggyback Ack Timeouts Advanced
Piggyback Ack Timeouts is the number of times that a piggyback
acknowledgment could not be sent because there was no outgoing packet to the
remote on which to piggyback. A piggyback ack is an acknowledgment to a
received packet that is sent along in an outgoing data packet to the remote
computer. If no outgoing packet is sent within the timeout period, then an ack
packet is sent and this counter is incremented.

Index: 486 Default Scale: 0.1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Window Send Average Advanced
Window Send Average is the running average number of data bytes that were
sent before waiting for an acknowledgment from the remote computer.

Index: 482 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Window Send Maximum Advanced
Window Send Maximum is the maximum number of bytes of data that will be
sent before waiting for an acknowledgment from the remote computer.

Index: 480 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

NWLink NetBIOS Object
Object: NWLink NetBIOS Index: 398 Advanced

The NWLink NetBIOS protocol layer handles the interface to applications
communicating over the IPX transport.

Bytes Total/sec Advanced
Bytes Total/sec is the sum of Frame Bytes/sec and Datagram Bytes/sec. This is
the total rate of bytes sent to or received from the network by the protocol, but
only counts the bytes in frames (that is, packets) which carry data.

Index: 388 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Appendix A Windows NT Performance Counters 461

Connection Session Timeouts Advanced
Connection Session Timeouts is the number of connections that were dropped
due to a session timeout. This number is an accumulator and shows a running
total.

Index: 426 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Connections Canceled Advanced
Connections Canceled is the number of connections that were canceled. This
number is an accumulator and shows a running total.

Index: 428 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Connections No Retries Advanced
Connections No Retries is the total count of connections that were successfully
made on the first try. This number is an accumulator and shows a running total.

Index: 414 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Connections Open Advanced
Connections Open is the number of connections currently open for this protocol.

\ This counter shows the current count only and does not accumulate over time.

Index: 412 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Connections With Retries Advanced
Connections With Retries is the total count of connections that were made after
retrying the attempt. A retry occurs when the first connection attempt failed.
This number is an accumulator and shows a running total.

Index: 416 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

462 Optimizing Windows NT

Datagram Bytes Received/sec Advanced
Datagram Bytes Received/sec is the rate that datagram bytes are received by the
computer. A datagram is a connectionless packet whose delivery to a remote
computer is not guaranteed.

Index: 448 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Datagram Bytes Sent/sec Advanced
Datagram Bytes Sent/sec is the rate that datagram bytes are sent from the

. computer. A datagram is a connectionless packet whose delivery to a remote
computer is not guaranteed.

Index: 444 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Datagram Bytes/sec Advanced
Datagram Bytes/sec is the rate that datagram bytes are processed by the
computer. This counter is the sum of datagram bytes that are sent as well as
received. A datagram is a connectionless packet whose delivery to a remote is
not guaranteed.

Index: 440 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Datagrams Received/sec Advanced
Datagrams Received/sec is the rate that datagrams are received by the computer.
A datagram is a connectionless packet whose delivery to a remote computer is
not guaranteed.

Index: 446 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Datagrams Sent/sec Advanced
Datagrams Sent/sec is the rate that datagrams are sent from the computer. A
datagram is a connectionless packet whose delivery to a remote computer is not
guaranteed.

Index: 442 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 463

Datagrams/sec Advanced
Datagrams/sec is the rate that datagrams are processed by the computer. This
counter displays the sum of datagrams sent and datagrams received. A datagram
is a connectionless packet whose delivery to a remote is not guaranteed.

Index: 438 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Disconnects Local Advanced
Disconnects Local is the number of session disconnections that were initiated by
the local computer. This number is an accumulator and shows a running total.

Index: 418 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Disconnects Remote Advanced
Disconnects Remote is the number of session disconnections that were initiated
by the remote computer. This number is an accumulator and shows a running
total.

Index: 420 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Expirations Ack Advanced
Expirations Ack is the count of T2 timer expirations

Index: 478 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Expirations Response Wizard
Expirations Response is the count of T1 timer expirations.

Index: 476 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Failures Adapter Advanced
Failures Adapter is the number of connections that were dropped due to an
adapter failure. This number is an accumulator and shows a running total.

Index: 424 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

464 Optimizing Windows NT

Failures Link Advanced
Failures Link is the number of connections that were dropped due to a link
failure. This number is an accumulator and shows a running total.

Index: 422 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Failures No Listen Advanced
Failures No Listen is the number of connections that were rejected because the
remote computer was not listening for connection requests.

Index: 436 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Failures Not Found Advanced
Failures Not Found is the number of connection attempts that failed because the
remote computer could not be found. This number is an accumulator and shows
a running total.

Index: 434 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 byt~s

Failures Resource Local Advanced
Failures Resource Local is the number of connections that failed because of
resource problems or shortages on the local computer. This number is an
accumulator and shows a running total.

Index: 432 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Failures Resource Remote Advanced
Failures Resource Remote is the number of connections that failed because of
resource problems or shortages on the remote computer. This number is an
accumulator and shows a running total.

Index: 430 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Frame Bytes Received/sec Advanced
Frame Bytes Received/sec is the rate that data bytes are received by the
computer. This counter only counts the frames (packets) that carry data.

Index: 466 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Appendix A Windows NT Performance Counters 465

Frame Bytes Rejected/sec Expert
Frame Bytes Rejected/sec is the rate that data bytes are rejected. This counter
only counts the bytes in data frames (packets) that carry data.

Index: 474 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Frame Bytes Re-Sent/sec Wizard
Frame Bytes Re-Sentlsec is the rate that data bytes are re-sent by the computer.
This counter only counts the bytes in frames that carry data.

Index: 470 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_CO~NT Counter Size: 8 bytes

Frame Bytes Sent/sec Advanced
Frame Bytes Sent/sec is the rate that data bytes are sent by the computer. This
counter only counts the bytes in frames (packets) that carry data.

Index: 462 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Frame Bytes/sec Advanced
Frame Bytes/sec is the rate that data bytes are processed by the computer. This
counter is the sum of data frame bytes sent and received. This counter only
counts the byte in frames (packets) that carry data.

Index: 458 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Frames Received/sec Advanced
Frames Received/sec is the rate that data frames are received by the computer.
This counter only counts the frames (packets) that carry data.

Index: 464 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Frames Rejected/sec Expert
Frames Rejected/sec is the rate that data frames are rejected. This counter only
counts the frames (packets) that carry data.

Index: 472 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

466 Optimizing Windows NT

Frames Re-Sent/sec Expert
Frames Re-Sent/sec is the rate that data frames (packets) are re-sent by the
computer. This counter only counts the frames or packets that carry data.

Index: 468 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Frames Sent/sec Advanced
Frames Sent/sec is the rate that data frames are sent by the computer. This
counter only counts the frames (packets) that carry data.

Index: 460 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Frames/sec Advanced
Frames/sec is the rate that data frames (or packets) are processed by the
computer. This counter is the sum of data frames sent and data frames received.
This counter only counts those frames (packets) that carry data.

Index: 456 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Packets Received/sec Expert
Packets Received/sec is the rate that packets are received by the computer. This
counter counts all packets processed: control as well as data packets.

Index: 266 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Packets Sent/sec Advanced
Packets Sent/sec is the rate that packets are sent by the computer. This counter
counts all packets sent by the computer, control as well as data packets.

Index: 452 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Packets/sec Advanced
Packets/sec is the rate that packets are processed by the computer. This count is
the sum of Packets Sent and Packets Received per second. This counter includes
all packets processed: control as well as data packets.

Index: 400 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 467

Piggyback Ack Queued/sec Advanced
Piggyback Ack Queued/sec is the rate that piggybacked acknowledgments are
queued. Piggyback acknowledgments are acknowledgments to received packets
that are to be included in the next outgoing packet to the remote computer.

Index: 484 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Piggyback Ack Timeouts Advanced
Piggyback Ack Timeouts is the number of times that a piggyback
acknowledgment could not be sent because there was no outgoing packet to the
remote on which to piggyback. A piggyback ack is an acknowledgment to a
received packet that is sent along in an outgoing data packet to the remote
computer. If no outgoing packet is sent within the timeout period, then an ack
packet is sent and this counter is incremented.

Index: 486 Default Scale: 0.1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Window Send Average Advanced
Window Send Average is the running average number 9f data bytes that were

, sent before waiting for an acknowledgment from the remote computer.

Index: 482 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Window Send Maximum Advanced
Window Send Maximum is the maximum number of bytes of data that will be
sent before waiting for an acknowledgment from the remote computer.

Index: 480 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Objects Object
Object: Objects Index: 260 Novice

The Objects object type is a meta-object that contains information about the
objects in existence on the computer. This information can be used to detect the
unnecessary consumption of computer resources. Each object requires memory
to store basic information about the object.

468 Optimizing Windows NT

Events Expert
Events is the number of events in the computer at the time of data collection.
Notice that this is an instantaneous count, not an average over the time interval.
An event is used when two or more threads wish to synchronize execution.

Index: 252 Default Scale: 0.1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Mutexes Expert
Mutexes counts the number of mutexes in the computer at the time of data
collection. This is an instantaneous count, not an average over the time interval.
Mutexes are used by threads to assure only one thread is executing some section
of code.

Index: 256 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Processes Novice
Processes is the number of processes in the computer at the time of data
collection. Notice that this is an instantaneous count, not an average over the
time interval. Each process represents the running of a program.

Index: 248 Default Scale: 1

Counter Type: PERF _ COUNTER_RA WCOUNT Counter Size: 4 bytes

Sections Expert
Sections is the number of sections in the computer at the time of data collection.
Notice that this is an instantaneous count, not an average over the time interval.
A section is a portion of virtual memory created by a process for a storing data.
A process may share sections with other processes.

Index: 258 Default Scale: 0.1

. Counter Type: PERF _ COUNTER_RA WCOUNT Counter Size: 4 bytes

Semaphores Expert
Semaphores is the number of semaphores in the computer at the time of data
collection. Notice that this is an instantaneous count, not an average over the
time interval. Threads use semaphores to obtain exclusive access to data
structures that they share with other threads.

Index: 254 Default Scale: 0.1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 469

Threads Novice
Threads is the number of threads in the computer at the time of data collection.
Notice that this is an instantaneous count, not an average over the time interval.
A thread is the basic executable entity that can execute instructions in a
processor.

Index: 250 Default Scale: 0.1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Paging File Object
Object: Paging File Index: 700 Advanced

Displays information about the system's Page File(s).

% Usage Advanced
.'"\

The amount of the Page File instance in use in percent. See also Process:Page
File Bytes.

Index: 702 Default Scale: 1

Counter Type: PERF _RA W _FRACTION Counter Size: 4 bytes

% Usage Peak Advanced
The peak usage of the Page File instance in percent. See also Process:Page File
Bytes Peak.

Index: 704 Default Scale: 1

Counter Type: PERF _RA W _FRACTION Counter Size: 4 bytes

PhysicalDisk Object
Object: PhysicalDisk Index: 234 Novice

A Physical Disk object type is a hard or fixed disk drive. It will contain 1 or
more logical partitions. Disks are used to store file, program, and paging data.
The disk is read to retrieve these items, and written to record changes to them.

% Disk Read Time Novice
Disk Read Time is the percentage of elapsed time that the selected disk drive is
busy servicing read requests.

Index: 202 Default Scale: 1

Counter Type: PERF _COUNTER_TIMER Counter Size: 8 bytes

470 Optimizing Windows NT

% Disk Time Novice
Disk Time is the percentage of elapsed time that the selected disk drive is busy
servicing read or write requests.

Index: 200 Default Scale: 1

Counter Type: PERF _ COUNTER_TIMER Counter Size: 8 bytes

% Disk Write Time Novice
Disk Write Time is the percentage of elapsed time that the selected disk drive is
busy servicing write requests.

Index: 204 Default Scale: 1

Counter Type: PERF _COUNTER_TIMER C<;mnter Size: 8 bytes

A vg. Disk Bytes/Read Expert
Avg. Disk ByteslRead is the average number of bytes transferred from the disk
during read operations.

Index: 226 Default Scale: 0.01

Counter Type: PERF _A VERAGE_BULK Counter Size: 8 bytes

A vg. Disk Bytesffransfer Expert
Avg. Disk Bytesffransfer is the average number of bytes transferred to or from
the disk during write or read operations.

Index: 224 Default Scale: 0.01

Counter Type: PERF _A VERAGE_BULK Counter Size: 4 bytes

A vg. Disk Bytes/Write Expert
A vg. Disk ByteslWrite is the average number of bytes transferred to the disk
during write operations.

Index: 228 Default Scale: 0.01

Counter Type: P~RF _A VERAGE_BULK Counter Size: 4 bytes

A vg. Disk sec/Read Advanced
A vg. Disk seclRead is the average time in seconds of a read of data from the
disk.

Index: 208 Default Scale: 1000

Counter Type: PERF _A VERAGE_ TIMER Counter Size: 4 bytes

Avg. Disk secITransfer Advanced
A vg. Disk secfTransfer is the time in seconds of the average disk transfer.

Index: 206 Default Scale: 1000

Counter Type: PERF _A VERAGE_ TIMER Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 471

A vg. Disk seclWrite . Advanced

A vg. Disk seclWrite is the average time in seconds of a write of data to the disk.

Index: 210 Default Scale: 1000

Counter Type: PERF _AVERAGE_TIMER Counter Size: 4 bytes

Disk Bytes/sec Advanced
Disk Bytes/sec is the rate bytes are transferred to or from the disk during write
or read operations.

Index: 218 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Disk Queue Length Novice
Disk Queue Length is the number of requests outstanding on the disk at the time
the performance data is collected. It includes requests in service at the time of
the snapshot. This is an instantaneous length, not an average over the time
interval. Multi-spindle disk devices can have multiple requests active at one
time, but other concurrent requests are awaiting service. This counter may
reflect a transitory high or low queue length, but if there is a sustained load on
the disk drive, it is likely that this will be consistently high. Requests are
experiencing delays proportional to the length of this queue minus the number of
spindles on the disks. This difference should average less than 2 for good
performance.

Index: 198 Default Scale: 10

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Disk Read Bytes/sec Advanced
Disk Read Bytes/sec is the rate bytes are transferred from the disk during read
operations.

Index: 220 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Disk Reads/sec Novice
Disk Reads/sec is the rate of read operations on the disk.

Index: 214 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

472 Optimizing Windows NT

Disk Transfers/sec Novice
Disk Transfers/sec is the rate of read and write operations on the disk.

Index: 212 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Disk Writes/sec Novice
Disk Writes/sec is the rate of write operations on the disk.

Index: 216 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Disk Write Bytes/sec Advanced
Disk Write Bytes is rate bytes are transferred to the disk during write
operations.

Index: 222 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Process Object
Object: Process Index: 230 Novice

The Process object type is created when a program is run. All the threads in a
process share the same address space and have access to the same data.

% Privileged Time Advanced
Privileged Time is the percentage of elapsed time that this process's threads
have spent executing code in Privileged Mode. When a Windows NT system
service is called, the service will often run in Privileged Mode to gain access to
system-private data. Such data is protected from access by threads executing in
User Mode. Calls to the system may be explicit, or they may be implicit such as
when a page fault or an interrupt occurs. Unlike some early operating systems;
Windows NT uses process boundaries for subsystem protection in addition to
the traditional protection of User and Privileged modes. These subsystem
processes provide additional protection. Therefore, some work done by
Windows NT on behalf of your application may appear in other subsystem
processes in addition to the Privileged Time in your process.

Index: 144 Default Scale: 1

Counter Type: PERF _100NSEC_TIMER Counter Size: 8 bytes

Appendix A Windows NT Performance Counters 473

% Processor Time Novice
Processor Time is the percentage of elapsed time that all of the threads of this

. process used the processor to execute instructions. An instruction is the basic
unit of execution in a computer, a thread is the object that executes instructions,
and a process is the object created when a program is run. Code executed to
handle certain hardware interrupts or trap conditions may be counted for this
process.

Index: 006 Default Scale: 1

Counter Type: PERF _100NSEC_TIMER Counter Size: 8 bytes

% User Time Advanced
User Time is the percentage of elapsed time that this process's threads have

, spent executing code in User Mode. Applications execute in User Mode, as do
subsystems like the window manager and the graphics engine. Code executing in
User Mode cannot damage the integrity of the Windows NT Executive, Kernel,
and device drivers. Unlike some early operating systems, Windows NT uses
process boundaries for subsystem protection in addition to the traditional
protection of User and Privileged modes. These subsystem processes provide
additional protection. Therefore, some work done by Windows NT on behalf of
your application may appear in other subsystem processes in addition to.the
Privileged Time in your process.

Index: 142 Default Scale: 1

Counter Type: PERF _100NSEC_TIMER Counter Size: 8 bytes

Elapsed Time Advanced
The total elapsed time (in seconds) this process has been running.

Index: 684 Default Scale: 0.0001

Counter Type: PERF _ELAPSED_TIME Counter Size: 8 bytes

ID Process Novice
ID Process is the unique identifier of this process. ill Process numbers are
reused, so they 'only iden~ify a process for the lifetime of that process.

Index: 784 Default Scale: 0.1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

474 Optimizing Windows NT

Page Faults/sec Novice
Page Faults/sec is the rate of Page Faults by the threads executing in this
process. A page fault occurs when a thread refers to a virtual memory page that
is not in its working set in main memory. This will not cause the page to be
fetched from disk if it is on the standby list and hence already in main memory,
or if it is in use by another process with whom the page is shared.

Index: 028 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Page File Bytes Advanced
Page File Bytes is the current number of bytes this process has used in the
paging file(s). Paging files are used to store pages of memory used by the
process that are not contained in other files. Paging files are shared by all
processes, and lack of space in paging files can prevent other processes from
allocating memory.

Index: 184 Default Scale: 0.000001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Page File Bytes Peak Advanced
Page File Bytes Peak is the maximum number of bytes this process has used in
the paging file(s). Paging files are used to store pages of memory used by the
process that are not contained in other files. Paging files are shared by all
processes, and lack of space in paging files can prevent other processes from
allocating memory.

Index: 182 Default Scale: 0.000001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Pool Nonpaged Bytes Advanced
Pool Nonpaged Bytes is the number of bytes in the Nonpaged Pool, a system
memory area where space is acquired by operating system components as they
accomplish their appointed tasks. Nonpaged Pool pages cannot be paged out to
the paging file, but instead remain in main memory as long as they are allocated.

Index: 058 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 475

Pool Paged Bytes Advanced
Pool Paged Bytes is the number of bytes in the Paged Pool, a system memory
area where space is acquired by operating system components as they
accomplish their appointed tasks. Paged Pool pages can be paged out to the
paging file when not accessed by the system for sustained periods of time.

Index: 056 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Priority Base Advanced
The current base priority of this process. Threads within a process can raise and
lower their own base priority relative to the process's base priority.

Index: 682 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Private Bytes Advanced
Private Bytes is the current number of bytes this process has allocated that
cannot be shared with other processes.

Index: 186 Default Scale: 0.00001

Counter Typ~: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Thread Count Advanced
The number of threads currently active in this process. An instruction is the
basic unit of execution in a processor, and a thread is the objeCt that executes
instructions. Every running process has at least one thread.

Index: 680 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Virtual Bytes Expert
Virtual Bytes is the current size in bytes of the virtual address space the process
is using. Use of virtual address space does not necessarily imply corresponding
use of either disk or main memory pages. Virtual space is however finite, and by
using too much, the process may limit its ability to load libraries.

Index: 174 Default Scale: 0.000001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

476 Optimizing Windows NT

Virtual Bytes Peak Expert
Virtual Bytes Peak is the maximum number of bytes of virtual address space the
process has used at anyone time. Use of virtual address space does not
necessarily imply corresponding use of either disk or main memory pages.
Virtual space is however finite, and by using too much, the process may limit its
ability to load libraries.

Index: 172 Default Scale: 0.000001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Working Set Novice
Working Set is the current number of bytes in the Working Set of this process.

J The Working Set is the set of memory pages touched recently by the threads in
the process. If free memory in the computer is above a threshold, pages are left
in the Working Set of a process even if they are not in use. When free memory
falls below a threshold, pages are trimmed from Working Sets. If they are
needed they will then be soft-faulted back into the Working Set before they
leave main memory.

Index: 180 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Working Set Peak Advanced
Working Set Peak is the maximum number of bytes in the Working Set of this
process at any point in time. The Working Set is the set of memory pages
touched recently by the threads in the process. If free memory in the computer is
above a threshold, pages are left in the Working Set of a process even if they are
not in use. When free memory falls below a threshold, pages are trimmed from
Working Sets. If they are needed they will then be soft-faulted back into the
Working Set before they leave main memory.

Index: 178 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 477

Process Address Space Object
Object: Process Address Space Ind!.~: 786 Wizard

Process Address Space object type di~plays details about the virtual memory
usage and allocation of the selected process.

Bytes Free Wizard
Bytes Free is the total unused virtual address space of this process.

Index: 782 Default Scale: 0.0001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Bytes Image Free Wizard
Bytes Image Free is the amount of virtual address space that is not in use or
reserved by images within this process.

Index: 778 Default Scale: 0.0001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Bytes Image Reserved Wizard
Bytes Image Reserved .is the sum of all virtual memory reserved by images run
within this process.

Index: 776 Default Scale: 0.0001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Bytes Reserved Wizard
Bytes Reserved is the total amount of virtual memory reserved for future use by
this process.

Index: 780 Default Scale: 0.0001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

ID Process Wizard
ID Process is the unique identifier of this process. ID Process numbers are
reused, so they only identify a process for the lifetime of that process.

Index: 784 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

478 Optimizing Windows NT

Image Space Exec Read Only Wizard
Image Space is the virtual address space in use by the images being executed by
the process. This is the sum of all the address space with this protection
allocated by images run by the selected process ExecutelRead Only memory is
memory that can be executed as well as read.

Index: 770 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Image Space Exec ReadlWrite Wizard
Image Space is the virtual address space in use by the images being executed by
the process. This is the sum of all the address space with this protection
allocated by images run by the selected process ExecutelReadlWrite memory is
memory that can be executed by programs as well as read and written and
modified.

Index: 772 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Image Space Exec Write Copy Wizard
Image Space is the virtual address space in use by the images being executed by
the process. This is the sum of all the address space with this protection
allocated by images run by the selected process Execute Write Copy is memory
that can be executed by programs as well as read and written. This type of
protection is used when memory needs to be shared between processes. If the
sharing processes only read the memory, then they will all use the same
memory. If a sharing process desires write access, then a copy of this memory
will be made for that process.

Index: 774 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Image Space Executable Wizard
Image Space is the virtual address space in use by the images being executed by
the process. This is the sum of all the address space with this protection
allocated by images run by the selected process Executable memory is memory
that can be executed by programs, but may not be read or written. This type of
protection is not supported by all processor types.

Index: 768 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 479

Image Space No Access Wizard
Image Space is the virtual address space in use by the images being executed by
the process. This is the sum of all the address space with this protection
allocated by images run by the selected process No Access protection prevents
a process from writing to or reading from these pages and will generate an
access violation if either is attempted.

Index: 760 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Image Space Read Only , Wizard
Image Space is the virtual address space in use by the images being executed by
the process. This is the sum of all the address space with this protection
allocated by images run by the selected process Read Only protection prevents
the contents of these pages from being modified. Any attempts to write or
modify these pages will generate an access violation.

Index: 762 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Image Space ReadlWrite Wizard
Image Space is the virtual address space in use by the images being executed by
the process. This is the sum of all the address space with this protection
allocated by images run by the selected process ReadlWrite protection allows a
process to read, modify and write to these pages.

Index: 764 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Image Space Write Copy Wizard
Image Sp~ce is the virtual address space in use by the images being executed by
the process. This is the sum of all the address space with this protection
allocated by images run by the selected process Write Copy protection is used
when memory is shared for reading but not for writing. When processes are
reading this memory, they can share the same memory, however, when a sharing
process wants to have read/write access to this shared memory, a copy of that
memory is made for writing to.

Index: 766 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

480 Optimizing Windows NT

Mapped Space Exec Read Only Wizard
Mapped Space is virtual memory that has been mapped to a specific virtual
address (or range of virtual addresses) in the process's virtual address space.
ExecutelRead Only memory is memory that can be executed as well as read.

Index: 720 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Mapped Space Exec Read./Write Wizard
Mapped Space is virtual memory that has been mapped to a specific virtual
address (or range of virtual addresses) in the process's virtual address space.
ExecutelReadlWrite memory is memory that can be executed by programs as
well as read and modified.

Index: 722 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Mapped Space Exec Write Copy Wizard
Mapped Space is virtual memory that has been mapped to a specific virtual
address (or range of virtual addresses) in the process's virtual address space.
Execute Write Copy is memory that can be executed by programs as well as
read and written. This type of protection is used when memory needs to be
shared between processes. If the sharing processes only read the memory, then
they will all use the same memory. If a sharing process desires write access,
then a copy of this memory will be made for that process.

Index: 724 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Mapped Space Executable Wizard
Mapped Space is virtual memory that has been mapped to a specific virtual
address (or range of virtual addresses) in the process's virtual address space.
Executable memory is memory that can be executed by programs, but may not
be read or written. This type of protection is not supported by all processor
types.

Index: 718 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 481

Mapped Space No Access Wizard
Mapped Space is virtual memory that has been mapped to a specific virtual
address (or range of virtual addresses) in the process's virtual address space. No
Access protection prevents a process from writing to or reading from these
pages and will generate an access violation if either is attempted.

Index: 710 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Mapped Space Read Only Wizard
Mapped Space is virtual memory that has been mapped to a specific virtual
address (or range of virtual addresses) in the process's virtual address space.
Read Only protection prevents the contents of these pages from being modified.
Any attempts to write or modify these pages will generate an access violation.·

Index: 712 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Mapped Space ReadIWrite Wizard
Mapped Space is virtual memory that has been mapped to a specific virtual
address (or range of virtual addresses) in the process's virtual address space.
ReadlWrite protection allows a process to read, modify and write to these pages.

Index: 714 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Mapped Space Write Copy Wizard
Mapped Space is virtual memory that has been mapped to a specific virtual
address (or range of virtual addresses) in the process's virtual address space.
Write Copy protection is used when memory is shared for reading but not for
writing. When processes are reading this memory, they can share the same
memory, however, when a sharing process wants to have write access to this
shared memory, a copy of that memory is made.

Index: 716 . Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

482 Optimizing Windows NT

Reserved Space Exec Read Only Wizard
Reserved Space is virtual memory that has been reserved for future use by a
process, but has not been mapped or committed. ExecutelRead Only memory is
memory that can be executed as well as read.

Index: 736 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Reserved Space Exec ReadlWrite Wizard
Reserved Space is virtual memory that has been reserved for future use by a
process, but has not been mapped or committed. ExecutelReadlWrite memory is
memory that can be executed by programs as well as read and modified.

Index: 738 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Reserved Space Exec Write Copy Wizard
Reserved Space is virtual memory that has been reserved for future use by a
process, but has not been mapped or committed. Execute Write Copy is memory
that can be executed by programs as well as read and written. This type of
protection is used when memory needs to be shared between processes. If the
sharing processes only read the memory, then they will all use the same
memory. If a sharing process desires write access, then a copy of this memory
will be made for that process.

Index: 742 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Reserved Space Executable Wizard
Reserved Space is virtual memory that has been reserved for future use by a
process, but has not been mapped or committed. Executable memory is memory
that can be executed by programs, but may not be read or written. This type of
protection is not supported by all processor types.

Index: 734 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 483

Reserved Space No Access Wizard
Reserved Space is virtual memory that has been reserved for future use by a
process, but has not been mapped or committed. No Access protection prevents
a process from writing to or reading from these pages and will generate an
access violation if either is attempted.

Index: 726 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Reserved Space Read Only Wizard
Reserved Space is virtual memory that has been reserved for future use by a
process, but has not been mapped or committed. Read Only protection prevents
the contents of these pages from being modified. Any attempts to write or
modify these pages will generate an access violation.

Index: 728 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Reserved Space ReadlWrite Wizard
Reserved Space is virtual memory that has been reserved for future use by a
process, but has not been mapped or committed. Read/Write protection allows a
process to read, modify and write to these pages.

Index: 730 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Reserved Space Write Copy Wizard
Reserved Space is virtual memory that has been reserved for future use by a
process, but has not been mapped or committed. Write Copy protection is used
when memory is shared for reading but not for writing. When processes are
reading this memory, they can share the same memory, however, when a sharing
process wants to have read/write access to this shared memory, a copy of that
memory is made.

Index: 732 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

484 Optimizing Windows NT

Unassigned Space Exec Read Only Wizard
Unassigned Space is mapped and committed virtual memory in use by the
process that is not attributable to any particular image being executed by that
process. ExecutelRead Only memory is memory that can be executed as well as
read.

Index: 754 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Unassigned Space Exec ReadlWrite Wizard
Unassigned Space is mapped and committed virtual memory in use by the
process that is not attributable to any particular image being executed by that
process. ExecutelReadlWrite memory is memory that can be executed by .
programs as well as read and written.

Index: 756 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Unassigned Space Exec Write Copy Wizard
Unassigned Space is mapped and committed virtual memory in use by the
process that is not attributable to any particular image being executed by that
process. Execute Write Copy is memory that can be executed by programs as
well as read and written. This type of protection is used when memory needs to
be shared between processes. If the sharing processes only read the memory,
then they will all use the same memory. If a sharing process desires write
access, then a copy of this memory will be made for that process.

Index: 758 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Unassigned Space Executable Wizard
Unassigned Space is mapped and committed virtual memory in use by the
process that is not attributable to any particular image being executed by that
process. Executable memory is memory that can be executed by programs, but
may not be read or written. This type of protection is not supported by all
processor types.

Index: 752 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 485

Unassigned Space No Access Wizard
Unassigned Space is mapped and committed virtual memory in use by the
process that is not attributable to any particular image being executed by that
process. No Access protection prevents a process from writing to or reading
from these pages and will generate an access violation if either is attempted.

Index: 744 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Unassigned Space Read Only Wizard
Unassigned Space is mapped and committed virtual memory in use by the
process that is not attributable to any particular image being executed by that
process. Read Only protection prevents the contents of these pages from being
modified. Any attempts to write or modify these pages will generate an access
violation.

Index: 746 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Unassigned Space Read/Write Wizard
Unassigned Space is mapped and committed virtual memory in use by the
process that is not attributable to any particular image being executed by that
process. Read/Write protection allows a process to read, modify and write to
these pages.

Index: 748 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Unassigned Space Write Copy Wizard
Unassigned Space is mapped and committed virtual memory in use by the
process that is not attributable to any particular image being executed by that
process. Write Copy protection is used when memory is shared for reading but
not for writing. When processes are reading this memory, they can share the
same memory, however, when a sharing process wants to have read/write access
to this shared memory, a copy of that memory is made for writing to.

Index: 750 Default Scale: 0.00001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

486 Optimizing Windows NT

Processor Object
Object: "Processor" Index: 238 Novice

The Processor object type includes as instances all processors on the computer.
A processor is the part in the computer that performs arithmetic and logical
computations, and initiates operations on peripherals. It executes (runs)
programs on the computer.

% Privileged Time Advanced
Privileged Time is the percentage of processor time spent in Privileged Mode in
non-Idle threads. The Windows NT service layer, the Executive routines, and
the Windows NT Kernel execute in Privileged Mode. Device drivers for most
devices other than graphics adapters and printers also execute in Privileged
Mode. Unlike some early operating systems, Windows NT uses process
boundaries for subsystem protection in addition to the traditional protection of
User and Privileged modes. These subsystem processes provide additional
protection. Therefore, some work done by Windows NT on behalf of your
application may appear in other subsystem processes in addition to the
Privileged Time in your process.

Index: 144 Default Scale: 1

Counter Type: PERF _100NSEC_TIMER Counter Size: 8 bytes

% Processor Time Novice
Processor Time is expressed as a percentage of the elapsed time that a processor
is busy executing a non-Idle thread. It can be viewed as the fraction of the time
spent doing useful work. Each processor is assigned an Idle thread in the Idle
process which consumes those unproductive processor cycles not used by any
other threads.

Index: 006 Default Scale: 1

Counter Type: PERF _100NSEC_TIMER_INV Counter Size: 8 bytes

Appendix A Windows NT Performance Counters 487

% User Time Adva1lced
User Time is the percentage of processor time spent in User Mode in non-Idle
threads. All application code and subsystem code execute in User Mode. The
graphics engine, graphics device drivers, printer device drivers, and the window
manager also execute in User Mode. Code executing in User Mode cannot
damage the integrity of the Windows NT Executive, Kernel, and device drivers.
Unlike some early operating systems, Windows NT uses process boundaries for
subsystem protection in addition to the traditional protection of User and
Privileged modes. These subsystem processes provide additional protection.
Therefore, some work done by Windows NT on behalf of your application may
appear in other subsystem processes in addition to the Privileged Time in your
process.

Index: 142 Default Scale: 1

Counter Type: PERF _100NSEC_TIMER Counter Size: 8 bytes

Interrupts/sec Novice
Interrupts/sec is the number of device interrupts the processor is experiencing. A
device interrupts the processor when it has completed a task or when it
otherwise requires attention. Normal thread execution is suspended during
interrupts. An interrupt may cause the processor to switch to another, higher
priority thread. Clock interrupts are frequent and periodic and create a
background of interrupt activity.

Index: 148 Default Scale: 0.01

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

RAS Port Object
Object: RAS Port Index: 870 Novice

The RAS Object Type handles individual ports of the RAS device on your
system.

Alignment Errors Novice
The total number of Alignment Errors for this connection. Alignment Errors
occur when a byte received is different from the byte expected ..

Index: 890 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size:4 bytes

4BB Optimizing Windows NT

Buffer Overrun Errors Novice
The total number of Buffer Overrun Errors for this connection. Buffer Overrun
Errors when the software cannot handle the rate at which data is received.

Index: 892 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Bytes Received Novice
The number of bytes received total for this connection.

Index: 874 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Bytes Received/Sec Novice
The number of bytes received per second.

Index: 898 Default Scale: 1

Counter Type: PERF _COUNTER.:....COUNTER Counter Size: 4 bytes

Bytes Transmitted Novice
The number of bytes transmitted total for this connection.

Index: 872 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Bytes Transmitted/Sec Novice
The number of bytes transmitted per second.

Index: 896 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

CRC Errors Novice
The total number of CRC Errors for this connection. CRC Errors occur when
the frame received contains erroneous data.

Index: 884 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Frames Received Novice
The number of data frames received total for this connection.

Index: 878 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 489

Frames Received/Sec Novice
The number of frames received per second.

Index: 902 Default Scale: I

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Frames Transmitted Novice
The number of data frames transmitted total for this connection.

Index: 876 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Frames Transmitted/Sec Novice
The number of frames transmitted per second.

Index: 900 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Percent Compression In Novice
The compression ratio for bytes being received.

Index: 882 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Percent Compression Out Novice
The compression ratio for bytes being transmitted.

Index: 880 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Serial Overrun Errors Novice
The total number of Serial Overrun Errors for this connection. Serial Overrun
Errors occur when the hardware cannot handle the rate at which data is
received.

Index: 888 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Timeout Errors Novice
The total number of Timeout Errors for this connection. Timeout Errors occur
when an expected is not received in time.

Index: 886 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

490 Optimizing Windows NT

Total Errors Novice
The total number of CRC, Timeout, Serial Overrun, Alignment, and Buffer
Overrun Errors for this connection.

Index: 894 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Total Errors/Sec Novice
The total number of CRC, Timeout, Serial Overrun, Alignment, and Buffer
Overrun Errors per second.

Index: 904 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

RAS Total Object
Object: RAS Total Index: 906 Novice

The RAS Object Type handles all combined ports of the RAS device on your
system.

Alignment Errors Novice
The total number of Alignment Errors for this connection. Alignment Errors
occur when a byte received is different from the byte expected.

Index: 890 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Buffer Overrun Errors Novice
The total number of Buffer Overrun Errors for this connection. Buffer Overrun
Errors when the software cannot handle the rate at which data is received.

Index: 892 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Bytes Received Novice
The number of bytes received total for this connection.

Index: 874 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 491

Bytes Received/Sec Novice
The number of bytes received per second.

Index: 898 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Bytes Transmitted Novice
The number of bytes transmitted total for this connection.

Index: 872 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Bytes Transmitted/Sec Novice
The number of bytes transmitted per second.

Index: 896 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTE~ Counter Size: 4 bytes

CRC Errors Novice
The total number of CRC Errors for this connection. CRC Errors occur when
the frame received contains erroneous data.

Index: 884 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Frames Received Novice
The number of data frames received total for this connection.

Index: 878 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Frames Received/Sec Novice
The number of frames received per second.

Index: 902 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Frames Transmitted Novice
The number of data frames transmitted total for this connection.

Index: 876 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

492 Optimizing Windows NT

Frames Transmitted/Sec Novice
The number of frames transmitted per second.

Index: 900 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Percent Compression In Novice
The compression ratio for bytes being received.

f

Index: 882 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Percent Compression Out Novice
The compression ratio for bytes being transmitted.

Index: 880 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Serial Overrun Errors Novice
The total number of Serial Overrun Errors for this connection. Serial Overrun
Errors occur when the hardware cannot handle the rate at which data is
received.

Index: 888 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Timeout Errors Novice
The total number of Timeout Errors for this connection. Timeout Errors occur
when an expected is not received in time.

Index: 886 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT. Counter Size: 4 bytes

Total Connections Novice
The total number of Remote Access connections.

Index: 908 Default Scale: 1

Counter Type: PERF _COVNTER_RA WCOUNT Counter Size: 4 bytes

Total Errors Novice
The total number of CRC, Timeout, Serial Overrun, Alignment, and Buffer
Overrun Errors for this connection.

Index: 894 Default Scale: 1

CounterType: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 493

Total Errors/Sec Novice
The total number of CRC, Timeout, Serial Overrun, Alignment, and Buffer
Overrun Errors per second.

Index: 904 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Redirector Object
Object: Redirector Index: 262 Novice

The Redirector is the object that manages network connections to other
.computers that originate from your own computer.

Bytes Received/sec Advanced
Bytes Received/sec is the rate of bytes coming in to the Redirector from the
network. It includes all application data as well as network protocol infonnation
(such as packet headers).

Index: 264 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Bytes Total/sec Novice
Bytes Total/sec is the rate the Redirector is processing data bytes. This includes
all application and file data in addition to protocol infonnation such as packet
headers.

Index: 388 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Bytes Transmitted/sec Advanced
Bytes Transmitted/sec is the rate that bytes are leaving the Redirector to the
network. It includes all application data as well as network protocol infonnation
(such as packet headers and the like).

Index: 276 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Connects Core Advanced
Connects Core counts the number of connections you have to servers running the
original MS-Net 5MB protocol, including MS-Net itself and XENIX® and
Vax's.

Index: 318 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

494 Optimizing Windows NT

Connects Lan Manager 2.0 Advanced
Connects LAN Manager 2.0 counts connections to LAN Manager 2.0 servers,
including LMX servers.

Index: 320 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Connects Lan Manager 2.1 Advanced
Connects LAN Manager 2.1 counts connections to LAN Manager 2.1 servers,
including LMX servers.

Index: 322 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Connects Windows NT Advanced
Connects Windows NT counts the connections to Windows NT computers.
Good choice!

Index: 324 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Current Commands Advanced
Current Commands counts the number of requests -to the Redirector that are
currently queued for service. If this number is much larger than the number of
network adapter cards installed in the computer, then the network(s) and/or the
server(s) being accessed are seriously bottlenecked.

Index: 392 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

File Data Operations/sec Novice
File Data Operations/sec is the rate the Redirector is processing data operations.
One operation includes (hopefully) many bytes. We say hopefully here because
each operation has overhead. You can detennine the efficiency of this path by
dividing the Bytes/sec by this counter to detennine the average number of bytes
transferred/operation.

Index: 406 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 495

File Read Operations/sec Novice
File Read Operations/sec is the rate that applications are asking the Redirector
for data. Each call to a file system or similar application program interface
(API) call counts as one operation.

Index: 010 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

File Write Operations/sec Novice
File Write Operations/sec is the rate that applications are sending data to the
Redirector. Each call to a file system or similar Application Program Interface
(API) call counts as one operation.

Index: 012 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Network Errors/sec Novice
Network Errors/sec counts serious unexpected errors that generally indicate the
Redirector and one or more Servers are having serious communication
difficulties. -For example an 5MB (Server Message Block) protocol error will
generate a Network Error. These result in an entry in the system Event Log, so
look there for details.

Index: 312 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Packets/sec Novice
Packets/sec is the rate the Redirector is processing data packets. One packet
includes (hopefully) many bytes. We say hopefully here because each packet has
protocol overhead. You can determine the efficiency of this path by dividing the
Bytes/sec by this counter to determine the average number of bytes
transferred/packet. You can also divide this counter by Operations/sec to
determine the average number of packets per operation, another measure of
efficiency.

Index: 400 Default Scale: 0.1

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

496 Optimizing Windows NT

Packets Received/sec Advanced
Packets Received/sec is the rate that the Redirector is receiving packets (also
called 5MBs or Server Message Blocks). Network transmissions are divided
into packets. The average number of bytes received in a packet can be obtained
by dividing Bytes Received/sec by this counter. Some packets received may not
contain incoming data, for example an acknowledgment to a write made by the
Redirector would count as an incoming packet.

Index: 266 Default Scale: 0.1

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Packets Transmitted/sec Advanced
Packets Transmitted/sec is the rate that the Redirector is sending packets (also
called 5MBs or Server Message Blocks). Network transmissions are divided
into packets. The average number of bytes transmitted in a pack'et can be
obtained by dividing Bytes Transmitted/sec by this counter.

Index: 278 Default Scale: 0.1

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Read Bytes Cache/sec Expert
Read Bytes Cache/sec is the rate that applications on your computer are
accessing the Cache using the Redirector. Some of these data requests may be
satisfied by merely retrieving the data from the system Cache on your own
computer if it happened to be used recently and there was room to keep it in the
Cache. Requests that miss the Cache will cause a page fault (see Read Bytes
Paging/sec).

Index: 272 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Read Bytes Network/sec Novice
Read Bytes Network/sec is the rate that applications are reading data across the
network. For one reason or another the data was not in the system Cache, and
these bytes actually came across the network. Dividing this number by Bytes
Received/sec will indicate the 'efficiency' of data coming in from the network,
since all of these bytes are real application data (see Bytes Received/sec).

Index: 274 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Appendix A Windows NT Performance Counters 497

Read Bytes Non-Paging/sec Expert
Read Bytes Non-Paging/sec are those bytes read by the Redirector in response
to normal file requests by an application when they are redirected to come from
another computer. In addition to file requests, this counter includes other
methods of reading across the network such as Named Pipes and Transactions.
This counter does not count network protocol information, just application data.

Index: 270 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Read Bytes Paging/sec Expert
Read Bytes Paging/sec is the rate that the Redirector is attempting to read bytes
in response to page faults. Page faults are caused by loading of modules (such as
programs and libraries), by a miss in the Cache (see Read Bytes Cache/sec), or
by files directly mapped into the address space of applications (a high
performance feature of Windows NT).

Index: 268 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Read Operations Random/sec Advanced
Read Operations Random/sec counts the rate that, on a file-by-file basis, reads
are made that are not sequential. If a read is made using a particular file handle,
and then is followed by another read that is not immediately the contiguous next
byte, this counter is incremented by one.

Index: 290 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Read Packets/sec Advanced
Read Packets/sec is the rate that read packets are being placed on the network.
Each time a single packet is sent with a request to read data remotely, this
counter is incremented by one.

Index: 292 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Read Packets Small/sec Expert
Read Packets Small/sec is the rate that reads less than one-fourth of the server's
negotiated buffer size are made by applications. Too many of these could
indicate a waste of buffers on the server. This counter is incremented once for
each read. It does not count packets.

Index: 296 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

498 Optimizing Windows NT

Reads Denied/sec Advanced

Reads Denied/sec is the rate that the serv~r is unable to accommodate requests
for Raw Reads. When a read is much larger than the server's negotiated buffer
size, the Redirector requests a Raw Read which, if granted, would permit the
transfer of the data without lots of protocol overhead on each packet. To
accomplish this the server must lock out other requests, so the request is denied
if the server is really busy.

Index: 308 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Reads Large/sec Expert

Reads Large/sec is the rate that reads over 2 times the server's negotiated buffer
size are made by applications. Too many of these could place a strain on server
resources. This counter is incremented once for each read. It does not count
packets.

Index: 294 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Server Disconnects Advanced

Server Disconnects counts the number of times a Server has disconnected your
Redirector. See also Server Reconnects.

Index: 326 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Server Reconnects Advanced

Server Reconnects counts the number of times your Redirector has had to
reconnect to a server in order to complete a new active request. You can be
disconnected by the Server if you remain inactive for too long. Locally even if
all your remote files are closed, the Redirector will keep your connections intact
for (nominally) ten minutes. Such inactive connections are called Dormant
Connections. Reconnecting is expensive in time.

Index: 316 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Server Sessions Novice

Server Sessions counts the number of active security objects the Redirector is
managing. For example, a Logon to a server followed by a network access to the
same server will establish one connection, but two sessions.

Index: 314 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 499

Server Sessions Hung Advanced
Server Sessions Hung counts the number of active sessions that are timed out
and unable to proceed due to a lack of response from the remote server.

Index: 328 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Write Bytes Cache/sec Expert
Write Bytes Cache/sec is the rate that applications on your computer are writing
to the Cache using the Redirector. The data may not leave your computer
immediately, but may be retained in the Cache for further modification before
being written to the network. This saves network traffic. Each write of a byte
into the Cache is counted here. \

Index: 284 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Write Bytes Network/sec Novice
Write Bytes Network/sec is the rate that your applications are writing data
across the network. Either the system Cache was bypassed, as for Named Pipes
or Transactions, or else the Cache wrote the bytes to make room for other data.
Dividing this counter by Bytes Transmitted/sec will indicate the 'efficiency' of
data written to the network, since all of these bytes are real application data (see
Transmitted Bytes/sec).

Index: 286 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Write Bytes Non-Paging/sec Expert
Write Bytes Non-Paging/sec is the rate of the bytes that are written by the
Redirector in response to normal file outputs by an application when they are
redirected to go to another computer. In addition to file requests this counter
includes other methods of writing across the network such as Named Pipes and
Transactions. This counter does not count network protocol information, just
application data.

Index: 282 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

500 Optimizing Windows NT

Write Bytes Paging/sec Expert
Write Bytes Paging/sec is the rate that the Redirector is attempting to write
bytes changed in the pages being used by applications. The program data
changed by modules (such as programs and libraries) that were loaded over the
network are 'paged out' when no longer needed. Other output pages come from
the Cache (see Write Bytes Cache/sec).

Index: 280 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Write Operations Random/sec Advanced'
Write Operations Random/sec is the rate that, on a file-by-file basis, writes are
made that are not sequential. If a write is made using a particular file handle,
and then is followed by another write that is not immediately the next contiguous
byte, this counter is incremented by one.

Index: 300 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Write Packets Small/sec Expert
Write Packets Small/sec is the rate that writes are made by applications that are
less than one-fourth of the server's negotiated buffer size. Too many of these
could indicate a waste of buffers on the server. This counter is incremented once
for each write: it counts writes, not packets!

Index: 306 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Write Packets/sec Advanced·
Write Packets/sec is the rate that writes are being sent to the network. Each time
a single packet is sent with a request to write remote data, this counter is
incremented by one.

Index: 302 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 501

Writes Denied/sec Advanced
Writes Denied/sec is the rate that the server is unable to accommodate requests
for Raw Writes. When a write is much larger than the server's negotiated buffer
size, the Redirector requests a Raw Write which, if granted, would permit the
transfer of the data without lots of protocol overhead on each packet. To
accomplish this the server must lock out other requests, so the request is denied
if the server is really busy.

Index: 310 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Writes Large/sec Expert
Writes Large/sec is the rate that writes are made by applications that are over 2
times the server's negotiated buffer size. Too many of these could place a strain
on server resources. This counter is incremented once for each write: it counts
writes, not packets.

Index: 304 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Server Object
Object: Server Index: 330 Novice

Server is the process that interfaces the services from the local computer to the
network services.

Blocking Requests Rejected Advanced
The number of times the server has rejected blocking 5MBs due to insufficient
count of free work items. Indicates whether the maxworkitem or
minfreeworkitems server parameters may need tuning.

Index: 356 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Bytes Received/sec Advanced
The number of bytes the server has received from the network. Indicates how
busy the server is.

Index: 264 Default Scale: 0.0001

Counter Type: ~ERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

502 Optimizing Windows NT

Bytes TotaVsec Novice
The number of bytes the server has sent to and received from the network. This
value provides ~ overall indication of how busy the server is.

Index: 388 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size:. 8 bytes

Bytes Transmitted/sec Advanced
The number of bytes the server has sent on the network. Indicates how busy the
server is.

Index: 276 Default Scale: 0.0001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

Context Biock Queue Time Novice
Context Block Queue Time is the average time, in milliseconds, a work context
block sat on the server's FSP queue waiting for the server to act on the request.

Index: 402 Default Scale: 1

Counter Type: PERF _A VERAGE_BULK Counter Size: 8 bytes

Context Blocks Queued/sec Novice
Context Blocks Queued per second is the rate that work context blocks had to be
placed on the server's FSP queue to await server action.

Index: 404 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Errors Access Permissions Novice
The number of times opens on behalf of clients have failed with
STATUS_ACCESS_DENIED. Can indicate whether somebody is randomly
attempting to access files in hopes of getting at something that was not properly
protected.

Index: 350 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Errors Granted Access Advanced
The number of times accesses to files opened successfully were denied. Can
indicate attempts to access files without proper access authorization.

Index: 352 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 503

Errors Logon Advanced

The number of failed logon attempts to the server. Can indicate whether
password guessing programs are being used to crack the security on the server.

Index: 348 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Errors System Expert
The number of times an internal Server Error was detected. Unexpected errors
usually indicate a problem with the Server.

Index: 354 Default Scale: 1

Counter Type: PERJ:4 _COUNTER_RA WCOUNT Counter Size: 4 bytes

File Directory Searches Advanced

The number· of searches for files currently active in the server. Indicates current
server activity.

Index: 366 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Files Open Novice
The number of files currently opened in the server. Indicates current server
activity.

Index: 362 Default Scale: 1

Counter Type: PERF _ COUNTER_RA WCOUNT Counter Size: 4 bytes

Files Opened Total Novice

The number of successful open attempts performed by the server of behalf of
clients. Useful in determining the amount of file 110, determining overhead for
path-based operations, determining the effectiveness of oplocks.

Index: 360 Default Scale: 0.001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Pool Nonpaged Bytes Expert

The number of bytes of non-pageable computer memory the server is currently
using. Can help in determining good values for the MaxNonpagedMemoryUsage
parameter.

Index: 058 Default Scale: 0.0001

Counter Type: PERF _ COUNTER_RA WCOUNT Counter Size: 4 bytes

504 Optim}zing Windows NT

Pool Nonpaged Failures Wizard
The number of times allocations from nonpaged pool have failed. Indicates that
the computer's physical memory is too small.

Index: 370 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Pool Nonpaged Peak Expert
The maximum number of bytes of nonpaged pool the server has had in use at
anyone point. Indicates how much physical memory the computer should have.

Index: 372 Default Scale: 0.0001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Pool Paged Bytes Expert
The number of bytes of pageable computer"memory the server is currently using.
Can help in determining good values for the MaxPagedMemoryUsage
parameter.

Index: 056 Default Scale: 0.0001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Pool Paged Failures Wizard
The number of times allocations from paged pool have failed. Indicates that the
computer's physical memory of pagefile are too small.

Index: 376 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Pool Paged Peak Advanced
The maximum number of bytes of paged pool the server has had allocated.
Indicates the proper sizes of the Page File(s) and physical memory.

Index: 378 Default Scale: 0.0001

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Server Sessions Novice
The number of sessions currently active in the server. Indicates current server
activity.

Index: 314 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 505

Sessions Errored Out Advanced
The number of sessions that have been closed due to unexpected error
conditions. Indicates how frequently network problems are causing dropped
sessions on the server.

Index: 342 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Sessions Forced Off Advanced
The number of sessions that have been forced to log off. Can indicate how many
sessions were forced to log off due to logon time constraints.

Index: 346 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Sessions Logged orr Advanced
The number of sessions that have terminated nonnally. Useful in interpreting the
Sessions Times Out and Sessions Errored Out statistics-allows percentage
calculations.

Index: 344 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Sessions Timed Out Advanced
The number of sessions that have been closed due to ,their idle time exceeding
the autodisconnect parameter for the server. Shows whether the autodisconnect
setting is helping to conserve resources.

Index: 340 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Work Item Shortages Advanced
The number of times STATUS_DATA_NOT_ACCEPTED was returned at
receive indication time. This occurs when no work item is available or can be
allocated to service the incoming request. Indicates whether the InitWorkItems
or Max WorkItems parameters may need tuning.

Index: 358 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

506 Optimizing Windows NT

System Object
Object: System Index: 002 Novice

The System object type includes those counters that apply to all processors on
the computer collectively. These counters represent the activity of all processors
on the computer.

% Total Privileged Time Advanced
The % Total Privileged Time is the average percentage of time spent in
Privileged mode by all processors. On a multiprocessor system, if all processors
are always in Privileged mode this is 100%, if all processors are 50% in
Privileged mode this is 50% and if one-fourth of the processors are in Privileged
mode this is 25%. When a Windows NT system service is called, the service
will often run in Privileged Mode in order to gain access to system-private data.
Such data is protected from access by threads executing in User Mode. Calls to
the system may be explicit, or they may be implicit such as when a page fault or
an interrupt occurs. Unlike some early operating systems, Windows NT uses
process boundaries for subsystem protection in addition to the traditional
protection of User and Privileged modes. These subsystem processes provide
additional protection. Therefore, some work done by Windows NT on behalf of
an application may appear in other subsystem processes in addition to the
Privileged Time in the application process.

Index: 244 Default Scale: 1

Counter Type: PERF _100NSEC_TIMER Counter Size: 8 bytes

% Total Processor Time Novice
The % Total Processor Time is the average percentage of time that all the
processors on the system are busy executing non-idle threads. On a
multiprocessor system, if all processors are always busy this is 100%, if all
processors are 50% busy this is 50% and if one-fourth of the processors are
busy this is 25%. It can be viewed as the fraction of the time spent doing useful
work. Each processor is assigned an Idle thread in the Idle process which
consumes those unproductive processor cycles not used by any other threads.

Index: 240 Default Scale: 1

Counter Type: PERF _100NSEC_TIMER_INV Counter Size: 8 bytes

Appendix A Windows NT Performance Counters 507

% Total User Time Advanced
The % Total User Time is the average percentage of time spent in User mode by
all processors. On a multiprocessor system, if all processors are always in User
mode this is 100%, if all processors are 50% in User mode this is 50% and if
one-fourth of the processors are in User mode this is 25%. Applications execute
in User Mode, as do subsystems like the window manager and the graphics
engine~ Code executing in User Mode cannot damage the integrity of the
Windows NT Executive, Kernel, and device drivers. Unlike some early
operating systems, Windows NT uses process boundaries for subsystem
protection in addition to the traditional protection of User and Privileged modes.
These subsystem processes provide additional protection. Therefore, some work
done by Windows NT on behalf of an application may appear in other
subsystem processes in addition to the Privileged Time in the application
process.

Index: 242 Default Scale: 1

Counter Type: PERF _100NSEC_TIMER Counter Size: 8 bytes

Alignment Fixups/sec Wizard
Alignment Fixups/sec is the rate of alignment faults fixed by the system.

Index: 686 Default Scale: 1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Context Switches/sec Advanced
Context Switches/sec is the rate of switches from one thread to another. Thread
switches can occur either i~side of a single process or across processes. A thread
switch may be caused either by one thread asking another for information, or by
a thread being preempted by another, higher priority thread becoming ready to
run. Unlike some early operating systems, Windows NT uses process
boundaries for subsystem protection in addition to the traditional protection of
User and Privileged modes. These subsystem processes provide additional
protection. Therefore, some work done by Windows NT on behalf of an
application may appear in other subsystem processes in addition to the
Privileged Time in the application. Switching to the subsystem process causes
one Context Switch in the application thread. Switching back causes another
Context Switch in the subsystem thread.

Index: 146 Default Scale: 0.01

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

508 Optimizing Windows NT

Exception Dispatches/sec Index: Wizard
Exception Dispatches/sec is the rate of exceptions dispatched by the system.

Index: 688 Default Scale: 0

Counter Type: Ox10410400, PERF _COUNTER_COUNTER Counter Size: 4
bytes

File Control Bytes/sec Wizard
File Control Bytes/sec is an aggregate of bytes transferred for all file system
operations that are neither reads nor writes. These operations usually include file
system control requests or requests for information about device characteristics
or status.

Index: 020 Default Scale: 0.001

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 8 bytes

File Control Operations/sec Advanced
File Control Operations/sec is an aggregate of all file system operations that are
neither reads nor writes. These operations usually include file system control
requests or requests for information about device characteristics or status.

Index: 014 Default Scale: 1

Type: PERF _COUNTER_COUNTER Size: 4 bytes

File Data Operations/sec Novice
File Data Operations per second is the rate that the computer is issuing Read
and Write operations to file system devices. It does not include File Control
Operations.

Index: 406 Default Scale: 1

Counter Type: PERF _ COUNTER_COUNTER Counter Size: 4 bytes

File Read Bytes/sec Expert
File Read Bytes/sec is an aggregate of the bytes transferred for all the file
system read operations on the computer.

Index: 016 Default Scale: 0.0001

Type: PERF _COUNTER_BULK_COUNT Size: 8 bytes

File Read Operations/sec Novice
File Read Operations/sec is an aggregate of all the file system read operations
on the computer.

Index: 010 Default Scale: 1

Type: PERF _COUNTER_COUNTER Size: 4 bytes

Appendix A Windows NT Performance Counters 509

File Write Bytes/sec Expert
File Write Bytes/sec is an aggregate of the bytes transferred for all the file
system write operations on the computer.

Index: 018 Default Scale: 0.0001

Type: PERF _COUNTER_BULK_COUNT Size: 8 bytes

File Write Operations/sec Novice
File Write Operations/sec is an aggregate of all the file system write operations
on the computer.

Index: 012 Default Scale: 1

Type: PERF _COUNTER_COUNTER Size: 4 bytes

Floating Emulations/sec Wizard
Floating Emulations/sec is the rate of floating emulations performed by the
system.

Index: 690 Default Scale: 1

Counter Type: Ox10410400, PERF _COUNTER_COUNTER Counter Size: 4
bytes

Processor Queue Length Wizard
Processor Queue Length is the instantaneous length of the processor queue in
units of threads. This counter is always 0 unless you are also monitoring a
thread counter. All processors use a single queue in which threads wait for
processor cycles. This length does not include the threads that are currently
executing. A sustained processor queue length greater than two generally
indicates processor congestion. This is an instantaneous count, not an average
over the time interval.

Index: 044 Default Scale: 10

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

System Calls/sec Advanced
Systems Calls/sec is the frequency of calls to Windows NT system service
routines. Thes'e routines perform all of the basic scheduling and synchronization
of activities on the computer, and provide access to non-graphical devices,
memory management, and name space management.

Index: 150 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

510 Optimizing Windows NT

Tep Object

System Up Time Novice
Total Time (in seconds) that the computer has been operational since it was last
started.

Index: 674 Default Scale: 0.00001

Counter Type: PERF _ELAPSED_TIME Counter Size: 8 bytes

Total Interrupts/sec Advanced
Total Interrupts/sec is the rate the computer is receiving and servicing hardware
interrupts. Some devices that may generate interrupts are the system timer, the
mouse, data communication lines, network interface cards and other peripheral
devices. This counter provides an indication of how busy these devices are on a
computer-wide basis. See also Processor:Interrupts/sec.

Index: 246 Default Scale: 0.01

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Object: TCP Index: 638 Advanced
The TCP Object Type includes those counters that describe the rates that TCP
Segments are received and sent by a certain entity using the TCP protocol. In
addition, it describes the number of TCP connections that are in each of the
possible TCP connection states.

Connection Failures Advanced
Connection Failures is the number of times TCP connections have made a direct
transition to the CLOSED state from the SYN-SENT state or the SYN-RCVD
state, plus the number of times TCP connections have made a direct transition to
the LISTEN state from the SYN-RCVD state.

Index: 648 Default Scale: 1

Counter Type: PERF _ COUNTER_RA WCOUNT Counter Size: 4 bytes

Connections Active Advanced
Connections Active is the number of times TCP connections have made a direct
transition to the SYN-SENT state from the CLOSED state.

Index: 644 Default Scale: 1 _

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes .

Appendix A Windows NT Performance Counters 511

Connections Established Advanced
Connections Established is the number of TCP connections for which the current
state is either ESTABLISHED or CLOSE-WAIT.

Index: 642 Default Scale: I

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Connections Passive Advanced
Connections Passive is the number of times TCP connections have made a direct
transition to the SYN-RCVD state from the LISTEN state.

Index: 646 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Connections Reset Advanced
Connections Reset is the number of times TCP connections have made a direct
transition to the CLOSED state from either the ESTABLISHED state or the
CLOSE-WAIT state.

Index: 650 Default Scale: 1

Counter Type: PERF _ COUNTER_RA WCOUNT Counter Size: 4 bytes

Segments Received/sec Advanced
Segments Received/sec is the rate that segments are received, including those
received in error. This count includes segments received on currently established
connections.

Index: 652 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Segments Retransmitted/sec Advanced
Segments Retransmitted/sec is the rate that segments are retransmitted, that is,
segments transmitted containing one or more previously transmitted bytes.

, Index: 656 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Segments Sent/sec Advanced
Segments Sent/sec is the rate that segments are sent, including those on current
connections,. but excluding those containing only retransmitted bytes.

Index: 654 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

512 Optimizing Windows NT

Segments/sec Advanced
Segments/sec is the rate that TCP segments are sent or received using the TCP
protocol.

Index: 640 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Thread Object
Object: Thread Index: 232 Novice

The Thread object type is the basic object that executes instructions in a
processor. Every running process has at least one thread.

% Privileged Time Advanced
Privileged Time is the percentage of elapsed time that this thread has spent
executing code in Privileged Mode. When a Windows NT system service is
called, the service will often run in Privileged Mode in order to gain accesS to
system-private data. Such data is protected from access by threads executing in
User Mode. Calls to the system may be explicit, or they may be implicit such as
when a page fault or an interrupt occurs. Unlike some early operating systems,
Windows NT uses process boundaries for subsystem protection in addition to
the traditional protection of User and Privileged modes. These subsystem
processes provide additional protection. Therefore, some work done by
Windows NT on behalf of your application may appear in other subsystem
processes in addition to the Privileged Time in your process.

Index: 144 Default Scale: 1

Counter Type: PERF _1 OONSEC_ TIMER Counter Size: 8 bytes

% Processor Time Novice
Processor Time is the percentage of elapsed time that this thread used the
processor to execute instructions. An instruction is the basic unit of execution in
a processor, and a thread is the object that executes instructions. Code executed
to handle certain hardware interrupts or trap conditions may be counted for this
thread.

Index: 006 Default Scale: 1

Counter Type: PERF _100NSEC_TIMEP. Counter Size: 8 bytes

Appendix A Windows NT Performance Counters 513

% User Time Advanced
User Time is the percentage of elapsed time that this thread has spent executing
code in User Mode. Applications execute in User Mode, as do subsystems like
the window manager and the graphics engine. Code executing in User Mode
cannot damage the integrity of the Windows NT Executive, Kernel, and device
drivers. Unlike some early operating systems, Windows NT uses process
boundaries for subsystem protection in addition to the traditional protection of
User and Privileged modes. These subsystem processes provide additional
protection. Therefore, some work done by Windows NT on behalf of your
application may appear in other subsystem processes in addition to the
Privileged Time in your process.

Index: 142 Default Scale: 1

Counter Type: PERF _100NSEC_TIMER Counter Size: 8 bytes

Context Switches/sec Advanced
Context Switches/sec is the rate of switches from one thread to another. Thread
switches can occur either inside of a single process or across processes. A thread
switch may be caused either by one thread asking another for information, or by
a thread being preempted by another, higher priority thread becoming ready to
run. Unlike some early operating systems, Windows NT uses process
boundaries for subsystem protection in addition to the traditional protection of
User and Privileged modes. These subsystem processes provide additional
protection. Therefore, some work done by Windows NT on behalf of an
application may appear in other subsystem processes in addition to the
Privileged Time in the application. Switching to the subsystem process causes
one Context Switch in the application thread. Switching back causes another
Context Switch in the subsystem thread.

Index: 146 Default Scale: 0.01

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Elapsed Time Advanced
The total elapsed time (in seconds) this thread has been running.

Index: 684 Default Scale: 0.0001

Counter Type: PERF _ELAPSED_TIME Counter Size: 8 bytes

ID Process Wizard
ID Process is the unique identifier of this process. ID Process numbers are
reused, so they only identify a process for the lifetime of that process.

Index: 784 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

514 Optimizing Windows NT

ID Thread Wizard
ID Thread is the unique identifier of this thread. ID Thread numbers are reused,
so they only identify a thread for the lifetime of that thread.

Index: 804 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Priority Base Advanced
The current base priority of this thread. The system may raise the thread's
dynamic priority above the base priority if the thread is handling user input, or
lower it towards the base priority if the thread becomes compute bound.

Index: 682 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Priority Current Advanced
The'current dynamic priority of this thread. The system may raise the thread's
dynamic priority above the base priority if the thread is handling user input, or
lower it towards the base priority if the thread becomes compute bound.

Index: 694 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Start Address Wizard
Starting virtual address for this thread.

Index: 706 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Thread State Wizard
Thread State is the current state of the thread. It is 0 for Initialized, 1 for Ready,
2 for Running, 3 for Standby, 4 for Terminated, 5 for Wait, 6 for Transition, 7
for Unknown. A Running thread is using a processor; a Standby thread is about
to use one. A Ready thread wants to use a processor, but is waiting for a
processor because none are free. A thread in Transition is waiting for a resource
in order to execute, such as waiting for its execution stack to be paged in from
disk. AWaiting thread has no use for the processor because it is waiting for a
peripheral operation to complete or a resource to become free.

Index: 046 Default Scale: 1
,

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 515

Thread Wait Reason . Wizard
Index: 336 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Thread Wait Reason is only applicable when the thread is in the Wait state (see
Thread State). It is 0 or 7 when the thread is waiting for the Executive, 1 or 8
for a Free Page, 2 or 9 for a Page In, 3 or 10 for a Pool Allocation, 4 or 11 for
an Execution Delay, 5 or 12 for a Suspended condition, 6 or 13 for a User
Request, 14 for an Event Pair High, 15 for an Event Pair Low, 16 for an LPC
Receive, 17 for an LPC Reply, 18 for Virtual Memory, 19 for a Page Out; 20
and higher are not assigned at the time of this writing. Event Pairs are used to
communicate with protected subsystems (see Context Switches).

Thread Details Object

UDP Object

Object: Thread Details Index: 816 Wizard
Thread Details object contains the thread counters that are time consuming to
collect.

User PC Wizard
Current User Program Counter for this thread.

Index: 708 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Object: UDP Index: 658 Advanced
The UDP Object Type includes those counters that describe the rates that UDP
datagrams are received and sent by a certain entity using the UDP protocol. It
also describes various error counts for the UDP protocol.

Datagrams No PorUsec Advanced
Datagrams No Port/sec is the rate of received UDP datagrams for which there
was no application at the destination port.

Index: 664 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

516 Optimizing Windows NT

Datagrams Received Errors Advanced
Datagrams Received Errors is the number of received UDP datagrams that
could not be delivered for reasons other than the lack of an application at the
destination port.

Index: 666 Default Scale: 1

Counter Type: PERF _COUNTER_RA WCOUNT Counter Size: 4 bytes

Datagrams Received/sec Advanced
Datagrams Received/sec is the rate that UDP datagrams are delivered to UDP
users.

Index: 446 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Datagrams Sent/sec Advanced
Datagrams Sent/sec is the rate that UDP datagrams are sent from the entity.

Index: 442 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

Datagrams/sec Advanced
Datagrams/sec is the rate that UDP datagrams are sent or received by the entity.

Index: 438 Default Scale: 0.1

Counter Type: PERF _COUNTER_COUNTER Counter Size: 4 bytes

WINS Server Object
Object: WINS Server Index: 920 Advanced

The WINS Server object type includes counters specific to the WINS Server
service.

Failed Queries/sec Advanced
Total Number of Failed Queries/sec

Index: 950 Default Scale: 1

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 4 bytes

Failed Releases/sec Advanced
Total Number of Failed Releases/sec

Index: 946 Default Scale: 1

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 4 bytes

Appendix A Windows NT Performance Counters 517

Group Conflicts/sec Advanced
Group Conflicts/sec is the rate at which group registration received by the
WINS server resulted in conflicts with records in the database.

Index: 940 Default Scale: 1

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 4 bytes

Group Registrations/sec Advanced
Group Registrations/sec is the rate at which group registration are received by
the WINS server.

Index: 924 Default Scale: 1

~ounter Type: PERF _COUNTER_BULK_COUNT Counter Size: 4 bytes

Group Renewals/sec Advanced
Group Renewals/sec is the rate at which group renewals are received by the
WINS server.

Index: 930 Default Scale: 1

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 4 bytes

Queries/sec Advanced
Total Number of Queries/sec is the rate at which queries are received by the
WINS server.

Index: 936 Default Scale: 1

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 4 bytes

Releases/sec Advanced
Total Number of Releases/sec is the rate at which releases are received by the
WINS server.

Index: 934 Default Scale: 1

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 4 bytes

Successful Queries/sec Advanced
Total Number of Successful Queries/sec

Index: 948 Default Scale: 1

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 4 bytes

Successful Releases/sec Advanced
Total Number of Successful Releases/sec

Index: 944 Default Scale: 1

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 4 bytes

518 Optimizing Windows NT

Total Number of Conflicts/sec Advanced
Total Number of Conflicts/sec is the sum of the Unique and Group conflicts per
sec. This is the total rate at which conflicts were seen by the WINS server.

Index: 942 Default Scale: 1

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 4 bytes

Total Number of Registrations/sec Advanced
Total Number of Registrations/sec is the sum of the Unique and Group
registrations per sec. This is the total rate at which registration are received by
the WINS server.

Index: 926 Default Scale: 1

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 4 bytes

Total Number of Renewals/sec Advanced
Total Number of Renewals/sec is the sum of the Unique and Group renewals per
sec. This is the total rate at which renewals are received by the WINS server.

Index: 932 Default Scale: 1

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 4 bytes

Unique Conflicts/sec Advanced
Unique Conflicts/sec is the rate at which unique registrations/renewals received
by the WINS server resulted in conflicts with records in the database.

Index: 938 Default Scale: 1

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 4 bytes

Unique Registrations/sec Advanced
Unique Registrations/sec is the rate at which unique registration are received by
the WINS server.

Index: 922 Default Scale: 1

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 4 bytes

Unique Renewals/sec Advanced
Unique Renewals/sec is the rate at which unique renewals are received by the
WINS server.

Index: 928 Default Scale: 1

Counter Type: PERF _COUNTER_BULK_COUNT Counter Size: 4 bytes

519

APPENDIX B

Registry Value Entries

This appendix lists value entries from the Windows NT Registry that can have an
effect on system performance. These values are set to appropriate defaults when
Windows NT is installed, and in almost all cases you do not need to change them.

Each section of this appendix represents a key or subkey in the Registry. Not all
values in each subkey are listed. Only those values that may have a significant
effect on system performance are shown. For a complete reference of Registry
entries, see the Microsoft Windows NT Resource Guide.

Caution Using Registry Editor incorrectly can cause serious problems, including
corruptions that may make it necessary to reinstall Windows NT. Wherever
possible, you should use Control Panel and the applications in the Administrative
Tools program group to make changes to the system configuration.

Not all entries that appear here may be found in the Registry for a particular
computer. For many entries, the system uses the default value unless you add
the entry to the Registry and specify another value.

In general, if you change values for any entries in the CurrentControlSet, you
must restart the computer for the changes to take effect.

If you change values for entries under HKEY _CURRENT _USER using Registry
Editor, you may have to log off and log back on for the changes to take effect.

520 Optimizing Windows NT

The information in this appendix appears in the following format:

Entry Name REG_type Rangefor value entry

A description of the entry, usually including the conditions under which you
might change the value.

Default: value
(For value ranges that are Boolean, the value can be 1 for true or "enabled,"
or 0 for false or "disabled.")

CurrentControlSet\Select Subkey
The Select subkey under HKEY _LOCAL_MACHINE\SYSTEM maintains
information about the control sets for the currently selected computer. The Select
subkey contains the following named values:

Current REG_DWORD OxN, where N identifies a control set

Identifies the control set from which the CurrentControlSet subkey is derived. If
this value is Ox 1, for example, the subkey producing the CurrentControlSet is
ControlSetOOl.

Default REG_DWORD OxN, where N identifies a control set
Identifies the default control set. If this value is Oxl, for example, the default
control set is ControlSetOO 1.

Failed REG_DWORD OxN, where N identifies a control set

Identifies the control set number of the control set that was last rejected and
replaced with a LastKnownGood control set.

LastKnownGood REG_DWORD OxN, where N identifies a control set

Identifies the last control set that successfully started the system. If this value is
Oxl, for example, the last control set known to be good is ControlSetOOl.

Appendix B Registry Value Entries 521

CurrentControlSet\Control Subkeys
. This key contains parameters that control system startup, such as subsystems to

load, the size and location of paging files, and so on.

Note The system must be restarted for any changes in the Control key to take
effect.

The Control subkey itself can contain the following value entries:

RegistrySizeLimit REG_DWORD 4 bytes to unlimited

Limits both the amount of paged pool the Registry may use, and the amount of
disk space.

If the value of RegistrySizeLimit is less than 4 megabytes, it will be forced up
to 4 megabytes. If it is greater than about 80% of the size of PagedPoolSize, it
will be set down to 80% of the size of PagedPoolSize. (It is assumed that
PagedPoolSize will always be bigger than 5 megabytes.)

RegistrySizeLimit sets a maximum, not an allocation, meaning a large
RegistrySizeLimit value will be used only if it is actually needed by the
Registry. It does not guarantee that much space will be available for use iIi the
Registry.

Setting RegistrySizeLimit to Oxffffffff will effectively set it to be as large as
PagedPoolSize allows (80% of Paged Pool Size). PagedPoolSize can be set to
a maximum of 128 megabytes, thus limiting RegistrySizeLimit to 102
megabytes.

Default: 8 MB (That is, 25 percent of the default PagedPooISize.)

522 Optimizing Windows NT

FileSystem Control Entries
The entries in the FileSystem subkey specify the behavior ofNTFS and FAT,
respectively, under the following Registry path:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem

NtfsDisable8dot3NameCreation REG_DWORD 0 or 1
Controls whether NTFS will create a short name for a filename that is not in the
format xxxxxxxx.yyy, contains extended characers, or both. Creating short
names impacts performance, so some sites may want to set this value to 1 (true)
if they do not intend to either use DOS applications on long names, or share
disks with different code page machines (i.e., machines in the U.S.). For
example, in the Far East, where all native file names generate short names, set
this value to 1.

You must reboot the system for a change to this value to take effect.

Default: 0 (false)

Win31FileSystem RF;G_DWORD 0 or 1
Controls whether the FAT will allow creation, enumeration, opening, or
querying of long file names, and whether extended time stamp information
(CreationTime and LastAccessTime) is stored and reported. Set this value to 1
(true) to revert to basic Win3x (and WindowsNT 3.5) semantics.

Note Changing this value does not change any disk structures. It simply
changes how the system behaves from now on.

You must reboot the system for a change to this value to take effect.

Default: 0 (false)

Appendix B Registry Value Entries 523

Session Manager Control Entries
The Session Manager subkey contains the global variables used by the Session
Manager. These values are stored under the following Registry path:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Sess;on Manager

CriticalSectionTimeout REG_DWORD
Specifies the deadlock time-out for critical sections. Usually, retail installations
of Windows NT will not time-out and detect deadlocks.

Default: Ox278dOO

GlobalFlag REG_DWORD
Controls various Windows NT internal operations. You can change this value to
disable the OS/2 subsystem if you want to run bound applications in a VDM,
rather than under the OS/2 subsystem. Set this value to 20100000 to disable the
OS/2 subsystem.

Default: Ox21100000

Memory Management Control Entries
The Memory Management subkey defines paging options under the following
Registry path:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control
\Sess;on Manager\Memory Management

The paging file parameters should be defined by using the System icon in Control
Panel and choosing the Virtual Memory button.

IoPageLQckLimit REG_DWORD Number of bytes

Specifies the limit of the number of bytes that can be locked for 110 operations.
When this value is 0, the system uses the default (512K). The maximum value is
about the equivalent of physical memory minus pad, which is 7 MB for a small
system and grows as the amount of memory grows. For a 64 MB system, pad is
about 16 MB; for a 512 MB system, pad is about 64 MB.

Default: 512K

524 Optimizing Windows NT

LargeSystemCache REG_DWORD Number

Specifies, for a nonzero value, that the system favor the system-cache working
set rather than the processes working set. Set this value by choosing the
Windows NT Advanced Server installation base.

Default: 0

NonPagedPoolSize REG_DWORD Number of bytes

Specifies the size of nonpaged pool in bytes. When this value is 0, the system
uses the default size (based on physical memory). The maximum amount is
about 80 percent of physical memory.

Default: 0

PagedPoolSize REG_DWORD 0 to 128 MB

Specifies the size of paged pool in bytes. When this value is 0, the system uses
the default size (32 MB). See also the entry for RegistrySizeLimit at the
beginning of this section.

Default: Ox3000000 (32 MB)

PagingFiles REG_MULTI_SZ System_Paging_Files

Specifies page file information set by choosing the System icon in Control
Panel.

Default: C:\pagefile.sys 27

Subsystem Startup Control Entries
The following is the Registry path for the subsystem settings established at startup:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet
\Control\Session Manager\SubSystems

These values should only be maintained by the system. You should not need to
manually define these settings.

Optional REG_MUL TI_SZ Subsystem names

Defines subsystems that are only loaded when the user starts an application that
requires this subsystem.

Default: Os2 Po six

Appendix 8 Registry Value Entries 525

SystemPages REG_DWORD Number of entries

Defines the number of system page table entries reserved for mapping 110
buffers and other information into the system address space. Each entry maps a
single page. The value 0 indicates that the default number of entries is to be
used.

Default: TBD

WOW Startup Control Entries
The following values control startup parameters that affect MS-DOS-based
applications and applications created for 16-bit Windows 3.1. The Registry path for
these values is the following:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet
\Control\WOW

Cmdline REG_EXPAND_SZ Path and switches

Defines the command line that runs when an MS-DOS - based application runs
under Windows NT. This command line continues to run until the related
application is closed. The following switches can be included:

Switch

-a

-f

-m

-w

Meaning

Specifies a command to pass to the VDM

Specifies the directory to find NTVDM.EXE

Hides the VDM console window

Specifies the WOW VDM

Default: %SystemRoot%\system32\ntvdm -f%SystemRoot%\system32-a

LPT_timeout REG_SZ Number of seconds

Defines how many seconds after the LPT port has been used that Windows NT
waits before grabbing the port, closing it, and flushing the output. This value
should only be needed for MS-DOS -based applications that use BIOS and do
not close the port.

Default: 15

526 Optimizing Windows NT

Size REG_SZ Number in megabytes

Defines the amount of memory to be given to each individual MS-DOS VDM.
The default of 0 gives the VDM as much memory as Windows NT detennines is
necessary, depending upon the memory configuration.

To change this value, change the related value in the PIP file for the application.

Default: 0

Wowcmdline REG_EXPAND_SZ Path and switches

Defines the command line that runs when a 16-bit Windows-based application is
started. The switches instruct Windows NT to start either an MS-DOS VDM or
a WOW VDM. See the definitions for allowable switches under Cmdline.

Default: %SystemRoot%\system32\ntvdm -m -w -f%SystemRoot%\system32
-a %SystemRoot%\system32\km1386

Wowsize REG_SZ Up to 16 megabytes

For RISe-based computers, defines the amount of memory provided in a VDM
when a WOW session is started. This value is not used on x86-based computers,
where Windows NT allocates the memory needed when it is asked for.

The default size chosen for a RISe-based computer depends on the amount of
system memory on the computer. For each MB specified, the system uses
1.25 MB, so setting Wowsize to 4 MB causes the VDM to allocate 5 MB,
although applications can only use 4 MB. You can override the following
defaults:

System memory size

Less than 12 MB (small)

12-16 MB (medium)

More than 16 MB (large)

Default VDM size

3MB

6MB

8MB

Setting Wowsize to a value lower than 3 MB will cause most
applications to fail.

Default: Depends on RISe-based computer's system memory

CurrentControlSet\Services Subkeys
The Services subkeys under the following Registry path contain parameters for the
device drivers, file system drivers, and Win32 service drivers:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

The name of each Services subkey is the name of the service, which is also the root
of the name of the file from which the service is loaded. For example, for the serial

Appendix 8 Registry Value Entries 527

mouse, the service name and Services subkey name is Sermouse. The file from
which this is loaded is SystemRoot\SYSTEM32\DRIVERS\SERMOUSE.SYS.

All service names are defined under HKEY _LOCAL_MACHINE\SOFTW ARE.
The names of the Windows NT built-in network services such as the Alerter and
Browser services are defined under the Microsoft\Windows NT\CurrentVersion
sub key in the Software area of the Registry.

Each Services subkey can have additional subkeys. Many services have a Linkage
sub key, which provides data for binding network components, as described in
"Linkage Subkey Entries for Network Components," later in this chapter. Many
services also have a Parameters subkey that contains entries defined by the service
with values for configuring the specific service.

Serial Subkey Entries in the CurrentControlSet\Services Subkey
The following sub key and value can be found under the following key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Serv;ces\Serial

The Serial subkey contains a subkey named Parameters, under which is a set of
subkeys typically named SerialX where X is a whole number. A system
administrator must place these subkeys and values into the Registry. You can only
define and manipulate these values by using Registry Editor.

For example, under the Serial2 subkey, the following optional value entry can
appear, and does affect system performance.

ForceFifoEnable REG_DWORD 0 or 1

If the value is 1 and the hardware supports a FIFO buffer (for example, the NS
16550AFN), the driver enables the FIFO. Not all FIFOs are reliable. If the
application or the user notices lost data or no data transmission, it is
recommended that this value be set to O.

Default: 1

528 Optimizing Windows NT

Mouse and Keyboard Driver Entries
Parameters in this section are for the mouse and keyboard class and port drivers.

Microsoft Bus Mouse Port ·Driver Entries
The following value entry for the Microsoft bus mouse are found in this subkey:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Serv;ces\Busmouse\Parameters

MouseDataQueueSize REG_DWORD >= Ox1
Specifies the number of mouse events to be buffered internally by the driver, in
nonpaged pool. The allocated size, in bytes, of the internal buffer is this value
times the size of the MOUSE_INPUT _DATA structure (defined in
NTDDMOU.H). Consider increasing the size if the System log in Event Viewer
frequently contains this message from the Busmouse source: "The ring buffer
that stores incoming mouse data has overflowed (buffer size is configurable via
the Registry)."

Default: Ox64 (100)

SampleRate REG_DWORD Mouse sample rate in Hz

Specifies the sample rate for the bus mouse. Intended for future use. This value
might have no effect in the first release of Windows NT.

Default: Ox32 (50 Hz)

Intel 8042 Port Driver Entries
The i8042prt driver handles the keyboard and mouse port mouse (also known as a
PS/2-compatible mouse) for the Intel 8042 controller. These value entries are found
in the following sub key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Serv;ces\;8042prt\Parameters

KeyboardDataQueueSize REG_DWORD >= Ox1
Specifies the number of keyboard events to be buffered internally by the driver,
in nonpaged pool. The allocated size, in bytes, of the internal buffer is this value
times the size of the KEYBOARD _INPUT _DATA structure (defined in
NTDDKBD.H). Consider increasing the size if the System log in Event Viewer
contains the following message from the i8042prt source: "The ring buffer that
stores incoming keyboard data has overflowed (buffer size is configurable via
the Registry)."

Default: Ox64 (100)

Appendix B Registry Value Entries 529

MouseDataQueueSize REG_DWORD >= Ox]

Specifies the number of mouse events to be buffered internally by the driver, in
nonpaged pool. Consider increasing the size if the System log in Event Viewer
contains the following message from the i8042prt source: "The ring buffer that
stores incoming mouse data has overflowed (buffer size is configurable via the
Registry). "

Default: Ox64 (100)

PollStatuslterations REG_DWORD Number

Specifies the maximum number of times to check the i8042 controller status
register for interrupt verification before dismissing the interrupt as spurious.
This value can be used to work around a problem experienced on some
hardware (including the Olivetti MIPS computers) where the keyboard interrupt
is raised before the Output Buffer Full bit is set in the i8042 status register.

Increase this value if the system seems to suddenly stop taking keyboard
interrupts. This can happen if a keyboard interrupt is mistakenly dismissed as
spurious, when instead it just took too long to set Output Buffer Full after
raising the interrupt. Increasing the value of PollStatuslterations results in a
longer execution time for the Interrupt Service Routine if the keyboard interrupt
truly is spurious (there is a 1 microsecond delay following each check for Output -
Buffer Full).

To determine whether the driver is taking keyboard interrupts, press the
NUMLOCK key. If the NumLock light on the keyboard turns on or off, this
indicates that the i8042prt driver handled the keyboard interrupt correctly.

Default: 1

Pollinglterations REG_DWORD >= Ox400

Specifies the standard number of times to poll the hardware (in polling mode)
before giving up and timing out the operation. Consider increasing this value if
the driver fails to initialize or work correctly and the System log in Event
Viewer contains the following message from the i8042prt source: "The
operation on ... timed out (time out is configurable via the Registry)."

Default: Ox400

PollinglterationsMaximum REG_DWORD >= Ox400

Specifies the maximum number of times to poll the hardware (in polling mode)
before giving up and timing out the operation. This value is used instead of
Pollinglterations when an old-style AT keyboard is detected (see
OverrideKeyboardType).

530 Optimizing Windows NT

Consider increasing this value if the driver fails to initialize or work correctly
and the System log in Event Viewer contains the following message from the
i8042prt source: "The operation on ... timed out (time out is configurable via
the Registry)."

Default: Ox2EEO

Resendlterations REG_DWORD > = Ox1
Specifies the maximum number of times a hardware operation will be retried
before timing out. Consider increasing this value if the driver fails to initialize or
work correctly and the System log in Event Viewer contains the following
message from the i8042prt source: "Exceeded the allowable number of retries
(configurable via the Registry) on device ... "

Default: Ox3

SampIeRate REG_DWORD Mouse sample rate in Hz
Specifies the sample rate for the mouse. Intended for future use. This value
might have no effect in the first release of Windows NT.

Default: Ox3C (60 Hz)

Microsoft InPort Bus Mouse Port Driver Entries
The value entries for the Microsoft InPort® bus mouse are found in the following
subkey: '

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Serv;ces\Inport\Parameters

HzMode REG_DWORD Mouse sample rate mode specifier

Specifies the value written to the Microsoft InPort mode register to set the
mouse sample rate. Might be used in the first release of Windows NT, but
should become obsolete. .

Default: Ox2 (selects 50 Hz)

MouseDataQueueSize REG_DWORD >= Ox1
Specifies the number of mouse events to be buffered internally by the driver, in
nonpaged pool. The allocated size, in bytes, of the internal buffer is this value
times the size of the MOUSE_INPUT_DATA structure (defined in
NTDDMOU.H). Consider increasing the size if the System log in Event Viewer
contains the following message from the InPort source: "The ring buffer that
stores incoming mouse data has overflowed (buffer size is configurable via the
Registry)."

Default: Ox64 (100)

Appendix B Registry Value Entries 531

SampleRate REG_DWORD Mouse sample rate in Hz

Specifies the sample rate for the Microsoft InPort bus mouse. Intended for future
use. This value might have no effect in the first release of Windows NT.

Default: Ox32 (50 Hz)

Microsoft Serial Mouse· Port Driver Entries
The value entries for the Microsoft serial mouse are found in the following sub key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Serv;ces\Sermouse\Parameters

MouseDataQueueSize REG_DWORD >= Ox1
Specifies the number of mouse events to be buffered internally by the driver, in
nonpaged pool. The allocated size, in bytes, of the internal buffer is this value
times the size of the MOUSE_INPUT_DATA structure (defined in
NTDDMOU.H). Consider increasing the size if the System log in Event Viewer
contains the following message from the Sermouse source: "The ring buffer that
stores incoming mouse data has overflowed (buffer size is configurable via the
Registry)."

Default: 0X:64 (100)

SampleRate REG_DWORD Mouse sample rate in Hz

Specifies the sample rate for the serial mouse. Intended for future use. This
value might have no effect in the first release of Windows NT.

Default: Ox28 (1200 baud)

Mouse Class Driver Entries
The value entries for the mouse class driver are found in the following subkey:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Serv;ces\Mouclass\Parameters

MouseDataQueueSize REG_DWORD >= Ox1
Specifies the number of mouse events to be buffered internally by the driver, in
nonpaged pool. The allocated size, in bytes, of the internal buffer is this value
times the size of the MOUSE_INPUT_DATA structure (defined in
NTDDMOU.H). Consider increasing the size if the System log in Event Viewer
frequently contains the following message from the Mouclass source: "The ring
buffer that stores incoming mouse data has overflowed (buffer size is
configurable via the Registry)."

Default: Ox64 (100)

532 Optimizing Windows NT

Keyboard Class Driver Entries
The value entries for the keyboard class driver are found in the following subkey:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Serv;ces\Kbdclass\Parameters

KeyboardDataQueueSize REG_DWORD > = Ox]

Specifies the number of keyboard events to be buffered internally by the driver,
in nonpaged pool. The allocated size, in bytes, of the internal buffer is this value
times the size of the KEYBOARD_INPUT_DATA structure (defined in
NTDDKBD.H). Consider increasing the size if the System log in Event :Viewer
contains the following message from the Kbdclass source: "The ring buffer that
stores incoming keyboard data has overflowedo(buffer size is configurable via
the Registry)."

Default: Ox64 (100)

SCSI Miniport Driver Entries
The basic SCSI mini port driver entries in the Registry are found under subkeys in
the following path:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Serv;ces

The SCSI miniport driver recognizes the following optional value entries, which are
used to fix problems such as device time-outs or controller detection errors but will
reduce 110 performance. These value entries can be abbreviated. For example, a
value entry of Disable will cause DisableSynchronousTransfers,
DisableTaggedQueuing, DisableDisconnects, and DisableMultipleRequests to
be set.

Note The system must be restarted before these options take effect.

DisableDisconnects REG_DWORD 0 or]

Disables disconnects on the SCSI bus. It causes all requests to be executed
sequentially.

Default: 1 (enabled)

DisableMultipleRequests REG_DWORD 0 or]

Prevents the SCSI miniport driver from sending more than one request at a time
per SCSI device.

Default: 1 (enabled)

Appendix B Registry Value Entries 533

DisableSynchronousTransfers REG_DWORD 0 or 1

Disables synchronous data transfers on the SCSI bus.

Default: 1 (enabled)

DisableTaggedQueuing REG_DWORD 0 or 1

Disables SCSI-II tagged command queuing on the host adapter.

Default: 1 (enabled)

DriverParameter Data type is specific to driver A string
A pointer to this data is passed to the SCSI miniport driver in a
miniportFindAdapter routine. It is the fourth parameter, ArgumentString. A
miniport driver uses this data to define the IRQ number for the SCSI host
adapter, but other applications for the data are possible.

The data type for this value is defined by the specific SCSI miniport driver
developer. If the data type is REG_SZ, the Unicode string is converted to an
ANSI string before transferring it to the SCSI miniport driver.

The following driver currently uses the DriverParameter value entry for a
setting that may affect performance:

Driver Values

Aha154x BusOnTime=x.x

Video Device Driver Entries

Meaning

xx is the bus on time in microseconds for the
card. Valid values are 2-15. The default is
7. The value is usually adjusted downward
when DMA transfers from the Adaptec card
are interfering with other DMA transfers.

This section describes the entries for video device drivers under the DeviceMap
subkey and under the CurrentControlSet\Services subkeys for specific video
drivers.

Video Driver Entries in the Services Subkey
The following values, which can be set in a video driver subkey, affect system
performance.

DefauItSettings.BitsPerPel REG_DWORD Number of bits per pixel

Contains the number of colors for the mode requested by the user. For example,
for the v7vram miniport, the following value yields a 256-color mode:

DefaultSettings.BitsPerPel - 8

534 Optimizing Windows NT

DefaultSettings.lnterlaced REG_DWORD 0 or 1
Determines whether the mode requested by the user is interlaced. For example,
for the v7vram miniport:

DefaultSettings.lnterlaced - 0x0 (FALSE)

DefaultSettings.VRefresh REG_DWORD Number Hz

Contains the refresh rate of the mode requested by the user. For example, for the
et4000 miniport:

DefaultSettings.VRefresh - 72

DefaultSettings.XResolution REG_DWORD Number of pixels

Contains the width of the mode requested by the user. For example, for the
et4000 miniport:

DefaultSettings.Xresolution - 1024

DefaultSettings. YResolution REG_DWORD Number of pixels

Contains the height of the mode requested by the user. For example, for the
et4000 miniport:

DefaultSettings.Yresolution - 768

Video Driver Entries in the Software Subkey
The optional entries for open graphics libraries (OpenGL) are under the following
subkey:

HKEY_LOCAL_MACHINE\Software\Microsoft\WindowsNT
\CurrentVersion\OpenGLDrivers

%display_driver _name% REG_SZ %OpenGL_cliencdriver _name %

For example, suppose that MYOPENGL.DLL is the OpenGL client driver for
the display driver MYDISP.DLL. Then the OpenGLDrivers subkey would have
the value-data pair:

mydisp: REG_SZ: myopengl

The subkey may be empty if no OpenGL client drivers are installed. This value can
be changed via the Control Panel Display option. Manual modification should not
be necessary except for manual installation or uninstallation of OpenGL client
drivers (which is different from the OpenGL built into the GDI). Only one client
driver is allowed for each unique display driver name.

Appendix B Registry Value Entries 535

Registry Entries for Network Services
This section describes parameters for Windows NT services under the
HKEY _LOCAL_MACHINE\SYSTEM\CurrentControISet\Services subkey.

Some of these services also have configuration information stored under
HKEY _LOCAL_MACHINE\SOFfW ARE. These values are described in
"NetRules Subkey Entries," earlier in this chapter.

Note Wherever possible, choose the Services icon in Control Panel or use Server
Manager in Windows NT Advanced Server to change values for these services.

AppleTalk and MacFile Service Entries for SFM
Services For Macintosh (SFM) does not appear in the Registry until you install
SFM using the Network icon in Control Panel. After installation, the SFM value
entries appear under several Services subkeys: AppleTalk®, MacFile, MacPrint,
and MacSrv. You should let the system maintain entries in the MacPrint or MacSrv
service. However, the AppleTalk and MacFile services contain definable
parameters described in this section.

You should use the Network icon in Control Panel to configure SFM, and use File
Manager to administer file services, Server Manager to administer server services,
and Print Manager to administer print services for SFM.

SFM is included with Windows NT Server and the AppleTalk transport service is
on the Windows NT Resource Guide disk.

AppleTalk Entries for SFM
The values for the AppleTalk service are found in the following Registry path:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Serv;ces\AppleTalk

For changes to take effect, you must restart the File Server for Macintosh using the
Devices icon in Control Panel.

The settings in the Linkage subkey and the TCPIIP settings in the Winsock subkey
for AppleTalk are maintained by the system and should not be changed by the user.

536 Optimizing Windows NT

Adapter Card Entries for AppleTalk
The entries for AppleTalk that are specific to network adapter cards are found
under the following Registry path:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services
\AppleTalk\Adapters\adapter_name

There is one subkey for each adapter that is AppleTalk-compatible on the computer.
These entries are found in each Adapter_Name subkey.

For changes to take effect, you must restart the File Server for Macintosh® using the
Devices icon in Control Panel.

AarpRetries REG_DWORD Number

Specifies the maximum number of AppleTalk address-resolution protocol
packets to be sent by the AppleTalk protocol.

Default: Oxa

DdpCheckSums REG_DWORD 0 or 1

Tells the AppleTalk protocol whether to compute checksums in the DDP layer.
If this entry is 1, the AppleTalk protocol uses sums in the DDP layer.

Default: 0

MacFile Entries for SFM
The MacFile subkey contains the main entries for "the AppleTalk File Protocol
(AFP) server. All configuration information for the file server is in the following
subkey:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\MacFile

The MacFile\Parameters subkey includes Type_Creators, Icons, and Extensions
subkeys. You should let the system maintain entries in the Icons or Extensions
subkeys. This section describes value entries for the Parameters subkey.

MacFile Parameters Entries
The Registry path for MacFile parameters is the following:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\MacFile\Parameters

The following value entries specify server options, which can be set from the Server
Manager. All other entries are added to the Registry when changes to the default
values occur.

For changes to take effect, you must restart the computer.

Appendix B Registry Value Entries 537

MaxSessions REG_DWORD 1 to unlimited (Oxffffffff)

Specifies the maximum number of user sessions that the file server for
Macintosh can accommodate.

Default: Oxff (255 in decimal)

PagedMemLimit REG_DWORD 1000K to 256000K

Specifies the maximum amount of page memory that the file server for
Macintosh uses. Performance of the MacFile service increases with an increase
in this value. However, the value should not be set lower than 1000 KB.1t is
especially important that you are well acquainted with memory issues before
changing this resource parameter. You cannot change this value from Server
Manager.

Default: Ox4e20 (20000 in decimal)

NonPagedMemLimit REG_DWORD 256K to 16000KB

Specifies the maximum amount of RAM that is available to the file server for
Macintosh. Increasing this value helps performance of the file server, but
decre~ses performance of other system resources.

Default: OxfaO (4000 in decimal)

Browser Service Entries
The parameters that control network bindings for the Browser service are described
in "NetRules Subkey Entries," earlier in this chapter.

Under the following Registry path, two parameters are found:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Serv;ces\Browser\Parameters

CacheHitLimit REG_DWORD 0 to 256

Describes the number of NetServerEnum requests required to qualify that the
response to a NetServerEnum request be cached. If the browser receives more
than.CacheHitLimit NetServerEnum requests with a particular set of
parameters, it caches the response and returns that value to the client.

Default: 1

CacheResponseSize REG_DWORD 0 to xffffffff

Specifies the maximum number of responses kept for each transport. To disable
this feature, set this value to O.

Default: 10

538 Optimizing Windows NT

l\1aintainServerList REG_SZ Boolean or Auto

If this value is No, this server is not a browse server. If this value is Yes, this
server becomes a browse server. It attempts to contact the Master Browse
Server to get a current browse list. If it cannot find the Master Browse Server, it
forces an election and is, of course, a candidate to become the master.

If MaintainServerList is Auto, this server mayor may not become a browse
server, depending on the results of the Registry exchange with the Master
Browse Server.

If MaintainServerList is set to Yes, the computer is configured to always be a
backup browser.

Default: Auto, if none is present. (This server contacts the Master Browse
Server, and the Master Browse Server tells this server whether it should become
a browse server.)

QueryDriverFrequency REG_DWORD 0 to 900

Indicates the time after which a browser master will invalidate its
NetServerEnum response cache and the frequency that a master browser will
query the browser driver to retrieve the list of servers. Increasing this time
makes browsing somewhat faster, but browse information will not necessarily
be 100 percent accurate to the minute. Lowering this time makes browse
response more accurate, but will increase the CPU load on the browse master.

Default: 30

The following Browser driver parameters are found under this Registry path for the
Datagram Receiver:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Serv;ces\DGRcvr\Parameters

BrowserServerDeletionThreshold REG_DWORD
BrowserDomainDeletionThreshold. REG_DWORD 0 to Oxffffffff

If more than BrowserServerDeletionThreshold servers (or
BrowserDomainDeletionThreshold) servers (or domains) are flushed in a 30-
second interval, this will cause an event to be generated.

Default: Oxffffffff

FindMasterTimeout REG_DWORD 0 to Oxfffffff
Specifies the maximum number of seconds that FindMaster requests should be
allowed to take. If you have a slow LAN, you may want to increase this value
(but only if directed by Microsoft Product Support services).

Default: Oxffffffff

Appendix 8 Registry Value Entries 539

GetBrowserListThreshold REG_DWORD Number

Represents the threshold that the Browser uses before logging an error
indicating that too many of these requests have been "missed." If more requests
than the value of GetBrowserServerList are missed in an hour, the Browser
logs an event indicating that this has happened.

Default: Oxffffffff (That is, never log events.)

MailslotDatagramThreshold REG_DWORD Number

Represents the threshold that the Browser uses before logging an error
indicating that too many of these requests have been "missed." If more mailslots
than the value of MailslotDatagramThreshold are missed in an hour, the
Browser logs an event indicating that this has happened.

Default: Oxffffffff (That is, never log events.)

DiskPerf Service Entries
The DiskPerf subkey entries determines whether disk performance statistics are
maintained by the system. If the Start value is 0 (boot), then statistics are counted
and are reported by Perfonnance Monitor and similar tools. Collecting disk
performance statistics can take up to 1.5 percent of the disk throughput on a system
with a slow processor (such as an 20 MHz 80386 computer) but should h~ve
negligible impact on a system with a faster processor (such as a 33 MHz i486 and
above).

Tum DiskPerf on or off only by using the Diskperf utility; for example, type
diskperf -y at the command prompt.

The Registry path is the following:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DiskPerf

There are no parameters that users can set. The following are the default values for
the standard entries:

Value entry Value

ErrorControl Ox! (Nonnal)

Group Filter

Start Ox4 (disabled)

Type Ox! (Kernel driver)

540 Optimizing Windows NT

OLe System Driver Entries
The DLC subkey does not appear unless this service is installed. In Windows NT,
the Data Link Control (DLC) protocol only needs to be installed on computers that
access IBM mainframes (usually with 3270 applications) or on print servers that
print directly to Hewlett-Packard printers. Network printers such as the HP III si
use the DLC protocol, for example, because the frames received are easy to take
apart.

The DLC driver depends on an having an NDIS group service available and is
bound to the network adapter card through the NDIS device driver. Each adapter
that supports the DLC protocol has a subkey under the DLC\Parameters subkey.
With Registry Editor, you can modify the following parameters for the DLC system
driver. The path for these parameters is the following:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services
\OLC\Parameters\adapter name

The following TxTick parameters are multipliers for the T1, T2, and Ti values,
which represent time periods in milliseconds that are used when a station or SAP is
opened. If the time period value is between 1 and 5, the time delay is computed as
follows:

(time period) * TxTickOne * 40 milliseconds

If the time period value is between 6 and 10, the time delay is computed as follows:

(time period - 5) * TxTickTwo * 40 milliseconds

When computing the short-tick values (_One) and the long-tick values (_Two), the
resulting values for T1, T2, and Ti should generally follow this rule: T2 < T1 < Ti.

TITick{OneITwo} REG_DWORD 1 to 255 milliseconds

Specifies the delay before retransmitting an I frame if not acknowledged.

Default: Tl TickOne = 5; Tl TickTwo = 25

T2Tick{OneITwo} REG_DWORD 1 to 255 milliseconds

Specifies the delay before acknowledging frames in the receive window if the
receive window has not been filled.

Default: T2TickOne = 1; T2TickTwo :-:: 10

Appendix B Registry Value Entries 541

TiTick{OneITwo} REG_DWORD 1 to 255 milliseconds

Specifies the delay before testing an inactive station to determine if it is still
active.

Default: TiTickOne = 25; TiTickTwo = 125

Note Additional parameters that were included in the Microsoft LAN Manager
COMTOKR utility are not defined for DLC, because Windows NT does not have
the same memory limitations as MS-DOS.

EventLog Service Entries
The Services subkey for EventLog contains at least three subkeys for the three
types of logs-Application, Security, and System. Each of the three Logfile subkeys
for the EventLog service can contain the value entry described in this section. The
Registry path is the following, where logfile is System, Application, or Security.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services
\Eventlog\logfile

This entry is included for informational purposes only. This information is usually
maintained by Event Viewer. New keys under the Application key can only be
added in meaningful ways by using the Win32 Registry APls.

MaxSize REG_DWORD Number in kilobytes

Specifies the maximum size of the log file. This value can be set using the
Event Viewer.

Default: 512

Retention REG_DWORD Number of seconds

Specifies that records that are newer than this value will not be overwritten. This
is what causes a log full event. This value can be set using the Event Viewer.

Default: 604800 (7 days)

542 Optimizing Windows NT

NBF (NetBEUI) Transport Entries
The startup parameters for the NetBEUI (NBF) transport are found under the
following subkey:

HKEY_LOCAL_MACHINE\SYSTEM\Serv;ces\NBF\Parameters

The Initxxx entries for NBF define the initial allocation and the size of free
memory for items. The Maxxxx entries define the upper limits. Within these
ranges, the system autotunes performance. By default, the NBF service uses all the
resources necessary to handle client requests, and when it is not actively working, it
doesn't use many resources. Set Initxxx values to control initial allocation, which
can make the system a little faster when you know a server will be busy. Set the
Maxxxx values to control limits when you don't want the server to be too busy or
to use too much memory for networking.

With Registry Editor, you can modify the following startup parameters for the
NBF transport:

AddNameQueryRetries REG_DWORD Number

Specifies the number of times that NBF will retry sending
ADD_NAME_QUERY and ADD_GROUP _NAME_QUERY frames. Adjust
this parameter only if NBF is registering addresses on a network that drops
many packets.

Default: 3

AddNameQueryTimeout REG_DWORD lOO-nanosecond units

Specifies the time-out between NBF sending successive ADD_NAME_QUERY
and ADD_GROUP _NAME_QUERY frames. Adjust this parameter only if
NBF is registering addresses on a network with slow computers or over a slow
network.

Default: 5000000

DefaultTl Timeout REG_DWORD lOO-nanosecond units

Specifies the initial value for the Tl timeout. Tl controls the time that NBF
waits for a response after sending a logical link control (LLC) poll packet
before res ending it. Adjust this parameter only if NBF will be connecting over
slow networks or to slow remote computers (although NBF does adapt).

Default: 6000000 (600 milliseconds)

Appendix B Registry Value Entries 543

DefaultT2Timeout REG_DWORD 1 DO-nanosecond units

Specifies the initial value for the T2 timeout. T2 controls the time that NBF
can wait after receiving an LLC poll packet before responding. It must be
much less than Tl; one-half or less is a good general rule. Adjust this
parameter only if NBF will be connecting over slow networks or to slow
remote computers.

Default: 1500000 (150 milliseconds)

DefaultTiTimeout REG_DWORD 1 DO-nanosecond units

Specifies the initial value for the Ti timeout. Ti is the inactivity timer. When it
expires, NBF sends an LLC poll packet to ensure that the link is still active.
Adjust this parameter only if NBF is connecting over networks with unusual
reliability characteristics, or over slow networks or to slow computers.

Default: 300000000 (30 seconds)

GeneralRetries REG_DWORD Number

Specifies the number of times that NBF will retry sending STATUS_QUERY
and FIND_NAME frames. Adjust this parameter only ifNBF is operating on a
network that drops many packets.

Default: 3

GeneralTimeout REG_DWORD lOO-nanosecond units

Specifies the time-out between NBF sending successive STATUS_QUERY and
FIND_NAME requests. Adjust this parameter only if NBF is operating on a
network with slow computers or over a slow network.

Default: 5000000

InitAddresses REG_DWORD 1 or higher; 0 = no limit

Specifies the number of initial addresses to allocate within any memory limits
that might imposed on NBF. Addresses correspond to NetBIOS names. An
address is for the actual name, and an address file is for a TDI (Transport
Driver Interface) client using that name; so usually you have the same
number, but if two users open the same address, that is two address files but
only one address.

Set this parameter if you know that a large number of addresses are" needed.
Otherwise, the system automatically allocates space for addresses as needed.

Default: 0 (no limit)

544 Optimizing Windows NT

InitAddressFiles REG_DWORD 1 or higher; 0 = no limit

Specifies the number of initial address files to allocate within any memory
limits that might imposed on NBF. Set this parameter if you know that a large
number of address files are needed. Otherwise, the system automatically
allocates space for address files as needed.

Default: 0 (no limit)

InitConnections REG_DWORD 1 or higher; 0 = no limit

Specifies the number of initial connections (NetBIOS sessions) to allocate
within any memory limits that might imposed on NBF. Set this parameter if you
know that a large number of connections are needed. Otherwise, the system
automatically allocates space for connections as needed.

Default: 1

InitLinks REG_DWORD 1 or higher; 0 = no limit

Specifies the number of initial LLC links to allocate within any memory limits
that might imposed on NBF. Typically, you have one connection per LLC link
to another network adapter card, because the redirector puts all links to a
computer into one connection. However, you may have more if two
computers are communicating with each other or if a NetBIOS application is
running. Set this parameter if you know that a large number of links are
needed. Otherwise, the system automatically allocates space for links as
needed.

Default: 2

InitReceiveBuffers REG_DWORD 1 or higher; 0 = no limit

Specifies the number of initial receive buffers to allocate. Receive buffers are
used by NBF when it calls NDIS TransferData for received datagrams.
Usually, this value is allocated as needed, but you can use this parameter to
preallocate memory if you know a large number of datagram frames will be
received.

Default: 5

InitReceivePackets REG_DWORD 1 or higher; 0 = no limit

Specifies the number of initial receive packets to allocate. Receive packets are
used by NBF when it calls NDIS TransferData for received data. Usually, this
value is allocated as needed, but you can use this parameter to preallocate
memory if you know a large number of UI frames will be received.

Default: 10

Appendix B Registry Value Entries 545

InitRequests REG_DWORD 1 or higher; 0 = no limit

Specifies the number of initial requests to allocate within any memory limits
that might imposed on NBF. Requests are used for in-progress connect
requests, remote adapter status requests, find name requests, and so on. Set
this parameter if you know that a large number of requests are needed.
Otherwise, the system automatically allocates space for requests as needed.

Default: 5

InitSendPackets REG_DWORD 1 or higher; 0 = no limit

Specifies the number of initial send packets to allocate. Send packets are used
by NBF whenever it sends connection-oriented data on behalf of a client.
Usually, this value is allocated as needed, but you can use this parameter to
preallocate memory if you know a large number of data frames are needed or
if you see a lot of "send packets exhausted" messages when using
Performance Monitor.

Default: 30

InitUIFrames REG_DWORD 1 or higher; 0 = no limit

Specifies the number of initial UI frames to allocate. UI frames are used by
NBF to establish connections and for connectionless services such as
datagrams. Usually, this value is allocated as needed, but you can use this
parameter to preallocate memory if you know a large number of UI frames are
needed.

Default: 5

LLCMaxWindowSize REG_DWORD Number offrames
Specifies the number of LLC I-frames that NBF can send before polling and
waiting for a response from the remote. Adjust this parameter only if NBF is
communicating over a network whose reliability often changes suddenly.

Default: 10

LLCRetries REG_DWORD lor higher; 0 = no limit

Specifies the number of times that NBF will retry polling a remote
workstation after receiving a Tl timeout. After this many retries, NBF closes
the link. Adjust this parameter only if NBF is connecting over networks with
unusual reliability characteristics.

Default: 8

/

546 Optimizing Windows NT

MaxAddresses REG_DWORD 1 or higher; 0 = no limit

Specifies the maximum number of addresses that NBF allocates within any
memory limits that might imposed on NBF. Addresses are NetBIOS names that
are registered on the network by NBF. An address is for the actual name, and
an address file is for a TDI client using that name.

Use this optional parameter to fine-tune use of NBF memory. Typically this
parameter is used to control address resources with an unlimited NBF.

Default: 0 (no limit)

MaxAddressFiles REG_DWORD 1 or higher; 0 = no limit

Specifies maximum number of address files that NBF allocates within any
memory limits that might imposed on NBF. Each address file corresponds to a
client opening an address.

Use this optional parameter to fine-tune use of NBF memory. Typically this
parameter is used to control address files with an unlimited NBF.

Default: 0 (no limit)

MaxConnections REG_DWORD lor higher; 0 = no limit

Specifies the maximum number of connections that NBF allocates within any
memory limits that might imposed on NBF. Connections are established
between NBF clients and similar entities on remote computers.

Use this optional parameter to fine-tune use of NBF memory. Typically this
parameter is used to control connection resources with an unlimited NBF.

Default: 0 (no limit)

MaximumlncomingFrames REG_DWORD 1 or higher; 0 = off

Used in some cases to control how many incoming frames NBF will receive
before it sends an acknowledgment to a remote machine. In general, NBF
automatically senses when to sends acknowledgments, however when
communicating with some Microsoft LAN Manager or IBM LAN Server remote
computers configured with a very low value for maxout, this parameter can be
set to an equal or lower value to improve network performance. (This parameter
corresponds roughly to the Microsoft LAN Manager maxin parameter.) A value
of 0 turns off this hint, causing NBF to revert to usual behavior. For
communication with most all remotes, this parameter isn't used.

Default: 2

Appendix B Registry Value Entries 547

MaxLinks REG_DWORD 1 or higher; 0 = no limit

Specifies the maximum number of links that NBF allocates within any memory
limits that might imposed on NBF. Links are established for every remote
adapter to which NBF communicates.

Use this optional parameter to fine-tune use of NBF memory. Typically this
parameter is used to control link resources with an unlimited NBF.

Default: 0 (no limit) .

MaxRequests REG_DWORD 1 or higher; 0 = no limit

Specifies the maximum number of requests that NBF allocates within any
memory limits that might imposed on NBF. Requests are used by NBF to
control send, receive, connect, and listen operations.

Use this optional parameter to fine-tune use of NBF memory. Typically this
parameter is used to control request resources with an unlimited NBF.

Default: 0 (no limit)

NameQueryRetries REG_DWORD Number

Specifies the number of times that NBF will retry sending NAME_QUERY
frames. Adjust this parameter only if NBF is connecting to computers over a
network that drops many packets.

Default: 3

NameQueryTimeout REG_DWORD lOO-nanosecond units

Specifies the time-out between NBF sending successive NAME_QUERY
frames. Adjust this parameter only if NBF is connecting to slow computers or
over a slow network.

Default: 5000000

QueryWithoutSourceRouting REG_DWORD 0 or 1
When you are using NBF over a Token Ring driver, this parameter instructs
NBF to send half the queries without including source routing information when
connecting to a remote computer. This supports bridging hardware that cannot
forward frames that contain source routing information.

Default: 0 (false)

WanNameQueryRetries REG_DWORD Number

Specifies the number of times that NBF- will retry sending NAME_QUERY
frames when connecting with RAS. Adjust this parameter only if NBF is
connecting to computers over a network that drops many packets.

Default: 5

548 Optimizing Windows NT

NetLogon Service Entries
The Registry path for the parameters for the NetLogon service is the following:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Netlogon\Parameters

ChangeLogSize REG_DWORD 65,536 to 4,194,304 bytes

Defines the size (in bytes) of the change log. The change log exists both in
memory and on disk, %SystemRoot%\netlogon.chg. Making.ChangeLogSize
larger consumes disk space and virtual memory. Each change to the SAMILSA
database is represented by an entry in the change log. The change log is
maintained as a circular buffer with the oldest entry being overwritten by the
newest entry. If a BDC does a partial sync and requests an entry that has been
overwritten, the BDC is forced to do a full sync.

Default: 65,536

The minimum (and typical) size of an entry is 32 bytes. Therefore, a 64K
change log holds about 2000 changes.

Set ChangeLogSize to a larger value only if:

• full syncs are prohibitively expensive, AND

• one or more BDCs are expected to not request a partial sync within 2000
changes.

For instance, if a BDC dials in nightly to do a partial sync and on some days
4000 changes are made to the SAMILSA database, ChangeLogSize should be
set to 128K.

ChangeLogSize need only be set on the PDC. If a different PDC is promoted, it
should be set on that PDC also. The PDC should be promoted or rebooted to
have a new value of ChangeLogSize take effect.

MaximumMaiislotMessages REG_DWORD 1 to Oxffffffffmessages

Specifies the maximum number of mailslot messages that will be queued to the
Netlogon service. Even though the Netlogon service is designed to process
incoming mailslot messages immediately, it can get backed up processing
requests on a heavily loaded system. Each mailslot message consumes about
·1500 bytes of non-paged pool until it is processed. By setting this parameter
low, you can govern the maximum amount of non-paged pool that can be
consumed. If this parameter is set too low, Netlogon may miss important
incoming mailslot messages.

Default: 500

Appendix B Registry Value Entries 549

MaximumMailslotTimeout REG_DWORD 5 to OxffffffJf seconds

Specifies the maximum acceptable age (in seconds) of an incoming mailslot
message. If Netlogon receives a mailslot messages that arrived longer ago than
this, it ignores the message. This allows Netlogon to process messages that are
more recent. If this parameter is set too low, Netlogon will ignore important
incoming mailslot messages. Ideally, Netlogon processes each mailslot message
in a fraction of a second. This parameter is only significant if the Windows NT
server is overloaded.

Default: 10

MailslotDuplicateTimeout REG_DWORD 0 to 5 seconds

Specifies the interval (in seconds) over which duplicate incoming mailslot
messages will be ignored. Netlogon compares each mailslot message received
with the previous mailslot message received. If the previous message was
received within this many seconds and the messages are identical, this message
will be ignored. Set this parameter to 0 to disable this feature. You should
disable this feature if your network is configured such that this machine can see
certain incoming mailslot messages but cannot respond to them. For instance, a
DC may be separated from a Windows NT workstation by a bridge/router. The
bridge/router might filter outgoing NBF broadcasts, but allow an incoming one.
As such, Netlogon might respond to an NBF mailslot message (only to be
filtered out by the bridge/router) and not respond to a subsequent NBT mailslot
message. Disabling this feature (or preferably reconfiguring the bridge/router)
solves this problem. If you set this parameter too high, Netlogon will ignore
retry attempts from a client.

Default: 2

Pulse REG_DWORD 60 to 3600 seconds

Defines the typical pulse frequency (in seconds). All SAMILSA changes made
within this time are collected together. After this time, a pulse is sent to each
BDC needing the changes. No pulse is sent to a BDC that is up to date.

When this value is not specified in the Registry, NetLogon determines optimal
values depending on the domain controller's load.

Default: 300 (5 minutes)

550 Optimizing Windows NT

Pulse Concurrency REG_DWORD 1 to 500 pulses
Defines the maximum number of simultaneous pulses the Primary Domain
Controller (PDC) will send to Backup Domain Controllers (BDCs). Netlogon
sends pulses to individual BDCs. The BDCs respond asking for any database
changes. To control the maximum load these responses place on the PDC, the
PDC will only have PuIseConcurrency pulses "pending" at once. The PDC
should be sufficiently powerful to support this many concurrent replication RPC
calls. Increasing Pulse Concurrency increases the load on the PDC. Decreasing
Pulse Concurrency increases the time it takes for a domain with a large number
of BDCs to get a SAMILSA change to all of the BDCs.

Default: 20

PuIseMaximum REG_DWORD 60 to 86,400 seconds
Defines the maximum pulse frequency (in seconds). Every BDC will be sent at
least one pulse at this frequency regardless of whether its database is up to date.

Default: 7200 (2 hours)

PuIseTimeoutl REG_DWORD 1 to 120 seconds
Defines how long (in seconds) the PDC waits for a non-responsive BDC. When
a BDC is sent a pulse, it must respond within this time period. If not, the BDC is
considered to be non-responsive. A non-responsive BDC is not counted against
the PulseConcurrency limit allowing the PDC to send a pulse to another BDC
in the domain. If this number is too large, a domain with a large number of non
responsive BDCs will take a long time to complete a partial replication. If this
number is too small, a slow BDC may be falsely accused of being non
responsive. When the BDC finally does respond, it will partial replicate from
the PDC unduly increasing the load on the PDC.

Default: 5

PuIseTimeout2 REG_DWORD 60 to 3600 seconds
Defines how long (in seconds) a PDC waits for a BDC to complete partial
replication. Even though a BDC initially responds to a pulse (as described for
PulseTimeoutl), it must continue making replication progress or the BDC will
be considered non-responsive. Each time the BDC calls the PDC, the BDC is
given another PuIseTimeout2 seconds to be considered responsive. If this
number is too large, a slow BDC (or one that has its replication rate artificially
governed) will consume one of the Pulse Concurrency slots. If this number is
too small, the load on the PDC will be unduly increased because of the large
number of BDCs doing a partial sync.

Note This parameter only affects the cases where a BDC cannot retrieve all the
changes to the SAMILSA database in a single RPC call. This will only happen
if a large number of changes are made to the database.

Default: 300 (5 minutes)

Appendix B Registry Value Entries 551

Randomize REG_DWORD 0 to 120 seconds

Specifies the BDC back off period (in seconds). When the BDC receives a
pulse, it will back off between zero and Randomize seconds before calling the
PDC. The pulse is sent to individual BDCs, so this parameter should be small.
Randomize should be smaller than PulseTimeoutl. Consider that the time to
replicate a SAMILSA change to all the BDCs in a domain will be greater than:

[(Randomize/2) * NumberOfBdcsInDomain] I PulseConcurrency

When this value is not specified in the Registry, NetLogon determines optimal
values depending on the domain controller's load.

Default: 1

ReplicationGovernor REG_DWORD 0 to 100 percent

Defines both the size of the data transferred on each call to the PDC and the
frequency of those calls. For instance, setting ReplicationGovernor to 50%
will use a 64 Kb buffer rather than a 128 Kb buffer and will only have a
replication call outstanding on the net a maximum of 50% of the time. Do not set
the ReplicationGovernor too low, or replication may never complete. A value
of 0 will cause Netlogon to never replicate. The SAMILSA database will be
allowed to get completely out of sync.

BDCs can be configured for the variances of WAN types.
ReplicationGovernor allows the adminstrator t~ control the partial
synchronisation parameters. This parameter must be set individually on each
BDC.

Note It is also possible to configure different replication rates at different times
of the day using a script file with the AT command (for example, net stop
netlogon, regini scriptfile, net start netlogon). The script file contains the path to
the RegistrationGovernor parameter and the new Registry entries.
REGINI.EXE is part of the Windows NT Resource Kit.

Default: 100

Update REG_SZ Yes or No

When this value is set to Yes, NetLogon fully synchronizes the database each
time it starts.

Default: No

552 Optimizing Windows NT

NWLink Transport Entries (IPX/SPX)
NWLink is an implementation of the IPXlSPX protocols popular in NetWare
networks. In addition, the module NWNBLink provides support for the Novell
implementation of the NetBIOS protocol.

Caution All entries have reasonable defaults that usually should not need to be
modified. Be careful when modifying an entry, because any change can easily affect
the performance of a conversation between the sender and receiver.

The NWLink keys do not appear in the Registry unless this service is installed
using the Network icon in Control Panel. After the service is installed, not all
entries appear by default in the Registry. If the entry is not there, the default value
for that entry is used.

NWNBLink Entries for Microsoft Extensions to Novell
NetBIOS
The Microsoft Extensions to Novell NetBIOS are included to enhance the
performance of the traditional Novell NetBIOS protocol. NWNBLink can detect
automatically whether it is talking to a Novell NetBIOS implementation that does
not understand these extensions; in such a case, NWNBLink will fall back to the
standard Novell NetBIOS protocol currently used in NetWare networks. However,
significant performance gains can be realized if the extensions are used (for '
example, if the NetBIOS conversation occurs between two Windows NT
computers).

The Registry path for these value entries is the following:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet
\Services\NWNBLink\Parameters

AckDelayTime REG_DWORD 50 to 65535 milliseconds

Determines the value of the delayed acknowledgment timer.

Default: 250 (no entry = default)

Appendix B Registry Value Entries 553

AckWindow REG_DWORD 0 to 65535 frames

Specifies the number of frames to receive before sending an acknowledgment.
The AckWindow entry is used as a clocking mechanism on networks in which
the sender is networked on a fast LAN, but the receiver is networked on the
other side utilizing a slower link. By automatically forcing acknowledgments,
the sender can keep sending frames continually. If both the sender and
receiver are located on a fast link, you can set AckWindow to 0 to tum off
sending an acknowledgment to the sender. Alternatively, NWNBLink can be
set to dynamically determine whether to use the AckWindow parameter based
on the setting of AckWindowThreshold. Related parameter:
AckWindowThreshold.

Default: 2 (no entry = default)

AckWindowThreshold REG_DWORD 0 to 65535 milliseconds

Specifies the threshold value for the round-trip time that defines when
AckWindow will be ignored. The round trip time is an estimate of how long it
takes for a frame to be sent and received from a workstation. NWNBLink
determines this estimate and uses it as a basis for determining whether it is
necessary to send automatic acknowledgments. If AckWindowThreshold is
set to 0, NWNBLink relies on the AckWindow entry. Related parameters:
AckWindow.

Default: 500

EnablePiggyBackAck REG_DWORD 0 or 1

Allows the receiver to piggyback acknowledgments. Piggybacking
acknowledgments can occur when the receiver has detected the end of a
NetBIOS message. When the sender and receiver are not participating in two
way NetBIOS traffic, you should set EnablePiggyBackAck to O. An example
of one-way traffic is a stock update application, where a server constantly
sends NetBIOS messages to clients but the client does not need to respond.

If EnablePiggyBackAck is set to 1 but there is no back traffic, NWNBLink
waits the number of milliseconds determined by AckDelayTime before
sending the acknowledgment, and then it turns off support for piggybacking
acknowledgments. If the workstation at some point starts sending as well as
receiving data, NWNBLink turns support back on for piggybacking
acknowledgments. Related parameter: AckDelayTime.

Default: 1 (true-enable piggybacking acknowledgments; no entry = default)

Extensions REG_DWORD 0 or 1

Specifies whether to use NWNBLink extensions discussed in this section.

Default: 1 (true; no entry = default)

554 Optimizing Windows NT

RcvWindowMax REG_DWORD 1 to 49152frames
Specifies the maximum number of frames the receiver can receive at one
time. The value specified by RcvWindowMax is sent to the sender during
session initialization to give the sender an upper bound on the number of
frames that can be sent at one time. Related parameters: AckDelayTime,
AckWindow, Ack WindowThreshold, EnablePiggyBackAck, and
RcvWindowMax.

Default: 4 (no entry = default)

NWNBLink Entries for Novell NetBIOS or Microsoft
Extensions
The Registry path for these value entries is the following:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet
\Services\NWNBLink\Parameters

BroadcastCount REG_DWORD 1 to 65535

Specifies the number of times to send a broadcast. If Internet is set to 1, the
BroadcastCount is doubled. Related parameter: BroadcastTimeout.

Default: 3 (no entry = default)

BroadcastTimeout REG_DWORD 1 to 65535 half-seconds

Specifies the time between sending find-name requests. This value is not
affected if Internet is set to 1. Related parameter: BroadcastCount.

Default: 1 (no entry = default)

ConnectionCount REG_DWORD 1 to 65535
Specifies the number of times to send a connection probe. A connection probe is
sent by the initiator of a session if a connection could not be made to the remote
computer. If Internet is set to 1, the ConnectionCount is doubled. Related
parameter: ConnectionTimeout.

Default: 5 (no entry = default)

ConnectionTimeout REG_DWORD 1 to 65535 half-seconds
Specifies the time between sending connection probes when initiating a session.

Default: 2 (no entry = default)

InitialRetransmissionTime REG_DWORD {to 65535 milliseconds
Specifies the initial value for the retransmission time. Related parameter:
RetransmitMax.

Default: 500 (no entry = default)

Appendix B Registry Value Entries 555

Internet REG_DWORD 0 or 1

Specifies whether to change the packet type from Ox04 to Ox14 (Novell WAN
broadcast).

Default: 1 (true; no entry = default)

KeepAliveCount REG_DWORD 1 to 65535

Specifies the number of times to send a session-alive frame before timing out if
there is no response. Related parameter: KeepAliveTimeout.

Default: 8 (no entry = default)

KeepAliveTimeout REG_DWORD 1 to 65535 half-seconds

Specifies the time between sending session-alive frames. Related parameter:
KeepAliveCount.

Default: 60 (no entry = default)

RetransmitMax REG_DWORD 1 to 65535

Specifies the maximum number of times the sender should retransmit before
assuming that something is wrong with the link. Related parameter:
InitialRetransmissionTime.

Default: 8 (no entry = default)

NWLink Entries for IPXlSPX:.
NWLink Parameters for the Network Adapter Card
This parameter is specific for each binding of NWLink to a network adapter card.
The Registry path for these value entries is the following:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services
\NWLinkIPX\NetConfig\Driver01

BindSap REG_DWORD Type field

Specifies the Ethertype if the frame format is Ethernet II. The Ethertype field is
only relevant if Ethernet II frames are to be sent or received. You can choose the
frame type using the Network icon in Control Panel. For more information, see
the explanation for the PktType entry. Related parameter: PktType.

Default: 8137 (in hex)

556 Optimizing Windows NT

EnableFuncaddr REG_DWORD Boolean

When set to 1, this parameter specifies that the IPX functional address will be
enabled if this card is a Token Ring card. If this value is 0, the IPX functional
address will not be added. The IPX functional address is C00000800000 (hex).
Novell has been phasing out use of this, but it is still in use in some places. It is
up to the application to take advantage of the IPX functional address. In most
instances, the broadcast address (ffffffffffff hex) is used instead.

Default: 1 (true)

EnableWanRouter REG_DWORD Boolean

When set to 1 (true), the RIP router should be enabled for this adapter.

Default: 1 (true)

MaxPktSize REG_DWORD 0 to 65535

Specifies the maximum frame size the network adapter card should be
allowed to transmit. If this number is 0, NWLink will get this information
from the card driver. This parameter allows the administrator to make the
maximum transmit size for a card smaller than the card driver allows. A
scenario in which you might want to change this entry is in an environment in
which the network adapter card on one side of a conversation is on a link that
has a larger frame size than the link on the other side of a conversation-for
example, if the sending station is linked to a 16 Mbps Token Ring and the
receiving station is linked to an Ethernet network.

Default: 0

NetworkNumber REG_DWORD Number

Specifies the network number (in hex) to be used for this adapter. If this number
is 0, the NWLink will get the network number from the network as it is running.
This parameter is set using the Network icon in Control Panel. IPX network
numbers are 4 bytes (8 hex characters) long. An example of an IPX network
number is AABBDDFF. You should not have to enter a specific value because
NWLink will determine it for you. Make sure to get the network number for
your IPX sub net from the network administrator if you want to enter a specific
number.

Default: 0

Appendix B Registry Value Entries 557

PktType REG_DWORD 0, 1, 2, 3,4, or OxFF
NWLink supports Ethernet, Token Ring, FDDI, and ARCnet topologies. The
PktType parameter specifies the packet form to use. The valid values are the
following:

Value Packet form

0 Ethernet_II

1 Ethernec802.3

2 802.2

3 SNAP

4 ARCnet

OxFF Auto-detect

If mUltiple packet types are used for an adapter, the network number for each
can be specified by adding corresponding entries in the NetworkNumber
multi string.

If the adapter is an Ethernet adapter, choose between values 0 through 3. If the
adapter is either a Token Ring or FDDI adapter, choose between s 2 and 3. If
you are using an ARCnet adapter, choose value 4. If the adapter is a Token Ring
or FDDI adapter, values 0 and 1 will work the same as value 2. Related
parameter: BindSap.

Default: 1 (802.3)

S ourceRouteB cast REG_DWORD 0 or 1
Specifies the source route to be used when transmitting a packet to the broadcast
MAC (Media Access Control) address (ffffffftFFF hex). If this value is 0, the
packet will be transmitted to the single-route broadcast (OxC2, Ox70). If the
value is 1, the packet will be transmitted to the all-routes broadcast
(Ox82, Ox70). Related parameters: SourceRouteDef, SourceRouting, and
SourceRouteMCast.

Default: 0

SourceRouteDef REG_DWORD 0 or 1
Specifies the source route to be used when transmitting a package to a unique
MAC address that is not in the source routing table. If the MAC address is in the
source routing table, the route in the table will be used. If this value is 0, the
packet will be transmitted to the single-route broadcast (OxC2, Ox70). If the
value is not 0, the packet will be transmitted to the all-routes broadcast (Ox82,
Ox70). Related parameters: SourceRouteBcast, SourceRouting, and
SourceRouteMCast.

Default: 0

558 Optimizing Windows NT

SourceRouteMcast REG_DWORD Boolean

Specifies the source route to be used when transmitting a packet to a multicast
MAC address (COOOxxxxxxxx). If this value is 0, the packet will be transmitted
to the single-route broadcast (OxC2, Ox70). If the value is not 0, the packet will
be transmitted to the all-routes broadcast (Ox82, Ox70). Related parameters:
SourceRouteBcast, SourceRouteDef, and SourceRouting.

Default:· 0 .

SourceRouting REG_DWORD Boolean

Specifies whether to use source routing. This parameter is only used if the
adapter is a Token Ring adapter. If there are no source routing bridges on the
Token Ring, disable this entry to disable all of the source routing logic. Related
parameters: SourceRouteBcast; SourceRouteDef, and SourceRouteMCast.

Default: 0 (false--do not use source routing)

NWLink Entries for IPX/SPX:
GloballPX Parameters
The following parameters are global for the entire transport. The Registry path for
these value entries is the following:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet
\Services\NWLinkIPX\Parameters

Connection Count REG_DWORD 1 to 65535

Specifies the number of times the probe will be sent when SPX is trying to
connect to a remote node. If no response is received after the probes are sent,
an error will occur. Related parameter: ConnectionTimeout.

Default: 10

ConnectionTimeout REG_DWORD 1 to 65535 half-seconds

Specifies the time between connection probes when SPX is trying to connect
to a remote node. Related parameter: Connection Count.

Default: 2 (l second)

InitDatagrams REG_DWORD 1 to 65535

Specifies the number of datagrams initially allocated by IPX. Related
parameter: MaxDatagrams.

Default: 10

DedicatedRouter REG_DWORD Boolean

When set to 1 (true), this computer is a dedicated router and will not have
services running on it.

Default: 0 (false)

Appendix 8 Registry Value Entries 559

DisableDialinNetbios REG_DWORD Boolean

When set to 1 (true), IPX should prevent NetBIOS type 20 packets from going
out over dial-in WAN lines. This setting prevents unneeded traffic on the WAN.
The only case where DisableDialinNetbios should be false is when a NetBIOS
application on the local computer needs to connect to a remote computer over a
dial-in W AN line.

Default: 1 (true)

DisableDialoutSap REG_DWORD Boolean

When set to 1 (true), IPX should disable SAP announcements and responses on
dial-out WAN lines. This prevents the WAN line from being tied up with router
to router SAP traffic and allows the Gateway Service for NetWare or the Client
Service for N~tWare on the machine to correctly discover servers on the WAN.

Default: 0 (false)

EthernetPadToEven REG_DWORD Boolean

When set to.1 (true), Ethernet sends should be padded to an even length to
accommodate ODI card drivers that can receive only even-length frames.

Default: 1 (true)

KeepAliveCount REG_DWORD 1 to 65535

Specifies how many times to send a keep-alive probe before timing out if
there is no response. Related parameter: KeepAliveTimeout.

Default: 8

KeepAliveTimeout REG_DWORD' 1 to 65535 half-seconds

Specifies the time that the local side should wait before sending a probe to the
remote to verify that the SPX connection is still alive. Related parameter:
KeepAliveCount.

Default: 12 (6 seconds)

MaxDatagrams REG_DWORD 1 to 65535

Specifies the maximum number of datagrams that IPX will allocate. Related
parameter: InitDatagrams.

Default: 50

RipAgeTime REG_DWORD' 1 to 65535 minutes

IPX maintains an RIP cache in order to locate computers on a remote network.
The RipAgeTime entry informs IPX how long to wait before requesting an RIP
update for an entry. This timer is reset when an RIP announcement is received
for an entry in the RIP cache.

Default: 5 minutes

560 Optimizing Windows NT

RipCount REG_DWORD 1 to 65535

When the RIP protocol layer is trying to find a route on the network, this
parameter specifies how many times to send a request before giving up.
Related parameter: Rip Timeout

Default: 5

RipTableSize REG_DWORD 1 to 65535

Specifies the number of buckets in the RIP hash table.

Default: 7

RipTimeout REG_DWORD 1 to 65535 half-~econds
Specifies the timeout between RIP request packets being sent out when the
RIP protocol layer is trying to find a route on the network. Related parameter:
RipCount.

Default: 1 (1 half-second)

RipUsageTime REG_DWORD 1 to 65535 minutes

IPX maintains a RIP cache in order to locate computers on a remote network.
The RipUsageTime entry informs IPX how many minutes to wait before an
entry in the RIP cache will be deleted from the cache. This timer is reset when
a packet is sent to the remote computer.

Default: 15 minutes

SingleNetworkActive REG_DWORD Boolean

When set to 1 (true), either the LAN or the WAN line can be active on the
computer, but not both at once. This setting allows the Gateway Service for
NetWare or the Client Service for NetWare to correctly locate NetWare servers
on the WAN when dialed in.

Default: 0 (false)

SourceRouteUsageTime REG_DWORD 1 to 65535 minutes

Range: Specifies the number of minutes an unused entry can remain in the
Token Ring source routing cache before it is flushed.

Default: 10

VirtualNetworkNumber REG_DWORD 0 to 4294967295

Specifies the virtual network number of this computer.

Default: 0

Appendix B Registry Value Entries 561

WindowSize REG_DWORD 1 to 10 SPX packets

Specifies the window to use in the SPX packets. SPX uses the Allocation field
of the SPX packet to tell the remote how many receives are available for
receiving data. The WindowSize entry specifies what value to put in the SPX
Allocation field.

Default: 4

NWLink Entries for IPX/SPX:
Global SPX Parameters.
The following parameters are global for the entire transport. The Registry path for
these value entries is the following:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet
\Serv;ces\NWLnkSPX\Parameters

ConnectionCount REG_DWORD 1 to 65535

Specifies the number of times the probe will be sent when SPX is trying to
connect to a remote node. If no response is received after the probes are sent,
an error will occur. Related parameter: ConnectionTimeout.

Default: 10

ConnectionTimeout REG_DWORD 1 to 65535 half-seconds

Specifies the time between connection probes when SPX is trying to connect
to a remote node. Related parameter: Connection Count.

Default: 2 (1 second)

InitPackets REG_DWORD 1 to 65535

Specifies the initial number of packets that SPX allocates.

Default: 5

InitialRetransmissionTime REG_DWORD 1 to 65535 milliseconds

Specifies the amount of time that SPX will wait for an acknowledgement
before sending a probe.

Default: 500 milliseconds

562 Optimizing Windows NT

KeepAliveCount REG_DWORD 1 to 65535

Specifies how many times to send a keep-alive probe before timing out if
there is no response. Related parametet:: KeepAliveTimeout.

Default: 8

KeepAliveTimeout REG_DWORD 1 to 65535 half-seconds

Specifies the time that the local side should wait before sending a probe to the
remote to verify that the SPX connection is still alive. Related parameter:
KeepAliveCount.

Default: 12 (6 seconds)

MaxPackets REG_DWORD 1 to 65535

Specifies the maximum number of pa~kets that SPX will allocate.

Default: 30

MaxPacketSize REG_DWORD 1 to 65535

Specifies the maximum packet size that SPX-2 will use when negotiating packet
size with the remote network node. SPX-2 will use the correct size for the
network if it is smaller than MaxPacketSize.

Default: 4096

RetransmissionCount REG_DWORD 1 to 65535

Specifies the number of probes that SPX sends while awaiting an
acknowledgement for data.

Default: 8

WindowSize REG_DWORD 1 to 10 SPX packets

Specifies the window to use in the SPX packets. SPX uses the Allocation field
of the SPX packet to tell the remote how many receives are available for
receiving data. The WindowSize entry specifies what value to put in the SPX
Allocation field.

Default: 4

Appendix B Registry Value Entries 563

Redirector (Rdr) Service Entries
The subkey for the Rdr (redirector) service has the following Registry path:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Serv;ces\Rdr\Parameters

For the search buffer sizes defined in the following entries: If the buffer passed for
the search is less than the LowerSearchThreshold value, the system requests
LowerSearchThreshold bytes of data from the server. If the buffer size is between
the value of LowerSearchThreshold and UpperSearchBufferSize, the system
uses the buffer size. On a slow link (such as a RAS link), if it will take more than
five seconds to retrieve data, the Redirector service uses the user's requested buffer
size.

ConnectTimeout REG_DWORD Number of seconds

Specifies the maximum amount of time the redirector will wait for a connect or
disconnect to complete.

Default: 300 (5 minutes)

LowerSearchBufferSize REG_DWORD Number of kilobytes

Specifies the number of bytes the redirector will use for small searches.

Default: 16K

LowerSearchThreshold REG_DWORD Number of kilobytes

Specifies the number of bytes below which the redirector will request a search
of LowerSearchBufferSize. If the search size is larger than this (but below the
UpperSearchBufferSize), the redirector will use the UpperSearchBufferSize.

Default: 16K

UpperSearchBufferSize REG_DWORD Number of kilobytes

Specifies the number of bytes the redirector will use for large searches.

Default: 32K

UseAsyncWriteBehind REG_DWORD Oor 1

Enables the asynchronous-write-behind variation of the write-behind
optimization.

Default: 1 (true)

UseWriteBehind REG_DWORD 0 or 1

Enables the write-behind optimization.

Default: 1 (true)

564 Optimizing Windows NT

Remote Access Service (RAS) Entries
The RemoteAccess subkey is created in the Registry when you install RAS on a
server, using the Network icon in Control Panel. The default values in
RemoteAccess and its subkeys work well for all Windows NT operations such as
copying files, using network resources, and sending and receiving electronic mail.
However, for some systems, you may want to adjust individual parameters to suit
your particular performance and security needs.

Initially, there are no value entries in the Registry for the Remote Access key or its
subkeys until you add them with new settings. (The only exception is
EnableNetbiosGateway, the NetBIOS parameter.) Unlisted value entries are set to
their default values, as described in this section.

Remote Access Parameters Subkey Entries
The Parameters subkey for Remote Access has the following Registry path:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Serv;ces
\RemoteAccess\Parameters

For changes to take effect, you must stop and restart the Remote Access service.
The functions and settings of these vaiue entries are as follows:

AuthenticateRetries REG_DWORD 0 to 10

Sets the maximum number of unsuccessful retries allowed if the initial attempt
at authentication fails.

Default: 2

AuthenticateTime REG_DWORD 20 to 600 seconds

Sets the maximum time limit within which a user must be successfully
authenticated. If the client does not initiate the authentication process within this
time, the user is disconnected.

Default: 120 seconds

CallbackTime REG_DWORD 2 to 12 seconds

Sets the time interval that the server waits before calling the client back when .
the Callback feature has been set. Each client communicates the value of its own
callback time when connecting to a Remote Access server. If this value is not
communicated (that is, if the client does not communicate a value for the
callback time, as with Remote Access 1.0 and 1.1 clients), the value of the
CallbackTime parameter becomes the default.

Default: 2 seconds

Appendix B Registry Value Entries 565

RAS NetBIOSGateway Subkey Entries
The Registry path for these entries is the following:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Serv;ces
\RemoteAccess\Parameters\NetbiosGateway

AutoDisconnect REG_DWORD 0 to 1000 minutes

Sets the time interval after which inactive connections are terminated. Inactivity
is measured by lack of NetBIOS session data transfer, such as copying files,
accessing network resources, and sending and receiving electronic mail. You
may want to set this value to 0 seconds if clients are running NetBIOS datagram
applications. Setting this value to 0 turns off AutoDisconnect.

Default: 20 minutes

DisableMcastFwdWhenSessionTraffic REG_DWORD 0 or 1
Allows NetBIOS session traffic (for example, Windows NT-based applications)
to have priority over multicast datagrams (such as server messages). In other
words, multicast datagrams are transferred only when there is no session traffic.
Unless you're using an application that depends on multicast datagrams, leave
this parameter enabled.

Default: 1 (enabled)

EnableBroadcast REG_DWORD 0 or 1
Determines whether broadcast datagrams are forwarded: to remote workstations.
Broadcast datagrams are not often useful and take up too much bandwidth on a
slow link. Unless you're using an application that relies on broadcast datagrams,
leave this parameter disabled.

Default: 0 (disabled)

EnableNetbiosSessionsAuditing REG_DWORD 0 or 1

Enable this parameter to record in the event log the establishment of NetBIOS
sessions between the remote clients and the LAN servers. Enable this parameter
to track the NetBIOS resources accessed on the LAN.

Default: 0 (disabled)

MaxBcastDgBuffered REG_DWORD 16 to 255

Sets the number of broadcast datagrams that the gateway buffers for a client. If
you're using an application that communicates extensively through multicast or
broadcast datagrams, increase this parameter so that the Remote Access server
can deliver all datagrams reliably.

Default: 32

566 Optimizing Windows NT

MaxDgBufferedPerGroupName REG_DWORD 1 to 255

Sets the number of datagrams that can be buffered per group name. Increasing
this value buffers more datagrams per group name but also takes up more virtual
memory.

Default: 10

MaxDynMem REG_DWORD 131072 to 4294967295

Sets the amount of virtual memory used to buffer NetBIOS session data for each
remote client.

Because the Remote Access server is a gateway between the slow line and the
LAN, data is stored (buffered) in its memory when coming from the fast line
(LAN) before it is forwarded to the slow line (asynchronous line).

The Remote Access server minimizes the usage of the system's physical
memory by locking only a minimal set of pages (about 64K per client) and
making use of virtual memory (up to MaxDynMem) to buffer the rest of the
data. So, as long as there is enough space on the hard disk to expand
P AGEFILE.SYS, you can increase this value if needed.

If you have an application with a LAN (fast) sender and an asynchronous (slow)
receiver, and if the sender is sending more data at a time than the Remote
Access server can buffer in MaxDynMem, the Remote Access server tries to
apply a form of NetBIOS level flow control by not submitting NCB.RECEIVE
on the session until it has enough buffer space to get incoming data. For this
reason, if you have such an application, you should increase your NetBIOS
SENDIRECEIVE timeouts so that the fast sender can keep pace with the slow
receiver.

Default: 655350

MaxNames REG_DWORD 1 to 255

Sets the number of unique NetBIOS names each client can have, with a limit of
255 names for all clients together.

Remote clients running Windows NT and Windows for Workgroups may need
as many as seven or eight names each. To accommodate these workstations, set
the MaxNames value to 8 and reduce the number of ports on the Remote
Access server. If you have Windows NT or Windows for Workgroups clients
dialing in to servers running Remote Access version 1.1 or earlier, set this
parameter to 8 or greater.

Default: 255

Appendix B Registry Value Entries 567

MaxSessions REG_DWORD 1 to 255

Sets the maximum number of simultaneous NetBIOS sessions each client can
have, with a limit of 255 sessions for all clients together. If you have mUltiple
clients connecting simultaneously with each running 4 or 5 sessions, decrease
the value of this parameter so that the total number of sessions does not exceed
255.

Default: 255

MultiCastForwardRate REG_DWORD -1 (disabled); 0 to 32,676 seconds

Governs the multicasting of group name datagrams to all remote workstations.
This parameter filters datagrams sent on group names by forwarding them at a
specified time interval.

The value -1 disables forwarding. The value ° guarantees delivery of group
name datagrams. The value n forwards datagrams every n seconds, when
lsns32,676.

If the EnableBroadcast parameter is set to 0, broadcasts are not forwarded
even if the MultiCastForwardRate parameter is set to a positive number (in
this case, only multicast datagrams are forwarded). The line becomes
overloaded. If MultiCastForwardRate is set to -1, broadcasts are still not
forwarded even if EnableBroadcast is set to 1. See also EnableBroadcast.

To save bandwidth for session traffic, filter the datagrams. However, if you have
an application based on multicast datagrams, set this parameter to 0. This value
guarantees delivery of all datagrams sent on group names from the LAN to the
remote client.

Default: 5

NumRecvQuerylndications REG_DWORD 1 to 32

Allows a Remote Access client to initiate multiple network connections
simultaneously. If a remote client is running a NetBIOS application that does
multiple NCB.CALL commands simultaneously, increase this parameter to
improve performance.

Default: 3

RcvDgSubmittedPerGroupName REG_DWORD 1 to 32
Determines the number of NetBIOS commands of the type Receive Datagram
that can be submitted simultaneously per group name on the LAN stack. Keep
this setting as small as possible to minimize the amount of memory consumed by
system resources. Each datagram command received locks about 1.5K of
physical memory in the system.

Default: 3

568 Optimizing Windows NT

RemoteListen REG_DWORD 0 to 2

Sets the remote NCB_LISTEN capability.

Value

o

2

Meaning

Disables a client's ability to post NCB_LISTEN for any NetBIOS name.
Because every remote listen posted consumes one session, setting this
parameter to 0 saves sessions.

Messages. Allows clients to post NCB_LISTEN on Windows NT
ServerWindows NT Server message aliases only. If a remote client is
running the Messenger service, it can then receive messages from LAN
users, printers, and the like.

All. Enables NCB_LISTEN for all remote client NetBIOS names,
allowing clients to run NetBIOS server applications. This setting allows
all clients to function as NetBIOS servers on the network.

It is best to leave the RemoteListen parameter set to the default, 1 (messages).
Allowing NCB_LISTEN capability on remote clients can significantly drain
system resources and therefore is not recommended.

If the RemoteListen parameter is set to 2, Remote Access posts an
NCB_LISTEN on all NetBIOS names of Remote Access clients. Because the
average Windows NT ServerWindows NT Server workstatIon has about seven
or eight NetBIOS names assigned to it, the total number of NetBIOS names for
which an NCB_LISTEN would be posted is 7 or 8 * 64 (the maximum number
of clients per Remote Access server), which exceeds the 255 maximum.

Default: 1 (messages)

SizWorkBufs REG_DWORD 1024 to 65536

Sets the size of work buffers. The default setting is optimized for the server
message block (SMB) protocol, the protocol between the workstation and the
server running on the Windows NT Advanced Server system.

Default: 4500

RAS AsyncMAC Subkey Entries
The Registry path for these entries is the following:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Serv;ces
\AsyncMacn\Parameters

For changes to take effect, you must restart the computer.

Appendix B Registry Value Entries 569

MaxFrameSize REG_DWORD 576 to 1514

Determines the maximum frame size. Use smaller frames for noisy links. A
lower setting sends less data per frame, slowing performance. Do not change
this parameter for previous versions of the Remote Access service. The value
is negotiated between the server and Windows NT clients.

Default: 1514

RAS PPP Subkey Entries
The Registry path that contains entries for the Point-to-Point Protocol (PPP) service
is the following:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Rasman\PPP

MaxConfigure REG_DWORD Number

Indicates the number of Configure-Request packets sent without reeceiving a
valid Configure-Ack, Configure-Nak or Configure-Reject before assuming that
the peer is unable to respond.

Default: 10

MaxFailure REG_DWORD Number

Indicates the number of Configure-Nak packets send without sending a
Configu~e-Ack before assuming that the configuration in not converging.

Default: 10.

MaxReject REG_DWORD Number

Indicates the number of Config-Rejects sent before assuming that the PPP
negotiation will not converge.

Default: 5

MaxTerminate REG_DWORD Number

Indicates the number of Tefminate-Request packets sent without receiving a
Terminate-Ack before assuming that the peer is unable to respond.

Default: 2

Additional PPP entries are found in the following subkey:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Rasman\PPP
\IPCP

570 Optimizing Windows NT

PriorityBasedOnSubNetwork DWORD 0 or 1
Local and remote subnets are part of the same network number range. By
default, RAS forwards packets over the RAS link when the two interfaces
belong to the same network. RAS forwards packets based on the sub net number
and lets you see this machine on the LAN even when called in over RAS if this
value is set to 1.

Default: 0

RAS RasMan Subkey Entries
The Registry path for the RasMan subkey is the following:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Serv;ces\RasMan\Parameters

Logging REG_DWORD 0 or 1

Turns on information tracking for the modem using the DEVICE. LOG file. Set
this value to 1 if you have modem problems that you cannot solve following
documented procedures in the Microsoft Windows NT Remote Access
Administrator's Guide. Logging begins the next time you dial in to connect
through RAS. You do not need to restart your computer for the DEVICE.LOG
file to be created.

Replicator Service Entries
The Registry path that contains entries for the Replicator service is the following:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Serv;ces
\Repl;cator\Parameters

ExportList REG_SZ List

Lists an unlimited number of servers or domains that receive notices when the
export directory is updated. These servers subsequently replicate from the export
server. If no List value is specified, the export server sends a notice to its
domain. Separate multiple List names with a semicolon (;). This value is ignored
if the value of Replicate is 2 (Import).

Do not use the UNC name when you specify a computername; that is, do not
include two backslashes (\\) at the beginning of the name.

D se the Replicator controls in Server Manager or the Server icon in Control
Panel to set this value.

Default: (none)

Appendix 8 Registry Value Entries 571

GuardTime REG_DWORD 0 to one-half of Interval minutes

Sets the number of minutes an export directory must be stable (no changes to
any files) before import servers can replicate its files.

Default: 2 minutes

ImportList REG_SZ List

Lists an unlimited number of servers or domains that receive notices when the
import directory is updated. These'servers subsequently replicate from the
import server. If no List value is specified, updates come from the import
server's domain. Separate multiple List names with a semicolon (;). This value
is ignored if the value of Replicate is 1 (Export).

Do not use the UNC name when you specify a computemame; that is, do not
include two backslashes (\\) at the beginning of the name.

Use the Replicator controls in Server Manager or the Server icon in Control
Panel to set this value.

Interval REG_DWORD 1 to 60 minutes

Sets how often an export server checks the replicated directories for changes.
This option is ignored on import servers.

Default: 5 minutes

Pulse REG_DWORD 1 to 10 cycles

Specifies how often the export server repeats sending the last update notice.
These repeat notices are sent even when no changes have occurred, so that
import servers that missed the original update notice can receive the notice. The
server waits the equivalent of (Pulse * Interval) minutes before se~ding each
repeat notice.

Default: 3

Random REG_DWORD 1 to 120 seconds

Specifies the maximum time that the import servers can wait before requesting
an update. An import server uses the export server's value of Random to
generate a random number of seconds (from 0 to the value of Random). The
import server waits this long after receiving an update notice before requesting
the replica from the export server. This prevents the export server from being
overloaded by simultaneous update requests.

Default: 60

572 Optimizing Windows NT

Replicate REG_DWORD 1, 2, or 3

Specifies the Replicator action, according to the following:

Value

2

3

Meaning

Export-the server maintains a master tree to be replicated.

Import-the server receives update notices from the export server.

Both- the server is to export and import directories or files.

Use the Replicator controls in Server Manager or the Server icon in Control
Panel to set this value.

Default: 3

Server Service Entries
With Registry Editor, you can modify the startup parameters for the Server
service. Unless otherwise noted, these parameters are found in this path:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Serv;ces
\LanmanServer\Parameters

AlertSched REG_DWORD 1 to 65535 minutes

Specifies in Microsoft LAN Manager and in Windows NT how often the server
checks alert conditions and sends needed alert messages.

Default: 5 ~

BlockingThreads REG_DWORD 1 to 9999 for NTAS

Specifies the number of threads set aside by the server to service requests that
can block the thread for a significant amount of time. Larger values can increase
performance but use more memory. A value that is too large can impede
performance by causing excessive task switching.

Default: (depends on configuration; max. 4 for Windows NT Workstation)

ConnectionlessAutoDisc REG_DWORD 15 minutes to infinity

Disconnect time for clients using direct hosted IPX. If the client do~s not send a
request to the server during this interval, the client is disconnected regardless of
whether it has open files or pipes.

Default: 15

CriticalThreads REG_DWORD 1 to 9999

Special-purpose threads used for time-critical tasks.

Default: 1

Appendix B Registry Value Entries 573

DiskSpaceThreshold REG_DWORD 0 to 100 percent

Specifies the percentage of free disk space remaining before an alert is sent.

Default: 10 percent

EnableFCBopens REG_DWORD 0 or 1

Specifies whether MS-DOS Pile Control Blocks (PCBs) are folded together, so
multiple remote opens are performed as a single open on the server. This
saves resources on the server.

Default: 1 (true)

EnableOplockForceClose REG_DWORD 0 or 1

If a client has an opportunistic lock (oplock) and does not respond to an oplock
break, there are two possible behaviors that this parameter selects:

Value

o (false)

1 (true)

Meaning

Fail the second open, thereby limiting access to the file. (This is typical
behavior for a client running LAN Manager version 2.0.)

Force closed the open instance of the client that has the oplock, risking
the loss of cached data. (This is typical behavior for a client running
LAN Manager version 2.1.)

Default: 0 (false)

EnableOplocks REG_DWORD 0 or 1

Specifies whether the server allows clients to use oplocks' on files. Oplocks are
a significant performance enhancement, but have the potential to cause lost
cached data on some networks, particularly wide-area networks.

Default: 1 (true)

EnableRaw REG_DWORD 0 or 1

Specifies whether the server processes raw Server Message Blocks (SMBs). If
enabled, this allows more data to be transferred per transaction and improves
performance. However, it is possible that processing raw 5MBs can impede
performance on certain networks. This parameter is automatically tuned by
the server.

Default: 1 (true)

ErrorThreshold REG_DWORD 1 to 65535

Sets the number of errors that can occur within an AlertSched interval before
the server sends an alert message.

Default: 10

574 Optimizing Windows NT

Hidden REG_BINARY 0 or 1

If this parameter is disabled, the server's name and comment can be viewed by
others on the domain. If enabled, the server's name and comment will not be
announced.

Default: 0 (False)

InitConnTable REG_DWORD 1 to 128

Specifies the initial number of tree connections to be allocated in the
connection table. The server automatically increases the table as necessary, so
setting the parameter to a higher value is an optimization.

Default: 8

InitFileTable REG_DWORD 1 to 256

Specifies the initial number of file entries to be allocated in the file table of each
server connection.

Default: 16

InitSearchTable REG_DWORD 1 to 2048

Specifies the initial number of entries in the connection's search table.

Default: 8

InitSessTable REG_DWORD . 1 to 64

Specifies the initial number of session entries to be allocated in the session table
of each server connection.

Default: 4

InitWorkItems REG_DWORD 1 to 512

Specifies the initial number of receive buffers, or work items, used by the
server. Allocating work items costs a certain amount of memory initially, but
not as much as having to allocate additional buffers later.

Default: (depends on configuration)

IRPstackSize REG_DWORD 1 to 12

Specifies the number of stack locations in I/O Request Packets (IRPs) used by
the server. It may be necessary to increase this number for certain transports,
MAC drivers, or local file system drivers. Each increment costs 36 bytes of
memory per work item (that is, #Work items * 36 bytes = total memory cost).

Default: 5

Appendix B Registry Value Entries 575

LinklnfoValidTime REG_DWORD a to 100,000 seconds

Specifies the amount of time during which the transport link information is still
valid. If more than this amount of time has passed since the last query, the server
requires transport link information.

Default: 60

MaxFreeConnections REG_DWORD 2 to 8 items

Specifies the maximum number of free connection blocks maintained per
endpoint.

Default: Depends upon configuration

MaxGlobalOpenSearch REG_DWORD 1 to infinity

The maximum number of core searches that can be active in the server at one
time. This is to ensure that resources used by active core searches cannot exceed
a certain limit. A high value allows more searches to be active, but can use up
more server resources. A low value would save server resources, but can affect
clients that needs a lot of searches to be active.

Default: 4096

MaxLinkDelay REG_DWORD a to 100,000 seconds

Specifies the maximum time allowed for a link delay. If delays exceed this
number, the server disables raw 110 for this connection.

Default: 60

MaxKeepSearch REG_DWORD 10 to 10000 seconds

Specifies the maximum time during which an incomplete MS-DOS search will
be kept by the server. Larger values ensure better interoperability with MS
DOS utilities such as tree-copy and delete-node. However, larger values can
cause unusual local behavior (such as a failure of a local directory-delete
operation) and higher memory use on the server.

Default: 1800

MaxMpxCt REG_DWORD 1 to 100 requests

Provides a suggested maximum to clients for the number of simultaneous
requests outstanding to this server. A higher value can increase server
performance but requires higher use of server work items.

Default: 50

MaxNonpagedMemoryUsage REG_DWORD 1 MB to infinite bytes

Specifies the maximum size of nonpaged memory that the server can have
allocated at any time. Adjust this parameter if you want to administer memory
quota control.

Default: (depends on system and server configuration)

576 Optimizing Windows NT

MaxPagedMemoryUsage REG_DWORD 1 MB to infinite bytes

Specifies the maximum size of pageable memory that the server can have
allocated at any time. Adjust this parameter if you want to administer memory
quota control.

Default: (depends on system and server c~nfiguration)

MaxRawWorkItems REG_DWORD 1 to 512 items

Sets the maximum raw work items the server can allocate. If this limit is
reached, then the server will reject raw 110 operations from the client.

Default: (depends on configuration)

MaxWorkItems REG_DWORD 1 to 512 items

Specifies the maximum number of receive buffers, or work items, the server
can allocate. If this limit is reached, the transport must initiate flow control at
a significant performance cost.

Default: (depends on configuration)

MinFreeConnections REG_DWORD 2 to 5 items

Specifies the minimum number of free connection blocks maintained per
endpoint.

Default: (depends upon configuration)

MinFreeWorkItems REG_DWORD 0 to 10 items

Specifies the minimum number of available receive work items that are
needed for the server to begin processing a potentially blocking 5MB. A
larger value for this parameter ensures that work items are available more
frequently for nonblocking requests, but it also increases the likelihood that
blocking requests will be rejected.

Default: 2

MinLinkThroughput REG_DWORD 0 to infinite bytes per second

Specifies the minimum link throughput allowed by the server before it disables
raw and opportunistic locks for this connection.

Default: 0

MinRcvQueue REG_DWORD 0 to 10 items

Specifies the minimum number of free receive work items needed by the
server before it begins allocating more. A larger value for this parameter helps
ensure that there will always be work items available, but a value that is too
large is simply inefficient.

Default: 2

Appendix B Registry Value Entries 577

NetworkErrorThreshold REG_DWORD 1 to 100 percent

Triggers an alert whenever the percentage of failing network operations relative
to total network operations exceeds this value during the AlertSched interval.

Default: 5 percent

NonBlockingThreads REG_DWORD 1 to 9999

Specifies the number of threads set aside by the server to service requests that
cannot block the thread for a significant amount of time. Larger values can
increase performance but use more memory. A value that is too large can
impede performance by causing excessive task switching.

Default: (depends on configuration; max. 8 for Windows NT Workstation)

OpenSearch REG_DWORD 1 to 2048 searches

Specifies the maximum number of outstanding searches on the server, per
connection. A single client can have up to the OpenSearch number of active
searches. This includes all types of searches, including MS-DOS, OS/2, and
Windows NT.

Default: 2048

OplockBreakWait REG_DWORD 10 to 180 seconds

Specifies the time that the server waits for a client to respond to an oplock break
request. Smaller values can allow detection of crashed clients more quickly but
can potentially cause loss of cached data.

Default: 35

RawWorkltems REG_DWORD 1 to 512 items

Specifies the number of special work items for raw I/O that the server uses. A
larger value for this parameter can increase performance but costs more
memory.

Default: (depends on configuration)

RemoveDuplicateSearches REG_DWORD True or false

Specifies whether the server should close duplicate searches from the same
client. This lessens the likelihood of the server hitting the
MaxGlobalOpenSearch limit by closing identical searches. This must be set to
False if a client needs multiple identical searches to be active.

Default: true

ScavTimeout REG_DWORD 1 to 300 seconds

Specifies the time that the scavenger remains idle before waking up to service
requests. A smaller value for this parameter improves the response of the
server to various events but costs CPU cycles.

Default: 30

578 Optimizing Windows NT

ScavQoslnfoUpdateTime REG_DWORD 0 to 100,000 seconds

Specifies the time that can pass before the scavenger goes through the list of
active connections·to update the link information.

Default: 300

SessConns REG_DWORD 1 to 2048 connections

Specifies the maximum number of tree connections that can be made on the
server via a single virtual circuit.

Default: 2048

SessOpens REG_DWORD 1 to 2048 files

Specifies the maximum number of files that can be open on a single virtual
circuit.

Default: 2048

SessUsers REG_DWORD 1 to 64 users

Specifies the maximum number of users that can be logged on to a server via
a single virtual circuit.

Default: 32

SharingViolationRetries REG_DWORD 0 to 1000

The number of times the server retries an operation when it gets sharing
violation back from the file system. Operations affected include opens, renames,
and deletes. This minimizes network traffic in cases where the client keeps
retrying these operations whenever it gets a sharing violation.

Default: 5

SharingViolationDelay REG_DWORD 0 to 1000 milliseconds

The number of milliseconds that the server delays for each retry. If this value is
too low, then a sharing violation error is more likely at the server's next retry. If
set too high, then the response to the client might get delayed much more than
what is necessary and will negatively affect performance.

Default: 200

SizReqBuf REG_DWORD 512 to 65536 bytes

Specifies the size of request buffers that the server uses. Small buffers use less
memory; large buffers may improve performance.

Default: 4356

Appendix B Registry Value Entries 579

ThreadPriority REG_DWORD 0, 1, 2, or 15

Specifies the priority of all server threads in relation to the base priority of the
process. Higher priority can give better server performance at the cost of local
responsiveness. Lower priority balances server needs with the needs of other
processes on the system. Values 0 to 2 are relative to normal or background
processes. The default value of I is equivalent to the foreground process.
A value of 15 runs the server threads at real-time priority-which is not
recommended.

Default: 1

Users REG_DWORD 1 to infinite

Specifies the maximum number of users that can be simultaneously logged on to
the server.

Default: Oxffffffff (infinite); max. 10 for Windows NT Workstation

. XactMemSize REG_DWORD 64K to 16 MB

Specifies the maximum amount of virtual memory used by the Xactsrv service.
A larger value for this parameter helps ensure that memory is available for
downlevel clients but costs virtual address space and potentially costs pageable
memory.

Default: 1 MB

TCP/IP Transport Entries
The various TCPIIP keys do not appear in the Registry unless TCPIIP is installed
using the Network icon in Control Panel.

You must restart your machine for a change in any of these parameters to take
effect.

TCP/IP Parameters Subkey Entries
The entries for TCPIIP parameters appear under the following Registry path:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Serv;ces\Tcpip\Parameters

ArpCacheLife REG_DWORD Number of Seconds

Determines the default lifetime for entries in the ARP cache table. Once an
entry is placed in the ARP cache, it is allowed to remain there until its lifetime
expires or until its table entry is reused because it is the oldest entry.

Default: 600 (10 ·minutes)

580 Optimizing Windows NT

ArpCacheSize REG_DWORD Number

Determines the maximum number of entries that the ARP cache table can
hold. The ARP cache is allowed to grow dynamically until this size is reached.
After the table reaches this size, new entries can only be added by replacing
the oldest entries that exist.

Default: 62

DefaultTTL REG_DWORD 1 to 255 seconds

Specifies the default Time To Live (n:L) value set in the header of outgoing IP
packets. The TTL determines the maximum amount of time an IP packet may
live in the network without reaching its destination. It is effectively a bound on
the number of routers an IP packet may pass through before being discarded.

Default: 32

EnableDeadGWDetect REG_DWORD 0 or 1

Setting this parameter to 1 causes TCP to perform Dead Gateway Detection.
With this feature enabled, TCP will ask IP to change to a backup gateway if it
retransmits a segment several times without receiving a response. Backup
gateways may be defined in the Advanced section of the TCPIIP configuration
dialog in the Network Control Panel option.

Default: 1 (true)

EnablePMTUBHDetect REG_DWORD 0 or 1
Setting this parameter to 1 (True) causes TCP to try to detect "Black Hole"
routers while doing Path MTU Discovery. A "Black Hole" router does not
return ICMP Destination Unreachable messages when it needs to fragment a
TCP packet with the Don't Fragment bit set. TCP depends on receiving these
messages to perform Path MTU Discovery. With this feature enabled, TCP will
try to send segments without the Don't Fragment bit set if several
retransmissions of a segment go unacknowledged. If the segmeI.J.t is
acknowledged as a result, the MSS will be decreased and the Don't Fragment
bit will be set in future packets on the connection. Enabling black hole detection
increases the maximum number of retransmissions performed for a given
segment.

Default: 0 (false)

Appendix B Registry Value Entries 581

EnahlePMTUDiscovery REG_DWORD 0 or 1

Setting this parameter to 1 (True) causes TCP to attempt to discover the
Maximum Transmission Unit (MTU or largest packet size) over the path to a
remote machine. By discovering the Path MTU and limiting TCP segments to
this size, TCP can eliminate fragmentation at routers along the path which
connect networks with different MTUs. Fragmentation adversely affects TCP
throughput and network congestion.

Default: 1 (true)

ForwardBufferMemory REG_DWORD Number of bytes

This parameter determines how much memory IP allocates to store packet data
in the router packet queue. When this buffer space is filled, the router begins
discarding packets at random from its queue. Packet queue data buffers are 256
bytes in length, so the value of this parameter should be a multiple of 256.
Multiple buffers are chained together for larger packets. The IP header for a
packet is stored separately. This parameter is ignored and no buffers are.
allocated if the IP router is not enabled.

Default: 74240 (enough for fifty 1480-byte packets, rounded to a multiple of
256).

IGMPLevel REG_DWORD 0, 1, or 2

This parameter determines to what extent the system supports IP multicasting
and participates in the Internet Group Management Protocol. At level 0, the
system provides no multicast support. At levell, the system may only send IP
multicast packets. At level 2, the system may send IP multicast packets and fully
participate in IGMP to receive multicast packets.

Default: 2

IpReassemhlyTimeout REG_DWORD Number of seconds

Determines how long IP accepts fragments when attempting to reassemble a
previously fragmented packet. That is, if a packet is fragmented, all of the
fragments must make it to the destination within this time limit; otherwise, the
fragments will be discarded and the packet will be lost.

Default: 60 seconds

KeepAlivelnterval REG_DWORD 1 to OxJJJfJfff milliseconds

This parameter determines the interval separating keep alive retransmissions
until a response is received. Once a response is receive, the delay until the next
keep alive transmission is again controlled by the value of KeepAliveTime. The
connection will be end after the number of retransmissions specified by
TcpMaxDataRetransmissions have gone unanswered.

Default: 1000 (l second)

582 Optimizing Windows NT

KeepAliveTime REG_DWORD 1 to Oxffffffff milliseconds

The parameter controls how often TCP attempts to verify that an idle connection
is still intact by sending a keep alive packet. If the remote system is still
reachable and functioning, it will acknowledge the keep alive transmission.
Keep alive packets are not sent by default. This feature may be enabled on a
connection by an application.

Default: 7,200,000 (two hours)

NumForwardPackets REG_DWORD Less than Oxffffffff

This parameter determines the number of IP packet headers which are allocated
for the router packet queue. When all headers are in use, the router will begin to
discard packets at random from the queue. This value should be at least as large
as the ForwardBufferMemory value divided by the maximum IP data size of the
networks connected to the router. It should be no larger than the
ForwardBufferMemory value divided by 256, since at least 256 bytes of
forward buffer memory are used for each packet. The optimal number of
forward packets for a given ForwardBufferMemory size depends on the type of
traffic carried on the network and will be somewhere in between these two
values. This parameter is ignored and no headers are allocated if the router is
not enabled.

Default: 50

TcpDisableReceiveChecksum REG_DWORD 0 or 1
Specifies whether Checksums is disabled on receive.

Default: 0 (false, that is, checksums will be checked on receives)

TcpDisableSendChecksum REGJ>WORD 0 or 1

Specifies whether Checksums is disabled on send.

Default: 0 (false, that is, checksums will be generated on sends)

TcpKeepCnt REG_DWORD Number in seconds

Specifies how often TCPIIP will generate keep-alive traffic. When TCPIIP
determines that no activity has occurred on the connection within the specified
time, it generates keep-alive traffic to probe the connection. After trying
TcpKeepTries number of times to deliver the keep-alive traffic without
success, it marks the connection as down.

Default: 120

TcpKeepTries REG_DWORD Number

Specifies the maximum number of times that TCPIIP will attempt to deliver
keep-alive traffic before marking a connection as down.

Default: 20

Appendix 8 Registry Value Entries 583

TcpLogLevel REG_DWORD Number

Specifies how verbose TCPIIP should be about logging events in the event log.
The highest level of verbosity is 16, and 1 is the lowest level. The following
shows general information about these levels.

Level Events to be included

4

8

12

16

Only the most critical errors

Serious protocol violations

Nonserious protocol violations

Information about unusual events

Information about unusual events that some networks normally allow

Default: 16 (log everything)

TcpMaxConnectAttempts REG_DWORD Number

Specifies the maximum number of times TCP/IP attempts to establish a
connection before reporting failure. The initial delay between connection
attempts is 3 seconds. This delay is doubled after each attempt.

Default: 3

TcpMaxConnectRetransmission REG_DWORD 0 to OxJJJjfjff

This parameter determines the number of times TCP will retransmit a connect
request (SYN) before stoping the attempt. The retransmission timeout is doubled
with each successive retransmission in a given connect attempt. The initial
timeout value is three seconds .

. Default: 3

TcpMaxDataRetransmissions REG_DWORD 0 to OxJJJjfjff

This parameter controls the number of times TCP will retransmit an individual
data segment (non connect segment) before ending the connection. The
retransmission timeout is doubled with each successive retransmission on a
connection. It is reset when responses resume. The base timeout value is
dynamically determined by the measured round-trip time on the connection.

Default: 5

TcpMaxRetransmissionAttempts REG_DWORD Number

Specifies the maximum number of times that TCP/IP attempts to retransmit a
piece of data on an established connection before ending the connection. The
initial delay before retransmitting is based on the current estimate TCP/IP makes
of the round-trip time on the connection. This delay is doubled after each
retransmission. Acknowledgment of the data results in a recalculation of the
estimate for the round-trip time.

Default: 7

584 Optimizing Windows Nl

TcpNumConnections REG_DWORD 0 to OxffffFE
This parameter limits the maximum number of connections that TCP may have
open simultaneously.

Default: OxffffFE

TcpRecvSegmentSize REG_DWORD Bytes

Specifies the maximum receive segment size.

Default: 1460

TcpSendDownMax REG_DWORD Number

Specifies the maximum number of bytes queued by TCPIIP.

Default: 16384

TcpSendSegmentSize REG_DWORD Bytes

Specifies the maximum send segment size.

Default: 1460

TcpWindowSize REG_DWORD Number

This parameter determines the maximum TCP receive window size offered by
the system. The receive window specifies the number of bytes a sender may
transmit without receiving an acknowledgment. In general, larger receive
windows will improve performance over high delay or high bandwidth networks.
For maximum efficiency, the receive window should be an even mUltiple of the
MTU of the underlying network less the size of the standard TCP and IP headers
(40 bytes).

Default: The smaller of: Oxffff OR the larger of: four times the maximum TCP
data size on the network OR 8192 rounded up to an even mUltiple of the network
TCP data size

UdpDisableReceiveChecksum REG_DWORD 0 or 1
Specifies whether Checksums is disabled on receive.

Default: 0 (false, that is, checksums will be checked on receives)

UdpDisableSendChecksum REG_DWORD 0 or 1
Specifies whether Checksums is disabled on send.

Default: 0 (false, that is, checksums will be generated on sends)

Appendix B Registry Value Entries 585

Adapter Card Parameters for TCP/IP
These parameters for TCPIIP are specific to individual network adapter cards.
These appear under the following Registry path, where adapter name# refers to the
Services subkey for the specific adapter card:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services
\adapter name#\Parameters\Tcpip

ForwardBroadcasts REG_DWORD 0 or 1

Specifies whether broadcasts should be forwarded between adapters. If enabled,
broadcasts seen by this interface are forwarded to other IP interfaces.

Default: 0 (false)

KeepAlive REG_DWORD 0 or 1

Determines whether TCP connections that request keep-alive packets result in
keep-alive packets being sent. This feature is used to determine when inactive
connections can be disconnected. When a connection becomes inactive, keep
alive packets are periodically exchanged. When 20 consecutive keep-alive
packets go unanswered, the connection is broken. This disconnect is initiated by
the endpoint that is sending keep-alive packets.

Default: 1 (true)

MTU REG_DWORD Number in octets

Specifies the maximum transmission unit size of an interface. Each interface
used by TCPIIP may have a different MTU value specified. The MTU is
usually determined through negotiation with the lower driver, using that lower
driver's value. However, that value may be overridden.

Ideally, the MTU should be large enough to hold any datagram in one frame.
The limiting factor is usually the technology making the transfer. Some
technologies limit the maximum size to as little as 128; Ethernet limits
transfers to 1500; and proNet-l0 allows as many as 2044 octets per frame.

Datagrams larger than the MTU value are automatically divided into smaller
pieces called fragments; size is a multiple of eight octets. Fragmentation
usually occurs somewhere through which the traffic must pass whose MTU is
smaller than the encapsulated datagram. If fragmentation occurs, the
fragments travel separately to the destination computer, where they are
automatically reassembled before the datagram is processed.

Default: 0 (That is, use the value supplied by the adapter.)

586 Optimizing Windows NT

RouterMTU REG_DWORD Number in octets

Specifies the maximum transmission unit size that should be used when the
destination IP address is on a different subnet. Each interface used by TCPIIP
may have a different RouterMTU value specified. In many implementations,
the value of RouterMTU is set to 576 octets. This is the minimum size that
must be supported by any IP node. Because modem routers can usually handle
MTUs larger than 576 octets, the default value for this parameter is the same
value as that used by MTU.

Default: 0 (That is, use the value supplied by the lower interface.)

DHCP Server Service Entries for TCP/IP
You must restart the Microsoft DHCP Server service whenever you change any of
these parameters.

The Registry parameters for DHCP servers are specified under the following key:

.. SYSTEM\current\currentcontrolset\services\OHCPServer\Parameters

BackupInterval REG_DWORD Interval

Specifies the interval (unlimited) for backing up the database.

Default = 15 minutes

DatabaseCleanupInterval REG_DWORD Interval in minutes

Specifies the interval (unlimited) for cleaning up expired client records from the
DHCP database, freeing up those IP addresses for reuse.

Default = 1440 minutes (1 day)

DatabaseLoggingFlag REG_DWORD 0 or 1

Specifies whether to record the database changes in the JET.LOG file. This log
file is used after a system crash to recover changes that have not been made to
the database file defined by DatabaseName. Database logging affects system
performance, so DatabaseLogging can be turned off if you believe the system
is highly stable and if logging is adversely affecting system performance.

Default =.1 (true-that is, database logging is enabled)

Appendix B Registry Value Entries 587

FTP Server Service Entries for TCP/IP
The following Registry path contains parameters that affect the behavior of the FTP
server service component:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Serv;ces\Ftpsvc\Parameters

The Ftpsvc subkey does not appear until you install the FTP service using the
Network icon in Control Panel. Also, you must restart the FTP server service
(Ftpsvc) using the Services icon in Control Panel for any changes to these values to
take effect.

There can also be an AccessCheck subkey under Ftpsvc, which allows access to
FTP for new users. If the AccessCheck sub key exists, but cannot be opened, the
user is refused FTP services. If the subkey exists but can only be opened for read
access, the user is granted read-only FTP access. If the subkey does not exist, it is
not used to influence FTP access. By default, this subkey does not exist and
therefore has no impact on FTP operations. An administrator can create this
Registry subkey and attach specific access controls. which will serve to control user
access to the FTP service.

AnnotateDirectories REG_DWORD 0 or 1

When this value is 1, every time a user changes directories (that is, sends the
server a CWD command), an attempt is made to open a file named
-FTPSVC-.CKM in the new directory. If this file is found, its contents are sent
to the user as part of the successful reply to the CWD command. This may be
used to attach annotations to specific directories.

This value is used as a default for new users. Users can toggle their own
personal annotate directories flag with the site-specific CKM command (SITE
CKM).

Default: 0 (false -do not send directory annotations)

ConnectionTimeout REG_DWORD Seconds

Specifies the time to allow clients to remain idle before forcibly disconnecting
them. This prevents idle clients from consuming server resources indefinitely.

This value may be set to 0 if time-outs are not to be enforced. If set to 0, idle
clients may remain connected indefinitely.

Default: 600 (10 minutes)

588 Optimizing Windows NT

LogAnonymous REG_DWORD 0 or 1

When this value is 1, all successful anonymous logins are logged to the system
event log.

Default: 0 (false -do not log successful anonymous logins)

LogFileAccess REG_DWORD 0, 1, or 2
Specifies log file access method. Syntax is as follows:

Value Description

o Do not log file accesses.

Log file accesses to FfPSVC.LOG

2 Log file accesses to Ffyymmdd.LOG, where yy is the current year, mm
is the current month, and dd is the current day. New log file~ are
opened daily as necessary.

Default: 0

LogNonAnonymous REG_DWORD a or 1

When this value is 1, all successful non-anonymous logins are logged to the
system event log.

Default: 0 (false, that is, do not log successful non-anonymous logins)

MaxConnections REG_DWORD a or 1
Specifies the maximum number of simultaneous clients the server will service.
This value may be set to 0 if there is to be no limit on simultaneous clients.

Default: 20

NetBt Parameters for TCP/IP
NetBt is the NetBIOS over TCPIIP service. Parameters for TCPIIP are also
configured under NetBt in the following Registry path:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Serv;ces\NetBt\Parameters

BcastNameQueryCount REG_DWORD 1 to Oxffff repetitions

This value determines the number of times NBT broadcasts a query for a given
name without receiving a response.

Default: 3

BcastQueryTimeout REG_DWORD 100 to Oxffffftffmilliseconds

This value determines the time interval between successive broadcast name
queries for the same name.

Default: 750 msec

Appendix B Registry Value Entries 589

CacheTimeout REG_DWORD 60000 to Oxffffffff milliseconds

This value determines the time interval that names are cached in the remote
name table.

Default: Ox927CO (10 minutes)

EnableProxyCheck REG_DWORD 0 or 1

When this is enabled, the proxy will check name registrations from Bnodes
against the WINS database by doing a name query to WINS. If it finds the name
in WINS with a different IP address, the proxy will send a name registration
failure message to the Bnode. Set this value to 1 to verify that Bnodes do not
claim names that Pnodes have.

Default: 0 (disabled)

InitialRefreshTimeout REG_DWORD 960,000 to Oxfffffff milliseconds

This parameter specifies the initial refresh timeout used by NBT during name
registration. NBT tries to contact the WINS servers at 1I8th of this time interval
when it is first registering names. When it receives a successful registration
response, that response will contain the new refresh interval to use.

Default: 960,000 (16 minutes)

LmhostsTimeout REG_DWORD 1000 to Oxffffffff milliseconds

This parameter specifies the timeout value for Lmhosts and DNS name queries.
The timer has a granularity of the timeout value, so the actual timeout could be
as much as twice the value.

Default: 6000 (6 seconds)

MaxDgramBuffering REG_DWORD 0 to Oxffffffff bytes

This parameter specifies the maximum amount of memory that NBT will
dynamically allocate for all outstanding datagram sends. Once this limit is
reached, further sends will fail due to insufficient resources.

Default: Ox20,000 (l28K)

MaxPreload REG_DWORD Number

Specifies the maximum NetBt number of entries for LMHOSTS that are
preloaded into the NetBt NetBIOS name cache. LMHOSTS is a file located in
the directory specified by DatabasePath.

Default: 100

NameSrvQueryCount REG_DWORD 0 to Oxffff milliseconds

This value determines the number of times NBT sends a query to a WINS server
for a given name without receiving a response.

Default: 3

590 Optimizing Windows NT

NameSrvQueryTimeout REG_DWORD 0 to Oxffffffff milliseconds

This value detennines the time interval between successive name querie§ to
WINS for a given name. .

Default: 750 msec

NhtKeepAlive REG_DWORD Number in seconds

Specifies how often NetBT will generate keep-alive traffic. When NetBt
detennines that no activity has occurred on a connection for the specified time
interval, it will generate keep~alive traffic to probe the connection. If TCPIIP is
unable to deliver this traffic, it marks the connection as down and notifies
NetBT.

Default: 1 (Generate NetBt keep-alive traffic.)

NodeType REG_DWORD 1,2,4, or8

1 = Bnode, 2 = Pnode, 4 = Mnode, 8 = Rnode. A Bnode system uses broadcasts.
A Pnode system uses only point-to-point name queries to a name server
(WINS). An Mnode system broadcasts first, then queries the name server. An
Rnode system queries the name server first, then broadcasts. Resolution via
Lmhosts and/or DNS, if enabled, will follow the these methods. If this key is
present it will override the DhcpNodeType key. If neither key is present, the
system defaults to Bnode if there are no WINS servers configured for the
network. The system defaults to Rnode if there is at least one WINS server
configured.

Default: 1 or 8 based on the WINS server configuration.

RandomAdapter REG_DWORD 0 or 1
This parameter applies to a multihomed machine only. If it is set to 1 (True),
then NBT will randomly choose the IP address to put in a name query response
from all of its bound interfaces. Normally, the response contains the address of
the interface on which the query arrived. This feature would be used by a server
with two interfaces on the same network for load balancing. The
SingleResponse parameter must be set to a value of 1 (True) for this parameter
to take effect.

Default: 0 (false)

SessionKeepAlive REG_DWORD 60,000 to Oxffffffff

This value detennines the time interval between keep alive transmissions on a
session. Setting the value to Oxffffffff disables keep alives.

Default: 60,000 (l hour)

Appendix B Registry Value Entries 591

Size/Small/Medium/Large REG_DWORD 1, 2, or 3

This value determines the size of the name tables used to store local and remote
names. In general, Small (1) is adequate. If the system is acting as a proxy
name server, then the value is automatically set to Large to increase the size of
the name cache hash table. Large (3) sets the number of hash buckets to 256,
Medium (2) to 128, Small to 16 .

. Default: 1 (Small)

WinsDownTimeout REG_DWORD 1000 to Oxffffffffmilliseconds

This parameter determines the amount of time NBT will wait before again
trying to use WINS after it fails to contact any WINS server. This feature
primarily allows machines which are temporarily disconnected from the
network, such as laptops, to proceed through boot processing without waiting to
timeout out each WINS name registration or query individually.

Default: 15,000 (15 seconds)

Streams Parameters for TCP/IP
The TCP/IP parameter for Streams are found under the following Registry path:

HKEY_LOCAL~MACHINE\SYSTEM\CurrentControlSet\Services\Streams\Parameters

MaxMemoryUsage REG_DWORD Number of bytes

Specifies the maximum amount of memory that can be allocated to the
Strea~s environment. Once this limit is reached, Streams will fail allocation
requests made by Streams-based drivers.

Default: No limit

Windows Sockets Entries for TCP/IP
All Windows Sockets parameters can be set by choosing the Network icon in
Control Panel. These parameters are found in two locations, as shown here.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet \Services
\Winsock\Parameters

AFD is the driver that handles Winsock. These values are in the following Registry
path:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet \Services\Afd\Parameters

592 Optimizing Windows NT

Some of these values have three defaults, depending on amount of RAM:

Default

First

Second

Third

Amount of RAM

12.5 MB or less

12.5 to 20 MB

More than 20 MB

BufferMultipIier REG_DWORD Multiplier

DefaultReceive Window and DefaultSendWindow get divided by this value to
detennine how many massages can be sent/received before flow control is
imposed.

Default: 512

DefaultReceive Window REG_DWORD Bytes

The number of receive bytes AFD will buffer on a connection before imposing
flow control. for some applications. A larger value here will give slightly better
performance at the expense of increased resource utilization. Note that
applications can modify this value on a per-socket basis with the SO_RCVBUF
socket option.

Default: 8192

DefaultSendWindow REG_DWORD Bytes

Same as DefaultReceive Window, but for the send side of connections.

Default: 8192

InitialLargeBufferCount REG_DWORD Buffer count

The count of large buffers allocated by AFD at system startup. Allocate more
buffers to improve performance at the cost of physical memory.

Default: 0, 2, or 10 depending on RAM amount.

InitialMediumBufferCount REG_DWORD Buffer count

Initial count of medium buffers.

Default: 2, 10, or 30 depending on RAM amount.

InitialSmallBufferCount REG_DWORD Buffer count

Initial count of small buffers.

Default: 5, 20, or 50 depending on RAM amount.

LargeBufferSize REG_DWORD Bytes

The size in bytes of large buffers used by AFD. Smaller values use less memory,
larger values can improve performance.

Default: 4096

Appendix B Registry Value Entries 593

MediumBufferSize REG_DWORD Bytes

The size in bytes of medium buffers used by AFD. Smaller values use less
memory, larger values can improve performance.

Default: 1504

PriorityBoost REG_DWORD Priority
The priority boost AFD gives to a thread when it completes I/O for that thread.
If a multithreaded application experiences starvation of some threads, reducing
this value may remedy the problem.

Default: 2

SmallBufferSize REG_DWORD Bytes

The size in bytes of small buffers used by AFD. Smaller values use less
memory, larger values can improve performance.

Default: 64

StandardAddressLength REG_DWORD Length

The length of TDI addresses typically used for the machine. If the customer has
a transport protocol like TP4 which uses very long addresses, then increasing
this value will result in a slight performance improvement.

Default: 24

WINS Entries for TCP/IP
The Registry parameters for WINS servers are specified under the following
subkey:

.. \SYSTEM\CurrentControlSet\Services\Wins\Parameters

This subkey lists all the nonreplication-related parameters needed to configure a
WINS server. It also contains a \Datafiles subkey, which lists all the files that
should be read by WINS to initialize or reinitialize its local database.

InitTimePause REG_DWORD 1-40

Set to 1 to instruct WINS to remain in the paused state until the first replication.
If set to 1, it is recommended that WINS\Partners\Pull\InitTimeReplication be
either set to 1 or removed. Either method ensures that WINS replicates with its
listed partners on starting. Paused state means that WINS will not accept any
name registrations/releases until the above replication happens.

Default: 0

594 Optimizing Windows NT

NoOfWrkThds REG_DWORD 1-40
Specifies the number of worker threads (to handle name query packets from
clients). This can be changed without restarting the WINS computer.

Default: Number of processors on the system

PriorityClassHigh REG_DWORD 0-1
Specifies the priority class of WINS. Set to 1 for high priority class. This can be
changed without restarting the WINS computer.

Default: 0

The HKEY _LOCAL_MACHINE\SYSTEM\CurrentControISet\Services
\Wins\Partners key has two subkeys, \Pull and \Push, under which are subkeys for
the IP addresses of all push and pull partners, respectively, of the WINS server.

A push partner, listed under the \Partners\Pull key, is one from which a WINS
server pulls replicas and from which it can expect update notification messages. The
following parameter appears under the IP address for a specific push partner. This
parameter can be set only by changing the .value in Registry Editor:

MemberPrec REG_DWORD 0 or 1
Specifies the relative precedence of addresses in an Internet group (name with
16th byte being OxIc). Addresses in the OxIc names pulled from a WINS
partner will be given the precedence assigned to the WINS. The value can be 0
(low) or 1 (high). The locally registered addresses always have a high
precedence. Set this value to 1 if this WINS partner is serving a geogrphic
location that is nearby.

Default: 0

Workstation Service Entries
You can modify the startup parameters for the Workstation service using the
Registry Editor. Unless otherwise indicated, these value entries are found in the
following Registry path:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services
\LanmanWorkstation\Parameters

BufFilesDenyWrite REG_DWORD 0 or 1
Specifies whether the redirector shoul.d cache files that are opened with only
FILE_SHARE_READ sharing access. Usually, if a file is opened with
FILE_SHARE_READ specified, the file cannot be buffered because other
processes may also be reading that file. This optimization allows the redirector
to buffer such files. This optimization is safe because no process can write to the
file.

Appendix B Registry Value Entries 595

Disable this parameter if it is necessary to preserve the strict semantics of the
sharing modes specified.

Default: 1 (true)

BufNamedPipes REG_DWORD 0 or 1

Indicates whether the redirector should buffer character-mode named pipes.

Disable this parameter to guarantee that all pipe write operations are flushed
to the server immediately and to disable read ahead on character-mode named
pipes.

Default: 1 (true)

BufReadOnlyFiles REG_DWORD 0 or 1
\CurrentControlSet\Services\LanmanWorkstation

Specifies whether the redirector should cache files that are read-only. Usually,
if a read-only file is opened, the file cannot be buffered because other
processes may also be reading that file. This optimization allows the redirector
to buffer such files. This optimization is safe because no process can write to
the file. However, another user can modify the file to enable writing to the
file, causing loss of data.

Disable this parameter if it is necessary to preserve the strict semantics of the
sharing modes specified.

Default: 1 (true)

CacheFileTimeout REG_DWORD Number of seconds

Specifies the maximum time that a file will be left in the cache after the
application has closed the file.

Increase the value of this parameter if you are performing operations on the
server that could cause files to be reopened more than 10 seconds after the
application has closed them. For example, if you are performing a build over
the network, you should increase this parameter's value.

Default: 10

CharWait REG_DWORD 0 to 65535 milliseconds

Specifies time to wait for an instance of a named pipe to become available when
opening the pipe.

Increase this value if your pipe server application is typically very busy.

Default: 3600

596 Optimizing Windows NT

CollectionTime REG_DWORD 0 to 65535000 milliseconds

Specifies the maximum time that write-behind data will remain in a character
mode pipe buffer.

Changing this value may cause a named pipe application's performance to
improve (but it does not affect SQL Server applications).

Default: 250

Locklncrement REG_DWORD Number of milliseconds

This parameter is not used for Win32 applications. However, if OS/2-based
applications request that a lock operation waits forever, and if the lock cannot be
immediately granted on a non-LAN Manager version 2.0 server, this parameter
controls the rate at which the redirector ramps back the failed lock operations.

This parameter should not be changed unless you are running an OS/2-based
application that requests lock operations that might fail.

Default: 10

LockMaximum REG_DWORD Number of milliseconds

U sed to configure the lock backoff package. This parameter exists to prevent
an errant application from "swamping" a server with nonblocking requests
where there is no data available for the application.

Default: 500

LockQuota REG_DWORD Bytes of data

Specifies the maximum amount of data that is read for each file using this
optimization if the UseLockReadUnlock parameter is enabled.

Increase this value if your application performs a significant number of lock
and-read style operations. (This means performing lock operations and
immediately reading the contents of the locked data.) It is conceivable that
you could cause the system to run out of paged pool, but only by increasing
this value to a few megabytes and by using an application that locks millions
of-byte ranges.

Default: 4096 (bytes)

LogElectionPackets REG_DWORD 0 or 1

Specifies whether the Browser should generate events when election packets
are received.

Default: 0 (false)

Appendix B Registry Value Entries 597
---~

MaiislotBuffers REG_DWORD Number of buffers

Specifies the maximum number of buffers available to process mailslot
messages. If your application uses many mailslot operations, set this higher to
avoid losing mailslot messages.

Default: 5

MaxCmds REG_DWORD 0 to 255

Specifies the maximum number of work buffers that the redirector reserves
for performance reasons.

Increase this value to increase your network throughput. If your application
performs more than 15 simultaneous operations, you might want to increase
this value. Because this parameter actually controls the number of execution
threads that can be simultaneously outstanding at any time, your network
performance will not always be improved by increasing this parameter. Each
additional execution threads takes about 1 K of nonpaged pool if you actually
load up the network. Resources will not be consumed, however, unless the
user actually makes use of them.

Default: 15

MaxCollectionCount REG_DWORD 0 to 65535 bytes

Specifies the threshold for character-mode named pipes writes. If the write is
smaller than this value, the write will be buffered. Adjusting this value may
improve performance for a named-pipe application (but it will not affect SQL
server applications).

Default: 16

NumIllegalDatagramEvents REG_DWORD Number of events

Specifies the maximum number of datagram events to be logged within the
span of time specified by the IllegalDatagramResetTime parameter. Because
Windows NT logs all illegal datagrams, the event log can be filled with a
'proliferation of these in a short time. This entry and the
IllegalDatagramResetTime entry work together.

Default: 5

Pipelncrement REG_DWORD Number of milliseconds

Controls the rate at which the redirector "backs off' on failing nonblocking
pipe reads.

This parameter is used to prevent an errant application from swamping a
server with nonblocking requests where there is no data available for the
application. You can use the backoff statistics to tune this parameter to be
more efficient for an application that uses nonblocking named pipes (except
for SQL Server applications).

Default: 10

598 Optimizing Windows NT

PipeMaximum REG_DWORD' Number of milliseconds

Controls the maximum time at which the redirector "backs off' on failing
non-blocking pipe reads.

This parameter exists to prevent an errant application from swamping a server
with nonblocking requests where there is no data available for the application.
You can use the backoff statistics to tune this parameter to be more efficient
for an application that uses nonblocking named pipes (except for SQL Server
applications).

Default: 500

ReadAheadThroughput REG_DWORD Kilobytes per second

Specifies the throughput required on a connection before the cache manager is
told to enable read ahead.

Default: Oxffffffff

ServerAnnounceBuffers REG_DWORD Number

Specifies the maximum buffers used to process server announcements. If your
network has many servers, you can increase this value to avoid losing seryer
announcements.

This parameter is found under the LanmanWorkstation\Parameters\Static
subkey.

Default: 20

SessTimeout REG_DWORD 10 to 65535 seconds

Specifies the maximum amount of time that the tedirector allows an operation
that is not long-term to be outstanding.

Default: 45

SizCharBuf REG_DWORD 64 to 4096 bytes

Specifies the maximum number of bytes that will be written into a character
mode pipe buffer. Adjusting'this value may improve performance for a
named-pipe application (but it will not affect SQL server applications).

Default: 512

Use512ByteMaxTransfer REG_DWORD 0 or 1

Specifies whether the redirector should only send a maximum of 512 bytes in a
request to an MS-Net server regardless of the servers-negotiated buffer size. If
this parameter is disabled, request transfers from the Windows NT redirector
could cause the MS-Net server to crash.

Default: 0 (false)

Appendix B Registry Value Entries 599

UseLockReadUnlock REG_DWORD 0 or 1

Indicates whether the redirector uses the lock-and-read and write-and-unlock
performance enhancements.

When this value is enabled, it generally provides a significant performance
benefit. However, database applications that lock a range and don't allow data
within that range to be read will suffer performance degradation unless this
parameter is disabled.

Default: 1 (true)

UseOpportunisticLocking REG_DWORD 0 or 1
Indicates whether the redirector should use opportunistic-locking (oplock)
performance enhancement. This parameter should be disabled only to isolate
problems.

Default: 1 (true)

UseRawRead REG_DWORD 0 or 1

Enables the raw-read optimization. This provides a significant performance
enhancement on a local area network

Default: 1 (true)

UseRawWrite REG_DWORD 0 or 1
Enables the raw-write optimization. On a LAN, this provides a significant
performance enhancement.

Default: 1 (true)

UseUnlockBehind REG_DWORD 0 or 1
Indicates whether the redirector will complete an unlo'ck operation before it
has received confirmation from the server that the unlock operation has
completed. Disable this parameter only to isolate problems or to guarantee
that all unlock operations complete on the server before completing the
application's unlock request.

Default: 1 (true)

UseWriteRawData REG_DWORD 0 or 1
Enables the raw-write-with-data optimization. This allows the redirector to
send 4 KB of data with each write-raw operation. This provides a significant
performance enhancement on a local area network.

Default: 1 (true)

UtilizeNtCaching REG_DWORD 0 or 1
Indicates whether the redirector uses the cache manager to cache the contents
of files. Disable this parameter only to guarantee that all data is flushed to the
server immediately after it is written by t~e application.

Default: 1 (true)

600 Optimizing Windows NT

Registry Entries for Microsoft Mail
The parameters used by the Microsoft Mailapplication provided with Windows NT
appear under this subkey:

HKEY_CURRENT_USER\Software\Microsoft\Mail

Many of the entries in the subkeys of this key have default values and won't be
present. To change the appearance and behavior of the Mail application, use the
Mail menu commands instead of editing the Mail entries directly. Some of the
options that you specify in the Mail application are stored in your mail message file
(.MMF) instead of the Mail Registry entries.

These keys are created in HKEY _CURRENT_USER when you first run Mail. If
your system previously contained a Windows for MS-DOS version of
MSMAIL.lNI, its contents are migrated to the Registry when you first run Mail
under Windows NT.

Microsoft Mail Entries
This subkey is used to define the appearance and behavior of the Mail program.
This is the Registry path for this subkey:

HKEY_CURRENT_USER\Software\Microsoft\Mail\Microsoft Mail

This key also appears under HKEY_USERS\.DEFAULT, but its only contents are
Migratelni and MigratelniPrint.

These are the value entries that can appear in this key:

CheckLatencylnterval REG_SZ seconds

Affects the mail spooler's latency checking, which is intended to prevent spooler
background processing from interfering with foreground work. If the specified
length of time passes with,0ut the spooler having any work to do, the latency
algorithm is reinitialized.

Default: 30 seconds

ForceScanlnterval REG_SZ seconds

Affects the mail spooler's latency checking, which is intended to prevent the
spooler background processing from interfering with foreground work. If the
designated length of time passes without the spooler getting an opportunity to do
outstanding work, idle time is requested more frequently (based on the value of
ScanAgainlnterval), and eventually idle time is used whenever it can.

Default: 300 seconds (5 minutes)

Appendix B Registry Value Entries 601

IdleRequiredInterval REG_SZ seconds

Affects the mail spooler's latency checking, which is intended to prevent the
spooler's background processing from interfering with foreground work. The
spooler defers its work temporarily if the system has serviced an interactive
request such as a keyboard entry or mouse movement within this interval, to
avoid starting a transfer when the user is busy.

Default: 2 seconds

NetBios REG_SZ 0 or 1
Enables NetBIOS notification of new mail delivery. When NetBIOS notification
is used, the Windows NT computer sending a mail message to another
Windows NT computer sends a NetBIOS notification message to the destination
computer to tell the Mail program running on that machine that a new mail
message was sent to the computer. The Mail program on the destination
computer can then check the workgroup postoffice for the new mail message.
This entry set to 1 to enable NetBIOS notification also provides quicker·
response to the arrival of new mail from users on your local postoffice. If this
entry is ° to disable NetBIOS notification, the Mail client needs to regularly
check for the arrival of new mail messages on the postoffice.

Default: 1

NewMsgsAtStartup REG_SZ 0 or 1
Specifies whether Mail is to check for new mail messages in the foreground as
soon as the user logs in. Set this entry to 1 to have Mail download new messages
as quickly as possible when it is started. If this entry is 0, Mail checks for new
messages in the background (as is usually the case when the Mail application is
being used).

Default: °
NextOnMoveDelete REG_SZ 0 or 1 or-1

If this entry is 1, Mail automatically opens the next message in a folder after you
delete or move an open message. If set to -1, mail automatically opens the
previous message. This facilitates quick scanning through the Inbox. If set to 0,
Mail closes the Read Note window after you move or delete the message, and
you must press ENTER or double-click to open the next message. Use 1 for
messages sorted in ascending order (in the order received) and -1 for messages
sorted in descending order (most recent message first).

Default: 1

602 Optimizing Windows NT

PollinglntervaJ REG_SZ minutes

Gives the default for the Check for New Mail Every n Minutes option in the
Mail Options dialog box. The value the user enters in the dialog box is written
to the user's mail message file (.MMF)-this value is used to define how often
the Mail spooler checks for new mail messages.

Default: 10

PumpCyclelntervaJ REG_SZ seconds

Permits the spooler to check for new mail more often than once per minute, or to
override the polling interval value defined in the user's mail message file.

Default: 60 seconds, or the number of minutes specified in the Mail Options
dialog box

ScanAgainlntervaJ REG_SZ seconds

Affects the mail spooler latency checking to prevent spooler background
processing from interfering unduly with foreground work. When the spooler
defers work because of higher priority, interactive tasks, it rechecks the
availability of the system at this interval.

Default: 2

SpooJerBackofflntervaJ REG_SZ milliseconds

Specifies the amount of time the mail spooler waits before retrying an operation
that has failed because of a transient mail server error condition, such as a
locked file.

Default: 2000 (two seconds)

SpooJerReconnectlntervai REG_SZ seconds

Specifies the amount of time the mail spooler waits before retrying an operation
that has failed because of a fatal mail server error condition, such as a lost
network connection.

Default: 60 (one minute)

MMF Entries for Mail
Most entries under this key affect automatic compression of the Mail message file,
which by default has the filename extension of .MMF. When enabled, automatic
compression uses idle time on your PC to recover disk space freed by the deleted
messages and returns the disk space to the file system. You should not need to
change the default values for entries in this subkey.

This is the Registry path for this subkey:

HKEY_CURRENT_USER\Software\Microsoft\Mail\MMF

Appendix B Registry Value Entries 603

Kb_Free_Start_Compress REG_SZ kilobytes

Background compression starts when at least this much recoverable space is
detected in your message file. Both Percent_Free_Start_ Compress and this
entry are always active. The firS,t entry to trigger starts the compression.

Default: 300

Kb_Free_Stop_Compress REG_SZ kilobytes

Background compression stops when there is less than the indicated amount of
recoverable space in your message file. This avoids the unnecessary difficulty in
trying to recover the last little bit of free space. Both this entry and
Percent_Free_Stop_ Compress are always active. The first entry to trigger
stops the compression.

Default: 100.

No_Compress REG_SZ 0 or 1

Specifies whether background compression is to be disabled. A value of 1
disables background compression of the .MMF message store.

Default: 0 (That is, background compression is enabled.)

Percent_Free_Start_Compress REG_SZ percent

Background compression starts when the amount of recoverable space rises
above this percentage of the total file size. Both Kb_Free_Start_Compress
and this entry are always active. The first one to trigger starts the compression.

Default: 10

Percent_Free_Stop_Compress REG_SZ percent

Background compression stops when the amount of recoverable space falls
below this percentage of the total .MMF file size. Both this entry and
Kb_Free_Stop_ Compress are always active. The last one to trigger stops the
compression.

Default: 5

Secs_ Till_Fast_ Compress REG_SZ seconds

The background compression algorithm has a fast mode and a slow mode.
Background compression begins in the slow mode to avoid slowing system
response time. After a number of seconds of system inactivity indicated by this
entry, the compression switches to fast mode. Any user activity changes the
setting back to slow mode.

Default: 600 seconds (That is, ten minutes of system inactivity.)

See also the entry for Applnit_DLLs in "Windows Software Registration Entries."

604 Optimizing Windows NT

Microsoft Schedule+ Entries
This key defines the appearance and behavior of Microsoft Schedule-t. This is the
Registry path for this subkey:

HKEY_CURRENT_USER\Software\Microsoft\Schedule+\Microsoft Schedule+

This key also appears under HKEY _USERS\.DEFAVLT, but its only contents are
Migratelni and MigratelniPrint.

These are the value entries that can appear in this key:

Copy Time REG_SZ minutes

Specifies the time interval that Schedule+ copies your online .CAL file to your
local .CAL file (occurs in idle time).

Default: 15 minutes

CreateFileFirstTime REG_SZ 0 or 1
Specifies whether an online calendar (.CAL) file should be created for a first
time Schedule+ user. If this entry is 1, an online calendar (.CAL) file is created
the first time a user signs on to Schedule+. If 0 (as set automatically the first
time you run Schedule+), an online calendar file is not created automatically.

Default: 0

PolITime REG_SZ centiseconds

Specifies the frequency for checking the server for schedule file changes.

Default:. 6000 centiseconds (one minute)

ReminderPolITime REG_SZ minutes

Specifies the frequency for polling the server for alarm changes.

Default: 15

UpdatePostOfficeTime REG_SZ centiseconds

Specifies the frequency for updating the postoffice on the server after a change
is made.

Default: 6000 centiseconds (one minute)

Appendix B Registry Value Entries 605

Registry Entries for User Preferences
Information about Registry entries for user preferences about the following topics
can be found in this section.

The information presented here is primarily for troubleshooting, showing the default
entry values and explaining the meaning of important entries. There are no hidden
values that you can set for user preferences. All of these values can be set using the
icons in Control Panel or the tools in the Administrative Tools group, or other
programs provided with Windows NT.

All Registry paths shown here are for HKEY_CURRENT_USER, to show how
you can view entries for the currently logged on user. However, most of these
entries also appear in HKEY_USERS\.DEFAULT, where changing entries will
change values for the default user profile.

Console Entries for Users
The Console key contains font, cursor, and screen control values under the
following Registry path:

FullScreen REG_DWORD 0 or 1
1 = full screen mode, 0 = windowed mode. Valid only on x86 machines.

Default: OxO

HistoryBufferSize REG_DWORD Number

Specifies number of commands stored in command history buffer.

Default: Ox32

NumberOffiistoryBuffers REG_DWORD Number

Specifies number of history buffers associated with console.

Default: Ox4

QuickEdit REG_DWORD 0 or 1

Specifies 1 (enabled) for quick-edit mode, 0 (disabled) for normal edit mode.

Default: 0

606 Optimizing Windows NT

ScreenBufferSize REG_DWORD Buffer size

Specifies console screen buffer size. Low word is width, high word is height.

Default: OxOO 190050

WindowSize REG_DWORD Size

Specifies console window size. Low word is width, high word is height.

Default: OxOO 190050

You can also create subkeys under HKEY_CURRENT_USER\CONSOLE which
are the names of console windows. These subkeys can contain any of the preceding
values. When you open a console window, Windows NT looks in the registry for a
subkey with the same name as the window title (for example, "Command Prompt").
If the subkey is found, any values stored there override the values stored in the
\CONSOLE key for that console.

The Console key also contains several subkeys that define screen size and buffer
size for character-based screens in Windows NT. These subkeys appear under the
following Registry path:

HKEY_CURRENT_USER\Console\subkeyNames

The Command Prompt subkey does not appear unless the current user has changed
the screen colors or font for the command prompt and also checked the Save
Configuration options. Use the commands on the Control menu in the command
prompt to change these values.

Console sub key

Command Prompt
(All data types are
REG_DWORD)

Default value entries

FontFamily=Ox30
FontSize=Oxc0008
FullScreen=Ox 1
PopupColors=Oxf5
QuickEdit=O
ScreenBufferSize=Ox 190050
ScreenColors=Ox9f
WindowsPosition=Ox 150004
WindowSize=Ox 190050

Introducing Windows NT FullScreen=Ox 1

Microsoft QBASIC FullScreen=Oxl

Appendix B Registry Value Entries 607

Cursors Entry Values for Users
The Cursor subkey contains entries that specify the .ANI or .CUR files containing
custom cursors defined using the Cursor icon in Control Panel. Animated cursors
use slightly more system resources than do static cursors.

There are no entries in this key unless the user changes cursor styles in Control
Panel. All data types are REG_SZ. The following lists the names for possible
default entries:

3D-Bronze
3D-White
AppStarting
Arrow
Conductor
CrossHair
Dinosaur

Desktop Entry Values for Users

Hands 1 or 2
IBeam
Magnified
No
Old Fashioned
SizeAll
SizeNESW

SizeNS
SizeNWSE
SizeWE
Variations
Wait
Windows Animated
Windows Default

The Desktop key contains entries that control the appearance of the screen
background and the position of windows and icons on the screen. The following
shows the Registry path:

HKEY_CURRENT_USER\Control Panel\Oesktop

To change most of these entries, use the Desktop icon in Control Panel. The
Desktop subkey can contain the following entries:

BorderWidth REG_SZ number

Sets the width of the borders around all the windows that have sizable borders.
Affects how fast windows are painted. The possible range is 1 (narrowest) to 49
(widest).

Default: 3

CoolSwitch REG_SZ Boolean

Turns fast task switching on or off. To change this entry, choose the Desktop
icon from Control Panel, and check or clear the Fast ALT+TAB Switching option
in the Task List dialog box.

Default: 1

CursorBlinkRate REG_SZ milliseconds

Indicates how much time elapses between each blink of the selection cursor.

Default: 530

608 Optimizing Windows NT

ScreenSaveActive REG_SZ Boolean

Specifies whether a screen saver should be displayed if the system is not
actively being used. Using a screen saver may slightly slow the speed of
background jobs while the screen saver is displayed. Set this value to 1 to use a
screen saver; 0 turns off the screen saver.

Default: 0

ScreenSaveTimeOut REG_SZ seconds

Specifies the amount of time that the system must be idle before the screen saver
appears.

Default: 900

TileWallpaper REG_SZ Boolean

Specifies that the desktop wallpaper is tiled across the screen if this value is 1,
or centered if this value is O. Tiled wallpaper paints more rapidly and uses less
memory.

Default: 0

Keyboard and Keyboard Layout Entries for Users
The Keyboard entry contains user preferences as defined by choosing the Keyboard
icon in Control Panel. Entries are found under this Registry path:

HKEY_CURRENT_USER\Control Panel\Keyboard

KeyboardDeJay REG_SZ 0 to 3
Establishes how much time elapses after you hold down a key before the key
starts to repeat. The values 0 through 3 provide a linear scale from the smallest
delay supported by the keyboard driver to the largest delay. Typically, 0
represents 250 milliseconds, and 3 represents 1 second, with a 20 percent
accuracy.

Default: 1

KeyboardSpeed REG_SZ 0 to 31

Sets how much time elapses between repetitions of a character on the display
when you hold down a keyboard key. The values 0 through 31 provide a linear
scale from the slowed repeat rate supported by the keyboard driver to the fastest
repeat rate. Typically, 0 represents 2 per second, and 31 represents 30 per
second.

Default: 31

Appendix B Registry Value Entries 609

The Keyboard Layout key records the user's preferred layout, which is loaded and
activated by the system when the user logs on. Entries are found under this Registry
path:

HKEY_CURRENT_USER\Control Panel\Keyboard Layout

When the user logs off, the user's current keyboard layout is stored here. The value
for the entry is based on those defined in
CurrentControISet\Control\NLS\KeyboardLayout. To change the keyboard layout,
choose the Windows NT Setup icon from the Main program group.

Mouse Entries for Users
To change these entries, choose the Mouse icon from Control Panel.

DoubleClickSpeed REG_SZ milliseconds

Sets the maximum time between clicks of the mouse button that the system
permits for one double-click. The lower the value for this entry, the less time
you have to click twice to double-click.

Default: 686

MouseSpeed REG_SZ 0 or 1 or 2

Sets the relationship between mouse and cursor movement when the value of
either MouseThresholdl or MouseThreshold2 is exceeded. When this occurs,
cursor movement accelerates according to the value of MouseSpeed.

Value

o
1

2

Default: 1

Meaning

No acceleration.

The cursor is moved twice the normal speed when mouse movement
exceeds the value of MouseThresholdl.

The cursor is moved twice the normal speed when the mouse movement
exceeds the value of MouseThresholdl, or four times the normal speed
if mouse movement exceeds MouseThreshold2.

610 Optimizing Windows NT

MouseThresholdl REG_SZ pixels
MouseThreshold2 REG_SZ pixels

These entries set the maximum number of pixels that the mouse can move
between mouse interrupts before the system alters the relationship between
mouse and cursor movement. If the mouse movement exceeds the threshold
defined by MouseThresholdl and if MouseSpeed is greater than 0, the system
moves the cursor at twice the normal speed. If the mouse movement exceeds the
threshold defined by MouseThreshold2 and if MouseSpeed is 2, the system
moves the cursor at four times the normal speed.

Default: MouseThresholdl=6
MouseThreshold2= I 0

SwapMouseButtons REG_SZ Boolean

Specifies whether to swap the right and left mouse buttons. If the value is 1, the
buttons are swapped. '

Default: 0

Network Entries for Users
This section describes the user preferences and settings for the network.

The following parameter is used by the Windows NT administrative applications:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion
\Network\Shared Parameters

Slow Mode REG_SZ String

Stores information about which servers and domains are across a Low Speed
Connection. User Manager for Domains, Server Manager, and Event Viewer
read this information unless explicitly told whether to start in Low Speed
Connection mode. The cache is updated each time one of these applications is
started or set to a new, nonlocal focus, or when the user explicitly changes the
Low Speed Connection setting. This is an LRU cache of up to 20 focus targets;
The first entry is the most recently used.

This is a shared state between users, so if one user changes the cached setting
for a target focus, other users get that setting by default. The user must be a
member of a group with Power Users or better privileges to have access to this
subkey.

Default: "CLOSEDOMAIN;h;FARDOMAIN;I;\\CLOSEMACHINE;h;
\\FARMACHINE;l"

Appendix B Registry Value Entries 611

Performance Monitor Entries for Users
The Perfmon subkey contains values under the following Registry path:

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Perfmon

Only one value in this subkey should be altered:

DataTimeOut REG_DWORD Value (msec)

U sed by the Performance Monitor data collection thread. If the thread does not
return data within the time defined by Value, Performance Monitor ignores the
data. Use a large value when remote monitoring over a slow link, as RAS.

Default: 20000 msec

The Monitor subkey contains values under the following Registry path:

HKEY_LOCAL_MACHINE\SYSTEM\\CurrentControlSet\Services\Monitor

Note Use MONITOR.EXE in the Windows NT Resource Kit to set up other
parameters for this subkey.

DataTimeOut REG_DWORD Value (msec)

This is the same as the Performance Monitor DataTimeOut value. Monitor
Service uses it to determine when to give up on performance data collection
from a remote machine.

Default: 20000 msec

Program Manager Entries for Users
Restrictions Entries for Program Manager
The Restrictions subkey defines restrictions for activities in Program Manager,
under this Registry path:

Software\Microsoft\Windows NT\CurrentVersion
\Program Manager\Restrictions

Restrictions can be defined for users in User Profile Editor.

612 Optimizing Windows NT

CheckBinaryTimeout REG_DWORD 0 to 4294967295 milliseconds

Allows you to configure the auto-check delay. When you bring up either the Run
dialog box, the New Item dialog box, or the Edit Item dialog box, the "Run in
Separate Memory Space" checkbox automatically turns on and off depending on
the executable name being typed in. The delay between the last character typed
and before the auto checking starts is this value. For example, if you are in a
network environment and are concerned about network traffic caused by
autochecking the binary type, increase this value to reduce the number of times
the file is checked.

Default: 500

CheckBinaryType REG_DWORD 0 or 1

Allows you to tum off the binary type checking. When you bring up either the
Run dialog box, the New Item dialog box, or the Edit Item dialog box, the "Run
in Separate Memory Space" checkbox automatically turns on and off depending
on the executable name being typed in. If you want this auto-checking feature
turned off (and the checkbox always enabled), set this value to O. For example,
you might set this value to 0 if you frequently use a floppy disk drive to run
programs, or if you are concerned about network traffic caused by auto-checking
files on the server.

Default: 1

display.drv REG_SZ filename

Defines the video display driver used.

Default: vga.drv

Recovery Entries for Users
In the System option of Control Panel, there is a Recovery dialog box in which you
make settings that control what happens in the event of a system lock-up. This
section describes values for the Recovery dialog box, found in the following
Registry path:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\CrashControl

CrashDumpEnabled REG_DWORD 0 or 1

Specifies whether debugging information is to be written to a log file.

Default: 1 (enabled) for NTAS, 0 (disabled) for NT Workstation

LogEvent REG_DWORD 0 or 1

Tells the system to write events to a system log.

Default: 1 (enabled) for NTAS, 0 for NT Workstation

Appendix B Registry Value Entries .613

Overwrite REG_DWORD 0 or 1

Specifies whether an existing log file is to be overwritten by the new one.

Default: 1 (enabled) for NTAS, 0 (disabled) for NT Workstation

SendAlert REG_DWORD 0 or 1

Controls whether an administrative alert is sent.

Default: 1 (enabled) for NTAS, 0 (disabled) for NT Workstation

If Overwrite is disabled and the LogEvent is enabled, the system displays a
message saying that the log is full. All further log attempts are ignored.

If this is unacceptable, create the CrashOnAuditFail value (REG_DWORD) in the
following Registry path: .

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa

Set CrashOnAuditFail to 1. Now when a log attempt fails, the system will halt and
not reboot.

Note A new feature in Windows NT 3.5 is the TXTSETUP.SIF file. This file
controls the text mode portion of Setup, including changes to the Registry when you
are upgrading from an earlier version of Windows NT. Because the
TXTSETUP .SIF file lists all of the files supplied for a specific platform, you can
use it to repair your system if it becomes damaged. For more information, see
"About Windows NT Information Files" in Chapter 3, "Customizing Windows NT
Setup."

Windows Entries for Users
This section describes values for personal preferences for items that were formerly
stored in WIN.INI for versions of Windows for MS-DOS.

HKEY_CURRENT_USER\Software\Microsoft\Windows NT\CurrentVersion\Windows

DosPrint REG_SZ Boolean

Specifies whether to use MS-DOS interrupts when printing. When this entry is
Yes, MS-DOS interrupts are used; if the value is No, printing output is sent
directly to the port that the printer is assigned to. The default is No. To change
this entry, clear Print Direct To Ports option in the Printer Details dialog box in
Print Manager.

Default: No

614 Optimizing Windows NT

ErrorMode REG_DWORD 0, 1, or 2

Controls the behavior of hard error popups.

The format for this entry is as follows:

Value

Mode 0

Mode 1

Mode 2

Definition

Current operating mode. Errors are serialized and wait for a response.

If the error does not come from the system, then normal operating
mode. If the error comes from the system, then log the error to the event
logger, and return OK to the hard error. No intervention is required and
the popup is not seen.

Always log the error to the event logger and return OK to the hard
error. Popups are not seen.

In all modes, system-originated hard errors are logged to the system log. To run
an unattended server, use mode 2.

Default: 0

load REG_SZ filename(s)

Specifies the applications to be run as icons when Windows NT is started. This
entry is a list of application filenames, or documents associated with an
application, with each filename separated by a space. Make sure to specify the
path if the file is not located in the SystemRoot directory. To change this entry,
add the application to the Startup group in Program Manager, and then check
Minimize On Use in the Properties dialog box.

Default: (empty)

run REG_SZ ji/ename(s)

Tells Windows NT to run the specified applications when Windows NT is
started. The value is a list of application filenames or documents associated with
applications, with each filename separated by a space. Make sure you specify
the complete path if the file is not in the SystemRoot directory. To change this
entry, add the application to the Startup group in Program Manager.

Default: (none)

Appendix B Registry Value Entries 615

Registry Entries for Winlogon
The Registry value entries that control the logon sequence for starting Windows NT

. are found under the following Registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon

AutoAdminLogon REG_SZ 0 or 1

Specifies automatic logon if this value is 1. You must also add the value entry
DefaultPassword with a value for the user listed under DefaultUserName for
automatic logon to work.

When AutoAdminLogon is used, Windows NT automatically logs on the
specified user when the system is started, bypassing the CTRL+ALT +DEL logon
dialog box.

DefaultPassword REG_SZ Password

Specifies the password for the user listed under DefaultUserName. Used
during automatic logon.

DefaultUserName REG_SZ Username

Specifies the name of the last successfully logged on user. If values are defined
for DefaultPassword and AutoAdminLogon, this is the user who is logged on
by default during automatic logon.

Registry Entries for Fonts
This section describes entries in subkeys that concern the fonts available to all users
on a computer.

FontCache Entries
The FontCache subkey in the following Registry path contains entries that define
parameters for font caching:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion
\FontCache

The value entries in the FontCache subkey can greatly influence the amount of
memory used by the system. However;these values should not be modified, except
in the rare case where you must tune the performance for an international version of
Windows NT or for specialized cases such as a print shop, where you may be
manipulating large character sets.

616 Optimizing Windows NT

MaxSize REG_DWORD Number of kilobytes

Specifies the maximum amount of address space reserved per font cache.

Default: Ox80

MinlncrSize REG_DWORD Number of kilobytes

Specifies the minimum amount of memory committed each time a font cache is
grown.

Default: Ox4

MinlnitSize REG_DWORD Number of kilobytes

Specifies the minimum amount of memory initially committed per font cache at
the time of creation.

Default: Ox4

FontDPI Entries
The FontDPI subkey in the following Registry path indicates the default number of
dots per inch (DPI):

HKEY_LOCAL_MACHINE\SOFTWARE\M;crosoft\W;ndows NT\CurrentVers;on
\FontDPI

LogPixels REG_DWORD Ox78 or Ox60

Determines the resources used by the system, such as bitmap resolution for icons
and toolbar buttons, as well as the system font size.

120 DPI (Ox78) is what is generally called "Large Fonts" and 96 DPI (Ox60) is
"Small Fonts."

This value only indicates to the system which fonts and resources to use. Reboot
the machine for the changes to apply. You can also change this value by using
the Display option in Control Panel.

Default: Ox60

Registry Entries for Printing
The Registry contains printer information in these locations:

• The per-user settings for the current default printer are stored under this key:

HKEY_CURRENT_USER\Pr;nters

Appendix B Registry Value Entries 617

• The hardware-specific infonnation about drivers and print processors is stored
under this key, where Hardware represents the subkey for a specific Windows
NT platfonn, such as Windows NT x86 or Windows NT R4000:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet
\Control\Print

• The default spool directory is SystemRoot\SYSTEM32. However, you can
specify an alternate path in which to store print jobs. To specify an alternate
path for all printers to spool to, add the value DefaultSpoolDirectory, with the
type REG_SZ, and set it to the new spool path under the following Registry key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet
\Control\Print\Printers

By default, this will apply to all printers. However, if you want to override the
spool setting on a per-printer basis, add the value SpoolDirectory, type
REG_SZ, and set it to the spool path for the printer under the following key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet
\Control\Print\Printers\[printer name]

Restart the system for this change to take effect.·

With the exception of spool directories, always use Print Manager to change
configuration settings for all printers.

Values that control print spooling and other aspects of printer support are found in
the following Registry path:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet
\Control\Print

DisableServerThread REG_DWORD 0 or 1

Set this to 1 (true) to disable the browse thread on the current machine. This
thread is used to call other printer servers to notify them that this printer exists.

Default: 0 (false)

FastPrintSlowDownThreshold REG_DWORD Milliseconds
Default: FastPrintWaitTimeout divided by FastPrintThrottleTimeout

618 Optimizing Windows NT

FastPrintThrottleTimeout REG_DWORD Milliseconds

When printing with spooling enabled, some printers pause if they don't recieve
data for a timeout period (usually' 15 seconds for a Postscript printer). To
counteract this, the spooler throttles back on data sent to the printer when
FastPrintSlowDownThreshold is reached. At that point,
FastPrintThrottleTimeout causes 1 byte per defined period to be sent to the
printer until the threshold defined by FastPrintSlowDownTheshold is
exceeded.

Default: 2,000 (2 seconds)

FastPrintWaitTimeout REG_DWORD Milliseconds

When print spooling, the port thread must synchronize with the spooling
application. This value determines how long the port thread waits before giving
up, pausing the current print job, and moving to the next print job.

Default: 24,000 (4 minutes)

NetPrinterDecayPeriod REG_DWORD Milliseconds

Specifies how long to cache a network printer. The cache is used to present the
list of printers when the browse dialog is used.

Default: 3,600,000 (l hour)

PortThreadPriority REG_DWORD Priority

Allows you to set the priority of the port threads. These are the the threads that
do the output to the printers.

Default: THREAD _PRIORITY_NORMAL

PriorityClass REG_DWORD Class

Sets the priority class for the spooler. 0 or no value indicates the default (7 for
workstations, 9 for servers). Any other value becomes the priority class for the
server.

Default: 0

. SchedulerThreadPriority REG_DWORD Priority

Allows you to set the priority of the scheduler thread, which is used to assign
jobs to ports.

Possible values are THREAD_PRIORITY_NORMAL,
THREAD _PRIORITY _ABOVE_NORMAL, and
THREAD_PRIORITY _BELOW_NORMAL.

Default: THREAD_PRIORITY_NORMAL

Appendix B Registry Value Entries 619

ServerThreadTimeout REG_DWORD Milliseconds

Specifies how long the server thread sleeps before calling all other print servers
and notifying them of the printers on this machine.

Note that the default NetPrinterDecayPeriod on other machines is 1 hour;
therefore, if ServerThreadTimeout is greater than 1 hour, other servers will
forget about this printer when a browse dialog is displayed.

Default: 600,000 (10 minutes)

To control network popups for remote print jobs, add the value· NetPopup to the
key found in the following Registry path:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet
\Control\Print\Providers

NetPopup REG_DWORD 0 or 1
Specifies whether to display a popup message for remote print jobs.

Default: 1

Registry Entries for Software Classes
Various HKEY _LOCAL_MACHINE\SOFfW ARE subkeys contain the names
and version numbers of the software installed on the local computer. (Information
about the configuration of these applications is stored on a per-user basis under
HKEY_CURRENT_USER.)

During installation, applications record this information in the following form:

HKEY_LOCAL_MACHINE\SOFTWARE\CompanyName\ProductName\Version

Registry Entries for Subsystems
This section descnbes software registration entries related to Windows NT
subsystems.

Microsoft OS/2 Version 1.x Software Registration Entries
To disable the OS/2 subsystem, set the value of GlobalFlag to 20100000 in the
following subkey:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager

620 Optimizing Windows NT

Windows Software Registration Entries
The Windows subkey under the following path defines some values used by
applications created to run under Windows for MS-DOS:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows

Applnit_DLLs REG_SZ
Causes all the specified DLLs (one or many) to be attached to all Windows
based applications. This means that once this is set for a session, upon restarting
the system, all the Windows-based applications that run in that session will load
the specified DLLs. For example, an applications developer can use it to attach
the Microsoft Calli Attributive Profiler to all Windows-based applications by
calling CAPSETUP.EXE, which sets the Applnit_DLLs so the user doesn't
have to do it through Registry Editor.

Default:

DeviceNotSelectedTimeout REG_SZ Seconds

Specifies how much time the system waits for a device to be switched on. If the
device is not switched on during this time, the system won't print to the device.
For some devices, the system immediately posts an error message if the device is
not already switched on. This entry only defines the system default value. To
change the value for a particular printer, use Print Manager.

Default: 15

Spooler REG_SZ Boolean

Specifies whether output to the printer is to be sent through Print IvIanager.
Changing this value to No turns off Print Manager.

Default: Yes

swap disk REG_SZ drive:directory

Provides the name of the disk drive and directory to which Windows for MS
DOS in standard mode swaps non-Windows-based applications.

Default: The directory pointed to by the TEMP environment variable; if there is
no TEMP variable, the default is the boot directory of your first hard disk
(usually C:).

TransmissionRetryTimeout REG_SZ Seconds

Specifies the default amount of time for attempted transmission retries. If a
successful transmission does not occur during this time, Print Manager displays
a message stating that the printer is not receiving characters. This setting serves
only as the system default value. To change the value for a particular printer, use
Print Manager.

Default: 45

APPENDIX C

Using Response Probe

We created Response Probe so we could place pure, synthetic workloads
on Windows NT to verify its algorithms and its fundamental performance
characteristics. It has also proven useful for calibrating maximum throughputs
for various workloads. We included Response Probe on the floppy disk provided
with this book so that you can quickly assess the performance of various
components of your own computer equipment.

Testing components with Response Probe reveals what we call the
multidimensional response suiface, which characterizes the performance
of every computer. Each hardware component represents a separate dimension.

621

In this appendix we describe the structure of Response Probe and how you alter its
parameters to create a wide variety of synthetic workloads to suit your needs.

622 Optimizing Windows NT

Why You Would Use Response Probe
A Response Probe workload is pure-it is completely controlled and specified by
the experimenter. Systematic changes to the workload produce corresponding
changes in the response by the computer's hardware and software. By placing a
series of known workloads on the computer, Response Probe can characterize
overall computer performance in an application-independent fashion.

Response Probe experiments are relatively short. Because you can place a pure
workload on the computer, the experiments are highly repeatable.

Response Probe has limitations, however. It doesn't test the graphics subsystem.
To evaluate this area, you must use other benchmarks. Even more important, you
must keep in mind that unless you really understand your applications, it is a
significant leap from understanding the computer's response surface to predicting
the performance of applications. This is because only measuring the actual
applications with Performance Monitor will reveal which computer components are
used by various applications, and in what proportions. Complicating the matter is
that these proportions change when the hardware is changed.

The approach to using Response Probe, therefore, can take on at least two forms.
One is to chart the whole response surface, varying one parameter at a time (such as
record size) in a systematic way while keeping all other parameters fixed, to yield a
response surface chart. This is the method we use throughout this book. You can
then measure your applications and match their characteristics to the charts of the
response surface to see how they are affected by hardware changes. Another
approach is to measure your application to form a picture of the application's use
of the computer. Then use Response Probe to mimic the application's behavior as
closely as possible, and apply that synthetic load to the various types of hardware
you will use.

Response Probe Design
The Response Probe workload simulates an actual use of the computer by a user:
cycles of idle time (user think time) followed by some processing. The idle time or
user think time state (THINK state) allows simulation of interactive use of the
computer (using word processors, spreadsheets, and so on). The processing state
consists of two sub-states: one state to access a file (ACCESS state) and another
one to consume processor time (COMPUTE state). The following diagram shows a
complete probe cycle.

Appendix C Using Response Probe 623

+ I

THINK FILE ACCESS COMPUTE

T I

Figure C.I Complete Response Probe cycle

Normal Distribution
You specify the amount of time to spend in each phase of the interaction cycle.
Each parameter is an independent dimension of the workload. The values actually
used to apply the workload in each dimension from one cycle to the next are
normally distributed based on two simple parameters that you supply. The normal
distribution (better known as the bell-shaped curve), has some good characteristics
for applying known workloads.

When a workload has a normal distribution, about two-thirds of the samples are
within plus or minus one standard deviation of the mean. About 95% of the samples
are within plus or minus two standard deviations of the mean. And about 99% of
the samples are within plus or minus three standard deviations of the mean. A
standard deviation of zero causes the mean workload equal to be applied constantly.
So (you guessed it), you supply the mean and the standard deviation of the each
phase and, voila, a purely defined workload.

Response Probe uses a folded normal distribution for some of its parameters.
Actually there is no such thing in statistics, so we invented it. That is because
some of the dimensions have upper and lower boundaries. None of the dimensions
can realistically be negative, for example. (That's what we need; negative compute
time so we'd be done before we start. Now that's fast!) And Response Probe will
not access a file beyond its beginning or end. So if a computation of a workload
parameter ends up beyond the boundary of the dimension, it is arithmetically folded
back towards the mean. If it then happens to go past the boundary of the dimension
on the other side, it is again folded back towards the mean, and this process
continues until a value within the boundaries of the dimension is returned.

For example, suppose a dimension has boundaries of 1 and 100. If the computation
of a parameter is 102, is folded back into the boundary and becomes 98. If a
computation yields 205, it becomes 5 when folded back within the boundary.

Response Probe uses the following formula to calculate normally distributed values.
If the result is beyond the boundaries, it is folded back into the specified range as
described previously.

Normal = Mean + (-7 + Sum(14 Random Numbers [0 .. 1])) * Standard Deviation

624 Optimizing Windows NT

THINK State

To get some idea of how the parameters to a normal distribution work, take a look
at Figure C.2. This shows how access to a file with 1000 records is distributed
when the mean is placed at record 500, and various standard deviations are
supplied. When the standard deviation is one-third of the mean (166 = 500/3), we
get the familiar bell-shaped curve. By the time the standard deviation is equal to the
mean·, at 500 records, we get a nearly uniformly random distribution of access
across the file. If this were a pure normal distribution, this would look instead like
the central two-thirds of the bell shaped curve. Since the access that would fall
beyond the ends of the file are folded back into the file around the endpoints, the
random distribution results instead.

;'ONEHALF;XlC

2000~ 1500

1000

500

01
o 0 0 0 000 0 0 000

en ro ,...... Ul Lt') V M N ~ 0 en
~ N M V ~ Ul ,...... CD en en

":;TWOTHIROJ<lC

1200r===. 1000
800
600
400
200
O~~~~~~~~~~

o 0 0 0 0 0 0 0 0 0 0 0
en CD ~ W ~ V M N ~ 0 m
~NMVLt')Ul"""'CDmm

1200t==. 1000
800 .
600
400
200
01

o 0 0 0 0 0 0 0 0 0 0 0
m CD ,...... Ul Lt') V M N ~ 0 m

~ N M V Lt') Ul ,...... CD en m

Figure C.2 Normally distributed curves produced by various standard deviations

If we had selected a standard deviation of 0, all the access would have been to
record 500 of the file.

Now let's take a look at the operation of the various phases of Response Probe.

User think time during interactive use of the computer is simulated during this state.
The Response Probe thread just goes idle during this state. The length of the idle
time is a normally distributed value based on the supplied mean and standard
deviation (in milliseconds).

After the simulated user think time, a normally distributed value is generated for the
number of file access phases to execute before thinking again.

Appendix C Using Response Probe 625

. FILE ACCESS State
During this state, the access to the file is a read, or a write, or (if you like) a series
of these actions that you specify. For random mode, a normally distributed seek
value is used to move the file pointer before the first record is accessed. For
sequential mode, the record number from the last FILE ACCESS phase is used.
In this case the file system is told of the sequential access at open time so the read
ahead by the cache manager is maximized.

You can also specify access as using BUFFERED, UNBUFFERED, or MAPPED.
Buffered access operations use the file system cache. Unbuffered access operations
do not use the cache. Mapped access does not use the file system at all, but instead
accesses the file as an array of records in memory. See Chapter 6, "Detecting
Cache Bottlenecks," for more information.

After the file is accessed, Response Probe generates the milliseconds of processor
time to compute based on the mean and standard deviation supplied.

COMPUTE State
During this state, processor time is consumed for the amount of time you specify.
When Response Probe begins, it calibrates itself to the processor to determine the
amount of processor cycles executed per unit of real time. Thereafter, when you
specify Response Probe to consume the processor for a certain amount of time, it
does so by consuming the appropriate number of processor cycles. Processor
calibration is done at High Priority class.

During the processor time consumption period, code and data pages are touched.
Response Probe simulates code pages by reading during computation a file you
create. To simulate data pages, Response Probe uses a section of virtual memory
backed by the paging file that is written during computation.

The pages being touched (both code pages and data pages) are selected as normally
distributed values based on the supplied mean and standard deviation for code and
data pages. These values control the paging activities during the compute state.

626 Optimizing Windows NT

Response Probe Input Files
Text script files are used to specify the exact workload applied to the computer
being probed. This allows for a highly flexible method of applying various loads
on the computer. The high-resolution performance counter discussed at the end
of Chapter 12, "Writing a Custom Windows NT Performance Monitor," is used
to measure response times.

All the input arguments and script parameters are checked against possible error
conditions. Probing starts once all the required processes and their corresponding
threads launch successfully and are ready to probe. Measurements are taken by
each thread once the computer reaches a steady state. Steady state is reached
when increasing the time limit on the trial has no significant effect on the threads'
response times. Currently, each thread begins taking measurements with the first
probe cycle to start after 50% of the trial time has expired.

In the script file, you supply values for the mean and standard deviation. These
values generate the normally distributed values needed during the probe cycles.

Once any of the threads is done probing, all other threads are forced to stop the
probe operation. Test results are printed to the designated output file, as discussed
in the following section.

Performing Response Probe Experiments
To perform a Response Probe experiment, create the script file containing the
experiment parameters. Then type the following:

Probe ProbeFileScr Time [ProbeOutFilel

ProbeFileScr is the .SCR script file containing information about the processes in
the experiment. The following sections of this chapter discuss the possible contents
and format of the .SCR file, and the contents and format of the .SCP and .SCT
script files that the .SCR file can refer to. Time is the total trial time in seconds.
ProbeOutFile is the name of the Response Probe's output file. ProbeOutFile is
optional-if you don't specify a filename for ProbeOutFile, ProbeFileScr.OUT is
used as the default.

Script Files

Appendix C Using Response Probe 627

All scripts that drive Response Probe are tiny text files. There are three types of
script files:

• .SCR files for creating processes in Response Probe runs. For each Response
Probe run, there is exactly one .SCR file.

• .SCP files for c~eating threads for processes.

• .SCT files for setting parameters for the threads.

You can create any number of processes and threads in this way, and these
processes and threads can be similar or different in any way you want.

* .SeR File Format
This script file is used as the first input argument to the probe program. It contains
all process script file names. For each PROCESS line specified in the file, a process
is created with the following parameters:

• Script file name

• Data memory pages size (in number of pages)

• "Code" memory pages

The format of each PROCESS line in the .SCR file is:

[REPEAT N] PROCESS ParameterFileName.SCP DataSize CodePagesFileName
[ProcessName [PriorityClass]]

ParameterFileName is the name of the .SCP file for this process. DataSize is
the amount of virtual memory (in pages) allocated as the paging file that simulates
data pages. CodePagesFileName is the name of the file (that you must have
created) to be used to simulate code pages. You can use the createfil utility to
create CodePagesFileName. The size of this file determines how large the code
space is. The process maps virtual memory to the size of the code pages file.
"REPEAT N" creates the PROCESS within the same line N times, creating N
processes.

ProcessName and PriorityClass are optional, but if you specify a Priority Class
you must also specify a ProcessName. The default for ProcessName is
PROBEPRC.EXE. Changing this makes it possible to have child processes with
different names so they can be identified by the Performance Monitor. You'll copy
PROBEPRC.EXE to files with these names before running. Priority Class is one of
the following: Idle, Normal (the default), High, and Realtime. You need supply
only the first letter of the priority class (I, N, H, or R).

To include a comment in the .SCR file (or in a .SCP or .SCT file), begin that line
with a # character.

628 Optimizing Windows NT

Here is an example .SCR file that creates one process and then three more: .

PROCESS LikeMine.scp 500 SoMeCode.dat MyProg.exe H
REPEAT 3 PROCESS LikeHis.scp 300 OtherCod.dat HisProg.exe N

The first line creates a process with the process parameter file LIKEMINE.SCP.
The data space in the paging file is 500 pages. The file for simulating the code
space is SOMECODE.DAT. You have copied PROBEPRC.EXE to
MYPROG.EXE for this process. It executes at High Priority class.

The next line creates three identical processes. Their parameters are in the
LIKEHIS.SCP file. They each allocate 300 private pages of paging file. They will
share the "code" pages in the OTHERCOD.DAT file. The three processes each
have the name HISPROG.EXE (you must have copied PROBEPRC.EXE to this
filename), and you will see data from only one of them in the Perfonnance Monitor.
They will run at Nonnal Priority class.

* .SCP File Format
This script file contains the names of the thread script files. For each THREAD
line, a thread is created using the parameters in another specified script file ..

The fonnat of each THREAD line is as follows:

[REPEAT N] THREAD ThreadFileName.SCT [ThreadPriority]

ThreadFileName is the name of the .SCT file containing the parameters for this
thread. ThreadPriority is optional. If it is specified, it must be one of the following:
TimeCritical, Highest, AboveNonnal, Nonnal (the default), BelowNonnal, Lowest,
and Idle. Only the first letter of the thread priority is significant and need be
supplied.

"REPEAT N" creates N identical threads.

* .SCT File Format
This script file contains all the infonnation required for the operation of Response
Probe threads. Supplied mean and standard deviation values may not be negative
numbers.

Here is the fonnat of the .SCT file. The parameter lines can be in any order.
The units for each parameter on the right are not part of the' specification of the
workload, but are indicated here for reference. We actually include them in each
.SCT file for reference since they don't hurt anything by hanging around out there
on the end of each line.

THINKTIME
CYCLE READS

Mean SDev
Mean SDev

Appendix C Using Response Probe 629

(milliseconds)
(number)

FILESEEK Mean SDev (records)
CPUTIME Mean SDev (milliseconds)
DATAPAGE Mean SDev (pages)
CODEPAGE Mean SDev (pages)
FILEACCESS FileAccessName (name)
[FILEATTRIBUTE {RANDOM I SEQUENTIAL}] (R IS)
[FILEACCESSMODE {MAPPED I BUFFERED I UNBUFFERED}] (M I B I U)
[RECORDSIZE Bytes] (default: 4096 bytes)
[FILEACTION {R I W}*] (read/write pattern)

The commands FILEA TTRIBUTE, FILEACCESSMODE, RECORDSIZE, and
FILEACTION are optional. All others are required. Defaults for the optional
commands are Random, Buffered, 4096, and I Read respectively.

If UNBUFFERED is selected as FILEACCESSMODE, then the RECORDSIZE
must be· a multiple of the disk sector size.

A few of these parameters deserve some additional explanation. CYCLEREADS
indicates the number of times that FILEACTION followed by CPUTIME are
executed before the next THINK cycle is carried out. The name CYCLEREADS
is a holdover from early versions of Response Probe. Forgive us just this once.

FILESEEK is how you distribute random access on the FILEACCESS file. It
specifies a mean and standard deviation of the record to be accessed. It is typical
to place the mean at the central record of the file; for example, at record 500 in a
1000-record file.

DATAPAGE and CODEPAGE also specify a mean and standard deviation of the
page to be accessed, except that they are in units of pages.

If the FILEACCESS method is SEQUENTIAL, FILESEEK is ignored. If
SEQUENTIAL mode is specified, access starts at the beginning of the file again
when the end of the file is reached. We defined FILEACCESSMODE already. If
you can't remember how it works you have to read this appendix again as a
punishment.

RECORDSIZE is the size of each file access to the FILEACCESS file. If you
change this, you might want to adjust FILESEEK to get the same access pattern
since it is in units of records, and the record that is the center record in a file will
change as you modify the RECORDSIZE. Tricky, huh?

630 Optimizing Windows NT

. ·FILEACTION is the most fun parameter. Here you specify a string of reads and
writes with Rand W. Here is an example FILEACTION:

FILEACTION RRWRR

In this case, FILESEEK is performed first if access is RANDOM, otherwise it
accesses the next sequential record in the file. That record is read, and then so is the
next record. The second record that was read is then written. In other words, writes
that follow reads write the last record that was read, much as an application would.
Then the third record in the sequence is read, and then the fourth. Now this
FILEACTION is over, and a COMPUTE phase executes, and then another
[FILESEEK I] FILEACTION occurs as long as the number of CYCLEREADS
computed for this cycle has still not decremented to zero. This permits the
simulation of a wide variety of file access patterns, although certainly not all
possible patterns.

Sample .SeT Files
Here are some sample .SCT files. The first one does nothing, and you'll get a near
zero response time from it because Response Probe has calibrated its overhead and
subtracted it from each cycle.

THINKTIME 0 0 (milliseconds)
CYCLEREADS 0 0 (number)
FILESEEK 0 0 (records)
CPUTIME 0 0 (milliseconds)
DATAPAGE 0 0 (pages)
CODEPAGE 0 0 (pages)
FILEACCESS access.dat (name)

Here's one that reads a single record, 1024 bytes long, from the start of the
ACCESS.DAT file 100 times, without using the file system cache:

THINKTIME 0 0 (milliseconds)
CYCLE READS 100 0 (number)
FILESEEK 0 0 (records)
CPUTIME 0 0 (milliseconds)
DATAPAGE 0 0 (pages)
CODEPAGE 0 0 (pages)
FILEACCESS access.dat (name)
RECORDSIZE 1024 (default: 4096 bytes)
FILEATTRIBUTE RANDOM (R I S)
FI LEACCESSMODE UNBUFFERED (B I U I M)
FI LEACTION R (read/write pattern)

Appendix C Using Response Probe 631

Finally, here is an example of a workload that, during its 1000 milliseconds of
computation, repeatedly reads the first DWORD of a page in a 4-MB code page
file. The page reads will occur in a normal distribution. Four megabytes is 1024
pages on a machine with 4096-byte pages, so the central page is number 512. One
third of 512 is about 170, so to stretch the bell-shaped curve across the file we
specify 170 as the standard deviation.

THINKTIME 0 0 (milliseconds)
CYCLEREADS 0 0 (number)
FILESEEK 0 0 (records)
CPUTIME 1000 0 (milliseconds)
DATAPAGE 0 0 (pages)
CODEPAGE 512 170 (pages)
FILEACCESS access.dat (name)

If we had specified 512 and 170 for DATAPAGE instead of CODEPAGE, during
computation Response Probe would have written to the first DWORD of a page
selected with the normal distribution from the paging file section of 1024 pages that
we had specified in the .SCP file for the experiment.

These code and data page references occur once in each basic computation loop.
The number of basic· processor loops per millisecond on the processor in question is
given by the Relative Processor Speed in the .OUT file described in the next
section. The basic computation loop computes the result for these two normal
distributions, checks to see if it is time to stop computing, and that's about it.

632 Optimizing Windows NT

Output Format
. Output appears in the following format in a text file named as indicated previously

in "Performing Response Probe Experiments." For each thread in the experiment,
one data line is printed.

Multi~Processor Response Probe.
Copyright 1990-1993 Microsoft Corporation.
Version 2.0 (93.06.24)
Wed Jun 24 15:36:02 1993
Script File: pb01_01a.scr
Trial Time: 100 seconds
Stable interval: [50% .. 100%] of Trial Time -= [50 .. 100] (50 seconds)
Relative Processor Speed: 11.37
(All times are in milliseconds)

PID TID

72 71

Think Think
Mean SDev

0 0

Fil e Rec Total Resp Resp
Mode Size Time Time Count Mean SDev Min Max

S U 4096 100049 46235 941 49 0 49 50

Reads Reads CPU CPU DataPg DataPg CodePg Codepg
Mean SDev Mean SDev Mean - SDev Mean SDev

0

------- ------- ------- -------

0 50 0 1 0 1 0

(In the actual output file, the columns from "PID" to "CodePg SDev" all appear in
one wide row.)

The really interesting number here is the "Mean" response time to the workload
that you have devised. This is in the eighth column from the left. In addition to all
the Performance Monitor data you may collect when you run your experiment, this
number can be revealing. Keep an eye on it.

You want to be sure your experiment is long enough that the "Mean" response
time for the action you specified is repeatable. Keep increasing the length of your
experiment until this is true. The larger the number of threads and the more file or
paging activity you generate, the longer your experiments will have to be.

Appendix C Using Response Probe 633

"PID" is the Process ID of the thread, and "TID" is the thread ID. "Total Time"
is the experimentally observed total time for this thread. "Resp Time" is·the time
during which the thread actually observed its own response time. It should be the
last half of the total time. "Resp Count" is the number of complete cycles observed
in the response time computation. "Mean" is the average response time to the Resp
Count cycles. "Sdev," "Min," and "Max" are the standard deviation, minimum,
and maximum of the response time observed in the Resp Cy·cles. The remaining
columns specify some of the input parameters to the experiment, in case you lose
your .SCT file.

Response Probe should help you get a good idea of how your equipment can handle
workloads of various types, as well as how changes to your equipment have
affected its capacity. What a tool!

Index

A
AarpRetries 536
Access

asynchronous 186,268,274
Direct Memory Access COMA) 150, 189
random file access 197-202
sequential file access

cache 190-196
reducing number of operating system calls 267
Response Probe 184
writing high-performance applications 266

using file system to access file data 267
AckDelayTime 552,553
ACKs 212
AckWindow 553
AckWindowThreshold 553
Adapter cards

characterizing performance with Response
Probe 148,622

collecting server performance data 258
Direct Memory Access COMA) 150
multiple device instances 351
upgrading to eliminate processor bottlenecks 115

Adding
application performance counters

collecting performance data 352
creating performance DLLs 353-358
installing the applications 359
measuring foreign computers 358
object and counter design 343
OEMSETUP.INF 344, 359
sample code 360
setting up Registry 342, 343-351
steps to follow 342
uses 341

clients to test servers 226-232
comments to log flIes 52, 57
counter names to Registry 343,345-349
data to log files 52
memory

increasing secondary cache speed 115
to disk adapters 150

multiple processors 11, 116-119
AddNarneQueryRetries 542
AddNameQueryTimeout 542

Alerts
adding names to systems 259
Alert view 45-48,259 .
clearing data 48
colors 47
introduced 19
monitoring

free disk space 259
remote computers 47
servers 259

of logged data 59
sending network messages 47,259
setting on multiple instances 48
time interval 46
vs. charting 26

AlertSched 572
Always on top, Performance Monitor 35, 66
Analyzing performance

cache
examples 184-189
file system cache overview 182-183
introduction 181
random file access 197-202
sequential file access 190-196

clients 263
data structures 327-330
disks 130-139
foreign computers 358
memory

effect of poor performance on disk 177
examples 160-175
introduction 157
memory hogs 178-180
paging with multiple processes 171-175

networks
adding clients to test servers 226-232
analyzing throughput 208-218
interactions 216-218
interrupts See Interrupts
monitoring directory copies from servers to

clients 237-243
NWLink 249-254
server disk activity 233-236
TCPIIP 243-249
using role reversal to compare platforms 223-225

635

636 Index

Analyzing performance (continued)
processors

device utilization affecting queue length 98-100
illustration of processes 114
multiple processes and threads 91-98
overview settings files 70-74
processor scheduling described 80-82
sawtooth queue length 83-86
simple bottlenecks 75-79
user vs. privileged modes 86-91

servers
adding clients to test servers 226-232
disk activity 233-236
interrupt rates 219-222
logging performance data 258
monitoring directory copies to clients 237-243
network throughput 208-218

Solitaire
CAP 293-298
Performance Monitor 280-284
WAP 288

trends 255-261
writing a custom performance monitor See Writing a

custom performance monitor
AnnotateDirectories 587
Apf32cvt utility 286-290, 292
Apf32dmp utility 287
APIProtocolSupport 586
APIs

API logger 273
choosing between sets 275-277
excluding from analysis with W AP 287-288
graphics

batch processing 271
optimizations 276-277

information recorded by profiling DLLs 285
kernel optimizations 275-276
RISC optimizations 277
Win32

dynamic link libraries 285, 286
optimizations 275-277
writing high-performance applications 275-277

Win32 API Logger 304-305
Windows API Profiler See W AP tool
Windows NT file I/O and synchronization 301

AppIniCDLLs 620
AppleTalk object counters

AARP Packets/sec 396
ATP ALO Response/Sec 396
A TP Packets/sec 396
A TP Recvd Release/Sec 396
ATP Response Timouts 397
ATP Retries Local 397

AppleTalk object counters (continued)
ATP Retries Remote 397
ATP XO Response/Sec 397
Average Time/AARP Packet 397
Average Time/ATP Packet 397
Average TimelDDP Packet 397
Average TimelNBP Packet 398
Average TimelRTMP Packet 398
Average Time/ZJP Packet 398
Bytes In/sec 398
Bytes Out/sec 398
Current NonPaged Pool 398
DDP Packets/sec 398
NBP Packets/sec 399
Packets dropped 399
Packets In/sec 399
Packets Out/sec 399
Packets Routed In/Sec 399
Packets Routed Out/Sec 399
RTMP Packets/sec 399
ZIP Packets/sec 400

Applications
. See also Programs

adding performance counters See Adding, application
performance counters

asynchronous I/O 186,268,274
Call Attributed Profiler See CAP tool
determining performance DLLs in Registry 344
DOS 16-bit, processor usage 109-112
FILE_FLAG_NO_BUFFERING parameter 182
GUI, automating with MS Test 65
high-performance, writing See Writing Windows NT

applications
I/O Profiler (FIOSAP) 298-304
listing DLLs 286, 292
mapping files into memory 203-206, 266
memory hogs 178-180
optimizing 4-5
privileged mode vs. user mode 352
server applications 258, 268
Solitaire, tuning

CAP 293-298
Performance Monitor 280-284
WAP 288
Working Set Tuner 314-316

tuning tools 6
Unicode 269, 274
Windows 16-bit, processor usage 103-108
Windows API Profiler See W AP tool
Windows NT

tuning See Tuning, Windows NT applications
writing See Writing Windows NT applications

working sets, tuning See Working Set Tuner

Architecture
computers 8-12
IIO-memory bus 150

Archiving
Performance Monitor log files 260
server performance data 260-261

ArpCacheLife 579
ArpCacheSize 580
Asynchronous 110 186,268,274
At command 263
Attrib command 160
AuthenticateRetries 564
AuthenticateTime 564
AutoAdminLogon 615
AutoDisconnect 565
Automating

B

Performance Monitor with aUI batch processor 65
server performance analysis 262

BackupDatabasePath 586
BackupInterval 586
Batch

client-server batch size set by WAP 285
processing CSRSS calls 270-272

BcastNameQueryCount 588
BcastQueryTimeout 588
BindSap 555
BlockingThreads 572
Bookmarks used when logging data 52, 57
BOOT.INI file 160
BorderWidth 607
Bottlenecks

definition 12-14
detecting See Detecting bottlenecks
eliminating

disk bottlenecks 149-150
processor bottlenecks 114-115

BroadcastCount 554
BroadcastTimeout 554
Browser object counters

Announcements Domain/sec 400
Announcements Server/sec 400
Announcements Total/sec 400
Duplicate Master Announcements 400
Election Packets/sec 401
Enumerations Domain/sec 401
Enumerations Other/sec 401
Enumerations Server/sec 401
Enumerations Total/sec 401
Illegal Datagrams/sec 401

Index 637

Browser object counters (continued)
Mailslot Allocations Failed 402
Mailslot Opens Failed/sec 402
Mailslot Receives Failed 402
Mailslot Writes Failed 402
Mailslot Writes/sec 402
Missed Mailslot Datagrams 403
Missed Server Announcements 403
Missed Server List Requests 403
Server Announce Allocations Failed/sec 403
Server List Requests/sec 403

Browser service, registry value entries 537
BrowserServerDeletionThreshold 538
Buffering

creating large buffered files with createfil 141
unbuffered 110 request cache restrictions 182

BufferMultiplier 592 .
BufFilesDenyWrite 594
BufNamedPipes 595
BufReadOnlyFiles 595
Bus See liD-memory bus

c
Cache

analyzing performance See Analyzing performance, cache
analyzing processor performance 90
behavior when creating a large buffered file 141
bypassing with FILEACCESSMODE parameter 129
cached vs. non-cached file 110 184
clearing with clearmem 184
core object 27
data flushes 141, 187
data maps 187
description 10
detecting bottlenecks See Detecting bottlenecks, cache
Direct Memory Access (DMA) 150, 189
fast reads 90, 188, 192
file system cache overview 182-183
hit ratio 187
increasing secondary cache speed 115
mapped page writer 187, 191
mapping files into memory 203-206,266
MDL reads 238
monitoring directory copies from servers to clients 238
pin reads operations 189
random file access 197-202
sequential file access 184, 190-196, 266
server disk activity 235-236
trimming 185
tuning 206
unbuffered 110 request restrictions 182
write-through caching 124

638 Index

Cache object counters
Async Copy Reads sec 404
Async Data Maps/sec 404
Async Fast Reads/sec 404
Async MDL Reads/sec 405
Async Pin Reads/sec 405
Copy Read Hits % 187-188,405
Copy Reads/sec 405
core object 27
Data Flush Pages/sec 187-189, 191-194,406
Data Flushes/sec 187-189, 191,406
Data Map Hits % 406
Data Map Pins/sec 406
Data Maps/sec 406
Fast Read Not Possibles/sec 407
Fast Read Resource Misses/sec 407
Fast Reads/sec 407
Lazy Write Flushes/sec 191,407
Lazy Write Pages/sec 141,407
MDL Read Hits % 408
MDL Reads/sec 408
Pin Read Hits % 408
Pin Reads/sec 408
Sync Copy Reads/sec 409
Sync Data Maps/sec 409
Sync Fast Reads/sec 90,409
Sync MDL Reads/sec 409
Sync Pin Reads/sec 410

CacheFileTimeout 595
CacheHitLimit 537
CacheResponseSize 537
CacheTimeout 588
Call Attributed Profiler See CAP tool
. CallbackTime 564
CallWindowProc API category 288
CAP tool

Apf32cvt utility 292
CAP.INI initialization file 292
CAP.LIB library 293
Capdump 293
Capview 296-298
default extension 293
description 290
obtaining DLLs with symbols 292
running on Solitaire 293-298
tuning Windows NT applications 277, 290-298
using 292-296
Working Set Tuner 316

CAP.INI initialization file 292
Capacity planning

analyzing trends 255-261
archiving and storing server perfonnance data 260-261
benefits 255
introduction 4

Capacity planning (continued)
monitoring

client perfonnance 263
mUltiple servers 258-259

Capdump program 293
ChangeLogSize 548
Charting counters

changing time interval 39
chart types 36
Chart view 36-43
charting logged data 57
clearing data 39
fonnatting chart lines 42-43
graphs

description 36-40
of logged data 53-55, 57

highlighting
description 38
shortcut keys 66

histograms
description 40
of logged data 58

introduced 17
modes 36
response surface 75,622
vs. alerts 26

CharWait 595
CheckBinaryTimeout 612
CheckBinaryType 612
CheckLatencyInterval 600
Checksum, disabling to run W AP 284
Clearing

alert data 48
chart data 39
memory 168, 184, 319
report data 45

Clearmemprogram 168, 184,319
Clients

See also Detecting bottlenecks, networks
adding to test servers 226-232
analyzing network throughput 208-218

. interrupt rates 219-222
monitoring

directory copies from servers 237-243
perfonnance 263

Close function 344, 353-358
Cmdline 525
Collect function 344, 353-357
Collecting perfonnance data

added perfonnance counters 352
Costly data 352
servers 258-259
WAP 287

CollectionTime 596

Colors
alerts 47
formatting chart lines 42-43

Comments, adding to log files 52, 57
Computers

architecture 8-12
foreign computers

measuring 358
opening channels 357, 359
selecting data 333

measuring mUltiple computers 25-26
moving settings files to another computer 60
non Windows NT See herein foreign computers
processor scheduling described 80-82
remote monitoring 47, 128,325-326,331
selecting in Performance Monitor 22
turbo switch 150

Concatenating
data with wtscat 317
strings 269

Configuring available memory in Windows NT 160
ConnectionCount 554,558,561
ConnectionlessAutoDisc 572
ConnectionTimeout 554,558,561,587
ConnectTimeout 563
Context switches 85, 102
Controller cards 149
CoolS witch 607
CopyTime 604
Costly data 333, 352
Counters

See also specific counters
absolute values 14
adding application performance counters See Adding,

application performance counters
alerts See Alerts
AppleTalk object 396-400
average vs. instantaneous values 57
Browser object 400-403
Cache object 404-410
charting See Charting counters
custom performance monitors See Writing a custom

performance monitor
datagrams 211, 246
definition 343
description 14
design 343
disk time 14
disk transfers 14, 136, 142-149
enabling disk performance counters 64, 68, 128
exporting data 20,57,62,65,261
FfP Server object 410-412
Gateway Service for NetWare object 413-417

Counters (continued)
help values 331,346
ICMP object 418-422
Image object 422-424

Index 639

included in overview settings files 70-74
indexes 330-332,345-346,350
installing in Registry with lodctr 343-349
IP object 424-427
listing explained 395-396
logging 19
LogicalDisk object 428-431
MacFile Server object 431-434
Memory object 434-439
NBT Connection object 247,439
NetBEUI object 440-447
NetBEUI Resource object 448
Network Interface object 449-452
Network Segment object 452-453
normal operating ranges 15
NWLink IPX object 453-460
NWLink NetBIOS object 460-467
Objects object 467-469
Paging File object 469
PhysicalDisk object 469-472
Process Address Space object 477-485
Process object 472-476
Processor object 486-487
RAS Port object 487 -490
RAS Total object 490-493
Raw Count type 57
Redirector object 493-501
relative values 15
removing from Registry with unlodctr 346, 350
reports See Reports
retrieving names and explanations 330-332
saving settings 60-62
selecting 22,28-31
Server object 501-505
structure 21
System object 506-510
TCP object 510-512
TCP/IP 244
Thread Details object 515
Thread object 512-515
type definitions

description 333
fields and values listed 334-335
predefined counter types listed .336-339

UDP object 515
WINS Server object 516-518

CrashDumpEnabled 612
CreateDIBSection call 272
Createfil utility 129, 139

640 Index

CreateFile function 266-267,351,355
CreateFileFirstTime 604
CreateFileMapping function 266-267,268
CreateWindow API category 288
Creating

application performance counters See Adding, application
performance counters

application performance DLLs 353-358
archived log files 260
files with createfil 129, 139
large buffered files 141

CriticalSectionTimeout 523
Critical Threads 572
CSRSS (client-server runtime subsystem)

analyzing
cache performance 199
processor performance 78

detecting memory bottlenecks 163-168
gdidemo 10 1, 120
monitoring Solitaire 283
multiprocessor bottlenecks 121
processor usage by graphics 100-102
writing high-performance applications 270-272

Current registry value entry 520
CurrentControlSetControl subkeys 521-534
CurrentControlSetSelect subkey 520
CurrentControlSetServices subkeys 526
CursorBlinkRate 607
Custom

performance counters See Adding, application
performance counters

performance monitors, writing See Writing a custom
performance monitor

Customizing Performance Monitor display 32-35

o
Data flushes

code path triggers 187
description 141
sequential file access 193

Data maps, description 187
DatabaseCleanupInterval 586
DatabaseLoggingFlag 586
DatabaseName 586
DatabasePath 586
Datagrams 211,246
DATALOG.EXE, Performance Monitor service 63,256-257
DataTimeOut 611
DdpCheckSums 536
DedicatedRouter 558
Default registry value entry 520
DefaultPassword 615
DefaultReceiveWindow 592

DefaultSendWindow 592
DefaultSettings.BitsPerPel 533
DefaultSettings.Interlaced 534
DefaultSettings. VRefresh 534
DefaultSettings.xResolution 534
DefaultSettings. YResolution 534
DefaultTl Timeout 542
DefaultT2Timeout 543
DefaultTiTimeout 543
DefaultTIL 580
DefaultUserName 615
Deferred Procedure Call (DPC) level 220
DefFrameProc API category 288
DefWindowProc API category 288
Deleting

counter names from Registry 350
objects from log files 53
report counters 45

DestroyWindow API category 288
Detecting bottlenecks

See also Analyzing performance; Performance Monitor
bottlenecks defined 12-14
cache

examples 184-189
file system cache overview 182-183
introduction 181
random file access 197-202
sequential file access 190-196

clients 263
computer architecture 8-12
description 3
diskperf See Diskperf utility
disks

analyzing performance 130-139
introduction 127
uncovering high disk throughput 139-149

interactions
defining as one read for networks 216
description 12
device demand 12
missing time explained 217-218

memory
examples 160-175
introduction 157

monitoring performance, description 4
networks

adding clients to test servers 226-232
analyzing throughput 208-218
interactions 216-218
interrupts See Interrupts
introduction 207
LANs vs. W ANs 207
monitoring directory copies from servers to

clients 237-243

Detecting bottlenecks, networks (continued)
NWLink 249-254
server disk activity 233-236
TCPIIP 243-249
using role reversal to compare platforms 223-225

processors
analyzing performance 75-114
introduction 67
overview settings files 70-74

RAID systems 150-156
response surface 75,621-622
rules

1 25
10 135, 200, 212
#267,243
3 69
#4 70
5 76
#6 77
7 91,216
8 100,232
9 133, 195,222

servers
analyzing trends 255-261
archiving and storing performance data 260-261
collecting data 258-259
disk activity 233-236
processor usage growth example 262
suggested time intervals 260, 261

writing a custom performance monitor See Writing a
custom performance monitor

DeviceNotSelectedTimeout 620
Devices

drivers, registry value entries
mouse and keyboard 528-532
SCSI rniniport 532-533
video devices 533-534

interaction usage 12
managing context 273
maximum throughput, description 12
multiple device instances 351
queue length See Queue length

DialogBox API category 288
Direct Memory Access (DMA) 150, 189
Disable registry value entry 532
DisableDialinNetbios 559
DisableDialoutSap 559
DisableDisconnects 532
DisableMcastFwdWhenSessionTraffic 565
DisableMultipleRequests 532
DisableServerThread 617
DisableSynchronousTransfers 532, 533
DisableTaggedQueuing 532,533

Diskperf utility
description 128
diskperf command 64, 68, 128
DISKPERF.SYS 128, 136, 153, 259
service registry value entries 539
starting 64, 128

Disks
adding memory to adapters 150
analyzing performance 130-139

Index 641

behavior when creating a large buffered file 141
characterizing performance with Response

Probe 148, 622
controllers 149
counters See Counters
detecting bottlenecks See Detecting bottlenecks, disks
effect of poor memory performance ,177
eliminating bottlenecks 149-150
enabling disk performance counters 64,68, 128
fault tolerance 150-156
file system cache overview 182-183
monitoring transfers 14, 136, 142-149
physical vs. logical 130
RAID systems 150-156
server disk activity 233-236
uncovering high throughput 139-149

DiskSpaceThreshold 573
DispatchMessage API category 288
Display, customizing Performance Monitor 32-35
DLC System driver registry value entries 540
DLLs

application performance DLLs
creating 353-358
description 353
determining in Registry 344
error handling 358
interface 353-358

listing 286, 292
profiling Windows NT applications

CAP 291
110 Profiler (FIOSAP) 301-304
WAP 284-290
Win32 API Logger 304-305

Win32 APIs 285, 286
Windows NT file 110 and synchronization APIs 301
Working Set Tuner measurement library 317

DOS applications, processor usage 109-112
DosPrint 613
DoubleClickSpeed 609
DriverParameter 533
Drivers, registry value entries

mouse and keyboard 528-532
SCSI rniniport 532-533
video devices 533-534

642 Index

Drives, monitoring free disk space 259
Dynamic Data Exchange 268
Dynamic link libraries See DLLs

E
Editing registry value entries, caution 519
Eliminating bottlenecks

disks 149-150
processors 114-115

EnableBroadcast 565, 567
EnableDeadGWDetect 580
EnableDNS 588
EnableFCBopens 573
EnableFuncaddr 556
EnableNetbiosSessionsAuditing 565
EnableOplockForceClose 573
EnableOplocks 573
EnablePiggyBackAck 553
EnablePMTUBHDetect 580
EnablePMTUDiscovery 581
EnableProxy 588
EnableProxyCheck 588
EnableRaw 573
EnableWanRouter 556
EnableWindow API category 288
Enabling

application performance counters 343-344
disk performance counters 64,68, 128

Ending W AP 290
ErrorControl 539
ErrorMode 614
ErrorThreshold 573
Escape API category 288
EthemetPadToEven 559
Event objects 113,269
Exporting counter data 20,57,62,65,261
ExportList 570
Extensions

F

filenames
CAP 293
settings files 60
WAP 287
Working Set Tuner 317
W stune utility 317
Wtscat utility 317

registry value entry 553

Failed registry value entry 520
FastPrintSlowDownThreshold 617
FastPrintThrottleTimeout 618
FastPrintWaitTimeout 618

Fault tolerance 150-156
File system cache See Cache
FlLE_FLAG_NO_BUFFERING parameter 182
Files

cached vs. non-cached file 110 184
CAP.INI initialization file 292
creating with createfil utility 129, 139
determining application activity with W AP 192
log files See Log files
mapping into memory 203-206,266
OEMSETUP.INF 344, 359
opening to enhance application performance 268
random access 197-202
Response Probe

input files 626
script files 627-631

sequential access
cache 190-196
reducing number of operating system calls 267
Response Probe 184
writing high-performance applications 266

settings files
default 61
file extensions 60
moving from one computer to another 60
opening 61, 260
overview settings files 70-74
saving 60-62
using to start Performance Monitor 62

temporary files 266
using file system to access file data 267
WST.INI initialization file 316

FileSystem subkey 522
FindMasterTimeout 538
FlOSAP profiler 298-304
ForceEncryptedPassword 569
ForceFifoEnable 527
ForceScanInterval 600
Foreign computers

measuring 358
opening channels 357, 359
selecting data 333

Formatting chart lines 42-43
ForwardBroadcasts 585
ForwardBufferMemory 581
FTP Server object counters

Bytes Received/sec 410
Bytes Sent/sec 410
Bytes Total/sec 410
Connection Attempts 410
Current Anonymous Users 411
Current Connections 411
Current NonAnonymous Users 411
Files Received 411

FIP Server object counters (continued)
Files Sent 411
Files Total 411
Logon Attempts 412
Maximum Anonymous Users 412
Maximum Connections 412
Maximum NonAnonymous Users 412
Total Anonymous Users 412
Total NonAnonymous Users 412

FullScreen 605
Functions

G

application performance DLLs
creating 353-358
determining in Registry 344

Call Attributed Profiler (CAP) 277,290-298
call nesting depth 295
Close 344, 353-358
Collect 344, 353-357
CreateFile 266-267,351,355
CreateFileMapping 266-267, 268
monitoring with Capview 296-298
MoveToEx 271
Open 344,351,353-355
OpenFile 266
Working Set Tuner 312-316

Gateway Service for NetWare object counters
Bytes Received/sec 413
Bytes Total/sec 413
Bytes Transmitted/sec 413
Connect NetWare 2.x 413
Connect NetWare 3.x 413
Connect NetWare 4.x 414
File Data Operations/sec 414
File Read Operations/sec 414
File Write Operations/sec 414
Packet Burst 10/sec 414
Packet Burst Read NCP Count/sec 415
Packet Burst Read Timeouts/sec 415
Packet Burst Write NCP Count/sec 415
Packet Burst Write Timeouts/sec 415
Packets Received/sec 415
Packets Transmitted/sec 416
Packets/sec 416
Read Operations Random/sec 416
Read Packets/sec 416
Server Disconnects 416
Server Reconnects 417
Server Sessions 417
Write Operations Random/sec 417
Write Packets/sec 417

Gdidemo 101, 120
GdiFlush call 271
GdiGetBatchLimit call 271
GdiSetBatchLimit call 271
GeneralRetries 543
GeneralTimeout 543
GetBrowserListThreshold 539
GetDC call 273
GetMessage API category 288
GetMessage call 272,274
Global data 333
GlobalFlag 523
Graphics

gdidemo 101
processor usage 100-102
Win32 API optimizations 276-277

Index 643

writing high-performance applications 270-272
Graphs

charting logged data 53-55, 57 .
descr,iption 36-40

Group registry value entry 539
GuardTime 571
GUI batch processor 65

H
Help values for counters 331, 346
Hidden registry value entry 574
High-performance applications, writing See Writing Windows

NT applications
Highlighting chart lines 38, 66
Histograms

charting logged data 58
description 40

HistoryBufferSize 605
Hit ratio, cache 187
HzMode 530

110 Profiler (FIOSAP) 298-304
110 requests

asynchronous 186,268,274
unbuffered, cache restrictions 182

1I0-memory bus
architecture 150
description 9
speed 150

ICMP (Internet Control Message Protocol) 247,418-422
ICMP object counters

Messages Outbound Errors 418
Messages Received Errors 418
Messages Received/sec 418

644 Index

ICMP object counters (continued)
Messages Sent/sec 418
Messages/sec 419
Received Address Mask 419
Received Address Mask Reply 419
Received Dest. Unreachable 247,419
Received Echo Reply/sec 419
Received Echo/sec 419
Received Parameter Problem 420
Received Redirect/sec 420
Received Source Quench 247,420
Received Time Exceeded 420
Received Timestamp Reply/sec 420
Received Timestamp/sec 420
Sent Address Mask 421
Sent Address Mask Reply 421
Sent Destination Unreachable 247,421
Sent Echo Reply/sec 421
Sent Echo/sec 421
Sent Parameter Problem 421
Sent Redirect/sec 422
Sent Source Quench 422
Sent Time Exceeded 422
Sent Timestamp Reply/sec 422
Sent Timestamp/sec 422

IdleRequiredInterval 601
IGMPLevel 581
Image object counters

Exec Read Only 423
Exec ReadlWrite 423
Exec Write Copy 423
Executable 422
No Access 423
Read Only 423
ReadlWrite 424
Write Copy 424

ImportList 571
InitAddresses 543
InitAddressFiles 544
InitConnections 544
InitConnTable 574
InitDatagrams 558, 559
InitFileTable 574
InitialLargeBufferCount 592
InitialMediumBufferCount 592
InitialRefreshTimeout 589
InitialRetransmissionTime 554,561
InitialsmallBufferCount 592
InitLinks 544
InitPackets 561
InitReceiveBuffers 544
InitReceivePackets 544
InitRequests 545

InitSearchTable 574
InitSendPackets 545
InitSessTable 574
InitTimePause 593
InitUlFrames 545
InitWorkItems 574
Installing

counters in Registry with lodctr 343-349
CreateFile function in Registry 351
custom performance monitor applications 359

Instances
description 31
identification 32
mortal, description 32
multiple

description 21, 343
devices 351
NBT Connection object 247
setting alerts 48

parent, description 31
performance data structures 328
selecting 31-3 2

Interactions
defining as one read for networks 216
description 12
device demand 12
elements counted and displayed by Performance

Monitor 13
maximum throughput 12
missing time explained 217-218

Internet registry value entry 555
Interrupts

at-rest rate 213
Deferred Procedure Call (DPC) level 220
interrupt handler 220, 223
large transfer sizes 222
measuring 217-222

Interval registry value entry 571
IoPageLockLimit 523
IP (Internet Protocol) 246,424-427
IP object counters

Datagrams Forwarded/sec 424
Datagrams Outbound Discarded 424
Datagrams Outbound No Route 246, 425
Datagrams Received Address Errors 425
Datagrams Received Delivered/sec 425
Datagrams Recefved Discarded 425
Datagrams Received Header Errors 425
Datagrams Received Unknown Protocol 426
Datagrams Received/sec 426
Datagrams Sent/sec 426
Datagrams/sec 426
Fragmentation Failures 426

IP object counters (continued)
Fragmented Datagrams/sec 427
Fragments Created/sec 427
Fragments Re-assembled/sec 427
Fragments Re-assembly Failures 427
Fragments Received/sec 427

IpReassemblyTimeout 581
IRPstackSize 574

Kb_Free_StarCCompress 603
Kb_Free_Stop_Compress 603
KeepAlive 585
KeepAliveCount 555, 559, 562
KeepAliveInterval 581
KeepAliveTime 582
KeepAliveTimeout 555, 559, 562
Kernel

analyzing working sets 318
leaving files open to enhance application performance 268
Win32 API optimizations 275-276
writing high-performance applications 267-269

Keyboard driver registry value entries 528-532
KeyboardDataQueueSize 528, 532
KeyboardDelay 608
KeyboardSpeed 608
Keys

CurrentControlSetControl subkeys 521-534
Perflib 345-347
Performance Monitor shortcut keys 66
Performance, Registry 343-344
using keystrokes to record actions for MS Test 262

KeyType 586

L
Large reads 210
LargeBufferSize 592
LargeSystemCache 524
LastKnownGood 520
Lazy writes

counters 187
description 141

LinkInfoValidTime 575
LLCMaxWindowSize 545
LLCRetries 545
LmhostsTimeout 589
load registry value entry 614
Loading log files 53
Locality, description 10
Lockincrement 596
LockMaximum 596

LockQuota 596
Lodctr utility 343-349
Log files

adding comments 52, 57
alerts of logged data 59
appending data 52
archives 260
charting logged data

analyzing trends 255-261
graphs 53-55, 57
histograms 58

Index 645

monitoring server performance 260-261
compression ratio 263
deleting objects 53
format 36, 63
loading 53
logging logged data 59
reports of logged data 58
selecting times to view 55-56
server performance data 258
viewing 53
Win32 API Logger 304-305

LogAnonymous 588
LogElectionPackets 596
LogEvent 612
LogFileAccess 588
LogFileDirectory 588
Logging

counters
bookmarks 52, 57
introduced 19
Log view 48-59
'time interval 51

data on clients with MS Test 263
logged data 59
server performance data 258

Logging registry value entry 570
Logical disks

core object 27
vs. physical disks 130

LogicalDisk object counters
% Disk Free Space 261
% Disk Read Time 428
% Disk Time 130,261,428
% Disk Write Time 428
% Free Space 45,259,428
Avg. Disk ByteslRead 428
Avg. Disk BytesITransfer 429
Avg. Disk ByteslWrite 429
Avg. Disk seclRead 429
Avg. Disk secITransfer 429
Avg. Disk seclWrite 152,429
core object 27
Disk Bytes/sec 429

646 Index

LogicalDisk object counters (continued)
Disk Queue Length 48, 136, 430
Disk Read Bytes/sec 430
Disk Reads/sec 430
Disk Transfers/sec 430
Disk Write Bytes/sec 431
Disk Writes/sec 430
Free Megabytes 431

LogNonAnonymous 588
LogPixels 616
LowerSearchBufferSize 563
LowerSearchThreshold 563
LPT_timeout 525

M
MacFile Server object counters

Current Files Open 431
Current NonPaged memory 431
Current Paged Memory 431
Current Queue Length 431
Current Sessions 432
Current Threads 432
Data Read/sec 432
Data Received/sec 432
Data Transmitted/sec 432
Data Written/sec 432
Failed Logons 433
Max NonPaged Memory 433
Max Paged Memory 433
Maximum Files Open 433
Maximum Queue Length 433
Maximum Sessions 433
Maximum Threads 434

MailslotBuffers 597
MailslotDatagramThreshold 539
MailslotDuplicateTimeout 549
MaintainServerList 538
Mapping

files into memory 203-206,266
temporary space in memory 266

MaxAddresses 546
MaxAddressFiles 546
MaxBcastDgBuffered 565
MaxCmds 597
MaxCollectionCount 597
MaxConfigure 569
MaxConnections 546, 588
MaxDatagrams 559
MaxDgBufferedPerGroupName 566
MaxDgramBuffering 589
MaxDynMem 566
MaxFailure 569

MaxFrameSize 569
MaxFreeConnections 575
MaxGlobalOpenSearch 575
Maximizing throughput 142-149
MaximumIncomingFrames 546
MaximumMailslotMessages 548
MaximumMailslotTimeout 549
MaxKeepSearch 575
MaxLinkDelay 575
MaxLinks 547
MaxMemoryUsage 591
MaxMpxCt 575
MaxNames 566
MaxNonpagedMemoryUsage 575
MaxPackets 562
MaxPacketSize 562
MaxPagedMemoryUsage 576
MaxPktSize 556
MaxPreload 589
MaxRawWorkltems 576
MaxReject 569
MaxRequests 547
MaxSessions 537, 567
MaxSize 541, 616
MaxTerminate 569
MaxWorkltems 576
MediumBufferSize 593.
MemberPrec 594
Memory

adding
increasing secondary cache speed 115
to disk adapters 150

analyzing performance See Analyzing performance,
memory

cache See Cache
clearing with clearmem 168, 184, 319
configuring in Windows NT 160
contention in multiprocessor systems 123-125
data maps 187
detecting bottlenecks See Detecting bottlenecks, memory
Direct Memory Access (DMA) 150,189
IIO-memory bus

architecture 150
description 9
speed 150

locality, description 10
management control registry value entries 523
managing when writing high-performance

applications 266-267
mapped page writer 187, 191
mapping

files 203-206, 266
temporary space 266

Memory (continued)
paging See Paging
pin reads operations 189
pools, paged and nonpaged 176
poor performance, effect on disk 177
RAM See RAM
section objects 113
upgrading adapter cards 115
virtual address space 266
Windows NT virtual memory system 158-159,266-267

Memory object counters
Available Bytes 45,57, 167, 185,434
Cache Bytes 434
Cache Bytes Peak 434
Cache Faults/sec 201,261,435
Commit Limit 435
Committed Bytes 435
core object 27
Demand Zero Faults/sec 435
Free System Page Table Entries 435
Output Pages/sec 194
Page Faults/sec 201,261,319,436
Page Reads/sec 165,436
Page Writes/sec 436
PagesInpuVsec 165,178,436
Pages OutpuVsec 178, 436
Pages/sec 17,46,72,261,437
Pool Nonpaged Allocs 176, 437
Pool Nonpaged Bytes 176, 437
Pool Paged Allocs 437
Pool Paged Bytes 176, 438
Pool Paged Re~ident Bytes 438
System Cache Resident Bytes 438
System Code Resident Bytes 438
System Code Total Bytes 438
System Driver Resident Bytes 439
System Total Resident Bytes 439
Transition Faults/sec 439
Write Copies/sec 439

Messages
ICMP (Internet Control Message Protocol) 247
sending on networks 47,259

Microsoft Mail registry value entries 600-603
Microsoft Schedule+ registry value entries 604
Microsoft Test 65,259,262
MigrateIni 600
MigrateIniPrint 600
MinFreeConnections 576
MinFreeWorkItems 576
MinIncrSize 616
MinInitSize 616
MinLinkThroughput 576
MinRcvQueue 576

Modes, user vs. privileged 86-91,352
Monitor.exe utility 256-257, 263
Monitoring

mUltiple processors 116-125
mUltiple servers 258-259

Index 647

performance See Analyzing performance; Performance
Monitor

Mortal instances 32
Mouse driver registry value entries 528-532
MouseDataQueueSize 528-531
MouseSpeed 609
MouseThresholdx 610
MoveToEx function 271
MoveWindow API category 288
Moving settings files from one computer to another 60
MS Test 65,259,262
MTU registry value entry 585
MULTCSZ data type 269
MultiCastForwardRate 567
Multiple Data List (MDL) 189,238
Multistrings 269
Mutex objects 113, 267

N
NameQueryRetries 547
NameQueryTimeout 547
Names

adding
counter names to Registry 343,345-349
to systems for alerts 259

filename extensions See Extensions
removing counter names from Registry 350
retrieving counter names 330-332

NameSrvQueryCount 589
NameSrvQueryTimeout 589
NBT Connection object counters

Bytes Received/sec 440
Bytes SenVsec 440
Bytes Total/sec 440

NbtKeepAlive 590
NetBEUI object counters

Bytes Total/sec 72,209-211,261,281,440
Connection Session Timeouts 441
Connections Canceled 441
Connections No Retries 441
Connections Open 441
Connections With Retries 441
Datagram Bytes Received/sec 441
Datagram Bytes SenVsec 442
Datagram Bytes/sec 442
Datagrams Received/sec 442
Datagrams SenVsec 442

648 Index

NetBEUI object counters (continued)
Datagrams/sec 442
Disconnects Local 443
Disconnects Remote 443
Expirations Ack 443
Expirations Response 443
Failures Adapter 443
Failures Link 443
Failures No Listen 444
Failures Not Found 444
Failures Resource Local 444
Failures Resource Remote 444
Frame Bytes Re-sent/sec 445
Frame Bytes Received/sec 212-213,444
Frame Bytes Rejected/sec 444
Frame Bytes Sent/sec 212,445
Frame Bytes/sec 76, 445
Frames Re-sent/sec 445
Frames Received/sec 445
Frames Rejected/sec 445
Frames Sent/sec 446
Frames/sec 446
Packets Received/sec 213,446
Packets Sent/sec 446
Packets/sec 446
Piggyback Ack Queued/sec 447
Piggyback Ack Timeouts 447
Window Send Average 447
Window Send Maximum 447

NetBEUI protocol 208,244,440-447
NetBEUI Resource object counters

Times Exhausted 448
Used Average 448
Used Maximum 448

NetBios registry value entry 601
NetPopup 619
NetPrinterDecayPeriod 618
Network Interface object counters

Bytes Received/sec 449
Bytes Sent/sec 449
Bytes Total/sec 449
BytesTotal/sec 261
Current Bandwidth 245, 449
Output Queue Length 450
Packets Outbound Discarded 450
Packets Outbound Errors 450
Packets Received Discarded 450
Packets Received Errors 450
Packets Received Non-Unicast/sec 451
Packets Received Unicast/sec 451
Packets Received Unknown 451
Packets Received/sec 451
Packets Sent Non-Unicast/sec 451
Packets Sent Unicast/sec 452

Network Interface object counters (continued)
Packets Sent/sec 451
Packets/sec 452

Network Segment object counters
% Broadcast Frames 452
% Multicast Frames 452
% Network utilization 452
Broadcast frames received/second 453
Multicast frames received/second 453
Total bytes received/second 453
Total frames received/second 453

NetworkErrorThreshold 577
NetworkNumber 556
Networks

ACKs 212
adding clients to test servers 226-232
analyzing performance See Analyzing performance,

networks
bindings, setting protocol priority 244
datagrams 211,246
detecting bottlenecks See Detecting bottlenecks, networks
Ethernet collisions 232
interrupts See Interrupts
monitoring LANs vs. WANs 207
protocols
saturated media 232
services, registry value entries 535-599
throughput 208-218

NewMsgsAtStartup 601
NextOnMoveDelete 601
No_Compress 603
NodeType 590
NonBlockingThreads 577
NonPagedMemLimit 537
NonPagedPoolSize 524
NoOfWrkThds 594
NtfsDisable8dot3NameCreation 522
Ntimer utility 340
NTVDM process

16-bit DOS applications 109-112
16-bit Windows applications 103-108
memory hog example 179
renaming NTVDM.EXE 109
WowExec 103-108

NullSessionPipes 576
NullSessionShares 576
NumberOfHistoryBuffers 605
NumForwardPackets 582
NurnIllegalDatagramEvents 597
NuniRecvQueryIndications 567
NWLink IPX object counters

Bytes Total/sec 453
Connection Session Timeouts 454
Connections Canceled 454

NWLink IPX object counters (continued)
Connections No Retries 454
Connections Open 454
Connections With Retries 454

,Datagram Bytes Received/sec 454
Datagram Bytes Sent/sec 455
Datagram Bytes/sec 455
Datagrams Received/sec 455
Datagrams Sent/sec 455
Datagrams/sec 455
Disconnects Local 456
Disconnects Remote 456
Expirations Ack 456
Expirations Response 456
Failures Adapter 456
Failures Link 456
Failures No Listen 457
Failures Not Found 457
Failures Resource Local 457
Failures Resource Remote 457
Frame Bytes Re-sentfsec 458
Frame Bytes Received/sec 457
Frame Bytes Rejected/sec 457
Frame Bytes Sent/sec 458
Frame Bytes/sec 458
Frames Re-sent/sec 458
Frames Received/sec 458
Frames Rejected/sec 458
Frames Sent/sec 459
Frames/sec 459
Packets Received/sec 459
Packets Sent/sec 459
Packets/sec 459
Piggyback Ack Queued/sec 459
Piggyback Ack Timeouts 460
Window Send Average 460
Window Send Maximum 460

NWLink NetBIOS object counters
Bytes Total/sec 460
Connection Session Timeouts 461
Connections Canceled 461
Connections No Retries 461
Connections Open 461
Connections With Retries 461
Datagram Bytes Received/sec 462
Datagram Bytes Sent/sec 462
Datagram Bytes/sec 462
Datagrams Received/sec 462
Datagrams Sent/sec 462
Datagrams/sec 463
Disconnects Local 463
Disconnects Remote 463
Expirations Ack 463
Expirations Response 463

Index 649

NWLink NetBIOS object counters (continued)
Failures Adapter 463
Failures Link 464
Failures No Listen 464
Failures Not Found 464
Failures Resource Local 464
Failures Resource Remote 464
Frame Bytes Re-sent/sec 465
Frame Bytes Received/sec 464
Frame Bytes Rejected/sec 465
Frame Bytes Sent/sec 465
Frame Bytes/sec 465
Frames Re-sent/sec 466
Frames Received/sec 465
Frames Rejected/sec 465
Frames Sent/sec 466
Frames/sec 466
Packets Received/sec 466
Packets Sent/sec 466
Packets/sec 466
Piggyback Ack Queued/sec 467
Piggyback Ack Timeouts 467
Window Send Average 467
Window Send Maximum 467

NWLink protocol
counters listed 453-460
monitoring performance 249-254

NWLink SPX object 252

o
Objects

See also specific objects
collecting server performance data 258
core objects listed 27
definition 343
deleting from log files 53
description 21
design 343
event 113,269
extended

See also Applications, adding performance counters
description 27
display 27
usefulness 324

instances See Instances
listing explained 395
mutex 113, 267
overhead 25
section 113
selecting in Performance Monitor 26-28
semaphore 113
viewing TCPIIP objects 66,243-249

650 Index

Objects object counters
Events 468
Mutexes 468
Processes 468
Sections 468
Semaphores 468
Threads 469

OEMSETUP.INF 344, 359
Open function 344,351,353-355
OpenFile function 266
Opening

channels to foreign computers 357, 359
files to enhance application performance 268
log files 53
settings files 61, 260

OpenSearch 577
OplockBreakWait 577
Optimizing

applications 4-5
programs with PView 6
Windows NT

detecting bottlenecks 3
planning capacity See Capacity planning
tools 5
tuning parameters described 2

Optional registry value entry 524
Overhead

charting vs. alerts 26
measuring mUltiple computers 25-26
minimizing with Alert view 45,47
Performance Monitor

design philosophy 325
illustration 79

remote monitoring 24
Windows NT limitations 64

Overview settings files 70-74
Overwrite 613

p
Packets, unicast 245
PagedMemLimit 537
PagedPoolSize 521
PagedPoolSize 524
Paging

changing from global to local page replacement 167
code pages vs. data pages 158
demand paging, description 9
description 157-159
dirty pages 169, 187
examples 16, 160-J 75
mapped page writer 187, 191
mapping temporary space in memory 266

Paging (continued)
memory hogs 178-180
nonpaged pools 176
page faults 158, 182
page sizes 158
paged pools 176
paged vs. nonpaged RAM 158
pin reads operations 189
trimming working sets 169-170, 175

Paging File object counters
% Usage 469
% Usage Peak 469
core object 27

PagingFiles 524
Parent instances 31
PeekMessage call 270, 272, 274
PercenCFree_Start_Compress 603
PercenCFree_Stop_Compress 603
Perflib key 345-347
Performance

analyzing See Analyzing performance
counters See Counters
detecting bottlenecks See Detecting bottlenecks
objects See Objects
Performance Monitor See Performance Monitor
tuning parameters described 2

Performance Monitor
alerts See 'Alerts
always on top 35
archives 260
automating with aUI batch processor 65
charting See Charting counters
counters See Counters
custom displays 32-35
description 6
elements counted and displayed 13
exporting counter data 20,57,62,65,261
introduced 5
limitations 16-17
log files See Log files
measuring multiple computers 25-26
monitoring createfil utility 139
object instances See Instances
objects See Objects
overhead, illustration 79
overview 17-35
printing data 65
RAID systems 150-156
reports See Reports
running multiple copies 26
saving settings 60-62
selecting computers 22
service 63, 256-257

Performance Monitor (continued)
shortcut keys 66
snapshots 23, 39, 40, 325
status bar 34
tip for starting 62
toolbar 33
tuning Windows NT applications 280-284
views

Alert 45-48, 259
Chart 36-43
description 35
Log 48-59
Report 43-45
saving settings files 60

Win32 API optimizations 277
Working Set Tuner example 313
writing a custom performance monitor See Writing a

custom performance monitor
Physical disks

core object 27
vs. logical disks 130

PhysicalDisk object counters
% Disk Busy 21
% Disk Read Time 469
% Disk Time 72,470
% Disk Write Time 470
Avg. Disk ByteslRead 470
Avg. Disk BytesfTransfer 470
Avg. Disk Bytes/write 470
Avg. Disk seclRead 470
Avg. Disk secfTransfer 470
Avg. Disk sec/write 471
core object 27
Disk Bytes/sec 471
Disk Queue Length 471
Disk Read Bytes/sec 471
Disk Reads/sec 471
Disk Transfers/sec 472
Disk Write Bytes/sec 472
Disk Writes/sec 472

Pin reads 189
PipeIncrement 597
PipeMaximum 598
PktType 557
Planning capacity See Capacity planning
PMon tool 305-308
PollingInterval 602
PollingIterations 529
PollinglterationsMaximum 529
PolIStatusIterations 529
PolITime 604
PolyBezier call 272
PolyBezierTo call 272

PolyDraw call 272
PolylineTo call 272
PolyPolyLine call 272
PolyTextOut call 272
Pools, memory, paged and nonpaged 176
PortThreadPriority 618
PRINT SCREEN key 258
Printing performance data 65
Priorities

Index 651

highest-priority protocol, description 243
Normal Priority Class 81
processor scheduling described 80-82
protocols, setting 244
Real-Time Priority Class 268
thread priorities listed 82

PriorityBasedOnSubNetwork 570
PriorityBoost 593
PriorityClass 618
PriorityClassHigh 594
Privileged mode 86-91,352
Process Address Space object counters

Bytes Free 477
Bytes Image Free 477
Bytes Image Reserved 477
Bytes Reserved 477
ID Process 477
Image Space Exec Read Only 478
Image Space Exec ReadlWrite 478
Image Space Exec Write Copy 478
Image Space Executable 478
Image Space No Access 479
Image Space Read Only 479
Image Space ReadlWrite 479
Image Space Write Copy 479
Mapped Space Exec Read Only 480,482
Mapped Space Exec ReadlWrite 480
Mapped Space Exec Write Copy 480
Mapped Space Executable 480
Mapped Space No Access 481
Mapped Space Read Only 481
Mapped Space ReadlWrite 481
Mapped Space Write Copy 481
Reserved Space Exec ReadlWrite 482
Reserved Space Exec Write Copy 482
Reserved Space Executable 482
Reserved Space No Access 483
Reserved Space Read Only 483
Reserved Space ReadlWrite 483
Reserved Space Write Copy 483
Unassigned Space Exec Read Only 484
Unassigned Space Exec ReadlWrite 484
Unassigned Space Exec Write Copy 484
Unassigned Space Executable 484

652 Index

Process Address Space object counters (continued)
Unassigned Space No Access 485
Unassigned Space Read Only 485
Unassigned Space ReadlWrite 485
Unassigned Space Write Copy 485

Process object counters
% Privileged Time 472
% Processor Time 473
% User Time 473
core object 27
Elapsed Time 473
File Read Operations/sec 212, 216
ID Process 473
Page Faults/sec 474
Page File Bytes 474
Page File Bytes Peak 474
Pool Nonpaged Bytes 176,474
Pool Paged Bytes 176, 475
Priority Base 475
Private Bytes 475
Thread Count 475
Virtual Bytes 475
Virtual Bytes Peak 476
Working Set 312,476
Working Set Peak 476

Processes
analyzing memory performance 171-175
illustration 114
multiple processes and threads 91-98,267
multiple, sharing information 267
NTVDM See NTVDM process
profiling with W AP 284
user vs. privileged processor modes 86-91
working sets 158,165-170, 175

Processor object counters
% Privileged Time 486
% Processor Time 57, 71,83,88, 130,216,486
% User Time 90, 487
core object 27
Interrupts/sec 487

Processors
16-bit DOS applications usage 109-112
16-bit Windows applications usage 103-108
analyzing performance See Analyzing performance,

processors
characterizing performance with Response

Probe 148,622
detecting bottlenecks See Detecting bottlenecks,

processors
eliminating bottlenecks 114-115
GUI batch processor 65

Processors (continued)
mUltiple

adding 11, 116-119
memory contention 123-125
monitoring 116-125
shared resources 120-125

overview settings files 70-74
queue length See Queue length
threads, description 11
usage

graphics 100-102
growth 262

user vs. privileged modes 86-91
Profiling

110 information with 110 Profiler 298-304
Windows NT applications See CAP tool; 110 Profiler;

WAPtool
Programming

adding application performance counters See Adding,
application performance counters

opt.imizing Windows NT applications 4-5
Unicode 269, 274
writing high-performance applications See Writing

Windows NT applications
Programs

See also Applications; Tools; Utilities
execution in RAM 9
optimizing with PView 6
renaming NTVDM.EXE for DOS programs 109

Protection mechanisms, user vs. privileged processor
modes 86-91

Protocols
analyzing network performance See Analyzing

performance, networks
collecting server performance data 258
detecting network bottlenecks See Detecting bottlenecks,

networks
highest-priority protocol, description 243
ICMP (Internet Control Message

Protocol) 247,418-422,515
IP (Internet Protocol) 246,424-427
IPXlSPX 250
large reads 210
NBT Connection multiple instances 247
NetBEUI 208,244,440-447
NetBIOS 250
NWLink

counters listed 453-460
monitoring performance 249-254

setting priority 244
shipped with Windows NT 208

Protocols (continued)
SNMP, viewing objects 66
TCP (Transmission Control Protocol) 246,510-512
TCPIIP

monitoring performance 243-249
throughput compared with NetBEUI 244
viewing objects 66, 243-249

UDP (User Datagram Protocol) 246, 248-249
unicast packets, description 245

Pulse 549,571
PulseConcurrency 550
PulseMaximum 550
PulseTimeoutl 550
PulseTimeout2 550
PumpCycleInterval 602
PView

Q

description 6, 106, 305
obtaining application Process ID for vadump 318
Refresh button 307
Win32 API optimizations 277

QueryDriverFrequency 538
QueryWithoutSourceRouting 547
Queue length

analyzing disk performance 136
counter always zero 64
device utilization 98-100
mUltiple processes and threads 91-98
sawtooth, explained 83-86

QuickEdit 605

R
RAID systems 150-156
RAM

configuring in Windows NT 160
I/O-memory bus architecture 150
paged vs. nonpaged 158
preventing Response Probe experiments from fitting entire

files into RAM 233
program execution 9
reducing space taken by applications 311-313
video 121

Random access file processing 197-202
Random registry value entry 571
RandomAdapter 590
Randomize registry value entry 551
RAS Port object counters

Alignment Errors 487
Buffer Overrun Errors 488
Bytes Received 488

RAS Port object counters (continued)
Bytes Received/Sec 488
Bytes Transmitted 488
Bytes Transmitted/Sec 488
CRC Errors 488
Frames Received 488
Frames Received/Sec 489
Frames Transmitted 489
Frames Transmitted/Sec 489
Percent Compression In 489
Percent Compression Out 489
Serial Overrun Errors 489
Timeout Errors 489
Total Errors 490
Total Errors/Sec 490

RAS Total object counters
Alignment Errors 490
Buffer Overrun Errors 490
Bytes Received 490
Bytes Received/Sec 491
Bytes Transmitted 491
Bytes Transmitted/Sec 491
CRC Errors 491
Frames Received 491
Frames Received/Sec 491
Frames Transmitted 491
Frames Transmitted/Sec 492
Percent Compression In 492
Percent Compression Out 492
Serial Overrun Errors 492
Timeout Errors 492
Total Connections 492
Total Errors 492
Total Errors/Sec 493

RawWorkItems 577
RcvDgSubmittedPerGroupName 567
RcvWindowMax 554
ReadAheadThroughput 598
Recording actions for MS Test 262
Redirector file system 210,214
Redirector object counters

Bytes Received/sec 213,493
Bytes Total/sec 493
Bytes Transmitted/sec 493
Connects Core 493
Connects Lan Manager 2.0 494
Connects Lan Manager 2.1 494
Connects Windows NT 494
core object 27
Current Commands 494
File Data Operations/sec 494
File Read Operations/sec 495
File Write Operations/sec 495
Network Errors/sec 495

Index 653

654 Index

Redirector object counters (continued)
Packets Received/sec 213,496
Packets Transmitted/sec 496
Packets/sec 495
Read Bytes Cache/sec 496
Read Bytes Network/sec 496
Read Bytes Non-Paging/sec 497
Read Bytes Paging/sec 497
Read Operations Random/sec 497
Read Packets Small/sec 497
Read Packets/sec 497
Reads Denied/sec 498
Reads Large/sec 498
Server Disconnects 498
Server Reconnects 498
Server Sessions 498
Server Sessions Hung 499
Write Bytes Cache/sec 499
Write Bytes Network/sec 499
Write Bytes Non-Paging/sec 499
Write Bytes Paging/sec 500
Write Operations Random/sec 500
Write Packets Small/sec 500
Write Packets/sec 500
Writes Denied/sec 501
Writes Large/sec 501

Redundant arrays of inexpensive disks See RAID systems
RegisterClass API call 273
Registry

adding application performance counters See Adding,
application performance counters

adding counter names and descriptions 345-349
adding Performance key 343-344
determining application performance DLLs 344
editing, caution 519
installing CreateFile function 351
Registry Editor 519
removing counter names and descriptions 350
value entries

See also specific entries
Browser service 537
CurrentControlSet 519
CurrentControlSetControl subkeys 521-534
CurrentControlSetSelect subkey 520
CurrentControlSetServices subkeys 526
description 519
DLC System driver entries 540
editing, caution 519
FileSystem subkey 522
format used in this manual 520
memory management control 523
Microsoft Mail 600-603
mouse and keyboard drivers 528-532

Registry, value entries (continued)
network services 535-599
SCSI miniport drivers 532-533

. Serial subkey 527
Session Manager subkey 523
subsystem startup control entries 524
user preferences 605-614
video device drivers 533-534
WOW startup control 525-526

RegistrySizeLimit 521
RegLocation 586
ReleaseDC call 273
ReminderPollTime 604
Remote computer monitoring 22,47, 128,325-326,331
RemoteListen 568
RemoveDuplicateSearches 577
Removing counter names from Registry 350
Renaming NTVDM.EXE 109
Replicate registry value entry 572
ReplicationGovemor 551
Replicator service registry value entries 570
Reports

changing time interval 44
clearing data 45
counters 18
deleting counters 45
narrowing time window to include data of interest 146
oflogged data 58
Report view 43-45
selecting all counters 30

ResendIterations 530
Response Probe

analyzing
memory performance 172-175
processor performance 123-125

bell-shaped curve See herein normal distribution
characterizing performance of subsystems 148,622
COMPUTE state 622, 625
description 621-622
design 622
FILE ACCESS state 622, 625
FILEACCESSMODE parameter 129
FILESEEK parameter 129
Ideagen 212,213
input files 626
introduced 16
limitations 622
memory hogs 178-180
normal distribution 623-624
output format 632-633
performing experiments 626-631
preventing experiments from fitting entire files

intoRAM 233

Response Probe (continued)
response surface

charting 75, 622
description 621

script files 627-631
sequential file access 184
testing addition of memory 115
THINK state 622, 624

Response surface 75,621-622
RestoreFlag 586
RestrictNullSessionAccess 577
Retention registry value entry 541
RetransmissionCount 562
RetransmitMax 555
RipAgeTime 559
RipCount 560
RipTableSize 560
RipTimeout 560
RipUsageTime 560
RISC-based computers

architecture 11
Win32 API optimizations 277
writing high-performance applications 274

RouterMTU 586
Rules of bottleneck detection See Detecting bottlenecks, rules
run registry value entry 614

s
SampleRate 528, 530, 531
Saving Performance Monitor settings 60-62
Scale, formatting chart lines 42-43
ScanAgainInterval 602
ScavQosInfoUpdateTime 578
ScavTimeout 577
SchedulerThreadPriority 618
ScopeID 589
ScreenBufferSize 606
ScreenSaveActive 608
ScreenSaveTimeOut 608
SCSI miniport driver registry value entries 532-533
Secs_Till_FasCCompress 603
Section objects 113
Selecting

computers in Performance Monitor 22
counters in Performance Monitor 28-31
data to be retrieved by a custom performance

monitor 332-333
instances in Performance Monitor 31-32
objects in Performance Monitor 26-28
times in log files 55-56

Semaphore objects 113
SendAlert 613

Sending
alerts 259
network messages 47

SendMessage API category 288
Sequential access

file processing 190-196

Index 655

reducing number of operating system calls 267
Response Probe 184
writing high-performance applications 266

Serial subkey 527
Server object counters

Blocking Requests Rejected 501
Bytes Received/sec 501
Bytes Total/sec 502
Bytes Transmitted/sec 215, 502
Context Block Queue Time 73,502
Context Blocks Queued/sec 73,215,502
Errors Access Permissions 502
Errors Granted Access 502
Errors Logon 503
Errors System 503
File Directory Searches 503
Files Open 503
Files Opened Total 503
Pool Nonpaged Bytes 503
Pool Nonpaged Failures 504
Pool Nonpaged Peak 504
Pool Paged Bytes 504
Pool Paged Failures 504
Pool Paged Peak 504
Server Sessions 504
Sessions Errored Out 505
Sessions Forced Off 505
Sessions Logged Off 505
Sessions Timed Out 505
Work Item Shortages 505

ServerAnnounceBuffers 598
Servers

See also Detecting bottlenecks, networks
adding clients to test servers 226-232
alerts 259
analyzing

network throughput 208-218
trends 255-261

applications 258, 268
archiving and storing performance data 260-261
detecting bottlenecks 340
disk activity 233-236
interrupt rates 219-222
logging performance data 258
monitoring

directory copies to clients 237-243
multiple servers 258-259

processor usage growth example 262

656 Index

ServerThreadTimeout 619
Services, registry value entries

AppleTalk and MacFile 535-537
Browser 537 .
DHCP servers 586
DiskPerf 539
EventLog 541
NBF(NetBEUI) transport 542-547
NetLogon 548
NWLink transport 552-561
Redirector 563
Remote Access Service (RAS) 564-569
Replicator 570
Server 572-579
Services for Macintosh (SFM) 535
TCPIIP transport 579-591
WINS servers 593
Workstation 594-599

SessConns 578
Session Manager subkey 523
SessionKeepAlive 590
SessOpens 578
SessTimeout 598
SessUsers 578
Setedit utility 61
SetmapMode call 272
SetPixelV call 271
Settings

files See Files, settings files
saving in Performance Monitor 60-62

SetWorldTransform call 272
Shared resources

multiprocessor bottlt:n~cks 120-125
semaphore objects 113

Sharing information with multiple processes 267
SharingViolationDelay 578
Sharing ViolationRetries 578
Shortcut keys used in Performance Monitor 65
ShowWindow API category 288
SingleNetworkActive 560
SizCharBuf 598
Size registry value entry 526
Size/Small/Medium/Large 591
SizReqBuf 578
SizWorkBufs 568
Slow Mode registry value entry 610
SmallBufferSize 593
Snapshots

basic purpose 325
Chart view 39
description 23
drawing graphs 40

SNMP protocol, viewing TCPIIP objects 66

SocketEnd 560
SocketS tart 560
SocketUniqueness 560
Solitaire, tuning

CAP 293-298
Performance Monitor 280-284
WAP 288
Working Set Tuner 314-316

SourceRouteBcast 557
SourceRouteDef 557
SourceRouteMcast 558
SourceRouteUsageTime 560
SourceRouting 558
Spooler 620
SpoolerBackoffinterval 602
SpoolerReconnectlnterval 602
SpxSocketEnd 561
SpxSocketStart 561
SpxSocketUniqueness 561
StandardAddressLength 593
Start registry value entry 539
Starting Performance Monitor, tip 62
Status bar, Performance Monitor 34
Storing server performance data 260-261
Strings, concatenating 269
Styles, formatting chart lines 42-43
Subsystem startup control registry value entries 524
Subsystems

characterizing performance with Response Probe 148,
622

CSRSS See CSRSS (client-server runtime subsystem)
illustration of processes 114
WOW

processor usage by 16-bit Windows
applications 103-108

starting 103
startup control registry value entries 525-526
stopping 106

Suffixes, filenames See Extensions
swapdisk registry value entry 620
SwapMouseButtons 610
System object counters

% Total Privileged Time 506
% Total Processor Time 71,261,506
% Total User Time 507
Alignment Fixups/sec 507
Context Switches/sec 507
core object 27 -
Exception Dispatches/sec 508
File Control Bytes/sec 508
File Control Operations/sec 508
File Data Operations/sec 508
File Read Bytes/sec 508

System object counters (continued)
File Read Operations/sec 90, 508
File Write Bytes/sec 140,282,509
File Write Operations/sec 509
Floating Emulations/sec 509
Processor Queue Length 59,64, 71, 77, 136,258,509
System Calls/sec 90, 509
System Up Time 510
Total Interrupts/sec 73, 260, 261, 510

SystemPages 525

T
TCP (Transmission Control Protocol) 246,510-512
TCP object counters

Connection Failures 510
Connections Active 510
Connections Established 511
Connections Passive 511
Connections Reset 511
Segments Received/sec 511
Segments Retransmitted/sec 511·
Segments Sent/sec 511
Segments/sec 512

TCPIIP protocol
counters 244
monitoring performance 243-249
viewing objects 66, 243-249

TcpDisableReceiveChecksum 582
TcpDisableSendChecksum 582
TcpKeepCnt 582
TcpKeepTries 582
TcpLogLevel 583
TcpMaxConnectAttempts 583
TcpMaxConnectRetransmission 583
TcpMaxDataRetransmissions 583
TcpMaxRetransmissionAttempts 583
TcpNumConnections 584
TcpRecvSegmentSize 584
TcpSendDownMax 584
TcpSendSegmentSize 584
TcpWindowSize 584
Thread Details object 515
Thread Details: User PC 515
Thread object counters

% Privileged Time 512
% Processor Time 512
% User Time 513
Context Switches/sec 513
core object 27
Elapsed Time 108, 513
ID Process 513
ID Thread 514

Thread object counters (continued)
Priority Base 514
Priority Current 514
Start Address 514
Thread State 84, 96, 514
Thread Wait Reason 515

ThreadPriority 579
Threads

Index 657

context switching during graphics processing 102
description 11
monitoring

server applications 258, 268
Solitaire 283

mUltiple processes and threads 91-98, 267
object overhead 25
priorities listed 82
processor scheduling described 80-82
profiling with W AP 284
sawtooth queue length 83-86
states listed 83

Throughput
maximizing 142-149
maximum, description 12
NetBEUI vs. TCPIIP 244
networks, analyzing 208-218
uncovering high disk throughput 139-149

TileWallpaper 608
Time intervals

Alert view 46
Chart view 39
log files

changing time window 55-56,57,66
selecting times 55-56

Log view 51
monitoring server performance 260, 261
Report view 44

Time window
changing in log files 55-56, 66
monitoring server performance 260
narrowing to include data of interest 146

Toolbar, Performance Monitor 33
Tools

See also Utilities
CAP See CAP tool
MS Test 65, 259, 262
optimizing Windows NT 5
Performance Monitor See Performance Monitor
PView 6,106,277,305-307,318
Response Probe See Response Probe
tuning Windows NT applications

Call Attributed Profiler (CAP) 277,290-298
description 279
110 Profiler (FIOSAP) 298-304

658 Index

Tools, tuning Windows NT applications (continued)
Performance Monitor 280-284
PMon 305-308
PView 277, 305
Win32 API Logger 304-305
Windows API Profiler (W AP) 277, 284-290
WPerf 305-309
wt command 277,305-309

vadump 277,318-321
W AP See W AP tool

TransmissionRetryTimeout 620
Trimming

cache 185
working sets 169-170, 175, 185

Tuning
applications

tools 6
working sets See Working Set Tuner

parameters described 2
Solitaire

CAP 293-298
Performance Monitor 280-284
WAP 288
Working Set Tuner 314-316

Windows NT applications
additional tools 305
Call Attributed Profiler (CAP) 277,290-298
I/O Profiler (FIOSAP) 298-304
introduction 279
Performance Monitor 280-284
tools 279
Win32 API Logger 304-305
Windows API Profiler (W AP) 277, 284-290

Turbo switch 150
TxTick parameters 540
Type registry value entry 539

u
UDP (User Datagram Protocol) 246,248-249,515
UDP object counters

Datagrams No Port/sec 515
Datagrams Received Errors 516
Datagrams Received/sec 516
Datagrams Sent/sec 516
Datagrams/sec 516

UdpDisableReceiveChecksum 584
UdpDisableSendChecksum 584
Uncovering high disk throughput 139-149
Unicast packets, description 245
Unicode 269,274
Unlodctr utility 346, 350
Update registry value entry 551

UpdatePostOfficeTime 604
UpdateWindow API category 288
Updating Performance Monitor, shortcut key 66
Upgrading adapter cards 115
UpperSearchBufferSize 563
Use512ByteMaxTransfer 598
UseAsyncWriteBehind 563
UseLockReadUnlock 599
UseOpportunisticLocking 599
User mode 86-91,352
User preferences, registry value entries 605-614
UseRawRead 599
UseRawWrite 599
Users registry value entry 579
UseUnlockBehind 599
UseWriteBehind 563
UseWriteRawData 599
Utilities

See also Tools
Apf32cvt 286-290, 292
Apf32dmp 287
Clearmem 168, 184, 319
Createfil 129, 139
Diskperf See Diskperf utility
Ntimer 340
Wstune 317
Wtscat 317

UtilizeNtCaching 599

v
Vadump tool 277,318-321
Video device driver registry value entries 533-534
Viewing log files 53-56
Views, Performance Monitor See Performance Monitor, views
VirtualAlloc call 267
VirtualLock call 269
VirtualNetworkNumber 560

w
WaitEvent API category 288
WaitMessage API category 288
WanNameQueryRetries 547
WAPtool

Apf32cvt utility 277,286-290
Apf32dmp utility 287
client-server batch size 285
collecting data 287
determining application activity 192
disabling checksum 284
ending 290
excluding APIs from analysis 287-288

W AP tool (continued)
extensions used 287
FIOSAP profiler 301-304
profiling Windows NT applications 286-289
running on Solitaire 288
tuning Windows NT applications 277, 284-290
Win32 API DLLs 286
Win32 API Logger 304

Width, formatting chart lines 42-43
Win31FileSystem registry value entry 522
Win32 API Logger 304-305
Windows API Profiler See W AP tool
Windows applications, processor usage 103-108
Windows NT

applications
tuning See Tuning, Windows NT applications
working sets See Working Set Tuner
writing See Writing Windows NT applications

computer architecture 8-12
configuring available memory 160
detecting bottlenecks See Detecting bottlenecks
kernel See Kernel
optimizing 2-5
performance tuning described 2
tools See Tools; Utilities
virtual memory system 158-159
writing a custom performance monitor See Writing a

custom performance monitor
Windows Sockets (WinSock) 248
WindowSize 561,562,606
WINS Server object counters

Failed Queries/sec 516
Failed Releases/sec 516
Group Conflicts/sec 517
Group Registrations/sec 517
Group Renewals/sec 517
Queries/sec 517
Releases/sec 517
Successful Queries/sec 517
Successful Releases/sec 517
Total Number of Conflicts/sec 518
Total Number of Registrations/sec 518
Total Number of Renewals/sec 518
Unique Conflicts/sec 518
Unique Registrations/sec 518
Unique Renewals/sec 518

WinsDownTimeout 591
Working Set Tuner

concatenating data with Wtscat utility 317
description 312-316
filename extensions 317
introduction 311
Performance Monitor tuning example 313

Index 659

Working Set Tuner (continued)
producing packing list with Wstune utility 317
running on Solitaire 314-316
using 316-317
Win32 API optimizations 277
WST.DLL measurement library 317
WST.lNI file 316

Working sets
cache 183,206
looking inside with vadump tool 318-321
memory hog example 179
processes 158,165-170,175
trimming 169-170, 175, 185
tuning applications See Working Set Tuner

Workspace, saving settings files 60
WOW subsystem

processor usage by 16-bit Windows applications 103-108
starting 103
startup control registry value entries 525-526
stopping 106

Wowcmdline 526
Wowsize 526
WPerf tool 305-309
Writing a custom performance monitor

counter type definitions
description 333
fields and values listed 334-335
predefined counter types listed 336-339

design philosophy 324 .
monitoring within applications 340
performance data

Costly 333
foreign computers 333
Global 333
local systems 326
remote systems 326
retrieving 325-327
structures 327-330

retrieving
counter names and explanations 330-332
performance data 325-327
selected data 332-333

source code 324
uses 323

Writing Windows NT applications
asynchronous input and the window manager 274 .
choosing between API sets 275-277
dealing with graphics 270-272
introduction 265
managing

device context 273
memory 266-267

RISC-based computers 274

660 Index

Writing Windows NT applications (continued)
tools 277
using the kernel wisely 267-269
Win32 API optimizations 275-277

WST.INI initialization file 316
Wstune utility 317
Wtconunand 277,305-309
Wtscat utility 317

}{

XactMernSize 579

Russ Blake
Russ Blake is a graduate of Antioch College (BA, Philosophy) and holds an MS
degree in Computer Science from the University of Wisconsin, Madison. He has
been involved in the construction of operating systems and performance monitoring
tools since joining the HP3000 development team at Hewlett Packard in the early
70' s. He invented and authored the Xray performance monitor for Tandem
Computers. After a stint in robotics and its real-time performance concerns, he
joined Sun Microsystems as Director of Operations for the Software Products
Division. For the last five years, he has been Manager of Advanced Operating
Systems Performance at Microsoft Corporation. He designed and led the
construction of Windows NT Performance Monitor, and created the other
principal performance tools used to ij.me the Windows NT operating system and
Windows NT applications. He is currently investigating methods for program
optimization and automatic bottleneck-detection in the Microsoft Advanced
Technology Research group.

Optimizing
Windows NTTM .,

Volume 4 of the
Microsof~ Windows NT
Resource Kit

Disks contain:

• Tools for tuning
applications

• A "synthetic load
generator" for
evaluating your
system's capabili
ties for the Intel~
MIPS~ and Digital
Alpha AXP'· plat
forms

MICROSOFf®
WINDOWS NT TM

Optimize the Performance of Windows NT, and Watch Your
Productivity Soar!

The Windows NT 32-bit operating system brings portable, high
performance computing to your desktop and embraces diversity
on your servers. Topping it all off is something really special: the
Windows NT Performance Monitor. Arguably the most capa Ie
tool of its kind ever built for any system, the Windows NT

Performance Monitor takes the guesswork out of optimizing
Windows NT.

You don't need to be an expert to reap the benefits of this new,
powerful tool. In OPTlMIZING WlNDOWS NT, Russ Blake, manager
of the performance effort on Windows NT and author of the
Performance Monitor, takes you step by step through basic
performance management techniques so that you can be sure that .
the next hardware upgrade is precisely the one you need.

Get Expert Advice from an Insider

With an insider's perspective and a down-to-earth sense of humor,
Blake exposes the internal mechanisms of,Windows NT that
determine its use of system resources. All facets of measuring and
tuning system performance are covered-processors, memory,
disks, and video on local, remote, and multiple computers-and
then summarized in the "Ten Rules of Bottleneck Detection."

OPTIMIZING WINDOWS NT also includes chapters with tips for
writing and tuning high-performance Windows NT applications,
adding extra performance counters to the monitor, and writing your
own customized performance monitor.

This book is essential for anyone who would like to fine-tune the
performance of Windows NT.

ISBN 1-55615-655-3

