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Preface 

In case you haven't guessed, this book explains how to 

write, install, and debug kernel-mode device drivers for Windows NT. If you're in the 
process of designing or coding an NT driver, or if you're porting an existing driver from 
some other operating system, this book is a valuable companion to the Microsoft DDK 
documentation. 

This book might also have something to say to you if you just need a little more 
insight into the workings of Windows NT, particularly the I/O subsystem. Perhaps 
you're trying to decide if NT is a reasonable platform for some specific purpose. Or you 
may be studying operating systems, and you want to see how theory gets applied in the 
real world. 

And of course, we mustn't discount the power of morbid curiosity. The same fas
cination that forces us to slow down as we drive past a car accident can also motivate 
us to pull a volume off the bookstore shelf. 

What You Should Already Know 

Throughout this book, I make several assumptions about what you already know. 
First of all, you need to have all the basic Windows NT user skills such as logging in 
and running various utilities. Since driver installation requires you to have adminis
trator-level privileges, you can trash things pretty badly if you don't know how to use 
the system. 

Second, you'll need decent C-language programming skills. I've tried to avoid the 

xv 
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use of "cleverness" in my code examples, but you still have to be able to read them. 
Next, some experience with Win32 user-mode programming is helpful, but it isn't 

really required. If you haven't worked with the Win32 API, you might want to browse 
through volume two of the Win32 Programmers Reference. This is the one that de
scribes system services. Take a look at the chapters on the I/O primitives (CreateFile, 
ReadFile, WriteFile, and DeviceloControl) and the thread-model. See the bibliog
raphy for other books on Win32 programming. 

Finally, you need to understand something about hardware in order to write driv
ers. It would be helpful if you already had some experience working with hardware, but 
if not, Chapter 2 will give you a basic introduction. Again, the bibliography will point 
you toward other, more-detailed sources for this kind of information. 

What You'll Find Here 

One of the most difficult choices any author has to make is deciding what to write 
about and what to leave out. In general, I've attempted to focus on core issues that are 
crucial to kernel-mode driver development. I've also tried to provide enough back
ground information so that you'll be able to read the sample code supplied with the NT 
DDK, and make intelligent design choices for your own drivers. 

The overall flow of the book goes from the theoretical to the practical, with earlier 
chapters providing the underpinnings for later topics. Here's what's covered: 

Chapters 1-5 The first part of this book provides the basic foundation you'll 
need if you plan to write drivers. This includes a general examination of the Windows 
NT driver architecture, a little bit about hardware, and a rather detailed look at the 
NT I/O Manager and its data structures. This group oftopics ends with some general 
kernel-mode coding guidelines and techniques. 

Chapters 6-13 These eight chapters form the nucleus of the book and present all 
the details of writing kernel-mode NT device drivers. You'll also find discussions here 
offull-duplex driver architectures, handling timeout conditions, and logging device er
rors. Unless you're already familiar with NT's driver architecture, you should probably 
read these chapters in order. 

Chapters 14 and 15 The next two chapters deal with alternative driver architec
tures supported by Windows NT. This includes the use of kernel-mode threads in driv
ers and higher-level drivers. 

Chapters 16-18 The final part of the book deals with various practical details of 
writing NT drivers. Chapter 16 takes a look at all the things your mother never told 
you about the BUILD utility. Chapter 17 covers various aspects of testing and debug
ging drivers, including how to analyze crash dumps and how to really get WINDBG to 
work. If you're actually writing a driver while you read this book, you may want to read 
these chapters out of order. Chapter 18 examines the crucial issue of driver perfor-
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mance and how to tie your driver into NT's performance monitoring mechanisms. 

Appendices The appendices cover various topics that people in my classes have 
asked about. The first one deals with the mechanics of setting up a driver development 
environment. 

The second appendix contains a list ofthe bugcheck codes you're most likely to en
counter, along with descriptions of their various parameters. Used in conjunction with 
the material in Chapter 17, this may help you track down the cause of a blue screen or 
two. 

What You Won't Find 

I excluded topics from this book for several reasons. Some subjects were just too 
large to cover. Others addressed the needs of too small a segment of the driver-writing 
community. Finally, some areas of driver-development are simply unsupported by Mi
crosoft. Specifically, you won't find anything here about the following items: 

File system drivers At the time this book went to press, Microsoft still hadn't 
released any kind of developer's kit for NT file system drivers. In fact, there seemed to 
bea great deal of resistance to the idea within Microsoft. Until this situation changes, 
there's not much point in talking about the architecture of file system drivers. 

Net-card and network protocol drivers NDIS and TDI drivers are both very 
large topics -large enough to fill a book of their own. Unfortunately, there just wasn't 
enough room for all of it here. I can offer one bit of consolation: The material in this 
book will give you much ofthe background you need in order to understand what's; hap
pening inside the NDISfl'DI framework. 

SCSI miniport and class drivers Although SCSI HBA miniport drivers are vital 
system components, the number of people actually writing them is (I suspect) rather 
small. Consequently, the only reference to SCSI miniports is the overview material in 
Chapter l. 

I would have liked to include a discussion of SCSI class drivers in this book, but 
unfortunately there just wasn't any time to write it. The material on developing inter
mediate drivers in Chapter 15 will give you much of the necessary background. From 
there, take a look at the sample SCSI class driver for CD-ROMs that comes with the 
NTDDK. 

Video, display, and printer drivers This is another area where I had to make a 
tradeoff between the number of people writing these kinds of drivers and the time 

, available to finish the book. Unfortunately, graphics drivers for video and hardcopy de
vices didn't make the cut this time. Perhaps in a later, expanded version of the book ... 

Virtual;DOS device drivers In my opinion, the best way to run I6-bit MS-DOS 
and Windows applications under Windows NT is to port the source code to Win32. In 
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any event, the Microsoft documentation does a decent job describing the mechanics of 
writing VDDs so I haven't included anything about them here. 

About the Sample Code 

There's a great deal of sample driver code scattered throughout this book. You'll 
find all of it on the accompanying floppy disk. I've created separate directories on the 
floppy for each chapter, and where appropriate, subdirectories for each component or 
driver in the chapter. 

Coding style Since the purpose of this book is instruction, I've done a couple 
things to improve the clarity of the samples. First, I've adopted a coding style that 
avoids smart tricks. Some of the examples could probably have been written in fewer 
lines of code, but I don't think they would have been as easy to understand. 

Also in the name of clarity, I've eliminated everything except the bare essentials 
from each sample. For example, most of the drivers don't contain any error-logging or 
debugging code, although a real driver ought to include these things. These topics have 
their own chapters, and you shouldn't have too much trouble back-fitting the code into 
other sample drivers. 

Naming conventions You'll notice that almost all the sample drivers appearing 
in this book are called "XXDRlVER." (The only exception is the higher-level driver 
Chapter 15. Its name is ''YYDRIVER.'') This makes it somewhat easier to interchange 
the parts of different samples. It also reduces the amount of clutter that you'll be add
ing to the Registry while you're playing with these drivers. 

Within any particular driver, I've also adopted the convention of adding the pre
fix, Xx to the names of any driver-defined functions. Similarly, device registers, driver 
structures, and constants are also prefixed with XX_, This makes it easy to see which 
things you have to write and which ones come from the folks at Microsoft. 

Platform dependencies It's worth mentioning that these samples have been tar
geted to run on Intel80x86 platforms. In particular, the drivers all assume that device 
registers live in 110 space rather than being memory-mapped. This is relatively easy to 
fix with a little bit of coding and some modifications to each driver's hardware-specific 
header file. 

To build and run the examples You'll need several tools if you plan to do any 
driver development for Windows NT. First, get yourself a Level II subscription to the 
Microsoft Developer Network CDs. This is the only source for the NT DDK and the 
Win32 SDK. 

You'll also need a C compiler. I've chosen to use the Microsoft compiler for devel
oping and testing all the code in this book. Your mileage may vary if you're using some 
other vendor's tools. See Appendix A for more information on setting up your driver de
velopment environment. 
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Training and Consulting Services 

The material in this book is based on classes that I've been delivering for several 
years through Cydonix Corporation - a training and consulting firm whose goal is to 
help its clients develop device drivers and other high-performance Windows NT soft
ware. Cydonix offers services that range from formal classroom training to direct par
ticipation in software design and coding. 

For the past three years, Cydonix has been helping companies like Adaptec, 
AT&T, Compaq Computers, Hewlett-Packard, and Intel to learn more about the work
ings of Windows NT. We have training available in a number of areas including: 

-Windows NT device driver programming 
-Win32 system service programming 
-Advanced server development techniques 

Cydonix offers both onsite training at customer facilities and open enrollment 
classes that are available to the general public. The public classes are hosted by train
ing vendors in several geographic areas. 

For more information about training and consulting from Cydonix Corporation, 
visit our Web site at http://www.cydonix.com or send email toinfo@cydonix.com. 
You can also contact us through more earthbound means using this postal address: 

Cydonix Corporation 
Suite 304 
2117 L Street, N.W. 
Washington, DC 20037 
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Tradition demands that any book about writing 
device drivers starts out by answering the question, "What is a driver?" Unfortu
nately, asking this question in Wmdows NT is a little like asking "What color is 
plaid?" because there are at least a dozen different software components that can 
rightfully be called drivers. This chapter takes a roundabout look at the different 
kinds of drivers supported by Windows NT, and along the way, presents some of 
the design philosophy that makes this operating system such an intriguing beast. 

1.1 OVERALL SYSTEM ARCHITECTURE 

Windows NT drivers don't live in isolation, of course. Rather, they are just one 
part of a large and complex operating system. This section takes you on a quick 
tour of the Windows NT architecture and points out those features that will be of 
most interest to driver writers. 

Design Goals for Windows NT 

Like every other commercial operating system, Windows NT is the result of 
a complex interaction between idealized goals and market-driven realities. The 
Windows NT design team set their sights on the following: 

• Compatibility - The operating system should support a wide range of 
existing software and legacy hardware. 

• Robustness and reliability - The operating system has to resist the 
attacks of naive or malicious users, and individual applications should be 
as isolated from one another as possible. 

1 
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• Portability - The operating system should be able to run on a wide vari
ety of current and future hardware platforms. 

• Extendibility - It should be possible to add new features and support 
new 1/ 0 devices without perturbing the existing code base. 

• Performance - The operating system should be able to give reasonable 
performance on commonly available hardware. It should also be able to 
take advantage of features like multiprocessing hardware. 

Trying to balance all these goals with a reasonable time to market was a 
complex process. The rest of this section describes the solution that the system 
designers came up with - beginning with a look at the protection mechanisms 
that keep the operating system safe. 

Hardware Privilege Levels in Windows NT 

There are any number of thLl1gS that application programs shouldn't be 
allowed to do in a multitasking environment. Fooling with the memory manage
ment hardware or halting the processor are just two examples of actions that 
would cause serious problems. Rather than depending on the kindness of strange 
applications, Windows NT takes advantage of hardware-enforced privilege
checking mechanisms to guarantee system integrity. 

To avoid hardware dependencies, Windows NT uses a simplified model to 
describe hardware privileges. This model then maps onto whatever privilege
checking mechanisms are available on a given CPU. A CPU must be able to oper
ate in two modes if it's going to support the Windows NT hardware privilege 
model. 

Kernel mode Anything goes when the CPU runs in kernel mode. A task 
can execute privileged instructions, and it has complete access to any I/O devices. 
It can also touch any virtual address and fiddle with the virtual memory hard
ware. This mode corresponds to Ring 0 on an Intel 80x86. 

User mode In this mode, the hardware prevents execution of privileged 
instructions and performs access checks on references to memory and I/O space. 
This allows the operating system to restrict a task's access to various I/O opera
tions, and trap any other behavior that might violate system integrity. Code run
ning in user mode can't get itself into kernel mode without going through some 
kind of gate mechanism in the operating system. On an Intel 80x86 processor, this 
mode corresponds to Ring 3. 

Base Operating System Components 

The base components of Windows NT implement a general operating sys
tem platform on which to build more complex environments. As you can see from 
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Figure 1.1 Overall architecture of the NT kernel-mode components 

Figure 1.1, these base components consist of three major blocks of kernel-mode 
code. 

Hardware Abstraction Layer (HAL) The HAL is a thin layer of software 
that presents the rest of the system with an abstract model of any hardware that's 
not part of the CPU itself. The HAL exposes a well-defined set of functions that 
manage such items as: 

• Off-chip caches 

• Timers 

• I/Obuses 

• Device registers 

• Interrupt controllers 

• DMA controllers 

Various system components use these HAL functions to interact with off
CPU hardware. This essentially hides platform-specific details from the rest of the 
system and removes the need to have different versions of the operating system 
for platforms from different system vendors. In particular, the use of HAL rou
tines makes the Kernel and device drivers binary-compatible across platforms 
with the same CPU architecture. 

Kernel Where the HAL is an abstraction of the platform, the Kernel pre
sents an idealized view of the CPU itself. Among other things, the Kernel pro
vides mechanisms for 
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• Interrupt and exception dispatching 

• Thread scheduling and synchronization 

• Multiprocessor synchronization 

• Time keeping 

By using these Kernel services, upper layers of the operating system can (for 
the most part) ignore the architecture of the underlying CPU. This makes it possi
ble for drivers and higher-level operating slstem components to be source-code 
portable across different CPU architectures. 

An interesting feature of the Kernel is that it presents an object-based inter
face to its clients. When other parts of the operating system need help from the 
Kernel, they request its services by calling functions that create and manipulate 
various kinds of objects. These Kernel objects fall into two main categories: 

• Dispatcher objects - These are used primarily for managing and syn
chronizing threads. 

• Control objects - These objects affect the behavior of the operating sys
tem itself in some way. 

Device drivers don't have much use for dispatcher objects. Those that do are 
described in Chapter 14. Control objects are another matter, however. In particu
lar, device drivers make frequent use of Deferred Procedure Call objects and 
Interrupt objects (described in Chapters 3 and 4 respectively). 

Executive The Executive is by far the largest and most complex kernel
mode component in Windows NT. Its job is to implement many of the basic func
tions normally associated with an operating system. Like the Kernel, the Execu
tive uses the HAL to interact with any off-CPU hardware and so becomes binary 
compatible across platforms from different system vendors. By relying on Kernel 
objects, the Executive gains the additional advantage of being source-code porta
ble across different CPU architectures. Because it's such a key part of Windows 
NT,it's worth exploring the Executive a little more. 

What's in the Executive 

As you can see from Figure 1.2, the Executive actually consists of several 
distinct software components that offer their services both to user-mode pro
cesses and to one another. These Executive components are completely indepen
dent and communicate only through well-defined interfaces. This modularity 

1 It also means that much of the work of porting Windows NT to a new CPU is really a matter of 
rewriting the Kernel. To make this process easier, Microsoft has adopted a microkernel approach 
that tries to keep the Kernel as small as possible. 
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makes it possible to replace an existing Executive component without perturbing 
any other parts of the operating system. As long as the replacement exposes the 
same interface, the change will be transparent. The remainder of this subsection 
gives cursory descriptions of the various Executive modules. 

System service interface All operating systems have to give user-mode 
processes a limited ability to execute kernel-mode code. In particular, there must 
be a controlled path from user to kernel mode that applications can follow when 
they call system services. In Windows NT, the system service dispatcher uses a 
technique based on the CPU's hardware exception mechanism to give user-mode 
code access to Executive services. 

Object Manager The Executive offers its services to user-mode processes 
through an object-based interface. These Executive objects represent things such 
as files, processes, threads, and shared memory segments. This use of objects pro
vides a unified mechanism for tracking resources and enforcing security. 

The Object Manager does all the grunt work of managing these Executive 
objects. This includes creating and deleting objects, maintaining the global object 
namespace, and keeping track of how many outstanding references there are to 
any given object. 

Configuration Manager From a driver writer's perspective, the main job 
of the Configuration Manager is to maintain a model of all the hardware and soft
ware installed on the machine. It does this using a database called the Registry. As 
you read through the rest of this book, you'll see that drivers are linked to the 
Registry through an intricate web of connections. Among other things, drivers 
use the Registry to 
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• Identify themselves as trusted system components 

• Find and allocate peripheral hardware 

• Set up error-logging message files 

• Enable driver-performance measurement 

Process Manager A process is the unit of resource-tracking and security 
access checking in Windows NT. Along with any resources it might be holding, 
each process has its own virtual address space and security identity. A process 
also contains one or more executable entities called threads. It is the thread (and 
not the process) that receives ownership of a CPU and does actual work. 

The Process Manager is the Executive component that handles the creation, 
management, and deletion of processes and threads. It also provides a standard 
set of services for synchronizing the activities of threads. Most of the features 
exposed by the Process Manager are just fancy versions of mechanisms imple
mented by the Kernel. 

Security Reference Monitor This Executive component enforces the sys
tem's security policies. The Security Reference Monitor doesn't actually define 
security policy; that job belongs to the Local Security Authority subsystem 
(described later in this chapter). Rather, the Security Reference Monitor simply 
provides a set of primitives that both kernel- and user-mode components can call 
to validate access to objects, check for user privileges, and generate audit mes
sages. For the most part, device drivers don't concern themselves with security 
issues. 

Device drivers normally don't do much with the Security Reference Moni
tor. The I/O Manager handles those kinds of details before it calls any routines in 
your driver. 

Virtual Memory Manager Under Windows NT, each process has a flat 4-
gigabyte virtual address space. The lower half of this space contains process-pri
vate code and data along with the process's stack and heap space. It also holds 
any File Mapping objects and DLLs the process is using. The upper half of every 
process's address space contains nothing but kernel-mode code. One of the jobs of 
the Executive's Virtual Memory Manager is to maintain this illusion of a huge 
address space using demand-paged virtual memory management techniques. 

From a driver writer's point of view, the Virtual Memory Manager is more 
important as a memory allocator because it maintains the system heap areas. The 
Virtual Memory Manager also builds and manipulates various buffer descriptors 
that are crucial to the operation of DMA drivers. Both these topics are covered in 
more detail later. 

Local Procedure Call facility The Local Procedure Call (LPC) facility is a 
message-passing mechanism used for communication between processes on the 
same machine. LPCs are used primarily by protected subsystems (described later) 
and their clients. Device drivers have no access to the LPC facility. 



Sec. 1.1 Overall System Architecture 7 

VO Manager This Executive component converts 110 requests from user
and kernel-mode threads into properly sequenced calls to various driver rou
tines. Through the use of a well-defined formal interface, the I/O Manager is 
able to communicate with all drivers the same way. This makes it unnecessary 
for the 1/ 0 Manager to know anything about the underlying hardware managed 
by a given driver. The rest of this book describes the operation of the 1/ 0 Man
ager in gory detail. 

Extensions to the Base Operating System 

The Executive components of Windows NT present a fairly neutral face to 
the world. They don't implement a user interface nor do they define any external 
policies like security. They don't even offer a programming interface since the 
Executive's system service calls are not publicly documented. The base kernel
mode components simply provide a generic operating system platform. 

Defining the look and feel of the operating system - both to users and pro
grammers - is the job of some extended components known collectively as pro
tected subsystems. Rather than dealing directly with the Executive, users and 
programmers of Windows NT interact with these subsystems. 

In the original architecture of Windows NT, protected subsystems were 
implemented entirely as a group of privileged user-mode processes. This rather 
elegant design made it possible to extend the base operating system without risk
ing any damage to the underlying kernel-mode components. For performance 
reasons, Windows NT 4.0 has moved away from this pure user-mode model and 
shifted some subsystem components into kernel mode. 

Depending on the kind of work they do, all protected subsystems can be 
divided into two major categories. The following subsections describe each cate
gory in more detail. 

Integral subsystems An integral subsystem performs some necessary 
system function. The responsibilities of these subsystems actually cover quite a lot 
of territory. The following are just a few examples of what they do. 

• Together with the Security Accounts Manager and the Logon process, the 
Local Security Authority defines security policy for the system. 

• The Service Control Manager loads, supervises, and unloads trusted sys
tem components like services and drivers. 

• The RPC Locator and RPC Service processes give support to distributed 
applications that use remote procedure calls. 

Environment subsystems The other kind of protected subsystem is 
called an environment subsystem. The job of an environment subsystem is to pro
vide a programming interface and execution environment for application pro
grams native to some specific operating system. Currently, Windows NT provides 
the following subsystems: 
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• The Win32 subsystem implements the native-mode programming inter
face for Windows NT. A more detailed description of this subsystem 
appears below. 

• The Virtual DOS Machine (VDM) subsystem allows 16-bit MS-DOS appli
cations to run under Windows NT. Unlike other subsystems, the VDM 
software is actually part of the process where the MS-DOS application is 
running. 

• The Windows on Windows (WOW) subsystem supports the execution of 
16-bit Windows applications. The default behavior of the WOW sub
system is to run all 16-bit Windows applications as separate threads 
within the address space of a single VDM process. This helps to mimic 
the 16-bit Windows environment more closely. 

• The POSIX subsystem provides API support for programs conforming to 
the POSIX 1003.1 source-code standard. Because POSIX 1003.1 is not a 
binary standard, applications must be compiled and linked on Windows 
NT in order under this subsystem. 

• The OS/2 subsystem creates an execution environment for 16-bit OS/2 
applications. This subsystem is available only for the 80x86 version of 
Windows NT. 

A given application is always tightly coupled to one specific subsystem and 
can use only the features of that subsystem. For example, a POSIX application 
can't make calls to Win32 API functions. Also keep in mind that applications run
ning under any subsystem other than Win32 will experience some performance 
degradation. These other subsystems are provided mainly for compatibility. 

More about the Win32 Subsystem 

All environment subsystems are not created equal. In particular, the services 
provided by the Win32 subsystem are crucial to the operation of Windows NT. 
The duties of this subsystem include the following: 

• As the owner of the screen, keyboard, and mouse, it manages all console 
and GUI I/O for the entire system. This includes I/O for other sub
systems as well as user applications. 

• The Win32 subsystem implements the GUI seen by programmers and 
users. As the screen and window manager for Windows NT, it defines 
GUI policy and style for the whole system. 

• It exposes the Win32 API that both application programs and other sub
systems use to interact with the Executive. 

Because of its special status, the Win32 subsystem is implemented in a dif
ferent way from any of the others. Figure 1.3 shows the organization of the Win32 
subsystem. 
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Unlike its counterparts, the Wm32 subsystem doesn't run entirely in user 
mode. Instead, it consists of both user- and kernel-mode components. To under
stand how it all fits together, you need to know a little bit about the organization 
of the Win32 API itself. Broadly speaking, you can divide Win32 functions into 
three categories: 

• The USER functions manage GUI objects like menus and buttons. 

• The GDI functions that perform low-level drawing operations on graphi
cal devices like the displays and printers. 

• The KERNEL functions manage such things as processes, threads, syn
chronization objects, shared memory, and files. They map very directly 
onto the system services provided by the Executive. 

In the original design of Windows NT, one of the goals was to confine all 
GUI policy-making code to the Win32 server process, CSRSS. The developers 
believed this would make the system more robust and easier to modify. As a 
result, calls to many USER and GDI functions required some interaction with the 
CSRSS process. This is a rather expensive operation since it involves a process 
context switch between the Win32 client and the CSRSS server. By comparison, 
KERNEL functions could be handled in the context of the calling process. Their 
only overhead was the transition to and from kernel mode. 

This architecture has been replaced in Windows NT 4.0 because of the per
formance limitations it put on graphically-based Win32 programs. Now, a new 
kernel-mode component called WIN32K.SYS has taken over most of the work for
merly done by CSRSS. With this approach, calls to USER and GDI functions can 
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execute in the context of the calling process. The result is that the speed of graphi
cally intensive applications improves significantly. 

This shift from user- to kernel-mode graphic support also had implications 
for the architecture of video and printer drivers under Windows NT. The next sec
tion of this chapter will provide some more details on this subject. 

1.2 KERNEL-MoDE 1/0 COMPONENTS 

Here we're going to take a look at the general layered driver model used by the 
kernel-mode portions of Windows NT. We'll also be examining variations on this 
architecture that support specific kinds of I/O devices. 

Design Goals for the va Subsystem 

In addition to the general Windows NT design goals, there were several 
additional requirements that the I/O subsystem had to satisfy: 

• Ease of development - It shouldn't take unreasonable amounts of 
work to provide support for a new device. 

• Portability - It should be relatively easy to move drivers to new plat
forms. In the best case, this would mean simply compiling and linking 
the driver. 

• Extendibility - It should be easy to add support for new devices and file 
systems without breaking anything that already works. . 

• Robustness - The I/O architecture should offer clean, well-defined 
interfaces and minimize the use of backdoor mechanisms. 

• Security - It must be possible to allow or deny various kinds of access 
to I/O objects on a user-by-user basis. 

• Multithreaded operation - Drivers should be able to handle overlap
ping requests from multiple threads, even if the threads are running 
simultaneously on multiple CPUs. 

• Performance - I/O throughput must be consistent with the needs of 
large-scale client-server applications. 

As if all this isn't enough, the I/O architecture has to work with all the leg
acy devices that people have been attaching to PCs for the last decade. Some of 
these devices have characteristics that don't blend well with modem, large-scale 
operating systems. 

Layered Drivers in Windows NT 

In most operating systems, the term driver refers to a piece of code that man
ages some peripheral device. Windows NT takes a more flexible approach which 
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allows several driver layers (shown in Figure 1.4) to exist between an application 
program and a piece of hardware. This layering permits Windows NT to define a 
driver in much broader terms that include file systems, logical volume managers, 
and various network components as well as physical device drivers. 

Device drivers These are the drivers that manage actual data transfer and 
control operations for a specific type of physical device. This includes starting and 
completing I/O operations, handling interrupts, and performing any error pro
cessing required by the device. 

Intermediate drivers Windows NT allows you to layer any number of 
intermediate drivers on top of a physical device driver. These intermediate layers 
provide a way of extending the capabilities of the I/O system without having to 
modify the drivers below them. For example, the fault-tolerant disk driver in 
Windows NT Server is implemented as a layer that sits between the file system 
and the drivers for any physical disks. 

Another use for intermediate drivers is to separate hardware-specific oper
ations from more general management issues. In this kind of arrangement, the 
intermediate driver is referred to as a class driver and the hardware driver is 
called a port driver. For example, the keyboard class driver handles general key
stroke processing while the keyboard port driver worries about the details of 
specific keyboard controllers. The use of separate class and port drivers makes it 
easier to target a wider range of hardware since only the port driver needs to be 
rewritten. 

File-system drivers (FSDs) This kind of driver is generally responsible 
for maintaining the on-disk structures needed by various file systems. For design 
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reasons, some other system components are implemented as file-system drivers, 
even though they aren't file systems as such. Microsoft currently supplies the fol
lowing FSDs: 

• FAT - Windows 95 extended MS-DOS file system 

• NTFS - Windows NThigh reliability file system 

• HPFS - OS/2 high performance file system 

• CDFS - ISO 9660 CD-ROM file system 

• MSFS - Mailslot file system 

• NPFS - Named pipe file system 

• RDR - LAN Manager redirector 

Unfortunately, you can't develop file-system drivers using the standard NT 
DDK. Microsoft released a beta version of a file system developer's kit at a confer
ence in 1994, but at the time of this writing, they hadn't committed to any release 
date for the final version of this kit. 

SCSI Drivers 

The Windows NT SCSI architecture uses layered driv~rs to separate the man
agement of specific devices from the control of the SCSI host bus adapter (HBA) 
itself. Figure 1.5 shows the components of the Windows NT SCSI architecture. 
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Port Driver 
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SCSI port and miniport drivers The port driver is a Microsoft-supplied 
component that acts as an interface between a SCSI mini port driver and the oper
ating system. By handling common SCSI grunt work and hiding the details of the 
local operating system, the SCSI port driver makes it easier to write drivers for 
new SCSI HBAs. It also reduces the overall size of a miniport and makes it easier 
to move the miniport to other operating systems (like Windows 95). 

SCSI miniports supply the port driver with routines that perform any HBA
specific control operations. Generally, the only people writing SCSI miniport 
drivers are HBA vendors who want to sell their products in the Windows NT 
marketplace. 

SCSI class drivers Class drivers manage all the SCSI devices of a particu
lar type, regardless of what HBA they're attached to. For example, there are SCSI 
class drivers for tapes, disks, and CD-ROM drives. Separating device control from 
HBA control makes it possible to mix and match SCSI devices and adapters from 
different vendors. If you have a device that attaches to a SCSI bus, this is the only 
kind of driver you'll need to write. 

SCSI filter drivers Filters are optional SCSI components that intercept and 
modify requests sent to a SCSI class driver. This allows you to take advantage of exist
ing class driver capabilities without writing everything from scratch. Filters are useful 
if you're developing a class driver for hardware that's similar to some other device. 

Network Drivers 

In an effort to get better performance, many of the networking components 
in Windows NT are implemented as kernel-mode drivers. As you can see from 
Figure 1.6, Windows NT uses driver layering to disengage network protocol man
agement from actual network data transfers. The result is much greater flexibility 
and support for a wider range of network protocols and hardware. 

Network interface card (NIC) drivers At the bottom of the stack are the 
NIC drivers that manage the actual networking hardware. NIC drivers present a 
standard interface at their top edge that allows higher-level drivers to send and 
receive packets, to reset or halt the NIC, and to query and set the characteristics of 
the NIC. The interface to a NIC driver is defined by the network driver interface 
specification (NDIS). 

NDIS NICdrivers rely heavily on the services provided by the NDIS inter
face library. This library (sometimes referred to as the NDIS wrapper) handles 
many of the nasty details involved in managing asynchronous communications 
across a network. The NDIS library also exports a complete set of kernel-mode 
system functions so that a properly written NDIS driver doesn't need to deal with 
the operating system. 

Based on the amount of help they get from the NDIS interface library, you 
can classify NICdrivers as either miniports or full drivers. NIC miniports perform 
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Figure 1.6 Architecture of kernel-mode networking components in Windows NT 

only those hardware-specific operations needed to manage a particular NIC. Code 
in the NDIS library takes care of issues common to all NIC miniports such as syn
chronization, notification of packet arrival, and queuing of outgoing packets. This 
is the preferred type of NIC driver for any new hardware. 

By comparison, full NIC drivers do almost everything on their own. This 
makes them much harder to write and debug and often slower than NIC 
miniports. Originally introduced in the first release of Windows NT, full NIC 
drivers are supported only to maintain backward compatibility. No one in their 
right mind is developing full NIC drivers anymore. 

NOIS intermediate drivers Version 4.0 of NDIS (the one included with 
Windows NT 4.0) includes a new kind of component: the NDIS intermediate 
driver. NDIS intermediate drivers are sandwiched between transport drivers and 
NDIS NIC miniports. To the transport driver, they appear to be NDIS miniports 
while to the NIC driver, they look like transport drivers. 

NDIS intermediate layers are useful if you have a legacy transport driver 
and you want to connect it to some new type of media unknown to the transport 
driver. In this situation, the intermediate driver performs any necessary transla
tions between the transport driver and the NIC miniport managing the new 
media. 

Transport drivers A transport driver is responsible for implementing a 
specific network protocol such as TCP lIP or IPX/SPX. It is independent of the 
underlying network hardware and uses NDIS NIC or intermediate drivers to 
transfer packets over one or more physical network connections. 
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All Windows NT transport drivers offer their services to kernel-mode net
working clients through the transport driver interface (TDI). The TDI specifica
tion defines a low-level interface that supports both connection-based and 
connectionless (i.e., datagram) protocols. Having all transport drivers expose a 
single, common interface simplifies the development of both the transport drivers 
and the clients they support. 

Kernel-mode networking clients Various kernel-mode components that 
access the network use the TDI interface to communicate with protocol drivers. 
These kernel-mode TDI clients fall into two broad categories: First, there are sys
tem components whose operation is transparent to user-mode applications. One 
example would be the Server and Redirector that handle requests for remote file 
access. 

The other kind of TDI client is an emulator that exposes some well-known 
programming interface. User-mode applications access the network through one 
of these standard APIs rather than working directly with TDI. This approach 
makes it easier to port existing software to Windows NT and prevents the need
less proliferation of networking APIs. Windows NT currently supports interfaces 
for sockets, NetBIOS calls, named pipes, and mailslots. 

1.3 SPECIAL DRIVER ARCHITECTURES 

Along with the relatively straightforward kernel-mode drivers described in sec
tion 1.2, Windows NT depends on a number of very specialized driver architec
tures. The following subsections describe each of them in detail. 

Video Drivers 

Video support in Windows NT is complicated by the fact that Win32 appli
cations can use three different graphics APIs. First, there's the graphical device 
interface (GDI). This API provides a set of device-independent rendering func
tions for generating two-dimensional output on display or hardcopy devices. 
Most Win32 applications use this programming interface because it simplifies the 
task of producing identical display and printer output. 

For programs that need to produce three-dimensional graphics, Win32 also 
supports the OpenGL API. These functions generate the kind of high-quality out
put needed by CAD software or scientific visualization tools. In return for the 
quality of the output, however, the OpenGL API demands a great deal of CPU 
horsepower or hardware rendering assistance. 

Finally, for consumer applications (i.e., games), Windows NT supports a 
subset of the DirectDraw API included in Windows 95. DirectDraw is one piece of 
Microsoft's DirectX game-programming architecture. Its goal is to give user-mode 
applications more direct access to video and audio hardware without compromis
ing the integrity of the system. 
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Supporting multiple APIs on video hardware from multiple vendors is a 
complex problem. Solving it in a flexible and portable manner requires the inter
action of a number of software components. Figure 1.7 shows what they are. 

GDI engine The GDI engine is the key to Windows NT's device-indepen
dent output strategy. This Microsoft-supplied component provides full software 
rendering support for Win32 GDI calls. In response to a Win32 drawing request, 
the GDI engine uses the appropriate display or printer driver to generate com
mands for a specific piece of hardware. 

Display drivers Display drivers are vendor-supplied components that do 
the actual work of drawing on the display screen. By selectively overriding the 
rendering functions in the GDI engine, they also give Win32 access to any hard
ware acceleration features provided by the video card.2 Along with a display 
driver for a specific piece of video hardware, vendors need to provide a corre
sponding video miniport (described below). 

DirectDraw HAL This vendor-supplied componen.t exposes an abstract 
version of the video hardware. This includes the video frame buffer plus any hard
ware acceleration mechanisms supported by the DirectDraw API. Any features of 

2 In earlier versions of Wmdows NT, both the GDI engine and the display driver were user-mode 
components running in the context of the Win32 subsystem process. To improve graphics perfor
mance, this code runs in kernel mode in Wmdows NT 4.0. 
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the DirectDraw hardware model not supported by the video device are emulated 
by Microsoft's DirectDraw software. 

Video port and miniport drivers The main responsibility of these two 
drivers is to manage state changes in the system's video hardware. The video port 
and miniport do not take part in any drawing operations. The work of these driv
ers includes doing such things as: 

• Finding and initializing the video controller. 

• Managing any cursor or pointer hardware located on the video card. 

• Handling mode-set and palette operations when a full-screen MS-DOS 
session is running. (This only applies to 80x86 platforms.) 

• Making the video frame buffer available to user-mode processes. 

The video port and miniport are actually a tightly-coupled pair of drivers. 
The port driver is a Microsoft-supplied framework that simplifies the task of writ
ing video drivers. It contains only generic, hardware-independent code that is 
common to all video drivers. 

The miniport is a vendor-supplied driver whose job is to manage a specific 
type of video card. In response to calls from the video port driver, it is the 
miniport that actually changes the state of the device. This division of labor 
between the port and miniport makes it easier to add support for new video cards 
to Windows NT. 

Printer Drivers 

In Windows NT, hardcopy devices are considered to be just another kind of 
graphical output hardware. Unlike display devices, however, there can be more 
than one printer on the system, and these printers may not all use the same kind 
of physical connection. Some of them may even be located somewhere else on the 
network. The Windows NT printing architecture (pictured in Figure 1.8) is an 
attempt to deal with all this variety. 

Printer drivers A printer driver is very much like a display driver in that 
it runs in kernel mode and helps the GDI engine convert Win32 API graphics calls 
into rendering commands. The difference is that .a printer driver sends its output 
to the spooler (described below) rather than to a video device. 

A printer driver is responsible for supporting a particular printer or family 
of printers. The Windows NT DDK contains sample drivers for raster-based print
ers, PostScript printers, and plotters. Most printers available today fall into one of 
these categories. Unless your printer uses some completely alien technology, it's 
unlikely that you'd need to write an entire driver from scratch. 

For raster-based printers, most of the rendering operation is simply a matter 
of converting a specific drawing command into the proper set of printer escape 
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codes. Because this is such a well-defined problem, you can use a Microsoft-sup
plied framework called the Unidriver to do most of the work. In this case, you 
only need to write the device-specific pieces of code in the form of a miniprint 
driver. Adding support for printers based on a page description language like 
PostScript is a more complicated task. 

Configuration Dll To support a printer under Windows NT, it's not 
enough to write a printer driver. You also have to supply a user-mode configura
tion DLL. The job of this DLL is to display the property-sheet dialog box that 
changes the printer's settings. Application programs use the configuration DLL to 
set up the printing environment for specific documents. It also appears when you 
select one of the icons in the Windows NT shell's Printers folder. 

Spooler The spooler is the central component of Windows NT's printing 
mechanism. It takes the output generated by a printer driver and either sends it to 
the appropriate printer or stores it in a temporary file for later printing. The 
spooler works either with local or networked printers. 

The spooler is one of the integral subsystem processes that starts when the 
operating system loads. Its architecture is very modular so that it can accommo
date a wide variety of printing devices and environments. Printer vendors can 
customize the spooler by supplying three different kinds of components: print 
processors, language monitors, and port monitors. 

Print processor Dll A print processor is a DLL that reads the spooled data 
produced by a specific printer driver and converts it into actual output. At its upper 
edge, the print processor DLL exposes a standard set of functions to the spooler. It 
generates output using the services provided by a language or port monitor. 
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The standard printer drivers can spool their output as text, as raw data 
(already rendered by the GDI engine), or as a series of enhanced metafile (EMF) 
commands to be rendered by the spooler.3 Microsoft supplies a print processor 
that can interpret any of these three data formats. If you write a printer driver that 
uses a proprietary format for spooled data, you'll also have to write a print pro
cessor for it. 

language monitor Dll In workgroup situations, it's very common for 
several users to be sharing a single printer or print server. Consequently, it's 
important to keep their jobs clearly separated and to be able to determine the sta
tus of a particular job at any point in time. It also may be necessary to set up a dif
ferent printing environment for each job being output. 

To meet these kinds of needs, many vendors offer smart, bidirectional print
ers that accept commands and report status over the same connection on which 
they receive output data. Normally, these command and status messages are in 
some kind of control language defined by the printer's manufacturer. For exam
ple, Hewlett Packard LaserJet printers use something called the Printer Job Lan
guage (PJL). 

A language monitor is a DLL that allows the spooler to communicate with a 
bidirectional printer in a standardized way. It exposes a well-defined set of func
tions that the spooler can call to control and monitor a job on one of these printers. 
The language monitor then converts these requests into the proper stream of job
language commands and uses the port monitor (described below) to send them to 
the printer. 

Windows NT comes with a language monitor for the Hewlett Packard PJL 
language. If your printer uses some home-brew set of commands, you'll need to 
write a language monitor for it. 

Port monitor Dll A port monitor is a DLL that manages a particular kind 
of output channel on behalf of the spooler subsystem. The monitor exposes a stan
dard set of functions which the spooler invokes in order to generate output. The 
port monitor then converts these calls into the appropriate set of Win32 I/O 
requests. 

Allowing the spooler to work with an abstraction of the output device 
makes it easier to add support for a variety of printer connections. Microsoft sup
plies the following port monitors with Windows NT: 

• The local port monitor that communicates with the parallel and serial 
ports as well as printing data to a file. 

• The LPR monitor that manages LPD printers and print-servers using a 
TCP /IP network connection. 

3 The use of EMF data for printing allows the program generating the output to finish its print 
request more quickly since the rendering operation takes place later in the context of the spooler 
process. Raw data slows the application because it's rendered before being sent to the spooler. 
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• Port monitors from Hewlett Packard, Apple, and Digital Equipment Cor
poration that control network-based printers and print-servers from these 
vendors. 

Normally, you won't need to write a port monitor unless you've developed 
some new and strange way to link a printer to a computer. For example, an out
put device connected to a SCSI controller would need a new port monitor. 

Multimedia Drivers 

Multimedia is going to change our lives one day - if only someone can fig
ure out how. For those who'd like to try, Windows NT supports a wide range of 
multimedia devices, including: 

• Waveform audio hardware that samples and reconstructs analog audio 
signals 

• MIDI ports that connect to external musical devices like keyboards, syn
thesizers, and drum machines 

• Onboard MIDI synthesizers that are part of the computer itself 

• Video capture devices that digitize either single frame or continuous 
video signals 

• Related devices like CD players, video-disk players, and joysticks 

Most application programs don't interact with multimedia hardware by 
calling such functions as CreateFile or DeviceIoControl. Instead they use some of 
the special-purpose multimedia functions provided by Win32. This indirect 
approach reduces their dependency on hardware from a specific vendor. Figure 
1.9 shows the components involved in multimedia operations. 

WINMM To meet the requirements of different kinds of software, Win32 
actually contains two separate multimedia APIs. The media control interface 
(MCI) functions provide high-level access to a wide variety of multimedia 
devices while hiding many of the details from the programmer. MCI is the inter
face used by most applications. For software needing more direct hardware con
trol, Win32 also provides a group of low:-Ievel audio functions. Programs such 
as MIDI sequencers or waveform editors are more likely to use this low-level 
interface. 

Support for both sets of multimedia functions comes from the WINMM sys
tem component. WINMM is a user-mode DLL that acts as a translation layer 
between the application and the vendor-supplied drivers that actually control the 
multimedia hardware. To do its job, WINMM relies on three kinds of drivers. 

Mel drivers An MCI driver is just a user-mode DLL that WINMM loads 
at runtime to process MCI commands for a specific device. In response to calls 
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Figure 1.9 Multimedia driver architecture 

from a multimedia application, WINMM sends various messages to the proper 
Mel driver. Depending on the device, the Mel driver then uses either the low
level audio interface (described below) or Win32 I/O functions to control the 
hardware. 

Low-level audio drivers When an application calls a low-level audio 
function, WINMM loads a vendor-supplied user-mode DLL (the low-level audio 
driver) and sends it various messages. The low-level audio driver then uses 
Win32I/O functions to communicate with the audio hardware. This is very simi
lar to the operation of the Mel drivers described previously. 

Kernel-mode device drivers Management of the multimedia hardware 
itself comes from a kernel-mode device driver. This includes data transfer opera
tions, handling interrupts, processing errors, and so on. 

Drivers for Legacy 16-bit Applications 

When Microsoft first introduced Windows NT, a vast amount of software 
already existed for MS-DOS and 16-bit Windows. Any new operating system hop
ing to be a commercial success would have to be able to run the majority of this 
code without modification. At the same time, it would be necessary to protect sys
tem integrity by denying these 16-bit programs the kind of unlimited hardware 
access they enjoyed under MS-DOS and Windows. As you saw earlier in this 
chapter, Microsoft's solution was to run 16-bit code in the context of one or more 
virtual DOS machine (VDM) processes. 
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Figure 1.10 Relationship of VDDs and kernel-mode drivers 

To meet the challenge of allowing VDMs to perform I/O without giving 
them direct access to any hardware, Windows NT uses a piece of software called a 
virtual DOS driver (VDD). Figure 1.10 shows the relationship of such a VDD to 
the other parts of the operating system. 

The VDD essentially acts as a translation layer between a 16-bit application 
and some custom piece of hardware. Whenever the application tries to touch the 
hardware directly, the VDD intercepts the request and turns it into a series of 
Win32 calls. These Win32 calls are then processed by a standard Windows NT ker
nel-mode driver. 

A VDD can intercept a 16-bit program's attempts to access I/O ports and 
specific ranges of memory. It also has the ability to perform DMA transfers on 
behalf of the application, read and set the contents of CPU registers, and simulate 
the arrival of interrupts. All this makes it possible to fool the 16-bit application 
into thinking it's still running under MS-DOS or Windows. 

The advantage of this approach is that the original 16-bit executable doesn't 
need to be modified to run under Windows NT. The disadvantage is that the extra 
layer of software can add significant amounts of processing overhead. Since you 
have to write a kernel-mode driver to support the underlying hardware, the real 
solution is to port the application to the Win32 environment. 

One other point to make here: This technique supports the execution of MS
DOS programs that touch hardware directly. It also supports 16-bit DLLs that 
play with hardware (a common form of driver in the 16-bit Windows environ
ment). It does not allow you to run Windows or Windows 95 VxDs under Win
dowsNT. 
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1.4 SUMMARY 

As you can see, Windows NT's rich architecture and multiple API environments 
add a certain amount of complexity to I/O processing. In particular, Windows NT 
uses a much broader definition of what constitutes a driver than many other oper
ating systems. If you're in the process of adding support for a specific piece of 
hardware, you should have a good idea at this point of just what kind of driver(s) 
you'll need to write. 

In the next chapter we'll start our descent into kernel-mode driver develop
ment by examining some of the hardware issues facing NT driver writers. 
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The Hardware 
Environment 

F or some people (you know who you are), hot 
solder is the only true programming language. If you're not in that category, this 
chapter will give you a gentle introduction to those aspects of hardware that have 
an impact on writing drivers. You'll also find here a quick tour of the major bus 
architectures supported by Windows NT, and a few words to the wise about deal
ing with hardware in general. 

2.1 HARDWARE BASICS 

24 

There are a number of things you need to know about a peripheral device 
before you can design a driver for it. At the very least, the following items are 
important: 

• How to use the device's control and status registers 

• What causes the device to generate an interrupt 

• How the device transfers data 

• Whether the device uses any dedicated memory 

• Whether the device can be autoconfigured 

The following subsections discuss each of these topics in a general way. 
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Device Registers 

Drivers communicate with a peripheral by reading and writing various bits 
in a group of registers associated with the device. Each of these device registers 
will generally perform one of the following functions: 

• Command - Setting and clearing bits in command registers causes the 
device to start an operation or change its behavior in some way. 

• Status - The bits in a status register contain information about the cur
rent state of the device. 

• Data buffer - Output devices accept data to be transmitted when it's 
written to their output buffer registers. Data coming from an input device 
will appear in the device's input buffer register. 

Simple devices (like the parallel port interface in Table 2.1) have only a few 
registers, while complex hardware (like a graphics adapter or a network card) 
have a large set of registers. In the absence of any industry standard, the engineer 
designing the interface card is the one who decides how these registers are going 
to be used. So, if you expect to write a device driver, you'll need detailed informa
tion about all its control and data registers. 

Table 2.1 These registers control a parallel port interface 

Parallel port registers 

Offset 

a 
1 

2 

Register 

Data 
Status 

Bits 0-1 
Bit 2 
Bit 3 
Bit 4 

Bit 5 
Bit 6 
Bit 7 

Control 
Bit 0 
Bit 1 
Bit 2 
Bit 3 
Bit 4 
Bits 5-7 

Access 

R/W 
RIO 

R/W 

Description 

Data byte transferred through parallel port 
Current parallel port status 
Reserved 
a - interrupt has been requested by port 
a - an error has occurred 
1 - printer is selected 
1 - printer is out of paper 
a - acknowledge 
a - printer is busy 
Commands sent to parallel port 
1 - strobe data to I from parallel port 
1 - automatic line feed 
a - initialize printer 
1 - select printer 
1 - enable interrupts 
Reserved 
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Accessing Device Registers 

Once you know what a set of device registers does, you still need two addi
tional pieces of information before you can work with the device: 

• The address of the device's first register 

• The address space where these registers live 

Since a given device's registers usually occupy consecutive locations, the 
address of the first register will get you to all the others. Unfortunately, finding 
the register base address is a rather involved process that will have to wait for 
Chapter 7. 

That still doesn't answer the question of where these registers live. As you 
can see from Figure 2.1, device registers can occupy either of two different 
address spaces. The following subsections describe each of them. 

1/0 space registers Some CPU architectures map device registers into a 
set of addresses known as I/O space. These I/O space addresses (often referred to 
as ports) are not part of the memory space seen by the CPU, and they can only be 
accessed with special machine instructions. For example, the 80x86 architecture 
has a 64-kilobyte I/O space, and IN and OUT instructions for reading and writ
ing I/ 0 ports. 

One extra twist: To promote platform independence, an NT driver shouldn't 
actually use hardware instructions to touch I/ 0 ports. Instead, it ought to use the 
HAL functions listed in Table 2.2. 

Memory i~ Ie 
1/0 Space 

Device 

if §illl' 

Register Register Register 

CPU IN/OUT 
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Figure 2.1 Memory-mapped device registers and I/O space ports 
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Table 2.2 Use these HAL functions to access ports in I/O space 

HAL 1/0 space functions 

Function 

READ_PORT_XXX 
WRITE_PORT_XXX 
READ_PORT_BUFFERYXX 
WRITE_PORT_BUFFER_XXX 

Description 

Read a single value from an 1/ 0 port 
Write a single value to an I/O port 
Read an array of values from consecutive I/O ports 
Write an array of values to consecutive 1/ 0 ports 

Substitute one of the following for XXX: UCHAR, USHORT, or ULONG. 
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Memory-mapped registers CPU architectures without a separate 1/ 0 
space generally map device registers into some range of physical memory 
addresses. Access to these memory-mapped device registers is accomplished with 
the same load and store instructions used for normal memory operations (for 
example, MOV on the 80x86 platform). 

Even on CPUs with a separate I/O space, some peripherals memory-map 
their control registers anyway. This improves the performance of high-speed 
devices with large register sets, since I/O instructions are typically much slower 
than memory-access instructions. For example, many SVGA video adapters for 
80x86 machines can use memory addresses not only for their video buffers, but 
for their control registers as well. 

Once again, the HAL provides a set of support functions (listed in Table 2.3) 
for accessing memory-mapped registers. Notice that these are not the same func
tions you use on a CPU with a separate I/O space. So, if you plan to support your 
driver on both kinds of architecture, you'll need to take this difference into 
account. Chapter 5 presents some coding techniques that make this easier to do. 

Device Interrupts 

Most reasonable pieces of hardware generate an interrupt request when 
they need some kind of attention from the CPU. This request takes the form of an 

Table 2.3 Use these HAL functions to access memory-mapped device registers 

HAL memory-mapped register functions 

Function 

READ_REGISTER_XXX 
WRITE_REGISTER_XXX 
READ _REGISTER_BUFFER_XXX 
WRITE_REGISTER_BUFFER_XXX 

Description 

Read a single value from an I/O register 
Write a single value to an 1/ 0 register 
Read of values from consecutive 1/ 0 registers 
Write values to consecutive I/O registers 

Substitute one of the following for XXX: UCHAR, U5HORT, or ULONG. 



28 Chapter 2 The Hardware Environment 

electrical signal on the interrupt lines in the bus. A device might yank on its inter
rupt line for any number of reasons, including: 

• The device has completed a previously requested input or output opera
tion and is now idle. 

• A buffer or FIFO associated with the device is almost full (for input oper
ations) or almost empty (for output operations). The device uses an inter
rupt to notify the driver that it must process the buffer if it wants the 1/ 0 
to continue without a pause. 

• The device encountered some kind of error during an I/O operation. 

Some legacy devices don't use interrupts at all. Drivers for this kind of hard
ware usually have to poll their devices until some kind of interesting event 
occurs. Under single-tasking operating systems like MS-DOS, this behavior 
wasn't a problem, but in an environment like Windows NT, it would seriously 
degrade system performance. Chapters 10 and 14 will present some techniques 
you can use with non-interrupting hardware. 

The various bus architectures supported by Windows NT take slightly dif
ferent approaches to interrupts. Nonetheless, they all share several common fea
tures, which are described below. 

Interrupt priorities When several devices are connected to the same bus, 
the CPU needs some way to rank the importance of their interrupt requests. This 
allows devices that need immediate servicing to access the CPU ahead of devices 
that can afford to wait. Although the exact mechanism depends on the bus, this 
ranking generally works by assigning a priority value to each of the interrupt 
request lines. 

When the CPU accepts an interrupt request, it blocks out any further inter
rupts at or below the same priority and transfers control to an interrupt service 
routine. Until the interrupt service routine handles and dismisses the interrupt, 
only requests of a higher priority can take control of the CPU. Lower-priority 
requests remain pending until the more important activity is finished. 

Interrupt vectors An interrupt vector is a unique, bus-relative number 
which allows the CPU to identify the source of an interrupt and call the appropri
ate service routine. The interrupt controller usually passes this vector to the CPU 
when it accepts an interrupt request. The CPU then uses the vector as an index 
into a table containing the addresses of interrupt service routines. 

Signaling mechanisms Hardware designers have developed two basic 
strategies that devices can use when they want to generate an interrupt. The older 
mechanism defines an interrupt request as a transition from zero to one on the 
interrupt signal line. These are called edge-triggered (or latched) interrupts because 
they depend only on the leading edge of the pulse. 
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Unfortunately, this scheme has two problems. First, it's very sensitive to 
electrical noise - a random spike can easily be mistaken for an interrupt request. 
Second, if an interrupt arrives while another one is being serviced at the same pri
ority, the second interrupt will be ignored. This limits sharing to situations where 
simultaneous interrupts will never occur on the same line. 

These limitations led to the development of another signaling mechanism 
called a level-sensitive (or level-triggered) interrupt. This approach requires the 
device to send a continuous signal down the wire until the interrupt service rou
tine explicitly dismisses the interrupt. In addition to greater noise immunity, this 
scheme makes it possible for multiple devices to share the same interrupt request 
line. 

Processor affinity To improve overall performance, multiprocessor plat
forms often contain special interrupt-routing hardware. The purpose of this hard
ware is to distribute interrupt requests from a given device to one or more specific 
CPUs. If a particular CPU can service interrupts from a device, those interrupts 
are said to have affinity for that CPU. 

Data Transfer Mechanisms 

Hardware designers have three basic options when it comes to moving data 
between a peripheral and memory. 

• Programmed II 0 

• Direct memory access 

• Shared buffers 

The transfer mechanism used by a given device usually depends on the 
device's speed, the amount of data it needs to transfer, and any applicable indus
try standards. In some cases, a complex piece of hardware may actually use more 
than one of these techniques. 

The following subsections explain the differences between programmed I/O 
and direct memory access (illustrated in Figure 2.2). Shared memory buffers are 
covered later in the discussion of device-specific memory. 

Programmed 1/0 (PIO) PIO devices need the help of the CPU to perform 
data transfers. Their drivers are responsible for sending or receiving each byte of 
data, keeping track of the buffer in memory, and maintaining a running count of 
the number of bytes transferred. 

PIO devices typically generate an interrupt after each byte or word of data is 
transferred. Some PIO devices have an internal buffer or a hardware FIFO that 
helps to reduce the interrupt count. Even so, lengthy transfers need a lot of atten
tion from the CPU and produce a flood of interrupts. This can lead to very poor 
system performance. 
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Figure 2.2 Paths followed by data in DMA and programmed I/O transfers 

This style of I/O is best suited to slower devices that don't move large 
amounts of data in a single operation. Parallel ports, pointing devices, and the 
keyboard are all examples of PIO hardware. Chapter 9 will explain how to work 
with PIO devices. 

Direct memory access (DMA) DMA devices take advantage of special 
hardware called a DMA controller (DMAC). A DMAC is actually a very simple 
auxiliary processor with just enough intelligence to transfer a specified number of 
bytes between a peripheral device and memory. 

At the beginning of an I/O operation, the driver loads a transfer count and a 
memory address into the DMAC and then starts the device. All by itself, the 
DMAC moves data to or from successive memory locations, and when the trans
fer is complete, it generates an interrupt request. During the actual operation, the 
driver is suspended and the CPU can work on other tasks. 

High-speed devices that perform large transfers generally use DMA because 
it significantly reduces driver overhead and system interrupt activity. Disks, 
sound samplers, and network cards are examples of DMA devices. 

Direct Memory Access (DMA) Mechanisms 

Chapter 12 will have a lot more to say about the mechanics of working with 
this kind of hardware. There are a number of twists and turns that aren't relevant 
here. At this point, it's only necessary to draw a distinction between two general 
kinds of DMA. 
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System DMA Some devices are connected to the shared DMACs on the 
motherboard. These controllers each have a fixed number of data-transfer paths 
(called channels) that can all work simultaneously. More than one device can be 
attached to the same channel, but only one device at a time can transfer data over 
the channel. This is known as system DMA or slave DMA. By sharing hardware, 
slave DMA devices have a simpler architecture and lower chip count. On the 
downside, they may have to wait for a DMA channel to become available before 
they can start an operation. The floppy controller on most PCs is a slave DMA 
device. 

Bus master DMA Other devices (called bus masters) have their own 
DMAC hardware built into the peripheral card itself. This guarantees that high
speed devices won't have to wait for a system DMA channel to become free. The 
AHA-1742 SCSI controller from Adaptec is one example of a bus mastering 
device. 

Device-Dedicated Memory 

Some devices insist on having a private range of addresses in physical mem
ory. There are several reasons why a peripheral card might need dedicated 
address space: 

• Its control registers might be memory-mapped. 

• It might have an internal ROM containing start-up code and data. For the 
CPU to execute this code, it has to appear somewhere in memory address 
space. 

• It might use a block of memory as a temporary buffer for data that's being 
sent or received. High-speed devices like video capture boards and Ether
net adapters often use this technique. 

Peripheral cards generally take one of two approaches to dedicated memory. 
Some insist on using a specific range of physical addresses. For example, VGA 
cards expect a 12S-kilobyte block of addresses beginning at OxAOOOO to belong to 
them. 

Alternatively, the card might have an address register that holds the base 
physical address of its dedicated memory. During initialization, the driver for the 
card will load this register with a pointer to some block of available memory. Fig
ure 2.3 illustrates each of these two possible designs. 

Regardless of which approach a card takes, it's important to remember that 
the card will be working with physical addresses. Since the only addresses avail
able to a device driver are virtual addresses, drivers have to map any device mem
ory somewhere into system virtual space before they can access it. Chapter 7 
explains how all this works. 
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Figure 2.3 How drivers access device memory 

Requirements for Autoconfiguration 

Card 

Ever since the first add-on card hit the market, PC users have been strug
gling with ports, IRQs, and DMA channel assignments. In the beginning, things 
weren't too bad, and it usually didn't take too long to find an appropriate combi
nation of DIP-switch and jumper settings. However, as people started attaching 
more and more optional equipment to their PCs, getting everything to work 
became a real nightmare. 

To get around these problems, some bus architectures support various levels 
of automatic hardware recognition and configuration. The next section of this 
chapter will describe specific autoconfiguration capabilities of the major buses. 
Here, it's enough to introduce the kinds of features that make autoconfiguration 
possible. 

Device resource lists At the very least, a device must identify itself and 
provide the system with a description of the resources it needs. In the ideal case, 
this resource list contains the following information: 

• Manufacturer ID 

• Device type ID 

• I/O space requirements 

• Interrupt requirements 

• DMA channels 

• Device memory requirements 
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No jumpers or switches Self-identification isn't enough, however. For 
true autoconfiguration, a device must be able to change its port, interrupt, and 
DMA channel assignments dynamically under software control. This allows a 
driver or some other part of the operating system to arbitrate resource conflicts 
among competing devices. 

Change notification Finally, the highest level of support also requires the 
bus to generate a notification signal whenever a card is plugged in or removed. 
Without this kind of mechanism, it's not possible to implement any of the Plug 
and Play hot-swapping features. Since the current release of Windows NT doesn't 
support Plug and Play, this isn't an issue right now. But it will be in the future. 

2.2 BUSES AND WINDOWS NT 

A bus is just a collection of data, address, and control lines that allows a peripheral 
device to communicate with memory and the CPU. The specification for a bus 
defines such things as the shape and size of physical connectors, the functions 
performed by each of the lines in the bus, and the timing and signaling protocols 
used by devices attached to the bus. 

Over the last decade, hardware vendors have developed a wide variety of 
bus architectures with differing electrical and logical characteristics. As of version 
4.0, Windows NT supports many of these buses. What follows are brief descrip
tions of the buses you're most likely to encounter. For more detailed information, 
see some of the books listed in the bibliography. 

ISA - The Industry Standard Architecture 

This is the old standby that made its first appearance on the IBM PC/ AT. It 
was derived from the original IBM PC bus by adding extra data and address lines 
and increasing the number of IRQ levels and DMA channels. Both 16-bit ISA 
cards and the older IBM PC 8-bit cards fit into ISA sockets. Figure 2.4 shows the 
organization of an ISA-based machine. 

The ISA bus isn't especially fast. To maintain backward compatibility with 
the IBM PC, the ISA bus clock rate is limited to 8.33 MHz. In the best case, a 16-bit 
transfer takes two clock cycles, so the maximum data rate is only about 8 MB/sec. 
This limit applies regardless of the clock rate of the CPU itself. That's why the 
CPU and memory communicate over a high-speed local bus (sometimes called 
the X bus). 

Register access There are very few rules when it comes to the layout of 
I/O space on ISA systems. Beyond some industry conventions, there aren't any 
real standards for the kinds of registers an ISA card should implement, nor what 
addresses they should use. Generally, I/O addresses between OxOOOO and OxOOFF 
belong only to devices on the system board, while the territory between OxOl00 
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Figure 2.4 Layout of an ISA system 

and Ox03FF is available for add-on cards. The space used by expansion cards is 
doled out in 32-byte chunks. 

Unfortunately, many ISA add-on cards don't pay attention to all 16 I/O 
address bits. Instead, they look only at bits 5-9 to see if an I/O space reference 
belongs to them. If it does, they decode bits 0-4 to determine the exact register. 
Cards like this are a problem because they respond to multiple addresses in the 
64-kilobyte I/O space, which can lead to some nasty behavior. The only way to 
prevent conflicts on a system with ISA boards is avoid these alias addresses 
altogether. 1 

Interrupt mechanisms Interrupts on an ISA bus are normally handled by 
a pair of Intel 8259A programmable interrupt controller (PIC) chips, each of 
which provides eight levels of interrupt priority. These two chips are tied together 
in a master-slave configuration that leaves fifteen available priority levels. Table 
2.4 lists the ISA priority levels and describes how they are normally used. 

The 8259A chip can be programmed to respond to either edge-triggered or 
level-sensitive interrupts. This choice must be made for the entire chip; it can't be 
set on an IRQ-by-IRQ basis. The power-on self-test (POST) code in the ISA BIOS 
programs both chips to use edge-triggered interrupts. This means that multiple 
ISA cards cannot normally share the same IRQ levels. 

DMA capabilities The standard implementation of ISA DMA uses a pair 
of Intel 8237 DMAC chips (or their functional equivalent). Each of these chips 

1 In other words, the control registers of any cards using the range above Ox03FF have to use I/O 
space addresses with zeroes in bits 8 and 9. 
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Table 2.4 Interrupt priorities on ISA systems 

ISA interrupt priority sequence 

Priority IRQ line Controller Used for ... 

Highest 0 Master System timer 
1 Master Keyboard 
2 Master (Unavailable - pass-through from slave) 
8 Slave Real-time clock alarm 
9 Slave (Available) 
10 Slave (Available) 
11 Slave (Available) 
12 Slave (Available - usually the mouse) 
13 Slave Error output of numeric coprocessor 
14 Slave (Available - usually the hard disk) 
15 Slave (Available) 
3 Master 2nd serial port 
4 Master 1st serial port 
5 Master 2nd parallel port 
6 Master Floppy disk controller 

Lowest 7 Master 1st parallel port 

provides four independent DMA channels. When they're ganged together in a 
master-slave configuration, the first slave channel (number 4) serves as a'pass
through and becomes unavailable. Table 2.5 describes the capabilities of these 
DMA channels. 

When several DMA channels request the bus simultaneously, the DMAC 
chips use a software-selected arbitration scheme to resolve the conflict. The ISA 
BIOS POST-code normally programs the DMACs for fixed-priority arbitration. 
This means that channel 0 always gets first crack at the bus, and channel 7 always 
goes last. 

Also notice from Table 2.5 that the lower channels transfer individual bytes, 
while the upper ones move data only in words. Since the DMAC uses a 16-bit 

Table 2.5 DMA architecture on the ISA bus 

ISA DMA channels 

Channel Controller Transfers ... Max transfer 

0-3 Master Bytes only 64 kilobytes 
4 Slave (Unavailable) 
5-7 Slave Words only 128 kilobytes 
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count register in both cases, the upper channels can transfer twice as much data in 
a single operation. . 

One other significant item about DMA operations: The ISA bus has only 24 
address lines. This means that DMACs can access only the first 16 megabytes of 
system memory. Any DMA buffers outside this range are unavailable. In Chapter 
12 you'll see how NT deals with this complication. 

Device memory The 24 address lines on the ISA bus have an impact on 
device memory as well as DMA buffers. Any device-dedicated memory must live 
in the first 16 megabytes of physical address space. This applies to any onboard 
ROM as well. 

Autoconfiguration Unfortunately, the ISA specification says nothing 
about autoconfiguration. ISA devices don't identify themselves (either by manu
facturer or device type), nor do they provide a resource list. Since ISA cards aren't 
required to have any software configuration registers, users normally have to con
figure the card with DIP switches and jumpers. 

Sometimes it's possible to make educated guesses about the presence of a 
particular device by tickling various addresses in 1/ 0 space and listening for an 
appropriate giggle from a device. This is generally not a very reliable way to do 
things. Even if you do manage to locate a piece of hardware using this technique, 
you still don't know anything about its DMA or interrupt settings. 

The proposed Plug and Play extensions to ISA are intended to correct such 
problems. Until these extensions become available, you'll have to use some of the 
cruder methods described in Chapter 7. 

MCA - The Micro Channel Architecture 

IBM developed the Micro Channel architecture as a replacement for the 
aging ISA bus. In a bold move, they dumped ISA altogether and proposed a 
vastly improved architecture. Progress isn't cheap, however, and the cost of 
adopting this new design was that all legacy ISA or IBM PC adapter cards would 
have to be trashed. Most people were unconvinced, and the MCA bus hasn't 
achieved great popularity among hardware vendors.2 Figure 2.5 shows the orga
nization of a typical MCA system. 

Since they weren't constrained by the 8.33-MHz clock rate of the ISA bus, 
IBM was able to design a pretty snappy architecture. Although the original MCA 
implementation3 only supported data transfer rates of 10 megabytes/sec, later 
versions of the bus specification incorporated a streaming data protocol that 
raised this number by a factor of 16. Table 2.6 summarizes the data rates available 
from the MCA bus. 

2 Political problems also contributed to the failure of MeA. IBM patented the architecture and tried 
to impose licensing conditions that many hardware vendors found objectionable. 

3 This was the 16-bit version used for the original IBM PS/2. 
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Figure 2.5 Layout of a Micro Channel system 

Register access An MeA bus can have at most eight card sockets, 
referred to as slots.4 Each slot has an associated set of programmable option select 
(POS) registers that are used to configure the card. These POS registers replace the 
jumpers and DIP switches found on ISA devices. At the very least, an MeA card 
must implement a POS register that identifies the card. 

Other than the POS registers (which are always at a fixed location), I/O 
space under MeA is just about as chaotic as it is on an ISA system. (The problem 
with ISA alias addresses doesn't occur, however.) At the option of the designer, 
MeA cards can have either fixed or programmable register addresses in I/O 
space. The only requirement is that if more than one of the same card will be 

Table 2.6 MeA buses support a wide range of transfer speeds 

MeA data transfer speed 

Protocol Data width Transfer rate 

Basic 16 bits 10MB/sec 
32 bits 20MB/sec 

Streaming 16 bits 20MB/sec 
32 bits 40MB/sec 
64 bits 80MB/sec 
64 bits 160 MB/sec 

4 Additional devices can live on the motherboard itself. 
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plugged into an MCA bus, the card must have a 3-bit pas field for setting the 
card's base register address. 

Interrupt mechanisms The Micro Channel architecture supports 15 inter
rupt request levels. Their functions and relative priorities follow the same pattern 
used by the ISA bus (refer back to Table 2.4). The only improvement is that MCA 
cards use level-sensitive interrupt signals, thus allowing more than one device to 
share a single IRQ line. 

DMA capabilities The MCA bus was designed to be shared. The system 
board can support up to eight system DMA channels, and there's room on the bus 
for an additional seven bus masters. Six of the system DMA channels follow a 
fixed priority arbitration scheme, while channels 0 and 4 have assignable priori
ties. The seven bus masters also have assignable priorities, although they will 
always defer to the system DMA hardware. 

Older implementations of the system DMAC were limited to 16-bit transfers 
(even though the bus itself has a 32-bit data path), and buffers had to fall in the 
first 16 megabytes of physical memory. (Bus master cards didn't have this limita
tion.) Proposed improvements to the MCA specification allowed for 32- and even 
64-bit data transfers.s These changes also gave the system DMAC access to a full 
4-gigabyte address range. 

Device memory The MCA specification dictates that any device with 
onboard ROM must use 4 bits in one of its pas registers to select a starting 
address for the ROM. This gives card designers the option of mapping the ROM 
into any of 16 separate locations in physical memory. 

Since the MCA bus has 32 address lines, device memory can exist anywhere 
in a 4-gigabyte address space. 

Autoconfiguration MCA autoconfiguration involves the pas registers 
and a card-specific script called an adapter description file (ADF). Whenever an 
MCA system bootstraps, it checks each slot to see what's there. If it finds a previ
ously configured card, it downloads configuration data from nonvolatile RAM 
(NVRAM) into the card's pas registers. 

If something appears in a slot that had previously been empty, the bootstrap 
configuration program uses the card's pas ID register to generate the name of the 
device's ADF file. After prompting the user for the floppy containing the ADF, the 
configuration program selects resource assignments for the new card that don't 
conflict with the resources used by any existing cards. These assignments are cop
ied into NVRAM. 

Windows NT can recognize many kinds of MCA devices all by itself. If you 
need to touch MCA slots directly, you can use HalGetBusData and HalSetBus
Data to access them. 

5 The extra 32 bits came from multiplexing the address lines on the MeA bus. 
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EISA - The Extended Industry Standard Architecture 

The PC industry responded to IBM's Micro Channel architecture with the 
EISA bus. Most people simply weren't willing to throwaway all their old hard
ware. The EISA bus reflects this sentiment by removing some of the ISA limita
tions while still allowing the use of legacy devices. 

However, EISA's emphasis on compatibility limits the architecture in certain 
ways. For example, even though the bus supports 32-bit data transfers, the bus 
clock still runs at 8.33 MHz so the maximum transfer rate is only about 33 mega
bytes/sec. Also, since EISA sockets had to be able to accept ISA cards, it was 
impossible to fix some of the electrical noise problems caused by the layout of the 
ISA wiring. See Figure 2.6 for the layout of a typical EISA system. 

Register access Like MCA, the EISA bus contains a number of slots, each 
of which corresponds to one physical socket on the bus. As you can see from Table 
2.7, each of the 15 EISA sockets has its own particular range of addresses in I/O 
space. Within the 4-kilobyte area assigned to a particular slot, four 256-byte 
ranges are guaranteed to be available to the card in that socket.6 

Interrupt mechanisms EISA's interrupt capabilities are a superset of the 
ISA mechanisms. Although EISA interrupt controllers provide the same 15 levels 
available on the ISA bus (see Table 2.4), each IRQ line can be individually pro
grammed for edge-triggered or level-sensitive behavior. This allows both ISA 
cards and EISA cards to coexist on the same bus. 

Copyright © t 996 by Cydonix Corporation. 960029a.vsd 

Figure 2.6 Layout of an EISA system 

6 The other blocks of addresses have to be avoided because of the ISA aliasing problem. 
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Table 2.7 I/O space use by EISA systems 

EISA I/O address ranges 

Address range 

Ox0400 - Ox04FF 
OxOBOO - OxOBFF 
OxOCOO - OxOCFF 
Oxl000 - OxlFFF 
Ox2000 - Ox2FFF 

OxFOOO - OxFFFF 

Used by ... 

EISA system board devices 
EISA system board devices 
EISA system board devices 
EISA card slot 1 
EISA card slot 2 

EISA card slot 15 

As you've already seen, edge-triggered interrupt lines can be used by only 
one device at a time. However, level-sensitive interrupt request lines (the norm 
for native EISA cards) are shareable. This makes it much easier to resolve conflicts 
between devices that want to use the same IRQ levels. 

DMA capabilities As with ISA systems, a pair of ganged DMACs provide 
seven independent system DMA channels, numbered 0 through 7. (Channel 4 is 
still unavailable.) The POST code programs these EISA DMA channels to use a 
fixed priority arbitration scheme. 

The EISA architecture extends ISA DMA model in several ways. First, any of 
the seven channels can perform B-, 16-, or 32-bit data transfers. This basically 
allows any device to be connected to any channel. 

EISA DMA channels can also be individually programmed to use a variety 
of different bus cycle formats. This permits new devices to go faster while still 
maintaining compatibility with legacy ISA cards. Table 2.B describes the EISA 
DMA bus cycles. 

Another enhancement is the EISA DMAC's 24-bit count register. For B-, 16-, 
and 32-bit devices, this register counts bytes - allowing a single transfer opera
tion to move up to 16 megabytes. For compatibility, the DMAC can be pro
grammed to use this as a word-count register for 16-bit transfers. 

Finally, since EISA DMACs generate full 32-bit addresses, they can access a 
4-gigabyte physical address space. As you'll see in Chapter 12, this can make it 
much easier for the I/O Manager to set up a data transfer operation. 

Device memory Again, the EISA bus has 32 address lines. Provided that 
an expansion card uses a 4-byte register as a pointer, its dedicated memory can 
live anywhere in a 4-gigabyte range. This also applies to any onboard ROM the 
device might have. 

Autoconfiguration Several components take part in the EISA configuration 
process. First, each card is required to implement a 4-byte ID register at location 
OxnCBO (where n is an EISA slot number from 1 to OxA). This register identifies the 
manufacturer, the device type, and the revision level of the card in that slot. 
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Table 2.8 The EISA architecture supports several DMA bus cycles 

EISA DMA bus cycle formats 

Bus cycle Transfer size Transfer rate Compatible with ... 

ISA compatible 8-bit 1.0 MB/sec AnyISA 
16-bit 2.0MB/sec AnyISA 

Type A 8-bit 1.3 MB/sec MostISA 
16-bit 2.6MB/sec MostISA 
32-bit 5.3MB/sec EISA only 

TypeB 8-bit 2.0MB/sec SomeISA 
16-bit 4.0MB/sec SomeISA 
32-bit 8.0MB/sec EISA only 

Type C (burst) 8-bit 8.2MB/sec EISA only 
16-bit 16.5 MB/sec EISA only 
32-bit 33.0MB/sec EISA only 

Second, designers can use the remaining 124 bytes (from OxnC84 to OxnCFF) 
to implement other registers that configure the card. For example, there might be 
a configuration register for the DMA channel number the card should use, and 
another for setting its IRQ level. Storing values in these registers has the same 
effect as setting DIP switches and jumpers on an ISA device. 

The third component is a script file that contains the card's resource list and 
defines the location and usage of any device-specific configuration registers on 
the card. This file is written in a standard EISA scripting language, and its name is 
based on the contents of the card's ID register. This script usually comes on a 
floppy disk supplied by the card's manufacturer. 

The final piece of the puzzle is an EISA configuration program that runs 
when the system bootstraps. This program scans the EISA slots looking for cards 
in previously empty locations. If it finds one, it uses the contents of the slot's ID 
register to construct the name of a configuration script and then asks the user for 
the floppy containing that script. Once the disk is inserted, the configuration pro
gram assigns resources to the card. It also copies these assignments to nonvolatile 
CMOS memory associated with the slot, so that it won't be necessary to ask for 
the script file at the next bootstrap. 

Again, Windows NT is able to auto-detect many kinds of native-mode EISA 
cards. If you need to access EISA slots directly, you can always use HalGetBus
Data and HalSetBusData. 

PCI - The Peripheral Component Interconnect 

Fast networks, full-motion video, and 24-bit-per-pixel displays all require 
extremely high data transfer rates. The PCI bus is an attempt to satisfy the needs 
of such demanding hardware. Although the initial design came from Intel, PCI 
is relatively processor-neutral, and it works as well with DEC Alphas and 
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Figure 2.7 Layout of a PCl bus system 

Motorola PowerPCs as it does with 80x86 CPUs. Figure 2.7 shows a typical PCl 
system. 

By using a fast bus clock (33 MHz) and a number of clever tricks, the PC! 
architecture can hit 132 megabytes/sec for sustained 32-bit transfers and twice 
that rate for 64-bit operations. Some of the things that contribute to this zippy per
formance include 

• The PC! protocol assumes that every transfer is going to be a burst opera
tion. This results in higher throughput rates for fast devices trying to 
move large amounts of data. 

• PCl supports multiple bus masters and permits direct device-to-device 
transfers (with no intermediate stops in memory). This can result in much 
more overlap between I/O and CPU operations. 

• A central bus arbiter reduces latency by overlapping arbitration with data 
transfers. This allows the next owner to start an operation as soon as the 
current owner releases the bus. 

• An intelligent bridge between the host CPU and the PC! bus performs 
various caching and read-ahead functions. This helps to reduce the 
amount of time the CPU spends waiting for data. 

The PCl architecture allows 32 physical units (called devices) to be plugged 
into one bus? Each of these physical units can contain up to eight separate func-

7 The current version of the specification limits this to ten devices. 
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tional units (called functions). After taking away one function address that's used for 
generating broadcast messages, there can be up to 255 addressable functions on a 
single PC! bus. Furthermore, one system can have up to 256 separate PCI buses. 

Register access Although the PCI uses 32-bit addresses, I/O register 
space on 80x86 machines is still limited to 64 kilobytes. So any PCI registers have 
to be squeezed into I/O space along with everything else. Furthermore, on sys
tems with an EISA/ISA bridge, designers still need to avoid any I/O addresses 
being used by legacy hardware. 

Along with 1/ 0 space and memory addresses, PCI defines a range of 
addresses known as configuration space. The discussion of PCI autoconfiguration 
(below) will explain how configuration space works. 

Interrupt mechanisms The PCI bus has four equal-priority interrupt 
request lines (lNTA-INTD) which are active-low, level-triggered, and shareable. 
A single-function PCI device has to use INTA, while a multi-function device can 
use any sequential combination of the four beginning with INTA. The only 
requirement is that each function can be connected to only one request line. 

The PCI specification is relatively neutral when it comes to interrupt priori
ties. Instead, it depends on an external controller to redirect PCI interrupt requests 
to the proper system interrupt line. For example, on a PC the redirector converts a 
given PCI function's request on INTA-INTD into a request on one of the IRQO
IRQ15 lines. To make this work, any PC! function that generates interrupts must 
implement the following two configuration registers: 

• Interrupt pin register - This read-only register identifies the PCI signal 
line (INTA-INTD) used by this function. 

• Interrupt line register - This read-write register specifies the priority 
and vector that the interrupt redirector should assign to this function. On 
a PC system the values OxOO-OxOF correspond to IRQO-IRQ15. 

This is a very flexible scheme because it doesn't impose any specific inter
rupt policies on the system designer. This makes it easier to support processor 
environments other than the 80x86. 

DMA capabilities The PC! specification doesn't include the notion of slave 
DMA. Instead, the native PCI functions are either bus masters doing their own 
DMA, or they use programmed I/O. The only devices that perform slave DMAon a 
PC! machine will be non-PCI boards plugged into the system's EISA or MCA bridge. 

In a native PCI DMA operation, the participants are referred to as agents, 
and there are always two of them involved in any transaction: 

• Initiator - This is a bus master that has won access to the bus and wants 
to set up a transfer operation. 

• Target - This is the PC! function currently being addressed by the initia
tor with the goal of transferring data. 
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Because any PCI bus master can be an initiator, it's possible to transfer 
data directly between two PCI devices with no intermediate stops in memory. 
This powerful capability lends itself well to high-speed networking and video 
applications. 

It's also worth mentioning that the PC! specification doesn't define the pol
icy to be used for arbitrating access to the bus. It only defines the timing of the 
arbitration signals onthe bus. The method used to determine who should go next 
is system-specific. 

Device memory Dedicated memory used by PC! functions can live any
where in a 32-bit address space. The only kink is that you have to enable the func
tion's ability to access memory. You do this by setting a bit in function's command 
register (located in the configuration space header). 

An interesting feature of PCI is that a single function can have multiple 
onboard ROM images, each for a different CPU architecture. This gives ven
dors the ability to sell the same product in several different markets. The PCI 
specification defines a standard header format for ROM blocks, so that initial
ization software can locate the proper chunk of ROM and load it into memory 
for execution. 

Autoconfiguration The PCI specification dictates that each individual 
function on the bus must have its own 256-byte storage area for configuration 
data. This area is referred to as the PCI function's configuration space. 

The first 64 bytes of any PCI function's configuration space (called the 
header) has a predetermined structure, while the remaining 192 bytes belong to the 
card designer. System software can use the header to identify a PCI function and 
assign resources to it. Some of the things in the header area includeS 

• Information about the vendor, the device type, and its revision level. 

• A standard pair of command and status registers for enabling various 
features and reporting errors. 

• A resource list that specifies the function's memory and I/O space 
requirements. 

• The interrupt pin and line registers described above. 

• Pointers to device-specific ROM 

. At 256 bytes per function, the configuration space for a PCI system could 
easily"gro'W quitelarge - certainly much larger than the 64-kilobyte I/O space 
available. on80:x:86 processors. Mapping it into memory is always an option, but 

8 See Shanley and Anderson's book on PeI architecture (listed in the bibilography) for a complete 
description of the configuration header. 
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that, too, would chew up a lot of address space. Instead, you access a PCI func
tion's configuration data using the following two registers: 

• Configuration address register - This identifies the bus number, the 
device, the function, and the address in configuration space that you 
wanito access. 

• Configuration data register- This acts as a data buffer between the 
CPU and configuration space. After you set the address register, writing 
or reading this register transfers information to or from configuration 
space. 

Fortunately, Windows NT doesn't make you go through all this. The Hal
GetBusData, HaISetBusData, and HaIAssignSlotResources HAL functions give 
you a simple way to access a PC! function's configuration data. 

2.3 HINTS FOR WORKING WITH HARDWARE 

If you haven't done much work with hardware, you're in for a shock when you 
write your first device driver. Hardware engineers have different priorities than 
software people do, and their idea of an optimal design may seem strange and 
quirky to a programmer. (If you doubt this, just think about the user interface on 
your VCR.) The following hints may help make it easier to work with a new piece 
of hardware. 

Learn about the Hardware 

Before you start writing the driver, learn as much as possible about the hard
ware itself. Most of the information you need should be in the hardware docu
mentation. At the very least, you'll need to know: 

Bus architecture Your hardware's bus architecture will have a big impact 
on the design of your driver. In particular, ISA boards .don't give the system a lot 
of autodetection information at power~up time, so you'll need to have some other 
way of determinimg the board's resource requirements. Chapter 7 explains how to 
do this. ' 

Control r~isters You.need to know theBize, relative positions, and con
tents of any comrol, status, and data registers belonging to the device. You should 
also find out about any odd behavior they exhibit: Forexample, 

• Some d~vice registers may be read-only or write-only. 

• A single register address may perform different functions ana read than 
it does on a write. 
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• Data or status registers may not contain valid information until some 
fixed time interval after you issue a command. 

• You may need to access registers in a specific order. 

Error and status reporting Determine any protocols used by the device 
for reporting hardware failures and device status. 

Interrupt behavior Find out exactly what device conditions cause the 
hardware to generate an interrupt, and whether the device uses more than one 
interrupt vector. If you're working with a multidevice controller, interrupts may 
come from the controller itself, and you'll need to know how to identify the actual 
device that wants attention. 

Data transfer mechanisms Drivers for programmed I/O devices are 
very different from DMA drivers, so this is one of the first things you need to 
know about a piece of hardware. Some devices are capable of doing both kinds 
of I/O. In the case of a DMA device, find out whether it's a bus master or slave, 
and whether there are any limitations on the range of physical buffer addresses it 
can use. 

Device memory If your device uses dedicated memory, find out how to 
access it. It could be mapped at a fixed physical location or there may be a register 
that your driver will need to set. 

Make Use of Hardware Intelligence 

Some peripherals contain their own microprocessors that perform both 
diagnostic and device control functions. The microprocessor may be running 
under the control of some firmware, or it may be possible for the driver itself to 
download code to onboard RAM at initialization time. 

If you're working with a smart peripheral, it makes sense to take full advan
tage of the device's intelligence. Proper use of hardware features can result in sig
nificantly better driver performance and improved diagnostic capabilities. 

Test the Hardware 

It's a good idea to test your hardware very early in the development cycle. In 
addition to finding bugs, this will help you uncover any mistaken assumptions 
you may be making about the device's operation. 

Basic tests Make sure the device and any associated cables are all com
patible with your development machine. Power up everything and try to boot the 
operating system. At a very gross level, this lets you know that the device isn't 
interfering with anything else on the box. 
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Standalone tests If possible, write some stand-alone code that tests the 
board and any firmware it may contain. This will usually be a program that runs 
without the benefit of an operating system. If you're lucky, the hardware vendor 
will provide some sort of exerciser for this purpose. 

Finally, remember to test any onboard diagnostics by putting the hardware 
in an illegal state and checking to see that the firmware detects the problem. 

2.4 SUMMARY 

This has been a very cursory look at hardware issues. The bottom line is your 
driver needs to find its devices and determine their various resource require
ments. As you've seen, some bus architectures make this easier than others. When 
we start looking at actual driver code, you'll see how all this works under Win
dowsNT. 

Before we can tackle any code, however, it's a good idea to take a closer look 
at just what happens to an I/O request once it enters the gaping maw of the I/O 
Manager. That's the subject of the next chapter. 
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Kernel-Mode I/O 
Processing 

Now that you're familiar with some of the major 
hardware issues, it's time to look at the NT Executive's role in processing I/O 
requests. This chapter covers three separate areas. First, in sections 3.1 through 3.4, 
it introduces some concepts and techniques that are important to I/O processing. 

Next, we'll look at the various routines that make up a driver and give brief 
descriptions of the purpose of each routine. Later chapters will deal with actual 
coding details. 

Finally, we'll tie everything together by examining the life of an I/O request 
in gory detail. A good understanding of the I/O flow of control is probably the 
most important piece of knowledge a driver writer can have. 

3.1 How KERNEL-MoDE CODE EXECUTES 

48 

The kernel-mode parts of Windows NT (including your driver) consist of a mas
sive amount of code. But just what causes this code to execute? It turns out that 
there are three different contexts in which kernel-mode code might be running. As 
you develop your driver, it's very important for you to be clear about the context 
each routine will be running in. 

Exceptions 

First, a piece of kernel-mode code might be executing in response to a 
hardware or software exception generated by a user-mode thread. In this case, it's 
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clear that the currently executing thread is the source of the exception, and there's 
no question about who occupies the user-portion of address space. This is the 
context in which NT system services (like I/O requests) are executing. 

Interrupts 

Kernel-mode code also executes in response to a hardware or software 
interrupt. There will be more to say about NT's use of interrupts in the next 
section, but for now it's enough to point out that they're not often the result of 
anything the current user-mode thread is doing. Rather, interrupts are 
asynchronous events that fall out of the sky and preempt whatever unsuspecting 
thread happens to be using the CPU at the time. This means that code running in 
interrupt context (which includes the bulk of your driver routines) can make very 
few assumptions about the identity of the current process or thread, or about 
what's currently located in the user portion of virtual address space. 

Kernel-Mode Threads 

The last possibility is that a piece of code is running in the context of a kernel
mode thread. With a few differences, these kernel threads behave very much like 
the user-mode threads you already know from Win32 programming. Some drivers 
use kernel-threads as a way of handling devices that need to be polled, or that 
have other characteristics which would interfere with the smooth operation of the 
I/O Manager. Chapter 14 discusses the use of kernel-mode threads. 

3.2 USE OF INTERRUPTS BY NT 

Chapter 2 introduced the idea of interrupts as a way of arbitrating among differ
ent I/O devices at the hardware level. It turns out that NT uses this hardware 
mechanism to prioritize not only I/O events, but also hardware events internal to 
the CPU, and even for scheduling various operating system tasks. 

CPU Priority Levels 

Different CPU architectures have different ways of handling hardware 
priorities. To avoid these architecture dependencies, Windows NT uses an 
idealized, abstract CPU priority scheme. The Kernel implements this model using 
whatever mechanisms are provided by a specific kind of CPU. 

The operation of this abstract priority scheme depends on something called 
an interrupt request level (IRQL). The IRQL is a number that defines how important 
the CPU's current activity is. The higher the number, the greater the importance of 
continuing the current task. Table 3.1 shows the IRQL levels used in NT's priority 
scheme. Regardless of the underlying CPU or bus architecture, this is how IRQL 
levels will look to your driver. 
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Table 3.1 NT maps these I RQL levels onto platform-specific levels 

IRQL Levels 

Generated By 

Hardware 

Software 

IRQL 

HIGHEST_LEVEL 
POWER_LEVEL 
IPCLEVEL 

CLOCK2_LEVEL 
CLOCKLLEVEL 

PROFILE_LEVEL 
DIRQLs 

DISPATCH_LEVEL 

Interrupt Processing Sequence 

Purpose 

Machine checks and bus errors 
Power-fail interrupts 
Interprocessor doorbell for 
multiprocessor systems 
Interval clock 2 
Interval clock 1 (not used on 
80x86 platforms) 
Profiling timer 
Platform-dependent number of 
levels for 110 device interrupts 
Thread scheduler and deferred 
procedure call execution 
Asynchronous procedure call 
execution 
Normal thread execution level 

When an interrupt reaches the CPU, the processor compares the IRQL value 
of the requested interrupt with the CPU's current IRQL value. If the IRQL of the 
request is equal to or less than the current IRQL, the request is ignored. In this 
case, the request remains pending until some later time when less important 
things are happening. 

On the other hand, if the IRQL of the request is higher than the CPU's 
current IRQL, the processor does the following: 

1. Suspends instruction execution. 

2. Saves just enough state information on the stack to resume the interrupted 
code later on. At the very least, this will include the current PC address and 
the CPU status register. 

3. Raises the IRQL value of the CPU to match the IRQL of the request, prevent
ing interrupts of equal or lower priority from taking control until the current 
interrupt is satisfied. 

4. Transfers control to an interrupt service routine associated with the request. 

When it's finished, the service routine executes a special instruction that 
dismisses the interrupt. This instruction restores the CPU state information saved 
on the stack (including the previous IRQL value) and returns control to the 
interrupted code. 
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Notice that the hardware's priority rule allows higher-IRQL requests to 
interrupt the service routines of lower-IRQL interrupts. Because the whole 
mechanism is stack-based, this doesn't cause any confusion. However, it does 
raise some synchronization issues that we'll address in Chapter 5. 

Software-Generated Interrupts 

Some of the IRQLs listed in Table 3.1 are tagged as being software generated. 
This is because it's possible for kernel-mode code to start the interrupt processing 
sequence described above by executing a privileged instruction. NT uses these 
software interrupts to trigger activities like thread scheduling and to delay the 
execution of other operating system tasks until the CPU has finished processing 
hardware requests. The next section describes this use of software interrupts in 
greater detail. 

3.3 DEFERRED PROCEDURE CALLS (DPCS) 

While a piece of kernel-mode code is running at an elevated IRQL, nothing will 
execute on the same CPU at that or any lower IRQL. This can have the effect of 
making the system less responsive to time-critical events, and ultimately degrad
ing overall performance. NT tries to avoid this situation by executing as much 
code as it can at the lowest possible IRQL. An important technique for doing this 
is the use of deferred procedure calls (OPCs). 

Operation of a ope 
The OPC architecture uses software interrupts to defer the execution of less 

time-critical code until higher-IRQL activities have finished. Figure 3.1 illustrates 
the operation of a OPe. 

Later chapters will present more specific information about using OPCs in a 
driver, but the following general description should give you a good idea of how 
they work: 

1. When some piece of code running at a high IRQL wants to continue its work 
at a lower IRQL, it adds the OPC object to the end of the system's OPC dis
patching queue and requests a OPC software interrupt. Since the current 
IRQL is above DISPATCH_LEVEL, the interrupt won't be taken right away, 
but it will remain pending. 

2. Eventually, the processor's IRQL falls below DISPATCH_LEVEL and the 
interrupt is serviced by the OPC dispatcher. 

3. One by one, the dispatcher removes each OPC object from its queue and calls 
the function whose pointer is stored in the object. Notice that this function is 
being called while the CPU is at DISPATCH_LEVEL. 

4. When all the OPC objects have been removed from the queue, the OPC dis
patcher dismisses the interrupt. 
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Figure 3.1 How deferred procedure calls work 

Device drivers normally perform cleanup operations after an I/O request 
using a DPC routine. This has the effect of reducing the amount of time the driver 
spends at DIRQL and improves overallI/O system throughput. 

Behavior of opes 
For the most part, working with DPCs is fairly easy, because NT hides most 

of the nasty details from you. However, there are three aspects of DPC behavior 
that you need to be aware of. 

First, if your driver tries to insert a DPC object into the dispatching queue, 
and that object is already in the dispatching queue waiting to execute, the Kernel 
will reject the queuing request. Consequently, there will be only one call to the 
DPC routine. In that single call, the DPC routine is expected to perform all the 
work that's been requested. This could happen if a piece of hardware generated 
multiple interrupts so rapidly that the DPC request from the one was still pending 
when another interrupt arrived. 

It's up to your driver to handle this situation if it occurs. This could mean 
keeping an array of DPC objects that your interrupt service code could use, or 
setting up some kind of internal queue of work requests that the DPC routine 
would process. In any event, the responsibility is yours. 

The second thing you have to watch out for has to do with SMP machines. 
On a multiprocessor, it's possible for the high-IRQL portion of a driver to submit a 
DPC request and have the DPC routine begin execution on another CPU even 
before the high-IRQL code finishes running. For this reason, your DPC routines 
must synchronize their access to any resources shared with the driver's interrupt 
service code. 
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Finally, on multiprocessor systems, the Kernel has a separate DPC dispatching 
queue for each individual CPU - thus allowing more than one OPC routine to 
execute at the same time. Consequently, each OPC routine must synchronize its access 
to any resources it might be sharing with another OPC routine. Normally, you use 
Executive spin locks for this purpose. 

3.4 ACCESS TO USER BUFFERS 

When a user-mode thread makes an I/O request, it usually passes the address of a 
data buffer located in user space. The problem this poses for any driver routines try
ing to access the buffer is that user-space addresses are paged. And as you've seen, 
any code executing at DISPATCH_LEVEL IRQL or higher must avoid page faults. 

However, even if user space weren't in paged memory, there would be 
another problem. The process occupying user space at the time of the 1/ 0 request 
may not be the same process that's there when an interrupt or OPC routine 
executes. This means that any pointers to user space held by the driver probably 
won't refer to the correct physical memory when the driver tries to use them. 

Buffer-Access Mechanisms 

So just how do driver routines manage to access user-space buffers? 
Fortunately, the I/O Manager comes to the rescue by providing drivers with two 
different methods for accessing user buffers. When your driver initializes itself, it· 
tells the I/O Manager which method it plans to use. The choice usually depends 
on the nature of the device. Figure 3.2 illustrates the difference between these two 
techniques. 

System Virtual Space Physical Memory 

010 

Copy 

User Virtual Space 
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Figure 3.2 Memory use in buffered and direct I/O 
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Buffered 1/0 (BIO) Under this scheme, the I/O Manager allocates a buffer 
from nonpaged pool at the start of each I/O operation and passes the address of 
this buffer to the driver. The driver uses this buffer for any data transfer 
operations to or from the device. 

For output requests, the I/O Manager copies the contents of the user's buffer 
into the system buffer before passing it to the driver. For input requests, the driver 
fills the system buffer with data from the device, and the I/O Manager copies it 
back into user space at the end of the operation. 

There are two disadvantages to this technique. One is that all the memory
to-memory copying of data can slow things down, particularly for devices that 
transfer large amounts of data on a frequent basis. The other is that it can use up a 
lot of nonpaged pool. So, drivers should limit the use of buffered I/O to slow 
devices that don't transfer a lot of data at one time. For these reasons, you should 
never use Buffered 1/ 0 to perform transfers larger than one page of memory. 

Direct 1/0 (010) This scheme avoids the need for copying user data by 
givLng the driver direct access to the physical pages of memory where the user 
buffer lives. At the beginning of an I/O operation, the I/O Manager locks the 
entire user buffer into memory to prevent deadly page faults. It then builds a list 
that identifies the physical pages making up the user buffer. The driver uses this 
list to perform an I/O operation using the actual pages of the user's buffer. When 
the I/O operation is complete, the I/O Manager will unlock the pages. 

You should use Direct I/O for high-speed devices that need to transfer large 
amounts of data at once, particularly devices that perform DMA. The mechanics 
of Direct I/O are described in Chapter 12. 

3.5 STRUCTURE OF A KERNEL-MoDE DRIVER 

One of the biggest differences between a driver and an application program is the 
driver's control structure. Application programs run from beginning to end under 
the control of a main or WinMain function that determines the sequence in which 
various subroutines are called. 

A kernel-mode driver, on the other hand, has no main or WinMain function. 
Instead, it's just a collection of subroutines that are called as needed by the I/O 
Manager. Depending on the driver, the 1/ 0 Manager might call a driver routine in 
any of the following situations: 

• When a driver is being loaded 

• When the driver is being unloaded or the system is shutting down 

• When a user-mode program issues an 1/ 0 system service call 

• When a shared hardware resource becomes available to the driver 

• At various points during an actual device operation 
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The remainder of this section briefly describes the major categories of 
routines making up a kernel-mode driver. 

Driver Initialization and Cleanup Routines 

Before any driver can begin processing I/O requests, there are a number of 
initialization tasks it must perform. Likewise, drivers need to clean things up 
when they leave the system. There are several routines a driver can use to 
perform these operations. 

DriverEntry routine The I/O Manager calls this routine when it loads the 
driver, either at system boot time if the driver is loaded automatically, or later if 
you load the driver manually from the Control Panel. The DriverEntry routine 
performs a wide range of initialization functions, including setting up pointers to 
other driver routines, finding and allocating any hardware resources used by the 
driver, and making the name of the device visible to the rest of the system. 

Reinitialize routine Some drivers may not be able to complete their 
initialization during the DriverEntry routine. This could happen if the driver 
depended on some other driver that wasn't yet loaded, or if the driver needed to 
initialize itself during different phases of the system boot. These kinds of drivers 
can use Reinitialize routines to spread out their initialization functions over time. 

Unload routine The I/O Manager calls a driver's Unload routine when a 
driver is unloaded manually using the Control Panel. The Unload routine is 
responsible for undoing everything that was done by the DriverEntry routine, 
including deallocating any hardware resources belonging to the driver and 
destroying any kernel objects that belong to the driver. 

Shutdown routine When the system goes through a user-initiated 
shutdown, the I/O Manager will call the Shutdown routines registered by any 
currently loaded drivers. The primary purpose of a Shutdown routine is to put' 
the hardware into a known state. System resource cleanup is not as important 
here because the system is about to disappear anyway. 

Bugcheck callback routine If a driver needs to get control in the event of 
a system crash, it can register a Bugcheck callback routine with the Kernel. This 
mechanism gives the driver a chance to put its devices into a known state, and 
perhaps record some state information that will be helpful in debugging the 
crash. 

1/0 System Service Dispatch Routines 

When the I/O Manager gets a request, it uses the function code of the 
request to call one of several Dispatch routines in the driver. The Dispatch routine 
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verifies the request and may have the 1/ 0 Manager send it to the device for 
processing. 

Open and close operations All drivers must provide a Dispatch routine 
that handles Win32 CreateFile requests. Drivers that need to perform cleanup 
operations can supply a routine to handle CloseHandle calls, as well as separate 
Dispatch routines that perform special processing when the last handle on a 
shared device is closed. 

Device operations Depending on the device, a driver may have one or 
more Dispatch routines for handling actual data transfer and control operations. 
The I/O Manager calls these routines in response to Win32 ReadFile, WriteFile, 
and DeviceloControl requests, or in response to an I/O request from a higher
level driver. These routines perform any final verification of the request and then 
pass it to the driver's device management routines for actual processing. 

Data Transfer Routines 

Device operations involve a number of different driver routines, depending 
on the nature and complexity of the device. 

Start 110 routine The I/O Manager calls the driver's Start I/O routine 
when it's time to begin a device operation. This routine allocates any resources 
needed to process the request and sets the device in motion. The I/O Manager 
provides simplified support for half-duplex drivers that only need a single Start 
I/O routine. Drivers of full-duplex devices that have to manage simultaneous 
input and output requests need a somewhat more complex architecture. 

Interrupt Service routine (ISR) The Kernel's interrupt dispatcher calls a 
driver's Interrupt Service routine whenever the driver's device generates an 
interrupt. The ISR is responsible for acknowledging the device, gathering any 
volatile state information needed by other parts of the driver, and asking the I/O 
Manager to execute a DPC routine. 

DPe routine(s) A driver can have one or more DPC routines that clean up 
after a device operation. Depending on the driver, this can involve releasing 
various system resources, reporting errors, handing completed I/O requests back 
to the I/O Manager, and starting the next device operation if one is waiting. 

If you can do everything with a single DPC, the I/O Manager provides a 
simplified mechanism called a DpcForIsr routine. However, some drivers are 
easier to write and maintain if they have separate DPC routines for different kinds 
of processing. For example, drivers that perform full-duplex I/O might have one 
DPC routine that completed input operations, and another DPC routine for 
outputs. At your option, your driver can have any number of these CustomDpc 
routines. 
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Resource Synchronization Callbacks 

As an extension of the I/O Manager, a driver must be ready to run as 
needed at the request of more than one user-mode process. For example, it could 
be asked to send data to one device while waiting for a previous operation to 
complete on the same or another device. Since there's only one copy of the driver 
in memory, it has to handle any contention issues that might result from 
processing overlapping requests. 

The I/O Manager makes it easier for drivers to handle these kinds of 
problems through the use of various synchronization callback routines. When a 
driver needs to access some shared resource, it queues a request for that resource. 
When the resource becomes available, the I/O Manager invokes a driver callback 
routine associated with the request. This has the effect of serializing access to the 
resource and avoiding collisions. There are three types of synchronization 
callback routines a driver might use. 

ControlierControl routine If a peripheral card supports multiple physical 
devices, it's important that only one hardware operation is being performed at a 
time. Before doing anything to the controller's registers, the Start I/O routine 
requests exclusive ownership of the controller. If ownership is granted, the 
ControllerControl callback routine executes; otherwise the ownership request 
waits until the current owner releases the controller. 

AdapterControl routine DMA hardware is another shared resource that 
must be passed around from driver to driver. Before doing any DMA operations, 
the driver requests ownership of the proper DMA hardware. If ownership is 
granted, the AdapterControl callback routine executes; otherwise the ownership 
request waits until the current owner releases the DMA hardware. 

SynchCritSection routines The parts of your driver that service device 
interrupts run at DIRQL while other pieces of driver code execute at or below 
DISPATCH_LEVEL. If these low-IRQL sections of code need to touch any 
resources used by the Interrupt Service routine, they perform the operation inside 
a SynchCritSection routine. Resources in this category include all device control 
registers and any other context or state information shared with the Interrupt 
Service routine. 

Other Driver Routines 

In addition to the basic set of routines described above, your driver may 
contain some of the following additional functions. 

Timer routines Drivers that need to keep track of the passage of time dur
ing a device operation can do so using either an I/O Timer or a CustomTimerDpc 
routine. Chapter 10 describes both these mechanisms. 



58 Chapter 3 Kernel-Mode 1/ 0 Processing 

1/0 completion routines Drivers of higher-level routines may want to 
receive notification when a request they've sent to a lower-level driver has 
completed. This notification will come in the form of a call to the higher-level 
driver's I/O Completion routine. Chapter 15 discusses these routines in more detail. 

Cancel 1/0 routines Any driver that holds on to pending requests for a 
long time must attach a Cancel I/O routine to the request. If the request is 
canceled, the I/O Manager calls the Cancel I/O routine to perform any necessary 
cleanup operations. Chapter 11 describes the operation of these routines. 

3.6 1/0 PROCESSING SEQUENCE 

When a user-mode thread requests an I/O operation, the request goes through 
several processing stages: 

• Request preprocessing by NT and the I/O Manager 

• Driver-specific preprocessing 

• Device activation and interrupt servicing 

• Driver-specific postprocessing 

• Request postprocessing by the I/O Manage 

The following sections describe these stages in more detail. 

Request Preprocessing by NT 

This phase takes care of all the device-independent setup and verification 
required by an I/O request. 

1. The Win32 subsystem converts the request into a native NT system service 
call. This triggers a change to kernel mode which is trapped by NT's system 
service dispatcher. Eventually, the call ends up inside the 1/ 0 Manager. 

2. The I/O Manager allocates a data structure called an I/O Request Packet (IRP). 
Subsequent chapters will have a lot to say about IRPs, but for now, just think 
of them as work orders that describe what the driver is supposed to do. The 
I/O Manager fills in the IRP with various pieces of information including a 
function code indicating what operation the user requested. 

3. The I/O Manager performs a number of validity checks on the arguments 
supplied by the caller. This involves verifying the file handle, checking access 
rights to the file object, making sure the device supports the requested func
tion, and probing any input or output buffer addresses passed by the caller. 

4. If this is a Buffered I/O operation, the I/O Manager allocates a nonpaged 
pool buffer, and for outputs, copies data from user space into the system 
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buffer. If this is a Direct I/O operation, the user's buffer pages are faulted into 
memory and locked down, and the I/O Manager builds a list of the buffer's 
physical pages. 

5. The I/O Manager calls one of the driver's Dispatch routines. 

Request Preprocessing by the Driver 

Each driver provides a dispatch table that controls the device-dependent 
preprocessing of I/O requests. The I/O Manager uses the function code of the 
requested operation as an index into this table and calls the corresponding driver 
Dispatch routine. These routines might perform any of the following operations: 

• Do any device-dependent parameter validation. An example would be 
testing whether the size of the request falls within the range of any limita
tions imposed by the device itself. 

• If the request is such that it can be handled without any device activity, 
the Dispatch routine completes the request and sends it back to the I/O 
Manager. 

• If device operation is required, the Dispatch routine marks the request 
as pending and tells the I/O Manager to send it to the driver's Start I/O 
routine. 

Data Transfer 

Data transfers and other device operations are managed by the driver's Start 
1/ 0 and Interrupt Service routines. 

Start I/O When a Dispatch routine tells the I/O Manager to start a device 
operation, the I/O Manager checks to see if the target device is currently busy. If it 
is, the request is queued to the device for later processing. Otherwise, the I/O 
Manager calls the driver's Start I/O routine. Depending on the device, the driver's 
Start I/O routine performs some or all of the following steps: 

1. It checks the IRP function (read, write, device control, etc.) and performs any 
setup work specific to that type of operation. 

2. If the device is attached to a multiunit controller, the ControllerControl rou
tine asks for exclusive ownership of the controller hardware. 

3. If the operation is a DMA transfer, the AdapterControl routine allocates DMA 
adapter resources. 

4. It uses a SynchCritSection routine to start the device. 

5. It returns control to the I/O Manager and waits for a device interrupt 
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ISR When an interrupt occurs, the Kernel's interrupt dispatcher calls the 
driver's ISR. Depending on the device, the ISR performs some of the following 
steps: 

1. It checks to see if the interrupt was expected. 

2. It stops the device from interrupting. 

3. If this is a programmed I/O operation and more data remains to be trans
ferred, it moves the next chunk of data to or from the device and waits for the 
next interrupt. 

4. If this is a DMA operation and more data remains to be transferred, it queues 
a DPC request to_set up the DMA hardware for the next chunk of data. 

5. If an error occurs or the data transfer is complete, it queues a DPC request to 
perform I/O postprocessing at a lower IRQL. 

6. It dismisses the interrupt. 

Postprocessing by the Driver 

The Kernel's DPC dispatcher eventually calls the driver's DPC routine to 
perform device-specific postprocessing operations, including some or all of the 
following: 

1. If this is a DMA operation and more data remains to be transferred, it sets up 
the DMA hardware for the next piece of data, starts the device, and waits for 
an interrupt. It then returns to the I/O Manager without performing any of 
the following steps. 

2. If there was an error or timeout, the DPC routine might record it in the system 
event log and either retry or abort the 1/ 0 request. 

3. It releases any DMA and controller resources being held by the driver. 

4. Next, the DPC routine puts the size of the transfer and final status informa
tion into the IRP. 

5. Finally, it tells the I/O Manager to complete the current request and start the 
next one, if one is waiting in the queue for this device. 

Postprocessing by the 1/0 Manager 

Once the driver's DPC routine releases an IRP, the I/O Manager performs 
various device-independent cleanup operations. These include the following. 

1. If this was a Buffered I/O output operation, the I/O Manager releases the 
nonpaged pool buffer used during the transfer. 
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2. If this was a Direct I/O operation, it unlocks the user's buffer pages. 

3. It queues a request to the original thread for a kernel-mode asynchronous pro
cedure call (APC). This APC will execute a piece of I/O Manager code in the 
context of the thread that issued the original 110 request. 

4. When the kernel-mode APC runs, it copies status and transfer-size informa
tion back into user space. 

5. If this was a buffered input, the APC routine copies the contents of the non
paged pool buffer into the caller's user-space buffer. Then it frees the system 
buffer. 

6. If the original request was for an overlapped operation, the APC routine sets 
the associated Event object into the signaled state. 

7. If the original request included a completion routine (for example, from a 
ReadFileEx or WriteFileEx call), the kernel-mode APC requests a user-mode 
APC to execute the completion routine. 

3.7 SUMMARY 

That completes our quick tour of NT and the I/O subsystem. At this point, you 
should have a good sense of how various driver routines interact with the I/O 
Manager. Later chapters will explain how to apply this understanding. 

Keeping track of all the details involved in I/O processing obviously 
requires a lot of bookkeeping. In the next chapter, we'll take a look at the data 
structures used by the I/O Manager and your driver. 
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Drivers and, 
Kernel-Mode 
Objects 

Data structures are the lifeblood of most operat
ing systems, and Windows NT is no exception. What's interesting about NT is its 
use of object technology to manage all this data. After a quick look at NT's 
approach to objects, this chapter introduces the major structures involved in pro
cessing I/O requests. Later chapters will introduce additional data objects as they 
become necessary. 

4.1 DATA OBJECTS AND WINDOWS NT 
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Just in case you've been living on Mars for the last decade, object-oriented pro
gramming (OOP) is one of the currently fashionable software design methodolo
gies. In this scheme, data structures are viewed as black boxes (objects) whose 
contents are invisible, and any interaction with these data structures occurs 
through a limited set of access functions (methods). The goal is to improve the reli
ability and robustness of the resulting software by hiding implementation details 
from the users of an object, and by reducing unplanned dependencies between 
software modules. 

Windows NT and OOP 

Using a strict definition of OOP, the design of NT isn't truly object-ori
ented. Rather, you should think of it as being object-based, because it manages 
its internal data structures in an objectlike way. In particular, the Kernel and the 
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various Executive modules each define their own sets of data structures, along 
with a corresponding group of access functions. All other modules are expected 
to use those access functions to manipulate the contents of the structure. The 
data structures themselves are supposed to be opaque outside the module that 
defines them. 

That's the idea anyway. When it comes to drivers, things get a little fuzzy 
since a driver is essentially a trusted add-on component of the I/O Manager. 
Because of this special status, a driver is allowed to touch some object fields 
directly but must use access functions for other operations on the object. So, I/O 
Manager objects available to a driver are partially opaque. Objects defined by 
other NT components are entirely opaque. 

NT Objects and Win32 Objects 

If you compare internal NT objects with the Win32 user-mode objects, 
you'll see a couple of differences. First, with a couple of exceptions, most of 
these NT objects have no externally visible names. This is because these objects 
aren't being exported to user mode and don't need to be managed by the Object 
Manager. 

Second, you don't use handles to access internal NT objects. Instead, you use 
a pointer to the object body itself. In some cases, NT will create the object for you 
and give you the pointer. In other cases, you'll need to allocate and initialize stor
age for the object. 

4.2 I/O REQUEST PACKETS (IRPS) 

Almost all I/O is packet-driven under Windows NT. Each separate I/O transac
tion is described by a work order that tells the driver what to do and tracks the 
progress of the request through the I/O subsystem. These work orders take the 
form of a data structure called an I/O Request Packet (IRP), and this is how they're 
used. 

1. The I/O Manager allocates an IRP from nonpaged system memory in 
response to an 1/ 0 request. Based on the 1/ 0 function specified by the user, it 
passes the IRP to the appropriate driver Dispatch routine. 

2. The Dispatch routine checks the parameters of the request, and if they're 
valid, passes the IRP to the driver's Start I/O routine. 

3. The Start 1/ 0 routine uses the contents of the IRP to set up a device operation. 

4. When the operation is complete, the driver's DpcForIsr routine stores a final 
status code in the IRP and sends it back to the I/O Manager. 

5. The I/O Manager uses the information in the IRP to complete the request and 
send the user the final status. 
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This describes what happens when requests are being sent to a lowest-level 
driver. If the initial request is sent to a higher-level driver, things get a little more 
complex, and a single IRP may travel through several layers of drivers before the 
request is finished. Higher-level drivers can also create additional IRPs and send 
them to other drivers. 

Layout of an IRP 

An IRP is a variable-sized structure allocated from nonpaged pool. As you 
can see from Figure 4.1, an IRP has two sections: 

• A header area containing general bookkeeping information 

• One or more parameter blocks called I/O stack locations 

IRP header This area of the IRP holds various pieces of information about 
the overall I/O request. Some parts of the header are directly accessible to your 
driver, while other pieces are the exclusive property of the I/O Manager. Table 4.1 
list the fields in the header that your driver is allowed to touch. 

The IoStatus member holds the final status of the II 0 operation. When 
your driver is ready to complete the processing of an IRP, it sets the Status field 
of this block to a STATUS_XXX value. At the same time, your driver should set 
the Information field of the status block either to 0 (if there's an error) or to a 
function-co de-specific value (for example, the number of bytes transferred). 

If-----
Header 

~f-----------a 
Stack 

L~ .. 
Copyright© 1994 by Cydonix Corporation. 940033a.vsd 

10 STACK LOCATION 

MajorFunctionj 
MinorFunctionj 
union { 

struct { } Readj 
struct { } Writej 
struct {} DeviceloControlj 

} Parametersj 

Figure 4.1 The structure of an IRP 
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Table 4.1 Externally visible fields in an IRP header 

IRP header fields 

Field 

10 _STATUS_BLOCK 10Status 
PVOID Associatedlrp.SystemBuffer 

PMDL MdlAddress 

PYOID UserBuffer 
BOOLEAN Cancel 

Description 

Contains status of the I/O request 
Points to a system space buffer if 

device performs Buffered 1/ 0 
Points to a Memory Descriptor List 

for a user-space buffer if device 
performs Direct 1/ 0 

User-space address of I/O buffer 
Indicates the IRP has been canceled 
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The AssociatedIrp.SystemBuffer, MdlAddress, and UserBuffer fields play 
various roles in managing the driver's access to data buffers. Later chapters will 
explain how to use these fields when your driver performs either Buffered or 
Direct I/O. 

1/0 stack locations The main purpose of an I/O stack location is to hold 
the function code and parameters for an I/O request. By examining the Major
Function field of the stack location, a driver can decide what operation to perform 
and how to interpret the Parameters union. Table 4.2 describes some of the com
monly used members of an I/O stack location. 

For requests sent directly to a lowest-level driver, the corresponding IRP 
will have only one I/O stack location. For requests sent to a higher-level driver, 
the I/O Manager creates an IRP with separate I/O stack locations for each driver 
layer. Every driver in the hierarchy is allowed to touch only its own stack loca
tion, and if it's not at the bottom of the pile, to set up the stack location for the 
next driver beneath it. 

When a driver passes an IRP to a lower-level driver, the I/O Manager auto
matically "pushes" the I/O stack-pointer so that it points at the I/O stack location 
belonging to the lower driver. When the lower driver releases the IRP, the 1/ 0 
stack-pointer is "popped" so that it again points to the stack location of the higher 
driver. Chapter 15 will explain how to work with this mechanism. 

Manipulating IRPs 

IRP access functions fall into two general categories: Those that operate on 
the IRP as a whole, and those that deal specifically with the IRP's I/O stack loca
tions. The following subsections describe each of groups. 

IRPs as a whole The I/O Manager exports a variety of functions that 
work with IRPs. Table 4.3 lists the most common ones. Later chapters will explain 
how to use them. 
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Table 4.2 Selected contents of an I RP stack location 

Field 

UCHAR MajorFunction 
UCHAR MinorFunction 
union Parameters 

stnict Read 

struct Write 

Contents 

IRP _MLXXX function specifying the operation 
Used by file system and SCSI drivers 
Typed union keyed to MajorFunction code 
Parameters for IRP _MLREAD 
• ULONG Length 
• ULONGKey 
• LARGE_INTEGER ByteOffset 
Parameters for IRP _MLWRITE 
• ULONG Length 
• ULONGKey 
• LARGE_INTEGER ByteOffset 

struct DeviceIoControl Parameters for IRP _MLDEVICE_CONTROL 
and IRP _MLINTERNAL_DEVICE_CONTROL 

• ULONG OutputBufferLength 
• ULONG InputBufferLength 
• ULONG IoControlCode 
• PYOID Type3InputBuffer 

struct Others Available to driver 

PDEVICE_OBJECT DeviceObject 
PFILE_OBJECT FileObject 

• PYOID Argumentl-Argument4 
Target device for this 1/ 0 request 
File object for this request, if any 

Note: See NTDDK.H for additional members of the Parameters union. 

Table 4.3 Functions that work with the whole IRP 

IRP functions 

Function 

IoStartPacket 
IoCompleteRequest 
IoStartNextPacket 
IoCallDriver* 
IoAllocateIrp* 
IoFreeIrp* 

Description 

Sends IRP to Start 1/ 0 routine 
Indicates that all processing is done 
Sends next IRP to Start 1/ 0 
Sends IRP to another driver 
Requests additional IRPs 
Releases driver-allocated IRPs 

*These functions are used primarily by layered drivers. 

Called by ... 

Dispatch 
DpcForIsr 
DpcForIsr 
Dispatch 
Dispatch 
1/ 0 Completion 
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Table 4.4 IO_STACK_LOCATION access-functions 

IO_STACK_LOCATION access functions 

Function Description Called by ... 

IoGetCurrentIrpStackLocation 
IoMarklrpPending 

IoGetNextIrpStackLocation* 

IoSetNextIrpStackLocation* 

IoSetCompletionRoutine* 

Gets pointer to caller's stack slot 
Marks caller's stack slot as needing 

further processing 
Gets pointer to stack slot for next 

lower driver 
Pushes the I/O stack pointer one 

location 
Attaches I/O Completion routine 

to the next lower driver's I/O 
stack slot 

*These functions are used primarily by layered drivers. 

(Various) 
Dispatch 

Dispatch 

Dispatch 

Dispatch 

IRP stack locations The I/O Manager also provides several functions 
that drivers can use to access an IRP's stack locations. These functions are listed in 
Table 4.4 

4.3 DRIVER OBJECTS 

DriverEntry is the only driver routine with an exported name. When the I/O 
Manager needs to locate other driver functions, it uses the Driver object associ
ated with a specific device. This object is basically a catalog that contains pointers 
to various driver functions. Here's how it works. 

1. The I/O Manager creates a Driver object whenever it loads a driver. If the 
driver fails during initialization, the I/O Manager deletes the object. 

2. During initialization, the DriverEntry routine loads pointers to other driver 
functions into the Driver object. 

3. When an IRP is sent to a specific device, the I/ 0 Manager uses the associated 
Driver object to find the right Dispatch routine. 

4. If a request involves an actual device operation, the I/O Manager uses the 
Driver object to locate the driver's Start I/O routine. 

5. If the driver is unloaded, the I/ 0 Manager uses the Driver object to find an 
Unload routine. When the Unload routine is done, the I/O Manager deletes 
the Driver object. 
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DriverStartlo 

DriverUnload 

MajorFunction[ ] 

Copyright © 1994 by Cydonix Corporation. 940034a. vsd 

Figure 4.2 Structure of a Driver object 

Layout of a Driver Object 

There is a unique Driver object for each driver currently loaded in the sys
tem. Figure 4.2 illustrates the structure of a Driver object. As you can see, the 
Driver object also contains a pointer to a linked list of devices serviced by this 
driver. A driver's Unload routine can use this list to locate any devices it needs to 
delete. 

Unlike other objects, there are no access functions for modifying Driver 
objects. Instead, the DriverEntry routine sets various fields directly. Table 4.5 lists 
the fields you're allowed to touch. 

Table 4.5 Externally visible fields of a Driver object 

Driver object fields 

Field 

PDRIVER_STARTIO DriverStartIo 
PDRIVER_UNLOAD DriverUnload 
PDRIVER_DISPATCH MajorFunction[ ] 

PDEVICE_ OBJECT DeviceObject 

Description 

Address of driver's Start I/O routine 
Address of driver's Unload routine 
Table of driver's Dispatch routines, 

indexed by I/O operation code 
Linked list of Device objects created by 

this driver 
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4.4 DEVICE OBJECTS AND DEVICE EXTENSIONS 

Both the I/O Manager and the driver need to know what's going on with an I/O 
device at all times. Device objects make this possible by keeping information 
about a device's characteristics and state. There is one Device object for each vir
tual, logical, and physical device on the system. Here's how they're used. 

1. The DriverEntry routine creates a Device object for each of its devices. 

2. The I/O Manager uses a pointer in the Device object to locate the correspond
ing Driver object. There it can find driver routines to operate on I/O requests. 
It also maintains a queue of current and pending IRPs attached to the Device 
object. 

3. Various driver routines use the Device object to locate the corresponding 
Device Extension. As an I/O request is processed, the driver uses the Exten
sion to store any device-specific state information. 

4. The driver's Unload routine deletes the Device object when the driver is 
unloaded. -

Physical Device drivers aren't the only ones who use these objects. Chapter 
15 describes the way higher-level drivers use Device objects. 

Layout of a Device Object 

Figure 4.3 illustrates the structure of a Device object and its relation to other 
structures. 

Driller 
Object 

Flags 

DriverObject 

Currentlrp 

DeviceExtension 

Device 
Queue 
Object 

Copyright © 1994 by Cydonix Corporation. 940035a.vsd 

Figure 4.3 Structure of a Device object 

Current 
IRP 
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Table 4.6 Externally visible fields of a Device object 

Device object fields 

Field 

PYOID DeviceExtension 
PDRIVER_OBJECT DriverObject 
ULONGFlags 

PDEVICE_OBJECT NextDevice 

CCHAR StackSize 

ULONG AlignmentRequirement 

Description 

Points to Device Extension structure 
Points to Driver object for this device 
Specifies buffering strategy for device 
• DO_BUFFERED_IO 
• DO_DIRECT_IO 
Points to next device belonging to this 

driver 
Minimum number of I/O stack locations 

needed by IRPs sent to this device 
Memory alignment required for buffers 

Although the Device object contains a lot of data, much of it is the exclusive 
property of the I/O Manager. Your driver should limit its access to only those 
fields listed in Table 4.6. 

Manipulating Device Objects 

Table 4.7 lists many of the I/O Manager functions that operate on Device 
objects. The I/O Manager also passes a Device object pointer as an argument to 
most of the routines in your driver. 

Table 4.7 Access functions for a Device object 

Device object access functions 

Function 

IoCreateDevice 
IoCreateSymbolicLink 
IoAttachDevice* 
IoAttachDeviceByPointer* 
IoGetDeviceObjectPointer* 
IoCallDriver* 
IoDetachDevice* 
IoDeleteSymbolicLink 

IoDeleteDevice 

Description 

Creates a Device object 
Makes Device object visible to Win32 
Attaches a filter to a Device object 
Attaches a filter to a Device object 
Layers one driver on top of another 
Sends request to another driver 
Disconnects from a lower driver 
Removes Device object from the Win32 

namespace 
Removes Device object from system 

*These functions are used primarily by layered drivers. 

Called by ... 

DriverEntry 
DriverEntry 
DriverEntry 
DriverEntry 
DriverEntry 
Dispatch 
Unload 
Unload 

Unload 
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Device Extensions 

Connected to the Device object is another important data structure, the 
Device Extension. The Extension is simply a block of nonpaged pool that the I/O 
Manager automatically attaches to any Device object you create. You choose both 
the size and the contents of the Device Extension. Typically, you use it to hold any 
information associated with a particular device. 

Drivers have to be fully reentrant, so global or static variables are a very bad 
idea. Any information that you might be tempted to keep in global or static stor
age probably belongs in the Device Extension. Other things you might want to 
store in the Extension include 

• A back pointer to the Device object 

• Any device state or driver context information 

• A pointer to an Interrupt object and an interrupt-expected flag 

• A pointer to a Controller object 

• A pointer to an Adapter object and a count of mapping registers 

Since the Device Extension is driver-specific, you'll need to define its struc
ture in one of your driver's header files. Although the Extension's exact contents 
will depend on what your driver does, its general layout will look something 
like this: 

typedef struct _DEVICE_EXTENSION { 
PDEVICE_OBJECT DeviceObject; 

II Other driver-specific declarations 

DEVICE_EXTENSION, *PDEVICE_EXTENSION; 

In later chapters of this book, you'll see a great many uses for the Device 
Extension. 

4.5 CONTROLLER OBJECTS AND CONTROLLER EXTENSIONS 

Some peripheral adapters manage more than one physical device using the same 
set of control registers. The floppy disk controller is one example of this architec
ture. This kind of hardware causes the following synchronization problem: If the 
driver tries to perform simultaneous operations on more than one of the con
nected devices without first synchronizing its access to the shared register space, 
the control registers may get trashed. To help with this problem, the 1/ 0 Manager 
provides Controller objects. 

The Controller object is a kind of token that can be owned by only one device 
at a time. Before accessing any device registers, the driver asks that ownership of 
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the Controller object be given to a specific device. If the hardware is free, ownership 
is granted. If not, the device's request is put on hold until the current owner releases 
the hardware. By passing the Controller object around this way, the I/O Manager 
guarantees that multiple devices will access the hardware in an orderly manner. 
Here's a little more detail about how Controller objects are used. 

1. The DriverEntry routine creates the Controller object and usually stores its 
address in a field of each device's Device Extension. 

2. Before it starts a device operation, the Start I/ 0 routine asks for exclusive 
ownership of the Controller object on behalf of a specific device. 

3. When the Controller object becomes available, the I/ 0 Manager grants own
ership and calls the driver's ControllerControl routine. This routine sets up 
the device's registers and starts the I/O operation. As long as this device 
owns the Controller object, any further requests for ownership will block at 
step 2 until the object is released. 

4. When the device operation is finished, the driver's DpcForIsr routine releases 
the Controller object, making it available for use by other pending requests. 

5. The driver's Unload routine deletes the Controller object when the driver is 
unloaded. 

Obviously, not all drivers need a Controller object. If your interface card 
supports only one physical or virtual device, or if multiple devices on the same 
card don't share any control registers then you can ignore Controller objects. 

Layout of a Controller Object 

Figure 4.4 shows the relationship of a Controller object to other system data 
structures. 

The only externally visible field in a Controller object is the PYOID Control
lerExtension field, which contains a pointer to the extension block. 

Manipulating Controller Objects 

The I/O Manager exports four functions that operate on Controller objects. 
These functions are listed in Table 4.8. 

Controller Extensions 

Like Device objects, Controller objects contain a pointer to an Extension 
structure that you can use to hold any controller-specific data. The Extension is 
also a place to store any information that's global to all the devices attached to a 
controller. Finally, if the controller (rather than individual devices) is the source of 
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interrupts, it makes sense to store pointers to Interrupt and Adapter objects in the 
Controller Extension. 

Since the Controller Extension is driver-specific, you'll need to define its 
structure in one of your driver's header files. Although the Extension's exact con
tents will depend on what your driver does, its general layout will look some
thing like this: 

typedef struct _CONTROLLER_EXTENSION { 
PCONTROLLER_OBJECT ControllerObjecti 

II Other driver-specific declarations 

} CONTROLLER_EXTENSION, *PCONTROLLER_EXTENSIONi 

Table 4.8 Access functions for a Controller object 

Controller object access functions 

Function 

IoCreateController 
IoAllocateController 
IoFreeController 
IoDeleteController 

Description 

Creates a Controller object 
Requests exclusive ownership of controller 
Releases ownership of controller 
Removes Controller object from the system 

Called by ... 

DriverEntry 
Start I/O 
DpcForIsr 
Unload 
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4.6 ADAPTER OBJECTS 

Just as multiple devices on the same controller need to coordinate their hardware 
access, so devices that perform DMA need an orderly way to share system DMA 
resources. The I/O Manager uses Adapter objects to prevent arguments over 
DMA hardware. There is one Adapter object for each DMA data transfer channel 
on the system. 

Like a Controller object, an Adapter object can be owned by only one device 
at a time. Before starting a DMA transfer, the Start I/O routine asks for ownership 
of the Adapter object. If the hardware is free, ownership is granted. If not, the 
device's request is put on hold until the current owner releases the hardware. 
Obviously, if your device supports only programmed I/O, you don't need to 
bother with Adapter objects. Here's how Adapter objects work. 

1. The HAL creates Adapter objects for any DMA data channels detected at 
bootstrap time. 

2. The DriverEntry routine locates the Adapter object for its device and stores a 
pointer in the Device or Controller Extension. Adapter objects for unrecog
nized DMA hardware may be created on the fly at this point. 

3. The Start I/O routine requests ownership of the Adapter object on behalf of a 
specific device. 

4. When ownership is granted, the I/O Manager calls the driver's Adapter 
Control routine. This routine then uses the Adapter object to set up a DMA 
transfer. 

5. The driver's DpcForIsr routine may use the Adapter object to perform addi
tional operations in the case of a split transfer. When a transfer is finished, 
DpcForIsr releases the Adapter object. 

Another important function of the Adapter object is to manage some things 
called mapping registers. The HAL uses these registers to map the scattered physi
cal pages of a user's buffer onto the contiguous range of addresses required by 
most DMA hardware. If that statement doesn't make any sense to you, don't 
worry. We'll be looking at the mechanics of DMA transfers in much greater detail 
in Chapter 12. 

Layout of an Adapter Object 

Figure 4.5 illustrates the relationship of Adapter objects to other structures. 
As you can see from the diagram, the Adapter object is completely opaque and 
has no externally visible fields. If you're working with DMA devices, you should 
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Figure 4.5 Structure of an Adapter object 

store the pointer to your Adapter object, as well as the number of mapping regis
ters it supports, either in a Device or Controller Extension 

Manipulating Adapter Objects 

Both the HAL and the II 0 Manager export functions that you can use to 
manipulate Adapter objects. Table 4.9 lists the ones you're most likely to encounter. 

Table 4.9 Access functions for an Adapter object 

Adapter object access functions 

Function Description Called by ... 

HalGetAdapter Gets a pointer to an DriverEntry 
Adapter object 

IoAllocateAdapterChannel Requests exclusive ownership StartIo (Controller 
of DMA hardware Control) 

IoMapTransfer Sets up DMA hardware for a Adapter Control / 
data transfer DpcForIsr 

IoFlushAdapterBuffers Flushes data after partial DpcForIsr 
transfers 

IoFreeMapRegisters Releases map registers DpcForlsr 
IoFreeAdapterChannel Releases Adapter object DpcForIsr 
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4.7 INTERRUPT OBJECTS 

That brings us to the last of the NT objects we'll be looking at in this chapter, the 
Interrupt object. Interrupt objects simply give the Kernel's interrupt dispatcher a 
way to find the right service routine when an interrupt occurs. Here's how Inter
rupt objects are used. 

1. The DriverEntry routine creates an Interrupt object for each interrupt vector 
supported by the device or the Controller 

2. When an interrupt occurs, the Kernel's interrupt dispatcher uses the Interrupt 
object to locate the Interrupt Service routine 

3. The Unload routine deletes the Interrupt object after disabling interrupts 
from the device. 

Other than creating and deleting them, your driver has very little direct 
interaction with Interrupt objects. You will, however, need to store a pointer to the 
Interrupt object in a convenient place like the Device or Controller Extension. 

Layout of an Interrupt Object 

Figure 4.6 illustrates the structure of an Interrupt object. Like Adapter 
objects, they are completely opaque and have no externally visible fields. 

InterruptPtr 

Copyright © 1994 by Cydonix Corporation. 940038a.vsd 

Figure 4.6 Structure of an Interrupt object 
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Table 4.10 Access functions for an Interrupt object 

Interrupt object access functions 

Function 

HalGetInterruptVector 

IoConnectInterrupt 

KeSynchronizeExecution 

IoDisconnectInterrupt 

Description 

Converts bus-relative interrupt 
vector to systemwide value 

Associates Interrupt Service routine 
with a system interrupt vector 

Synchronizes driver routines that 
run at different IRQLs 

Removes Interrupt object 

Manipulating Interrupt Objects 
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Called by ... 

DriverEntry 

DriverEntry 

(Various) 

Unload 

Several system components export functions that work with Interrupt ob
jects. Table 4.10 lists the most common ones. 

4.8 SUMMARY 

Although it may seem as if there are a lot of objects involved in I/O processing, 
they're all necessary and important. If you're feeling a little overwhelmed with all 
this background material, you can relax. The next chapter will show you how to 
put this information to work as we start writing some actual driver code. 



C HAP T E R 5 

General 
Development 
Issues 

Writing kernel-mode code is not the same as 
writing an application program. Because your driver is a trusted component of 
the system, you have to be much more careful about how you behave. This chap
ter is a short manual of good etiquette for driver writers. 

5.1 DRIVER DESIGN STRATEGIES 
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Like most other kinds of software, drivers benefit from an organized approach to 
development. This section gives some guidelines that may help shorten develop
menttime. 

Use Formal Design Methods 

There's a certain cowboy mentality that pervades the driver-writing world. 
For some reason, it's easy to think that you can just sit down, scribble a flowchart 
on an old candy wrapper, and just start coding. Unfortunately, when you're deal
ing with a full-duplex driver for some asynchronous communication device, such 
ad hoc methods just don't work. So many things are going on that it becomes 
impossible to verify the flow of control. 

A better approach is to use techniques that have proven helpful in other 
areas of real-time design. Some suggestions follow. 
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• Data flow diagrams can help you break your driver into discrete func
tional units. These diagrams make it easier to visualize how the func
tional units in your driver relate to each other, and how they transform 
input data into output data. 

• State-machine models are another good way to describe the flow of con
trol in a driver - especially one that manages an elaborate hardware or 
software protocol. In the process of verifying the state machine, you can 
also ferret out synchronization issues within the driver. 

• An analysis of expected data repetition rates or mandatory input-to-out
put response will give you a set of quantitative timing requirements. 
These are important when it comes time to tune the driver. 

• Another useful tool is an explicit list of external events and the driver 
actions these events should trigger. This list ought to include both hard
ware events from the device and 1/ 0 requests from users. 

Using these techniques will help you to separate your driver into well
defined functional units, which makes the driver easier to develop. In some 
cases, this might even mean breaking a single driver into a pair of port and class 
drivers that handle hardware-dependent and hardware-independent functions. 
In any event, the time you spend analyzing and designing your driver at the 
start of the project will more than pay for itself in reduced debugging and 
maintenance. 

Use Incremental Development 

Once you've completed your initial analysis and design, it's time to start the 
actual development. Following the steps below can reduce your debugging time 
by helping you to detect problems while they're still easy to find. 

1. Decide which kinds of kernel-mode objects your driver will need. 

2. Decide on any additional context or state information your driver will need, 
and decide where you're going to store it. 

3. Write the DriverEntry and Unload routines. To test the driver at this point, see 
if you can load and unload it using the Control Panel. 

4. Add code that finds and allocates the driver's hardware, as well as code to 
deallocate the hardware when the driver unloads. Again, the test is just 
whether you can load and unload the driver using the Control Panel. You can 
also use the Registry editor (REGEDT32) to see whether your driver is allocat
ing and deallocating its resources properly. 

5. Add driver Dispatch routines that process IRP _MLCREATE, 
IRP _MLCLOSE, and any other operations that don't require device access. 
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You can test the driver with a simple Win32 program that calls CreateFile and 
CloseHandle. 

6. Add Dispatch routines that process any other IRP _MLXXX function codes. 
Also, add the Start I/O logic but complete each I/O request without starting 
the device. Test these new code paths with a simple Win32 program that 
makes ReadFile and WriteFile calls, as appropriate. 

7. Finally, implement the real Start I/O logic, the Interrupt Service routine, and 
the DPC routine. Now you can test the driver using live data. 

Another tip: If you're unsure about the exact behavior of the hardware, add 
a DeviceloControl function that gives you direct access to the device registers. 
This will allow you to find out how the device really works by writing a few 
simple Win32 programs. Just remember to disable this function when you ship 
the final version of the driver. 

Use the Sample Drivers 

The Windows NT device driver kit (DDK) contains a huge body of sample 
code in the \DDK\SRC directory tree. There are many ways you can use all this 
code to make driver development easier. At the very least, you should read it for 
hints, clues, and comments. You might also want to be more direct about cutting 
and pasting helpful chunks of code (a procedure encouraged by Microsoft). The 
usual warning: If you do decide to cut and paste, make sure you thoroughly 
understand the code you're grabbing. 

5.2 CODING CONVENTIONS AND TECHNIQUES 

Writing a trusted kernel-mode component is not the same as writing an applica
tion program. This section presents some basic conventions and techniques that 
will make it easier to code in this environment. 

General Recommendations 

First of all, here are some general recommendations for things you should 
keep in mind when you're writing a driver: 

• Avoid the use of assembly language in your driver. It makes the code 
hard to read, nonportable, and difficult to maintain. In those rare situa
tions where it's unavoidable, isolate the code in its own module. What
ever you do, don't go sprinkling inline assembly throughout your driver. 

• If you have any platform-specific code, either put it in its own module, or 
at the very least bracket it with #ifdef/#endif statements. 
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• Don't link your driver with the standard C runtime library. Some of those 
routines may hold state or context information in ways that are not driver 
safe. Instead use the RtlXxx support routines supplied for drivers. 

• Commenting code is a religious issue. Some people swear by it; others 
think that out-of-date comments are worse than no comments at all.1 

• Manage your driver project with some kind of source-code control pro
gram. This is especially important for larger drivers, or drivers being 
developed by several people. 

Naming Conventions 

It's a good idea to adopt some standard naming convention for the routines 
in your driver. This makes it easier to debug and test the driver during its initial 
development. It also simplifies maintenance of the driver should you have to 
reacquaint yourself with the code after being away from it for a year. Microsoft 
recommends the following: 

• Add a driver-specific prefix to each of your routines. Choose one prefix 
for standard driver routines and another, shorter prefix for any internal 
functions. 

• Give the routine itself a name that describes what it does. 

For example, the mouse class driver supplied with the NT DDK adds the prefix 
MouseClass to all its standard routines which gives names like MouseClassStartIo 
and MouseOassUnload. The same class driver uses the prefix Mou for any internal 
routines like MouConfiguration and MouConnectToPort. 

Regardless of whether you follow these conventions or come up with some 
of your own, it's important that you establish some consistent way of naming 
your driver routines. When you come back to a driver that you haven't looked at 
for six months, uniform naming will make it easier to figure out what you 
originally had in mind. 

Header Files 

NTDDK.H defines all the data types, structures, and constants used by 
base-level kernel-mode drivers. SCSI, network, and video drivers use other 
header files. Be sure you've included the appropriate headers in your driver. 

You can use private header files to hide various hardware and platform 
dependencies. For example on 80x86 systems, you can address each byte in I/O 
space, but on other architectures, I/O registers may need to be aligned on 4-byte 

1 Personally, I attend services at the Church of the Detailed Comment. 
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or 8-byte boundaries. Hiding these differences in a header file means you can 
move your driver to a new platform just by redefining some symbols and 
rebuilding the driver. 

Even if your driver doesn't face any of these issues, writing a few register 
access macros can make the driver itself easier to read. The following code 
fragment is an example of some hardware beautification macros for a parallel port 
device. This example assumes that some initialization code in the driver has put 
the address of the first device register in the PortBase field of the Device 
Extension. 

1/ 
II Define device registers as relative offsets 
II 
#define PAR_DATA 0 
#define PAR_STATUS 1 
#define PAR_CONTROL 2 

1/ 
II Define access macros for registers. Each macro takes 
II a pointer to a Device Extension as an argument 
1/ 
#define ParWriteData( pDevExt, bData ) 
(WRITE_PORT_UCHAR( 

pDevExt->PortBase + PAR_DATA, bData )) 

#define ParReadStatus( pDevExt ) 
(READ_PORT_UCHAR( 

pDevExt->PortBase + PAR_STATUS )) 

\ 
\ 

\ 
\ 

#define ParWriteControl( pDevExt, bData \ 
(WRITE_PORT_UCHAR( \ 

pDevExt->PortBase + PAR_CONTROL, bData )) 

Status Return Values 

The kernel-mode portions of NT operating system use 32-bit status values to 
describe the outcome of any particular operation. The data type of these codes is 
NTSTATUS. There are three situations in which you'll need to use these status 
codes: 

• When you call one of the internal NT functions, it will communicate its 
displeasure at something you're trying to do by returning an NTSTATUS 
value 

• When NT calls some driver-specific callback routines, the routines often 
have to return an NTSTATUS value to the system. 
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• When you complete the processing of an I/O request, you need to mark it 
with an NTSTATUS value. This value will ultimately be mapped onto a 
Win32 ERROR_XXX code.2 

NTSTATUS.H defines symbolic names for a large number of NTSTATUS 
values. These names all have the form STATUS_XXX, where XXX describes the 
actual status message. STATUS_SUCCESS, STATUS_NAME_EXISTS, and 
STATUS_INSUFFICIENT_RESOURCES are all examples of these names. 

When you call a system routine that returns an NTSTATUS value, you can 
either check for specific values, or you can use the NT_SUCCESS macro to test for 
general success or failure. The following code fragment illustrates this technique. 

NTSTATUS status; 

status = IoCreateDevice( ... ); 
if( !NT_SUCCESS( status )) { 
II clean up and exit with failure 

Always, always, always check the return values you get from any system 
routines you call. If you just assume that the call succeeded, your driver may 
damage the system somewhere down the line. If you're lucky, this kind of thing 
will crash the system and draw attention to itself; if not, it may just produce 
sporadic, hard-to-find errors. 

NT Driver Support Routines 

The I/O Manager and other kernel-mode components of NT export a large 
number of support functions that your driver can call. The reference section of the 
NT DDK documentation describes these functions, and you'll see plenty of 
examples of their use throughout this book. For the moment, it's enough to point 
out that these support routines fall into categories based on the NT module that 
exports them. Table 5.1 gives a brief overview of the kinds of support that each 
NT module provides. 

The ZwXXx functions need a little explanation. These are actually an internal 
calling interface for ap the NtXxx user-mode system services. The difference 
between the user- and kernel-mode interfaces is that the ZwXxx functions don't 
perform any argument checking. Although there are a large number of these 

2 NTSTATUS codes and Win32 error codes are not the same thing. The knowledge base that comes 
with the NT DDK has an article that shows the mapping between NTSTATUS values and their cor
responding Wm32 ERROR_XXX codes. It's worth taking a look at this article because the mappings 
from STATUS_XXX to ERROR_XXX codes don't always make a lot of sense. 
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Table 5.1 Categories of support routines available to drivers 

NT driver support routines 

Category 

Executive 

HAL 

I/O Manager 
Kernel 

Memory Manager 

Object Manager 
Process Manager 
Runtime library 

Security Monitor 

(All) 

Supports ... 

Memory allocation 
Interlocked queues 
Zones 
Lookaside lists 
System worker threads 
Device register access 
Bus access 
General driver support 
Synchronization 
DPC 
Virtual-to-physical mapping 
Memory allocation 
Handle management 
System thread management 
String manipulation 
Large integer arithmetic 
Registry access 
Security functions 
Time and date functions 
Queue and list support 
Privilege checking 
Security descriptor functions 
Internal system services 

Function names 

ExXxxO 

HalXxxO 

IoXxxO 
KeXxxO 

MmXxxO 

ObXxxO 
PsXxxO 
RtlXxxO (mostly) 

SeXxxO 

ZwXxxO 

functions, the NT DDK reference material describes only a few of them. Microsoft 
may eventually tell us about the rest, but for now, limit yourself to using the ones 
that show up in the documentation. 

One final point. To make life easier for driver writers, the I/O Manager 
provides several convenience functions that are really just wrappers around one 
or more lower-level calls to other NT modules. These wrappers usually offer a 
simpler interface than their low-level counterparts, and you should use them 
whenever you can. 

Discarding Initialization Routines 

Some compilers support the option of declaring certain functions as 
discardable. Functions in this category will disappear from memory after your 
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driver has finished loading, making your driver smaller. If your development 
environment offers this feature, you should use it. 

Good candidates for discardable functions are DriverEntry and any 
subroutines called only by DriverEntry. The following code fragment shows how 
to take advantage of discardable code. 

#ifdef ALLOC_PRAGMA 
#pragma alloc_text( init, DriverEntry ) 
#pragma alloc_text( init, XxStuffCalledByDriverEntry 
#pragma alloc_text( init, XxAlsoCalledByDriverEntry ) 

#endif 

The alloc_text pragma must appear after the function name is declared, but 
before the function itself is defined - so remember to prototype the function at 
the top of the code module (or in a suitable header file). Also, functions referenced 
in the pragma statement must be defined in the same compilation unit as the 
pragma. If you don't follow these rules, things break. 

Controlling Driver Paging 

Nonpaged system memory is a precious resource. You can further reduce 
the burden your driver puts on nonpaged memory by putting appropriate 
routines in paged memory. Any function that executes only at PASSIVE_LEVEL 
IRQL can be paged. This includes Reinitialize routines, Unload and Shutdown 
routines, Dispatch routines, thread functions, and any helper functions running 
exclusively at PASSIVE_LEVEL IRQL. Once again, it's the alloc_text pragma that 
performs this little miracle. Here's an example: 

#ifdef ALLOC_PRAGMA 
#pragma alloc_text( page, XxUnload 
#pragma alloc_text( page, XxShutdown 
#pragma alloc_text( page, XxDispatchRead 
#pragma alloc_text( page, XxDispatchHelper 

#endif 

Finally, there's another trick you can play if you have a seldom-used device 
driver and you wanUo get it out of the way. By calling the MmPageEntireDriver 
function, you can override a driver's declared memory management attributes and 
make the whole thing temporarily paged. Call this function at the end of the 
DriverEntry routine and from the Dispatch routine for IRP _MLCLOSE when there 
are no more open handles to any of your devices. Call MmResetDriverPaging from 
the IRP _MLCREATE Dispatch routine to make the driver's page attributes revert 
to normal. 

If you use this technique, watch out for two things. First, make sure there 
aren't any IRPs being processed by high-IRQL portions of the driver when you 
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make everything paged. Second, be certain that no device interrupts will arrive 
while the driver's ISR is paged. Handling these details is left as an exercise for the 
reader. 

5.3 DRIVER MEMORY ALLOCATION 

Just like application programs, drivers may need to allocate temporary storage 
from time to time. Unfortunately, drivers don't have the luxury of making simple 
calls to malloc and free. Instead, they have to be extremely careful about what 
kind of memory they allocate and how much of it they use. Drivers must also be 
sure to release any memory they may be holding, since there's no automatic 
cleanup mechanism for kernel-mode code. This section describes techniques your 
driver can use to work with temporary storage. 

Memory Available to Drivers 

You have three options when you need to allocate temporary storage in a 
driver. Which one you select will depend on how long you plan to keep the data 
around and what IRQL level your code is running at. You can choose from the 
following: 

• Kernel stack - The kernel stack provides limited amounts of nonpaged 
storage for local variables during the execution of specific driver routines. 

• Paged pool - Driver routines running below DISPATCH_LEVEL, IRQL 
can use a heap area called paged pool. As its name implies, memory in this 
area is pageable, and a page fault can occur when you touch it. 

• Nonpaged pool - Driver routines running at elevated IRQLs need to 
allocate temporary storage from another heap area called nonpaged pool. 
The system guarantees that the virtual memory in nonpaged pool is 
always physically resident. The Device and Controller Extensions created 
by the 1/ 0 Manager come from this pool area. 

Global variables are absent from this list because they introduce major syn
chronization problems. The problem is that everyone using a given driver is shar
ing the same copy of the driver's code and global data. Since a driver might be 
processing multiple requests at the same time, the contents of unprotected global 
variables can become unpredictable. 

Local static variables in a driver subroutine are just as bad. Don't try using 
them to maintain state information between calls to a function. There's no 
guarantee that two successive calls to a driver routine will be made in the context 
of the same I/O request. 

After saying that, it's worth pointing out that global variables can be helpful 
for storing read-only parameters that affect the overall behavior the driver. For 
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example, your DriverEntry routine might pull a value from the Registry that 
controlled the amount of detail you report to the error-log. Storing this value in a 
global variable is acceptable since it will essentially be constant for the life of the 
driver. You could use a similar strategy for turning the collection of driver 
performance data on and off. 

Working with the Kernel Stack 

On 80x86 and MIPS platforms, the kernel stack is only 12 kilobytes long. On 
Alpha and PowerPC systems, the size is 16 kilobytes. This isn't a lot of space, so 
be careful how you use the kernel stack. Dreadful things will happen if you run 
out of space. You can avoid kernel stack overflow by following these guidelines. 

• Don't design your driver in such a way that internal routines need to 
make deeply-nested calls to one another. Try to keep the calling tree as 
flat as possible. 

• If any of your routines call themselves recursively, make sure you limit 
the depth of recursion. Drivers are not the place to be calculating 
Fibonacci numbers. 

• Don't build large temporary data structures on the kernel stack. Use one 
of the pool areas instead. 

Another characteristic of the kernel stack is that it lives in cached memory. 
This means you shouldn't use temporary buffers on the stack for DMA 
operations. Instead, your driver should allocate the buffer from nonpaged pool. 
Chapter 12 will describe DMA caching issues in more detail. 

Working with the Pool Areas 

Remember that kernel-mode drivers can't allocate memory by making calls 
to malloc. Instead, they have.- to use the ExAllocatePool and ExFreePool func
tions. These functions allocate the following kinds of memory: 

• NonPagedPool - Memory available to driver routines running at or 
above DISPATCH_LEVEL IRQL. 

• NonPagedPoolMustSucceed - Temporary memory that is crucial to 
the driver's continuing operation. If the allocation fails, the system will 
bugcheck. Use this memory for emergencies only and release it as quickly 
as possible. 

• NonPagedPoolCacheAligned - Memory that's guaranteed to be aligned 
on the natural boundary of a CPU data-cache line. A driver might use this 
kind of memory for a permanent IIO buffer. 
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• NonPagedPoolCacheAlignedMustS - Storage for a temporary I/O 
buffer that is crucial to the operation of the driver. 

• PagedPool - Memory available only to driver routines running below 
DISPATCH_LEVEL IRQL. Normally, this includes the driver's initializa
tion, cleanup, and Dispatch routines and any system threads the driver is 
using. 

• PagedPoolCacheAligned - I/O buffer memory used by file system 
drivers. 

There are several things to keep in mind when you're working with the 
system memory areas. First and foremost, the pools are precious system 
resources, and you shouldn't be too extravagant in their use. This is especially 
true of the NonPaged and MustSucceed pool areas. 

Second, your driver must be executing at or below DISPATCH_LEVEL 
IRQL when you allocate or free nonpaged memory, and at or below APC_LEVEL 
IRQL to allocate or free paged pool. 

Finally, release any memory you've allocated as soon as have finished using 
it. Otherwise, the system may start to perform badly because of low memory 
conditions. In particular, be very sure to give back any pool memory when your 
driver is unloaded. 

System Support for Memory Suballocation 

Generally, you should avoid driver designs that constantly allocate and 
release blocks of pool memory smaller than PAGE_SIZE bytes. This kind of 
behavior causes fragmentation of the pool areas and can make it impossible for 
other parts of NT to allocate memory. Instead, if your driver needs to create and 
destroy lots of little dynamic data structures, you should allocate a single, large 
chunk of pool and write your own suballocation routines to carve it up. 

Some kinds of drivers need to manage a collection of small, fixed-size 
memory blocks. For example, SCSI class drivers maintain a supply of SCSI 
Request Blocks (SRBs) which they use repeatedly to send commands to any 
devices under their control. If your driver needs to do something similar, the 
system provides two different mechanisms you can use to handle all the details of 
suballocation. 

Zone buffers A zone buffer is just a chunk of driver-allocated pool. By 
calling various Executive routines, your driver can use the zone buffer to manage 
collections of fixed-size blocks in paged or nonpaged memory. 

If you plan to access a zone buffer at or above DISPATCH_LEVEL IRQL, you 
must also set up an Executive spin lock to guard it and use the interlocked 
versions of the zone management functions. Zone buffers used only below 
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DISPATCH_LEVEL IRQL can be guarded with a Fast Mutex.3 In this case, use the 
noninterlocked set of functions. 

To set up a zone buffer, you must declare a structure of type ZONE_HEADER. 
You may also need to declare and initialize a spin lock or Fast Mutex object. Then 
follow these steps to manage the zone buffer. 

1. Call ExAllocatePool to claim space for the zone buffer itself. Then initialize 
the zone buffer with ExInitializeZone. Both these steps are normally per
formed in your DriverEntry routine. 

2. To allocate a block from a zone, call either ExAllocateFromZone or ExInter
lockedAllocateFromZone. The interlocked version of the function uses a spin 
lock to synchronize access to the zone buffer. The noninterlocked function 
leaves synchronization entirely up to your driver. 

3. To release a block back to the zone, use either ExFreeToZone or ExInter
lockedFreeToZone. Again, the interlocked version of the function synchro
nizes access to the zone, while the noninterlocked version does not. 

4. In your driver Unload routine, use ExFreePool to release the memory used 
for the zone buffer. Your driver has to make sure that no blocks from the zone 
buffer are in use when you deallocate the zone buffer. 

Zone buffers that are too large put a strain on the system's memory re
sources, so don't make a zone buffer any bigger than necessary. Try to pick a size 
that will allow your driver to handle the I/O demand level you expect on an 
average system. This is a more system-friendly approach than making the zone 
buffer big enough to handle the worst possible case. 

If you're feeling really clever, you can try to base the size of your zone buffer 
on the characteristics of the local system. MmQuerySystemSize will give you a 
hint about the total amount of memory available. Systems with more memory can 
support larger zone buffers. MmIsThisAnNtAsSystem will tell you whether your 
driver is running under Windows NT Workstation or Server. Servers are likely to 
have more memory and higher 1/ a demand levels. Calling these functions in your 
DriverEntry routine may help you pick an appropriate zone buffer size. 

If you try to allocate a block from a zone buffer and the allocation fails, your 
driver should use ExAllocatePool (or ExAllocatePoolWithTag) to get the block 
from one of the pool areas instead. To use this strategy, you'll need some kind of 
flag bit in the allocated structure to indicate whether it came from the zone buffer 
or from the general pool; otherwise you won't know what function to call when 
you want to release the block. 

3 Spin locks are described later in this chapter. Fast Mutexes show up in Chapter 14. 
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You can make an existing zone buffer larger by calling ExExtendZone or 
ExInterlockedExtendZone, but this is generally a bad thing to do. If you enlarge a 
zone buffer this way, the additional memory that the system gives to the zone will 
not be reclaimed until the next bootstrap. Don't do this unless the performance 
gains from using zone allocation (compared to repeated ExAllocatePool calls) sig
nificantly outweigh the damage it does to the system. 

Lookaside lists Windows NT 4.0 provides a more efficient mechanism 
called a lookaside list for managing driver-allocated memory. A lookaside list is a 
linked list of fixed size memory blocks. Unlike zone buffers, lookaside lists can 
grow and shrink dynamically in response to changing system conditions. There
fore, properly-sized lookaside lists are less likely to waste memory than zone 
buffers are. 

Compared to zone buffers, the synchronization mechanism used with looka
side lists is also more efficient. If the CPU architecture has an 8-byte compare 
exchange instruction, the Executive uses it to guard access to the list. On plat
forms without such an instruction, it reverts to using a spin lock for lookaside lists 
in nonpaged pool and a Fast Mutex for lists in paged pool. Since most common 
platforms do have the necessary compare exchange instruction, lookaside lists 
have lower synchronization latency than zone buffers. 

To use a lookaside list, you need to declare a header structure of type 
NPAGED_LOOKASIDE_LIST or PAGED_LOOKASIDE_LIST (depending on 
whether your list will be nonpaged or paged). Then follow these steps to manage 
the lookaside list. 

1. Use one of the ExInitializeXxxLookasideList functions to initialize the list 
header structure.4 Normally, this is done in you DriverEntry routine. 

2. Call ExAllocateFrornXxxLookasideList to allocate a block from a lookaside 
list. 

3. Call ExFreeToXxxLookasideList when you want to release a block. 

4. Use ExDeleteXxxLookasideList to release any resources associated with 
the lookaside list. Usually, this is something you do in the driver's Unload 
routine. 

The operation of lookaside lists is rather interesting and deserves a little 
attention. For starters, the ExInitializeXxxLookasideList functions just set up the 
list header; they don't actually allocate any memory for the list. When you call 
one of these initialization functions, you can specify the maximum number of 
blocks that the list can hold. (This is referred to as the depth of the list.) You can 

4 In this series of instructions, replace the Xxx in the function name with either NPaged or Paged, 
depending on the location of the list. 
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also pass pointers to memory allocation and deallocation routines in your driver. 
The system will call these functions when it needs to add or remove memory from 
the list.S 

Later, when you call one of the ExAllocateFromXxxLookasideList func
tions, the system allocates memory as needed. As you release blocks with ExFree
ToXxxLookasideList, they are added to the lookaside list until it reaches its 
maximum allowable depth. At that point, any additional calls to ExFreeToXxx
LookasideList result in memory being released back to the system. This behavior 
guarantees that, after awhile, the number of available blocks in the lookaside list 
will tend to remain near the depth of the list. 

You should choose the depth value very carefully. If it's too shallow, the sys
tem will be performing expensive allocation and deallocation operations too 
often. If it's too deep, you'll be wasting memory by tying it up in the list and not 
using it. The statistics maintained in the list header structure can help you deter
mine a proper value for the depth of the list. 

5.4 UNICODE STRINGS 

All character strings in the NT operating system are stored internally as Unicode. 
The Unicode scheme uses 16 bits to represent each character and makes it easier 
to move NT to language environments not based on the Latin alphabet. Unless 
otherwise noted, any character strings your driver sends to or receives from NT 
will be Unicode.6 

Unicode String Datatypes 

When you're working with Unicode, remember to do the following: 

• Prefix Unicode string constants with the letter L to let the compiler know 
you want wide characters. For example, L"some text" generates Unicode 
text, whereas "some text" produces 8-bit ANSI. 

• Use the WCHAR data type for Unicode characters and PWSTR to point to 
an array of Unicode characters. 

• Use the constant UNICODE_NULL to terminate a Unicode string. 

Many NT system routines work with counted Unicode strings described by 
a UNICODE_STRING structure (see Table 5.2 for the contents). 

5 If you don't pass the addresses of driver-defined memory management functions, the system uses 
ExAllocatePoolWithTag and ExFreePool by default. 

6 Note that this does not include data passed between a user's buffer and a device - unless the 
device specifically works with Unicode. 
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Table 5.2 This structure defines the basic string object used by drivers 

UNICODE_STRING, *PUNICODE_STRING 

Field 

USHORT Length 
USHORT MaximumLength 
PWSTR Buffer 

Contents 

Current string length, in bytes 
Maximum string length, in bytes 
Address of driver-allocated buffer holding 

the string 

It's up to you to allocate memory for the string buffer itself. If the Buffer 
field points to a NULL-terminated string, the Length field does not include the 
NULL character. Notice that the two length fields in the UNICODE_STRING 
structure specify a count in bytes, not characters. 

Working with Unicode 

The NT runtime library provides a number of functions for working with 
ANSI and Unicode strings. Table 5.3 presents a few of them. See the documen
tation for a complete list. Some of these functions have restrictions on the IRQL 
levels from which they can be called, so be careful when you're using them. 

If you've never worked with Unicode before, you may have some 
programming habits that will cause you problems. Most of them result from 

Table 5.3 The NT runtime library provides these Unicode manipulation 
functions 

Unicode string manipulation functions 

Function 

RtlInitUnicodeString 

RtlAnsiStringToUnicodeSize 

RtlAnsiStringToUnicodeString 
RtlIntegerToUnicodeString 
RtlAppendUnicodeStringToString 
RtlCopyUnicodeString 
RtlUpcaseUnicodeString 
RtlCompareUnicodeString 
RtlEqualUnicodeString 

Description 

Initializes a UNICODE_STRING from 
a NULL-terminated Unicode string 

Calculates number of bytes required to 
hold a converted ANSI string 

Converts ANSI string to Unicode 
Converts an integer to Unicode text 
Concatenates two Unicode strings 
Copies a source string to a destination 
Converts Unicode string to uppercase 
Compares two Unicode strings 
Tests equality of two Unicode strings 
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making the assumption that a character and a byte are the same size. Watch out 
for the following when you start working with Unicode: 

• Remember that the number of characters in a Unicode string is not the 
same as the number of bytes. Be very careful about any arithmetic you do 
that calculates the length of a Unicode string. 

• Don't assume anything about the collating sequence of the characters or 
the relationship of upper- and lowercase characters. 

• Don't assume that a table with 256 entries is large enough to hold the 
entire character set. 

5.5 INTERRUPT SYNCHRONIZATION 

Writing code that executes at multiple IRQL levels requires some attention to 
proper synchronization. This section examines the issues that arise in this kind of 
environment. 

The Problem 

If code executing at two different IRQLs attempts to access the same data 
structure simultaneously, the structure can be corrupted. Figure 5.1 illustrates the 
details of this synchronization problem. 

foo.x = 1; 

foo.y =2; 

Copyright © 1994 by Cydonix Corporation. 9400268. vsd 

foo.x = 10; 
foo.y= 20; 

int X; 
int y; 

Figure 5.1 Data structures can be corrupted by unsynchronized access 
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To see the exact problem, consider this sequence of events: 

1. Imagine that some piece of code executing at a low IRQL decides to modify 
several fields in the foo data structure. It gets as far as setting the field foo.x to 1. 

2. Suddenly an interrupt occurs, and a higher-IRQL piece of code gets control of 
the CPU. This code also decides to modify foo, and it sets foo.x to 10 and 
foo.yto20. 

3. The higher-IRQL code dismisses its interrupt, and control returns to the lower 
IRQL routine which finishes its modifications to foo by setting foo.y to 2. The 
lower-IRQL code is completely unaware that it was interrupted. 

4. The foo structure is now corrupted, with 10 in x and 2 in y. 

In the following sections, you'll see some techniques your driver can use to 
avoid these kinds of collisions. 

Interrupt Blocking 

In the previous example, the lower-IRQL routine could have avoided these 
synchronization problems by preventing itself from being interrupted. It can do 
this by temporarily raising the IRQL of the CPU and then lowering it back to its 
initial level after completing the modification. This technique is called interrupt 
blocking. If you look at Table 5.4, you'll see the Kernel functions that your driver 
can use to manipulate a CPU's IRQL value. 

Rules for Blocking Interrupts 

If you plan to use any of these functions to block interrupts, there are certain 
rules you need to follow: 

• Every piece of code touching a protected data structure has to agree on 
the IRQL to use for synchronization and must only touch the structure 
when it's running at the chosen IRQL. 

Table 5.4 These Kernel functions control the CPU's IRQL level 

Interrupt Blocking Functions 

Function 

KeRaiseIrql 

KeLowerIrql 
KeGetCurrentIrql 

Description 

Changes the CPU IRQL to a specified value, blocking 
interrupts at or below that IRQL level 

Lowers the CPU IRQL value 
Returns the IRQL value of the CPU on which this call 

is made 
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• Drivers using this technique shouldn't spend too much time at the ele
vated IRQL level. Depending on the blocking level, this can have a nega
tive impact on NT's ability to service other interrupts quickly. 

• Although your driver can raise the CPU's IRQL to a higher level and 
reduce it back to its previous value, you must never drop the CPU's IRQL 
below the level where you found it. Disobeying this rule will compromise 
the entire interrupt priority mechanism. 

5.6 SYNCHRONIZING MULTIPLE CPUS 

But everything is not yet safe. Modifying the IRQL of one CPU has no affect on 
other CPUs in a multiprocessor system. Consequently, IRQLs provide only local 
protection to shared data. To prevent corruption of data structures accessed by 
multiple CPUs, NT uses synchronization objects called spin locks. 

How Spin Locks Work 

A spin lock is simply a mutual-exclusion object that you associate with a 
specific group of data structures. When a piece of kernel-mode code wants to 
touch any of the guarded data structures, it must first request ownership of the 
associated spin lock. Since only one CPU at a time can own the spin lock, the data 
structure is safe from collisions. Any CPU requesting an already-owned spin lock 
will busy-wait until the spin lock becomes available. Look at Figure 5.2 to see how 
this works. 

A given spin lock is always acquired and released at a specific IRQL revel. 
This has the effect of blocking potentially dangerous interrupts on the local CPU 
and preventing the synchronization problems we saw in the last section. While a 
CPU is waiting for a spin lock, all activity at or below the IRQL of the spin lock is 
blocked on that CPU. Once the IRQL level has been raised, the CPU can request 
ownership of the spin lock, which will guarantee protection against other CPUs. 
Fortunately, all these details are hidden inside the Kernel's spin lock routines. 

Using Spin Locks 

There are two major kinds of spin locks provided by the Kernel. They are 
distinguished by the IRQL level at which you use them. 

• Interrupt spin locks - These synchronize access to driver data struc
tures shared by multiple driver routines. Interrupt spin locks are acquired 
at the DIRQL associated with the device. 

• Executive spin locks - These guard various operating system data 
structures and their associated IRQL is DISPATCH_LEVEL. 
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intx; 
int y; 

Repeat 
Request Spin Lock 

Until ACQUIRED 

foo.x = 10; 
foo.y= 20; 
Release Spin Lock 
Restore IRQL 

Figure 5.2 How spin locks synchronize multiple CPUs 

When your driver uses Interrupt spin locks, most of the work happens 
behind the scenes. When we look at KeSynchronizeExecution in Chapter 9, you'll 
see the exact details. 

Executive spin locks are another story. When you use them, you'll need to 
follow these steps: 

1. Decide what data items you need to guard and how many spin locks to use. 
The tradeoff is that a larger number of spin locks may allow more of your 
driver to run in parallel, but it increases the chance of deadlocking if you need 
to acquire multiple locks at the same time. 

2. Declare a data item of type KSPIN_LOCK for each lock. Storage for the spin 
lock must be permanently resident. Usually, you store spin locks in the Device 
or Controller Extension. 

3. Initialize the spin lock once by calling KeInitializeSpinLock. You can call this 
function from any IRQL level, though most often you set up all your spin 
locks in the DriverEntry routine. 

4. Call KeAcquireSpinLock before you touch any resource guarded by a spin 
lock. This function raises IRQL to DISPATCH_LEVEL, acquires the spin lock, 
and returns the previous IRQL value to you. To call this function, you must be 
at or below DISPATCH_LEVEL IRQL. If you're already running at DIS
PATCH_LEVEL, you can save some work by calling KeAcquireSpinLockAt
DpcLevel instead. 
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5. When you've finished using the protected resource, call the KeRelease
SpinLock function to let go of the lock. You call this function from DIS
PATCH_LEVEL IRQL and it restores IRQL to its previous value. If you were 
already at DISPATCH_LEVEL when you acquired the lock, you can save 
some work by calling KeReleaseSpinLockFromDpcLevel, which releases the 
lock but doesn't change IRQL. 

Some other driver support routines (like the interlocked lists and queues 
described in the next section) use Executive spin locks for protection. In these cases, 
your only responsibility is to initialize the spin lock object. The routines that manage 
the interlocked object will acquire and release the spin lock itself on your behalf. 

Rules for Using Spin Locks 

Spin locks aren't terribly difficult to use, but you do have to keep a few 
things in mind when you're working with them: 

• Be sure to release a spin lock as quickly as possible, because while you're 
holding it, you may be blocking all activity on other CPUs. The official rec
ommendation is not to hold a spin lock for more than about 25 microseconds. 

• Don't cause any hardware or software exceptions while you're holding a 
spin lock. This is a sure way to crash the system. 

• Don't try to access any paged code or data while you're holding a spin 
lock. This may result in a page fault exception, which is another quick 
way to crash the system. 

• Don't try to acquire a spin lock that your CPU already owns. This will 
lead to a deadlock situation where the CPU freezes up waiting for itself to 
release the spin lock. 

• Avoid driver designs that depend on holding multiple spin locks at the 
same time. Unless you're careful, this can also lead to deadlocks. If you 
must use multiple spin locks, be sure that everyone agrees to acquire 
them in a fixed order and release them in reverse order. 

• Don't call any routines that violate the above rules. 

5.7 LINKED LISTS 

Drivers sometimes need to maintain various kinds of linked lists. You'll see exam
ples of this in later chapters. The following subsections describe the support avail
able from NT for managing singly- and doubly-linked lists. 
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Singly-Linked Lists 

To use singly-linked lists, begin by declaring a list head of type 
SINGLE_LIST_ENTRY. This is also the data type of the link pointer itself. You 
need to initialize the list by setting the head to NULL, as demonstrated in the 
following code fragment. 

typedef struct _DEVICE_EXTENSION 

SINGLE_LIST_ENTRY listHead; II Declare head pointer 
} DEVICE_EXTENSION, *PDEVICE_EXTENSION 

pDevExt->listHead.Next = NULL; II Initialize the list 

To add or remove entries from the front of the list, call PushEntryList and 
PopEntryList. Depending on how you're using the list, the actual entries can be in 
either paged or nonpaged memory. Just remember that these functions don't 
perform any synchronization of their own. 

NT also provides convenient support for singly-linked lists guarded by an 
Executive spin lock. This kind of protection is important if you're sharing a linked 
list among driver routines running at or below DISPATCH_LEVEL IRQL. To use 
one of these lists, set up the list head in the usual way, and then initialize an 
Executive spin lock that will guard the list. 

typedef struct _DEVICE_EXTENSION 

SINGLE_LIST_ENTRY listHead; II Declare head pointer 
KSPIN_LOCK listLock; II and the lock 
} DEVICE_EXTENSION, *PDEVICE_EXTENSION 

KeInitializeSpinLock( &pDevExt->listLock ); 
pDevExt->listHead.Next = NULL; 

You pass a pointer to this spin lock as an explicit argument to ExInter
lockedPushEntryList and ExInterlockedPopEntryList. To make these interlocked 
calls, you must be running at or below DISPATCH_LEVEL IRQL. The list entries 
themselves must reside in nonpaged memory, since the system will be linking 
and unlinking them from DISPATCH_LEVEL IRQL. 

Doubly-Linked Lists 

To use doubly-linked lists, declare a list head of type LISLENTRY. This is 
also the data type of the link pointer itself. You need to initialize the list head, as 
demonstrated in the following code fragment. 
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typedef struct _DEVICE_EXTENSION 

LIST_ENTRY listHead; II Declare head pointer 
} DEVICE_EXTENSION, *PDEVICE_EXTENSION 

InitializeListHead( &pDevExt->listHead ); 
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To add entries to the list, call InsertHeadList or InsertTailList, and to pull 
entries out, call RemoveHeadList or RemoveTailList. You can determine if there's 
anything in a list by calling IsListEmpty. Again, the entries can be paged or 
nonpaged, but these functions don't perform any synchronization. 

Not surprisingly, NT supports interlocked doubly-linked lists. To use these, 
set up the list head in the usual way, and then initialize an Executive spin lock that 
will guard the list. 

typedef struct _DEVICE_EXTENSION { 

LIST_ENTRY listHead; II Declare head pointer 
KSPIN_LOCK listLock; II and the lock 
} DEVICE_EXTENSION, *PDEVICE_EXTENSION 

KeInitializeSpinLock( &pDevExt->listLock ); 
InitializeListHead( &pDevExt->listHead ); 

You pass this spin lock in calls to ExInterlockedInsertTailList, ExInter
lockedInsertHeadList, and ExInterlockedRemoveHeadList. To make these 
interlocked calls, you must be running at or below DISPATCH_LEVEL IRQL. Just 
like their singly-linked cousins, entries for doubly-linked interlocked lists have to 
live in nonpaged memory. 

Removing Blocks from a List 

When you pull a block out of a list, what the system gives you is a pointer 
to the LIST_ENTRY or SINGLE_LIST_ENTRY structure within the block. What 
you probably want is the address of the block itself. If the XXX_LIST_ENTRY 
structure is at the top of the block, everything is easy. If it's buried in the block 
somewhere, you need to do a little arithmetic to get the address of the containing 
structure. Fortunately, NT provides a macro to make this easier. See Table 5.5 for 
the details. 

The following code fragment shows how to use this macro. It assumes 
you're using the Tail.Overlay.ListEntry field of an IRP to maintain your own 
linked list of IRPs, and that the listHead field of your Device Extension points to 
the beginning of this list. 
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Table 5.5 CONTAINING_RECORD macro arguments 

CONTAINING_RECORD 

Parameter 

Address 
Type 
Field 
Return value 

Description 

Address of a field within a data structure 
The data type of the structure 
Field in structure pointed at by the Address argument 
Base address of structure containing Field 

PIRP pIrpi 
PLIST_ENTRY pEntrYi 

pEntry = RemoveHeadList( &pDevExt->listHead )i 
pIrp = CONTAINING_RECORD ( pEntry, IRP, 

Tail.Overlay.ListEntrY)i 

5.8 SUMMARY 

In this chapter we've looked at some general guidelines for designing and coding 
your driver. We've also covered a number of basic techniques that will show up 
again and again throughout this book. 

This is all just foundation material for the work ahead. In the next chapter, 
we'll start to implement some actual driver routines. 
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Everything has to start somewhere. In the case of 
an NT kernel-mode driver, the starting point is a function called DriverEntry. 
This chapter will show you how to write a DriverEntry routine along with vari
ous other pieces of initialization and cleanup code. By the time you finish this 
chapter, you'll be able to write a minimal driver that you can actually load into 
the system. 

6.1 WRITING A DRIVER ENTRY ROUTINE 

Every NT kernel-mode driver, regardless of its purpose, has to expose a routine 
whose name is DriverEntry. This routine initializes various driver data structures 
and prepares the environment for all the other driver components. 

Execution Context 

The I/O Manager calls your DriverEntry routine once when it loads your 
driver. As you can see from Table 6.1, the DriverEntry routine runs at PAS
SIVE_LEVEL IRQL, which means it has access to paged system resources. 

The DriverEntry routine receives a pointer to its· own Driver object, which it 
must initialize. It also gets a UNICODE_STRING containing the path to the driver's 
service key in the Registry. This string takes the form, HKEY_LOCAL_MA-

101 
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Table 6.1 Function prototype for a DriverEntry routine 

NTSTATUS DriverEntry 

Parameter 

IN PDRIVER_OBJECT DriverObject 
IN PUNICODE_STRING RegistryPath 
Return value 

IRQL == PASSIVE_LEVEL 

Description 

Driver object for this driver 
Registry path string for this driver's key 
• STATUS_SUCCESS - success 
• STATUS_XXX - some error code 

CHINE\System \CurrentControISet\Services \DriverName, and DriverEntry can 
use it to extract any driver-specific parameters stored in the Registry.l 

What a DriverEntry Routine Does 

Although the exact details will vary slightly from driver to driver, in general 
you should perform the following steps in your DriverEntry routine. 

1. If you're writing a device driver, start by finding and allocating any hardware 
that the driver is supposed to manage. 

2. Initialize the Driver object with pointers to other driver entry points. 

3. If your driver manages a multiunit controller, call loCreateController to cre
ate a Controller object and then initialize its Controller Extension. 

4. Call loCreateDevice to create a Device object and then initialize its Device 
Extension. 

5. Make the device visible to the Win32 subsystem by calling loCreateSymbolic
Link. 

6. Connect the device to an Interrupt object and initialize any DPC objects 
needed by the driver. 

7. Repeat steps 3-6 for all controllers and devices that belong to your driver. 

8. Return STATUS_SUCCESS to the I/O Manager. 

If you run into problems during initialization, your DriverEntry routine 
should release any system resources it may have allocated and return an appro
priate NTSTATUS failure code to the I/O Manager. 

The following sections describe some of these steps in greater detail. The 
process of finding and allocating hardware is complex enough that it needs to 

1 Chapter 7 explains how to extract these parameters from a driver's service key. 
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wait until the next chapter. We'll also have to postpone the discussion of interrupt 
processing and DPCs until we look at data transfer routines in Chapter 9. 

Initializing DriverEntry Points 

The I/O Manager is able to locate the DriverEntry routine because it has a 
well-known name. Other driver routines don't have fixed names, so the II 0 Man
ager needs some other way to find them. It does this by looking in the Driver 
object for pointers to specific functions. Your DriverEntry routine is responsible 
for setting up these function pointers. 

These function pointers fall into two categories: 

• Functions with explicit slots in the Driver object. 

• IRP Dispatch functions that are listed in the Driver object's MajorFunc
tion array. These are discussed in more detail in Chapter 8. 

The following code fragment shows how a DriverEntry routine initializes 
both kinds of function pointers. . 

pDO->DriverStartIo = XxStartIo; 
pDO->DriverUnload = XxUnload; 
II 
II Initialize the function dispatch array 
II 
pDO->MajorFunction[ IRP_MJ_CREATE 1 = XxDispatchCreate; 

pDO->MajorFunction[ IRP_MJ_CLOSE 1 = XxDispatchClose; 

Creating Device Objects 

Once you've found and allocated all your hardware, you need to create a 
Device object for each physical or virtual device you want to expose to the rest of 
the system. Most of the work is done by the IoCreateDevice function, which takes 
a description of your device and returns a Device object, complete with an 
attached Device Extension. IoCreateDevice also links the new Device object into 
the list of devices managed by this Driver object. Table 6.2 contains a description 
of this function. 

Take a look at the NTDDK.H header file to see the standard definitions for 
the DeviceType argument. Try to choose a value that's as close as possible to your 
device. 

If you truly believe your nuclear-powered laser retroscope is unlike any 
existing device, you can define a private device type value. Just remember that 
Microsoft reserves values in the range 0-32767 and leaves numbers between 
32768 and 65535 for you. They also leave the bookkeeping up to you, so there's no 
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Table 6.2 Function prototype for loCreateDevice 

NTSTATUS loCreateDevice IRQL == PASSIVE_LEVEL 

Parameter 

IN PDRIVER_OBJECT DriverObject 
IN ULONG DeviceExtensionSize 
IN PUNICODE_STRING DeviceName 
IN DEVICE_TYPE DeviceType 
IN ULONG DeviceCharacteristics 

IN BOOLEAN Exclusive 
OUT PDEVICE_OBJECT *DeviceObject 
Return value 

Description 

Pointer to Driver object 
Desired size of Device Extension in bytes 
NT device name (see below) 
FILE_DEVICE_XXX (see NTDDK.H) 
Characteristics for mass-storage device 
• FILE_REMOVABLE_MEDIA 
• FILE_READ_ONLY_DEVICE 
• FILE_FLOPPY _DISKETTE 
• FILE_WRITE_ONCE_MEDIA 
• FILE_REMOTE_DEVICE 
TRUE if device is nonshareable 
Variable that receives Device object 
• STATUS_SUCCESS - success 
• STATUS_XXX - some failure code 

guarantee that the number you choose for your retroscope won't be used by some 
other driver to refer to its microwave popcorn warmer. 

One final point about creating Device objects. Although the vast majority of 
drivers call IoCreateDevice from their DriverEntry routines, it is possible to make 
this call from a Dispatch routine instead. For example, a driver that managed 
pseudo-devices could use this technique to dynamically create Device objects in 
response to a driver-defined DeviceIoControl request. 

If you do create Device objects somewhere other than in your DriverEntry 
routine, you have to reset the DO_DEVICE_INITIALIZING bit in the Flags field 
of the object. In the normal course of events, the I/O Manager automatically 
resets this bit for a driver's Device objects when the DriverEntry routine is fin
ished. Until this bit is cleared, the Device object can't be used, and CreateFile calls 
referencing it will fail. The following code fragment shows what you need to do. 

pDevObj->Flags &= -DO_DEVICE_INITIALIZING; 

Don't clear this bit until the Device object is actually initialized and ready to 
process requests. 

Choosing a Buffering Strategy 

If the IoCreateDevice call succeeds, you need to let the I/O Manager know 
whether you want to do Buffered or Direct I/O with this device. You make this 
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choice by ORing one of the following bits into the Flags field of the new Device 
object.2: 

• DO_BUFFERED_IO - If you want the I/O Manager to copy data back 
and forth between user and system-space buffers. 

• DO_DIRECT _10 - If you want the I/O Manager to lock user buffers into 
physical memory for the duration of an I/O, and build a descriptor list of 
the pages in the buffer. 

Chapter 8 will explain how to work with user buffers in both of these cases. 
If you don't set either of these bits, the I/O Manager will assume that you're han
dling everything yourself. Making user data available to a driver is a nasty pro
cess, so it's best to let the I/O Manager do the work for you. 

NT and Win32 Device Names 

Just like T.S. Elliot's cats, NT devices have more than one name. The one you 
specify to IoCreateDevice is the name by which the device is known to the NT 
Executive itself. If you want to make the device available to the Win32 subsystem, 
the Win16 subsystem, and virtual DOS machines, you have to give the device a 
DOS name as well. 

These two types of names live in different parts of the Object Manager's 
namespace. You'll find NT device names dangling beneath the \Device section of 
the tree, while the Win32 name appears beneath the \DosDevices area. Notice 
that the DOS name is actually a symbolic link that connects it to the NT device. 
Figure 6.1 illustrates this relationship. 

Also notice that NT and DOS follow different device naming conventions. 
NT device names tend to be longer, and they always end in a zero-based number 
(FloppyDiskO, FloppyDisk1, etc). DOS devices follow the usual pattern of A 
through Z for file-system devices, and names ending in a one-based number for 
any other devices (LPTl, LPT2, etc). 

6.2 CODE EXAMPLE: DRIVER INITIALIZATION 

This example shows how a basic device driver initializes itself. You can find the 
code for this example in the CH06 directory on the disk that accompanies this 
book. 

2 Make sure you use a logical OR to set the Flags field of the Device object. The I/O Manager uses 
other bits in this field to synchronize its own operation, and if you accidentally clear some of them, 
bad things will happen. 
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Figure 6.1 NT and Win32 device names in the Object Manager's namespace 

INIT.C 

The functions in this module perform all the essential setup tasks needed to 
manage one or more physical devices. Although the code supports multiple 
devices, it assumes they are all on separate controllers, so it doesn't create any 
Controller objects. 

DriverEntry This particular implementation isn't very forgiving of initial
ization errors. If anything fails along the way, the whole driver refuses to load. A 
real driver might take a more flexible approach. 

II 
II Header files ... 
II 
#include I xxdriver.h"O 

II 
II Forward declarations of local functions 
II 
static NTSTATUS 
XxCreateDevice ( 

II 

IN PDRIVER_OBJECT DriverObject, 
IN INTERFACE_TYPE BusType, 
IN ULONG BusNumber, 
IN PDEVICE_BLOCK DeviceBlock, 
IN ULONG NtDeviceNumber 
) ; 

II If the platform can handle it, make the DriverEntry 
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II routine discardable, so that it doesn't waste space 
II 
#ifdef ALLOC_PRAGMA 
#pragma alloc_text( init, DriverEntry )@ 

#pragma alloc_text( init, XxCreateDevice 
#endif 

11++ 
II Function: 
II 
II 
II 
II 
II 
II 
II 
II 

DriverEntry 

Description: 
This function initializes the driver, locates 
and claims hardware resources, and creates 
various NT objects needed to process 1/0 
requests. 

I I Arguments: 
II 
II 
II 

Pointer to the Driver object 
Registry path string for driver service key 

II Return Value: 
II NT STATUS signaling success or failure 
11--
NTSTATUS 
DriverEntry( 

{ 

IN PDRIVER_OBJECT DriverObject, 
IN PUNICODE_STRING RegistryPath 
) 

PCONFIG_ARRAY ConfigList; $ 
PCONFIG_ARRAY ConfigArraYi 
ULONG NtDeviceNumber; 
NTSTATUS statusi 
ULONG ii 

II 
II Load up the Config list ... 
II 
status = XxGetHardwarelnfo( 0 

RegistryPath, 
&ConfigList )i 

if( !NT_SUCCESS( status )) 
{ 

return status; 
} 
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II 
II Allocate the hardware ... 
II 
status = XxReportHardwareUsage( 

DriverObject, 
ConfigList ); 

if( !NT_SUCCESS( status )) 
{ 

II 

XxReleaseHardwareInfo( ConfigList ); 
return status; 

II Export other driver entry points ... 
II 
DriverObject->DriverUnload = XXDriverUnload; 

DriverObject->MajorFunction[ IRP_MJ_CREATE ] 
XxDispatchOpen; 

DriverObject->MajorFunction[ IRP_MJ_CLOSE 
XxDispatchClose; 

DriverObject->MajorFunction[ IRP_MJ_WRITE 
XxDispatchWrite; 

DriverObject->MajorFunction[ IRP_MJ_READ ] = 
XxDispatchRead; 

II 
II Initialize a Device object for each piece 
II of hardware we've found 
II 
ConfigArray = ConfigList; 
NtDeviceNumber = 0; 

while ( ConfigArray != NULL) 
{ 

for (i = 0; 
i < ConfigArray->Count; 
i++ ) 

status XxCreateDevice( 
DriverObject, 
ConfigArray->BusType, 
ConfigArray->BusNumber, 
&ConfigArray->Device[i], 
NtDeviceNumber ); 

if( !NT_SUCCESS( status )) break; 
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NtDeviceNumber++; 

if( !NT_SUCCESS( status )) break; 

II 
II Get next array in the chain 
II 
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ConfigArray = ConfigArray->NextConfigArray; 

if( !NT_SUCCESS( status )) 
{ 

XxReleaseHardware( DriverObject ); 

XxReleaseHardwareInfo( ConfigList ); 

return status; 

o This header includes both the system-supplied NTDDK.H and our pri
vate HARDWARE.H file. It also contains definitions of any driver
defined structures. 

@ NT will discard these routines after DriverEntry executes. You should 
also include any functions called only by the DriverEntry routine. Do not 
discard any code needed after driver initialization. 

@) The Config list is a driver-defined data structure that will follow us 
through the DriverEntry routine. It holds information about any hard
ware that this driver manages. Chapter 7 will show you how to use this 
structure. 

o We'll see this routine in the next chapter. It uses one of two techniques to 
locate any hardware this driver is responsible for and put a description of 
that hardware into the Config list. 

XxCreateDevice This is a helper function that does all the grunt work. It 
creates and initializes a single Device object using one of the hardware descrip
tions in the Config list. 

static NTSTATUS 
XxCreateDevice ( 

IN PDRIVER_OBJECT DriverObject, 
IN INTERFACE_TYPE BusType, 
IN ULONG BusNumber, 
IN PDEVICE_BLOCK DeviceBlock, 
IN ULONG NtDeviceNumber 
) 
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NTSTATUS status; 

PDEVICE_OBJECT pDevObj; 
PDEVICE_EXTENSION pDevExt; 

UNICODE_STRING deviceName; 
WCHAR deviceNameBuffer[ XX_MAX_NAME_LENGTH l; 

UNICODE_STRING linkName; 
WCHAR linkNameBuffer[ XX_MAX_NAME_LENGTH l; 

UNICODE_STRING number; 
WCHAR numberBuffer[10l; 

number. Buffer = numberBuffer; 
number.MaximumLength = 10; 

II 
II Form the base NT device name ... 
II 
deviceName.Buffer = deviceNameBuffer; 
deviceName.MaximumLength = XX_MAX_NAME_LENGTH; 
deviceName.Length = 0; 
RtlAppendUnicodeToString( 

/I 

&deviceName, 
XX_NT_DEVICE_NAME ); 

II Convert the device number into a string and 
II attach it to the end of the device name. 
II 
number.Length = 0; 
RtlIntegerToUnicodeString( 

NtDeviceNumber, 
10, 
&number ); 

RtlAppendUnicodeStringToString( 
&deviceName, 
&number ); 

/I 
II Create a Device object for this device ... 
/I 
status = IoCreateDevice( 

DriverObject, 
sizeof( DEVICE_EXTENSION), 
&deviceName, 
FILE_DEVICE_UNKNOWN, 0 
0, 
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TRUE, 
&pDevObj ); 

if( !NT_SUCCESS( status )) 
{ 

return status; 

pDevObj->Flags 1= DO_BUFFERED_IO; @ 

/! 
II Initialize the Device Extension 
/! 
pDevExt = pDevObj->DeviceExtension; 
pDevExt->DeviceObject = pDevObj; 
pDevExt->NtDeviceNumber = NtDeviceNumber; 

II 
II Copy things from Device Block ~ 
II 
pDevExt->PortBase DeviceBlock->PortBase; 

/! 
II Prepare a DPC object for later use 
II 
IoInitializeDpcRequest( 

II 

pDevObj, 
XxDpcForIsr ); 

II Form the Win32 symbolic link name. 
II 
linkName.Buffer = linkNameBuffer; 
linkName.MaximumLength = XX_MAX_NAME_LENGTH; 
linkName.Length = 0; 
RtlAppendUnicodeToString( 

II 

&linkName, 
XX_WIN32_DEVICE_NAME ); 

II Reset the number string and do another 
II conversion. Win32 device numbers are 
II one greater than the NT equivalent. 
/! 
number.Length = 0; 
RtlIntegerToUnicodeString( 

NtDeviceNumber + 1, 
10, 
&number ); 

111 
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RtlAppendUnicodeStringToString( 
&linkName, 
&nurnber ); 

II 
II Create a symbolic link so our device is 
II visible to Win32 ... 
II 
status = IoCreateSymbolicLink( 

&linkName, 
&deviceName ); 

II 
II See if the symbolic link was created ... 
II 
if( !NT_SUCCESS( status )) 
{ 

II 

IODeleteDevice( pDevObj ); 
return status; 

II Make sure device interrupts are OFF 
II 
XxDisableInterrupts( pDevExt ); 

II 
II Connect to an Interrupt object ... 0 
II 
status = 

IoConnectInterrupt( 
&pDevExt->pInterrupt, 
XxIsr, 
pDevExt, 
NULL, 
DeviceBlock->SystemVector, 
DeviceBlock->Dirql, 
DeviceBlock->Dirql, 
DeviceBlock->InterruptMode, 
DeviceBlock->ShareVector, 
DeviceBlock->Affinity, 
DeviceBlock->FloatingSave ); 

if( !NT_SUCCESS( status )) 
{ 

IoDeleteSymbolicLink( &linkName ); 
IoDeleteDevice( pDevObj ); 
return status; 



Sec. 6.3 Writing Reinitialize Routines 113 

II 
II Initialize the hardware and enable interrupts 
II 
KeSynchronizeExecution( 

pDevExt->pInterrupt, 
XxInitDevice, 
pDevExt ); 

return status; 

o Choose a FILE_DEVICE_XXX value that's as close as possible to the type 
of device your driver manages. 

@ Select an I/O method for data transfer operations. In this case, we'lilet 
the I/O Manager copy things to and from user space for us. 

@) The Config list will be going away soon, so we need to move anything 
important into the Device Extension. At the least, this includes the control 
register base address; for DMA devices it would also include the Adapter 
object pointer and count of mapping registers. More on this in Chapter 12. 

o Chapters 7 and 9 will explain more about interrupt processing. 

6.3 WRITING REINITIALIZE ROUTINES 

Intermediate-level drivers loading at system boot time may need to delay their 
initialization until one or more lower-level drivers have finished loading. If all the 
drivers belong to you, you can determine their load sequence by setting various 
Registry entries at installation. But if you don't own ali the underlying drivers, 
your intermediate driver will need a Reinitialize routine. 

Execution Context 

If your DriverEntry routine discovers that it can't finish its initialization because 
system bootstrapping hasn't yet gone far enough, it can register a Reinitialize routine 
by calling loRegisterDriverReinitialization. The I/O Manager will cali the Reinitial
ize routine at some later point during the bootstrap. 

As you can see from Table 6.3, the Reinitalize routine runs at PASSIVE_LEVEL 
IRQL, which means it has access to paged system resources. Reinitialize routines 
are useful only for drivers that load automatically at system boot. 

What a Reinitialize Routine Does 

The Reinitialize routine can perform any driver initialization that the Driver
Entry routine was unable to complete. If the Reinitialize routine discovers that the 
environment still isn't suitable, it can call IoRegisterDriverReinitialization to 
register itself again. 
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Table 6.3 Function prototype for a Reinitialize routine 

VOID XxReinitialize 

Parameter 

IN PDRIVER_OBJECT DriverObject 
IN PVOID Context 
IN ULONG Count 
Return value 

IRQL == PASSIVE_LEVEL 

Description 

Pointer to Driver object 
Context block specified at registration 
Zero-based count of reinitialization calls 

6.4 WRITING AN UNLOAD ROUTINE 

By default, once a driver is loaded, it remains in the system until a reboot occurs. 
To make a driver unloadable, you need to write an Unload routine and store a 
pointer to the routine in your Driver object's DriverUnload field. The I/O Man
ager will then call this routine in response to an unload request from the Control 
Panel's Devices applet. If your driver will never be unloaded, then you can forget 
about this routine. 

Execution Context 

The I/O Manager calls your Unload routine once when it unloads the 
driver, usually because someone is playing with the Control Panel Devices applet. 
As you can see from Table 6.4, the Unload routine runs at PASSIVE_LEVEL IRQL, 
which means it has access to paged system resources. 

What an Unload Routine Does 

Although the exact details will vary slightly from driver to driver, in general 
you should perform the following steps in your Unload routine: 

1. For some kinds of hardware, you may need to save the state of the device in 
the Registry. That way, you'll be able to put the device back in the same state 
the next time your DriverEntry routine executes. For example, an audio card 
driver might save the current volume setting of the card. 

Table 6.4 Function prototype for an Unload routine 

VOID XxUnload 

Parameter 

IN PDRlVER_OBJECT DriverObject 
Return value 

IRQL == PASSIVE_LEVEL 

Description 

Pointer to Driver object for this driver 
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2. Disable interrupts from the device and disconnect the device from its Inter
rupt object. It's crucial that the device not generate any interrupt requests 
once the Interrupt object is gone. 

3. Deallocate any hardware belonging to your driver. 

4. Use IoDeleteSymbolicLink to remove the device from the Win32 namespace. 

5. Remove the Device object itself using IoDeleteDevice. 

6. If you're managing multiunit controllers, repeat steps 4 and 5 for each device 
attached to the controller. Then remove the Controller object itself using 
IoDeleteController. 

7. Repeat steps 4-6 for all controllers and devices that belong to your driver. 

8. Deallocate any pool memory held by the driver 

Keep in mind that your Unload routine will not be called at system shut
down time. If you need to do any special work at system shutdown, you'll need to 
write a shutdown routine. 

6.5 CODE EXAMPLE: DRIVER CLEANUP 

This example shows how a simple driver removes itself from the system. You can 
find the complete code for this example in the CH06 directory on the disk that 
accompanies this book. 

UNLOAD.C 

The functions in this module basically just undo the work that was per
formed in the DriverEntry code. Again, it assumes there aren't any Controller 
objects to deal with. 

XxUnload In this case, the Unload routine is just a wrapper for calling 
XxReleaseHardware. 

VOID 
XxDriverUnload( IN PDRIVER_OBJECT DriverObject ) { 

II 
II Stop interrupt processing and release hardware 
II 
XxReleaseHardware( DriverObject ); 

XxReleaseHardware The real cleanup work done by the driver happens 
in this routine. It's been separated out as a helper routine because parts of the 
driver initialization code needs to perform the same kinds of cleanup. 
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VOID 
XxReleaseHardware( IN PDRIVER_OBJECT DriverObject ) 
{ 

PDEVICE_OBJECT pDevObj; 
PDEVICE_EXTENSION pDevExt; 

UNICODE_STRING linkName; 
WCHAR linkNameBuffer[ XX_MAX NAME LENGTH l; 

UNICODE_STRINGnumber; 
WCHAR numberBuffer[10l; 

CM_RESOURCE_LIST ResList; 
BOOLEAN bConflict; 

linkName.Buffer = linkNameBuffer; 
linkName.MaximumLength = XX_MAX_NAME_LENGTH; 

number.Buffer = numberBuffer; 
number.MaximumLength = 10; 

pDevObj = DriverObject->DeviceObject;O 

II 
II Traverse the list of Device objects 
II and clean up each one in turn ... 
II 
while ( pDevObj != NULL) 

pDevExt = pDevObj->DeviceExtension; 

II 
II Add code here to save the state of 
II the hardware in the Registry and/or 
II to set the hardware into a known condition. 
II 

II 
II Stop handling interrupts from device 
II 
XxDisableInterrupts( pDevExt ); 

IoDisconnectInterrupt( pDevExt->pInterrupt ); 

II 
II Deallocate hardware resources belonging @ 
II only to this Device object ... 
II 
ResList.Count = 0; II Build an empty list 
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IoReportResourceUsage( 
NULL, 
DriverObject, 
NULL, 

II Default class name 
II Ptr to Driver object 
II No driver resources 

II 

0, 
pDevObj, 
&ResList, 
sizeof( ResList ), 
FALSE, 
&bConflict ); 

II Ptr to Device object 
II Device resources 

II Junk, but required 

II Form the Win32 symbolic link name. 
II 
linkName.Length = 0; 
RtlAppendUnicodeToString( 

II 

&linkName, 
XX_WIN32_DEVICE_NAME ); 

II Attach Win32 device number to the 
II end of the name; DOS device numbers 
II are one greater than NT numbers ... 
II 
number.Length = 0; 
RtllntegerToUnicodeString( 

pDevExt->NtDeviceNumber + 1, 
10, 
&number ); 

RtlAppendUnicodeStringToString( 
&linkName, 
&number ); 

II 
II Remove symbolic link from Object 
I I namespace ... 
II 
IoDeleteSymbolicLink( &linkName ); 

II 
II Get address of next Device object 
II and get rid of the current one ... 
II 
pDevObj = pDevObj->NextDevice; 
IoDeleteDevice( pDevExt->DeviceObject ); 
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II 
II Deallocate hardware resources owned ~ 
II by the Driver object ... 
I! 
ResList.Count = 0; 

IoReportResourceUsage( 
NULL, 
DriverObject, 
&ResList, 
sizeof( ResList 
pDevObj, 
NULL, 
0, 
FALSE, 
&bConflict ); 

) , 

II Build an empty list 

II 
II 
II 

II 
II 

Default class name 
Pointer to Driver object 
Driver resources 

Pointer to Device object 
Device resources 

II Don't override conflicts 
II Junk, but required 

o We're going to run the linked list of Device objects in order to do our 
cleanup. Get the first Device object from the Driver object. 

~ The mechanics of actually releasing allocated hardware will be the subject 
of Chapter 7. For the moment, just treat these two calls to IoReportRe
sourceUsage as a piece of necessary magic. 

6.6 WRITING SHUTDOWN ROUTINES 

If your driver has any special processing to do before the operating system disap
pears, you'll need to write a Shutdown routine. 

Execution Context 

The I/O Manager calls your Shutdown routine once during system shut
down. As you can see from Table 6.5, the Shutdown routine runs at PAS
SIVE_LEVEL IRQL, which means it has access to paged system resources. 

Table 6.5 Function prototype for a Shutdown routine 

NTSTATUS XxShutdown 

Parameter 

IN PDRIVER_OBJECT DriverObject 
IN PIRPIrp 
Return value 

IRQL == PASSIVE_LEVEL 

Description 

Pointer to Driver object for this driver 
Pointer to shutdown IRP 
• STATUS_SUCCESS - success 
• STATUS_XXX - appropriate error code 
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What a Shutdown Routine Does 

The main purpose of a Shutdown routine is to put the device into a known 
state and perhaps store some device information in the Registry. Again, saving the 
current volume settings from a sound card is a good example of something a 
Shutdown routine would do. 

Unlike the driver's Unload routine, Shutdown routines don't have to worry 
about releasing driver resources because the operating system is about to disap
pear anyway. 

Enabling Shutdown Notification 

If you examine the fields in the Driver object, it won't be obvious where the 
address of your Shutdown routine should go. That's because shutdown notifica
tions are delivered to your driver in the form of an I/O request whose function 
code is IRP _MLSHUTDOWN. This means that your Shutdown routine is really a 
Dispatch routine which needs to be added to the Driver object's MajorFunction 
array. 

But wait, it doesn't stop there. You also need to tell the I/O Manager that 
you're interested in receiving shutdown notifications. You do this by making a call 
to IoRegisterShutdownNotification. 

The following code fragment, taken from a DriverEntry routine, shows how 
to enable shutdown notifications in your driver. 

NTSTATUS DriverEntry( 
IN PDRIVER_OBJECT pD~, 
IN PUNICODE STRING RegistryPath 

pDO->MajorFunction[ IRP_MJ SHUTDOWN 1 = xxShutdown; 
IoRegisterShutdownNotification( pD~ ); 

6.7 TESTING THE DRIVER 

Even though your driver is far from being complete, there are still a few things 
you can do at this point to verify its operation. In particular, you can test the 
driver to be sure that it 

• Compiles and links successfully 

• Loads and unloads without crashing the system 

• Creates Device objects and Win32 symbolic links 

• Releases any resources when it unloads 
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These goals may not seem very ambitious, but once you've reached them, 
you know you have a solid base on which to build the rest of your driver. 

Testing Procedure 

You can use the following procedure to test your driver. If any of the steps 
fail, or if you crash the system, find and correct the problem before going on to the 
next phase of the test. 

1. Write a SOURCES file for your driver. 

2. Use the BUILD utility to create the driver file. 

3. Move the driver to its target destination. 

4. Install the driver using REGEDT32. Specify manual loading. 

5. Reboot the system. 

6. Use the Control Panel Devices applet to load and start the driver. 

7. Use WINOBJ to see if your driver has created a Device object and its Win32 
symbolic link. 

8. Stop the driver using the Control Panel Devices applet. 

9. Examine the Object Manager's namespace with WINOBJ to be certain the 
driver has removed any objects it created. 

The WINOBJ Utility 

WINOBJ is a tool that comes with the Win32 SDK (not the DDK). This little 
gem lets you view the NT Object Manager's namespace and determine whether 
your driver has created its Device object and symbolic link. Microsoft supplies 
executable versions of WINOBJ for the Alpha, Intel, and MIPS architectures. 
Unfortunately, you won't find any source code for WINOBJ since it makes direct 
calls to some native NT system services. 

To use WINOBJ, just run the executable. The program will display the win
dow pictured in Figure 6.2. The left pane shows the NT object directory in the 
form of file folders. Double-clicking on a particular folder will show its contents 
in the right window pane. Double-clicking on some objects in the right-hand pane 
will display additional information about the object.3 As a driver writer, you'll be 
mainly interested in the driver, DosDevices, and device directories. 

3 WINOBJ is a little "throw-away" application that someone at Microsoft wrote. It doesn't know 
how to display information about all object types, nor do all of its informational displays make 
sense. Unfortunately, because it uses some of the "secret" NtXxx system calls, its source code isn't 
included with the SDK. 
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Figure 6.2 Main window of the WINOBJ utility 

At this point, your driver is on its way. It can initialize itself and present both NT 
and Win32 devices to the system. Depending on your specific needs, it may also 
be able to perform various cleanup operations, either when it's unloaded manu
ally or when the system shuts down. 

Unfortunately, your driver still can't locate the hardware it's supposed to be 
managing. This is a serious deficiency for a device driver, and it's one we'll see 
how to remedy in the next chapter. 
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Hardware 
Ini tializa tion 

One of the first things a device driver does is to 
locate any devices it has to manage. This means finding their control registers, 
determining their DMA capabilities and the IRQ levels at which they interrupt, 
and locating any device-specific memory. In other words, the driver has to come 
up with a list of the hardware resources used by its devices. This turns out to be a 
much easier task if the hardware is auto-detectable. This chapter explains how to 
determine the resources needed by a device regardless of whether it auto-detects 
or not. 

However, it's not enough to know what resources a device uses. Device 
drivers also have to claim ownership of any hardware resources they plan to use, 
in order to avoid collisions with other drivers. At the end of this chapter, you'll 
learn how to allocate and deallocate system hardware. 

7.1 FINDING AUTO-DETECTED HARDWARE 

122 

During system bootstrap, NT goes to a lot of trouble to figure out what kinds of 
peripherals are attached to the system. This section explains how the process 
works and how your driver can access auto-detected hardware information. 

How Auto-Detection Works 

The exact mechanism used for detecting hardware depends on the platform 
architecture. On 80x86 systems, a bootstrap component called NTDETECT gath-
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ers information about the hardware environment, while on RISC-based machines, 
the ARC firmware performs a similar function. In either case, the detection com
ponent makes this hardware data available to the operating system loader, which 
in turn writes it into the ... \HARDWARE\DESCRIPTION area of the Registry. 
Later, device drivers can use this information to control their initialization. 

The detection components use whatever methods they can to determine the 
identity and characteristics of a given system. This includes both interrogating the 
hardware directly, as well as using information in the ROM BIOS to draw conclu
sions about devices attached to the system. Among other things, auto-detection 
tries to determine 

• The number and type of any I/O buses on the system 

• Extended information about the bootstrap device itself 

• Information about the monitor and video adapter used to display boot
strap messages 

• The presence and location of keyboard and mouse hardware 

• Number and location of serial and parallel controllers and any recogniz
able printers or terminals attached to them 

• The presence and identity of any network cards 

• Information about any other devices on each 1/ a bus 

The specific kinds of data that auto-detection searches for include the 
address and number of a device's control registers, hardware interrupt levels. used 
by the device, information about a device's DMA capabilities, and any ranges of 
physical memory used by the device. If the hardware offers any device-specific 
data, auto-detection will collect that as well. 

This is a wonderful scheme, and it promises to make the lives of driver writ
ers much easier in the long run. Later releases of Windows NT will use this strat
egy as a basis for supporting Plug and Play capabilities. At the moment, however, 
most ISA devices don't have a lot to say for themselves and therefore don't show 
up during auto-detection. This means that drivers of ISA devices have to use 
other means for locating their hardware. Fortunately, PCI, native EISA, and MCA 
devices are much more talkative. 

Auto-Detected Hardware and the Registry 

Regardless of how NT auto-detects a given piece of hardware, Registry 
information about the hardware always has a standard format. This isolates driv
ers from any bus or platform peculiarities and generally makes life easier for 
driver writers. Figure 7.1 shows a portion of the Registry'S hardware description 
area. 

The keys and subkeys below ... \ System form a tree-structured model of 
any auto-detectable hardware. Keys with alphanumeric names correspond to 



124 Chapter 7 Hardware Initialization 

C HARDWARE 

L DESCRIPTION 

l"Lm 
MultifunctionAdapter 

Lo 
L DiskController 

Copyright © 1996 by Cydonix Corporation. 960001 a.vsd 

Lo 
L FloppyPeripheral 

L y C~po",",I"'o~'o" 
Configuration Data 
Identifier 

Figure 7.1 Auto-detected hardware data in the Registry 

general classes of hardware. Hanging from each of these keys will be one or more 
subkeys whose names are integers. These numeric subkeys identify specific 
instances of a CPU, a floating-point unit, a bus, a controller, or a device. In the fig
ure, the MultifunctionAdapter key represents a category of buses (in this case 
ISA), and the subkey 0 below it represents the first actual instance of such a bus. 
DiskController\O is connected to this bus, and FloppyPeripheral \0 is attached to 
this controller. 

Tucked away in the numeric sub keys, you'll find value items containing any 
information that NT was able to auto-detect. Three value items can show up in 
one of these numeric sub keys: 

• Componentlnformation - This is binary data that (hopefully) the driver 
will know how to interpret. 

• Configuration Data - This names the resources needed by the hardware 
in the form of a REG_FULL_RESOURCE_DESCRIPTOR item. 

• Identifier - This is an identifier string generated by the hardware or the 
system BIOS. It's converted to Unicode when it goes into the Registry. 

You can use the Registry editor, REGEDT32, to browse through this auto
detected hardware data. This is very helpful if you're trying to resolve conflicts or 
make sure that something is auto-detecting properly. Once you've selected a con
troller or peripheral's numeric subkey, double-clicking on the ComponentInfor-
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mation value will bring up a display of the resources needed by that piece of 
hardware. 

Querying the Hardware Database 

Although you're free to wander through the hardware description area 
using RtlXxx and ZwXxx routines, IoQueryDeviceDescription (shown in Table 
7.1) makes the process a little less painful. You give this function a pattern describ
ing the kind of hardware information you want, and a callback routine. IoQuery
DeviceDescription will then rummage around in the Registry and invoke your 
callback routine each time it finds something that matches the pattern. 

You tell IoQueryDeviceDescription what level of detail you want by using the 
XxxType arguments listed in Table 7.2. Only the following combinations will work: 

• BusType alone gets just bus-level information'! 

• BusType and ControllerType gets bus and controller information 

• BusType, ControllerType, and PeripheralType together will give you 
device-level information. 

Table 7.1 Prototype for loQueryDeviceDescription 

NTSTATUS loQueryDeviceDescription IRQL == PASSIVE_LEVEL 

Parameter 

IN PINTERFACE_TYPE BusType 
IN PULONG BusNumber 
IN PCONFIGURATION_TYPE 

ControllerType 
IN PULONG ControllerNumber 
IN PCONFIGURATION_TYPE 

PeripheralType 
IN PULONG PeripheralNumber 
IN PIO_QUERY _DEVICE_ROUTINE 

Callback 
IN PVOID Context 
Return value 

Description 

Desired bus architecture (see below) 
Zero-based bus number 
Desired controller type (see 

below) 
Zero-based controller number 
Desired device type (see 

below) 
Zero-based device number 
Address of ConfigCallback routine 

Address of driver's configuration buffer 
• STATUS_OBJECT_NAME_NOT_FOUND 
• STATUS_XXX from ConfigCallback 

1 To get information about all the buses on amachine, call IoQueryDeviceDescription in a loop and 
iterate the BusType from zero to MaximumInterfaceType. Alternatively, you can use the HalQue
rySystemlnformation function to get an explicit list of the buses on the machine. 
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Table 7.2 Bus, controller, and peripheral types for loQueryOeviceOescription 

XxxType arguments for loQueryDeviceDescription 

BusType 

CBus 
Eisa 
Internal 
Isa 
MicroChannel 
MPIBus 
MPSABus 
NuBus 
PCIBus 
PCMCIABus 
TurboChannel 
VMEBus 

ControllerType 

AudioController 
CdromController 
DiskController 
DisplayController 
KeyboardController 
NetworkController 
ParallelController 
PointerController 
SerialController 
TapeController 
WormController 
OtherController 

PeripheralType 

DiskPeripheral 
FloppyDiskPeripheral 
KeyboardPeripheral 
LinePeripheral 
ModemPeripheral 
MonitorPeripheral 
NetworkPeripheral 
Pointer Peripheral 
PrinterPeripheral 
TapePeripheral 
TerminalPeripheral 
OtherPeripheral 

Notice that the XxxType arguments are pointers to variables and not the val
ues themselves. You pass a NULL pointer to indicate that you don't want a partic
ular kind of information. 

You can get data about specific buses, controllers, or devices using one or 
more of the XxxNumber parameters. These arguments are pointers to variables 
containing the number of the bus, controller, or device that you're asking about. 
Passing a NULL pointer causes the I/O Manager to enumerate all items of a par
ticular type. 

To see how this works, suppose you call IoQueryDeviceDescription and 
specify BusType as Eisa, BusNumber as 0, ControllerType as DiskController, and 
NULL for the ControllerNumber. The I/O Manager will call your ConfigCallback 
routine once for each disk controller on EISA bus o. With each invocation, the 
callback will receive data about EISA bus 0 and one particular controller, but 
nothing about any devices connected to that controller. Since multiple disk con
trollers can be attached to a single bus, the ConfigCallback might get the same 
bus information more than once, even though the controller information will be 
different each time. 

Now, suppose you make the same call to IoQueryDeviceDescription, but 
this time you further restrict the search by specifying PeripheralType as Floppy
DiskPeripheral and NULL for the PeripheralNumber. In this case, your Config
Callback will be called for each floppy drive on EISA bus o. Along with bus and 
controller data, each call will receive information about a different floppy disk 
device. In this case, both the bus and controller information may be repeated for 
multiple calls (because several floppies can share the same controller). 
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If IoQueryDeviceDescription can't find anything in the Registry that 
matches your request, it returns STATUS_OBJECLNAME_NOLFOUND with
out invoking the ConfigCallback routine. Otherwise, it continues to execute your 
callback until it runs out of matching items, or until your callback returns a value 
other than STATUS_SUCCESS. In this case, it's supposed to return the last 
NTSTATUS value sent back by your callback routine. 

That's the theory. In practice, if you pass a NULL BusNumber parameter, 
you always get STATUS_OBJECT_NAME_NOLFOUND from IoQueryDevice
Description. This value comes back regardless of whether your callback was 
invoked, and it supersedes whatever status value your callback might have 
returned. This problem doesn't occur with the other two XxxNumber arguments. 
For this reason, the code example in the next section manually iterates both 
BusType and BusNumber. 

What a ConfigCallback Routine Does 

Each time IoQueryDeviceDescription invokes your ConfigCallback rou
tine, it passes the arguments listed in Table 7.3. These arguments are valid only 
within the ConfigCallback routine itself, so you have to store any configuration 

Table 7.3 Function prototype for a configuration callback 

NTSTATUS XxConfigCallback 

Parameter 

IN PVOID Context 
IN PUNICODE_STRING PathName 

IN INTERFACE_TYPE BusType 
IN ULONG BusNumber 
IN PKEY_ VALUE_FULL_INFORMATION 

*BusInformation 
IN CONFIGURATION_TYPE ControllerType 
IN ULONG ControllerNumber 
IN PKEY_ VALUE_FULL_INFORMATION 

*ControllerInformation 
IN CONFIGURATION_TYPE PeripheralType 
IN ULONG PeripheralNumber 
IN PKEY_ VALUE_FULL_INFORMATION 

*PeripheralInformation 
Return value 

IRQL == PASSIVE_LEVEL 

Description 

Address of configuration buffer 
Registry path for bus, controller, or 

device information 
Bus architecture 
Zero-based bus number 
Pointer to Registry information 

Controller type 
Zero-based controller number 
Pointer to Registry information 

Device type 
Zero-based device number 
Pointer to Registry information 

• STATUS_SUCCESS 
• STATUS_XXX - error code 
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data that you'll need later in a temporary buffer. Usually, you allocate this buffer 
somewhere in your DriverEntry routine and pass its address as the Context argu
ment to IoQueryDeviceDescription. 

Although the specific steps will depend on the hardware you're working 
with, a ConfigCallback routine generally does the following: 

1. It scans the Registry information for base-register address, count of registers, 
interrupt level and vector information, and DMA channel requirements. 

2. The ConfigCallback then stores the Registry values in the Config block allo
cated by DriverEntry. 

3. It translates the Registry's bus-specific values into systemwide values that 
your driver can use and stores these values in the Config block as well. 

Each time IoQueryDeviceDescription calls your ConfigCallback routine, 
you repeat this procedure for a new controller or device that matches your query. 

Using Configuration Data 

Your main sources of information in a ConfigCallback routine come from the 
various XxxType, XxxNumber, and XxxInformation arguments. The meaning of 
the XxxType and XxxNumber items should be pretty obvious, but the XxxInfor
mation arguments need some explanation. 

Each XxxInformation argument is actually a pointer which mayor may not 
be NULL, depending on what you've asked for. If you follow this pointer, you 
come to an array of three items. Use one of these predefined constants to index 
into this array: 

• loQueryDeviceldentifier - Points to any auto-detected hardware name 
information stored in the Registry as a Unicode string. 

• loQueryDeviceConfigurationData - Points to any bus-relative Registry 
information about the bus, controller, or device that was discovered dur
ing auto-detection. 

• loQueryDeviceComponentlnformation - Points to information about 
a device's subcomponents. 

Of these, IoQueryDeviceConfigurationData is probably the most helpful. 
Using this constant as an index into one of the XxxInformation arrays gets you a 
pointer to a KEY_ VALUE_FULL_INFORMATION structure which, in tum, contains 
the actual Registry data about a bus, controller, or device. Figure 7.2 shows how this 
works for the ControllerInformation argument to a ConfigCallback routine. 

The group of CM_PARTIAL_RESOURCE_DESCRIPTOR items hanging 
from the bottom of this whole mess contains the actual hardware information 
you're looking for. As you can see from Table 7.4, each descriptor identifies one 
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Controllerlnformation[ loQueryDeviceConfigurationData ] 

KEY VALUE FULL INFORMATION - - f 

DataOffset 

Figure 7.2 Hardware information given to a configuration callback 

Table 7.4 Contents of a partial resource descriptor 

Field Description 

UCHARType Identifies resource being described:· 
• CmResourceTypePort 
• CmResourceTypeInterrupt 
• CmResourceTypeDma 
• CmResourceTypeMemory 
• CmResourceTypeDeviceSpecificData 

UCBAR ShareDisposition 

USHORT Flags 
union u 

struct Port 
struct Interrupt 
structDma 
structMemory 
struct DeviceSpecificData 

Level of sharing for this resource: 
• CmResourceShareDeviceExclusive 
• CmResourceShareDriverExclusive 
• CmResourceShareShared 

Type-specific values 
Union based on Type field 
• Control register address and span 
• Interrupt level and vector 
• DMA channel and port 
• Device memory address and span 
• Device-specific information 
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kind of hardware resource used by the device. To extract this data, you need to 
do a little pointer arithmetic and then examine each of the partial resource 
descriptors. 

There's something you need to be aware of when you start pulling informa
tion from Partial Resource Descriptors: The partial descriptors are in no particular 
order, so you need to walk through all of them to find the information you want. 
The only exception to this is device-specific data, which if present, will always be 
the last partial descriptor.2 

Translating Configuration Data 

After you've pulled all this data from the Registry, there's still one more step. 
The information in the partial descriptors is all bus-relative, just the way the auto
detection component found it. To use these values in your driver, you need to 
translate them into their systemwide equivalents. Specifically, you need to call 
some of the following functions: 

• HalTranslateBusAddress - Converts device memory and register 
addresses from bus-relative to system-wide values. 

• HalGetlnterruptVector - Converts bus-specific interrupt information 
into system-assigned values for the vector, DIRQL, and affinity mask. 
Chapter 9 explains how to use these values to connect to an Interrupt 
object. 

• HalGetAdapter - locates an Adapter object your driver can use to per
form DMA operations with a specific device. Chapter 12 explains how to 
use this function. 

It's worth mentioning that, in some environments, some of these transla
tions may not do very much, but for portability, you need to perform them 
anyway. 

7.2 CODE EXAMPLE: LOCATING AUTO-DETECTED HARDWARE 

This rather long example shows how to pull auto-detected hardware information 
from the Registry. Specifically, it looks for all the hardware of type Parallel Con
troller. You can find these files in the CH07 directory on the disk that accompanies 
this book. 

2 This is because device-specific data is variable in length. Another implication is that there can be 
only one device-specific data item in a group of partial resource descriptors. 
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XXDRIVER.H 

The following excerpts from the driver's header file show the driver-defined 
data structures involved in hardware configuration.3 

DEVICE_BLOCK This temporary structure is carved out of paged pool 
and is used only during driver initialization. It holds information about one spe
cific piece of hardware. Some of the items in this block will later be copied into the 
Device Extension block for safekeeping. 

typedef struct _DEVICE_BLOCK { 
II 
II Original values pulled from the Registry 
II 
PHYSICAL_ADDRESS OriginalPortBase; 
ULONG PortSpan; 
ULONG OriginalIrql; 
ULONG OriginalVector; 
KINTERRUPT_MODE InterruptMode; 
BOOLEAN ShareVector; 
BOOLEAN FloatingSave; 
ULONG OriginalDmaChannel; 
II 
II Converted values that will be used by 
II the driver 
PUCHAR PortBase; II First control register 
ULONG SystemVector; 
KIRQL Dirql; 
KAFFINITY Affinity; 

DEVICE_BLOCK, *PDEVICE_BLOCK; 

CONFIG_ARRAY This structure is an array of DEVICE_BLOCKs that hold 
temporary information about all the hardware belonging to the driver on one par
ticular bus. In theory, multiple devices might show up on different buses, in 
which case there would be a linked list of CONFIG_ARRAYs. The Count field 
keeps track of how many DEVICE_BLOCKs actually contain valid data. 

typedef struct _CONFIG_ARRAY 
II 
II We keep a list of these arrays, one 
II for each bus-type/bus-number combination 

3 You'll notice some DMA-related fields in the following structures. Since the parallel port doesn't 
perform any DMA, these won't be used. Chapter 12 will show you how to fill them in. 
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II where we find our hardware. 
II 
struct _CONFIG_ARRAY *NextConfigArray; 
II 
II The bus to which all the devices in this 
II array are attached. 
/! 
INTERFACE_TYPE BusType; 
ULONG BusNumber; 
II 
II Number of devices in this array 
/! 
ULONG Count; 

II 
II One array-element for each device 
II 
DEVICE_BLOCK Device[ XX_MAXIMUM_DEVICES l; 

CONFIG_ARRAY, *PCONFIG_ARRAY; 

DEVICE_EXTENSION This driver-defined structure is created from non
paged pool by IoCreateDevice and automatically attached to our Device object. 
It holds information that will be needed throughout the life of the driver. 

typedef struct _DEVICE_EXTENSION { 
PDEVICE_OBJECT DeviceObject; II Back pointer 

ULONG NtDeviceNumber; 
PUCHAR PortBase; 

PKINTERRUPT pInterrupt; 

PADAPTER_OBJECT pAdapter; 
ULONG cMapRegs; 
UCHAR DeviceStatus; 

II Zero-based device num 
II First control register 

II Interrupt object 

II DMA Adapter object 
II Count of mapping regs 
II Most recent status 

DEVICE_EXTENSION, *PDEVICE_EXTENSION; 

AUTOCON.C 

This group of functions scans the Registry's hardware description map for 
all the parallel controllers. It fills in a separate DEVICE_BLOCK for each piece of 
hardware it finds. The result is a linked list of CONFIG_ARRAYs describing all 
the parallel controllers on all buses in this machine. 

XxGetHardwarelnfo This routine just loops through all the known bus 
types and checks to see if one or more of our devices live on each bus. This is 
mainly a harness for the call to IoQueryDeviceDescription. 
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NTSTATUS 
XxGetHardwareInfo( 

IN PUNICODE_STRING RegistryPath, II (unused) 
OUT PCONFIG_ARRAY *ConfigList 
) 
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INTERFACE_TYPE InterfaceType; 
ULONG InterfaceNumber; 
CONFIGURATION_TYPE CtrlrType 
PCONFIG_ARRAY ConfigArray; 
NTSTATUS status; 

ParallelController; 0 

*ConfigList = NULL; II No devices located yet 
II 
II Run through all the various bus types and 
II see if our device is on any of them ... 
II 
for( InterfaceType = 0; 

InterfaceType < MaximumInterfaceType; 
InterfaceType++ ) 

InterfaceNumber 0; 
do { 

status = IoQueryDeviceDescription( @ 
&InterfaceType, 
&InterfaceNumber, 
&CtrlrType, 

II 

NULL, 
NULL, 
NULL, 
XxConfigCallback, 
ConfigList ); 

II Return to caller if a real 
II error occurs 
II 
if( !NT_SUCCESS( status ) ~ 

&& status != 
STATUS_OBJECT_NAME_NOT_FOUND 

XxReleaseHardwareInfo( 
*ConfigList ); 

*ConfigList = NULL; 
return status; 
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InterfaceNumber++i 
while ( status != 

STATUS_OBJECT_NAME NOT FOUND )i 

} II end of for-loop 
if( *ConfigList == NULL) 

return STATUS_NO_SUCH_DEVICEi 
else 

return STATUS_SUCCESSi 

o This is the hardware category. Notice that the parallel port is considered 
to be a controller rather than a device. 

@ Since we're specifying a controller type, our callback will be invoked once 
for each piece of hardware on the current bus that matches the Parallel
Controller type. 

@) STATUS_OBJECT_NAME_NOT_FOUND simply means there is no such 
item on the current bus - so we keep looking. Other kinds of errors 
cause us to abort. 

XxConfigCaliback This routine gets called by the I/O Manager once for 
each device that matches the category Parallel Controller. We have to scan through 
the Registry data for information about I/O port addresses and interrupt behavior. 

static NTSTATUS 
XxConfigCallback( 

IN PVOID Context, 
IN PUNICODE_STRING PathName, 
IN INTERFACE_TYPE BusType, 
IN ULONG BusNumber, 
IN PKEY_VALUE_FULL_INFORMATION *BusInfo, 
IN CONFIGURATION_TYPE CtrlrType, 
IN ULONG CtrlrNumber, 
IN PKEY_VALUE_FULL_INFORMATION *CtrlrInfo, 
IN CONFIGURATION_TYPE DeviceType, 
IN ULONG DeviceNumber, 
IN PKEY_VALUE_FULL_INFORMATION *DeviceInfo 
) 

II 
II SO we don't have to typecast the context. 
II 
PCONFIG_ARRAY *ConfigList Contexti 

II 
II Short-hand pointers to resource data 
II 
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PCM_FULL_RESOURCE_DESCRIPTOR pFrd; 
PCM_PARTIAL_RESOURCE_DESCRIPTOR pPrd; 
PCONFIG_ARRAY ConfigArray; 
PDEVICE_BLOCK DeviceBlock; 

II 
II These booleans will tell us whether we got 
II all the information that we needed. 
II 
BOOLEAN bFoundPort = FALSE; 
BOOLEAN bFoundlnterrupt FALSE; 
NTSTATUS status; 
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ULONG i; II Generic loop control 

II 
II Locate the Config Array for this bus 
II 
status = XxFindMatchingConfigArray(O 

BusType, 
BusNumber, 
ConfigList, 
&ConfigArray ); 

if( !NT_SUCCESS( status )) 
{ 

} 

II 

return status; 

II See if there's any room left in the Config 
II Array; if not, just drop this device on the 
II floor 
II 
if( ConfigArray->Count >= XX_MAXlMUM_DEVICES 
{ 

} 

/I 

return STATUS_SUCCESS; 

II Make it easier to refer to the slot in the 
II Config Array belonging to this device 
II 
DeviceBlock = 

&ConfigArray->Device[ConfigArray->Count]; 

/I 
II Get pointer to beginning of configuration 
II data for this device in the Registry 
II 
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pFrd = (PCM_FULL_RESOURCE_DESCRIPTOR) @ 
(((PUCHAR)CtrlrInfo 

[IoQueryDeviceConfigurationData]) 
+ CtrlrInfo 

[IoQueryDeviceConfigurationData] 
->DataOffset); 

II 
II Loop through all Partial Resource Descriptors 
II looking for Port and Interrupt information 
II 
for ( i = 0; ~ 

i < pFrd->PartialResourceList.Count; 
i++ ) 

pPrd = &pFrd->PartialResourceList 
.PartialDescriptors[i]; 

II 
II Switch on the various partial resource 
II types. Pullout the pieces we need ... 
II 
switch ( pPrd->Type ) 0 
{ 

case CmResourceTypePort: 

bFoundPort = 

break; 

XxGetPortInfo( 
pPrd, 
BusType, 
BusNumber, 
DeviceBlock ); 

case CmResourceTypeInterrupt: 

bFoundInterrupt = 

break; 

default: 
break; 

} II end of switch 
} II end of for-loop 

XxGetInterruptInfo( 
pPrd, 
BusType, 
BusNumber, 
DeviceBlock ); 
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if( ! ( bFoundPort && bFoundInterrupt » ~ 

{ 

II 
II Account for the slot that we've just 
I I filled up ... 
II 
ConfigArray->Count++; ~ 
return STATUS_SUCCESS; 
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o XxFindMatchingBus is a helper function that locates the Config Array for 
a specific bus type and number combination. If this is the first time a par
ticular bus has been encountered, it creates an empty Config Array and 
links it into the caller-supplied Config List. 

@ Create a pointer to the Full Resource Descriptor for this device. To do this, 
we need to skip over the header information by adding the DataOffset 
field to the starting address of the block. 

8 The Partial Resource Descriptors are in no particular order, so we have to 
loop through all of them looking for information about ports and inter
rupts. Anything we don't recognize, we ignore. 

o Switch on the Partial Resource type and call a helper function to extract 
the useful information from it. The parallel controller needs only port and 
interrupt data; for other devices you might need to add cases for CmRe
sourceTypeDma, CmResourceTypeMemory, or CmResourceTypeDevice
SpecificData. 

~ When the entire scan is complete, check to be sure that all the components 
have been found. If anything is missing, signal an error. 

<D Each time we successfully locate a device, we use up one more slot in the 
Config Array. The Count field keeps track of this. 

XxGetPortlnfo and XxGetlnterruptlnfo Here are the two helper func
tions. Each one simply pulls information out of a specific kind of Partial Resource 
Descriptor and stores it in the appropriate fields of a DEVICE_BLOCK. They also 
translate bus-specific values into their systemwide equivalents. 

11++ 
II Function: 
II XXGetPortInfo 
II 
II Description: 
II This function pulls IIO Port infomation 
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II 
II 
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from a Partial Resource Descriptor 

II Arguments: 
II 
II 
II 
II 
II 

Pointer to a Partial Resource Descriptor 
Bus type for this device 
Bus number for this device 
Pointer to this device's slot in Config Array 

II Return Value: 
II This function returns TRUE if we found the 
II 

11--
data we wanted, FALSE otherwise. 

static BOOLEAN 
XxGetPortInfo( 

11++ 

IN PCM_PARTIAL_RESOURCE DESCRIPTOR pPrd, 
IN INTERFACE_TYPE BusType, 
IN ULONG BusNumber, 
IN PDEVICE_BLOCK DeviceBlock 
) 

PHYSICAL_ADDRESS TranslatedPortBase; 
ULONG uAddressSpace = 1; 

DeviceBlock->OriginalPortBase = 
pPrd->u.Port.Start; 

DeviceBlock->PortSpan = pPrd->u.Port.Length; 
if( !HalTranslateBusAddress( 

BusType, 
BusNumber, 
DeviceBlock->OriginalPortBase, 
&uAddressSpace, 
&TranslatedPortBase )) 

return FALSE; 

DeviceBlock->PortBase 
(PUCHAR) TranslatedPortBase.LowPart; 

return TRUE; 

II Function: 
II XxGetInterruptInfo 
II 
II Description: 
II This function pulls Interrupt infomation 
II from a Partial Resource Descriptor 
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II 
II Arguments: 
II Pointer to a Partial Resource Descriptor 
II Bus type for this device 
II Bus number for this device 
II Pointer to this device's slot in Config Array 
II 

II Return Value: 
II This function returns TRUE if we found the 
II data we wanted, FALSE otherwise. 
II--
static BOOLEAN 
XxGetInterruptInfo( 

IN PCM_PARTIAL_RESOURCE DESCRIPTOR pPrd, 
IN INTERFACE_TYPE BusType, 
IN ULONG BusNumber, 
IN PDEVICE_BLOCK DeviceBlock 
) 
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if( pPrd->Flags == CM_RESOURCE_INTERRUPT_LATCHED 
DeviceBlock->InterruptMode Latchedj 

else 
LevelSensitivej DeviceBlock->InterruptMode 

DeviceBlock->OriginalIrql = 
pPrd->u.Interrupt.Levelj 

DeviceBlock->OriginalVector 
pPrd->u.Interrupt.Vectorj 

DeviceBlock->ShareVector = FALSEj 
DeviceBlock->FloatingSave FALSEj 
DeviceBlock->SystemVector 

HalGetInterruptVector( 
BusType, 
BusNumber, 
pPrd->u.Interrupt.Level, 
pPrd->u.Interrupt.Vector, 
&DeviceBlock->Dirql, 
&DeviceBlock->AffinitY)j 

return TRUEj 

7.3 FINDING UNRECOGNIZED HARDWARE 

If your device doesn't show up under auto-detection, or if you just need to sup
plement the auto-detected information, you can hard-code additional information 
into the Registry. This section explains how. 
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Adding Driver Parameters to the Registry 

One way to tell your driver about hardware is to hard-code the information 
in a nonvolatile area of the Registry. Although this doesn't seem like a very ele
gant solution, in the absence of any auto-detection capabilities, it may be your 
only option. Many ISA devices will require the use of this technique. 

The standard convention is to store device information in one or more value 
entries beneath a subkey called Parameters, which dangles off the driver's service 
key in the Registry. Figure 7.3 shows how this works. It's usually up to the driver's 
installation procedure to set up the Parameters area. For example, suppose your 
driver works with a device that the user has to configure manually with DIP 
switches. When the driver's installation program runs it displays a dialog box ask
ing the user for the port address, IRQ, and DMA settings selected on the device. It 
then stores this information in the Parameters area where the driver can find it. 

There are no particular standards for the format of driver-specific parameter 
data. You simply need to store the same kinds of information that your device 
would generate if it auto-detected. As we've already seen, this can include the 
addresses of any control registers, the IRQ level used by the device, information 
about its DMA capabilities, and the address and span of any device memory. If 
your driver supports multiple devices, it's probably a good idea to create separate 
subkeys underneath Parameters for each individual device. In Figure 7.3, these 
are the DeviceO and Devicel subkeys. 

Retrieving Parameters from the Registry 

You use RtlQueryRegistryValues (described in Table 7.5) to retrieve values 
from the Parameters subkey of your driver's Registry key. This is a very powerful 

HKEY _LOCAL_MACHINE 

L Svstem 

L CurrentControlSet 

L Services 

L XxDriver 

L Parameters 

Copyright © 1994 by Cydonix Corporation. 94oo49a.vOO 

y""'PORTo RE,,-OWORD, """" 
SPAN; REG_DWORD: Ox3 
IRQ: REG_DWORD: Ox7 

Device1 

Figure 7.3 Registry path for driver-specific parameters 
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Table 7.5 Prototype for RtlQueryRegistryValues function 

NTSTATUS RtlQueryRegistryValues 

Parameter 

IN ULONG RelativeTo 

IN PWSTR Path 
IN PRTL_QUERY_REGISTRY_ 

TABLE QueryTable 
IN PVOID Context 
IN PVOID Environment 

Return value 

tRQL == PASSIVE_LEVEL 

Description 

Specifies beginning of Registry path 
• RTL_REGISTRY _ABSOLUTE 
• RTL_REGISTRY _SERVICES 
• RTL_REGISTRY _CONTROL 
• RTL_REGISTRY _WINDOWS_NT 
• RTL_REGISTRY _DEVICE_MAP 
• RTL_REGISTRY _USER 
• RTL_REGISTRY _OPTIONAL 
• RTL_REGISTRY _HANDLE 
Identifies an absolute or relative path 
Address of a table describing the query 

Context passed to a QueryRoutine 
Environment block used to expand any 

REG_EXPAND_SZ registry entries 
• STATUS_SUCCESS 
• STATUS_INVALID_PARAMETER 
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• STATUS_OBJECT_NAME_NOT_FOUND 

function, and if you're going to be doing anything fancy with the Registry, you 
should become familiar with all its capabilities. For our purposes, we won't need 
to do much with it except translate a few value names. 

To work with RtlQueryRegistryValues, you need to construct a query table 
describing the values you want to translate. The query table is an array of 
RTL_QUERY_REGISTRY_TABLE items terminated with an entry containing 
NULL QueryRoutine and Name fields. Table 7.6 shows the format of the individ
ual items. 

As with auto-detected hardware information, it's a good idea to store the 
Registry data in a configuration buffer that other parts of your DriverEntry rou
tine can use. That way, you can move the driver to.aIl auto.,detecting environment 
without having tei" rewrite too much cocie.,Also· remember that values from the 
Registry still mustibe translated into systemwide values. 

Other Sources &i. Device Information 

Before we look at an exampkof using the Registry, it's worth mentioning 
some other sources of hardware.information. The first is _the HalGetBusData 
function which ;a:llows . you to interrogate a specific slot ona specific bus. This 
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Table 7.6 Query table entries 

Field Description 

PRTL_REGISTRY_QUERY_ 
ROUTINE QueryRoutine 

ULONGFlags 

Optional query routine to be called for each item 
found in the Registry 

Control interpretation of other fields 

PWSTRName 
PYOID EntryContext 
ULONG DefaultType 
PYOID DefaultData 
ULONG DefaultLength 

• RTL_QUERY _REGISTRY_SUBKEY 
• RTL_QUERY _REGISTRY_TOPKEY 
• RTL_QUERY _REGISTRY_REQUIRED 
• RTL_QUERY_REGISTRY_NOVALUE 
• RTL_QUERY _REGISTRY _NOEXPAND 
• RTL_QUERY_REGISTRY _DIRECT 
Name of the value caller wants to query 
32-bit value to be passed to QueryRoutine 
Type of data 
Data item to be used if queried item not present 
Default length of data item 

function returns a buffer containing any device-specific data available from a 
device. HalGetBusData is only useful if you're working with buses like PCI or 
EISA that generate a lot of information. 

Also, the I/O Manager keeps a data structure that tracks the number of disk, 
tape, floppy, SCSI-HBA, serial, and parallel Device objects that have been created 
by various drivers. Calling loGetConfigurationlnformation returns a pointer to 
this structure, which you can use to pick an appropriate number for a new device 
name. It's also your responsibility to increment the counts in this structure if you 
create any of the device types listed above. 

Finally, if none of the techniques we've looked at will work, you may have 
no alternative but to locate your hardware by poking various control register 
addresses. This a potentially dangerous and error-prone way to do things. If you 
take this approach, make sure you temporarily allocate the hardware before you 
fiddle with it. If the allocation fails, don't touch the hardware. Otherwise, you 
may be doing something that confuses an already-loaded driver that owns the 
hardware and has put it into a specific state. 

7.4 CODE EXAMPLE: QUERYING THE REGISTRY 

Here is another hardware locator. This one pulls information about ISA cards 
from the Parameters subkey of the driver's service key. You can find this code in 
the CH07 directory on the disk that accompanies this book. 
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REGCON.C 

This group of functions scans the driver's Parameters key looking for sub
keys with names like DeviceO, Devicel, and so on. Each time it finds one, it fills 
out another DEVICE_BLOCK using values from the Registry. 

XxGetHardwarelnfo This routine checks for the existence of an ISA bus on 
the machine; if no ISA bus shows up, it checks for an EISA bus where the ISA card 
might live. If neither type of bus exists on this machine, the routine fails. This 
indirect approach is necessary because ISA cards don't give any feedback about 
their presence. 

NTSTATUS 
XxGetHardwareInfo( 

IN PUNICODE_STRING RegistryPath, 
IN PCONFIG_BLOCK pConfig 
) 

NT STATUS status; 
PCONFIG_ARRAY ConfigArray; 
INTERFACE_TYPE BusType; 
ULONG BusNumber; 
UNICODE_STRING TempString; 

II 
II Check for a bus we can use. Look for an ISA bus 
II first, then look for an EISA bus. If neither one 
II shows up, quit. 
II 
BusType = Isa; 
BusNumber = 0; 

status = XxCheckForBus( Isa, BusNumber ); 

if( !NT_SUCCESS( status )) 
{ 

BusType = Eisa; 
status = XxCheckForBus( Eisa, BusNumber ); 

if( !NT_SUCCESS( status )) 
{ 

} 

II 

*ConfigList = NULL; 
return STATUS_NO_SUCH_DEVICE; 

II We found a compatible bus. Allocate 
II space for the (single) Config array 
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II that we'll be passing back to the 
II caller. 
II 
if(( ConfigArray ExAllocatePool( 

PagedPool, 
sizeof( CONFIG_ARRAY ))) 

== NULL ) 

*ConfigList = NULLj 
return STATUS_INSUFFICIENT_RESOURCESj 

} 

RtlZeroMemory( 
ConfigArray, 
sizeof( CONFIG_ARRAY )) j 

*ConfigList = ConfigArraYj 
ConfigArray->BusType = BusTypej 
ConfigArray->BusNumber BusNumberj 

II 
II Make a copy of the Registry path name 
II and be sure it has a terminator at the 
I I end ... 
II 
TempString.Length = OJ 0 
TempString.MaximumLength = 

RegistryPath->Length + 
sizeof( UNICODE_NULL )j 

if(( TempString.Buffer = 
ExAllocatePool( 

} 

NULL ) 

PagedPool, 
TempString.MaximumLength )) 

*ConfigList = NULLj 
ExFreePool( ConfigArray )j 

return STATUS_INSUFFICIENT_RESOURCESj 

RtlCopyUnicodeString( &TempString, RegistryPath )j 

TempString.Buffer[ TempString.Length 1 = 
UNICODE_NULL; 

II 
II Keep looping until we run out of device 
II slots or Registry entries, or until an 
II error occurs. 
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II 
ConfigArray->Count = 0; 

while ( ConfigArray->Count < XX_MAXIMDM_DEVICES ) @ 
{ 

status = xxFindNextDevice( 
Bus Type , 
BusNumber, 
&TempString, 
ConfigArray ); 

if( !NT_SUCCESS( status )) break; 

ConfigArray->Count++; 

} II end while-loop 

ExFreePool( TempString.Buffer ); 

if( !NT_SUCCESS( status) && 

II 

status != STATUS_OBJECT_NAME_NOT_FOUND ) $ 

*ConfigList = NULL; 
ExFreePool( ConfigArray ); 
return status; 

II See if we found anything after all 
II that work 
II 
if( ConfigArray->Count 
{ 

o ) 0 

*ConfigList = NULL; 
ExFreePool( ConfigArray ); 
return STATUS_NO_SUCH_DEVICE; 

} 

II 
I I Everything worked ... 
// 
return STATUS_SUCCESS; 

o We need to go through all these shenanigans because the RegistryPath 
argument is a counted UNICODE_STRING object, but the Registry query 
function wants a NULL-terminated array of Unicode characters. 

@ This loop keeps going until we run out of slots in the Configuration block, 
or until we don't find a matching entry in the Registry. The organization 
of this routine means that all the DeviceN subkeys must be consecutive. 
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fD STATUS_OBJECT_NAME_NOT_FOUND means we ran out of DeviceN 
subkeys, but it's not really an error. 

o There must have been at least one valid set of parameter information, or 
there's a problem somewhere. 

XxFindNextDevice This function extracts information about one device 
from the driver's service key and stores it in a slot in the Configuration block. 

static NTSTATUS 
XxFindNextDevice( 

IN INTERFACE_TYPE BusType, 
IN ULONG BusNumber, 
IN PUNICODE_STRING RegistryPath, 
IN PCONFIG_ARRAY ConfigArray 
) 

UNICODE_STRING SubPath; 
WCHAR PathNameBuffer[ 30 ]; 

UNICODE_STRING Number; 
WCHAR NumberBuffer[lO]; 

RTL_QUERY_REGISTRY_TABLE Table[5]; 0 
NTSTATUS status; 

PDEVICE_BLOCK pDevice = 
&ConfigArray->Device[ ConfigArray->Count ]; 

II 
II Prepare to interrogate the Registry by 
II setting up the query-table 
II 
RtlZeroMemory( Table, sizeof(Table)); 
II 
II Create a name string for the 
II query table. Start by forming 
II the base path name 
II 
SubPath.Buffer = PathNameBuffer; 8 
SubPath.MaximumLength = sizeof( PathNameBuffer ); 
SubPath.Length = 0; 

RtlAppendUnicodeToString( 

II 

&SubPath, 
L"Parameters\\Device" ); 

II Convert the device number into a string and 
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II attach it to the end of the path name. 
II 

147 

Number.Buffer = NumberBuffer; 
Number.MaximumLength = sizeof( NumberBuffer ); 
Number.Length = 0; 

RtlIntegerToUnicodeString( 
ConfigArray->Count, 
10, 
&Number ); 

II base-10 conversion 

RtlAppendUnicodeStringToString( 
&SubPath, 
&Number ); 

II 
II Fabricate the query 
II 
Table[O] .Name 
Table[O] .Flags 
Table[l] .Name 
Table[l] .Flags 

SubPath.Buffer; 
RTL_QUERY_REGISTRY_SUBKEY; ~ 
L"PORT"; II 1/0 port addr 
RTL_QUERY_REGISTRY_DIRECT; 

Table[l] . EntryContext = 
&pDevice->OriginalPortBase; 

Table[2].Name = L"SPAN"; II Number of ports 
Table[2] .Flags = RTL_QUERY_REGISTRY_DIRECT; 
Table[2] . EntryContext = 

&pDevice->PortSpan; 

Table[3] .Name = L"IRQ"; II IRQ level 
Table[3] .Flags = RTL_QUERY_REGISTRY_DIRECT; 
Table[3] .EntryContext = 

&pDevice->OriginalIrql; 
II 
II Query the Registry ... 
II 
status = RtlQueryRegistryValues( 0 

RTL_REGISTRY_ABSOLUTE, 
RegistryPath->Buffer, 
Table, 
NULL, NULL ); 

if( !NT_SUCCESS( status )) return status; 

II 
II Fix up and translate the information 
II from the Registry 
II 
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XxGetPortInfo( 0 
BusType, 
BusNumber, 
pDevice ); 

if( !NT_SUCCESS( status )) return status; 

status = XxGetInterruptInfo( 
BusType, 
BusNumber, 
pDevice ); 

return status; 

o We need four entries in the query table for our own use, plus one extra to 
terminate the query request. 

@ We need to create a string that looks like "Parameters\DeviceN" to repre
sent the sub key under the driver's service entry. 

~ This query just moves us down a level in the Registry so that all future 
queries will be taken from the Parameters\DeviceN subkey. 

o One call to RtlQueryRegistryValues does it all. It adds the subkey to the 
end of the driver's service key name, looks for all four value items, and 
dumps their contents back into the Configuration block. 

o From here on, we use some helper functions to make the data from the 
Registry usable. 

XxGetPortlnfo and XxGetlnterruptlnfo Here are the helper functions 
again. You'll notice that XxGetlnterruptlnfo has to do some fix-up work on the 
data it gets from the Registry. 

11++ 
II Function: 
II 
II 

XxGetPortInfo 

II Description: 
II This function fixes up 1/0 port infomation 
II 
II 
II Arguments: 
II 
II 
II 
II 

pulled from the driver's Registry service key 

Bus type 
Bus number 
Pointer to this device's slot in Config Array 

II Return Value: 
II STATUS_SUCCESS 
II STATUS_XXX if error 
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II--
static NTSTATUS 
XxGetPortInfo( 

IN INTERFACE_TYPE BusType, 
IN ULONG BusNumber, 
IN PDEVICE_BLOCK pDevice 
) 

ULONG AddressSpace; 
PHYSICAL_ADDRESS TranslatedPortBase; 
II 
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II Convert bus-relative port-information into NT 
II system-mapped values, and save the results ... 
II 

11++ 

AddressSpace = 1; II Ports should be in 1/0 space. 

if( !HalTranslateBusAddress( 
BusType, 
BusNumber, 
pDevice->OriginalPortBase, 
&AddressSpace, 
&TranslatedPortBase )) 

return STATUS_INSUFFICIENT_RESOURCES; 

pDevice->PortBase = 
(PUCHAR) TranslatedPortBase.LowPart; 

return STATUS_SUCCESS; 

II Function: 
II XxGetInterruptInfo 
II 
II Description: 
II This function fixes up IRQ infomation 
II pulled from the driver's Registry service key 
II 
II Arguments: 
II 
II 
II 
II 

Bus type 
Bus number 
Pointer to this device's slot in Config array 

II 
II 

Return Value: 
STATUS SUCCESS 

II STATUS_XXX if error 
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II--
static NTSTATUS 
XxGetInterruptInfo( 

IN INTERFACE_TYPE BusType, 
IN ULONG BusNumber, 
IN PDEVICE_BLOCK pDevice 
) 

// 
II Fill in the gaps by providing values for things 
II that aren't in the Registry ... 
II 
pDevice->InterruptMode = Latchedj 
pDevice->OriginalVector = pDevice->OriginalIrqlj 
pDevice->ShareVector = FALSEj 
pDevice->FloatingSave = FALSEj 

II 
II Convert bus-relative interrupt information into 
II NT system-mapped values, and save the results ... 
// 
pDevice->SystemVector = 

HalGetInterruptVector( 
BusType, 
BusNumber, 
pDevice->OriginalIrql, 
pDevice->OriginalVector, 
&pDevice->Dirql, 
&pDevice->AffinitY)j 

return STATUS_SUCCESSj 

XxCheckForBus and XxBusCaliback These little functions allow you to 
check for the existence of a particular bus on the system. They make use of IoQue
ryDeviceDescription to test for the presence of the bus. 

//++ 
II Function: 
II 
II 

XxCheckForBus 

// 
// 

Description: 

II 
II 
II Arguments: 
II 

This function verifies the existence of a 
particular bus-type and number. 

BusType -- Isa, Eisa, etc 



Sec. 7.4 Code Example: Querying the Registry 

II BusNumber -- 0, 1, etc 
II 
II Return Value: 
II STATUS_SUCCESS or some error condition. 
/I--
static NTSTATUS 
XXCheckForBus( 

/1++ 

IN INTERFACE_TYPE BusType, 
IN ULONG BusNumber ) 

return ( IoQueryDeviceDescription( 
&BusType, &BusNumber, 
NULL, NULL, 
NULL, NULL, 
XxBusCallback, 
NULL)) i 

II Function: 
II XXBusCallback 
II 

Description: 

151 

II 
II 
II 

This is a dummy function. The fact that the 
system calls it means that the bus type and 

/I 
/I 
/I 
II Arguments: 
/I 
/I 

number both exist, so all that's necessary 
is to return STATUS SUCCESS. 

(Unused) 

II Return Value: 
II This function always returns STATUS_SUCCESS 
/1--
static NTSTATUS 
XxBusCallback( 

IN PVOID Context, 
IN PUNICODE_STRING PathName, 
IN INTERFACE_TYPE BusType, 
IN ULONG BusNumber, 
IN PKEY_VALUE_FULL_INFORMATION *BusInfo, 
IN CONFIGURATION_TYPE CtrlrType, 
IN ULONG CtrlrNumber, 
IN PKEY_VALUE_FULL_INFORMATION *CtrlrInfo, 
IN CONFIGURATION_TYPE DeviceType, 
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IN ULONG DeviceNumber, 
IN PKEY_VALUE_FULL_INFORMATION *DeviceInfo ) 

{ 

return STATUS_SUCCESS; 

7.S ALLOCATING AND RELEASING HARDWARE 

At this point, your driver has gone to a lot of trouble to locate some hardware. 
Before you can use any of it, though, you have to make sure the hardware doesn't 
belong to any other driver. This section explains how to allocate hardware for 
your driver's exclusive use. 

How Resource Allocation Works 

NT maintains a central database of all currently owned hardware in the 
... \HARDWARE\RESOURCEMAP section of the Registry. Before touching any 
hardware resources, a driver checks this map to be sure someone else isn't using 
them. If everything is free, the driver claims the hardware by adding a description 
of its resource requirements to the resource map. If the resources aren't free, the 
driver must leave them alone.4 

Resources owned by a particular driver are recorded in a key with the same 
name as the driver. In the resource map, these resource keys are organized in arbi
trary classes. Your driver has the option of declaring its own class, using an exist
ing class declared by another driver, or using the default resource class called 
OtherDrivers. Resource classes are purely decorative and have no effect on 
resource allocation or conflict detection. 

Within a driver's resource key, there are two values called .Raw and .Trans
lated. Each of these items is a list describing the resources owned by the driver. 
The raw list contains bus-specific information returned by routines like IoQuery
DeviceDescription, while the translated list holds the systemwide numbers 
returned by the HalTranslateXxx functions. 

Drivers can also declare some resources as the property of the whole driver, 
and others as belonging to individual devices. In this case, resources shared by 
multiple devices go into the driver's .Raw and .Translated values, while device
specific resources have their own value items in the resource key. These device
specific values are called \Device \ DeviceName.Raw and \Device \ Device
Name.Translated. Figure 7.4 shows how all this works. 

4 For the stability of the operating system, it's vital that all device drivers abide by this arbitration 
scheme. As a trusted kernel-mode component, no one can stop a driver from touching hardware 
without allocating it. However, this can lead to confusing, unpredictable interactions between mul
tiple drivers that think they each have exclusive access to a piece of hardware. 
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HKEY _LOCAL_MACHINE 

LHARDWARE 

L RESOURCEMAP 

xx DRIVER RESOURCES 

L XxDriver 

.Raw 

'----------1 ~~a,;;:~~:O.Raw 
OtherDrivers 

L YyDriver 

\Device\XXO.Translated 

Copyright IC> 1996 by Cydonix Corporation. 960002a.vsd 

.Raw 
'-----__ --I.Translated 

\Device\YyO.Raw 
\Device\YyO. Translated 

Figure 7.4 Format of hardware-allocation data in the Registry 
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In the figure, XXDRlVER has declared a private class (called XX DRIVER 
RESOURCES) for its resource list. Some resources are allocated to the driver 
itself, while others belong only to the device XxO. YYDRlVER, being somewhat 
more shy, doesn't use a private class for its resources, so its resource key ends up 
in the OtherDrivers class. Again, some resources belong to the entire driver while 
others have been claimed only for one device. 

Again, the Registry editor, REGEDT32, gives you an easy way to poke 
around in the system resource map. In the initial phases of driver development, 
you can use this tool to make sure your driver is allocating all the right resources. 
REGEDT32 also lets you verify that an unloadable driver has released whatever 
hardware it may have claimed. 

How to Claim Hardware Resources 

To claim hardware, your driver needs to build a list of the resources it wants to 
allocate. Figure 7.5 shows one of these lists. At the very top is a structure called a 
CM_RESOURCE_LIST. As you can see, a Resource List is basically an array of the 
CM_FVLL_RESOURCE_DESCRIPTOR structures that you saw back in Figure 7.2. 
Each Full Resource Descriptor in this array identifies all the resources used by the 
driver on a single bus type and bus number. Collectively, all the Full Resource 
Descriptors in a single Resource List describe the resources used on multiple buses. 

As with the data passed to a ConfigCallback routine, individual resources 
are identified by Partial Resource Descriptors. The only difference is that the 
information given to a ConfigCallback routine is about one specific device or con
troller. When you fabricate a Full Resource Descriptor to allocate hardware, you 
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CM_PARTIAL_RESOURCE_LIST 

CM_PARTIAL_RESOURCE_DESCRIPTOR 1st Bus 

CM_PARTIAL_RESOURCE_DESCRIPTOR 

CM_FULL_RESOURCE_DESCRIPTOR 

2nd Bus 

CM_PARTIAL_RESOURCE_DESCRIPTOR 

Copyright <1:> 1994 by Cydonix Corporation. 940047a.vsd 

Figure 7.5 Structures passed to IoReportResourceUsage 

have to group together the Partial Descriptors for all resources on one bus in the 
same Full Resource Descriptor.S 

You request ownership of the items in a CM_RESOURCE_LIST by passing 
the list to IoReportResourceUsage (described in Table 7.7). This function 
checks for any conflicts with previously allocated hardware and adds your 
claims to the Registry's resource map. When you call this function, it com
pletely replaces any existing resource list associated with the specified Driver 
or Device object. 

If you include a class-name string, the I/O Manager will create a private 
class key for your driver's resources. Passing NULL puts your driver's 
resource key in the OtherDrivers class. If you allocate resources using a private 
class, you'll also need to specify the class name when you release these 
resources. 

Remember that you can associate a resource list either with the Driver object 
itself or with a particular Device object. Any resources being used by multiple 
devices should be in the DriverList, while device-dedicated resources should go 
in the DeviceList. If you break your resources up this way, you'll need to call 
IoReportResourceUsage several times: once for the DriverList and once for each 
DeviceList. 

If IoReportResourceUsage returns STATUS_SUCCESS, you have to check 
the value returned in the ConflictDetected boolean. If this variable is TRUE, it 

5 It's also worth emphasizing that these Partial Resource Descriptors contain the original bus-rela
tive values for such things as the I/O port base and the IRQ level - not the translated values 
returned by functions like HalTranslateBusAdress. 
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Table 7.7 Prototype for loReportResourceUsage 

NTSTATUS loReportResourceUsage 

Parameter 

IN PUNICODE_STRING ClassName 
IN PDRIVER_OBJECT DriverObject 
IN PCM_RESOURCE_LIST DriverList 
IN ULONG DriverListSize 
IN PDEVICE_OBJECT DeviceObject 
IN PCM_RESOURCE_LIST DeviceList 
IN ULONG DeviceListSize 
IN BOOLEAN OverrideConflict 

OUT PBOOLEAN ConflictDetected 

Return value 

IRQL == PASSIVE_LEVEL 

Description 

Optional class name for driver 
Driver object associated with this driver 
Resources used by all driver's devices 
Size of list in bytes 
Device that will own the resources 
Resources used by a single device 
Size of list in bytes 
• TRUE - ignore resource conflicts 
• FALSE - return error if conflict 
• TRUE - resources already claimed 
• FALSE - no conflict 
• STATUS_SUCCESS 
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• STATUS_INSUFFICIENT_RESOURCES 

means that one or more items in your resource list already belong to . someone 
else. In this case, your driver mustn't use any of the hardware in the list. 

The Override Conflict parameter determines the behavior of IoReportRe
sourceUsage when it detects a conflict. If you pass FALSE, the function makes no 
changes to the Registry's resource map. Instead, it puts a message in the event log 
identifying the conflicting resources and their current owner.6 If OverrideConflict 
is TRUE, IoReportResourceUsage does add your resource list to the resource map 
but doesn't send a message to the system event log. However, even though your 
resource list is in the Registry, your driver mustn't touch any hardware in the list; 
someone else thinks they own it. 

One odd bit of behavior is worth mentioning: Sometimes when there's a 
resource conflict, IoReportResourceUsage returns an unsuccessful status code 
that has no corresponding Win32 error number. The sample code in the next sec
tion shows how to handle this situation properly. 

How to Release Hardware 

When you want to free up resources held by your driver, you build an empty 
resource list and call IoReportResourceUsage. Since the new list completely 
replaces the previous one, this has the effect of releasing any resources described in 
the old list. If you allocated hardware on a device-specific or driver-wide basis, you 

6 Your driver has to be identified in the Registry as a system event logging component in order for 
the Event Viewer to display these messages. Chapter 13 explains how to set this up. These mes
sages can be very helpful for debugging resource conflicts. 
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need to release it the same way. Also, if you used a private class name to allocate the 
hardware, you'll need to use the same class name to free it. 

The following code fragment shows how a driver's Unload routine might 
release hardware resources associated with a specific Device object. 

CM_RESOURCE_LIST ResList; 
BOOL bConflict; 

ResList.Count = 0; 

IoReportResourceUsage( 
NULL, II Default class name 
pDriverObject, II Pointer to Driver object 
NULL, II No driver-wide resources 

0, 
pDeviceObject, 
&ResList, 
sizeof( ResList ), 
FALSE, 
&bConflict ); 

Mapping Device Memory 

II Pointer to Device object 
II Device-specific resources 

II Don't override conflict 
II Junk, but required 

If your device uses a range of dedicated memory addresses, your driver will 
need to make that memory available during initialization. Depending on the 
architecture of the device, your driver will need to perform one of the following 
two procedures. 

Driver-chosen addresses Some devices (like Ethernet adapters) have a 
control register that specifies the starting address of a device specific memory 
area. In this case, your driver needs to allocate memory for the device and let the 
device know where the memory is located? Follow these steps to set up this 
memory area: 

1. Call IoReportResourceUsage to allocate the device's control registers. 

2. Call HalGetAdapter to find the Adapter object associated with your device. 

3. Call HalAllocateCommonBuffer to allocate buffer space for your device's 
memory. This function returns both a system virtual address and a physical 
address. 

4. Save the system virtual address of this buffer somewhere in your Device 
Extension. Use this virtual address from within your driver whenever you 
need to reference the device's memory area. 

7 This is actually just a special case of something called common buffer bus master DMA which is 
de~cribed in Chapter 12. 
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5. Write the buffer's physical address into whatever device registers control 
access to the device memory. 
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6. When your driver unloads, call HalFreeCommonBuffer to release the buffer. 

Hard-wired addresses Some pieces of hardware (like VGA controllers) 
have very specific ideas about where their shared buffers should be located. If 
your device needs to use a particular range of physical addresses for device mem
ory, follow these steps to make the memory available to your driver: 

1. Call IoReportResourceUsage to request exclusive ownership of the range of 
physical addresses belonging to the device. 

2. Call HalTranslateBusAddress to convert the device's bus-relative physical 
addresses into systemwide values. 

3. Call MmMaploSpace to map the device's memory into system virtual space. 
Save the address returned by this function and use it to access device memory 
from within your driver. 

4. When your driver unloads, call MmUnmaploSpace to break the connection 
between the device's memory and system virtual space. 

Loading Device Microcode 

As part of their initialization, some complex devices need to have microcode 
loaded into them from a disk file. If the quantity of microcode is small, you can 
store it as a REG_BINARY value in the driver's Parameters sub key. For a device 
that needs large amounts of microcode, this may not be feasible. 

Fortunately, NT provides several functions that give drivers handle-based 
access to files and directories. As you can see from Table 7.8, these routines bear a 
strong resemblance to the Win32 user-mode file API. Using these functions, a 
driver could load vast quantities of microcode into a device without overburden
ing the Configuration Manager. In this case, only the path-name for the microcode 
file would need to be stored in the driver's Parameters subkey. 

There are three important things to keep in nlind if you decide to use these 
functions. First, you can only call them from parts of your code running at 
PASSIVE_LEVEL IRQL. This effectively limits their use to DriverEntry, the 
Unload routine, Dispatch routines, and any thread-based parts of your driver. 

Second, you can't access any files with these calls until the file-system 
driver for the target volume has finished initializing itself. If your driver loads 
during system bootstrap, you can guarantee that it loads after any file systems by 
setting up proper group dependencies in the Registry. Chapter 16 explains how 
to do this. 

Finally, avoid the temptation to store driver initialization parameters in disk 
files. That kind of thing belongs only in the Registry. The proliferation of .INI files 
in earlier versions of Windows was a bad thing; don't litter NT with them. 
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Table 7.8 Kernel-mode code can access files using these functions 

ZwXxx file functions 

IF you want to ... 

Create or open a file, device, or directory 
Read data into memory from a file 
Write data from memory to a file 
Get file size, position, attribute information 
Set file size, position, attribute information 
Close an open file handle 

IRQL == PASSIVE_LEVEL 

THEN call... 

ZwCreateFile 
ZwReadFile 
ZwWriteFile 
ZwQueryInformationFile 
ZwSetInformationFile 
ZwClose 

For more information about the functions listed in Table 7.8, take a look at 
the online documentation in the NT DDK. The DDK also contains some sample 
code that shows how to use these routines. 

7.6 CODE EXAMPLE: ALLOCATING HARDWARE 

This example illustrates the hardware allocation techniques we've just been look
ing at. It assumes that the device uses a DMA channel, but no device-specific 
memory or other device-specific data. You can find this code in the CH07 direc
tory on the disk that accompanies this book. 

RESALLOC.C 

The functions in this file allocate a group of resources for exclusive use by a 
specific Driver object. 

XxReportHardwareUsage Given a linked list of CONFIG_ARRAYs, this 
routine buids a Resource List and marks the resources as belonging to the entire 
Driver object. No resources are tagged as belonging to specific Device objects. 

NTSTATUS 
XxReportHardwareUsage( 

IN PDRIVER_OBJECT DriverObject, 
IN PCONFIG_ARRAY ConfigList 
) 

ULONG ListSize; 
PCM_RESOURCE_LIST ResourceList; 
PCM_FULL_RESOURCE_DESCRIPTOR Frd; 
PCM_PARTIAL_RESOURCE_DESCRIPTOR Prd; 
PCONFIG_ARRAY CurrentArray; 
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BOOLEAN bConflictDetectedi 
NTSTATUS statusi 
ULONG ii 

II 
II Calculate size of resource list 0 
II 
ListSize = 

FIELD_OFFSET ( CM_RESOURCE_LIST, List[O] )i 

CurrentArray = ConfigListi 

while ( CurrentArray != NULL 
{ 

ListSize += 
sizeof( CM_FULL_RESOURCE_DESCRIPTOR ) + 
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((( CurrentArray->Count * 
XX_RESOURCE_ITEMS_PER_DEVICE ) - 1) * 
sizeof( 

CM_PARTIAL_RESOURCE_DESCRIPTOR ))i 

CurrentArray = CurrentArray->NextConfigArraYi 

II 
II Try and allocate paged memory for the resource 
II list. If it works, zero out the list. 
II 
ResourceList = 

ExAllocatePool( PagedPool, ListSize ) i @ 
if( ResourceList == NULL) 
{ 

return STATUS_INSUFFICIENT_RESOURCESi 

RtlZeroMemory( ResourceList, ListSize )i 

CurrentArray = ConfigListi ~ 
Fro = &ResourceList->List[O]i 

while ( CurrentArray != NULL) 
{ 

ResourceList->Count++i 
Frd->InterfaceType = CurrentArray->BusTypei 
Frd->BusNumber = CurrentArray->BusNumberi 

II 
II Set the number of Partial Resource 
II Descriptors in this FRD. 
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II 
Frd->PartialResourceList.Count 

CurrentArray->Count * 
XX_RESOURCE_ITEMS_PER_DEVICE; 

II 
II Get pointer to first Partial Resource 
II Descriptor in this FRD. 
II 
Prd = &Frd->PartialResourceList. 

PartialDescriptors[O]; 

fort i=O; i < CurrentArray->Count; i++ 0 
{ 

II 

Prd XxBuildPartialDescriptors( 
&CurrentArray->Device[i], 
Prd ); 

II Point to beginning of next Full Resource 
II Descriptor. 
II 
(PUCHAR)Frd += 

II 

((( Frd->PartialResourceList.Count - 1 ) * 
sizeof( CM_PARTIAL_RESOURCE_DESCRIPTOR )) 
+ sizeof( CM_FULL_RESOURCE_DESCRIPTOR )); 

II Get next Config array from linked-list 
II 
CurrentArray = CurrentArray->NextConfigArray; 

status = IoReportResourceUsage( 0 
NULL, 
DriverObject, 
ResourceList, 
ListSize, 
NULL, 
NULL, 
A, 
FALSE, II Don't override 
&bConflictDetected ); 

ExFreePool( ResourceList ); 

if( !NT_SUCCESS( status) I I bConflictDetected 
return STATUS_INSUFFICIENT_RESOURCES; 

else 
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return STATUS_SUCCESS; 

o Start by accounting for header space between the beginning of the 
Resource List and first Full Resource Descriptor (FRD). For the whole 
Resource List, we need one FRD per bus type and bus number. We have 
to run the Config List to find them all. Each FRD contains a separate 
group of Partial Resource Descriptors (PRDs) for each device we're allo
cating. Since an FRD has one PRD already embedded in it, we subtract 
one from the total PRD count for each FRD. 

@ Once the hideous calculations are complete, we allocate a chunk of paged 
pool that's large enough to hold the whole thing. As always, it's impor
tant to zero out any memory allocated from the system pool areas. You 
don't know where they've been. 

@) Run the Config List again. Ibis time, build a separate FRD for each Con
fig Array in the list. 

o Loop through all the Device Blocks in the current Config Array. For each 
Device Block, call a helper function to create PRDs for any resources used 
by that device. 

e Once the Resource List is complete, call IoReporlResourceUsage to 
request ownership of the hardware. Afterwards, release the pool memory 
used for the Resource List. 

XxBuildPartialDescriptors Give a Device Block and a pointer to the first 
available Partial Resource Descriptor in an FRD, this function adds all the PRDs 
for one device to the current FRD. 

static PCM_PARTIAL_RESOURCE_DESCRIPTOR 
XxBuildPartialDescriptors( 

IN PDEVICE_BLOCK Device, 
IN PCM_PARTIAL_RESOURCE_DESCRIPTOR Prd 
) 

II 
II Set up PRD for control registers 
II 
Prd->Type = CmResourceTypePort; 

Prd->ShareDisposition = 
CmResourceShareDriverExclusive; 

Prd->u.Port.Start = 
Device->OriginalPortBase; 

Prd->u.Port.Length = Device->PortSpan; 
Prd++; @ 
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II 
II Set up PRD for Interrupt resource 
II 
Prd->Type = CmResourceTypeInterrupt; 

Prd->ShareDisposition = 
CmResourceShareDriverExclusive; 

if( Device->InterruptMode == Latched) 
Prd->Flags = 

CM_RESOURCE_INTERRUPT_LATCHED; 
else 

Prd->Flags = 

Prd->u.Interrupt.Level = 
Device->OriginalIrql; ~ 

Prd->u.Interrupt.Vector = 
Device->OriginalVector; 

Prd++; 
return Prd; 

o This example assumes that device control registers are always in I/O 
space. A truly general driver would need to take a more flexible 
approach. 

f9 Point to the beginning of the next PRD. (C is a wonderful language.) 

~ The setup operations for all the PRDs are very similar; just fill in the nec
essary fields of the PRD. Remember to use the original values, and not the 
ones returned by translation functions such as HalGetInterruptVector or 
HalTranslateBusAddress. 

7.7 SUMMARY 

In this chapter, we've looked at various techniques your driver can use to locate 
the hardware it has to manage. For some kinds of devices, the hardware will iden
tify itself and provide the system with a lot of information. Other devices (includ
ing most ISA cards) are very shy, so you'll need to supplement any auto-detected 
information with other data sources, including hard-wired Registry values. What
ever method you use to find your hardware, you absolutely must claim it for your 
driver's exclusive use. 

Now that we have a driver that loads and unloads without crashing the sys
tem, the next step is to make a connection with the NT system service dispatcher. 
That's the subject of Chapter 8. 
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When an I/O request begins its arduous journey 
through the NT I/O subsystem, the first challenge it faces is to get by one of your 
driver's Dispatch routines. The Dispatch routine decides whether the request 
should go any further, or whether it should be sent back to the original caller in 
disgrace. This chapter will help you set up your Dispatch routines and explain 
how these routines should behave in various situations. It also fills in some of the 
details involved in processing buffered and direct I/O requests. 

8.1 ENABLING DRIVER DISPATCH ROUTINES 

Before your driver can receive I/O requests, you need to tell the I/O Manager 
what kinds of operations the driver supports. This section describes the I/O Man
ager's dispatching mechanism and explains how to enable receipt of specific I/O 
function codes. It also presents some guidelines for deciding which function 
codes your driver needs to support. 

1/0 Request Dispatching Mechanism 

Recall from earlier chapters that most I/O operations under NT are packet
driven. When a user-mode application issues an I/O request, the I/O Manager 
first builds an IRP to keep track of the request. Among other things, it stores an 
IRP _MLXXX code in the MajorFunction field of the IRP's I/O stack location to 
identify the exact operation being performed. 

163 
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Driver 
Object 

: 

MajorFunction[ ] 

_loplnvalidDeviceRequest 
Write 

I ... Dispatch XxDispatchWrite .. 
Routine 

_loplnvalidDeviceRequest 

Copyright © 1994 by Cydonix Corporation. 940030a.vsd 

Figure 8.1 How the I/O Manager selects Dispatch routines 

When it's time to process the IRP, the 1/ 0 Manager uses the IRP _MLXXX 
value as an index into the Driver object's MajorFunction table. From the tabk it 
gets a pointer to a routine that handles this specific IRP _MLXXX code, which it 
then calls. If the driver doesn't support the requested operation, the table entry 
points to the I/O Manager's internal _IopInvalidDeviceRequest function -
which returns an error to the original caller. If the driver does support the opera
tion, the table entry points to one of the driver's own Dispatch routines. Figure 8.1 
illustrates this process. 

Enabling Specific Function Codes 

To enable dispatching for a specific IRP _MLXXX function code, your Driv
erEntry routine must put the address of a Dispatch routine into the MajorFunc
tion table of the Driver object. You use the I/O function code itself as an index 
into the dispatching table. The following code fragment illustrates how to do this. 

NTSTATUS 
DriverEntry( 

IN PDRIVER_OBJECT pD~, 
IN PUNICODE_STRING RegistryPath 

pDO->MajorFunction[ IRP_MJ_CREATE 1 = XxDispCreate; 
pDO->MajorFunction[ IRP_MJ_CLOSE 1 XxDispClose; 
pDO->MajorFunction[ IRP_MJ CLEANUP 1 = XxDispCleanup; 
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pDO->MajorFunction[ IRP_MJ_READ 1 = XxDispRead; 
pDO->MajorFunction[ IRP_MJ_WRITE 1 = XxDispWrite; 

return STATUS_SUCCESS; 
} 
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Note that you can use the same Dispatch routine to service more than one 
I/O function code. The choice of how many Dispatch routines to implement is 
entirely up to you. 

Also, you can ignore MajorFunction table entries corresponding to function 
codes your driver doesn't support. By the time the I/O Manager calls your 
DriverEntry routine, it has already filled every entry in the table with pointers to 
_IopInvalidDeviceRequest, so any slots you don't explicitly fill will appear as 
unsupported device operations. 

Deciding Which Function Codes to Support 

All drivers must support the IRP _MLCREATE function code, since this is 
the one generated by a Win32 CreateFile call. If you don't process this function 
code, Win32 programs will have no way to get a handle to your device. 

The choice of other function codes will depend on the nature of your device 
and the kinds of operations it can perform. Use Table 8.1 to decide which IRP 
function codes might be appropriate. If you're writing an intermediate driver, you 
must provide Dispatch entry points for all the I/O function codes supported by 
any drivers below yours in the chain. 

If you're writing a driver for one of the standard system devices, or if you're 
writing a layered driver that sits on top of such a device, it's importantthaf you 
support a specific set of required IRP function codes. Part II of the Windows NT 
DDK Kernel-mode Driver Reference contains extensive descriptions of the 
IRP _MLXXX function codes your driver must process if it supports one of the 
standard devices. 

8.2 EXTENDING THE DISPATCH INTERFACE 

What do you do if you need to perform a device operation other than the ones 
listed in Table 8.1? The I/O Manager doesn't permit you to add any new IRP func
tion codes, so that's not an option. Fortunately, two of the standard IRP _MLXXX 
values are escape codes that allow you to define any number of driver-specific 
operations: 

• IRP _MJ_DEVICE_CONTROL - Lets you define functions that are avail
able to user-mode clients through the Win32 DeviceloControl function. 
Other drivers can also issue these control requests by building appropri
ate IRPs. 
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• IRP _MJ_INTERNAL_DEVICE_CONTROL - Lets you define functions 
that are only available to kernel-mode clients (usually other drivers). 
There is no user-mode API function that can generate one of these 
requests. 

Both these functions pass a driver-defined 32-bit value as a parameter in the 
IRP. This value is referred to as an I/O control code (IOCTL), and your driver uses 
it to determine just what operation it should perform. The rest of this section 

Table 8.1 Commonly used IRP function codes and theirWin32 functions 

IRP _MJ_XXX function codes 

Function code Description 

Request for a handle. 
• CreateFile 
Cancel pending IRPs when handle 

closes 
• CloseHandle 
Close the handle. 
• CloseHandle 
Get data from device. 
• ReadFile 
Send data to device. 
• WriteFile 
Control operation available to user

or kernel-mode clients. 
• DeviceIoControl 
Control operation only available to 

kernel-mode clients. (No Win32 call) 
Get length of file. 
• GetFileSize 
Set length of file. 
• SetEndOfFile 
Write output buffers or discard input 

buffers. 
• FlushFileBuffers 
• FlushConsoleInputBuffer 
• PurgeComm 
System shutting down. 
• InitateSystemShutdown 

Note: See NTDDK.H or the online documentation for a complete list of IRP _MLXX codes. 
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explains how this interface works. Later in the chapter, you'll see how to process 
these functions when they appear in an IRP. 

Defining Private IOCTL Values 

The IOCTL values passed to your driver have a very specific structure. Fig
ure 8.2 illustrates the fields that make up one of these codes. 

Although you can fabricate these control codes by hand, it's much easier to 
generate them using the CTL_CODE macro that comes with the DDK. As you can 
see from Table 8.2, the arguments to this macro parallel the fields of an IOCTL code. 

IOCTL Argument-Passing Methods 

In many situations, you'll want to define IOCTL codes that either need addi
tional arguments from the caller, or that need to pass information back to the 
caller. For example, an IOCTL that queried a driver for performance data would 
need some way to return the data. The Win32 DeviceIoControl function solves 
this problem by letting the user specify a pair of input and ouput buffer addresses 
along with the IOCTL code. The question then becomes: Does the I/O Manager 
pass these buffers to your driver using Buffered or Direct I/O? 

You may be tempted to think that the buffering method used for IOCTLs will 
be the same one you specified with the OO_BUFFERED_IO or DO_DIRECT_IO 
flags in the Device object. However, the method used for a device's IOCTLs is not 
necessarily the same as the method used for data transfers. For greater flexibility, 
the I/O Manager uses a field in the IOCTL code itself to determine the buffering 
method. This allows you to choose different buffering methods for each individual 
IOCTL. 

31-16 13-2 

Device Type J 
Required Access 

Control Code 

Transfer Type 

Copyright© 1996 by Cydonix Corporation. 960016a.vsd 

Figure 8.2 Layout of an IOCTL code 
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Table 8.2 Use the CTL_CODE macro to define IOCTL codes 

Parameter Description 

DeviceType FILE_DEVICE_XXX value given to loCreateDevice 
• OxOOOO to Ox7FFF - reserved for Microsoft 

ControlCode 
• Ox8000 to OxFFFF - available for customer device types 
Driver-defined IOCTL code 

TransferType 

RequiredAccess 

• OxOOO to Ox7FF - reserved for Microsoft 
• Ox800 to OxFFF - available for customer IOCTLs 
Buffer-passing mechanism for this control code (see below) 
• METHOD_BUFFERED 
• METHOD_IN_DIRECT 
• METHOD_OUT_DIRECT 
• METHOD_NEITHER 
Access that must be requested when user calls Win32 CreateFile 
• FILE_ANY _ACCESS 
• FILE_READ_DATA 
• FILE_WRITE_DATA 
• FILE_READ_DATA I FILE_WRITE_DATA 

As you can see from Figure 8.2, the TransferType field is located in the low
est two bits of the IOCTL code. It can take on one of the following values: 

• METHOD_BUFFERED - The I/O Manager moves IOCTL data to and 
from the driver using an intermediate nonpaged pool buffer. 

• METHOD_IN_DIRECT - IOCTL data coming from the caller is passed 
using Direct I/O; data going from the driver back to the caller is passed 
through an intermediate system-space buffer. 

• METHOD_OUT_DIRECT - Data coming from the caller passes through a 
system-space buffer; data going back to the caller is passed using Direct I/O. 

• METHOD_NEITHER - The I/O Manager simply gives the driver raw 
user-space addresses for the caller's incoming and outgoing IOCTL buffers. 

If your driver supports a public IOCTL defined by Windows NT, it has to 
use the method embedded in the IOCTL.1 For private IOCTLs, you can choose the 
I/O method that makes the most sense for the operation. The guidelines for 
choosing an IOCTL buffering method are the same as those for choosing a data 

1 For a complete list of public IOCTLs, see the header file MSTOOLS\H\ WINIOCTL.H. 
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transfer buffering method. Buffered I/O is suitable for small amounts of data (less 
than PAGE_SIZE bytes), while Direct I/O is a better approach for large buffers or 
DMA operations. 

Writing IOCTL Header Files 

It's a good idea to write a separate header file for your control-code defini
tions. This header file should also contain any structures that describe the con
tents of the 10CTL's input or output buffers. You'll need to include this header file 
in both the driver and any user-mode programs that issue Win32 DeviceloControl 
calls to the driver.2 The following is an example of an IOCTL header file: 

#define IOCTL_XXDEVICE_AIM3 CTL_CODE( \ 
FILE_DEVICE_UNKNOWN, \ 
Ox80l, \ 
METHOD_BUFFERED, \ 
FILE_ACCESS_ANY ) 

II Structures used by IOCTL_XXDEVICE_AIM 
II 
typedef struct _XX_AIM_IN_BUFF 

ULONG Longitude; 
ULONG Latitude; 
XX_AIM_IN_BUFF, *PXX_AIM_IN_BUFF; 

typedef struct _XX_AIM_OUT_BUFF { 
ULONG ExtendedStatus; 

} XX_AIM_OUT_BUFF, *PXX_AIM_OUT_BUFF; 

#define IOCTL_XXDEVICE_LAUNCH CTL_CODE(\ 
FILE_DEVICE_UNKNOWN, \ 
Ox802, \ 
METHOD_NEITHER, \ 
FILE_ACCESS_ANY 

8.3 WRITING DRIVER DISPATCH ROUTINES 

Once you've chosen an appropriate set of I/O function codes, you need to 
write the Dispatch routines themselves. This section explains how to code these 
routines. 

2 Additionally, the Wm32 program will need to include WINIOcrL.H and the driver will need to 
include DEVIOCTL.H to get the definition of the CTL_CODE macro. These header files need to be 
included before you include the file with your IOCTL defintions. 

3 Microsoft recommends that the names you give to private IOCTLs look like IOCTL_DeviceJunction, 
where Device identifies the device that supports the IOCTL, and Function describes the effect of the 
IOCTL. 
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Execution Context 

By the time it calls your Dispatch routine, the I/O Manager has already 
checked the accessibility of the caller's buffer. If this is a Buffered I/O operation, it 
has also allocated a system buffer from nonpaged pool, and for output requests, 
copied the caller's data into the system buffer. For Direct I/O operations, the 
caller's buffer has been faulted into physical memory and locked down. 

Like your driver's initialization and cleanup routines, Dispatch routines run 
at PASSIVE_LEVEL IRQL, which means they can access paged system resources. 
Table 8.3 shows the prototype for a Dispatch routine. 

Normally, a Dispatch routine works only with the contents of the IRP. If a 
Dispatch routine touches any data structures shared with other parts of the driver, 
it has to synchronize itself properly. This means using a spin lock to coordinate 
with driver routines running at DISPATCH_LEVEL IRQL and KeSynchronizeEx
ecution to synchronize with the Interrupt Service code. 

Never forget that you're sharing the IRP with the I/O Manager. In particu
lar, the system uses various fields in the Parameters union to clean up after I/O 
operations. For example, after a Buffered I/O, it eventually needs to deallocate its 
nonpaged pool buffer. A field in the IRP gives it the location of this buffer. Chang
ing the contents of the IRP can lead to unspecified (but dreadful) results when the 
1/ 0 Manager tries to finish processing the request. 

If you need to modify any IRP fields, make working copies in local variables 
or in the Device Extension. Modify these working copies and not the data in the 
IRP. The only exceptions to this rule are the I/O status block and the Others struc
ture in the Parameters union. Chapter 15 will discuss the use of this structure by 
higher-level drivers. 

What Dispatch Routines Do 

Keep in mind that the exact behavior of a Dispatch routine will depend on 
the function code it supports. However, the general responsibilities of these rou
tines include the following: 

1. Call IoGetCurrentlrpStackLocation to get a pointer to the IRP stack location 
belonging to this driver. 

Table 8.3 Function prototype for a Dispatch routine 

NTSTATUS XxDispatch 

Parameter 

IN PDEVICE_OBJECT DeviceObject 
INPIRPlrp 
Return value 

IRQL == PASSIVE_LEVEL 

Description 

Pointer to target device for this request 
Pointer to IRP describing this request 
• STATUS_SUCCESS - request complete 
• STATUS_PENDING - request pending 
• STATUS_XXX - appropriate error code 
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2. Perform any additional sanity checking or parameter validation specific to 
this function code and device. 

3. If this is an intermediate-level driver, and there are limitations on the underly
ing physical device (for example, its maximum transfer size), the Dispatch 
routine may need to split the caller's request into multiple requests to the 
device driver. Chapter 15 explains how to do this. 

4. Continue processing the IRP until one of three exit conditions occur. 

The following subsections describe some of these steps in greater detail. 

Exiting the Dispatch Routine 

When a Dispatch routine processes an IRP, there are only three possible out
comes: 

• The IRP's request parameters don't pass whatever validation tests you're 
applying and you need to reject the request. 

• You can complete the request entirely in the Dispatch routine without 
performing any device operations. 

• You need to start a device operation in order to complete the request. 

Signaling an error If your Dispatch routine uncovers a problem with the 
IRP parameters, you need to send the request back to the caller with a nasty mes
sage. Follow these steps to reject an IRP: 

1. Put an appropriate error code in the Status field of the IRP's I/O status block 
and clear the Information field. 

2. Call IoCompleteRequest to release the IRP with no priority increment. 

3. When you exit the Dispatch routine, return the same error code you put in the 
IRP. 

The code fragment below shows how a Dispatch routine rejects an I/O 
request. 

NTSTATUS 
XxDispWhatever( 

{ 

IN PDEVICE_OBJECT pD~, 
IN PIRP Irp ) 

Irp->IoStatus.Status 

4 No, STATUS_BADVIBES isn't a real NTSTATUS code. 
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Irp->IoStatus.lnformation = 0; 
IoCompleteRequest( Irp, IO_NO_INCREMENT ); 
return STATUS_BADVIBES; 

Completing a request You can process some kinds of IRP function codes 
without actually performing any device operations. Opening a handle to a device, 
or returning information stored in the Device object are examples of these kinds of 
requests. To complete a request in the Dispatch routine, do the following: 

1. Put a successful completion code in the Status field of the IRP's I/O status 
block, and set the Information to some appropriate value. 

2. Call IoCompleteRequest to release the IRP with no priority increment. 

3. Exit the Dispatch routine with a value of STATUS_SUCCESS. 

The code fragment below shows how a Dispatch routine completes a 
request. 

NTSTATUS 
XxDispClose( 

IN PDEVICE_OBJECT pD~, 
IN PIRP Irp ) 

Irp->IoStatus.Status = STATUS_SUCCESS; 
Irp->IoStatus.lnformation = 0; 
IoCompleteRequest( Irp, IO_NO INCREMENT); 
return STATUS_SUCCESS; 

Starting a device operation The last possibility is that the IRP is request
ing an actual device operation. This could be either a data transfer, a control func
tion, or an informational query. In this case, the Dispatch routine has to pass the 
IRP to the driver's Start I/O routine. To start a device operation, do the following: 

1. Call IoMarkIrpPending so that the I/O Manager won't try to complete the 
request. 

2. Call IoStartPacket to send the request to your driver's Start I/O routine. If 
you manage your own IRP queues, call your driver's internal routine to start 
the I/O. 

3. Exit the Dispatch routine with a value of STATUS_PENDING. 

The following code fragment shows how a Dispatch routine starts a device 
operation. 
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NT STATUS 
XxDispWrite( 

IN PDEVICE_OBJECT pD~, 
IN PIRP .Irp ) 

IoMarkIrpPending( Irp ); 
IoStartPacket( pD~, Irp, 0, NULL); 
return STATUS_PENDING; 
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It's a little-known fact that the I/O Manager automatically completes any 
IRP that isn't marked pending as soon as the Dispatch function returns. Unfortu
nately, this automatic mechanism doesn't work the same way as an explicit call to 
IoCompleteRequest. In particular, it doesn't include calling any I/O Completion 
routines attached to the IRP by higher-level drivers. Consequently, it's important 
that your driver either marks an IRP as pending or completes it explicitly with 
IoCompleteRequest. 

8.4 PROCESSING SPECIFIC KINDS OF REQUESTS 

The previous section described the general kinds of processing done by a driver's 
--- Dispatch routines. These routines may; also need to perform various operations 

that depend on the IRP's function code and the buffering strategy used with the 
device. This section discusses some of these request-specific issues. This material 
is also relevant to the Start I/O routine and other parts of a driver, but it appears 
here because this is the first place where you might run into it. 

Processing Read and Write Requests 

Chapter 6 explained how to create Device objects, which included setting 
the DO_BUFFERED_IO or DO_DlRECT_IO bits in the Device object's Flags field. 
These bits cO!-'trol the I/O Manager's behavior for all IRP _MLREAD and 
IRP _MLWRITE requests sent to the device. Here's what happens once you've set 
these flags. 

Buffered I/~ At the start of both read and write requests, the 1/ 0 Manager 
checks the accessibility of the user buffer. It then allocates a piece of nonpaged 
pool as big as the';~aller's buffer and puts its address in theAssociatedlrp.System
Buffer field of th~JRP. This is the buffer your driver should use for the actual data 
transfer.' . 

For IRP _~.1LREAD operations, the I/O Manager also sets the IRP's User
Buffer field to thl.euser-space address of the caller's buffer. Later; when the request 
is completed, ibwill use this address to copy data from the driver's system-space 
buffer back to the caller's buffer. For an IRP _MLWRITE request, the 1/ 0 Manager 

/ 
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sets the IRP's User Buffer field to NULL and copies the contents of the user buffer 
into the system buffer. 

Direct 1/0 The I/O Manager checks the accesibility of the user buffer and 
locks it in physical memory. It then builds a Memory Descriptor List (MDL) for 
the buffer and stores the address of the MDL in the IRP's MdlAddress field. Both 
the AssociatedIrp.SystemBuffer and UserBuffer fields are set to NULL. 

Normally, you use the MDL to set up a DMA operation, as you'll see in 
Chapter 12. If you're performing Direct I/O with a programmed I/O device, you 
can use the MmGetSystemAddressForMdl function to get a system-space 
address for the user buffer. This function doubly maps the caller's buffer into a 
range of nonpaged system space. (In effect, the buffer lives at two virtual 
addresses at one time.) When your driver completes the I/O request, the system 
automatically unmaps the buffer from system space.5 

Neither method If you specify neither Buffered nor Direct I/O when you 
create a Device object, it's up to your driver to decide how to handle buffering 
issues. The I/O Manager simply puts the user-space address of the caller's buffer 
into the IRP's UserBuffer field. In this case, the IRP's AssociatedIrp.SystemBuffer 
and MdlAddress fields have no meaning and are set to NULL. 

Be very careful about accessing the caller's buffer in user space with the 
UserBuffer field of the IRP - even if the buffer is locked down. Since IRPs are 
processed asynchronously, there's no guarantee that the calling process will still 
be mapped into user space by the time your driver executes. The only exception 
to this rule is that the Dispatch routines (and only the Dispatch routines) of a 
highest-level driver can use User Buffer to access the caller's buffer. This is 
because these routines always run in the context of the thread issuing the I/O 
request. Other routines in a highest-level driver (and any routine in a lower 
driver) don't have this guarantee. 

Processing 10CTL Requests 

Once your driver has filled in either the IRP _MLDEVICE_CONTROL or the 
IRP _MLINTERNAL_DEVICE_CONTROL slots in the Driver object's MajorFunc
tion table, the I/O Manager starts passing these requests to the associated Dis
patch routines. At this point, your driver has to decide what to do with the 
request. 

Other than buffer access checking (described later), the I/O Manager does 
no validation of either the 10CTL control code itself or the contents of the caller's 
buffers. (For example, the FILE_DEVICE_XXX field of the 10CTL does not have to 

5 Drivers ought to avoid this technique, because releasing the doubly-mapped pages causes every 
CPU in the system to flush its data cache. This is terrible for system performance. 
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match that of the target Device object.) The caller could pass any random number 
as an IOCTL code, and it would find its way to your IOCTL Dispatch routine. So, 
it's up to you to do any necessary sanity checking. 

IOCTL dispatchers usually turn into one of those horrendous switch state
ments that Microsoft finds so intriguing. The following skeleton of code shows 
the general layout of a Dispatch routine that processes IOCTL requests. 

NTSTATUS 
XxDispIoControl(O 

IN PDEVICE_OBJECT pD~, 
IN PIRP Irp ) 

PIO_STACK_LOCATION IrpStack; 
ULONG ControlCode; 
ULONG InputLength, OutputLength; 
NTSTATUS Status; 

IrpStack = IoGetCurrentIrpStackLocation( Irp ); 

// Extract useful information from the I/O stack 
// 
ControlCode = IrpStack-> 

Parameters.DeviceIoControl.IoControlCode; 
InputLength = IrpStack-> 

Parameters.DeviceIoControl.InputBufferLength; 
OutputLength = IrpStack-> 

Parameters.DeviceIoControl.OutputBufferLength; 

switch ( ControlCode ) { 
case IOCTL_XXDEVICE_AIM:@ 

// Check buffer sizes and fail if 
// not enough space ... 
/I 
if(( InputLength < ~ 

sizeof( XX_AIM_IN_BUFF )) 
I I OutputLength < 

} 

sizeof( XX_AIM_OUT_BUFF ))) 

Status = STATUS_INVALID_BUFFER_SIZE; 
break; 

// Everything's OK; pass IRP to Start I/O 
// 
IoMarkIrpPending( Irp );0 
IoStartPacket( pD~, Irp, 0, NULL); 
return STATUS~PENDING; 
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case IOCTL_XXDEVICE_LAUNCH: 
if( InputLength > 0 0 
II Output Length > 0 ) 
{ 

} 

Status = STATUS_INVALID_PARAMETER; 
break; 

II Same kind of processing as the case 
II above; 

II It's not a recognized control code ... 
II 
default: 

Status 
break; 

II We only wind up here if there's an error 
II 
Irp->IoStatus.Status = Status;~ 
Irp->IoStatus.Information = 0; 
IoCompleteRequest( Irp, IO_NO_INCREMENT ); 
return Status; 

o If you support both external IRP _MLDEVICE_CONTROL and internal 
IRP _MLINTERNAL_DEVICE_CONTROL (kernel-mode only) interfaces, 
you'll probably want individual 10CTL Dispatch routines for each major 
function code. 

@ Include a separate case for each 10CTL code that might appear. Any code 
that isn't supported will end up in the default case and fail. 

@) You have to make sure that any buffers associated with the 10CTL are big 
enough. This has to be checked individually for each 10CTL code, since 
different control codes may have different input and output structures. 

o If the 10CTL makes it through all the validation checks, it gets sent to the 
driver's Start I/O routine. This assumes that the 10CTL causes some kind 
of device operation. For 10CTLs that don't require device activity, you 
can perform the operation and complete the IRP successfully from the 
XxDisploControl routine. 

o If you're not expecting any buffers for a particular 10CTL code, you might 
want to return STATUS_INVALID_PARAMETER and fail. This isn't really 
an error, but it makes you wonder if the caller is missing a clue or two. 

~ If something is wrong with this IOCTL request, fail the IRP using what
ever status value was generated by the switch statement. 
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Managing IOCTL Buffers 

IOCTL requests can involve both an input buffer coming from the caller and 
an output buffer being returned to the caller. As a result, they act like a combina
tion of a write operation followed by a read. From previous sections of this chap
ter, you know that the buffering strategy used for an 10CTL request is determined 
by the low-order 2 bits of the 10CTL code itself. The following paragraphs 
describe how the various buffering methods work. 

METHOD_BUFFERED The I/O Manager starts by allocating a single 
chunk of nonpaged pool that's big enough to hold either the caller's input or 
output buffer (whichever is larger). It puts the address of the nonpaged pool 
buffer in the IRP's AssociatedIrp.SystemBuffer field. It then copies the 10CTL's 
input data into the system buffer and sets the UserBuffer field of the IRP to the 
user-space output buffer address. When your driver completes the IOCTL IRP, 
the I/O Manager copies the contents of the system buffer back into the caller's 
output buffer. 

Since the same piece of nonpaged pool is being used for both the input and 
output buffers, your driver should read all incoming data before it writes anyout
put data to the buffer. 

METHOD_IN_DIRECT The I/O Manager checks the accessibility of the 
caller's input buffer and locks it into physical memory. It then builds an MOL for 
the input buffer and stores a pointer to the MOL in the MdlAddress field of the 
IRP. 

It also allocates an output buffer from nonpaged pool and stores the address 
of this buffer in the IRP's Associatedlrp.SystemBuffer field. The IRP's UserBuffer 
field is set to the original caller's output buffer address. When the 10CTL IRP is 
completed, the contents of the system buffer will be copied back into the caller's 
original output buffer. 

METHOD_OUT _DIRECT The I/O Manager checks the accessibility of the 
caller's output buffer and locks it into physical memory. It then builds an MDL for 
the output buffer and stores a pointer to the MOL in the MdlAddress field of the 
IRP. 

The I/O Manager also allocates an input buffer from nonpaged pool and 
stores its address in the IRP's AssociatedIrp.SystemBuffer field. It copies the con
tents of the caller's original input buffer into the system buffer and sets the IRP's 
UserBuffer field to NULL. 

METHOD_NEITHER The I/O Manager puts the address of the caller's 
input buffer in the Parameters.DeviceIoControl.Type3InputBuffer field of the 
IRP's current I/O stack location. It stores the address of the output buffer in the 
IRP's UserBuffer field. Both of these are user-space addresses. 
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8.5 TESTING DRIVER DISPATCH ROUTINES 

Your driver still has a long way to go, but once again, you can verify some aspects 
of its operation. In particular, you can test the driver to be sure that it 

• Opens and closes a handle to the device 

• Supports Win32I/O function calls that return successfully 

• Manages requests from multiple callers 

Still not very ambitious goals, but if you complete these tests successfully, 
your driver will be one step closer to full operation. 

Testing Procedure 

The following procedure will let you check all the code paths through your 
driver's Dispatch routines. 

1. Write IRP _MLCREATE and IRP _MLCLOSE Dispatch routines for your 
driver. 

2. Test the driver with a simple Win32 console program that gets a handle to 
your device and then closes the handle. 

3. Write other Dispatch routines but modify them so that they always call 
IoCompleteRequest rather than starting any device operations. 

4. Modify your Win32 test program to make ReadFile, WriteFile, and Devicelo
Control calls that exercise each driver Dispatch routine. 

5. If your device is shareable, run several copies of the test program at once to be 
sure the driver works with multiple open handles. 

6. If your driver supports multiple physical devices, repeat the tests with each 
device unit. 

Sample Test Program 

This is an example of the kind of test program you can use to verify the code 
paths through a driver's Dispatch routines. 

#include <windows.h> 
#include <stdio.h> 

VOID main( VOID) 
{ 

HANDLE hDevice; 
BOOL status; 
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hDevice = CreateFile( "\\\\.\\XX1" ... ); 

status ReadFile( hDevice ... ); 

status WriteFile( hDevice ... ); 

status DeviceloControl( hDevice ... ); 

status CloseHandle( hDevice ); 

8.6 SUMMARY 

In this chapter, you've seen the beginning of the I/O processing cycle. By now, 
you should have a good idea of what IRP function codes your driver will need to 
support. If some of these functions include IOCTLs, the information in this chap
ter will help you implement them correctly. If you're writing a higher-level driver, 
that may be the end of the story. 

For device drivers, however, there's still more to do. In the next chapter, 
you'll see how to perform actual data transfer operations. 
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Programmed I/O 
Data Transfers 

Devices that do programmed I/O need a great 
deal of attention from the CPU while they transfer data. Usually, these are slow 
devices (like the mouse or keyboard) that don't move large amounts of data in a 
single operation. This chapter explains how to write the data transfer sections of 
drivers for this kind of hardware. 

9.1 How PROGRAMMED 1/0 WORKS 
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This section describes the events that occur during a programmed I/O operation, 
as well as describing some of the other issues a driver will have to face. 

What Happens during Programmed 1/0 

In a programmed I/O operation, the CPU transfers each unit of data to or 
from the device in response to an interrupt. Referring to Figure 9.1, the following 
sequence of events takes place: 

1. The Start I/O routine performs any necessary preprocessing and setup based 
on the IRP _MLXXX function code in the IRP. It then starts the device. 

2. Eventually, the device generates an interrupt which the Kernel passes to the 
driver's Interrupt Service routine. 
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Dispatch 

............... loStartPacket 

Start I/O 

(start device) 

Interrupt Service 

loRequestDpc 

DpcForlsr 

loCompleteRequest 
....... loStartNextPacket 
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Figure 9.1 Sequence of events in a programmed II 0 
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3. If there is any more data, the Interrupt Service routine starts the next transfer. 
Steps 2 and 3 may repeat any number of times until the operation is complete. 

4. When the operation completes, either because there's no more data or because 
an error occurs, the Interrupt Service routine queues a request to fire off the 
driver's DpcForIsr routine. . 

5. The DPC dispatcher eventually runs the DpcForIsr which releases the current 
IRP back to the I/O Manager. If there are any more IRPs waiting, the Dpc
ForIsr sends the next packet to the driver's Start I/O routine, and the whole 
cycle repeats. 

Synchronizing Various Driver Routines 

Driver routines running at an IRQL below DIRQL must synchronize their 
access to any device registers or memory areas shared with the driver's Interrupt 
Service routine. Without this protection, an interrupt might arrive while a low
IRQL routine was using the shared resource, and the outcome would be unpre
dictable (but probably nothing good). You solve this synchronization problem by 
putting code that touches these shared resources in a SynchCritSection routine. 
Table 9.1 shows you the prototype for one of these routines. 

When you need to execute a SynchCritSection routine, you pass its address 
as a~argument to KeSynchronizeExecution (see Table 9.2). This function raises 
IRQL to the DIRQL level of the Interrupt object, acquires the object's Interrupt 
spin lock and then calls your SynchCritSection routine. While it's running, your 
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Table 9.1 Function prototype for a SynchCritSection routine 

BOOLEAN XxSynchCritSection IRQL == DIRQL 

Parameter Description 

IN PVOID Context 
Return value 

Pointer to context passed to KeSynchronizeExecution 
• TRUE - success 
• FALSE - something failed 

Table 9.2 Function prototype for KeSynchronizeExecution 

BOOLEAN KeSynchronizeExecution 

Parameter 

IN PKINTERRUPT Interrupt 
IN PKSYNCHRONIZE_ROUTINE Routine 
IN PVOID Context 

Return value 

IRQL< DIRQL 

Description 

Address of an Interrupt object 
SynchCritSection callback routine 
Argument for SynchCritSection 

routine 
Value returned by SynchCritSection 

routine 

SynchCritSection code is guaranteed not to be interrupted by the device associ
ated with the Interrupt object. When your routine finishes, KeSynchronizeExecu
tion releases the spin lock, drops IRQL back to its original level, and returns to the 
caller. 

Notice that you're allowed to pass some context information to the Synch
CritSection routine. Typically, this will be a pointer to the Device or Controller 
Extension structure. 

9.2 DRIVER INITIALIZATION AND CLEANUP 

Along with the general initialization and cleanup issues we've seen in previous 
chapters, there are some specific things that a programmed I/O device driver 
needs to take care of. The following subsections describe them in detail. 

Initializing the Start 1/0 Entry Point 

If your driver has a Start 1/ 0 routine, you need to let the 1/ 0 Manager know 
where to find it. You do this by putting the address of the Start I/O routine into 
the DriverStartlo field of the Driver object, as in the following code fragment: 



Sec. 9.2 Driver Initialization and Cleanup 

NTSTATUS 
DriverEntry( 

IN PDRIVER_OBJECT DriverObject, 
IN PUNICODE STRING RegistryPath 
) 

II 
II Export other driver entry points ... 
II 
DriverObject->DriverStartIo = XxStartIoi 
DriverObject->DriverUnload = xXDriverUnloadi 

DriverObject->MajorFunction[ IRP_MJ_CREATE 
XxDispatchOpenClosei 
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If you forget to initialize this entry point, you'll get an access violation (and a 
bright blue screen) when your Dispatch routines call IoStartPacket. 

Initializing a DpcForlsr Routine 

The I/O Manager provides you with a simplified version of the DPC mecha
nism. Tucked away inside each Device object is a single DPC object. To use it, your 
DriverEntry routine just calls IoInitializeDpcRequest and associates a DpcForIsr 
callback with the Device object. Later, your driver's Interrupt Service routine can 
trigger this DPC by calling IoRequestDpc. 

For some kinds of drivers, this simplified mechanism is too limited. In 
Chapter 11, you'll see how to set up your own DPC objects if you need the flexibil
ity of multiple DPCs. 

Connecting to an Interrupt Source 

Before you can process interrupts, you have to establish a connection 
between your device's interrupt vector and an Interrupt Service routine in your 
driver. You do this by calling the IoConnectlnterruptl function described in Table 
9.3. Given an Interrupt Service routine and some of the translated information 
generated by your hardware location code, this function adds your ISR to the Ker
nel's list of interrupt handlers. 

1 If you recall, we first bumped into this function in the driver initialization code in Chapter 6, where 
we treated it as a necessary bit of magic. 
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Table 9.3 Function prototype for loConnectlnterrupt 

NTSTATUS loConnectlnterrupt 

Parameter 

OUT PKINTERRUPT *InterruptObject 

IN PKSERVICE_ROUTINE SeviceRoutine 
IN PYOID ServiceContext 

IN PKSPIN_LOCK SpinLock 
IN ULONG Vector 
IN KIRQL Irql 
IN KIRQL SynchronizeIrql 
IN KINTERRUPT_MODE InterruptMode 

IN BOOLEAN ShareVector 

IN KAFFINITY ProcessorEnableMask 

IN BOOLEAN FloatingSave 

Return value 

IRQL == PASSIVE_LEVEL 

Description 

Address of variable that receives 
pointer to Interrupt object 

ISR that handles this interrupt 
Context argument passed to ISR; 

usually the Device Extension 
Initialized spin lock (see below) 
Translated interrupt vector value 
DIRQL value for device 
Usually same as DIRQL (see below) 
• LevelSensitive 
• Latched 
If TRUE, identifies this vector as 

shareable 
Set of CPUs on which device interrupt 

can occur 
If TRUE, save the state of the FPU 

during an interrupt 
• STATUS_SUCCESS 
• STATUS_INVALID_PARAMETER 
• STATUS_INSUFFICIENT_ 

RESOURCES 

If it works, IoConnectlnterrupt returns a pointer to an Interrupt object. You 
should store this pointer in your Device or Controller Extension because you'll 
need it in order to disconnect from the interrupt source or to execute any Synch
CritSection routines. 

Three things are worth mentioning about IoConnectlnterrupt. First, if your 
ISR handles more than one interrupt vector, or if your driver has more than one 
ISR, you need to supply the system with a spin lock to prevent collisions over the 
ISR's ServiceContext. If you're not doing either of those things, then this spin lock 
is unnecessary.2 

Second, if the ISR manages more than one interrupt vector, or your driver 
has more than one ISR, make sure that the value you specify for SynchronizeIrqI 
is the highest DIRQL value of any of the vectors you're using. 

2 Normally, you declare storage space for this spin lock in the Device or Controller Extension. 
Remember to call KelnitializeSpinLock before you connect to an interrupt source. 
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Finally, your driver's Interrupt Service routine must be ready to run as soon 
as you call this function. Interrupts from your device (or from other devices at the 
same IRQL) may preempt any additional initialization done by your driver, and 
the ISR has to handle these interrupts correctly. So, make sure all the necessary 
driver setup work is done before you connect to an interrupt. In general, you 
should follow this kind of sequence: 

1. Call IoInitializeDpcRequest to initialize the Device object's DPC and perform 
any initialization needed to make the DpcForIsr routine execute properly. 

2. Disable interrupts from the device by setting appropriate bits in the device's 
control registers. 

3. Perform any driver initialization required by the ISR in order for it to run 
properly. 

4. Call IoConnectInterrupt to attach your ISR to an interrupt source and store 
the address of the Interrupt object in the Device Extension. 

5. Use a SynchCritSection routine to put the device into a known initial state 
and enable device interrupts. 

Disconnecting from an Interrupt Source 

If your driver is unloadable, you need to detach its Interrupt Service routine 
from the Kernel's list of interrupt handlers before the driver is removed from 
memory. If you forget to do this and your device generates an interrupt after the 
driver is unloaded, the Kernel will try to call the address in nonpaged pool where 
your ISR used to lived. Nothing good will happen. 

Disconnecting from an interrupt is a two-step procedure. First, use KeSyn
chronizeExecution and a SynchCritSection routine to disable the device and pre
vent it from generating any further interrupts. Second, remove your ISR from the 
Kernel's list of handlers by passing the device's Interrupt object to IoDiscon
nectInterrupt. 

9.3 WRITING A START 1/0 ROUTINE 

In the rest of this chapter, we'll be developing a programmed I/O driver for a paral
lel port. To keep things simple, this driver ignores many of the details you'd have to 
consider if you were writing a commercial driver. Take a look at the sample driver 
that comes with the NT DDK to see what's involved in managing these devices. 

Execution Context 

The I/O Manager calls your Start I/O routine (described in Table 9.4) either 
when a Dispatch routine calls IoStartPacket (if the device was idle), or when 
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Table 9.4 Function prototype for a Start I/O routine 

VOID XxStartlo 

Parameter 

IN PDEVICE_OBJECT DeviceObject 
IN PIRPIrp 
Return value 

IRQL == DISPATCH_LEVEL 

Description 

Target device for this request 
IRP describing the request 

some other part of the driver calls IoStartNextPacket. In either case, Start I/O 
runs at DISPATCH_LEVEL IRQL, so it mustn't do anything that causes a page 
fault. 

What the Start I/O Routine Does 

Your driver's Start I/O routine is responsible for doing any function-code
specific processing needed by the current IRP and then starting the actual device 
operation. In general terms a Start I/O routine will do the following: 

1. Call IoGetCurrentStackLocation to get a pointer to the IRP's stack location. 

2. If your device supports more than one IRP _MLXXX function code, examine 
the I/O stack location's MajorFunction field to determine the operation. 

3. Make working copies of the system buffer pointer and byte count stored in 
the IRP. The Device Extension is the best place to keep these items. 

4. Set a flag in the Device Extension indicating that you expect an interrupt. 

5. Begin the actual device operation. 

To guarantee proper synchronization, any of these steps that access data 
shared with the ISR should be performed inside a SynchCritSection routine rather 
than in Start I/O itself. 

9.4 WRITING AN INTERRUPT SERVICE ROUTINE (ISR) 

Once a device operation begins, the actual data transfer is driven by the arrival of 
hardware interrupts. When an interrupt arrives, the driver's Interrupt Service 
routine acknowledges the request and either transfers the next piece of data or 
invokes a DPC routine. 

Execution Context 

When the Kernel gets a device interrupt, it uses its collection of Interrupt 
objects to locate an ISR willing to service the event. It does this by running 
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through all the Interrupt objects attached to the DIRQL of the interrupt and call
ing ISRs until one of them claims the interrupt. 

The Kernel interrupt dispatcher calls your ISR at the synchronization IRQL 
you specified in the call to IoConnectInterrupt. Usually this will be the DIRQL 
level of the device. The Kernel dispatcher also acquires and releases the device 
spin lock for you. 

Running at such a high IRQL, there are lots of things your ISR isn't allowed 
to do. In addition to the usual warning about page faults, your ISR shouldn't try 
to allocate or free various system resources (like memory). If you plan to call any 
system support routines from your ISR, check for restrictions on the level at 
which they can run. You may need to perform those kinds of operations in a DPC 
routine rather than in the ISR itself. 

As you can see from Table 9.5, the Kernel passes you a pointer to whatever 
context information you identified in IoConnectInterrupt. Most often, this will be 
a pointer to the Device or Controller Extension. 

What the Interrupt Service Routine Does 

The Interrupt Service routine is the real workhorse in a programmed 1/ 0 
driver. In general, one of these routines will do the following: 

1. Determine if the interrupt belongs to this driver. If not, immediately return a 
value of FALSE. 

2. Perform any operations needed by the device to acknowledge the interrupt. 

3. Determine if any more data remains to be transferred. If there is, start the next 
device operation. This will eventually result in another interrupt. 

4. If all the data has been transferred (or if a device error occurred), queue up a 
DPC request by calling IoRequestDpc. 

5. Return a value of TRUE. 

Always code an ISR for speed. Any work that isn't absolutely essential 
should go in a DPC routine. It's especially important that your ISR doesn't drag its 

Table 9.5 Function prototype for an Interrupt Service routine 

BOOLEAN XxlSR 

Parameter 

IN PKINTERRUPT Interrupt 
IN PYOID ServiceContext 
Return value 

IRQL == DIRQL 

Description 

Interrupt object generating the interrupt 
Context area passed to IoConnectInterrupt 
• TRUE - interrupt was serviced by XxISR 
• FALSE - interrupt not serviced 



188 Chapter 9 Programmed I/O Data Transfers 

feet while determining whether or not to service an interrupt. There may be any 
number of other ISRs waiting in line behind yours for a given interrupt, and if 
you do a lot of processing before you decide not to handle the event, you can slow 
them down. 

9.5 WRITING A DpcFoRlsR ROUTINE 

Your driver's DpcForIsr routine is responsible for determining a final status for 
the current request, completing the IRP, and starting the next one. 

Execution Context 

In response to the ISR's call to IoRequestDpc, your driver's DpcForIsr rou
tine (described in Table 9.6) is added to the DPC dispatch queue. When the CPU's 
IRQL value drops below DISPATCH_LEVEL, the DPC dispatcher calls the Dpc
ForIsr routine. Your DpcForIsr routine runs at DISPATCH_LEVEL IRQL, which 
means it has no access to pageable addresses. 

Once you call IoRequestDpc for a given device, the 110 Manager ignores 
any further IoRequestDpc calls for that device until the DpcForIsr routine exe
cutes. This is standard behavior for DPC objects. If your driver design is such that 
you might issue overlapping DPC requests for the same device, then it's up to you 
to handle this situation properly. You'll need to keep track of the pending requests 
and have the DPC routine perform the work for all of them each time it executes. 

What the DpcForlsr Routine Does 

Since most of the work happens during interrupt processing, the DpcForIsr 
routine in a programmed I/O driver doesn't have a lot do. In particular, this rou
tine should 

1. Set IRP's I/O status block. Put an appropriate STATUS_XXX code in the Sta
tus field and the actual number of bytes transferred in the Information field. 

Table 9.6 Function prototype for a DpcForlsr routine 

VOID XxDpcForlsr 

Parameter 

INPKDPCDpc 
IN PDEVICE_OBJECT DeviceObject 
IN PIRPIrp 
IN PVOID Context 
Return value 

IRQL == DISPATCH_LEVEL 

Description 

DPC object responsible for this call 
Target device for 110 request 
IRP describing the current request 
Context passed to IoRequestDpc 
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2. Call IoCompleteRequest to complete the IRP with an appropriate priority 
boost. Once you've made this call, don't touch the IRP again. 

3. Call IoStartNextPacket to send the next IRP to Start I/O. 

Priority Increments 

The NT thread-scheduler uses a priority-boosting strategy to keep the CPU 
and I/O devices as busy as possible. As you can see from the boost values listed 
in Table 9.7, priority increments are weighted so as to favor threads working with 
interactive devices like the mouse and keyboard. 

As part of this strategy, your driver should compensate any thread that waits 
for an actual device operation by giving it a priority boost. Choose an appropriate 
increment from the table and specify it as an argument to IoCompleteRequest. 

9.6 SOME HARDWARE: THE PARALLEL PORT 

Before we walk through an example of a programmed I/O driver, it will be help
ful to look at some actual hardware. This serves the dual purpose of showing you 
what kinds of devices tend to perform programmed I/O and of giving us some
thing to control with our driver. 

How the Parallel Port Works 

The parallel interface found on most PCs is based on an ancient standard 
from the Centronics Company. Although its original purpose was to communicate 

Table 9.7 Specify one of these values when you complete an I/O request 

Priority increment values 

Symbol Boost Use when completing ... 

10_NO_INCREMENT a Requests involving no device I/O 
10_CD _ROM_INCREMENT 1 CD-ROM input 
10 _DISK_INCREMENT 1 Disk I/O 
10 _PARALLEL_INCREMENT 1 Parallel-port I/O 
10_ VIDEO_INCREMENT 1 Video output 
10 _MAILSLOT_INCREMENT 2 Mailslot 1/ 0 
10_NAMED]IPE_INCREMENT 2 Named pipe I/O 
10 _NETWORK_INCREMENT 2 Network I/O 
10 _SERIAL_INCREMENT 2 Serial-port I/O 
10_MOUSE_INCREMENT 6 Pointing-device input 
IO_KEYBOARD_INCREMENT 6 Keyboard input 
IO_SOUND_INCREMENT 6 Sound board 1/ ° 
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with printers, clever people have found ways of attaching everything from disks to 
optical scanners to the parallel port. The DB-25 connector on this port carries a 
number of signals, the most important ones being: 

• Initialize-The CPU sends a pulse down this line when it wants to initial
ize the printer. 

• Data-The CPU uses these eight lines to send one byte of data to the 
printer. On systems with extended parallel interfaces, these lines can also 
be used for input. 

• Strobe#-The CPU pulses this line once to let the printer know that valid 
information is available on the data lines.3 

• Busy-The printer uses this line to let the CPU know that it can't accept 
any data. 

• Ack#-The printer sends a single pulse down this line when it is no 
longer busy. 

• Errors-The printer can use several lines to indicate a variety of not
ready and error conditions to the CPU. 

The following sequence of events occurs during a data transfer from the 
CPU to a printer attached to the parallel port: 

1. The CPU places a byte on the eight data lines and lets the data settle for at 
least half a microsecond. 

2. The CPU grounds the STROBE# line for at least half a microsecond and then 
raises it again. This is the signal to the printer that it should latch the byte on 
the data lines. 

3. In response to the new data, the printer raises the BUSY line and starts to pro
cess the byte. This usually means moving the byte to an internal buffer. 

4. After it processes the character (which may take microseconds or seconds, 
depending on how full the printer's buffer is), the printer lowers the BUSY 
line and pulses the ACK# wire by grounding it briefly.4 

You can see from this description that the parallel port offers a very low
level interface to the outside world. Most of the signaling protocol involved in a 
data transfer has to be implemented by the CPU itself. This is going to have a 
major impact on the design of our driver. 

3 Following the standard convention, a line with # in its name means that ground indicates a logic-I, 
while presence of a signal on the line indicates a logic-D. 

4 Yes, using two lines to indicate a ready status is redundant. 
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Device Registers 

The software interface to the parallel port is through a set of three registers, 
described in Table 9.8. Since the parallel port is one of the things detected by auto
configuration (even on an ISA system), our driver will be able to use the Configu
ration Manager to find the base address of the data register. 

If you look at the bit settings in Table 9.8, you'll notice that some of the bits 
have the opposite polarity from the signals they represent. For example, you need 
to set the STROBE bit to 1 if you want to ground the STROBE# wire and get the 
printer to accept your data. Also, the BUSY wire going to ground causes the BUSY 
bit in the status register to set itself - so it's really a NOT-BUSY bit. The "solder 
people" may have a good explanation for all this, but it's usually best to hide 
these oddities in a hardware header file.s 

Table 9.8 These registers control a parallel port interface 

Parallel port registers 

Offset Register 

a Data 

1 Status 
Bits 0-1 
Bit 2 

Bit 3 
Bit 4 
Bit 5 
Bit 6 
Bit 7 

2 Control 
Bit 0 

Bit 1 
Bit 2 
Bit 3 
Bit 4 
Bit 5 
Bits 6-7 

Access 

R/W 

RIO 

R/W 

Description 

Data byte transferred through 
parallel port 

Current parallel port status 
Reserved; normally contain a 1 
a - interrupt has been requested 

by port 
a - an error occurred 
1 - printer is selected 
1 - printer is out of paper 
a - acknowledge 
a - printer is busy 
Commands sent to parallel port 
1 - strobe data to I from parallel 

port 
1 - automatic line feed 
a - initialize printer 
1 - select printer 
1 - enable interrupts 
1 - read data from parallel port* 
Reserved; must be 1 

*Only valid for extended parallel ports; otherwise this must be O. 

5 See the HARDWARE.H header file included in the on-disk version of the sample source code that 
accompanies this chapter. 
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Interrupt Behavior 

On I5A machines, the parallel port designated as LPTl normally uses IRQ 7 
and LPT2 uses IRQ 5. A device connected to a parallel port generates an interrupt 
by grounding the ACK# line momentarily. Most printers yank on this line for any 
of the following reasons: 

• The printer has finished initializing itself. 

• The printer has processed one character and is now ready for another. 

• Power to the printer has been switched off. 

• The printer has gone offline or has run out of paper. 

There's some variability in the way different printers implement these fea
tures. For example, not all of them generate an interrupt when they've completed 
their initialization, nor do all printers interrupt when they go offline or run out of 
paper. The driver developed later in this chapter assumes that all these conditions 
produce interrupts. 

A Driver for the Parallel Port 

So, just what is it about the parallel port that makes it a good candidate for 
programmed I/O? Looking at the device's behavior, one clue is that each byte 
sent to the device has to be transferred through the CPU. DMA devices work 
independently of the CPU and don't demand this much attention. 

Another hint is that it generates an interrupt after each byte is accepted by 
the device. This means a large number of interrupts will probably occur before an 
operation is complete. DMA devices typically generate only a single interrupt 
when a transfer is complete. 

9.7 CODE EXAMPLE: PARALLEL PORT DRIVER 

This example shows how to write a basic programmed I/O driver for the parallel 
port. You can find the code for this example in the CH09\DRIVER directory on 
the disk that accompanies this book. 

XXDRIVER.H 

This version of the main header file builds on the ones seen in previous 
chapters. Only one structure from this file is of much interest. 

DEVICE_EXTENSION The following excerpt shows the changes in the 
Device Extension needed to support the parallel port. 
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typedef struct _DEVICE_EXTENSION 

ULONG FifoSize; II Bytes to send at once 
ULONG BytesRequested;11 Requested transfer size 
ULONG BytesRemaining;11 Chars left to transferO 
PUCHAR pBuffer; II Next char to send 
BOOLEAN TransferInProgress; @ 

UCHAR DeviceStatus; II Most recent status~ 

DEVICE_EXTENSION, *PDEVICE_EXTENSION; 
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o These two fields are working copies of the requested transfer size and the 
system buffer pointer taken from the IRP. They are used to keep track of 
where we are in the transfer. Modifying the IRP itself would be a disaster 
because the I/O Manager uses it to clean up after the request. 

@ This flag is used to detect spurious interrupts. It's set at the beginning of a 
transfer and cleared when the request is completed. 

@} This field keeps track of the most recent status of the parallel port. The 
DpcForIsr routine uses it to figure out what kind of status to give back to 
the caller. 

INIT.C 

Most of the code in this module is the same as it was in Chapter 6. The 
changes have to do with some hardware-specific initialization. 

XxCreateDevice This excerpt shows the proper sequence of operations for 
enabling interrupts and initializing a piece of hardware. 

static NTSTATUS 
XxCreateDevice ( 

IN PDRIVER_OBJECT DriverObject, 
IN PCONFIG_BLOCK pConfig, II Config block 
IN ULONG uNum II Device number 
) 

status = IoCreateSymbolicLink( 
&linkName, &deviceName ); 
II 
II See if the symbolic link was created ... 
II 
if( !NT_SUCCESS( status )) { 

IoDeleteDevice( pDevObj ); 
return status; 
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II 
II Make sure device interrupts are OFF 
II 
XxWriteControl(O 

II 

pDevExt, 
XX_CTL_DEFAULT 

II Connect to an Interrupt object ... 
II 
status = IoConnectInterrupt(@ 

&pDevExt->pInterrupt, 
XxIsr, 
pDevExt, 
NULL, 
pConfig->Device[uNum] .SystemVector, 
pConfig->Device[uNum] .Dirql, 
pConfig->Device[uNum] .Dirql, 
pConfig->Device[uNum] . InterruptMode, 
pConfig->Device[uNum] .ShareVector, 
pConfig->Device[uNum] .Affinity, 
pConfig->Device[uNum] . FloatingSave ); 

if( !NT_SUCCESS( status )) 
IoDeleteSymbolicLink( &linkName ); 
IoDeleteDevice( pDevObj ); 
return status; 

II 
II Initialize the hardware and enable interrupts 
II 
KeSynchronizeExecution(~ 

pDevExt->pInterrupt, 
XxInitDevice, 
pDevExt ); 

return status; 

o It's important to put the device into a known state. This includes dis
abling interrupts from the port. 

@ The driver uses values recovered by XxGetHardwareInfo to attach its 
Interrupt Service Routine to the device's interrupt vector. 

~ Finally, the driver uses a Synch Critical Section routine to initialize the 
device, including turning on its interrupts. Keep in mind that the Inter-
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rupt Service Routine may actually get called as soon as the KeSynchro
nizeExecution function returns. 

XxlnitHardware This function cycles the !NIT line, causing the printer to 
start initializing itself. This will eventually produce an interrupt. The function 
then sets the SELECT line and enables interrupts from the port. This might result 
in an immediate interrupt. However, since this function is being called by KeSyn
chronizeExecution, it's not in any danger of being disturbed by parallel port 
interrupts. 

static BOOLEAN 
XxInitDevice( 

IN PVOID SynchContext 
) 

PDEVICE_EXTENSION pDE = 
(PDEVICE_EXTENSION) SynchContext; 

XxWriteControl( pDE, XX_CTL_DEFAULT ); 0 
KeStallExecutionProcessor( 60 ); 

XxWriteControl(@ 
pDE, 
XX_CTL_DEFAULT 
I XX_CTL_NOT_INI 
I XX_CTL_SELECT 
I XX_CTL_INTENB ); 

KeStallExecutionProcessor( 60 ); 
return TRUE; 

o Clear the NOT_INIT bit. This begins the printer's initialization cycle. The 
driver waits 60 microseconds to be sure the signal has stabilized. 

@ To complete the cycle, the driver sets the NOT_INIT bit. It also enables 
interrupts and tells the printer to select itself. Again, it's necessary to wait 
a little while the signals stabilize. 

TRANSFER.C 

The routines in this file do the actual work of transferring data out to the 
parallel port. This includes starting each operation, handling interrupts, and 
cleaning up with a DPC. 

XxStartlo This function does any preprocessing needed by the current 
IRP and then starts the actual device operation. 
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VOID 
XxStartIo( 

Chapter 9 Programmed I/O Data Transfers 

IN PDEVICE_OBJECT DeviceObject, 
IN PIRP Irp 
) 

PIO_STACK_LOCATION IrpStack = 
IoGetCurrentIrpStackLocation( Irp ) j 

PDEVICE_EXTENSION pDE = 
DeviceObject->DeviceExtensionj 

switch ( IrpStack->MajorFunction ) {O 

II 
II Use a SynchCritSection routine to 
II start the write operation ... 
II 
case IRP_MJ_WRITE: 

default: 0 

II 
II Set up counts and byte pointer@ 
II 
pDE->BytesRequested = 

IrpStack->Parameters.Write.Lengthj 

pDE->BytesRemaininng = 
pDE->BytesRequested; 

pDE->pBuffer = 
Irp->AssociatedIrp.SystemBuffer; 

if( !KeSynchronizeExecution(~ 

pDE->pInterrupt, 
XxTransmitBytes, 
pDE )) 

break; 

XxDpcForIsr( 
NULL, 
DeviceObject, 
Irp, 
pDE ); 

Irp->IoStatus.Status = 
STATUS_NOT_SUPPORTED; 
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Irp->IoStatus.Inforrnation 0; 
IoCornpleteRequest( 

Irp, 
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IO_NO_INCREMENT ); 
IoStartNextPacket( DeviceObject, FALSE ); 

} 

} 

break; 

o Since all requests get funneled through a single Start I/O routine, it's nec
essary to switch on the major-function code if you have to do any func
tion-specific preprocessing. 

@ These are the private copies of the pointer and byte counts that the driver 
uses to keep track of its place in the system buffer. 

@) The driver tries to send some number of bytes out to the device. If any
thing goes wrong, it calls XxDpcForIsr as a regular subroutine to com
plete the request. 

o The driver should never get to the default case, because unsupported 
functions have been filtered out by the I/O Manager during the dispatch
ing process. But it's better to be safe than sorry. 

XxTransmitBytes This function sends as many bytes as possible to the 
parallel port. This will be either one FIFO's worth, or as many as are left in the 
system buffer. Both XxStartIo and Xxlsr call this function. In either case, it expects 
to be running at DIRQL, synchronized with the driver's ISR 

static BOOLEAN 
XxTransrnitBytes( 

IN PVOID Context II Pointer to the Device Extension 
) 

PDEVICE_EXTENSION pDE = 
(PDEVICE_EXTENSION) Context; 

ULONG XferSize; 

UCHAR Control = XxReadControl ( pDE ); 
pDE->DeviceStatus = XxReadStatus( pDE ); 0 

if( (pDE->BytesRernaining == 0) @ 
I I !XX_OK( pDE->DeviceStatus )) 

pDE->TransferInProgress = FALSE; 
return FALSE; 
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II 
II A transfer is happening. Calculate the number 
II of bytes to send in one bunch. 
II 
pDE->TransferlnProgress = TRUEi e 
if( pDE->BytesRemaining < pDE->FifoSize 

XferSize pDE->BytesRemainingi 
else 

XferSize pDE->FifoSizei 
II 
II Send as many bytes to the device as it 
II can handle. Each byte must be strobed 
II out. 
II 
while ( XferSize > a ) {O 

II 
II Make sure the STROBE bit is off 
II 
xxWriteControl( 

pDE, 
Control & -XX_CTL_STROBE ) i 

II 
II Send a byte and hold it for at least 
II 500 nano-seconds 
II 
XxWriteData( pDE, *pDE->pBuffer )i 

KeStallExecutionProcessor( 1 ) i 

II 
II Turn on the STROBE bit and hold it 
II for at least 500 nano-seconds 
/I 
XxWriteControl( 

pDE, 
Control I XX_CTL_STROBE )i 

KeStallExecutionProcessor( 1 ) i 

II 
II Turn off the STROBE line 
II 
xxWriteControl( 

pDE, 
Control & -XX_CTL_STROBE )i 

KeStallExecutionProcessor( 1 )i 
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II 
II Update pointer and counters 
/I 
pDE->pBuffer++; 
XferSize--; 
pDE->BytesRemaining--; 

return TRUE; 
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o The XxDpcForIsr routine will use this status field to figure out what hap
pened during the I/O processing cycle. 

f9 If all the bytes have been sent, or there was a problem with the printer, 
just return a FALSE and quit. 

@) Send either one FIFO's worth of data, or as many bytes as are left in the 
buffer - whichever is less. 

o This loop sends out one bucketful of data to the port. The body of the 
loop incorporates the strobing protocol required for sending data to the 
parallel port. 

Xxlsr The Kernel calls this function in response to a device interrupt. If 
XxIsr processes the interrupt, it returns TRUE; otherwise, FALSE. It runs at 
DIRQL level, holding the Interrupt spin lock for this device. 

BOOLEAN 
XxIsr( 

IN PKINTERRUPT Interrupt, 
IN PVOID ServiceContext II Ptr to Device Extension 
) 

PDEVICE_EXTENSION pDE = ServiceContext; 
PDEVICE_OBJECT pDevice = pDE->DeviceObject; 
PIRP Irp = pDevice->CurrentIrp; 
UCHAR Status = XxReadStatus( pDE ); 

if(( Status & XX_STS_NOT_IRQ ) != 0 ) 0 
return FALSE; 

if( pDE->TransferInProgress ) f9 
if( !XxTransmitBytes( pDE )) 

IoRequestDpc( pDevice, Irp, (PVOID)pDE ); 
return TRUE; 
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o Check the parallel port to see if it generated an interrupt. Not all parallel 
devices support this bit, but the ones that don't hold it at O. If the device 
didn't request an interrupt, leave the ISR as soon as possible. 

@ The port interrupted. If there's no transfer in progress, just ignore the inter
rupt; otherwise try to send the next chunk of data. If XxTransmitBytes fails, 
it means either an error occurred, or there are no more bytes to send. 

XxDpcForlsr Once the data transfer finishes, this function performs any 
required cleanup operations. The XxStartIo also calls this function if it needs to fail 
an IRP before starting a transfer. XxDpcForIsr runs at DISPATCH_LEVEL IRQL. 

VOID 
XxDpcForIsr( 

IN PKDPC Dpc, 
IN PDEVICE_OBJECT DeviceObject, 
IN PIRP Irp, 
IN PVOID Context II Pointer to Device Extension 
) 

PDEVICE_EXTENSION pDE = Context; 

Irp->IoStatus.Information = 
pDE->BytesRequested -
pDE->cBytesRemaining; 0 

II 
II Figure out what the final status 
II should be 
II 
if( XX_OK ( pDE->DeviceStatus )) @ 

Irp->IoStatus.Status = STATUS_SUCCESS; 

else if( XX_POWERED_OFF( pDE->DeviceStatus )) 
Irp->IoStatus.Status = 

STATUS_DEVICE_POWERED_OFF; 

else if( XX_NOT_CONNECTED( pDE->DeviceStatus )) 
Irp->IoStatus.Status = 

STATUS_DEVICE_NOT_CONNECTED; 

else if( XX_OFF_LINE( pDE->DeviceStatus )) 
Irp->IoStatus.Status = 

STATUS_DEVICE_OFF_LINE; 

else if( XX_PAPER_EMPTY( pDE->DeviceStatus )) 
Irp->IoStatus.Status = 

STATUS_DEVICE_PAPER_EMPTY; 
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else Irp->IoStatus.Status = 
STATUS_DEVICE_DATA_ERROR; 

II 
II If we're being called directly from Start 110, 
II don't give the user any priority boost. 
II 
if( Dpc == NULL ) ~ 

IoCompleteRequest( Irp, IO_NO_INCREMENT ); 
else 

IoCompleteRequest( Irp, 10_PARALLEL INCREMENT ); 
IoStartNextPacket( DeviceObject, FALSE); e 
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o The Information field should contain the number of bytes actually trans
ferred when the IRP goes back to the 1/ 0 Manager. 

@ This section of code uses several macros defined in HARDWARE.H to 
figure out what the final status should be. 

~ It's necessary to know whether this function is being called directly from 
XxStartlo or by the system DPC dispatcher. In the former case, the origi
nal thread gets no priority boost. The NULL DPC argument means XxD
pcForIsr is being called from XxStartIo. 

o Once the current IRP is completed, it's necessary to tell the I/O Manager 
to start the next one. 

9.8 TESTING THE DATA TRANSFER ROUTINES 

At this point, you've got a real driver to work with and you can do serious testing. 
Among other things, you can verify that the driver 

• Sends IRPs from its Dispatch routines to its Start I/O routine 

• Responds to device interrupts 

• Transfers data successfully 

• Completes requests 

• Manages requests from multiple callers 

Testing Procedure 

The following procedure will let you check all the code paths through your 
driver's data transfer routines. 
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1. Write a minimal Start I/O routine that simply completes each IRP as soon as 
it arrives. This will allow you to test the linkage between the driver's Dispatch 
and Start I/ 0 routines. 

2. Write the real Start I/O routine, the ISR, and the DpcForIsr routine. If the 
driver supports both read and write operations, implement and test each path 
separately. 

3. Exercise all the data transfer paths through the driver with a simple Win32 
program that makes ReadFile, WriteFile, and DeviceIoControl calls. 

4. Stress test the driver with a program that generates large numbers of I/O 
requests as quickly as possible. Run this test on a busy system. 

S. If your device is shareable, run several copies of the test program at once to be 
sure the driver works with multiple open handles. 

6. If your driver supports multiple physical devices, repeat the tests with each 
device unit. 

7. If possible repeat steps 4-6 on a multiprocessor system to verify SMP syn
chronization. 

9.9 SUMMARY 

At this point, it looks as if you have all the components of a working driver. Its 
Start I/O routine is setting up each request, its ISR is servicing interrupts, and its 
DpcForIsr is handling all the details of I/O postprocessing. What more could you 
want? 

Unfortunately, the little parallel port driver we built in this chapter isn't 
ready for prime time distribution. In particular, it doesn't handle device timeouts, 
so if an interrupt never arrives, the request will simply lock up. In the next chap
ter, you'll see how to remedy this situation. 
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Timers 

It's a sad fact, but true: Hardware is perverse stuff 
that doesn't necessarily behave the way it should. For example, error conditions 
may prevent a device from generating an interrupt when you're expecting one. 
Even worse, some devices don't even use interrupts to signal interesting state 
changes. Handling these situations often requires some kind of timer or polling 
mechanism, and that's just what we're going to look at in this chapter. 

10.1 HANDLING DEVICE TIMEOUTS 

Your driver should never assume that an expected device interrupt will arrive. 
The device might be offline, it might be waiting for some kind of operator inter
vention, or perhaps it's just broken. This section explains how to use I/O Timer 
routines to detect unresponsive devices. 

How 1/0 Timer Routines Work 

An I/O Timer routine is an optional piece of driver code that your Driver
Entry routine attaches to a specific Device object. After you start the Device 
object's timer, the I/O Manager begins calling the I/O Timer routine once every 
second. These calls continue until you stop the timer. Table 10.1 lists the functions 
available for working with I/O timers. 

Table 10.2 shows the prototype for the I/O Timer routine itself. When it exe
cutes, it receives a pointer to the associated Device object and whatever context 
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Table 10.1 Using I/O timers 

How to use an 1/0 Timer routine 

IF you want to ... 

Attach a timer routine to a device 
Start a device's timer 
Stop a device's timer 

THEN call... 

lolnitialzeTimer 
10StartTimer 
loStopTimer 

IRQL 

PASSIVE_LEVEL 
::; DISPATCH_LEVEL 
::; DISPATCH_LEVEL 

Table 10.2 Function prototype of an I/O Timer routine 

VOID XxloTimer 

Parameter 

IN PDEVICE_OBJECT DeviceObject 
IN PVOID Context 
Return value 

IRQL == DISPATCH LEVEL 

Description 

Device object whose timer just fired 
Context passed to IoInitializeTimer 

information you passed to IoInitializeTimer. As always, the address of the Device 
Extension is a good choice for context. 

How to Catch Device Timeout Conditions 

In general terms, a driver that wants to catch device timeouts should do the 
following: 

1. Its DriverEntry routine calls IoInitializeTimer to associate an 1/0Timer rou
tine with a specific device. 

2. When a user-mode program attaches a handle to the device by calling Create
File, the Dispatch routine for IRP _MLCREATE calls IoStartTimer. As long as 
this handle is open, the device will receive I/O Timer calls. This same Dis
patch routine also sets a timeout counter in the Device Extension to -1 - a 
"do nothing" value. 

3. When the Start I/O routine starts the device, it also sets the timeout counter to 
the maximum number of seconds the driver is willing to wait for an interrupt. 

4. The ISR will do one of two things when an interrupt arrives. If there's more 
data, it resets the timeout counter to its maximum value and transfers the next 
piece of data. Otherwise, it sets the timeout counter to -1 and issues a DPC 
request to complete the IRP. 

5. Meanwhile the system is calling the driver's I/O Timer routine once every 
second. When it executes, the I/O Timer routine checks the timeout counter. 
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A value of -1 means "ignorethe I/O Timer call." A positive value causes the 
I/O Timer routine to decrement the device's timeout counter. If the counter 
reaches zero before an interrupt arrives, the I/O Timer routine stops the 
device, sets the timeout counter to -1, and processes the request as a timed 
out operation. 

6. When the user-mode program calls CloseHandle,the Dispatch routine for 
IRP _MLCLOSE calls loStopTimer and disables I/O Timer callbacks for the 
device. 

Notice that the Start I/O and I/O Timer routines (running at DIS
PATCH_LEVEL IRQL), and the ISR (running at DIRQL) all have access to the 
timeout counter in the Device Extension. This can lead to problems unless these 
driver routines synchronize themselves. The code example that appears later in 
this chapter shows how to dothis properly. 

It's also worth pointing out that not all drivers use their Dispatch routines to 
start and stop the I/O Timer calls. Some drivers just start a device's I/O Timer in 
DriverEntry and stop itin the Unload routine. While the driver is loaded, it sim
ply ignores I/O Timer callbacks whenever the timeout counter is set to -1. The 
only disadvantage of this scheme is. that it incurs some system overhead even 
when the device isn't being used. 

Your driver has a number of options for processing a request that has timed 
out. Some of the common things drivers do include: 

• Retrying the device operation some fixed number of times before failing 
the IRP that generated it. 

• Failing the IRP by calling IoCompleteRequest with an appropriate final 
status value.1 

• Logging a timeout error for the device in the system event log. This can 
help system·administrators to track down flaky hardware. 

10.2 CODE EXAMPLE: CATCHING DEVICE TIMEOUTS 

This example does ':show how to add timeout support· to the simple parallel port 
driver developed mthe previous chapt~r.:You can find the codefor this example 
in the CHI0\TIMI£'-OUT\DRIVERdirectory on the disk that accompanies this 
book. 

1 Watch out if you're,tempted to use SfAIUS..JO'::'TIMEOUT as the final status fer a timedout.IRP. 
Unfortunately, this datus codemaps ... onto theERROR_SEM_TIMEOUT inWm32. The:message for 
this code ("The semaphoretimeout\period:has expired.~') may be a little confusing ro users .. of your 
driver, so it's usualit)'i,best to ;findspm~'other NT status code. 
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XXDRIVER.H 

This version of the main header file builds on the ones seen in previous 
chapters. Only one structure from this file is of much interest. 

DEVICE_EXTENSION The following excerpt shows the changes in the 
Device Extension needed to catch parallel port timeout errors. 

typedef struct _DEVICE_EXTENSION { 

PUCHAR pBuffer; II Working buffer pointer 
LONG TimeRemaining; II Seconds until timeoutO 
UCHAR DeviceStatus; II Most recent status byte 
DEVICE_EXTENSION, *PDEVICE_EXTENSION; 

o This counter keeps track of the number of seconds remaining until the 
driver declares a timeout condition. If it's set to -1, I/O Timer callbacks 
are ignored. Anyone accessing this variable needs to be synchronized 
with the I5R. 

INIT.C 

Here's an excerpt from the driver initialization code. Only a few changes are 
necessary to prepare for I/O Timer support. 

XxCreateDevice In this modified version of the function that creates 
Device objects, notice the addition of code to set up the I/O timer. 

static NTSTATUS 
XxCreateDevice ( 

IN PDRIVER_OBJECT DriverObject, 
IN PCONFIG_BLOCK pConfig, II Config block 
IN ULONG uNum II Device number 
) 

/I 
II Initialize the device extension structure 
/I 
pDevExt = pDevObj->DeviceExtension; 
pDevExt->DeviceObject = pDevObj; 
pDevExt->NtDeviceNtimber = uNum; 
pDevExt->FifoSize = XX_FIFO_SIZE; 
pDevExt->TimeRemaining = -1;0 

/I 
II Prepare the device's DPC object for later use 
II 
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IoInitializeDpcRequest( 
pDevObj, 
XxDpcForIsr ); 

II 
II Initialize the device's timeout clock 
II 
IoInitializeTimer( pDevObj, XxIoTimer, pDevExt );@ 

o Set the initial value of the timeout counter to its lido nothing" state. 
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There's no need to synchronize here because the driver's ISR hasn't been 
activated yet with a call to IoConnectlnterrupt. 

@ Associate the Device object with the driver's I/O Timer routine. Each 
time XxloTimer is called, pass it a pointer to the Device Extension. 

TRANSFER.C 

Most of the changes in these versions of the data transfer routines involve 
checking and setting the state of the timeout counter. 

XxTransmitBytes For proper synchronization, this function expects to be 
holding the Interrupt spin lock when it runs. This means it either must be called 
from XxIsr or as a Synch Critical Section routine. 

static BOOLEAN 
XxTransmitBytes( 

IN PVOID Context 
) 

PDEVICE_EXTENSION pDE = 
(PDEVICE_EXTENSION) Context; 

UCHAR Control; 
ULONG i; 

pDE->DeviceStatus XxReadStatus( pDE ); 

II 
II If all the bytes have been sent or the 
II device is unhappy, inhibit any further 
II processing of this request and just quit. 
II 
if( (pDE->BytesRemaining == 0) 

I I !XX_OK( pDE->DeviceStatus » 
{ 

pDE->TimeRemaining = -1; 0 
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return FALSE; 
} 

II 
II Send as many bytes to the device as it 
II can handle. Each byte must be strobed 
II out. 
II 
Control XxReadControl( pDE ); 

fort i=O; i < pDE->XferSize; i++ ) {@ 

II 

II 
II Make sure the STROBE line is off 
II 
XxWriteControl( 

pDE, 
Control & -XX_CTL_STROBE ); 

II 
II Update pointer and counters 
II 
pDE->pBuffer++; 

II Start the timeout clock and wait 
II for an interrupt 
II 
pDE->TimeRemaining 

return TRUE; 

o If the device is unhappy or there are no more bytes to transfer, this is the 
end of the request. Disable the timeout counter. 

@ There's no danger of the timeout routine failing the IRP during the data 
transfer loop. This is because I/O Timerroutine won't access the timeout 
counter variable until it acquires the Interrupt spin lock. 

@) Now that more data has been sent, reset the timeout counter and wait for 
the next interrupt to arrive. 

Xxlsr This function responds to interrupts from the parallel port. It differs 
from the previous version in that it uses the timeout counter variable to determine 
if a transfer is currently in progress. 
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BOOLEAN 
XxIsr( 

{ 

IN PKINTERRUPT Interrupt, 
IN PVOID ServiceContext 
) 

PDEVICE_EXTENSION pDE = ServiceContext; 
PDEVICE_OBJECT pDevice = pDE->DeviceObject; 
UCHAR Status = XxReadStatus( pDE ); 

II 
II See if this device requested an interrupt 
II 
if(( Status & XX_STS_NOT_IRQ ) != 0 ) 

return FALSE; 

if( pDE->TimeRemaining == -1 return TRUE; 0 

II 
II Otherwise, try to send the next bunch of 
II bytes. If XxTransmitBytes fails, it means 
II either an error occurred or there's no more 
II data to send. 
/! 
pDE->BytesRemaining -= pDE->XferSize; 

if( !XxTransmitBytes( pDE )) @ 
{ 

IoRequestDpc( 

} 

return TRUE; 

pDevice, 
pDevice->CurrentIrp, 
(PVOID)pDE ); 
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o If the timeout clock is -1, either there's no transfer in progress, or the device 
has already t:jmedout. In either case, there's nothing to be done here. 

@ After the return from XxTransmitBytes, the timeout counter has either 
been set to its maximum value (if the next piece of data has been sent), or 
-1 (if there was no more data to send or the device had an error). 

TIMER.C 

Here are the routines that actually process the timer events. In this particular 
driver, the Dispatch routine for IRP _MLCREATE starts the device's timer, and the 
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Dispatch routine for IRP _MLCLOSE stops it. While the timer is running, the con
tents of the timeout counter variable determine the behavior of the I/O Timer 
routines. 

XxloTimer As long as the I/O Timer for a device is running, the system 
will call this routine once every second. 

VOID 
XxIoTimer( 

} 

IN PDEVICE_OBJECT DeviceObject, 
IN PVOID Context 
) 

PDEVICE_EXTENSION pDE = Context; 

if( pDE->TimeRemaining == -1 ) return; 0 

else if( !KeSynchronizeExecution(@ 
pDE->pInterrupt, 
XxProcessTimerEvent, 
pDE )) 

II 
II Call the DPC routine to figure out a 
II final status and complete the IRP. 
II 
XxDpcForIsr(4D 

NULL, 
DeviceObject, 
DeviceObject->CurrentIrp, 
pDE ); 

o Do a quick check of the timeout counter. Either there's no data transfer in 
progress, or an expected interrupt has arrived. Making this quick check at 
DISPATCH_LEVEL avoids needless trips up to DIRQL. 

@ The timeout counter appears to contain some value other than -1. To pro
cess the timer event safely, synchronize with XxIsr using a Synch Critical 
Section routine. 

4D The Sync Critical Section routine returns FALSE if the current IRP has 
timed out. In this case, we just fail the IRP. Other options might include 
retrying the operation a fixed number of times, logging an error, and so 
forth. 
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XxProcessTimerEvent This function does the real work of processing 
timer events. It runs as a Synch Critical Section routine because it has to synchro
nize its access to the timeout counter with XxIsr. 

static BOOLEAN 
XxProcessTimerEvent( 

IN PDEVICE_EXTENSION pDE 
) 

if( pDE->TimeRemaining == -1 ) return TRUE; 0 

II 
II Decrement and test the timer. 
II 
if( --pDE->TimeRemaining > a ) return TRUE; @ 

II 
II A timeout has occurred. Prevent further 
II processing of this request 
II 
pDE->TimeRemaining = -1; ~ 
pDE->DeviceStatus = XxReadStatus( pDE ); 
return FALSE; 

o It's necessary to test the timeout counter again because the ISR may have 
changed it while we were waiting for the Interrupt spin lock. If that's the 
case, do nothing. 

@ The timeout counter contains something other than -1. In this case, decre
ment the count. If it's still above 0, the IRP hasn't timedout yet. 

~ The counter hit 0 so the IRP has timedout. Setting the timeout counter to 
-1 blocks further processing of this request by the ISR (should an inter
rupt just happen to arrive). Returning FALSE will cause the IRP to be 
completed by XxIoTimer. 

10.3 MANAGING DEVICES WITHOUT INTERRUPTS 

Some devices don't generate interrupts every time they make a significant state 
change. Legacy ISA devices can be especially bad about this kind of thing. This 
section presents alternative ways of working with noninterrupting devices. 

Working with Noninterrupting Devices 

Under operating systems like MS-DOS, a driver managing a noninterrupt
ing device could simply poll the device or busy-wait until it has changed state. 
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However, this kind of behavior would cause serious performance problems for 
NT. Instead, NT drivers can use one of the following techniques for suspending 
their execution during a repeated polling operation: 

• Driver routines running at PASSIVE_LEVEL IRQL can call KeDelayExe
cutionThread to introduce a time delay. This method can only be used by 
the driver's initialization and cleanup code, or any Kernel-mode threads 
the driver has created. 

• If you occasionally have to delay execution for intervals less than about 
50 microseconds, you can call KeStallExecutionProcessor. This is better 
than busy-waitin~ because the delay interval doesn't depend on a specific 
CPU architecture. 

• If parts of your driver running at DISPATCH_LEVEL IRQL need to intro
duce a time delay, you can use a CustomTimerDpc routine. 

If your device needs to be polled repeatedly and the delay interval between 
each polling operation is over 50 microseconds, base your driver design on the 
use of system threads (discussed in Chapter 14). 

How CustomTimerDpc Routines Work 

A CustomTimerDpc routine is just a DPC routine that you associate with a 
Kernel Timer object. You get the CustomTimerDpc routine to run by setting the 
Timer's timeout value. When it expires, the Kernel automatically queues your 
DPC routine for execution. Eventually, the Kernel's DPC dispatcher pulls your 
request from the queue and executes the CustomTimerDpc routine. Keep in mind 
that, depending on system activity, there could be some delay between the 
moment the Timer object expires and the actual execution of the DPC routine. 

In earlier versions of Windows NT, a CustomTimerDpc routine would fire 
only once. If you wanted one of these routines to execute repeatedly, you had to 
manually reset the Timer object each time it fired. With NT 4.0, you have the 
option of specifying a repetition interval when you set the Timer object's initial 
timeout value. Each time it fires, the Timer object will automatically reset itself to 
fire again when the repetition interval has elapsed.3 

Like all other DPC routines, a CustomTimerDpc runs at DISPATCH_LEVEL 
IRQL. Table 10.3 shows the prototype for one of these routines. Notice that a Cus-

2 Don't use this function too often. It essentially freezes the CPU on which it's called at whatever 
IRQL level it's called from. 

3 If you need to implement a repeating CustomTimerDpc routine, it's generally a good idea to use 
the Timer object's automatic repetition feature rather than resetting the Timer yourself each time it 
fires. It's more efficient because your driver won't be making so many calls to Kernel support rou
tines. It also guarantees that there won't be any skewing of the timeout intervaL 
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Table 10.3 Function prototype of a CustomTimerDpc routine 

VOID XxCustomTimerDpc 

Parameter 

INPKDPCDpc 
IN PYOID Context 
IN PYOID SystemArg1 
IN PYOID SystemArg2 
Return value 

IRQL == DISPATCH_LEVEL 

Description 

DPC object generating the request 
Context passed to KeInitializeDpc 
(Not used - contents unspecified) 
(Not used - contents unspecified) 

tomTimerDpc routine always receives two junk arguments from the system. The 
contents of these two system arguments are undefined, so don't use them.4 With 
CustomTimerDpc routines, you're limited to just a single context argument that is 
permanently associated with the DPC object. 

It's worth comparing CustomTimerDpc routines with the I/O Timers you 
saw in the first part of this chapter. Although both mechanisms operate with time, 
they differ in several significant ways. In particular: 

• Unlike I/O Timer routines, a CustomTImerDpc is not associated with any 
particular Device object. You can have as many or as few of them as you like. 

• The minimum resolution of an I/O Timer is one second; you specify the 
expiration time of a CustomTimerDpc in units of 100 nanoseconds. 

• The I/O Timer always uses a one-second interval. You can specify differ-
ent expiration intervals each time you start a CustomTimerDpc. . 

• The storage for an I/O Timer object is automatically part of the Device 
object. You need to declare nonpaged storage for both a KDPC and a 
KTIMER object if you want to use a CustomTimerDpc. 

How to Set Up a CustomTimerDpc Routine 

Working with CustomTimerDpc routines is very straightforward. Your 
driver simply needs to follow these steps: 

1. Allocate nonpaged storage (usually in a Device or Controller Extension) for 
both a KDPC and a KTIMER object. 

2. DriverEntry calls KeInitializeDpc to associate a DPC routine and a context item 
with the DPC object. This context item will be passed to your CustomTimerDpc 

4 Regular CustomDpc routines (not associated with a Tnner object) can make use of these argu
ments. The discussion of CustomDpc routines in the next chapter shows how to use them. 
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routine when it fires. The address of the Device or Controller Extension is a 
good choice for the context item. 

3. DriverEntry also calls KeInitializeTimer just once to set up the Timer 
object. 

4. To start a one-shot Timer, call KeSetTimer; to set up a repeating Timer, use 
KeSetTimerEx instead. If you call these functions using a Timer object that is 
currently active, the previous request is canceled and the new expiration time 
replaces the old one. 

If you want to keep a Timer from firing, call KeCancelTimer before the 
Timer object expires. This also cancels a repeating Timer. If you need to find out 
whether a Timer has already expired, call KeReadStateTimer. 

You must be executing at PASSIVE_LEVEL IRQL when you initialize the 
DPC and Timer object. To set, cancel, or read the state of a Timer, you must be run
ning at or below DISPATCH_LEVEL IRQL. In general, you should avoid calling 
KeInsertQueueDpc with a DPC object being used for a CustomTimerDpc rou
tine. This can lead to race conditions in your driver. 

How to Specify Expiration Times 

Internally, NT maintains the current system time by counting the number of 
100-nanosecond intervals since January 1, 1601. This is a very big number, so NT 
defines a 64-bit data type called a LARGE_INTEGER to hold it. Table 10.4 lists the 
functions drivers can use to work with time values. 

Table 10.4 Functions that operate on system time values 

Time functions 

Function 

KeQuerySystemTime 
RtlTimeToTimeFields 
RtlTimeFieldsToTime 
KeQueryTickCount 
KeQueryTimeIncrement 

RtlConvertLongToLargeInteger 
RtlConvertUlongToLargeInteger 
RtlLargeIntegerXxx 

Description 

Return 64-bit absolute system time 
Break 64-bit time into date and time fields 
Convert date and time into 64-bit system time 
Return number of clock interrupts since boot 
Return number of 100-nanosecond units added 

to system time for each clock interrupt 
Create a signed LARGE_INTEGER 
Create a positive LARGE_INTEGER 
Perform various arithmetic and logical 

operations on LARGE_INTEGERs 

Note: Callers of these functions can be running at any IRQL level. 
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When you call KeSetTimer to start the clock ticking on a Timer object, you 
can specify the expiration time in one of two ways: 

• A positive LARGE_INTEGER value represents an absolute system time at 
which you want the Timer to expire. Absolute times correspond to some 
exact moment in the future, like "February 23, 2051 at 6:45 PM." 

• A negative LARGE_INTEGER value represents the length of an interval 
measured from the current moment, like 1/10 seconds from now." This is 
the form you're most likely to use. 

This fragment of code shows how to set a Timer object to expire after an 
interval of 75 microseconds. It assumes that pDE holds a pointer to a Device 
Extension, and that the Extension contains initialized Timer and DPC objects. 

LARGE_INTEGER DueTimei 

DueTime = RtlConvertLongToLargeInteger( -75 * 10 )i 

KeSetTimer( &pDE->Timer, DueTime, &pDE->DPC ) i 

Since the number is negative, the system will interpret it as a relative time 
value. Scaling the number by ten is necessary because the basic unit of system 
time is 100 nanoseconds (or 0.1 microseconds). 

Other Uses for CustomTimerDpc Routines 

In the next section, you'll see an example of a driver that performs data 
transfers using a CustomTimerDpc instead of device interrupts. It's worth point
ing out that, in some situations, you might want to use this kind of technique even 
with devices that do generate interrupts. This could be helpful if your device gen
erates so many interrupts that it overwhelms the Kernel's interrupt dispatcher 
and degrades system performance. 

The sample parallel port driver that comes with the NT DDK is one example 
of a driver that uses this technique. This driver monitors the arrival rate of inter
rupts for its device. When a flood of interrupts threatens to drown the system, the 
driver intentionally disables parallel port interrupts and uses a CustomTimerDpc 
to send data to the device. Depending on the device you're working with, this 
kind of adaptive vehavior might be something you want to consider: 

10.4 CODE EXAMPLE: A TIMER-BASED DRIVER 

This modified version of the parallel port driver disables interrupts and uses a 
CustomTimerDpc routine to transfer data at fixed intervals. You can find the code 
for this example in the CHIO\POLLING\DRIVER directory on the disk that 
accompanies this book. 
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XXDRIVER.H 

This version of the main header file builds on the ones seen in previous 
chapters. Only one structure from this file is of much interest. 

DEVICE_EXTENSION The following excerpt shows the changes in the 
Device Extension needed to support polling. 

typedef struct _DEVICE_EXTENSION { 
PDEVICE_OBJECT DeviceObjectj II Back pointer 

ULONG NtDeviceNurnberj 

PUCHAR PortBasej 

II Zero-based device num 

II First control registerO 

KDPC PollingDpcj II Components of the 8 
KTIMER PollingTimerj II polling mechanism 
LARGE_INTEGER PollingIntervalj e 
ULONG FifoSizej 
ULONG BytesRequestedj 
ULONG BytesRemainingj 
PUCHAR pBufferj 

UCHAR DeviceStatusj 

II Bytes to send at once 0 
II Requested transfer size 
II Chars left to transfer 
II Next char to send 

II Most recent status 

DEVICE_EXTENSION, *PDEVICE_EXTENSIONj 

o While we need to have access to the device's control registers, we're not 
keeping a pointer to an Interrupt object in this driver. All interrupts from 
this device will be turned off. 

8 The Dpc and Timer objects together will activate the CustomTimerDpc 
routine. 

e The PollingInterval field holds the expiration interval for the polling 
timer. For convenience in this driver, we'll keep the value in microsec
onds rather than tenths of microseconds. 

o The rest of the structure is the same as the interrupt-driven version. 

INIT.C 

Here is a tiny excerpt from the driver's initialization code. The rest of it is the 
same boilerplate we've been looking at for several chapters. Not shown (but 
equally important) is the hardware initialization code that disables interrupts 
from the parallel port. 

XxCreateDevice This function sets up the Device object. It differs from the 
interrupt-driven version in that it never calls IoConnectInterrupt, and it has to 
initialize the polling timer. 
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static NTSTATUS 
XxCreateDevice ( 

IN PDRIVER_OBJECT DriverObject, 
IN PCONFIG_BLOCK pConfig, II Config block 
IN ULONG uNum 
) 

II 

II Device number 

II Copy things from Config block 
II 
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pDevExt->PortBase = pConfig->Device[uNum].PortBase; 

II 
II Calculate the polling interval 
II 
pDevExt->PollingInterval 

II 

RtlConvertLongToLargeInteger( 
XX_POLLING_INTERVAL * -10 ); 0 

II Prepare the polling timer and its DPC object 
II 
KeInitializeTimer( &pDevExt->PollingTimer ); @ 

KeInitializeDpc( 8 

II 

&pDevExt->PollingDpc, 
XxPollingTimerDpc, 
(PVOID)pDevObj ); 

II Form the Win32 symbolic link name. 
II 

o We use an RtlXxx convenience function to create the polling interval. 
Since the number is negative, the timeout will be measured relative to the 
moment the Timer object is started. Multiplying the value by ten allows 
us to specify XX_POLLING_INTERVAL in microseconds. 

@ Get the Kernel to turn the blob of memory into a Timer object. 

8 Attach the CustomTimerDpc routine to the DPC object. Pass a pointer to 
the Device object each time the CustomTimerDpc is called. 

TRANSFER.C 

Since this driver uses polling rather than interrupts to send data, you won't 
find any Interrupt Service routine here. 



218 Chapter 10 Timers 

XxStartlo This function is called to begin the processing of each IRP. It 
looks very much like the interrupt-driven version. 

VOID 
XxStartIo( 

IN PDEVICE_OBJECT DeviceObject, 
IN PIRP Irp 
) 

PIO_STACK_LOCATION IrpStack = 
IoGetCurrentIrpStackLocation( Irp ); 

PDEVICE_EXTENSION pDE = 
DeviceObject->DeviceExtension; 

switch ( IrpStack->MajorFunction ) { 

II 

pDE->BytesRequested 
IrpStack->Parameters.Write.Length; 

pDE->BytesRemaining = 
pDE->BytesRequested; 

pDE->pBuffer = 
Irp->AssociatedIrp.SystemBuffer; 

if( !XxTransmitBytes( pDE )) @ 
{ 

break; 

XXFinishCurrentRequest( 
DeviceObject, 
pDE, 
Irp, 
IO_NO_INCREMENT ); 

II Should never get here -- just get rid 
II of the packet ... 
II 
default: 

Irp->IoStatus.Status 
STATUS_NOT_SUPPORTED; 

Irp->IoStatus.Information = 0; 
IoCompleteRequest( 

Irp, 
IO_NO_INCREMENT ); 
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IoStartNextPacket( DeviceObject, FALSE ); 
break; 

o If this turns out to be an IRP _ML WRITE request, just set up the necessary 
counters and pointers, and try to send the first bunch of bytes to the 
device. 

@ Notice that XxTransmitBytes is being called directly from 
DISPATCH_LEVEL IRQL. There's no need to synchronize it using a 
Synch Critical Section routine because there is no interrupt activity from 
the device. 

XxTransmitBytes This routine sends a fixed number of bytes out to the 
parallel port. If the device has a personal problem or there are no more bytes left 
in the buffer, it returns a FALSE. This data 

static BOOLEAN 
XxTransmitBytes( 

IN PDEVICE_EXTENSION pDE 
) 

ULONG XferSize; 

UCHAR Control = XxReadControl( pDE ); 
pDE->DeviceStatus = XxReadStatus( pDE ); 

// 
// If all the bytes have been sent or the 
/1 device is unhappy, just quit 
// 
if( (pDE->BytesRemaining == 0) 

I I !XX_OK( pDE->DeviceStatus )) 

return FALSE; 

// 
1/ Calculate the number of bytes to 
/1 send in one bunch. 
/1 
if( pDE->BytesRemaining < pDE->FifoSize 

XferSize pDE->BytesRemaining; 
else 

XferSize = pDE->FifoSize; 

while ( XferSize > 0 ) {O 
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II 
II Make sure the STROBE line is off 
II 
XxWriteControl( 

} 

II 

pDE, 
Control & -XX_CTL_STROBE )i 

II 
II Update pointer and counters 
II 
pDE->pBuffer++i 
XferSize--i 
pDE->BytesRemaining--i 

II Start the polling timer 
II 
KeSetTimer(@ 

&pDE->PollingTimer, 
pDE->PollingInterval, 
&pDE->PollingDpc )i 

return TRUEi 

o Send as many bytes to the device as it can handle. Since this is a parallel 
port device, each byte has to be strobed out. 

@ Start the polling Timer object. When the Timer expires, the associated 
DPC routine will be queued automatically. 

XxPollingTimerDpc This function runs each time the polling timer 
expires. It replaces both the ISR and the DpcForIsr routines in the interrupt-driven 
version of this driver. 

VOID 
XxPollingTimerDpc( 

IN PKDPC Dpc, 
IN PVOID Context, 
IN PVOID SystemArgumentl, 0 
IN PVOID SystemArgument2 
) 

PDEVICE_OBJECT DeviceObject = Contexti 

if( !XxTransmitBytes(@ 
DeviceObject->DeviceExtension )) 
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XxFinishCurrentRequest(~ 

DeviceObject, 
DeviceObject->DeviceExtension, 
DeviceObject->Currentlrp, 
IO_PARALLEL_INCREMENT ); 
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o Remember that the contents of the two system arguments are undefined 
in a CustomTimerDpc routine. 

f9 Try to send the next bunch of bytes. If XxTransmitBytes fails, it means 
either an error occurred, or there is no more data to send. If it succeeds, it 
restarts the polling timer, which will eventually result in another call to 
XxPollingTimerDpc. 

@) Call XxFinishCurrentRequest to come up with an appropriate status 
code and complete the IRP. Again, notice that everything is happening at 
DISPATCH_LEVEL IRQL. XxFinishCurrentlrp runs in response to a reg
ular function-call, not a DPC request. 

10.5 SUMMARY 

This chapter has presented two different aspects of using time in your driver. 
Handling device timeouts is something that will always be important, while the 
use of CustomTimerDpc routines may only be useful for certain kinds of devices. 
One important use of CustomTimerDpc routines is to implement various polling 
strategies. 

You now have enough tools to write reasonable drivers for many simple 
pieces of hardware. In the next chapter, we'll look at some additional techniques 
for managing full-duplex devices and devices that generate asynchronous events. 
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Full-Duplex 
Drivers 

The driver model described in the last few chap
ters has one significant limitation: It allows you to process only a single IRP at a 
time per Device object. While this is fine for many situations, it doesn't cut it if 
your driver has to perform both input and output operations simultaneously. 

This chapter presents a modified driver architecture that lifts the single-IRP 
restriction. To implement this architecture, it uses several new techniques (like 
CustomDpc and Cancel routines) that can be helpful in any kind of driver. At the 
end of the chapter, sample code for a tiny serial port driver will tie all the loose 
ends together. 

11.1 DOING Two THINGS AT ONCE 
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Just what is it about the standard driver architecture that prevents a single Device 
object from processing two IRPs at once? The problem becomes clear if you con
sider what happens when a Dispatch routine sends an IRP to IoStartPacket. 

Calling IoStartPacket with a pointer to an idle Device object makes the 
object busy and invokes the driver's Start I/O routine. From then on, any calls to 
IoStartPacket targeting the same Device object result in IRPs being added to the 
object's queue of pending requests. This continues until the Start I/O or Dpc
ForIsr routines call IoStartNextPacket to mark the Device object as being idle. 
This kind of behavior makes it very difficult to start another IRP before the cur
rent one is completed. 
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Do You Need to Process Concurrent IRPs? 

The first thing to ask yourself is whether your driver really needs to process 
multiple IRPs concurrently. This is actually a question about the kind of software 
interface your driver is going to expose. For purposes of this discussion, you can 
divide driver interfaces into the following categories: 

• Simplex interface - These drivers can transfer data only in one direc
tion. 

• Half-duplex interface - These drivers manage hardware that transfers 
data in both directions, but (for whatever reason) the drivers only process 
one request at a time. 

• Full-duplex interface - Here, the driver can perform both inputs and 
outputs simultaneously. 

The standard driver model easily supports both the simplex and half-duplex 
cases. Unfortunately, since it can't handle two requests at the same time, you can't 
use this model to provide a full-duplex driver interface. 

An important factor in choosing a software interface is the behavior of the 
underlying hardware. Usually, this will tell you what kind of driver is most 
appropriate. Broadly speaking, you can divide hardware into three families. 

$implex devices These devices can transfer data in only one direction. 
The standard parallel port and the mouse are both examples of simplex hardware. 
It's very unlikely that you'd need a full-duplex driver for a simplex device. 

Half-duplex devices This type of device can transfer data in both direc
tions, Qut only one transfer can take place at a time. Disk controllers and Ethernet 
cards are both examples of half-duplex hardware. The choice of driver interface 
will depend on how the device is used. It's natural for disk controllers to process 
only one request at a time. Network cards need to give the appearance of per
forming simultaneous input and output operations, even though the device itself 
can only send or receive one packet at a time. 

FUll-duplex devices These devices can perform simultaneous input and 
output operations. The standard serial port exhibits this kind of behavior. A full
duplex driver is almost always a necessity for this type of device. 

How tl1e Modified Driver Architecture Works 

In a nutshell, if you want a single Device object to process two concurrent 
IRPs, you need to establish a complete secondary path through your driver. IRPs 
taking this alternate route will be processed in parallel with those following the 
standard path. To do this, you must: 
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1. Divide the IRP _MLXXX functions supported by your driver into two catego
ries: Those to be processed by the standard Start I/O routine (the primary 
IRPs) and those that will travel the alternate path (the alternate IRPs). 

2. Set up various bookkeeping structures to handle IRPs with alternate function 
codes. This involves maintaining a queue of alternate IRPs, as well as keeping 
track of the current alternate IRP. In this chapter, we'll be using Device Queue 
objects to hold the alternate IRPs. 

3. Duplicate some of the logic in the I/O Manager's IoStartPacket and IoStart
NextPacket functions. Your versions of these routines will be responsible for 
controlling the flow of IRPs along the alternate path. 

4. Write additional Start I/O and DPC routines to handle alternate IRPs. 

5. Modify the Interrupt Service routine so that it can process both primary and 
alternate DPC functions. 

Data Structures for a Full-Duplex Driver 

In Chapter 4 you saw that a standard Device object contains a Currentlrp 
field that keeps track of the primary IRP being processed. Although it wasn't dis
cussed in any detail, you also saw that the Device object contains an embedded 
Device Queue object for holding primary IRPs that arrive after the Device object 
has become busy. In a full-duplex driver, you need to set up parallel structures to 
manage the alternate IRPs. Normally, this bookkeeping happens in the Device 
Extension, as shown in Figure 11.1. 

Primary IRPs 

Current 
IRP 

DeVice ~ 

Object ~ 

Currentlrp 

DeviceExtension 
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Device 
Queue 

Alternate 
Queue 

Alternate IRPs 

Figure 11.1 A full-duplex driver uses these data structures 
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Along with the alternate IRP pointer and the Device Queue object, there are 
some other changes to the Device Extension. If you're doing Buffered I/O, you'll 
need two sets of buffer pointers and .counters to keep track of your progress 
through an I/O request. In addition, the strategy adopted in this chapter uses sep
arate DPC routines for completing primary and alternate IRPs, so you'll need to 
leave room in the Device Extension for a KDPC object. 

Implementing the Alternate Path 

Setting up the alternate path requires changes to several parts of your driver's 
code. The following subsections describe the modifications you'll need to make. 

Dispatch routines In a full-duplex driver, Dispatch routines for the alter
nate IRP _MLXXX function codes don't use the IoStartPacket function. Instead, 
they call the driver-defined start-packet routine to send IRPs down the alternate 
processing path. 

Start I/O routines The modified driver architecture is going to use two 
Start I/O routines: One for IRPs with primary IRP _MJ_XXX function codes and 
another for the IRPs with alternate codes. Implementing these functions as sepa
rate pieces of code usually makes them easier to manage. 

Interrupt Service routine When an interrupt arrives, the Interrupt Service 
routine has to perform different kinds of processing for primary and alternate 
operations. It needs to send primary and alternate IRPs to different DPC routines 
for postprocessing. 

DPC routines Although you could write a full-duplex driver with only a 
single DpcForIsr routine, it's usually easier to have a separate CustomDpc routine 
for the alternate IRPs. When this CustomDpc routine completes an IRp, it calls the 
driver-defined version of IoStartNextPacket to begin processing the next alter
natelRP. 

11.2 USING DEVICE QUEUE OBJECTS 

A full-duplex driver needs some way to keep track of pending IRPs that arrive 
while the driver is already processing an alternate IRP. Although there are several 
ways to handle this situation, the driver model developed in this chapter is going 
to use a Device Queue object to hold on to pending alternate IRPs. This is the 
same strategy that the I/O Manager uses for the driver's primary IRPs. 

How Device Queue Objects Work 

A Device Queue is a Kernel object that contains a linked list guarded by an 
embedded Executive spin lock. Although a Device Queue object can hold any 
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structure with a KDEVICE_QUEUE_ENTRY in it, they are most commonly used 
to store a Device object's pending IRPs. 

A Device Queue object is always in one of two states: Busy if there's been at 
least one attempt to insert an entry into the queue and Not Busy if there's been an 
attempt to remove an entry from an empty queue. Table 11.1 shows how Device 
Queue state transitions work. 

The basic pattern is fairly simple: If you try to insert an entry into a Device 
Queue that isn't Busy, the insertion fails but the queue becomes Busy. Once it has 
become Busy, insertion operations succeed. Removing entries from a Busy Device 
Queue causes no change in the object's state. Once the Device Queue has no more 
entries, the next attempt to remove one causes the object to return to the Not-Busy 
state. 

The IoStartPacket and IoStartNextPacket functions use the state of the 
Device object's built-in Device Queue to guarantee that a driver's Start I/O rou
tine receives only one IRP at a time per Device object. The Device Queue is Not 
Busy if the associated Device object is ready to process another IRP, and Busy if 
the Device object is currently working on an IRP. 

How to Use Device Queue Objects 

It's fairly easy to work with Device Queue objects. The code example 
appearing later in this chapter will show you the specific details. In general, what 
you do is: 

1. Declare a KDEVICE_QUEUE item in your Device Extension structure. 

2. In your DriverEntry routine, call KelnitializeDeviceQueue. This sets up both 
the Device Queue object and its associated Executive spin lock. 

3. Use the functions in Table 11.2 to insert or remove IRPs. These routines auto
matically acquire and release the Executive spin lock hidden in the Device 
Queue object. 

There are two things to notice about Device Queue objects. First, you must 
be at DISPATCH_LEVEL IRQL in order to call the functions that insert and 

Table 11.1 State transitions in Device Queue objects 

Device Queue state transitions 

Initial state 

Not Busy 
Busy 
Busy 
Busy 
Busy 

Action 

Insert into empty 
Insert into empty 
Insert into non-empty 
Remove from non-empty 
Remove from empty 

Final state 

Busy 
Busy 
Busy 
Busy 
Not Busy 

Entry is ... 

Not inserted 
Inserted 
Inserted 
Removed 
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Table 11.2 Use these functions to work with Device Queue objects 

How to use Device Queue objects 

IF you want to ... THEN call ... IRQL 

Create a Device Queue 
Insert an IRP at the end 
Insert IRP in sort-order 
Remove first IRP 
Remove specific IRP 

KeInitializeDeviceQueue 
KeInsertDeviceQueue 
KeInsertByKeyDeviceQueue 
KeRemoveDeviceQueue 
KeRemoveEntryDeviceQueue 

PASSIVE_LEVEL 
DISPATCH_LEVEL 
DISPATCH_LEVEL 
DISPATCH_LEVEL 
DISPATCH_LEVEL 

remove Device Queue entries. To call these functions from some part of your 
driver running at PASSIVE_LEVEL IRQL, you have to change levels by calling 
KeRaiselrqI and KeLowerIrql. 

Second, Device Queue objects must live in nonpaged storage. Since you 
normally declare them as part of your Device Extension structure, this poses no 
particular problem. 

To link an IRP into a Device Queue, you use a predefined Device Queue 
entry that's a standard part of the IRP. The code looks like this: 

KeInsertDeviceQueue( 
&pDevExt->AlternateIrpQueue, 
&Irp->Tail.Overlay.DeviceQueueEntrY)i 

Here, AlternatelrpQueue is a KDEVICE_QUEUE structure that's part of the 
Device Extension. 

When you remove an item from a Device Queue, you get a pointer to the 
queue entry. As this fragment of code illustrates, you still need to use the 
CONTAINING_RECORD macro to convert this entry back into the address of an 
IRP: 

PIRP Irpi 
PKDEVICE_QUEUE_ENTRY QueueEntrYi 

QueueEntry = KeRemoveDeviceQueue( 
&pDevExt->AlternateIrpQueue )i 

if( QueueEntry != NULL) 
{ 

Irp = CONTAINING_RECORD ( 
QueueEntry, 
IRP, 
Tail.Overlay.DeviceQueueEntrY)i 

II Do something with the IRP 
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Also remember to check for a NULL return value. There's always the possi
bility that the queue might be empty. 

11.3 WRITING CUSTOMDpC ROUTINES 

Chapter 3 briefly introduced DPC objects as a general-purpose way for high
IRQL code to perform less-important processing at a lower IRQL level. All the 
drivers you've seen since then have taken advantage of the I/O Manager's Dpc
ForIsr mechanism to simplify the use of DPCs. For many situations, this may pro
vide all the functionality you'll need. In the case of full-duplex drivers, however, 
funneling everything through a single DpcForIsr routine adds unnecessary com
plications to the design of the software. 

This section explains how to work directly with Kernel DPC objects using 
CustomDpc routines. Although the main focus will be on their use in full-duplex 
drivers, CustomDpc routines can be valuable in any situation where a driver's 
Interrupt Service routine needs to perform some action that isn't allowed at 
DIRQL. 

How to Use a CustomDpc Routine 

Working directly with Kernel DPC objects isn't terribly difficult. This is what 
you need to do: 

1. When you define your Device or Controller Extension, declare a separate 
KDPC item for each CustomDpc routine you plan to use. 

2. In your DriverEntry routine, initialize each KDPC object by calling KeInitial
izeDpc. This sets up a correspondence between the KDPC object and a spe
cific CustomDpc routine in your driver. 

3. When you want to fire off the CustomDpc routine (usually from the driver's 
ISR), call KelnserlQueueDpc (see Table 11.3). To cancel a pending DPC 
request, you can call KeRemoveQueueDpc. 

Table 11.3 Function prototype for KelnsertQueueOpc 

BOOLEAN KelnsertQueueDpc 

Parameter 

INPKDPCDpc 
IN PYOID SystemArgl 
IN PYOID SystemArg2 
Return value 

IRQL :j: DISPATCH_LEVEL 

Description 

Address of initialized DPC object to be queued 
First call-specific OPC parameter 
Second call-specific DPC parameter 
• TRUE - the OPC was successfully queued 
• FALSE - the OPC is already in the queue 
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Table 11.4 Prototype for a CustomDpc routine 

VOID XxCustomDpc 

Parameter 

INPKDPCDpc 
IN PYOID Context 
IN PYOID SystemArg1 
IN PYOID SystemArg2 
Return value 

IRQL == DISPATCH_LEVEL 

Description 

DPC object that generated the call 
Context parameter passed to KeInitializeDpc 
1st DPC parameter passed to KeInsertQueueDpc 
2nd DPC parameter passed to KeInsertQueueDpc 

Remember that you can't queue a DPC object that's already in the queue. If 
you try, KeInsertQueueDpc will return FALSE. This kind of thing might happen 
if your device has such a high interrupt rate that the DPC routine doesn't get a 
chance to run before the next interrupt arrives. In this case, it's up to your driver 
to decide what to do. Depending on the design of your driver, one solution might 
be to initialize a pool of DPCs for the ISR to use. In any event, remember that it's 
your responsibility to take care of this situation. 

Execution Context 

The Kernel's DPC dispatcher eventually removes your DPC ·routine from 
the queue and calls the associated CustomDpc routine. Table 11.4 shows the pro
totype for the DPC routine itself. 

Notice that you can pass three driver-specific parameters to a CustomDpc 
routine. Along with the Context item that KeInitializeDpc associates with the 
DPC object, you can pass two additional parameters each time you call KeInsert
QueueDpc. This is a little more flexible than the I/O Manager's DpcForIsr mech
anism, which always passes the Device object, the IRP, and one call-specific 
argument. Depending on what you're trying to do, this can be useful. 

11.4 CANCELING 1/0 REQUESTS 

One issue we haven't addressed yet is how to deal with I/O requests that get 
abandoned. Although there's nothing about full-duplex drivers that makes them 
more prone to canceled requests, this is as good a place as any to bring up the sub
ject. Specifically, a driver has to be prepared for any of the following situations: 

• A thread issues one or more overlapped I/O requests to a Device object. 
Before the driver processes these IRPs, the thread either terminates or 
closes its handle to the Device object. 

• A thread issues one or more overlapped I/O requests and then calls some 
other Win32 function that cancels any previous requests. For example, 
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one side-effect of calling SetupComm is that it automatically cancels all 
pending IRPs. 

• A higher-level driver allocates an IRP and sends it to another driver using 
IoCallDriver. Before the IRP completes, the higher-level driver calls the 
IoCancelIrp function to cancel the request.1 

In all three of these cases, the I/O Manager will notify the driver that the 
IRPs involved in the I/O need to be cancelled. Once it's been notified, the 
driver's job is to complete the affected IRPs with an IoStatus.Status value of 
STATUS_CANCELLED and an IoStalus.lnformation value of zero. 

This section explains the mechanics of canceling I/O requests. You'll see 
examples of how to implement cancellation routines in the sample UART driver 
at the end of the chapter. 

How IRP Cancellation Works 

In general, any driver that's going to hold IRPs in a pending state for a long 
time needs to support cancellation. This really includes most device drivers, since 
any Device object can have multiple overlapped requests waiting in its Device 
Queue for the Start I/O routine. Cancellation support is also necessary in any 
driver that stores IRPs temporarily in a driver-defined queue during the course of 
processing. 

Some of the issues will become a little more clear if you think about just 
what might be going on when a cancel notification arrives. An IRP can be in one 
of the following states at the time it gets cancelled: 

• It might be in a queue waiting for the driver to get to it. This could be the 
Device object's Device Queue of pending requests (waiting for the Start 
I/O routine), or some private, internal queue managed by the driver. 

• The IRP might have been removed from a queue, but the driver hasn't 
started to work on it yet. For example, an IRP might have become the 
Device object's current IRP but the Start I/O routine hasn't quite begun 
processing it. 

• It might have been removed from a queue, and the next driver routine has 
begun processing it. 

The I/O Manager's philosophy is that if an IRP is waiting in a queue when a 
cancellation request occurs, then the driver should dequeue the IRP and cancel it. 
Similarly, if the IRP has just been removed from a queue but processing hasn't 
begun, the driver should cancel it. On the other hand, if the IRP has already been 

1 Incidentally, a driver is only allowed to cancel IRPs that it has allocated and sent to a lower-level 
driver. It must not try to cancel any IRPs sent to it by the I/O Manager or by a higher-level driver. 



Sec. 11.4 Canceling I/O Requests 231 

started (and if it won't take too long to complete), then the driver should finish 
processing the request the normal way. 

The I/O Manager provides two independent mechanisms for cancelling 
IRPs. First of all, a driver can attach a Cancel routine to an IRP before it puts the 
IRP into any queue. If the IRP is cancelled while it's still in the queue, the Cancel 
routine dequeues the IRP and performs the cancellation. If there's no cancellation 
request, some other part of the driver eventually dequeues the IRP, removes its 
Cancel routine, and continues processing it. This allows individual IRPs to be can
celled selectively. 

Second, a driver can have a Cleanup Dispatch routine that processes the 
IRP _MLCLEANUP major function code. The I/O Manager automatically sends 
an IRP with this function code whenever a thread terminates or closes a handle. 
The job of the Cleanup Dispatch is to cancel any queued IRPs belonging to the 
thread. This is a more general mechanism that all drivers ought to support. 

Synchronization Issues 

Keep in mind that a driver's I/O processing, Cleanup Dispatch, and Cancel 
routines all execute asynchronously. On a multi-processor system, they could lit
erally be running at the same time. As a result, various driver routines have to 
coordinate their activities with care. Otherwise, there's always the chance one 
part of a driver might keep working on an IRP that another part of the driver has 
already cancelled. 

For example, imagine that an IRP with an attached Cancel routine is sitting 
in the Device Queue of some Device object. The I/O Manager dequeues the IRP, 
makes it the Device object's current IRP, and then calls the driver's Start I/O rou
tine. Start I/O gets control, but before it can remove the IRP's Cancel routine, the 
IRP is cancelled (perhaps on another CPU) and the Cancel routine executes. Now, 
the Start I/O routine will begin processing the IRP and the Cancel routine will 
cancel it.2 

Or consider the case where a driver's Cleanup Dispatch routine is in the 
process of cancelling an IRP with an attached Cancel routine. If the Cancel routine 
starts running before the Cleanup Dispatch function can disable it, again there 
will be a very nasty collision. 

The I/ 0 Manager uses two mechanisms to prevent these kinds of synchroni
zation problems. The following subsections describe how they work. 

The Cancel spin lock The I/O Manager's Cancel spin lock is the primary 
safeguard against collisions during IRP cancellation. Ownership of this spin lock 
guarantees exclusive access to any IRP fields involved in cancelling a request. It 

2 This race condition is not limited to the Start I/O routine. Any time a queued IRP has an attached 
Cancel routine, there's the chance that the Cancel routine may execute between the moment when 
the IRP is dequeued and the moment when its Cancel routine is disabled. 
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also protects the IRP from the time it leaves a Device object's Device Queue until 
it becomes the current IRP. 

Any driver-defined data structures that are shared among the Cleanup Dis
patch routine, a Cancel routine, and some other driver routine should also be 
guarded by this spin lock. This includes any internal queues where the driver 
might be holding IRPs. 

To use this lock, you need to call IoAcquireCancelSpinLock before you 
touch any of the various CancelXxx fields of the IRP and IoReleaseCancelSpin
Lock when you're finished. This is an Executive spin lock, so you have to be at or 
below DISPATCH_LEVEL IRQL when you acquire it. During the time you actu
ally hold the Cancel spin lock, you'll be running at DISPATCH_LEVEL IRQL, so 
it's important not to cause any page faults. 

Two important points about working with the Cancel spin lock: First, make 
sure you release it before you call IoCompleteRequest. If you break this rule, you 
can cause a system deadlock. 

Second, remember that there's only one of these locks for the whole system, 
so don't hold on to it for too long. Doing so can prevent other drivers from run
ning, which can degrade system performance. 

The IRP Cancel flag Any time a driver removes an IRP with a Cancel rou
tine from a queue, there's always the danger that the Cancel routine will execute 
in the brief interval before it can be disabled. This would lead to a situation where 
the driver continued processing an IRP that had already been completed by the 
Cancel function. 

To avoid this problem, each IRP contains a Boolean Cancel flag. By setting 
this flag to TRUE before it calls the IRP's Cancel routine, the I/O Manager lets 
other parts of the driver know that the IRP has already been completed. Like 
other cancellation fields in the IRP, the Cancel flag is guarded by the Cancel spin 
lock. 

A driver's processing routines check the Cancel flag after they remove an 
IRP from a queue. If the flag is TRUE, it means the Cancel routine has already 
grabbed the IRP and nothing more should be done with it. If the flag is FALSE, the 
processing routine sets the Cancel Routine field of the IRP to NULL using IoSet
Cancel Routine and starts to work on it.3 From this point on, the Cancel routine 
can't run anymore, so there's no more danger. 

What a Cancel Routine Does 

Whenever a driver puts an IRP into a queue where it might remain for an 
indefinite time, the driver should give the 1/ 0 Manager the option of canceling 
the IRP. To do this, the driver attaches a queue-specific Cancel routine to the IRP 

3 Calling IoSetCancelRoutine requires that you first become the owner of the Cancel spin lock. 
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by calling IoSetCancelRoutine. The Cancel routine is responsible for doing 
whatever is necessary to cancel the IRP. The exact actions it takes will depend on 
where the IRP is in its processing cycle. If the driver has multiple internal 
queues, it can attach different Cancel routines to an IRP at different stages of 
processing. 

A driver can have a Cancel routine attached to an IRP only while the driver 
actually owns the IRP. In other words, the IRP is only cancelable between the time 
the driver receives the IRP and when it either completes the IRP or sends it to 
another driver with IoCallDriver. Before releasing an IRP, the driver must set its 
Cancel Routine field to NULL using IoSetCancelRoutine. 

As described at the beginning of this section, the I/O Manager will call an 
IRP's Cancel routine if the thread issuing the request terminates or closes its han
dle before the request completes. The Cancel routine will also execute if a higher
level driver explicitly cancels the request with IoCancelIrp. 

An IRP's Cancel routine runs at DISPATCH_LEVEL IRQL. As input, it 
receives a pointer to the Device object and a pointer to the IRP being cancelled. 
Before calling a Cancel routine, the I/O Manager acquires the Cancel spin lock, 
sets the IRP's Cancel flag to TRUE and its CancelRoutine field to NULL. The Can
cel routine has to release the Cancel lock before it returns. 

The specific actions taken by a Cancel routine will depend on the state of 
the IRP at the time it gets cancelled. The following subsections describe each of 
the possibilities. 

IRP is in the Device Queue If the IRP has not become current yet, then it 
must still be in the Device object's Device queue. In this case, the Cancel routine 
takes the following actions: 

1. It calls KeRemoveEntryDeviceQueue to pull the IRP from the Device Queue. 

2. The Cancel routine then calls IoReleaseCancelSpinLock to let go of the Can
cellock. 

3. Next, it puts STATUS_CANCELLED in the IRP's IoStatus.Status field and 0 
in its IoStatus.Information field. 

4. The Cancel routine calls IoCompleteRequest to give the IRP back to the I/O 
Manager. The priority boost is set to 10_NO_INCREMENT. 

There's no need to call IoStartNextPacket since the IRP was canceled while 
it was still in the Device Queue and hadn't yet entered the Start I/O routine. 

IRP is current A Cancel routine might run in the brief interval after the 
I/O Manager has put an IRP's address into a Device object's CurrentIrp field 
but before the Start I/O routine has set the IRP's CancelRoutine field to NULL. 
The Cancel routine normally checks to see if the IRP being cancelled is the 
Device object's current IRP, and if it is, it does the following: 



234 Chapter 11 Full-Duplex Drivers 

1. It calls IoReleaseCancelSpinLock to let go of the Cancel lock. 

2. The Cancel routine next sets the IRP's IoStatus.Status field to 
STATUS_CANCELLED and its IoStatus.Information field to O. 

3. Next, it calls IoCompleteRequest to give the IRP back to the I/O Manager. 
The priority boost is set to IO_NO_INCREMENT. 

4. Finally, the Cancel routine calls IoStartNextPacket to make the driver start 
the next IRP. 

IRP is in some other queue A driver can always maintain its own pri
vate queue of IRPs. If an IRP is in such a queue at the time it gets cancelled, its 
queue-specific Cancel routine does the following: 

1. It calls RemoveEntryList to dequeue it.4 

2. The Cancel routine then calls IoReleaseCancelSpinLock to let go of the Can
cellock. 

3. Next, it puts STATUS_CANCELLED in the IRP's IoStatus.Status field, and 
zero in its IoStatus.Information field. 

4. The Cancel routine calls IoCompleteRequest to give the IRP back to the I/O 
Manager. The priority boost is set to IO_NO_INCREMENT. 

5. Depending on the design of the driver, it may be necessary to call IoStart
NextPacket to get the driver working on the next request. 

What a Dispatch Cleanup Routine Does 

At the time a user-mode thread terminates (either normally or abnormally), 
it may still have incomplete I/O requests associated with one or more Device 
objects. Similarly, it's possible for a thread to close a Device object handle with 
requests pending. In both these cases, the I/O Manager will try to clean up the 
outstanding I/O requests by doing two things: It sends the Device object an IRP 
with the major function code IRP _MLCLEANUP and it calls the Cancel routine of 
any IRPs associated with the thread. 

After this, the I/O Manager delays execution of the thread, giving the driver 
time to process the IRPs. If the driver completes the IRPs, the I/O Manager 
responds by sending an IRP _ML CLOSE IRP to the Device object. 

If the IRPs aren't completed during the timeout interval (which can last 
more than five minutes), things get ugly. In this case, the I/O Manager displays a 
message box for each IRP (naming the offending driver) and detaches the IRP 

4 This assumes the driver-defined queue is protected by the Cancel spin lock. The RemoveEntryList 
function is not interlocked. 
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from the thread. These zombie IRPs are lost to the system, as is any system buffer 
space associated with them. Another side-effect is that the driver can't be 
unloaded since it still has outstanding IRPs. No IRP _MLCLOSE ever gets sent. 

From this description, you can see how important it is for a driver to clean 
up pending I/O requests. As you already know, one way to do this is to attach 
Cancei'routines to every IRP. For some drivers, this may be overkill, and a simpler 
method is just to ask for cleanup notifications. To receive these notifications, the 
Driver object has to have a Dispatch routine registered for IRP _MLCLEANUP in 
its MajorFunction table. 

The job of the Cleanup Dispatch routine is to cancel any queued requests 
associated with a specific Device object. For nonshareable Device objects, this 
means flushing all IRPs out of the Device Queue and any other driver-defined 
queues where they may be hiding. Depending on the nature of the device, the 
driver might also abort a request in progress, or let it complete normally. 

If a Device object is shareable, cleanup involves a little more work. In this 
case, the Cleanup Dispatch routine must cancel only those IRPs associated with 
the specific user-mode handle being closed. To do this, it uses the File object 
pointer stored in the I/O stack location of each IRP. This pointer uniquely identi
fies the user-mode handle that issued the request. The Cleanup Dispatch routine 
simply has to compare the File object pointer in each queued IRP with the 
pointer in the IRP _MLCLEANUP IRP. If they match, the queued IRP needs to be 
cancelled. 

Like any Dispatch routine, the Cleanup Dispatch executes at PASSIVE_LEVEL 
IRQL. Although the specific steps will depend on the driver, a Cleanup Dispatch 
routine generally has to do the following: 

1. It calls loAcquireCancelSpinLock to acquire the Cancel spin lock. Unlike a 
Cancel routine, the Cleanup Dispatch routine doesn't automatically hold this 
spin lock when it's called. 

2. Next, it scans the Device Queue of the target Device object looking for IRPs 
whose File object pointer matches the File object pointer of the 
IRP _MLCLEANUP IRP itself. 

3. The Dispatch Cleanup routine removes each matching IRP from the Device 
Queue and sets the IRP's Cancel Routine field to NULL. It also sets the IRP's 
Cancel flag to TRUE and its CancelIrql field to DISPATCH_LEVEL. The IRP 
is then added to a list of requests to be cancelled. 

4. If the driver maintains any private queues where IRPs might be held, the Dis
patch Cleanup routine performs a similar scan. Any IRPs with matching File 
object pointers are removed from these queues, their various CancelXxx fields 
are modified and they are also put in the list of requests to be cancelled. 

5. After releasing the Cancel spin lock, the Dispatch Cleanup routine completes 
all the IRPs in its cancellation list with a status of STATUS_ CANCELLED and 
a boost of 10_NO_INCREMENT. 
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6. Finally, it completes the IRP _MLCLEANUP request itself with a status of 
STATUS_SUCCESS and a priority boost value of IO_NO_INCREMENT. 

11.5 SOME MORE HARDWARE: THE 16550 UART 

This section describes the operation of the 16550 UART (Universal Asynchronous 
Receiver/Transmitter), a typical full-duplex device. Knowing how this hardware 
works will make it easier to understand the sample driver in the next section. 

What the 16550 UART Does 

The 16550 UART is an integrated circuit that performs serial input and out
put. Normally the UART is coupled to some kind of line-driver chip that inter
faces with the outside world. For example, this is how the RS-232 serial ports on 
most computers are implemented. 

The beauty of the UART is that it hides all the unpleasant details of framing 
the data with START and STOP bits, as well as generating parity and making sure 
all the bits are shifted out at the proper rate. To perform serial data transfers, you 
just move individual bytes to or from the UART's buffer registers. 

On output, you send a data byte to the UART's Transmit Data register from 
which it is moved into a 16-byte FIFO on the chip. When the data byte makes it to 
the other end of the FIFO, it goes into a shift register that sends it out over the 
serial line one bit at a time. When the FIFO empties out, the UART sets its TBE 
(transmit buffer empty) flag. 

Meanwhile, the UART's receiver section is constantly monitoring the serial 
line for input. As bits appear, they are added to a shift register that assembles 
them into a single byte of data. When the byte is complete, it goes into the input 
FIFO and the UART sets its RxRDY (receive data ready) flag to indicate that data is 
available. This flag stays up as long as any data remains in the FIFO. You pull data 
bytes one by one from the UART's Receive Data register. 

Device Registers 

You interact with the 16550 UART by reading and writing a set of one-byte 
registers, which are described briefly in Table 11.5. Although this chapter gives 
you.enough.information to talk intelligently about the 16550 at a dinner party, 
you should read the .data sheets from National Semiconductor if you want the 
whole story.5 

If you count carefully, you'll notice that there are twelve registers sand
wichedinto an eight-byte span~ How can this be? Actually, it's the hardware 

~ Joe Campbetl'sdefinitivebookon serial 'Communications (listed in the bibliography) is another 
excellent source of information. 
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Table 11.5 Control and status registers for a 16550 UART 

UART register definitions 

Offset Register Access Description 

0 Receive Data R/O Fetches firstbyte from input FIFO 
Transmit Data W/O Sends byte to output FIFO 
Baud rate LSB R/W Low byte of baud rate divisor* . 

1 Interrupt Enable R/W Enables various interrupts 
Bit 0 Received data ready 
Bit 1 Transmit buffer empty 
Bit 2 Error or BREAK 
Bit 3 RS-232 input has changed state 
Bits 4-7 Always zero 

Baud rate MSB R/W High byte of baud rate divisor* 
2 Interrupt ID R/O Identifies source of an interrupt 

Bit 0 If set, no interrupts pending 
Bits 1-2 Source of interrupt (see below) 
Bit 3 FIFO timeout interrupt 
Bits 4-5 Reserved 
Bits 6-7 Set if FIFOs are enabled 

FIFO Control W/O Controls FIFO behavior 
Bit 0 Enable both FIFOs 
Bit 1 Clear all bytes from Receive FIFO 
Bit 2 Clear all bytes from Transmit FIFO 
Bit 3 Enable DMA support 
Bits 4-5 Reserved 
Bits 6-7 Trigger-level of Receive FIFO 

3 Line Control, R/W Controls data.bits, stop bits, parity 
Bits 0-1 Number of data bits 
Bit 2 Number of STOP bits 
Bits 3-5 Parity control 
Bit 6 BREAK control 
Bit 7 Divisor latch access bit (DLAB) 

4 Modem Carol R/W Controls state of DTR and RTS lines 
5 Line StatuP"" R/W Reports status of I/O operation 

If\·· 
6 Modem Stft}J.s R/W Reportsstatechpnges in DTR, RTS 
7 Scratch-p~ . R/W Unused,possiblynotimplemented 

* Accessible only when Dt:AB in the LineContr61 register is 1. 



238 Chapter 11 Full-Duplex Drivers 

people playing those little tricks they like so much. The first trick is that some 
addresses go to different registers on the UART depending on whether you're 
reading or writing them. For example, if you read from offset 0, you get the con
tents of the Receive Data register, but if you write to 0, your byte goes to the 
Transmit Data register instead. 

That accounts for ten registers, but what about the remaining two? The other 
trick is that when you set the DLAB bit of register 3, the low and high bytes of the 
baud-rate control mysteriously appear at offsets 0 and 1. You restore things to nor
mal by clearing the bit. Since you're not likely to change baud rates frequently, 
this doesn't cause much of a problem. 

One other thing to watch out for is register 7. Although the official data 
sheets say you should be able to use it as a one-byte store for anything you like, 
the truth is that it may not work. National Semiconductor licenses this UART 
design to a number of other manufacturers, and they don't all implement the 
scratch-pad. 

Interrupt Behavior 

The 16550 UART uses interrupts to let the CPU know about a number of 
interesting conditions. Specifically, it generates an interrupt whenever: 

• A framing error or a BREAK occurs. 

• The Receive FIFO reaches the trigger level set by the FIFO Control 
register. 

• There is at least one character in the Receive FIFO, no other characters 
have arrived recently, and the CPU hasn't read the Receive Data register 
for awhile. This FIFO timeout interrupt prevents data from wasting away 
in the FIFO. 

• The transmit FIFO is empty. Usually, this is the signal to send more data. 
A single, spurious FIFO empty interrupt can occur when you first enable 
transmitter interrupts. 

• Any of the RS-232 input lines changes state. 

Your interrupt service routine determines the cause of the interrupt by 
examining the UART's Interrupt ID register. Notice the use of negative logic in 
this register: The UART clears the low-order bit when an interrupt occurs and sets 
it when all pending interrupts have been serviced. The remaining bits in this reg
ister describe the exact source of the interrupt. See Table 11.6 for more information 
about UART interrupts. 

Since several of these conditions might occur simultaneously, the UART 
imposes a priority arbitration scheme on interrupt events. When an interrupt 
occurs, the 16550 locks out UART events of equal or lower priority until the cur
rent interrupt has been dismissed. 
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Table 11.6 Determining the cause of a 16550 interrupt 

UART interrupts 

Cause Priority ID register 

(No interrupt) 1 
Error or BREAK 0 6 
FIFO receiver trigger level 1 4 
Receive-FIFO timeout 1 12 
Transmitter buffer empty 2 2 
RS-232 input 3 0 

Priority 0 is the most important, priority 3 the least. 

The Interrupt ID register only shows you the highest-priority DART event. 
After you service this event, any other pending interrupts appear in the ID regis
ter in order of priority. This means that when you service a single UART interrupt, 
you need to check for any other events that might be pending before you dismiss 
the interrupt. Your service routine isn't really finished until the DART sets the low 
bit of the ID register. 

The action your service routine takes to clear an interrupt depends on the 
cause of the interrupt. Table 11.7 shows how to clear various DART interrupts. 
Notice that you can clear Transmit interrupts either by sending more data, or (if 
this is the end of the I/O operation) simply by reading the ID register again. 

Table 11.7 Clearing interrupts on the 16550 UART 

Clearing UART interrupts 

Interrupt source 

Receiver error or BREAK 
Received data 
Transmit buffer empty 

RS-232 input 

To clear it ... 

Read the Line Status register 
Read data from the Receiver register 
• Write to the Transmit buffer 
• Read the Interrupt ID register 
Re~d .the RS-:-232 Status register 

," '~ " , ' , , ' 

11.6 CODE EXAMPLE: FULL-DuPLEX UART DRIVER 

This is an example of a simple driver that performs simultaneous input and out
put operations using a 16550 DART. Because the driver is rather large, only 
selected pieces will appear here. You can find the complete code for this example 
in the CHll \DRIVER directory on the disk accompanying this book. 
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What to Expect 

As you're poking around in the code, keep in mind that this is a toy driver 
whose real purpose is to illustrate the techniques presented earlier in this chapter. 
As a result, it ignores a number of issues that a real serial port driver needs to 
worry about.6 Before examining the driver itself, it's a good idea to describe some 
of the things it doesn't do. 

Perhaps this driver's biggest limitation is that it doesn't handle unsolicited 
input. In other words, it only accepts data from the device when an 
IRP _MLREAD IRP is pending. Data arriving at any other time is simply dropped 
on the floor. In a real serial port driver, the Interrupt Service routine would proba
bly dump unsolicited input into a type-ahead buffer, where it could be used to 
satisfy IRP _MLREAD requests as they arrived. 

Secondly, this driver uses a very simple signaling protocol between the 
sender and the receiver: It relies on the timeout interrupt from the UART's input
FIFO to terminate a read request. If the sender slows down enough to trigger this 
interrupt, the receiver will essentially ignore the rest of the transmission. Con
versely, if the sender doesn't leave enough of a gap between successive transmis
sions, the receiver will run them together. This is the only kind of flow-control 
supported by the driver. 

Finally, as a concession to simplicity, this driver doesn't worry about 
device operations that time out. Since this can lead to situations where an IRP 
never gets completed, it's definitely something you'd want to handle in a real 
driver. The first code example in Chapter 10 shows how to deal with device 
time-outs. 

DEVICE_EXTENSION in XXDRIVER.H 

The following excerpt from the driver-specific header file shows the layout 
of the Device Extension. 

typedef struct _DEVICE_EXTENSION { 
PDEVICE_OBJECT DeviceObjecti II Back pointer 

ULONG NtDeviceNumberi II Zero-based device number 

PUCHAR PortBasei II First control register 
PKINTERRUPT pInterrupti II Interrupt object 

II 
II Current UART settings 
II 

6 If you want to see what really goes into managing a standard COM port, take a look at the serial 
port driver source code included in the NT DDK. 



Sec. 11.6 Code Example: Full-Duplex UART Driver 

ULONG InputFifoTriggerLevel; 
ULONG DataBits; 
ULONG StopBits; 
ULONG Parity; 

KDEVICE_QUEUE AlternateIrpQueue; 0 
KDPC AlternateDpc; 
PIRP CurrentAlternateIrp; 
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ULONG OutputFifoSize; 
ULONG OutputBytesRequested; 
ULONG OutputBytesRemaining; 
PUCHAR pOutputBuffer; 

II Bytes to send at once @ 
II Output buffer size 
II Chars left to send 
II Next char to send 

BOOLEAN OutputInterruptsValid; 

ULONG InputFifoSize; 
ULONG InputBytesRequested; 
ULONG InputBytesRemaining; 
PUCHAR pInputBuffer; 

II Count of bytes ~ 
II Input buffer size 
II Space left in buffer 
II Next available slot 

BOOLEAN InputInterruptsValid; 

UCHAR DeviceStatus; II Most recent status 

DEVICE_EXTENSION, *PDEVICE_EXTENSION; 

o The Device Queue object and AltemateCurrentIrp pointer keep track of 
input requests. In this driver, all input operations will follow the alternate 
processing path. The DPC object is used to request 1/ ° postprocessing' of 
alternate IRPs. 

@ Here are the bookkeeping items used for output requests. Since the driver 
is using Buffered I/O, it has to keep a count of the bytes left to be trans
ferred and a pointer to the location of the next output byte in the system 
buffer. The OutputInterruptsValid flag is set to TRUE whenever an out
put operation is in progress. 

~ These items do the bookkeeping for input requests. Notice how they par
allel the output items. 

DISPATCH.C 

This portion of the example shows the Dispatch routines for writing, read
ing, and performing IRP cleanup operations. 

XxDispatchWrite This function processes Win32 WriteFile calls by send
ing the IRP along the standard driver processing path. 
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NTSTATUS 
XxDispatchWrite( 
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IN PDEVICE_OBJECT DeviceObject, 
IN PIRP Irp 
) 

PIO_STACK_LOCATION IrpStack = 
IoGetCurrentIrpStackLocation( Irp ); 

if( IrpStack->Parameters.Write.Length == ° ) 0 
{ 

II 

Irp->IoStatus.Status = STATUS_SUCCESS; 
Irp->IoStatus.Information = 0; 
IoCompleteRequest( Irp, IO_NO_INCREMENT ); 
return STATUS_SUCCESS; 

II Start device operation 
II 
IoMarkIrpPending( Irp ); 

IoStartPacket( @ 
DeviceObject, 
Irp, 
0, 
XxCancelPrimaryIrp ); ~ 

return STATUS_PENDING; 

o This driver doesn't consider zero-length transfers to be an error, so the 
IRP is just completed immediately. 

@ To send an IRP along the standard processing path, the driver calls 
IoStartPacket. 

~ While the IRP is waiting in the Device object's pending queue, this Cancel 
routine will be responsible for canceling it. 

XxDispatchRead This function processes Win32 ReadFile calls by sending 
the IRP along the alternate driver processing path. 

NT STATUS 
XxDispatchRead( 

IN PDEVICE_OBJECT DeviceObject, 
IN PIRP Irp 
) 
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PIO_STACK_LOCATION IrpStack = 
IoGetCurrentIrpStackLocation( Irp )i 

II 
II Check for zero-length transfers 
II 
if( IrpStack->Parameters.Read.Length == 0 ) 
{ 

Irp->IoStatus.Status = STATUS_SUCCESSi 
Irp->IoStatus.Information = Oi 
IoCompleteRequest( Irp, IO_NO_INCREMENT )i 
return STATUS_SUCCESSi 

IoMarkIrpPending( Irp )i 0 

XxAlternateStartPacket( @ 
DeviceObject, 
Irp, 
XxCancelAlternateIrp )i $ 

return STATUS_PENDINGi 
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o Begin the device operation. As always, the IRP must be marked pending. 

@ Unlike the previous Dispatch routine, this one uses a driver-defined func
tion to send the IRP along the alternate processing path. 

@) Once again, there's a Cancel routine to process the IRP if it should be can
celed before the driver actually starts working on it. 

XxDispatchCleanup This Dispatch routine gets called when a thread that 
opened a handle either calls CloseHandle or terminates. Its job is to pull any IRPs 
associated with the handle from the two Device Queues and cancel them. 

NTSTATUS 
XxDispatchCleanup( 

IN PDEVICE_OBJECT DeviceObject, 
IN PIRP Irp 
) 

PIO_STACK_LOCATION CleanupIrpStack = 
IoGetCurrentIrpStackLocation( Irp )i 

PDEVICE_EXTENSION DeviceExtension = 
DeviceObject->DeviceExtensioni 

XxCleanupDeviceQueue( 0 
&DeviceObject->DeviceQueue, 
CleanupIrpStack->FileObject )i 
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XxCleanupDeviceQueue( @ 
&DeviceExtension->AlternateIrpQueue, 
CleanupIrpStack->FileObject ); 

Irp->IoStatus.Status = STATUS_SUCCESS; ~ 
Irp->IoStatus.Information = 0; 
IoCompleteRequest( Irp, IO_NO_INCREMENT ); 
return STATUS_SUCCESS; 

o XxCleanupDeviceQueue, a helper function that appears later in this 
example, does the actual work. Here, it's being called to cancel 
IRP _MLWRITE IRPs waiting in the Device object's primary queue. The 
File object pointer identifies the handle to look for when canceling IRPs. 

@ Here, XxCleanupDeviceQueue will cancel IRP _MLREAD IRPs associ
ated with the handle. 

~ Finally, the IRP _MLCLEANUP IRP itself is completed. Once this IRP is 
passed back to the I/O Manager, it will be followed by an 
IRP _MLCLOSE request for the same handle. 

DEVQUEUE.C 

The routines in this file manage the Device Queue object used for processing 
alternate IRPs. 

XxAlternateStartPacket Given an IRP, this function either sends it to the 
alternate Start I/O routine or queues it for later processing if the alternate path is 
busy. In many ways, this function resembles the I/O Manager's IoStartPacket 
routine. 

VOID 
XxAlternateStartPacket( 

IN PDEVICE_OBJECT DeviceObject, 
IN PIRP Irp, 
IN PDRIVER_CANCEL CancelFunction 
) 

KIRQL OldIrql; 

PDEVICE_EXTENSION DeviceExtension = 
DeviceObject->DeviceExtension; 

IoAcquireCancelSpinLock( &OldIrql ); 0 
IoSetCancelRoutine( Irp, CancelFunction ); 

if( KeInsertDeviceQueue( @ 
&DeviceExtension->AlternateIrpQueue, 
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&Irp->Tail.Overlay.DeviceQueueEntry)) 

IoReleaseCancelSpinLock( OldIrql ); 

else @} 

DeviceExtension->CurrentAlternateIrp = Irp; 0 
IoReleaseCancelSpinLock( OldIrql ); 

KeRaiseIrql( DISPATCH_LEVEL, &OldIrql ); 0 
XxAlternateStartIo( DeviceObject, Irp ); 
KeLowerIrql( OldIrql ); 
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o It's necessary to be holding the Cancel spin lock in order to modify the 
IRP's Cancel Routine field. This driver also uses the Cancel spin lock to 
guard the alternate IRP queue and the pointer to the alternate IRP cur
rently being processed. 

@ Try to put the IRP into the alternate queue. If the Device Queue object was 
already busy, the IRP will be inserted and the driver will simply release 
the Cancel spin lock. 

@} If the Device Queue was not-busy, KeInserlDeviceQueue will fail, and 
the Device Queue will flip into the busy state. In that case, it's necessary 
to start processing the IRP. 

o The first step is to record the IRP as the current alternate IRP. Once this is 
done, it's safe to release the Cancel spin lock. 

o The next step is to call the alternate Start I/ 0 routine. Since XxAlternate
StarlPacket runs at PASSIVE_LEVEL IRQL, and the alternate Start I/O 
routine runs at DISPATCH_LEVEL, it's necessary for requests to raise and 
lower the CPU's IRQL value. 

XxAlternateStartNextPacket This routine does the same job as the I/O 
Manager's IoStarlNextPacket function. If there is an available IRP in the queue of 
pending alternate IRPs, this function sends it to the alternate Start I/O entry 
point. This piece of code expects to run at DISPATCH_LEVEL IRQL only. 

VOID 
XxAlternateStartNextPacket( 

IN PDEVICE_OBJECT DeviceObject, 
IN BOOLEAN Cancelable 
) 

PDEVICE_EXTENSION DeviceExtension = 
DeviceObject->DeviceExtension; 
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PKDEVICE_QUEUE_ENTRY QueueEntry; 
PIRP Irp; 
KIRQL OldIrql; 

if( Cancelable 
IoAcquireCancelSpinLock( &OldIrql ); 0 

QueueEntry = 
KeRemoveDeviceQueue( 

&DeviceExtension->AlternateIrpQueue ); @ 

if( QueueEntry != NULL 
{ 

else 

Irp = CONTAINING_RECORD ( ~ 
QueueEntry, 
IRP, 
Tail.Overlay.DeviceQueueEntry); 

DeviceExtension->CurrentAlternateIrp = Irp; 

if( Cancelable) 
IoReleaseCancelSpinLock( OldIrql ); 0 

XxAlternateStartIo( DeviceObject, Irp ); 

DeviceExtension->CurrentAlternateIrp = NULL; 0 

if( Cancelable) 
IoReleaseCancelSpinLock( OldIrql ); 

o In imitation of the I/O Manager's routine, this function uses an explicit 
argument to decide whether the whole operation should be protected by 
the Cancel spin lock. Since this driver always attaches a Cancel routine to 
an alternate IRP, this argument will always be TRUE. 

@ Try to get the next pending IRP from the alternate Device Queue. If the 
queue was empty, KeRemoveDeviceQueue sets the Device Queue's state 
to not-busy and returns NULL. 

@) There was something in the queue. Reconstitute the address of the IRP 
itself and make it the new current IRP for the alternate path. 

o If necessary, let go of the Cancel spin lock, then call the driver's alternate 
Start 1/ 0 entry point. 

o If the queue was empty, the only work to do is to clear out the current-IRP 
slot for the alternate path and drop the Cancel spin lock. 
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INPUT.C 

In this driver, IRP _MLREAD requests are sent down the alternate path. This 
file contains routines that process these alternate IRPs. You'll find similar code for 
handling IRP _MLWRITE requests in OUTPUT.C. 

XxAlternateStartlo Like any Start I/O routine, this one is responsible for 
setting up various bookkeeping values and then starting the actual device opera
tion. 

VOID 
XxAlternateStartIo( 

IN PDEVICE_OBJECT DeviceObject, 
IN PIRP Irp 
) 

KIRQL OldIrql; 

PIO_STACK_LOCATION IrpStack = 
IoGetCurrentIrpStackLocation( Irp ); 

PDEVICE_EXTENSION DeviceExtension = 
DeviceObject->DeviceExtension; 

IoAcquireCancelSpinLock( &OldIrql ); 0 

if( Irp->Cancel ) 
{ 

IoReleaseCancelSpinLock( OldIrql ); @ 
return; 

else @) 

IoSetCancelRoutine( Irp, NULL); 
IoReleaseCancelSpinLock( OldIrql ); 

switch( IrpStack->MajorFunction ) { 

case IRP_MJ_READ: 0 

DeviceExtension->InputBytesRequested 
IrpStack->Pararneters.Read.Length; 

DeviceExtension->InputBytesRernaining = 
DeviceExtension->InputBytesRequested; 

DeviceExtension->pInputBuffer = 
Irp->AssociatedIrp.SysternBuffer; 

if( !KeSynchronizeExecution( ~ 
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break; 
II 
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DeviceExtension->plnterrupt, 
XxReceiveBytes, 
DeviceExtension )) 

XxDpcForlnputs( 
NULL, 
DeviceObject, 
Irp, 
DeviceExtension ); 

II Should never get here -- just get rid 
II of the packet ... 
II 
default: 

II 
II Fail the IRP and start the next one. 
II 
Irp->IoStatus.Status = 

STATUS_NOT_SUPPORTED; 
Irp->IoStatus.lnformation = 0; 
IoCompleteRequest( 

Irp, 
IO_NO_INCREMENT ); 

XxAlternateStartNextPacket( 
DeviceObject, 
TRUE ); 

break; 

o Before starting the operation, see if the Cancel routine has run between 
the time the IRP was removed from the Device Queue and now. This 
requires ownership of the Cancel spin lock. 

f9 If the Cancel flag is set, it means the IRP has already been processed by 
the Cancel routine. In this case, the only thing to do is to release the spin 
and return immediately. 

~ The Cancel flag is clear. Remove the IRP from the cancelable state by set
ting its Cancel routine to NULL, then start to process it. From this point 
on, only normal completion or an error can stop this request. 

o Set up various pointers and counters in preparation for the data transfer 
operation. 
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o Next, start the device. If something goes wrong, use the DPC routine to fail 
the IRP. Pass NULL for the DPC object argument to let the OPC routine 
know that it's been called early and not as part of a normal I/O completion. 

XxDpcForlnputs Here's the CustomDpc routine used for inputs. It does 
the usual work of putting a final status in the IRP, completing the current request, 
and trying to start another. 

VOID 
XxDpcForlnputs( 

IN PKDPC Dpc, 
IN PDEVICE_OBJECT DeviceObject, 
IN PIRP Irp, 
IN PVOID Context 
) 

PDEVICE_EXTENSION DeviceExtension = Context; 

Irp->IoStatus.lnformation = 0 
DeviceExtension->InputBytesRequested -
DeviceExtension->InputBytesRemaining; 

Irp->IoStatus.Status = STATUS_SUCCESS; @ 

if( Dpc == NULL ) ~ 
IoCompleteRequest( Irp, IO_NO_INCREMENT ); 

else 
IoCompleteRequest( Irp, IO_SERIAL_INCREMENT ); 

XxAlternateStartNextPacket( DeviceObject, TRUE ); 0 

o Calculate the number of bytes actually transferred. 

@ Come up with a final status code for the IRP. A real driver would proba
bly use the last recorded contents of the device's status register (stored in 
the Device Extension) to produce a real status value. 

~ If this routine is being called directly from the alternate Start I/O routine, 
the DPC argument will be NULL. This means the IRP is being failed before 
it got started. In that case, don't give the calling thread a priority boost. 

o This request is done. Use a driver-defined routine to start the next alter
nate IRP (if there is one). 

ISR.C 

This file contains the interrupt service code for the UART driver. To make 
things a little more readable, processing for input events happens in some auxil
iary subroutines. 
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Xxlsr The Kernel's interrupt dispatcher calls this function at DIRQL, hold
ing the Interrupt spin lock for the device. Since the UART can request multiple 
kinds of interrupts at the same time, XxIsr has to keep checking for possible inter
rupts until nothing more shows up. 

BOOLEAN 
XxIsr( 

IN PKINTERRUPT Interrupt, 
IN PVOID ServiceContext 
) 

PDEVICE_EXTENSION pDE = ServiceContext; 
PDEVICE_OBJECT pDevice = pDE->DeviceObject; 

UCHAR InterruptId = XxReadIntId( pDE ); 

if(( InterruptId & XX_IIR_NO_INTERRUPT 
return FALSE; 

!= 0 ) 0 

do 
{ 

InterruptId &= XX_IIR_INTERRUPT_ID_MASK; @ 

switch( InterruptId ) 
{ 

case XX_IIR_ERR: 
XxReadLineStatus( pDE ); $ 
break; 

case XX_IIR_RDA: 
XxHandleInputFifoTrigger( pDE ); 0 
break; 

case XX IIR FIFO_TMO: 
XxHandleInputFifoTimeOut( pDE ); 0 
break; 

case XX_IIR_TBE: 
if( pDE->OutputInterruptsValid ) ~ 

if( !XxTransmitBytes( pDE )) 
IoRequestDpc( 

break; 

case XX_IIR_RS232: 

pDevice, 
pDevice->CurrentIrp, 
(PVOID)pDE ); 

XXReadModemStatus( pDE ); 8 
break; 
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InterruptId = XxReadIntId( pDE ); 0 
while(( InterruptId & 

XX_IIR_NO INTERRUPT ) == 0 ); 

return TRUE; 

o If the low-order bit of the Interrupt ID register is set, then this device 
didn't generate an interrupt. Return control to the Kernel's interrupt 
dispatcher. 
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f9 The UART interrupted. Enter a loop that will keep processing interrupt 
until there's nothing left to do. Begin by masking out any irrelevant bits, 
then switch on the interrupt-type. 

@} This driver doesn't process any device errors. Just read the status register 
to clear the pending interrupt. 

o This interrupt means that the input FIFO hit its trigger level. Call a helper 
routine to get the input characters from the FIFO. 

o This interrupt means there's been a little data (less than the trigger level) 
sitting and aging in the input FIFO. For this driver, that's a signal to end 
an input operation. Call a helper function to empty the FIFO and com
plete the IRP. 

(i) During an output operation, this interrupt means that it's time to refill the 
output FIFO and send more data. The interrupt-valid flag in the Device 
Extension prevents the driver from responding to spurious Transmit 
Buffer Empty interrupts when no output request is being processed. 

8 This driver ignores modem events, but it's still necessary to read the 
Modem Status register in order to clear the interrupt. 

o That ends the processing for the first UART interrupt. There might be 
more waiting in line behind it. Read the Interrupt ID register to get the 
next one and do the whole thing over again. If there is no other interrupt 
pending in the UART, drop out of the loop and return. 

XxHandlelnputFifoTrigger This function is called by XxIsr during an 
input operation to get the next bunch of characters from the UART. 

static VOID 
XxHandleInputFifoTrigger( 

IN PDEVICE EXTENSION pDE 
) 

ULONG i; 

II 
II Read one less than the number of bytes In 
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II the FIFO; this guarantees a FIFO time-out 
II which will end the read request. 
II 
for( i=O; i < pDE->InputFifoSize - 1; i++ ) 0 
{ 

if( pDE->InputInterruptsValid && 
pDE->InputBytesRemaining > 0 ) @ 

*pDE->pInputBuffer++ = 
XxReadDataBuffer( pDE ); 

pDE->InputBytesRemaining--; 

else XxReadDataBuffer( pDE ); 

o This loop reads one less than the number of bytes in the FIFO. This last 
lonely byte, pining away in the FIFO, will eventually generate a FIFO 
timeout interrupt and terminate the input operation. 

@ If an input operation is in progress, and if there's room left in the buffer, 
move a byte from the FIFO to the input buffer. Otherwise, drop the byte 
on the floor. This behavior throws away both excess characters and unso
licited input. 

XxHandlelnputFifoTimeOut This function is called from XxIsr when 
some bytes have been languishing in the input FIFO for more than four character 
periods. In this driver, the FIFO timeout interrupt signals the end of an input 
operation. 

static VOID 
XxHandleInputFifoTimeOut( 

IN PDEVICE_EXTENSION pDE 
) 

while ( XxReadLineStatus( pDE ) & XX_LSR_DATA_RDY ) 0 
{ 

if( pDE->InputInterruptsValid && 
pDE->InputBytesRemaining > 0 ) 

*pDE->pInputBuffer++ = 
XxReadDataBuffer( pDE ); 

pDE->InputBytesRemaining--; 

else XxReadDataBuffer( pDE ); 
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if( pDE->InputInterruptsValid ) @ 
{ 

pDE->InputInterruptsValid = FALSE; 

KeInsertQueueDpc( ~ 
&pDE->AlternateDpc, 
(PVOID)pDE->CurrentAlternateIrp, 
( PVOID )pDE ); 
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o Read bytes from the FIFO until it's empty. If this is a genuine input opera
tion and there's still some room left in the buffer, store the bytes. Other
wise, drop them on the floor. 

@ If this was a spurious interrupt, there's nothing more to do. If an input 
operation really was in progress, clear the interrupt-valid flag (so addi
tional interrupts will be ignored). Then complete the current input IRP. 

~ Input operations use a CustomDpc routine to complete the IRP. 

CANCEL.C 

This file contains routines that support IRP cancellation. 

XxCleanupDeviceQueue This function is called by the driver's Cleanup 
Dispatch routine. Its job is to cancel any IRPs in a Device Queue whose File object 
pointer matches the one passed as an argument. 

VOID 
XxCleanupDeviceQueue( 

IN PKDEVICE_QUEUE DeviceQueue, 
IN PFILE_OBJECT FileObject 
) 

KIRQL OldIrql; 
PIRP CancelIrp; 
PIRP RequeueIrp; 

PIO_STACK_LOCATION CancelIrpStack; 

LIST_ENTRY CancelList; 
LIST_ENTRY RequeueList; 
PLIST_ENTRY ListHead; 
PKDEVICE_QUEUE_ENTRY QueueEntry; 

InitializeListHead( &CancelList ); 0 
InitializeListHead( &RequeueList ); 
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IoAcquireCancelSpinLock( &OldIrql ); 

if( IsListEmpty( &DeviceQueue->DeviceListHead )) @ 
{ 

IoReleaseCancelSpinLock( OldIrql ); 
return; 

while(( QueueEntry 
KeRemoveDeviceQueue( 

DeviceQueue )) != NULL )~ 

CancelIrp = 
CONTAINING_RECORD ( 

QueueEntry, 
IRP, 
Tail.Overlay.DeviceQueueEntry ); 

CancelIrpStack = 
IoGetCurrentIrpStackLocation( CancelIrp ); 

if( CancelIrpStack->FileObject == FileObject )0 
{ 

} 

CancelIrp->Cancel = TRUE; 
CancelIrp->CancelIrql = OldIrql; 
CancelIrp->CancelRoutine = NULL; 

InsertTailList( 
&CancelList, 
&CancelIrp->Tail.Overlay.ListEntry); 

else 0 
{ 

InsertTailList( 
&RequeueList, 
&CancelIrp->Tail.Overlay.ListEntry); 

while ( !IsListEmpty( &RequeueList )) • 
{ 

ListHead = RemoveHeadList( &RequeueList ); 
RequeueIrp = 

CONTAINING_RECORD ( 
ListHead, 
IRP, 
Tail.Overlay.ListEntry); 

if( !KeInsertDeviceQueue( • 
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DeviceQueue, 
&RequeueIrp-> 

Tail.Overlay.DeviceQueueEntry)) 

II 

KeInsertDeviceQueue( 
DeviceQueue, 
&RequeueIrp-> 

Tail.Overlay.DeviceQueueEntry); 

II Then release the Cancel spin lock 
II 
IoReleaseCancelSpinLock( OldIrql ); 

II 
II Run the length of the holding queue and 
II complete every IRP that we found in it. 
II 
while ( !IsListEmpty( &CancelList )) 0 
{ 

ListHead = RemoveHeadList( &CancelList ); 
CancelIrp = 

CONTAINING_RECORD ( 
ListHead, 
IRP, 
Tail.Overlay.ListEntry); 

CancelIrp->IoStatus.Status = STATUS_CANCELLED; 
CancelIrp->IoStatus.Information = 0; 

IoCompleteRequest( 
CancelIrp, 
IO_NO_INCREMENT ); 

o These temporary work-lists will hold IRPs that are chosen for cancellation 
. and for requeuing. The list-heads need to initialized. It's also necessary to 

acquire the Cancel spin lock and hold it until all the IRPs in the Device 
Queue have been processed. 

8 See if there are any IRPs in the Device Queue. If it's empty, there's no 
work to do, so just quit. 

@) Loop until every IRP has been removed from the Device Queue. For each 
IRP, decide whether to cancel it or requeue it. At the end of this loop, the 
Device Queue has been emptied, hence its state will be Not Busy. 
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o If the IRP's File object pointer is the same as the one in the 
IRP _MLCLEANUP IRP, set the IRP's various CancelXxx fields. Then put 
the IRP into a holding queue of requests to be canceled. 

o If the File object pointer doesn't match, this IRP should not be canceled. In 
that case, add it to the list of IRPs to be put back in the Device Queue. 

CD The IRPs have been divided. Run the list of IRPs to be requeued and put 
them all back in the Device Queue. 

fi Scanning the Device Queue emptied it, which put it in the Not Busy state. 
This means it will take two insertion calls to reinsert the first IRP: One to 
make the Device Queue Busy and the second to actually insert the IRP. 

c} Finally, run the list of IRPs to be canceled and send all of them back to the 
I/O Manager. 

XxCancelAlternatelrp The 1/ 0 Manager calls this function to cancel a sin
gle IRP _MLREAD IRP. The IRP might either be sitting in the Device Queue or it 
may have just been removed from the queue, but not quite started yet. By the time 
this function runs, the I/O Manager has set the IRP's Cancel flag and cleared its 
CancelRoutine field? 

VOID 
xxCancelAlternateIrp( 

IN PDEVICE_OBJECT DeviceObject, 
IN PIRP Irp 
) 

PDEVICE_EXTENSION DeviceExtension = 
DeviceObject->DeviceExtension; 

if( Irp == DeviceObject->CurrentAlternateIrp 0 
{ 

IoReleaseCancelSpinLock( Irp->CancelIrql ); @ 

Irp->IoStatus.Status = STATUS_CANCELLED; 
Irp->IoStatus.Information = 0; 

IoCompleteRequest( Irp, IO_NO_INCREMENT ); 
XxAlternateStartNextPacket( ~ 

DeviceObject, 
TRUE) ; 

else 0 

7 CANCEL.C contains a similar function for canceling IRP _MLWRITE IRPs. 
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KeRemoveEntryDeviceQueue( 
&DeviceObject->AlternatelrpQueue, 
&Irp->Tail.Overlay.DeviceQueueEntry); 

IoReleaseCancelSpinLock( Irp->Cancellrql ); 

Irp->IoStatus.Status = STATUS_CANCELLED; 
Irp->IoStatus.lnformation = 0; 

II 
II Complete this IRP, but don't start the 
II next one. 
/! 
IoCompleteRequest( Irp, IO_NO_INCREMENT ); 
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o If the IRP is already in the CurrentAlternatelrp slot, but not yet started, it 
can still be canceled. 

49 Release the Cancel spin lock before completing the IRP. Notice that the I/O 
Manager has loaded the CancelIrqI field of the IRP with the IRQL to 
which the driver should return when it releases the lock. 

49 Since the current alternate IRP has been removed, it's necessary to see if 
another one is waiting in the wings. 

o The IRP wasn't current, so it must still be sitting in the Device Queue. 
Simply remove it from the queue and complete it. In this case, the driver 
doesn't try to start the next IRP. 

11.7 SUMMARY 

This chapter has presented a slightly different driver architecture that allows you 
to process more than one IRP at a time. Implementing this architecture required 
that we set up a Device Queue object to hold alternate IRPs. CustomDpc and Can
cel routines also proved helpful, although their usefulness goes far beyond full
duplex drivers. 

So much for drivers that manage Programmed I/O devices. The next step is 
to see what kind of support NT provides for DMA hardware. That will be the sub
ject of the coming chapter. 
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DMA Drivers 

One way or another, all the drivers we've seen so 
far have depended on the CPU to move data between memory and the peripheral 
device. This technique is fine for slower hardware, but for fast devices that trans
fer large amounts of data, it would introduce too much overhead. Such devices 
are usually capable of directly accessing system memory and transferring data 
without the CPU's intervention. This chapter explains how to write drivers for 
these kinds of devices. 

12.1 How DMA WORKS UNDER WINDOWS NT 
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As you saw in Chapter 1, insulating drivers from CPU- and platform-dependen
cies was a major design goal of the NT I/O subsystem. One way that NT does this 
is by using an abstract model of DMA operations. Drivers that perform DMA 
work within the framework of this abstract model and can ignore many of the 
hardware-specific aspects of what's going on. This section presents the major fea
tures of the NT DMA framework. 

Hiding DMA Hardware Variations with Adapter Objects 

The purpose of using DMA is to minimize the CPU's involvement in data 
transfer operations. To do this, DMA devices use an auxiliary processor (called a 
DMA controller) to move data between memory and the peripheral device. This 
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allows the CPU to continue doing other useful work in parallel with the I/O 
operation. 

Although the exact details will vary, most DMA controllers have a very sim
ilar architecture. In its simplest form, this consists of an address register for the 
starting address of the DMA buffer, and a count register for the number of bytes 
or words to transfer. When you set these registers and start the attached device, 
the DMA controller begins moving data on its own. With each transfer, it incre
ments the memory address register and decrements the count register. When the 
count register empties out, the DMA controller generates an interrupt, and the 
device is ready for another transfer. 

Unfortunately, the needs of real-world hardware design complicate this sim
ple picture. Consider the DMA implementation on ISA-based machines, 
described back in Chapter 2. These systems use a pair of Intel 8237 controller 
chips cascaded to provide four primary and three secondary DMA data channels. 
The primary channels (identified as zero through three) can perform single-byte 
transfers, while the secondary channels (five through seven) always transfer two 
bytes at a time. Since the 8237 uses a 16-bit transfer counter, the primary and sec
ondary channels can handle only 64K bytes or 128K bytes per operation, respec
tively. Due to limitations of the ISA architecture, the DMA buffer must be located 
in the first sixteen megabytes of physical memory. 

Contrast this with the DMA architecture used by EISA systems. The Intel 
82357 EISA I/O controller extends ISA capabilities by supporting one-, two-, or 
four-byte transfers on any DMA channel, as well as allowing DMA buffers to be 
located anywhere in a 32-bit address space. In addition, EISA introduces three 
new DMA bus-cycle formats (known as types A, B, and C) that give peripheral 
designers the ability to work with faster devices. 

Even on the same ISA or EISA bus, different devices can use different DMA 
techniques. Remember the discussion of DMA slaves and bus masters from Chap
ter 2. Slave devices compete for shareable system DMA hardware on the mother
board, while bus masters avoid bottlenecks by using their own built-in DMA 
controllers. 

The problem with all this variety is that it tends to make DMA drivers very 
platform dependent. To avoid this trap, NT drivers don't manipulate DMA hard
ware directly. Instead, they work with an abstract representation of the hardware in 
the form of an NT Adapter object. Chapter 4 briefly introduced these objects and 
said they help with orderly sharing of system DMA resources. It turns out that 
Adapter objects also simplify the task of writing platform-independent drivers by 
hiding many of the details of setting up the DMA hardware. The rest of this section 
will explain more about what Adapter objects do and how to use them in a driver. 

Solving the Scatter/Gather Problem with Mapping Registers 

Although virtual memory simplifies the lives of application developers, it 
introduces two major complications for DMA-based drivers. The first problem is 
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that the buffer address passed to the I/O Manager is a virtual address. Since the 
DMA controller works with physical addresses, DMA drivers need some way to 
determine the physical pages making up a virtual buffer. You'll see how this 
works when we look at Memory Descriptor Lists in the next section. 

The other problem (illustrated in Figure 12.1) is that a process doesn't neces
sarily occupy consecutive pages of physical memory, and what appears to be a 
contiguous buffer in virtual space is probably scattered throughout physical 
memory. The NT Virtual Memory Manager uses the platform's address transla
tion hardware (represented by a generic page table in the diagram) to give the 
process the illusion of a single, unbroken virtual address space. Unfortunately, the 
DMA controller doesn't participate in this illusion. 

Since most DMA controllers can only generate sequential physical 
addresses, buffers that span virtual page boundaries present a serious challenge. 
Consider what happens if a DMA controller starts at the top of a multi-page 
buffer and simply increments its way through successive pages of physical mem
ory. It's unlikely that any page after the first will actually correspond to one of the 
caller's virtual buffer pages. In fact, the pages touched by the DMA controller 
probably won't even belong to the process issuing the I/O request. 

All virtual memory systems have to deal with the problem of scattering 
and gathering physical buffer pages during a DMA operation. Support for scat
ter / gather capabilities can come either from system DMA hardware or from 
hardware built into a smart bus master device. Once again, NT tries to simplify 
things by presenting drivers with a unified, abstract view of whatever scatter / 
gather hardware happens to exist on the system. This model consists of a contig
uous range of addresses (called logical space) used by the DMA hardware and a 
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Figure 12.1 Address spaces involved in DMA operations 
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set of mapping registers that translate logical space addresses into physical space 
addresses. 

Here's how it works. Referring to Figure 12.1, each mapping register corre
sponds to one page of DMA logical space, and a group of consecutively num
bered registers represents a contiguous range of logical addresses. To perform a 
DMA transfer, a driver first allocates enough contiguous mapping registers to 
account for all the pages in the caller's buffer. It then loads consecutive mapping 
registers with the physical addresses of the caller's buffer pages. This has the 
effect of mapping the physically noncontiguous user buffer into a contiguous area 
of logical space. Finally, the driver loads the DMA controller with the starting 
address of the buffer in logical space and starts the device. While the operation is 
in progress, the DMA controller generates sequential, logical addresses that the 
scatter I gather hardware maps to appropriate physical page references. 

So much for the conceptual view of mapping registers. Like the DMA con
troller, the actual implementation depends on the platform, the bus, and the I/O 
device. To minimize the driver's awareness of these details, NT lumps the map
ping registers into the Adapter object arid provides a set of routines for managing 
them. 

Managing 1/0 Buffers with Memory Descriptor Lists 

As you've just seen, loading physical addresses into mapping registers is an 
important part of setting up a DMA transfer. To make this process easier, the 1/0 
Manager uses a structure called a Memory Descriptor List (MDL). An MDL keeps 
track of the physical pages associated with a virtual buffer. The buffer described 
by an MDL can be in either user- or system-address space. 

Direct I/O operations are one place where MDLs playa major role. If a 
Device object has the DO_DIRECT_IO bit set in its Flags field, the I/O Manager 
automatically builds an MDL describing the caller's buffer each time an I/O 
request is sent to the device. It stores the address of this MDL in the IRP's MdlAd
dress field, and the driver uses it to prepare the DMA hardware for a transfer. 

As you can see from Figure 12.2, the MDL consists of a header describing the 
virtual buffer, followed by an array that lists the physical pages associated with 
the buffer. Given a virtual address within the buffer, it's possible to determine the 
corresponding physical page. Some of the fields in the header help clarify the use 
ofanMDL. 

StartVa and ByteOffset The StartVa field contains the address of the 
buffer described by the MDL, rounded down to the nearest virtual page bound
ary. Since the buffer doesn't necessarily start on a page boundary, the ByteOffset 
field specifies the distance from this page boundary to the actual beginning of the 
buffer. Keep in mind that if the buffer is in user space, your driver can use the 
StartVa field to calculate indexes into the MDL but not as an actual address 
pointer. 
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Figure 12.2 Structure of a Memory Descriptor List (MDL) 

MappedSystemVa If the buffer described by the MDL is in user space and 
you need to access the contents of the buffer itself, you first have to map the buffer 
into system space with MmGetSystemAddressForMdl. This field of the MDL is 
used to hold the system-space address where the user-space buffer has been 
mapped. 1 

ByteCount and Size These fields contain the number of bytes in the 
buffer described by the MDL and the size of the MDL itself, respectively. 

Process If the buffer lives in user space, the Process field points to the 
Process object that owns the buffer. The I/O Manager will use this information 
when it cleans up the I/O operation. 

Keep in mind that MDLs are opaque data objects defined by the NT Virtual 
Memory Manager. Their actual contents may vary from platform to platform and 
they might also change in future versions of NT. Consequently, you must access 
an MDL using system support functions. Any other approach could lead to disas
ter. Table 12.1 lists the MDL functions you're most likely to encounter in a driver. 
See the DDK documentation for others. It's worth pointing out that some of the 
functions in this table are implemented as macros for speed. 

1 Using doubly-mapped buffers is generally a bad idea. Unmapping the buffer can cause a great deal 
of system overhead. 
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Table 12.1 Functions that work with Memory Descriptor Lists 

MDL access functions 

Function 

IoAllocateMdl 
IoFreeMdl 
MmBuildMdlForNonPagedPool 

MmGetSystemAddressForMdl 

IoBuildPartialMdl 
MmGetMdlByteCount 

Description 

Allocates an empty MDL 
Releases MDL allocated by IoAllocateMdl 
Builds MDL for an existing nonpaged pool 

buffer 
Returns a nonpaged system space address for 

the buffer described by an MDL 
Builds an MDL describing part of a buffer 
Returns count of bytes in buffer described by 

MDL 
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MmGetMdlByteOffset 
MmGetMdlVirtualAddress 

Returns page-offset of buffer described by MDL 
Returns starting VA of buffer described by MDL 

MDLs give drivers a convenient, platform-independent way of describing 
buffers located either in user- or system-address space. For drivers that perform 
DMA operations, MDLs are important because they make it easier to set up an 
Adapter object's mapping registers. Later parts of this chapter will show you how 
to use MDLs to set up DMA transfers. 

Maintaining Cache Coherency 

The final thing we need to consider is the impact of various caches on DMA 
operations. During a DMA transfer, data may be getting cached in various places, 
and if everything isn't coordinated properly, someone might end up with stale 
data. Figure 12.3 shows who the players are in this drama. 

CPU data cache Modem CPUs support both on-chip and external caches 
for holding copies of recently-used data. When the CPU wants something from 
physical memory, it first looks for the data in the cache. If the CPU finds what it 
wants, it doesn't have to make the long, slow trip down the system memory bus. 
For write operations, data moves from the CPU to the cache, where (depending 
on the caching policy) it may stay for awhile before making its way out to main 
memory. 

The problem is that, on some architectures (primarily RISC platforms), the 
CPU's cache controller and the DMA hardware are unaware of each other. This 
lack of awareness can lead to incoherent views of memory. For instance, if the 
CPU cache is holding part of a buffer and that buffer is overwritten in physical 
memory by a DMA input, the CPU cache will contain stale data. Similarly, if mod
ified data hasn't been flushed from the CPU cache when a DMA output begins, 
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Figure 12.3 Caches involved in DMA processing 

the DMA controller will be sending stale data from physical memory out to the 
device. 

One way of handling this problem is to make sure that any portions of a 
DMA buffer residing in the CPU's data cache are flushed before a DMA operation 
begins.2 Your driver can do this by calling KeFlushIoBuffers and giving it the 
MDL describing the DMA buffer. This function flushes any pages in the MDL 
from the data cache of every processor on the system. The code example later in 
this chapter shows how this works. 

If you know something about hardware, you may be horrified by the over
head of flushing every CPU's data cache before every DMA transfer. It's impor
tant to emphasize that the cache coherency problem described above is only an 
issue on some platforms. On machines that automatically maintain cache coher
ency, KeFlushIoBuffers is a no-op. You should always call it, however, just in case 
your driver ends up on a platform that doesn't handle caching properly. 

Adapter object cache The Adapter object is another place where data 
may be cached during a DMA transfer. Unlike the CPU cache, which is always a 
real piece of hardware, the Adapter object's cache is an abstraction representing 
platform-dependent hardware or software. It might be an actual cache in a system 
DMA controller or a software buffer maintained by the I/O Manager. In fact, for 
some combinations of hardware, there might not even be a cache, but your driver 
has to act as if there were in order to guarantee portability. 

2 Another option is to use non-cached memory for your DMA buffers. 
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If this sounds strange, consider a DMA controller attached to an ISA bus. 
Such a controller can access only the first sixteen megabytes of physical memory. 
If the pages of a user buffer are outside this range, the 1/ 0 Manager allocates 
another buffer in low memory when your driver sets up its DMA mapping regis
ters. If you're setting up an output operation, the I/O Manager also copies the 
contents of the user buffer pages into this Adapter object buffer. 

You need to flush the Adapter object cache of this ISA DMA controller in 
two cases. First, after an input operation, your driver must tell the I/O Manager 
to copy data from the Adapter buffer back to the user buffer. Second, when you 
complete any data transfer, you have to let the I/O Manager know that it can 
release the memory in the Adapter buffer. The function that does the work is 
IoFlushAdapterBuffers. 

Categorizing DMA Drivers 

The NT DMA model divides drivers into two categories, based on the loca
tion of the DMA buffer itself. In packet-based DMA, data moves directly between 
the device and the locked-down pages of a user-space buffer. This is the type of 
DMA associated with Direct I/O operations. The main thing to notice here is that 
each new I/O request will probably use a different set of physical pages for its 
buffer. This has an impact on the kinds of setup and cleanup steps the driver will 
have to take for each I/O. 

The other possibility is that the driver sets up a single nonpaged buffer in 
system space and uses it for all DMA transfers. This is referred to as common buffer 
DMA. 

Packet-based and common-buffer DMA are not mutually exclusive catego
ries. Some complex devices perform both kinds of DMA. One example is the 
Adaptec AHA-1742 controller, which uses packet-based DMA to transfer data 
between SCSI devices and user buffers. This same controller exchanges command 
and status information with its driver using a set of mailboxes kept in a common
buffer area. 

Although DMA drivers are all rather similar, certain implementation details 
will depend on whether you're performing packet-based or common-buffer 
DMA. Later sections of this chapter will present the specifics of writing each kind 
of driver. 

Limitations of the NT DMA Architecture 

Although NT's use of an abstract DMA model makes some things easier, it 
does have its drawbacks. For one thing, it tends to favor the notion of shared-sys
tem DMA controllers. Much of the setup that goes on in an NT DMA driver is 
based on the idea of passing a shared DMA channel from driver to driver. In an 
age of dumb peripherals, this made sense, but as more bus-mastering devices 
have appeared, the slave DMA model has become a little out of date. 

A more significant problem is that NT doesn't allow you to perform DMA 
operations directly from device to device. Instead, you have to read data from one 
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device, buffer it in system memory, and from there write it out to another device.3 

This puts severe limitations on the available bandwidth and wastes one of the 
main architectural features of modern buses like PCI. Sadly, Microsoft appears to 
be adamantly opposed to direct device-to-device data transfers. 

12.2 WORKING WITH ADAPTER OBJECTS 

Although the specific details will vary according to the nature of the device and 
the architecture of the driver, DMA drivers generally have to perform several 
kinds of operations on Adapter objects. 

• Locate the Adapter object associated with a specific device. 

• Acquire and release ownership of Adapter objects and their mapping 
registers. 

• Load the Adapter object's mapping registers at the start of a transfer. 

• Flush the Adapter object's cache after a transfer completes. 

The following subsections discuss these topics in general terms. Later sec
tions of this chapter will add more detail. 

Finding the Right Adapter Object 

All DMA drivers need to locate an Adapter object before they can perform 
any I/O operations. To find the right one, a driver's initialization code needs to 
call the HalGetAdapter function described in Table 12.2. 

Given a description of some DMA hardware, HalGetAdapter returns a pointer 
to the corresponding Adapter object and a count of the maximum number of map-

Table 12.2 Function prototype for HalGetAdapter 

PADAPTER_OBJECT HalGetAdapter IRQL == PASSIVE_LEVEL 

Parameter 

IN PDEVICE_DESCRIPTION 
DeviceDescription 

IN OUT PULONG 
NumberOfMapRegisters 

Return value 

Description 

Points to a structure describing device capabilities 

• IN - requested number of registers 
• OUT - maximum allowable number 
• Non-NULL - address of Adapter object 
• NULL - no such Adapter object available 

3 Part of the problem here is that you can only build MDLs for physical memory that's known to the 
system at bootstrap time. There's simply no way to create an MDL describing memory that's actu
ally located on a peripheral or that's just a range of address space on some bus. 
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ping registers available for a single transfer. The driver needs to save both these 
items in nonpaged storage (usually the Device or Controller Extension) for later use. 

The main input to HalGetAdapter is the DEVICE_DESCRIPTION block 
pictured in Table 12.3. It's important to set up this structure correctly, since most 

Table 12.3 The DEVICE_DESCRIPTION structure describes a piece of DMA hardware 

DEVICE_DESCRIPTION, *PDEVICE_DESCRIPTION 

Field 

ULONG Version 

BOOLEAN Master 

BOOLEAN ScatterGather 
BOOLEAN DemandMode 
BOOLEAN AutoInitialize 
BOOLEAN Dma32BitAddresses 
BOOLEAN IgnoreCount 

BOOLEAN Reserved1 
BOOLEAN Reserved2 
ULONG BusNumber 
ULONG DmaChannel 
INTERFACE_TYPE InterfaceType 

DMA_WIDTH DmaWidth 

DMA_SPEED DmaSpeed 

ULONG MaximumLength 
ULONG DmaPort 

Contents 

• DEVICE_DESCRIPTION_VERSION 
• DEVICE_DESCRIPTION_ VERSION1 
• TRUE - device is a bus master 
• FALSE - devices uses system DMA 
Slave device supports scatter/gather 
Slave device uses demand·mode 
Slave device uses autoinitialize mode 
DMA logical space uses 32·bit addressing 
Platform's DMA controller doesn't maintain 

an accurate DMA count* 
-* 
-* 
System-assigned bus number 
Slave device DMA channel number 
Bus architecture 
• Internal 
• Isa 
• Eisa 
• MicroChannel 
• PCIBus 
Width of a single transfer operation 
• Width8Bits 
• Width16Bits 
• Width32Bits 
DMA bus-cycle speed 
• Compatible 
• TypeA 
• TypeB 
• TypeC 
Largest transfer size (in bytes) device can perform 
Micro Channel DMA port number 

*Requires the use of DEVICE_DESCRIPTION_ VERSION! 
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of the failures of HalGetAdapter are due to bogus device descriptions. Also be 
sure to clear the structure with RtlZeroMemory before you fill it in. 

Most ofthese fields are self-explanatory, but the following ones may need a 
little clarification. 

ScatterGather For bus master devices, this says that the hardware has 
some sort of built-in support for transferring data to and from noncontiguous 
ranges of physical memory. A later section of this chapter will explain how to 
write drivers that can take advantage of these capabilities. 

For slave devices, setting this field to TRUE implies that the device can stop 
and wait in the middle of a transfer while the I/O Manager reprograms the DMA 
controller. Since the system DMA controllers on some platforms have only one 
mapping register per channel, setting ScatterGather to TRUE would mean stop
ping after each page of memory is transferred. 

Demand transfer mode Some devices need to stop and "catch their 
breath" during a DMA transfer. This gives them the chance to finish working 
with one chunk of data before the next comes through. If your device behaves 
this way, the DMA controller has to be programmed to work in demand mode. 
Otherwise, the system DMA controller won't stop, no matter how much the 
device screams. 

Autoinitialization System DMA channels can be programmed to reinitial
ize themselves when a transfer completes. In this mode, the DMA controller's 
count and address registers are automatically reloaded from a pair of base count 
and address registers at the end of each operation. This causes another transfer to 
begin immediately. Typically, drivers using this mode of operation will also use a 
common buffer for the data transfer. 

IgnoreCount Setting this field to TRUE says that the platform's DMA 
hardware doesn't maintain an accurate running count of the number of bytes 
transferred. This forces the HAL to do some extra work during DMA operations, 
which slows things down. 

Acquiring and Releasing the Adapter Object 

There'snogtliltranteetboat.,the DMA .res.0llrcesneeded for a transfer will be 
'freewheria dti'ver'sStart TlO routine Tuns. For example, a slave-device's DMA 

channel may already be in us.e by another device, or there may not be enough 
mapping registers to handle the request. Consequently, all packet-based DMA 
drivers <and drivers for· common-buffer slave devices have to request ownership 
of the Adapter object before starting a data transfer. 

Since a Start I/O routine runs at DISPATCH_LEVEL IRQL, there's no way it 
.can stop and.wait for the Adapter object. Instead, it calls the IoAllocateAdapter
Channel function (see Table 12.4) and then returns control to the I/O Manager. 
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Table 12.4 Prototypelfor loAliocateAdapterChannel 

NTSTATUS loAllocateAdapterChannel 

Parameter 

IN PADAPTER_OBJECT AdapterObject 
IN PDEVICE_OBJECT Jii)sviceObject 
IN ULONG NumberOfMapRegisters 
IN PDRIVER_CONTROL ExecutionRoutine 
IN PVOID Context 
Return value 

IRQL == DISPATCH-,LEVEL 

Description 

Adapter object from HalGetAdapter 
Target device for DMA operation 
Count of map registers to allocate 
Address of XxAdapterControl 
Argument for XxAdapterControl 
• STATUS_SUCCESS 
• STATUS_INSUFFICIENT_ 

RESOURCES 

When the requested DMA resources become available, the I/O Manager notifies 
the driver by calling its Adapter Control routine. It's important to keep in mind 
that this is an asynchronous callback. It may happen as soon as Start 1/0 .calls 
IoAllocateAdapterChannel or it may not occur until some other driver releases 
the Adapter resources. 

Notice that)'l'lu have to be at DISPATCH_LEVELIRQL when you call this 
function. Since you normally call it from the Start I/O routine, this poses no prob
lem. However, if you're using it in some weird way and you happen to be at 
PASSIVE_LEVEL, make sure you use KeRaiseIrql and KeLowerlrql before and 
after your calHo IoAUocateAdapterChannel. 

The Adapter Control routine in a DMA driver is responsible for ca:lling 
IoMapTransfer to set up the DMA hardware and starting the actual device opera
tion. Table 12.5 contains a prototype of the Adapter Control callback. 

The MapRegisterBase argument is an opaque value that identifies the map
ping registers assigned to your I/O request. In a sense, it's a kind of handle to a 
specific group of registers. You use this handle to set up the DMA hardware for 

Table 12.5 Functiol1 prototype for an Adapter Control routine 

IO_ALLOCATION_ACTION ·XxAdapterControl 
f,? . 

IRQL == DISPATCH_LEVEL 

Parameter 

IN PDEVICE_OBJECT peviceObj~ct . 
IN PIRP Irp "',.... 

f" 
IN PVOID MapRegist~~~ase 
m PVOIQ COJJ.t~xt 
Return value 

. Description 

target device for DMA operation 
. IRP describing this operation 

Handle to a group of maF'ping registers 
. Driver~determinedcontext 
• DeallocateObjectKeepRegisters 
• KeepObject 
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the transfer. Normally, you should save this value in the Device or Controller 
extension because you'll need it in later parts of the DMA operation. 

Watch out for the Irp argument. The IRP address sent to your Adapter Con
trol routine comes from the Currentlrp field of the Device object. Since the Cur
rentlrp field only gets set when the Start I/O routine is called, you can only use 

,this passed IRP pointer if IoAllocateAdapterChannel is called from the Start I/O 
routine. If you're calling it from some other context, this pointer will be NULL. In 
that case, you'll have to find another way to pass the IRP (and its associated MDL 
address) to the Adapter Control routine. 

After it programs the DMA controller and starts the data transfer, the 
Adapter Control routine gives control back to the I/O Manager. Drivers of slave 
devices should return a value of KeepObject from this function so that no one else 
will be able to use the Adapter object until this request is finished. Bus master 
drivers return DeallocateObjectKeepRegisters instead. 

When the DpcForIsr routine in a DMA driver completes an I/O request, it 
needs to release any Adapter resources it owns. Drivers of slave devices do this by 
calling IoFreeAdapterChannel; bus master drivers call IoFreeMapRegisters. 

Setting Up the DMA Hardware 

All packet-based drivers, as well as common-buffer drivers for slave 
devices, have to program the DMA hardware at the beginning of each data trans
fer. In terms of the abstract DMA model used by NT, this means loading the 
Adapter object's mapping registers with physical-page addresses taken from the 
MDL. This set up work is done by the IoMapTransfer function described in Table 
12.6. 

Table 12.6 Prototype for loMapTransfer 

PHYSICAL_ADDRESS loMapTransfer 

Parameter 

IN PADAPTER_OBJECT AdapterObject 
INPMDLMdl 
IN PYOID Map Register Base 
IN PYOID CurrentVa 
IN OUT PULONG Length 

IN BOOLEAN WriteToDevice 

Return value 

IRQL £ DISPATCH_LEVEL 

Description 

Allocated Adapter object 
Memory Descriptor List for DMA buffer 
Handle to a group of mapping registers 
Virtual address of buffer within the MDL 
• IN - count of bytes to be mapped 
• OUT - actual count of bytes mapped 
• TRUE - send data to device 
• FALSE - read data from device 
DMA logical address of the mapped 

region 
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IoMapTransfer uses the CurrentVa and Length arguments to figure out 
what physical page addresses to put into the mapping registers. These values 
must fall somewhere within the range of addresses described by the MOL. 

Keep in mind that IoMapTransfer may actually move the contents of a 
DMA output buffer from one place to another in memory. For example, on an ISA 
machine, if the pages in the MOL are outside the 16-megabyte DMA limit, calling 
this function results in data being copied to a buffer in low physical memory. Sim
ilarly, if a DMA input buffer is out of range, IoMapTransfer will allocate a buffer 
in low memory for the transfer. On buses that support 32-bit DMA addresses, no 
copying or duplicate buffers are required. 

Drivers of bus master devices also need to call IoMapTransfer. In this case, 
however, the function behaves a little differently, since it doesn't know how to 
program the bus master's control registers. Instead, IoMapTransfer simply 
returns address and length values that your driver then loads into the device's 
registers. For bus masters with built-in scatter/gather support, this same mecha
nism allows your driver to create a scatter/gather list for the device. Later sec
tions of this chapter will explain how all this works. 

Flushing the Adapter Object Cache 

At the end of a data transfer, all packet-based DMA drivers and drivers for 
common-buffer slave devices have to call IoFlushAdapterBuffers (see Table 12.7). 
For devices using the system DMA controller, this function flushes any hardware 
caches associated with the Adapater object. 

In the case of ISA devices doing packet-based DMA, this call releases any 
low memory used for auxiliary buffers. For input operations, it also copies data 
back to the physical pages of the caller's input buffer. Refer back to the section on 
cache coherency for a discussion of this process. 

Table 12.7 Prototype for loFlushAdapterBuffers 

BOOLEAN loFlushAdapterBuffers 

Parameter 

IN PADAPTER_OBJECT AdapterObject 
INPMDLMdl 
IN PYOID MapRegisterBase 
IN PYOID CurrentVa 
IN ULONG Length 
IN BOOLEAN WriteToDevice 

Return value 

IRQL £ DISPATCH_LEVEL 

Description 

Adapter object used for this I/O 
MOL describing the buffer 
Handle passed to XxAdapterControl 
Starting VA where I/O operation took place 
Length of buffer 
• TRUE - operation was an output 
• FALSE - operation was an input 
• TRUE - Adapter buffers flushed 
• FALSE - an error occurred 



272 Chapter 12 DMA Drivers 

12.3 WRITING A PACKET-BASED SLAVE DMA DRIVER 

In packet-based slave DMA, the device transfers data to or from the locked-down 
pages of the caller's buffer using a shared DMA controller on the motherboard. 
The system is also responsible for providing scatter / gather support. 

How Packet-Based Slave DMA Works 

Although the specifics will depend on the nature of your device, most 
packet-based slave DMA drivers conform to a very similar pattern. The follow
ing subsections describe what goes on in the routines making up one of these 
drivers. 

DriverEntry routine Along with its usual duties, the DriverEntry routine 
has some extra work to do: 

1. It finds the DMA channel used by the device. This can come either from auto
detected hardware information in the Registry or it can be hard-coded in the 
Parameters subkey of the driver's service key. 

2. DriverEntry uses its hardware information to build a DEVICE_DESCRIP
TION structure and calls HalGetAdapter to locate the Adapter object associ
ated with the device. 

3. It saves the address of the Adapter object and the count of mapping registers 
returned by HalGetAdapter for later use. Usually these are stored in the 
Device Extension. 

4. It sets the DO_DIRECT_IO bit in the Flags field of any Device objects it cre
ates. This causes the I/O Manager to lock user buffers in memory and create 
MDLs for them. 

Start 1/0 routine Unlike its counterpart in a programmed I/O driver, this 
Start I/O routine doesn't actually start the device. Instead, it just requests owner
ship of the Adapter object and leaves the rest of the work to the Adapter Control 
callback routine. Specifically, the Start I/O routine does the following: 

1. It calls KeFlushIoBuffers to flush data from the CPU's cache out to physical 
memory. 

2. Start I/O decides how many mapping registers to request. Initially, it calcu
lates the number of registers needed to cover the entire user buffer. If this 
turns out to be more mapping registers than the Adapter object has, it will ask 
for as many as are available. 

3. Based on the number of mapping registers and the size of the user buffer, 
Start I/O calculates the number of bytes to transfer in the first device opera-
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tion. This may be the entire buffer or it may be only the first portion of a split 
transfer. 

4. Next, it calls MmGetMdlVirtualAddress to recover the virtual address of the 
user buffer from the MOL. It stores this address in the Device Extension. Later 
parts of the driver will use this address as an offset into the MDL to set up the 
actual DMA transfer. 

5. Start I/O then calls IoAllocateAdapterChannel to request ownership of the 
Adapter object. If this function succeeds, the rest of the setup work will be 
done by the AdapterControl routine, so Start I/O simply returns control to 
the I/O Manager. 

6. If IoAllocateAdapterChannel returns an error, Start I/O puts an error code in 
the IRP's loStatus block, calls loCompleteRequest, and starts processing the 
nextlRP. 

Adapter Control routine The I/O Manager calls the Adapter Control rou
tine whenever the necessary Adapter resources have become available. Its job is to 
initialize the DMA controller for the transfer and start the device itself. This rou
tine does the following: 

1. It stores the value of the MapRegisterBase argument in the Device Extension 
for later use. 

2. The Adapter Control routine then calls loMapTransfer to load the Adapter 
object's mapping registers. To make this call, it uses the buffer's virtual 
address and the transfer size calculated by the Start I/O routine. 

3. Next, it sends appropriate commands to the device to begin the transfer 
operation. 

4. Finally, the Adapter Control routine returns the value KeepObject to retain 
ownership of the Adapter object. 

At this point, the transfer is actually in progress, and the system can go off 
and do other things until an interrupt arrives from the device. 

Interrupt Service routine Compared to a programmed I/O driver, the 
ISR in a packet-based DMA driver is not very. complicated. Unless hardware limi
tations force the driver to split a large transfer request across several device oper
ations,. there will be only a single interrupt to service when the whole transfer 
completes. When this interrupt arrives, the ISR does the following: 

1. It issues whatever commands are necessary to acknowledge the device and 
prevent it from generating any more interrupts. 

2. The TSR then stores device status (and any relevant error information) in the 
Device Extension. 
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3. It calls IoRequestDpc to continue processing the request in the driver's Dpc
ForIsr routine. 

4. The ISR returns a value of TRUE to indicate that it serviced the interrupt. 

DpcForlsr routine The DpcForIsr routine is triggered by the ISR at the 
end of each partial data transfer operation. Its job is to start the next partial trans
fer (if there is one) or to complete the current request. Specifically, the DpcForIsr 
routine in a packet-based DMA driver does the following: 

1. It calls IoFlushAdapterBuffers to force any remaining data from the Adapter 
object's cache. 

2. The DpcForIsr routine checks the Device Extension to see if there were any 
errors during the operation. If there were, it completes the request with an 
appropriate status code and length, and starts the next request. 

3. Otherwise, it decrements the count of bytes remaining by the size of the last 
transfer. If the whole buffer has been processed, it completes the current 
request and starts the next. 

4. If more data remains, the DpcForIsr routine increments the user-buffer 
address pointer (stored in the Device Extension) by the size of the last opera
tion. It then calculates the number of bytes to transfer in the next device oper
ation, calls IoMapTransfer to reset the mapping registers, and starts the 
device. 

If the DpcForIsr routine started another partial transfer, the 110 Manager 
will return control to the driver again when the device generates an interrupt. 

Splitting DMA Transfers 

When a packet-based DMA driver receives a buffer, it may not be able to 
transfer all the data in a single device operation. It could be that the Adapter 
object doesn't have enough mapping registers to handle the whole thing at once, 
or there could be limitations on the device itself. In any event, the driver has to be 
prepared to split the request across multiple data-transfer operations. 

There are two solutions to this problem. One is have the driver reject any 
requests that it can't handle in a single I/O. With this approach, anyone using the 
driver is responsible for breaking the request into chunks that are small enough to 
process. Of course, the driver will have to provide some mechanism for letting its 
clients know the maximum allowable buffer size (an IOCTL, for example). If you 
decide to do things this way, you might want to write a higher-level driver that 
sits on top of the DMA device driver and splits the requests. This has the advan
tage of shielding application programs from the details of splitting the request. 

Another approach is to write a single, monolithic driver that accepts 
requests of any size and splits them into several 110 operations. This is the strat
egy used by the sample driver in the next section of this chapter. 
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To do things this way, you need to maintain a pointer that tracks your posi
tion in the user buffer as you transfer successive chunks of data. You also need to 
maintain a count of the number of bytes left to process, as well as calculating the 
amount of data to transfer in the current I/O operation. The following subsec
tions explain how to initialize and update these data items during an I/O request. 

First transfer The Start I/O routine normally sets things up for the first 
transfer. Initially, it tries to grab enough mapping registers to do everything in one 
I/O. If the Adapter object doesn't have enough mapping registers for this to 
work, Start I/O asks for as many as it can get and sets up the current transfer 
accordingly. The following code fragment shows how it's done. 

pDE->TransferVA = 
MmGetMdlVirtualAddress( Irp->MdlAddress ); 

pDE->BytesRemaining = 
MmGetMdlByteCount( Irp->MdlAddress ); 

pDE->TransferSize = pDE->BytesRemaining; 

MapRegsNeeded = ADDRESS_AND_SIZE_TO_SPAN_PAGES( 
pDE->TransferVA, 
pDE->TransferSize ); 

if( MapRegsNeeded > pDE->MapRegsAvailable 
{ 

MapRegsNeeded = pDE->MapRegsAvailable; 
pDE->TransferSize = 

MapRegsNeeded * PAGE_SIZE -
MmGetMdlByteOffset( Irp->MdlAddress ); 

IoAllocateAdapterChannel( ... ); 

Additional transfers After each interrupt, the DpcForIsr checks to see if 
there's any data left to process. If there is, it calculates the number of mapping 
registers needed to transfer all the remaining bytes in a single I/O operation. If 
there aren't enough mapping registers available, it sets up another partial transfer. 
The following code fragment illustrates the procedure. 

pDE->BytesRemaining -= pDE->TransferSize; 

if( pDE->BytesRemaining > 0 ) 
{ 

pDE->TransferVA += pDE->TransferSize; 

pDE->TransferSize = pDE->BytesRemaining; 

MapRegsNeeded = ADDRESS_AND_SIZE_TO_SPAN_PAGES( 
pDE->TransferVA, 
pDE->TransferSize ); 
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if( MapRegsNeeded > pDE->MapRegsAvailable ) 
{ 

MapRegsNeeded = pDE->MapRegsAvailable ); 

pDE->TransferSize = 
MapRegsNeeded * PAGE SIZE -

BYTE_OFFSET ( pDE->TransferVA ); 

IoMapTransfer( ... ) ; 

12.4 CODE EXAMPLE: A PACKET-BASED SLAVE DMA DRIVER 

This example is a skeleton of a packet-based driver for a generic slave DMA 
device. Although it doesn't actually manage a specific kind of hardware, it will 
help you to understand how these drivers work. You can find the complete code 
for this example in the CH12\PACKT-S directory on the disk that accompanies 
this book. 

XXDRIVER.H 

This excerpt from the driver-specific header file shows the changes that need 
to be made to support a DMA device. 

DEVICE_EXTENSION The modified Device Extension structure contains 
some extra items that are necessary for packet-based DMA. 

typedef struct _DEVICE_EXTENSION { 
PDEVICE_OBJECT DeviceObject; II Back pointer 

ULONG NtDeviceNumber; 

PUCHAR PortBase; 

PKINTERRUPT pInterrupt; 

II Zero-based device num 

II First control register 

II Interrupt object 

PADAPTER_OBJECT AdapterObject; 0 
ULONG MapRegisterCount; 

PVOID MapRegisterBase; @ 

ULONG BytesRequested; ~ 
ULONG BytesRemaining; 
ULONG TransferSize; 
PUCHAR TransferVA; 

BOOLEAN WriteToDevice; 0 
UCHAR DeviceStatus; 

DEVICE_EXTENSION, *PDEVICE_EXTENSION; 
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o These are returned by HalGetAdapter. They identify the specific Adapter 
object and its maximum transfer size. 

@ This identifies a particular group of mapping registers that have been 
assigned to our driver during the course of an I/O request. 

8 These bookkeeping fields keep track of our progress through a split trans
fer operation. 

o These items hold the direction of the current data transfer and the status 
of the DMA device itself. 

REGCON.C 

This sample uses the version of XxGetHardwareInfo that extracts hard
coded information from the Parameters subkey of the driver's service key. You 
could just as easily use auto-detected information. 

XxGetDmalnfo This function uses information pulled from the Registry, 
supplemented with a few assumptions about the hardware, to find the device's 
Adapter object. 

static NTSTATUS 
XxGetDmaInfo( 

IN INTERFACE_TYPE BusType, 
IN ULONG BusNumber, 
IN PDEVICE_BLOCK pDevice 
) 

DEVICE_DESCRIPTION Descrip; 

RtlZeroMemory( 
&Descrip, 
sizeof( DEVICE_DESCRIPTION )); 0 

Descrip.Version = DEVICE_DESCRIPTION_VERSION1; 

Descrip.Master 
Descrip.ScatterGather 
Descrip.DemandMode 
Descrip.AutoInitialize 
Descrip.Dma32BitAddresses 

Descrip.InterfaceType 
Descrip.BusNumber 

Descrip.DmaChannel 
Descrip.MaximumLength 
Descrip.DmaWidth 
Descrip.DmaSpeed 

FALSE; @ 

FALSE; 
FALSE; 
FALSE; 
FALSE; 

BusType; 
BusNumber; 

pDevice->DmaChannel; 
XX_MAX_DMA_LENGTH; 
Width16Bits; 
Compatible; 
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pDevice->MapRegisterCount = 
(XX_MAX_DMA_LENGTH / PAGE_SIZE) + 2i e 

pDevice->AdapterObject = 
HalGetAdapter( 

&Descrip, 
&pDevice->MapRegisterCount )i 0 

if( pDevice->AdapterObject == NULL) 0 
return STATUS_INSUFFICIENT_RESOURCESi 

else 
return STATUS_SUCCESSi 

o It's important to make sure that there aren't any spurious bits set in the 
DEVICE_DESCRIPTION structure. 

@ From this point on, start to build a description of the DMA device. In this 
case, it's a slave device that performs 16-bit transfers and needs an ISA
compatible bus cycle speed. 

e Calculate the number of mapping registers that correspond to the largest 
possible transfer the device can handle. In the worst case, a buffer could 
occupy some integral number of pages plus one byte before the first page 
and one byte after the last page. To account for this possibility, request 
two additional mapping registers. 

o Try to find the Adapter object for the device. Later parts of the driver will 
need a pointer to the object and information about the maximum number 
of available mapping registers. 

o If HalGetAdapter fails, it usually means that the DEVICE_DESCRIP
TION had some inconsistencies. 

TRANSFER.C 

This portion of the example performs the actual data transfers. If an I/O 
request is too large for a single device operation, these routines split the request 
over several transfers. 

XxStartlo This function gets control at the beginning of each request. It 
calculates the size of the first data transfer and requests ownership of the Adapter 
object. 

VOID 
XxStartIo( 

IN PDEVICE_OBJECT DeviceObject, 
IN PIRP Irp 
) 
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PIO_STACK_LOCATION IrpStack = 
IoGetCurrentIrpStackLocation( Irp ); 

PDEVICE_EXTENSION pDE = 
DeviceObject->DeviceExtension; 

PMDL Mdl = Irp->MdlAddress; 
ULONG MapRegsNeeded; 
NTSTATUS status; 

switch ( IrpStack->MajorFunction ) { 

case IRP_MJ_WRITE: 
case IRP_MJ_READ: 

pDE->BytesRequested 
MmGetMdlByteCount( Mdl ); 0 

pDE->BytesRemaining = 
pDE->BytesRequested; 

pDE->TransferVA = 
MmGetMdlVirtualAddress( Mdl ); 

II 
II Set the direction flag 
II 
if( IrpStack->MajorFunction 

== IRP_MJ_WRITE ) 
{ 

} 

else 

} 

pDE->WriteToDevice TRUE; 

pDE->WriteToDevice FALSE; 

pDE->TransferSize 
pDE->BytesRemaining; @ 

MapRegsNeeded = 
ADDRES S_AND_S I Z E_TO_S PAN_PAGES ( 

pDE->TransferVA, 
pDE->TransferSize ); 

if( MapRegsNeeded > 
pDE->MapRegisterCount 

MapRegsNeeded = 
pDE->MapRegisterCount; 
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pDE->TransferSize = 
MapRegsNeeded * PAGE_SIZE -

MmGetMdlByteOffset( Mdl ); 

status IoAllocateAdapterChannel( e 

II 

pDE->AdapterObject, 
DeviceObject, 
MapRegsNeeded, 
XxAdapterControl, 
pDE ); 

if( !NT_SUCCESS( status )) 0 
{ 

break; 

Irp->IoStatus.Status = status; 
Irp->IoStatus.Information = 0; 

IoCompleteRequest( 
Irp, 
IO_NO_INCREMENT ); 

IoStartNextPacket( 
DeviceObject, 
FALSE) ; 

II Should never get here -- just get rid 
II of the packet ... 
II 
default: 

Irp->IoStatus.Status 
STATUS_NOT_SUPPORTED; 

Irp->IoStatus.Information = 0; 
IoCompleteRequest( 

Irp, 
IO_NO_INCREMENT ); 

IoStartNextPacket( DeviceObject, FALSE); 
break; 

} II end switch 

o Set up various bookkeeping values. The size and address of the user 
buffer come from the MDL built by the I/O Manager. Keep in mind that 
you can use the virtual address as an index into the user buffer but you 
can't actually dereference it.. 

8 This section calculates the size of the first partial transfer. First, the driver 
tries to transfer everything in a single DMA. If there aren't enough map-
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ping registers to handle the whole buffer, the driver asks for as many 
mapping registers as it can get. Based on this smaller number, it calculates 
a smaller size for the current transfer. 

@} Ask for the Adapter object using an asynchronous call. The Adapter Con
trol routine will execute when the DMA channel is available. It will start 
the actual device operation. 

o If the call to IoAllocateAdapaterChannel fails, it usually means there 
aren't enough mapping registers. In that case, the driver simply fails the 
IRP and starts the next request. 

XxAdapterControl This function programs the system DMA hardware and 
starts the device itself. The I/O Manager calls it when the Adapter object belongs to 
our device and there are enough mapping registers to handle the request. 

static IO_ALLOCATION_ACTION 
XxAdapterControl( 

IN PDEVICE_OBJECT DeviceObject, 
IN PIRP Irp, 0 
IN PVOID MapRegisterBase, 
IN PVOID Context 
) 

PDEVICE_EXTENSION pDE = Context; 

pDE->MapRegisterBase = MapRegisterBase; @ 

KeFlushIoBuffers( 
Irp->MdlAddress, 
!pDE->WriteToDevice, 
TRUE); @} 

IoMapTransfer( 
pDE->AdapterObject, 
Irp"':>MdlAddress, 
pDE->MapRegisterBase, 
pDE->TransferVA, 
&pDE->TransferSize, 
pDE->WriteToDevice ); 0 

II 
II Start the device 
II 
xxWriteControl( 

pDE, 
XX_CTL_INTENB 

return KeepObject; 0 
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o The 1/ 0 Manager gets this IRP pointer from the Currentlrp field of the 
Device object. Normally, this field gets set when your driver uses IoStart
Packet or IoStartNextPacket to call a standard Start I/O routine. If your 
driver doesn't have a Start I/O routine, it's up to you to make sure that 
the Currentlrp field gets set before you call IoAllocateAdapterChannel. 
Or, you'll have to have some other way of getting the IRP pointer (and it's 
associated MDL address) into the Adapter Control routine. 

@ Save the value of the MapRegisterBase argument for use by later parts of 
the driver. 

@) Flush any processor caches that might be holding parts of the DMA 
buffer. This is a no-op on CPUs that handle their own cache coherency. 
Notice the perverse way that the direction argument for this function is 
TRUE for a read. Other I/O Manager functions use TRUE for write 
requests. 

o Set up the system DMA channel associated with the device. 

o Return a value of KeepObject in order to retain ownership of the Adapter 
object until the whole buffer has been transferred. 

Xxlsr This function processes interrupts from the device. Normally, there 
will be a single interrupt at the end of each partial transfer, or when an error 
occurs. 

BOOLEAN 
XxIsr( 

IN PKINTERRUPT Interrupt, 
IN PVOID ServiceContext 
) 

PDEVICE_EXTENSION pDE = ServiceContext; 
PDEVICE_OBJECT DeviceObject = pDE->DeviceObject; 
UCHAR Status = XxReadStatus( pDE ); 
UCHAR Control; 

II 
II See if this device requested an interrupt 
II 
if(( Status & XX_STS_IRQ ) == a ) 

return FALSE; 

Control = XxReadControl( pDE ); 0 

Control &= -( XX_CTL_INTENB I 
XX_CTL_DMA_GO ); 

XxWriteControl( pDE, Control); 



Sec. 12.4 Code Example: A Packet-Based Slave DMA Driver 

pDE->DeviceStatus = Status; @ 

IoRequestDpc( 
DeviceObject, 
DeviceObject->CurrentIrp, 
(PVOID) pDE ); @} 

return TRUE; 

283 

o When an interrupt arrives, issue some device-specific commands to 
acknowledge the interrupt and prevent any further ones from coming in. 

@ Save the status of the hardware so that the DpcForIsr routine can figure 
out whether the transfer was successful. 

@} There's not much more that can be done up at DIRQL. Issue a DPC 
request and let the rest of the work happen at DISPATCH_LEVEL IRQL. 

XxDpcForlsr This function executes after the Interrupt Service routine 
runs. It either sets up the next partial transfer or it completes the current request 
and starts the next one. 

VOID 
XxDpcForIsr( 

IN PKDPC Dpc, 
IN PDEVICE_OBJECT DeviceObject, 
IN PIRP Irp, 
IN PVOID Context 
) 

PDEVICE_EXTENSION pDE = Context; 
ULONG MapRegsNeeded; 
PMDL Mdl = Irp->MdlAddress; 

IoFlushAdapterBuffers( 
pDE->AdapterObject, 
Mdl, 
pDE->MapRegisterBase, 
pDE->TransferVA, 
pDE->TransferSize, 
pDE->WriteToDevice ); 0 

if( IXX_STS_OK( pDE->DeviceStatus )) @ 
{ 

IoFreeAdapterChannel( pDE->AdapterObject ); 

Irp->IoStatus.Status = 
STATUS_DEVICE_DATA_ERROR; 
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Irp->IoStatus.Information = 
pDE->BytesRequested -

pDE->BytesRemainingj 
II 
II Complete this request and 
II start the next 
II 
IoCompleteRequest( Irp, IO_NO_INCREMENT )j 

IoStartNextPacket( DeviceObject, FALSE )j 

returnj 

pDE->BytesRemaining -= pDE->TransferSizej 

if( pDE->BytesRemaining > 0 ) ~ 
{ 

II 
II Update the pointer and try to 
II do all of it in one operation 
II 
pDE->TransferVA += pDE->TransferSizej 
pDE->TransferSize = pDE->BytesRemainingj 

MapRegsNeeded = 

II 

ADDRES S_AND_S I ZE_TO_S PAN_PAGES ( 
pDE->TransferVA, 
pDE->TransferSize ) j 

II If the remainder of the buffer is more 
II than we can handle in one I/O. Reduce 
II our expectations. 
II 
if( MapRegsNeeded > pDE->MapRegisterCount 
{ 

MapRegsNeeded = pDE->MapRegisterCountj 

pDE->TransferSize = 
MapRegsNeeded * PAGE_SIZE -

BYTE_OFFSET ( pDE->TransferVA )j 

IoMapTransfer( 
pDE->AdapterObject, 
Mdl, 
pDE->MapRegisterBase, 
pDE->TransferVA, 
&pDE->TransferSize, 
pDE->WriteToDevice )j 0 
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XxWriteControl( 
pDE, 
XX_CTL_INTENB 

else 0 

IoFreeAdapterChannel( pDE->AdapterObject ); 

Irp->IoStatus.Status = STATUS_SUCCESS; 
Irp->IoStatus.lnformation = 

pDE->BytesRequested; 

IoCompleteRequest ( Irp, IO_DISK_INCREMENT ).; <D 
IoStartNextPacket( DeviceObject, FALSE); 
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o Flush any data out of the Adapter object's cache. On platforms with DMA 
address limitations (ISA buses, for example), this may result in data being 
copied from place to place in memory. 

@ Check for device errors. This driver simply fails the IRP if an error 
occurred. A real driver might retry the operation some number of times 
before failing it. 

~ At this point, the driver can assume the previous operation was a success. 
It checks to see if there are any bytes left in the buffer, and if there are, it 
sets up the next partial transfer. The logic here is similar to what goes on 
in the Start I/O routine: Try to transfer all the remaining bytes, or as 
much as the Adapter object can handle, whichever is less. 

o Set up the system DMA controller for the next partial transfer, then start 
the device. 

o This else clause executes when the entire user buffer has been transferred. 
It simply completes the IRP and starts the next one. 

<D Pick a priority-boost value that's appropriate for your device. Slower 
devices can probably get by with IO_DISK_INCREMENT, while faster 
hardware may need a heftier boost. 

12.5 WRITING A PACKET-BASED Bus MASTER DMA DRIVER 

In packet-based bus master DMA, the device transfers data to or from the locked
down pages of the caller's buffer using DMA hardware that's part of the device 
itself. Depending on the capabilities of the device, it might be providing its own 
scatter / gather support as welL 
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The architecture of a packet-based bus master driver is almost identical to 
that of a driver for a slave device. The only difference is the way the driver sets up 
the bus master hardware. The following subsections describe these differences. 

Setting Up Bus Master Hardware 

A bus master device complicates things because the system doesn't know 
how to program the device's onboard DMA controller. The most the I/O Man
ager can do is to give the driver two things: An address in DMA logical space 
where a contiguous segment of the buffer begins and a count indicating the num
ber of bytes in that segment. It then becomes the driver's responsibility to load 
this information into the address and length registers of the device and start the 
transfer. 

The function that performs this little miracle is none other than our old 
friend, IoMapTransfer. When you pass NULL for its AdapterObject pointer, its 
return value will be the address in DMA logical space that corresponds to the 
CurrentVa and Mdl arguments. You put this logical address into the device's 
address register. 

Furthermore, when AdapterObject is NULL, Length becomes both an input 
and output argument. On input, you ask it to map all the bytes remaining 
between CurrentVa and the end of the buffer. On output, Length contains the 
number of contiguous bytes starting at the logical address returned by IoMap
Transfer. This number goes into your device's count register. Figure 12.4 shows 
how this works. 

Supporting bus master devices requires some changes to the driver's 
Adapter Control and DpcForIsr routines. The following subsections contain frag-
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Figure 12.4 For bus masters, IoMapTransfer scans for contiguous buffer segments 
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ments of these routines. Compare them with the corresponding routines in the 
packet.,.based slave DMA driver in the previous section of this chapter. 

Adapter Control routine Being optimistic, the Adapter Control routine 
asks IoMapTransfer to map the entire buffer at the start of the first transfer. 
Instead, it tells the driver how much contiguous memory is actually available in 
the first segment of the buffer. 

PHYSICAL_ADDRESS DmaAddress; 

pPE->TransferVA = 
MrnGetMdlVirtualAddress( Irp->MdlAddress ); 

pDE->BytesRemaining = 
MrnGetMdlByteCount( Irp->MdlAddress ); 

pDE->TransferSize = pDE->BytesRemaining; 

DmaAddress = IoMapTransfer( 
NULL, 
Irp->MdlAddress, 
pDE->MapRegisterBase, 
pDE->TransferVA, 
&pDE->TransferSize, 
pDE->WriteRequest ); 

XxWriteAddress( pDE, (PUCHAR)DmaAddress.LowPart ); 
X~WriteCount( pDE, pDE->TransferSize ); 
XxWriteControl( XX_CTL_DMA_GO ); 

return DeallocateObjectKeepRegisters; 

[)PcForlsr routine After each partial transfer, the DpcForIsr routine incre
mentsthe CurrentVa pointer by the previously returned Length value. It then 
calls IoMapTransfer with this updated pointer and asks to map all the bytes 
remaining in the buffer. IoMapTransfer returns another logical address and a new 
Lengt1:l.value indicating the size of the next contiguous buffer segment. This con
tinues until the whole buffer has been processed. 

PHYSICAL_ADDRESS DmaAddress; 

roFlushAdapterBuffers( 
NULL, 
Irp->MdlAddress, 
pDE->MapRegisterBase, 
pDE->TransferVA, 
pDE->TransferSize, 
pDE->WriteRequest ); 

pDE->BytesRemaining -= pDE->TransferSize; 
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if( pDE->BytesRemaining > 0 ) 
{ 

pDE->TransferVA += pDE->TransferSizej 

pDE->TransferSize = pDE->BytesRemainingj 

DmaAddress = IoMapTransfer( 
NULL, 
Irp->MdlAddress, 
pDE->MapRegisterBase, 
pDE->TransferVA, 
&pDE->TransferSize, 
pDE->WriteRequest )j 

XxWriteAddress( pDE, (PUCHAR)DmaAddress.LowPart )j 

XxWriteCount( pDE, pDE->TransferSize )j 

XxWriteControl( XX_CTL_DMA_GO )j 

Hardware with Scatter/Gather Support 

Some bus master devices contain multiple pairs of address and length regis
ters, each one describing a single contiguous buffer segment. This allows the 
device to perform I/O using buffers that are scattered throughout DMA address 
space. These multiple address and count registers are often referred to as a scatter/ 
gather list, but you can also think of these bus masters as having their own built-in 
mapping registers. Figure 12.5 shows how this works. 

Virtual Space Physical Memory 

Bus Master ~ 
Scatter / Gather 

A Hardware ~ 

B -+-+-+-. Address 

A Length: A+B 

c '----f--+ ___ Address 
B 

Length: C 
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Figure 12.5 Some bus masters have their own scatter/gather hardware 
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Before each transfer, the driver loads as many pairs of address and count 
registers as there are segments in the buffer. When the device is started, it walks 
through the scatter/gather list entries in sequence, filling or emptying each seg
ment of the buffer and then moving on to the next. When all the list entries have 
been processed, the device generates an interrupt. 

Building Scatter/Gather Lists with loMapTransfer 

Once again, IoMapTransfer will be used to find contiguous segments of the 
DMA buffer. In this case, however, the driver will call it several times before each 
data transfer operation - once for each entry in the hardware scatter/gather list. 
These fragments of an Adapter Control and a DpcForIsr routine show how it's 
done. 

Adapter Control routine Before the first transfer operation, the Adapter 
Control routine loads the hardware scatter/gather list and starts the device. The 
remainder of the buffer will be handled by the ISR and DpcForIsr routines. 

PHYSICAL_ADDRESS DmaAddressi 
ULONG BytesLeftInBufferi 
ULONG SegmentSizei 
PUCHAR SegmentVAi 

pDE->TransferVA = 
MmGetMdlVirtualAddress( Irp->MdlAddress )i 

pDE->BytesRemaining = 
MmGetMdlByteCount( Irp->MdlAddress )i 

pDE->TransferSize Oi 

BytesLeftInBuffer pDE->BytesRemainingi 
SegmentVA = pDE->TransferVAi 

XxCl.earSgList ( pDE ) i 

while ( pDE->AvailableSgEntries > 0 && 
BytesLeftInBuffer > 0 ) 

SegmentSize = BytesLeftInBufferi 
DmaAddress = IoMapTransfer( 

NULL, 
Irp->MdlAddress, 
pDE->MapRegisterBase, 
pDE->TransferVA, 
&SegmentSize, 
pDE->WriteRequest )i 
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XxAddToSgList( 
pDE, 
DmaAddress.LowPart, 
SegmentSize ); 

pDE->TransferSize += SegmentSize; 
SegmentVA += SegmentSize; 
BytesLeftInBuffer -= SegmentSize; 
AvailableSgEntries--; 

Chapter 12 DMA Drivers 

return DeallocateObjectKeepRegisters; 

OpcForlsr routine After each transfer is finished, the ISR issues a DPC 
request. The DpcForIsr routine flushes the previous request, and if there are more 
bytes left to transfer, it rebuilds the scatter / gather list. 

PHYSICAL_ADDRESS DmaAddress; 
ULONG BytesLeftInBuffer; 
ULONG SegmentSize; 
PUCHAR SegmentVA; 

IoFlushAdapterBuffers( 
NULL, 
Irp->MdlAddress, 
pDE->MapRegisterBase, 
pDE->TransferVA, 
pDE->TransferSize, 
pDE->WriteRequest ); 

pDE->BytesRemaining -= pDE->TransferSize; 

if( pDE->BytesRemaining > 0 ) 
{ 

pDE->TransferVA += pDE->TransferSize; 

pDE->TransferSize 0; 

BytesLeftInBuffer pDE->BytesRemaining; 
SegmentVA = pDE->TransferVA; 

XxClearSgList( pDE ); 

while ( pDE->AvailableSgEntries > 0 && 
BytesLeftInBuffer > 0 ) 

SegmentSize = BytesLeftInBuffer; 
DmaAddress = IoMapTransfer( 
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XxAddToSgList( 

NULL, 
Irp->MdlAddress, 
pDE->MapRegisterBase, 
pDE->TransferVA, 
&SegmentSize, 
pDE->WriteRequest ); 

pDE, 
DmaAddress.LowPart, 
SegmentSize ); 

pDE->TransferSize += SegmentSize; 
SegmentVA += SegmentSize; 
BytesLeftlnBuffer -= SegmentSize; 
AvailableSgEntries--; 

} II end while 

XxWriteControl( XX_CTL_DMA_GO ); 

else 

IoFreeMapRegisters( ... ); 
IoCompleteRequest( ); 
IoStartNextPacket( ... ); 

12.6 WRITING A COMMON BUFFER SLAVE DMA DRIVER 

291 

In common buffer slave DMA, the device transfers data to or from a contiguous 
buffer in nonpaged pool using a system DMA channel. Although originally 
intended for devices that use the system DMA controller's autoinitialize mode, 
common buffers can also improve throughput for some types of ISA-based slave 
devices. 

Allocating a Common Buffer 

Memory for a common buffer has to be physically contiguous and visible in 
the DMA logical space of a specific device. To guarantee that both these condi
tions are met, you use the HalAllocateCommonBuffer function described in 
Table 12.8 to allocate memory for the buffer. 

Notice the CacheEnabled argument to this function. It's usually a good idea 
to request non-cached memory for the common buffer since it eliminates the need 
to call KeFlushloBuffers. On some platforms, this can improve the performance 
of both your driver and the system. 
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Table 12.8 Prototype for HalAliocateCommonBufter 

PVOID HalAliocateCommonBuffer IRQL == PASSIVE_LEVEL 

Parameter 

IN PADAPTER_OBJECT 
Adapter object 

IN ULONG Length 
OUT PPHYSICAL_ADDRESS 

LogicalAddress 
IN BOOLEAN CacheEnabled 

Return value 

Description 

AdapterObject associated with DMA device 

Requested size of buffer in bytes 
Address of the common buffer in the DMA 

controller's logical space 
• TRUE - memory is cacheable by the CPU 
• FALSE - memory is not cached 
• Non-NULL - system VA of common buffer 
• NULL - error 

In the case of common buffer slave DMA, you'll need to build an MDL for 
the buffer.4 This MDL is a required argument for IoMapTransfer and IoFlush
AdapterBuffers. To set up the MDL, call IoAllocateMdl followed by MmBuild
MdlForNonPagedPoo1. When your driver unloads, call IoFreeMdl to release the 
memory used for the MDL. 

Using Common Buffer Slave DMA to Maintain Throughput 

Common buffer slave DMA is useful if a driver can't afford to have IoMap
Transfer copy a DMA buffer from one place to another during a data transfer. On 
ISA buses, this kind of copying is always a possibility with packet-based DMA. 
Since common buffers are guaranteed to be accessible by their associated DMA 
devices, there's never any danger of IoMapTransfer moving data from one place 
to another. 

For example, drivers of some ISA-based tape drives need to maintain very 
high throughput if they want to keep the tape streaming. They won't be able to do 
this if a buffer copy happens during a call to IoMapTransfer. To prevent this, the 
driver uses a ring of common buffers for the actual DMA operation. Other, less 
time-critical portions of the driver move data between these common buffers and 
the actual user buffers. 

To see how this might work, lets consider the operation of a driver for a 
hypothetical ISA output device. To maintain a high DMA data rate, it uses a series 
of common buffers that are shared between the driver's Dispatch and DpcForIsr 
routines. The Dispatch routine copies user-output data into an available common 
buffer and attaches the buffer to a queue of pending DMA requests. Once a DMA 

4 The MDL is unnecessary if you plan to use the common buffer for bus master DMA. 
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Dispatch: 

Allocate buffer 
RtlMoveMemory 

Add buffer to queue 
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Adapter Control: 

10MapTransfer first buffer 
Start device 

Interrupt Service: 

10RequestDpc 

DpcForlsr: 

Release current buffer 
10MapTransfer next buffer 
Start device 

Figure 12.6 Using common buffers allows some ISA drivers to maintain higher 
throughput 
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is in progress, the DpcForIsr removes buffers from the queue and processes them 
as fast as it can. Figure 12.6 shows the organization of this driver, and the subsec
tions below describe various driver routines. 

DrlverEntry routine As always the DriverEntry routine has to find and 
allocate the driver's hardware. Along with its usual responsibilities, DriverEntry 
also does the following: 

1. When it creates its Device object, it sets the DO_BUFFERED_IO bit in the 
Flags field. Although the underlying common buffers will be processed using 
DMA, the user data will initially be copied into system-space buffers. 

2. DriverEntry initializes two queues in the Device Extension. One holds a list 
of free common buffers. The other is for work requests in progress. 

3. Next, it creates separate spin locks to guard each queue. The spin lock for the 
work list also protects a flag in the Device Extension called DmaInProgress. 

4. Then, DriverEntry calls HalGetAdapter to find the Adapter object associated 
with its device. It uses the count of mapping registers returned by this func
tion to determine the size of its common buffers. 

5. It allocates some number of common buffers and adds them to the free list in 
the Device Extension. (As an implementation detail, some of the space in each 
common buffer is used for a linked-list pointer, a pointer to the IRP associated 
with this request, and a pointer to the MDL for the common buffer.) For each 
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buffer, it also calls IoAllocateMdl and MmBuildMdlForNonPagedPool to 
create an MDL. 

6. Finally, DriverEntry initializes a Semaphore object and sets its initial count to 
the number of common buffers it has just created. 

Dispatch routine The Dispatch routine of this driver works differently 
than the ones you've seen so far. Since the driver has no Start I/O routine, the Dis
patch routine is actually responsible for queuing or starting each request. This is 
what the Dispatch routine does to process an output request: 

1. It calls KeWaitForSingleObject to wait for the Semaphore object associated 
with the driver's list of free buffers. The thread issuing the call will freeze 
until there's at least one buffer in the queue.s 

2. The Dispatch routine removes an available common buffer from the free list 
and (since we're only considering outputs here) uses RtlMoveMemory to fill 
it with data from the user's buffer. 

3. It prevents the I/O Manager from completing the request by calling 10M ark
IrpPending. 

4. Next, it acquires the spin lock associated with the queue of active requests. As 
a side-effect, acquiring the spin lock raises IRQL up to DISPATCH_LEVEL. 
After it owns the spin lock, the Dispatch routine adds the new request to the 
list of buffers to be output. 

5. Still holding the spin lock, the Dispatch routine checks an internal Dmaln
Progress flag to see if other parts of the driver are already doing an output. If 
the flag is TRUE, it simply releases the spin lock. If the flag is FALSE, the Dis
patch routine sets it to TRUE and calls IoAllocateAdapterChannel to start the 
device. It then releases the spin lock. 

6. Finally, it returns a value of STATUS_PENDING. 

At this point, the work request for this buffer has been either started or 
queued. The next phase of the transfer will take place after the device generates 
an interrupt. 

Adapter Control routine If the device was idle, the Adapter Control is 
called to get it going. This is what it does: 

1. It removes the first request from the work queue and saves its address in the 
Device Extension as the current request. 

5 Chapter 14 will explain how to use Semaphore objects. If you're familiar with Win32 programming, 
you already have a good idea of how they work. 
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2. Next, the Adapter Control routine saves the value of the MapRegisterBase 
argument in the Device Extension for later use. 

3. It then calls IoMapTransfer to load the system DMA controller with the 
address of the current request's common buffer. 

4. Finally, the Adapter Control routine starts the device and returns a value of 
KeepObject. 

Once the driver owns the Adapter object, it will hold on to it as long as there 
are work requests in the queue. 

Interrupt Service routine As with packet-based DMA, the ISR in a com
mon-buffer driver for a slave device just saves hardware status in the Device Exten
sion. It then calls IoRequestDpc to continue processing at DISPATCH_LEVEL 
IRQL. 

DpcForlsr routine In this driver, the DpcForIsr routine sets up each addi
tional work request after the first. Here's how it works: 

1. It calls IoFlushAdapterBuffers to flush any data from the system DMA con
troller's hardware cache. 

2. The DpcForIsr routine tries to remove the next I/ 0 request from the work 
queue. If there is another request, the driver makes it the new current 
request, maps its buffer with IoMapTransfer, and starts the device. On the 
other hand, if the work queue is empty, the driver calls IoFreeAdapterChan
nel to release the Adapter object and clears the DmalnProgress flag in the 
Device Extension. 

3. Next, it puts appropriate status information in the IRP for the just-completed 
request and calls IoCompleteRequest to give it back to the I/O Manager. 

4. Finally, the DpcForIsr routine puts the just-completed common buffer back in 
the free list and calls KeRleaseSemaphore to increment the count of available 
buffers. 

Each completed DMA operation causes another interrupt that brings the 
driver back through the DpcForIsr routine. This loop continues until all the 
requests in the work queue have been processed. 

Unload routine When a common buffer bus master driver is unloaded, it 
first needs to stop the device from trying to use the buffer. Once the device is 
silent, the Unload routine calls HalFreeCommonBuffer to release the memory 
associated with the ring of buffers. It also calls IoFreeMdl to release memory used 
for each buffer's MDL. 
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12.7 WRITING A COMMON-BuFFER Bus MASTER DMA DRIVER 

In common-buffer bus master DMA, the device transfers data to or from a contig
uous nonpaged pool buffer using a DMA controller that's part of the device itself. 
Frequently, this kind of hardware will treat the common buffer as a mailbox for 
exchanging control and status messages with the driver. 

How Common-Buffer Bus Master DMA Works 

The exact operation of a common-buffer bus master driver will depend on 
the whims of the hardware designer. The description that follows is based on a 
typical architecture. It assumes the device uses one mailbox for commands and 
another to return status information. Figure 12.7 illustrates this arrangement. 

DriverEntry routine The DriverEntry routine does the following to set up 
a common buffer: 

1. It calls HalGetAdapter to find an Adapter object for the device. 

2. DriverEntry next calls HalAllocateCommonBuffer to get a block of contigu
ous, nonpaged memory that both the driver and the device can access. It usu
ally simplifies things if the common buffer is allocated from non-cached 
memory. 

3. It stores the virtual address of the common buffer in the Device Extension for 
later use. 

Driver 

Status 
Mailbox 
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Bus Master ~ 

DMA "~ 
! Hardware ,~ 

Address 

Length 

Figure 12.7 The driver and the device exchange messages using a common buffer 
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4. DriverEntry also makes the device itself aware of the common buffer. This 
usually means storing the logical address and size of the buffer in a pair of 
device control registers. 

Start 110 routine When it wants to send a command to the device, the 
Start I/O routine does the following: 

1. It builds a command structure in the common buffer using the virtual address 
stored in the Device Extension. 

2. If DriverEntry specificed TRUE for the CacheEnabled parameter of HalAllo
cateCommonBuffer, Start I/O needs to call KeFlushIoBuffers to force data 
from the CPU's cache out to physical memory. 

3. Finally, Start I/ 0 sets a bit in a device control register to notify the device that 
there is a command waiting for it. 

In response to the notification bit being set, the device begins processing the 
command in the common buffer. 

Interrupt Service routine When the device has finished processing the 
command in the common buffer, it puts a message in the status mailbox and gen
erates an interrupt. In response to this interrupt, the driver's Interrupt Service 
routine does the following: 

1. It copies the contents of the status mailbox into various fields of the Device 
Extension. 

2. If necessary, the ISR sets another bit in the device control register to acknowl
edge that it has read the status message. 

3. It calls loRequestDpc to continue processing the request at a lower IRQL. 

Unload routine When a common-buffer bus master driver is unloaded, it 
first needs to stop the device from trying to use the buffer. Once the device is 
silent, the Unload routine calls HalFreeCommonBufferto release the memory 
associated with the buffer. 

12.8 SUMMARY 

Without a doubt, drivers for DMA devices are more complicated than drivers for 
programmed I/O hardware. In return for this added complexity, the system 
achieves greater throughput by overlapping CPU activity with data transfers. The 
I/O Manager tries to simplify things by providing a generic framework in which 
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to perform DMA. This chapter has presented the details of NT's abstract DMA 
model and shown how to perform various styles of DMA. 

So far, we've been assuming that things have gone well during device opera
tions. But suppose something terrible happens? Something so terrible, in fact, that 
you think the system administrator should hear about it. In the next chapter, 
you'll see how to add error-logging capabilities to a driver. 
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5 ystem administrators are a nervous and para
noid lot. Like small mammals in the Jurassic period, they scurry about - imagin
ing the worst and waiting for it to happen. Adding to their anxiety may seem 
cruel, but if you're writing a commercial-quality driver, you really should tell 
someone when serious hardware and software errors occur. This chapter explains 
how to generate these notifications using NT's event-logging mechanism. 

13.1 EVENT LOGGING IN WINDOWS NT 

Built into Windows NT is a mechanism that allows software components to keep 
a record of interesting events. This event-logging capability can help you monitor 
the behavior of a piece of software that's under development. It can also give sup
port personnel crucial information once the software is out in the field. The 
remainder of this section presents guidelines for deciding what information to log 
and then describes how event logging works. 

Deciding What to Log 

For the most part, error logging is something that's best done by lowest-level 
device drivers. Higher-level drivers usually don't have anything to say that's 
worth putting in the log file, except possibly startup and shutdown notifications. 
There are several kinds of events that a device driver might log: 

299 
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• Hard device errors that result in an IRP failing 

• Soft errors that are corrected after some number of retries 

• Device time outs 

• Driver startup and shutdown 

Along with various pieces of standard information, you're allowed to add 
your own data to the messages in the event log. Useful items to include are 

• The contents of any device control or status registers that might indicate 
the cause of the problem 

• Any fields from the Device or Controller Extension that indicate the state 
of the driver when the error occurred 

• Any additional information about the request that would help with the 
diagnosis. For example, logging the transfer size might lead you to dis
cover that large requests always fail. 

Two points are worth mentioning. First, don't get carried away with the idea 
of adding driver-specific data to event-log messages. The amount of space avail
able for private data in a kernel-mode event-log message is rather limited. So, 
stick to the essentials and only add things to your log packets that will be of true 
diagnostic value. 

Second, hardware that's on its last legs can generate a lot of error messages 
as it fails and can easily overwhelm the log file. It's important to have some strat
egy for dealing with this situation. For example, you might keep track of how 
many messages a device is generating, and if it exceeds some threshold, reduce 
the level of detail reported by your driver. 

How Event Logging Works 

The developers of Windows NT had several goals for the event-logging archi
tecture. The first was to provide application programs, drivers, and the operating 
system with a unified framework for recording information. This framework 
includes a simple yet flexible standard for the binary format of event-log entries. 

Another goal was to give system administrators an easy way to view these 
messages. As part ofthis goal, viewing utilities must be able to display event mes
sages in the currently selected national language. Under the American version of 
NT, the message text should appear in English, while the French version of NT 
should display French text. Figure 13.1 shows how it all works. 

The following describes what happens when a kernel-mode driver decides 
to log an error. The process is similar for a user-mode Win32 application, although 
the specific API calls are different.1 

1 The data-collection DLL in Chapter 18 contains an example of using the Win32 event-logging API. 
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Figure 13.1· NT event~logging components 
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1. All event messages take the form of packets in Windows NT. When a kernel
mode driver wants to log an event, it first calls the 1/ 0 Manager to allocate a 
message packet from nonpagedpool. 

2. The driver fills in this packet with various pieces of descriptive information. 
One of the key items is a 32-bit message code number that identifies the text 
to be displayed for this packet. Once the packet's ready, the driver gives it 
back to the I/O Manager. 

3. The I/O Manager takes the message packet and sends it to the system event
logging thread. This thread accumulates packets and periodically writes them 
to the proper event-log file.2 

4. The Event Viewer utility reads binary packets from the log files. To translate a 
packet's 32-bit message code into text, the Viewer goes to the Registry. There 
it finds the path names of one or more message files associated with the 
packet. These n;tessage files contain the actual message text (possibly in multi
ple languages,~hich the Viewer displays. 

13.2 WORKING WITH MESSAGES 

As you've just seen"your driver doesn'tirtclude the actuaHext for its messages in 
an event-log entrr: Instead, it identifies messages using code numbers. The text 
associated with tlt~se code numbers takes the form of a message resource stored 

2 If the system crashes before a group of log packets have been written out, you can still see .them by 
using WINDBG's !errlog command. See Chapter 17 for more details. 
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somewhere on disk. This section describes how these message codes work and 
explains how to generate your own message resources. 

How Message Codes Work 

The code number identifying a specific message is a 32-bit value consisting 
of several fields. Figure 13.2 shows the layout of a message code. 

Table 13.1 gives a little more detail about the meaning of each of these fields. 
Although you'll probably never need to decode these fields on sight, it's always 
nice to be able to impress your friends. 

The I/O Manager provides a number of standard messages that your driver 
can use. The header file, NTIOLOGC.H, defines symbolic names for these mes
sage codes, all of which begin with lO_ERR_ (for example, lO_ERR_TIMEOUT or 

28-16 15-0 

Severity Facility 

Customer Error Code 

Copyright © 1996 by Cydonix Corporation. 960023a. vsd 

Figure 13.2 Layout of a message-code number 

Table 13.1 The meaning of message-code fields 

Message-code fields 

Field 

Code 
Facility 
Customer 

Severity 

Bits 

0-15 
16-28 
29 

30-31 

Description 

Code number identifying the error 
Software component generating the message 
If set, this is a customer-generated (non-Microsoft) 

message 
One of the following: 
• O-success 
• 1 - information 
• 2-waming 
• 3-error 
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IO_ERR_NOT_READY). Browse through this header file for a complete list of 
standard messages. 

If you want to use these standard messages, you have to add your driver 
to the list of event-logging system components in the Registry. You also have 
to identify the file where the text for these messages is located (%System 
Root% \SYSTEM32\IOLOGMSG.DLL). The procedure for doing this is 
described a little later in this chapter. 

If the standard messages don't meet all your needs, you can supplement 
them with driver-defined messages. To do this, you need to follow these steps: 

1. Write a message definition file that associates your message codes with spe-
cific text strings. 

2. Compile this file using the message compiler (MC) utility. 

3. Incorporate the message resources generated by MC into your driver. 

4. Register your driver as an event-logging system component and identify the 
driver executable as the file containing the text for these private messages. 

Writing Message Definition Files 

To use the MC utility, you first need to write a definition file describing all 
your messages. This definition file is divided into two major sections. 

Header section Keywords in the header define names for values that will 
be used in the actual message definitions. Table 13.2 contains the keywords that 
you can use in the header section of a message definition file. 

Message section This portion of the message definition file contains the 
actual text of the messages. Each message begins with the keywords listed in 
Table 13.3. 

Table 13.2 Keywords used in the header section of a message definition file 

Header section keywords 

Keyword 

MessageIdTypede£ = DataType 
SeverityNames = (name=number[:name] ) 

FacilityNames = ( name=number[:name] ) 

LanguageNames = (name=number:filename) 

Description 

Typecast applied to all message codes 
Up to four severity values used in 

the Message section 
Facility names used in the Message 

section 
Language names used in Message 

section 
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Table 13.3 Keywords used in the message section of a message definition file 

Message section keywords 

Keyword 

Messageld = [number I +numberl 
Severity = SeverityName 
Facility = FacilityName 
SymbolicName = SymbolName 
Language = LanguageName 

*Required. 

Description 

16-bit value assigned to this message* 
Severity level of this message 
Facility generating the message 
Name of message code in generated header file 
Language ID associated with the message 

The message text itself begins after the last keyword. The text of a message 
can occupy several lines. You end a message with a line containing only a single 
period character. 

The message compiler ignores any whitespace or carriage returns in a mes
sage definition. If you want explicit control over the appearance of a message 
when the Event Viewer displays it, you can include various escape sequences 
(listed in Table 13.4) in the body of the message. 

The %1-%99 escape codes represent Unicode strings (embedded in the 
event lo~ packet) that will be inserted in the message when the Event Viewer dis
plays it. If a kernel-mode driver associates an event packet with a Device object, 
%1 will automatically contain the NT name of the device; if the driver associates 
the packet with the Driver object, %1 will be blank. In either case, your first real 
insertion string will be %2, your second one will be %3, and so on. The code 
example appearing later in this chapter will explain how to add insertion strings 
to an event packet. 

Table 13.4 The effects of various escape codes on displayed message text 

Message formatting escape codes 

IF you use ... 

%b 
%t 
%r%n 
%1-%99 

THEN it's replaced with ... 

A single space character 
A single tab character 
Carriage return and linefeed 
An insertion string 

3 Remember that these insertion strings will always be displayed as raw text. There's no way for the 
Event Viewer to translate them into the local language. 



Sec. 13.2 Working with Messages 305 

A Small Example: XXMSG.MC 

Here is the message definition file for the example that goes with this chap
ter. You can find it in the CH13\DRIVER directory on the floppy that accompa
nies this book. 

Header section The first part of the message definition file contains 
header information. 

MessageIdTypedef = NTSTATUSO 

SeverityNames = ( 
Success OxO:STATUS_SEVERITY_SUCCESS 
Informational Oxl:STATUS_SEVERITY_INFORMATIONAL 
Warning Ox2:STATUS_SEVERITY_WARNING 
Error Ox3:STATUS_SEVERITY_ERROR 

FacilityNames (@ 

System OxO 
RpcRuntime Ox2:FACILITY_RPC RUNTIME 
RpcStubs Ox3:FACILITY_RPC_STUBS 
Io Ox4:FACILITY_IO_ERROR_CODE 
XxDriver Ox7:FACILITY_XX_ERROR_CODE 

o The definitions of any symbolic names generated by Me will includea 
typecast to NTSTATUS. . . 

@ You can find codes for Microsoft-defined facilities in the NTSTATUS.H 
header file. For your own facility number, pick something that isn't in 
use. 

Message section Here's the message section of the file. It defines the 
actual text to be associated with message code number. 

MessageId=Ox00010 
Facility=XxDriver 
Severity=Informational 
SymbolicName=XX_MSG_LOGGING_ENABLED@ 
Language=English 
Event logging enabled for XxDriver. ~ 

MessageId=+10 
Facility=XxDriver 
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Severity=lnformational 
Symbol i cName=XX_MSG_DRlVER_STARTlNG 
Language=English 
XxDriver has successfully initialized. 

Messageld=+l 
Facility=XxDriver 
Severity=lnformational 
SymbolicName=XX_MSG_DRlVER_STOPPlNG 
Language=English 
XxDriver has unloaded. 

Messageld=+l 
Facility=XxDriver 
Severity=lnformational 
SymbolicName=XX_MSG_OPENlNG_HANDLE 
Language=English 
Opening handle to %1. 

Messageld=+l 
Facility=XxDriver 
Severity=lnformational 
Symbol icName=XX_MSG_CLOS lNG_HANDLE 
Language=English 
Closing handle to %1. 

Messageld=+l 
Facility=XxDriver 
Severity=Warning 
SymbolicName=XX_MSG_MULTlPLE_OCCUPANCY 
Language=English 
%1 contains multiple life-forms. Data 
specifies number of occupants. 

Messageld=+l 
Facility=XxDriver 
Severity=lnformational 
SymbolicName=XX_MSG_MERGlNG_DNA 
Language=English 
Merging DNA from %2 and %3 in %1. 0 
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o The MessageId keyword is required at the start of a message. This form 
of the keyword assigns an absolute number to the 16-bit Code field of the 
generated message code. 

@ This keyword tells the message compiler to define a symbol called 
XX_MSG_LOGGING_ENABLED in the header file it generates. 

@) The actual message text begins after the last keyword. A line containing 
only a single period character ends the text. 

o This form of the MessageId keyword assigns a Code value to the mes
sage that's one greater than the previous message. 

" This message contains placeholders for insertion strings. %1 will become 
the device name; %2 and %3 will be replaced with whatever insertion 
strings are embedded in the event-log packet. 

Compiling a Message Definition File 

Once you've written the message definition file, you use the message com
piler (MC) to process it. MC is another quirky little command-line utility that 
comes with the Win32 SDK and Visual C++.4 Table 13.5 shows the syntax of the 
MCcommand. 

Table 13.5 Syntax of the Me command 

MC [-?cdosvw] [-herx argument] [-uU] filename.MC 

Parameter 

-c 
-d 
-0 

-s 
-v 

-w 
-hpathname 
-e extension 
-r pathname 
-x pathname 
-u 
-U 
filename 

Description 

Set Customer bit in all message codes. 
Use decimal definitions of facility and severity codes in header. 
Generate OLE2 header file. 
Insert symbolic name as first line of each message. 
Generate verbose output. 
Give warning if message-text is not OS/2 compatible. 
Location of generated header file. (Default is current directory.) 
One- to three-character extension for header file. 
Location of generated RC and binary message files. 
Location of generated debug file. 
Input file is Unicode. 
Message text in binary-output binary file should be Unicode. 
Name of the message definition file to compile. 

4 Documentation for Me is rather sparse. One of the best sources is the MC.HLP help file that comes 
with the compiler. 
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When you run the message compiler, it automatically generates the follow
ing files: 

• filename.RC - This is a resource control script that identifies all the lan
guages used in the message definition file. For each language, it also iden
tifies the binary message file containing the message text. 

• filename.H - This header file contains #define statements for all the 
message code numbers in the MC input file. The compiler also puts a lot 
of inline commentary in the header, including the text of the correspond
ing message. 

• MSGnnnnn.BIN - This binary file holds all the text for messages in one 
language. MC will generate separate files (beginning with MSGOOOOl.BIN) 
for each national language used in the message definition file. 

Although you can specify the paths where the header and RC files will go, 
the actual names of these files will always be the same as the name of the message 
definition file. You have no control over the names of the binary message file. 

Adding Message Resources to a Driver 

After you run the message compiler, you still need to do something with the 
binary message resources it generates. You could put them in a separate DLL, the 
way the I/O Manager does with IOLOGMSG.DLL, but for most drivers it makes 
more sense to add the message resources to the driver executable itself. That way, 
you won't have to worry about keeping track of multiple files when you send 
your driver out into the world. 

The BUILD utility (described in Chapter 16) understands how to process 
resource control scripts. So, all you have to do is to add the name of the script to 
the list of source files making up the driver. BUILD will then run the resource 
compiler and link the resulting resources into your driver. For example, if you've 
just compiled a message definition file called XXMSG.MC, you'll have a resource 
script called XXMSG.RC. The following excerpt from a BUILD SOURCES file 
shows how you would add this resource script to your driver. 

SOURCES= init.c unload.c \ 
dispatch.c \ 
eventlog.c \ 
xxmsg.rc 

There's one glitch in all this. BUILD doesn't know what to do with message 
definition files, so you can't just add XXMSG.MC itself to the list of driver 
sources. This means you need to run the message compiler by hand any time you 
modify your message definition file. Fortunately, there's a way to extend the capa-
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bilities of BUILD so that it will automatically maintain message resources for you. 
Chapter 17 explains how to perform this little bit of magic. 

Registering a Driver as an Event Source 

So now you have a header file containing message codes, and a bunch of 
message resources stuffed into your driver. But there's still a question: Just how 
does the system know that it should look in your driver executable when it wants 
to translate a particular message code into text? Once again, we're saved by the 
Registry. 

Any software component that plans to generate log entries must identify 
itself to the system as an event source. Further, every event source has to specify 
the location of the message files needed to translate any message codes appearing 
in its log entries. Figure 13.3 shows the Registry entries that identify a driver as an 
event source.s 

To register your driver as an event source, make the following changes to 
the Registry: 

1. Under ... Services\EventLog\System, add the name of your driver's execut
able (without the extension) to the REG_MULTCSZ value called Sources. 

2. Under ... Services \ EventLog \ System, add a key with the same name as your 
driver. 

HKEV LOCAL MACHINE\System\CurrentControISet\Services 

[ EventLog 

LSF=tem 
Sources: REG_MUL TI_SZ: XXDRIVER YYDRIVER ... 

XXDRIVER 

EventMessageFile: 
REG_EXPAND_SZ: 

'YoSystemRoot'Yo\System32\IOLOGMSG.DLL; 
'YoSystemRoot'Yo\System32\Drivers\xXDRIVER.SYS 

TypesSupported: REG_DWORD: Ox7 

Copyright © 1994 by Cydonix Corporation. 940024a. vsd 

Figure 13.3 Registering a kernel-mode driver as an event source 

5 These entries apply only to kernel-mode event sources. Chapter 18 shows how to register a user
mode component as an event source. 
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3. In this key, create a value called EventMessageFile. This is a 
REG_EXPAND_SZ containing the full path names of any message files used 
by your driver. If your driver uses multiple files, separate them with a semico
lon. If you're using standard messages defined in NTIOLOGC.H, you'll also 
need to add IOLOGMSG.DLL to this list. 

4. In this same key, create a value called TypesSupported. This is a 
REG_DWORD bit mask identifying the types of messages generated by your 
driver. A value of Ox7 gets everything. 

13.3 GENERATING LOG ENTRIES 

The final piece of the puzzle is to add code to your driver that actually generates 
event-log entries. This is a relatively straightforward process that involves allocat
ing an empty packet, filling it in, and sending it off to the system logging thread. 
The rest of this section describes the major steps along the way. 

Preparing a Driver for Error Logging 

If you plan to support error logging, there a few small changes you'll want 
to make to your driver. In particular, it's a good idea to add the following items to 
your Device Extension: 

• A sequence number field that your driver increments for each IRP pro
cessed by the device. This value should remain constant for the life of the 
request. 

• A retry count for the current request, if you retry device operations when 
an error occurs. Set it to zero each time you start processing an IRP and 
increment it for each repeated attempt. 

• Copies of any device registers that would help diagnose the error. If your 
ISR decides to log an error, it should take a snapshot of the hardware reg
isters for the logging routine. 

You should also adopt some convention that assigns a unique identifying 
number to each stage of processing an IRP. This number becomes part of the error
log information, and it will help you figure out where in your driver the error 
occurred. This fragment of a driver's header file shows how you might do this: 

#define XX_ERRORLOG_STARTIO 1 
#define XX ERRORLOG CONTROLLER_CONTROL 2 
#define XX_ERRORLOG_ADAPTER_CONTROL 3 
#define XX_ERRORLOG_ISR 4 
#define XX_ERRORLOG_DPC_FOR_ISR 5 
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Finally, you might want to define a value in the Parameters sub key of your 
driver's Registry service key to control driver error logging. This could either be a 
Boolean that simply enables and disables logging, or it could be an actual value 
that determines the level of logging detail. The code example appearing later in 
this chapter uses a value called EventLogLevel to control the quantity event mes
sages it generates. 

Allocating an Error-Log Packet 

When your driver uncovers some terrible sin that needs reporting, it has to 
prepare an error-log packet. There are three sections to an error-log packet: 

• A standard header 

• An array of driver-defined ULONGs (referred to as dump data) 

• One or more NULL-terminated Unicode insertion strings6 

Both the dump-data and insertion strings are variable in length and are 
optional. Figure 13.4 shows the structure of an error-log packet. 

Before you can allocate an error-log packet, you need to determine how big 
the packet should be. Remember to leave room for any dump-data and insertion 

10 ERROR LOG PACKET - - -

ErrorCode 

DumpDataSize 

StringOffset 
NumberotStrings 

StringOffset 

: 

DumpData[] 

: 

"First Unicode insertion string \0" 

"Second Unicode insertion string \0" 

Copyright © 1996 by Cydonix Corporation. 960024a.vsd 

Figure 13.4 Layout of an error-log packet 

6 Don't confuse these with the counted UNICODE_STRING data structures used in other parts of 
NT. 
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strings. You can calculate the size of the packet using a variation on the following 
piece of code: 

PacketSize = 
sizeof( IO_ERROR_LOG_PACKET ) + 

(sizeof( ULONG ) * ( DurnpDataCount - 1 )) + 
sizeof( InsertionStrings ); 

Here, DumpDataCount is the number of driver-specific ULONG data items, 
and InsertionStrings are any driver-supplied UNICODE strings to be inserted in 
the error message. The requested size of the packet cannot exceed 
ERROR_LOG_MAXIMVM_SIZE. 

Use the IoAllocateErrorLogEntry function (described in Table 13.6) to allo
cate the packet. As you can see from the table, you're allowed to associate the 
packet either with the Driver object or with a particular Device object. Your choice 
will determine how the Event Viewer utility displays your message. Overall ini
tialization and shutdown are good choices for Driver-level messages, while prob
lems involving specific IRPs or pieces of hardware ought to be associated with a 
Device object. 

Low memory conditions could make it impossible for the system to get a 
packet for you, so don't assume that your allocation request will always suc
ceed. One easy way to handle these situations is just to forget about logging the 
error, with the hope that it will happen again when the system isn't so pressed 
for memory. 

Finally, notice that you have to be at or below DISPATCH_LEVEL IRQL 
when you allocate error-log packets. This means that if your ISR decides to log an 
error (a common occurrence), you'll need a CustomDpc routine to do the actual 
work. 

Logging the Error 

Once you've allocated the packet, you need to fill in all the relevant fields. In 
addition to the fields listed in Table 13.7, you should also copy any driver-specific 
data and strings into the packet. 

Table 13.6 Use this function to allocates an error-log packet 

PVOID loAliocateErrorLogEntry IRQL ::;; DISPATCH_LEVEL 

Parameter 

IN PVOID IoObject 

IN UCHAR EntrySize 
Return value 

Description 

• Address of a Device object generating an error 
• Address of a Driver object reporting an error 
Size in bytes of packet to be allocated 
• PIO_ERROR_LOG_PACKET - success 
• NULL - allocation failure 
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Field Description 

UCHAR MajorFunctionCode 
UCHAR RetryCount 

IRP _MLXXX code of current IRP 
Zero-based count of consecutive retries 
Bytes of driver-specific data USHORT DumpDataSize 

USHORT NumberOfStrings 
USHORT StringOffset 
USHORT EventCategory 
NTSTATUS ErrorCode 
ULONG UniqueErrorValue 
NTSTATUS FinalStatus 
ULONG SequenceNumber 
ULONG IoControlCode 
LARGE_INTEGER DeviceOffset 
ULONG DumpData[l] 

Number of insertion strings 
Byte offset of first insertion string 
Event category from driver's message file 
IO_ERR_XXX (see NTIOLOGC.H) 
Indicates where in the driver the error occurred 
STATUS_XXX value from the IRP 
Driver-assigned number for current IRP 
IOCTL_XXX if this is a DeviceIoControl request 
Device offset where error occurred, or zero 
Driver-specific data if DumpDataSize is nonzero 

When the packet is ready, call 10 WriteErrorLogEntry to send it to the system 
logging thread. The packet doesn't belong to you once you call this function, so 
don't touch it again. As with packet allocation, you can only write an error-log 
packet if you're at or below DISPATCH_LEVEL IRQL. 

13.4 CODE EXAMPLE: AN ERROR-LOGGING ROUTINE 

This example illustrates how to log event messages from a kernel-mode driver. 
The complete example includes a driver that uses these event-logging functions, 
as well as a test program that exercises the driver. You can find all of this in the 
CH13 directory on the disk that accompanies this book. 

EVENTLOG.C 

This module provides a general event-logging mechanism that any driver 
can use. In addition to the functions listed below, EVENTLOG.C also defines a 
global variable called LogLevel that determines logging verbosity. Although glo
bals are generally a bad idea in drivers, this one's okay because its value doesn't 
change once driver initialization is done. 

XxlnitializeEventLog This function is called from DriverEntry to set up 
the driver's event-logging mechanism. Its main purpose is to retrieve a value 
called EventLogLevel from the driver's Registry service key and store it in the 
LogLevel variable. 
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VOID 
XxInitializeEventLog( 

IN PDRIVER_OBJECT DriverObject 
) 

RTL_QUERY_REGISTRY_TABLE QueryTable[2]; 0 

II 
II Fabricate a Registry query. 
II 
RtlZeroMemory( QueryTable, sizeof( QueryTable )); @ 

QueryTable[O] .Name = L"EventLogLevel"; 
QueryTable[O] .Flags = RTL_QUERY_REGISTRY_DIRECT; 
QueryTable[O] . EntryContext = &LogLevel; 

II 
II Look for the EventLogLevel value 
II in the Registry. 
II 
if( !NT_SUCCESS( 

RtlQueryRegistryValues(~ 

RTL_REGISTRY_SERVICES, 
XX_DRIVER_NAME 

L"\\Parameters", 

LogLevel 

II 

QueryTable, 
NULL, NULL))) 

II Log a message saying that logging 
II is enabled. 
II 
XxReportEvent(O 

LOG_LEVEL_DEBUG, 
XX_MSG_LOGGING_ENABLED, 
XX_ERRORLOG_INIT, 
(PVOID) DriverObject, 

NULL, 
NULL, 0, 
NULL, 0 ); 

I I No IRP 
I I No dump data 
II No strings 

o This function uses our old friend RtlQueryRegistryValues to set the 
event-logging verbosity level. We need a query table with one entry for 
the value and another (NULL) entry for a terminator. 
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@ It's a good idea to clear the table before using it. Otherwise, you can get 
some strange error messages resulting from random bit settings. 

@) Query the Registry. RTL_REGISTRY_SERVICES says that the path name 
(xxdriver\Parameters) should be treated as a subkey of the .•• \ Services 
key. 

o If verbose logging is enabled, log a message indicating that logging is 
enabled. 

XxReportEvent This function does the actual grunt work of allocating an 
error-log packet, filling it in, and sending it off to the system logging thread. You 
can only call this function from DISPATCH_LEVEL IRQL. 

BOOLEAN 
XxReportEvent( 

IN ULONG MessageLevel, 
IN NTSTATUS ErrorCode, 
IN ULONG UniqueErrorValue, 
IN PVOID IoObject, 
IN PIRP Irp, 
IN ULONG DumpData[], 
IN ULONG DumpDataCount, 
IN PWSTR Strings[], 
IN ULONG StringCount 
) 

PIO_ERROR_LOG_PACKET Packet; 
PDEVICE_EXTENSION pDE; 
PIO_STACK_LOCATION IrpStack; 
PUCHAR pInsertionString; 
UCHAR PacketSize; 
UCHAR StringSize[ XX_MAX_INSERTION_STRINGS ]; 
ULONG i; 

if( LogLevel 11 0 
( MessageLevel > LogLevel )) 

return TRUE; 

PacketSize = sizeof( IO_ERROR_LOG_PACKET ); @ 

if( DumpDataCount > 0 ) ~ 
PacketSize += 

(UCHAR) ( sizeof( ULONG ) * 
( DumpDataCount - 1 )); 

if( StringCount > 0 ) 0 
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if( StringCount > XX_MAX_INSERTION_STRINGS ) 
StringCount = XX_MAX_INSERTION_STRINGS; 

for( i=O; i<StringCount; i++ ) 0 
{ 

StringSize[i] = 
(UCHAR)XxGetStringSize( Strings[i] ); 

PacketSize += StringSize[i]; 

II Try to allocate the packet 
II 
Packet IoAllocateErrorLogEntry( 

IoObject, 
PacketSize ); 

if( Packet == NULL) return FALSE; 

II 
II Fill in standard parts of the packet 
II 
Packet->ErrorCode = ErrorCode; 
Packet->UniqueErrorValue = UniqueErrorValue; 

if( Irp != NULL ) ~ 
{ 

IrpStack 
= IoGetCurrentlrpStackLocation( Irp ); 

pDE (PDEVICE_EXTENSION) 
((PDEVICE_OBJECT)IoObject)-> 

DeviceExtension; 

Packet->MajorFunctionCode = 
IrpStack->MajorFunction; 

Packet->RetryCount = pDE->IrpRetryCount; 

Packet->FinalStatus = Irp->IoStatus.Status; 

Packet->SequenceNumber = 
pDE->IrpSequenceNumber; 

if( IrpStack->MajorFunction == 
IRP_MJ_DEVICE_CONTROL I I 

IrpStack->MajorFunction == 
IRP_MJ_INTERNAL_DEVICE_CONTROL 
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Packet->IoControlCode = 
IrpStack->Parameters. 

DeviceloControl. 
IoControlCodej 

else Packet->IoControlCode OJ 

else II No IRP 

II 

Packet->MajorFunctionCode OJ 
Packet->RetryCount = OJ 
Packet->FinalStatus = OJ 
Packet->SequenceNumber = OJ 
Packet->IoControlCode = OJ 

II Add the dump data 
II 
if( DumpDataCount > 0 
{ 

Packet->DumpDataSize 
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(USHORT) ( sizeof{ ULONG ) * 
DumpDataCount } j 

fort i=Oj i<DumpDataCountj i++ } 
Packet->DumpData[il = DumpData[ilj 

else Packet->DumpDataSize = OJ 

II 
II Add the insertion strings 
II 
Packet->NumberOfStrings = (USHORT}StringCountj 

if( StringCount > 0 ) 
{ 

Packet->StringOffset 
sizeof( IO_ERROR_LOG_PACKET } + 
( DumpDataCount - 1 ) * sizeof{ ULONG } j 

plnsertionString = 
{PUCHAR}Packet + Packet->StringOffsetj 8 

fort i=Oj i<StringCountj i++ } ~ 
{ 

II 
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II Add each new string to the end 
II of the existing stuff 
II 
RtlCopyBytes( 

plnsertionString, 
Strings [i] , 
StringSize[i] )i 

plnsertionString += StringSize[i]i 

II Log the message 
II 
IoWriteErrorLogEntry( Packet )i 

return TRUEi 

o If we're not logging or the message is out of range, return without doing 
anything. 

@ Begin calculating the packet size. Start with the minimum required num
ber of bytes. 

@) Add in any dump data. Remember that the standard error-log packet 
already has one slot in its DumpData array. 

o Determine the total space needed for any insertion strings. If the caller 
has sent too many strings, process only as many as this function can 
handle. 

fit Build a table containing the length of each individual string using XxGet
StringSize, a local helper function. This table will be used again later to 
copy the insertion strings into the error-log packet. Also add the size of 
each string to the total packet requirement. 

<D If there's an IRp, then the 100bject argument must point to a Device 
object. In that case, use the IRP and the Device Extension to fill in addi
tional parts of the error-log packet. If there's no IRP, then set the addi
tional fields to O . 

., Insertion strings always go just after the DumpData array in the error-log 
packet. After setting the offset of the first string, calculate the address 
where the first string should go in the packet. 

f3 This loop simply adds each new string to the end of the packet using Rtl
CopyBytes. It takes advantage of the table of string sizes generated ear
lier in the routine. 
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XxGetStringSize This little helper function calculates the amount of space 
needed by a NULL-terminated Unicode string. The size includes space for the (2 
bytes) UNICODE_NULL at the end of the string. 

ULONG 
XxGetStringSize( 

IN PWSTR String 
) 

UNICODE_STRING TempString; 

II 
II Use an RTL routine to get the length 
II 
RtlInitUnicodeString( &TempString, String ); 

II 
II Size is actually two greater because 
II of the UNICODE_NULL at the end. 
II 
return ( TempString.Length + sizeof( WCHAR)); 

13.5 SUMMARY 

This chapter has presented NT's event-logging mechanisms. As you can see, it 
isn't terribly difficult for drivers to leave a little trail when devices start generating 
errors. These audit trails can be a useful diagnostic aid to system administrators. 

This chapter also finishes our look at basic kernel-mode device driver tech
niques. In the next chapter, you'll see the first of several variations on the driver 
architecture we've developed so far. 
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System Threads 

5 orne types of legacy hardware can have a bad 
effect on system performance if you manage them using the driver model we've 
developed so far. System threads give you a way to keep these devices out of 
everyone's way. 

14.1 SYSTEM THREADS 

320 

A system thread is a thread that runs exclusively in kernel mode. It has no user
mode context and can't access user address space. Just like a Win32 thread, a sys
tem thread executes at or below APC_LEVEL IRQL and it competes for use of the 
CPU based on its scheduling priority. 

When to Use Threads 

There are several reasons why you might use threads in a driver. The first 
possibility is that you're working with a piece of hardware that has the following 
characteristics: 

• The device is slow and infrequently accessed. 

• It takes a long time (more than 50 microseconds) for the device to make a 
state transition, and the driver has to wait for the transition to occur. 
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• The device needs to make several state transitions in order to complete a 
single operation. 

• The device doesn't generate interrupts for some kinds of interesting state 
transitions, and the driver has to poll the device for extended periods. 

You could, of course, manage a device like this using a CustomTimerDpc 
routine. Depending on the amount of device activity, this approach could clog up 
the DPC queues and slow down other drivers. Threads, on the other hand, run at 
PASSIVE_LEVEL and won't interfere with DPC routines. 

Fortunately, there aren't too many categories of hardware that behave this 
rudely, and most of them are legacy devices that date from the early days of the 
personal computer. The most notable examples are floppy disks and QIC tapes 
attached to floppy controllers. 

The second possibility is that you've got a device which takes a very long 
time to initialize itself, and which your driver has to monitor throughout the ini
tialization. Certain kinds of optical jukeboxes behave this way. So might a com
puter-controlled pottery kiln. 

This kind of behavior is a problem because the Service Control Manager 
gives a driver only about 30 seconds to execute its DriverEntry routine. If Driver
Entry hasn't returned by then, the Service Control Manager forcibly unloads the 
driver. The only solution is to put the long-running device start-up code in a sepa
rate thread, and return immediately from the DriverEntry routine with 
STATUS_SUCCESS. 1 

Finally, you might need to perform some kind of operation that will only 
work at PASSIVE_LEVEL IRQL. For example, if your driver had to access the Regis
try on a regular basis, or write something to a file, a thread might be the answer. 

Creating and Terminating System Threads 

Call PsCreateSystemThread, described in Table 14.1, when you want to cre
ate a system thread. Since you can only call this function at PASSIVE_LEVEL 
IRQL, you will usually create driver threads in your DriverEntry routine. 

When your driver unloads, it must kill any system threads it may have cre
ated. The only way to do this is to have the thread itself call PsTerminateSys
temThread with an appropriate exit status. Unlike Win32 user-mode threads, 
there is no way to forcibly terminate a system thread. This means you need to set 
up some kind of signaling mechanism to let a thread know that it should exit. As 
you'll see later in this chapter, Event objects provide a convenient way to do this. 

1 Of course, you'll have to figure out what to do if the device fails to initialize successfully. Once 
DriverEntry has returned, there's no way for a driver to unload itself, so any cleanup will have to 
be done by the thread itself. This includes things like deleting Device objects, freeing resources, etc. 
H the driver finds it has no initialized devices, it might also make itself entirely paged in order to 
reduce its impact on the system. 
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Table 14.1 Prototype for function that creates a system thread 

NTSTATUS PsCreateSystemThread IRQL == PASSIVE_LEVEL 

Parameter 

OUT PHANDLE ThreadHandle 
IN ULONG DesiredAccess 
IN POBJECT_ATTRIBUTES Attrib 
IN HANDLE ProcessHandle 
OUT PCLIENT_ID ClientId 
IN PKSTART_ROUTINE StartAddr 
IN PVOID Context 
Return value 

Managing Thread Priority 

Description 

Handle of new thread 
o for a driver-created thread 
NULL for a driver-created thread 
NULL for a driver-created thread 
NULL for a driver-created thread 
Entry point for thread 
Argument passed to thread routine 
• STATUS_SUCCESS - thread was created 
• STATUS_XXX - an error code 

In general, system threads running in a driver should set their thread prior
ity to the low end of the real-time range. The following code fragment shows how 
to do this. 

VOID ThreadStartRoutine( PVOID Context) 
{ 

KeSetPriorityThread( 
KeGetCurrentThread(), 
LOW_REALTIME_PRIORITY); 

Remember that real-time threads have no quantum timeout. This means that 
they only give up the CPU when they voluntarily go into a wait state, or when 
they're preempted by a thread of higher priority. So don't design any drivers that 
depend on automatic round-robin thread scheduling. 

System Worker Threads 

For occasional, quick operations at PASSIVE_LEVEL IRQL, creating and ter
minating a separate thread may not be very efficient. The alternative is to have 
one of NT's system worker threads perform the task. These threads use a callback 
mechanism to do work on behalf of any driver. 

It's not difficult to use system worker threads. First, allocate storage for a 
WORK_QUEUE_ITEM structure. The system will use this block to keep track of 
your work request. Next, call ExInitializeWorkItem to associate a callback func
tion in your driver with the WORK_QUEUE_ITEM. 
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Later, when you want a system thread to execute your callback function, call 
ExQueueWorkItem to insert the request block into one of the system work 
queues. You can choose to have your request executed either by a worker thread 
with a real-time priority, or by one with a variable priority. 

Keep in mind that all drivers are sharing the same group of system worker 
threads. Requests that take a very long time to complete may delay the execution 
of requests from other drivers. If you need to perform tasks involving lengthy 
operations or long time delays, use a private driver thread rather than the system 
work queues. 

14.2 THREAD SYNCHRONIZATION 

Like user-mode threads in a Win32 application, system threads may need to sus
pend their execution until some other condition has been satisfied. This section 
describes the basic synchronization techniques available to system threads. 

Time Synchronization 

The simplest kind of synchronization involves stopping a thread's execution 
until a specific time interval elapses. Although you can use the Timer objects 
described later in this chapter, the Kernel provides a convenience function 
(described in Table 14.2) that's easier to use. 

Table 14.2 Prototype for the KeDelayExecutionThread function 

NTSTATUS KeDelayExecutionThread 

Parameter 

IN KPROCESSOR_MODE WaitMode 
IN BOOLEAN Alertable 
IN PLARGE_INTEGER Interval 
Return value 

General Synchronization 

IRQL == PASSIVE_LEVEL 

Description 

KernelMode for drivers 
FALSE for drivers 
Absolute or relative duetime 
STATUS_SUCCESS - wait completed 

System threads can synchronize their activities in more general ways by 
waiting for things called dispatcher objects. Thread synchronization depends on the 
fact that a dispatcher object is always in either the Signaled or Nonsignaled state. 
When a thread asks to wait for a Nonsignaled dispatcher object, the thread's exe
cution stops until the object becomes Signaled. (Waiting for a dispatcher object 
that's already Signaled is a no-op.) There are two different functions you can use 
to wait for a dispatcher object. 
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KeWaitForSingleObject This function, described in Table 14.3, puts the 
calling thread into a wait state until a specific dispatcher object is set to the Sig
naled state. 

Optionally, you can also specify a timeout value that will cause the thread to 
awaken even if the dispatcher object is Nonsignaled. If you don't pass a timeout 
argument, KeWaitForSingleObject will wait indefinitely. 

Table 14.3 Prototype for the single object wait function 

NTSTATUS KeWaitForSingleObject 

Parameter 

IN PVOID Object 
IN KWAIT_REASON Reason 
IN KPROCESSOR_MODE WaitMode 
IN BOOLEAN Alertable 
IN PLARGE_INTEGER Timeout 

Return value 

Description 

Pointer to an initialized dispatcher object 
Executive for drivers 
KernelMode for drivers 
FALSE for drivers 
• Absolute or relative timeout value 
• NULL for an infinite wait 
• STATUS_SUCCESS 
• STATUS_ALERTED 
• STATUS_TIMEOUT 

KeWaitForMultipleObjects This function, described in Table 14.4, puts 
the calling thread into a wait state until any or all of a group of dispatcher objects 

Table 14.4 Prototype for the multiple-object wait function 

NTSTATUS KeWaitForMultipleObjects 

Parameter 

IN ULONG Count 
IN PVOID Object[ 1 
IN WAIT_TYPE WaitType 

IN KWAIT_REASON Reason 
IN KPROCESSOR_MODE WaitMode 
IN BOOLEAN Alertable 
IN PLARGE_INTEGER Timeout 

IN PKWAILBLOCK WaitBlocks[ ] 
Return value 

Description 

Number of objects to wait for 
Array of pointers to dispatcher objects 
• WaitAll- wait until all are Signaled 
• WaitAny - wait until one is Signaled 
Executive for drivers 
KernelMode for drivers 
FALSE for drivers 
• Absolute or relative timeout value 
• NULL for an infinite wait 
Array of wait blocks for this operation 
• STATUS_SUCCESS 
• STATUS_ALERTED 
• STATUS_TIMEOUT 
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are set to the Signaled state. Again, you have the option of specifying a timeout 
value for the wait. 

Be aware that there are limits on how many objects your thread can wait 
for at one time. Each thread has a built-in array of Wait blocks that it uses 
for concurrent wait operations. The thread can use this array to wait for 
THREAD_WAlT_OBJECTS number of objects. If you need to wait for more than 
this number of objects, you must supply your own array of Wait blocks when you 
call KeWaitForMultipleObjects. In either case, the number of objects you wait for 
cannot exceed MAXIMUM_WAlT_OBJECTS. 

You can call the KeWaitForXxx functions either from PASSIVE_LEVEL or 
DISPATCH_LEVEL IRQL. If you call them from DISPATCH_LEVEL IRQL, how
ever, you must specify a zero timeout value.2 This can be useful when your real 
goal is to cause some side effect produced by the KeWaitForXxx functions. 

14.3 USING DISPATCHER OBJECTS 

Except for Thread objects, it's up to you to allocate storage for any dispatcher 
objects you plan to use. The objects must be permanently resident, so you have to 
put them in the Device or Controller Extension, or in some other piece of non
paged memory. 

You also have to initialize the dispatcher object once with the proper Kelni
tializeXxx function before you use it. Since you can only call these functions at 
PASSIVE_LEVEL IRQL, you should usually initialize all dispatcher objects in 
your DriverEntry routine. 

The following subsections describe each category of dispatcher object in 
greater detail. 

Event Objects 

An Event is a dispatcher object that must be explicitly set to the Signaled or 
Nonsignaled state. They are useful for notifying one or more threads of some spe
cific occurrence. You can see this behavior in Figure 14.1, where thread A awakens 
B, C, and D by setting an Event object. 

These objects actually come in two different flavors: Notification Events and 
Synchronization Events. You choose the type when you initialize the object. These 
two types of Events exhibit different behavior when they're put into the Signaled 
state. As long as a Notification Event remains Signaled, all threads waiting for the 
Event come out of their wait-state. You have to explicitly reset a Notification 
Event to put it into the Nonsignaled state. This is the same behavior exhibited by 
Win32 manual-reset Events. 

When you put a Synchronization Event into the Signaled state, it remains 
there only long enough for one call to KeWaitForXxx to be satisfied. It then resets 

2 Keep in mind that specifying a timeout value of 0 is not the same as passing a NULL pointer for the 
Timeout argument. 
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Thread B 

Thread A 

~ -Set 
Event -----. Thread C 

Thread D 
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Figure 14.1 How Event objects synchronize system threads 

itself to the Nonsignaled state automatically. In other words, the gate stays open 
until one thread passes through, and then it slams shut. This is equivalent to a 
Win32 auto-reset Event. 

To use an Event, you need to declare some nonpaged storage for an item of 
type KEVENT, and then call the functions listed in Table 14.5. 

Notice that you can use either of two functions to put an Event object into 
the Nonsignaled state. The difference is that KeResetEvent returns the state of the 
Event before it became Nonsignaled, and KeClearEvent does not. KeClearEvent 
is somewhat faster, so you should use it unless you specifically need to know the 
previous state of the Event. 

Table 14.5 Use these functions to work with Event objects 

How to use Event objects 

IFyou want to ... 

Create an Event 
Create a named Event 

Modify Event state 

Wait for a Timer 

Interrogate an Event 

THEN call ... 

KeInitializeEvent 
IoCreateSynchronizationEvent 
IoCreateNotificationEvent 
KeSetEvent 
KeClearEvent 
KeResetEvent 
Ke WaitForSingleObject 
KeWaitForMultipleObjects 
KeReadStateEvent 

IRQL 

PASSIVE_LEVEL 
PASSIVE_LEVEL 

PASSIVE_LEVEL 

::; DISPATCH_LEVEL 
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The driver that we'll be examining later in this chapter provides a good 
example of using Events. It has a worker thread that needs to pause until an inter
rupt arrives, so the thread waits for an Event object. The driver's DpcForIsr rou
tine sets the Event into the Signaled state, waking up the worker thread. 

Sharing Events between Drivers 

Normally, it's rather awkward for two unrelated drivers to share an Event 
object created with KelnitializeEvent. These Event objects are referenced only by 
pointer, and without some kind of explicit agreement (an internal IOCTL for 
example), there's no simple way to pass a pointer from one driver to another. 
Even then, there's the issue of making sure that the driver creating the Event 
object doesn't unload while some other driver is using the object. Overall, it's a 
very messy problem. The IoCreateNotificationEvent and IoCreate
SynchronizationEvent functions make things easier by allowing you to create 
named Event objects. As long as two drivers use the same Event name, they will 
be able to get pointers to the same Event object. 

Both IoCreateXxxEvent functions behave very much like the Win32 Cre
ate Event system service. In other words, the first driver to make a call with a spe
cific Event name causes the Event object to be created. Each additional call using 
the same name simply returns a handle to the existing Event object. 

There are two things to notice when you use the IoCreateXxxEvent func
tions. First, you don't supply any memory to hold the KEVENT object itself. Stor
age for these objects is provided by the system. When everyone using the Event . 
releases it, the system deletes the object automatically. 

The second little twist is that IoCreateXxxEvent calls return a handle to the 
Event object. If you want to use the Event object in calls to the KeXxx functions " 
listed in Table 14.5, you need a pointer to the object rather than a handle. To con
vert a handle into an object pointer, do the following: 

1. First, call ObReferenceObjectByHandle. This function gives you a pointer to 
the Event object itself and increments the object's pointer reference count. 

2. If you don't need the handle for anything (and you probably don't), call 
ZwClose to release it. This reduces the object's handle reference count. (Don't 
do this until after you increment the pointer count; otherwise the object may 
be deleted.) 

3. When you have finished using the Event object (normally in the driver's 
Unload routine), call ObDereferenceObject to decrement the Event object's 
pointer reference count and possibly delete the Event object. 

You can call these functions only from PASSIVE_LEVEL IRQL which limits 
the places in your driver where you can use them. 
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Figure 14.2 How Mutex objects synchronize system threads 

Mutex Objects 

A Mutex (short for mutual exclusion) is a dispatcher object that can be 
owned by only one thread at a time. The object becomes Nonsignaled when a 
thread owns it and Signaled when it's available. Mutexes provide an easy mecha
nism for coordinating mutually exclusive access to some shared resource, usually 
memory. 

Figure 14.2 shows threads B, C, and D waiting for a Mutex owned by thread 
A. When A releases the Mutex, one of the waiting threads will wake up and 
become its new owner. 

To use a Mutex, you need to declare some nonpaged storage for an item of 
type KMUTEX, and then call the functions listed in Table 14.6. Be aware that 
when you initialize a Mutex, it is always set to the Signaled state. 

Table 14.6 Use these functions to work with Mutex objects 

How to use Mutex objects 

IF you want to ... 

Create a Mutex 
Request Mutex ownership 

Give up Mutex ownership 
Interrogate Mutex 

THEN call ... 

KeInitializeMutex 
KeWaitForSingleObject 
KeWaitForMultipleObjects 
KeReleaseMutex 
KeReadStateMutex 

IRQL 

PASSIVE_LEVEL 
PASSIVE_LEVEL 

PASSIVE_LEVEL 
$; DISPATCH_LEVEL 
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If a thread calls KeWaitForXxx on a Mutex it already owns, the thread never 
waits. Instead, the Mutex increments an internal counter to record the fact that 
this thread is making recursive ownership requests. When the thread wants to 
free the Mutex, it has to call KeReleaseMutex as many times as it requested own
ership. Only then will the Mutex go into the Signaled state. This is the same 
behavior exhibited by Win32 Mutex objects. 

It's also crucial that your driver release any Mutexes it might be holding 
before it makes a transition back into user mode. The NT Kernel will bugcheck if 
any of your driver threads attempt to return control to the I/O Manager while 
owning a Mutex. So, for example, a DriverEntry or Dispatch routine isn't allowed 
to acquire a Mutex which would later be released by some other Dispatch routine 
or by a system thread. 

Semaphore Objects 

A Semaphore is a dispatcher object that maintains a count. The object 
remains Signaled as long as its count is greater than zero, and Nonsignaled when 
the count is zero. 

Figure 14.3 shows the operation of a Semaphore. Threads B, C, and D are all 
waiting for a Semaphore whose count is zero. When thread A calls KeRelease
Semaphore twice, the count increments to two, and two of the waiting threads are 
allowed to resume execution. Waking up the threads also causes the Semaphore 
to decrement back to zero. 

Again, the driver in Section 14.4 provides a good example. Its Dispatch rou
tines increment a Semaphore each time they add an IRP to an internal work 
queue. As a worker thread removes IRPs from the queue, it decrements the Sema
phore and finally goes into a wait state when the queue is empty. 

Thread A 

~ -Release 
Semaphore 
(Count == 2) 
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Thread B 

----.... Thread C 

Thread 0 

Figure 14.3 How Semaphore objects synchronize system threads 
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Table 14.7 Use these functions to work with Semaphore objects 

How to use Semaphore objects 

IF you want to ... 

Create a Semaphore 
Decrement Semaphore 

Increment Semaphore 
Interrogate Semaphore 

THEN call ... 

KeInitializeSemaphore 
KeWaitForSingleObject 
KeWaitForMultipleObjects 
KeReleaseSemaphore 
KeReadStateSemaphore 

IRQL 

PASSIVE_LEVEL 
PASSIVE_LEVEL 

~ DISPATCH_LEVEL 
Any 

To use a Semaphore, you need to allocate some storage for an item of type 
KSEMAPHORE, then call the functions listed in Table 14.7. 

Timer Objects 

A Timer is a dispatcher object with a timeout value. When you start a Timer, 
it goes into the Nonsignaled state until its timeout value expires. At that point, it 
becomes Signaled. In Chapter 10, you saw that Timer objects can cause Custom
TimerDpc routines to execute. Since they are just Kernel dispatcher objects, you 
can also use them in calls to KeWaitForXxx. 

Figure 14.4 illustrates the operation of a Timer object. Thread A starts a 
Timer and then calls KeWaitForSingleObject. The thread blocks until the Timer 
expires. At that point, the Timer goes into the Signaled state and the thread 
wakes up. 

Thread A 

SetTimer 
Wait 

Blocked 

Continue 
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Figure 14.4 How Tuner objects synchronize system threads 
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Timer objects actually come in two different flavors: Notification Timers and 
Synchronization Timers. You choose the type when you initialize the object. 
Although both types of Timer go into the Signaled state when their timeout value 
expires, their behavior from that point on is different. 

When a Notification Timer times out, it remains in the Signaled state until 
it's explicitly reset. While the Timer is Signaled, all threads waiting for the Timer 
are awakened. Earlier versions of Windows NT supported only Notification 
Timers. 

When a Synchronization Timer expires, it remains in the Signaled state only 
long enough to satisfy a single KeWaitForXxx request. At that point, the Timer 
becomes Nonsignaled automatically. Synchronization Timers are a new feature of 
Windows NT 4.0. 

To use a Timer, you need to allocate some storage for an item of type 
KTIMER and then call the functions listed in Table 14.8. 

Thread Objects 

System threads are also dispatcher objects, which means they have a signal 
state. When a system thread terminates, its Thread object changes from the Non
signaled to the Signaled state. This allows your driver to synchronize its cleanup 
operations by waiting for the Thread object. 

One thing to notice is that when you call PsCreateSystemThread, you get a 
handle to the Thread object. If you want to use a Thread object in a call to KeWait
ForXxx, you need a pointer to the object rather than a handle. To convert a handle 
into an object pointer, do the following: 

1. Call ObReferenceObjectByHandle. This function gives you a pointer to the 
Thread object itself and increments the object's pointer reference count. 

2. If you don't need the handle for anything (and you probably don't), call 
ZwClose to release it. This decrements the object's handle reference count. 

3. After the thread terminates, call ObDereferenceObject to decrement the 
Thread object's pointer reference count and possibly delete the Thread object. 

Table 14.8 Use these functions to work with Timer objects 

How to use Timer objects 

IF you want to ... 

Create a Timer 
Start a one-shot Timer 
Start a repeating Timer 
Stop a Timer 
Wait for a Timer 

Interrogate a Timer 

THEN call •.• 

KeInitializeTimerEx 
KeSetTimer 
KeSetTimerEx 
KeCancelTimer 
KeWaitForSingleObject 
KeWaitForMultipleObjects 
KeReadTimerState 

IRQL 

PASSIVE_LEVEL 
::;; DISPATCH_LEVEL 
::;; DISPATCH_LEVEL 
::;; DISPATCH_LEVEL 
PASSIVE_LEVEL 
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You can call these functions only from PASSIVE_LEVEL IRQL which limits 
the places in your driver where you can use them. 

Variations on the Mutex 

The NT Executive supports two variations on Mutex objects. The following 
subsections describe them briefly. In general, using these objects instead of Kernel 
Mutexes can result in better driver performance. See the NT DDK documentation 
for more complete information. 

Fast Mutexes A Fast Mutex is a synchronization object that acts like a 
Kernel Mutex, except that it doesn't allow recursive ownership requests. By 
removing this feature, the Fast Mutex doesn't have to do as much work and its 
speed improves. 

The Fast Mutex itself is an object of type FAST_MUTEX that you associate 
with one or more data items needing protection. Any code touching the data 
items must acquire ownership of the corresponding FAST_MUTEX first. Use the 
functions listed in Table 14.9 to work with Fast Mutexes. Notice that these objects 
have their own functions for requesting ownership. You can't use KeWaitForXxx 
to acquire Fast Mutexes. 

Table 14.9 Use these functions to work with Fast Mutexes 

How to use Fast Mutexes 

IF you want to ... 

Create a Fast Mutex 
Request Fast Mutex ownership 
Give up Fast Mutex ownership 

THEN call ... 

ExInitializeFastMutex 
ExAcquireFastMutex 
ExReleaseFastMutex 

IRQL 

::::; DISPATCH_LEVEL 
< DISPATCH_LEVEL 
< DISPATCH_LEVEL 

Executive Resources Another synchronization object that behaves very 
much like a Kernel Mutex is an Executive Resource. Here, the main difference is 
that a Resource can either be owned exclusively by a single thread, or shared by 
multiple threads for read access. Since it's common (in the real world) for multiple 
readers to request simultaneous access to a resource, Executive Resource objects 
provide better throughput than standard Kernel Mutexes. 

The Executive Resource itself is just an object of type ERESOURCE that you 
associate with one or more data items needing protection. Any code planning to 
touch the data items has to acquire ownership of the corresponding ERESOURCE 
first. Table 14.10 lists the functions that work with Executive Resources. Notice 
that these objects have their own functions for requesting ownership. You can't 
use KeWaitForXxx to acquire Executive Resources. 
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Table 14.10 Use these functions to work with Executive Resources 

How to use Executive Resources 

IF you want to ... THEN call ... IRQL 

Create 
Acquire 

ExInitializeResourceLite 
ExAcquireResourceExclusiveLite 
ExAcquiredResourceSharedLite 
ExTryToAcquireResourceExclusiveLite 
ExConvertExclusiveToSharedLite 
ExReleaseResourceForThreadLite 
ExfsResourceAcquiredSharedLite 
ExIsResourceAcquiredExclusiveLite 
ExgeleteResourceLite 

::;; DISPATCH_LEVEL 
< DISPATCH_LEVEL 
< DISPATCH_LEVEL 
< DISPATCH_LEVEL 
< DISPATCH_LEVEL 
::;; DISPATCH_LEVEL 
::;; DISPATCH_LEVEL 
::;; DISPATCH_LEVEL 
::;; DISPATCH_LEVEL 

Release 
Interrogate 

Delete 

Synchronization :Deadlocks 

Deadlock situations can occur whenever multiple threads compete for 
simultaneous ownership. of multiple resources. Figure 14.5 shows the simplest 
form of this problem: 

1. Thread A acquires resource X. 

2. Thread B acquires resource Y. 

3. Thread A requests ownership of resource Y and goes into a wait state until B 
releases Y. .. 

4. Thread B then requests ownership of resource X. This causes B to go into a 
wait state until A releases X. Deadlock. 

r-----~ Resource X ·····1 

ResourceY 
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figure 14.5 -How a multiple-resource deadlock occurs 
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You can cause this kind of deadlock using Events, Mutexes, or Semaphores. 
Even Thread objects can deadlock waiting for each other to terminate. There are 
two general approaches to solving deadlock problems: 

• Use the Timeout argument of the KeWaitForXxx functions to limit the 
time you wait. While this technique may help you detect a deadlock, it 
doesn't really correct the underlying problem. 

• Force all the threads using a given set of resources to acquire them in the· 
same order. In the previous example, if A and B had both gone after 
resource X first and then Y second, there would have been no deadlock. 

Mutex objects give you some protection against deadlocks through the use 
of level numbers. When you initialize a Mutex, you have to assign a level number 
to it. Later, when a thread attempts to acquire the Mutex, the Kernel will not grant 
ownership if that thread is holding any Mutex with a lower level number. By 
enforcing this policy, the Kernel avoids deadlocks involving multiple Mutexes. 

14.4 CODE EXAMPLE: A THREAD-BASED DRIVER 

This section presents a modified version of the packet-based slave DMA driver 
that you saw back in Chapter 12. What's different about this driver is that it uses a 
system thread to do most of the I/O processing. As a result, it spends very little 
time at DISPATCH_LEVEL IRQL or DIRQL and doesn't interfere as much with 
other system components. You can find the code for this example in the 
CH14\DRIVER directory on the disk that accompanies this book. 

How the Driver Works 

The driver you're about to see is unlike anything that's appeared so far in 
this book. Figure 14.6 gives a high-level view of its inner workings. One of the 
first things to notice is that the driver has no Start I/O routine. When a user-mode 
I/O request arrives, one of the driver's Dispatch routines simply adds the IRP to a 
work queue associated with the Device object. Then the Dispatch routine calls 
KeReleaseSemaphore to increment a Semaphore object that keeps track of the 
number of IRPs in the work queue. 

Each Device object has its own system thread that processes these I/O 
requests. This thread is in an endless loop that begins with a call to KeWaitForSin
gleObject on the Semaphore. If the Semaphore object has a nonzero count, the 
thread will remove an IRP from the work queue and perform the I/O operation. 
On the other hand, if the count is zero the thread will go into a wait state until the 
Dispatch routine inserts another IRP in the queue. 

When the thread needs to perform a data transfer, it starts the device and 
then uses KeWaitForSingleObject to wait for an Event object. The driver's Dpc
ForIsr routine will set this Event into the Signaled state after an interrupt arrives. 
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Figure 14.6 Architecture of the thread-based DMA driver 
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When the driver's Unload routine needs to kill the system thread it sets a 
flag in the Device Extension and increments the Semaphore object. If the thread 
was asleep waiting for the Semaphore object, it will wake up, see the flag, and ter
minate itself. If it's in the middle of an I/O operation, it won't see the flag until it 
completes the current IRP. 

The DEVICE_EXTENSION Structure in XXDRIVER.H 

This file contains all the usual driver-defined data structures. The following 
excerpt shows only those fields that driver needs in order to manage the system 
thread and its work queue. Other fields are identical to those in the packet-based 
slave DMA example of Chapter 12. 

typedef struct _DEVICE_EXTENSION 
{ 

PETHREAD ThreadObject; 0 
BOOLEAN ThreadShouldStop; 

KEVENT AdapterObjectIsAcquired; @ 
KEVENT DeviceOperationComplete; 

KSEMAPHORE IrpQueueSemaphore; $ 
LIST_ENTRY IrpQueueListHead; 
KSPIN_LOCK IrpQueueSpinLock; 

DEVICE_EXTENSION, *PDEVICE_EXTENSION; 
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o Once the thread is running, other parts of the driver can use the Thread 
object pointer synchronize with it. The BOOLEAN flag tells the thread 
when it's time to shut down. 

@ The thread waits for these Event objects at appropriate places in its pro
cessing cycle. Other parts of the driver set them into the Signaled state 
when interesting things happen. 

8) The work queue consists of a doubly-linked list guarded by a spin lock and 
a Semaphore object that keeps track of the number of IRPs in the queue. 

The XxCreateDevice Function in INIT.C 

This portion of the example shows the initialization code for the Thread 
object, the work queue, and the various synchronization objects used to process 
an I/O request. Remember that DriverEntry calls XxCreateDevice once for each 
Device object. 

static NTSTATUS 
XxCreateDevice ( 

IN PDRIVER_OBJECT DriverObject, 
IN INTERFACE_TYPE BusType, 
IN ULONG BusNumber, 
IN PDEVICE_BLOCK DeviceBlock, 
IN ULONG NtDeviceNumber 
) 

KeInitializeSpinLock( 
&pDevExt->IrpQueueSpinLock ); 0 

InitializeListHead( 
&pDevExt->IrpQueueListHead ); 

KeInitializeSernaphore( 
&pDevExt->IrpQueueSernaphore, 
0, 
MAXLONG ); 

KeInitializeEvent( @ 
&pDevExt->AdapterObjectIsAcquired, 
SynchronizationEvent, 
FALSE) ; 

KeInitializeEvent( 
&pDevExt->DeviceOperationCornplete, 
SynchronizationEvent, 
FALSE) ; 
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pDevExt->ThreadShouldStop = FALSE; 

status = PsCreateSystemThread( e 
&ThreadHandle, 
(ACCESS_MASK) 0, 

NULL, 
(HANDLE) 0, 

NULL, 
XxThreadMain, 
pDevExt ); 

if( !NT_SUCCESS( status )) 
{ 

IoDeleteSymbolicLink( &linkName ); 
IoDeleteDevice( pDevObj ); 
return status; 

ObReferenceObjectByHandle( 0 
ThreadHandle, 
THREAD_ALL_ACCESS, 
NULL, 
KernelMode, 
&pDevExt->ThreadObject, 
NULL) ; 

ZwClose( ThreadHandle ); 

IoConnectInterrupt( ... ); 

o This section of code sets up the work queue used by the thread. 
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@ These calls initialize the Event objects that signal ownership of the 
Adapter object and the arrival of a device interrupt. Notice that they're 
both synchronization (Le., auto-reset) Events. 

e The call to PsCreateSystemThread starts the thread. The entry point 
function is XxThreadMain and it will receive a pOinter to the Device 
Extension as its Context argument. Because this is an asynchronous oper
ation, the status of PsCreateSystemThread is only telling you that the 
thread was started successfully. It says nothing about what happens to 
the thread afterwards. 

o PsCreateSystemThread gives back a handle to Thread rather than a 
pointer to the Thread object itself. This section of code gets a pointer to 
the object and then releases the (unneeded) handle. 
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The XxDispatchReadWrite Function in DISPATCH.C 

This portion of the example shows how the Dispatch routine of this driver 
works. Its operation is relatively straightforward: After checking for a zero-length 
transfer, it puts the IRP into the pending state and inserts it into the work queue 
attached to the target Device object. It then increments the count in the work 
queue's Semaphore object. Notice that there are no calls to IoStartPacket because 
there is no Start I/O routine. 

NTSTATUS 
XxDispatchReadWrite( 

IN PDEVICE_OBJECT pD~, 
IN PIRP Irp 
) 

PIO_STACK_LOCATION IrpStack = 
IoGetCurrentlrpStackLocation( Irp ); 

PDEVICE_EXTENSION pDE = pDO->DeviceExtension; 

II 
II Check for zero-length transfers 
II 
if( IrpStack->Parameters.Read.Length == ° ) 
{ 

II 

Irp->IoStatus.Status = STATUS_SUCCESS; 
Irp->IoStatus.lnformation = 0; 
IoCompleteRequest( Irp, IO_NO INCREMENT ); 
return STATUS_SUCCESS; 

II Start device operation 
II 
IoMarklrpPending( Irp ); 

II 
II Add the IRP to the thread's work queue 
II 
ExlnterlockedlnsertTailList( 

&pDE->IrpQueueListHead, 
&Irp->Tail.Overlay.ListEntry, 
&pDE->IrpQueueSpinLock ); 

KeReleaseSemaphore( 
&pDE->IrpQueueSemaphore, 
0, II No priority boost 
1, II Increment semaphore by 1 
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FALSE ); II No WaitForXxx after this call 

return STATUS_PENDING; 

THREAD.C 

This module contains the main thread function and any routines needed to 
manage the thread. 

XxThreadMain Here is the IRP-processing engine itself. Its job is to pull 
I/O requests from the work queue in the Device Extension and perform the data 
transfer operation. This function continues to wait for new IRPs until the Unload 
routine tells it to shut down. 

VOID 
XXThreadMain( 

IN PVOID Context 
) 

PDEVICE_EXTENSION DevExtension 

PDEVICE_OBJECT DeviceObject = 
DevExtension->DeviceObject; 

PLIST_ENTRY ListEntry; 
PIRP Irp; 
CCHAR PriorityBoost; 

KeSetPriorityThread( 
KeGetCurrentThread(), 
LOW_REALTIME_PRIORITY ); 0 

II 

Context; 

II Now enter the main IRP-processing loop 
II 
while ( TRUE) 
{ 

KeWaitForSingleObject( @ 
&DevExtension->IrpQueueSemaphore, 
Executive, 
KernelMode, 
FALSE, 
NULL) ; 

if( DevExtension->ThreadShouldStop ) ~ 
PsTerminateSystemThread( STATUS_SUCCESS); 
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II 
II It must be a real request. Get an IRP 
II 
ListEntry = 

ExInterlockedRemoveHeadList( 
&DevExtension->IrpQueueListHead, 
&DevExtension->IrpQueueSpinLock )i 

Irp CONTAINING_RECORD ( 
ListEntry, 
IRP, 
Tail.Overlay.ListEntrY)i 

PriorityBoost = 
XxPerformDataTransfer( 0 

DeviceObject, 
Irp ) i 

IoCompleteRequest( Irp, PriorityBoost )i 

o System threads normally start running down in the variable priority 
range. The usual practice is to move the thread to the lowest of the time
critical scheduling priorities. 

@ The thread will wait here indefinitely for an IRP to appear in the work 
queue or for the Unload routine to stop the thread. 

~ When the thread awakens, it has to see whether the wake-up call was the 
result of an 110 request or a thread shutdown signal. The flag in the 
Device Extension will give a clue. 

o This function processes the IRP. This is a synchronous call which doesn't 
return until the data transfer operation is done. It returns a priority boost 
value which the thread then uses when it completes the IRP. After releas
ing the IRP, the thread goes back to the top of the loop and waits for the 
Semaphore object again. 

XxKiIIThread This function notifies the thread associated with a particular 
Device object that it's time to quit. To simplify things, this function stops and 
waits until the target thread is gone. Consequently, it can only be called from 
PASSIVE_LEVEL IRQL. 

VOID 
XxKillThread( 

IN PDEVICE_EXTENSION pDE 
) 
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II 
II Set the Stop flag 
II 
pDE->ThreadShouldStop 

II 

TRUE; 

II Make sure the thread wakes up 
II 
KeReleaseSemaphore( 

&pDE->IrpQueueSemaphore, 
0, II No priority boost 
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1, 
TRUE ); 

II Increment semaphore by 1 
II WaitForXxx after this call 

TRANSFER.C 

II 
II Wait for the thread to terminate 
II 
KeWaitForSingleObject( 

&pDE->ThreadObject, 
Executive, 
KernelMode, 
FALSE, 
NULL) ; 

ObDereferenceObject( &pDE->ThreadObject ); 

This portion of the example contains the support routines that perform I/O 
operations. A great deal of what's in here is derived from the packet-based slave 
DMA driver in Chapter 12. Consequently, only those features that differ signifi
cantly will be described in detail. 

The main thing to notice is that very little work actually happens inside the 
Adapter Control or DpcForIsr routines. Instead of doing their usual jobs, these 
functions just set Event objects to signal the thread's data transfer routines that 
they can proceed. 

XxPerformDataTransfer This function moves an entire buffer of data to or 
from the device. This may include splitting the transfer over several device opera
tions if there aren't enough mapping registers to handle it all at once. This rou
tines runs at PASSIVE_LEVEL IRQL and doesn't return to the caller until 
everything is done. 

CCHAR 
XxPerformDataTransfer( 

IN PDEVICE OBJECT DeviceObject, 
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IN PIRP Irp 
) 

PIO_STACK_LOCATION IrpStack = 
IoGetCurrentlrpStackLocation( Irp )i 

PDEVICE_EXTENSION pDE = 
DeviceObject->DeviceExtensioni 

PMDL Mdl = Irp->MdlAddressi 
ULONG MapRegsNeededi 
NTSTATUS statusi 

II 
II Set the 1/0 direction flag 
II 
if( IrpStack->MajorFunction 

== IRP_MJ_WRITE ) 

pDE->WriteToDevice TRUEi 

else 

pDE->WriteToDevice FALSEi 

II 
II Set up bookkeeping values 
II 
pDE->BytesRequested = 

MrnGetMdlByteCount( Mdl )i 

pDE->BytesRemaining = 
pDE->BytesRequestedi 

pDE->TransferVA = 
MrnGetMdlVirtualAddress( Mdl )i 

II 
II Flush CPU cache if necessary 
II 
KeFlushloBuffers( 

II 

Irp->MdlAddress, 
!pDE->WriteToDevice, 
TRUE) i 

II Calculate size of first partial 
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II transfer 
II 
pDE->TransferSize pDE->BytesRemaining; 

MapRegsNeeded = 
ADDRESS_AND_SIZE_TO_SPAN_PAGES( 

pDE->TransferVA, 
pDE->TransferSize ); 

if( MapRegsNeeded > pDE->MapRegisterCount 
{ 

II 

MapRegsNeeded 
pDE->MapRegisterCount; 

pDE->TransferSize = 
MapRegsNeeded * PAGE_SIZE -
MmGetMdlByteOffset( Mdl ); 

II Acquire the adapter object. 
II 
status = XxAcquireAdapterObject( 0 

pDE, 
MapRegsNeeded ); 

if( !NT_SUCCESS( status )) 
{ 

II 

Irp->IoStatus.Status = status; 
Irp->IoStatus.Information = 0; 
return IO_NO_INCREMENT; 

II Try to perform the first partial 
II transfer 
II 
status = 

XxPerformSynchronousTransfer( @ 
DeviceObject, 
Irp ); 

if( !NT_SUCCESS( status )) 
{ 

343 

IoFreeAdapterChannel( pDE->AdapterObject 
) ; 

Irp->IoStatus.Status = status; 
Irp->IoStatus.Information = 0; 
return IO_NO_INCREMENT; 
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) ; 
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/! 
II It worked. Update the bookkeeping 
II information. 
II 
pDE->TransferVA += pDE->TransferSize; 
pDE->BytesRemaining -= pDE->TransferSize; 

while ( pDE->BytesRemaining >0 ) ~ 
{ 

II 
II Try to do all of it in one operation 
II 
pDE->TransferSize pDE->BytesRemaining; 

MapRegsNeeded = 
ADDRESS_AND_SIZE_TO_SPAN_PAGES( 

pDE->TransferVA, 
pDE->TransferSize ); 

/! 
II If the remainder of the buffer is more 
II than we can handle in one 110. Reduce 
II our expectations. 
/! 
if( MapRegsNeeded > pDE->MapRegisterCount 

II 

MapRegsNeeded = 
pDE->MapRegisterCount; 

pDE->TransferSize = 
MapRegsNeeded * PAGE_SIZE -
BYTE_OFFSET ( pDE->TransferVA 

II Try to perform a device operation. 
/! 
status 

XxPerformSynchronousTransfer( 
DeviceObject, 
Irp ); 

if( !NT_SUCCESS( status )) break; 

/! 
II It worked. Update the bookkeeping 
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II information for the next cycle. 
II 
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pDE->TransferVA += pDE->TransferSize; 
pDE->BytesRemaining -= pDE->TransferSize; 

IoFreeAdapterChannel( pDE->AdapterObject ); 0 

Irp->IoStatus.Status = status; 0 
Irp->IoStatus.Information = 

II 

pDE->BytesRequested -
pDE->BytesRemaining; 

II Since there has been at least one 1/0 
II operation, give the IRP a priority boost. 
II 
return IO_DISK_INCREMENT; ~ 

o Before starting a data transfer, the Device object has to acquire its Adapter 
object. The thread calls this synchronous helper function to grab the 
Adapter object. This is different from the callback model used by the 
DMA driver in Chapter 12. 

@ . Once the Adapter object is secured, the driver can try to perform the first 
partial data transfer. Again, since this code is running in the context of a 
system thread, it can stop and wait for the 1/ 0 operation to complete. If 
there's an error, processing stops and the IRP is sent back with no priority 
boost. 

@} If there's more data to transfer, continue to step through the buffer and 
perform partial DMA transfers. 

o When the last partial transfer is done, release the DMA Adapter object. 

o The final status of the IRP will be the status of the last data transfer opera
tion. Also calculate the number of bytes actually transferred. 

~ Tell the caller to apply a priority boost to the IRP. This makes sense since 
there has been at least one actual device operation. 

XxAcquireAdapterObject and XxAdapterControl These two functions 
work together to give the thread a synchronous mechanism for acquiring owner
ship of the Adapter object. XxAcquireAdapterObject runs in the context of a sys
tem thread so it can stop and wait for a nonzero time interval. 

static NTSTATUS 
XxAcquireAdapterObject( 

IN PDEVICE_EXTENSION pDE, 
IN ULONG MapRegsNeeded 
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KIRQL OldIrql; 
NTSTATUS status; 
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KeRaiseIrql( DISPATCH_LEVEL, &OldIrql ); 0 

status = IoAllocateAdapterChannel( 
pDE->AdapterObject, 
pDE->DeviceObject, 
MapRegsNeeded, 
XxAdapterControl, 
pDE ); 

KeLowerIrql( OldIrql ); 

II 
II If the call failed, it's because there 
II weren't enough mapping registers. 
II 
if( !NT_SUCCESS( status )) 
{ 

return status; 

KeWaitForSingleObject( @ 
&pDE->AdapterObjectIsAcquired, 
Executive, 
KernelMode, 
FALSE, 
NULL) ; 

return STATUS_SUCCESS; 

static IO_ALLOCATION_ACTION 
XxAdapterControl( 

IN PDEVICE_OBJECT DeviceObject, 
IN PIRP Irp, 
IN PVOID MapRegisterBase, 
IN PVOID Context 
) 

PDEVICE_EXTENSION pDE = Context; 

pDE->MapRegisterBase = MapRegisterBase; ~ 

KeSetEvent ( 0 
&pDE->AdapterObjectIsAcquired, 
0, 
FALSE ); 
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return KeepObject; 0 

o Only code running at DISPATCH_LEVEL IRQL can request ownership of 
the Adapter object. Consequently, this routine raises its IRQL level before 
calling IoAllocateAdapterChannel. Once it makes the call, it returns to 
PASSIVE_LEVEL IRQL. 

@ The function then stops and waits for the Adapter Control routine to set a 
synchronization Event. That will be the signal that Adapter object has 
been acquired. 

8) It's important for the Adapter Control routine to store the mapping reg
ister handle because the thread will need it to set up any DMA data 
transfers. 

o Next, let the waiting thread know that it can use the DMA hardware. 

o Finally, return a value of KeepObject in order to hold on to the Adapter 
Object. 

XxPerformSynchronousTransfer Running in the context of the system 
thread, this function performs a single data transfer operation. It doesn't return to 
the caller until the transfer finishes. The main thing to notice here is that the func
tion uses an Event object to wait for the arrival of a device interrupt. 

static NTSTATUS 
XxPerformSynchronousTransfer( 

IN PDEVICE_OBJECT DeviceObject, 
IN PIRP Irp 
) 

PDEVICE_EXTENSION pDE = 
DeviceObject->DeviceExtension; 

II 
II Set up the system DMA controller 
II attached to this device. 
II 
IoMapTransfer( 

II 

pDE->AdapterObject, 
Irp->MdlAddress, 
pDE->MapRegisterBase, 
pDE->TransferVA, 
&pDE->TransferSize, 
pDE->WriteToDevice ); 

II Start the device 
II 
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xxWriteControl( 
pDE, 
XX_CTL_INTENB I XX_CTL_DMA_GO ); 

// 
// The DPC routine will set an Event 
// object when the I/O operation is 
// done. Stop here and wait for it. 
// 
KeWaitForSingleObject( 

// 

&pDE->DeviceOperationCornplete, 
Executive, 
KernelMode, 
FALSE, 
NULL) ; 

// Flush data out of the Adapater 
// object cache. 
// 
IoFlushAdapterBuffers( 

// 

pDE->AdapterObject, 
Irp->MdlAddress, 
pDE->MapRegisterBase, 
pDE->TransferVA, 
pDE->TransferSize, 
pDE->WriteToDevice ); 

// Check for device errors 
// 
if( lXX_STS_OK( pDE->DeviceStatus )) 

return STATUS_DEVICE_DATA_ERROR; 
else 

return STATUS_SUCCESS; 

XxDpcForlsr When the device generates an interrupt, the Interrupt Ser
vice routines (not shown here) saves the status of the hardware and requests a 
DPC. Eventually, XxDpcForIsr executes and just sets an Event object into the Sig
naled state. XxPerformSynchronousTransfer (which has been waiting for this 
Event object) wakes up and continues processing the current IRP. 

VOID 
XxDpcForIsr( 

IN PKDPC Dpc, 
IN PDEVICE_OBJECT DeviceObject, 



Sec. 14.5 Summary 

14.5 SUMMARY 

IN PIRP Irp, 
IN PVOID Context 
) 

PDEVICE_EXTENSION pDE = Context; 

KeSetEvent( 
&pDE->DeviceOperationComplete, 
0, 
FALSE) ; 

return; 
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This chapter has presented you with an alternative driver architecture based on 
the use of system threads. Although it's not a good choice for most drivers, this 
model can be useful if you're trying to manage certain kinds of legacy devices, or 
devices that would interfere with normal system operation if you used the stan
dard interrupt-driven architecture. 

Now that you have a good understanding of how to work at the hardware 
level, it's time to see how higher-level drivers are organized. That's the subject of 
the next chapter. 



C HAP T E R 15 

Higher-Level 
Drivers 

One of the I/O Manager's nifty features is that it 
lets you stack drivers on top of one another. This permits one driver to use 
another as a prepackaged component and send requests to it just as a user-mode 
thread might. As you saw back in Chapter I, NT's SCSI and network driver archi
tectures both rely on this building-block approach. This chapter describes the 
techniques you need to use if you want to design your own driver hierarchies. 

15.1 AN OVERVIEW OF INTERMEDIATE DRIVERS 
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Before getting into a discussion of writing intermediate drivers, it's a good idea to 
define just what they are. This section also explores some of the trade-offs inher
ent in using a hierarchical driver architecture. 

What Are Intermediate Drivers? 

For the purposes of this chapter, an intermediate driver is any kernel-mode 
driver that issues I/O requests to another driver. Intermediate drivers are not 
usually responsible for any direct, register-level manipulation of hardware 
resources. Instead, they often depend on a lower-level device driver to perform 
hardware operations. This may seem like an overly broad definition, but the truth 
is that intermediate drivers can assume a wide variety of shapes. 



Sec. 15.1 An Overview of Intermediate Drivers 351 

From an implementation standpoint, you can classify an intermediate driver 
according to its relationship with the driver directly below it. Taking this 
approach, you end up with three distinct groups: 

• Layered drivers - This generic category includes just about any driver 
that uses the I/O Manager's standard calling mechanism to send requests 
to another driver. 

• Filter drivers - This is a special category of intermediate drivers that 
transparently intercept requests intended for some other driver. These 
drivers also use the I/O Manager's standard calling mechanism. 

• Tightly coupled drivers - This category includes any pair of drivers 
that define a private interface between themselves - one that doesn't use 
the I/O Manager's calling mechanism for the bulk of the communication. 

Later parts of this chapter will explain how to develop drivers in each of 
these families. 

Should You Use a Layered Architecture? 

One important thing to decide is whether your driver design would benefit 
from being broken into a series of layers, or whether it should be structured as a 
single monolithic unit. The following will help you understand the trade-offs of 
taking a layered approach. 

Why you should Depending on your goals, using multiple driver layers 
can provide a number of benefits. For example, it allows you to separate higher
level protocol issues from management of the specific underlying hardware. This 
makes it possible to support a wider variety of hardware without having to 
rewrite large amounts of code. It also promotes flexibility by allowing the same 
protocol driver to plug into different hardware drivers at runtime. This is the 
approach taken by NT network drivers. 

If several different kinds of peripherals can all be attached to the same con
troller (as in the case of a SCSI adapter), layering allows you to decouple manage
ment of the peripheral from management of the controller. To do this, you write a 
single device driver for the controller (the port driver) and separate higher-level 
class drivers for each type of attached peripheral. The two main benefits here are 
that the class drivers are smaller and simpler and (assuming a well-defined proto
col) the class and port drivers can come from different vendors. 1 

1 This is exactly what NT's SCSI architecture does. Expect to see more of this kind of thing in future 
versions of Windows NT when buses like the IEEE 1394 bus and the Universal Serial Bus make 
their appearance. 
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Layering also makes it possible to hide hardware limitations from users of a 
device, or to add features not supported by the hardware itself. For example, if a 
given piece of hardware can only handle transfers of a certain size, you might 
stack another driver on top of it that would break oversized transfers into smaller 
pieces. Users of the device would be unaware of the device's shortcomings. 

Inserting driver layers gives you a transparent way to add or remove fea
tures from a product without having to maintain multiple code bases for the 
same product. NT's fault-tolerant disks are one example of this. They're imple
mented as a separate driver layer which is shipped with NT Server but not with 
NT Workstation. 

Why you shouldn't Of course, there are costs you have to consider if 
you're thinking about a layered architecture. First of all, I/O requests incur some 
extra overhead because each IRP has to take a trip through the I/O Manager 
every time it passes from one driver to another. To some extent, you can reduce 
this overhead by defining a private interdriver interface that partially bypasses 
the 1/ 0 Manager. 

It also takes somewhat more design effort to make sure that the separate driver 
components fit together seamlessly. In the absence of an external standard, this can 
be especially painful if some of the drivers are coming from different vendors. 

Since the overall functionality is no longer contained in a single driver exe
cutable, there's somewhat more bookkeeping involved in managing the drivers. 
This also has some impact on maintaining version compatibility between various 
members of the hierarchy. 

Finally, installing layered drivers is a little more involved since each one will 
need its own area in the Registry. In addition, it's necessary to set up dependency 
relationships among the various drivers in the hierarchy to make sure they start in 
the proper order. 2 

15.2 WRITING LAYERED DRIVERS 

Layered drivers are the most general type of intermediate driver. They depend for 
their operation on a well-defined interdriver calling mechanism provided by the I/O 
Manager. This is the first of three sections that explain how this mechanism works, 
and what a driver needs to do if it wants to use another driver as a component. 

How Layered Drivers Work 

As you can see from Figure 15.1, a layered driver exposes one or more 
named Device objects to which clients send I/O requests. When an IRP repre
senting one of these requests arrives, the layered driver can process it in two dif
ferent ways: In some cases, it might send the IRP directly to a lower-level driver. 

2 See Chapter 16 for more information about creating startup dependencies among drivers. 
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IRP 

Dispatch 

..... loCaliDriver 

Dispatch 

Copyright© 1996 by Cydonix Corporation. 96003ta.vsd 

YYDRIVER : I 

VO Completion 

return 

XXDRIVER ;;; 
I 

Dispatch or 
DpcForlsr 

loCompleteRequest 

Figure 15.1 How a layered driver works 
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Alternatively, the layered driver might hold the IRP in a pending state while it 
allocates additional IRPs and sends them to one or more lower-level drivers. 

If the layered driver needs to regain control after a lower-level driver fin
ishes with an IRP, it can attach an I/O Completion routine to the IRP. This routine 
will execute when the lower driver calls IoCompleteRequest. 

Initialization and Cleanup in Layered Drivers 

Like every other kernel-mode driver, a layered driver must have a main 
entry point called DriverEntry. If the driver is to be unloaded while the system is 
running, it needs an Unload routine as well. The following subsections describe 
what these routines have to do. 

DriverEntry routine The initialization steps performed by a layered driver 
are similar to those of a regular device driver. The main difference is that a layered 
driver doesn't have any direct contact with hardware, so all the hardware detec
tion and allocation code that you saw in Chapter 7 will be missing. In general, the 
DriverEntry routine of a layered driver will do the following: 

1. It uses IoCreateDevice to build the upper-level Device object that will be seen 
by the outside world. Like the Device objects created by hardware drivers, 
this one has its own unique name. 

2. DriverEntry then calls IoGetDeviceObjectPointer. Given a device name, this 
function returns the address of the target Device object and a pointer to a File 
object associated with the target Device. Normally, DriverEnry saves the 
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target Device object pointer in the Device Extension of the upper-level Device 
object. 

3. Next, it increments the pointer reference count on the target Device object 
by calling ObReferenceObjectByPointer. This is necessary because 
IoGetDeviceObjectPointer automatically increments the reference count on 
the File object pointer, but not the reference count on the target Device object. 

4. Then, DriverEntry calls ObDereferenceObject to decrement the pointer ref
erence count on the File object associated with the target Device object. 

5. If the layered driver forwards incoming IRPs to the target Device object, 
DriverEntry should set the layered Device object's StackSize field to a value 
one greater than the StackSize field of the target Device object. This guaran
tees that there will be enough stack slots for all the drivers in the hierarchy. 

6. If the lower-level driver requires it, DriverEntry can fabricate an IRP with 
IRP _MLCREATE as its major function code and send it to the target Device 
object. 

7. If the Device object is going to be visible to Win32 applications, DriverEntry 
calls IoCreateSymbolicLink to add its Win32 name to the \DosDevices area 
of the Object Manager's namespace. 

The layered driver can now use the target Device object pointer to make 
calls to the lower-level driver. 

Unload routine When a layered driver unloads itself, it basically reverses 
the sequence of operations it performed at initialization time. Once again, since 
the driver is not working directly with the hardware, it won't need to release any 
hardware resources. Although the exact steps may vary, a layered driver's Unload 
routine will generally do the following: 

1. It calls IoDeleteSymbolicLink to remove the upper-level Device object's 
Win32 name from the Object Manager's namespace. 

2. If the lower-level driver requires it, the layered driver's Unload routine can 
fabricate an IRP with IRP _MLCLOSE as its major function code and send it to 
the target Device object. 

3. Next, the Unload routine decrements the target Device object's pointer refer
ence count by calling ObDereferenceObject. This effectively breaks the con
nection with the target Device object. 

4. Finally, it destroys the upper-level Device object by calling IoDeleteDevice. 

Code Fragment: Connecting to Another Driver 

The following code fragment (taken from somewhere in the flow of a 
DriverEntry routine) shows how one driver might layer itself on top of 
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another. In this example, the lower-level driver XXDRIVER exposes a device 
called (what else) XXO and the layered driver (YYDRIVER) exposes YYO. 

UNICODE_STRING UpperDeviceName; 
DEVICE_OBJECT UpperDeviceObject; 
PDEVICE_EXTENSION UpperExtension; 

UNICODE_STRING LowerDeviceName; 
DEVICE_OBJECT LowerDeviceObject; 
FILE_OBJECT LowerFileObject; 

NTSTATUS status; 

RtlInitUnicodeString( 0 
&UpperDeviceName, 
L"\device\YYO" ); 

RtlInitUnicodeString( 
&LowerDeviceName, 
L"\device\XXO" ); 

status = IoCreateDevice( 

&UpperDeviceName, 

&UpperDeviceObject ); 

UpperExtension = UpperDeviceObject->DeviceExtension; 

status = IoGetDeviceObjectPointer( @ 
&LowerDeviceName, 

status 

FILE_ALL_ACCESS, 
&LowerFileObject, 
&LowerDeviceObject ); 

ObReferenceObjectByPointer( ~ 
LowerDeviceObject, 
FILE_ALL_ACCESS, 
NULL, 
KernelMode ); 

ObDereferenceObject( LowerFileObject ); 

UpperExtension->LowerDevice = LowerDeviceObject; 0 

UpperDeviceObject->StackSize = 
LowerDeviceObject->StackSize + 1; 0 

UpperDeviceObject->Flags 1= 
( LowerDeviceObject->Flags & 

( DO_BUFFERED_IO 1 DO_DIRECT_IO )); 

UpperDeviceObject->AlignmentRequirement = 
LowerDeviceObject->AlignmentRequirement; 
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o The upper driver prepares Unicode names for both the upper and lower 
devices. Be careful: These names are case-sensitive. 

f9 It then retrieves a pointer to the lower Device object. This function returns 
pointers to both a Device object and a File object. 

@) IoGetDeviceObjectPointer doesn't increment the pointer count on the 
Device object. The upper driver has to do that itself. Then, it decrements 
the pointer count on the lower driver's File object, since this isn't needed 
anymore. 

o The upper driver needs to save the address of the lower Device object in 
its own Device Extension so that other routines will be able to find it. 

o If the upper driver plans to forward IRPs directly to the lower one, these 
IRPs have to have enough I/O stack locations for all the drivers in the 
hierarchy. In this case, it's also important for the upper driver to duplicate 
the buffering strategy and alignment of the lower driver. 

Other Initialization Concerns for Layered Drivers 

You've just seen the general steps a layered driver needs to perform if it 
wants to connect to another driver. Depending on how the layered driver oper
ates, there may be some other issues that the initialization code has to deal with. 
There are basically two cases to consider. 

Transparent layer Some layered drivers are intended to slip transparently 
between some lower-level driver and its clients. Here, it's important for the 
Device objects exposed by the layered driver to mimic the behavior of the lower 
driver's Device objects. NT Server's fault-tolerant disk driver is one example of a 
transparent layer. 

To guarantee that the layered driver can be added or removed transparently, 
its DriverEntry routine needs to perform the following extra initialization: 

• It should copy the DeviceType and Characteristics fields from the target 
Device object to the layered Device object. 

• DriverEntry should also copy the DO_DIRECLIO and DO_BUF
FERED_IO bits from the target Device's Flags field. This ensures that the 
layered Device object will use the same buffering strategy as the target. 

• It should copy the AlignmentRequirement field from the target to the 
upper-level Device object. 

• Finally, the MajorFunction table in the layered Driver object has to sup
port the exact same set of IRP _MLXXX function codes as the lower-level 
Driver object.3 

3 The sample filter driver that appears later in this chapter shows how to set up a layered driver's 
MajorFunction table dynamically. 



Sec. 15.2 Writing Layered Drivers 357 

Virtual or logical device layer The other possibility is that the layered 
driver exposes virtual or logical Device objects.4 For example, NT's TDI network 
protocol drivers present Device objects that have no particular similarity to the 
network interface cards below them. Likewise, SCSI class drivers export Device 
objects whose characteristics are those of the peripheral attached to the SCSI bus 
- not those of the SCSI interface card. 

In this case, the layered driver should pick appropriate values for the Type 
and Characteristics fields of the layered Device object. Also, the exact set of 
IRP _MLXXX functions supported by the layered driver will be ones appropriate 
to the layered Device object. There's also no requirement for the layered and tar
get Device objects to use the same buffering strategy. 

I/O Request Processing in Layered Drivers 

Since layered drivers don't directly manage any hardware, they don't need 
any Start I/O, Interrupt Service, or DPC routines. Instead, most of the code in a 
layered driver consists of Dispatch routines and I/O Completion routines. 
Because they deserve some extra attention, I/O Completion routines get their 
own section later in this chapter. 

The subsections below describe the operation of a layered driver's Dispatch 
routines. When one of these Dispatch routines receives an IRP, it can do one of 
three things. 

Complete the original IRP The simplest case is the one where the Dis
patch routine is able to process the request all by itself and return either success or 
failure notification to the original caller. The Dispatch routine does the following: 

1. It calls IoGetCurrentlrpStackLocation to get a pointer to this driver's I/O 
stack slot. 

2. The Dispatch routine processes the request using various fields in the IRP and 
the I/ ° stack location. 

3. It puts an appropriate value in the IoStatus.lnformation field of the IRP. 

4. The Dispatch routine also fills the IoStatus.Status field of the IRP with a suit
able STATUS_XXX code. 

5. Then, it calls IoCompleteRequest with a priority-boost value of IO_NO_IN
CREMENT to send the IRP back to the I/ ° Manager. 

4 A virtual device is one whose behavior is not tied to the characteristics of the underlying peripheral 
hardware. This also includes things like RAM disks which have no associated peripheral device. 

A logical device is a temporary construct that maintains the context for a specific series of transac
tions - usually occurring over a shared communication medium. For example, when a client 
requests a connection to a Named Pipe object, the pipe driver creates a separate instance of the pipe 
just for that client. This pipe instance is a logical device. Logical devices normally have a limited 
lifespan; the driver creates them when a series of transactions begins, and destroys them when the 
last transaction is finished. 
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6. As its return-value, the Dispatch routine passes back the same STATUS_XXX 
code that it put into the IRP. 

There's nothing at all mysterious going on here. In fact, it's the same proce
dure any Dispatch routine follows when it wants to end the processing of a request. 

Pass the IRP to another driver The second possibility is that the layered 
driver's Dispatch routine needs to pass the IRP to the next lower driver. The Dis
patch routine does the following: 

1. It calls IoGetCurrentlrpStackLocation to get a pointer to its own I/O stack 
location. 

2. The Dispatch routine also calls IoGetNextlrpStackLocation to retrieve a 
pointer to the I/O stack location belonging to the next lower driver. 

3. It sets up the next lower driver's I/O stack location, including the Major
Function field and various members of the Parameters union. 

4. The Dispatch routine calls IoSetCompletionRoutine to associate an I/O 
Completion routine with the IRP. At the very least, this I/O Completion rou
tine is going to be responsible for marking the IRP as pending. 

5. It sends the IRP to a lower-level driver using IoCallDriver. This is an asyn
chronous call that returns immediately regardless of whether the lower-level 
driver completed the IRP. 

6. As its return value, the Dispatch routine passes back whatever status code 
was returned by IoCallDriver. This will be either STATUS_SUCCESS, 
STATUS]ENDING, or some STATUS_XXX error c()de. 

Notice that the Dispatch routine does not call IoMarkIrpPending to put the 
original IRP in the pending state before sending it to the lower driver. This is 
because the Dispatch routine doesn't know whether the IRP should be marked 
pending until after IoCallDriver returns. Unfortunately, by that time IoCall
Driver has already pushed the I/O stack pointer in the IRP, so a call to IoMark
IrpPending (which always works with the current stack slot) would mark the 
wrong stack location. The solution is to call IoMarkIrpPending in an I/O Com
pletion routine, after the IRP stack pointer has been reset to the proper level. 

Allocate additionallRPs Finally, the layered driver's Dispatch routine 
may need to allocate one or more additional IRPs which it then sends to lower
level drivers. The Dispatch routine has the option of waiting for these additional 
IRPs to complete, or of issuing asynchronous requests to the lower driver. In the 
asynchronous case, cleanup of the additional IRPs occurs in an I/O Completion 
routine. The discussion of driver-allocated IRPs (appearing later in this chapter) 
will explain how to use both these techniques. 
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Code Fragment: Calling a Lower-Level Driver 

The code fragment below shows how the Dispatch routine in one driver 
might forward an IRP to a lower-level driver. For purposes of example, it also 
shows how the upper driver could store some context (in this case, a retry count) 
in an unused field of its own I/O stack location. 

NTSTATUS 
YyDispatchRead( 

IN PDEVICE_OBJECT DeviceObject, 
IN PIRP Irp 
) 

PDEVICE_EXTENSION Extension = 
DeviceObject->DeviceExtension; 

PIO_STACK_LOCATION ThisIrpStack = 
IoGetCurrentIrpStackLocation( Irp ); 

PIO_STACK_LOCATION NextIrpStack = 
IoGetNextIrpStackLocation( Irp ); 

*NextIrpStack = *ThisIrpStack; 0 

ThislrpStack-> 
Parameters.Read.Key = 

YY_RETRY_COUNT_MAXIMDM_VALUE; @ 

IoSetCompletionRoutine( $ 
Irp, 
YyReadCompletion, 
NULL, 
TRUE, TRUE, TRUE ); 

return IoCallDriver( 0 
Extension->LowerDevice, 
Irp ); 

o In this simple example, the upper driver just copies the entire I/O stack 
location from its own slot to the slot of the next lower driver. This is 
essentially just a pass-through operation. 

@ The upper driver's I/O Completion routine is going to use the count 
stored in the Parameters.Read.Key field of the upper driver's I/O stack 
slot to keep track of attempted retries. Since the upper driver isn't using 
this field for its intended purpose, it can get away with this trick. 

$ To recapture this IRP after the lower driver completes it, the upper 
driver attaches an I/O Completion routine. Since all three InvokeOnXxx 
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arguments are TRUE, the I/O Manager will call this routine no matter 
what happens to the IRP. 

o Finally, the upper driver sends the IRP to the lower driver. Notice that the 
return value of IoCallDriver becomes the return value of the Dispatch 
routine. Also, notice that the Dispatch routine doesn't call IoMarkIrp
Pending with the IRP; that will happen in the 1/ 0 Completion routine. 

15.3 WRITING 1/0 COMPLETION ROUTINES 

An I/O Completion routine is an I/O Manager callback that lets you recapture 
an IRP after a lower-level driver has completed it. This section explains how to 
use I/O Completion routines in intermediate drivers. 

Requesting an 1/0 Completion Callback 

If you want to regain control of an IRP after it's been processed, you need to 
call IoSetCompletionRoutine (described in Table 15.1). This function puts the 
address of an I/O Completion routine in the IRP stack location associated with 
the next lower driver. When some lower-level driver calls IoCompleteRequest, 
the I/O Completion routine will execute as the IRP bubbles its way back to the 
top of the driver hierarchy. 

Except for the driver on the bottom, each driver in the hierarchy can attach 
its own I/O Completion routine to an IRP. This allows everyone to receive notifi
cation when an IRP completes. The I/O Completion routines will execute in 
driver-stacking order, from bottom to top. 

Also notice the three BOOLEAN InvokeOnXxx arguments. These allow you 
to specify the situations in which a particular I/O Completion routine will run. 
The I/O Manager uses the IoStatus.Status field of the IRP to decide whether it 
should call the I/O Completion routine. 

Table 15.1 Function prototype for loSetCompletionRoutine 

VOID loSetCompletionRoutine 

Parameter 

IN PIRPIrp 
IN PIO_COMPLETlON_ROUTlNE 

CompletionRoutine 
IN PYOID Context 
IN BOOLEAN InvokeOnSuccess 
IN BOOLEAN InvokeOnError 
IN BOOLEAN InvokeOnCancel 
Return value 

IRQL ::;; DISPATCH_LEVEL 

Description 

Address of IRP the driver wants to track 
Routine to call when a lower driver completes 

the IRP 
Argument passed to I/O Completion routine 
Call routine if IRP completes successfully 
Call routine if IRP completes with error 
Call routine if IRP is canceled 
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Execution Context 

By the time it calls your I/O Completion routine, the I/O Manager has 
already popped the I/O stack pointer, so that the current stack location is the one 
belonging to your driver. Table 15.2 lists the arguments passed to an I/O Comple
tion routine. 

One tricky item is the IRQL level at which an I/O Completion routine exe
cutes. If the lower-level driver calls IoCompleteRequest from PASSIVE_LEVEL 
IRQL, then higher-level I/O Completion routines will also run at 
PASSIVE_LEVEL. On the other hand, if the lower-level driver completes the 
request from DISPATCH_LEVEL IRQL (from a DPC routine, for example), then 
higher-level I/O Completion routines will execute at DISPATCH_LEVEL. Since 
DISPATCH_LEVEL IRQL has more restrictions associated with it than 
PASSIVE_LEVEL IRQL, it's a good idea to limit the actions of an I/O Completion 
routine to things that can safely be done at DISPATCH_LEVEL.s 

When an I/O Completion routine is finished, it should return one of two sta
tus codes. Returning STATUS_SUCCESS causes the IRP to continue its journey 
back toward the original caller. This includes the execution of any other I/O Com
pletion routines attached by drivers above this one. This is normally the appropri
ate value to use if this is the original IRP that came from some caller outside the 
driver. 

To stop any further processing of this IRP, an I/O Completion routine can 
return STATUS_MORE_PROCESSING_REQUIRED. This value blocks the exe
cution of any higher-level I/O Completion routines attached to the IRP. It also 
prevents the original caller from receiving notification that the IRP has com
pleted. An I/ 0 Completion routine should return this code if it either plans to 
send the IRP back down to a lower-level driver (as in the case of split transfer), 
or if the IRP was allocated by this driver and the I/O Completion routine is 
going to deallocate it. 

Table 15.2 Function prototype for an I/O Completion routine 

NTSTATUS XxloCompletion 

Parameter 

IN PDEVICE_OBJECT 
DeviceObject 

INPIRPIrp 
IN PVOID Context 
Return value 

IRQL == PASSIVE_LEVEL I DISPATCH_LEVEL 

Description 

Device object that just completed the request 

The IRP that's being completed 
Context that was passed to IoSetCompletionRoutine 
One of the following: 
• STATUS_MORE_PROCESSING_REQUIRED 
• STATUS_SUCCESS 

5 For example, don't mark any I/O Completion routines as paged in an alloctext pragma. 
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What VO Completion Routines Do 

An intermediate driver can attach an I/O Completion routine to any IRP it 
sends to another driver. This includes the original IRP that the driver received 
from some outside caller, as well as any IRPs that the driver allocates on its own. 
When an I/O Completion routine executes, there are three general kinds of tasks 
it may need to perform. 

Release the originallRP If the completed IRP is one that came from an 
outside caller, it may require some driver-specific cleanup. At the very least, the 
1/ 0 Completion routine for one of these IRPs needs to do the following: 

1. It tests the value of the IRP's PendingReturned flag. 

2. If this flag is TRUE, the I/O Completion routine puts the current 1/0 stack 
location into the pending state with a call to IoMarkIrpPending. 

3. Finally, it returns a value of STATUS_SUCCESS to allow completion process
ing to continue. 

Deallocate the IRP If the IRP was allocated by the driver, the I/O Com
pletion routine may be responsible for releasing it. Once again, this is a rather 
involved topic because the 1/0 Manager supports several different IRP allocation 
strategies. The next section of this chapter will explain all the gory details of 
releasing driver-allocated IRPs. 

Recycle the IRP Some intermediate drivers have to split a transfer into 
smaller pieces before sending it to a lower-level driver. Normally, the most effi
cient way to do this is to send each partial transfer to the lower driver by reusing 
the same IRP. To recycle an IRP, the I/O Completion routine does the following: 

1. It checks the context information stored with the IRP to see if this was the last 
partial transfer. If the whole transfer is finished and the IRP came from an out
side caller, the driver performs any necessary cleanup and returns 
STATUS_SUCCESS to allow further completion processing. 

2. If the whole transfer is finished and this is a driver-allocated IRP, the 1/ 0 
Completion routine performs any necessary cleanup, frees the IRP, and 
returns STATUS_MORE_PROCESSING_REQUIRED to prevent any further 
completion processing. 

3. If there's more work to be done, the 1/0 Completion routine calls IoGetNext
IrpStackLocation and sets up the I/O stack slot for the next lower driver. 

4. Next, it uses IoSetCompletionRoutine to attach the address of this I/O Com
pletion routine to the IRP. 

5. It passes the IRP to the target Device object using IoCallDriver. 

6. Finally, it returns STATUS_MORE_PROCESSING_REQUIRED to prevent any 
further completion processing of this IRP. 
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An implementation detail: During each partial transfer, an intermediate 
driver has to keep track of how much of the original caller's request has been sat
isfied. One clever way to maintain this context information is to store it in unused 
fields of the intermediate driver's I/O stack location. For example, if the interme
diate driver doesn't need the ByteOffset or Key fields, it can use them to hold 
three longwords of context data. Of course, if your driver does use these fields for 
their intended purpose, you can always allocate a private block and pass it as the 
Context argument to IoSetCompletionRoutine. 

Code Fragment: An 1/0 Completion Routine 

Below you'll find a fragment of an I/O Completion routine. It complements 
the YyDispatchRead function presented in the previous section of this chapter. If 
the request completed normally, it sends it back to the original caller. If something 
failed at a lower level, it retries the operation a fixed number of times. 

NTSTATUS 
YyReadCompletion( 

IN PDEVICE_OBJECT DeviceObject, 
IN PIRP Irp, 
IN PVOID Context 
) 

PIO_STACK_LOCATION ThisIrpStack = 
IoGetCurrentIrpStackLocation( Irp ); 

PIO_STACK_LOCATION NextIrpStack = 
IoGetNextIrpStackLocation( Irp ); 

PDEVICE_EXTENSION Extension = 
DeviceObject->DeviceExtension; 

if(( NT_SUCCESS ( Irp->IoStatus.Status )) 
I I (ThisIrpStack->Parameters.Read.Key 0)) 0 
{ 

if( Irp->PendingReturned ) @ 
IoMarkIrpPending( Irp ); 

return STATUS_SUCCESS; 

ThisIrpStack->Parameters.Read.Key--; ~ 

*NextIrpStack = *ThisIrpStack; 
NextIrpStack->Parameters.Read.Key 0; 

IoSetCompletionRoutine( 0 
Irp, 
YyReadCompletion, 
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NULL, 
TRUE, TRUE, TRUE ); 

IoCallDriver( Extension->LowerDevice, Irp ); 0 

o If the lower driver compl~ted the IRP with a successful status code, or if 
the IRP fail~dand ithas run out of retries, this driver is about to send it on 
its way back up the driver hierarchy. 

f];) It's necessary to see if the current I/O stack location should be marked 
pending. Because of the asynchronous nature of IoCallDriver, this can't 
be done until the completion routine runs. 

@) The lower driver failed the IRP but it still has some retries left. At this 
point, the upper driver decrements the retry count and prepares to send 
the IRP back down for another try. 

o The I/O Completion routine address has to be reset each time the IRP is 
recycled. 

o Finally, the I/ 0 Completion routine sends the IRP back to the lower 
driver. As its return value, the I/O Completion routine sends back 
STATUS_MORE]ROCESSING_REQUIRED. This prevents the I/O Man
ager from continuing to complete the IRP. 

15.4 ALLOCATING ADDITIONAL IRPs 

There are some situations where an intermediate driver may need to allocate addi
tional IRPs to send to another driver. For example, the initialization code in one 
driver might want to query the capabilities of a lower-level driver by issuing an 
IOCTL request. The filter driver appearing later in this chapter does exactly this. 

Or, for purposes of fault tolerance, the intermediate driver might want to 
duplicate an incoming request and send redundant copies to multiple lower
level drivers. The fault-tolerant disk driver that comes with NT Server uses this 
technique. 

Finally, a command exposed by an intermediate driver might require lower
level drivers to perform a complex sequence of operations. For example, the class 
driver for a particular kind of SCSI device has to issue a whole series of com
mands to the SCSI port driver to implement one of the class driver's operations. 

ThelRP's I/O Stack Revisited 

When you start to allocate additional IRPs, it's important to have a clear 
understanding of just how theIRP's I/O stack works. As you already know, when 
any driver receives an IRP from an outside caller, the I/O stack pointer points to 
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the stack location belonging to that driver. To retrieve this pointer, the driver sim
ply calls IoGetCurrentIrpStackLocation. 

If an intermediate driver plans to pass an incoming IRP to a lower-level 
driver, it has to set up the I/O stack location for the lower driver. To get a pointer 
to the lower driver's I/O stack slot, the intermediate driver makes a call to IoGet
NextIrpStackLocation. After setting up the lower stack slot, the intermediate 
driver uses IoCallDriver to pass the IRP on. This function automatically pushes 
the I/O stack pointer so that when the lower driver calls IoGetCurrentIrpStack
Location, it will get the right address. 

When the lower driver calls IoCompleteRequest, the completed IRP's I/O 
stack is popped. This allows an I/ 0 Completion routine belonging to the interme
diate driver to call IoGetCurrentIrpStackLocation if it needs to access its own 
stack location. As the IRP bubbles its way back up to the original caller, the I/O 
stack is automatically popped again for each driver in the hierarchy. Table 15.3 
summarizes the effects of these functions on an IRP's I/O stack pointer. 

To maintain consistent behavior with driver-allocated IRPs, the I/O Man
ager plays a little trick. When a driver allocates an IRP, the I/O Manager initial
izes the new IRP's I/O stack pointer so that it points at a nonexistent slot one 
location beyond the end of the stack. This guarantees that when the driver passes 
the IRP to a lower~level driver, IoCallDriver's push operation will set the stack 
pointer to the first real slot in the stack. This means the higher-level driver must 
call IoGetNextIrpStackLocation to retrieve a pointer to the I/O stack slot 
intended for the target driver. 

Controlling the St,~e ·of the IRP Stack 

When a driver receives an IRP from an outside caller, the number of I/O 
stack slots is detE!tmined-hy theStackSize field of the driver's Device object. If 
an intermediatedi-iver plans to pass incoming IRPs to a lower-level driver, it 
needs to set this 'field equal to one more than the StackSize value of the lower 
driver. This ensut'esthattherewill be enough I/O stack for all the drivers in the 
hierarchy. . 

Table 15.3 W~tvarious functions do to the IRP's I/O stack painter 

Working with t'u!'JRP stack pointer 

Function 

IoGetCurrentIrpStackLocation 
IoGetNextIrpStackLocation 
IoSetNextIrpShlckLocation 
IoCallDriver 
IoCompleteReqrtest 

Effect on .theJRPstack pointer 

No change 
No change 
Pushes stack pointer one location 
Pushes stack pointer one location 
Pops stack pointer one location 
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If an intermediate driver calls IoBuildAsynchronousFsdRequest, IoBuild
DeviceloControlRequest, or IoBuildSynchronousFsdRequest to create an IRP, 
the I/O Manager uses the StackSize field of the target Device object (passed as an 
argument to all three functions) to determine the number of I/O stack locations in 
the new IRP. These IRPs will have enough I/O stack slots for the target driver and 
any drivers below it. There will not be a slot in the I/O stack for the intermediate 
driver itself. 

If an intermediate driver uses IoAllocatelrp, ExAllocatePool, or some pri
vately managed memory to create an IRP, the driver must explicitly specify the 
number of 1/ 0 stack slots in the new IRP. Again, the common practice is to use the 
StackSize field of the target Device object to determine the proper number of 
slots. 

Ordinarily, an intermediate driver won't need a stack slot for itself in any 
IRPs it allocates. The one exception would be if the intermediate driver needed to 
associate some per-request context with the IRP. In that case, the driver could allo
cate an IRP with one extra stack slot and use the extra slot for holding private con
text data. This code fragment shows how it's done: 

NewIrp = IoAllocateIrp( LowerDevice->StackSize + 1 ); 

II 
II Push the 1/0 stack pointer so that it points 
II at the first valid slot. Use this slot to hold 
II context information needed by the upper driver. 
II 
IoSetNextIrpStackLocation( NewIrp ); 
ContextArea = IoGetCurrentIrpStackLocation( NewIrp ); 
NextDriverSlot = IoGetNextIrpStackLocation( NewIrp ); 

II 
II Set up next driver's 1/0 stack slot 
II 
NextDriverSlot->MajorFunction = IRP_MJ_XXX; 

II 
II Attach an 1/0 Completion routine and 
II send the IRP to someone else 
1/ 
IoSetCompletionRoutine( 

NewIrp, 
YyIoCompletion, 
NULL, 
TRUE, TRUE, TRUE ); 

IoCallDriver( LowerDevice, NewIrp ); 
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Creating IRPs with loBuildSynchronousFsdRequest 

The I/O Manager provides three convenience functions that simplify the 
process of building IRPs for standard kinds of I/O request. The first one is 
IoBuildSynchronousFsdRequest, and it fabricates read, write, flush, or shut
down IRPs. See Table 15.4 for a description of this function. 

The number of 1/ 0 stack locations in IRPs created with this function is equal 
to the StackSize field of the TargetDevice argument. There's no straightforward 
way to leave room in the 1/ 0 stack for the intermediate driver itself. 

The Buffer, Length, and StartingOffset arguments to this function are 
required for read and write operations. They must be NULL, 0, and NULL 
(respectively) for flush or shutdown operations. 

IoBuildSynchronousFsdRequest automatically sets up various fields in the 
Parameters area of the next lower I/O stack location, so there's rarely any need to 
touch the I/O stack. For read or write requests, this function also allocates system 
buffer space or builds an MDL, depending on whether the TargetDevice does 
Buffered or Direct I/O. For buffered outputs, it also copies the contents of the 
caller's buffer into the system buffer; at the end of a buffered input, data is auto
matically copied from the system buffer to the caller's buffer. 

As the function name suggests, you make requests for synchronous I/O 
operations with the IRPs returned by IoBuildSynchronousFsdRequest. In other 
words, the thread that calls IoCallDriver normally blocks itself until the I/O 
operation completes. To do this, just pass the address of an initialized Event object 

Table 15.4 Function prototype for loBuildSynchronousFsdRequest 

PIRP loBuildSynchronousFsdRequest 

Parameter 

IN ULONG MajorFunction 

IN PDEVICE_OBJECT TargetDevice 
IN OUT PYOID Buffer 
IN ULONG Length 
IN PLARGE_INTEGER StartingOffset 
IN PKEVENT Event 
OUT PIO_STATUS_BLOCK Iosb 
Return value 

IRQL == PASSIVE_LEVEL 

Description 

One of the following: 
• IRP _MLREAD 
• IRP _MLWRITE 
• IRP _MLFLUSH_BUFFERS 
• IRP _MLSHUTDOWN 
Device object where IRP will be sent 
Address of I/O buffer 
Length of buffer in bytes 
Device offset where I/O will begin 
Event object used to signal I/O completion 
Receives final status of 1/ 0 operation 
• Non-NULL - address of new IRP 
• NULL - IRP could not be allocated 
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when you allocate the IRP. Then, after sending the IRP to a lower-level driver with 
IoCallDriver, use KeWaitForSingleObject to wait for the Event object. When a 
lower-level driver completes the IRP, the I/O Manager will put this Event object 
into the Signaled state, which will awaken your driver. The I/O status block will 
tell you whether everything worked. 

Two points about intermediate drivers issuing synchronous 1/ 0 requests to 
other drivers. First, drivers that perform blocking I/O can be rather sluggish 
because they prevent the calling thread from overlapping its I/O operations. This 
is contrary to the philosophy of the NT I/O architecture, so you shouldn't do it 
unless you really need to. 

Second, the Event object used to wait for 1/ 0 completion needs to be syn
chronized properly or there could be a nasty collision. Consider the case where 
two threads in the same process issue a read request using the same handle. The 
YyDispatchRead routine executes in the context of the first thread and blocks 
itself waiting for the Event object. Then the same YyDispatchRead routine exe
cutes in the context of the other thread and reuses the same Event object to issue a 
second request. When the IRP for either request completes, the Event object will 
be set, both threads will awaken, and nothing good will happen.6 The solution is 
to guard the Event object with a Fast Mutex. 

The I/O Manager automatically cleans up and deallocates IRPs created with 
IoBuildSynchronousFsdRequest after their completion processing is done. This 
includes releasing any system buffer space or MDL attached to the IRP. To trigger 
this cleanup, a lower-level driver simply has to call IoCompleteRequest. 

Normally, there won't be any need to attach an I/O Completion routine to 
one of these IRPs, unless you need to do some driver-specific postprocessing. If 
you do attach an I/O Completion routine, it should return STATUS_SUCCESS 
when it's done. This lets the I/O Manager free the IRP. 

Creating IRPs with loBuildAsynchronousFsdRequest 

The second convenience function, IoBuildAsynchronousFsdRequest, is 
quite similar to the first. It lets you build read, write, flush, and shutdown 
requests without worrying about too many of the details. The main difference is 
that you have to process these IRPs asynchronously. You don't have the option of 
stopping and waiting for the I/O to complete. Table 15.5 contains the prototype 
for this function. 

As with IoBuildSynchronousFsdRequest, the Buffer, Length, and Starting
Offset parameters to IoBuildAsynchronousFsdRequest are required for read and 
write operations. They must be NULL, 0, and NULL (respectively) for flush or 
shutdown operations. 

6 This problem isn't limited to threads in the same process, by the way. If the intermediate driver's 
Device object is shareable, the same issue arises if threads in two separate processes issue simulta
neous requests that travel through the YyDispatchRead routine. 
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Table 15.5 Function prototype for loBuildAsynchronousFsdRequest 

PIRP loBuildAsynchronousFsdRequest 

Parameter 

IN ULONG MajorFunction 

IN PDEVICE_OBJECT TargetDevice 
IN OUT PYOID Buffer 
IN ULONG Length 
IN PLARGE_INTEGER StartingOffset 
OUT PIO_STATUS_BLOCK Iosb 
Return value 

IRQL ~ DISPATCH_LEVEL 

Description 

One of the following: 
• IRP _MLREAD 
• IRP _MLWRITE 
• IRP _MLFLUSH_BUFFERS 
• IRP _MJ_SHUTDOWN 
Device object where IRP will be sent 
Address of 1/ 0 buffer 
Length of buffer in bytes 
Device offset where I/O will begin 
Receives final status of II 0 operation 
• Non-NULL - address of new IRP 
• NULL - IRP could not be allocated 

Notice that you can call IoBuildAsynchronousFsdRequest at or below 
DISPATCH_LEVEL IRQL. IoBuildSynchronousFsdRequest works only at 
PASSIVE_LEVEL. 

Unlike the IRPs from IoBuildSynchronousFsdRequest, the ones from this 
function are not released automatically when a lower-level driver completes 
them. Instead, you must attach an I/O Completion routine to any IRP created 
with IoBuildAsynchronousFsdRequest. The I/O Completion routine calls 
IoFreeIrp which releases the system buffer or MDL associated with the IRP and 
then deallocates the IRP itself. The return value of the I/O Completion routine 
should be STATUS_MORE_PROCESSING_REQUIRED. 

Creating IRPs with loBuildDeviceloControlRequest 

The last convenience function, IoBuildDeviceIoControlRequest, (described 
in Table 15.6) simplifies the task of building IOCTL IRPs. This is useful because 
it's a fairly common practice for drivers of odd pieces of hardware to expose an 
interface composed almost entirely of IOCTLs. Some higher-level drivers (like 
NT's TDI network protocol drivers) take this same approach. 

The InternalDeviceIoControl argument lets you specify the major function 
code in the target driver's I/O stack slot. FALSE produces an IRP with 
IRP _MLDEVICE_CONTROL, while TRUE causes it to be set to IRP _MLINTER
NAL_DEVICE_CONTROL. 

Also notice that you can make either synchronous or asynchronous calls 
with the IRPs returned by this function. If you want your Dispatch routine to stop 
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Table 15.6 Function prototype for loBuildDeviceloControlRequest 

PIRP loBuildDeviceloControlRequest IRQL == PASSIVE LEVEL 

Parameter 

IN ULONG IoControlCode 
IN PDEVICE_OBJECT TargetDevice 
IN PYOID InputBuffer 
IN ULONG InputBufferLength 
OUT PYOID OutputBuffer 
IN ULONG OutputBufferLength 
IN BOOLEAN InternalDeviceIoControl 
IN PKEVENT Event 

OUT PIO_STATUS_BLOCK Iosb 
Return value 

Description 

IOCTL code recognized by target driver 
Device object where IRP will be sent 
Buffer of data passed to lower driver 
Size of data buffer in bytes 
Data buffer filled by lower driver 
Size of data buffer in bytes 
(See below) 
Event object used to signal I/O 

completion 
Receives final status of I/O operation 
• Non-NULL - address of new IRP 
• NULL - IRP could not be allocated 

and wait until an I/O control operation completes, simply pass the address of an 
initialized Event object when you allocate the IRP. Then, after sending the IRP to a 
lower-level driver with IoCallDriver, use KeWaitForSingleObjed to wait for the 
Event object. When a lower-level driver completes the IRP, the I/O Manager will 
put this Event object into the Signaled state, which awakens your driver. The I/O 
status block will tell you how everything went. As with IoBuildSynchronous
FsdRequest, you have to be careful about multiple threads using this Event object 
at the same time. 

The I/O Manager automatically cleans up and deallocates IRPs created with 
IoBuildDeviceIoControlRequest after their completion processing is done. This 
includes releasing any system buffer space or MDL attached to the IRP. To trigger 
this cleanup, a lower-level driver simply has to call IoCompleteRequest. 

Normally, there's no need to attach an I/O Completion routine to one of 
these IRPs, unless you need to do some driver-specific post-processing. If you do 
attach an I/O Completion routine, it should return STATUS_SUCCESS when it's 
done. This lets the I/O Manager free the IRP. 

The one problem with this function is the way it handles the buffering
method bits embedded in the IOCTL code. If an IOCTL code contains 
METHOD_BUFFERED, IoBuildDeviceIoControl allocates a nonpaged pool 
buffer and copies the contents of the InputBuffer to it; when the IRP completes, 
the contents of the nonpaged pool buffer are automatically copied to Output
Buffer. So far, it behaves exactly like a Win32 DeviceIoControl call coming from a 
user-mode application. 

But, if you specify an IOCTL code containing one of the Direct I/O methods, 
a nasty bug appears: IoBuildDeviceIoControl always builds an MDL for the Out
putBuffer address and always uses a nonpaged pool buffer for the InputBuffer 
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address, regardless of whether tHe 10CTL code specifies METHOD_IN_DIRECT 
or METHOD_OULDIRECT. 

Creating IRPs from Scratch 

The I/O Manager routines described above are the most convenient way to 
work with driver-allocated IRPs. Every once in awhile, however, they may not be 
the right thing to use. For example, if you're trying issue a request other than 
read, write, flush, shutdown, or device I/O control, these functions aren't very 
helpful. At that point, your only option is allocate a blank IRP and set it up by 
hand. The following subsections describe several ways to do this. 

IRPs from loAliocatelrp The IoAllocateIrp function will allocate an IRP 
from an I/O Manager zone buffer and perform certain basic kinds of initializa
tion? Your driver has to fill in the I/O stack location for the target driver and set 
up whatever kind of buffer the target driver is expecting to find. The following 
code fragment illustrates the use of this function. 

PMDL NewMdl; 
PIRP Newlrp; 
PIO_STACK_LOCATION NextlrpStack; 

Newlrp 

NewMdl 

IoAllocatelrp( LowerDevice->StackSize ); 

IoAllocateMdl( 
MmGetMdlVirtualAddress( 

Originallrp->MdlAddress ), 
XX_SI ZE_OF_BIGGEST_TRANSFER, 
FALSE, II Primary buffer 
FALSE, II No quota charge 
Newlrp ); 

IoBuildPartialMdl( 
Originallrp->MdlAddress, 
NewMdl, 
MmGetMdlVirtualAddress( Originallrp->MdlAddress ), 
XX_SIZE_OF_BIGGEST_TRANSFER ); 

NextlrpStack = IoGetNextlrpStackLocation( Newlrp ); 

NextlrpStack->MajorFunction = IRP_MJ_XXX; 

NextlrpStack-> 
Parameters.Xxx.Length = 

XX_SIZE_OF_BIGGEST_TRANSFER; 

7 There's a very serious error in the DDK documentation that's worth knowing about: The documen
tation clearly states that you must pass any IRPs created with IoAllocateIrp to IoInitializeIrp 
before you can use them. This tums out to be a lie. If you pass an IRP returned from IoAllocateIrp 
to IoInitializeIrp, the system will crash when your driver tries to release the IRP. So, don't do that. 
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NewIrp-> 
Tail.Overlay.Thread 

OriginalIrp->Tail.Overlay.Thread; 

IoSetCompletionRoutine( 
NewIrp, 
YyIoCompletion, 
NULL, 
TRUE, TRUE, TRUE ); 

IoCallDriver( LowerDevice, NewIrp ); 

One thing to mention here: If the new IRP is targeted at a disk device or a 
device with removable media, the intermediate driver needs to copy the contents 
of the original IRP's Tail.Overlay.Thread field into the new IRP. This guarantees 
that the system will be able to pop up a dialog box for the user if the underlying 
device driver calls IoSetHardErrorOrVerifyDevice. 

Your driver is responsible for releasing any IRPs created with IoAllocatelrp. 
It also has to free any other resources (MDLs or system buffers, for example) asso
ciated with the IRP. Normally, this cleanup occurs in the IRP's I/O Completion 
routine. The following code fragment shows what you need to do. 

NTSTATUS 
YyIoCompletion( 

IN PDEVICE_OBJECT DeviceObject, 
IN PIRP Irp, 
IN PVOID Context 
) 

IoFreeMdl( Irp->MdlAddress ); 
IoFreeIrp( Irp ); 

IRPs from ExAliocatePool If, for some odd reason, you'd prefer to get 
your IRPs directly from nonpaged pool, you can allocate them with the standard 
ExAllocatePool function. Once you have the block of pool, you still need to turn it 
into an IRP using IoInitializelrp. (This is the correct place to call this function.) 
Filling in the I/O stack location and setting up appropriate buffers or MDLs is still 
left to you. 

Here's an example of what to do; in this fragment, the lower Device object is 
expecting a nonpaged pool buffer rather than an MOL. 

NewIrp = ExAllocatePool( 
NonPagedPool, 
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IoSizeOfIrp ( 
LowerDevice->StackSize ))i 

IoInitializeIrp( 
NewIrp, 
IoSizeOfIrp( LowerDevice->StackSize ), 
LowerDevice->StackSize )i 

NextIrpStack = IoGetNextIrpStackLocation( NewIrp ) i 

NextIrpStack ->MajorFunction = IRP_MJ_XXXi 

NextIrpStack-> 
Parameters.Xxx.Length = XX_BUFFER_SIZEi 

NewIrp-> 
AssociatedIrp.SystemBuffer = 

373 

EXAllocatePool( NonPagedPool, XX_BUFFER_SIZE ); 

NewIrp-> 
Tail.Overlay.Thread 

OriginalIrp->Tail.Overlay.Thread; 

IoSetCompletionRoutine( 
NewIrp, 
YyIoCompletion, 
NULL, 
TRUE, TRUE, TRUE ); 

IoCallDriver( LowerDevice, NewIrp ); 

Once again, it's the job of the I/O Completion routine attached to the IRP to 
do all the cleanup and release the IRP. The following code fragment shows you 
how. 

NTSTATUS 
YyIoCompletion( 

IN PDEVICE_OBJECT DeviceObject, 
IN PIRP Irp, 
IN PVOID Context 
) 

ExFreePool( Irp->AssociatedIrp.SystemBuffer ); 
IoFreeIrp( Irp ); 

return STATUS_MORE_PROCESSING_REQUIRED; 

Notice that you use IoFreeIrp to get rid of the IRP, even though you allocated 
it with ExAllocatePool. This is because a field in the IRP tells the I/O Manager 
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whether this IRP came directly from the pool, or whether it came from the I/O 
Manager's private zone buffer. 

IRPs from driver-managed memory Finally, there's always the chance 
that you're keeping a private collection of IRPs that you've carved out of a driver
specific zone buffer or a look-aside list. This is really the same as the case where 
you allocate IRPs using ExAllocatePool, in that you still need to initialize each 
IRP using IoInitializelrp. 

The big difference is the way you release these privately managed IRPs. 
Since the I/O Manager doesn't know anything about your driver's memory man
agement strategy for these IRPs, the IoFreelrp function wouldn't know what to 
do with one of them. So, instead of calling IoFreeIrp, the I/O Completion routine 
needs to call whatever internal driver function is responsible for releasing the IRP. 

Setting Up Buffers for Lower Drivers 

If you use any of the preceding techniques to create IRPs from scratch, it's 
also your responsibility to initialize and clean up any buffers needed by those 
IRPs.8 How you do this will depend on whether the target Device object does 
Buffered or Direct I/O. 

Buffered 110 requests Here, the Dispatch routine in the intermediate 
driver has to call ExAllocatePool to allocate the buffer. It stores the address of this 
buffer in Associatedlrp.SystemBuffer field of the driver-allocated IRP. Later, an 1/ 
o Completion routine attached to the IRP has to release the buffer with a call to 
ExFreePool. 

Direct 110 requests Handling these requests means the intermediate 
driver has to set up an MDL describing the I/O buffer. In this case, the intermedi
ate driver's Dispatch routine would do the following: 

1. It calls IoAllocateMdl to create an empty MDL large enough map the buffer. 
It stores the address of this MDL in the MdlAddress field of the driver-allo
cated IRP. 

2. The Dispatch routine fills in the MDL. To map a portion of the buffer associ
ated with the original caller's IRP, it calls IoBuildPartialMdl. To map system 
memory into the MDL, it uses MmBuildMdlForNonPagedPool. 

3. It then attaches an 1/ 0 Completion routine to the driver-allocated IRP using 
IoSetCompletionRoutine. 

4. Finally, the Dispatch routine sends the IRP to a lower-level driver with 
IoCallDriver. 

8 This is one of the arguments in favor of using the convenience routines to build IRPs, since they 
handle all this nastiness on their own. 
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When the lower-level driver completes the IRP, the intermediate driver's I/O 
Completion routine uses IoFreeMdl to release the MOL. 

Keeping Track of Driver-Allocated IRPs 

Intermediate drivers have to be careful about how they handle incoming 
I/O requests that result in multiple IRPs being sent simultaneously to some 
other drivers. In particular, it's important for the original incoming IRP not to be 
completed until all the allocated IRPs have finished their work. Exactly how the 
intermediate driver does this will depend on whether it performs synchronous 
or asynchronous I/O with the driver-allocated IRPs. 

Synchronous 1/0 This is the simpler of the two cases, since the intermedi
ate driver's Dispatch routine just has to stop and wait until all the allocated IRPs 
have been completed. In general, the Dispatch routine would do the following: 

1. It calls IoBuildSynchronousFsdReqest to create some number of driver-:allo
cated IRPs. 

2. Next, the Dispatch routine uses IoCallDriver to pass all the driver-allocated 
IRPs to other drivers. 

3. It then calls KeWaitForMultipleObjects and freezes until all the allocated 
IRPs have completed. 

4. Finally, it calls IoCompleteRequest with the original IRP to send it back to the 
caller. 

Notice here that, since the original request is blocking inside the Dispatch 
routine itself, there's no need to mark the original IRP pending. 

Asynchronous 1/0 This is a somewhat more complex case because there's 
no central point of control where the driver can stop and wait for everything to 
finish. Instead, the intermediate driver has to attach I/O Completion routines to 
each driver-allocated IRP, and the completion routine will have to decide whether 
it's time to complete the original caller's IRP. 

Here's what happens in the Dispatch routine of an intermediate driver using 
this kind of freewheeling approach: 

1. It puts the original caller's IRP in the pending state by calling IoMarkPending. 

2. Next the Dispatch routine uses one of the methods described in the previous 
section to allocate some additional IRPs. 

3. It attaches an I/O Completion routine to each of these IRPs with IoSetCom
pletionRoutine.When it makes this call, the Dispatch routine passes a 
pointer to the original caller's IRP as the Context argument. 
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4. The Dispatch routine stores a count of outstanding allocated IRPs in an 
unused field of the original IRP. The Key field in the current I/O stack loca
tion's Parameters union is one possible place. 

5. Next, it uses IoCallDriver to pass all the IRPs to other drivers. 

6. Finally, the Dispatch routine passes back STATUS_PENDING as its return 
value. This is necessary because the original IRP isn't yet ready for comple
tion processing. 

As each of the other drivers completes one of these IRPs, the intermediate 
driver's I/O Completion routine executes. That routine does the following: 

1. First, it performs whatever cleanup is necessary and deletes the driver-allo
cated IRP. 

2. The I/O Completion routine calls ExInterlockedDecrementLong to decre
ment the count of outstanding IRPs contained in the original caller's IRP. 
(Remember, it received a pointer to this original IRP as its Context argument.) 

3. If the count equals zero, then this is the last outstanding driver-allocated IRP. 
In that case, the I/O Completion routine completes the original IRP by calling 
IoCompleteRequest. 

4. Finally, it returns STATUS_MORE_PROCESSING_REQUIRED to prevent any 
further completion processing of the driver-allocated IRP (which has just 
been deleted). 

15.5 WRITING FILTER DRIVERS 

A filter driver is a special type of intermediate driver. What sets filters apart from 
the layered drivers described earlier in this chapter is that they are invisible. They 
sit on top of some other driver and intercept requests directed at the lower 
driver's Device objects. Users of the lower driver are completely unaware that 
this is going on. Some of the things you can do with filters include the following: 

• Filters let you modify some aspects of an existing driver's behavior with
out rewriting the whole thing. SCSI filter drivers (described back in 
Chapter 1) work this way. 

• They make it easier to hide the limitations of lower-level device drivers. 
For example, a filter could split large transfers into smaller pieces before 
passing them on to a driver with transfer size limits. 

• Filters allow you to add features like compression or encryption to a 
device without modifying the underlying device driver or the programs 
that use the device. 
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• They let you add or remove expensive behavior like performance moni
toring that you don't want included in a driver all the time. The disk per
formance monitoring tools in NT work this way. 

The rest of this section explains how to write filter drivers. As you read it, 
keep in mind that things like driver-allocated IRPs and I/O Completion routines 
work the same way in a filter driver as they do in a regular layered driver. 

How Filter Drivers Work 

The main difference between filter drivers and other layered drivers is in the 
Device objects they create. Whereas a layered driver exposes Device objects with 
their own unique names, a filter driver's Device objects have no names at all. Fil
ter drivers work by attaching one of these nameless Device objects to a Device 
object created by some lower-level driver. Figure 15.2 illustrates this relationship. 

In the diagram, ITDRIVER has attached a filter Device object to XXO, one of 
XXDRIVER's Device objects. Any IRPs sent to XXO are automatically rerouted to 
the Dispatch routines in YYDRIVER. Here's how it works. 

1. The DriverEntry routine in the filter driver creates an invisible Device object 
and attaches it to a named Device object belonging to another driver. 

2. A client of the lower-level driver opens a connection to XXO. This can be a 
user-mode program calling CreateFile to get a handle, or a kernel-mode client 
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Figure 15.2 How filter drivers work 
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calling IoGetDeviceObjectPointer. In either case, the I/O Manager actually 
opens a connection between the client and the filter driver's invisible Device 
object. 

3. When the client sends an I/O request to XXO, the I/O Manager sends it to the 
filter driver's unnamed Device object instead. The I/O Manager uses the 
MajorFunction table of the filter's Driver object to select an appropriate Dis
patch routine. 

4. The Dispatch routines in the filter driver either process the IRP on their own 
and complete it immediately, or they send the IRP down to XXO with IoCall
Driver. If the filter driver needs to regain control of the IRP when the lower
level driver completes it, the filter can associate an I/O Completion routine 
with the IRP. 

Filters can also be layered above other filters. If you try to attach a filter to an 
already filtered Device object, the new filter simply gets layered on top of the 
highest existing filter. So, you can have essentially any number of filter levels. 

Initialization and Cleanup in Filter Drivers 

Like every other kernel-mode driver, a filter driver must have a main entry 
point called DriverEntry. If the driver is to be unloaded while the system is run
ning, it needs an Unload routine as well. The following subsections describe what 
these routines have to do. 

DriverEntry routine The initialization sequence in a filter driver will fol
low one of two basic patterns. The first possibility is that the filter needs to inter
cept IRPs directed at all the Device objects created by a lower-level driver. In that 
case, the filter's DriverEntry routine will perform these steps: 

1. It calls IoGetDeviceObjectPointer to get a pointer to one of the Device 
objects belonging to the lower-level driver. 

2. From this Device object, the filter's DriverEntry routine gets a pointer to the 
target Driver object. It uses this pointer to scan the MajorFunction table of the 
target Driver object and make sure that every function code supported by the 
target is also supported by the filter driver. 

3. Next, DriverEntry uses the DeviceObject field of the target Driver object to 
get the first target Device object. 

4. The filter calls IoCreateDevice to create a filter Device object for this target 
Device object. This filter Device object has no NT name, nor does it have a 
symbolic link to give it a Win32 name. 

5. It then calls IoAttachDeviceByPointer to attach the new filter Device object to 
the target Device object. 
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6. It stores the address of the target Device object in the Device Extension of the 
filter Device object. Other parts of the filter driver will need this pointer to call 
the target driver. 

7. Next, DriverEntry copies the DeviceType and Characteristics fields from the 
target Device object to the filter Device object. It also copies the 
DO_DIRECT_10 and DO_BUFFERED_IO bits from the target Device object's 
Flags field. This guarantees that the filter will look the same and have the 
same buffering strategy as the target driver. 

8. It uses the NextDevice field of the target Device object to get the next Device 
object in the chain and repeats steps 4-7. 

9. Finally, it calls ObDereferenceObject to decrement the reference count on the 
File object returned by IoGetDeviceObjectPointer. 

The second possibility is that the filter driver only wants to capture I/O 
requests sent a specific Device object belonging to a lower-level driver. In that 
case, the filter's DriverEntry routine performs the following steps. 

1. It calls IoCreateDevice to create a filter Device object. This object has no NT 
name, nor does it have a symbolic link to give it a Win32 name. 

2. DriverEntry uses IoAttachDevice to connect the filter Device object to a spe
cific target Device object. This function takes the case-sensitive NT name of 
the target device (for example, \Device \XXO) and a pointer to the filter 
Device object. After making the attachment, it returns a pointer to the target 
Device object. 

3. It stores the address of the target Device object in the Device Extension of the 
filter Device object. 

4. Next, DriverEntry copies the DeviceType and Characteristics fields from 
the target Device object to the filter Device object. It also copies the 
DO_DIRECT_10 and DO_BUFFERED_IO bits from the target Device object's 
Flags field. 

5. From the target Device object, the filter's DriverEntry routine gets a pointer to 
the target Driver object. It uses this pointer to scan the MajorFunction table of 
the target Driver object and make sure that every function code supported by 
the target is also supported by the filter driver. 

Unload routine A filter driver's Unload routine has to disconnect the filter 
and target Device objects. If does this by calling IoDetachDevice and passing a 
pointer to the target Device object. Once the filter Device object has been 
detached, the Unload routine calls IoDeleteDevice to get rid of it. If the filter 
driver has attached itself to a number of target Device objects, it needs to repeat 
this procedure for each filter Device object. 
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What Happens behind the Scenes 

A lot of undocumented activity occurs when a filter driver attaches itself to a 
target Device object. In response to an IoAttachDeviceByPointer call, the I/O 
Manager performs the following steps. 

1. It sends an IRP to the target Device object. This IRP contains the function code 
IRP _MLCREATE. There are enough I/O stack locations in this IRP for the 
target driver plus any other drivers layered beneath it. This IRP does not pass 
through the filter driver's MajorFunction dispatch table. 

2. Next, the I/O Manager sets the filter Device object's StackSize field to one 
greater than the StackSize field of the target Device object. This guarantees 
that IRPs created for the filter will have enough I/O stack locations for any 
lower-level drivers in the hierarchy. 

3. It also sets the AlignmentRequirement field of the filter Device object equal 
to the AlignmentRequirement field of the target Device object. 

4. The I/O Manager then sends an IRP to the filter Device object. This IRP con
tains the function code IRP _MLCLOSE. Regardless of what Dispatch routines 
are registered in the filter driver's MajorFunction table, this IRP _MLCLOSE 
IRP is not preceded by an IRP _ML CLEANUP IRP. 

5. Finally, the I/O Manager returns the address of the target Device object to the 
caller of IoAttachDeviceByPointer. 

Unlike the attach function, IoDetachDevice function doesn't send any self
generated IRPs to the target Device object, nor does it reset the StackSize field of 
the filter Device object. 

Making the Attachment Transparent 

Once a filter has attached itself to a target driver, any I/O requests sent to 
the target have to pass through the Dispatch routines of the filter driver first. If 
the MajorFunction table of the filter Driver object doesn't support the same set 
of IRP _MLXXX codes as the target driver, clients of the target may experience 
problems when the filter is attached. Specifically, some types of requests that 
work without the filter will be rejected as illegal operations when the filter is in 
place. 

To avoid this kind of inconsistency, the filter driver's MajorFunction table 
must contain a Dispatch routine for every IRP _MLXXX function supported by 
the target driver. Even if the filter isn't interested in modifying a particular major 
function code, it still has to supply a dummy Dispatch routine that just passes the 
IRP on to the target driver. 

The best way to set this up is for the filter driver to scan the MajorFunction 
table of the target Driver object. If an entry in the target driver's table contains a 
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pointer to _IoplnvalidDeviceRequest,9 then the corresponding IRP _MLXXX 
code is unsupported; if it contains anything else, then the target driver supports 
the function code. In that case, the filter driver has to put a Dispatch routine in the 
corresponding MajorFunction slot of its own Driver object. The sample driver in 
the next section shows how to do this. 

15.6 CODE EXAMPLE: A FILTER DRIVER 

This example shows how a basic filter driver (called YYDRIVER) intercepts all 
requests intended for a lower-level driver (XXDRIVER). The purpose of the filter 
is to hide the lower driver's limited output transfer size. To do this, it breaks large 
outputs into smaller pieces. It also overrides an IOCTL from the lower driver that 
returns the maximum size of an output buffer. All other major function codes sup
ported by the lower driver are simply passed through from the filter. 

You can find the code for this example in the CH1S\FILTER\DRIVER 
directory on the disk that accompanies this book. Code for the dummy device 
driver sitting below it is in CH1S\LOWER\DRIVER. 

VVDRIVER.H - Driver Data Structures 

Here's the Device Extension used by the filter driver. Notice that it contains 
a pointer to the lower driver's Device object. The filter uses this to send IRPs to 
the lower driver. 

typedef struct _DEVICE_EXTENSION { 
PDEVICE_OBJECT DeviceObjecti II Back pointer 

PDEVICE_OBJECT TargetDevicei 
XX_BUFFER_SIZE_INFO BufferInfoi 
DEVICE_EXTENSION, *PDEVICE_EXTENSIONi 

INIT.C - Initialization Code 

Initialization in this filter follows the pattern described in the previous sec
tion of this chapter. This driver takes the general approach of intercepting I/O 
requests for all the Device objects created by the lower driver. 

DriverEntry This function is responsible for driver-level initialization. It 
uses one of the lower driver's Device objects to locate all Device objects belonging 
to the lower driver. It uses a helper function to attach filter Device objects to each 
one. It also sets up the filter's MajorFunction table by scanning the slots in the 
lower driver's table. 

9 Remember from Chapter 8 that this is the I/O Manager routine that rejects an IRP with an 
unwanted function code. This is the default value for any slot in the MajorFunction table. 
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NTSTATUS 
DriverEntry( 
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IN PDRIVER_OBJECT DriverObject, 
IN PUNICODE_STRING RegistryPath 
) 

PDEVICE_OBJECT TargetDevice; 
UNICODE_STRING TargetDeviceName; 
PDRIVER_OBJECT TargetDriver; 
PDRIVER_DISPATCH EmptyDispatchValue; 

XX_BUFFER_SIZE_INFO BufferInfo; 
PFILE_OBJECT FileObject; 

NTSTATUS status; 
ULONG i; 

EmptyDispatchValue 
DriverObject->MajorFunction[ IRP_MJ_CREATE ]; 0 

II 
II Export other driver entry points ... 
II 

DriverObject->DriverUnload = YyDriverUnload; 

DriverObject-> 
MajorFunction[ IRP_MJ_WRITE 

YyDispatchWrite; @ 

DriverObject-> 
MajorFunction[ IRP_MJ_DEVICE_CONTROL 

YyDispatchDeviceIoControl; 

RtlInitUnicodeString( 
&TargetDeviceName, 
TARGET_DEVICE_NAME ); 

status = IoGetDeviceObjectPointer( e 
&TargetDeviceName, 
FILE_ALL_ACCESS, 
&FileObject, 
&TargetDevice ); 

if( !NT_SUCCESS( status )) 
{ 

return status; 

YyGetBufferLimits( TargetDevice, &BufferInfo ); 
TargetDriver = TargetDevice->DriverObject; 
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fori i=Oi i<=IRP_MJ_MAXlMUM_FUNCTIONi i++ ) 0 
{ 

if(( TargetDriver->MajorFunction[i] 
!= EmptyDispatchValue ) 
&& ( DriverObject->MajorFunction[i] 

EmptyDispatchValue )) 
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DriverObject->MajorFunction[i] 
YyDispatchPassThroughi 

TargetDevice = TargetDriver->DeviceObjecti ~ 

while ( TargetDevice != NULL) 
{ 

status = YyAttachFilter( 
DriverObject, 
TargetDevice, 
&Bufferlnfo )i 

if( !NT_SUCCESS( status )) 
{ 

YyDriverUnload( DriverObject )i 
breaki 

TargetDevice = TargetDevice->NextDevicei 

ObDereferenceObject( FileObject )i @ 

return statusi 

o The first step is to get the contents of an empty slot in the filter's Major
Function table. This is actually the address of an internal system routine 
called _IoplnvalidDeviceRequest. We can find its current value by look
ing in any slot of the filter's own table that it hasn't filled in yet. 

@ Next, overwrite slots in the filter's MajorFunction table that correspond 
to functions the filter wants to intercept and modify. In this driver, only 
write and IOCTL functions are being fooled with. 

@) Using the NT name of any device belonging to the lower driver, get a 
pointer to the Device object itself. It doesn't really matter which one, since 
it's only being used to query buffer size limits and to get a pointer to the 
lower Driver object. 

o In this loop, see which IRP _MLXXX function codes the lower driver 
responds to. If the lower driver processes a given code and the filter 
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doesn't explicitly intercept that code, fill the corresponding slot in the fil
ter's MajorFunction table with the address of a generic pass-through Dis
patch routine. 

e Now, run the list of all Device objects attached to the lower Driver object. 
For each one, create and attach an invisible filter Device object. 

<D Finally, decrement the reference count on the unused File object and 
return the most recent status value. This is either STATUS_SUCCESS or 
some error code from Yy AltachFilter. 

VyAttachFilter This is a little helper function that does the grunt work 
associated with creating and attaching a filter Device object to a specific lower
level Device object. 

static NTSTATUS 
YyAttachFilter( 

{ 

IN PDRIVER_OBJECT FilterDriver, 
IN PDEVICE_OBJECT TargetDevice, 
IN PXX_BUFFER_SIZE_INFO BufferInfo 
) 

PDEVICE_OBJECT FilterDevice; 
PDEVICE_EXTENSION FilterExtension; 

ULONG TargetMethod; 
NTSTATUS status; 

status = IoCreateDevice( 0 
FilterDriver, 
sizeof( DEVICE_EXTENSION ), 
NULL, 
FILE_DEVICE_UNKNOWN, 
0, 
TRUE, 
&FilterDevice ); 

if( !NT_SUCCESS( status )) 
{ 

return status; 

status = IoAttachDeviceByPointer(@ 
FilterDevice, 
TargetDevice ); 

if( !NT_SUCCESS( status )) 
{ 
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} 

IoDeleteDevice( FilterDevice ); 
return status; 

FilterExtension = FilterDevice->DeviceExtension; e 
FilterExtension->DeviceObject FilterDevice; 
FilterExtension->TargetDevice = TargetDevice; 

FilterExtension-> 
Bufferlnfo.MaxWriteLength = 

Bufferlnfo->MaxWriteLength; 

FilterExtension-> 
Bufferlnfo.MaxReadLength = 

Bufferlnfo->MaxReadLength; 

FilterDevice->DeviceType = 
TargetDevice->DeviceType; 0 

FilterDevice->Characteristics = 
TargetDevice->Characteristics; 

FilterDevice->Flags 1= 
( TargetDevice->Flags & 

( DO_BUFFERED_IO 1 DO_DIRECT_IO )); 0 

return STATUS_SUCCESS; 

o Create a Device object without an NT name. It doesn't matter what its 
type or characteristics are, since they'll be copied from the lower-level 
Device object. 

8 Attach the invisible Device object to the lower-level Device object. See the 
previous section in this chapter for a description of all the things that hap
pen when you make this call. 

e Set up the filter Device object's Device Extension structure. This includes 
storing the transfer size limitations queried from the lower driver. 

o Copy various items from the lower-level Device object into the filter 
Device object. This is necessary to make the presence of the filter as trans
parent as possible. 

o Last, select the same buffering strategy as the one used by the lower-level 
Device object. 

YyGetBufferLimits This is an even tinier helper function that queries the 
lower-level driver for information about its buffer size limits. It shows how to 
make a synchronous IOCTL call from one driver to another. 
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static VOID 
YyGetBufferLimits( 
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IN PDEVICE_OBJECT TargetDevice, 
IN OUT PXX_BUFFER_SIZE INFO BufferInfo 
) 

KEVENT IoctlComplete; 
IO_STATUS_BLOCK Iosb; 
PIRP Irp; 
NTSTATUS status; 

KeInitializeEvent( 
&IoctlComplete, 
NotificationEvent, 
FALSE) ; 

Irp IoBuildDeviceIoControlRequest( 
IOCTL_XX_GET_MAX_BUFFER_SIZE, 
TargetDevice, 
NULL, 
0, 
BufferInfo, 
sizeof( XX_BUFFER_SIZE_INFO ), 
FALSE, 
&IoctlComplete, 
&Iosb ); 

IoCallDriver( TargetDevice, Irp ); 

KeWaitForSingleObject( 
&IoctlComplete, 
Executive, 
KernelMode, 
FALSE, 
NULL) ; 

DISPATCH.C - Filter Dispatch Routines 

Here are the Dispatch routines for the filter driver. Only two major function 
codes are actually modified by the filter. All the others are passed directly to the 
lower-level driver. 

VyDispatchWrlte The lower driver has a limit on the maximum size of an 
output operation. The filter hides this by breaking writes into smaller pieces. This 
Dispatch routine and the corresponding I/O Completion routine do the work of 
splitting the transfer. 
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NTSTATUS 
YyDispatchWrite( 

{ 

IN PDEVICE_OBJECT DeviceObject, 
IN PIRP Irp 
) 

PDEVICE_EXTENSION FilterExtension = 
DeviceObject->DeviceExtensioni 

PIO_STACK_LOCATION IrpStack = 
IoGetCurrentIrpStackLocation( Irp )i 

PIO_STACK_LOCATION NextIrpStack = 
IoGetNextIrpStackLocation( Irp )i 

ULONG MaxTransfer = 
FilterExtension-> 

BufferInfo.MaxWriteLength; 

ULONG BytesRequested = 
IrpStack->Parameters.Write.Length; 

if( BytesRequested == 0 ) 0 
{ 

Irp->IoStatus.Status = STATUS_SUCCESS; 
Irp->IoStatus.Information = 0; 
IoCompleteRequest( Irp, IO_NO_INCREMENT ); 
return STATUS_SUCCESS; 

if( BytesRequested <= MaxTransfer ) @ 
{ 

return YyDispatchPassThrough( 
DeviceObj~ct, 

Irp ); 

NextIrpStack-> 
MajorFunction 

NextIrpStack-> 
Parameters.Write.Length 

IrpStack-> 
Parameters.Write. 

ByteOffset.HighPart 

IrpStack-> 
Parameters.Write. 

ByteOffset.LowPart 

MaxTransfer; 

BytesRequested; 0 

387 
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(ULONG) Irp->AssociatedIrp. 
SystemBuffer; 0 

IoSetCompletionRoutine ( <D 

II 

Irp, 
YyWriteCompletion, 
NULL, 
TRUE, TRUE, TRUE ); 

II Pass the IRP to the target device 
II 

return IoCallDriver( 8 
FilterExtension->TargetDevice, 
Irp ); 

o Check for zero-length transfers and complete them right here. 

@ If the requested length is within the lower driver's acceptable limits, just 
send the IRP right on through. 

~ Otherwise, set up the lower driver's I/O stack location in this IRP to 
transfer as much as possible in a single operation. 

o Use the high-order part of the ByteOffset field in the filter driver's I/O 
stack location to hold the number of bytes remaining in the original 
caller's request. This is all right because this field isn't being used for any
thing else in this driver. Initially, this is the same as the number of bytes 
requested in the whole transfer. 

o Save the original system buffer address in the low-order (unsigned) part 
of the ByteOffset field. 

<D Set up an 1/ 0 Completion routine to continue working on the split trans
fer. All the necessary context is stored somewhere in the IRP, so there's no 
need to pass any other context block. 

8 Finally, pass the IRP to the lower-level driver and begin the first partial 
transfer operation. 

YyDispatchDeviceloControl To further hide the limitations of the lower
level driver, the filter intercepts IOCTL queries about the driver's maximum 
transfer size. Instead of returning the lower-level driver's limit values, it lies and 
says there are no limits. Any other kind of IOCTL function is passed through. 

NTSTATUS 
YyDispatchDeviceIoControl( 

IN PDEVICE_OBJECT DeviceObject, 
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IN PIRP Irp 
) 

PIO_STACK_LOCATION IrpStack = 
IoGetCurrentIrpStackLocation( Irp ); 

PXX_BUFFER_SIZE_INFO BufferInfo; 

if( IrpStack-> 
Parameters. 

DeviceIoControl.IoControlCode 
IOCTL_XX_GET_MAX_BUFFER_SIZE ) 0 

BufferInfo = 
(PXX_BUFFER_SIZE_INFO) Irp-> 

AssociatedIrp.SystemBuffer; 

BufferInfo-> 
MaxWriteLength = XX_NO_BUFFER_LIMIT; 

BufferInfo-> 
MaxReadLength = XX_NO_BUFFER_LIMIT; 

Irp->IoStatus.Information = 
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sizeof( XX_BUFFER_SIZE_INFO ); 

} 

Irp->IoStatus.Status = STATUS_SUCCESS; 
IoCompleteRequest( Irp, IO~NO_INCREMENT ); 
return STATUS_SUCCESS; 

else f9 

return YyDispatchPassThrough( 
DeviceObject, 
Irp ); 

o Intercept the buffer-size IOCTL code used by the lower-level driver and 
tell the caller that there are no size limits. 

f9 If it's any other kind of IOCTL, just send it on to the lower driver for 
processing. 

VyDispatchPassThrough This is the "none of the above" Dispatch rou
tine. It simply passes everything on to the lower-level driver. It attaches a generic 
110 Completion routine to handle making the IRP pending. 

NTSTATUS 
YyDispatchPassThrough( 
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IN PDEVICE_OBJECT DeviceObject, 
IN PIRP Irp 
) 

PDEVICE_EXTENSION FilterExtension = 
DeviceObject->DeviceExtension; 

PIO_STACK_LOCATION IrpStack = 
IoGetCurrentIrpStackLocation( Irp ); 

PIO_STACK_LOCATION NextIrpStack = 
IoGetNextIrpStackLocation( Irp ); 

NTSTATUS status; 

II 

II Copy args to next level 
II 

*NextIrpStack = *IrpStack; 

II 
II Set up Completion routine to handle 
II marking the IRP pending. 
/! 

II 

IoSetCompletionRoutine( 
Irp, 
YyGenericCompletion, 
NULL, 
TRUE, TRUE, TRUE ); 

II Pass the IRP to the target 
II 

return IoCallDriver( 
FilterExtension->TargetDevice, 
Irp ); 

COMPLETE.C - I/O Completion Routines 

The functions in this file handle all the I/O completion performed by the fil
ter driver. 

YyWriteCompletion This is the real workhorse routine. Its job is to per
form all the additional partial transfers needed to satisfy the original caller's 
request. If there's an error, or when the whole transfer is finished, it allows the IRP 
to continue its journey back up the driver stack. Otherwise, it sets up the IRP for 
another small transfer and sends it to the lower driver. 
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NTSTATUS 
YyWriteCompletion( 

IN PDEVICE_OBJECT DeviceObject, 
IN PIRP Irp, 
IN PVOID Context 
) 

PDEVICE EXTENSION FilterExtension = 
DeviceObject->DeviceExtension; 

PIO_STACK_LOCATION IrpStack = 
IoGetCurrentIrpStackLocation( Irp ); 

PIO_STACK_LOCATION NextIrpStack = 
IoGetNextIrpStackLocation( Irp ); 

ULONG TransferSize = 
Irp->IoStatus.Information; 

ULONG BytesRequested = 
IrpStack->Parameters.Write.Length; 

ULONG BytesRemaining = 
(ULONG) IrpStack-> 

Parameters.Write.ByteOffset.HighPart; 

ULONG MaxTransfer = 
FilterExtension->BufferInfo.MaxWriteLength; 

NTSTATUS status; 

if( NT_SUCCESS ( Irp->IoStatus.Status )) 0 
{ 

BytesRemaining -= TransferSize; 

IrpStack-> 
Parameters.Write. 

ByteOffset.HighPart 
BytesRemaining; 

if( NT_SUCCESS ( Irp->IoStatus.Status ) @ 
&& BytesRemaining > 0 ) 
{ 

(PUCHAR) Irp-> 
AssociatedIrp.SystemBuffer += 

TransferSize; @) 

TransferSize = BytesRemaining; 0 

if( TransferSize > MaxTransfer 
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TransferSize MaxTransfer; 

NextlrpStack->MajorFunction 

NextlrpStack-> 
Parameters.Write.Length 

TransferSize; 

IoSetCompletionRoutine( 0 
Irp, 
YyWriteCompletion, 
NULL, 
TRUE, TRUE, TRUE ); 

IoCallDriver( <D 
FilterExtension->TargetDevice, 
Irp ); 

else 8 

Irp->Associatedlrp.SystemBuffer 
(PVOID) IrpStack-> 

Parameters.Write. 
ByteOffset.LowPart; 0 

Irp->IoStatus.lnformation = 
BytesRequested - BytesRemaining; @ 

if( Irp->PendingReturned ) ~ 
{ 

IoMarklrpPending(Irp) ; 

return STATUS_SUCCESS; 

o If the current transfer worked, reduce the count of bytes left to send and 
save the new count in an unused part of the filter driver's I/O stack 
location. 

@ If there's more data left to transfer, set up the next partial output operation. 

@) Increment the pointer into the system buffer to account for the data trans
fer that's just completed. 
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o Calculate the size of the next partial transfer. Start by assuming it can all 
be done in a single operation. Reduce that expectation if it proves to be 
too optimistic. 

40 After setting up the I/O stack location for the lower-level driver, attach 
this I/O Completion routine to catch the operation when it finishes. 

<D Pass the IRP to the lower-level driver. The return value from the call 
doesn't matter since the I/O Completion routine will clean up after 
everything. Then prevent any further processing of this IRP by the 
IoCompleteRequest. After all, the IRP has just been given away. 

8 At this point, there was either an error or all the bytes have been trans
ferred. In either case, get rid of the IRP. 

f3 Before the IRP continues its journey up the driver stack, it's very impor
tant to restore the original system buffer pointer. The I/ 0 Manager is 
going to use this pointer to release the buffer, so it must contain its origi
nal value. 

~ The IoStatus.Information field contains the size of the most recent partial 
transfer. Change that to show the true number of bytes transferred in all 
the partial transfers up to this point. 

® See if the current I/O stack location needs to be put in the pending state. 
Finally, return STATUS_SUCCESS to let the IRP continue traveling back 
up the driver hierarchy to the original caller. 

YyGenericCompletion This is another one of those "none of the above" 
functions. It is used by any kind of I/O request that doesn't need driver-specific 
completion processing by the filter. Its main purpose is to mark the current I/O 
stack location pending after the IRP's been released by the lower driver. 

NTSTATUS 
YyGenericCompletion( 

IN PDEVICE_OBJECT DeviceObject, 
IN PIRP Irp, 
IN PVOID Context 
) 

if( Irp->PendingReturned ) 
{ 

IoMarkIrpPending(Irp) ; 

return STATUS_SUCCESS; 
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15.7 WRITING TIGHTLY COUPLED DRIVERS 

Unlike layered and filter driver, tightly coupled drivers don't use the I/O Man
ager's IoCallDriver function for most of their communications. Instead, they 
define some kind of private calling interface. The advantage of this approach is 
that it's usually faster than the IRP-passing model supported by the I/O Manager. 
In trade for improved performance, however, you have to pay much more atten
tion to the mechanics of the interface. Also, unless the details of the interface are 
well documented, it's difficult for drivers from different vendors to work with 
each other this way. 

How Tightly Coupled Drivers Work 

Since the interface between two tightly coupled drivers is completely deter
mined by the driver designer, it's impossible to give a single, unified description 
of how all tightly coupled drivers work. Instead, this subsection presents some 
general architectural gUidelines.lO Figure 15.3 shows one common method of 
tightly coupling a pair of drivers. 

In this picture, the lower driver has exposed a special setup function in the 
form of a IRP _MLINTERNAL_DEVICE_CONTROL IOCTL. During the upper 
driver's initialization, it calls this IOCTL function to retrieve a table of function 

IRP 
For 
YyO 

Function Table 

XxFunctionO 
•• XxFunctionl 

Copyright© 1996 by Cydonix Corporation. 960033a.vsd 

YYDRIVER 

Dispatch 

Call XxFunctionl 

XXDRIVER 

XxFunction1 

return 

Figure 15.3 How tightly coupled drivers work 

10 For some concrete examples, see source code for the mouse and keyboard drivers that comes with 
theDDK. 
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pointers from the lower driver. When the upper driver needs the services of the 
lower driver, it calls one of the functions in this table directly, rather than using 
IoCallDriver. Before unloading, the upper driver calls another function in the 
function table to disconnect it from the lower driver. 

Initialization and Cleanup in Tightly Coupled Drivers 

The following subsections describe in general terms how a pair of tightly 
coupled drivers might initialize and unload. Of course, the exact steps will 
depend on the architecture chosen by the driver designer. 

Lower DriverEntry routine Assuming the lower driver manages some 
specific piece of hardware, its DriverEntry routine will perform the following 
steps. 

1. Using the techniques described in Chapter 7, it finds and allocates any hard
ware for which it is responsible. 

2. DriverEntry adds an IRP _MLINTERNAL_DEVICE_CONTROL Dispatch 
routine to the Driver object's MajorFunction table. One of the IOCTLs sup
ported by this function code will be to export a table of pointers to various 
functions in the lower driver. 

3. Next, it calls loCreateDevice to build a Device object. Although this object 
has an NT name, it does not have a Win32 symbolic link. This Device object is 
used by the upper driver to establish its initial connection with the lower 
driver. 

4. Finally, DriverEntry does any other driver-specific initialization. For example, 
it might set up a ring of buffers that it will share with its higher-level clients. 

Upper DriverEntry routine The upper driver makes its initial contact with 
the lower driver using the standard I/O Manager interface described earlier in 
this chapter. This is what its DriverEntry routine does. 

1. It calls IoGetDeviceObjectPointer to get a pointer to the lower driver's 
Device object. As with a layered driver, this is followed by a call to ObRefer
enceObjectByPointer to increment the pointer reference count of the lower 
Device object, and a call to ObDereferenceObject to decrement the reference 
count of the File object returned by IoGetDeviceObjectPointer. 

2. Next, DriverEntry issues a synchronous 10CTL request to the lower Device 
object. This IOCTL returns the address of the lower driver's table of exported 
functions. 

3. It creates one or more Device objects with IoCreateDevice. If the upper driver 
is exposing these objects to user-mode applications, it calls IoCreateSymbolic
Link to give them Win32 names. 
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4. Finally, DriverEntry stores the address of the lower driver's function table in 
the Device Extension of the upper Device objects. 

Upper Unload routine When the upper driver is stopped, its Unload rou
tine should perform the following general steps. 

1. It releases any resources it might have acquired from the lower driver. For 
example, if it received a buffer from the lower driver, it returns it. 

2. Next, the Unload routine issues a synchronous IOCTL to the lower Device 
object. This notifies the lower driver that the upper one is disconnecting and 
gives the lower driver a chance to release resources acquired from the upper 
driver. 

3. It then calls ObDereferenceObject to decrement the pointer reference count 
on the lower Device object. This effectively breaks the connection with the 
lower driver. 

4. Finally, the Unload routine performs the usual cleanup tasks, such as deleting 
its own Device objects and symbolic links. 

Lower Unload routine There's nothing particular exciting about the lower 
driver's Unload routine. It simply releases any hardware it might be holding, 
releases any other system resources it has allocated, and deletes the Device object 
that it exposed to the upper driver. 

1/0 Request Processing in Tightly Coupled Drivers 

When a client of the upper driver issues an I/O request, the I/O Manager 
sends an IRP representing the transaction to one of the upper driver's Dispatch 

. routines. Rather than using IoCallDriver to send this IRP to the lower driver, the 
Dispatch routine directly calls one or more functions in the lower driver to service 
the request. The exact processing sequence will depend on whether the request is 
handled synchronously or asynchronously. 

Synchronous VO For input.operations, the upper driver uses a GelBuffer 
function in the lower driver to dequeue a buffer of data from the ring of shared 
buffers .. Following the model· described in Chapter 14,· this queue has a Sema
phore object that keeps track of the number of full buffers. If the queue of ready 
buffers is empty, the Semaphore will be in the Non-signaled state, and the upper 
driver's Dispatch routine will wait. When the lower driver adds a full buffer to 
the queue, it increments the Semaphore, which awakens the waiting Dispatch 
routine. The Dispatch routine then formats and copies data from the shared buffer 
into the buffer associated with the original caller's IRP, completes the IRP, and 
releases the shared buffer using a PutBuffer function exposed by the lower driver . 

. Synchronous output operations just reverse the sequence. Here, the upper 
driver's Dispatch routine calls a GetBuffer function in the lower driver to get an 
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empty buffer from the queue. Again, the queue has an attached Semaphore object 
that counts the number of available buffers. If there are no empty buffers, the 
upper driver's Dispatch routine waits until the lower driver adds one to the 
queue and increments the Semaphore. Once it gets an empty buffer, the upper 
driver fills it with data from the buffer associated with the original IRP. It then 
calls a PutBuffer function exposed by the lower driver. 

The PutBufier function begins the actual data transfer and then waits for a 
synchronization Event object embedded in the buffer. This causes the upper 
driver's Dispatch routine to go to sleep. When the transfer operation completes, 
some other part of the lower driver (a DPC routine, for example) sets the Event 
object and returns the buffer to the queue of available blocks. At that point, the 
upper driver's Dispatch routine wakes up and completes the original caller's IRP. 

Asynchronous VO In this case, the upper driver's Dispatch routine calls 
IoMarkIrpPending to put the original caller's IRP into the pending state. It then 
calls a QueueRequest function exported by the lower driver. As arguments, this 
function takes the address of the original IRP and a pointer to a callback routine in 
the upper driver. QueueRequest. stores the IRP address and callback pointer in a 
driver-defined context block and adds it to a private queue of pending requests. It 
then returns control to the upper driver, and the upper driver's Dispatch routine 
returns STATUS_PENDING to theI/O Manager. 

Meanwhile, the lower driver is busily pulling context blocks from its private 
queue and perfOl'JIling I/Or:equests. As each one finishes, the lower driver 
invokes the upper driver's callback routine and passes it the address of the pro
cessed IRP. The callback routine in the upper driver does any postprocessing 
needed by the request and calls IoCompleteRequest with the original caller's IRP.. 

15.8 SUMMARY 

The layered architecture in Windows NT allows you to simplify the design of 
drivers that might otherwise be extremely complex. Breaking a monolithic driver 
into smaller, logically distinct pieces makes implementation and maintenance eas
ier, reduces debugging time, and increases the likelihood that some of the soft-
ware will be reu~le. . 

In this ch'a.plter, you've seen a number of different ways to stack drivers on 
top of one anothw, Most of these techniques depend on the I/O Manager's stan
dard calling mecli\nism to send IRPs from one driver to another. If this proves not 
to be fast enough~!¥ou can also define private interfaces between a pair of drivers. 
In general, these.it'rivately-defined interfaces are a bad idea because they make 
the design more fr,~gile and harder to maintain. 

Regardless ;0£ how your drivers communicate with one another, you still 
have to guarantee<that they load·inthe proper order. Getting thalto happen is one 
of the topics discUssed in the next chapter. 
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Building and 
Installing Drivers 

There's always a certain amount of grunt work 
associated with any interesting activity. This chapter is about the mundane details 
of building drivers and installing them on a system. Some of this information is 
pretty straightforward stuff. Other bits of it have been teased painfully from vari
ous header files, online sources, and tedious experimentation. So, even if you're 
familiar with the DDK documentation, you may find something of value here. 

16.1 BUILDING DRIVERS 

398 

One difficult aspect of writing drivers for Windows NT is that you need to main
tain separate versions of the driver for each hardware platform that you support. 
Generating and keeping track of multiple binaries is especially troublesome 
because you may need different sets of compiler and linker options for each plat
form. The BUILD utility supplied with the NT DDK insulates you from most of 
these platform dependencies. 

What BUILD Does 

The BUILD utility is just an elaborate wrapper around NMAKE. Using a set 
of keywords, you describe the operation you want to perform. BUILD then scans 
your source files for dependencies and constructs an appropriate set of NMAKE 
commands. Next, it runs NMAKE to execute these commands, and the result is 
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Figure 16.1 How the BUILD utility works 
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one or more binary output files (referred to as BUILD products). Figure 16.1 shows 
how this process works. 

BUILD itself is actually a rather simple-minded piece of software. Most of 
the build process is controlled by a set of standard command files that BUILD 
passes to NMAKE. These files contain all the platform-specific rules and option 
settings needed to create a BUILD product. Keeping these rules in a separate file 
allows Microsoft to modify the build process without having to rewrite the 
whole BUILD utility. Currently, BUILD uses these command files (located in 
.. , \DDK\INC): 

• MAKEFILE.DEF is the master control file. It uses several other files to do 
some of its work. 

• MAKEFILE.PLT selects the target platform for a build operation. 

• I386MK.INC, ALPHAMK.INC, MIPSMK.INC, and PPCMK.INC con
tain platform-specific compiler and linker switches for Intel, Alpha, MIPS, 
and PowerPC systems. 

BUILD helps you manage multiplatform projects by separating binary files 
according to their platform type. To do this, it uses different directories for Intel, 
MIPS, Alpha, and PowerPC binaries. If you have cross-hosted compilers and link
ers, you can produce the binaries for all the supported platforms on one system 
using a single BUILD command. Figure 16.2 shows the directory structure that 
BUILD uses. . 
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Figure 16.2 Directory structure for BUILD products 

Notice that BUILD also uses separate directories for the checked and free ver
sions of your binaries. In the checked version, compiler optimization is disabled, 
extra debugging information is added to the file, and the DBG symbol is defined 
as 1 (allowing you to include conditional debugging code in your driver). By con
trast, free BUILD products are compiled with optimization turned on and the 
DBG symbol is defined as O. Checked builds are useful when you're debugging; 
free builds are generally smaller and faster and should be used for the commercial 
release of a driver. 

One of BUILD's odd little quirks is that, while it creates the platform-specific 
directories automatically, for some reason it doesn't create the CHECKED and FREE 
subdirectories. This results in an error message from the linker when it tries to create 
your driver. The easiest solution is to set up the directory structure by hand. 

How to Build a Driver 

Once you have some source code ready, follow these steps to generate your 
driver. You only need to perform steps 1-3 the first time you build the driver. 

1. In the directory where you keep your driver source code, create a file called 
SOURCES that identifies the components of the final driver. A discussion of 
what to put in this file appears later in this section. 

2. In the same directory, create a file called MAKEFILE that contains only the 
following line: 

!INCLUDE $(NTMAKEENV)\MAKEFILE.DEF 
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This stub invokes the standard makefile needed by any driver created with 
BUILD. Don't edit this stub makefile. If you want to add more source files to 
this driver, add them to the SOURCES file. 

3. Use the File Manager or the MKDIR command to set up the directory tree for 
your BUILD products. Refer back to Figure 16.2. 

4. In the Program Manager group for the Windows NT DDK, double-click on 
the icon for either the Checked Build or the Free Build environment. A com
mand window will appear with the appropriate BUILD environment vari
ables set for a debug or release version of your driver. It's important that you 
run the BUILD utility only from one of these windows. 

5. When the Checked or Free command window opens, its default directory is 
the same as the installation directory for the NT DDK itself. Use the CD com
mand to move to the directory where your driver's SOURCES file is located. 

6. Run the BUILD utility to create the driver executable. 

If all goes well, your driver will be in the CHECKED or FREE subdirectory 
of the appropriate platform directory. If something goes awry, look at the various 
BUILD log files to determine the problem. 

You might be wondering whether you can build NT drivers on a Windows 
95 system. The VC++ tools all run under Windows 95, so in theory it should work. 
Unfortunately, when BUILD spawns NMAKE, it uses a command line that's too 
long for Windows 95 to handle and the operation fails. Consequently, you have to 
do your BUILDing on a Windows NT system. 

Writing a SOURCES File 

You describe your BUILD operation using a series of keywords. These key
words specify things like the type of driver you want to generate, the source files 
making up the BUILD product, and the directories for various files. Although you 
can pass these keywords to BUILD as command-line options or environment vari
ables, the usual procedure is to put them in a SOURCES file. Keep the following 
points in mind when you write one of these files: 

• The filename must be SOURCES (without any extension). 

• The file should contain some number of commands,each having the fol
lowing format: 

keyword=value 

• You can break a single BUILD command over multiple lines in the 
SOURCES file by putting a \ character at the end of each line except the last. 

• The value of a BUILD keyword must be pure text. BUILD itself does only 
very limited processing of NMAKE macros and doesn't handle condi
tional statements at all. 



402 Chapter 16 Building and Installing Drivers 

• Make sure you don't leave any whitespace between a BUILD keyword 
and the = character. Whitespace after the = is acceptable. 

• You can put comments in a SOURCES file by starting the line with a # 
character. 

Table 16.1 lists the SOURCES keywords that you're most likely to use for 
building drivers. If you're the sort of person who enjoys going to the dentist for 
root-canal work, you may want to use the BUILD utility for maintaining user
mode applications as well as drivers. In that case, see the BUILD documentation 
for a list of additional keywords. 

Table 16.1 BUILD utility keywords for maintaining drivers and libraries 

Selected BUILD keywords 

Keyword 

INCLUDES 
SOURCES 

TARGETPATH 
TARGETNAME 

TARGETEXT 
TARGETTYPE 

TARGETLIBS 
LINKER_FLAGS 

PRECOMPILED_INCLUDE 
NTTARGETFILEO 

NTTARGETFILE1 

NTTARGETFILES 

*Required. 

Meaning 

List of paths containing header files 
List of source files making up the BUILD 

product* 
Top-level directory for BUILD product tree* 
Name of the BUILD product, without an 

extension* 
File extension for the BUILD product 
Case-sensitive keyword describing BUILD 

product* 

• DRIVER 
• GDLDRNER 
• MINIPORT 
• LIBRARY (for static libraries) 
• DYNLINK (for DLLs) 
List of libraries to be linked with the driver 
Linker options of the form -flag:value 
Example: -MAP:XXDRNER.MAP 
File containing #include directives 
List of nonstandard components to be built 

with MAKEFILE.lNC after initial 
dependency scan 

List of nonstandard components to be built 
with MAKEFILE.lNC before linking 

List of nonstandard components to be built 
with MAKEFILE.INC both before and 
after the link 
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The following is an example of a minimal SOURCES file for building a ker
nel-mode driver. 

TARGETNAME= XXDRIVER 

TARGETTYPE= DRIVER 
TARGETPATH= 

INCLUDES= $(BASEDIR)\inc; .. \inc 

SQURCES= init.c config.c resalloc.c \ 
dispatch.c xfer.c unload.c 

One item to point out in this file is the INCLUDES= keyword. For some rea
son, neither the DDK installation procedure nor the Free/Checked build icons 
add the DDK header directory to the INCLUDE-path environment variable. By 
naming it explicitly in SOURCES, you can avoid a number of miscellaneous 
BUILD error messages. 

Log Files Generated by BUILD 

In addition to its screen output, the BUILD utility generates several text files 
that you can use to determine the status of a BUILD product. These files are: 

• BUILD. LOG - Lists the commands invoked by NMAKE. 

• BUILD.WRN - Contains any warnings generated during the build. 

• BUILD.ERR - Contains a list of errors generated during the build. 

BUILD puts these files in the same directory as the SOURCES file. The 
warning and error files appear only if something bad happened during the 
BUILD operation. 

One other point worth mentioning is BUILD's nasty habit of filtering out 
some compiler and linker messages. These filtered messages don't appear on the 
screen display, but they will show up in the log files. For that reason, it's impor
tant to check the log files after each BUILD. 

Recursive BUILD Operations 

You can use BUILD to maintain an entire source code tree by creating a file 
called DIRS. You put this file in a directory that contains nothing but subdirecto
ries. Each subdirectory can be a source directory (containing a SOURCES file) or 
the root of another source tree (containing another DIRS file). When you run 
BUILD from the topmost DIRS directory, it creates all the BUILD products 
described in each SOURCES file. 

The rules for writing a DIRS file are the same as those for a SOURCES file, 
with the restriction that you're only allowed to use the following two keywords: 
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• DIRS - Lists subdirectories that should always be built. Entries in this 
list are separated by spaces or tabs. 

• OPTIONAL_DIRS - Lists subdirectories that should be built only if they 
are named on the original BUILD command line. 

This recursive BUILD feature can be useful for maintaining things like video 
drivers that have both a user-mode and a kernel-mode component. 

16.2 MISCELLANEOUS BUILD-TIME ACTIVITIES 

Along with the basic operations of getting your driver to compile and link, there 
are several other kinds of activities that you may want to perform at BUILD time. 
This section presents the ones that have proven to be the most useful. 

Using Precompiled Headers 

Much of the time consumed by a BUILD operation is spent compiling vari
ous large header files. During a normal development cycle, your driver's code 
will change frequently, but these headers will be relatively static. This leads to a 
lot of wasted time as the headers are compiled again and again. By taking advan
tage of the C compiler's precompiled header feature, you can significantly reduce 
the BUILD time of your driver (at the expense of some disk space). 

To use precompiled headers, you'll need to make some changes to your driver 
sources and add a new keyword to the BUILD control file. Follow these steps: 

1. Create a header file containing nothing but #include directives for any other 
headers used by your driver. For example, if you called this file PRECOMP.H, 
it would contain the following: 

#include <ntddk.h> 
#include "xxdriver.h" 
#include "hardware.h" 

2. In all your other driver source files, replace all #include directives with 

#include "precomp.h" 

3. Add the following statement to your SOURCES file: 

PRECOMPILED_INCLUDE= PRECOMP.H 

When you run BUILD for the first time, the C compiler will save the precom
piled header information in a binary file called PRECOMP.PCH. As long as you 
don't change the contents of your headers, the compiler will be able to save itself 
some work by reusing the precompiled binary version. 
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Including Version Information in a Driver 

How much time have you spent tracking down weird bugs, only to find 
that the real problem was a software version mismatch? This can be a real time 
waster, especially if you're trying to support a commercial product used by hun
dreds of customers. You can avoid this situation altogether by putting explicit ver
sion information in your drivers and checking it before you start looking for more 
complex explanations. 

You add version information to a driver using a resource script that defines 
a version structure. An example later in this section shows how to do this, but the 
basic steps you need to follow are: 

1. Separate your version data into two categories: things that relate to your 
company as a whole (like the company name), and things that are product
specific. 

2. Use the generic company information to write a header that can be included 
in the version resource scripts of all your products. 

3. Write a resource script for your driver that contains product-specific version 
information. This file should be updated each time you release a version of 
your driver for testing. 

4. Add the name of the resource script to the list of driver components identified 
by the SOURCES keyword in your SOURCES file. 

When you want to examine the driver's version data, you can use the File 
Manager's File Properties ... menu item. To display this information in a more 
complete form, you could also write a little Win32 program to read the version 
data. The following Win32 API calls are relevant. 

• GetFileVersionlnfoSize - This tells you the number of bytes of version 
data are associated with the driver. 

• GetFileVersionlnfo - This returns a buffer of version data. 

• VerQueryValue - This extracts a specific piece of version information 
from the buffer returned by GetFile VersionInfo. 

To make all this more concrete, here are examples of a vendor header file 
and the corresponding product resource script. 

Vendor information file. This header file contains version information com
mon to all the products from one vendor. Although you could include this stuff in 
the RC file itself, if you're maintaining several products, it's less work to keep it in 
one place for all of them. Below is a copy of CYDNXVER.H, the vendor informa
tion file for Cydonix Corporation. 
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#define VER_COMPANYNAME_STR "Cydonix Corporation" 

#define VER_LEGALTRADEMARKS_STR \ 
"Cydonix\256 is a trademark of Cydonix Corporation." 

#define VER_LEGALCOPYRIGHT_YEARS "1994-1995" 

#define VER_LEGALCOPYRIGHT_STR \ 
"Copyright \251 Cydonix Corp." \ 
VER_LEGALCOPYRIGHT_YEARS 

/* default is nodebug */ 
#if DBG 
#define VER_DEBUG 
#else 
#define VER_DEBUG 
#endif 

/* default is release */ 
#if BETA 
#define VER_PRERELEASE 
#else 
#define VER_PRERELEASE 
#endif 

o 

o 

#define VER_FILEFLAGSMASK VS_FFI_FILEFLAGSMASK 
#define VER_FILEOS VOS_NT_WINDOWS32 
#define VER_FILEFLAGS (VER_PRERELEASE I VER_DEBUG) 

Product information file This is the actual resource control script that sets 
product-specific fields in the version resource. Notice that it includes the vendor 
default values defined above. The actual version resource is built by including the 
system-supplied COMMON.VER file. Any version information not defined by 
the time you include COMMON.VER will be filled in with Microsoft-specific 
information. The following is a copy of XXDRIVER.RC, the version resource 
script for XXDRIVER. 

#include <windows.h> 

/*---------------------------------------------------*/ 
/* Include default values for generic vendor info */ 
/* */ 
/*---------------------------------------------------*/ 
#include "cydnxver.h" 

/*---------------------------------------------------*/ 
/* The following values should be modified only by */ 
/* the official builder, and they should be updated */ 
/* for each release */ 
/*---------------------------------------------------*/ 
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#define VER_PRODUCTBUILD 42 
#define VER_PRODUCTVERSION_STR "1.01" 
#define VER_PRODUCTVERSION 1,01,VER_PRODUCTBUILD,1 
#define VER_PRODUCTBETA_STR "" 
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/*---------------------------------------------------*/ 
/* Include product-specific default values */ 
/* * / 
/*---------------------------------------------------*/ 

#define VER_PRODUCTNAME STR " XXDRIVER " 
#define VER_FILETYPEVFT_DRV 
#define VER_FILESUBTYPEVFT2_UNKNOWN 
#define VER_FILEDESCRIPTION_STR"Driver for XX" 
#define VER_INTERNALNAME_STR"xxdriver.sys" 
#define VER_ORIGINALFILENAME_STR"xxdriver.sys" 

/*---------------------------------------------------*/ 
/* Define the version resource itself */ 
/* */ 
/*---------------------------------------------------*/ 
#include <common.ver> 

Including Nonstandard Components in a BUILD 

Even though BUILD is the epitome of software maintenance technology, 
there are still some things it doesn't do very well. For example, if you have a non
standard driver component (like a custom message file), BUILD won't know what 
to do. It's your job to help BUILD out of these sticky situations by writing an aux
iliary makefile that tells it how to process the nonstandard components. These are 
the steps you need to follow: 

1. Decide what nonstandard target files need to be part of the driver. 

2. In the same directory as the SOURCES file for your driver, create a makefile 
called MAKEFILE.INC. This makefile describes the dependencies among 
your driver's nonstandard components and gives instructions for building 
these components. 

3. For each nonstandard component, decide when during the BUILD operation 
the component should be created. 

4. Add the component to the list of files in the NTTARGEFILEO, 
NTTARGETFILEl, or NTTARGETFILES keyword of your BUILD control file. 
See Table 16.1 for a description of these keywords. 

5. Run the BUILD utility. 

Back in Chapter 13, you saw an example of a driver that defined some private 
messages for logging events. Here are the auxiliary NMAKE and BUILD control 
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files that generate this driver's executable. You can find the complete example in 
the CH13\ORIVER directory on the floppy that accompanies this book. 

MAKEFILE.INC Recall from Chapter 13 that the message compiler gener
ates a tiny resource script along with a binary message file and a header. You 
include this stub resource script in the driver's main resource file, which leads to 
the following dependencies in the auxiliary makefile: 

xxmsg.rc xxmsg.h msg00001.bin: xxmsg.mc 
mc -v -c xxmsg.mc 

SOURCES Since the dependent files must be generated before BUILD 
runs the resource compiler or the C compiler, you use the NTTARGETFILEO key
word. Identifying anyone of the dependent files is enough to get BUILD to 
invoke MAKEFILE.INC. 

TARGETTYPE= DRIVER 
TARGETNAME= xxdriver 
TARGETPATH= . 

INCLUDES= $(BASEDIR)\inc; .. \inc;. 

SOURCES= init.c unload.c 
dispatch.c 
eventlog.c 
xxmsg.rc 

NTTARGETFILEO= xxmsg.h 

Moving Driver Symbol Data into .DBG Files 

\ 
\ 
\ 

Contrary to what the DDK documentation claims, both checked and free 
versions of your driver contain symbol data, which greatly increases the size of 
your driver executable. This section explains how to strip symbols from your 
driver and put them into a separate file. Follow this procedure. 

1. Use the following command to examine the header information in your 
driver's executable: 

DUMPBIN/HEADERS XXDRIVER.SYS I MORE 

2. In the OPTIONAL HEADER VALUES section, look for the image base 
address. Usually this will be OxlOOOO for kernel-mode drivers. 

3. Strip symbol information from your driver and put it in a separate file using 
this command: 

REBASE -B OxlOOOO -x .\SYMBOLS XXDRIVER.SYS 

The B option specifies the new base address for the driver (in this case, the 
same as the original value). The X option identifies the directory where the 
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Table 16.2 Effect of removing symbols on driver file sizes 

Driver sizes with and without symbols 

Version Before REBASE AfterREBASE 

Checked build 
Free build 

376,476 bytes 
77,600 bytes 

96,544 bytes 
46,368 bytes 

symbol file should go. The symbol file will have the same name as the driver 
executable, with the extension .DBG. 

4. To use the symbol file for debugging, move it to the directory where you keep 
other .DBG files on the host machine. 

H you look at Table 16.2, you'll see the impact symbol data can have on the 
size of a driver. This table compares the sizes of checked and free builds of the 
standard NT serial port driver with and without symbols. 

16.3 INSTALLING DRIVERS 

This section explains how to install a driver by hand, which is something you'll 
need to do while you're developing your driver. It also presents some guidelines 
for automating the driver installation process once the retail version is ready for 
the world. 

How to Install a Driver by Hand 

Installing an NT driver is just a matter of copying some files to the right 
directory and making a few entries in the system Registry. These are the basic 
steps you need to follow: 

1. Copy the driver to the %SystemRoot% \SYSTEM32\DRIVERS directory on 
the target system. 

2. Add appropriate entries to the Registry of the target system using the 
REGEDT32 utility. These entries are described below. 

3. Reboot the target system to make the Service Control Manager aware of the 
new driver. H the driver's Registry entries specify automatic startup, the 
driver will load during system boot. 

4. If the driver's Registry entries specify manual startup, use the Control Panel 
Devices applet to start the driver. 

H you find a nonfatal bug in your driver, you can load a corrected copy with
out rebooting the system. Just use the Control Panel Devices applet to stop the 
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driver. Then, overwrite the driver executable in the ... \DRIVERS directory and 
restart it using the Devices applet. Of course, this only works if the driver has an 
XxUnload routine and if it isn't crucial to the operation of the system. 

Driver Registry Entries 

During system bootstrap, NT builds a list of available drivers by scanning 
the Registry. This list identifies both the drivers that start automatically as well as 
those that need to be started manually. To add your driver to this list, you need to 
build the Registry entries that appear in Figure 16.3. 

Table 16.3 describes these Registry keys and values. To bring a driver online, 
you only need the driver's service key plus the Start, Type, and ErrorControl val
ues. The service key should have the same name as the driver executable, without 
the file extension. As you saw in Chapter 7, the Parameters sub key is normally 
used for device information that doesn't auto-detect, although you can really put 
anything in it. 

End-User Installation of Standard Drivers 

Manual installation is fine while you're still developing a driver, but once 
your code is ready for commercial release, it's a good idea to automate the whole 
procedure. If your driver manages a standard piece of hardware (like a video or 
network card), you can take advantage of NT's built-in driver installation mecha
nisms. These built-in mechanisms run in three different situations. 

During text setup When end users perform a full installation of Windows 
NT, the first piece of setup software runs in text mode. During this text phase, the 

'------ System 

L CurrentControlSet 

L Services 

Lxx RIVER 

ErrorControl: REG_DWORD: Ox1 
Start: REG_DWORD: Ox3 
Type: REG_DWORD: Ox1 

Parameters 

Copyright © 1994 by Cydonix Corporation. 940041 a. vsd 

Figure 16.3 Structure of a driver's Registry service key 
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Table 16.3 Kernel-driver Registry entries 

Driver service key Registry entries 

Name Data type Description 

XXDRIVER (Key) Driver service key* 
Type REG_DWORD What kind of driver this is* 

• 1 - kernel-mode driver 
• 2 - file-system driver 

Start REG_DWORD 
ErrorControl REG_DWORD 

When to start the driver (see below)* 
System response if driver fails to load * 

Group 
DependOnGroup 
Tag 

Parameters 

REG_SZ 
REG_MULTCSZ 
REG_BINARY 

(Key) 

*These entries are required. 

• a - log error and ignore 
• 1 -log error and put up a message box 
• 2 -log error and reboot with last-known 

good configuration 
• 3 -log error and fail if already using 

last-known good configuration 
Driver's group name (see below) 
Drivers needed by this one (see below) 
Driver load order within a group (see 

below) 
Key to hold driver-specific parameters 

setup program installs drivers for the keyboard, the mouse, SCSI HBAs, and 
video devices. If it can't find a driver for one of these devices (or if the user 
chooses to replace the standard driver), the setup program will prompt the user 
for an installation diskette. 

The diskette contains a copy of the driver itself and a control script called 
TXTSETUP.OEM. This script is just a text file that identifies the type of hardware 
supported by the driver, lists the files that need to be copied from the floppy, and 
names the keys and values that should be added to the Registry. The Windows 
NT DDK Programmer's Guide describes the exact contents and format of a TXT
SETUP.OEM file. 

During GUI setup Once the text phase of Windows NT installation fin
ishes, a GUI-based setup program takes over. This GUI setup program can install 
drivers for the keyboard and mouse, video and network cards, tape drives, and 
SCSI HBAs. Just like its text-based counterpart, the GUI setup program prompts 
the user for the location of any drivers it can't find; it also allows the user to sup
ply replacements for the standard drivers. 

To install a driver during GUI setup, once again you'll need to write a con
trol file. This one is called OEMSETUP.INF, and it uses a much more full-featured 
scripting language than TXTSETUP.OEM. The GUI scripting language supports 
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dialog boxes, message text in multiple national languages, elaborate flow control, 
and commands for a variety of common installation tasks. If the built-in com
mands aren't enough, you can call functions in DLLs or run external programs 
from within the script. See the Windows NT DDK Programmer's Guide for a 
description of the GUI scripting language. 

After NT installation Users can also install drivers for standard devices 
after NT itself has been set up. This is referred to as maintenance mode installation, 
and it uses the same OEMSETUP.INF script as the GUI setup phase of NT. 
Depending on the type of hardware, the end user will have to run either the Win
dows NT Setup program or a Control Panel applet to execute the script. Table 16.4 
shows the various options. 

End-User Installation of Nonstandard Drivers 

If your device isn't one of the types supported by TXTSETUP.OEM or 
OEMSETUP.INF, you'll have to provide your own installation program. You can 
either use commercial installation software, or you can roll your own using some 
of the following Win32 API calls: 

• CopyFile to move the driver file to the appropriate directory. 

• RegCreateKeyEx and RegSetValueEx to set up the proper keys and val
ues in the Registry. 

• CreateProcess to run any external programs needed during installation. 

• Create Service and StarlService if you want to bring the driver online 
without rebooting the system.1 

As you've seen elsewhere in this book, you can customize the behavior of 
your driver using values stored in the Parameters subkey of the driver's Registry 

Table 16.4 How to install standard drivers in maintenance mode 

Installation tools for standard drivers 

Type of driver 

Keyboard 
Mouse 
Multimedia device 
Net-card and network protocol 
SCSIHBA 
Tape drive 
Video 

Installation tool 

Windows NT Setup 
Windows NT Setup 
Control Panel Drivers applet 
Control Panel Network applet 
Windows NT Setup 
Windows NT Setup 
Control Panel Display applet 

1 See the INSTDRV sample that comes with the NT DDK for an example of using the Service Control 
Manager API to install a driver without forcing the user to reboot. 
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service key. If you have many of these parameters and you expect end users to 
change them, you should consider writing either a Control Panel applet or a 
standalone program to modify the Registry. This is much safer than asking an end 
user to work with REGEDT32. 

Finally, you'll make everyone's life easier if you supply software that allows 
users to remove your driver from the system. This means cleaning up the Registry 
as well as deleting any relevant files. 

16.4 CONTROLLING DRIVER LOAD SEQUENCE 

There are times when you may need to control the sequence in which NT loads 
multiple drivers. For example, class drivers usually have to be loaded after the 
port drivers that manage their underlying hardware. If your drivers load auto
matically when the system boots, you can use various Registry entries to control 
their load sequence. This section explains how. 

Changing the Driver's Start Value 

You can control when a driver loads by setting the Start value in the driver's 
Registry service key. The number you assign to Start corresponds to one of the 
Service startup types recognized by the NT Service Control Manager. Currently, 
Start can take one of the following values. 

OxO (SERVICE_BOOT_START) This value specifies that a driver should 
be started by the operating system loader. Since much of the system isn't avail~ 
able, this value should be used only for drivers that are necessary to the bootstrap 
operation itself (for example, the driver for the boot device). 

Ox1 (SERVICE_SYSTEM_START) This value identifies drivers that should 
be started after the operating system has been loaded, but while it is still initializing 
itself. 

Ox2 (SERVICE_AUTO_START) Drivers with this Start value are loaded 
by the Service Control Manager after the entire system is up and running. Unless 
your driver is crucial to the system bootstrap or initialization, this is probably the 
most appropriate value to choose. 

Ox3 (SERVICE_DEMAND_START) These drivers have to be started man
ually, either by using the Control Panel Devices applet or by making direct calls to 
the Win32 Service Control Manager API. 

Ox4 (SERVICE_DISABLED) Disabled drivers cannot be started until their 
Start value is changed to something else. Again, you change this value using the 
Control Panel Devices applet or the Service Control Manager APt or by modify
ing the Registry directly. 
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NT guarantees that drivers with lower Start values will be loaded ahead of 
drivers with higher values. So all drivers with a value of 0 will load ahead of any 
drivers with values of 1 or 2. Keep in mind that this only works for Start values of 
0, I, or 2, because drivers with other Start values require some kind of manual 
intervention to get them going. 

Creating Explicit Dependencies between Drivers 

Setting Start values is fine if your drivers need to be loaded during different 
phases of system startup, but what if you need to control the load order of multi
ple drivers with the same Start value? For example, a SCSI class driver won't be 
able to load successfully until all the SCSI miniport HBA drivers are available. 
One solution to this problem is to use the Group and DependOnGroup values in 
the driver service keys. 

These are the steps you should follow if you want to establish an explicit 
load-order dependency between two drivers: 

1. Decide which driver needs to load first and choose a group name for this 
driver. In some cases (like the SCSI miniport), you may need to use a standard, 
system-defined group name. Otherwise, use a name of your own choosing. 

2. Add a value called Group to the service key of the driver that loads first. The 
Group value is a REG_SZ containing the group name you've assigned to this 
driver. 

3. Add a value called DependOnGroup to the service key of the driver that 
should load second. The DependOnGroup value is a REG_MULTLSZ con
taining the names of any groups on which this driver depends. At least one 
driver in each named group must be started before the system will start any 
dependent driver. 

Keep in mind that you can have as many drivers as you like with the same 
Group value. This guarantees that all the members of the group will get a chance 
to load ahead of any drivers depending on that group name. Again, SCSI 
miniports are a good example. 

To see how all this works, imagine that you have two drivers, XXDRIVER 
and YYDRIVER, and that XXDRIVER is a member of the group called "Group W." 
If you wanted XXDRIVER to load ahead of YYDRIVER, you'd need to set up the 
following Registry entries: 

HKEY_LOCAL_MACHINE\ ... \Services\XXDRIVER 
Start: REG_DWORD: 2 
Group: REG_SZ: Group W 

HKEY_LOCAL_MACHINE\ ... \Services\YYDRIVER 
Start: REG_DWORD: 2 
DependOnGroup: REG_MULTI SZ: Group W 
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With these values, both drivers will load during final stages of system 
startup, after everything is running. Further, all the drivers in "Group W" will be 
given a chance to load before YYDRIVER. 

Establishing Global Group Dependencies 

Another way to control the load order of your drivers is to modify the Ser
viceGroupOrder key in the Registry. This key contains a single REG_MULTCSZ 
value called List that identifies group names in the order that they will be loaded. 
The earlier a driver's group name appears in this list, the sooner it loads. NT will 
try to load all the drivers in an earlier group ahead of any driver in a later group. 

Figure 16.4 shows an excerpt of this part of the Registry. In this example, 
drivers in the group "SCSI class" load after all drivers in the group "Primary 
disk" and before any drivers in the group "SCSI CDROM class." 

Although you could achieve the same results using DependOnGroup, this 
technique is useful for situations where you don't want to modify the Registry 
values of some of the drivers. For example, if you wanted one of your drivers to 
load earlier than a particular system-supplied driver group, you could simple 
modify the ServiceGroupOrder key. There would be no need to change the 
DependOnGroup value of each system-supplied driver. 

The ServiceGroupOrder list is actually scanned several times during system 
startup. First, at bootstrap time, all drivers with a Start value of a load according 
to their ServiceGroupOrder sequence. Next, during system initialization, drivers 
with a Start value of 1 load. Finally, when the system is up and running, any driv
ers with a Start value of 2 are loaded. So, drivers with lower Start values load 

HKEV _LOCAL_MACHINE 

L System 

L CurrentControlSet 

·L Control 

L ServiceGroupOrder 

L List: REG_MUL TI_SZ: 
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SCSI class 
SCSI COROM class 
filter 

Figure 16.4 The layout of the ServiceGroupOrder Registry key 
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before any drivers with higher Start values, no matter what their positions in the 
ServiceGroupOrder list. 

As an example, suppose you had a SCSI disk that needed a special driver. 
Unfortunately, the standard SCSI disk class driver is going to allocate anything 
that looks like a SCSI disk, including yours. The only way to prevent this is to 
make sure that your driver loads ahead of the standard driver. You can do this by 
modifying the ServiceGroupOrder list. 

First, add a Group value to the Registry key for the driver that manages the 
special disk. If this driver were XXDRIVER, and you wanted to add it to "Group 
W," the Registry key would be 

HKEY_LOCAL_MACHINE\ ... \Services\XXDRIVER 
Group: REG_SZ: Group W 
Start: REG_DWORD: 0 

Examining the Registry service key for the standard SCSI disk driver 
(SCSIDISK), you find that it belongs to the group "SCSI class." So, you need to 
edit the ServiceGroupOrder list and add "Group W" ahead of "SCSI class." The 
Registry would then look like this: 

HKEY_LOCAL_MACHINE\ ... \Control\ServiceGroupOrder 
List: REG_MULTI_SZ: System Bus Extender 

SCSI mini port 

Group W 
SCSI class 

Controlling Load Sequence within a Group 

The techniques presented so far allow you to set up load-order relationships 
among groups of drivers, but they make no promises about the load order of driv
ers in the same group. By adding Tag values to the Registry keys of drivers within 
a group, you can control their loading sequence. Here's what you need to do: 

1. Modify the ... \CurrentControISet\Control\GroupOrderList key in the Reg
istry by adding a value with the same name as your driver group. Give this 
value a data type of REG_BINARY and make sure its contents follow the pat
tern described below. This value defines a series of tag numbers and their 
sequence. 

2. Add a REG_DWORD value called Tag to the Registry service key of each 
driver in the group. Set this value to one of the tag numbers you defined for 
your group in GroupOrderList. 

Within a single group, NT will load drivers according to the sequence of 
their Tag values, as defined in the GroupOrderList. Drivers without a Tag value 
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Figure 16.5 Layout of a tag definition in the GroupOrderList key 
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(and drivers whose Tag value is not in the GroupOrderList) load after the drivers 
with valid Tag values. For these drivers, the order of loading is not guaranteed, 
other than that all drivers in a group load before the next group loads. 

The tag definitions in the GroupOrderList are REG_BINARY data, and their 
format needs a little explanation. As you can see from Figure 16.5, each definition 
contains several fields. The first field is a I-byte count of the number of tag values 
to follow. Next come the tag numbers themselves, each one taking up a DWORD. 
These are followed by 3 null bytes that round the whole entry up to an integral 
number of DWORDs. 

The following example of one of these values defines two tags: one with a 
value of Ox44 and another with a value of Ox28. 

02 00 00 00 44 00 00 00 28 00 00 00 

Note that it's the sequence of the tags (and not their actual numerical values) 
that determines driver load order. With the example above, drivers in this group 
with a Tag of Ox44 would load ahead of those with a Tag value of Ox28. 

As an example of using these tags, imagine that you have two drivers, 
XXDRIVER and YYDRIVER, both belonging to "Group W" and you want 
XXDRIVER to load ahead of YYDRIVER. The first step is to add a value to the 
GroupOrderList that defines the tags: 

HKEY_LOCAL_MACHINE\ ... \Control\GroupOrderList 

Group W: REG_BINARY: 02 00 00 00 44 00 00 00 28 ... 

Next, modify the service keys for XXDRIVER and YYDRIVER by adding 
Tag values to them. The Registry entries would look like this: 

HKEY_LOCAL_MACHINE\ ... \Services\XXDRIVER 
Start: REG_DWORD: 2 
Group: REG_SZ: Group W 
Tag: REG_DWORD: Ox44 

HKEY_LOCAL_MACHINE\ ... \Services\YYDRIVER 
Start: REG_DWORD: 2 
Group: REG_SZ: Group W 
Tag: REG_DWORD: Ox28 
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One final point: Not every group shows up in the GroupOrderList key. 
When a group is not in the GroupOrderList, the order in which drivers load 
within the group is undetermined. 

16.5 SUMMARY 

This chapter has presented a variety of different topics, all of which had to do 
with building a driver and getting it online. But what if the driver has personal 
problems? What if, in an occasional psychotic fit, it crashes the system or muti
lates some data? In the next chapter, you'll see some techniques you can use to 
track down and eliminate bugs from your driver. 
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Where do they come from, these driver bugs? Do 
they hide beneath the bed like mutant dust bunnies, scheming and plotting -
waiting for nightfall so they can sneak into our code? No, driver bugs are not ran
dom events. Instead, they represent some coding or logic error, or some lack of 
understanding about how the hardware or the system actually works. This chap
ter presents a number of testing and debugging techniques you can use to catch 
both catastrophic and subtle flaws in your driver. 

17.1 SOME GUIDELINES FOR DRIVER TESTING 

As in other areas of software development, a great deal of thought has gone 
into the practice of software testing over the last three decades. It's a good idea 
to take advantage of this thinking when you start to design a testing strategy 
for your driver. The following sections present some of the major issues you 
should consider. (See the Bibliography for some other references on software 
testing.) 

The General Approach to Testing Drivers 

The first thing to do is to accept the hopelessness of your situation. It's sim
ply not possible to verify that a driver is free of bugs. To begin with, even trivial 
pieces of software can have so many code paths that there's just no way to exer
cise everyone of them. Add to that all the various hardware and system-load 

419 
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conditions your driver might encounter in the real world, and your chances of 
catching every bug disappear pretty quickly. 

As a tester, the best you can do is to show that a driver doesn't exhibit any of 
the bugs detectable by your tests. If your tests represent a reasonable model of 
conditions in the driver's target environment, then you'll probably be in good 
shape. This points to the fact that designing good tests is just as important as 
designing a good driver. 

When to do the testing Experience shows that it's more effective to test 
individual driver components as they're developed, rather than waiting until the 
whole driver is written to perform a single "big bang" test. Although incremental 
testing means writing a larger number of small test programs, this strategy makes 
it much easier to locate the source of a problem. The tiny test programs are also 
helpful when you want to make sure that changes to a driver's code base haven't 
introduced any new bugs. 

Another advantage of testing during development is that it can point out 
basic design flaws in the driver which might otherwise go undetected until the 
end of the project. Correcting these kinds of fundamental errors late in the project 
cycle is usually much more expensive than catching them early. 

What to test Later in this chapter, you'll see some specific types of driver 
failures to watch out for, but you can generally divide driver tests into the follow
ing categories: 

• Hardware tests - These verify the operation of the hardware. This is 
especially important if both the device and the driver are being devel
oped together. In some cases, this may actually mean using a logic ana
lyzer to see what's going on. 

• Normal response tests - These confirm that the driver executes the 
full range of commands it will have to perform once it's out in the real 
world. 

• Error response tests - These check the reaction of the driver to bad 
input from a user program, as well as to device errors and timeout 
conditions. 

• Boundary tests - If the device has any limitations on its maximum 
transfer size or speed, these tests make sure that the driver can handle 
them. 

• Stress tests - These subject the driver and its devices to high levels of 
sustained activity. This category also includes tests where the overall sys
tem experiences high levels of CPU, memory, and I/O activity, or where 
resources like memory are in very short supply. . 

How to develop the tests Writing test software is an art. Good tests must 
be thorough enough to have a high probability of actually uncovering errors in 
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the driver. This means you need to analyze the kinds of errors you think the 
driver might generate, and then write a test suite that will produce them. 

Good test software also gives the tester enough information to pinpoint the 
cause of the failure easily. The output generated by a test program should be easy 
to read and should be formatted in such a way that important details aren't hid
den somewhere in a pile of extraneous information. 

Finally, test software needs to be complex enough to model a real-world sit
uation, yet simple enough that it's easy to develop. If a test program is too com
plex, it may take a long time just to write and debug the test itself. 

How to perform the tests It's important to automate the test procedure 
itself. This makes it easier to guarantee that the same sequence of tests are being 
performed each time. 

It's also a good idea to do regression testing. In other words, if you fix some
thing in the driver, run the tests again to make sure you haven't broken anything 
else. This is another good reason to automate the test procedure. 

When you run the tests, log the results and keep the output. This will give you 
a good idea of whether or not you're actually getting closer to fixing things or NOt. 

Who should do the testing Remember that the goal of testing is to tear 
the driver to shreds. To find bugs lurking under every line of code. To prove that 
only angelic intervention keeps the driver working at all. This is very different 
from the goal of the driver writer, who generally assumes that what he or she is 
producing will work properly. Because coding and testing have this kind of 
adversarial relationship, it's usually best if these jobs are performed by different 
people. It's almost always unreasonable to expect a single person to be objective 
about their own code. 

Using the Microsoft Hardware Compatibility Tests (HCTs) 

The hardware compatibility test suite (or simply, the HCTs), is a collection of 
programs which allow platform vendors to see whether their systems will run 
Windows NT. This suite contains a number of different components, including 

• General system tests that exercise the FPU, the onboard serial and parallel 
ports, the keyboard interface, and the HAL. 

• Tests that exercise drivers for specific kinds of hardware like video adapt
ers, multimedia devices, network interface cards, tape drives, SCSI 
devices, etc. 

• General stress tests that put unusually high loads on system resources 
and I/O bandwidth. 

• A GUI-based test manager that automates test execution and data collection. 

Even if you're not developing a driver for one of the types of hardware with 
its own test, you can use the HCTs as part of your stress-testing strategy. 
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You can find the HCTs in the \HCT ... directory tree on the CD containing 
the NT DDK. Although they're distributed with the DDK, the HCTs are not auto
matically installed. For installation instructions, see the README.TXT file in the 
\HCT directory. Remember to put the HCTs on the target machine (where your 
driver will be running), not on the host. For more information about using the 
HCTs, look in the \HCT\DOC directory on the DDK CD. This directory contains 
all the HCT documentation in Word for Windows format. 

Finally, if you're writing a driver for a commercial product and you want it 
to be logo-branded by Microsoft, you'll need to send your driver (and its hard
ware) to the Microsoft Compatibility Labs for testing. Microsoft offers Windows 
NT certification programs for several hardware categories including video cards, 
network adapters, SCSI adapters, multimedia audio cards, and printers. Once a 
driver passes the Microsoft certification tests, it's added to the driver library that's 
distributed with Windows NT. At that point, you're allowed to display a special 
logo on any product packaging. Contact your friends at Microsoft for details and 
pricing. 

17.2 SOME THOUGHTS ABOUT DRIVER BUGS 

As you saw in the last section, successful testing and debugging depend on figur
ing out ahead of time what might go wrong. The goal of this section is to get you 
thinking about. the specific kinds of problems drivers can have. It also presents 
some techniques that can make bugs easier to detect and manage. 

Categories of Driver Errors 

Drivers can fail in any number of interesting ways. Although it's not possi
ble to give a complete list, the following subsections describe some of the more 
common types of driver pathology. 

Hardware problems There's always a chance that the hardware itself 
might be causing problems. This becomes even more likely if both the device and 
the driver are being developed at the same time. Symptoms of hardware prob
lems include 

• Errors occurring during data transmission. 

• Device status codes indicating an error. 

• Interrupts not arriving. 

• The device not responding properly to commands. 

The cause might. be as simple as undocumented behavioral quirks in the 
device (for example, some kind of restriction on command timing or sequencing). 
If it's a complex device, it might have bugs in its firmware (there simply is no bug-
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free SCSI firmware in the world). It could also be the result of some low-level bus 
contention or external signal noise. The device might just be broken. 

The best approach to these problems is to make the error reproducible and 
then get as much information as you can. See if the manufacturer has any more 
information on the behavior of the device, or on known bugs. Use any available 
hardware diagnostics to verify that the device itself is working properly. 

System crashes It's easy for failures in kernel-mode code to kill the entire 
system. Many kinds of driver logic errors can produce a crash, although the most 
common problem seems to be access violations caused by a bogus pointer. It's 
also possible for things like bad DMA addresses to corrupt system memory. The 
next section of this chapter will have more to say about interpreting system 
crashes. 

Resource leaks The system doesn't perform any resource tracking or 
automatic cleanup for kernel-mode components. When a driver unloads, it's 
responsible for releasing whatever it may have allocated. This includes both 
memory from the pool areas plus any hardware the driver manages. 

Even while a driver is running, it can leak memory if it regularly grabs pool 
space for temporary use and doesn't release it. Higher-level drivers can also be a 
source of leaks if they allocate their own IRPs and forget to free them. These kinds 
of driver errors can lead to bad system performance, as the pools slowly dry up, 
or to a complete system crash. 

You can use the pool-tagging mechanism and sanity counters (described 
later in this chapter) to catch pool leakage and lost IRPs. By examining the 
RESOURCEMAP section of the Registry with REGEDT32, you can check for 
hardware allocation problems. 

Thread hangs Another kind of failure involves synchronous I/O requests 
that don't return. In this case, the user-mode thread issuing the request is blocked 
forever and never comes out of its wait state. This type of behavior can result from 
several different driver problems. 

The most obvious cause is not calling IoCompleteRequest to send the IRP 
back to the I/O Manager. Not so obvious is the need to call IoStartNextPacket. 
Even if there are no pending requests to be processed, your driver has to call this 
function because it marks the Device object as idle. Without this call, all new IRPs 
will go into the pending queue, rather than going to the Start I/O routine. 

The calling thread can hang in a driver's Dispatch routine if the driver is try
ing to recursively acquire a Fast Mutex or an Executive Resource. Similarly, if a 
kernel-mode thread acquires a Mutex or Executive Resource without releasing it, 
Dispatch routines may hang up if they try to acquire the same object. 

DMA drivers that don't release the Adapter object or its mapping registers 
can prevent IRPs from being processed. In the case of slave DMA devices, the 
offending driver might even cause other drivers using the same DMA channel to 
lock up. 
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Drivers that manage multiunit controllers can cause similar trouble by not 
releasing the Controller object. In this case, new IRPs sent to any Device object 
using the Controller object will freeze up. 

Unfortunately, there's no convenient way to see who currently owns 
Adapter or Controller objects, Mutexes or Executive resources. About the best you 
can do is to use a counter to make sure you're releasing these objects as many 
times as you're acquiring them. In some cases, the checked build of NT may flag 
some of these errors with a crash. 

System hangs Occasionally, a driver error can cause the entire system to 
lock up. For example, deadly embraces involving multiple spin locks (or attempts 
to acquire the same spin lock multiple times on the same CPU) will bring every
thing to a grinding halt. Endless loops in a driver's Interrupt Service routine or a 
DPC routine could cause a similar failure. 

Once this kind of collapse occurs, it's difficult (if not impossible) to regain 
control of the system. The best approach is usually to debug the driver interac
tively and see if you can trace the exact sequence of steps that lead to the hang. 

Reproducing Driver Errors 

One of the keys to correcting a driver bug is being able to reproduce the 
problem. Intermittent errors are the bane of a driver writer's existence. Be as 
meticulous as possible in recording the exact circumstances at the time a bug 
appears, so that you can track and correct it. Several factors can make bugs 
intermittent. 

Time dependencies Some kinds of problems only show themselves when 
a driver is running at full speed. This could mean large numbers of I/O requests 
per second, high data rates, or both. Stress testing is usually a good way to make 
these kinds of bugs appear. 

Multiprocessor dependencies Things don't behave the same wayan sin
gle- and multiprocessor systems. For example, ISR, DPC, and I/O Timer routines 
can all run simultaneously on an SMP machine. This can lead to various problems 
that don't show up on a single cpu. For this reason, it's important to make multi
processor testing part of your driver verification strategy. One warning: SMP 
debugging is very painful, so it's a good idea to do the initial debugging on a sin
gle processor. 

Multithreading dependencies If your driver manages shareable Device 
objects, it's important to see what happens when multiple threads are issuing 
requests at the same time. 

Miscellaneous causes Finally, intermittent errors can depend on a whole 
universe of other factors. This includes sensitivity to system load conditions, 
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problems caused by specific combinations of hardware on the same machine, or 
specific combinations of devices on the same bus. Once again, a detailed log is 
your best hope of determining the factors that make the bug appear. 

Coding Strategies That Reduce Debugging 

There are several things you can do during the coding phase of driver devel
opment that will reduce debugging time. Here are some of them: 

• Get someone else to look at your code. It's amazing how quickly an unbi
ased eye can sometimes see the cause of a problem that you haven't been 
able to find. 

• Use assertions (described later in this chapter) to check for various kinds 
of inconsistencies. 

• Leave the debug code in your driver, surrounded with appropriate #if 
and #endif statements. 

• Add a version resource to the driver so that you can determine exactly 
which version of the driver is having problems. Chapter 16 explains how 
to do this. 

• If you're working on a large driver project with other people, using ver
sion control software will help to maintain everyone's sanity. 

Keeping Track of Driver Bugs 

Research has shown that bugs are not evenly distributed throughout a piece 
of code. Rather, they tend to cluster in a few specific routines. Usually, this will be 
some very complex piece of code, or code with complex (or questionable) logic. A 
bug log can help you track these errors by drawing your attention to the places 
where your driver tends to fail. 

Such a log can also help you spot patterns of system loading or driver usage 
that result in failures. Finally, you can use the bug log to decide which errors are 
worth fixing (not all of them are) and to keep track of which errors have already 
been corrected. 

Individual needs vary, but at the very least, you should keep the following 
kinds of information in a bug log: 

• An exact description of the failure. 

• As much detail as possible about the prevailing conditions at the time of 
the failure. This includes the version of the operating system and the 
driver and a description of the hardware configuration, 

• The importance of fixing this bug. 

• Current status of the bug. 
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17.3 READING CRASH SCREENS 

System crashes (which Microsoft documentation euphemistically calls "STOP 
messages") are perhaps the most dramatic sign that your driver has a bug. This 
section describes how STOP messages are generated and explains how to get use
ful information from them. 

What Happens When the System Crashes 

In spite of its name, a system crash is really a very orderly thing. It is NT's 
way of telling you that something in the operating system has become so unstable 
that rebooting is the only safe thing to do. Oddly enough, a crash actually 
improves NT's reliability by preventing further damage to the system, and by 
drawing attention to problems that might otherwise go unnoticed. 

Two different sequences of events can lead to a system crash. In the first sce
nario, some kernel-mode component happens to notice a horribly inconsistent 
state of affairs and decides to take the system down. For example, the I/O Man
ager might discover that a driver is trying to pass an already completed IRP to 
IoCompleteRequest. The I/O Manager responds by initiating a crash. 

The second path to a system crash is less direct. Here, a kernel-mode compo
nent causes an exception which it does not or cannot handle. Code in the Kernel 
traps the exception and initiates a crash. For example, a buggy driver that gener
ated an access violation would produce this kind of crash. So would a driver that 
caused a page fault at an elevated IRQL level. 

Regardless of who decides to crash the system, the deed is done by making 
one of the following calls:1 . 

VOID KeBugCheck( Code); 
VOID KeBugCheckEx( Code, Argl, Arg2, Arg3, Arg4 ); 

These functions generate the STOP screen itself and (optionally) save a crash 
file to disk. Then, depending on various system settings, they either reboot, halt 
the system, or start up the Kernel's debug client. 

The Code argument to KeBugCheck and KeBugCheckEx identifies the cause 
of the crash. KeBugCheckEx takes an additional four arguments that appear as 
part of the STOP message. KeBugCheck sets these values to zero. The BUG
CODES.H header file in the DDK defines all the standard bug check codes. You'll 
find descriptions of the more common codes and their parameters in Appendix B 
of this book. 

1 You can also call KeBugCheck and KeBugCheckEx in your own code if you discover some terrible 
error. If you do make these functions part of your debugging strategy, use conditional compilation 
to keep them out of the retail version of the driver. Very, very few situations are serious enough to 
warrant a system crash in a commercial driver. 
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*** 

Layout of a STOP Message 

It's hard to miss the bright blue, character-mode screen on which STOP mes
sages appear. If ~ou look at one of these "blue screens of death," you'll see four 
distinct sections. 

Bugcheck information The first part of the display identifies the cause of 
the crash. This includes the bugcheck code, zero to four bugcheck parameters, 
and (if the bugcheck code is one of Microsoft's) the symbolic name associated 
with the error. Here's a sample: 

STOP: OxOOOOOOOA (OxOOOOOOOO,Ox00000002,OxOOOOOOOO,OxFCEI0796) 
IRQL_NOT_LESS_OR_EQUAL*** Address fcel0796 has base at fcelOOOO - XxDriver.SYS 

p4-300 irql:lf SYSVER Oxf0000522 

In this example, the bugcheck code is OxOOOOOOOA and the associated sym
bolic name is IRQL_NOLLESS_OR_EQUAL. Fine, but just what does it mean? If 
you look in Appendix B, you'll find that OxOOOOOOOA is saying that the driver 
caused a page fault at or above DISPATCH_LEVEL IRQL. 

The four numbers in parentheses after the bugcheck code are the extra argu
ments passed to KeBugCheckEx. Their significance depends on the bugcheck 
code itself. Again consulting Appendix B, you'll see that the first parameter con
tains the paged address (0), the second is the IRQL level at the time of the refer
ence (2), the third indicates the type of access (0 means "read"), and the fourth 
is the address of the instruction that caused the fault (OxFCE10796). Very 
thoughtfully, the display tells us that this address falls within the range of the 
XXDRIVER.SYS module. 

Next comes a line that seems to say something about the IRQL level of the 
crash. This would be very useful to know, if it were correct. Sadly, KeBugCheck 
always raises IRQL to HIGHEST_LEVEL for synchronization purposes so the 
value in a STOP message is always Ox1F. 

On this same line, the SYSVER field tells you what version of NT was run
ning. This is just the build-number in hex, with a OxF or a OxC in the highest nib
ble to indicate whether it's the free or checked build of NT. In the sample above, 
converting Ox522 to decimal says that this crash occurred under the free version of 
build 1314. 

Most of the useful information comes from this section of the STOP mes
sage. All by itself, it's often enough to give you a good idea of what caused the 
crash. You should always take note of this part of the STOP screen before reboot
ing the system. 

2 Under some conditions, the Kernel won't be able to display the entire screen. This usually means 
that the services it needs to output some of the information are not available. 
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Module list Next comes a two-column display naming all the operating 
system modules and drivers loaded at the time of the crash. It also lists each mod
ule's base address in memory and a date-stamp indicating the module's file date. 

Dll Base DateStmp - Name Dll Base DateStmp - Name 
80100000 2fc653bc - ntoskrnl.exe 80400000 2fb24f4a - hal.dll 
80010000 2faae8bO - Atdisk.sys 80686000 2fc15d19 - Fastfat.sys 
fcc20000 00000000 - Floppy.SYS fcc30000 00000000 - Fs_rec.SYS 
fcc40000 00000000 - Null.SYS fcc50000 00000000 - Beep.SYS 
fcc60000 2faae8d9 - Sermouse.SYS fcc70000 2faae8b2 - i8042prt.SYS 
fcc80000 2faae8b5 - Mouclass.SYS fcc90000 2faae8b4 - Kbdclass.SYS 
fccbOOOO 2faae88d - VIDEOPRT.SYS fccaOOOO 2faae892 - vga.sys 
fcccOOOO 2faae8fd - Msfs.SYS fccdOOOO 2faae8ec - Npfs.SYS 
fccfOOOO 2fc12af6 - NDIS.SYS fcceOOOO 2faae92d - am1500t.sys 
fcd30000 2faae945 - TDI.SYS fcd10000 2fae6a5f - nbf.sys 
fcd40000 2faae94f - netbios.sys fcd50000 00000000 - Parport.SYS 
fcd60000 00000000 - Parallel.SYS fcd70000 2faae8d8 - Serial.SYS 
fcd80000 00000000 - afd.sys fcd90000 2fba6818 - rdr.sys 
fcddOOOO 2fc3e3eb - srv. sys fce10000 316aa594 - XxDriver.SYS 

Occasionally, this part of the display can help you detect hostile interactions 
between drivers. If driver X crashes the system if (and only if) driver Y is loaded, 
there may be something going on between them. A written crash log will help 
you to see these kinds of patterns. 

Stack trace The third part is a listing of the function calls on the stack that 
preceded the STOP message. 

Address dword dump Build [1314]- Name 
ff416d18 fce10796 fce10796 ff4f9c10 e1304018 801862e3 00000246 - XxDriver.SYS 
ff416d24 801862e3 801862e3 00000246 801316e6 ff416d4c ff4f9c10 - ntoskrnl.exe 
ff416d2c 801316e6 801316e6 ff416d4c ff4f9c10 80175de6 ff538288 - ntoskrnl.exe 
ff416d38 80175de6 80175de6 ff538288 ff416f04 00000000 00000000 - ntoskrnl.exe 
ff416d84 fce10796 fce10796 fce10008 00010246 ff567ee8 00000000 - XxDriver.SYS 
ff416d88 fce10008 fce10008 00010246 ff567ee8 00000000 ff58bc40 - XxDriver.SYS 
ff416da4 fce1061f fce1061f 00000004 ff567ee8 00000000 ff58bc40 - XxDriver.SYS 
ff416db8 80119b69 80119b69 ff58bcf8 ff567f58 ff416de4 80114d69 - ntoskrnl.exe 
ff416dc8 80114d69 80114d69 ff58bc40 ff567ee8 ff567ee8 ff58bc40 - ntoskrnl.exe 
ff416de8 fce105d3 fce105d3 ff58bc40 ff567ee8 00000000 00000000 - XxDriver.SYS 
ff416e08 804042ac 804042ac 80102f48 ff58bc40 ff567ee8 ff567ee8 - hal.dll 
ff416.eOc 80102f48 8.0102f48 ff58bc40 8010d544 ff567ee8 804042aO - ntoskrnl.exe 
f.f416elc 804042aO 804042aO 8015b9.43 ff416ed8 ff593d8c '{)0403054 - hal.dll 
-ff416e20 8015b943 8015b943 ff416ed8 ff593d8c 00403054 ff567f64 - ntoskrnl.exe 
ff416e3c 8010d544 8010d544 8015a348 ff58bc40 ff567ee8 ff4f9c28 - ntoskrnl.exe 
ff416e40 8015a348 8015a348 ff58bc40 ff567ee8 ff4f9c28 00000001 - ntoskrnl.exe 
ff416e68 80159c9c 80159c9c 00000000 00120196 01040864 ff416e08 - ntoskrnl.exe 
ff416e84 80134£3 0 80134f30 80100c60 ffffffff ff416edO 8015612d - ntoskrnl.exe 
ff416e88 80100c60 80100c60 ffffffff ff416edO 8015612d 0012ff30 - ntoskrnl.exe 
ff416e9·4 8015612d 8015612d 0012ff30 40100080 00120196 0012f£14 - ntoskrnl.exe 
ff416ecc 80134f30 80134f30 80100ecO ffffffff ff416f04 80137fb5 - ntoskrnl.exe 
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Each line in this display represents one frame on the stack, with the most 
recent frame being at the top of the display. This top frame is the one that was 
active at the time of the crash. Reading down the display gives you a history of 
the function calls that led to the crash. 

On each line, the first column is the address of the stack frame itself. The sec
ond two columns both contain the return address of the function. The remaining 
columns are the first four DWORD arguments passed to the function. If a particu
lar function takes more arguments, you won't see anything beyond the fourth. If 
it takes less than four DWORDs, the information in some of the rightmost col
umns will be bogus. The last column identifies the module in which the return 
address (from column two) falls. 

In the crash pictured above, you can see that code somewhere around 
OxFCEI0796 in XXORIVER.SYS was executing at the time of the crash. This code 
was called by a routine in NTOSKRNL.EXE (at Ox801862E3), which in turn was 
called by another system routine .at Ox801316E6. Unfortunately, without a linker 
map, there's no way to turn these hideous addresses back into function names. 
This seriously limits the value of this display. 

Also keep in mind that the call frames on the stack show you where the 
problem was detected, not necessarily where it was caused. It's possible for a 
driver to do horrible damage to a seldom-used part of the system and be long 
gone before NT discovers it and crashes. 

Recovery instructions There's very little useful information in this part 
of the display. It basically confirms the communication settings of the Kernel's 
debug client (if it's enabled), lets you know when the crash dump is finished, and 
recommends a response to the STOP message. 

Beginning dump of physical memory 
Physical memory dump complete. Contact your system administrator or 
technical support group. 

The actual text of this message will depend on the current option settings 
selected for the system. For example, if you have disabled crash dumps, you'll see 
a slightly different display. 

Deciphering STOP Messages 

If the truth be told, there's not all that much helpful information in a STOP 
message. The top few lines, containing the bugcheck information are perhaps the 
most useful things to know. 'The stack trace (which at first glance looks so promis
ing) actually has very little to say,unless you can determine the identities of the 
functions listed inthe trace. 

To do this, you need linker maps for the modules containing the functions. 
This means you're out of luck ifthe functions are located in a Microsoft module 
like NTOSKRNL;EXE or HAL.OLL, since these linker maps don't come with the 
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DDK. You can, however, generate a linker map for your own driver using the fol
lowing BUILD command: 

BUILD -cef -nmake LINKER_FLAGS=-MAP:xxdriver.map 

This is all a rather tedious process, and it still doesn't give you a great deal of 
information. Fortunately, if you have a crash file handy, you can find out much 
more with far less work. The next two sections of this chapter will explain how to 
work with crash files. 

17.4 AN OVERVIEW OF WINDBG 

WINDBG is a kernel-mode debugger you can use to analyze both crash files 
and running driver code. This section gives a brief overview of WINDBG. For 
more information, see WINDBG's online help and the NT DDK Programmer's 
Reference. 

Although WINDBG is a helpful tool, it does have some problems. For one 
thing, it's actually an amalgamation of an older console-based kernel-mode 
debugger (KD) and a GUI-based source-code debugger that came with early ver
sions of the Win32 SDK. This double ancestry can make WINDBG a little confus
ing to use, since there may be a console command, a menu option, and a toolbar 
button that all do the same thing. 

You may also experience occasional unexplainable WINDBG crashes from 
time to time, as well as several other kinds of quirky behavior. For a complete list 
of known (or at least, acknowledged) WINDBG bugs, look for an article on the 
Microsoft Developers CD in the Win32 SDK Knowledge Base.3 

The Key to Source-Code Debugging 

One of WINDBG's most powerful features is its ability to debug kernel
mode components at the source-code level. Sadly, the documentation isn't real 
clear about how to accomplish this little miracle. Proper configuration of two sets 
of directories is the key to making it all work. 

Symbol directories WINDBG gets very cranky if it can't find the symbol 
files for the modules you're trying to debug. This includes both the symbols for 
your driver and those for various operating system modules. See Appendix A for 
a description of how to set up WINDBG symbol directories. 

Source code directories On the machine where you're running WINDBG, 
the directory path to your driver's source code must exactly match the source-code 

3 Search for "WINDBG near bug" to find this article. 
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path on the machine where the driver was compiled and linked. Even the drive letter has 
to be the same. The Linker stores this path information in the driver executable, and 
WINDBG uses it to find the source code.4 

If you don't know the original source-code path for a kernel-mode compo
nent, don't worry. As long as you have a checked build of your driver (and its 
symbols haven't been stripped out), you can use the DUMPBIN utility to find the 
path names. The command looks like this: 

DUMPBIN !SYMBOLS XXDRIVER.SYS I MORE 

This generates a lot of output. The important information is at the top of the 
listing. The following excerpts show the things you should look for. 

Dump of file xxdriver.sys 

File Type: EXECUTABLE IMAGE 

COFF SYMBOL TABLE 
000 OOOOOOOB DEBUG notype Filename I .file 

D:\users\art\drivers\ch18\crash\driver\crash.c 

OOB 00000015 DEBUG notype Filename I .file 
D:\users\art\drivers\ch18\crash\driver\transfer.c 

015 0000001D DEBUG notype Filename I .file 
D:\users\art\drivers\ch18\crash\driver\dispatch.C 

OlD 00000023 DEBUG notype Filename I .file 
D:\users\art\drivers\ch18\crash\driver\unload.c 

023 00000000 DEBUG no type Filename I .file 
D:\users\art\drivers\ch18\crash\driver\init.c 

A Few WINDBG Commands 

Although WINDBG is a GUI program, you really can't avoid using its com
mand-line window. This text-based interface supports several dozen built-in com
mands, and as you'll see later, you can add extensions of your own. Table 17.1 
gives an overview of the more helpful WINDBG commands. See the online docu
mentation and the WINDBG Help file for more information. 

4 WINDBG has a menu option that supposedly lets you change the source-code path, but it doesn't 
seem to work. 
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Table 17.1 Some useful WINDBG commands 

WINDBG commands and extensions 

Command 

help 
k, kb, and kv 
ddaddress 
In 
.logopen 
.logappend 
.logclose 
!help 
!handle 0 3 CID 
!process 0 0 
!process address flags 
!process CID -1 
!thread address 
!pcr 
!vm 
!sysptes 1 
!drivers 
!irpzone 
!irpzone full 
!errlog 
!bugdump ComponentName 
!irp address 
!devobj address 
!drvobj address 
!srb address 
!trap address 
!poolfind Tag 
!poolused 
!reload 
!load ExtensionName 
!unload ExtensionName 

Description 

Print help on basic WINDBG commands 
Print a trace of the current kernel-mode stack 
Dump the contents of memory 
Print symbol names nearby a given value 
Open a log file, replacing a previous version 
Add new log information to an existing file 
Close the debug log file 
Print help on standard WINDBG extensions 
Print verbose information about process handles 
List all processes on system 
Print information about a process object 
Print detailed information about specific process 
Print information about a thread 
Print context information for 80x86 CPU 
Print Virtual memory statistics 
Print summary of system page table usage 
List currently-loaded kernel-mode modules 
List IRPs in use in NT's IRP zone buffer 
(Same as above, but with more information) 
List any unflushed messages in errorlog buffer 
Dump contents of bugcheck callback buffer 
Print formatted contents of an IRP 
Print formatted contents of a Device object 
Print formatted contents of a Driver object 
Print formatted contents of an SRB 
Print formatted contents of 80x86 trap frame 
Print information about pool with a given tag 
Print information about tagged pool 
Reload a particular module 
Load an extension DLL 
Unload an extension DLL 
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17 .5 ANALYZING A CRASH DUMP 

When a crash occurs, Windows NT can save the state of the system in a dump file 
on the boot partition.5 Crash dumps allow you to reboot almost immediately and 
determine the cause of the crash at a later time. This section explains how to ana
lyze a system crash dump. 

Goals of the Analysis 

Using WlNDBG, you can poke around in the remains of a dead system and 
find out almost as much as if it were still running. This kind of forensic pathology 
can help you develop a convincing explanation of what led to the crash. Some of 
the questions you should ask when you're analyzing a crash include: 

• Was my driver executing at the time of the crash? 

• Was my driver responsible for the crash? 

• What was the sequence of events that led to the crash? 

• What operation was the driver trying to perform when the system 
crashed? 

• Is there any information in the Device Extension that might tell me what 
was going on? 

• What Device object was it working with? 

Starting the Analysis 

To begin analyzing a crash file, run WINDBG from the command line with 
the -y and -z options. These specify the location of the crash symbols and the 
dump file. For example, 

WINDBG -y c:\wnt\symbols -z c:\wnt\memory.dmp 

For the crash that produced the STOP message you saw earlier, the initial 
output from WINDBG looks like this: 

Thread Create: Process=O, Thread=O 
Module Load: d:\users\art\drivers\symbols\free\NTOSKRNL.DBG (symbqls loaded) 
Kernel Debugger connection established for G:\WINNT\MEMORY.DMP 
Kernel Version 1314 Free loaded @ Ox80100000 
Bugcheck OOOOOOOa : 00000000 00000002 00000000 fce10796 
Stopped at an unexpected exception: code=80000003 addr=8013b416 
Hard coded breakpoint hit 

5 See Appendix A for instructions on enabling crash dumps. 
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You'll recognize some of this information from the STOP message. The 
bugcheck code is OxA, which means the fourth parameter (OxFCE10796 in this 
case) is the address where the problem occurred. To see where this instruction is 
in your source code, choose Goto Address from the View menu, and enter the 
address from the bugcheck parameter. In this particular crash, OxFCE10796 turns 
out to be a function called XxTryToCrash. 

The second parameter for bugcheck OxA is the true IRQL level at the time of 
the crash. From NTDDK.H, two turns out to be DISPATCH_LEVEL, which gives 
us a hint about what parts of the driver might have been executing at the time of 
the crash. 

One point: Don't be mislead by the message about the unexpected exception 
with a code of Ox80000003. This is just the breakpoint used by KeBugCheck itself 
to halt the system, so it has no significance. 

Tracing the Stack 

The stack trace is like a time line, showing you the sequence of function 
calls leading up to the crash. By reading the trace from the oldest frame (at the 
bottom) to the crash frame (at the top), you can come up with a coherent story 
describing what happened. The trick is to find the stack. 

High-IRQL crashes If the system crashed while it was running at or 
above DISPATCH_LEVEL IRQL, you can use the k command to get a trace of the 
stack at the time of the bugcheck. 

KDx86> k 
ff416dlc fcel0796 NT!KiTrapOE+Ox252 
ff416daO fcel061f XXDRIVER!XxTryToCrash+Ox26(Ox00000004) 
ff416dc4 80114d69 XXDRIVER!XxStartlo+Ox2f(OxFF58BC40, OxFF567EEB) 
ff416de4 fcel05d3 NT!IoStartPacket+Ox9b 
ff416e08 80102f48 XXDRIVER!XxDispatchWrite+Ox43 (OxFF58BC40, OxFF567EE8) 
ff416elc 8015b943 NT!@IofCallDriver@8+0x38 
ff416e3c 8015a348 NT!IopSynchronousServiceTail+Ox6f 
ff416ed8 80137fb5 NT!NtWriteFile+Ox6ac 
ff416edB 77f89427 NT!KiSystemService+Oxa5 
0012ff6c 00000000 NTDLL!ZwWriteFile+Oxb 

Each line shows the address of the stack frame, the return address of the 
function, the name of the function, and (in parentheses) the arguments passed to 
the function. You generally won't see any arguments for system functions. To 
make them show up, use the kv version of the stack-trace command. 

In this trace, a call to ZwWriteFile eventually found its way to XXDRIVER's 
XxDispatch Write routine. The first argument for a Dispatch routine is always the 
Device object (here, OxFF58BC40) and the second (OxFF567EE8) is the IRP. XxDis
patch Write called IoStarlPacket, which called the Start 1/ 0 routine in 
XXDRIVER. Just before it died, XxStartlo made a call to XxTryToCrash and 
passed it an argument with a value of four. 
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Another way to see the current stack is by selecting Calls from the WINDBG 
Window menu. Double-clicking on one of the frames in the Calls display will take 
you to the line of source code where the call originated. Once you've entered a 
stack frame this way you can examine the function's local variables at the time of 
the crash by selecting Locals from the WINDBG Window menu. 

Crashes below DISPATCH_LEVEL When the system crashes because of 
an unhandled exception below DISPATCH_LEVEL IRQL, the stack trace from the 
k command won't tell you much about what was going on.6 Instead, you need to 
find the trap frame associated with the crash. 

On 80x86 platforms, you can find the trap frame by using the kb command. 
First, look for the stack frame associated with a function called KiDispatch
Exception? 

KDx86> kb 
FramePtr RetAddr Paraml Param2 Param3 Function Name 
fccccab8 80138f59 fccccad4 00000000 fccccb28 NT!KiDispatchException+Ox366 
fcccccl0 8015c542 80102f48 ff564410 ff4ebc88 NT!CommonDispatchException+Ox4d 
fccccb28 ff56c860 ff50cle8 00000000 00000006 NT!IopErrorLogQueueRequest+Ox5c 

Next, look down the left-hand column (the one labeled IFramePtr") for the 
address of the frame two earlier than the KiDispatchException frame. In this 
crash, the frame of interest has the address OxFCCCCB28. What you've just found 
is called the trap frame, and you can use the !trap command to format it. 

KDx86> !trap fccccb28 
eax=OOOOOOOO ebx=OOOOOOOO ecx=fccccb88 edx=OOOOOOOO esi=ff4ebecO edi=ff567ee8 
eip=fcel0796 esp=fccccb9c ebp=fccccbac iopl=O nv up ei pI zr na po nc 
vip=O vif=O 
cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=OOOO efl=00010246 
ErrCode = 00000000 

From the formatted trap frame, note the contents of the EBP (OxFCCCCBAC), 
ESP (OxFCCCCB9C), and EIP (OxFCE10796) registers. Use these values in the k 
command to specify the stack address. This displays the true stack trace at the time 
of the crash. 

KDx86> k =fccccbac fccccb9c fcel0796 
fccccbac fcel046a XXDRIVER!XxTryToCrash+Ox26 (Ox00000002) 
fccccbc4 80102f48 XXDRIVER!XxDispatchOpenClose+Oxla(OxFF4EBECO, OxFF567EE8) 
fccccbd8 8015ccca NT!@IofCallDriver@8+0x38 
fccccc9c 80179bOO NT!IopParseDevice+Ox77e 
fccccdOc 80175cf6 NT!ObpLookupObjectName+Ox480 
fccccde4 80151e33 NT!ObOpenObjectByName+Oxa2 
fcccce90 8015612d NT!IoCreateFile+Ox43d 
fccccedO 80137fb5 NT!NtCreateFile+Ox2f 

6 If you have WINDBG connected to the target system and it catches the exception, the stack trace 
will give you useful information. 

7 This sample output is from a different crash than the one we've been examining. 
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fccccedO 77f889b3 NT!KiSystemService+Oxa5 
fccccb98 ff567ee8 Ox77f889b3 

In this trace, it's obvious that the problem occurred during a call to NtCre
ateFile in the driver's XxDispatchOpenClose function. 

Using trap frames Another way to find the proper stack on 80x86 
machines is to use the kv command. This displays a more detailed view of each 
frame. Look for a function with KiTrap in its name. Next to this function, you'll 
find the address of the trap frame. 

KDx86> kv 
ff416dlc fcel0796 NT!KiTrapOE+Ox252 (FPO: [0,0] TrapFrame @ ff416dlc) 
ff416daO fcel061f XXDRIVER!XxTryToCrash+Ox26 (Ox00000004) 
ff416dc4 80114d69 XXDRIVER!XxStartlo+Ox2f(OxFF58BC40, OxFF567EE8) 
ff416de4 fcel05d3 NT!IoStartPacket+Ox9b 

On the line for KiTrap, you'll find the address of the trap frame (in this case, 
OxFF416D1C). Use the !trap command to format its contents. 

KDx86> !trap ff416dlc 
eax=OOOOOOOO ebx=ff58bc40 ecx=ff416d7c edx=OOOOOOOO esi=OOOOOOOO edi=ff567ee8 
eip=fcel0796 esp=ff416d90 ebp=ff416daO iopl=O nv up ei pI zr na po nc 
vip=O vif=O 
cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=OOOO 
ErrCode = 00000000 
Oxfcel0796 8aOO mov al,byte ptr [eax] 

ef1=00010246 

From the trap frame, note the contents of the EBP (OxFF416DAO), ESP 
(OxFF416D90), and EIP (OxFCE10796) registers. Use these values in the k com
mand to specify the stack address. This displays the true stack trace at the time of 
the crash. 

KDx86> k =ff416daO ff416d90 fcel0796 
ff416daO fcel061f XXDRIVER!XxTryToCrash+Ox26 (Ox00000004) 
ff416dc4 80114d69 XXDRIVER!XxStartlo+Ox2f(OxFF58BC40, OxFF567EE8) 
ff416de4 fcel05d3 NT! IoStartPacket+Ox9b 
ff416e08 80102f48 XXDRIVER!XxDispatchWrite+Ox43 (OxFF58BC40, OxFF567EE8) 
ff416elc 8015b943 NT!@IofCallDriver@8+0x38 
ff416e3c 8015a348 NT! IopSynchronousServiceTail+Ox6f 
ff416ed8 80137fb5 NT!NtWriteFile+Ox6ac 
ff416ed8 77f89427 NT!KiSystemService+Oxa5 
ff416d8c ff567ee8 Ox77f89427 

You can see that this display matches the one generated by the k command, 
verifying that we've found the right stack. 

Indirect Methods of Investigation 

If your driver wasn't running at the time of the crash, the stack trace won't 
contain any useful information and you'll need to take a more indirect approach 
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to find the problem. The goal is to gather as much information as possible about 
what the driver was doing when the system crashed. This involves a certain 
amount of creativity and imagination. 

Finding VO requests One approach is to track down any IRPs the driver 
was processing at the time it died, and then try to puzzle out what was happen
ing. Begin by getting a list of all the active IRPs on the system with the lirpzone 
command: 

KDx86> ! irpzone 
Small Irp list 
ff567ee8 Thread ff599beO current stack belongs to \Driver\XxDriver 
Large Irp list 
ff56a708 Thread ff519620 current stack belongs to \Driver\Mouclass 
ff56ab08 Thread ff547a60 current stack belongs to \Driver\Kbdclass 

ff56bd08 Thread ff500500 current stack belongs to \FileSystem\Rdr 

From this list, select the IRPs currently belonging to your driver. Next, use 
the lirp command to format each one (this can be a rather tedious process if there 
are a lot of IRPs). This is what the formatted IRP looks like: 

KDx86> !irp ff567ee8 
Irp is from zone and active with 1 stacks 1 is current 

No Mdl System buffer ~ ff593d88 Thread ff599beO: Irp stack trace. 
cmd fIg cl Device File Completion-Context 

> 4 0 1 ff58bc40 ff4f9c28 00000000-00000000 pending 
\Driver\XxDriver 

Args: 00000004 00000000 00000000 00000000 

The cmd field shows the major function, and the Args field displays the 
Parameters union of the I/O stack location. The fIg and cl fields show the stack 
location flags and control bits, which you can find in NTSTATUS.H. 

Here, you can see that the function code was a four (IRP _ML WRITE) and 
Parameters.Write.Length was 4 bytes. Furthermore, no Completion routine (or 
completion context) was associated with this I/O stack location, and it had 
already been marked pending at the time of the crash. 

Finally, there is a system buffer associated with the IRP (at location 
OxFF593D88) which you can examine using the dd command or the Memory 
option in the WINDBG Window menu. This tells us that the Device object is doing 
Buffered I/O. 

To see exactly which device the IRP was sent to, use the !devobj command 
on the address of the Device object from the IRP display. Here you can see that the 
target device was CrashO, and that the IRP had already been made current when 
the system crashed. 

KDx86> !devobj ff58bc40 
Device object is for: 

CrashO \Driver\XxDriver DriverObject ff53eldO 
Current Irp ff567ee8 Ref Count 1 Type 00000022 DevExt ff58bcf8 
DeviceQueue: 
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Sometimes, you can find out even more information about what was going 
on by dumping the contents of the Device Extension with the dd command. Later 
in this chapter, you'll see how to write a WINDBG extension that makes the 
Device Extension easier to dump. 

Of course, this doesn't give us nearly as much information as the stack trace, 
but it does tell us that the driver was trying to process a Buffered I/O 
IRP _ML WRITE command. Since the IRP had been made current, we know that it 
got at least as far the driver's Start I/O routine. Often the best approach in this 
case is to set up the system for interactive debugging and try to make the error 
repeat. 

Examining processes Occasionally, it's helpful to know what processes 
were running on a system at the time of a crash. This could help you spot patterns 
of system usage or even specific user programs that cause your driver to fail. For 
general information, you can use the !process command like this: 

KDx86> !process 0 0 
**** NT ACTIVE PROCESS DUMP **** 
PROCESS ff578940 Cid: 0002 Peb: 00000000 ParentCid: 0000 

DirBase: 00030000 ObjectTable: el000f88 TableSize: 64. 
Image: System 

PROCESS ff554360 Cid: 0013 Peb: 7ffdfOOO ParentCid: 0002 
DirBase: 012ecOOO ObjectTable: el0017c8 TableSize: 48. 
Image: smss.exe 

PROCESS ff58b6cO Cid: 0090 Peb: 7ffdfOOO ParentCid: 007b 
DirBase: 003b9000 ObjectTable: ellfeee8 TableSize: 16. 
Image: Xxtest.exe 

For more information, you can use the CID number of a specific process and 
increase the level of verbosity with some flags.8 

KDx86> !process 90 -1 
Searching for Process with Cid == 90 
PROCESS ff58b6cO Cid: 0090 Peb: 7ffdfOOO ParentCid: 007b 

DirBase: 003b9000 ObjectTable: e11feee8 TableSize: 16. 
Image: Xxtest.exe 
VadRoot ff4fa668 Clone 0 Private 33. Modified O. Locked O. 
FF58B87C MutantState Signalled OWningThread 0 
Token e1304030 
ElapsedTime 0:00:00.0110 
UserTime 
KernelTime 
QuotaPoolUsage[PagedPool) 
QuotaPoolUsage[NonPagedPool) 

0:00:00.0020 
0:00:00.0030 
6892 
1096 

8 Kernel-mode threads always run in the process whose aD is 2. 
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Working Set Sizes (now,min,max) 
PeakWorkingSetSize 
VirtualSize 
PeakVirtualSize 
PageFaultCount 
MemoryPriority 
BasePriority 
CommitCharge 

(146, 50, 345) 
153 
8Mb 
8Mb 
159 
FOREGROUND 
9 
38 
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THREAD ff599beO Cid 90.88 Teb: 7ffdeOOO Win32Thread: 801448cO RUNNING 
IRP List: 

ff567ee8: (0006,0094) Flags: 00000a30 Mdl: 00000000 
Not impersonating 
Owning Process ff58b6cO 
WaitTime (seconds) 107578 
Context Switch Count 12 
UserTime 0:00:00.0010 
KernelTime 0:00:00.0030 
Start Address Ox77f270a4 
Initial Sp ff417000 Current Sp ff416bec 
Priority 9 BasePriority 9 PriorityDecrement 0 DecrementCount 124 

ChildEBP RetAddr Args to Child 

0012f750 00000000 00000000 00000000 00000000 

For multithreaded processes, this form of the !process command will tell 
you things about all the threads, including any objects they might be waiting for. 
It also gives information about the I/O requests issued by a given thread, so if a 
thread seems to be getting hung, you can see what IRPs it issued. 

Analyzing Crashes with DUMPEXAM 

DUMPEXAM is a command-line utility that you can use to analyze a crash 
dump file. When you run this utility, it uses the kernel-mode debugger to execute 
a standard series of commands and produces an output file called MEM
ORY.TXT. The analysis performed by DUMPEXAM is intended to give support 
personnel a fairly detailed snapshot of the state of the system at the time of the 
crash. This can be useful if you're trying to support a driver out in the field. 

You'll find DUMPEXAM on the Windows NT distribution CD in the \SUP
PORT\DEBUG\<plaiform> directory. Along with the DUMPEXAM executable, 
you have to install the KD<platform> EXTS.DLL extension DLL for the target plat
form. Normally, these DLLs are copied along with everything else when you 
install WINDBG from the Win32 SDK. You also need to copy IMAGEHLP.DLL 
from the Windows NT distribution CD. It's in the same directory as the 
DUMPEXAM executable. 

Finally, make sure you mirror the debug symbol tree that's on the CD when 
you run DUMPEXAM. Unfortunately, this tool isn't smart enough to handle the 
situation where everything is in the same directory. 
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17.6 INTERACTIVE DEBUGGING 

Poking around in the remains of a dead system can tell you a great deal, but some 
problems are easier to diagnose while a driver is still running. This section briefly 
describes how to debug driver code interactively. 

Starting and Stopping a Debug Session 

WINDBG is the primary tool for interactive debugging. To use it, you'll need 
to set up host and target systems as described in Appendix A. As with crash 
dump analysis, make certain the source-code path on the host exactly matches the 
source-code path on the machine where the driver was built. Once everything is 
configured, follow these steps to begin an interactive debug session: 

1. Move a copy of your driver's executable (or the corresponding .DBG symbol 
file) into the symbol directory on the host. Repeat this step each time you 
rebuild the driver, or the symbols will be out of sync. 

2. From the command line, run WINDBG using the -k and -y options, for 
example, 

WINDBG -k i386 carol 9600 -y c:\wnt\symbols ntoskrnl.exe 

3. From the WINDBG Run menu, select Go. You'll see a message in the 
WINDBG command window saying that WINDBG is waiting to connect. 

4. Reboot the target machine with the Kernel's debug client enabled. As the sys
tem boots, you'll see it trying to make a connection with the debugger on the 
host. When the systems connect, there will be a lot of activity in WINDBG's 
command window. 

Once you've established a connection between the host and target machines, 
you have a wide range of commands available to you. For the most part, the inter
active WINDBG commands are a superset of the ones you use to analyze a crash. 
You also have the added capability of setting breakpoints on the target and single
stepping through target code. 

After you've completed a debugging session, you should follow these steps 
to disconnect the host and the target: 

1. If you've set any breakpoints in your driver, pause the target system by typ
ing CTRL+C in the WINDBG command window. (Alternatively, you can 
press the SYSREQ key on the target itself.) 

2. From the Debug menu, choose Breakpoints. When the breakpoint dialog 
appears, click on Clear All and OK. 

3. From the Run menu, choose Go (or use the toolbar button) to let the target 
machine continue. 

4. From the File menu, choose Exit. 
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After WINDBG has exited, the target machine may pause for 30 seconds 
or so the first time it hits a KdPrint macro. This delay is the time it takes the 
Kernel's debug client to realize there's no debugger to talk to. It occurs only 
once. 

Setting Breakpoints 

One of the great things about WINDBG is its ability to set source-code 
breakpoints in a driver. This can be immensely helpful for figuring out the exact 
nature of a bug. To set a breakpoint with WINDBG, do the following: 

1. If the target machine is currently running, type CTRL+C in the WINDBG 
command window to pause the target. (Alternatively, you can press 
the SYSREQ key on the target.) You can't set breakpoints if the target is 
running. 

2. From the File menu, choose Open. The Open File dialog box will appear. Nav
igate to the directory containing your driver's source code. Double-click on a 
source file to open it. 

3. Move the cursor to the source code line where you want to set the breakpoint. 
If you're breaking on a multiline C statement, make sure you position the cur
sor on the line containing the semicolon. 

4. Click on the breakpoint button in the toolbar. (It's the one that looks like a lit
tle hand.) If your driver is currently loaded in memory, the source-code line 
will turn red; if it hasn't been loaded yet, the source line will turn magenta. 

5. Click on the Go button in the toolbar to let the target machine continue. When 
the target machine hits the breakpoint, it will stop and the source-code line in 
WINDBG will turn green. 

To remove a breakpoint, simply pause the target machine, select the source 
code line containing the breakpoint, and click on the toolbar's breakpoint but
ton. You can also use the Debug Breakpoints menu item to remove multiple 
breakpoints. 

Breakpoints highlight another of WINDBG's little quirks. If you set several 
breakpoints in a driver that hasn't been loaded yet, WINDBG won't be able to 
resolve the first one that it hits. Instead it will display a dialog box asking you 
how it should handle the breakpoint. You should select the Defer option. This will 
cause WINDBG to instantiate all the breakpoints in the driver and proceed. When 
WINDBG hits the next breakpoint, it will work correctly. (In fact, even if it hits the 
first breakpoint again, it will work properly.) Breakpoints that you set after the 
driver is loaded don't seem to have this problem. 

This odd behavior can make it difficult to set breakpoints in the DriverEntry 
routine. The easiest solution is just to set an extra (dummy) breakpoint some
where at the beginning of DriverEntry. This one will cause the others to behave 
properly. 
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Setting Hard Breakpoints 

With WINDBG, there aren't too many compelling reasons for putting hard 
breakpoints into your driver. If you do find such a need, you can use the follow
ing two calls: 

VOID DbgBreakPoint( VOID ); 
VOID KdBreakPoint( VOID); 

KdBreakPoint is just a macro that wraps a conditional compilation directive 
around DbgBreakPoint. KdBreakPoint becomes a no-op if you build a free ver
sion of your driver. 

Beware: NT will crash with a KMODE_EXCEPTION_NOT_HANDLED 
error if your driver hits a hard-coded breakpoint and the Kernel's debug client 
isn't enabled. If your driver hits a breakpoint and there's no debugger on the 
other end of the serial line, NT will hang the target machine. You can recover from 
the hang by starting up WINDBG on the host machine. 

Using Print Statements 

Debugging code by peppering it with printf statements has a long and hon
orable history. You can continue the tradition by calling either DbgPrint or 
KdPrint. Both allow you to send a debug string from your driver (on the target 
system) to the WINDBG command window (on the host machine). These calls 
have the following syntax: 

ULONG DbgPrint ( FormatString, argl, arg2... ); 
ULONG KdPrint (( FormatString, argl, arg2... )); 

DbgPrint and KdPrint take the same arguments as the standard printf func
tion. Since KdPrint is actually a macro (defined in NTDDK.H), you have to 
include an extra set of parentheses in order to pass it a variable-length list of argu
ments. KdPrint also becomes a no-op in free builds of a driver. 

17.7 WRITING WINDBG EXTENSIONS 

One of WINDBG's strengths is that you can expand its capabilities by writing 
extension commands for it. This can be very helpful, particularly for printing out 
the contents of driver-defined data structures. Unfortunately, the documentation 
and sample extension code that come with the NT DDK are incorrect. This section 
explains how to add extension commands to WINDBG. 

How WINDBG Extensions Work 

A WINDBG extension is just a user-mode DLL that exports various com
mands in the form of DLL functions. The extension DLL also contains several 
support routines that perform initialization and version-checking operations. 
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One of the tricky aspects of writing a WINDBG extension is gaining access 
to memory in the target system (whether it's a crash file or a live machine). To 
make this easy, WINDBG supplies a set of callback routines that the extension 
DLLs use to touch the debug target. This means the DLL has the same view of 
the target system's memory as WINDBG itself. In particular, extension com
mands can't access anything that is paged out at the time a crash or breakpoint 
occurs. 

Initialization and Version-Checking Functions 

When you write an extension DLL for WINDBG, there are two required ini
tialization functions that you must include. At your option, you can also include a 
third version-checking function. These are described in the following subsections. 

WinDbgExtensionDlllnit WINDBG calls this function when the user 
loads the extension DLL. Its job is to save the address of the callback table so 
that other parts of the DLL can use it. This function (shown in Table 17.2) is 
required. 

Table 17.2 Function prototype for WinDbgExtensionDlllnit 

VOID WinDbgExtensionDlllnit 

Parameter 

PWINDBG_EXTENSION_APIS 
IpExtensionApis 

USHORT MajorVersion 

USHORT MinorVersion 
Return value 

Description 

Address of table containing pointers to 
WINDBG callback functions 

• OxF for free build of NT 
• oxe for checked build of NT 
Build-number of NT 
(None) 

ExtensionApiVersion WINDBG calls this function when you try to load 
an extension DLL. Its job is to convince WINDBG that the extension DLL has the 
same version as WINDBG itself. It does this by returning a pointer to the version 
structure associated with the extension DLL. This function (shown in Table 17.3) 
is required. 

Table 17.3 Function prototype for ExtensionApiVersion 

LPEXT _APL VERSION ExtensionApiVersion 

Parameter 

VOID 
Return value 

Description 

(None) 
Address of the DLL's EXT_API_VERSION structure 
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CheckVersion Each time WINDBG executes a command in the DLL, it 
calls this function before calling the command routine. CheckVersion's job is to 
make sure that the version of the extension DLL is compatible with the version of 
NT being debugged. If not, it should complain loudly (and perhaps set a global 
DLL variable to inhibit command execution). This function (shown in Table 17.4) 
is optional. 

Table 17.4 Function prototype for CheckVersion 

VOID CheckVersion 

Parameter 

VOID 
Return value 

Writing Extension Commands 

Description 

(None) 
(None) 

Each command in your extension DLL is implemented as a separate func
tion. Define these command functions using the DELCARE_API macro, like this: 

DECLARE_API ( command_name 
{ 

II 
I I Your code ... 
II 

DECLARE_API gives your command function the prototype shown in Table 
17.5. Be sure the names of your commands are entirely lower-case, or WNDBG 
won't be able to find them. 

Table 17.5 Commands declared with DECLARE_API have this prototype 

VOID command_name 

Parameter 

IN HANDLE hCurrentProcess 
IN HANDLE hCurrentThread 
IN ULONG dwCurrentPc 
IN ULONG dwProcessor 
IN PCSTR args 
Return value 

Description 

Handle of current process on target machine 
Handle of current thread on target machine 
Current value of program counter value 
Number of current CPU 
Argument string passed to the command 
(None) 
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These extension commands can perform any sort of operation that will 
make debugging easier. Their most common use is to format and print the con
tents of various driver-defined data structures, like the Device Extension. 

Finally, if one of your extension commands is going to take a long time to 
execute, or if it's going to generate a lot of output, it should periodically check to 
see if the WINDBG user has typed CTRL+C. Otherwise, the user won't have any 
way to abort the command until it completes. One of the WINDBG helper func
tions described next lets you make this check. 

WINDBG Helper Functions 

Your extension DLL gains access to the system being debugged by calling 
various helper functions exported by WINDBG itself. These functions also give 
your DLL access to the WINDBG command window for input and output. Table 
17.6 contains a brief description of these helper functions. 

Table 17.6 A WINDBG extension DLL can call these helper functions 

WINDBG helper functions 

Function 

dprintf 
CheckControlC 
GetExpression 
GetSymbol 
Disassm 
StackTrace 
GetKDContext 
GetContext 
SetContext 
ReadControlSpace 
ReadMemory 
WriteMemory* 
ReadIoSpace* 
WriteIoSpace* 
ReadIoSpaceEx* 

WriteIoSpaceEx* 

ReadPhysical 
WritePhysical * 

Description 

Print formatted text in WINDBG command window 
See if WINDBG user has typed CTRL+C 
Convert a C expression into a DWORD value 
Locate name of symbol nearest a given address 
Generate string representation of machine instruction 
Return stack-trace of current process 
Return current CPU number and count of CPUs 
Return CPU context of process being debugged 
Modify CPU context of process being debugged 
Get platform-specific CPU information 
Copy data from system virtual space into buffer 
Copy data from buffer to system virtual space 
Read 1/ 0 port 
Write 1/ 0 port 
Read I/O port on specific bus-type and number 

(Alpha only) 
Write I/O port on specific bus-type and number 

(Alpha only) 
Copy data from physical memory into buffer 
Copy data from buffer to specific physical addresses 

*These functions can only be used during an interactive debugging session. 
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The only complete documentation on these helper functions is in the 
WINDBG online help. To find it, do the following: 

1. From the WINDBG help Contents screen, click on the KD button. 

2. Click on the "Creating Extensions" topic. 

3. Scroll about halfway down this topic and you'll find a list of helper functions. 

4. Click on the name of a function to see its prototype and a description. 

Building and Using an Extension DLL 

Although a WINDBG extension is just a user-mode DLL, you still need to 
compile and link it using the BUILD utility. This is because it incorporates the 
DDK header files, and it needs all the compile-time symbol definitions provided 
by BUILD. Consequently, using Visual C++ projects to create an extension DLL 
isn't easy. The example in the next section contains a SOURCES file that builds 
one of these DLLs. 

To use an extension DLL, you first load it using WINDBG's !load command. 
Then you execute one of its functions with a command of the form !function. The 
!unload command allows you to unload an extension DLL. 

WINDBG allows you to have up to 32 extension DLLs loaded at one time. 
When you execute a !function command, WINDBG searches the list of currently 
loaded extensions, starting with the most recently loaded and going back to earliest. 

17.8 CODE EXAMPLE: A WINDBG EXTENSION 

This example shows how to write a simple WINDB extension DLL. You can find 
the code for this example in the CH17\XXDBG directory on the disk that accom
panies this book. 

XXDBG.C 

All the code for this extension DLL is in a single file. The following subsec
tions break it into easily digestible pieces. 

Headers This part of the code contains all the headers and definitions 
needed to make everything work. Warning: There is some odd stuff going on 
here. Don't change the sequence of anything between 0 and @}. 

#include <ntddk.h>O 
#include <windef.h> 

#define LMEM_FIXED OxOOOO @ 



Sec. 17.8 Code Example: A WINDBG Extension 

#define LMEM_MOVEABLE Ox0002 
#define LMEM_NOCOMPACT Ox0010 
#define LMEM_NODISCARD Ox0020 
#define LMEM_ZEROINIT Ox0040 
#define LMEM_MODIFY Ox0080 
#define LMEM_DISCARDABLE OxOFOO 
#define LMEM_VALID_FLAGS OxOF72 
#define LMEM_INVALID_HANDLE Ox8000 

#define LPTR (LMEM_FIXED I LMEM_ZEROINIT) 

#define WINBASEAPI 

WINBASEAPI 
HLOCAL 
WINAPI 
LocalAlloc( 

UINT uFlags, 
UINT uBytes 
) ; 

WINBASEAPI 
HLOCAL 
WINAPI 
LocalFree( 

HLOCAL hMem 
) ; 

#define CopyMemory 
#define FillMemory 
#define ZeroMemory 

RtlCopyMemory 
RtlFillMemory 
RtlZeroMemory 

#include <wdbgexts.h> @) 

II 
II Other header files ... 
II 
#include <stdlib.h> 
#include <string.h> 

#include " . . \driver\xxdriver.h" 0 
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o This is the beginning of some magic. The problem is that we're trying to 
build a Win32 user-mode DLL, but we need access to things defined in 
NTDDK.H and XXDRIVER.H. It takes a little trickery to get all the 
header files to live together. 

@ The various definitions that follow are taken from WINBASE.H in the 
Win32 SDK. The WINDBG extension definitions from WDBGEXTS.H 
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won't work without them. Unfortunately, NTDDK.H and WINBASE.H 
can't coexist in the same source file. The only solution is to cut the 
required pieces from WINBASE.H and include them here. 

@) Now it's safe to bring in the WINDBG extension definitions. This header 
is located in MSTOOLS\H in the Win32 SDK. Here ends the magical 
sequence of headers and definitions. 

o Finally, bring in the driver-specific data structures and definitions. 

Globals These global variables are necessary for the proper operation of 
the extension library. 

static EXT_API_VERSION 
ApiVersion = { 3, 5, EXT_API_VERSION_NUMBER, 0 }i 0 

static WINDBG_EXTENSION_APIS ExtensionApisi @ 

static USHORT SavedMajorVersioni @) 

static USHORT SavedMinorversioni 

o This structure identifies the version of WINDBG that this particular 
extension library works with. WINDBG won't allow you to load an 
incompatible extension DLL. 

@ This will hold a pointer to the table of WINDBG callback functions. The 
access macros defined in WDBGEXTS.H assume that this pointer is 
called ExtensionApis, so don't change the name. 

@) These variables will hold information about the version of NT that is 
being debugged. You can use this information to verify that your library 
is compatible with that version. 

Required functions These functions perform various kinds of initializa
tion and version-checking. 

VOID 
WinDbgExtensionDllInit( 

PWINDBG_EXTENSION_APIS lpExtensionApis, 
USHORT MajorVersion, 
USHORT MinorVersion 
) 

II 
II Save the address of the WINDBG callback 
II table and the NT version information 
II 
ExtensionApis = *lpExtensionApisi 

SavedMajorVersion = MajorVersioni 
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SavedMinorVersion 

return; 

VOID 
CheckVersion( 

VOID 
) 

II 

MinorVersion; 

II Replace this with your 
II version-checking code 
II 
dprintf( 

"CheckVersion called... [%lx; %d] \n" , 
SavedMajorVersion, 
SavedMinorVersion 
) ; 

LPEXT_API_VERSION 
ExtensionApiVersion( 

VOID 
) 

return &ApiVersion; 
} 
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Command routines Here is the code for a command that formats and 
prints the contents of the Device Extension. It illustrates how to access memory on 
the system being debugged. 

DECLARE_API (devext) 
{ 

DWORD dwBytesRead; 
DWORD dWAddress; 

PDEVICE_OBJECT pDevObj; 
PDEVICE_EXTENSION pDevExt; 

if(( pDevObj = malloc( 
sizeof( DEVICE_OBJECT ))) == NULL) 0 

dprintf( "Can't allocate buffer.\n" ); 
return; 
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dwAddress = GetExpression( args ); @ 

if( !ReadMemory( 

{ 

dwAddress, 
pDevObj, 
sizeof( DEVICE_OBJECT), 
&dwBytesRead )) ~ 

dprintf( "Can't get Device object.\n "); 
free( pDevObj ); 
return; 

if( (pDevExt = malloc( 
sizeof( DEVICE_EXTENSION ))) == NULL) 0 

dprintf ( "Can't allocate buffer. \n" ); 
free( pDevObj ); 
return; 

if( !ReadMemory( 
(DWORD)pDevObj->DeviceExtension, 
pDevExt, 
sizeof( DEVICE_EXTENSION ), 
&dwBytesRead )) 0 

dprintf ( "Can't get Device Extension. \n "); 
free ( pDevExt ); 
free ( pDevObj ); 
return; 

dprintf ( CD 
"BytesRequested: %d\n" 
"BytesRemaining: %d\n" 
"TimeoutCounter: %d\n" 
"DeviceObject: %8x\n", 

pDevExt->BytesRequested, 
pDevExt->BytesRemaining, 
pDevExt->TimeoutCounter, 
pDevExt->DeviceObject 
) ; 

free( pDevExt ); 8 
free( pDevObj ); 
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o Allocate memory for a copy of the Device object. 

@ Get the address of the Device object from the command line using a 
WINDBG callback function. 
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~ Use another WINDBG callback function to get a copy of the Device object 
from the system being debugged. 

o Allocate another buffer to hold the Device Extension. 

(i) Get the address of the Device Extension (on the target system) from the 
Device object. Copy the Extension from the target system into the buffer. 

<D Display some interesting values from the Device Extension. 

VI Remember to clean everything up before leaving. 

XXDBG.DEF 

Here's the Linker definition file for the extension library. 

LIBRARY XXDBG 

EXPORTS 
WinDbgExtensionDllInit 0 
CheckVersion 
ExtensionApiVersion 
devext @ 

printargs 

o You need to export the required functions so that WINDBG can access 
them. 

@ Here are all the extension commands exposed by the DLL. Again, the 
command names must be exclusively lowercase. 

SOURCES file 

This is the BUILD control file that creates the extension DLL. Since it's creat
ing a user-mode DLL, it uses some BUILD keywords that don't show up in the 
SOURCES files for drivers. 

TARGETNAME= xxdbg 
TARGETPATH= 
TARGETTYPE= DYNLINK 

INCLUDES= $(BASEDIR)\inc;. 

USE CRTDLL= 1 

DLLBASE= OxlOOOOOO 

SOURCES= xxdbg.c 

UMTYPE= console 
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Sample Output 

Here is a sample of the output generated by the XXDBG extension DLL. 

KDx86> !load xxdbg 0 
Debugger extension library [xxdbg] loaded 

KDx86> !devext ff58bc40 @ 
CheckVersion called ... [f;1057] 

BytesRequested: 0 
BytesRemaining: 0 
TimeoutCounter: 0 
DeviceObject: ff58bc40 

KDx86> !unload @ 
Extension dll xxdbg unloaded 

o The !load command brings XXDBG into memory and makes it the 
default extension library. For this to work, XXDBG.DLL must be in one of 
the directories where the system looks for DLLs. 

@ To execute a command, just prefix the command name with an exclama
tion point. 

@ The !unload command unloads the current default extension library. To 
unload some other extension DLL, specify the name of library as an argu
ment to the command. 

17.9 MISCELLANEOUS DEBUGGING TECHNIQUES 

Often the main problem in correcting driver bugs is just getting enough informa
tion to make an accurate diagnosis. This section presents a grab bag of techniques 
that may help. 

Leaving Debug Code in the Driver 

In general, it's a good idea to leave debugging code in place, even when 
you think the driver is ready for release. That way, you can reuse it when you 
have to modify the driver at some later date. Conditional compilation makes 
this easy to do. 

The BUILD utility defines a compile-time symbol called DBG that you can 
use to conditionally add debugging code to your driver. In the checked BUILD 
environment, DBG has a value of one; in the free environment it has a value of 
zero. Several of the macros described below use this symbol to suppress the gen
eration of extraneous debugging code in free versions of drivers. If you're adding 
your own debugging code to a driver, you should wrap it in #if DBG and #endif 
statements. 
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Catching Incorrect Assumptions 

As in real life, making unfounded assumptions in kernel-mode drivers is a 
dangerous practice. For example, assuming that some function argument will 
always be non-NULL, or that a piece of code will only be called at a specific IRQL 
level can lead to disaster if these expectations aren't met. 

To catch unforeseen conditions that could lead to driver failure, you need to 
do two things. First, you have to document the explicit assumptions made by 
your code. Second, you need to verify that these assumptions are actually true at 
runtime. The ASSERT and ASSERTMSG macros will help you with both these 
tasks. They have the following syntax: 

ASSERT ( Expression ); 
ASSERTMSG( Message, Expression ); 

If Expression evaluates to FALSE, ASSERT writes a message to WINDBG's 
command window. The message contains the source code of the failing expres
sion, plus the file name and line number where the ASSERT macro was called. It 
then gives you the option of taking a breakpoint at the point of the ASSERT, 
ignoring the assertion failure, or terminating the process or thread in which the 
assertion occurred. 

ASSERTMSG exhibits the same behavior, except that it includes the text of 
the Message argument with its output. Don't try getting too fancy with the Message 
argument; it's just a simple string. Unlike the debug print functions described ear
lier, ASSERTMSG doesn't allow you to include any printf-style substitutions. 

Several things are worth mentioning here. First, both assertion macros com
pile conditionally and disappear altogether in free builds of your driver. This 
means it's a very bad idea to put any executable code in the Expression argument. 

Another little twist is that RtlAssert (the underlying function used by these 
macros) is a no-op in the free version of Windows NT itself. So, if you want to see 
any assertion failures, you'll have to run a checked build of your driver under the 
checked version of Windows NT. 

Finally, a warning is in order: The checked build of Windows NT will crash 
with a KMODE_EXCEPTION_NOLHANDLED error if an assertion fails and the 
Kernel's debug client isn't enabled. If the debug client is enabled, but there's no 
debugger on the other end of the serial line, the target machine will simply hang 
when an assertion fails. You can recover from the hang by starting up WINDBG 
on the host machine, but you won't see the text of the assertion that failed. 

USing Bugcheck Callbacks 

A bugcheck callback is an optional driver routine that gets called by the Ker
nel when the system begins to crash. These routines give you a convenient way to 
capture debugging information at the time of a crash. You can also use them to 
put a piece of hardware in a known state before the system goes away. Here's how 
they work. 
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1. In DriverEntry, call KeInitializeCallbackRecord to set up a KBUG
CHECK_CALLBACK_RECORD structure. The space for this opaque struc
ture must be nonpaged, and must be left alone until you call KeDeregister
BugCheckCallback. 

2. Also in DriverEntry, call KeRegisterBugCheckCallback to request notifica
tion when a bugcheck occurs. The arguments to this function include the 
bugcheck-callback record, the address of a callback routine, the address and 
size of a driver-defined crash buffer, and a string that will be used to identify 
this driver's crash buffer. As with the bugcheck-callback record, memory for 
the driver's crash buffer must be nonpaged and can't be touched until the 
driver calls KeDeregisterBugCheckCallback. 

3. Call KeDeregisterBugCheckCallback in your driver's Unload routine to dis
connect from the bugcheck notification mechanism. 

4. If a bugcheck occurs, the system will call the driver's bugcheck-callback 
routine and pass it the address and size of the driver's crash buffer. The job 
of the callback routine is to fill the crash buffer with any information that 
would not otherwise end up in the dump file (like the contents of device 
registers) . 

5. When you analyze the crash with WINDBG, use the !bugdump command to 
view the contents of the crash buffer. 

There are some restrictions on what a bugcheck callback is allowed to do. 
When it runs, the callback routine can't allocate any system resources (like mem
ory). It also can't use spin locks or any other synchronization mechanisms.9 It is 
allowed to call Kernel routines that don't violate these restrictions, as well as the 
HAL functions that access device registers. 

Catching Memory Leaks 

A memory leak is one of the nastier kinds of driver pathology. Drivers that 
allocate pool space and then forget to release it may just degrade system perfor
mance over time, or they can lead to actual system crashes. You can use NT's 
built-in pool-tagging mechanism to determine if your driver leaks memory. 
Here's how it works. 

1. Replace calls to ExAllocatePool with ExAllocatePoolWithTag calls. The extra 
4-byte tag argument to this function will be used to mark the block of mem
ory allocated by your driver. 

9 Synchronization shouldn't be a problem, though, since nothing else is allowed to run while the 
bugcheck callback is executing. 
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2. 

3. 

Run your driver under the checked build of NT. Keeping track of pool tass is 
an expensive activity, so it only works under the checked version of NT. I 

When you're analyzing a crash, or when your driver is at a breakpoint, use 
the !poolused or !poolfind commands in WINDBG to examine the state of the 
pool areas. These commands sort the pool areas by tag value and displays 
various memory statistics for each tag. 

One easy way to use pool tagging is to replace the ExAllocatePool function 
with ExAllocatePoolWithTag with conditional compilation. This way, you can 
turn tagging on and off without too much trouble. Add something like the follow
ing to your driver's header file: 

#if DBG 
#define ExAllocatePool( type, size \ 

ExAllocatePoolWithTag( (type), (size), 'DCBA' ) 
#endif 

The tag argument to ExAllocatePoolWithTag consists of four case-sensitive 
ANSI characters. Because of the way things work on little-endian machines, you 
need to specify the characters in reverse order. Hence, the DCBA in the example 
will become ABCD in the pool tag display. 

In this example, we used the same tag value for all the allocations made by a 
single driver. For some situations, you might also want to use different tag values 
for different kinds of data structures, or for allocations made by different parts of 
your driver. These kinds of strategies might help you see exactly what's been 
leaking out of your driver. 

The POOLMON utility that comes with the NT DDK also lets you look at 
the pool tags dynamically, without the need for WINDBG. You run this com
mand-line utility on the target machine and it outputs a continuously updated 
display of the pool tags. See Chapter 6 of the DDK Programmer's Guide for details 
on running POOLMON. 

Using Counters, Bits, and Buffers 

There's no question that interactive driver debugging is a wonderful thing. 
Unfortunately, some kinds of bugs are time-dependent, and they disappear when 
you use breakpoints or single step through the code. This subsection presents sev
eral techniques that may help you catch these bugs. 

10 Chapter 6 of the DDK Programmer's Guide claims that you can enable this feature in the free 
build of NT by ORing the FLG ]OOL_ENABLE _TAGGING bit into the GlobalFlag value of the 
HKEY_LOCAL_MACHINE\System \ CurrentControlSet \ Control \SessionManager key of the 
Registry. Unfortunately, none of the currently available documentation or header files defines 
what this value is. 
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Sanity counters You can use pairs of counters to perform several kinds of 
sanity checks in your driver. For example, you might count how many IRPs arrive 
at your driver and how many you send to IoCompleteRequest. Or, in a higher
level driver, you could track the number of IRPs allocated versus the number 
released. Checks like these can help you find subtle inconsistencies in the behav
ior of your driver. The only disadvantage of sanity counters is that they don't nec
essarily tell you where the problem is occurring. 

Implementing a counter is very simple. Just declare a ULONG variable in 
your Device Extension for each counter and then add appropriate code to incre
ment the counters throughout your driver. As with all debugging support, it's a 
good idea to wrap sanity-counter code in conditional compilation statements that 
depend on the DBG symbol. 

If you're feeling really ambitious, you can write a WINDBG extension to dis
play the counters. As a simple alternative, your driver can force a bugcheck after 
it has collected enough data, and simply use a bugcheck callback to save the 
counter values. 

Event bits Another useful technique is to keep a collection of bit flags that 
track the occurrence of significant events in your driver. Each bit represents one 
specific event, and when that event happens, your driver sets the corresponding 
bit. Where sanity counters tell you about global-driver behavior, event bits can 
give you an idea of what parts of your code have executed. 

One of the decisions you'll have to make is whether to clear the event vari
able during DriverEntry, during the Dispatch routine for IRP _MLCREATE, or 
when you begin processing each new IRP. Each of these options can be useful in 
different situations. 

Trace buffers The problem with event bits and counters is that they don't 
give you any idea of the sequence of execution of your code. To get around this 
limitation, you can add a simple tracing mechanism that makes entries in a spe
cial buffer as different parts of your driver execute. 

Trace buffers can be very useful for tracking down unexpected interactions 
in asynchronous or full-duplex drivers. On the downside, this extra information 
isn't free. Trace buffers use more CPU time than counters or event bits, and this 
could have an effect on time-sensitive bugs. 

Implementing a trace buffer mechanism takes a little more work than the 
other techniques we've looked at. Here are the basic steps you need to follow: 

1. Add trace buffer data structures to your driver. Normally, you should put 
these structures in the Device Extension so you can trace things on a device
by-device basis. Every once in awhile, you might find some value in a global 
buffer that traces the entire driver. 

2. Define a macro to make entries in the trace buffer. As with other pieces of 
debug code, it's a good idea to bracket the trace macro with conditional com
pilation statements. 
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3. Insert calls to the trace macro at various strategic places in your driver. 

4. Write a debugger extension to dump the contents of trace buffer. 

The trace buffer itself is just an array, coupled with a counter that keeps 
track of the next free slot. The following code fragment illustrates the structure of 
a basic trace buffer. 

typedef _DEVICE_EXTENSION 

#if DBG 
ULONG TraceCount; 
ULONG TraceBuffer[ XX_TRACE_BUFFER_SIZE ]; 

#endif 

} DEVICE_EXTENSION, *PDEVICE_EXTENSION; 

Again, depending on what you're looking for, you can initialize the Trace
Count field once in your DriverEntry routine, each time you get an 
IRP _MLCREATE request, or with each new IRP. 

Adding entries to the buffer is just a matter of storing an item in the array 
and incrementing the counter.H This code fragment shows how to implement a 
basic trace macro. 

#if DBG 
#define XXTRACE( pDE, Tag) \ 

if( pDE->TraceCount >= XX_TRACE_BUFFER_SIZE \ 
pDE->TraceCount = 0; \ 

pDE->TraceBuffer[ pDE->TraceCount++ ] = \ 
(ULONG) (Tag); \ 

#else 
#define XXTRACE( pDE, Tag) while ( FALSE) {} 
#endif 

Notice that this implementation ignores all the synchronization issues that 
arise when you call XXTRACE from multiple IRQL levels (potentially on multiple 
CPUs). Since the whole purpose of using trace buffers is to catch errors that are 
sensitive to timing, putting synchronization mechanisms into XXTRACE would 
probably make it useless. So, just how do you prevent the trace macro from trash
ing itself? 

One solution is to call XXTRACE only from places in your driver where syn
chronization won't be a problem. For example, if you call XXTRACE from DPC 
routines, synchronization is already being handled as part of the larger structure of 
the driver itself. Similarly, if you call it from an ISR and a SyncCritSection routine, 

11 If you have a large enough trace buffer and an accurate idea of how many events will be traced, 
you can save some time by eliminating the test for a full buffer. This is a very dangerous optimiza
tion, so use it with care. 
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synchronization is already guaranteed. If you can't live with these restrictions, 
you'll have to add explicit synchronization to XXTRACE. 

17.10 SUMMARY 

When you write a driver, very few limits are placed on what you can do to the 
system. With all this power comes the heavy burden of making sure that your 
driver doesn't compromise system integrity. You need to correct not only overt, 
catastrophic errors, but also subtle problems that may over time damage the sys
tem. This chapter has presented some techniques you can use to diagnose and 
eliminate bugs, both early in the development cycle, and later when the driver is 
out in the world. 

But suppose bugs aren't the problem. Suppose the driver works, but it just isn't 
fast enough. The next chapter examines the important area of driver performance. 
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There's a certain feverish look - a kind of glassy 
stare - that comes into the eyes of a programmer about to start tuning a piece of 
code. You can almost hear their thoughts: "If I just squeeze out a few cycles here 
and there, make this loop a little tighter, optimize the code by hand, maybe even 
use some assembly language ... " Through some kind of magic, everything will run 
twice as fast. 

Unfortunately, the results seldom meet these expectations, and after a lot of 
effort, the code runs only a few percent faster. The problem is that no amount of 
optimization or tuning will make up for an inherently slow design. Performance 
is something you have to think about all the way through the development cycle. 
If you've done that, then you can use the techniques described in this chapter to 
verify that your driver meets its performance goals. 

18.1 GENERAL GUIDELINES 

Acceptable driver performance can mean different things in different situations. 
As a result, the guidelines given in this section are necessarily a little fuzzy. Hope
fully, they'll act as a springboard for your own thinking on the subject. 

Know Where You're Going 

You have to know where you're trying to go or else you won't know when 
you've gotten there. In the case of driver tuning, this means you should have 
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some specific performance targets in mind when you start. These targets can be 
the result of a number of things: 

• The device itself may have some timing needs. For example, it might 
need to be serviced within a certain minimum interval, or it may generate 
data at some particular rate. Understanding your device and how it will 
be used are important factors in setting performance targets. 

• Application programs may have expectations of how quickly the device 
will respond, or how many transactions per second it should be able to 
handle. 

• The user's perception may be the determining factor in choosing perfor
mance targets. The drivers of video cards, sound boards, and even pointing 
devices are judged by how they feel to the user more than anything else. 

Very early in the design process, formulate your performance goals in the 
most concrete terms possible. Come up with numbers if you can. Then look at 
your overall driver design and see where these performance needs will have the 
biggest impact. 

Get to Know the Hardware 

Learn as much as you can about the hardware your driver is managing. 
Does it have any weird quirks that might impact driver performance? Are there 
any specific sequences of operations that make things go faster or slower? Are 
you making the most of any built-in processing capabilities of the device itself? If 
you're working with a multiunit controller, does it support overlapped operations 
on several devices at the same time? The more you know about the hardware 
you're driving, the better you'll be able to see what your options are. 

Explore Creative Driver Designs 

Some of the most powerful optimizations come, not from tweaking code, 
but from looking for a whole different approach to the problem. NT has a very 
well-defined driver architecture, but it may not always be suitable for what you're 
trying to do. 

For example, look at the way video and display drivers work. Display speed 
would be abysmal if Win32 went all the way through the 1/ 0 Manager every time 

. it touched the video hardware, so the drivers use a nonstandard architecture. In 
some cases, it may make sense to map device registers or device memory into 
user space if that's the only way to achieve acceptable performance. Real-time 
device control might demand this kind of design. 

The mouse class and port drivers provide another example of nonstandard 
interfaces. In this, case, the class driver gives the mouse port driver a pointer to a 
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function that it should call when mouse events arrive. This allows the port driver 
to pass data using a common buffer and greatly reduces the system's overhead in 
processing large numbers of events. 

The downside of all this is that you may end up compromising system 
integrity. Don't abandon the standard NT driver architecture right off the bat, but 
if it's clear that nothing else will give you good performance, go for it. 

Optimize Code Creatively 

This is where everyone wants to look first, when in fact it's probably the last 
place to focus your attention. It's worth repeating that no amount of clever opti
mization will make up for an inherently bad design. If you do need to squeeze 
more performance out of your code, here are some things to think about. 

First, be very dear about what you're trying to accomplish. Your goal should 
be to find new ways of doing things, not just ways to tweak existing code. Most 
decent C compilers do a wonderful job of tweaking code. Your advantage as a 
human is that you know the context in which the code will run. This allows you to 
look for entirely different ways of accomplishing a particular task. Don't waste 
this gift by turning yourself into a glorified peep-hole optimizer. 

Also, focus your attention on the relatively small areas of code that really 
determine overall performance. It's often the case that one or two tiny subrou
tines, comprising maybe 10 percent of your overall driver, will be the gate that 
controls the speed of the driver. Try to find those hot spots or critical code paths 
and make them as fast as possible. The code paths through your driver's most fre
quently executed operations are a good place to look. 

Finally, don't assume that an optimization will have the same impact on all 
NT platforms. Some kinds of optimizations may work only on a specific type of 
CPU. If you plan to support your driver on more than one CPU or bus architec
ture, be sure that improvements work equally well everywhere. At the very least, 
make certain that an optimization on one configuration doesn't degrade perfor
mance anywhere else. 

Measure Everything You Do 

Concrete me¥urement forms the basis of all good science. It's amazing how 
much faster a pi~ of code can seem just because you've put several hours of 
work into optimizing it. Don't get caughtin the trap of wishful thinking; measure 
the impact of everything you do. If you don't have any quantitative data to go by, 
you won't know if you're helping or hurting. 

Later in this chapter, you'Usee one way to analyze.a driver's behavior using 
the PERFMON utility. You can also measure the speed of specific routines using 
the profiling timer available in NT. The only limitation is that this counter's reso
lution on 80x86 machines is only one microsecond, and ana 100 MHz Pentium, a 
lot of instructions can flow by in that time. 
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18.2 PERFORMANCE MONITORING IN WINDOWS NT 

One of your options for observing a driver's behavior is to tie into NT's perfor
mance monitoring system. The advantage of this technique is that you or anyone 
else can use the PERFMON utility to collect and display data about your driver. 
This section presents the overall architecture of NT's performance monitor system. 

Some Terminology 

Like other parts of NT, the performance system uses an object-based model 
to describe its operation. Before we look at the actual steps involved in using the 
performance system, it's a good idea to define some of the terms appearing in the 
discussion. 

Performance object This is any object that makes performance data avail
able through the Registry. System components, drivers, and services can all 
export various performance objects. For example, the system exposes objects like 
memory and CPU, and drivers can expose separate performance objects for each 
device they support. 

Performance counter Data about a given performance object takes the 
form of counters. Although the name seems to imply the summing of discrete 
events, these counters can actually represent a wide variety of measurements: an 
absolute number of events, a rate of occurrence, a ratio of quantities, the average 
availability of a resource, and so forth. For example, NT's Memory object exposes 
counters representing the number of available bytes and the number of page 
faults per second. 

Object instance There may be more than one instance of some kinds of 
objects on the system. For example, there can be several CPUs and several disk 
drives. To distinguish among members of a set of identical objects, performance 
monitoring components usually represent these objects as separate instances of 
the object type. CPU performance data would show up as information about 
CPUO, CPUl, CPU2, and so on. 

Counter instance When a performance object supports multiple object 
instances, each instance will have its own complete set of counters. Referring back 
to the CPU object, there are separate interrupt rate counters for each CPU object 
instance. 

How Performance Monitoring Works 

Windows NT provides a common set of interfaces that drivers and applica
tion programs can use if they want to participate in performance monitoring 
operations. Figure 18.1 shows how these interfaces work. 
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Figure 18.1 NT performance monitoring components 
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The following describes what happens when you run the PERFMON utility 
(located in the Administrative Tools program group). The process would be the 
same for any application program curious about system performance data. 

1. The PERFMON utility uses the Win32 RegQueryValueEx function to access 
the HKEY_PERFORMANCE_DATA key. 

2. The Registry API scans HKEY_LOCAL_MACHINE\ ... \ Services for drivers 
and services with a Performance subkey. Having this sub key marks a driver 
or service as a performance monitoring component. Values contained in the 
Performance subkey identify a data-collection OLL that acts as an interface 
between the Registry API and the objects being monitored. 

3. The Registry API maps these interface OLLs into the process requesting per
formance data. It then calls the Open and Collect functions in each OLL to 
determine what objects and counters the OLL supports. 

4. Each time PERFMON wants updated performance information, it calls the 
RegQueryValueEx again. This results in calls to the Collect function in 
each performance component's data-collection OLL. The Collect function 
gets a raw data sample from the object being monitored and sends it back 
toPERFMON. 

5. When PERFMON closes the HKEY_PERFORMANCE_OATA key with Reg
CloseKey, the Registry API calls the OLL's Close function to do any necessary 
cleanup. It then unmaps the OLL from the process. 
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You can see from this description that performance information isn't actu
ally stored in the Registry in the same way that hardware or software configura
tion data is. Rather, the Win32 Registry API calls gather performance data at the 
time someone asks for it. 

How Drivers Export Performance Data 

Drivers that support monitoring have to maintain performance data about 
themselves. They make this data available to their data-collection DLL using 
either of two different techniques: 

• 10Clls - Kernel-mode drivers make their performance data available 
through a privately defined IOCTL function. 

• File Mapping objects - User-mode drivers expose performance data 
through a File Mapping object (i.e., shared memory) that has a well
known name. 

The example appearing later in this chapter shows how to implement a 
data-collection DLL for a kernel-mode driver. A similar example in the NT DDK 
illustrates how to set up monitoring for a user-mode system component. 

18.3 ADDING COUNTER NAMES TO THE REGISTRY 

One of the goals of NT's performance monitoring architecture was to make the 
display names of performance objects and counters independent of any particular 
national language. If you have the American version of NT installed, performance 
monitoring tools should display counter names in English, while the French ver
sion of NT should use French names. 

To accomplish this, both the data-collection DLL and the PERFMON utility 
refer to performance objects and counters using index numbers rather than 
names. These index numbers are assigned when a driver is installed on a given 
machine, and they are globally unique on that system. These object and counter 
indexes are stored in the Registry along with their corresponding display names. 
Tools like PERFMON use this area of the Registry to convert an object or counter 
index into text. A similar mechanism allows PERFMON to display help text (in 
the appropriate language) about a given counter. 

Counter Definitions in the Registry 

As you can see from Figure 18.2, individual counter definitions are stored 
under the Perflib key, grouped according to their language ID. This scheme 
allows you to support counter names and help text in multiple languages without 
having to modify your driver. 
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Figure 18.2 Counter definition area in the Registry 

Look at Table 18.1 for a more detailed view of the individual Registry 
entries. As you can see, each performance object or counter is coupled with a 
unique, even integer. These pairs are stored under the Counters sub key for each 
language. Help text for a given counter has an odd-numbered index one greater 
than the index for the counter itself. Help text definitions are stored under the 
Help subkey of each language. 

Although you could do something disgusting such as using REGEDT32 to 
add your counter definitions to the Registry, there is an easier way. The NT DDK 

Table 18.1 Registry entries that define counter names and help text 

Perflib Registry entries 

Entry 

\nnn 

\nnn 
\ Counters 

\nnn 
\ Help 

Last Counter 
Last Help 

Contents 

Names and help text for a 
specific language ID 
REG_MULTI~SZ string 
composed of index / name 

REG_MULTCSZ string 
composed of index / help text 

Highest assigned name index 
Highest-assigned help index 

Example 

009 is the language ID for American 
English 
2 \0 System \0 
4 \0 Memory \0 
6 \0 % Processor time \0 \0 
3 \0 The System object type ... \0 
5 \0 The Memory object type ... \0 
7 \0 % Processor time is ... \0 \0 
Ox330 
Ox331 
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contains two utilities, LODCTR and UNLODCTR, that add and remove counter 
definitions for you. In order to add counters with LODCTR, you need to do the 
following: 

1. Write a LODCTR command file. 

2. Write a counter-offset header file. 

3. Add a subkey called Performance to your driver's Registry service key. 

4. Run the LODCTR utility to install the counter definitions. 

Writing LODCTR Command Files 

To use the LODCTR utility, you first need to write a command file describ
ing the objects, counters, and help text you want to add to the Registry. The com
mand file is divided into three sections and can contain the keywords listed in 
Table 18.2. 

Table 18.2 Section names and keywords in a LODCTR command file 

LODCTR command file 

Section Keywords Description 

[info] DRIVERNAME=DriverName 
APPLICATIONNAME=ProgName 
SYMBOLFILE=FileName.H 

Name, if driver 
Name, if service 
Counter-offset definition file 

[languages] langid=LanguageName IDs of languages in this file 
(LanguageName is ignored) 

[text] symboUangid_NAME=Name text 
symboUangid_HELP=Help text 

Name of one object or counter 
Single line of explanatory text 

The LODCTR utility uses the Win32 profile functions to parse its command 
file, so it should come as no surprise that these files usually have the extension 
IN!. Let's look at an example of the command and header files needed to define 
some performance counters. 

COUNTERS.lNI The following example of a LODCTR command file adds 
one object with two counters to the Registry. It supports only American English 
versions of the counters. 

[info] 
drivername=XXDRIVER 
symbolfile=COUNTERS.H 

[ languages] 
009=English 



Sec. 18.3 Adding Counter Names to the Registry 467 

[text] 
XXDEVICE_009_NAME=XX Device 
XXDEVICE_009_HELP= The Xx Device does whatever it does. 

INTERRUPTS_009_NAME=Interrupts/sec 
INTERRUPTS_009_HELP=Measures the interrupt rate. 

OPERATIONS_009_NAME=Operations/sec 
OPERATIONS 009_HELP=Measures device activity. 

COUNTERS.H You also need to write a header file containing the relative 
index values of each object and counter that you plan to add to the Registry. This 
header file defines relative offsets for the XXDEVICE object and its two counters. 

#define XXDEVICE 
#define INTERRUPTS 
#define OPERATIONS 

o 
2 
4 

These indexes must be even numbers starting at zero. The names in the 
header file have to match the names in the [text] section of the LODCTR com
mand file, and they are case-sensitive. This header file will also be included in 
your data-collection DLL. 

Using LODCTR and UNLODCTR 

To add your counter names to the Registry, run LODCTR from the com
mand line and give it the name of the command file, like this: 

LODCTR COUNTERS.INI 

When you run LODCTR, it uses the Last Counter and Last Help values in 
the Perflib Registry key to assign absolute index numbers to your objects, 
counters, and help text items. It also stores the first and last counter and help 
indexes assigned to your driver in the Performance subkey of the driver's Regis
try service key. 

A single command file can contain object and counter definitions in more 
than one language. However, LODCTR will only install counter definitions for 
language IDs already listed under the Perflib Registry key. 

To remove all the objects, counters, and help text associated with a particular 
driver or service, run the UNLODCTR utility. Its only argument is the name of the 
driver or service that you specified in the [info] section of the INI file. 

UNLODCTR XXDRIVER 

If you want to modify the object and counter names associated with a par
ticular driver, you have to remove the existing counter definitions for the 
driver with UNLODCTR and run LODCTR again. LODCTR performs only 
minimal error checking, and if you run it twice for the same driver, the results 
are unpredictable. 



468 Chapter 18 Driver Performance 

18.4 THE FORMAT OF PERFORMANCE DATA 

When the Registry API calls your data-collection DLL, it expects you to return 
counter information in a very specific format. This data format is one of the more 
Byzantine things in NT, so it deserves a little motivating explanation. 

Along with the goal of language-independent object and counter names, the 
NT architects also wanted to make performance data totally self-descriptive. This 
means that programs like PERFMON should be able to process and display a 
block of performance data using only the contents of the block itself. This open
ended, extensible architecture allows standard tools to monitor objects that they 
know nothing about. 

Unfortunately, data that's totally self-descriptive is also very complicated. 
The following subsections describe the Registry's performance data format. 

Overall Structure of Performance Data 

Figure 18.3 illustrates the overall structure of the information returned by 
your data-collection DLL. For each performance object in the DLL, you have to 
provide 

• Information about the object itself 

• Definitions for each counter the object exposes 

• A header for all the counter data 

• A block containing the counters themselves 

/ PERF_OBJECT_TYPE 

PERF _COUNTER_DEFINITION 1 

PERF _COUNTER_DEFINITION 2 

Object Type 1 
: 

Object Type 2 
PERF _COUNTER_DEFINITION M 

Object Type 3 
PERF_COUNTER_BLOCK 

: 
Counter 1 

Object Type N 
Counter 2 

: 

Counter M 
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Figure 18.3 Structure of performance data for objects with single instances 
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The following subsections describe these structures in more detail. You can 
find additional information in the WINPEREH header file that comes with the 
Win32 SDK. 1 

PERF _OBJECT_TYPE This structure acts as a header for information 
about a single object type. You must provide one of these structures for each object 
being exposed by your performance DLL. Table 18.3 lists the fields in this structure. 

Table 18.3 Contents of a PERF_OBJECT _TYPE structure 

Field 

DWORD TotalByteLength 

DWORD DefinitionLength 

DWORD HeaderLength 
DWORD ObjectNameTitleIndex 
LPWSTR ObjectNameTitle 
DWORD ObjectHelpTitleIndex 
LPWSTR ObjectHelpTitle 
DWORD DetailLevel 

DWORD NumCounters 
DWORD DefaultCounter 
DWORD NumInstances 

DWORD CodePage 
LARGE_INTEGER PerfTime 

LARGE_INTEGER PerfFreq 

Contents 

sizeof( PERF _OBJECLTYPE ) 
+ NumCounters 
* sizeof( PERF_COUNTER_DEFINITION) 
+ sizeof( PERF _COUNTER_BLOCK) 
+ sizeof( allCounters ) 
sizeof( PERF _OBJECT_TYPE) 
+ NumCounters 
* sizeof( PERF _COUNTER_DEFINITION) 
sizeof( PERF _OBJECT_TYPE) 
Index of this object's name in the title database 
NULL 
Index of object's description in the help database 
NULL 
Complexity level of information 
• PERF _DETAILNOVICE 
• PERF_DETAIL_ADVANCED 
• PERF_DETAIL_EXPERT 
• PERF_DETAIL_WIZARD 
Number of counters in each counter block 
Default to display, or -1 
Number of instances of this object, or -1 if 
no separate instances 
a for drivers 
Current value, in counts, of the high-resolution 
performance counter 
Current frequency, in counts per second, of the 
high-resolution performance counter 

1 This header also contains a great deal of descriptive commentary. I recommend reading it if you're 
going to be working with the performance subsystem. 
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Table 18.4 Contents of a PERF _COUNTER_DEFINITION structure 

PERF _COUNTER_DEFINITION, *PPERF _COUNTER_DEFINITION 

Field 

DWORD ByteLength 
DWORD CounterNameTitleIndex 

LPWSTR CounterNameTitle 
DWORD CounterHelpTitleIndex 

LPWSTR CounterHelpTitle 
DWORD DefaultScale 

DWORD DetailLevel 

DWORD CounterType 
DWORD CounterSize 
DWORD CounterOffset 

Contents 

sizeof( PERF _COUNTER_DEFINITION) 
Index of this counter's name in the title 
database 
NULL 
Index of this counter's description in the help 
database 
NULL 
Scaling factor for display, expressed as a 
power of 10 
Complexity level of information 
• PERF_DETAIL_NOVICE 
• PERF_DETAIL_ADVANCED 
• PERF_DETAIL_EXPERT 
• PERF_DETAIL_WIZARD 
(See below) 
Size of counter in bytes 
Offset from start of PERF _COUNTER_BLOCK 
structure to the first byte of this counter 

PERF _COUNTER_DEFINITION You must supply a separate counter defi
nition for each counter in your DLL. This block (described in Table 18.4) pinpoints 
the size and position of the counter data itself, as well as defining the type of 
information the counter represents. 

PERF _COUNTER_BLOCK This block (described in Table 18.5) is simply a 
header for all the raw counter data itself. The counters come immediately after it. 

Table 18.5 Contents of a PERF _COUNTER_BLOCK structure 

Field 

DWORD ByteLength 

Types of Counters 

Contents 

sizeof( PERF _COUNTER_BLOCK) 
+ sizeof( allCounters ) 

The CounterType field of the counter definition block specifies the kind of 
information represented by the counter. WINPEREH contains a number of pre
defined types, most of which are listed in Table 18.6. Your choice of a counter type 



Sec. 18.4 The Format of Performance Data 471 

Table 18.6 Use these values for the CounterType field of a PERF _COUNTER_DEFINITION 

Predefined CounterType values 

Counter type Description Suffix 

PERF _COUNTER_COUNTER 32-bit event rate /sec 
ACount / ATime 

PERF _ COUNTER_TIMER 64-bit Timer % 
ACount / A Time 

PERF _COUNTER_QUEUELEN_TYPE Average queue length 
ACount / ATime 

PERF _COUNTER_BULK_COUNT 64-bit event rate /sec 

I 

ACount / ATime 
PERF _COUNTER_TEXT Unicode text l PERF _COUNTER_RAWCOUNT 32-bit counter 

I 
No time averaging 

I PERF _SAMPLE_FRACTION % Busy counter numerator % 
1 or a on each sampling 
interrupt 
ACount / ATime 

PERF _SAMPLE_BASE % Busy counter denominator 
Directly follows numerator 
counter. 

PERF _SAMPLE_COUNTER Sampled counter 
ACount / ATime 

PERF _COUNTER_NODATA Label only; no data 
PERF _COUNTER_ TIMER_INV 64-bit Timer inverse % 

Measure % idle but display 
% busy 
100 - (ACount / ATime) 

PERF _AVERAGE_BULK A bulk count which, when 
divided (typically) by the number 
of operations, gives (typically) 
the number of bytes per operation. 
Count/Base 

PERF _AVERAGE_TIMER A timer which, when divided by sec 
an average base, produces a time in 
seconds which is the average time 
of some operation. This timer times 
total operations, and the base is 
the number of operations. 
Timer/Base 

PERF _AVERAGE_BASE Denominator of time or count 
averages 
Directly follows numerator counter. 
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Table 18.6 (Continued) 

Counter type 

PERF _COUNTER_MULTI_TIMER 

PERF _100NSEC_MULTCTIMER 

Description 

64-bit Timer in 100 nsec units 
,1Count / ,1 Time 
64-bit Timer inverse 
100 - (,1Count / ,1 Time) 
64-bit multi-instance Timer 
,1Count / ,1 Time 
Result can exceed 100% 
64-bit multi-instance Timer 
inverse 
100 * MULTI_BASE 
- (,1Count / ,1Time ) 
Result can exceed 100% 
Followed by a MULTCBASE. 
Counter 
Number of instances to which 
the preceding _MULTL, .. _INV 
counter applies 
64-bit multi-instance 100 nSec 
Timer 
,1Count / ,1 Time 
Result can exceed 100% 
64-bit Timer inverse 
100 * _MULTI_BASE 
- ,1Count / ,1 Time 
Result can exceed 100%. 
Followed by a MULTI_BASE 
counter 
Counter is a fraction of base 
Count/ Base 
No time averaging 
Base for the preceding counter 

Suffix 

% 

% 

% 

% 

% 

% 

% 

will determine not only the data you have to supply, but also how the Perfor
mance Monitor displays that data. 

Objects with Multiple Instances 

If your data-collection DLL reports data separately for each instance of an 
object, you need to use a slightly different data format. As you can see from Figure 
18.4, the main change is that you have to supply a name for each object instance 
and separate instances of each counter. 
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PERF_OBJECT_TYPE 

PERF _COUNTER_DEFINITION 1 

PERF _COUNTER_DEFINITION 2 / PERF _INSTANCE_DEFINITION 

: Unicode Instance Name 

PERF _COUNTER_DEFINITION M PERF_COUNTER_BLOCK 

Instance 1 Counter 1 

Instance 2 

\ 
Counter 2 

: : 

Instance P Counter M 
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Figure 18.4 Modified structure of performance data for objects with multiple instances 

You need to calculate slightly different values for two fields in the 
PERF_OBJECT_TYPE if you're using multiple object instances. Table 18.7 lists 
these changes. 

The other new item for multi-instance objects is a block that describes each 
object instance. See Table 18.8 for the contents of this block. Notice that you can 
identify an instance either by a Unicode name or by a number. If you use a name, 
the name string immediately follows the instance definition block. Keep in mind 
that, since this Unicode name string is embedded in the data, it won't be trans
lated into the local language. 

Table 18.7 These fields of PERF_OBJECT _TYPE are different for multi-instance 
objects 

Field 

TotalByteLength 

NumInstances 

Contents 

sizeof( PERF _OBJECT_TYPE) 
+ NumCounters * sizeof( PERF _COUNTER_DEFINITION) 
+ NumInstances * sizeof( PERF_INSTANCE_DEFINITION) 
+ sizeof( allInstanceNames ) 
+ NumInstances * sizeof( PERF _COUNTER_BLOCK) 
+ NumInstances * sizeof( allCounters ) 
Value =1= 1 
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Table 18.8 Contents of a PERF _INSTANCE_DEFINITION structure 

PERF _INSTANCE_DEFINITION, *PPERF _INSTANCE_DEFINITION 

Field Contents 

DWORD ByteLength sizeof( PERF_INSTANCE_DEFINITION) 
+ sizeof( InstanceNameString) 

DWORD ParentObjectTitleIndex 

DWORD ParentObjectInstance 

DWORD UniqueID 

DWORD NameOffset 
DWORD NameLength 

Index in the title database of object type which is 
this object's parent or 0 if no hierarchy 
Index, starting at 0, into the instances being 
reported for the parent object type 
Zero-based numerical identifier used in place of 
a name; PERF _NO_UNIQUE_ID if none 
sizeof( PERF_INSTANCE_DEFINITION) 
sizeof( InstanceNameString ) or 0 if no name 

18.5 WRITING THE DATA-COLLECTION DLL 

As we've already seen, the data-collection DLL acts as an interface between the 
driver and the Registry API. This section describes the contents of the DLL and 
explains what you have to do to make the DLL visible to the system. 

Contents of the Data-Collection DLL 

The data-collection DLL consists of three major functions. You can call these 
routines anything you like, since their names will be recorded in the Performance 
subkey of your driver's Registry service key. The following subsections describe 
each of these functions. 

Open The Open function queries the Registry to determine the proper 
index values for each object and counter exported by the DLL. It also initializes 
the static versions of PERF _OBJECT_TYPE and PERF _COUNTER_DEFINITION 
structures used by the DLL's Collect function. Finally, it establishes a connection 
with the specific devices being monitored. Table 18.9 contains the prototype for 
the Open function. 

Table 18.9 Prototype for data collector's Open function 

DWORD XxPerfOpen 

Parameter 

IN LPWSTR IpDeviceNames 

Return value 

Description 

Unicode strings naming each device managed by 
this driver or NULL 
• ERROR_SUCCESS - function succeeded 
• ERROR_XXX - some Win32 error code 
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Table 18.10 Prototype for data collector's Collect function 

DWORD Xx Perf Collect 

Parameter 

IN LPWSTR lpwszValue 

IN OUT LPVOID *lppData 

IN OUT LPDWORD IpcbBytes 

OUT LPDWORD lpcObjectTypes 

Return value 

Description 

Unicode string identifying requested data 
• Global- data about all objects 
• index 1 index 2 ... - data about specific objects 
• Foreign ComputerName 
• Foreign ComputerName indexl index2 ... 
• Costly - data that's expensive to collect 
IN: Pointer to buffer pointer for returned data 
OUT SUCCESS: Updated pointer 
OUT ERROR: Unchanged from input input 
IN: Pointer to DWORD containing buffer size 
OUT SUCCESS: Number of data bytes in buffer 
OUT ERROR: 0 
OUT SUCCESS - Count of ObjectTypes 
OUT ERROR: 0 
ERROR_MORE_DATA - buffer too small 
ERROR_SUCCESS - all other cases 

Collect The Collect function (described in Table 18.10) is called once when 
the DLL is opened to get a list of all the objects supported by the DLL. From then 
on, it is called periodically to retrieve current counter values from each object 
being monitored. 

The first argument to this function is a NULL-terminated Unicode string 
describing the kind of data that the caller wants to receive. This argument can 
either be a specific keyword (like Global), or it can be a list of index numbers that 
identify particular object types. Your Collect function will need to parse this string 
to see if it can provide data about any of the objects the caller is interested in. 

Close This function is called when it's time to close the connection with 
the monitored devices and release any resources held by the DLL. The prototype 
for this function appears in Table 18.11. 

Table 18.11 Prototype for data collector's Close function 

DWORD XxPerfClose 

Parameter 

VOID 
Return value 

Description 

ERRO~SUCCESS 
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Error Handling in a Data-Collection DLL 

It's a good idea for your data-collection DLL to record any problems it 
encounters in the Event Log. That way, you or a system administrator can poke 
around with the Event Viewer utility if your driver's performance objects aren't 
showing up in PERFMON for some reason. 

Since a data-collection DLL is running in user mode, it doesn't use the ker
nel-mode event-logging interface described in Chapter 13. Instead, it works with 
the Win32 event logging functions, RegisterEventSource, ReportEvent, and 
DeregisterEventSource. The code example that accompanies this chapter shows 
how to use these functions. 

Another implication of the data-collection DLL's user-mode environment 
is that you have to record its error message file (which is usually the DLL 
itself) in a slightly different part of the Registry. Rather than dangling beneath 
... Services\EventLog\System, the DLL's message file is recorded in ... Ser
vices\EventLog\Application.2 Figure 18.5 shows how this works. 

It's also polite behavior to give system administrators the ability to control 
the amount of event logging your DLL performs. One way to do this is to put a 
REG_DWORD value called EventLogLevel under the Parameters subkey of the 
driver's Registry service key. The DLL's Open function retrieves this value from 
the Registry and uses it as a logging threshold. The higher the number, the more 
event-logging detail the DLL generates. 

HKEY LOCAL MACHINE\System\CurrentControISet\Services 

[ EventLog 

L Application 

~rces: REG_MULTLSZ: XXPERF ... 

L~ERF 
EventMessageFile: 

REG_EXPAND_SZ: 
%SystemRoot%\System32\XXPERF.DLL 

TypesSupported: REG_DWORD: Ox7 

Copyright © 1996 by Cydonix Corporation. 9600268. vsd 

Figure 18.5 Adding a data-collection DLL's message file to the Registry 

2 This also means the DLL's event messages will show up in the Application log rather than the Sys
tem log when you use the Event Viewer utility. 



Sec. 18.5 Writing the Data-Collection OLL 477 

HKEY LOCAL MACHINE 

L syste~ 
L CurrentControlSet 

L Services 

L XxDriver 

L Performance 

Copyright © 1994 by Cydonix Corporation. 940056a.vsd 

Library: REG~SZ: XXPERF.DLL 
Open: REG~SZ: XxPerfOpen 
Collect: REG~SZ: XxPerfColiect 
Close: REG~SZ: XxPerfClose 
First Counter: ... 
First Help: ... 

I Last Counter: ... 
Last Help: ... 

Figure 18.6 Contents of a driver's Performance subkey 

Installing the DLL 

Once you've built the data-collection OLL itself, you need to move it to the 
%SystemRoot% \SYSTEM32 directory. To make NT aware of your OLL, you 
have to add several values to the Performance subkey of your driver's Registry 
service key. Figure 18.6 shows the structure of these Registry entries, and Table 
18.12 describes them in detail. 

The First Counter, Last Counter, First Help, and Last Help values were put 
there by LOOCTR. The data-collection OLL retrieves the two First values and 
uses them to calculate the proper index numbers for each of its objects, counters, 
and help text items. You only need to add the values that identify the OLL and its 
entry points. 

Table 18.12 Values in a driver's Performance subkey 

Performance subkey values 

Value 

Library 
Open 
Collect 
Close 

Description 

Full path name of data-collection OLL 
Name of OLL's (optional) Open function 
Name of OLL's Collect function 
Name of OLt's (optional) Close function 

Example 

XXPERF.OLL 
XxPerfOpen 
XxPerfCollect 
XxPerfCollect 
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18.6 CODE EXAMPLE: A DATA-COLLECTION DLL 

This example shows how to set up a data-collection DLL. It also illustrates the 
modifications you'd need to make to a kernel-mode driver in order to retrieve 
performance data from it. 

It takes a fair amount of code to implement all the pieces of this example. 
Unfortunately, not all of it will fit here. The complete code for all the components 
can be found in the CH1S directory on the disk that accompanies this book. In this 
directory, you'll find three subdirectories: 

• Driver - This directory contains a version of XXDRIVER that supports a 
IOCTL_XX_GET]ERF _DATA I/O control code. The driver itself is just a 
stub that illustrates how to pass performance data back to the collection 
DLL. The performance measurements generated by the driver are all 
bogus. 

• loctl - The only file in this directory is XXIOCTL.H which contains the 
IOCTL definitions and structures used by both the driver and the collec
tion DLL. 

• Library - The files in this directory implement the data-collection DLL 
itself. This includes support for event logging, parsing the argument 
string of the DLL's Open function, and gathering and formatting perfor
mance data. 

Again, because of space limitations, only selected portions of the data-collec
tion DLL will appear here. 

XXPEREC 

This file of the example contains the Open, Collect, and Close functions that 
interface with the Win32 Registry API calls. 

Preamble area This section of the data-collection DLL's source code con
tains header files, data definitions, and function prototypes necessary to the 
proper operation of the DLL. 

II 
II All-inclusive header file 
II 
#include "xxperf.h" 0 

II 
II Data global to this module @ 
II 
static HANDLE hDevicei 
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static DWORD dwOpenCount 0; 
static BOOL bInitialized FALSE; 

1/ 
II Initialized object header defined 
II in data.c 
1/ 
extern XX_HEADER_DEFINITION XxObjectHeader; ~ 

1/ 
II Forward declarations of routines 0 
1/ 
PM_OPEN_PROC 
PM_COLLECT_PROC 
PM_CLOSE PROC 

XxPerfOpen; 
XxPerfCollect; 
XxPerfClose; 

o The master header file includes WINPEREH from the Win32 SDK. This 
Win32 header defines all the performance data structures. 

@ Multiple functions in this source module need access to the device han
dle, the count of threads using the library, and the initialization flag. The 
easiest way to deal with this is to make the variables global. 

~ The modules DATA.C and DATA.H contain a single copy of all the static 
parts of the object-type and counter-definition data. 

o The three exported functions in the DLL must be identified using these 
specific forward declarations if you want everything to work properly. 

Xx Perf Open This function sets up the DLL. This includes getting a handle 
to the target device and calculating the absolute index values for each object and 
counter exported by the DLL. To simplify the collection process, the DLL keeps a 
single, statically initialized copy of the data header information in a global struc
ture defined in DATA.C and DATA.H. 

DWORD 
XxPerfOpen( 

LPWSTR lpDeviceNames 
) 

HKEY hKeyDriverPerf; 
DWORD dwFirstCounter; 
DWORD dwFirstHelp; 
DWORD dwType; 
DWORD dwSize; 
DWORD dwStatus; 

if( dWOpenCount 
{ 

o ) 0 
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XxOpenEventLog();@ 

hDevice = CreateFile@ 
XX_WIN32_DEVICE_NAME, 
GENERIC_READ, 
FILE_SHARE_READ I 

FILE_SHARE_WRITE, 
NULL, 
OPEN_EXISTING, 
FILE_ATTRIBUTE_NORMAL, 
NULL) ; 

if( hDevice == INVALID_HANDLE_VALUE 
{ 

II 

dwStatus = GetLastError(); 
XxLogErrorWithData( 

LOG_LEVEL_NORMAL, 
XXPERF_CANT_OPEN_DEVICE_HANDLE, 
&dwStatus, sizeof( dwStatus ) ); 

XxCloseEventLog() ; 
return dwStatus; 

II Open the Performance subkey of the driver's 
II service key in the Registry. 
II 
dwStatus = RegOpenKeyEx(O 

HKEY_LOCAL_MACHINE, 
" SYSTEM\\CurrentControlSet " 

"\\Services\\XxDriver" 
"\ \ Performance " , 

OL, 
KEY_ALL_ACCESS, 
&hKeyDriverPerf ); 

if( dwStatus != ERROR_SUCCESS 
{ 

XxLogErrorWithData( 
LOG_LEVEL_NORMAL, 
XXPERF_CANT_OPEN_DRIVER_KEY, 
&dwStatus, sizeof( dwStatus )); 

CloseHandle( hDevice ); 
XxCloseEventLog(); 
return dwStatus; 
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II 
II Get base index of first object or counter 
II 
dwSize sizeof (DWORD)i 
dwStatus RegQueryValueEx( 

hKeyDri verPerf, 
"First Counter", 
OL, 
&dwType, 
(LPBYTE)&dwFirstCounter, 
&dwSize) i 

if( dwStatus != ERROR_SUCCESS 
{ 

} 

II 

XxLogErrorWithData( 
LOG_LEVEL_NORMAL, 
XXPERF_CANT_READ_FIRST_COUNTER, 
&dwStatus, sizeof( dwStatus ))i 

RegCloseKey( hKeyDriverPerf )i 

CloseHandle( hDevice )i 

XxCloseEventLog()i 
return dwStatusi 

II Get base index of first help text 
II 
dwSize sizeof (DWORD)i 
dwStatus = RegQueryValueEx( 

hKeyDri verPerf , 
"First Help", 
OL, 
&dwType, 
(LPBYTE)&dwFirstHelp, 
&dwSize ) i 

if( dwStatus != ERROR_SUCCESS 
{ 

XxLogErrorWithData( 
LOG_LEVEL_NORMAL, 
XXPERF_CANT_READ_FIRST_HELP, 
&dwStatus, sizeof( dwStatus ))i 

RegCloseKey( hKeyDriverPerf )i 

CloseHandle( hDevice )i 

XxCloseEventLog()i 

481 
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return dwStatusi 

II 
II Don't need Registry handle anymore 
II 
RegCloseKey( hKeyDriverPerf )i 

II 
II Initialize PERF_OBJECT_TYPE struct0 
II 
XxObjectHeader.XxDevice. 

ObjectNameTitleIndex 
dwFirstCounter + XXDEVICEi 

XxObjectHeader.XxDevice. 

II 

ObjectHelpTitleIndex 
dwFirstHelp + XXDEVICEi 

II Initialize 1st PERF_COUNTER_DEFINITION 
II 
XxObjectHeader.Interrupts. 

CounterNameTitleIndex 
dWFirstCounter + INTERRUPTSi 

XxObjectHeader.Interrupts. 

II 

CounterHelpTitleIndex = 
dwFirstHelp + INTERRUPTSi 

II Initialize 2nd PERF_COUNTER_DEFINITION 
II 
XxObjectHeader.Operations. 

CounterNameTitleIndex 
dwFirstCounter + OPERATIONSi 

XxObjectHeader.Operations. 

II 

CounterHelpTitleIndex = 
dwFirstHelp + OPERATIONSi 

II Mark DLL as successfully initialized 
II 
bInitialized = TRUEi 

II One way or another, there's one more 
II thread using the DLL. 
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II 
dwOpenCount++i 

return ERROR_SUCCESS 
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o If the DLL is being called by SCREG from a remote computer, there may 
be multiple threads accessing it at the same time. Therefore the DLL 
needs to keep a count of how many times it's been opened. The first call 
causes the DLL to initialize itself; the rest simply bump the count. 

49 Any errors that occur will go to the Event Log. This helper function (defined 
in EVENTLOG.C) manages the details of setting up the connection. 

@} The kernel-mode driver will give performance data to the DLL in 
response to a special IOCTL code. To issue that IOCTL, the DLL needs a 
handle to the device. This handle is stored in a global variable (hDevice) 
where the rest of the DLL can get to it. 

o This next section of code gets a handle to the Performance sub key below 
XXDRIVER's Registry service key. Then it recovers the base index num
ber for XXDRIVER's objects and counters (from the First Counter value), 
and the base index number for help text (from the First Help value). 

o Once the base index values are recovered, it's necessary to calculate the 
index number of every object, counter, and help text item supported by 
this DLL. The resulting indexes are put into the various ... TitleIndex 
fields of the statically initialized object header defined in DATA.C. 

XxPerfColiect The Collect function retrieves one sample of data from the 
object being monitored. After copying the static data header into the caller's 
buffer, it uses an IOCTL to put the current counter values there as well. 

DWORD 
XxPerfCollect( 

IN LPWSTR lpValueName, 
IN OUT LPVOID *lppData, 
IN OUT LPDWORD lpcbTotalBytes, 
IN OUT LPDWORD lpNumObjectTypes 
) 

DWORD dwQueryTypei 
DWORD dwStatusi 
DWORD dwBytesReturnedi 
PPERF_COUNTER_BLOCK pPerfCounterBlocki 
PXX_HEADER_DEFINITION pXxObjectHeaderi 

if( !bInitialized ) 0 
{ 
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*lpcbTotalBytes = (DWORD) 0; 
*lpNumObjectTypes = (DWORD) 0; 
return ERROR_SUCCESS; 

dwQueryType = XxGetPerfQueryType( IpValueName ); @ 

if( dwQueryType == PERF_QUERY_TYPE_FOREIGN ) 
{ 

II 
II Can't service foreign requests. 
II 
*lpcbTotalBytes = (DWORD) 0; 
*lpNumObjectTypes = (DWORD) 0; 
return ERROR_SUCCESS; 

if( dwQueryType == PERF_QUERY_TYPE_ITEMS 
{ 

if( !XxIsNumberlnList(~ 

XxObjectHeader. 
XxDevice. 

ObjectNameTitlelndex, 
IpValueName )) 

*lpcbTotalBytes = (DWORD) 0; 
*lpNumObjectTypes = (DWORD) 0; 
return ERROR_SUCCESS; 

if( *lpcbTotalBytes < 0 
( sizeof( XX_HEADER_DEFINITION ) + 

sizeof( XX_PERF_DATA ))) 

*lpcbTotalBytes = (DWORD) 0; 
*lpNumObjectTypes = (DWORD) 0; 
return ERROR_MORE_DATA; 

pXxObjectHeader = 0 
(PXX_HEADER_DEFINITION) *lppData; 

memmove( 
pXxObjectHeader, 
&XxObjectHeader, 
sizeof( XX_HEADER_DEFINITION )); 
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pPerfCounterBlock = ~ 
(PPERF_COUNTER_BLOCK) &pXxObjectHeader[lli 

if( !DeviceloControl( 
hDevice, 
IOCTL_XX_GET_PERF_DATA, 
NULL, 
0, 
(LPVOID)pPerfCounterBlock, 
sizeof( XX_PERF_DATA ), 
&dwBytesReturned, 
NULL) ) 

dwStatus = GetLastError()i 
XxLogErrorWithData( 

LOG_LEVEL_NORMAL, 
XXPERF_CANT_READ_PERF_DATA, 
&dwStatus, sizeof( dwStatus ) )i 

*lpcbTotalBytes = (DWORD) Oi 
*lpNumObjectTypes = (DWORD) Oi 
return ERROR_SUCCESSi 

*lppData = 8 
(PUCHAR)pPerfCounterBlock + 

sizeof( XX_PERF_DATA ) i 

*lpNumObjectTypes = XX_NUM_OBJECT_TYPESi 

*lpcbTotalBytes = 
sizeof( XX_HEADER_DEFINITION ) + 

sizeof( XX_PERF_DATA ) i 

return ERROR_SUCCESS 
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o If for some reason the DLL didn't initialize itself properly, just exit grace
fully from this call. 

@ The DLL may be asked to provide a number of different kinds of data. The 
XxGetPerfQueryType helper function (defined in PARSE.C) scans the 
Unicode argument string and decides what kind the caller is asking for. 

@) The caller apparently passed an explicit list of object-type indexes. Use 
the XxIsNumberInList helper function (defined in PARSE.C) to deter
mine whether the only object type we support was among the items in 
the list. If not, then do nothing. If this DLL supported multiple object 
types, it would need to call XxIsNumberInList for each one. 
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o Figure out how much space we'll need in the caller's buffer for all the 
objects we're going to return. If the buffer is too small, signal an error and 
don't return anything. ERROR_MORE_DATA is the only error condition 
signaled by the DLL. All other conditions (good or bad) return 
ERROR_SUCCESS. 

e pXxObjectHeader points to the static PERF _OBJECT_TYPE and 
PERF _COUNTER_DEFINITION structures that were set up by XxPerf
Open. Copy this header information into the caller's buffer. 

<D Get a pointer to the place in the caller's buffer where the PERF_COUN
TER_BLOCK is going to go. This is the start of the counter data itself. 
Then call the kernel-mode driver to dump raw counter data into the 
caller's buffer. This IOCTL also fills in the ByteLength field of the 
PERF _COUNTER_BLOCK. 

fi Finally, update the caller's arguments. 

XxPerfClose This function decrements the use-count for the DLL. If it hits 
zero, XxPerfClose frees any resources being held by the DLL. Here, this simply 
means closing the target device handle and the Event Log. 

DWORD 
XxPerfClose( 
{ 

II 
II One less thread is using the DLL 
II 
if( --dwOpenCount <= 0 ) 
{ 

II 
II When the last thread goes, 
II shut everything down 
II 
CloseHandle( hDevice ); 

XxCloseEventLog(); 

return ERROR_SUCCESS; 

Building and Installing this Example 

Because this example is rather involved, a little explanation of how to set it 
up is probably a good idea. Follow these steps to build and test the data-collection 
DLL and its kernel-mode driver. 
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1. Use the BUILD utility to create XXDRIVER.SYS. Move the driver file to the 
%SystemRoot% \SYSTEM32\DRIVERS directory. 

2. Use BUILD to generate XXPERF.DLL and move the DLL to the %System
Root% \SYSTEM32 directory. 

3. Create a service key in the Registry for XXDRIVER using REGEDT32. 

4. Create a Parameters subkey beneath XXDRIVER's service key and add a 
REG_DWORD value called EventLogLevel to this key. Set EventLogLevel to 
3 (maximum information). 

5. Create a Performance subkey beneath XXDRIVER's service key and add 
REG_SZ values called Library, Open, Collect, and Close. Set these values up 
so that they match the examples listed in Table 18.12 

6. Under ... \Services \ EventLog \Application in the Registry, create a sub key 
called XXPERF. Add EventMessageFile and TypesSupported values to this 
subkey. (See Chapter 13 if the details are fuzzy.) Also add "XXPERF" to the list 
of event-logging sources stored in the REG_MULTLSZ Sources value under 
... \ Services \EventLog\Application. 

7. Run the LODCTR utility to add the object and counter names to the Registry. 
The command file is called COUNTERS.INI and it's in the CH18\UBRARY 
directory. 

8. Reboot the system and start XXDRIVER using the Devices applet in the Con
trol Panel. 

9. Run the Performance Monitor application (located in the Administrative 
Tools program group). When you select Add to chart from the Edit menu, you 
should see "Xx Device" as one of the object types. 

If "Xx Device" doesn't show up in the Performance Monitor, start up the 
Event Viewer utility. Fatal error messages contain a Win32 status code that will 
help track down the problem. 

18.7 SUMMARY 

That finishes our look at driver performance. The techniques you've seen in this 
chapter will allow you to monitor the operation of your driver and decide what, if 
anything, you need to improve. Once again, don't wait until your driver is writ
ten before you start thinking about performance; it's an issue that you should be 
thinking about all through the design process. 
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Although it's possible to develop drivers using only a single machine, you really 
need two systems if you plan to do any serious debugging. You connect these 
machines (referred to the host and the target) using a null-modem serial cable. A 
network link between the machines isn't required, but it's a very good idea. 
Assuming the host and target have the same CPU architecture, you configure 
them as follows. 

Host system You use the host system to compile and link your driver and 
to run the WINDBG Kernel debugger. If you have to make a choice, this should be 
the machine with the most powerful hardware. Here is a list of the things that live 
on the host system: 

• Windows NT retail build 

• Visual C++ 

• Win32 SDK tools 

• Windows NT DDK 

• Symbol files from target 

• Driver source code 

Target system The target system provides the environment for actually 
running your driver. Since you don't run the development tools on this system, 
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it doesn't need as much power as the host. These are the things to keep on the 
target: 

• Windows NT retail and checked build with debugging enabled 

• Driver executable 

• Driver's hardware 

• Crash dump file 

• Miscellaneous tools from the SDK (WINOBJ.EXE) 

• Hardware compatibility tests from the NT DDK 

You should install both the retail and checked versions of NT on the target 
machine. The checked version of NT performs a lot of sanity checking that's 
bypassed in the retail version, at the cost of reduced system performance. This 
sanity checking is very helpful when you're debugging a driver. However, before 
you send your driver out into the world, you'll also have to verify that it works 
with the retail version of the operating system. 

Connecting the Host and Target 

To debug your driver interactively with WINDBG, you need to connect the 
COM ports on the host and target machines using a standard, commercially avail
able null-modem serial cable. For DB9 and DB2S connectors, the cable has these 
connections: 

• Transmit Data connected to Receive Data (pin 2 to pin 3) 

• Receive Data connected to Transmit Data (pin 3 to pin 2) 

• Ground connected to Ground (pin 7 to pin 7) 

WINDBG and the NT debug client don't use any of the other serial control 
lines. However, if you run into problems using a standard null-modem cable, you 
might try connecting jumpers from Data Terminal Ready to Data Set Ready and 
from Request To Send to Clear To Send. Make these modifications to the connec
tors on both ends of the cable: 

• On a DB9 connector, add a jumper from pin 4 to pin 6 and a jumper from 
pin 7 to pin 8. 

• On a DB2S connector, add a jumper from pin 20 to pin 6 and from pin 4 to 
pinS. 

You have a certain amount of flexibility when it comes to connecting the 
host and target systems. By default, WINDBG uses the host's COM2 port, but you 
can override this value. For Intel 80x86 targets, the default debug port is COM2 if 
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you have multiple communications ports, or COM1 if you have a serial mouse 
attached to COM2. You can override these values by editing BOOT.INI 
(described below). RISC-based targets use COM1 as the default debug port. 

A.2 DEBUG SYMBOL FILES 

Along with the development software, you also need to put copies of the target 
system's debug symbol files on the host. These symbols are necessary if you plan 
to do any symbolic debugging or crash-dump analysis. Follow these steps to set 
up the symbol directories on the host: 

1. Under the directory where you installed NT, create subdirectories called 
... \SYMBOLS\FREE and ... \SYMBOLS\CHECKEO. 

2. From \SUPPORT\OEBUG\<platjorm>\SYMBOLS on the NT distribution 
CD, copy various symbol files to ... \SYMBOLS\FREE on the host. At a mini
mum, you'll need EXE\NTOSKRNL.OBG, OLL \NTOLL.OBG, and 
OLL \HAL.OBG. 

3. Copy the checked versions of the same symbol files from \CHECKEO\SUP
PORT\OEBUG\<platjorm> \SYMBOLS on the NT distribution CD to 
... \SYMBOLS\CHECKEO on the host. You'll need these symbols when you 
run your driver under the checked build of NT. 

4. Each time you rebuild your driver, copy the driver's symbol file into these 
directories. Refer back to Chapter 16 for an explanation of creating the 
driver's debug symbol file. 

One thing to watch out for: Installing an NT service pack changes all the 
symbol information. So, if you've upgraded NT on the target system with a ser
vice pack, you have to get the operating system symbol files from the service pack 
CD. The symbols on the standard distribution CD won't work. The symbol direc
tory paths on the service pack CD are the same as those on the NT distribution 
disk. 

A.3 ENABLING CRASH DUMPS ON THE TARGET SYSTEM 

Crash dump files can be very helpful when you're tracking down bugs in a ker
nel-mode driver. Refer back to Chapter 17 for information on reading these files. 
Follow these steps on the target system if you want Windows NT to dump crash 
information after a bugcheck. 

1. In the Control Panel, double-click on the System applet. 

2. Click on the Recovery button. The Recovery dialog box will appear. 
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3. Select the Write Debugging Information To check box. You can enter a path 
and filename for the crash file in the test box, or accept the default value 
(%SystemRoot% \MEMORY.DMP). 

4. Select the Overwrite Any Existing File check box if you want new crashes to 
overwrite an existing dump file with the same name. If this check box is clear, 
you won't get any crash information if a dump file with the same name 
already exists. 

5. Reboot the system to have these options take effect. 

When a crash occurs, the system copies an image of physical memory into 
the paging file located on the system root partition. During the reboot after a 
crash, NT copies the crash image from the paging file to the target file specified in 
the Recovery dialog. 

If You Don't Get Any Crash Dump Files 

Several things can prevent the system from creating a dump file after a 
crash. If you're having troubles, here's what to look for. 

Premature reboot Make sure you don't hit the reboot switch until NT has 
finished dumping memory into the crash file. If you reboot before the dump is 
complete, you won't get any crash information. You can tell when NT has finished 
by looking at the message at the bottom of the blue screen display. 

Paging file issues NT can only use the paging file on the system root par
tition for storing the crash image. If you don't have a paging file there, NT won't 
be able to save crash information. 

Also, make sure there's enough space in this paging file. It must be big 
enough to hold all of physical memory plus one additional megabyte. If the file is 
too small, you won't get any crash information. 

Lack of disk space There has to be enough space on the system root par
tition to hold the dump file itself. Although you can specify any target directory 
for the dump file, NT initially creates it in the %SystemRoot% directory and then 
copies it to its final destination. If there isn't enough free space, NT won't be able 
to create the file. 

Hardware issues Certain specific hardware configurations have problems 
generating crash files. Most of them (though not all) involve SCSI disk controllers. 
If you search the Knowledge Base section of the Microsoft Developer CD for a title 
containing the name of your system (or SCSI controller) and MEMORY.DMp, you 
may find a bug report helpful. Other than getting some new hardware, there's not 
muchyou can do in this case. 
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Even if your system isn't one of the ones with known problems, the lack of a 
dump file may indicate that you're using an out-of-date driver for your system 
disk. See if there's a newer version available. 

A.4 ENABLING THE TARGET SYSTEM'S DEBUG CLIENT 

Both the retail and checked versions of Windows NT include a debugging client 
that allows NT to communicate over a serial line with the WINDBG debugger. 
However, you have to enable this debugging client on the target system if you 
want to debug the target system interactively with WINDBG. 

Depending on the CPU architecture, you follow different procedures to 
enable kernel-mode debugging on the target system. On RISC machines, you 
need to modify the OSLO ADOPTIONS environment variable in the ARC firm
ware. See your system documentation for an explanation of how to do this. 

To enable the debugger on 80x86-based machines, you edit the BOOT.INI 
file located in the root directory of the boot partition. This is a hidden system file 
that tells the NT loader what operating systems are available for booting. Follow 
these steps to modify BOOT.INI: 

1. Remove the read-only, hidden, and system attributes from the file using this 
command: 

attrib -r -h -s BOOT.INI 

2. Open BOOT.lNI for editing with your favorite text editor. 

3. In the [operating systems] section, add appropriate options to the boot com
mand line for the free and checked versions of Windows NT. 

4. Save the changes and close the file. 

S. Use the following command (or its File Manager equivalent) to restore the 
file's original attributes: 

attrib +r +h +s BOOT.INI 

Regardless of the machine architecture, you can specify the options listed in 
Table A.1. Keep the following things in mind when you're selecting bootstrap 
options. 

• If you specify NODEBUG, then DEBUGPORT, BAUDRATE, and CRASH
DEBUG are ignored, 

• If you specify BAUDRATE, kernel debugging is enabled; you do not also 
have to specify DEBUG. Select the highest baud rate that works for both 
machines. 



.1 

Sec. A.4 Enabling the Target System's Debug Client 

Table A.1 Debugging options for BOOT.INI files or OSLOADOPTIONS 

BOOT.lNI options 

Options 

DEBUG 
NODEBUG 
DEBUGPORT=PortName 
BAUDRATE=BaudRate 
CRASHDEBUG 

Description 

Enables kernel-mode debugging. 
Disables kernel-mode debugging. This is the default. 
Specifies debug serial port used by target machine. 
Specifies baud rate used by target machine. 
Causes debugger to activate only when the system 

bugchecks. 
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MAXMEM=SizelnMB Specifies the amount of memory to be made available to 
the .system. 

SOS Displays the name of each module being loaded during 
system bootstrap 

• On 80x86 machines, COM2 is the default debugger communications port, 
if it exists and if it isn't being used. In all other cases, COM1 is the default. 

• The MAXMEM option can be useful for stress testing your driver in a 
low-memory environment. For example, you can limit a 24-megabyte 
machine to using only 12 megabytes. 

The following example of a BOOT.INI file offers three choices at boot time: a 
nondebugging, free version of NT; a free version of NT with the debugger 
enabled; and a checked version of NT with debugging enabled. The checked ver
sion is also restricted to a 12 MB environment. 

[boot loader) 
timeout=30 
default=c:\ 

[operating systems] 
multi(0)disk(0)rdisk(0)partition(1)\winnt="NT Free" 
mul ti (0) disk (0) rdisk (0 ).~artition (1) \winnt= "NT Free" /DEBUGPORT=COM1 
multi (0) disk (0) rdisk (0 )parti tion (1 ).\wntchk= "NT Check" /DEBUG=COM1 /MAXMEM=12 



APPENDIX B 

Common Bugcheck 
Codes 

B.1 GENERAL PROBLEMS WITH DRIVERS 

A variety of driver errors can produce the bugchecks in Table B.1. The accom
panying notes may help you locate the source of the problem. 

Table B.1 General errors 

Bugchecks caused by general driver problems 

Code and parameters 

IRQL_NOT _LESS_ OR_EQUAL (OxOA) 
1 - Address that was referenced 
2 - IRQL at time of reference 
3 - Type of access 

• O-Read 
• I-Write 

4 - Address where reference occurred 

KMODE_EXCEPTION_NOT _HANDLED (Ox1 E) 
1 - The exception codel 

2 - Address of the failing instruction 
3 - First exception parameter 
4 - Second exception parameter 

494 

Description 

CAUSE: A driver touched 
paged memory at or above 
DISPATCH_LEVEL IRQL. 
ACTION: The driver may be 
using a bogus pointer. Use the 
fourth bugcheck parameter 
to find the offending source 
code line. 

CAUSE: A driver generated 
an exception. 
ACTION: Use the second 
bugcheck parameter to locate 
the offending source code 
line. 



Sec. B.1 General Problems with Drivers 

Table B.1 (Continued) 

Code and parameters 

UNEXPECTED_KERNEL_MODE_ TRAP (Ox7F) 
1 - Code number of trap2 

PAGE_FAULT _WITH_INTERRUPTS_OFF (Ox4S) 

IRQL_NOT _DISPATCH_LEVEL (Ox08) 
IRQL_NOT _GREATER_OR_EQUAL (OxOS) 
IRQL_GT _ZERO_AT _SYSTEM_SERVICE (Ox4A) 

INVALlD_SOFTWARE_INTERRUPT (Ox07) 
SYSTEM_SERVICE_EXCEPTION (Ox3B) 
INVALID_DATA_ACCESS_ TRAP (Ox04) 
NO_EXCEPTION_HANDLlNG_SUPPORT (OxOB) 
TRAP _CAUSE_UNKNOWN (Ox12) 
LAST _CHANCE_CALLED_FROM_KMODE (Ox1S) 
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Description 

CAUSE: On Intel platforms, 
this means the CPU generated 
a trap that it can't handle in 
kernel mode. 
ACTION: FromWINDBG, 
find the trap frame address 
with kb. Use !trap to format 
the frame.3 The contents of 
EIP will show where the trap 
was taken. 

CAUSE: The kernel-mode 
stack has overflowed. This 
can mean other operating sys
tem data structures have been 
damaged. 
ACTION: In the stack trace, 
look for a driver that's using 
too much stack space.4 

Same as OxOA (above). 

CAUSE: Miscellaneous 
problems with IRQL level. 
ACTION: Use the stack trace 
to locate the code causing the 
crash. 

CAUSE: Miscellaneous 
problems with exceptions. 
ACTION: Use the stack trace 
to locate the code executing at 
the time of the crash. 

1 You can determine what kind of exception it is by searching NTSTATUS.H for this number. A 
common exception code is Ox80000003. This means the system hit a hard-coded breakpoint or 
ASSERT while it was booted with the /NODEBUG switch. Connect a debugger and reboot with 
the /DEBUG switch to locate the problem. 

Another popular error is OxC0000005, which is an access violation. In this case, argument 4 
(the second exception parameter) is the address your driver was trying to touch. 

2 See the Inte1486 Processor Family Programmer's Reference (listed in the bibliography) for a list of 
CPU trap codes. 

3 On Intel platforms, the frame will be associated with a procedure calledNT!KiTrap. 
4 Keep in mind that the driver whose stack operation generated the bugcheck is not necessarily 

the driver that's using too much stack space. 
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B.2 SYNCHRONIZATION PROBLEMS 

The bugchecks in Table B.2 are caused by improper use of various NT synchroni
zation mechanisms. 

Table B.2 Synchronization problems 

Bugchecks caused by synchronization problems 

Code and parameters 

SPIN_LOCK_INIT _FAILURE (Ox81) 
SPIN_LOCK_ALREADY _OWNED (OxF) 
SPIN_LOCK_NOT _OWNED (Ox10) 
NO_SPIN_LOCK_AVAILABLE (Ox1 D) 

MAXIMUM_WAIT _OBJECTS_EXCEEDED (OxOC) 
THREAD_NOT_MUTEX_OWNER (Ox11) 
SYSTEM_EXIT _OWNED_MUTEX (Ox39) 

MUTEX_LEVEL_NUMBER_ VIOLATION {Ox D) 
1 - Current thread's Mutex level 
2 - Mutex level of requested Mutex 

Description 

CAUSE: Misuse of spin locks. 
ACTION: Use the stack trace 
to locate the code executing 
at the time of the crash. 

CAUSE: Improper use of 
Mutexes in kernel mode. 
ACTION: Fix the driver logic 
error causing the problem. 

CAUSE: A driver thread has 
requested ownership of a 
Mutex that violates the level 
number sequence. 
ACTION: Use the stack trace 
to identify the driver. Use the 
level numbers to identify the 
Mutexes.1 

1 If the Mutexes belong to NT, use EXLEVELS.H to figure out which ones they are. 

B.3 CORRUPTED DRIVER DATA STRUCTURES 

The bugchecks in Table B.3 are caused by problems with various 1/ 0 Manger data 
structures. In general, these problems indicate some kind of serious logic error in 
a driver. 
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Table B.3 Driver data structure problems 

Bugchecks caused by data structure problems 

Code and parameters 

DEVICE_REFERENCE_ COUNT _NOT_ZERO (Ox36) 
1 - Address of Device object 

NO_MORE_'RP _STACK_LOCATIONS (Ox35) 
1 - Address of the IRP 

INCONSISTENT _IRP (Ox2A) 
1 - Address of the IRP 

MULT'PLE_'RP _COMPLETE_REQUESTS (Ox44) 
1 - Address of the IRP 

Description 

CAUSE: A driver has 
called IoDeleteDevice 
with a Device object that 
still has a nonzero refer
ence count. 
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ACTION: Locate the 
driver logic error leading 
to this situation. 

CAUSE: A higher-level 
driver has tried to pass an 
IRP to a lower-level driver 
using IoCallDriver, but 
there are no more stack 
locations in the IRP.l 
ACTION: If your driver 
allocated the IRP, examine 
how you're calculating the 
number of stack slots. If the 
IRP is being passed to you, 
your Device object's Stack
Size field is too small. 

CAUSE: The I/O Manager 
has found an IRP with 
fields that are not inter
nally consistent.2 

ACTION: Make sure your 
driver isn't writing over 
the contents of the IRP. 

CAUSE: A driver has 
called IoCompleteRequest 
with an IRP that's already 
been completed. Either 
one driver is trying to com
plete the same IRP twice, 
or two drivers both think 
they own the IRP. 3 

ACTION: The DeviceOb
ject field of the IRP's stack 
locations will show you 
who was using the IRP. 
This may help. 
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Table 8.3 (Continued) 

Code and parameters 

CANCEL_STATE_IN_COMPLETED_IRP (Ox48) 
1 - Address of the IRP 

Description 

CAUSE: A driver has 
called IoCompleteRequest 
with an IRP that still has a 
cancel routine. 
ACTION: This is a driver 
logic error. Take the IRP out 
of the cancelable state be
fore you try to complete it. 

CAUSE: A Device Queue 
object is in an inconsistent 
state. 
ACTION: The Device 
Queue object is probably 
getting corrupted by inap
propriate access or be
cause of bogus use of 
pointers. 

1 This is really a disaster, since the higher-level driver thinks it has filled in the IRP parameter 
fields for the lower-level driver. However, there was no room in the IRP for these parameters, so 
the higher-level driver has actually written off the end of the IRP and mangled some unrelated 
piece of memory. 

2 For example, an IRP that was being completed but was still marked as being attached to a 
driver's Device Queue object. 

3 Finding the two drivers is difficult, since the identity of the first one has already been covered 
up by the time the second driver makes the failing call to IoCompleteRequest. 

8.4 MEMORY PROBLEMS 

The bugchecks in Table BA are caused by driver memory problems. Drivers can 
cause many subtle (and not so subtle) system failures through improper use of 
memory. 
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Table B.4 Memory problems 

Bugchecks caused by memory problems 

Code and parameters 

MUST_SUCCEED_POOL_EMPTY (Ox41) 
1 - Size of unsatisfied request 
2 - Number of pages used of nonpaged pool 
3 - Number of too large PAGE_SIZE requests 
from nonpaged pool 
4 - Number of pages available 

NO_PAGES_AVAILABLE (Ox4D) 
1 - Number of dirty pages 
2 - Number of physical pages in machine 
3 - Extended commit value in pages 
4 - Total commit value in pages 

PFN_LlST _CORRUPT (Ox4E) 
1-1 
2 - ListHead value that was corrupt 
3 - Number of pages available 
4-0 

-OR-
1-2 
2 - Entry in list being removed 
3 - Highest physical page number 
4 - Reference count of entry being removed 
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Description 

CAUSE: There are no system 
page table entries left. This often 
means a driver isn't cleaning up 
after itself. 
ACTION: The !sysptes com
mand may give some insight. 

CAUSE: A driver has called 
10BuildPartialMdl and passed 
a target MDL that isn't large 
enough to map the entire range 
of addresses requested. 
ACTION: Locate the call to 10-
BuildPartialMdl in the stack 
trace. Its arguments identify the 
bad MDL. Also use the stack trace 
to see who called this function. 

CAUSE: There isn't enough mem
ory to satisfy a request from one of 
the XxxMuslSucceed pool areas. 
ACTION: Look for a driver that's 
leaking memory. 

CAUSE: The system has run out 
of free pages. 
ACTION: Look for processes or 
drivers that are leaking memory. 

CAUSE: A driver has probably 
corrupted an MDL. 
ACTION: Trace backward on the 
stack from the system routine 
that detected the error to the 
driver routine that passed the 
MDL. This may be the driver 
that corrupted the MDL. 
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Table B.4 (Continued) 

Code and parameters 

PROCESS_HAS_lOCKED_PAGES (Ox76) 
1 - Process address 
2 - Number of locked pages 
3 - Number of private pages 
4-0 

BAD_POOL_HEADER (Ox19) 
MEMORY_MANAGEMENT (Ox1 A) 
PFN_SHARE_COUNT (Ox1 B) 
PFN_REFERENCE_COUNT (Ox1 C) 
PAGE_FAULT _IN_NONPAGED_AREA (OxSO) 
INSUFFICIENT _SYSTEM_MAP _REGS (Ox4S) 

8.5 HARDWARE FAilURES 

Description 

CAUSE: A driver hasn't released 
some locked pages at the end of 
an I/O operation. 
ACTION: Look for a driver that 
isn't cleaning up after an I/O. 

CAUSE: Miscellaneous memory 
errors. 
ACTION: Look for drivers active 
at the time of the crash. One of 
them may be corrupting memory. 

The bugchecks in Table B.5 are the result of various hardware failures. Try to 
locate and correct the problem. 

Table B.S Hardware problems 

Bugchecks caused by hardware problems 

Code and parameters 

KERNEl_STACK_INPAGE_ERROR (Ox77) 
1-0 
2-0 
3 - PTE value at time of error 
4 - Address of Kernel stack signature 

-OR-
1-Status code 
2 -I/O status code 
3 - Page file number 
4 - Offset into page file 

KERNEl_DATA_INPAGE_ERROR (Ox7 A) 
1 - Lock type that was held: 

• Value 1, 2, 3 
• PTE address 

2 - Error status 

Description 

CAUSE: A page of the ker
nel-mode stack couldn't be 
read because of a bad 
block in the paging file or 
a disk controller error. 
ACTION: If the first two 
parameters are zero, there 
is a hardware error. Else, 
look at the status code: 
• C000009C or C000016A: 

bad block 
• COOOOI85: SCSI cable or 

termination problem 
• C0000009A: insufficient 

nonpaged pool 

CAUSE: A page of kernel
mode data couldn't be read 
because of a bad block in 
the paging file or a disk 
controller error. 
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Table B.5 (Continued) 

Code and parameters 

3 - Current process 
4 - Virtual address that could not be read 

DATA_BUS_ERROR (Ox2E) 
1 - Virtual address that caused the fault 
2 - Physical address that caused the fault 
3 - Processor status register (PSR) 
4 - Faulting instruction register (FIR) 

MULTIPROCESSOR_CONFIGURATION 
NOT_SUPPORTED (Ox3E) 

INSTALL_MORE_MEMORY (Ox7D) 
1 - Number of physical pages found 
2 - Lowest physical page 
3 - Highest physical page 
4-0 

NMLHARDWARE_FAILURE (Ox80) 
INSTRUCTION_BUS_ERROR (Ox2F) 
DATA_COHERENCY _EXCEPTION (Ox55) 
INSTRUCTION_COHERENCY _EXCEPTION (Ox56) 

Description 

ACTION: See error Ox77 
(above) 
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CAUSE: Either there is a 
parity error in system 
memory or a driver is 
accessing a nonexistent 
system-space address. 
ACTION: If a memory test 
succeeds, then use stack 
trace to locate the driver 
making the reference. 

CAUSE: NT has detected 
that all the CPUs in a mul
tiprocessor system are not 
identical. This is not a sup
ported configuration. 
ACTION: Correct the 
asymmetry. 

CAUSE: There isn't 
enough memory available 
to boot the system. 
ACTION: Install more 
memory. 

CAUSE: Miscellaneous 
hardware failures. 
ACTION: Use hardware 
diagnostics to locate and 
correct the problem. 

B.6 CONFIGURATION MANAGER AND REGISTRY PROBLEMS 

The bugchecks in Table B.6 result from problems with crucial Registry informa
tion. If the failure occurs only when your driver is running, you may be able to 
trace the problem back to bad calls to Registry functions. Since the Registry is 
mapped into system space, drivers can also corrupt the Registry by using bogus 
address pointers. 
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Table B.6 Registry problems 

Bugchecks caused by Registry problems 

Code and parameters 

CONFIG_INITIALIZATION_FAILED (Ox67) 
1-5 
2 - Location where failure occurred 

CON FIG_LIST _FAILED (Ox73) 
1-5 
2-2 
3 - Index of hive 
4 - Pointer to UNICODE_STRING 
containing filename of hive 

CANNOT _WRITE_CONFIGURATION (Ox75) 

REGISTRY_ERROR (Ox51) 
1- Indicates where error occurred 
2 - Indicates where error occurred 
3 - Pointer to hive 
4 - Internal error return code 

Appendix B Common Bugcheck Codes 

Description 

CAUSE: Configuration Manager 
couldn't get enough paged pool 
for the Registry.l 
ACTION: Get a stack trace and 
call Microsoft. 

CAUSE: One of the core system 
Registry hives (SOFTWARE, 
SECURITY, or SAM) is unread
able or corrupted. 
ACTION: Get a stack trace and 
call Microsoft. 

CAUSE: Either the SYSTEM hive 
is corrupted, or various crucial 
keys and values are missing. 
ACTION: Try booting from the 
Last Known Good configuration. 
If that fails, use the emergency 
repair disk. If that fails, reinstall 
NT. 

CAUSE: There is no room on the 
disk to increase the size of the 
SYSTEM hive files. 
ACTION: Free up space in the 
system partition. 

CAUSE: Something is seriously 
wrong with the Registry. It may 
be the result of an 1/ 0 error or 
file system corruption. 
ACTION: Try rebooting using 
the Last Known Good option or 
the emergency repair disk. 

1 This error should never occur, since Registry setup happens early enough during system initial
ization that there should always be enough pool space. 
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B.7 FILE SYSTEM PROBLEMS 

The bugchecks in Table B.7 result from failures in a file-system driver or a related 
component. Since Microsoft doesn't currently support customer-written FSDs, 
there is little you can do to diagnose these problems. 

Table B.7 File system problems 

Bugchecks caused by file system problems 

Code and parameters 

CACHE_MANAGER (Ox34) 
FILE_SYSTEM (Ox22) 
FAT _FILE_SYSTEM (Ox23) 
NTFS_FILE_SYSTEM (Ox24) 
NPFS_FILE_SYSTEM (Ox25) 
CDFS_FILE_SYSTEM (Ox26) 
RDR_FILE_SYSTEM (Ox27) 
MAILSLOT _FILE_SYSTEM (Ox52) 
PINBALL_FILE_SYSTEM (Ox59) 
LM_SERVER_INTERNAL_ERROR (Ox54) 

APC_INDEX_MISMATCH (Ox01) 

KERNEL_APC_PENDING_DURING_EXIT (Ox20) 
1 - Address of pending APC 
2 - The thread's APC disable count 
3 - The current IRQL 

Description 

CAUSE: Internal problems 
with a Microsoft-supplied 
file-system driver. 
ACTION: Get a stack trace 
and call Microsoft. 

CAUSE: This internal error 
could be the result of file 
system problems. 
ACTION: Get a stack trace 
and call Microsoft. 

CAUSE: This indicates a logic 
error in a file system driver. 
ACTION: See if any third
party file system drivers were 
installed at the time of the 
crash. Be suspicious of them. 
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B.8 SYSTEM INITIALIZATION FAILURES 

The bugchecks in Table B.8 occur only during system initialization. Some of them 
are the result of mismatched software components, while others indicate prob
lems that can only be diagnosed by Microsoft. 

Table B.8 Bootstrap and initialization failures 

Bugchecks caused by bootstrap problems 

Code and parameters 

MISMATCHED_HAL (Ox79) 
1 - 1 (Release levels don't match) 
2 - Release level of Kernel 
3 - Release level of HAL 

-OR-
1 - 2 (Build types don't match) 
2 - Kernel build type 

• 0 - Free multiprocessor-enabled build 
• 1 - Checked multiprocessor-enabled build 
• 2 - Free uniprocessor build 

3 - HAL build-type 
-OR-

1 - 3 (MCA HAL required) 
2 - Machine type detected at bootstrap 

• 2meansMCA 
3-HALtype 

FTDISK_INTERNAL_ERROR (Ox58) 

INACCESSIBLE_BOOT _DEVICE (Ox7B) 
1 - Pointer to boot Device object 
-OR-
1 - Pointer to UNICODE_STRING structure 
containing ARC name of volume that can't be 
mounted. 

Description 

CAUSE: The HAL revision 
level and HAL configuration 
type do not match those of the 
Kernel or the machine type. 1 

ACTION: Make sure the 
proper versions of the HAL 
and NTOSKRNL are installed. 

CAUSE: The system is trying to 
boot from the wrong copy of a 
mirrored partition. 
ACTION: Reboot from the 
shadow copy of the partition. 

CAUSE: Either the device 
driver for the boot device 
failed to initialize, or the file 
system driver for the boot 
device didn't recognize the file 
structures on the volume. 
ACTION: Be sure the right 
device driver is installed for the 
boot device, and that the sys
tem is trying to boot from the 
correct location. 
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Table B.8 (Continued) 

Code and parameters 

PHASEO_EXCEPTION (Ox78) 

SESSION1_INITIALIZATION_FAILED (Ox6D) 
SESSION2_INITIALIZATION_FAILED (Ox6E) 
SESSION3_INITIALIZATION_FAILED (Ox6F) 
SESSION4_INITIALIZATION_FAILED (Ox70) 
SESSION5_INITIALIZATION_FAILED (Ox71) 
1 - NT status code at time of failure 

PHASEO_INITIALIZATION_FAILED (Ox31) 
PHASE1_INITIALIZATION_FAILED (Ox32) 
HAL_INITIALIZATION_FAILED (Ox5C) 
HEAP_INITIALIZATION_FAILED (Ox5D) 
OBJECT _INITIALIZATION_FAILED (Ox5E) 
SECURITY _INITIALIZATION_FAILED (Ox5F) 
PROCESS_INITIALIZATION_FAILED (Ox60) 
HAL 1_INITIALIZATION_FAILED (Ox61) 
OBJECT1_INITIALIZATION_FAILED (Ox62) 
SECURITY1_INITIALIZATION_FAILED (Ox63) 
SYMBOLIC_INITIALIZATION_FAILED (Ox64) 
MEMORY1_INITIALIZATION_FAILED (Ox65) 
CACHE_INITIALIZATION_FAILED (Ox66) 
FILE_INITIALIZATION_FAILED (Ox68) 
I01_INITIALIZATION_FAILED (Ox69) 
LPC_INITIALIZATION_FAILED (Ox6A) 
PROCESS1_INITIALIZATION_FAILED (Ox6B) 
REFMON_INITIALIZATION_FAILED (Ox6C) 
1 - NT status code describing the failure 
2 - Indicator of location where failure occurred 
WINDOWS_NT _BANNER (Ox4000007E) 
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Description 

CAUSE: Failure during initial
ization of a system component. 
ACTION: Get a stack trace and 
call Microsoft. 

CAUSE: Failure during initial
ization of a system component. 
ACTION: Get a stack trace and 
call Microsoft. 

CAUSE: Failure during initial
ization of a system component. 
ACTION: Get a stack trace and 
call Microsoft. 

1 This error probably means that someone has manually updated either NTOSKRNL.EXE or 
HAL.DLL. It can also result from mixing a uniprocessor HAL with a multiprocessor Kernel, or 
vice versa. 
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B.9 INTERNAL SYSTEM FAILURES 

The bugchecks in Table B.9 all come from fatal errors within a Microsoft-supplied 
software component. For the most part, there's little you can do to track these 
errors. 

Table B.9 Internal system errors 

Bugchecks caused by internal system problems 

Code and parameters 

PORT _DRIVER_INTERNAL (Ox2C) 
SCSI_DISK_DRIVER_INTERNAL (Ox2D) 
FLOPPY _INTERNAL_ERROR (Ox37) 
SERIAL_DRIVER_INTERNAL (Ox38) 
ATDISK_DRIVER_INTERNAL (Ox42) 

STREAMS_INTERNAL_ERROR (Ox4B) 
NDIS_INTERNAL_ERROR (Ox4F) 
XNS_INTERNAL_ERROR (Ox57) 

CORRUPT _ACCESS_TOKEN (Ox28) 
SECURITY_SYSTEM (Ox29) 

Description 

CAUSE: Miscellaneous errors from 
a system-supplied driver. 
ACTION: Get a stack trace and 
call Microsoft. 

CAUSE: Internal errors from 
system-supplied networking 
components. 
ACTION: Get a stack trace and call 
Microsoft. 

CAUSE: Internal security sub
system errors. 
ACTION: Get a stack trace and call 
Microsoft. 
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IMAGEHLP.DLL,439 
Incremental development, 79-80 
Information field, 64 
Initialization and cleanup routines, 101-21 

driver cleanup example, 115-18 
DriverEntry routine, writing, 101-5 
driver initialization example, 105-13 
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KeClearEvent, 326 
KeDelayExecutionThread,212 
KeDeregisterBugCheckCallback,454 
KeFlushIoBuffers, 264, 272, 291, 297 
KeGetCurrentIrql, 94 
KeInitializeCallbackRecord,454 
KeInitializeDeviceQueue, 226, 227, 228 
KeInitializeDpc, 213, 229 
KeInitializeEvent, 326 
KeInitializeMutex, 328 
KeInitializeSpinLock, 97 
KeInitializeTlmer,214 
KeInsertByKeyDeviceQueue, 227 
KeInsertDeviceQueue, 227, 245 
KeInsertQueueDpc, 228-29 
KeLowerIrql, 94, 227, 269 
KeQuerySystemTime, 214 
KeQueryTickCount, 214 
KeQueryTimeIncrement, 214 
KeRaiseIrql,94, 227, 269 
KeReadStateMutex,328 
KeReadStateTimer, 214 
KeRegisterBugCheckCallback, 454 
KeReleaseMutex, 328-29 
KeReleaseSemaphore, 295, 329 
KeReleaseSpinLock, 97 
KeReleaseSpinLockFromDpcLevel, 97 
KeRemoveDeviceQueue, 227, 246 
KeRemoveEntryDeviceQueue, 227, 233 
KeRemoveQueueDpc,228 
KeResetEvent, 326 
Kernel,3-4 
KERNEL functions, Win32 subsystem, 9 
Kernel mode, 48-61 

control objects, 4 
data transfer, 59-60 
deferred procedure calls (DPCs), 51-53 
device dnvers, 11 
dispatcher objects, 4 
exceptions, 48-49 
Executive, 4-7 , 
file-system drivers (FSDs), 11-12 
Hardware Abstraction Layer (HAL), 3 
intennediate drivers, 11 
interrupts, 49-51 
I/O components, 10-15 

I/O subsystem design goals, 10 
I/O processing sequence, 58-61 
kernel,3-4 
kernel-mode threads, 49 
layered drivers, 10-11 
network drivers, 13-15 
postprocessing: 

by the driver, 60 
by the I/O Manager, 60-61 

request preprocessing: 
by the driver, 59 
byNT,58-59 

SCSI drivers, 12-13 
user buffer access, 53-54 
Windows NT, 2 

Kernel-mode drivers, 21 
data transfer routines, 56 
driver initialization and cleanup routines, 55 
I/O system service dispatch routines, 55-56 

517 



518 

resource synchronization callbacks, 57 
structure of, 54-58 

Kernel-mode threads, 49 
Kernel stack, 86, 87 
KeSetTimer, 214-15 
KeSetTimerEx, 214 
KeStallExecutionProcessor, 212 
KeSynchronizeExecution, 77, 96 
KeWaitForMultipleObjects, 324-25, 328, 375 
KeWaitForSingleObject, 324, 328, 330, 334, 368, 370 
KiTrap, 436 

L 
Language monitor DLL, and printer drivers, 19 
Latched interrupts, 28-29 
Layered drivers, 10-11, 351, 352-60 

code example, 354-56 
how they work, 352-53 
initialization! cleanup in, 353-54 

DriverEntry routine, 353-54 
Unload routine, 354 

IRPs in, 357-58 
lower-level driver, calling, 359-60 
transparent larer, 356 
virtual/logica device layer, 357 

Legacy 16-bit applications, drivers for, 21-22 
Level-sensitive (level-triggered) interrupt, 29 
Linked lists, 98-100 

doubly-linked lists, 99 
removing blocks from, 99-100 
singly-linked lists, 98 

listHead field, 100 
LODCTR utility, 466-67 
Logging device errors, 299-319 

error logging, 312-13 
code example, 313-19 
preparing a driver for, 310-11 

error-log packet, allocating, 311-12 
event logging in Windows NT, 299-301 
generating log entries, 310-13 
messages, 301-10 

adding message resources to a driver, 308-9 
message codes, 302-3 
message definition files, 303-8 
registering drivers as event sources, 309-10 
XXMSG.MC, 305-7 

Logical space, 260 
Long Procedure Call (LPC) facility, 6 
Lookaside lists, 90-91 
Low-level audio drivers, 21 

M 
MajorFunction field, 65 
MajorFunction table, 235, 356, 378-81, 383-84, 395 

filter driver object, 380-81 
MAKEFILE.INC, 408 
Mapping registers, 74 
MCA bus, 36-38 

autoconfiguration, 38 
device memory, 38 
DMA capabilities, 38 
interrupt mechanisms, 38 
register access, 37-38 

MCI drivers, 20-21 
MC utility, 307-8 
MdlAddress field, 65, 374 
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Memory Description Lists (MDLs), 260 
managing IlO buffers with, 261-63 

Memory-mapped registers, 27 
Memory suballocation, system support for, 88-91 
MEMORY.TXT,439 
Message-code fields, meaning of, 302 
Message definition files, 303-8 

compiling, 307-8 
header section, 303 
keywords used in, 303 
MC utility, 307-8 

message section, 303-4 
MessageId keyword, 307 
Messages, 301-10 

message codes, 302-3 
message definition files, 303-8 

compiling, 307-8 
header section, 303 
keywords used in header seciton of, 303 
MC utility, 307-8 
message section, 303-4 

message resources, adding to a driver, 308-9 
registering drivers as event sources, 309-10 
XXMSG.MC, 305-7 

METHOD_BUFFERED, 168, 177 
METHOD_IN_DIRECT, 168, 177 
METHOD_NEITHER, 168, 177 
METHOD_OUT_DIRECT, 168, 177 
Microsoft Hardware Compatibility Tests (HCTs), 421-

22 
MmbuildMdlForNonPagedPool, 263, 292, 294 
MmGetMdlByteCount, 263 
MmGetMdlByteOffset, 263 
MmGetMdlVirtualAddress, 263, 273 
MmGetSystemAddressForMdl, 263 
MmGetSystemAddressForMdl field, 262 
MmIsThisAnNtAsSystem, 89 
MmMapIoSpace, 157 
MmPageEnhreDriver, 85 
MmQuerySystemSize, 89 
MmResetDriverPaging, 85 
MmUnmapIoSpace, 157 
Module list, 428 
MouConfiguration, 81 
MouConnectToPort,81 
MouseClassStartlo, 81 
MouseClassUnload,81 
MSGnnnnn.BIN,308 
Multimedia drivers, 20-22 

kernel-mode device drivers, 21 
low-level audio drivers, 21 
MCI drivers, 20-21 
WINMM,20 

Multiple CPUs, synchronizing, 95-97 
Multiprocessor dependencies, 424 
Multithreading dependencies, 424 
Mutex objects, 327-29 

Fast Mutex, 332, 423-24 
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NDIS intermediate drivers, 14 
Network driver interface specfication (NDIS), 13-14 
Network drivers, 13-15 

kernel-mode networking clients, 15 
NDIS intermediate drivers, 14 
network interface card (NIC) drivers, 13-14 
transport drivers, 14-15 
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NIC drivers, 13-14 
Nonpaged pool, 86 
NonPagedPool,87 
NonPagedPoolCacheAligned, 87 
NonPagedPoolCacheAlignedMustS,88 
NonPagedPoolMustSucceed,87 
Nonpaged system memory, controlling, 85-86 
Nonsignaled dispatcher objects, 323 
Normal response tests, 420 
NTDDK.H, 81, 103,434,442,448 
NTDETECT, 122-23 
NT driver support routines, 83-84 
NTOSKRNL.EXE,429 
NTSTATUS, 82-83, 102 
NTSTATUS.H, 83, 437 
NtXxx,83 
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ObDereferenceObject, 327, 331, 354, 379, 39506 
Object instance, 462 
Object Manager, 5, 84 
ObReferenceObjectByHandle, 327, 331, 354, 395 
OEMSETUP.INF (control script), 411-12 
OOP, and Windows NT, 62-63 
Open and close operations, 56 
OpenGL API, 15 
Ol'TIONAL_DIRS (keyword),404 
OS/2 subsystem, 8 
OtherDrivers class, 152-54 
Outputlnterrupts Valid flag, 241 
Overall system architecture, windows NT, 1-10 
OverrideConflict parameter, 155 
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Packet-based bus master DMA drivers, 285-91 

Adapter Control routine: 
and bus master hardware, 287 
and scatter/gather lists, 289-90 

bus master hardware, setting up, 286-88 
DpcForIsr routine: 

and bus master hardware, 287-88 
and scatter / gather support, 290-91 

hardware with scatter / gather support, 288-89 
scatter / gather lists, 288-91 

building with 1I0MapTrailsfer;289-91 
Packet-based slave DMA drivers, 272-85 

Adapter Control routine, 273 
code example, 276-85 

DEVICE_EXTENSION, 276-77 
TRANSFER.C,278-85 
XxAdapterControl,281-82 
XxDpcForIsr,283-85 
XXDRlVER.H,276 
XxGetDmaInfo,277-78 
XxIsr, 282-83 
XxStartIo,278-81 

DMA transfers, splitting, 274-76 
DpcForIsr routine, 274 
DriverEntry routine, 272 
Interru)Jt Service routine, 273-74 
Start I/O routine, 272-73 

Paged pool, 86, 87-88 
PagedPool, 88 
PagedPoolCacheAligned, 88 
Parallel port, 189-201 

code example, 192-201 

DEVICE_EXTENSION, 192-93 
INIT.C, 193-95 
TRANSFER.C, 193-201 
XxCreateDevice, 193-95 
XxDpcForIsr, 200-201 
XXDRlVER.H, 192-93 
XxInitHardware,195 
XxIsr, 199-200 
XxStartIo, 195-97 
XxTransmitBytes,197-99 

device registers, 191 
driverfor, 192 
how it works, 189-90 
interrupt behavior, 192 

Partial resource descriptor, contents of, 129 
PCI bus, 41-45 

autoconfiguration, 44-45 
device memory, 44 
DMA capabilities, 43-44 
interrupt mechanisms, 43 
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register access, 43 
PCI (peripheral component interconnect), See PCI bus 
PERF _COUNTER_BLOCK, 470 
PE+RF_COUNTER_DEFINITION,470 
Perflib key, 464, 467 
PERFMON utility, 461, 463, 464 
PERF_OBJECT_TYPE,469 
Performance, Windows NT, 2 
Performance counter, 462 
Physical addresses, 31, 260 
PollingInterval field, 216 
PopEntryList, 98 
Portability, Windows NT, 2 
PortBase field, 82 
Port drivers, 11 

SCSI,13 
video,17 

Port monitor DLL, 19-20 
Ports, definition of, 26 
POSIX subsystem, 8 
Precompiled heads, using, 404 
Primary IRPs, 224 
Printer drivers, 17-20 

configuration DLL, 18 
DDK,17-18 
language monitor DLL, 19 
port monitor DLL, 19-20 
print processor DLL, 18-19 
spooler, 18 

Printer Job Language (PJL), 19 
Print processor TILL, 18-19 
Process field, 262-63 
Process Manager, 6, 84 
Product information file, 406-7 
Programmed I/O data transfers, 180-202 

driver initialization/ cleanup, 182-85 
connecting to interrupt source, 183-85 
disconnecting from interrupt source, 185 
initializing DpcForIsr routine, 183 
initializing Start I/O entry point, 182-83 

interrupt service routine, writing, 186-88 
parallel port, 189-201 

code example, 192-201 
device regISters, 191 
driver for, 192 
how it works, 189-90 
interrupt behavior, 192 
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Start 110 routine, writing, 185-86 
synchronizing driver routines, 181-82 
testing, 201-2 
what happens during, 180-81 

Programmed I/O (PIO), 29-30 
Protected subsystems, 7 
PsCreateSystemThread, 331, 337 
PushEntryList, 98 
PutBuffer, 396-97 
PVOID ControllerExtension field, 72 

Q 
QueueRequest, 397 

R 
Read and write requests, processing, 173-74 

buffered I/O, 173-74 
direct I/O, 174 
neither method, 174 

Recursive BUILD operations, 403-4 
REGCON.C, 143-52 
RegCreateKeyEx, 412 
RegisterEventSource, 476 
Registry: 

adding counter names to, 464-66 
adding driver parameters to, 140 
and auto-detected hardware, 123-25 
and Configuration Manager, 501-2 
counter definitions in, 464-66 
driver entries, 410 

RegQueryValueEx, 463 
RegSetValueEx, 412 
Reinitialize routines, 55, 113-14 

writing, 113-14 
execution context, 113 
what it does, 113 

Reliability, Windows NT, 1 
RemoveHeadList, 99 
RemoveTailList,99 
ReportEvent, 476 
RESALLOC.C, 158-62 
Resoruceleaks, 423 
Resource allocation, 152-53 
Resource lists, 32 
Resource synchronization callbacks, 57 
Robustness, Windows NT, 1 
RtlConvertLongToLargeInteger, 214 
RtlConvertUlongToLargeInteger, 214 
RtlCopyBytes, 318 
RtlLargeIntegerXx, 214 
RtlMoveMemory, 294 
RtlQueryRegistryValues, 140-41, 148, 314 
RtlTimeFieldsToTime, 214 
RtlTimeToTimeFields, 214 
RtlZeroMemory, 268 
Runtime library, 84 

S 
Sample drivers, 80 
ScatterGather, 268 
Scatter I gather list, 288 
SCSI drivers, 12-13 

class drivers, 13 
filter drivers, 13 
port and miniport dirvers, 13 

SCSI Request Blocks (SRBs), 88 
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Security Monitor, 84 
Security References Monitor, 6 

See also Packet-based slave DMA drivers; Packet-
based bus master DMA drivers 

Semaphore objects, 329-30 
ServiceGroupOrder, 415-16 
Shutdown routines, 55 

enabling shutdown notification, 119 
writing: 

execution context, 118 
what it does, 119 

Signaled dispatcher objects, 323 
Signaling mechanisms, 28-29 
Simplex devices, 223 
Singly-linked lists, 98 
16550 UART, 236-57 

code example, 239-57 
CANCEL.C, 253-57 
DEVICE EXTENSION in XXDRIVER.H, 240-

41 -
DEVQUEUE.C, 244-46 
DISPATCH,241-44 
INPUT.C, 247-49 
ISR.C, 249-53 
XxAltemateStartNextPacket, 245-46 
XxAltemateStartPacket, 244-45 
XxCancelAltemateIrp, 256-57 
XxCleanupDeviceQueue, 253-56 
XxDispatchCleanup, 243-44 
XxDispatchRead, 242-43 
XxDispatchWrite, 241-42 
XxDpcForInputs, 249 
XxHandleInputFifoTimeOut, 252-53 
XxHandleInputFifoTrigger, 251-52 
XxIsr, 250-51 

definition of, 236 
device registers, 236-38 
interrupt behavior, 238-39 

Size fields, 262 
Slave DMA, 31 
Slots, 37 
Software-generated interrupts, 51 
Source-code debugging, 430-31 
SOURCES file, writing, 401-3 
Special driver architectures, 15-22 
Spin locks, 95-97 

how they work, 95 
rules for using, 97 
using, 96-97 

Spooler, 18 
Ssytem crashes, 423 
StackSize field, 365-66, 380 
Stack trace, 428-29 
Standalone tests, of hardware, 47 
Start I/O routine, 56, 59, 297 

function of, 186 
writing, 185-86 

execution context, 185-86 
StartService, 412 
StartVa field, 261 
Status register, 25 
Status reporting, 46 
Status return values, 82-83 
STOP message: 

bugcheck information, 427 
deciphering, 429-30 
layout of, 427-29 
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module list, 428 
recovery instructions, 429 
stack trace, 428-29 

Stress tests, 420 
Subsystem components, 7-8 

environment subsystems, 7-8 
integral subsystems, 7 

SynchCritSection routines, 57 
Synchronization problems, 496 
System crashes, 426-30 

definition of, 426 
STOP message: 

bugcheck information, 427 
deciphering, 429-30 
layout of, 427-29 
module list, 428 
recovery instructions, 429 
stack trace, 428-29 

System DMA, 31 
System hangs, 424 
System initialization failures, 504-5 
System threads, 320-49 

T 

creating, 321-22 
system worker threads, 322-23 
terminating, 321-22 
thread priority, managing, 322 
thread synchronization, 323-25 

general synchronization, 323-25 
time synchronization, 323 

when to use, 320-21 

Tail.Overlay.ListEntry field, 100 
> TBE (transmit buffer empty) flag, 236 

Thread hangs, 423-24 
Thread synChronization, 323-25 

code example, 334-49 
DEVICE_EXTENSION in XXDRIVER.H, 335-

36 
how the driver works, 334-35 
THREAD.C, 339-41 
TRANSFER.C, 341-49 
XxAcquireAdapterObject, 345-47 
XxAdapterControl, 345-47 
XxCreateDevice function in INIT.C, 336-37 
XxDispatchReadWrite in DISPATCH.C,338-

39 
XxDr.cForIsr, 348-49 
XxKIlIThread, 340-41 
XxPerformDataTransfer,341-45 
XxPerformSynchronousTransfer, 347-48 
XxThreadMain, 339-40 

general synchronization, 323-25 
synchronization deadlocks, 333-34 
brrnesynchronization,323 
See also Dispatcher objects 

Tightly coupled drivers, 351, 394-97 
how they work, 394-95 
initialization/ cleanup in, 395-96 

lower DriverEntry routine, 395 
lower Unload routine, 396 
upper DriverEntry routine, 395-96 
upper Unload routine, 396 

I/O request processing in, 396-97 
asynchronous I/O, 397 
synchronous I/O, 396-97 

Time dependencies, 424 

Timer objects, 330-31 
Timer routines, 57 
Timers, 203-21 

CustomTimerDpc routines, 212-14 
device timeouts, 203-5 

catching, 204-11 
expiration times, specifying, 214-15 
I/O timer routines, 203-4 
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noninterrupting devices, working with, 211-12 
timer-based driver code example, 215-21 

INIT.C, 216-17 
TRANSFER.C, 217-21 
XXDRIVER.H,216 
XxPollingTimerDpc, 220-21 
XxStartIo, 218-19 
XxTransmitBytes, 219-20 

TraceCount field, 457 
TRANSFER.C, 193-201, 207-11, 217-21, 278-85, 341-49 
Transport drivers, 14-15 
Trap frames, 436 
TXTSETUP.OEM (control script), 411-12 

U 
Unicode manipulation functions, 92 
Unicode strings, 91-93 

datatypes, 91-92 
working with Unicode, 92-93 

Unidriver, 18 
Unload routine, 55 

writing, 114-15 
execution context, 114 
what it does, 114-15 

UNLODCTR utility, 467 
Unrecognized hardware: 

driver parameters, adding to the Registry, 140 
finding, 139-52 
querying the Registry example, 142-52 

REGCON.C,143-52 
XxBusCallback, 150-52 
XxCheckForBus, 150-52 
XxFindNextDevice, 146-48 
XxGetHardwareInfo, 143-46 
XxGetInterruptInfo,148-50 
XxGetPortInfo, 148-50 

retrieving driver parameters from, 140-41 
UserBuffer field, 65 
User buffers, access to, 53-54 
USER function, Win32 subsystem, 9 
User mode, Windows NT, 2 

V 
Vendor information file, 405-6 
VerQueryValue, 405 
Version information: 

including, 405-7 
product information file, 406-7 
vendor information file, 405-6 

Video drivers, 15-17 
DirectDraw HAL, 16-17 
display drivers, 16 
GDI engine, 16 
video port and miniport drivers, 17 

Virtual addresses, 31, 260 
Virtual DOS Machine (VDM) subsystem, 8, 21-22 
Virtual Memory Manager, 6, 84 



522 

W 
WDBGEXTS.H,448 
WIN32K.SYS, 9 
Win32 objects, 63 
Win32 subsystem, 8-10 
WINBASE.H,447-48 
WINDBG utility, 419-21, 440-46, 489 

code example, 446-52 
command routines, 449-51 
globals, 448 
headers, 446-48 
required functions, 448-49 
sample output, 452 
SOURCES file, 451 
XXDBG.C, 446-51 
XXDBG.DEF,451 

commands/ extensions, 431-32 
extension Dll, building/using, 446 
helper functions, 445-46 
how they work, 442-43 
initialization/version-checking functions 443-44 

Check Version, 444 ' 
ExtensionApiVersion,443 
WinDbgExtensionDllInit,443 

source-code debugging, 430-31 
source code directories, 430-31 
symbol directories, 430 

WINDBG writing extension commands 444-45 
WindDbgExtensiuonDllInit 443 ' 
Windows NT: ' 

base operating system, extensions to 7-8 
base operati.ng system components, 2-4 
and data objects, 62-63 
design goals for, 1-2 
device driver kit (DDK), 17-18, 80 
hardware privileges levels in, 2 
and OOP, 62-63 
overall system architecture, 1-10 
special driver architectures, 15-22 

legacy 16-bit application drivers, 21-22 
multimedia drivers, 20-22 
printer drivers, 17-20 
video drivers, 15-17 

. subsystem components, 7-8 
Wmdows on Windows (WOW) subsystem 8 
WinMain function, 54 ' 
WINMM,20 
WINOBJ utility, 120-21 

X 
X bus, 33 
XxAcquireAdapterObj ect, 345-47 
XxAdapterControl, 269, 281-82, 345-47 
XxAltemateStartIo, 247 
XxAltemateStartNextPacket, 245-46 
XxAltemateStartPacket, 244-45 
XxBuildPartialDescriptors, 161-62 
XxBusCallback, 150-52 
XxCancelAltemateIrp, 256-57 
XxCheckForBus, 150-52 
XxCleanupDeviceQueue, 253-56 
XxConfigCallback, 134-37 
XxCreateDevice, 109,336 

XXDBG.C, 446-51 
XXDBG.DEF,451 
XxDispatchCleanup, 243-44 
XxDispatchRead,243-44 
XxDispatchWrite, 242-43, 434 
XxDpcForinputs, 249 
XxDpcForIsr, 200-201, 283-85, 348-49 
XXDRIVER.H, 131-32,216,447 
XXDRIVER.RC, 406 
XXDRIVER.SYS, 429 
XxFindNextDevice, 146-48 
XxGetDmaInfo, 277-78 
XxGetHardwareInfo, 132-34, 143-46,277 
XxGetInterruptInfo, 137-39, 148-50 
XxGetPerQueryType, 485 
XxGetPortInfo, 137-39, 148-50 
XxGetStringSize, 319 
XxHandleInputFifoTimeOut, 252-53 
XxHandleInputFifoTrigger, 251-52 
XxInitializeEventLog, 313-15 
XxIoTimer, 210-11 
XxIsNumberinList, 485 
XxIsr, 199-200, 208-9, 250-51 282-83 
XxKillThread,340-41 ' 
XXMSG.MC, 305-7, 308 
XXMSG.RC, 308 
XXPERF.C, 478-86 
XxPerfClose, 486 
XxPerfCollect, 483-86 
XxPerfOpen, 479-83 
XxPerformDataTransfer, 341-45 
XxPerformSynchronousTransfer, 347-48 
XxPollingTimerDpc, 220-21 
XxProcessTimerEvent, 211 
XxReleaseHardware, 115-18 
XxReportEvent, 315-19 
XxReportHardwareUsage, 158-61 
XxStartlo, 195-97, 218-19, 278-81, 434 
XxThreadMain, 339-40 
XXTRACE,457-58 
XxTransmitBytes, 207-8, 219-20 
XxTryToCrash,434 
XxUnload, 115 
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YyAttachFilter, 384 
YyDispatchDeviceIoControl 388-89 
YyDispatchPassThrough, 389-90 
YyDispatchRead, 368 
YyDispatchWrite, 386-88 
YYDRIVER.H,381 
YyGenericCompletion, 393 
YyGetBufferLimits, 385-86 
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Zone buffers, 88-90 
ZwClose, 158,327, 331 
ZwCreateFile, 158 
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ZwReadFile, 158 
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ZwWriteFile, 158,434 
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AGES ARISING OUT OF OR IN CONNECTION WITH THE LICENSE GRANTED UNDER THIS AGREE
MENT, OR FOR LOSS OF USE, LOSS OF DATA, LOSS OF INCOME OR PROFIT, OR OTHER LOSSES, 
SUSTAINED AS A RESULT OF INJURY TO ANY PERSON, OR LOSS OF OR DAMAGE TO PROPERTY, OR 
CLAIMS OF THIRD PARTIES, EVEN IF THE COMPANY OR AN AUTHORIZED REPRESENTATIVE OF 
THE COMPANY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL 
LIABILITY OF THE COMPANY FOR DAMAGES WITH RESPECT TO THE SOFTWARE EXCEED THE 
AMOUNTS ACTUALLY PAID BYYOU, IF ANY, FOR THE SOFTWARE. 

SOME JURISDICTIONS DO NOT ALLOW THE LIMITATION OF IMPLIED WARRANTIES 
OR LIABILITY FOR INCIDENTAL, INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES, SO THE 
ABOVE LIMITATIONS MAY NOT ALWAYS APPLY. THE WARRANTIES IN THIS AGREEMENT GIVE YOU 
SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY IN ACCOR
DANCE WITH LOCAL LAW 

ACKNOWLEDGMENT 

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND IT, 
AND AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. YOU ALSO AGREE THAT THIS AGREE
MENT IS THE COMPLETE AND EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN YOU AND 
THE COMPANY AND SUPERSEDES ALL PROPOSALS OR PRIOR AGREEMENTS, ORAL, OR WRITTEN, 
AND ANY OTHER COMMUNICATIONS BETWEEN YOU AND THE COMPANY OR ANY REPRESENT A
TIYE OF THE COMPANY RELATING TO THE SUBJECT MATTER OF THIS AGREEMENT. 

Should you have any questions concerning this Agreement or if you wish to contact the Company for any 
reason, please contact in writing at the address below. 

Robin Short 
Prentice Hall PTR 
One Lake Street 
Upper Saddle River, New Jersey 07458 
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Now that Windows NT is rapidly becoming the business operating system of choiGe, more and 
more programmers are faced with developing Windows NT drivers. To write NT drivers we ll , you 
first need to understand the Windows NT driver architecture. But you' ll also know a myriad of 
practical details that are rarely, if ever, documented. 

The Windows NT Device Driver Book tells you all you need to know. It clarifies the murky Microsoft 
Driver Development Kit (DDK) documentation, and contains extensive detail that's missing from the 
DDK. This information is invaluable right now-and it will prepare you for the future, when Microsoft 
introduces the common Win32 Driver Model for Windows NT and Windows® 95. 

You'll learn about the NT I/O Manager and its data structures, anp discover how various hardware 
issues will impact the design of your driver. Once you know the fundamentals, Windows NT 
device driver expert Art Baker presents basic and advanced NT driver-writing techniques in 
unprecedented detail . Learn about: 

• Full-duplex driver architecture 
• Techniques for handling time-out conditions 
• Logging device errors 
• Kernel-mode threads and higher-level drivers 

The Windows NT Device Driver Book is rep~ete with practical detail ,. including: 

• The mechanics of setting up a driver development environment 
• How to analyze crash dumps and make WINDBG work for you 
• Detailed information on common bugcheck codes 

There's also extensive sample code on diskette, designed to help stream line your own development 
projects. Whether you're designing or coding Win NT driver or porting an existing driver from 
another operating system environment, The Windows NT Device Driver Book contains all the 
information you'll need to get the job done. 

About the Author 

Art Baker, founder of Cydonix Corporation, has been writing device-control software for the last 25 
years. For more than 12 years, he has specia lized in training professional developers to write 
device drivers. 
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