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Preface

In case you haven’t guessed, this book explains how to

write, install, and debug kernel-mode device drivers for Windows NT. If you’re in the
process of designing or coding an NT driver, or if you're porting an existing driver from
some other operating system, this book is a valuable companion to the Microsoft DDK
documentation.

This book might also have something to say to you if you just need a little more
insight into the workings of Windows NT, particularly the I/O subsystem. Perhaps
you're trying to decide if NT is a reasonable platform for some specific purpose. Or you
may be studying operating systems, and you want to see how theory gets applied in the
real world.

And of course, we mustn’t discount the power of morbid curiosity. The same fas-
cination that forces us to slow down as we drive past a car accident can also motivate
us to pull a volume off the bookstore shelf.

What You Should Already Know

Throughout this book, I make several assumptions about what you already know.
First of all, you need to have all the basic Windows NT user skills such as logging in
and running various utilities. Since driver installation requires you to have adminis-
trator-level privileges, you can trash things pretty badly if you don’t know how to use
the system.

Second, you’ll need decent C-language programming skills. I've tried to avoid the
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use of “cleverness” in my code examples, but you still have to be able to read them.

Next, some experience with Win32 user-mode programming is helpful, but it isn’t
really required. If you haven’t worked with the Win32 API, you might want to browse
through volume two of the Win32 Programmers Reference. This is the one that de-
scribes system services. Take a look at the chapters on the I/O primitives (CreateFile,
ReadFile, WriteFile, and DeviceloControl) and the thread-model. See the bibliog-
raphy for other books on Win32 programming.

Finally, you need to understand something about hardware in order to write driv-
ers. It would be helpful if you already had some experience working with hardware, but
if not, Chapter 2 will give you a basic introduction. Again, the bibliography will point
you toward other, more-detailed sources for this kind of information.

What You’ll Find Here

One of the most difficult choices any author has to make is deciding what to write
about and what to leave out. In general, I've attempted to focus on core issues that are
crucial to kernel-mode driver development. I've also tried to provide enough back-
ground information so that you’ll be able to read the sample code supplied with the NT
DDK, and make intelligent design choices for your own drivers.

The overall flow of the book goes from the theoretical to the practical, with earlier
chapters providing the underpinnings for later topics. Here’s what’s covered:

Chapters 1-5 The first part of this book provides the basic foundation you’ll
need if you plan to write drivers. This includes a general examination of the Windows
NT driver architecture, a little bit about hardware, and a rather detailed look at the
NT I/O Manager and its data structures. This group of topics ends with some general
kernel-mode coding guidelines and techniques.

Chapters 6-13 These eight chapters form the nucleus of the book and present all
the details of writing kernel-mode NT device drivers. You’'ll also find discussions here
of full-duplex driver architectures, handling timeout conditions, and logging device er-
rors. Unless you're already familiar with N'T’s driver architecture, you should probably
read these chapters in order.

Chapters 14 and 15 The next two chapters deal with alternative driver architec-
tures supported by Windows NT. This includes the use of kernel-mode threads in driv-
ers and higher-level drivers.

Chapters 16-18 The final part of the book deals with various practical details of
writing NT drivers. Chapter 16 takes a look at all the things your mother never told
you about the BUILD utility. Chapter 17 covers various aspects of testing and debug-
ging drivers, including how to analyze crash dumps and how to really get WINDBG to
work. If you’re actually writing a driver while you read this book, you may want to read
these chapters out of order. Chapter 18 examines the crucial issue of driver perfor-
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mance and how to tie your driver into NT’s performance monitoring mechanisms.

Appendices The appendices cover various topics that people in my classes have
asked about. The first one deals with the mechanics of setting up a driver development
environment.

The second appendix contains a list of the bugcheck codes you’re most likely to en-
counter, along with descriptions of their various parameters. Used in conjunction with
the material in Chapter 17, this may help you track down the cause of a blue screen or
two.

What You Won’t Find

I excluded topics from this book for several reasons. Some subjects were just too
large to cover. Others addressed the needs of too small a segment of the driver-writing
community. Finally, some areas of driver-development are simply unsupported by Mi-
crosoft. Specifically, you won’t find anything here about the following items:

File system drivers At the time this book went to press, Microsoft still hadn’t
released any kind of developer’s kit for NT file system drivers. In fact, there seemed to
be a great deal of resistance to the idea within Microsoft. Until this situation changes,
there’s not much point in talking about the architecture of file system drivers.

Net-card and network protocol drivers NDIS and TDI drivers are both very
large topics — large enough to fill a book of their own. Unfortunately, there just wasn’t
enough room for all of it here. I can offer one bit of consolation: The material in this
book will give you much of the background you need in order to understand what’s hap-
pening inside the NDIS/TDI framework.

SCSI miniport and class drivers Although SCSI HBA miniport drivers are vital
system components, the number of people actually writing them is (I suspect) rather
small. Consequently, the only reference to SCSI miniports is the overview material in
Chapter 1.

I would have liked to include a discussion of SCSI class drivers in this book, but
unfortunately there just wasn’t any time to write it. The material on developing inter-
mediate drivers in Chapter 15 will give you much of the necessary background. From
there, take a look at the sample SCSI class driver for CD-ROMs that comes with the
NT DDK.

Video, display, and printer drivers This is another area where I had to make a
tradeoff between the number of people writing these kinds of drivers and the time
available to finish the book. Unfortunately, graphics drivers for video and hardcopy de-
vices didn’t make the cut this time. Perhaps in a later, expanded version of the book...

Virtual DOS device drivers In my opinion, the best way to run 16-bit MS-DOS
and Windows applications under Windows NT is to port the source code to Win32. In
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any event, the Microsoft documentation does a decent job describing the mechanics of
writing VDDs so I haven’t included anything about them here.

About the Sample Code

There’s a great deal of sample driver code scattered throughout this book. You’ll
find all of it on the accompanying floppy disk. I've created separate directories on the
floppy for each chapter, and where appropriate, subdirectories for each component or
driver in the chapter.

Coding style Since the purpose of this book is instruction, I've done a couple
things to improve the clarity of the samples. First, I've adopted a coding style that
avoids smart tricks. Some of the examples could probably have been written in fewer
lines of code, but I don’t think they would have been as easy to understand.

Also in the name of clarity, I've eliminated everything except the bare essentials
from each sample. For example, most of the drivers don’t contain any error-logging or
debugging code, although a real driver ought to include these things. These topics have
their own chapters, and you shouldn’t have too much trouble back-fitting the code into
other sample drivers.

Naming conventions You’'ll notice that almost all the sample drivers appearing
in this book are called “XXDRIVER.” (The only exception is the higher-level driver
Chapter 15. Its name is “YYDRIVER.”) This makes it somewhat easier to interchange
the parts of different samples. It also reduces the amount of clutter that you’ll be add-
ing to the Registry while you’re playing with these drivers.

Within any particular driver, I've also adopted the convention of adding the pre-
fix, Xx to the names of any driver-defined functions. Similarly, device registers, driver
structures, and constants are also prefixed with XX_. This makes it easy to see which
things you have to write and which ones come from the folks at Microsoft.

Platform dependencies It’s worth mentioning that these samples have been tar-
geted to run on Intel 80x86 platforms. In particular, the drivers all assume that device
registers live in I/O space rather than being memory-mapped. This is relatively easy to

fix with a little bit of coding and some modifications to each driver’s hardware-specific
header file.

To build and run the examples You'll need several tools if you plan to do any
driver development for Windows NT. First, get yourself a Level II subscription to the
Microsoft Developer Network CDs. This is the only source for the NT DDK and the
Win32 SDK.

You’ll also need a C compiler. I've chosen to use the Microsoft compiler for devel-
oping and testing all the code in this book. Your mileage may vary if you’re using some
other vendor’s tools. See Appendix A for more information on setting up your driver de-
velopment environment.
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Training and Consulting Services

The material in this book is based on classes that I've been delivering for several
years through Cydonix Corporation — a training and consulting firm whose goal is to
help its clients develop device drivers and other high-performance Windows NT soft-
ware. Cydonix offers services that range from formal classroom training to direct par-
ticipation in software design and coding.

For the past three years, Cydonix has been helping companies like Adaptec,
AT&T, Compaq Computers, Hewlett-Packard, and Intel to learn more about the work-
ings of Windows NT. We have training available in a number of areas including:

eWindows NT device driver programming
oWin32 system service programming
eAdvanced server development techniques

Cydonix offers both onsite training at customer facilities and open enrollment
classes that are available to the general public. The public classes are hosted by train-
ing vendors in several geographic areas.

For more information about training and consulting from Cydonix Corporation,
visit our Web site at http:/www.cydonix.com or send email to info@cydonix.com.
You can also contact us through more earthbound means using this postal address:

Cydonix Corporation
Suite 304

2117 L Street, N.W.
Washington, DC 20037
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CHAPTER 1

Introduction to
Windows NT
Drivers

1.1

Tradition demands that any book about writing
device drivers starts out by answering the question, “What is a driver?” Unfortu-
nately, asking this question in Windows NT is a little like asking “What color is
plaid?” because there are at least a dozen different software components that can
rightfully be called drivers. This chapter takes a roundabout look at the different
kinds of drivers supported by Windows NT, and along the way, presents some of
the design philosophy that makes this operating system such an intriguing beast.

OVERALL SYSTEM ARCHITECTURE

Windows NT drivers don't live in isolation, of course. Rather, they are just one
part of a large and complex operating system. This section takes you on a quick
tour of the Windows NT architecture and points out those features that will be of
most interest to driver writers.

Design Goals for Windows NT

Like every other commercial operating system, Windows NT is the result of
a complex interaction between idealized goals and market-driven realities. The
Windows NT design team set their sights on the following;:

* Compatibility — The operating system should support a wide range of
existing software and legacy hardware.

¢ Robustness and reliability — The operating system has to resist the
attacks of naive or malicious users, and individual applications should be
as isolated from one another as possible.
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* Portability — The operating system should be able to run on a wide vari-
ety of current and future hardware platforms.

* Extendibility — It should be possible to add new features and support
new I/O devices without perturbing the existing code base.

* Performance — The operating system should be able to give reasonable
performance on commonly available hardware. It should also be able to
take advantage of features like multiprocessing hardware.

Trying to balance all these goals with a reasonable time to market was a
complex process. The rest of this section describes the solution that the system
designers came up with — beginning with a look at the protection mechanisms
that keep the operating system safe.

Hardware Privilege Levels in Windows NT

There are any number of things that application programs shouldn't be
allowed to do in a multitasking environment. Fooling with the memory manage-
ment hardware or halting the processor are just two examples of actions that
would cause serious problems. Rather than depending on the kindness of strange
applications, Windows NT takes advantage of hardware-enforced privilege-
checking mechanisms to guarantee system integrity.

To avoid hardware dependencies, Windows NT uses a simplified model to
describe hardware privileges. This model then maps onto whatever privilege-
checking mechanisms are available on a given CPU. A CPU must be able to oper-
ate in two modes if it’s going to support the Windows NT hardware privilege
model.

Kernel mode Anything goes when the CPU runs in kernel mode. A task
can execute privileged instructions, and it has complete access to any I/O devices.
It can also touch any virtual address and fiddle with the virtual memory hard-
ware. This mode corresponds to Ring 0 on an Intel 80x86.

User mode In this mode, the hardware prevents execution of privileged
instructions and performs access checks on references to memory and I/O space.
This allows the operating system to restrict a task's access to various I/O opera-
tions, and trap any other behavior that might violate system integrity. Code run-
ning in user mode can’t get itself into kernel mode without going through some
kind of gate mechanism in the operating system. On an Intel 80x86 processor, this
mode corresponds to Ring 3.

Base Operating System Components

The base components of Windows NT implement a general operating sys-
tem platform on which to build more complex environments. As you can see from
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Figure 1.1 Overall architecture of the NT kernel-mode components

Figure 1.1, these base components consist of three major blocks of kernel-mode
code.

Hardware Abstraction Layer (HAL) The HAL is a thin layer of software
that presents the rest of the system with an abstract model of any hardware that’s
not part of the CPU itself. The HAL exposes a well-defined set of functions that
manage such items as:

¢ Off-chip caches

¢ Timers

* [/Obuses

® Device registers

¢ Interrupt controllers
¢ DMA controllers

Various system components use these HAL functions to interact with off-
CPU hardware. This essentially hides platform-specific details from the rest of the
system and removes the need to have different versions of the operating system
for platforms from different system vendors. In particular, the use of HAL rou-
tines makes the Kernel and device drivers binary-compatible across platforms
with the same CPU architecture.

Kernel Where the HAL is an abstraction of the platform, the Kernel pre-
sents an idealized view of the CPU itself. Among other things, the Kernel pro-
vides mechanisms for
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Interrupt and exception dispatching

Thread scheduling and synchronization

Multiprocessor synchronization

Time keeping

By using these Kernel services, upper layers of the operating system can (for
the most part) ignore the architecture of the underlying CPU. This makes it possi-
ble for drivers and higher-level operating slystem components to be source-code
portable across different CPU architectures.

An interesting feature of the Kernel is that it presents an object-based inter-
face to its clients. When other parts of the operating system need help from the
Kernel, they request its services by calling functions that create and manipulate
various kinds of objects. These Kernel objects fall into two main categories:

* Dispatcher objects — These are used primarily for managing and syn-
chronizing threads.

* Control objects — These objects affect the behavior of the operating sys-
tem itself in some way.

Device drivers don’t have much use for dispatcher objects. Those that do are
described in Chapter 14. Control objects are another matter, however. In particu-
lar, device drivers make frequent use of Deferred Procedure Call objects and
Interrupt objects (described in Chapters 3 and 4 respectively).

Executive The Executive is by far the largest and most complex kernel-
mode component in Windows NT. Its job is to implement many of the basic func-
tions normally associated with an operating system. Like the Kernel, the Execu-
tive uses the HAL to interact with any off-CPU hardware and so becomes binary
compatible across platforms from different system vendors. By relying on Kernel
objects, the Executive gains the additional advantage of being source-code porta-
ble across different CPU architectures. Because it’s such a key part of Windows
NT, it’s worth exploring the Executive a little more.

What’s in the Executive

As you can see from Figure 1.2, the Executive actually consists of several
distinct software components that offer their services both to user-mode pro-
cesses and to one another. These Executive components are completely indepen-
dent and communicate only through well-defined interfaces. This modularity

11t also means that much of the work of porting Windows NT to a new CPU is really a matter of
rewriting the Kernel. To make this process easier, Microsoft has adopted a microkernel approach
that tries to keep the Kernel as small as possible.
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Figure 1.2 Detailed view of the Executive

makes it possible to replace an existing Executive component without perturbing
any other parts of the operating system. As long as the replacement exposes the
same interface, the change will be transparent. The remainder of this subsection
gives cursory descriptions of the various Executive modules.

System service interface All operating systems have to give user-mode
processes a limited ability to execute kernel-mode code. In particular, there must
be a controlled path from user to kernel mode that applications can follow when
they call system services. In Windows NT, the system service dispatcher uses a
technique based on the CPU’s hardware exception mechanism to give user-mode
code access to Executive services.

Object Manager The Executive offers its services to user-mode processes
through an object-based interface. These Executive objects represent things such
as files, processes, threads, and shared memory segments. This use of objects pro-
vides a unified mechanism for tracking resources and enforcing security.

The Object Manager does all the grunt work of managing these Executive
objects. This includes creating and deleting objects, maintaining the global object
namespace, and keeping track of how many outstanding references there are to
any given object.

Configuration Manager From a driver writer’s perspective, the main job
of the Configuration Manager is to maintain a model of all the hardware and soft-
ware installed on the machine. It does this using a database called the Registry. As
you read through the rest of this book, you'll see that drivers are linked to the
Registry through an intricate web of connections. Among other things, drivers
use the Registry to
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Identify themselves as trusted system components

Find and allocate peripheral hardware

Set up error-logging message files

Enable driver-performance measurement

Process Manager A process is the unit of resource-tracking and security
access checking in Windows NT. Along with any resources it might be holding,
each process has its own virtual address space and security identity. A process
also contains one or more executable entities called threads. It is the thread (and
not the process) that receives ownership of a CPU and does actual work.

The Process Manager is the Executive component that handles the creation,
management, and deletion of processes and threads. It also provides a standard
set of services for synchronizing the activities of threads. Most of the features
exposed by the Process Manager are just fancy versions of mechanisms imple-
mented by the Kernel.

Security Reference Monitor This Executive component enforces the sys-
tem’s security policies. The Security Reference Monitor doesn’t actually define
security policy; that job belongs to the Local Security Authority subsystem
(described later in this chapter). Rather, the Security Reference Monitor simply
provides a set of primitives that both kernel- and user-mode components can call
to validate access to objects, check for user privileges, and generate audit mes-
sages. For the most part, device drivers don’t concern themselves with security
issues.

Device drivers normally don’t do much with the Security Reference Moni-
tor. The I/O Manager handles those kinds of details before it calls any routines in
your driver.

Virtual Memory Manager Under Windows NT, each process has a flat 4-
gigabyte virtual address space. The lower half of this space contains process-pri-
vate code and data along with the process’s stack and heap space. It also holds
any File Mapping objects and DLLs the process is using. The upper half of every
process’s address space contains nothing but kernel-mode code. One of the jobs of
the Executive’s Virtual Memory Manager is to maintain this illusion of a huge
address space using demand-paged virtual memory management techniques.

From a driver writer’s point of view, the Virtual Memory Manager is more
important as a memory allocator because it maintains the system heap areas. The
Virtual Memory Manager also builds and manipulates various buffer descriptors
that are crucial to the operation of DMA drivers. Both these topics are covered in
more detail later.

Local Procedure Call facility The Local Procedure Call (LPC) facility is a
message-passing mechanism used for communication between processes on the
same machine. LPCs are used primarily by protected subsystems (described later)
and their clients. Device drivers have no access to the LPC facility.
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I/O Manager This Executive component converts I/O requests from user-
and kernel-mode threads into properly sequenced calls to various driver rou-
tines. Through the use of a well-defined formal interface, the I/O Manager is
able to communicate with all drivers the same way. This makes it unnecessary
for the I/O Manager to know anything about the underlying hardware managed
by a given driver. The rest of this book describes the operation of the I/O Man-
ager in gory detail.

Extensions to the Base Operating System

The Executive components of Windows NT present a fairly neutral face to
the world. They don’t implement a user interface nor do they define any external
policies like security. They don’t even offer a programming interface since the
Executive’s system service calls are not publicly documented. The base kernel-
mode components simply provide a generic operating system platform.

Defining the look and feel of the operating system — both to users and pro-
grammers — is the job of some extended components known collectively as pro-
tected subsystems. Rather than dealing directly with the Executive, users and
programmers of Windows NT interact with these subsystems.

In the original architecture of Windows NT, protected subsystems were
implemented entirely as a group of privileged user-mode processes. This rather
elegant design made it possible to extend the base operating system without risk-
ing any damage to the underlying kernel-mode components. For performance
reasons, Windows NT 4.0 has moved away from this pure user-mode model and
shifted some subsystem components into kernel mode.

Depending on the kind of work they do, all protected subsystems can be
divided into two major categories. The following subsections describe each cate-
gory in more detail.

Integral subsystems An integral subsystem performs some necessary
system function. The responsibilities of these subsystems actually cover quite a lot
of territory. The following are just a few examples of what they do.

¢ Together with the Security Accounts Manager and the Logon process, the
Local Security Authority defines security policy for the system.

¢ The Service Control Manager loads, supervises, and unloads trusted sys-
tem components like services and drivers.

* The RPC Locator and RPC Service processes give support to distributed
applications that use remote procedure calls.

Environment subsystems The other kind of protected subsystem is
called an environment subsystem. The job of an environment subsystem is to pro-
vide a programming interface and execution environment for application pro-
grams native to some specific operating system. Currently, Windows NT provides
the following subsystems:
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¢ The Win32 subsystem implements the native-mode programming inter-
face for Windows NT. A more detailed description of this subsystem
appears below.

e The Virtual DOS Machine (VDM) subsystem allows 16-bit MS-DOS appli-
cations to run under Windows NT. Unlike other subsystems, the VDM
software is actually part of the process where the MS-DOS application is
running.

¢ The Windows on Windows (WOW) subsystem supports the execution of
16-bit Windows applications. The default behavior of the WOW sub-
system is to run all 16-bit Windows applications as separate threads
within the address space of a single VDM process. This helps to mimic
the 16-bit Windows environment more closely.

* The POSIX subsystem provides API support for programs conforming to
the POSIX 1003.1 source-code standard. Because POSIX 1003.1 is not a
binary standard, applications must be compiled and linked on Windows
NT in order under this subsystem.

e The OS/2 subsystem creates an execution environment for 16-bit OS/2
applications. This subsystem is available only for the 80x86 version of
Windows NT.

A given application is always tightly coupled to one specific subsystem and
can use only the features of that subsystem. For example, a POSIX application
can’t make calls to Win32 API functions. Also keep in mind that applications run-
ning under any subsystem other than Win32 will experience some performance
degradation. These other subsystems are provided mainly for compatibility.

More about the Win32 Subsystem

All environment subsystems are not created equal. In particular, the services
provided by the Win32 subsystem are crucial to the operation of Windows NT.
The duties of this subsystem include the following;:

® As the owner of the screen, keyboard, and mouse, it manages all console
and GUI I/O for the entire system. This includes I/O for other sub-
systems as well as user applications.

e The Win32 subsystem implements the GUI seen by programmers and
users. As the screen and window manager for Windows NT, it defines
GUI policy and style for the whole system.

* It exposes the Win32 API that both application programs and other sub-
systems use to interact with the Executive.

Because of its special status, the Win32 subsystem is implemented in a dif-
ferent way from any of the others. Figure 1.3 shows the organization of the Win32
subsystem.
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Figure 1.3 The Win32 subsystem has both user- and kernel-mode components

Unlike its counterparts, the Win32 subsystem doesn’t run entirely in user
mode. Instead, it consists of both user- and kernel-mode components. To under-
stand how it all fits together, you need to know a little bit about the organization
of the Win32 API itself. Broadly speaking, you can divide Win32 functions into
three categories:

¢ The USER functions manage GUI objects like menus and buttons.

¢ The GDI functions that perform low-level drawing operations on graphi-
cal devices like the displays and printers.

¢ The KERNEL functions manage such things as processes, threads, syn-
chronization objects, shared memory, and files. They map very directly
onto the system services provided by the Executive.

In the original design of Windows NT, one of the goals was to confine all
GUI policy-making code to the Win32 server process, CSRSS. The developers
believed this would make the system more robust and easier to modify. As a
result, calls to many USER and GDI functions required some interaction with the
CSRSS process. This is a rather expensive operation since it involves a process
context switch between the Win32 client and the CSRSS server. By comparison,
KERNEL functions could be handled in the context of the calling process. Their
only overhead was the transition to and from kernel mode.

This architecture has been replaced in Windows NT 4.0 because of the per-
formance limitations it put on graphically-based Win32 programs. Now, a new
kernel-mode component called WIN32K.SYS has taken over most of the work for-
merly done by CSRSS. With this approach, calls to USER and GDI functions can
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execute in the context of the calling process. The result is that the speed of graphi-
cally intensive applications improves significantly.

This shift from user- to kernel-mode graphic support also had implications
for the architecture of video and printer drivers under Windows NT. The next sec-
tion of this chapter will provide some more details on this subject.

KERNEL-MODE I/O COMPONENTS

Here we're going to take a look at the general layered driver model used by the
kernel-mode portions of Windows NT. We'll also be examining variations on this
architecture that support specific kinds of I/O devices.

Design Goals for the I/O Subsystem

In addition to the general Windows NT design goals, there were several
additional requirements that the I/O subsystem had to satisfy:

e Ease of development — It shouldn’t take unreasonable amounts of
work to provide support for a new device.

¢ Portability — It should be relatively easy to move drivers to new plat-
forms. In the best case, this would mean simply compiling and linking
the driver.

* Extendibility — It should be easy to add support for new devices and file
systems without breaking anything that already works.

e Robustness — The I/O architecture should offer clean, well-defined
interfaces and minimize the use of backdoor mechanisms.

* Security — It must be possible to allow or deny various kinds of access
to I/0O objects on a user-by-user basis.

¢ Multithreaded operation — Drivers should be able to handle overlap-
ping requests from multiple threads, even if the threads are running
simultaneously on multiple CPUs.

¢ Performance — I/O throughput must be consistent with the needs of
large-scale client-server applications.

As if all this isn’t enough, the I/O architecture has to work with all the leg-
acy devices that people have been attaching to PCs for the last decade. Some of
these devices have characteristics that don't blend well with modern, large-scale
operating systems.

Layered Drivers in Windows NT

In most operating systems, the term driver refers to a piece of code that man-
ages some peripheral device. Windows NT takes a more flexible approach which
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Figure 1.4 Layered kernel-mode drivers

allows several driver layers (shown in Figure 1.4) to exist between an application
program and a piece of hardware. This layering permits Windows NT to define a
driver in much broader terms that include file systems, logical volume managers,
and various network components as well as physical device drivers.

Device drivers These are the drivers that manage actual data transfer and
control operations for a specific type of physical device. This includes starting and
completing I/O operations, handling interrupts, and performing any error pro-
cessing required by the device.

Intermediate drivers Windows NT allows you to layer any number of
intermediate drivers on top of a physical device driver. These intermediate layers
provide a way of extending the capabilities of the I/O system without having to
modify the drivers below them. For example, the fault-tolerant disk driver in
Windows NT Server is implemented as a layer that sits between the file system
and the drivers for any physical disks.

Another use for intermediate drivers is to separate hardware-specific oper-
ations from more general management issues. In this kind of arrangement, the
intermediate driver is referred to as a class driver and the hardware driver is
called a port driver. For example, the keyboard class driver handles general key-
stroke processing while the keyboard port driver worries about the details of
specific keyboard controllers. The use of separate class and port drivers makes it
easier to target a wider range of hardware since only the port driver needs to be
rewritten.

File-system drivers (FSDs) This kind of driver is generally responsible
for maintaining the on-disk structures needed by various file systems. For design
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reasons, some other system components are implemented as file-system drivers,
even though they aren't file systems as such. Microsoft currently supplies the fol-
lowing FSDs:

¢ FAT — Windows 95 extended MS-DOS file system

* NTFS — Windows NT high reliability file system

¢ HPFS — OS/2 high performance file system

* CDFS —ISO 9660 CD-ROM file system

* MSFS — Mailslot file system

¢ NPFS — Named pipe file system

* RDR — LAN Manager redirector

Unfortunately, you can't develop file-system drivers using the standard NT
DDK. Microsoft released a beta version of a file system developer's kit at a confer-

ence in 1994, but at the time of this writing, they hadn't committed to any release
date for the final version of this kit.

SCSI Drivers

The Windows NT SCSI architecture uses layered drivers to separate the man-
agement of specific devices from the control of the SCSI host bus adapter (HBA)
itself. Figure 1.5 shows the components of the Windows NT SCSI architecture.

Filter
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Driver

NT SCsI
Port Driver

Miniport
Driver

scsi
Adapter
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Figure 1.5 Architecture of Windows NT SCSI drivers
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SCSI port and miniport drivers The port driver is a Microsoft-supplied
component that acts as an interface between a SCSI miniport driver and the oper-
ating system. By handling common SCSI grunt work and hiding the details of the
local operating system, the SCSI port driver makes it easier to write drivers for
new SCSI HBAs. It also reduces the overall size of a miniport and makes it easier
to move the miniport to other operating systems (like Windows 95).

SCSI miniports supply the port driver with routines that perform any HBA-
specific control operations. Generally, the only people writing SCSI miniport
drivers are HBA vendors who want to sell their products in the Windows NT
marketplace.

SCSil class drivers Class drivers manage all the SCSI devices of a particu-
lar type, regardless of what HBA they're attached to. For example, there are SCSI
class drivers for tapes, disks, and CD-ROM drives. Separating device control from
HBA control makes it possible to mix and match SCSI devices and adapters from
different vendors. If you have a device that attaches to a SCSI bus, this is the only
kind of driver you'll need to write.

SCSi filter drivers Filters are optional SCSI components that intercept and
modify requests sent to a SCSI class driver. This allows you to take advantage of exist-
ing class driver capabilities without writing everything from scratch. Filters are useful
if you're developing a class driver for hardware that's similar to some other device.

Network Drivers

In an effort to get better performance, many of the networking components
in Windows NT are implemented as kernel-mode drivers. As you can see from
Figure 1.6, Windows NT uses driver layering to disengage network protocol man-
agement from actual network data transfers. The result is much greater flexibility
and support for a wider range of network protocols and hardware.

Network interface card (NIC) drivers At the bottom of the stack are the
NIC drivers that manage the actual networking hardware. NIC drivers present a
standard interface at their top edge that allows higher-level drivers to send and
receive packets, to reset or halt the NIC, and to query and set the characteristics of
the NIC. The interface to a NIC driver is defined by the network driver interface
specification (NDIS).

NDIS NIC:drivers rely heavily on the services provided by the NDIS inter-
face library. This library (sometimes. referred to as the NDIS wrapper) handles
many of the nasty details involved in managing asynchronous communications
across a network. The NDIS library also exports a complete set of kernel-mode
system functions so that a properly written NDIS driver doesn’t need to deal with
the operating system.

Based on the amount of help they get from the NDIS interface library, you
can classify NIC drivers as either miniports or full drivers. NIC miniports perform
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Figure 1.6 Architecture of kernel-mode networking components in Windows NT

only those hardware-specific operations needed to manage a particular NIC. Code
in the NDIS library takes care of issues common to all NIC miniports such as syn-
chronization, notification of packet arrival, and queuing of outgoing packets. This
is the preferred type of NIC driver for any new hardware.

By comparison, full NIC drivers do almost everything on their own. This
makes them much harder to write and debug and often slower than NIC
miniports. Originally introduced in the first release of Windows NT, full NIC
drivers are supported only to maintain backward compatibility. No one in their
right mind is developing full NIC drivers anymore.

NDIS intermediate drivers Version 4.0 of NDIS (the one included with
Windows NT 4.0) includes a new kind of component: the NDIS intermediate
driver. NDIS intermediate drivers are sandwiched between transport drivers and
NDIS NIC miniports. To the transport driver, they appear to be NDIS miniports
while to the NIC driver, they look like transport drivers.

NDIS intermediate layers are useful if you have a legacy transport driver
and you want to connect it to some new type of media unknown to the transport
driver. In this situation, the intermediate driver performs any necessary transla-
tions between the transport driver and the NIC miniport managing the new
media.

Transport drivers A transport driver is responsible for implementing a
specific network protocol such as TCP/IP or IPX/SPX. It is independent of the
underlying network hardware and uses NDIS NIC or intermediate drivers to
transfer packets over one or more physical network connections.
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1.3

All Windows NT transport drivers offer their services to kernel-mode net-
working clients through the transport driver interface (TDI). The TDI specifica-
tion defines a low-level interface that supports both connection-based and
connectionless (i.e., datagram) protocols. Having all transport drivers expose a
single, common interface simplifies the development of both the transport drivers
and the clients they support.

Kernel-mode networking clients Various kernel-mode components that
access the network use the TDI interface to communicate with protocol drivers.
These kernel-mode TDI clients fall into two broad categories: First, there are sys-
tem components whose operation is transparent to user-mode applications. One
example would be the Server and Redirector that handle requests for remote file
access.

The other kind of TDI client is an emulator that exposes some well-known
programming interface. User-mode applications access the network through one
of these standard APIs rather than working directly with TDI. This approach
makes it easier to port existing software to Windows NT and prevents the need-
less proliferation of networking APIs. Windows NT currently supports interfaces
for sockets, NetBIOS calls, named pipes, and mailslots.

SPECIAL DRIVER ARCHITECTURES

Along with the relatively straightforward kernel-mode drivers described in sec-
tion 1.2, Windows NT depends on a number of very specialized driver architec-
tures. The following subsections describe each of them in detail.

Video Drivers

Video support in Windows NT is complicated by the fact that Win32 appli-
cations can use three different graphics APIs. First, there’s the graphical device
interface (GDI). This API provides a set of device-independent rendering func-
tions for generating two-dimensional output on display or hardcopy devices.
Most Win32 applications use this programming interface because it simplifies the
task of producing identical display and printer output.

For programs that need to produce three-dimensional graphics, Win32 also
supports the OpenGL APL These functions generate the kind of high-quality out-
put needed by CAD software or scientific visualization tools. In return for the
quality of the output, however, the OpenGL API demands a great deal of CPU
horsepower or hardware rendering assistance.

Finally, for consumer applications (i.e., games), Windows NT supports a
subset of the DirectDraw APl included in Windows 95. DirectDraw is one piece of
Microsoft’s DirectX game-programming architecture. Its goal is to give user-mode
applications more direct access to video and audio hardware without compromis-
ing the integrity of the system.
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Figure 1.7 Architecture of NT kernel-mode video drivers

Supporting multiple APIs on video hardware from multiple vendors is a
complex problem. Solving it in a flexible and portable manner requires the inter-
action of a number of software components. Figure 1.7 shows what they are.

GDI engine The GDI engine is the key to Windows NT’s device-indepen-
dent output strategy. This Microsoft-supplied component provides full software
rendering support for Win32 GDI calls. In response to a Win32 drawing request,
the GDI engine uses the appropriate display or printer driver to generate com-
mands for a specific piece of hardware.

Display drivers Display drivers are vendor-supplied components that do
the actual work of drawing on the display screen. By selectively overriding the
rendering functions in the GDI engine, they also give Win32 access to any hard-
ware acceleration features provided by the video card.? Along with a display
driver for a specific piece of video hardware, vendors need to provide a corre-
sponding video miniport (described below).

DirectDraw HAL This vendor-supplied component exposes an abstract
version of the video hardware. This includes the video frame buffer plus any hard-
ware acceleration mechanisms supported by the DirectDraw APL Any features of

2 In earlier versions of Windows NT, both the GDI engine and the display driver were user-mode
components running in the context of the Win32 subsystem process. To improve graphics perfor-
mance, this code runs in kernel mode in Windows NT 4.0.
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the DirectDraw hardware model not supported by the video device are emulated
by Microsoft’s DirectDraw software.

Video port and miniport drivers The main responsibility of these two
drivers is to manage state changes in the system’s video hardware. The video port
and miniport do not take part in any drawing operations. The work of these driv-
ers includes doing such things as:

* Finding and initializing the video controller.
* Managing any cursor or pointer hardware located on the video card.

¢ Handling mode-set and palette operations when a full-screen MS-DOS
session is running. (This only applies to 80x86 platforms.)

* Making the video frame buffer available to user-mode processes.

The video port and miniport are actually a tightly-coupled pair of drivers.
The port driver is a Microsoft-supplied framework that simplifies the task of writ-
ing video drivers. It contains only generic, hardware-independent code that is
common to all video drivers.

The miniport is a vendor-supplied driver whose job is to manage a specific
type of video card. In response to calls from the video port driver, it is the
miniport that actually changes the state of the device. This division of labor
between the port and miniport makes it easier to add support for new video cards
to Windows NT.

Printer Drivers

In Windows NT, hardcopy devices are considered to be just another kind of
graphical output hardware. Unlike display devices, however, there can be more
than one printer on the system, and these printers may not all use the same kind
of physical connection. Some of them may even be located somewhere else on the
network. The Windows NT printing architecture (pictured in Figure 1.8) is an
attempt to deal with all this variety.

Printer drivers A printer driver is very much like a display driver in that
it runs in kernel mode and helps the GDI engine convert Win32 API graphics calls
into rendering commands. The difference is that a printer driver sends its output
to the spooler (described below) rather than to a video device.

A printer driver is responsible for supporting a particular printer or family
of printers. The Windows NT DDK contains sample drivers for raster-based print-
ers, PostScript printers, and plotters. Most printers available today fall into one of
these categories. Unless your printer uses some completely alien technology, it’s
unlikely that you’d need to write an entire driver from scratch.

For raster-based printers, most of the rendering operation is simply a matter
of converting a specific drawing command into the proper set of printer escape
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Figure 1.8 Architecture of the Windows NT printing components

codes. Because this is such a well-defined problem, you can use a Microsoft-sup-
plied framework called the Unidriver to do most of the work. In this case, you
only need to write the device-specific pieces of code in the form of a miniprint
driver. Adding support for printers based on a page description language like
PostScript is a more complicated task.

Configuration DLL To support a printer under Windows NT, it’s not
enough to write a printer driver. You also have to supply a user-mode configura-
tion DLL. The job of this DLL is to display the property-sheet dialog box that
changes the printer’s settings. Application programs use the configuration DLL to
set up the printing environment for specific documents. It also appears when you
select one of the icons in the Windows NT shell’s Printers folder.

Spooler The spooler is the central component of Windows NT’s printing
mechanism. It takes the output generated by a printer driver and either sends it to
the appropriate printer or stores it in a temporary file for later printing. The
spooler works either with local or networked printers.

The spooler is one of the integral subsystem processes that starts when the
operating system loads. Its architecture is very modular so that it can accommo-
date a wide variety of printing devices and environments. Printer vendors can
customize the spooler by supplying three different kinds of components: print
processors, language monitors, and port monitors.

Print processor DLL A print processor is a DLL that reads the spooled data
produced by a specific printer driver and converts it into actual output. At its upper
edge, the print processor DLL exposes a standard set of functions to the spooler. It
generates output using the services provided by a language or port monitor.
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The standard printer drivers can spool their output as text, as raw data
(already rendered by the GDI engine), or as a series of enhanced metafile (EMF)
commands to be rendered by the spooler.? Microsoft supplies a print processor
that can interpret any of these three data formats. If you write a printer driver that
uses a proprietary format for spooled data, you'll also have to write a print pro-
cessor for it.

Language monitor DLL In workgroup situations, it’s very common for
several users to be sharing a single printer or print server. Consequently, it’s
important to keep their jobs clearly separated and to be able to determine the sta-
tus of a particular job at any point in time. It also may be necessary to set up a dif-
ferent printing environment for each job being output.

To meet these kinds of needs, many vendors offer smart, bidirectional print-
ers that accept commands and report status over the same connection on which
they receive output data. Normally, these command and status messages are in
some kind of control language defined by the printer’s manufacturer. For exam-
ple, Hewlett Packard Laserfet printers use something called the Printer Job Lan-
guage (PJL).

Alanguage monitor is a DLL that allows the spooler to communicate with a
bidirectional printer in a standardized way. It exposes a well-defined set of func-
tions that the spooler can call to control and monitor a job on one of these printers.
The language monitor then converts these requests into the proper stream of job-
language commands and uses the port monitor (described below) to send them to
the printer.

Windows NT comes with a language monitor for the Hewlett Packard PJL
language. If your printer uses some home-brew set of commands, you'll need to
write a language monitor for it.

Port monitor DLL A port monitor is a DLL that manages a particular kind
of output channel on behalf of the spooler subsystem. The monitor exposes a stan-
dard set of functions which the spooler invokes in order to generate output. The
port monitor then converts these calls into the appropriate set of Win32 I/0
requests.

Allowing the spooler to work with an abstraction of the output device
makes it easier to add support for a variety of printer connections. Microsoft sup-
plies the following port monitors with Windows NT:

* The local port monitor that communicates with the parallel and serial
ports as well as printing data to a file.

¢ The LPR monitor that manages LPD printers and print-servers using a
TCP/IP network connection.

3 The use of EMF data for printing allows the program generating the output to finish its print
request more quickly since the rendering operation takes place later in the context of the spooler
process. Raw data slows the application because it’s rendered before being sent to the spooler.
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¢ Port monitors from Hewlett Packard, Apple, and Digital Equipment Cor-
poration that control network-based printers and print-servers from these
vendors.

Normally, you won’t need to write a port monitor unless you've developed
some new and strange way to link a printer to a computer. For example, an out-
put device connected to a SCSI controller would need a new port monitor.

Multimedia Drivers

Multimedia is going to change our lives one day — if only someone can fig-
ure out how. For those who’d like to try, Windows NT supports a wide range of
multimedia devices, including:

* Waveform audio hardware that samples and reconstructs analog audio
signals

¢ MIDI ports that connect to external musical devices like keyboards, syn-
thesizers, and drum machines

¢ Onboard MIDI synthesizers that are part of the computer itself

® Video capture devices that digitize either single frame or continuous
video signals

¢ Related devices like CD players, video-disk players, and joysticks

Most application programs don’t interact with multimedia hardware by
calling such functions as CreateFile or DeviceloControl. Instead they use some of
the special-purpose multimedia functions provided by Win32. This indirect
approach reduces their dependency on hardware from a specific vendor. Figure
1.9 shows the components involved in multimedia operations.

WINMM To meet the requirements of different kinds of software, Win32
actually contains two separate multimedia APIs. The media control interface
(MCI) functions provide high-level access to a wide variety of multimedia
devices while hiding many of the details from the programmer. MCl is the inter-
face used by most applications. For software needing more direct hardware con-
trol, Win32 also provides a group of low-level audio functions. Programs such
as MIDI sequencers or waveform editors are more likely to use this low-level
interface.

Support for both sets of multimedia functions comes from the WINMM sys-
tem component. WINMM is a user-mode DLL that acts as a translation layer
between the application and the vendor-supplied drivers that actually control the
multimedia hardware. To do its job, WINMM relies on three kinds of drivers.

MCI drivers An MCI driver is just a user-mode DLL that WINMM loads
at runtime to process MCI commands for a specific device. In response to calls
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Figure 1.9 Multimedia driver architecture

from a multimedia application, WINMM sends various messages to the proper
MCI driver. Depending on the device, the MCI driver then uses either the low-
level audio interface (described below) or Win32 I/0 functions to control the
hardware.

Low-level audio drivers When an application calls a low-level audio
function, WINMM loads a vendor-supplied user-mode DLL (the low-level audio
driver) and sends it various messages. The low-level audio driver then uses
Win32 I/0O functions to communicate with the audio hardware. This is very simi-
lar to the operation of the MCI drivers described previously.

Kernel-mode device drivers Management of the multimedia hardware
itself comes from a kernel-mode device driver. This includes data transfer opera-
tions, handling interrupts, processing errors, and so on.

Drivers for Legacy 16-bit Applications

When Microsoft first introduced Windows NT, a vast amount of software
already existed for MS-DOS and 16-bit Windows. Any new operating system hop-
ing to be a commercial success would have to be able to run the majority of this
code without modification. At the same time, it would be necessary to protect sys-
tem integrity by denying these 16-bit programs the kind of unlimited hardware
access they enjoyed under MS-DOS and Windows. As you saw earlier in this
chapter, Microsoft’s solution was to run 16-bit code in the context of one or more
virtual DOS machine (VDM) processes.
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Figure 1.10 Relationship of VDDs and kernel-mode drivers

To meet the challenge of allowing VDMs to perform I/O without giving
them direct access to any hardware, Windows NT uses a piece of software called a
virtual DOS driver (VDD). Figure 1.10 shows the relationship of such a VDD to
the other parts of the operating system.

The VDD essentially acts as a translation layer between a 16-bit application
and some custom piece of hardware. Whenever the application tries to touch the
hardware directly, the VDD intercepts the request and turns it into a series of
Win32 calls. These Win32 calls are then processed by a standard Windows NT ker-
nel-mode driver.

A VDD can intercept a 16-bit program’s attempts to access I/O ports and
specific ranges of memory. It also has the ability to perform DMA transfers on
behalf of the application, read and set the contents of CPU registers, and simulate
the arrival of interrupts. All this makes it possible to fool the 16-bit application
into thinking it’s still running under MS-DOS or Windows.

The advantage of this approach is that the original 16-bit executable doesn't
need to be modified to run under Windows NT. The disadvantage is that the extra
layer of software can add significant amounts of processing overhead. Since you
have to write a kernel-mode driver to support the underlying hardware, the real
solution is to port the application to the Win32 environment.

One other point to make here: This technique supports the execution of MS-
DOS programs that touch hardware directly. It also supports 16-bit DLLs that
play with hardware (a common form of driver in the 16-bit Windows environ-
ment). It does not allow you to run Windows or Windows 95 VxDs under Win-
dows NT.
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1.4

SUMMARY

As you can see, Windows NT's rich architecture and multiple API environments
add a certain amount of complexity to I/O processing. In particular, Windows NT
uses a much broader definition of what constitutes a driver than many other oper-
ating systems. If you're in the process of adding support for a specific piece of
hardware, you should have a good idea at this point of just what kind of driver(s)
you'll need to write.

In the next chapter we'll start our descent into kernel-mode driver develop-
ment by examining some of the hardware issues facing NT driver writers.
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The Hardware
Environment

.F or some people (you know who you are), hot
solder is the only true programming language. If you're not in that category, this
chapter will give you a gentle introduction to those aspects of hardware that have
an impact on writing drivers. You'll also find here a quick tour of the major bus
architectures supported by Windows NT, and a few words to the wise about deal-
ing with hardware in general.

2.1 HARDWARE BAsiIcS

There are a number of things you need to know about a peripheral device
before you can design a driver for it. At the very least, the following items are
important:

¢ How to use the device's control and status registers

What causes the device to generate an interrupt

How the device transfers data

Whether the device uses any dedicated memory

Whether the device can be autoconfigured

The following subsections discuss each of these topics in a general way.

24
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Device Registers

Drivers communicate with a peripheral by reading and writing various bits
in a group of registers associated with the device. Each of these device registers
will generally perform one of the following functions:

* Command — Setting and clearing bits in command registers causes the
device to start an operation or change its behavior in some way.

» Status — The bits in a status register contain information about the cur-
rent state of the device.

* Data buffer — Output devices accept data to be transmitted when it's
written to their output buffer registers. Data coming from an input device
will appear in the device's input buffer register.

Simple devices (like the parallel port interface in Table 2.1) have only a few
registers, while complex hardware (like a graphics adapter or a network card)
have a large set of registers. In the absence of any industry standard, the engineer
designing the interface card is the one who decides how these registers are going
to be used. So, if you expect to write a device driver, you'll need detailed informa-
tion about all its control and data registers.

Table 2.1 These registers control a parallel port interface

Parallel port registers

Offset Register Access Description
0 Data R/W Data byte transferred through parallel port
1 Status R/O Current parallel port status
Bits0-1 Reserved
Bit2 0 — interrupt has been requested by port
Bit 3 0 — an error has occurred
Bit 4 1 — printer is selected
Bit 5 1 — printer is out of paper
Bit6 0 — acknowledge
Bit7 0 — printer is busy
2 Control R/W Commands sent to parallel port
Bit 0 1 — strobe data to/from parallel port
Bit1 1 — automatic line feed
Bit 2 0 — initialize printer
Bit 3 1 — select printer
Bit 4 1 — enable interrupts

Bits5-7 Reserved
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Accessing Device Registers

Once you know what a set of device registers does, you still need two addi-
tional pieces of information before you can work with the device:

® The address of the device's first register

* The address space where these registers live

Since a given device's registers usually occupy consecutive locations, the
address of the first register will get you to all the others. Unfortunately, finding
the register base address is a rather involved process that will have to wait for
Chapter 7.

That still doesn't answer the question of where these registers live. As you
can see from Figure 2.1, device registers can occupy either of two different
address spaces. The following subsections describe each of them.

I/O space registers Some CPU architectures map device registers into a
set of addresses known as I/O space. These I/O space addresses (often referred to
as ports) are not part of the memory space seen by the CPU, and they can only be
accessed with special machine instructions. For example, the 80x86 architecture
has a 64-kilobyte I/O space, and IN and OUT instructions for reading and writ-
ing I/O ports.

One extra twist: To promote platform independence, an NT driver shouldn't
actually use hardware instructions to touch I/O ports. Instead, it ought to use the
HAL functions listed in Table 2.2.

Device

1/0O Space

Register —P Register

LOAD/STORE IN/OUT

Copyright © 1994 by Cydonix Corporation. 940028a.vsd

Figure 2.1 Memory-mapped device registers and I/O space ports
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Table 2.2 Use these HAL functions to access ports in /O space

HAL I/O space functions

Function Description

READ_PORT_XXX Read a single value from an I/O port
WRITE_PORT_XXX Write a single value to an I/O port

READ_PORT _BUFFER_XXX Read an array of values from consecutive I/O ports
WRITE_PORT_BUFFER_XXX  Write an array of values to consecutive I/O ports

Substitute one of the following for XXX: UCHAR, USHORT, or ULONG.

Memory-mapped registers CPU architectures without a separate 1/0
space generally map device registers into some range of physical memory
addresses. Access to these memory-mapped device registers is accomplished with
the same load and store instructions used for normal memory operations (for
example, MOV on the 80x86 platform).

Even on CPUs with a separate I/O space, some peripherals memory-map
their control registers anyway. This improves the performance of high-speed
devices with large register sets, since I/O instructions are typically much slower
than memory-access instructions. For example, many SVGA video adapters for
80x86 machines can use memory addresses not only for their video buffers, but
for their control registers as well.

Once again, the HAL provides a set of support functions (listed in Table 2.3)
for accessing memory-mapped registers. Notice that these are not the same func-
tions you use on a CPU with a separate 1/O space. So, if you plan to support your
driver on both kinds of architecture, you'll need to take this difference into
account. Chapter 5 presents some coding techniques that make this easier to do.

Device Interrupts

Most reasonable pieces of hardware generate an interrupt request when
they need some kind of attention from the CPU. This request takes the form of an

Table 2.3 Use these HAL functions to access memory-mapped device registers

HAL memory-mapped register functions

Function Description
READ_REGISTER_XXX Read a single value from an I/O register
WRITE_REGISTER_XXX Write a single value to an I/O register

READ_REGISTER_BUFFER_XXX Read of values from consecutive I/O registers
WRITE_REGISTER_BUFFER_XXX Write values to consecutive I/0 registers

Substitute one of the following for XXX: UCHAR, USHORT, or ULONG.
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electrical signal on the interrupt lines in the bus. A device might yank on its inter-
rupt line for any number of reasons, including:

¢ The device has completed a previously requested input or output opera-
tion and is now idle.

* A buffer or FIFO associated with the device is almost full (for input oper-
ations) or almost empty (for output operations). The device uses an inter-
rupt to notify the driver that it must process the buffer if it wants the I/O
to continue without a pause.

* The device encountered some kind of error during an I/O operation.

Some legacy devices don't use interrupts at all. Drivers for this kind of hard-
ware usually have to poll their devices until some kind of interesting event
occurs. Under single-tasking operating systems like MS-DOS, this behavior
wasn't a problem, but in an environment like Windows NT, it would seriously
degrade system performance. Chapters 10 and 14 will present some techniques
you can use with non-interrupting hardware.

The various bus architectures supported by Windows NT take slightly dif-
ferent approaches to interrupts. Nonetheless, they all share several common fea-
tures, which are described below.

Interrupt priorities When several devices are connected to the same bus,
the CPU needs some way to rank the importance of their interrupt requests. This
allows devices that need immediate servicing to access the CPU ahead of devices
that can afford to wait. Although the exact mechanism depends on the bus, this
ranking generally works by assigning a priority value to each of the interrupt
request lines.

When the CPU accepts an interrupt request, it blocks out any further inter-
rupts at or below the same priority and transfers control to an interrupt service
routine. Until the interrupt service routine handles and dismisses the interrupt,
only requests of a higher priority can take control of the CPU. Lower-priority
requests remain pending until the more important activity is finished.

Interrupt vectors An interrupt vector is a unique, bus-relative number
which allows the CPU to identify the source of an interrupt and call the appropri-
ate service routine. The interrupt controller usually passes this vector to the CPU
when it accepts an interrupt request. The CPU then uses the vector as an index
into a table containing the addresses of interrupt service routines.

Signaling mechanisms Hardware designers have developed two basic
strategies that devices can use when they want to generate an interrupt. The older
mechanism defines an interrupt request as a transition from zero to one on the
interrupt signal line. These are called edge-triggered (or latched) interrupts because
they depend only on the leading edge of the pulse.
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Unfortunately, this scheme has two problems. First, it's very sensitive to
electrical noise — a random spike can easily be mistaken for an interrupt request.
Second, if an interrupt arrives while another one is being serviced at the same pri-
ority, the second interrupt will be ignored. This limits sharing to situations where
simultaneous interrupts will never occur on the same line.

These limitations led to the development of another signaling mechanism
called a level-sensitive (or level-triggered) interrupt. This approach requires the
device to send a continuous signal down the wire until the interrupt service rou-
tine explicitly dismisses the interrupt. In addition to greater noise immunity, this
scheme makes it possible for multiple devices to share the same interrupt request
line.

Processor affinity To improve overall performance, multiprocessor plat-
forms often contain special interrupt-routing hardware. The purpose of this hard-
ware is to distribute interrupt requests from a given device to one or more specific
CPUs. If a particular CPU can service interrupts from a device, those interrupts
are said to have affinity for that CPU.

Data Transfer Mechanisms

Hardware designers have three basic options when it comes to moving data
between a peripheral and memory.

* Programmed I/O
¢ Direct memory access
* Shared buffers

The transfer mechanism used by a given device usually depends on the
device's speed, the amount of data it needs to transfer, and any applicable indus-
try standards. In some cases, a complex piece of hardware may actually use more
than one of these techniques.

The following subsections explain the differences between programmed I/O
and direct memory access (illustrated in Figure 2.2). Shared memory buffers are
covered later in the discussion of device-specific memory.

Programmed I/O (PIO) PIO devices need the help of the CPU to perform
data transfers. Their drivers are responsible for sending or receiving each byte of
data, keeping track of the buffer in memory, and maintaining a running count of
the number of bytes transferred.

PIO devices typically generate an interrupt after each byte or word of data is
transferred. Some PIO devices have an internal buffer or a hardware FIFO that
helps to reduce the interrupt count. Even so, lengthy transfers need a lot of atten-
tion from the CPU and produce a flood of interrupts. This can lead to very poor
system performance.
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Figure 2.2 Paths followed by data in DMA and programmed I/O transfers

This style of I/O is best suited to slower devices that don't move large
amounts of data in a single operation. Parallel ports, pointing devices, and the
keyboard are all examples of PIO hardware. Chapter 9 will explain how to work
with PIO devices.

Direct memory access (DMA) DMA devices take advantage of special
hardware called a DMA controller (DMAC). A DMAC is actually a very simple
auxiliary processor with just enough intelligence to transfer a specified number of
bytes between a peripheral device and memory.

At the beginning of an I/O operation, the driver loads a transfer count and a
memory address into the DMAC and then starts the device. All by itself, the
DMAC moves data to or from successive memory locations, and when the trans-
fer is complete, it generates an interrupt request. During the actual operation, the
driver is suspended and the CPU can work on other tasks.

High-speed devices that perform large transfers generally use DMA because
it significantly reduces driver overhead and system interrupt activity. Disks,
sound samplers, and network cards are examples of DMA devices.

Direct Memory Access (DMA) Mechanisms

Chapter 12 will have a lot more to say about the mechanics of working with
this kind of hardware. There are a number of twists and turns that aren't relevant
here. At this point, it's only necessary to draw a distinction between two general
kinds of DMA.
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System DMA Some devices are connected to the shared DMACs on the
motherboard. These controllers each have a fixed number of data-transfer paths
(called channels) that can all work simultaneously. More than one device can be
attached to the same channel, but only one device at a time can transfer data over
the channel. This is known as system DMA or slave DMA. By sharing hardware,
slave DMA devices have a simpler architecture and lower chip count. On the
downside, they may have to wait for a DMA channel to beccme available before
they can start an operation. The floppy controller on most PCs is a slave DMA
device.

Bus master DMA Other devices (called bus masters) have their own
DMAC hardware built into the peripheral card itself. This guarantees that high-
speed devices won't have to wait for a system DMA channel to become free. The
AHA-1742 SCSI controller from Adaptec is one example of a bus mastering
device.

Device-Dedicated Memory

Some devices insist on having a private range of addresses in physical mem-
ory. There are several reasons why a peripheral card might need dedicated
address space:

¢ Its control registers might be memory-mapped.

¢ It might have an internal ROM containing start-up code and data. For the
CPU to execute this code, it has to appear somewhere in memory address
space.

¢ It might use a block of memory as a temporary buffer for data that's being
sent or received. High-speed devices like video capture boards and Ether-
net adapters often use this technique.

Peripheral cards generally take one of two approaches to dedicated memory.
Some insist on using a specific range of physical addresses. For example, VGA
cards expect a 128-kilobyte block of addresses beginning at 0xA0000 to belong to
them.

Alternatively, the card might have an address register that holds the base
physical address of its dedicated memory. During initialization, the driver for the
card will load this register with a pointer to some block of available memory. Fig-
ure 2.3 illustrates each of these two possible designs.

Regardless of which approach a card takes, it's important to remember that
the card will be working with physical addresses. Since the only addresses avail-
able to a device driver are virtual addresses, drivers have to map any device mem-
ory somewhere into system virtual space before they can access it. Chapter 7
explains how all this works.
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Figure 2.3 How drivers access device memory

Requirements for Autoconfiguration

Ever since the first add-on card hit the market, PC users have been strug-
gling with ports, IRQs, and DMA channel assignments. In the beginning, things
weren't too bad, and it usually didn't take too long to find an appropriate combi-
nation of DIP-switch and jumper settings. However, as people started attaching
more and more optional equipment to their PCs, getting everything to work
became a real nightmare.

To get around these problems, some bus architectures support various levels
of automatic hardware recognition and configuration. The next section of this
chapter will describe specific autoconfiguration capabilities of the major buses.
Here, it's enough to introduce the kinds of features that make autoconfiguration
possible.

Device resource lists At the very least, a device must identify itself and
provide the system with a description of the resources it needs. In the ideal case,
this resource list contains the following information:

* Manufacturer ID

¢ Device type ID

* [/O space requirements
¢ Interrupt requirements
¢ DMA channels

¢ Device memory requirements
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2.2

No jumpers or switches Self-identification isn't enough, however. For
true autoconfiguration, a device must be able to change its port, interrupt, and
DMA channel assignments dynamically under software control. This allows a
driver or some other part of the operating system to arbitrate resource conflicts
among competing devices.

Change notification Finally, the highest level of support also requires the
bus to generate a notification signal whenever a card is plugged in or removed.
Without this kind of mechanism, it's not possible to implement any of the Plug
and Play hot-swapping features. Since the current release of Windows NT doesn't
support Plug and Play, this isn't an issue right now. But it will be in the future.

BUSES AND WINDOWS NT

A bus is just a collection of data, address, and control lines that allows a peripheral
device to communicate with memory and the CPU. The specification for a bus
defines such things as the shape and size of physical connectors, the functions
performed by each of the lines in the bus, and the timing and signaling protocols
used by devices attached to the bus.

Over the last decade, hardware vendors have developed a wide variety of
bus architectures with differing electrical and logical characteristics. As of version
4.0, Windows NT supports many of these buses. What follows are brief descrip-
tions of the buses you're most likely to encounter. For more detailed information,
see some of the books listed in the bibliography.

ISA — The Industry Standard Architecture

This is the old standby that made its first appearance on the IBM PC/AT. It
was derived from the original IBM PC bus by adding extra data and address lines
and increasing the number of IRQ levels and DMA channels. Both 16-bit ISA
cards and the older IBM PC 8-bit cards fit into ISA sockets. Figure 2.4 shows the
organization of an ISA-based machine.

The ISA bus isn't especially fast. To maintain backward compatibility with
the IBM PC, the ISA bus clock rate is limited to 8.33 MHz. In the best case, a 16-bit
transfer takes two clock cycles, so the maximum data rate is only about 8 MB/sec.
This limit applies regardless of the clock rate of the CPU itself. That's why the
CPU and memory communicate over a high-speed local bus (sometimes called
the X bus).

Register access There are very few rules when it comes to the layout of
I/0O space on ISA systems. Beyond some industry conventions, there aren’t any
real standards for the kinds of registers an ISA card should implement, nor what
addresses they should use. Generally, I/O addresses between 0x0000 and 0x00FF
belong only to devices on the system board, while the territory between 0x0100
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Figure 2.4 Layout of an ISA system

and 0x03FF is available for add-on cards. The space used by expansion cards is
doled out in 32-byte chunks.

Unfortunately, many ISA add-on cards don’t pay attention to all 16 I/O
address bits. Instead, they look only at bits 5-9 to see if an I/O space reference
belongs to them. If it does, they decode bits 0-4 to determine the exact register.
Cards like this are a problem because they respond to multiple addresses in the
64-kilobyte I/O space, which can lead to some nasty behavior. The only way to
prevent conflicts on a system with ISA boards is avoid these alias addresses
altogether.!

Interrupt mechanisms Interrupts on an ISA bus are normally handled by
a pair of Intel 8259A programmable interrupt controller (PIC) chips, each of
which provides eight levels of interrupt priority. These two chips are tied together
in a master-slave configuration that leaves fifteen available priority levels. Table
2.4 lists the ISA priority levels and describes how they are normally used.

The 8259A chip can be programmed to respond to either edge-triggered or
level-sensitive interrupts. This choice must be made for the entire chip; it can't be
set on an IRQ-by-IRQ basis. The power-on self-test (POST) code in the ISA BIOS
programs both chips to use edge-triggered interrupts. This means that multiple
ISA cards cannot normally share the same IRQ levels.

DMA capabilities The standard implementation of ISA DMA uses a pair
of Intel 8237 DMAC chips (or their functional equivalent). Each of these chips

1 In other words, the control registers of any cards using the range above 0x03FF have to use 1/0
space addresses with zeroes in bits 8 and 9.
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Table 2.4 Interrupt priorities on ISA systems

ISA interrupt priority sequence

Priority IRQ line Controller Used for...
Highest 0 Master System timer
1 Master Keyboard
2 Master (Unavailable — pass-through from slave)
8 Slave Real-time clock alarm
9 Slave (Available)
10 Slave (Available)
11 Slave (Available)
12 Slave (Available — usually the mouse)
13 Slave Error output of numeric coprocessor
14 Slave (Available — usually the hard disk)
15 Slave (Available)
3 Master 2nd serial port
4 Master 1st serial port
5 Master 2nd parallel port
6 Master Floppy disk controller
Lowest 7 Master 1st parallel port

provides four independent DMA channels. When they're ganged together in a
master-slave configuration, the first slave channel (number 4) serves as a pass-
through and becomes unavailable. Table 2.5 describes the capabilities of these
DMA channels.

When several DMA channels request the bus simultaneously, the DMAC
chips use a software-selected arbitration scheme to resolve the conflict. The ISA
BIOS POST-code normally programs the DMACs for fixed-priority arbitration.
This means that channel 0 always gets first crack at the bus, and channel 7 always
goes last.

Also notice from Table 2.5 that the lower channels transfer individual bytes,
while the upper ones move data only in words. Since the DMAC uses a 16-bit

Table 2.5 DMA architecture on the ISA bus

ISA DMA channels

Channel Controller Transfers... Max transfer
0—3 Master Bytes only 64 kilobytes
4 Slave (Unavailable) —

5—7 Slave Words only 128 kilobytes
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count register in both cases, the upper channels can transfer twice as much data in
a single operation. ‘

One other significant item about DMA operations: The ISA bus has only 24
address lines. This means that DMACs can access only the first 16 megabytes of
system memory. Any DMA buffers outside this range are unavailable. In Chapter
12 you'll see how NT deals with this complication.

Device memory The 24 address lines on the ISA bus have an impact on
device memory as well as DMA buffers. Any device-dedicated memory must live
in the first 16 megabytes of physical address space. This applies to any onboard
ROM as well.

Autoconfiguration Unfortunately, the ISA specification says nothing
about autoconfiguration. ISA devices don't identify themselves (either by manu-
facturer or device type), nor do they provide a resource list. Since ISA cards aren’t
required to have any software configuration registers, users normally have to con-
figure the card with DIP switches and jumpers.

Sometimes it’s possible to make educated guesses about the presence of a
particular device by tickling various addresses in I/O space and listening for an
appropriate giggle from a device. This is generally not a very reliable way to do
things. Even if you do manage to locate a piece of hardware using this technique,
you still don’t know anything about its DMA or interrupt settings.

The proposed Plug and Play extensions to ISA are intended to correct such
problems. Until these extensions become available, you'll have to use some of the
cruder methods described in Chapter 7.

MCA —The Micro Channel Architecture

IBM developed the Micro Channel architecture as a replacement for the
aging ISA bus. In a bold move, they dumped ISA altogether and proposed a
vastly improved architecture. Progress isn’t cheap, however, and the cost of
adopting this new design was that all legacy ISA or IBM PC adapter cards would
have to be trashed. Most people were unconvinced, and the MCA bus hasn’t
achieved great popularity among hardware vendors.? Figure 2.5 shows the orga-
nization of a typical MCA system.

Since they weren’t constrained by the 8.33-MHz clock rate of the ISA bus,
IBM was able to design a pretty snappy architecture. Although the original MCA
implementation® only supported data transfer rates of 10 megabytes/sec, later
versions of the bus specification incorporated a streaming data protocol that
raised this number by a factor of 16. Table 2.6 summarizes the data rates available
from the MCA bus.

2 Political problems also contributed to the failure of MCA. IBM patented the architecture and tried
to impose licensing conditions that many hardware vendors found objectionable.

3 This was the 16-bit version used for the original IBM PS/2.
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Figure 2.5 Layout of a Micro Channel system

Register access An MCA bus can have at most eight card sockets,
referred to as slots.* Each slot has an associated set of programmable option select
(POS) registers that are used to configure the card. These POS registers replace the
jumpers and DIP switches found on ISA devices. At the very least, an MCA card
must implement a POS register that identifies the card.

Other than the POS registers (which are always at a fixed location), I/O
space under MCA is just about as chaotic as it is on an ISA system. (The problem
with ISA alias addresses doesn’t occur, however.) At the option of the designer,
MCA cards can have either fixed or programmable register addresses in 1/O
space. The only requirement is that if more than one of the same card will be

Table 2.6 MCA buses support a wide range of transfer speeds

MCA data transfer speed

Protocol Data width Transfer rate

Basic 16 bits 10 MB/sec
32 bits 20 MB/sec

Streaming 16 bits 20 MB/sec
32 bits 40 MB/sec
64 bits 80 MB/sec
64 bits 160 MB/sec

4 Additional devices can live on the motherboard itself.
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plugged into an MCA bus, the card must have a 3-bit POS field for setting the
card’s base register address.

Interrupt mechanisms The Micro Channel architecture supports 15 inter-
rupt request levels. Their functions and relative priorities follow the same pattern
used by the ISA bus (refer back to Table 2.4). The only improvement is that MCA
cards use level-sensitive interrupt signals, thus allowing more than one device to
share a single IRQ line.

DMA capabilities The MCA bus was designed to be shared. The system
board can support up to eight system DMA channels, and there’s room on the bus
for an additional seven bus masters. Six of the system DMA channels follow a
fixed priority arbitration scheme, while channels 0 and 4 have assignable priori-
ties. The seven bus masters also have assignable priorities, although they will
always defer to the system DMA hardware.

Older implementations of the system DMAC were limited to 16-bit transfers
(even though the bus itself has a 32-bit data path), and buffers had to fall in the
first 16 megabytes of physical memory. (Bus master cards didn’t have this limita-
tion.) Proposed improvements to the MCA specification allowed for 32- and even
64-bit data transfers.’ These changes also gave the system DMAC access to a full
4-gigabyte address range.

Device memory The MCA specification dictates that any device with
onboard ROM must use 4 bits in one of its POS registers to select a starting
address for the ROM. This gives card designers the option of mapping the ROM
into any of 16 separate locations in physical memory.

Since the MCA bus has 32 address lines, device memory can exist anywhere
in a 4-gigabyte address space.

Autoconfiguration MCA autoconfiguration involves the POS registers
and a card-specific script called an adapter description file (ADF). Whenever an
MCA system bootstraps, it checks each slot to see what’s there. If it finds a previ-
ously configured card, it downloads configuration data from nonvolatile RAM
(NVRAM) into the card’s POS registers.

If something appears in a slot that had previously been empty, the bootstrap
configuration program uses the card’s POS ID register to generate the name of the
device’s ADF file. After prompting the user for the floppy containing the ADEF, the
configuration program selects resource assignments for the new card that don’t
conflict with the resources used by any existing cards. These assignments are cop-
ied into NVRAM.

Windows NT can recognize many kinds of MCA devices all by itself. If you
need to touch MCA slots directly, you can use HalGetBusData and HalSetBus-
Data to access them.

5 The extra 32 bits came from multiplexing the address lines on the MCA bus.
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EISA —The Extended Industry Standard Architecture

The PC industry responded to IBM’s Micro Channel architecture with the
EISA bus. Most people simply weren’t willing to throw away all their old hard-
ware. The EISA bus reflects this sentiment by removing some of the ISA limita-
tions while still allowing the use of legacy devices.

However, EISA’s emphasis on compatibility limits the architecture in certain
ways. For example, even though the bus supports 32-bit data transfers, the bus
clock still runs at 8.33 MHz so the maximum transfer rate is only about 33 mega-
bytes/sec. Also, since EISA sockets had to be able to accept ISA cards, it was
impossible to fix some of the electrical noise problems caused by the layout of the
ISA wiring. See Figure 2.6 for the layout of a typical EISA system.

Register access Like MCA, the EISA bus contains a number of slots, each
of which corresponds to one physical socket on the bus. As you can see from Table
2.7, each of the 15 EISA sockets has its own particular range of addresses in I/O
space. Within the 4-kilobyte area assigned to a particular slot, four 256-byte
ranges are guaranteed to be available to the card in that socket.®

Interrupt mechanisms EISA’s interrupt capabilities are a superset of the
ISA mechanisms. Although EISA interrupt controllers provide the same 15 levels
available on the ISA bus (see Table 2.4), each IRQ line can be individually pro-
grammed for edge-triggered or level-sensitive behavior. This allows both ISA

cards and EISA cards to coexist on the same bus.
Keyboard

Serial &
Paraliel

Config
NVRAM

EISA _ | EIsA

Slot 15

Copyright © 1996 by Cydonix Corp

Figure 2.6 Layout of an EISA system

6 The other blocks of addresses have to be avoided because of the ISA aliasing problem.
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Table 2.7 1/0O space use by EISA systems

EISA I/O address ranges
Address range Used by...
0x0400 — Ox04FF EISA system board devices
0x0800 — OxO8FF EISA system board devices
0x0C00 — OxOCFF EISA system board devices
0x1000 — Ox1FFF EISA card slot 1

0x2000 — Ox2FFF EISA card slot 2

0xF000 — OxFFFF EISA card slot 15

As you've already seen, edge-triggered interrupt lines can be used by only
one device at a time. However, level-sensitive interrupt request lines (the norm
for native EISA cards) are shareable. This makes it much easier to resolve conflicts
between devices that want to use the same IRQ leveis.

DMA capabilities As with ISA systems, a pair of ganged DMACs provide
seven independent system DMA channels, numbered 0 through 7. (Channel 4 is
still unavailable.) The POST code programs these EISA DMA channels to use a
fixed priority arbitration scheme.

The EISA architecture extends ISA DMA model in several ways. First, any of
the seven channels can perform 8-, 16-, or 32-bit data transfers. This basically
allows any device to be connected to any channel.

EISA DMA channels can also be individually programmed to use a variety
of different bus cycle formats. This permits new devices to go faster while still
maintaining compatibility with legacy ISA cards. Table 2.8 describes the EISA
DMA bus cycles.

Another enhancement is the EISA DMAC’s 24-bit count register. For 8-, 16-,
and 32-bit devices, this register counts bytes — allowing a single transfer opera-
tion to move up to 16 megabytes. For compatibility, the DMAC can be pro-
grammed to use this as a word-count register for 16-bit transfers.

Finally, since EISA DMACs generate full 32-bit addresses, they can access a
4-gigabyte physical address space. As you'll see in Chapter 12, this can make it
much easier for the I/O Manager to set up a data transfer operation.

Device memory Again, the EISA bus has 32 address lines. Provided that
an expansion card uses a 4-byte register as a pointer, its dedicated memory can
live anywhere in a 4-gigabyte range. This also applies to any onboard ROM the
device might have.

Autoconfiguration Several components take part in the EISA configuration
process. First, each card is required to implement a 4-byte ID register at location
0xnC80 (where 7 is an EISA slot number from 1 to 0xA). This register identifies the
manufacturer, the device type, and the revision level of the card in that slot.
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Table 2.8 The EISA architecture supports several DMA bus cycles

EISA DMA bus cycle formats

Bus cycle Transfer size Transfer rate Compatible with...

ISA compatible 8-bit 1.0 MB/sec Any ISA
16-bit 2.0 MB/sec Any ISA

Type A 8-bit 1.3 MB/sec Most ISA
16-bit 2.6 MB/sec Most ISA
32-bit 5.3 MB/sec EISA only

Type B 8-bit 2.0 MB/sec Some ISA
16-bit 4.0 MB/sec Some ISA
32-bit 8.0 MB/sec EISA only

Type C (burst) 8-bit 8.2 MB/sec EISA only
16-bit 16.5 MB/sec EISA only
32-bit 33.0 MB/sec EISA only

Second, designers can use the remaining 124 bytes (from 0xnC84 to OxnCFF)
to implement other registers that configure the card. For example, there might be
a configuration register for the DMA channel number the card should use, and
another for setting its IRQ level. Storing values in these registers has the same
effect as setting DIP switches and jumpers on an ISA device.

The third component is a script file that contains the card’s resource list and
defines the location and usage of any device-specific configuration registers on
the card. This file is written in a standard EISA scripting language, and its name is
based on the contents of the card’s ID register. This script usually comes on a
floppy disk supplied by the card’s manufacturer.

The final piece of the puzzle is an EISA configuration program that runs
when the system bootstraps. This program scans the EISA slots looking for cards
in previously empty locations. If it finds one, it uses the contents of the slot’s ID
register to construct the name of a configuration script and then asks the user for
the floppy containing that script. Once the disk is inserted, the configuration pro-
gram assigns resources to the card. It also copies these assignments to nonvolatile
CMOS memory associated with the slot, so that it won't be necessary to ask for
the script file at the next bootstrap.

Again, Windows NT is able to auto-detect many kinds of native-mode EISA
cards. If you need to access EISA slots directly, you can always use HalGetBus-
Data and HalSetBusData.

PCI — The Peripheral Component Interconnect

Fast networks, full-motion video, and 24-bit-per-pixel displays all require
extremely high data transfer rates. The PCI bus is an attempt to satisfy the needs
of such demanding hardware. Although the initial design came from Intel, PCI
is relatively processor-neutral, and it works as well with DEC Alphas and
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Figure 2.7 Layout of a PCI bus system

Motorola PowerPCs as it does with 80x86 CPUs. Figure 2.7 shows a typical PCI
system.

By using a fast bus clock (33 MHz) and a number of clever tricks, the PCI
architecture can hit 132 megabytes/sec for sustained 32-bit transfers and twice
that rate for 64-bit operations. Some of the things that contribute to this zippy per-
formance include

¢ The PCI protocol assumes that every transfer is going to be a burst opera-
tion. This results in higher throughput rates for fast devices trying to
move large amounts of data.

¢ PCI supports multiple bus masters and permits direct device-to-device
transfers (with no intermediate stops in memory). This can result in much
more overlap between I/O and CPU operations.

* A central bus arbiter reduces latency by overlapping arbitration with data
transfers. This allows the next owner to start an operation as soon as the
current owner releases the bus.

¢ An intelligent bridge between the host CPU and the PCI bus performs
various caching and read-ahead functions. This helps to reduce the
amount of time the CPU spends waiting for data.

The PCI architecture allows 32 physical units (called devices) to be plugged
into one bus.” Each of these physical units can contain up to eight separate func-

7 The current version of the specification limits this to ten devices.
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tional units (called functions). After taking away one function address that’s used for
generating broadcast messages, there can be up to 255 addressable functions on a
single PCI bus. Furthermore, one system can have up to 256 separate PCI buses.

Register access Although the PCI uses 32-bit addresses, 1/O register
space on 80x86 machines is still limited to 64 kilobytes. So any PCI registers have
to be squeezed into I/O space along with everything else. Furthermore, on sys-
tems with an EISA/ISA bridge, designers still need to avoid any I/O addresses
being used by legacy hardware.

Along with I/O space and memory addresses, PCI defines a range of
addresses known as configuration space. The discussion of PCI autoconfiguration
(below) will explain how configuration space works.

Interrupt mechanisms The PCI bus has four equal-priority interrupt
request lines (INTA-INTD) which are active-low, level-triggered, and shareable.
A single-function PCI device has to use INTA, while a multi-function device can
use any sequential combination of the four beginning with INTA. The only
requirement is that each function can be connected to only one request line.

The PCI specification is relatively neutral when it comes to interrupt priori-
ties. Instead, it depends on an external controller to redirect PCI interrupt requests
to the proper system interrupt line. For example, on a PC the redirector converts a
given PCI function’s request on INTA-INTD into a request on one of the IRQ0-
IRQ15 lines. To make this work, any PCI function that generates interrupts must
implement the following two configuration registers:

¢ Interrupt pin register — This read-only register identifies the PCI signal
line (INTA-INTD) used by this function.

¢ Interrupt line register — This read-write register specifies the priority
and vector that the interrupt redirector should assign to this function. On
a PC system the values 0x00-0x0F correspond to IRQ0O-IRQ15.

This is a very flexible scheme because it doesn’t impose any specific inter-
rupt policies on the system designer. This makes it easier to support processor
environments other than the 80x86.

DMA capabilities The PCI specification doesn’t include the notion of slave
DMA. Instead, the native PCI functions are either bus masters doing their own
DMA, or they use programmed I/O. The only devices that perform slave DMA on a
PCI machine will be non-PCI boards plugged into the system’s EISA or MCA bridge.

In a native PCI DMA operation, the participants are referred to as agents,
and there are always two of them involved in any transaction:

¢ Initiator — This is a bus master that has won access to the bus and wants
to set up a transfer operation.

* Target — This is the PCI function currently being addressed by the initia-
tor with the goal of transferring data.
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Because any PCI bus master can be an initiator, it’s possible to transfer
data directly between two PCI devices with no intermediate stops in memory.
This powerful capability lends itself well to high-speed networking and video
applications.

It’s also worth mentioning that the PCI specification doesn’t define the pol-
icy to be used for arbitrating access to the bus. It only defines the timing of the
arbitration signals on the bus. The method used to determine who should go next
is system-specific.

Device memory Dedicated memory used by PCI functions can live any-
where in a 32-bit address space. The only kink is that you have to enable the func-
tion’s ability to access memory. You do this by setting a bit in function’s command
register (located in the configuration space header).

An interesting feature of PCI is that a single function can have multiple
onboard ROM images, each for a different CPU architecture. This gives ven-
dors the ability to sell the same product in several different markets. The PCI
specification defines a standard header format for ROM blocks, so that initial-
ization software can locate the proper chunk of ROM and load it into memory
for execution.

Autoconfiguration The PCI specification dictates that each individual
function on the bus must have its own 256-byte storage area for configuration
data. This area is referred to as the PCI function’s configuration space.

The first 64 bytes of any PCI function’s configuration space (called the
header) has a predetermined structure, while the remaining 192 bytes belong to the
card designer. System software can use the header to identify a PCI function and
assign resources to it. Some of the things in the header area include®

¢ Information about the vendor, the device type, and its revision level.

¢ A standard pair of command and status registers for enabling various
features and reporting errors.

* A resource list that specifies the function’s memory and I/O space
requirements.

¢ The interrupt pin and line registers described above.

¢ DPointers to device-specific ROM

At 256 bytes per function, the configuration space for a PCI system could

- easily grow quite large — certainly much larger than the 64-kilobyte I/O space

available on 80x86 processors. Mapping it into memory is always an option, but

8 See Shanley and Anderson’s book on PCI architecture (listed in the bibilography) for a complete
. description of the configuration header.
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that, too, would chew up a lot of address space. Instead, you access a PCI func-
tion’s configuration data using the following two registers:

* Configuration address register — This identifies the bus number, the
device, the function, and the address in configuration space that you
want to access.

¢ Configuration data register — This acts as a data buffer between the
CPU and configuration space. After you set the address register, writing
or reading this register transfers information to or from configuration
space.

Fortunately, Windows NT doesn’t make you go through all this. The Hal-
GetBusData, HalSetBusData, and HalAssignSlotResources HAL functions give
you a simple way to access a PCI function’s configuration data.

HINTS FOR WORKING WITH HARDWARE

If you haven't done much work with hardware, you're in for a shock when you
write your first device driver. Hardware engineers have different priorities than
software people do, and their idea of an optimal design may seem strange and
quirky to a programmer. (If you doubt this, just think about the user interface on
your VCR.) The following hints may help make it easier to work with a new piece
of hardware.

Learn about the Hardware

Before you start writing the driver, learn as much as possible about the hard-
ware itself. Most of the information you need should be in the hardware docu-
mentation. At the very least, you'll need to know:

Bus architecture Your hardware's bus architecture will have a big impact
on the design of your driver. In particular, ISA boards don't give the system a lot
of autodetection information at power-up time, so you'll need to have some other
way of determining the board's resource requirements. Chapter 7 explains how to
do this.

Control registers You need to know the size, relative positions, and con-
tents of any control, status, and data registers belonging to the device. You should
also find out about any odd behavior they exhibit. For example,

* Some device registers may be read-only or write-only.

¢ A single register address may perform different functions on a read than
it does on a write.
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¢ Data or status registers may not contain valid information until some
fixed time interval after you issue a command.

* You may need to access registers in a specific order.

Error and status reporting Determine any protocols used by the device
for reporting hardware failures and device status.

Interrupt behavior Find out exactly what device conditions cause the
hardware to generate an interrupt, and whether the device uses more than one
interrupt vector. If you're working with a multidevice controller, interrupts may
come from the controller itself, and you'll need to know how to identify the actual
device that wants attention.

Data transfer mechanisms Drivers for programmed I/O devices are
very different from DMA drivers, so this is one of the first things you need to
know about a piece of hardware. Some devices are capable of doing both kinds
of I/0. In the case of a DMA device, find out whether it's a bus master or slave,
and whether there are any limitations on the range of physical buffer addresses it
can use.

Device memory If your device uses dedicated memory, find out how to
access it. It could be mapped at a fixed physical location or there may be a register
that your driver will need to set.

Make Use of Hardware Intelligence

Some peripherals contain their own microprocessors that perform both
diagnostic and device control functions. The microprocessor may be running
under the control of some firmware, or it may be possible for the driver itself to
download code to onboard RAM at initialization time.

If you're working with a smart peripheral, it makes sense to take full advan-
tage of the device's intelligence. Proper use of hardware features can result in sig-
nificantly better driver performance and improved diagnostic capabilities.

Test the Hardware

It's a good idea to test your hardware very early in the development cycle. In
addition to finding bugs, this will help you uncover any mistaken assumptions
you may be making about the device's operation.

Basic tests Make sure the device and any associated cables are all com-
patible with your development machine. Power up everything and try to boot the
operating system. At a very gross level, this lets you know that the device isn't
interfering with anything else on the box.
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Standalone tests If possible, write some stand-alone code that tests the
board and any firmware it may contain. This will usually be a program that runs
without the benefit of an operating system. If you're lucky, the hardware vendor
will provide some sort of exerciser for this purpose.

Finally, remember to test any onboard diagnostics by putting the hardware
in an illegal state and checking to see that the firmware detects the problem.

SUMMARY

This has been a very cursory look at hardware issues. The bottom line is your
driver needs to find its devices and determine their various resource require-
ments. As you've seen, some bus architectures make this easier than others. When
we start looking at actual driver code, you'll see how all this works under Win-
dows NT.

Before we can tackle any code, however, it’s a good idea to take a closer look
at just what happens to an I/O request once it enters the gaping maw of the I/O
Manager. That'’s the subject of the next chapter.
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N ow that you're familiar with some of the major

hardware issues, it's time to look at the NT Executive's role in processing 1/0
requests. This chapter covers three separate areas. First, in sections 3.1 through 3.4,
it introduces some concepts and techniques that are important to I/O processing.

Next, we'll look at the various routines that make up a driver and give brief
descriptions of the purpose of each routine. Later chapters will deal with actual
coding details.

Finally, we'll tie everything together by examining the life of an I/O request
in gory detail. A good understanding of the I/O flow of control is probably the
most important piece of knowledge a driver writer can have.

How KERNEL-MoODE CODE EXECUTES

The kernel-mode parts of Windows NT (including your driver) consist of a mas-
sive amount of code. But just what causes this code to execute? It turns out that
there are three different contexts in which kernel-mode code might be running. As
you develop your driver, it's very important for you to be clear about the context
each routine will be running in.

Exceptions

First, a piece of kernel-mode code might be executing in response to a
hardware or software exception generated by a user-mode thread. In this case, it’s
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clear that the currently executing thread is the source of the exception, and there’s
no question about who occupies the user-portion of address space. This is the
context in which NT system services (like I/O requests) are executing.

Interrupts

Kernel-mode code also executes in response to a hardware or software
interrupt. There will be more to say about NT's use of interrupts in the next
section, but for now it's enough to point out that they're not often the result of
anything the current user-mode thread is doing. Rather, interrupts are
asynchronous events that fall out of the sky and preempt whatever unsuspecting
thread happens to be using the CPU at the time. This means that code running in
interrupt context (which includes the bulk of your driver routines) can make very
few assumptions about the identity of the current process or thread, or about
what's currently located in the user portion of virtual address space.

Kernel-Mode Threads

The last possibility is that a piece of code is running in the context of a kernel-
mode thread. With a few differences, these kernel threads behave very much like
the user-mode threads you already know from Win32 programming. Some drivers
use kernel-threads as a way of handling devices that need to be polled, or that
have other characteristics which would interfere with the smooth operation of the
I/O Manager. Chapter 14 discusses the use of kernel-mode threads.

USE OF INTERRUPTS BY NT

Chapter 2 introduced the idea of interrupts as a way of arbitrating among differ-
ent I/O devices at the hardware level. It turns out that NT uses this hardware
mechanism to prioritize not only I/O events, but also hardware events internal to
the CPU, and even for scheduling various operating system tasks.

CPU Priority Levels

Different CPU architectures have different ways of handling hardware
priorities. To avoid these architecture dependencies, Windows NT uses an
idealized, abstract CPU priority scheme. The Kernel implements this model using
whatever mechanisms are provided by a specific kind of CPU.

The operation of this abstract priority scheme depends on something called
an interrupt request level IRQL). The IRQL is a number that defines how important
the CPU's current activity is. The higher the number, the greater the importance of
continuing the current task. Table 3.1 shows the IRQL levels used in NT's priority
scheme. Regardless of the underlying CPU or bus architecture, this is how IRQL
levels will look to your driver.
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Table 3.1 NT maps these IRQL levels onto platform-specific levels

IRQL Levels
Generated By IRQL Purpose
Hardware HIGHEST_LEVEL Machine checks and bus errors
POWER_LEVEL Power-fail interrupts
IPI_LEVEL Interprocessor doorbell for
multiprocessor systems
CLOCK2_LEVEL Interval clock 2
CLOCK1_LEVEL Interval clock 1 (not used on
80x86 platforms)
PROFILE_LEVEL Profiling timer
DIRQLs Platform-dependent number of
levels for I/O device interrupts
Software DISPATCH_LEVEL Thread scheduler and deferred
procedure call execution
APC_LEVEL Asynchronous procedure call

PASSIVE_LEVEL

execution
Normal thread execution level

Interrupt Processing Sequence

When an interrupt reaches the CPU, the processor compares the IRQL value
of the requested interrupt with the CPU's current IRQL value. If the IRQL of the
request is equal to or less than the current IRQL, the request is ignored. In this
case, the request remains pending until some later time when less important

things are happening.

On the other hand, if the IRQL of the request is higher than the CPU's

current IRQL, the processor does the following;:

1. Suspends instruction execution.

2. Saves just enough state information on the stack to resume the interrupted
code later on. At the very least, this will include the current PC address and

the CPU status register.

3. Raises the IRQL value of the CPU to match the IRQL of the request, prevent-
ing interrupts of equal or lower priority from taking control until the current

interrupt is satisfied.

4. Transfers control to an interrupt service routine associated with the request.

When it's finished, the service routine executes a special instruction that
dismisses the interrupt. This instruction restores the CPU state information saved
on the stack (including the previous IRQL value) and returns control to the

interrupted code.
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Notice that the hardware's priority rule allows higher-IRQL requests to
interrupt the service routines of lower-IRQL interrupts. Because the whole
mechanism is stack-based, this doesn't cause any confusion. However, it does
raise some synchronization issues that we'll address in Chapter 5.

Software-Generated Interrupts

Some of the IRQLs listed in Table 3.1 are tagged as being software generated.
This is because it's possible for kernel-mode code to start the interrupt processing
sequence described above by executing a privileged instruction. NT uses these
software interrupts to trigger activities like thread scheduling and to delay the
execution of other operating system tasks until the CPU has finished processing
hardware requests. The next section describes this use of software interrupts in
greater detail.

DEFERRED PROCEDURE CALLS (DPCs)

While a piece of kernel-mode code is running at an elevated IRQL, nothing will
execute on the same CPU at that or any lower IRQL. This can have the effect of
making the system less responsive to time-critical events, and ultimately degrad-
ing overall performance. NT tries to avoid this situation by executing as much
code as it can at the lowest possible IRQL. An important technique for doing this
is the use of deferred procedure calls (DPCs).

Operation of a DPC

The DPC architecture uses software interrupts to defer the execution of less
time-critical code until higher-IRQL activities have finished. Figure 3.1 illustrates
the operation of a DPC.

Later chapters will present more specific information about using DPCs in a
driver, but the following general description should give you a good idea of how
they work:

1.  When some piece of code running at a high IRQL wants to continue its work
at a lower IRQL, it adds the DPC object to the end of the system's DPC dis-
patching queue and requests a DPC software interrupt. Since the current
IRQL is above DISPATCH_LEVEL, the interrupt won't be taken right away,
but it will remain pending.

2. Eventually, the processor's IRQL falls below DISPATCH_LEVEL and the
interrupt is serviced by the DPC dispatcher.

3. One by one, the dispatcher removes each DPC object from its queue and calls
the function whose pointer is stored in the object. Notice that this function is
being called while the CPU is at DISPATCH_LEVEL.

4. When all the DPC objects have been removed from the queue, the DPC dis-
patcher dismisses the interrupt.
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Figure 3.1 How deferred procedure calls work

Device drivers normally perform cleanup operations after an I/O request
using a DPC routine. This has the effect of reducing the amount of time the driver
spends at DIRQL and improves overall I/O system throughput.

Behavior of DPCs

For the most part, working with DPCs is fairly easy, because NT hides most
of the nasty details from you. However, there are three aspects of DPC behavior
that you need to be aware of.

First, if your driver tries to insert a DPC object into the dispatching queue,
and that object is already in the dispatching queue waiting to execute, the Kernel
will reject the queuing request. Consequently, there will be only one call to the
DPC routine. In that single call, the DPC routine is expected to perform all the
work that's been requested. This could happen if a piece of hardware generated
multiple interrupts so rapidly that the DPC request from the one was still pending
when another interrupt arrived.

It’s up to your driver to handle this situation if it occurs. This could mean
keeping an array of DPC objects that your interrupt service code could use, or
setting up some kind of internal queue of work requests that the DPC routine
would process. In any event, the responsibility is yours.

The second thing you have to watch out for has to do with SMP machines.
On a multiprocessor, it's possible for the high-IRQL portion of a driver to submit a
DPC request and have the DPC routine begin execution on another CPU even
before the high-IRQL code finishes running. For this reason, your DPC routines
must synchronize their access to any resources shared with the driver's interrupt
service code.
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Finally, on multiprocessor systems, the Kernel has a separate DPC dispatching
queue for each individual CPU — thus allowing more than one DPC routine to
execute af the same time. Consequently, each DPC routine must synchronize its access
to any resources it might be sharing with another DPC routine. Normally, you use
Executive spin locks for this purpose.

AcCCESS TO USER BUFFERS

When a user-mode thread makes an I/O request, it usually passes the address of a
data buffer located in user space. The problem this poses for any driver routines try-
ing to access the buffer is that user-space addresses are paged. And as you've seen,
any code executing at DISPATCH_LEVEL IRQL or higher must avoid page faults.
However, even if user space weren't in paged memory, there would be
another problem. The process occupying user space at the time of the I/O request
may not be the same process that's there when an interrupt or DPC routine
executes. This means that any pointers to user space held by the driver probably
won't refer to the correct physical memory when the driver tries to use them.

Buffer-Access Mechanisms

So just how do driver routines manage to access user-space buffers?
Fortunately, the I/O Manager comes to the rescue by providing drivers with two
different methods for accessing user buffers. When your driver initializes itself, it
tells the I/O Manager which method it plans to use. The choice usually depends
on the nature of the device. Figure 3.2 illustrates the difference between these two
techniques.

System Virtual Space Physical Memory
BIO DIO

Descriptor

User Virtual Space

.
Copyright © 1994 by Cydonix Corporation. 940

Figure 3.2 Memory use in buffered and direct I/O
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Buffered I/0 (BIO) Under this scheme, the I/O Manager allocates a buffer
from nonpaged pool at the start of each I/O operation and passes the address of
this buffer to the driver. The driver uses this buffer for any data transfer
operations to or from the device.

For output requests, the I/O Manager copies the contents of the user's buffer
into the system buffer before passing it to the driver. For input requests, the driver
fills the system buffer with data from the device, and the I/O Manager copies it
back into user space at the end of the operation.

There are two disadvantages to this technique. One is that all the memory-
to-memory copying of data can slow things down, particularly for devices that
transfer large amounts of data on a frequent basis. The other is that it can use up a
lot of nonpaged pool. So, drivers should limit the use of buffered I/O to slow
devices that don't transfer a lot of data at one time. For these reasons, you should
never use Buffered I/O to perform transfers larger than one page of memory.

Direct I/0 (DIO) This scheme avoids the need for copying user data by

buffer lives. At the beginning of an I/O operation, the I/O Manager locks the
entire user buffer into memory to prevent deadly page faults. It then builds a list
that identifies the physical pages making up the user buffer. The driver uses this
list to perform an I/O operation using the actual pages of the user’s buffer. When
the I/O operation is complete, the I/O Manager will unlock the pages.

You should use Direct I/O for high-speed devices that need to transfer large
amounts of data at once, particularly devices that perform DMA. The mechanics
of Direct I/O are described in Chapter 12.

STRUCTURE OF A KERNEL-MODE DRIVER

One of the biggest differences between a driver and an application program is the
driver's control structure. Application programs run from beginning to end under
the control of a main or WinMain function that determines the sequence in which
various subroutines are called.

A kernel-mode driver, on the other hand, has no main or WinMain function.
Instead, it's just a collection of subroutines that are called as needed by the I/O
Manager. Depending on the driver, the I/O Manager might call a driver routine in
any of the following situations:

* When a driver is being loaded

When the driver is being unloaded or the system is shutting down
* When a user-mode program issues an I/O system service call
¢ When a shared hardware resource becomes available to the driver

¢ At various points during an actual device operation
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The remainder of this section briefly describes the major categories of
routines making up a kernel-mode driver.

Driver Initialization and Cleanup Routines

Before any driver can begin processing I/O requests, there are a number of
initialization tasks it must perform. Likewise, drivers need to clean things up
when they leave the system. There are several routines a driver can use to
perform these operations.

DriverEntry routine The I/O Manager calls this routine when it loads the
driver, either at system boot time if the driver is loaded automatically, or later if
you load the driver manually from the Control Panel. The DriverEntry routine
performs a wide range of initialization functions, including setting up pointers to
other driver routines, finding and allocating any hardware resources used by the
driver, and making the name of the device visible to the rest of the system.

Reinitialize routine Some drivers may not be able to complete their
initialization during the DriverEntry routine. This could happen if the driver
depended on some other driver that wasn't yet loaded, or if the driver needed to
initialize itself during different phases of the system boot. These kinds of drivers
can use Reinitialize routines to spread out their initialization functions over time.

Unload routine The I/O Manager calls a driver's Unload routine when a
driver is unloaded manually using the Control Panel. The Unload routine is
responsible for undoing everything that was done by the DriverEntry routine,
including deallocating any hardware resources belonging to the driver and
destroying any kernel objects that belong to the driver.

Shutdown routine  When the system goes through a user-initiated
shutdown, the I/O Manager will call the Shutdown routines registered by any
currently loaded drivers. The primary purpose of a Shutdown routine is to put
the hardware into a known state. System resource cleanup is not as important
here because the system is about to disappear anyway.

Bugcheck callback routine If a driver needs to get control in the event of
a system crash, it can register a Bugcheck callback routine with the Kernel. This
mechanism gives the driver a chance to put its devices into a known state, and
perhaps record some state information that will be helpful in debugging the
crash.

I/0O System Service Dispatch Routines

When the I/O Manager gets a request, it uses the function code of the
request to call one of several Dispatch routines in the driver. The Dispatch routine
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verifies the request and may have the I/O Manager send it to the device for
processing.

Open and close operations All drivers must provide a Dispatch routine
that handles Win32 CreateFile requests. Drivers that need to perform cleanup
operations can supply a routine to handle CloseHandle calls, as well as separate
Dispatch routines that perform special processing when the last handle on a
shared device is closed.

Device operations Depending on the device, a driver may have one or
more Dispatch routines for handling actual data transfer and control operations.
The I/O Manager calls these routines in response to Win32 ReadFile, WriteFile,
and DeviceloControl requests, or in response to an I/O request from a higher-
level driver. These routines perform any final verification of the request and then
pass it to the driver's device management routines for actual processing.

Data Transfer Routines

Device operations involve a number of different driver routines, depending
on the nature and complexity of the device.

Start I/O routine The I/O Manager calls the driver's Start I/O routine
when it's time to begin a device operation. This routine allocates any resources
needed to process the request and sets the device in motion. The I/O Manager
provides simplified support for half-duplex drivers that only need a single Start
I/0 routine. Drivers of full-duplex devices that have to manage simultaneous
input and output requests need a somewhat more complex architecture.

Interrupt Service routine (ISR) The Kernel's interrupt dispatcher calls a
driver's Interrupt Service routine whenever the driver's device generates an
interrupt. The ISR is responsible for acknowledging the device, gathering any
volatile state information needed by other parts of the driver, and asking the I/O
Manager to execute a DPC routine.

DPC routine(s) A driver can have one or more DPC routines that clean up
after a device operation. Depending on the driver, this can involve releasing
various system resources, reporting errors, handing completed I/O requests back
to the I/O Manager, and starting the next device operation if one is waiting.

If you can do everything with a single DPC, the I/O Manager provides a
simplified mechanism called a DpcForlsr routine. However, some drivers are
easier to write and maintain if they have separate DPC routines for different kinds
of processing. For example, drivers that perform full-duplex I/O might have one
DPC routine that completed input operations, and another DPC routine for
outputs. At your option, your driver can have any number of these CustomDpc
routines.
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Resource Synchronization Callbacks

As an extension of the I/O Manager, a driver must be ready to run as
needed at the request of more than one user-mode process. For example, it could
be asked to send data to one device while waiting for a previous operation to
complete on the same or another device. Since there's only one copy of the driver
in memory, it has to handle any contention issues that might result from
processing overlapping requests.

The I/O Manager makes it easier for drivers to handle these kinds of
problems through the use of various synchronization callback routines. When a
driver needs to access some shared resource, it queues a request for that resource.
When the resource becomes available, the I/O Manager invokes a driver callback
routine associated with the request. This has the effect of serializing access to the
resource and avoiding collisions. There are three types of synchronization
callback routines a driver might use.

ControllerControl routine If a peripheral card supports multiple physical
devices, it's important that only one hardware operation is being performed at a
time. Before doing anything to the controller's registers, the Start I/O routine
requests exclusive ownership of the controller. If ownership is granted, the
ControllerControl callback routine executes; otherwise the ownership request
waits until the current owner releases the controller.

AdapterControl routine DMA hardware is another shared resource that
must be passed around from driver to driver. Before doing any DMA operations,
the driver requests ownership of the proper DMA hardware. If ownership is
granted, the AdapterControl callback routine executes; otherwise the ownership
request waits until the current owner releases the DMA hardware.

SynchCritSection routines The parts of your driver that service device
interrupts run at DIRQL while other pieces of driver code execute at or below
DISPATCH_LEVEL. If these low-IRQL sections of code need to touch any
resources used by the Interrupt Service routine, they perform the operation inside
a SynchCritSection routine. Resources in this category include all device control
registers and any other context or state information shared with the Interrupt
Service routine.

Other Driver Routines

In addition to the basic set of routines described above, your driver may
contain some of the following additional functions.

Timer routines Drivers that need to keep track of the passage of time dur-
ing a device operation can do so using either an I/O Timer or a CustomTimerDpc
routine. Chapter 10 describes both these mechanisms.
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I/O completion routines Drivers of higher-level routines may want to

receive notification when a request they've sent to a lower-level driver has
completed. This notification will come in the form of a call to the higher-level
driver's I/O Completion routine. Chapter 15 discusses these routines in more detail.

Cancel I/O routines Any driver that holds on to pending requests for a

long time must attach a Cancel I/O routine to the request. If the request is
canceled, the I/O Manager calls the Cancel I/O routine to perform any necessary
cleanup operations. Chapter 11 describes the operation of these routines.

I/O PROCESSING SEQUENCE

When a user-mode thread requests an I/O operation, the request goes through
several processing stages:

¢ Request preprocessing by NT and the I/O Manager
* Driver-specific preprocessing

* Device activation and interrupt servicing

* Driver-specific postprocessing

* Request postprocessing by the I/O Manage

The following sections describe these stages in more detail.

Request Preprocessing by NT

This phase takes care of all the device-independent setup and verification

required by an I/O request.

1.

The Win32 subsystem converts the request into a native NT system service
call. This triggers a change to kernel mode which is trapped by NT's system
service dispatcher. Eventually, the call ends up inside the I/O Manager.

The I/O Manager allocates a data structure called an I/O Request Packet (IRP).
Subsequent chapters will have a lot to say about IRPs, but for now, just think
of them as work orders that describe what the driver is supposed to do. The
I/0 Manager fills in the IRP with various pieces of information including a
function code indicating what operation the user requested.

The 1/O Manager performs a number of validity checks on the arguments
supplied by the caller. This involves verifying the file handle, checking access
rights to the file object, making sure the device supports the requested func-
tion, and probing any input or output buffer addresses passed by the caller.

If this is a Buffered I/O operation, the I/O Manager allocates a nonpaged
pool buffer, and for outputs, copies data from user space into the system
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buffer. If this is a Direct I/O operation, the user's buffer pages are faulted into
memory and locked down, and the I/O Manager builds a list of the buffer’s
physical pages.

5. The I/O Manager calls one of the driver's Dispatch routines.

Request Preprocessing by the Driver

Each driver provides a dispatch table that controls the device-dependent
preprocessing of 1/O requests. The I/O Manager uses the function code of the
requested operation as an index into this table and calls the corresponding driver
Dispatch routine. These routines might perform any of the following operations:

* Do any device-dependent parameter validation. An example would be
testing whether the size of the request falls within the range of any limita-
tions imposed by the device itself.

¢ If the request is such that it can be handled without any device activity,
the Dispatch routine completes the request and sends it back to the I/O
Manager.

¢ If device operation is required, the Dispatch routine marks the request
as pending and tells the I/O Manager to send it to the driver's Start I/O
routine.

Data Transfer

Data transfers and other device operations are managed by the driver's Start
I/0 and Interrupt Service routines.

Start /O When a Dispatch routine tells the I/O Manager to start a device
operation, the I/O Manager checks to see if the target device is currently busy. If it
is, the request is queued to the device for later processing. Otherwise, the I/O
Manager calls the driver's Start I/O routine. Depending on the device, the driver's
Start I/O routine performs some or all of the following steps:

1. It checks the IRP function (read, write, device control, etc.) and performs any
setup work specific to that type of operation.

2. If the device is attached to a multiunit controller, the ControllerControl rou-
tine asks for exclusive ownership of the controller hardware.

3. If the operation is a DMA transfer, the AdapterControl routine allocates DMA
adapter resources.

4. It uses a SynchCritSection routine to start the device.

5. It returns control to the I/O Manager and waits for a device interrupt
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ISR When an interrupt occurs, the Kernel's interrupt dispatcher calls the

driver's ISR. Depending on the device, the ISR performs some of the following

steps:

1. It checks to see if the interrupt was expected.

2. It stops the device from interrupting.

3. If this is a programmed I/O operation and more data remains to be trans-
ferred, it moves the next chunk of data to or from the device and waits for the
next interrupt.

4. If this is a DMA operation and more data remains to be transferred, it queues
a DPC request to set up the DMA hardware for the next chunk of data.

5. Ifan error occurs or the data transfer is complete, it queues a DPC request to
perform I/O postprocessing at a lower IRQL.

6. It dismisses the interrupt.

Postprocessing by the Driver

The Kernel's DPC dispatcher eventually calls the driver's DPC routine to

perform device-specific postprocessing operations, including some or all of the
following:

1.

If this is a DMA operation and more data remains to be transferred, it sets up
the DMA hardware for the next piece of data, starts the device, and waits for
an interrupt. It then returns to the I/O Manager without performing any of
the following steps.

If there was an error or timeout, the DPC routine might record it in the system
event log and either retry or abort the I/O request.

It releases any DMA and controller resources being held by the driver.

Next, the DPC routine puts the size of the transfer and final status informa-
tion into the IRP.

Finally, it tells the I/O Manager to complete the current request and start the
next one, if one is waiting in the queue for this device.

Postprocessing by the I/O Manager

Once the driver's DPC routine releases an IRP, the I/O Manager performs

various device-independent cleanup operations. These include the following.

1.

If this was a Buffered I/O output operation, the I/O Manager releases the
nonpaged pool buffer used during the transfer.
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2. If this was a Direct I/O operation, it unlocks the user's buffer pages.

3. It queues a request to the original thread for a kernel-mode asynchronous pro-
cedure call (APC). This APC will execute a piece of I/O Manager code in the
context of the thread that issued the original I/O request.

4.  When the kernel-mode APC runs, it copies status and transfer-size informa-
tion back into user space.

5. If this was a buffered input, the APC routine copies the contents of the non-
paged pool buffer into the caller's user-space buffer. Then it frees the system
buffer.

6. If the original request was for an overlapped operation, the APC routine sets
the associated Event object into the signaled state.

7. If the original request included a completion routine (for example, from a
ReadFileEx or WriteFileEx call), the kernel-mode APC requests a user-mode
APC to execute the completion routine.

SUMMARY

That completes our quick tour of NT and the I/O subsystem. At this point, you
should have a good sense of how various driver routines interact with the I/O
Manager. Later chapters will explain how to apply this understanding.

Keeping track of all the details involved in I/O processing obviously
requires a lot of bookkeeping. In the next chapter, we'll take a look at the data
structures used by the I/O Manager and your driver.
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D ata structures are the lifeblood of most operat-
ing systems, and Windows NT is no exception. What's interesting about NT is its
use of object technology to manage all this data. After a quick look at NT's
approach to objects, this chapter introduces the major structures involved in pro-
cessing I/0 requests. Later chapters will introduce additional data objects as they
become necessary.

DATA OBJECTS AND WINDOWS NT

Just in case you've been living on Mars for the last decade, object-oriented pro-
gramming (OOP) is one of the currently fashionable software design methodolo-
gies. In this scheme, data structures are viewed as black boxes (objects) whose
contents are invisible, and any interaction with these data structures occurs
through a limited set of access functions (methods). The goal is to improve the reli-
ability and robustness of the resulting software by hiding implementation details
from the users of an object, and by reducing unplanned dependencies between
software modules.

Windows NT and OOP

Using a strict definition of OOP, the design of NT isn't truly object-ori-
ented. Rather, you should think of it as being object-based, because it manages
its internal data structures in an objectlike way. In particular, the Kernel and the
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various Executive modules each define their own sets of data structures, along
with a corresponding group of access functions. All other modules are expected
to use those access functions to manipulate the contents of the structure. The
data structures themselves are supposed to be opaque outside the module that
defines them.

That's the idea anyway. When it comes to drivers, things get a little fuzzy
since a driver is essentially a trusted add-on component of the I/O Manager.
Because of this special status, a driver is allowed to touch some object fields
directly but must use access functions for other operations on the object. So, I/O
Manager objects available to a driver are partially opaque. Objects defined by
other NT components are entirely opaque.

NT Objects and Win32 Objects

If you compare internal NT objects with the Win32 user-mode objects,
you'll see a couple of differences. First, with a couple of exceptions, most of
these NT objects have no externally visible names. This is because these objects
aren't being exported to user mode and don't need to be managed by the Object
Manager.

Second, you don't use handles to access internal NT objects. Instead, you use
a pointer to the object body itself. In some cases, NT will create the object for you
and give you the pointer. In other cases, you'll need to allocate and initialize stor-
age for the object.

4.2 1/O REQUEST PACKETS (IRPs)

Almost all I/O is packet-driven under Windows NT. Each separate I/O transac-
tion is described by a work order that tells the driver what to do and tracks the
progress of the request through the I/O subsystem. These work orders take the
form of a data structure called an I/O Request Packet (IRP), and this is how they're
used.

1. TheI/O Manager allocates an IRP from nonpaged system memory in
response to an I/O request. Based on the I/O function specified by the user, it
passes the IRP to the appropriate driver Dispatch routine.

2. The Dispatch routine checks the parameters of the request, and if they're
valid, passes the IRP to the driver's Start I/O routine.

The Start I/ O routine uses the contents of the IRP to set up a device operation.

4. When the operation is complete, the driver's DpcForlsr routine stores a final
status code in the IRP and sends it back to the I/O Manager.

5. The I/O Manager uses the information in the IRP to complete the request and
send the user the final status.
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This describes what happens when requests are being sent to a lowest-level
driver. If the initial request is sent to a higher-level driver, things get a little more
complex, and a single IRP may travel through several layers of drivers before the
request is finished. Higher-level drivers can also create additional IRPs and send
them to other drivers.

Layout of an IRP

An IRP is a variable-sized structure allocated from nonpaged pool. As you
can see from Figure 4.1, an IRP has two sections:

¢ Aheader area containing general bookkeeping information

* One or more parameter blocks called I/O stack locations

IRP header This area of the IRP holds various pieces of information about
the overall I/O request. Some parts of the header are directly accessible to your
driver, while other pieces are the exclusive property of the I/O Manager. Table 4.1
list the fields in the header that your driver is allowed to touch.

The IoStatus member holds the final status of the I/O operation. When
your driver is ready to complete the processing of an IRP, it sets the Status field
of this block to a STATUS_XXX value. At the same time, your driver should set
the Information field of the status block either to 0 (if there's an error) or to a
function-code-specific value (for example, the number of bytes transferred).

I0_STATUS_BLOCK

IRP

Status;
Information;

loStatus
Header

10_STACK_LOCATION

MajorFunction;
MinorFunction;
union {

struct { } Read;

struct { } Write;

struct { } DeviceloControl;

Stack

} Parameters;

Copyright © 1994 by Cydonix Corporation. 940033a.vsd

Figure 4.1 The structure of an IRP
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Table 4.1 Externally visible fields in an IRP header

IRP header fields

Field Description

I0_STATUS_BLOCK IoStatus Contains status of the 1/ O request

PVOID AssociatedIrp.SystemBuffer Points to a system space buffer if
device performs Buffered I/O

PMDL MdlAddress Points to a Memory Descriptor List
for a user-space bulffer if device
performs Direct /0O

PVOID UserBuffer User-space address of I/O buffer

BOOLEAN Cancel Indicates the IRP has been canceled

The AssociatedIrp.SystemBuffer, MdlAddress, and UserBuffer fields play
various roles in managing the driver's access to data buffers. Later chapters will
explain how to use these fields when your driver performs either Buffered or
Direct I/0.

I/O stack locations The main purpose of an I/O stack location is to hold
the function code and parameters for an I/O request. By examining the Major-
Function field of the stack location, a driver can decide what operation to perform
and how to interpret the Parameters union. Table 4.2 describes some of the com-
monly used members of an I/O stack location.

For requests sent directly to a lowest-level driver, the corresponding IRP
will have only one I/0O stack location. For requests sent to a higher-level driver,
the I/O Manager creates an IRP with separate I/O stack locations for each driver
layer. Every driver in the hierarchy is allowed to touch only its own stack loca-
tion, and if it's not at the bottom of the pile, to set up the stack location for the
next driver beneath it.

When a driver passes an IRP to a lower-level driver, the I/O Manager auto-
matically “pushes” the I/O stack-pointer so that it points at the I/O stack location
belonging to the lower driver. When the lower driver releases the IRP, the I/O
stack-pointer is “popped” so that it again points to the stack location of the higher
driver. Chapter 15 will explain how to work with this mechanism.

Manipulating IRPs

IRP access functions fall into two general categories: Those that operate on
the IRP as a whole, and those that deal specifically with the IRP's I/O stack loca-
tions. The following subsections describe each of groups.

IRPs as a whole The I/O Manager exports a variety of functions that
work with IRPs. Table 4.3 lists the most common ones. Later chapters will explain
how to use them.
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Table 4.2 Selected contents of an IRP stack location

10_STACK_LOCATION, *PIO_STACK_LOCATION

Field Contents
UCHAR MajorFunction IRP_MJ_XXX function specifying the operation
UCHAR MinorFunction Used by file system and SCSI drivers

union Parameters
struct Read

struct Write

struct DeviceloControl

struct Others

PDEVICE_OBJECT DeviceObject
PFILE_OBJECT FileObject

Typed union keyed to MajorFunction code
Parameters for IRP_MJ_READ

¢ ULONG Length

* ULONG Key

¢ LARGE_INTEGER ByteOffset
Parameters for IRP_MJ_WRITE

¢ ULONG Length

* ULONG Key

¢ LARGE_INTEGER ByteOffset

Parameters for IRP_MJ_DEVICE_CONTROL
and IRP_MJ_INTERNAL_DEVICE_CONTROL

¢ ULONG OutputBufferLength
¢ ULONG InputBufferLength
¢ ULONG IoControlCode

¢ PVOID Type3InputBuffer

Available to driver

¢ PVOID Argumentl-Argument4
Target device for this I/O request
File object for this request, if any

Note: See NTDDK.H for additional members of the Parameters union.

Table 4.3 Functions that work with the whole IRP

IRP functions

Function Description Called by...
IoStartPacket Sends IRP to Start I/O routine Dispatch
IoCompleteRequest Indicates that all processing is done DpcForlsr
IoStartNextPacket Sends next IRP to Start I/O DpcForlsr
IoCallDriver* Sends IRP to another driver Dispatch
IoAllocatelrp* Requests additional IRPs Dispatch
IoFreelrp* Releases driver-allocated IRPs 1/0 Completion

*These functions are used primarily by layered drivers.
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Table 4.4 10_STACK_LOCATION access-functions
10_STACK_LOCATION access functions

Function Description Called by...
IoGetCurrentIrpStackLocation Gets pointer to caller's stack slot (Various)
IoMarkIrpPending Marks caller's stack slot as needing Dispatch
further processing
IoGetNextIrpStackLocation* Gets pointer to stack slot for next Dispatch
lower driver
IoSetNextIrpStackLocation* Pushes the I/0O stack pointer one Dispatch
location
IoSetCompletionRoutine* Attaches I/O Completion routine Dispatch
to the next lower driver’sI/0O
stack slot

*These functions are used primarily by layered drivers.

IRP stack locations The I/O Manager also provides several functions
that drivers can use to access an IRP's stack locations. These functions are listed in
Table 4.4

4.3 DRIVER OBJECTS

DriverEntry is the only driver routine with an exported name. When the 1I/O
Manager needs to locate other driver functions, it uses the Driver object associ-
ated with a specific device. This object is basically a catalog that contains pointers
to various driver functions. Here's how it works.

1. TheI/O Manager creates a Driver object whenever it loads a driver. If the
driver fails during initialization, the I/O Manager deletes the object.

2. During initialization, the DriverEntry routine loads pointers to other driver
functions into the Driver object.

3. When an IRP is sent to a specific device, the I/O Manager uses the associated
Driver object to find the right Dispatch routine.

4. If arequest involves an actual device operation, the I/O Manager uses the
Driver object to locate the driver's Start I/O routine.

5. If the driver is unloaded, the I/O Manager uses the Driver object to find an
Unload routine. When the Unload routine is done, the I/O Manager deletes
the Driver object.
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Figure 4.2 Structure of a Driver object

Layout of a Driver Object

There is a unique Driver object for each driver currently loaded in the sys-
tem. Figure 4.2 illustrates the structure of a Driver object. As you can see, the
Driver object also contains a pointer to a linked list of devices serviced by this
driver. A driver's Unload routine can use this list to locate any devices it needs to
delete.

Unlike other objects, there are no access functions for modifying Driver
objects. Instead, the DriverEntry routine sets various fields directly. Table 4.5 lists
the fields you're allowed to touch.

Table 4.5 Externally visible fields of a Driver object

Driver object fields

Field Description
PDRIVER_STARTIO DriverStartlo Address of driver's Start I/O routine
PDRIVER_UNLOAD DriverUnload Address of driver's Unload routine

PDRIVER_DISPATCH MajorFunction[ ] Table of driver's Dispatch routines,
indexed by I/O operation code

PDEVICE_OBJECT DeviceObject Linked list of Device objects created by
this driver
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4.4

DEVICE OBJECTS AND DEVICE EXTENSIONS

Both the I/O Manager and the driver need to know what's going on with an I/O
device at all times. Device objects make this possible by keeping information
about a device's characteristics and state. There is one Device object for each vir-
tual, logical, and physical device on the system. Here's how they're used.

1.
2.

The DriverEntry routine creates a Device object for each of its devices.

The I/O Manager uses a pointer in the Device object to locate the correspond-
ing Driver object. There it can find driver routines to operate on I/ O requests.

It also maintains a queue of current and pending IRPs attached to the Device

object.

Various driver routines use the Device object to locate the corresponding
Device Extension. As an I/O request is processed, the driver uses the Exten-
sion to store any device-specific state information.

The driver's Unload routine deletes the Device object when the driver is
unloaded. ‘

Physical Device drivers aren't the only ones who use these objects. Chapter

15 describes the way higher-level drivers use Device objects.

Layout of a Device Object

Figure 4.3 illustrates the structure of a Device object and its relation to other

structures.
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Figure 4.3 Structure of a Device object
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Table 4.6 Externally visible fields of a Device object

Device object fields

Field Description

PVOID DeviceExtension Points to Device Extension structure
PDRIVER_OBJECT DriverObject Points to Driver object for this device
ULONG Flags Specifies buffering strategy for device

e DO_BUFFERED_IO
¢ DO_DIRECT_IO

PDEVICE_OBJECT NextDevice Points to next device belonging to this
driver
CCHAR StackSize Minimum number of I/O stack locations

needed by IRPs sent to this device
ULONG AlignmentRequirement Memory alignment required for buffers

Although the Device object contains a lot of data, much of it is the exclusive
property of the I/O Manager. Your driver should limit its access to only those
fields listed in Table 4.6.

Manipulating Device Objects

Table 4.7 lists many of the I/O Manager functions that operate on Device
objects. The I/O Manager also passes a Device object pointer as an argument to
most of the routines in your driver.

Table 4.7 Access functions for a Device object

Device object access functions

Function Description Called by...
IoCreateDevice Creates a Device object DriverEntry
IoCreateSymbolicLink Makes Device object visible to Win32 DriverEntry
IoAttachDevice* Attaches a filter to a Device object DriverEntry
IoAttachDeviceByPointer*  Attaches a filter to a Device object DriverEntry
IoGetDeviceObjectPointer*  Layers one driver on top of another DriverEntry
IoCallDriver* Sends request to another driver Dispatch
IoDetachDevice* Disconnects from a lower driver Unload
IoDeleteSymbolicLink Removes Device object from the Win32 Unload
namespace
IoDeleteDevice Removes Device object from system Unload

*These functions are used primarily by layered drivers.
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4.5

Device Extensions

Connected to the Device object is another important data structure, the
Device Extension. The Extension is simply a block of nonpaged pool that the I/O
Manager automatically attaches to any Device object you create. You choose both
the size and the contents of the Device Extension. Typically, you use it to hold any
information associated with a particular device.

Drivers have to be fully reentrant, so global or static variables are a very bad
idea. Any information that you might be tempted to keep in global or static stor-
age probably belongs in the Device Extension. Other things you might want to
store in the Extension include

* Aback pointer to the Device object

* Any device state or driver context information

¢ A pointer to an Interrupt object and an interrupt-expected flag
* A pointer to a Controller object

¢ A pointer to an Adapter object and a count of mapping registers

Since the Device Extension is driver-specific, you'll need to define its struc-
ture in one of your driver's header files. Although the Extension's exact contents
will depend on what your driver does, its general layout will look something
like this:

typedef struct _DEVICE_EXTENSION {
PDEVICE_OBJECT DeviceObject;

// Other driver-specific declarations

} DEVICE_EXTENSION, *PDEVICE_EXTENSION;

In later chapters of this book, you'll see a great many uses for the Device
Extension.

CONTROLLER OBJECTS AND CONTROLLER EXTENSIONS

Some peripheral adapters manage more than one physical device using the same
set of control registers. The floppy disk controller is one example of this architec-
ture. This kind of hardware causes the following synchronization problem: If the
driver tries to perform simultaneous operations on more than one of the con-
nected devices without first synchronizing its access to the shared register space,
the control registers may get trashed. To help with this problem, the I/O Manager
provides Controller objects.

The Controller object is a kind of token that can be owned by only one device
at a time. Before accessing any device registers, the driver asks that ownership of
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the Controller object be given to a specific device. If the hardware is free, ownership
is granted. If not, the device's request is put on hold until the current owner releases
the hardware. By passing the Controller object around this way, the I/O Manager
guarantees that multiple devices will access the hardware in an orderly manner.
Here's a little more detail about how Controller objects are used.

1. The DriverEntry routine creates the Controller object and usually stores its
address in a field of each device's Device Extension.

2. Before it starts a device operation, the Start I/O routine asks for exclusive
ownership of the Controller object on behalf of a specific device.

3.  When the Controller object becomes available, the I/O Manager grants own-
ership and calls the driver's ControllerControl routine. This routine sets up
the device's registers and starts the I/O operation. As long as this device
owns the Controller object, any further requests for ownership will block at
step 2 until the object is released.

4. When the device operation is finished, the driver's DpcForlsr routine releases
the Controller object, making it available for use by other pending requests.

5. The driver's Unload routine deletes the Controller object when the driver is
unloaded.

Obviously, not all drivers need a Controller object. If your interface card
supports only one physical or virtual device, or if multiple devices on the same
card don’t share any control registers then you can ignore Controller objects.

Layout of a Controller Object

Figure 4.4 shows the relationship of a Controller object to other system data
structures.

The only externally visible field in a Controller object is the PVOID Control-
lerExtension field, which contains a pointer to the extension block.

Manipulating Controller Objects

The I/O Manager exports four functions that operate on Controller objects.
These functions are listed in Table 4.8.

Controller Extensions

Like Device objects, Controller objects contain a pointer to an Extension
structure that you can use to hold any controller-specific data. The Extension is
also a place to store any information that's global to all the devices attached to a
controller. Finally, if the controller (rather than individual devices) is the source of
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Figure 4.4 Structure of a Controller object

interrupts, it makes sense to store pointers to Interrupt and Adapter objects in the
Controller Extension.

Since the Controller Extension is driver-specific, you'll need to define its
structure in one of your driver's header files. Although the Extension's exact con-
tents will depend on what your driver does, its general layout will look some-
thing like this:

typedef struct _CONTROLLER_EXTENSION {

PCONTROLLER_OBJECT ControllerObject;

// Other driver-specific declarations

} CONTROLLER_EXTENSION, *PCONTROLLER_EXTENSION;

Table 4.8 Access functions for a Controller object

Controller object access functions

Function Description Called by...
IoCreateController Creates a Controller object DriverEntry
IoAllocateController Requests exclusive ownership of controller StartI/0O
IoFreeController Releases ownership of controller DpcForlsr

IoDeleteController Removes Controller object from the system Unload
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ADAPTER OBJECTS

Just as multiple devices on the same controller need to coordinate their hardware
access, so devices that perform DMA need an orderly way to share system DMA
resources. The I/O Manager uses Adapter objects to prevent arguments over
DMA hardware. There is one Adapter object for each DMA data transfer channel
on the system.

Like a Controller object, an Adapter object can be owned by only one device
at a time. Before starting a DMA transfer, the Start I/O routine asks for ownership
of the Adapter object. If the hardware is free, ownership is granted. If not, the
device's request is put on hold until the current owner releases the hardware.
Obviously, if your device supports only programmed I/O, you don't need to
bother with Adapter objects. Here's how Adapter objects work.

1. The HAL creates Adapter objects for any DMA data channels detected at
bootstrap time.

2. The DriverEntry routine locates the Adapter object for its device and stores a
pointer in the Device or Controller Extension. Adapter objects for unrecog-
nized DMA hardware may be created on the fly at this point.

3. The Start I/O routine requests ownership of the Adapter object on behalf of a
specific device.

4. When ownership is granted, the I/O Manager calls the driver's Adapter
Control routine. This routine then uses the Adapter object to set up a DMA
transfer.

5. The driver's DpcForlsr routine may use the Adapter object to perform addi-
tional operations in the case of a split transfer. When a transfer is finished,
DpcForlsr releases the Adapter object.

Another important function of the Adapter object is to manage some things
called mapping registers. The HAL uses these registers to map the scattered physi-
cal pages of a user's buffer onto the contiguous range of addresses required by
most DMA hardware. If that statement doesn't make any sense to you, don't
worry. We'll be looking at the mechanics of DMA transfers in much greater detail
in Chapter 12.

Layout of an Adapter Object

Figure 4.5 illustrates the relationship of Adapter objects to other structures.
As you can see from the diagram, the Adapter object is completely opaque and
has no externally visible fields. If you're working with DMA devices, you should
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store the pointer to your Adapter object, as well as the number of mapping regis-
ters it supports, either in a Device or Controller Extension

Manipulating Adapter Objects

Both the HAL and the I/O Manager export functions that you can use to
manipulate Adapter objects. Table 4.9 lists the ones you're most likely to encounter.

Table 4.9 Access functions for an Adapter object

Adapter object access functions

Function Description Called by...

HalGetAdapter Gets a pointer to an DriverEntry
Adapter object

IoAllocateAdapterChannel Requests exclusive ownership Startlo (Controller
of DMA hardware Control)

IoMapTransfer Sets up DMA hardware for a Adapter Control /
data transfer DpcForlsr

IoFlushAdapterBuffers Flushes data after partial DpcForlsr
transfers

IoFreeMapRegisters Releases map registers DpcForlsr

IoFreeAdapterChannel Releases Adapter object DpcForlsr
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INTERRUPT OBJECTS

That brings us to the last of the NT objects we'll be looking at in this chapter, the
Interrupt object. Interrupt objects simply give the Kernel's interrupt dispatcher a
way to find the right service routine when an interrupt occurs. Here's how Inter-
rupt objects are used.

1. The DriverEntry routine creates an Interrupt object for each interrupt vector
supported by the device or the Controller

2. When an interrupt occurs, the Kernel's interrupt dispatcher uses the Interrupt
object to locate the Interrupt Service routine

3. The Unload routine deletes the Interrupt object after disabling interrupts
from the device.

Other than creating and deleting them, your driver has very little direct
interaction with Interrupt objects. You will, however, need to store a pointer to the
Interrupt object in a convenient place like the Device or Controller Extension.

Layout of an Interrupt Object

Figure 4.6 illustrates the structure of an Interrupt object. Like Adapter
objects, they are completely opaque and have no externally visible fields.
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Controller Routine

' Extension
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Figure 4.6 Structure of an Interrupt object
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Table 4.10 Access functions for an Interrupt object

Interrupt object access functions

Function Description Called by...

HalGetInterruptVector Converts bus-relative interrupt DriverEntry
vector to systemwide value

IoConnectInterrupt Associates Interrupt Service routine DriverEntry
with a system interrupt vector

KeSynchronizeExecution Synchronizes driver routines that (Various)
run at different IRQLs

IoDisconnectInterrupt Removes Interrupt object Unload

4.8

Manipulating Interrupt Objects

Several system components export functions that work with Interrupt ob-
jects. Table 4.10 lists the most common ones.

SUMMARY

Although it may seem as if there are a lot of objects involved in I/O processing,
they're all necessary and important. If you're feeling a little overwhelmed with all
this background material, you can relax. The next chapter will show you how to
put this information to work as we start writing some actual driver code.
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Writing kernel-mode code is not the same as
writing an application program. Because your driver is a trusted component of
the system, you have to be much more careful about how you behave. This chap-
ter is a short manual of good etiquette for driver writers.

DRIVER DESIGN STRATEGIES

Like most other kinds of software, drivers benefit from an organized approach to
development. This section gives some guidelines that may help shorten develop-
ment time.

Use Formal Design Methods

There's a certain cowboy mentality that pervades the driver-writing world.
For some reason, it's easy to think that you can just sit down, scribble a flowchart
on an old candy wrapper, and just start coding. Unfortunately, when you're deal-
ing with a full-duplex driver for some asynchronous communication device, such
ad hoc methods just don’t work. So many things are going on that it becomes
impossible to verify the flow of control.

A Detter approach is to use techniques that have proven helpful in other
areas of real-time design. Some suggestions follow.
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¢ Data flow diagrams can help you break your driver into discrete func-
tional units. These diagrams make it easier to visualize how the func-
tional units in your driver relate to each other, and how they transform
input data into output data.

¢ State-machine models are another good way to describe the flow of con-
trol in a driver — especially one that manages an elaborate hardware or
software protocol. In the process of verifying the state machine, you can
also ferret out synchronization issues within the driver.

* An analysis of expected data repetition rates or mandatory input-to-out-
put response will give you a set of quantitative timing requirements.
These are important when it comes time to tune the driver.

e Another useful tool is an explicit list of external events and the driver
actions these events should trigger. This list ought to include both hard-
ware events from the device and 1/O requests from users.

Using these techniques will help you to separate your driver into well-

defined functional units, which makes the driver easier to develop. In some
cases, this might even mean breaking a single driver into a pair of port and class
drivers that handle hardware-dependent and hardware-independent functions.
In any event, the time you spend analyzing and designing your driver at the
start of the project will more than pay for itself in reduced debugging and
maintenance.

Use Incremental Development

Once you've completed your initial analysis and design, it's time to start the

actual development. Following the steps below can reduce your debugging time
by helping you to detect problems while they're still easy to find.

1.
2.

Decide which kinds of kernel-mode objects your driver will need.

Decide on any additional context or state information your driver will need,
and decide where you're going to store it.

Write the DriverEntry and Unload routines. To test the driver at this point, see
if you can load and unload it using the Control Panel.

Add code that finds and allocates the driver's hardware, as well as code to
deallocate the hardware when the driver unloads. Again, the test is just
whether you can load and unload the driver using the Control Panel. You can
also use the Registry editor (REGEDT32) to see whether your driver is allocat-
ing and deallocating its resources properly.

Add driver Dispatch routines that process IRP_MJ_CREATE,
IRP_MJ_CLOSE, and any other operations that don't require device access.
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You can test the driver with a simple Win32 program that calls CreateFile and
CloseHandle.

6. Add Dispatch routines that process any other IRP_M]J_XXX function codes.
Also, add the Start I/O logic but complete each I/O request without starting
the device. Test these new code paths with a simple Win32 program that
makes ReadFile and WriteFile calls, as appropriate.

7.  Finally, implement the real Start I/O logic, the Interrupt Service routine, and
the DPC routine. Now you can test the driver using live data.

Another tip: If you're unsure about the exact behavior of the hardware, add
a DeviceloControl function that gives you direct access to the device registers.
This will allow you to find out how the device really works by writing a few
simple Win32 programs. Just remember to disable this function when you ship
the final version of the driver.

Use the Sample Drivers

The Windows NT device driver kit (DDK) contains a huge body of sample
code in the \DDK\SRC directory tree. There are many ways you can use all this
code to make driver development easier. At the very least, you should read it for
hints, clues, and comments. You might also want to be more direct about cutting
and pasting helpful chunks of code (a procedure encouraged by Microsoft). The
usual warning: If you do decide to cut and paste, make sure you thoroughly
understand the code you're grabbing.

CODING CONVENTIONS AND TECHNIQUES

Writing a trusted kernel-mode component is not the same as writing an applica-
tion program. This section presents some basic conventions and techniques that
will make it easier to code in this environment.

General Recommendations

First of all, here are some general recommendations for things you should
keep in mind when you're writing a driver:

* Avoid the use of assembly language in your driver. It makes the code
hard to read, nonportable, and difficult to maintain. In those rare situa-
tions where it's unavoidable, isolate the code in its own module. What-
ever you do, don’t go sprinkling inline assembly throughout your driver.

e If you have any platform-specific code, either put it in its own module, or
at the very least bracket it with #ifdef/#endif statements.
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¢ Don't link your driver with the standard C runtime library. Some of those
routines may hold state or context information in ways that are not driver
safe. Instead use the RtIXxx support routines supplied for drivers.

¢ Commenting code is a religious issue. Some people swear by it; others
think that out-of-date comments are worse than no comments at all.!

* Manage your driver project with some kind of source-code control pro-
gram. This is especially important for larger drivers, or drivers being
developed by several people.

Naming Conventions

It's a good idea to adopt some standard naming convention for the routines
in your driver. This makes it easier to debug and test the driver during its initial
development. It also simplifies maintenance of the driver should you have to
reacquaint yourself with the code after being away from it for a year. Microsoft
recommends the following:

* Add a driver-specific prefix to each of your routines. Choose one prefix
for standard driver routines and another, shorter prefix for any internal
functions.

e Give the routine itself a name that describes what it does.

For example, the mouse class driver supplied with the NT DDK adds the prefix
MouseClass to all its standard routines which gives names like MouseClassStartlo
and MouseClassUnload. The same class driver uses the prefix Mou for any internal
routines like MouConfiguration and MouConnectToPort.

Regardless of whether you follow these conventions or come up with some
of your own, it's important that you establish some consistent way of naming
your driver routines. When you come back to a driver that you haven’t looked at
for six months, uniform naming will make it easier to figure out what you
originally had in mind.

Header Files

NTDDK.H defines all the data types, structures, and constants used by
base-level kernel-mode drivers. SCSI, network, and video drivers use other
header files. Be sure you've included the appropriate headers in your driver.

You can use private header files to hide various hardware and platform
dependencies. For example on 80x86 systems, you can address each byte in I/O
space, but on other architectures, I/O registers may need to be aligned on 4-byte

1 Personally, I attend services at the Church of the Detailed Comment.
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or 8-byte boundaries. Hiding these differences in a header file means you can
move your driver to a new platform just by redefining some symbols and
rebuilding the driver.

Even if your driver doesn't face any of these issues, writing a few register
access macros can make the driver itself easier to read. The following code
fragment is an example of some hardware beautification macros for a parallel port
device. This example assumes that some initialization code in the driver has put
the address of the first device register in the PortBase field of the Device
Extension.

//

// Define device registers as relative offsets
//

#define PAR_DATA 0

#define PAR_STATUS 1

#define PAR_CONTROL 2

//
// Define access macros for registers. Each macro takes
// a pointer to a Device Extension as an argument

//

#define ParWriteData( pDevExt, bData ) \

(WRITE_PORT UCHAR ( \
pDevExXt->PortBase + PAR_DATA, bData ))

#define ParReadStatus( pDevExt ) \

(READ_PORT_UCHAR ( \
pDevExt->PortBase + PAR_STATUS ))

#define ParWriteControl( pDevExt, bData ) \

(WRITE_PORT_UCHAR ( \

pDevExt->PortBase + PAR_CONTROL, bData ))

Status Return Values

The kernel-mode portions of NT operating system use 32-bit status values to
describe the outcome of any particular operation. The data type of these codes is
NTSTATUS. There are three situations in which you'll need to use these status
codes:

¢ When you call one of the internal NT functions, it will communicate its
displeasure at something you're trying to do by returning an NTSTATUS
value

* When NT calls some driver-specific callback routines, the routines often
have to return an NTSTATUS value to the system.
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* When you complete the processing of an I/O request, you need to mark it
with an NTSTATUS value. This value will ultimately be mapped onto a
Win32 ERROR_XXX code.?

NTSTATUS.H defines symbolic names for a large number of NTSTATUS
values. These names all have the form STATUS_XXX, where XXX describes the
actual status message. STATUS_SUCCESS, STATUS_NAME_EXISTS, and
STATUS_INSUFFICIENT_RESOURCES are all examples of these names.

When you call a system routine that returns an NTSTATUS value, you can
either check for specific values, or you can use the NT_SUCCESS macro to test for
general success or failure. The following code fragment illustrates this technique.

NTSTATUS status;

.
H

status = IoCreateDevice( ... );
if ( !NT_SUCCESS( status )) {
// clean up and exit with failure

.
.

}

Always, always, always check the return values you get from any system
routines you call. If you just assume that the call succeeded, your driver may
damage the system somewhere down the line. If you're lucky, this kind of thing
will crash the system and draw attention to itself; if not, it may just produce
sporadic, hard-to-find errors.

NT Driver Support Routines

The I/O Manager and other kernel-mode components of NT export a large
number of support functions that your driver can call. The reference section of the
NT DDK documentation describes these functions, and you'll see plenty of
examples of their use throughout this book. For the moment, it’s enough to point
out that these support routines fall into categories based on the NT module that
exports them. Table 5.1 gives a brief overview of the kinds of support that each
NT module provides.

The ZwXxx functions need a little explanation. These are actually an internal
calling interface for all the NtXxx user-mode system services. The difference
between the user- and kernel-mode interfaces is that the ZwXxx functions don’t
perform any argument checking. Although there are a large number of these

2 NTSTATUS codes and Win32 error codes are not the same thing. The knowledge base that comes
with the NT DDK has an article that shows the mapping between NTSTATUS values and their cor-
responding Win32 ERROR_XXX codes. It's worth taking a look at this article because the mappings
from STATUS_XXX to ERROR_XXX codes don’t always make a lot of sense.



84

Chapter 5 General Development Issues

Table 5.1 Categories of support routines available to drivers

NT driver support routines

Category Supports... Function names
Executive Memory allocation ExXxx()
Interlocked queues
Zones
Lookaside lists
System worker threads
HAL Device register access HalXxx()
Bus access
I/0 Manager General driver support ToXxx()
Kernel Synchronization KeXxx()
DPC
Memory Manager Virtual-to-physical mapping MmXxx()
Memory allocation
Object Manager Handle management ObXxx()
Process Manager System thread management PsXxx()
Runtime library String manipulation RtIXxx() (mostly)
Large integer arithmetic
Registry access
Security functions
Time and date functions
Queue and list support
Security Monitor Privilege checking SeXxx()
Security descriptor functions
(Al Internal system services ZwXxx()

functions, the NT DDK reference material describes only a few of them. Microsoft
may eventually tell us about the rest, but for now, limit yourself to using the ones
that show up in the documentation.

One final point. To make life easier for driver writers, the I/O Manager
provides several convenience functions that are really just wrappers around one
or more lower-level calls to other NT modules. These wrappers usually offer a
simpler interface than their low-level counterparts, and you should use them
whenever you can.

Discarding Initialization Routines

Some compilers support the option of declaring certain functions as
discardable. Functions in this category will disappear from memory after your
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driver has finished loading, making your driver smaller. If your development
environment offers this feature, you should use it.

Good candidates for discardable functions are DriverEntry and any
subroutines called only by DriverEntry. The following code fragment shows how
to take advantage of discardable code.

#ifdef ALLOC_PRAGMA

#pragma alloc_text( init, DriverEntry )

#pragma alloc_text( init, XxStuffCalledByDriverEntry )
#pragma alloc_text( init, XxAlsoCalledByDriverEntry )

#endif

The alloc_text pragma must appear after the function name is declared, but
before the function itself is defined — so remember to prototype the function at
the top of the code module (or in a suitable header file). Also, functions referenced

in the pragma statement must be defined in the same compilation unit as the
pragma. If you don’t follow these rules, things break.

Controlling Driver Paging

Nonpaged system memory is a precious resource. You can further reduce
the burden your driver puts on nonpaged memory by putting appropriate
routines in paged memory. Any function that executes only at PASSIVE_LEVEL
IRQL can be paged. This includes Reinitialize routines, Unload and Shutdown
routines, Dispatch routines, thread functions, and any helper functions running
exclusively at PASSIVE_LEVEL IRQL. Once again, it’s the alloc_text pragma that
performs this little miracle. Here’s an example:

#ifdef ALLOC_PRAGMA

#pragma alloc_text( page, XxUnload )
#pragma alloc_text( page, XxShutdown )
#pragma alloc_text( page, XxDispatchRead )
#pragma alloc_text( page, XxDispatchHelper )

#endif

Finally, there’s another trick you can play if you have a seldom-used device
driver and you want to get it out of the way. By calling the MmPageEntireDriver
function, you can override a driver’s declared memory management attributes and
make the whole thing temporarily paged. Call this function at the end of the
DriverEntry routine and from the Dispatch routine for IRP_M]_CLOSE when there
are no more open handles to any of your devices. Call MmResetDriverPaging from
the IRP_M]J_CREATE Dispatch routine to make the driver’s page attributes revert
to normal.

If you use this technique, watch out for two things. First, make sure there
aren’t any IRPs being processed by high-IRQL portions of the driver when you
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make everything paged. Second, be certain that no device interrupts will arrive
while the driver’s ISR is paged. Handling these details is left as an exercise for the
reader.

DRIVER MEMORY ALLOCATION

Just like application programs, drivers may need to allocate temporary storage
from time to time. Unfortunately, drivers don't have the luxury of making simple
calls to malloc and free. Instead, they have to be extremely careful about what
kind of memory they allocate and how much of it they use. Drivers must also be
sure to release any memory they may be holding, since there’s no automatic
cleanup mechanism for kernel-mode code. This section describes techniques your
driver can use to work with temporary storage.

Memory Available to Drivers

You have three options when you need to allocate temporary storage in a
driver. Which one you select will depend on how long you plan to keep the data
around and what IRQL level your code is running at. You can choose from the
following:

* Kernel stack — The kernel stack provides limited amounts of nonpaged
storage for local variables during the execution of specific driver routines.

¢ Paged pool — Driver routines running below DISPATCH_LEVEL, IRQL
can use a heap area called paged pool. As its name implies, memory in this
area is pageable, and a page fault can occur when you touch it.

* Nonpaged pool — Driver routines running at elevated IRQLs need to
allocate temporary storage from another heap area called nonpaged pool.
The system guarantees that the virtual memory in nonpaged pool is
always physically resident. The Device and Controller Extensions created
by the I/O Manager come from this pool area.

Global variables are absent from this list because they introduce major syn-
chronization problems. The problem is that everyone using a given driver is shar-
ing the same copy of the driver’s code and global data. Since a driver might be
processing multiple requests at the same time, the contents of unprotected global
variables can become unpredictable.

Local static variables in a driver subroutine are just as bad. Don't try using
them to maintain state information between calls to a function. There’s no
guarantee that two successive calls to a driver routine will be made in the context
of the same I/O request.

After saying that, it’s worth pointing out that global variables can be helpful
for storing read-only parameters that affect the overall behavior the driver. For
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example, your DriverEntry routine might pull a value from the Registry that
controlled the amount of detail you report to the error-log. Storing this value in a
global variable is acceptable since it will essentially be constant for the life of the
driver. You could use a similar strategy for turning the collection of driver
performance data on and off.

Working with the Kernel Stack

On 80x86 and MIPS platforms, the kernel stack is only 12 kilobytes long. On
Alpha and PowerPC systems, the size is 16 kilobytes. This isn’t a lot of space, so
be careful how you use the kernel stack. Dreadful things will happen if you run
out of space. You can avoid kernel stack overflow by following these guidelines.

* Don't design your driver in such a way that internal routines need to
make deeply-nested calls to one another. Try to keep the calling tree as
flat as possible.

¢ If any of your routines call themselves recursively, make sure you limit
the depth of recursion. Drivers are not the place to be calculating
Fibonacci numbers.

¢ Don't build large temporary data structures on the kernel stack. Use one
of the pool areas instead.

Another characteristic of the kernel stack is that it lives in cached memory.
This means you shouldnt use temporary buffers on the stack for DMA
operations. Instead, your driver should allocate the buffer from nonpaged pool.
Chapter 12 will describe DMA caching issues in more detail.

Working with the Pool Areas

Remember that kernel-mode drivers can't allocate memory by making calls
to malloc. Instead, they have to use the ExAllocatePool and ExFreePool func-
tions. These functions allocate the following kinds of memory:

* NonPagedPool — Memory available to driver routines running at or
above DISPATCH_LEVEL IRQL.

* NonPagedPoolMustSucceed — Temporary memory that is crucial to
the driver’s continuing operation. If the allocation fails, the system will
bugcheck. Use this memory for emergencies only and release it as quickly
as possible.

* NonPagedPoolCacheAligned — Memory that’s guaranteed to be aligned
on the natural boundary of a CPU data-cache line. A driver might use this
kind of memory for a permanent I/O buffer.
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* NonPagedPoolCacheAlignedMustS — Storage for a temporary 1/0
buffer that is crucial to the operation of the driver.

¢ PagedPool — Memory available only to driver routines running below
DISPATCH_LEVEL IRQL. Normally, this includes the driver's initializa-
tion, cleanup, and Dispatch routines and any system threads the driver is
using.

¢ PagedPoolCacheAligned — I/O buffer memory used by file system
drivers.

There are several things to keep in mind when you're working with the
system memory areas. First and foremost, the pools are precious system
resources, and you shouldn't be too extravagant in their use. This is especially
true of the NonPaged and MustSucceed pool areas.

Second, your driver must be executing at or below DISPATCH_LEVEL
IRQL when you allocate or free nonpaged memory, and at or below APC_LEVEL
IRQL to allocate or free paged pool.

Finally, release any memory you've allocated as soon as have finished using
it. Otherwise, the system may start to perform badly because of low memory
conditions. In particular, be very sure to give back any pool memory when your
driver is unloaded.

System Support for Memory Suballocation

Generally, you should avoid driver designs that constantly allocate and
release blocks of pool memory smaller than PAGE_SIZE bytes. This kind of
behavior causes fragmentation of the pool areas and can make it impossible for
other parts of NT to allocate memory. Instead, if your driver needs to create and
destroy lots of little dynamic data structures, you should allocate a single, large
chunk of pool and write your own suballocation routines to carve it up.

Some kinds of drivers need to manage a collection of small, fixed-size
memory blocks. For example, SCSI class drivers maintain a supply of SCSI
Request Blocks (SRBs) which they use repeatedly to send commands to any
devices under their control. If your driver needs to do something similar, the
system provides two different mechanisms you can use to handle all the details of
suballocation.

Zone buffers A zone buffer is just a chunk of driver-allocated pool. By
calling various Executive routines, your driver can use the zone buffer to manage
collections of fixed-size blocks in paged or nonpaged memory.

If you plan to access a zone buffer at or above DISPATCH_LEVEL IRQL, you
must also set up an Executive spin lock to guard it and use the interlocked
versions of the zone management functions. Zone buffers used only below
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DISPATCH_LEVEL IRQL can be guarded with a Fast Mutex.? In this case, use the
noninterlocked set of functions.

To set up a zone buffer, you must declare a structure of type ZONE_HEADER.
You may also need to declare and initialize a spin lock or Fast Mutex object. Then
follow these steps to manage the zone buffer.

1. Call ExAllocatePool to claim space for the zone buffer itself. Then initialize
the zone buffer with ExInitializeZone. Both these steps are normally per-
formed in your DriverEntry routine. /

2. To allocate a block from a zone, call either ExAllocateFromZone or ExInter-
lockedAllocateFromZone. The interlocked version of the function uses a spin
lock to synchronize access to the zone buffer. The noninterlocked function
leaves synchronization entirely up to your driver.

3. To release a block back to the zone, use either ExFreeToZone or ExInter-
lockedFreeToZone. Again, the interlocked version of the function synchro-
nizes access to the zone, while the noninterlocked version does not.

4. Inyour driver Unload routine, use ExFreePool to release the memory used
for the zone buffer. Your driver has to make sure that no blocks from the zone
buffer are in use when you deallocate the zone buffer.

Zone buffers that are too large put a strain on the system’s memory re-
sources, so don’t make a zone buffer any bigger than necessary. Try to pick a size
that will allow your driver to handle the I/O demand level you expect on an
average system. This is a more system-friendly approach than making the zone
buffer big enough to handle the worst possible case.

If you're feeling really clever, you can try to base the size of your zone buffer
on the characteristics of the local system. MmQuerySystemSize will give you a
hint about the total amount of memory available. Systems with more memory can
support larger zone buffers. MmIsThisAnNtAsSystem will tell you whether your
driver is running under Windows NT Workstation or Server. Servers are likely to
have more memory and higher I/O demand levels. Calling these functions in your
DriverEntry routine may help you pick an appropriate zone buffer size.

If you try to allocate a block from a zone buffer and the allocation fails, your
driver should use ExAllocatePool (or ExAllocatePoolWithTag) to get the block
from one of the pool areas instead. To use this strategy, you'll need some kind of
flag bit in the allocated structure to indicate whether it came from the zone buffer
or from the general pool; otherwise you won’t know what function to call when
you want to release the block.

3 Spin locks are described later in this chapter. Fast Mutexes show up in Chapter 14.
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You can make an existing zone buffer larger by calling ExExtendZone or
ExInterlockedExtendZone, but this is generally a bad thing to do. If you enlarge a
zone buffer this way, the additional memory that the system gives to the zone will
not be reclaimed until the next bootstrap. Don’t do this unless the performance
gains from using zone allocation (compared to repeated ExAllocatePool calls) sig-
nificantly outweigh the damage it does to the system.

Lookaside lists Windows NT 4.0 provides a more efficient mechanism
called a lookaside list for managing driver-allocated memory. A lookaside list is a
linked list of fixed size memory blocks. Unlike zone buffers, lookaside lists can
grow and shrink dynamically in response to changing system conditions. There-
fore, properly-sized lookaside lists are less likely to waste memory than zone
buffers are.

Compared to zone buffers, the synchronization mechanism used with looka-
side lists is also more efficient. If the CPU architecture has an 8-byte compare
exchange instruction, the Executive uses it to guard access to the list. On plat-
forms without such an instruction, it reverts to using a spin lock for lookaside lists
in nonpaged pool and a Fast Mutex for lists in paged pool. Since most common
platforms do have the necessary compare exchange instruction, lookaside lists
have lower synchronization latency than zone buffers.

To use a lookaside list, you need to declare a header structure of type
NPAGED_LOOKASIDE_LIST or PAGED_LOOKASIDE_LIST (depending on
whether your list will be nonpaged or paged). Then follow these steps to manage
the lookaside list.

1. Use one of the ExInitializeXxxLookasideList functions to initialize the list
header structure.* Normally, this is done in you DriverEntry routine.

2. Call ExAllocateFromXxxLookasideList to allocate a block from a lookaside
list.

3. Call ExFreeToXxxLookasideList when you want to release a block.

4. Use ExDeleteXxxLookasideList to release any resources associated with
the lookaside list. Usually, this is something you do in the driver’s Unload
routine.

The operation of lookaside lists is rather interesting and deserves a little
attention. For starters, the ExInitializeXxxLookasideList functions just set up the
list header; they don’t actually allocate any memory for the list. When you call
one of these initialization functions, you can specify the maximum number of
blocks that the list can hold. (This is referred to as the depth of the list.) You can

4 In this series of instructions, replace the Xxx in the function name with either NPaged or Paged,
depending on the location of the list.
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also pass pointers to memory allocation and deallocation routines in your driver.
The sys;em will call these functions when it needs to add or remove memory from
the list.

Later, when you call one of the ExAllocateFromXxxLookasideList func-
tions, the system allocates memory as needed. As you release blocks with ExFree-
ToXxxLookasideList, they are added to the lookaside list until it reaches its
maximum allowable depth. At that point, any additional calls to ExFreeToXxx-
LookasideList result in memory being released back to the system. This behavior
guarantees that, after awhile, the number of available blocks in the lookaside list
will tend to remain near the depth of the list.

You should choose the depth value very carefully. If it's too shallow, the sys-
tem will be performing expensive allocation and deallocation operations too
often. If it’s too deep, you'll be wasting memory by tying it up in the list and not
using it. The statistics maintained in the list header structure can help you deter-
mine a proper value for the depth of the list.

UNICODE STRINGS

All character strings in the NT operating system are stored internally as Unicode.
The Unicode scheme uses 16 bits to represent each character and makes it easier
to move NT to language environments not based on the Latin alphabet. Unless
otherwise noted, any character strings your driver sends to or receives from NT
will be Unicode.®

Unicode String Datatypes

When you're working with Unicode, remember to do the following;:

¢ Prefix Unicode string constants with the letter L to let the compiler know
you want wide characters. For example, L”some text” generates Unicode
text, whereas “some text” produces 8-bit ANSI.

¢ Use the WCHAR data type for Unicode characters and PWSTR to point to
an array of Unicode characters.

¢ Use the constant UNICODE_NULL to terminate a Unicode string.

Many NT system routines work with counted Unicode strings described by
a UNICODE_STRING structure (see Table 5.2 for the contents).

5 If you don’t pass the addresses of driver-defined memory management functions, the system uses
ExAllocatePoolWithTag and ExFreePool by default.

® Note that this does 70t include data passed between a user’s buffer and a device — unless the
device specifically works with Unicode.
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Table 5.2 This structure defines the basic string object used by drivers

UNICODE_STRING, *PUNICODE_STRING

Field Contents

USHORT Length Current string length, in bytes

USHORT MaximumlLength Maximum string length, in bytes

PWSTR Buffer Address of driver-allocated buffer holding
the string

It's up to you to allocate memory for the string buffer itself. If the Buffer
field points to a NULL-terminated string, the Length field does not include the
NULL character. Notice that the two length fields in the UNICODE_STRING
structure specify a count in bytes, not characters.

Working with Unicode

The NT runtime library provides a number of functions for working with
ANSI and Unicode strings. Table 5.3 presents a few of them. See the documen-
tation for a complete list. Some of these functions have restrictions on the IRQL
levels from which they can be called, so be careful when you're using them.

If you've never worked with Unicode before, you may have some
programming habits that will cause you problems. Most of them result from

Table 5.3 The NT runtime library provides these Unicode manipulation
functions

Unicode string manipulation functions

Function Description
RtlInitUnicodeString Initializes a UNICODE_STRING from
a NULL-terminated Unicode string
RtlAnsiStringToUnicodeSize Calculates number of bytes required to
hold a converted ANSI string
RtlAnsiStringToUnicodeString Converts ANSI string to Unicode
RtlIntegerToUnicodeString Converts an integer to Unicode text
RtlAppendUnicodeStringToString Concatenates two Unicode strings
RtlCopyUnicodeString Copies a source string to a destination
RtlUpcaseUnicodeString Converts Unicode string to uppercase
RtlCompareUnicodeString Compares two Unicode strings

RtlEqualUnicodeString Tests equality of two Unicode strings
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making the assumption that a character and a byte are the same size. Watch out
for the following when you start working with Unicode:

¢ Remember that the number of characters in a Unicode string is not the
same as the number of bytes. Be very careful about any arithmetic you do
that calculates the length of a Unicode string.

* Don't assume anything about the collating sequence of the characters or
the relationship of upper- and lowercase characters.

* Don't assume that a table with 256 entries is large enough to hold the
entire character set.

INTERRUPT SYNCHRONIZATION

Writing code that executes at multiple IRQL levels requires some attention to
proper synchronization. This section examines the issues that arise in this kind of
environment.

The Problem

If code executing at two different IRQLs attempts to access the same data
structure simultaneously, the structure can be corrupted. Figure 5.1 illustrates the
details of this synchronization problem.

High IRQL

{ foo.x=10;
foo.y = 20;

}

Low IRQL

struct foo

{ foo.x=1;

foo.y = 2;

}

Copyright © 1994 by Cydonix Corporation. 940026a.vsd

Figure 5.1 Data structures can be corrupted by unsynchronized access
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To see the exact problem, consider this sequence of events:

1. Imagine that some piece of code executing at a low IRQL decides to modify
several fields in the foo data structure. It gets as far as setting the field foo.x to 1.

2. Suddenly an interrupt occurs, and a higher-IRQL piece of code gets control of
the CPU. This code also decides to modify foo, and it sets foo.x to 10 and
foo.y to 20.

3. The higher-IRQL code dismisses its interrupt, and control returns to the lower
IRQL routine which finishes its modifications to foo by setting foo.y to 2. The
lower-IRQL code is completely unaware that it was interrupted.

4. The foo structure is now corrupted, with 10 in x and 2 in y.

In the following sections, you'll see some techniques your driver can use to
avoid these kinds of collisions.

Interrupt Blocking

In the previous example, the lower-IRQL routine could have avoided these
synchronization problems by preventing itself from being interrupted. It can do
this by temporarily raising the IRQL of the CPU and then lowering it back to its
initial level after completing the modification. This technique is called interrupt
blocking. If you look at Table 5.4, you'll see the Kernel functions that your driver
can use to manipulate a CPU's IRQL value.

Rules for Blocking Interrupts

If you plan to use any of these functions to block interrupts, there are certain
rules you need to follow:

* Every piece of code touching a protected data structure has to agree on
the IRQL to use for synchronization and must only touch the structure
when it's running at the chosen IRQL.

Table 5.4 These Kernel functions control the CPU's IRQL level

Interrupt Blocking Functions

Function Description

KeRaiselrql Changes the CPU IRQL to a specified value, blocking
interrupts at or below that IRQL level

KeLowerlrql Lowers the CPU IRQL value

KeGetCurrentIrgl Returns the IRQL value of the CPU on which this call

is made
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* Drivers using this technique shouldn’t spend too much time at the ele-
vated IRQL level. Depending on the blocking level, this can have a nega-
tive impact on NT’s ability to service other interrupts quickly.

¢ Although your driver can raise the CPU's IRQL to a higher level and
reduce it back to its previous value, you must never drop the CPU’s IRQL
below the level where you found it. Disobeying this rule will compromise
the entire interrupt priority mechanism.

SYNCHRONIZING MULTIPLE CPUSs

But everything is not yet safe. Modifying the IRQL of one CPU has no affect on
other CPUs in a multiprocessor system. Consequently, IRQLs provide only local
protection to shared data. To prevent corruption of data structures accessed by
multiple CPUs, NT uses synchronization objects called spin locks.

How Spin Locks Work

A spin lock is simply a mutual-exclusion object that you associate with a
specific group of data structures. When a piece of kernel-mode code wants to
touch any of the guarded data structures, it must first request ownership of the
associated spin lock. Since only one CPU at a time can own the spin lock, the data
structure is safe from collisions. Any CPU requesting an already-owned spin lock
will busy-wait until the spin lock becomes available. Look at Figure 5.2 to see how
this works.

A given spin lock is always acquired and released at a specific IRQL level.
This has the effect of blocking potentially dangerous interrupts on the local CPU
and preventing the synchronization problems we saw in the last section. While a
CPU is waiting for a spin lock, all activity at or below the IRQL of the spin lock is
blocked on that CPU. Once the IRQL level has been raised, the CPU can request
ownership of the spin lock, which will guarantee protection against other CPUs.
Fortunately, all these details are hidden inside the Kernel’s spin lock routines.

Using Spin Locks

There are two major kinds of spin locks provided by the Kernel. They are
distinguished by the IRQL level at which you use them.

¢ Interrupt spin locks — These synchronize access to driver data struc-
tures shared by multiple driver routines. Interrupt spin locks are acquired
at the DIRQL associated with the device.

* Executive spin locks — These guard various operating system data
structures and their associated IRQL is DISPATCH_LEVEL.
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Raise IRQL Raise IRQL
Repeat Repeat
Request Spin Lock Request Spin Lock
Until ACQUIRED Until ACQUIRED
foox=1; :
foo.y =2; foo.x = 10;
Release Spin Lock foo.y = 20;
Restore IRQL Release Spin Lock
Restore IRQL

struct foo

Spin lock
for "foo"

Copyright © 1994 by Cydonix Corporation. 940027a.vsd

Figure 5.2 How spin locks synchronize multiple CPUs

When your driver uses Interrupt spin locks, most of the work happens

behind the scenes. When we look at KeSynchronizeExecution in Chapter 9, you'll
see the exact details.

Executive spin locks are another story. When you use them, you'll need to

follow these steps:

1.

Decide what data items you need to guard and how many spin locks to use.
The tradeoff is that a larger number of spin locks may allow more of your
driver to run in parallel, but it increases the chance of deadlocking if you need
to acquire multiple locks at the same time.

Declare a data item of type KSPIN_LOCK for each lock. Storage for the spin
lock must be permanently resident. Usually, you store spin locks in the Device
or Controller Extension.

Initialize the spin lock once by calling KelnitializeSpinLock. You can call this
function from any IRQL level, though most often you set up all your spin
locks in the DriverEntry routine.

Call KeAcquireSpinLock before you touch any resource guarded by a spin
lock. This function raises IRQL to DISPATCH_LEVEL, acquires the spin lock,
and returns the previous IRQL value to you. To call this function, you must be
at or below DISPATCH_LEVEL IRQL. If you're already running at DIS-
PATCH_LEVEL, you can save some work by calling KeAcquireSpinLockAt-
DpcLevel instead.
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5. When you've finished using the protected resource, call the KeRelease-
SpinLock function to let go of the lock. You call this function from DIS-
PATCH_LEVEL IRQL and it restores IRQL to its previous value. If you were
already at DISPATCH_LEVEL when you acquired the lock, you can save
some work by calling KeReleaseSpinLockFromDpcLevel, which releases the
lock but doesn't change IRQL.

Some other driver support routines (like the interlocked lists and queues
described in the next section) use Executive spin locks for protection. In these cases,
your only responsibility is to initialize the spin lock object. The routines that manage
the interlocked object will acquire and release the spin lock itself on your behalf.

Rules for Using Spin Locks

Spin locks aren't terribly difficult to use, but you do have to keep a few
things in mind when you're working with them:

* Be sure to release a spin lock as quickly as possible, because while you're
holding it, you may be blocking all activity on other CPUs. The official rec-
ommendation is not to hold a spin lock for more than about 25 microseconds.

* Don't cause any hardware or software exceptions while you're holding a
spin lock. This is a sure way to crash the system.

¢ Don't try to access any paged code or data while you're holding a spin
lock. This may result in a page fault exception, which is another quick
way to crash the system.

* Don't try to acquire a spin lock that your CPU already owns. This will
lead to a deadlock situation where the CPU freezes up waiting for itself to
release the spin lock.

* Avoid driver designs that depend on holding multiple spin locks at the
same time. Unless you're careful, this can also lead to deadlocks. If you
must use multiple spin locks, be sure that everyone agrees to acquire
them in a fixed order and release them in reverse order.

¢ Don't call any routines that violate the above rules.

LINKED LISTS

Drivers sometimes need to maintain various kinds of linked lists. You'll see exam-
ples of this in later chapters. The following subsections describe the support avail-
able from NT for managing singly- and doubly-linked lists.
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Singly-Linked Lists

To use singly-linked lists, begin by declaring a list head of type
SINGLE_LIST_ENTRY. This is also the data type of the link pointer itself. You
need to initialize the list by setting the head to NULL, as demonstrated in the
following code fragment.

typedef struct _DEVICE_EXTENSION ({

SINGLE_LIST_ ENTRY listHead; // Declare head pointer
} DEVICE_EXTENSION, *PDEVICE_EXTENSION

pDevExt->listHead.Next = NULL; // Initialize the list

To add or remove entries from the front of the list, call PushEntryList and
PopEntryList. Depending on how you're using the list, the actual entries can be in
either paged or nonpaged memory. Just remember that these functions don't
perform any synchronization of their own.

NT also provides convenient support for singly-linked lists guarded by an
Executive spin lock. This kind of protection is important if you're sharing a linked
list among driver routines running at or below DISPATCH_LEVEL IRQL. To use
one of these lists, set up the list head in the usual way, and then initialize an
Executive spin lock that will guard the list.

typedef struct _DEVICE_EXTENSION {

SINGLE_LIST ENTRY listHead; // Declare head pointer
KSPIN_LOCK listLock; // and the lock
} DEVICE_EXTENSION, *PDEVICE_EXTENSION

KeInitializeSpinLock( &pDevExt->listLock ) ;
pDevExt->1listHead.Next = NULL;

You pass a pointer to this spin lock as an explicit argument to ExInter-
lockedPushEntryList and ExInterlockedPopEntryList. To make these interlocked
calls, you must be running at or below DISPATCH_LEVEL IRQL. The list entries
themselves must reside in nonpaged memory, since the system will be linking
and unlinking them from DISPATCH_LEVEL IRQL.

Doubly-Linked Lists

To use doubly-linked lists, declare a list head of type LIST_ENTRY. This is
also the data type of the link pointer itself. You need to initialize the list head, as
demonstrated in the following code fragment.
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typedef struct _DEVICE_EXTENSION {

LIST_ENTRY listHead; // Declare head pointer
} DEVICE_EXTENSION, *PDEVICE_EXTENSION

InitializelListHead( &pDevExt->listHead );

To add entries to the list, call InsertHeadList or InsertTailList, and to pull
entries out, call RemoveHeadList or RemoveTailList. You can determine if there's
anything in a list by calling IsListEmpty. Again, the entries can be paged or
nonpaged, but these functions don't perform any synchronization.

Not surprisingly, NT supports interlocked doubly-linked lists. To use these,
set up the list head in the usual way, and then initialize an Executive spin lock that
will guard the list.

typedef struct _DEVICE_EXTENSION {

LIST_ENTRY listHead; // Declare head pointer
KSPIN_LOCK 1listLock; // and the lock
} DEVICE_EXTENSION, *PDEVICE_EXTENSION

KeInitializeSpinLock( &pDevExt->listLock );
InitializelListHead( &pDevExt->listHead );

You pass this spin lock in calls to ExInterlockedInsertTailList, ExInter-
lockedInsertHeadList, and ExInterlockedRemoveHeadList. To make these
interlocked calls, you must be running at or below DISPATCH_LEVEL IRQL. Just
like their singly-linked cousins, entries for doubly-linked interlocked lists have to
live in nonpaged memory.

Removing Blocks from a List

When you pull a block out of a list, what the system gives you is a pointer
to the LIST_ENTRY or SINGLE_LIST _ENTRY structure within the block. What
you probably want is the address of the block itself. If the XXX_LIST_ENTRY
structure is at the top of the block, everything is easy. If it’s buried in the block
somewhere, you need to do a little arithmetic to get the address of the containing
structure. Fortunately, NT provides a macro to make this easier. See Table 5.5 for
the details.

The following code fragment shows how to use this macro. It assumes
you're using the Tail.Overlay.ListEntry field of an IRP to maintain your own
linked list of IRPs, and that the listHead field of your Device Extension points to
the beginning of this list.
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Table 5.5 CONTAINING_RECORD macro arguments

CONTAINING_RECORD

Parameter Description
Address Address of a field within a data structure
Type The data type of the structure
Field Field in structure pointed at by the Address argument
Return value Base address of structure containing Field
PIRP pIrp;

PLIST_ENTRY pEntry;

pEntry = RemoveHeadList ( &pDevExt->listHead ) ;
pIrp = CONTAINING_RECORD( pEntry, IRP,
Tail.Overlay.ListEntry );

SUMMARY

In this chapter we've looked at some general guidelines for designing and coding
your driver. We've also covered a number of basic techniques that will show up
again and again throughout this book.

This is all just foundation material for the work ahead. In the next chapter,
we'll start to implement some actual driver routines.



C HAPTER 6

Initialization and
Cleanup Routines

E verything has to start somewhere. In the case of
an NT kernel-mode driver, the starting point is a function called DriverEntry.
This chapter will show you how to write a DriverEntry routine along with vari-
ous other pieces of initialization and cleanup code. By the time you finish this
chapter, you'll be able to write a minimal driver that you can actually load into
the system.

6.1 WRITING A DRIVERENTRY ROUTINE

Every NT kernel-mode driver, regardless of its purpose, has to expose a routine
whose name is DriverEntry. This routine initializes various driver data structures
and prepares the environment for all the other driver components.

Execution Context

The I/O Manager calls your DriverEntry routine once when it loads your
driver. As you can see from Table 6.1, the DriverEntry routine runs at PAS-
SIVE_LEVEL IRQL, which means it has access to paged system resources.

The DriverEntry routine receives a pointer to its own Driver object, which it
must initialize. It also gets a UNICODE_STRING containing the path to the driver’s
service key in the Registry. This string takes the form, HKEY_LOCAL_MA-

101
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Table 6.1 Function prototype for a DriverEntry routine

NTSTATUS DriverEntry IRQL == PASSIVE_LEVEL

Parameter Description

IN PDRIVER_OBJECT DriverObject Driver object for this driver

IN PUNICODE_STRING RegistryPath Registry path string for this driver's key
Return value * STATUS_SUCCESS — success

e STATUS_XXX — some error code

CHINE\System\ CurrentControlSet\Services\DriverName, and DriverEntry can
use it to extract any driver-specific parameters stored in the Registry.1

What a DriverEntry Routine Does

Although the exact details will vary slightly from driver to driver, in general

you should perform the following steps in your DriverEntry routine.

1.

If you're writing a device driver, start by finding and allocating any hardware
that the driver is supposed to manage.

Initialize the Driver object with pointers to other driver entry points.

If your driver manages a multiunit controller, call IoCreateController to cre-
ate a Controller object and then initialize its Controller Extension.

Call IoCreateDevice to create a Device object and then initialize its Device
Extension.

Make the device visible to the Win32 subsystem by calling IoCreateSymbolic-
Link.

Connect the device to an Interrupt object and initialize any DPC objects
needed by the driver.

Repeat steps 3-6 for all controllers and devices that belong to your driver.

Return STATUS_SUCCESS to the I/O Manager.

If you run into problems during initialization, your DriverEntry routine

should release any system resources it may have allocated and return an appro-
priate NTSTATUS failure code to the I/O Manager.

The following sections describe some of these steps in greater detail. The

process of finding and allocating hardware is complex enough that it needs to

1 Chapter 7 explains how to extract these parameters from a driver’s service key.
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wait until the next chapter. We'll also have to postpone the discussion of interrupt
processing and DPCs until we look at data transfer routines in Chapter 9.

Initializing DriverEntry Points

The I/O Manager is able to locate the DriverEntry routine because it has a
well-known name. Other driver routines don't have fixed names, so the I/O Man-
ager needs some other way to find them. It does this by looking in the Driver
object for pointers to specific functions. Your DriverEntry routine is responsible
for setting up these function pointers.

These function pointers fall into two categories:

¢ Functions with explicit slots in the Driver object.

¢ IRP Dispatch functions that are listed in the Driver object's MajorFunc-
tion array. These are discussed in more detail in Chapter 8.

The following code fragment shows how a DriverEntry routine initializes
both kinds of function pointers.

pDO->DriverStartIo = XxStartIo;

pDO->DriverUnload = XxUnload;

//

// Initialize the function dispatch array

//

pDO->MajorFunction[ IRP_MJ_CREATE ] = XxDispatchCreate;

pDO->MajorFunction[ IRP_MJ CLOSE ] = XxDispatchClose;

Creating Device Objects

Once you've found and allocated all your hardware, you need to create a
Device object for each physical or virtual device you want to expose to the rest of
the system. Most of the work is done by the IoCreateDevice function, which takes
a description of your device and returns a Device object, complete with an
attached Device Extension. IoCreateDevice also links the new Device object into
the list of devices managed by this Driver object. Table 6.2 contains a description
of this function.

Take a look at the NTDDK.H header file to see the standard definitions for
the DeviceType argument. Try to choose a value that's as close as possible to your
device.

If you truly believe your nuclear-powered laser retroscope is unlike any
existing device, you can define a private device type value. Just remember that
Microsoft reserves values in the range 0-32767 and leaves numbers between
32768 and 65535 for you. They also leave the bookkeeping up to you, so there's no
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Table 6.2 Function prototype for loCreateDevice

NTSTATUS loCreateDevice

IRQL == PASSIVE_LEVEL

Parameter

Description

IN PDRIVER_OBJECT DriverObject
IN ULONG DeviceExtensionSize

IN PUNICODE_STRING DeviceName
IN DEVICE_TYPE Devicelype

IN ULONG DeviceCharacteristics

IN BOOLEAN Exclusive
OUT PDEVICE_OBJECT *DeviceObject
Return value

Pointer to Driver object

Desired size of Device Extension in bytes
NT device name (see below)
FILE_DEVICE_XXX (see NTDDK.H)
Characteristics for mass-storage device
FILE_ REMOVABLE_MEDIA
FILE_READ_ONLY_DEVICE
FILE_FLOPPY_DISKETTE
FILE_WRITE_ONCE_MEDIA
FILE_REMOTE_DEVICE

TRUE if device is nonshareable
Variable that receives Device object

¢ STATUS_SUCCESS — success

e STATUS_XXX — some failure code

guarantee that the number you choose for your retroscope won't be used by some
other driver to refer to its microwave popcorn warmer.
One final point about creating Device objects. Although the vast majority of

drivers call IoCreateDevice from their DriverEntry routines, it is possible to make
this call from a Dispatch routine instead. For example, a driver that managed
pseudo-devices could use this technique to dynamically create Device objects in
response to a driver-defined DeviceloControl request.

If you do create Device objects somewhere other than in your DriverEntry
routine, you have to reset the DO_DEVICE_INITIALIZING bit in the Flags field
of the object. In the normal course of events, the I/O Manager automatically
resets this bit for a driver’s Device objects when the DriverEntry routine is fin-
ished. Until this bit is cleared, the Device object can’t be used, and CreateFile calls
referencing it will fail. The following code fragment shows what you need to do.

pDevObj->Flags &= ~DO_DEVICE_INITIALIZING;

Don'’t clear this bit until the Device object is actually initialized and ready to
process requests.

Choosing a Buffering Strategy

If the IoCreateDevice call succeeds, you need to let the I/O Manager know
whether you want to do Buffered or Direct I/O with this device. You make this
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choicezby ORing one of the following bits into the Flags field of the new Device
object.”:

¢ DO_BUFFERED_IO — If you want the I/O Manager to copy data back
and forth between user and system-space buffers.

¢ DO_DIRECT_IO — If you want the I/O Manager to lock user buffers into
physical memory for the duration of an I/O, and build a descriptor list of
the pages in the buffer.

Chapter 8 will explain how to work with user buffers in both of these cases.
If you don't set either of these bits, the I/O Manager will assume that you're han-
dling everything yourself. Making user data available to a driver is a nasty pro-
cess, so it's best to let the I/O Manager do the work for you.

NT and Win32 Device Names

Just like T.S. Elliot's cats, NT devices have more than one name. The one you
specify to IoCreateDevice is the name by which the device is known to the NT
Executive itself. If you want to make the device available to the Win32 subsystem,
the Winl16 subsystem, and virtual DOS machines, you have to give the device a
DOS name as well.

These two types of names live in different parts of the Object Manager's
namespace. You'll find NT device names dangling beneath the \Device section of
the tree, while the Win32 name appears beneath the \DosDevices area. Notice
that the DOS name is actually a symbolic link that connects it to the NT device.
Figure 6.1 illustrates this relationship.

Also notice that NT and DOS follow different device naming conventions.
NT device names tend to be longer, and they always end in a zero-based number
(FloppyDisk0, FloppyDiskl, etc). DOS devices follow the usual pattern of A
through Z for file-system devices, and names ending in a one-based number for
any other devices (LPT1, LPT2, etc).

CODE EXAMPLE: DRIVER INITIALIZATION

This example shows how a basic device driver initializes itself. You can find the
code for this example in the CHO6 directory on the disk that accompanies this
book.

2 Make sure you use a logical OR to set the Flags field of the Device object. The I/O Manager uses
other bits in this field to synchronize its own operation, and if you accidentally clear some of them,
bad things will happen.
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. Device : DosDevices
¢ Xx0 "4 ----------- Symbolic Link - -------------- XX

Copyright © 1996 by Cydonix Corporation. 960015a.vsd

Figure 6.1 NT and Win32 device names in the Object Manager's namespace

INIT.C

The functions in this module perform all the essential setup tasks needed to
manage one or more physical devices. Although the code supports multiple
devices, it assumes they are all on separate controllers, so it doesn’t create any
Controller objects.

DriverEntry This particular implementation isn't very forgiving of initial-
ization errors. If anything fails along the way, the whole driver refuses to load. A
real driver might take a more flexible approach.

//
// Header files...
//

#include "xxdriver.h"@®

//
// Forward declarations of local functions
//
static NTSTATUS
XxCreateDevice (
IN PDRIVER_OBJECT DriverObject,
IN INTERFACE_TYPE BusType,
IN ULONG BusNumber,
IN PDEVICE_BLOCK DeviceBlock,
IN ULONG NtDeviceNumber
)i

//
// If the platform can handle it, make the DriverEntry
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// routine discardable, so that it doesn't waste space
//

#ifdef ALLOC_PRAGMA

#pragma alloc_text( init, DriverEntry )@

#pragma alloc_text( init, XxCreateDevice )

#endif

//++

// Function:

// DriverEntry

//

// Description:

// This function initializes the driver, locates
// and claims hardware resources, and creates
// various NT objects needed to process I/O
// requests.

//

// Arguments:

// Pointer to the Driver object

// Registry path string for driver service key
//

// Return Value:

// NTSTATUS signaling success or failure

/ /==

NTSTATUS

DriverEntry (

IN PDRIVER_OBJECT DriverObject,
IN PUNICODE_STRING RegistryPath
)

PCONFIG_ARRAY ConfigList; @
PCONFIG_ARRAY ConfigArray;
ULONG NtDeviceNumber;
NTSTATUS status;

ULONG 1i;

//

// Load up the Config list...

//

status = XxGetHardwareInfo( @
RegistryPath,
&ConfigList );

if ( INT_SUCCESS( status ))
{

return status;
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//

// Allocate the hardware...

//

status = XxReportHardwareUsage (
DriverObject,
ConfigList );

if( !NT_SUCCESS( status ))

{
XxReleaseHardwareInfo( ConfigList );
return status;

}

//

// Export other driver entry points...

!/

DriverObject->DriverUnload = XxDriverUnload;

DriverObject->MajorFunction|[ IRP_MJ_CREATE ] =
XxDispatchOpen;

DriverObject->MajorFunction[ IRP_MJ_CLOSE ]
XxDispatchClose;

DriverObject->MajorFunction[ IRP_MJ_WRITE ]
XxDispatchWrite;

DriverObject->MajorFunction[ IRP_MJ_READ ] =
XxDispatchRead;

//

// Initialize a Device object for each piece
// of hardware we've found

//

ConfigArray = ConfigList;

NtDeviceNumber = 0;

while( ConfigArray != NULL )
{
for(i = 0;
1 < ConfigArray->Count;
i++ )

{

status = XxCreateDevice (
DriverObject,
ConfigArray->BusType,
ConfigArray->BusNumber,
&ConfigArray->Devicel[il,
NtDeviceNumber ) ;

1f( !'NT_SUCCESS( status )) break;
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NtDeviceNumber++;

}

if( !NT_SUCCESS( status )) break;
//

// Get next array in the chain
//

ConfigArray = ConfigArray->NextConfigArray;
}

if( !NT_SUCCESS( status ))
{
XxReleaseHardware ( DriverObject );

}
XxReleaseHardwareInfo( ConfigList );

return status;

}

©® This header includes both the system-supplied NTDDK.H and our pri-
vate HARDWARE.H file. It also contains definitions of any driver-
defined structures.

® NT will discard these routines after DriverEntry executes. You should
also include any functions called only by the DriverEntry routine. Do not
discard any code needed after driver initialization.

® The Config list is a driver-defined data structure that will follow us
through the DriverEntry routine. It holds information about any hard-
ware that this driver manages. Chapter 7 will show you how to use this
structure.

® We'll see this routine in the next chapter. It uses one of two techniques to
locate any hardware this driver is responsible for and put a description of
that hardware into the Config list.

XxCreateDevice This is a helper function that does all the grunt work. It
creates and initializes a single Device object using one of the hardware descrip-
tions in the Config list.

static NTSTATUS

XxCreateDevice (
IN PDRIVER_OBJECT DriverObject,
IN INTERFACE_TYPE BusType,
IN ULONG BusNumber,
IN PDEVICE_BLOCK DeviceBlock,
IN ULONG NtDeviceNumber
)
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NTSTATUS status;

PDEVICE_OBJECT pDevObj;
PDEVICE_EXTENSION pDevEXt;

UNICODE_STRING deviceName;
WCHAR deviceNameBuffer[ XX_MAX NAME_LENGTH ];

UNICODE_STRING linkName;
WCHAR linkNameBuffer[ XX_MAX NAME_LENGTH ];

UNICODE_STRING number;
WCHAR numberBuffer[10];

number .Buffer = numberBuffer;
number .MaximumLength = 10;

//
// Form the base NT device name...
//
deviceName.Buffer = deviceNameBuffer;
deviceName.MaximumLength = XX_MAX NAME_LENGTH;
deviceName.Length = 0;
RtlAppendUnicodeToString (

&deviceName,

XX_NT_DEVICE_NAME ) ;

//

// Convert the device number into a string and
// attach it to the end of the device name.

//

number .Length = 0;

RtlIntegerToUnicodeString(

NtDeviceNumber,

10,

&number ) ;
RtlAppendUnicodeStringToString (

&deviceName,

&number ) ;
//
// Create a Device object for this device...
//
status = IoCreateDevice(

DriverObject,

sizeof ( DEVICE_EXTENSION ),
&deviceName,
FILE_DEVICE_UNKNOWN, @

0,
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TRUE,
&pDevObj ) ;

if( !NT_SUCCESS( status ))
{

return status;

}

pDevObj->Flags |= DO_BUFFERED_IO; @
//

// Initialize the Device Extension
//

pDevExt = pDevObj->DeviceExtension;
pDevExt->DeviceObject = pDevObj;
pDevExt->NtDeviceNumber = NtDeviceNumber;

//
// Copy things from Device Block ©
//
pDevExt->PortBase = DeviceBlock->PortBase;
//
// Prepare a DPC object for later use
//
IoInitializeDpcRequest (
pDevObj,
XxDpcForIsr );
//
// Form the Win32 symbolic link name.
//

linkName.Buffer = linkNameBuffer;
linkName.MaximumLength = XX MAX_NAME_LENGTH;
linkName.Length = 0;
RtlAppendUnicodeToString (

&linkName,

XX_WIN32_DEVICE_NAME ) ;
//
// Reset the number string and do another
// conversion. Win32 device numbers are
// one greater than the NT equivalent.
//
number.Length = 0;
RtlIntegerToUnicodeString (

NtDeviceNumber + 1,

10,

&number ) ;
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RtlAppendUnicodeStringToString (
&1linkName,
&number ) ;

//
// Create a symbolic link so our device is
// visible to Win32...

//
status = IoCreateSymbolicLink (
&1linkName,
&deviceName ) ;
//
// See 1f the symbolic link was created...
//

1f( !'NT_SUCCESS( status ))

{
IoDeleteDevice( pDevObj );
return status;

}

//

// Make sure device interrupts are OFF
//

XxDisableInterrupts( pDevExt );

//

// Connect to an Interrupt object... @

//

status =

ToConnectInterrupt (

&pDevExt->pInterrupt,
XxIsr,
pDevExt,
NULL,
DeviceBlock->SystemVector,
DeviceBlock->Dirgl,
DeviceBlock->Dirgl,
DeviceBlock->InterruptMode,
DeviceBlock->ShareVector,
DeviceBlock->Affinity,
DeviceBlock->FloatingSave ) ;

if( !NT_SUCCESS( status ))

{
IoDeleteSymbolicLink( &linkName ) ;
IoDeleteDevice( pDevObj );
return status;
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//
// Initialize the hardware and enable interrupts
//
KeSynchronizeExecution (
pDevExt->pInterrupt,
XxInitDevice,
pDevExt ) ;

return status;

}

©® Choose a FILE_DEVICE_XXX value that's as close as possible to the type
of device your driver manages.

® Select an I/0 method for data transfer operations. In this case, we'll let
the I/O Manager copy things to and from user space for us.

® The Config list will be going away soon, so we need to move anything
important into the Device Extension. At the least, this includes the control
register base address; for DMA devices it would also include the Adapter
object pointer and count of mapping registers. More on this in Chapter 12.

@ Chapters 7 and 9 will explain more about interrupt processing.

WRITING REINITIALIZE ROUTINES

Intermediate-level drivers loading at system boot time may need to delay their
initialization until one or more lower-level drivers have finished loading. If all the
drivers belong to you, you can determine their load sequence by setting various
Registry entries at installation. But if you don't own all the underlying drivers,
your intermediate driver will need a Reinitialize routine.

Execution Context

If your DriverEntry routine discovers that it can't finish its initialization because
system bootstrapping hasn't yet gone far enough, it can register a Reinitialize routine
by calling IoRegisterDriverReinitialization. The I/O Manager will call the Reinitial-
ize routine at some later point during the bootstrap.

As you can see from Table 6.3, the Reinitalize routine runs at PASSIVE_LEVEL
IRQL, which means it has access to paged system resources. Reinitialize routines
are useful only for drivers that load automatically at system boot.

What a Reinitialize Routine Does

The Reinitialize routine can perform any driver initialization that the Driver-
Entry routine was unable to complete. If the Reinitialize routine discovers that the
environment still isn't suitable, it can call IoRegisterDriverReinitialization to
register itself again.
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Table 6.3 Function prototype for a Reinitialize routine

VOID XxReinitialize IRQL == PASSIVE_LEVEL

Parameter Description

IN PDRIVER_OBJECT DriverObject Pointer to Driver object

IN PVOID Context Context block specified at registration
IN ULONG Count Zero-based count of reinitialization calls

Return value —

6.4

WRITING AN UNLOAD ROUTINE

By default, once a driver is loaded, it remains in the system until a reboot occurs.
To make a driver unloadable, you need to write an Unload routine and store a
pointer to the routine in your Driver object's DriverUnload field. The I/O Man-
ager will then call this routine in response to an unload request from the Control
Panel's Devices applet. If your driver will never be unloaded, then you can forget
about this routine.

Execution Context

The I/O Manager calls your Unload routine once when it unloads the
driver, usually because someone is playing with the Control Panel Devices applet.
As you can see from Table 6.4, the Unload routine runs at PASSIVE_LEVEL IRQL,
which means it has access to paged system resources.

What an Unload Routine Does
Although the exact details will vary slightly from driver to driver, in general

you should perform the following steps in your Unload routine:

1. For some kinds of hardware, you may need to save the state of the device in
the Registry. That way, you'll be able to put the device back in the same state
the next time your DriverEntry routine executes. For example, an audio card
driver might save the current volume setting of the card.

Table 6.4 Function prototype for an Unload routine
VOID XxUnload IRQL == PASSIVE_LEVEL
Parameter Description

IN PDRIVER_OBJECT DriverObject Pointer to Driver object for this driver
Return value —
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2. Disable interrupts from the device and disconnect the device from its Inter-
rupt object. It's crucial that the device not generate any interrupt requests
once the Interrupt object is gone.

Deallocate any hardware belonging to your driver.
Use IoDeleteSymbolicLink to remove the device from the Win32 namespace.

Remove the Device object itself using IoDeleteDevice.

SR L

If you're managing multiunit controllers, repeat steps 4 and 5 for each device
attached to the controller. Then remove the Controller object itself using
IoDeleteController.

7.  Repeat steps 4-6 for all controllers and devices that belong to your driver.
8. Deallocate any pool memory held by the driver
Keep in mind that your Unload routine will not be called at system shut-

down time. If you need to do any special work at system shutdown, you'll need to
write a shutdown routine.

CoDE EXAMPLE: DRIVER CLEANUP

This example shows how a simple driver removes itself from the system. You can
find the complete code for this example in the CHO06 directory on the disk that
accompanies this book.

UNLOAD.C

The functions in this module basically just undo the work that was per-
formed in the DriverEntry code. Again, it assumes there aren’t any Controller
objects to deal with.

XxUnload In this case, the Unload routine is just a wrapper for calling
XxReleaseHardware.

VOID

XxDriverUnload( IN PDRIVER_OBJECT DriverObject ) {
//
// Stop interrupt processing and release hardware
//

XxReleaseHardware( DriverObject );

3

XxReleaseHardware The real cleanup work done by the driver happens
in this routine. It's been separated out as a helper routine because parts of the
driver initialization code needs to perform the same kinds of cleanup.
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XxReleaseHardware( IN PDRIVER_OBJECT DriverObject )

{

PDEVICE_OBJECT pDevODbj;
PDEVICE_EXTENSION pDevExt;

UNICODE_STRING linkName;
WCHAR linkNameBuffer[ XX_MAX NAME_LENGTH ];

UNICODE_STRINGnumber;
WCHAR numberBuffer[10];

CM_RESOURCE_LIST ResList;
BOOLEAN bConflict;

linkName.Buffer = linkNameBuffer;
linkName.MaximumLength = XX_MAX_NAME_LENGTH;

number .Buffer = numberBuffer;
number .MaximumLength = 10;

pDevObj = DriverObject->DeviceObject;®

//
// Traverse the list of Device objects
// and clean up each one in turn...

//
while( pDevObj != NULL ) {

pDevExt = pDevObj->DeviceExtension;
//

// Add code here to save the state of

// the hardware in the Registry and/or

// to set the hardware into a known condition.
//

//

// Stop handling interrupts from device
//

XxDisableInterrupts( pDevEXt );

IoDisconnectInterrupt ( pDevExt->pInterrupt );

//

// Deallocate hardware resources belonging
// only to this Device object...

//

ResList.Count = 0; // Build an empty list
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ToReportResourceUsage (

NULL, // Default class name
DriverObject, // Ptr to Driver object
NULL, // No driver resources
0,
pDevObj, // Ptr to Device object
&ResList, // Device resources
sizeof ( ResList ),
FALSE,
&bConflict ); // Junk, but required
//
// Form the Win32 symbolic link name.
//

linkName.Length = 0;

RtlAppendUnicodeToString (
&linkName,
XX_WIN32_DEVICE_NAME ) ;

//
// Attach Win32 device number to the
// end of the name; DOS device numbers
// are one greater than NT numbers...
//
number .Length = 0;
RtlIntegerToUnicodeString (
pDevExt->NtDeviceNumber + 1,
10,
&number ) ;
RtlAppendUnicodeStringToString (
&1linkName,
&number ) ;

//

// Remove symbolic link from Object
// namespace...

//

IoDeleteSymbolicLink( &linkName ) ;

//

// Get address of next Device object

// and get rid of the current one...

//

pDevObj = pDevObj->NextDevice;
ToDeleteDevice( pDevExt->DeviceObject );
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// Deallocate hardware resources owned ©
// by the Driver object...

/7

ResList.Count = 0;

ToReportResourceUsage (
NULL,
DriverObject,
&ResList,
sizeof (
pDevObj,
NULL,

Ol

FALSE,
&bConflict

}

// Build an empty list

// Default class name
// Pointer to Driver object
// Driver resources

),
// Pointer to Device object
// Device resources

// Don't override conflicts
// Junk, but required

® We're going to run the linked list of Device objects in order to do our
cleanup. Get the first Device object from the Driver object.

® The mechanics of actually releasing allocated hardware will be the subject
of Chapter 7. For the moment, just treat these two calls to IoReportRe-
sourceUsage as a piece of necessary magic.

6.6 WRITING SHUTDOWN ROUTINES

If your driver has any special processing to do before the operating system disap-
pears, you'll need to write a Shutdown routine.

Execution Context

The 1/O Manager calls your Shutdown routine once during system shut-
down. As you can see from Table 6.5, the Shutdown routine runs at PAS-
SIVE_LEVEL IRQL, which means it has access to paged system resources.

Table 6.5 Function prototype for a Shutdown routine

NTSTATUS XxShutdown

IRQL == PASSIVE_LEVEL

Parameter

Description

IN PDRIVER_OBJECT DriverObject

IN PIRP Irp
Return value

Pointer to Driver object for this driver
Pointer to shutdown IRP

e STATUS_SUCCESS — success

e STATUS_XXX — appropriate error code
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What a Shutdown Routine Does

The main purpose of a Shutdown routine is to put the device into a known
state and perhaps store some device information in the Registry. Again, saving the
current volume settings from a sound card is a good example of something a
Shutdown routine would do.

Unlike the driver's Unload routine, Shutdown routines don't have to worry
about releasing driver resources because the operating system is about to disap-

pear anyway.

Enabling Shutdown Notification

If you examine the fields in the Driver object, it won't be obvious where the
address of your Shutdown routine should go. That's because shutdown notifica-
tions are delivered to your driver in the form of an I/O request whose function
code is IRP_MJ_SHUTDOWN. This means that your Shutdown routine is really a
Dispatch routine which needs to be added to the Driver object's MajorFunction
array.

But wait, it doesn't stop there. You also need to tell the I/O Manager that
you're interested in receiving shutdown notifications. You do this by making a call
to IoRegisterShutdownNotification.

The following code fragment, taken from a DriverEntry routine, shows how
to enable shutdown notifications in your driver.

NTSTATUS DriverEntry (

IN PDRIVER_OBJECT pDO,

IN PUNICODE_STRING RegistryPath )
{

pDO->MajorFunction[ IRP_MJ_SHUTDOWN ] = XxShutdown;
IoRegisterShutdownNotification( pDO );

TESTING THE DRIVER

Even though your driver is far from being complete, there are still a few things
you can do at this point to verify its operation. In particular, you can test the
driver to be sure that it

¢ Compiles and links successfully

Loads and unloads without crashing the system

Creates Device objects and Win32 symbolic links

Releases any resources when it unloads
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These goals may not seem very ambitious, but once you've reached them,
you know you have a solid base on which to build the rest of your driver.

Testing Procedure
You can use the following procedure to test your driver. If any of the steps
fail, or if you crash the system, find and correct the problem before going on to the
next phase of the test.
Write a SOURCES file for your driver.
Use the BUILD utility to create the driver file.
Move the driver to its target destination.
Install the driver using REGEDT32. Specify manual loading.
Reboot the system.
Use the Control Panel Devices applet to load and start the driver.

N S A »wh =

Use WINOBJ to see if your driver has created a Device object and its Win32
symbolic link.

*®

Stop the driver using the Control Panel Devices applet.

9. Examine the Object Manager's namespace with WINOB]J to be certain the
driver has removed any objects it created.

The WINOBJ Utility

WINOBJ is a tool that comes with the Win32 SDK (not the DDK). This little
gem lets you view the NT Object Manager's namespace and determine whether
your driver has created its Device object and symbolic link. Microsoft supplies
executable versions of WINOBJ for the Alpha, Intel, and MIPS architectures.
Unfortunately, you won't find any source code for WINOB]J since it makes direct
calls to some native NT system services.

To use WINOB], just run the executable. The program will display the win-
dow pictured in Figure 6.2. The left pane shows the NT object directory in the
form of file folders. Double-clicking on a particular folder will show its contents
in the right window pane. Double-clicking on some objects in the right-hand pane
will display additional information about the object.® As a driver writer, you'll be
mainly interested in the driver, DosDevices, and device directories.

3 WINOB] is a little “throw-away” application that someone at Microsoft wrote. It doesn’t know
how to display information about all object types, nor do all of its informational displays make
sense. Unfortunately, because it uses some of the “secret” NtXxx system calls, its source code isn’t
included with the SDK.
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Figure 6.2 Main window of the WINOB]J utility

6.8 SUMMARY

At this point, your driver is on its way. It can initialize itself and present both NT
and Win32 devices to the system. Depending on your specific needs, it may also
be able to perform various cleanup operations, either when it's unloaded manu-
ally or when the system shuts down.

Unfortunately, your driver still can't locate the hardware it's supposed to be
managing. This is a serious deficiency for a device driver, and it's one we'll see
how to remedy in the next chapter.
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One of the first things a device driver does is to
locate any devices it has to manage. This means finding their control registers,
determining their DMA capabilities and the IRQ levels at which they interrupt,
and locating any device-specific memory. In other words, the driver has to come
up with a list of the hardware resources used by its devices. This turns out to be a
much easier task if the hardware is auto-detectable. This chapter explains how to
determine the resources needed by a device regardless of whether it auto-detects
or not.

However, it’s not enough to know what resources a device uses. Device
drivers also have to claim ownership of any hardware resources they plan to use,
in order to avoid collisions with other drivers. At the end of this chapter, you'll
learn how to allocate and deallocate system hardware.

FINDING AuTO-DETECTED HARDWARE

During system bootstrap, NT goes to a lot of trouble to figure out what kinds of
peripherals are attached to the system. This section explains how the process
works and how your driver can access auto-detected hardware information.

How Auto-Detection Works

The exact mechanism used for detecting hardware depends on the platform
architecture. On 80x86 systems, a bootstrap component called NTDETECT gath-
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ers information about the hardware environment, while on RISC-based machines,
the ARC firmware performs a similar function. In either case, the detection com-
ponent makes this hardware data available to the operating system loader, which
in turn writes it into the ...\HARDWARE\DESCRIPTION area of the Registry.
Later, device drivers can use this information to control their initialization.

The detection components use whatever methods they can to determine the
identity and characteristics of a given system. This includes both interrogating the
hardware directly, as well as using information in the ROM BIOS to draw conclu-
sions about devices attached to the system. Among other things, auto-detection
tries to determine

¢ The number and type of any I/O buses on the system
¢ Extended information about the bootstrap device itself

¢ Information about the monitor and video adapter used to display boot-
strap messages

* The presence and location of keyboard and mouse hardware

¢ Number and location of serial and parallel controllers and any recogniz-
able printers or terminals attached to them

® The presence and identity of any network cards

* Information about any other devices on each I/O bus

The specific kinds of data that auto-detection searches for include the
address and number of a device's control registers, hardware interrupt levels used
by the device, information about a device's DMA capabilities, and any ranges of
physical memory used by the device. If the hardware offers any device-specific
data, auto-detection will collect that as well.

This is a wonderful scheme, and it promises to make the lives of driver writ-
ers much easier in the long run. Later releases of Windows NT will use this strat-
egy as a basis for supporting Plug and Play capabilities. At the moment, however,
most ISA devices don't have a lot to say for themselves and therefore don't show
up during auto-detection. This means that drivers of ISA devices have to use
other means for locating their hardware. Fortunately, PCI, native EISA, and MCA
devices are much more talkative.

Auto-Detected Hardware and the Registry

Regardless of how NT auto-detects a given piece of hardware, Registry
information about the hardware always has a standard format. This isolates driv-
ers from any bus or platform peculiarities and generally makes life easier for
driver writers. Figure 7.1 shows a portion of the Registry’s hardware description
area.

The keys and subkeys below ...\System form a tree-structured model of
any auto-detectable hardware. Keys with alphanumeric names correspond to
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Figure 7.1 Auto-detected hardware data in the Registry

general classes of hardware. Hanging from each of these keys will be one or more
subkeys whose names are integers. These numeric subkeys identify specific
instances of a CPU, a floating-point unit, a bus, a controller, or a device. In the fig-
ure, the MultifunctionAdapter key represents a category of buses (in this case
ISA), and the subkey 0 below it represents the first actual instance of such a bus.
DiskController\0 is connected to this bus, and FloppyPeripheral\0 is attached to
this controller.

Tucked away in the numeric subkeys, you'll find value items containing any
information that NT was able to auto-detect. Three value items can show up in
one of these numeric subkeys:

¢ Componentinformation — This is binary data that (hopefully) the driver
will know how to interpret.

» ConfigurationData — This names the resources needed by the hardware
in the form of a REG_FULL_RESOURCE_DESCRIPTOR item.

¢ Identifier — This is an identifier string generated by the hardware or the
system BIOS. It’s converted to Unicode when it goes into the Registry.

You can use the Registry editor, REGEDT32, to browse through this auto-
detected hardware data. This is very helpful if you're trying to resolve conflicts or
make sure that something is auto-detecting properly. Once you've selected a con-
troller or peripheral’s numeric subkey, double-clicking on the ComponentInfor-
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mation value will bring up a display of the resources needed by that piece of
hardware.

Querying the Hardware Database

Although you're free to wander through the hardware description area
using RtlXxx and ZwXxx routines, IoQueryDeviceDescription (shown in Table
7.1) makes the process a little less painful. You give this function a pattern describ-
ing the kind of hardware information you want, and a callback routine. IoQuery-
DeviceDescription will then rummage around in the Registry and invoke your
callback routine each time it finds something that matches the pattern.

You tell IoQueryDeviceDescription what level of detail you want by using the
XxxType arguments listed in Table 7.2. Only the following combinations will work:

e BusType alone gets just bus-level information. !

¢ BusType and ControllerType gets bus and controller information

* BusType, ControllerType, and PeripheralType together will give you
device-level information.

Table 7.1 Prototype for loQueryDeviceDescription

NTSTATUS loQueryDeviceDescription IRQL == PASSIVE_LEVEL

Parameter Description

IN PINTERFACE_TYPE BusType Desired bus architecture (see below)

IN PULONG BusNumber Zero-based bus number

IN PCONFIGURATION_TYPE Desired controller type (see
ControllerType below)

IN PULONG ControllerNumber Zero-based controller number

IN PCONFIGURATION_TYPE Desired device type (see
PeripheralType below)

IN PULONG PeripheralNumber Zero-based device number

IN PIO_QUERY_DEVICE_ROUTINE Addpress of ConfigCallback routine
Callback

IN PVOID Context Address of driver's configuration buffer

Return value e STATUS_OBJECT_NAME_NOT_FOUND

e STATUS_XXX from ConfigCallback

! To get information about all the buses on a machine, call loQueryDeviceDescription in a loop and
iterate the BusType from zero to MaximumInterfaceType. Alternatively, you can use the HalQue-
rySystemInformation function to get an explicit list of the buses on the machine.
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Table 7.2 Bus, controller, and peripheral types for loQueryDeviceDescription

XxxType arguments for loQueryDeviceDescription

BusType ControllerType PeripheralType
CBus AudioController DiskPeripheral

Eisa CdromController FloppyDiskPeripheral
Internal DiskController KeyboardPeripheral
Isa DisplayController LinePeripheral
MicroChannel KeyboardController ModemPeripheral
MPIBus NetworkController MonitorPeripheral
MPSABus ParallelController NetworkPeripheral
NuBus PointerController PointerPeripheral
PCIBus SerialController PrinterPeripheral
PCMCIABus TapeController TapePeripheral
TurboChannel WormController TerminalPeripheral
VMEBus OtherController OtherPeripheral

Notice that the XxxType arguments are pointers to variables and not the val-
ues themselves. You pass a NULL pointer to indicate that you don’t want a partic-
ular kind of information.

You can get data about specific buses, controllers, or devices using one or
more of the XxxNumber parameters. These arguments are pointers to variables
containing the number of the bus, controller, or device that you're asking about.
Passing a NULL pointer causes the I/O Manager to enumerate all items of a par-
ticular type.

To see how this works, suppose you call IoQueryDeviceDescription and
specify BusType as Eisa, BusNumber as 0, ControllerType as DiskController, and
NULL for the ControllerNumber. The I/O Manager will call your ConfigCallback
routine once for each disk controller on EISA bus 0. With each invocation, the
callback will receive data about EISA bus 0 and one particular controller, but
nothing about any devices connected to that controller. Since multiple disk con-
trollers can be attached to a single bus, the ConfigCallback might get the same
bus information more than once, even though the controller information will be
different each time.

Now, suppose you make the same call to IoQueryDeviceDescription, but
this time you further restrict the search by specifying PeripheralType as Floppy-
DiskPeripheral and NULL for the PeripheralNumber. In this case, your Config-
Callback will be called for each floppy drive on EISA bus 0. Along with bus and
controller data, each call will receive information about a different floppy disk
device. In this case, both the bus and controller information may be repeated for
multiple calls (because several floppies can share the same controller).
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If ToQueryDeviceDescription can’t find anything in the Registry that
matches your request, it returns STATUS_OBJECT_NAME_NOT_FOUND with-
out invoking the ConfigCallback routine. Otherwise, it continues to execute your
callback until it runs out of matching items, or until your callback returns a value
other than STATUS_SUCCESS. In this case, it's supposed to return the last
NTSTATUS value sent back by your callback routine.

That’s the theory. In practice, if you pass a NULL BusNumber parameter,
you always get STATUS_OBJECT_NAME_NOT_FOUND from IoQueryDevice-
Description. This value comes back regardless of whether your callback was
invoked, and it supersedes whatever status value your callback might have
returned. This problem doesn’t occur with the other two XxxNumber arguments.
For this reason, the code example in the next section manually iterates both
BusType and BusNumber.

What a ConfigCallback Routine Does

Each time IoQueryDeviceDescription invokes your ConfigCallback rou-
tine, it passes the arguments listed in Table 7.3. These arguments are valid only
within the ConfigCallback routine itself, so you have to store any configuration

Table 7.3 Function prototype for a configuration callback

NTSTATUS XxConfigCallback IRQL == PASSIVE_LEVEL

Parameter Description

IN PVOID Context Address of configuration buffer

IN PUNICODE_STRING PathName Registry path for bus, controller, or

device information

IN INTERFACE_TYPE BusType Bus architecture

IN ULONG BusNumber Zero-based bus number

IN PKEY_VALUE_FULL_INFORMATION Pointer to Registry information
*BusInformation

IN CONFIGURATION_TYPE ControllerType Controller type

IN ULONG ControllerNumber Zero-based controller number

IN PKEY_VALUE_FULL_INFORMATION Pointer to Registry information

*ControllerInformation
IN CONFIGURATION_TYPE PeripheralType Device type

IN ULONG PeripheralNumber Zero-based device number

IN PKEY_VALUE_FULL_INFORMATION Pointer to Registry information
*Peripherallnformation

Return value e STATUS_SUCCESS

e STATUS_XXX — error code
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data that you'll need later in a temporary buffer. Usually, you allocate this buffer
somewhere in your DriverEntry routine and pass its address as the Context argu-
ment to IoQueryDeviceDescription.

Although the specific steps will depend on the hardware you're working
with, a ConfigCallback routine generally does the following:

1. It scans the Registry information for base-register address, count of registers,
interrupt level and vector information, and DMA channel requirements.

2. The ConfigCallback then stores the Registry values in the Config block allo-
cated by DriverEntry.

3. It translates the Registry's bus-specific values into systemwide values that
your driver can use and stores these values in the Config block as well.

Each time IoQueryDeviceDescription calls your ConfigCallback routine,
you repeat this procedure for a new controller or device that matches your query.

Using Configuration Data

Your main sources of information in a ConfigCallback routine come from the
various XxxType, XxxNumber, and XxxInformation arguments. The meaning of
the XxxType and XxxNumber items should be pretty obvious, but the XxxInfor-
mation arguments need some explanation.

Each XxxInformation argument is actually a pointer which may or may not
be NULL, depending on what you've asked for. If you follow this pointer, you
come to an array of three items. Use one of these predefined constants to index
into this array:

* loQueryDeviceldentifier — Points to any auto-detected hardware name
information stored in the Registry as a Unicode string.

* loQueryDeviceConfigurationData — Points to any bus-relative Registry
information about the bus, controller, or device that was discovered dur-
ing auto-detection.

* loQueryDeviceComponentinformation — Points to information about
a device's subcomponents.

Of these, IoQueryDeviceConfigurationData is probably the most helpful
Using this constant as an index into one of the XxxInformation arrays gets you a
pointer to a KEY_VALUE_FULL_INFORMATION structure which, in turn, contains
the actual Registry data about a bus, controller, or device. Figure 7.2 shows how this
works for the ControllerInformation argument to a ConfigCallback routine.

The group of CM_PARTIAL_RESOURCE_DESCRIPTOR items hanging
from the bottom of this whole mess contains the actual hardware information
you're looking for. As you can see from Table 7.4, each descriptor identifies one
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CM_PARTIAL_RESOURCE_DESCRIPTOR

Figure 7.2 Hardware information given to a configuration callback

Table 7.4 Contents of a partial resource descriptor

CM_PARTIAL_RESOURCE_DESCRIPTOR

Field Description
UCHAR Type Identifies resource being described:
* CmResourceTypePort
¢ CmResourceTypelnterrupt
¢ CmResourceTypeDma
¢ CmResourceTypeMemory
¢ CmResourceTypeDeviceSpecificData
UCHAR ShareDisposition Level of sharing for this resource:
* CmResourceShareDeviceExclusive
¢ CmResourceShareDriverExclusive
¢ CmResourceShareShared
USHORT Flags Type-specific values
union u Union based on Type field
struct Port ¢ Control register address and span
struct Interrupt ¢ Interrupt level and vector
struct Dma ¢ DMA channel and port
struct Memory ¢ Device memory address and span

struct DeviceSpecificData

¢ Device-specific information
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kind of hardware resource used by the device. To extract this data, you need to
do a little pointer arithmetic and then examine each of the partial resource
descriptors.

There’s something you need to be aware of when you start pulling informa-
tion from Partial Resource Descriptors: The partial descriptors are in no particular
order, so you need to walk through all of them to find the information you want.
The only exception to this is device-specific data, which if present, will always be
the last partial descriptor.?

Translating Configuration Data

After you've pulled all this data from the Registry, there's still one more step.
The information in the partial descriptors is all bus-relative, just the way the auto-
detection component found it. To use these values in your driver, you need to
translate them into their systemwide equivalents. Specifically, you need to call
some of the following functions:

* HalTranslateBusAddress — Converts device memory and register
addresses from bus-relative to system-wide values.

* HalGetlnterruptVector — Converts bus-specific interrupt information
into system-assigned values for the vector, DIRQL, and affinity mask.
Chapter 9 explains how to use these values to connect to an Interrupt
object.

* HalGetAdapter — locates an Adapter object your driver can use to per-
form DMA operations with a specific device. Chapter 12 explains how to
use this function.

It's worth mentioning that, in some environments, some of these transla-
tions may not do very much, but for portability, you need to perform them
anyway.

CODE EXAMPLE: LOCATING AUTO-DETECTED HARDWARE

This rather long example shows how to pull auto-detected hardware information
from the Registry. Specifically, it looks for all the hardware of type ParallelCon-
troller. You can find these files in the CHO07 directory on the disk that accompanies
this book.

2 This is because device-specific data is variable in length. Another implication is that there can be
only one device-specific data item in a group of partial resource descriptors.
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XXDRIVER.H

The following excerpts from the driver’s header file show the driver-defined
data structures involved in hardware configuration.?

DEVICE_BLOCK This temporary structure is carved out of paged pool
and is used only during driver initialization. It holds information about one spe-
cific piece of hardware. Some of the items in this block will later be copied into the
Device Extension block for safekeeping.

typedef struct _DEVICE_BLOCK {
/7
// Original values pulled from the Registry
!/
PHYSICAL_ADDRESS OriginalPortBase;
ULONG PortSpan;
ULONG OriginalIrqgl;
ULONG OriginalVector;
KINTERRUPT_MODE InterruptMode;
BOOLEAN ShareVector;
BOOLEAN FloatingSave;
ULONG OriginalDmaChannel;
/7
// Converted values that will be used by
// the driver
PUCHAR PortBase; // First control register
ULONG SystemVector;
KIRQL Dirgl;
KAFFINITY Affinity;

} DEVICE_BLOCK, *PDEVICE_BLOCK;

CONFIG_ARRAY This structure is an array of DEVICE_BLOCKSs that hold
temporary information about all the hardware belonging to the driver on one par-
ticular bus. In theory, multiple devices might show up on different buses, in
which case there would be a linked list of CONFIG_ARRAYs. The Count field
keeps track of how many DEVICE_BLOCKS actually contain valid data.

typedef struct _CONFIG_ARRAY {
//
// We keep a list of these arrays, one
// for each bus-type/bus-number combination

3 You'll notice some DMA-related fields in the following structures. Since the parallel port doesn’t
perform any DMA, these won’t be used. Chapter 12 will show you how to fill them in.
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// where we find our hardware.

//

struct _CONFIG_ARRAY *NextConfigArray;
//

// The bus to which all the devices in this
// array are attached.

//

INTERFACE_TYPE BusType;

ULONG BusNumber;

//

// Number of devices in this array

//

ULONG Count;

//

// One array-element for each device

//

DEVICE_BLOCK Device|[ XX_MAXIMUM_DEVICES 1;

} CONFIG_ARRAY, *PCONFIG_ARRAY;
DEVICE_EXTENSION This driver-defined structure is created from non-

paged pool by IoCreateDevice and automatically attached to our Device object.
It holds information that will be needed throughout the life of the driver.

typedef struct _DEVICE_EXTENSION {
PDEVICE_OBJECT DeviceObject; // Back pointer

ULONG NtDeviceNumber:; // Zero-based device num
PUCHAR PortBase; // First control register
PKINTERRUPT pInterrupt; // Interrupt object
PADAPTER_OBJECT pAdapter; // DMA Adapter object
ULONG cMapRegs; // Count of mapping regs
UCHAR DeviceStatus; // Most recent status

} DEVICE_EXTENSION, *PDEVICE_EXTENSION;

AUTOCON.C

This group of functions scans the Registry’s hardware description map for
all the parallel controllers. It fills in a separate DEVICE_BLOCK for each piece of
hardware it finds. The result is a linked list of CONFIG_ARRAYs describing all
the parallel controllers on all buses in this machine.

XxGetHardwarelnfo This routine just loops through all the known bus
types and checks to see if one or more of our devices live on each bus. This is
mainly a harness for the call to IoQueryDeviceDescription.
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NTSTATUS

XxGetHardwareInfo (
IN PUNICODE_STRING RegistryPath, // (unused)
OUT PCONFIG_ARRAY *ConfigList
)

INTERFACE_TYPE InterfaceType;

ULONG InterfaceNumber:;

CONFIGURATION_TYPE CtrlrType = ParallelController; @
PCONFIG_ARRAY ConfigArray;

NTSTATUS status;

*ConfigList = NULL; // No devices located yet
/7
// Run through all the various bus types and
// see i1f our device is on any of them...
//
for( InterfaceType = 0;
InterfaceType < MaximumInterfaceType;
InterfaceType++ )

InterfaceNumber = 0;
do {
status = IoQueryDeviceDescription( @
&InterfaceType,
&InterfaceNumber,
&CtrlrType,
NULL,
NULL,
NULL,
XxConfigCallback,
ConfigList );
//
// Return to caller if a real
// error occurs
//
if( !NT_SUCCESS( status ) ©
&& status !=
STATUS_OBJECT_NAME_NOT_FOUND )

XxReleaseHardwareInfo (

*ConfigList );
*ConfigList = NULL;
return status;



134

}

Chapter 7 Hardware Initialization

InterfaceNumber++;
} while( status !=
STATUS_OBJECT_ NAME_NOT_FOUND ) ;

} // end of for-loop
if( *ConfigList == NULL )

return STATUS_NO_SUCH_DEVICE;
else

return STATUS_SUCCESS;

® This is the hardware category. Notice that the parallel port is considered

to be a controller rather than a device.

® Since we're specifying a controller type, our callback will be invoked once

for each piece of hardware on the current bus that matches the Parallel-
Controller type.

® STATUS_OBJECT_NAME_NOT_FOUND simply means there is no such

item on the current bus — so we keep looking. Other kinds of errors
cause us to abort.

XxConfigCallback This routine gets called by the I/O Manager once for

each device that matches the category ParallelController. We have to scan through
the Registry data for information about I/O port addresses and interrupt behavior.

static NTSTATUS
XxConfigCallback(

IN PVOID Context,

IN PUNICODE_STRING PathName,

IN INTERFACE_TYPE BusType,

IN ULONG BusNumber,

IN PKEY_ VALUE_FULL_INFORMATION *BusInfo,
IN CONFIGURATION_TYPE CtrlrType,

IN ULONG CtrlrNumber,

IN PKEY_VALUE_FULL_INFORMATION *CtrlrInfo,
IN CONFIGURATION_TYPE DeviceType,

IN ULONG DeviceNumber,

IN PKEY VALUE_FULL_INFORMATION *DeviceInfo
)

//

// So we don't have to typecast the context.
//

PCONFIG_ARRAY *ConfigList = Context;

/7

// Short-hand pointers to resource data
//
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PCM_FULL_RESOURCE_DESCRIPTOR pFrd;
PCM_PARTIAL_RESOURCE_DESCRIPTOR pPrd;
PCONFIG_ARRAY ConfigArray;
PDEVICE_BLOCK DeviceBlock;

//

// These booleans will tell us whether we got
// all the information that we needed.

//

BOOLEAN bFoundPort = FALSE;

BOOLEAN bFoundInterrupt = FALSE;

NTSTATUS status;

ULONG 1i; // Generic loop control

//
// Locate the Config Array for this bus
//
status = XxFindMatchingConfigArray (@
BusType,
BusNumber,
ConfigList,
&ConfigArray );
if( INT_SUCCESS( status ))
{
return status;
}
//
// See 1f there's any room left in the Config
// Array; if not, just drop this device on the
// floor
//
if( ConfigArray->Count >= XX_MAXIMUM_DEVICES )
{
return STATUS_SUCCESS;
}
//
// Make it easier to refer to the slot in the
// Config Array belonging to this device
//
DeviceBlock =
&ConfigArray->Device[ConfigArray->Count] ;

//

// Get pointer to beginning of configuration
// data for this device in the Registry

!/

135
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pFrd = (PCM_FULL_RESOURCE_DESCRIPTOR) ©
(( (PUCHAR)CtrlrInfo
[IoQueryDeviceConfigurationDatal)
+ CtrlriInfo
[IoQueryDeviceConfigurationDatal
->DataOffset) ;

//
// Loop through all Partial Resource Descriptors
// looking for Port and Interrupt information
!/
for (1 =0; ©
i < pFrd->PartialResourceList.Count;
i++ )

pPrd = &pFrd->PartialResourceList
.PartialDescriptors[i];

//

// Switch on the various partial resource
// types. Pull out the pieces we need...
//

switch( pPrd->Type ) @

{

case CmResourceTypePort:

bFoundPort =
XxGetPortInfo(
pPrd,
BusType,
BusNumber,

DeviceBlock );
break;

case CmResourceTypelnterrupt:

bFoundInterrupt =
XxGetInterruptInfo(
pPrd,
BusType,
BusNumber,
DeviceBlock );
break;

default:
break;

} // end of switch
} // end of for-loop
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if( ! ( bFoundPort && bFoundInterrupt )) ©
{
return STATUS_NO_SUCH_DEVICE;
}
//

// Account for the slot that we've just
// filled up...
//
ConfigArray->Count++; ®
return STATUS_SUCCESS;
}

® XxFindMatchingBus is a helper function that locates the Config Array for
a specific bus type and number combination. If this is the first time a par-
ticular bus has been encountered, it creates an empty Config Array and
links it into the caller-supplied Config List.

® Create a pointer to the Full Resource Descriptor for this device. To do this,
we need to skip over the header information by adding the DataOffset
field to the starting address of the block.

® The Partial Resource Descriptors are in no particular order, so we have to
loop through all of them looking for information about ports and inter-
rupts. Anything we don't recognize, we ignore.

O Switch on the Partial Resource type and call a helper function to extract
the useful information from it. The parallel controller needs only port and
interrupt data; for other devices you might need to add cases for CmRe-
sourceTypeDma, CmResourceTypeMemory, or CmResourceTypeDevice-
SpecificData.

® When the entire scan is complete, check to be sure that all the components
have been found. If anything is missing, signal an error.

® Each time we successfully locate a device, we use up one more slot in the
Config Array. The Count field keeps track of this.

XxGetPortinfo and XxGetinterruptinfo Here are the two helper func-
tions. Each one simply pulls information out of a specific kind of Partial Resource
Descriptor and stores it in the appropriate fields of a DEVICE_BLOCK. They also
translate bus-specific values into their systemwide equivalents.

//++

// Function:

// XxGetPortInfo
//

// Description:
// This function pulls I/0 Port infomation
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// from a Partial Resource Descriptor

//

// Arguments:

// Pointer to a Partial Resource Descriptor
// Bus type for this device

// Bus number for this device

// Pointer to this device's slot in Config Array
//

// Return Value:

// This function returns TRUE if we found the
// data we wanted, FALSE otherwise.

//==

static BOOLEAN

XxGetPortInfo (

IN PCM_PARTIAL_RESOURCE_DESCRIPTOR pPrd,
IN INTERFACE_TYPE BusType,

IN ULONG BusNumber,

IN PDEVICE_BLOCK DeviceBlock

)

PHYSICAL_ADDRESS TranslatedPortBase;
ULONG uAddressSpace = 1;

DeviceBlock->OriginalPortBase =
pPrd->u.Port.Start;

DeviceBlock->PortSpan = pPrd->u.Port.Length;
if( !HalTranslateBusAddress (
BusType,
BusNumber,
DeviceBlock->OriginalPortBase,
&uAddressSpace,
&TranslatedPortBase ))

return FALSE;
}
DeviceBlock->PortBase =
(PUCHAR) TranslatedPortBase.LowPart;
return TRUE;
}

//++

// Function:

// XxGetInterruptInfo

//

// Description:

// This function pulls Interrupt infomation

// from a Partial Resource Descriptor
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//

// Arguments:

// Pointer to a Partial Resource Descriptor
// Bus type for this device

// Bus number for this device

// Pointer to this device's slot in Config Array
//

// Return Value:

// This function returns TRUE if we found the
// data we wanted, FALSE otherwise.

/ /==

static BOOLEAN

XxGetInterruptInfo (

IN PCM_PARTIAL_RESOURCE_DESCRIPTOR pPrd,
IN INTERFACE_TYPE BusType,

IN ULONG BusNumber,

IN PDEVICE_BLOCK DeviceBlock

)

if( pPrd->Flags == CM_RESOURCE_INTERRUPT_LATCHED )
DeviceBlock->InterruptMode = Latched;
else
DeviceBlock->InterruptMode = LevelSensitive;
DeviceBlock->OriginalIrgl =
pPrd->u.Interrupt.Level;
DeviceBlock->0OriginalVector =
pPrd->u.Interrupt.Vector;
DeviceBlock->ShareVector = FALSE;
DeviceBlock->FloatingSave = FALSE;
DeviceBlock->SystemVector =
HalGetInterruptVector (
BusType,
BusNumber,
pPrd->u.Interrupt.Level,
pPrd->u.Interrupt.Vector,
&DeviceBlock->Dirgl,
&DeviceBlock->Affinity );
return TRUE;

7.3 FINDING UNRECOGNIZED HARDWARE

If your device doesn't show up under auto-detection, or if you just need to sup-
plement the auto-detected information, you can hard-code additional information
into the Registry. This section explains how.
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Adding Driver Parameters to the Registry

One way to tell your driver about hardware is to hard-code the information
in a nonvolatile area of the Registry. Although this doesn't seem like a very ele-
gant solution, in the absence of any auto-detection capabilities, it may be your
only option. Many ISA devices will require the use of this technique.

The standard convention is to store device information in one or more value
entries beneath a subkey called Parameters, which dangles off the driver's service
key in the Registry. Figure 7.3 shows how this works. It's usually up to the driver's
installation procedure to set up the Parameters area. For example, suppose your
driver works with a device that the user has to configure manually with DIP
switches. When the driver’s installation program runs it displays a dialog box ask-
ing the user for the port address, IRQ, and DMA settings selected on the device. It
then stores this information in the Parameters area where the driver can find it.

There are no particular standards for the format of driver-specific parameter
data. You simply need to store the same kinds of information that your device
would generate if it auto-detected. As we've already seen, this can include the
addresses of any control registers, the IRQ level used by the device, information
about its DMA capabilities, and the address and span of any device memory. If
your driver supports multiple devices, it’s probably a good idea to create separate
subkeys underneath Parameters for each individual device. In Figure 7.3, these
are the Device0 and Devicel subkeys.

Retrieving Parameters from the Registry

You use RtlQueryRegistryValues (described in Table 7.5) to retrieve values
from the Parameters subkey of your driver's Registry key. This is a very powerful

HKEY_LOCAL_MACHINE

L S)[stem
CurrentControlSet

Services

XxDriver

Parameters

— Device0

PORT: REG_DWORD: 0x378
SPAN: REG_DWORD: 0x3
IRQ: REG_DWORD: 0x7

—— Devicel
Copyright © 1994 by Cydonix Corporation. 940049a.vsd

Figure 7.3 Registry path for driver-specific parameters
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Table 7.5 Prototype for RtlQueryRegistryValues function
NTSTATUS RtlQueryRegistryValues IRQL == PASSIVE_LEVEL

Parameter Description

IN ULONG RelativeTo - Specifies beginning of Registry path
¢ RTL_REGISTRY_ABSOLUTE
e RTL_REGISTRY_SERVICES
* RTL_REGISTRY_CONTROL
¢ RTL_REGISTRY_WINDOWS_NT
e RTL_REGISTRY_DEVICE MAP
e RTL_REGISTRY_USER
¢ RTL_REGISTRY_OPTIONAL
¢ RTL_REGISTRY_HANDLE

IN PWSTR Path Identifies an absolute or relative path
IN PRTL_QUERY_REGISTRY _ Address of a table describing the query
TABLE QueryTable
IN PVOID Context Context passed to a QueryRoutine
IN PVOID Environment Environment block used to expand any
REG_EXPAND_SZ registry entries
Return value e STATUS_SUCCESS

e STATUS_INVALID_PARAMETER
e STATUS_OBJECT_NAME_NOT_FOUND

function, and if you're going to be doing anything fancy with the Registry, you
should become familiar with all its capabilities. For our purposes, we won't need
to do much with it except translate a few value names.

To work with RtlQueryRegistryValues, you need to construct a query table
describing the values you want to translate. The query table is an array of
RTL_QUERY_REGISTRY_TABLE items terminated with an entry containing
NULL QueryRoutine and Name fields. Table 7.6 shows the format of the individ-
ual items.

As with auto-detected hardware information, it's a good idea to store the
Registry data in a configuration buffer that other parts of your DriverEntry rou-
tine can use. That way, you can move the driver to an auto-detecting environment
without having to rewrite too much code. Also remember that values from the
Registry still must be translated into systemwide values.

Other Sources of Device Information

Before we look at an example of using the Registry, it's worth mentioning
some other sources of hardware information. The first is the HalGetBusData
function which allows you to interrogate a specific slot on a specific bus. This
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Table 7.6 Query table entries

RTL_QUERY_REGISTRY_TABLE

Field Description
PRTL_REGISTRY_QUERY_ Optional query routine to be called for each item
ROUTINE QueryRoutine found in the Registry
ULONG Flags Control interpretation of other fields
e RTL_QUERY_REGISTRY_SUBKEY
e RTL_QUERY_REGISTRY_TOPKEY
e RTL_QUERY_REGISTRY_REQUIRED
e RTL_QUERY_REGISTRY_NOVALUE
e RTL_QUERY_REGISTRY_NOEXPAND
e RTL_QUERY_REGISTRY_DIRECT
PWSTR Name Name of the value caller wants to query
PVOID EntryContext 32-bit value to be passed to QueryRoutine
ULONG DefaultType Type of data
PVOID DefaultData Data item to be used if queried item not present
ULONG DefaultLength Default length of data item
function returns a buffer containing any device-specific data available from a
device. HalGetBusData is only useful if you're working with buses like PCI or
EISA that generate a lot of information.

Also, the I/O Manager keeps a data structure that tracks the number of disk,
tape, floppy, SCSI-IIBA, serial, and parallel Device objects that have been created
by various drivers. Calling IoGetConfigurationInformation returns a pointer to
this structure, which you can use to pick an appropriate number for a new device
name. It's also your responsibility to increment the counts in this structure if you
create any of the device types listed above.

Finally, if none of the techniques we've looked at will work, you may have
no alternative but to locate your hardware by poking various control register
addresses. This a potentially dangerous and error-prone way to do things. If you
take this approach, make sure you temporarily allocate the hardware before you
fiddle with it. If the allocation fails, don’t touch the hardware. Otherwise, you
may be doing something that confuses an already-loaded driver that owns the
hardware and has put it into a specific state.

7.4 CoDE EXAMPLE: QUERYING THE REGISTRY

Here is another hardware locator. This one pulls information about ISA cards
from the Parameters subkey of the driver’s service key. You can find this code in
the CHO7 directory on the disk that accompanies this book.
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REGCON.C

This group of functions scans the driver’s Parameters key looking for sub-
keys with names like Device0, Devicel, and so on. Each time it finds one, it fills
out another DEVICE_BLOCK using values from the Registry.

XxGetHardwarelnfo This routine checks for the existence of an ISA bus on
the machine; if no ISA bus shows up, it checks for an EISA bus where the ISA card
might live. If neither type of bus exists on this machine, the routine fails. This
indirect approach is necessary because ISA cards don't give any feedback about
their presence.

NTSTATUS

XxGetHardwareInfo (
IN PUNICODE_STRING RegistryPath,
IN PCONFIG_BLOCK pConfig
)

NTSTATUS status;
PCONFIG_ARRAY ConfigArray;
INTERFACE_TYPE BusType;
ULONG BusNumber;
UNICODE_STRING TempString;

//

// Check for a bus we can use. Look for an ISA bus
// first, then look for an EISA bus. If neither one
// shows up, quit.

//

BusType = Isa;

BusNumber = 0;

status = XxCheckForBus( Isa, BusNumber ) ;

if( !NT_SUCCESS( status ))
{
BusType = Eisa;
status = XxCheckForBus( Eisa, BusNumber );

if ( INT_SUCCESS( status ))

*ConfigList = NULL;
return STATUS_NO_SUCH_DEVICE;
}
//
// We found a compatible bus. Allocate
// space for the (single) Config array
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// that we'll be passing back to the

// caller.
//
1f(( ConfigArray = ExAllocatePool (
PagedPool,
sizeof ( CONFIG_ARRAY )))
== NULL )

*ConfigList = NULL;
return STATUS_INSUFFICIENT_RESOURCES;
}

RtlZeroMemory (

ConfigArray,

sizeof ( CONFIG_ARRAY ));
*ConfigList = ConfigArray;
ConfigArray->BusType = BusType;
ConfigArray->BusNumber = BusNumber;

//

// Make a copy of the Registry path name

// and be sure it has a terminator at the

// end. ..

//

TempString.Length = 0; @

TempString.MaximumLength =

RegistryPath->Length +

sizeof ( UNICODE_NULL );

if(( TempString.Buffer =
ExAllocatePool (
PagedPool,
TempString.MaximumLength ))
== NULL )
{
*ConfigList = NULL;
ExFreePool ( ConfigArray );
return STATUS_INSUFFICIENT RESOURCES;
}
RtlCopyUnicodeString( &TempString, RegistryPath );

TempString.Buffer|[ TempString.Length ] =
UNICODE_NULL;

//

// Keep looping until we run out of device
// slots or Registry entries, or until an
// error occurs.
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//
ConfigArray->Count = 0;

while( ConfigArray->Count < XX _MAXIMUM_DEVICES ) ©
{
status = XxFindNextDevice (
BusType,
BusNumber,
&TempString,
ConfigArray );

if( !NT_SUCCESS( status )) break;
ConfigArray->Count++;

} // end while-loop

ExFreePool ( TempString.Buffer );

if( !INT_SUCCESS( status ) &&
status != STATUS_OBJECT_NAME_NOT_FOUND ) ©

*ConfigList = NULL;
ExFreePool ( ConfigArray );
return status;

}

!/
// See if we found anything after all

// that work

//

if( ConfigArray->Count == 0 ) @

{
*ConfigList = NULL;
ExFreePool ( ConfigArray );
return STATUS_NO_SUCH_DEVICE;

}

//

// Everything worked...

//

return STATUS_SUCCESS;
}

® We need to go through all these shenanigans because the RegistryPath
argument is a counted UNICODE_STRING object, but the Registry query
function wants a NULL-terminated array of Unicode characters.

® This loop keeps going until we run out of slots in the Configuration block,
or until we don’t find a matching entry in the Registry. The organization
of this routine means that all the DeviceN subkeys must be consecutive.
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® STATUS_OBJECT_NAME_NOT_FOUND means we ran out of DeviceN
subkeys, but it’s not really an error.

® There must have been at least one valid set of parameter information, or
there’s a problem somewhere.

XxFindNextDevice This function extracts information about one device
from the driver's service key and stores it in a slot in the Configuration block.

static NTSTATUS
XxFindNextDevice (
IN INTERFACE_TYPE BusType,
IN ULONG BusNumber,
IN PUNICODE_STRING RegistryPath,
IN PCONFIG_ARRAY ConfigArray
)

UNICODE_STRING SubPath;
WCHAR PathNameBuffer[ 30 ];

UNICODE_STRING Number;
WCHAR NumberBuffer[10];

RTL_QUERY_REGISTRY_TABLE Table[5]; @
NTSTATUS status;

PDEVICE_BLOCK pDevice =
&ConfigArray->Device[ ConfigArray->Count ];

//

// Prepare to interrogate the Registry by
// setting up the query-table

//

RtlZeroMemory ( Table, sizeof (Table));

//

// Create a name string for the

// query table. Start by forming

// the base path name

//

SubPath.Buffer = PathNameBuffer; @
SubPath.MaximumLength = sizeof( PathNameBuffer );
SubPath.Length = 0;

RtlAppendUnicodeToString (
&SubPath,
L"Parameters\\Device" );

//
// Convert the device number into a string and
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// attach it to the end of the path name.

//

Number .Buffer = NumberBuffer;

Number .MaximumLength = sizeof( NumberBuffer );
Number.Length = 0;

RtlIntegerToUnicodeString (
ConfigArray->Count,

10, // base-10 conversion
&Number ) ;
RtlAppendUnicodeStringToString (
&SubPath,
&Number ) ;
//
// Fabricate the query
//

Table[0] .Name
Table[0] .Flags

SubPath.Buffer;
RTL_QUERY_REGISTRY_SUBKEY; ©
Table[l] .Name L"PORT"; // I/0 port addr
Table[l] .Flags RTL_QUERY_REGISTRY_DIRECT;
Table[l] .EntryContext =
&pDevice->0OriginalPortBase;
Table[2] .Name = L"SPAN"; // Number of ports
Table[2] .Flags = RTL_QUERY_REGISTRY_ DIRECT;
Table[2] .EntryContext =
&pDevice->PortSpan;

Table[3] .Name = L"IRQ"; // IRQ level

Table[3] .Flags = RTL_QUERY_REGISTRY_DIRECT;

Table[3] .EntryContext =
&pDevice->0OriginalIrqgl;

//

// Query the Registry...

//

status = RtlQueryRegistryValues( @
RTL_REGISTRY_ABSOLUTE,
RegistryPath->Buffer,

Table,
NULL, NULL );
if( !NT_SUCCESS( status )) return status;

//

// Fix up and translate the information
// from the Registry

//
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status = XxGetPortInfo( ©
BusType,
BusNumber,
pDevice ) ;

if( !NT_SUCCESS( status )) return status;

status = XxGetInterruptInfo(
BusType,
BusNumber,
pDevice ) ;
return status;

}

® We need four entries in the query table for our own use, plus one extra to
terminate the query request.

® We need to create a string that looks like “Parameters\DeviceN" to repre-
sent the subkey under the driver’s service entry.

® This query just moves us down a level in the Registry so that all future
queries will be taken from the Parameters\DeviceN subkey.

@ One call to RtlIQueryRegistryValues does it all. It adds the subkey to the
end of the driver’s service key name, looks for all four value items, and
dumps their contents back into the Configuration block.

® From here on, we use some helper functions to make the data from the
Registry usable.

XxGetPortinfo and XxGetinterruptinfo Here are the helper functions

again. You'll notice that XxGetInterruptInfo has to do some fix-up work on the
data it gets from the Registry.

//++

// Function:

// XxGetPortInfo

//

// Description:

// This function fixes up I/0 port infomation
// pulled from the driver's Registry service key
//

// Arguments:

// Bus type

// Bus number

// Pointer to this device's slot in Config Array
//

// Return Value:

// STATUS_SUCCESS

// STATUS_XXX if error
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//==
static NTSTATUS
XxGetPortInfo(
IN INTERFACE_TYPE BusType,
IN ULONG BusNumber,
IN PDEVICE_BLOCK pDevice
)
{
ULONG AddressSpace;
PHYSICAL_ADDRESS TranslatedPortBase;
//
// Convert bus-relative port-information into NT
// system-mapped values, and save the results...
//
AddressSpace = 1; // Ports should be in I/O space.
if( !HalTranslateBusAddress (
BusType,
BusNumber,
pDevice->0OriginalPortBase,
&AddressSpace,
&TranslatedPortBase ))
{
return STATUS_INSUFFICIENT_RESOURCES;
}
pDevice->PortBase =
(PUCHAR) TranslatedPortBase.LowPart;
return STATUS_SUCCESS;
}
//++
// Function:
// XxGetInterruptInfo
!/
// Description:
// This function fixes up IRQ infomation
// pulled from the driver's Registry service key
//
// Arguments:
// Bus type
// Bus number
// Pointer to this device's slot in Config array
//
// Return Value:
// STATUS_SUCCESS

// STATUS_XXX if error
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static NTSTATUS
XxGetInterruptInfo(

}

IN INTERFACE_TYPE BusType,
IN ULONG BusNumber,

IN PDEVICE_BLOCK pDevice

)

//

// Fill in the gaps by providing values for things
// that aren't in the Registry...

//

pDevice->InterruptMode = Latched;
pDevice->0OriginalVector = pDevice->Originallrql;
pDevice->ShareVector = FALSE;
pDevice->FloatingSave = FALSE;

/7
// Convert bus-relative interrupt information into
// NT system-mapped values, and save the results...
//
pDevice->SystemVector =
HalGetInterruptVector (
BusType,
BusNumber,
pDevice->0Originallrql,
pDevice->OriginalVector,
&pDevice->Dirql,
&pDevice->Affinity );
return STATUS_SUCCESS;

XxCheckForBus and XxBusCallback These little functions allow you to
check for the existence of a particular bus on the system. They make use of IoQue-
ryDeviceDescription to test for the presence of the bus.

//++

// Function:

//
/7
/7
//
/7
//
!/
//

XxCheckForBus

Description:

This function verifies the existence of a
particular bus-type and number.

Arguments:

BusType -- Isa, Eisa, etc
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// BugNumber -- 0, 1, etc
//
// Return Value:
// STATUS_SUCCESS or some error condition.
/ /==
static NTSTATUS
XxCheckForBus (
IN INTERFACE_TYPE BusType,

IN

ULONG BusNumber )

return( IoQueryDeviceDescription (

&BusType, &BusNumber,

NULL, NULL,
NULL, NULL,
XxBusCallback,
NULL ));
}
//++
// Function:
// XxBusCallback
//
// Description:
// This is a dummy function. The fact that the
// system calls it means that the bus type and
// number both exist, so all that's necessary
// is to return STATUS_SUCCESS.
//
// Arguments:
// (Unused)
//
// Return Value:
// This function always returns STATUS_SUCCESS
/==
static NTSTATUS
XxBusCallback (
IN PVOID Context,

IN
IN
IN
IN
IN
IN
IN
IN

PUNICODE_STRING PathName,
INTERFACE_TYPE BusType,

ULONG BusNumber,
PKEY_VALUE_FULL_INFORMATION *BusInfo,
CONFIGURATION_TYPE CtrlrType,

ULONG CtrlrNumber,
PKEY_VALUE_FULL_INFORMATION *CtrlrInfo,
CONFIGURATION_TYPE DeviceType,
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IN ULONG DeviceNumber,
IN PKEY_VALUE_FULL_INFORMATION *DeviceInfo )

return STATUS_SUCCESS;

ALLOCATING AND RELEASING HARDWARE

At this point, your driver has gone to a lot of trouble to locate some hardware.
Before you can use any of it, though, you have to make sure the hardware doesn't
belong to any other driver. This section explains how to allocate hardware for
your driver's exclusive use.

How Resource Allocation Works

NT maintains a central database of all currently owned hardware in the
...\HARDWARE\RESOURCEMAP section of the Registry. Before touching any
hardware resources, a driver checks this map to be sure someone else isn’t using
them. If everything is free, the driver claims the hardware by adding a description
of its resource requirements to the resource map. If the resources aren’t free, the
driver must leave them alone.*

Resources owned by a particular driver are recorded in a key with the same
name as the driver. In the resource map, these resource keys are organized in arbi-
trary classes. Your driver has the option of declaring its own class, using an exist-
ing class declared by another driver, or using the default resource class called
OtherDrivers. Resource classes are purely decorative and have no effect on
resource allocation or conflict detection.

Within a driver’s resource key, there are two values called .Raw and .Trans-
lated. Each of these items is a list describing the resources owned by the driver.
The raw list contains bus-specific information returned by routines like IoQuery-
DeviceDescription, while the translated list holds the systemwide numbers
returned by the HalTranslateXxx functions.

Drivers can also declare some resources as the property of the whole driver,
and others as belonging to individual devices. In this case, resources shared by
multiple devices go into the driver’s .Raw and .Translated values, while device-
specific resources have their own value items in the resource key. These device-
specific values are called \Device\DeviceName.Raw and \Device\Device-
Name.Translated. Figure 7.4 shows how all this works.

4 For the stability of the operating system, it’s vital that all device drivers abide by this arbitration
scheme. As a trusted kernel-mode component, no one can stop a driver from touching hardware
without allocating it. However, this can lead to confusing, unpredictable interactions between mul-
tiple drivers that think they each have exclusive access to a piece of hardware.
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HKEY_LOCAL_MACHINE

HARDWARE

RESOURCEMAP

—— XX DRIVER RESOURCES

XxDriver

.Raw

.Translated
\Device\XX0.Raw
\Device\XX0.Translated

L—— OtherDrivers

YyDriver

.Raw

.Translated
\Device\Yy0.Raw
\Device\Yy0.Translated

Copyright © 1996 by Cydonix Corporation. 960002a.vsd

Figure 7.4 Format of hardware-allocation data in the Registry

In the figure, XXDRIVER has declared a private class (called XX DRIVER
RESOURCES) for its resource list. Some resources are allocated to the driver
itself, while others belong only to the device Xx0. YYDRIVER, being somewhat
more shy, doesn’t use a private class for its resources, so its resource key ends up
in the OtherDrivers class. Again, some resources belong to the entire driver while
others have been claimed only for one device.

Again, the Registry editor, REGEDT32, gives you an easy way to poke
around in the system resource map. In the initial phases of driver development,
you can use this tool to make sure your driver is allocating all the right resources.
REGEDT32 also lets you verify that an unloadable driver has released whatever
hardware it may have claimed.

How to Claim Hardware Resources

To claim hardware, your driver needs to build a list of the resources it wants to
allocate. Figure 7.5 shows one of these lists. At the very top is a structure called a
CM_RESOURCE_LIST. As you can see, a Resource List is basically an array of the
CM_FULL_RESOURCE_DESCRIPTOR structures that you saw back in Figure 7.2.
Each Full Resource Descriptor in this array identifies all the resources used by the
driver on a single bus type and bus number. Collectively, all the Full Resource
Descriptors in a single Resource List describe the resources used on multiple buses.

As with the data passed to a ConfigCallback routine, individual resources
are identified by Partial Resource Descriptors. The only difference is that the
information given to a ConfigCallback routine is about one specific device or con-
troller. When you fabricate a Full Resource Descriptor to allocate hardware, you
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CM_RESOURCE_LIST

CM_FULL_RESOURCE_DESCRIPTOR

CM_PARTIAL_RESOURCE_LIST

CM_PARTIAL_RESOURCE_DESCRIPTOR

CM_PARTIAL_RESOURCE_DESCRIPTOR

CM_FULL_RESOURCE_DESCRIPTOR

CM_PARTIAL_RESOURCE_LIST

CM_PARTIAL_RESOURCE_DESCRIPTOR

CM_PARTIAL_RESOURCE_DESCRIPTOR

_

Copyright © 1994 by Cydonix Corporation. 940047a.vsd

Figure 7.5 Structures passed to IoReportResourceUsage

have to group together the Partial Descriptors for all resources on one bus in the
same Full Resource Descriptor.”

You request ownership of the items in a CM_RESOURCE_LIST by passing
the list to IoReportResourceUsage (described in Table 7.7). This function
checks for any conflicts with previously allocated hardware and adds your
claims to the Registry’s resource map. When you call this function, it com-
pletely replaces any existing resource list associated with the specified Driver
or Device object.

If you include a class-name string, the I/O Manager will create a private
class key for your driver’s resources. Passing NULL puts your driver’s
resource key in the OtherDrivers class. If you allocate resources using a private
class, you'll also need to specify the class name when you release these
resources.

Remember that you can associate a resource list either with the Driver object
itself or with a particular Device object. Any resources being used by multiple
devices should be in the DriverList, while device-dedicated resources should go
in the DeviceList. If you break your resources up this way, you'll need to call
IoReportResourceUsage several times: once for the DriverList and once for each
DeviceList.

If ToReportResourceUsage returns STATUS_SUCCESS, you have to check
the value returned in the ConflictDetected boolean. If this variable is TRUE, it

5 It's also worth emphasizing that these Partial Resource Descriptors contain the original bus-rela-
tive values for such things as the I/O port base and the IRQ level — not the translated values
returned by functions like HalTranslateBusAdress.
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Table 7.7 Prototype for loReportResourceUsage

NTSTATUS loReportResourceUsage

IRQL == PASSIVE_LEVEL

Parameter

Description

IN PUNICODE_STRING ClassName
IN PDRIVER_OBJECT DriverObject
IN PCM_RESOURCE_LIST DriverList
IN ULONG DiriverListSize

IN PDEVICE_OBJECT DeviceObject
IN PCM_RESOURCE_LIST DeviceList
IN ULONG DeviceListSize

IN BOOLEAN OverrideConflict

Optional class name for driver

Driver object associated with this driver
Resources used by all driver's devices
Size of list in bytes

Device that will own the resources
Resources used by a single device

Size of list in bytes

e TRUE — ignore resource conflicts

OUT PBOOLEAN ConflictDetected

Return value

FALSE — return error if conflict

TRUE — resources already claimed
FALSE — no conflict
STATUS_SUCCESS
STATUS_INSUFFICIENT_RESOURCES

means that one or more items in your resource list already belong to someone
else. In this case, your driver musin’t use any of the hardware in the list.

The OverrideConflict parameter determines the behavior of IoReportRe-
sourceUsage when it detects a conflict. If you pass FALSE, the function makes no
changes to the Registry’s resource map. Instead, it puts a message in the event log
identifying the conflicting resources and their current owner. If OverrideConflict
is TRUE, IoReportResourceUsage does add your resource list to the resource map
but doesn’t send a message to the system event log. However, even though your
resource list is in the Registry, your driver mustn’t touch any hardware in the list;
someone else thinks they own it.

One odd bit of behavior is worth mentioning: Sometimes when there’s a
resource conflict, IoReportResourceUsage returns an unsuccessful status code
that has no corresponding Win32 error number. The sample code in the next sec-
tion shows how to handle this situation properly.

How to Release Hardware

When you want to free up resources held by your driver, you build an empty
resource list and call IoReportResourceUsage. Since the new list completely
replaces the previous one, this has the effect of releasing any resources described in
the old list. If you allocated hardware on a device-specific or driver-wide basis, you

® Your driver has to be identified in the Registry as a system event logging component in order for
the Event Viewer to display these messages. Chapter 13 explains how to set this up. These mes-
sages can be very helpful for debugging resource conflicts.
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need to release it the same way. Also, if you used a private class name to allocate the
hardware, you'll need to use the same class name to free it.

The following code fragment shows how a driver's Unload routine might

release hardware resources associated with a specific Device object.

CM_RESOURCE_LIST ResList;
BOOL bConflict;

ResList.Count = 0;

ToReportResourceUsage (

NULL, // Default class name

pDriverObject, // Pointer to Driver object

NULL, // No driver-wide resources
0,

pDeviceObject, // Pointer to Device object

&ResList, // Device-specific resources

sizeof ( ResList ),

FALSE, // Don't override conflict

&bConflict ); // Junk, but required

Mapping Device Memory

If your device uses a range of dedicated memory addresses, your driver will

need to make that memory available during initialization. Depending on the
architecture of the device, your driver will need to perform one of the following
two procedures.

Driver-chosen addresses Some devices (like Ethernet adapters) have a

control register that specifies the starting address of a device specific memory
area. In this case, your driver needs to allocate memory for the device and let the
device know where the memory is located.” Follow these steps to set up this
memory area:

1.
2.

Call IoReportResourceUsage to allocate the device's control registers.
Call HalGetAdapter to find the Adapter object associated with your device.

Call HalAllocateCommonBuffer to allocate buffer space for your device's
memory. This function returns both a system virtual address and a physical
address.

Save the system virtual address of this buffer somewhere in your Device
Extension. Use this virtual address from within your driver whenever you
need to reference the device's memory area.

7 This is actually just a special case of something called common buffer bus master DMA which is

described in Chapter 12.
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5. Write the buffer’s physical address into whatever device registers control
access to the device memory.

6. When your driver unloads, call HalFreeCommonBuffer to release the buffer.

Hard-wired addresses Some pieces of hardware (like VGA controllers)
have very specific ideas about where their shared buffers should be located. If
your device needs to use a particular range of physical addresses for device mem-
ory, follow these steps to make the memory available to your driver:

1. Call IoReportResourceUsage to request exclusive ownership of the range of
physical addresses belonging to the device.

2. Call HalTranslateBusAddress to convert the device's bus-relative physical
addresses into systemwide values.

3. Call MmMaploSpace to map the device's memory into system virtual space.
Save the address returned by this function and use it to access device memory
from within your driver.

4. When your driver unloads, call MmUnmapIoSpace to break the connection
between the device's memory and system virtual space.

Loading Device Microcode

As part of their initialization, some complex devices need to have microcode
loaded into them from a disk file. If the quantity of microcode is small, you can
store it as a REG_BINARY value in the driver’s Parameters subkey. For a device
that needs large amounts of microcode, this may not be feasible.

Fortunately, NT provides several functions that give drivers handle-based
access to files and directories. As you can see from Table 7.8, these routines bear a
strong resemblance to the Win32 user-mode file API. Using these functions, a
driver could load vast quantities of microcode into a device without overburden-
ing the Configuration Manager. In this case, only the path-name for the microcode
file would need to be stored in the driver’s Parameters subkey.

There are three important things to keep in mind if you decide to use these
functions. First, you can only call them from parts of your code running at
PASSIVE_LEVEL IRQL. This effectively limits their use to DriverEntry, the
Unload routine, Dispatch routines, and any thread-based parts of your driver.

Second, you can’t access any files with these calls until the file-system
driver for the target volume has finished initializing itself. If your driver loads
during system bootstrap, you can guarantee that it loads after any file systems by
setting up proper group dependencies in the Registry. Chapter 16 explains how
to do this.

Finally, avoid the temptation to store driver initialization parameters in disk
files. That kind of thing belongs only in the Registry. The proliferation of .INI files
in earlier versions of Windows was a bad thing; don’t litter NT with them.
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Table 7.8 Kernel-mode code can access files using these functions

ZwXxx file functions IRQL == PASSIVE_LEVEL
IF you want to... THEN call...

Create or open a file, device, or directory ZwCreateFile

Read data into memory from a file ZwReadFile

Write data from memory to a file ZwWriteFile

Get file size, position, attribute information ZwQueryInformationFile
Set file size, position, attribute information ZwSetInformationFile
Close an open file handle ZwClose

For more information about the functions listed in Table 7.8, take a look at
the online documentation in the NT DDK. The DDK also contains some sample
code that shows how to use these routines.

CODE EXAMPLE: ALLOCATING HARDWARE

This example illustrates the hardware allocation techniques we’ve just been look-
ing at. It assumes that the device uses a DMA channel, but no device-specific
memory or other device-specific data. You can find this code in the CHO07 direc-
tory on the disk that accompanies this book.

RESALLOC.C

The functions in this file allocate a group of resources for exclusive use by a
specific Driver object.

XxReportHardwareUsage Given a linked list of CONFIG_ARRAYsS, this
routine buids a Resource List and marks the resources as belonging to the entire
Driver object. No resources are tagged as belonging to specific Device objects.

NTSTATUS

XxReportHardwareUsage (
IN PDRIVER_OBJECT DriverObject,
IN PCONFIG_ARRAY ConfigList
)

ULONG ListSize;

PCM_RESOURCE_LIST ResourceList;
PCM_FULL_RESOURCE_DESCRIPTOR Frd;
PCM_PARTIAL_RESOURCE_DESCRIPTOR Prd;
PCONFIG_ARRAY CurrentArray;
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BOOLEAN bConflictDetected;
NTSTATUS status;
ULONG 1i;

//
// Calculate size of resource list ©
!/
ListSize =
FIELD_OFFSET( CM_RESOURCE_LIST, List[0] );

CurrentArray = ConfigList;

while( CurrentArray != N<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>