
Jesigned for

.
A icrosoft•
VindowsNT"
Vindows095

~
Microsoft® Programming Series Includes

prerelease
Information

about
Windows NT

5.0

The Official

Guide to the

Architecture

and Internals of

Microsoft's Premier

Operating System

David A. Solomon
Based on the first edition
by Helen Custer

Foreword by Lou Perazzoli

Microsoft Press

®

Inside
Windows NT.

Second Edition

David A. Solomon ·

Microsoft Press

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright© 1998 by David A. Solomon. Portions copyright© 1998 by Microsoft Corporation.

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Solomon, David A.

Inside Windows NT I David A. Solomon. -- 2nd ed.
p. cm.

Includes index.
ISBN 1-57231-677-2
1. Microsoft Windows NT. 2. Operating systems (Computers)

I. Title.
QA76.76.063S629 1998
005.4'469--dc21

Printed and bound in the United States of America.

2 3 4 5 6 7 8 9 QMQM 3 2 1 0 9 8

97-31952
CIP

Distributed in Canada by ITP Nelson, a division of Thomson Canada Limited.

A CIP catalogue record for this book is available from the British Library.
i

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or
contact Microsoft Press International directly at fax (425) 936-7329. Visit our Web site at
mspress.microsoft.com.

Macintosh is a registered trademark of Apple Computer, Inc. Intel is a registered trademark of
Intel Corporation. ActiveX, BackOffice, DirectX, Microsoft, Microsoft Press, MS-DOS, Visual
C++, Win32, Windows, and Windows NT are registered trademarks and IntelliMirror, MSDN,
and NetMeeting are trademarks of Microsoft Corporation. Other product and company names
mentioned herein may be the trademarks of their respective owners.

Acquisitions Editor: Eric Stroo
Project Editor: Sally Stickney
Technical Editor: Jim Fuchs

To my grandparents, Joe and Rita Solomon, who gave me

my first computer and whose lives were-and still are-a source

of inspiration and guidance for me.

BRIEF CONTENTS

Foreword .. xv
Acknowledgments ... xix
Introduction ... xxi

CHAPTER ONE

Concepts and Tools 1

CHAPTER TWO

System Architecture 27

CHAPTER THREE

System Mechanisms 81

CHAPTER FOUR

Processes and Threads 141

CHAPTER FIVE

Memory Management 217

CHAPTER SIX

Security 305

CHAPTER SEVEN

The 1/0 System 325

CHAPTER EIGHT

Cache Manager 363

CHAPTER NINE

Windows NT File System (NTFS) 395

CHAPTER TEN

Windows NT 5.0 and Beyond 451

Glossary .. 483
Index ... 505

v

CONTENTS

Foreword .. xv

Acknowledgments ... xix

Introduction ... xxi

CHAPTER ONE

Concepts and Tools 1
Foundation Concepts and Terms ... 1

Win32 API .. , 1
Services, Functions, and Routines .. 3
Processes and Threads ... 4

Virtual Memory ... 6
Kernel Mode vs. User Mode .. 8
Objects and Handles ... 12
Security .. 13
Registry .. 14

Networking : .. 15
Unicode .. : ... 16

Tools for Digging into Windows NT Internals 17
Windows NT Resource Kits .. , ... 18
Platform SOK and Windows NT DOK .. 19
Key Windows NT Base Tools ... 19
Free Builds and Checked Builds ... 22

Examining Internal Data Structures and Variables 25
Conclusion .. 25

CHAPTER TWO

System Architecture 27
Requirements and Design Goals .. 27
Operating System Models ... 28

vii

INSIDE WINDOWS NT

Architecture Overview ... 32
Portability ... 34
Symmetric Multiprocessing .. 35
Windows NT Workstation vs. Windows NT Server 39

Key System Components ··································:··································· 44
Environment Subsystems and Subsystem DLLs 45
NTDLL.DLL .. 58
Executive .. 59
Kernel ... 60
Hardware Abstraction Layer (HAL) .. 63

Device Drivers .. 64
Peering into Undocumented Interfaces ... 66

System Processes ... 70
Conclusion : .. 79

CHAPTER THREE

System Mechanisms 81
Trap Dispatching•... 81

Interrupt Dispatching ... 83
Exception Dispatching ... 94

System Service Dispatching .. 99
Object Manager ... 101

Executive Objects .. 104
Object Structure ... 106

Synchronization .. 123
Kernel Synchronization .. 125
Executive Synchronization ... 127

Windows NT Global Flags ... 135
Local Procedure Calls (LPCs) ... 137
Conclusion .. 140

CHAPTER FOUR

Processes and Threads 141
Process Internals .. 141

Data Structures ... 141
System Variables .. 148
Performance Counters ... 148

viii

Contents

Relevant Functions ... 150

Relevant Tools ... 151

Flow of CreateProcess ... 156
Stage 1: Opening the Image to Be Executed 159

Stage 2: Creating the Windows NT Executive

Process Object .. 162

Stage 3: Creating the Initial Thread and Its Stack

and Context 168

Stage 4: Notifying the Win32 Subsystem About the

New Process .. 168
Stage 5: Starting Execution of the Initial Thread 169

Stage 6: Performing Process Initialization in the Context

of the New Process ... 170

Thread Internals .. 171
Data Structures ... 171

System Variables ... 1.75

Performance Counters .. 176

Relevant Functions ... 177

Relevant Tools ... 178
Flow of CreateThread ... 180
Thread Scheduling ... 184

Overview of Windows NT Scheduling .. 184

Priority Levels .. 187

Win32 Scheduling APls ... 189

Relevant Tools .. 190

Real-Time Priorities .. 192

Interrupt Levels vs. Priority Levels ... 193

Thread States ... · 194

Quantum .. 195

Scheduling Data Structures ... 197
System Variables .. ·.... 198

Scheduling Scenarios .. 199

Context Switching ... · 203

Idle Thread ... 204

Adjusting Thread Scheduling ... 204

Thread Scheduling on Symmetric Multiprocessing Systems 212

Conclusion .. ; 215

ix

INSIDE WINDOWS NT

CHAPTER FIVE

Memory Management 217
Services the Memory Manager Provides ... 218

Reserving and Committing Virtual Memory 219

Shared Memory and Mapped Files ... 220

Protecting Memory ... 222

Copy-.On-Write ... 224

Heap Functions .. 226

System Memory Pools ... 227

Digging into the Memory Manager ... 232
Components ... 232

Internal Synchronization ... 233

Tuning the Memory Manager ... 234

Examining Memory Usage ... 236

Address Space Layout ... 238
User Address Space Layout .. 241

System Address Space Layout .. 246

Address Translation ... 250
Translating a Virtual Address ... 252

Page Directories ... 254

Process and System Page Tables ... 256

Page Table Entries .. : 256

Byte Within Page .. 261

Translation Look-Aside Buffer .. 261

Page Fault Handling ... 265
Invalid PTEs ... 266
Prototype PT Es ... 267

In-Paging 1/0 .. 269

Collided Page Faults .. 270

Page Files .. 271

Virtual Address Descriptors .. 273
Working Sets ... 276

Paging Policies ... 276

Process Working Sets .. 278

Balance Set Manager and Swapper .. 281
System Working Set .. ., 282

x

Contents

Page Frame Database .. : 285
Page List Dynamics ... 290
Modified Page Writer .. 292
PFN Data Structures .. 294

Section Objects ... 298
Conclusion .. 304

CHAPTER SIX

Security 305
Security System Components .. 307
Protecting Objects .. 310

Security Descriptors and Access Control 310

Access Tokens and Impersonation ... 315

Security Auditing .. 320
Logon ... 321

WinLogon Initialization .. : 322

User Log on Steps .. 323
Conclusion .. 324

CHAPTER SEVEN

The 1/0 System 325
1/0 System Structure and Model ... 326

1/0 Manager ... 328

1/0 Functions : .. 329
Device Drivers ... 332

Structure of a Driver ... 338
Synchronization .. 340

· Data Structures ... 341
File Objects .. 341

Driver Objects and Device Objects ... 344
1/0 Request Packet .. 348

1/0 Processing ... 350
1/0 Request to a Single-Layered Driver 350

1/0 Requests to Layered Drivers .. 356
Conclusion .. 360

xi

INSIDE WINDOWS NT

CHAPTER EIGHT

Cache Manager 363
Key Features of the Windows NT Cache Manager 363

Single, Centralized System Cache , 364
The Memory Manager .. 364
Cache Coherency .. 365
Virtual Block Caching ... 367
Stream-Based Caching .. 367
Recoverable File System Support.. .. 368

Cache Structure .. 369
Cache Size ... 371

Cache Virtual Size ... 371
Cache Physical Size ... 372

Cache Data Structures ... 374
Systemwide Cache Data Structures .. 375
Per-File Cache Data Structures ... 376

Cache Operation ... 378
Write-Back Caching and Lazy Writing ... 379
Intelligent Read-Ahead .. 382
System Threads ... 384
Fast 1/0 .. 385

Cache Support Routines ... 387
Copying to and from the Cache .. 388
Caching with the Mapping and Pinning Interfaces 389
Caching with the Direct Memory Access Interfaces 390
Write Throttling ... 392

Conclusion ..•................. 393

CHAPTER NINE

Windows NT File System (NTFS) 395
NTFS Design Goals and Features .. 395

High-End File System Requirements ... 395
Additional Features in NTFS .. 399

NTFS Internal Structure ... 402
NTFS On-Disk Structure .. 405

Volumes .. 405
Clusters .. 406

xii

Contents

Master File Table (MFT) ... 407
File Reference Numbers ... 410
Files Records .. 410
Filenames .. 412
Resident and Nonresident Attributes .. 415
Filename Indexing ... 419
Data Compression ... 421

Recoverability Support .. 426
Evolution of File System Design ... 426
Logging ... 430
Recovery .. 436

Fault Tolerance Support .. 440
Volume Management Features .. 440
Fault Tolerant Volumes ... 443
NTFS Bad-Cluster Recovery .. 445

Conclusion .. 450

CHAPTER TEN

Windows NT 5.0 and Beyond 451
Overview of the New Features in Windows NT 5.0 451

Active Directory .. 452
Distributed Security Extensions ... 453
Encryption .. 455
Security Configuration Editor ... 457
Distributed File Services .. 457
NTFS Extensions .. 458 -
Microsoft Management Console .. 459
Microsoft Software Installer .. 460
Storage Management .. 461
lntelliMirror .. 461
Application Development ... 462
Job Object ... 462
Plug and Play and WDM .. 464
Very Large Memory on Alpha ... ·,:: 465
User Improvements .. 467

xiii

INSIDE WINDOWS NT

System Extensions ... 470
Clusters .. 470
Microsoft Terminal Server .. 470

Plug and Play and Power Management ... 472
The Evolution of Plug and Play .. 473
Windows NT 5.0 Implementation ... 473
Driver Changes ... ~ 475
Windows NT 5.0 Plug and Play Architecture 476

64-Bit Windows NT ~ ... 480
Conclusion .. 481

Glossary .. 483

Index ... 505

xiv

FOREWORD

People have constantly been asking me when the first edition of Inside Win
dows NT would be updated. After three major releases ofWindows NT, it became
obvious that enough things had changed that a revised edition was desperately
needed. For example, the client/server model for the graphics engine was
completely redone in Windows NT 4.0, moving most of the USER and GDI
components into kernel mode. Completion ports, which are the cornerstone
of high-performance 1/0 applications, didn't exist when the first edition of the
book was published. Many other small enhancements have been made to the
system as well, such as scatter/gather 1/0, locking changes in the scheduler and
the memory manager for better scalability, changes in the scheduling algo
rithm, and support for new APis. Even though these changes have made
Windows NT a more robust and powerful operating system (although I'd like
to think that the fact that no kernel component has had to undergo major
changes is a testimony to the thoroughness of the initial design), they have also
meant that the material in the first edition of Inside Windows NT, which has
become a bible for Windows NT developers, has become somewhat dated and
in need of expansion.

About a year ago, David Solomon agreed to work on the second edition
of Inside Windows NT; and like most people, he greatly underestimated the time
it would take to write this book. (Even so, he did release it before Windows NT
5.0!) However, when I heard that David was slated to revise this important book,
I knew it would be the success the first edition was.

I first met David while we both worked for Digital Equipment Corpo
ration. Even theh, his interest in Windows NT was apparent. David called me
just after Microsoft announced the first Windows NT Professional Developers
Conference (PDC) and asked me whether I thought that giving seminars to
aid customers migrating people from VAX/VMS to Windows NT would be an
undertaking that could succeed. Having great faith in Windows NT-and in
David-I told him to go for it. At the PDC, David was already working on a book
describing Windows NT in VAX/VMS terminology and had pages of questions
to ask me and anyone else he could find.

David has done a fantastic job explaining how various pieces of the
operating system interact, describing the policies and rules that govern the ker
nel and the kernel-mode architecture. Besides updating the content to reflect

xv

INSIDE WINDOWS NT

xvi

Windows NT 4.0, David has gone into greater depth on some of the data struc
tures and internal components and has showed how to use tools distributed
with the system and with the Windows NT Resource Kit to examine internal
system structures and see their interrelationships. He has also folded in the
material on the Windows NT file system (NTFS), which was originally in a
separate publication, and has added an entire chapter on the cache manager.

Oddly, Windows NT 4.0, the version that this book is based on, is actually
the fourth version of Windows NT .. I say "oddly" because the version number
of a software release rarely corresponds to the number of times the product
has been released in the retail market. The first version of Windows NT was
released in July 1993 with the version number 3.1. The version number wasn't
picked to make people believe they were getting a more mature product-that
is, we weren't saying not to buy any version having a number smaller than 3.0.
Rather, the 3.1 was chosen to maintain compatibility with existing applications.
Applications are built to use certain features of an operating system. To ensure
that those features exist, the application queries the operating system version
number. If the version number isn't high enough, the application doesn't in
stall.Version-number checking is itself a black art. In designing Windows NT,
we tried to make it easier by providing simple APis to check the version number.
Yet with each new release, you'll find certain applications that don't install properly
on the higher-version system because their version check is incorrect. (One
popular application tested for equality assuming that if the version wasn't 4.0,
it must be 3.51.)

Because the first version of Windows NT was compatible with Windows
3.1, "get version number" returned 3.1. Hence, we could have called the product
Windows NT version 1.0 and returned a 3.1 to the applications. Application
writers have enough to worry about already, however, and this wrinkle would
only have added to the confusion. After much debate, we decided that it would
be 3.1, the same as 16-bit Windows.

The second version of Windows NT, code-named Daytona and released
in September 1994, was version 3.5. The version debate here was whether to
call it 3.2 or 3.5. This version focused on size and performance optimizations.

The third version of Windows NT was released in May 1995. This version
concentrated on minor improvements in the feature set, support for the Power
PC, and numerous performance optimizations. Because the feature set was
largely the same as that in 3.5, the version number was 3.51. The version num
ber signified that this version was basically 3.5 with minimal feature changes
and that corporations shouldn't expect significant operating issues when they
upgraded.

Foreword

In July 1996, the fourth version was released: Windows NT 4.0. This
version, code-named SUR (for Shell Update Release), had the same look and
feel as Windows 95. But the changes to Windows NT 4.0 were more than
cosmetic: for example, it contained many new features, and the performance
of the graphic subsystem was greatly enhanced by moving the graphic engine
(USER, GDI, and the video drivers) from a user-mode process (CSRSS) into
kernel mode. In the previous versions of Windows NT, the graphic engine was
in a separate process and the local procedure call mechanism was used to
issue requests. Moving the graphic engine into kernel mode eliminated the
overhead of process context switches while retaining the ability to share data
among multiple processes-the data is shared in the kernel's address space
rather than in the user-mode process.

One of the changes in this edition of the book is that it doesn't include
any discussion about the engineers or who did what, and why. It's been nearly
ten years since a small group of people got together and designed the overall
kernel architecture for Windows NT. Since that time, the number of people
working on Windows NT has grown considerably, and it would be very hard to
be accurate with the names and not offend someone. With that said, let me tell
you who was present in November 1988 when we started designing what would
become Windows NT: Dave Cutler, Darryl Havens, Gary Kimura, Mark
Lucovsky, Steve Wood, and I. Since then, the Windows NT team has grown to
include over 200 full-time engineers who work on the core components (ker
nel, graphics, drivers, file systems, network, directory services, security, setup,
administration, shells, OLE, RPC, and so on). Even more people work on an
cillary products (such as Internet Explorer, NetMeeting, language run-time
libraries, and utilities).

I highly recommend the second edition of Inside Windows NT to every
one who has an interest in the inner workings of Windows NT. After reading
this book, you'll have a much greater understanding of how the system is tuned,
how to analyze a Windows NT system's performance and capacity, and how the
pieces of Windows NT fit together. Even though I've worked on kernel-mode
code since the inception of Windows NT, reading David's book was a treat.
So I'm sure you'll enjoy it too!

Lou Perazzoli
Director, Windows NT Core OS
Microsoft Corporation

xvii

ACKNOWLEDGMENTS

Having an interest in and a love for operating system internals, I have felt a
calling to write a book on the internals of Windows NT since I started teach
ing a class on the topic in 1993. I had planned on doing my own book from
scratch until Frank Artale, director of Windows NT Program Management at
Microsoft, approached me after my Windows NT internals talks at TechEd 96
(to which 3000 came) to ask whether I was interested in writing the second
edition of Inside Windows NT. Having a great respect for the first edition-but
with definite ideas about how to improve it-I agreed; a few months later, a
contract was signed. After over a year of hard work, the book is finished. And
although I didn't do everything I envisioned, there is always the next edition

I want to thank the following people for their support and assistance for
this project, people without whom this book wouldn't have seen the light of day:

Iii First, Helen Custer, for having written the first edition and estab
lished such high expectations for the quality of information in this
book.

Iii Frank Artale, who first approached me about doing this book.

Iii Lou Perazzoli, director of the Windows NT Core OS group, for his
kind support for this project and his expertise on the memory man
ager.

Iii Stacey Lemire, Lou's admin, who put up with my regular requests for
temporary office space and cardkeys on my many visits to Redmond.

Iii Dave Cutler, Windows NT architect, who originally approved source
code access so that Jamie Hanrahan and I could develop the seminar
on which this book was based.

Iii Landy Wang, lead developer for the memory manager, for carefully
reviewing chapters on short notice and for spending time explain
ing the intricacies of that awe-inspiring component of the system.

Iii David Fields, Windows NT Workstation performance lead, for scru
tinizing the description of working set trimming.

II Tom Miller, cache manager guru, for reviewing the cache manager
chapter before leaving for a big sailing trip.

xix

INSIDE WINDOWS NT

xx

II Brian Andrew, who reviewed the original NTFS book and then spent
time with me in the cafeteria going over his comments and preview
ing the planned NTFS 5.0 extensions.

II Ken Hiatt, lord of the Windows NT build lab, who always responded
instantly to my various requests for access to servers, special builds,
and source code trees.

II Eric Stroo, acquisitions manager at Microsoft Press, who shepherded
me through the ups and downs of the project, being at the same time
encouraging and stern. Phone calls from Eric were the most feared.

11111 Sally Stickney, my editor at Microsoft Press, whose careful attention
to detail amazed me throughout the whole process. Although Sally
was friendly and encouraging even when progress was slow, next to
Eric, phone calls from her were second on the "most feared" list.

Ill Jim Fuchs, my technical editor, who ironed out technical details and
issues in the manuscript (and redid all my screen snapshots because
I sent them in wrong!).

Ill Jeffrey Richter, for reviewing many chapters, letting me stay at his
house during the final weeks of the book project, and in general
expressing disbelief that I was able to finish.

Ill Jamie Hanrahan, co-author of the Windows NT internals seminar
we give, for letting me use some of the figures he developed.

Ill Trevor Porter and Richard Mouser of Compaq Corporation, who
arranged for the loan of a super speedy dual processor Pentium Pro
Compaq Professional Workstation 5000 for the book project. (You
can see me happily using it in Redmond in my bio in the back of this
book.) I used this machine for both kernel debugging and search
ing through the Windows NT source code.

Ill My reliable and trusted office staff, Mark Stevens and Ronnie Diaz,
for keeping my distractions to a minimum (and for calling me during
the day to ask, "What are you doing?").

Ill Last but not least, thanks to my wife, Shelly, and our three children,
Daniel, Rebecca, and Sarah, for enduring my absences, for giving
me patient encouragement to keep focused (even when I procrasti
nated), and for the nice party when I came back home. Thanks for
the balloon. Moo.

David Solomon
March 1998

INTRODUCTION

The second edition of Inside Windows NT is intended for advanced computer
professionals (both developers and system administrators) who want to under
stand how the core components of the Microsoft Windows NT operating system
work internally. With an understanding of Windows NT internals, developers
can better comprehend the rationale behind design choices when building ap
plications specific to the Windows NT platform. Such knowledge can also help
them in debugging complex problems. System administrators can benefit from
this information as well, because understanding how the operating system
works under the covers will facilitate understanding the performance behav
ior of the system as well as make it easier to troubleshoot system problems when
things go wrong. After reading this book, you should have a better understand
ing of how Windows NT works and why it behaves as it does.

This book is based on Windows NT 4.0, Service Pack 3. Where Windows
NT 5.0 changes are known, they are called out in the text as notes and identi
fied by a "Windows NT 5.0" graphic in the left margin, like this:

- N 0 TE This kind of note describes a change planned for Windows
NT 5.0. You'll find notes like this throughout the text.

Differences in the Second Edition
This new edition of Inside Windows NT covers all the topics that were in the first
edition plus the cache manager, the Windows NT file system (NTFS), and a
preview of forthcoming changes in Windows NT 5.0. This edition is also much
more detailed than the first edition. For example, I've included code flows of
key system functions as well as more detailed descriptions of key internal data
structures and system global variables. I obtained this information primarily
from reading the Windows NT 4.0 source code and talking with key Windows
NT developers and architects. (I gratefully thank Microsoft for this support!)

Another key new feature of this revision is its hands-on approach. Although
I relied on the source code to gather information for this edition, you can learn
or deduce much about Windows NT internals by using standard tools (such as
the kernel debugger and Performance Monitor) as well as other tools in the
Windows NT Resource Kit, the Win32 Software Development Kit (SDK), and

xxi

INSIDE WINDOWS NT

the Windows NT Device Driver Kit (DDK). So when a tool can be used to ex
pose or demonstrate some aspect of Windows NT internal behavior, the steps
necessary to try the tool yourself are listed in "Experiment" boxes. These ap
pear throughout the book, and I encourage you to try these as you're reading
seeing visible proof of how Windows NT works internally will make much more
of an impression than just reading about it.

Topics Not Covered
Windows NT is a large and complex operating system. This book doesn't cover
everything relevant to Windows NT internals but instead focuses on the base
system components. The only topic that was in the first edition that isn't cov
ered in this edition is networking. Windows NT networking has grown to be
such a significant part of the system that it merits its own book. I would hope
that someone writes such a book someday.

The other major area of the system not explored in this book is COM
(Component Object Model). COM (and DCOM-Distributed COM) is the
foundation of the Windows distributed object-oriented programming infra
structure. COM is covered in detail in several other Microsoft Press books, one
of which is Inside COM, by Dale Rogerson.

Finally, because this is an internals book and not a user, programming,
or system administration book, it doesn't describe how to use, program, or
configure Windows NT.

Structure of the Book
With the exception of the first three chapters (Concepts and Tools, System
Architecture, and System Mechanisms, respectively), which lay the foundation
terms and concepts used throughout the rest of the book, you can read the
remaining chapters-Processes and Threads, Memory Management, Security,
The I/O System, Cache Manager; Windows NT File System (NTFS), and Win
dows NT 5.0 and Beyond-in any order. You'll get the most out of them, how
ever, if you read them in sequence.

A Warning and Caveat

xx ii

Because this book describes the internal architecture and operation ofWindows
NT, much of the information is subject to change between releases (although
external interfaces, such as the Win32 API, are not subject to incompatible
changes). For example, I refer to internal Windows NT system routines, data

Introduction

structures, and variables as well as to algorithms and values used internally to
make resource-sizing and performance-related decisions. These details, by
definition, can change between releases.

By "subject to change;' I don't necessarily mean that details described in this
book will change between releases-but you can't count on them not changing.
Any software that makes use of these undocumented interfaces might not work
on future releases ofWindows NT. Even worse, software that runs in kernel mode
(such as device drivers) that makes use of these undocumented interfaces might
result in a system crash when upgrading to a newer release of Windows NT.

Updated Information and Errata
This book isn't perfect. No doubt it contains some inaccuracies; or possibly, I've
omitted something I should have covered. If you find anything you think is
incorrect or if you believe I should have included material that isn't here, please
feel free to send me e-mail at daves@solsem.com. If any significant errors are
discovered in this edition, I plan to publish them as Knowledge Base articles
in the Microsoft Press support Knowledge Base. You can search this Knowledge
Base by going to http://mspress.microsoft.com/support/.

xxiii

C H A P T E R 0 N E

Concepts and Tools
In this chapter, I'll introduce the key Microsoft Windows NT concepts and
terms I'll be using throughout the book, such as the Microsoft Win32 API, pro
cesses, threads, virtual memory, kernel mode and user mode, objects, handles,
security, and the registry. I'll also introduce the tools that you can use to ex
plore Windows NT internals, such as Performance Monitor, the kernel de
bugger, and the various tools in the Windows NT Resource Kit and the Platform
Software Development Kit (SDK). In addition, I'll explain how you can use the
Windows NT Device Driver Kit (DDK) as a resource for finding further infor
mation on Windows NT internals.

Be sure that you understand everything in this chapter-the remainder
of the book is written assuming that you do.

Foundation Concepts and Terms
In the course of this book, I'll be referring to some structures and concepts
that might be unfamiliar to some readers. In this section, I'll define the terms
I'll be using throughout the book. You should become familiar with them be
fore proceeding to subsequent chapters.

Win32 API
The Win32 application programming interface (API) is the primary program
ming interface to the Microsoft Windows operating system family, including
Windows NT, Microsoft Windows 9x (including both Windows 95 and Windows
98), and Microsoft Windows CE. Although this book does not describe the
Win32 API, it explains the internal behavior and implementation of key Win32
API functions. For a comprehensive guide to programming the Win32 API, see
Jeffrey Richter's book Advanced Windows (third edition, Microsoft Press, 1997).

Each operating system implements a different subset ofWin32. For the
most part, Windows NT is a superset of all Win32 implementations. (A few
functions that exist in Windows 95 are not in Windows NT 4.0, but these will

1

INSIDE WINDOWS NT

2

be added in Windows NT 5.0.) The specifics of which services are implemented
on which platforms are included in the reference documentation for the Win32
API (available for free online at urww.microsoft.com/msdn or on the MSDN Library
CD-ROMs). This information is also detailed in the file \mssdk\lib\win32api.csv
(a comma-delimited text file) installed as part of the Platform SDK that comes
with MSDN Professional.

N 0 TE MSDN stands for Microsoft Developer Network, Microsoft's
support program for developers. MSDN offers four CD-ROM sub
scription programs: MSDN Library, Professional, Enterprise, and
Universal. The content ofMSDN Library is also available online at the
MSDNWeb site. For more information, see urww.microsoft.com/msdn.

What used to be a separate entity called the Win32 SDK has been incor-
porated into the Platform SDK. The Platform SDK includes the functions that
were formerly grouped separately as Win32, Microsoft BackOffice, and Microsoft
ActiveX. The Platform SDK header files, libraries, and documentation are part
ofMSDN Professional. (The reference documentation is on MSDN Library or
online as noted earlier.)

For the' purposes of this book, the Win32 API refers to the core set of
functions that cover areas such as processes, threads, memory management,
1/0, windowing, and graphics. The internals of the other major categories in
the Platform SDK, such as transactions, database, messaging, multimedia, and
networking services, are not covered in this book.

NOTE Although less interesting today, a small subset ofWin32
(called Win32s) is available for Windows 3.1, thus allowing some 32-
bit Windows applications to run unchanged on Windows 3.1. Also,
as part of the cross-platform support for the Microsoft Foundation
Classes (MFC), object linking and embedding (OLE), and Compo
nent Object Model (COM), a subset ofWin32 has been implemented
on UNIX and Open VMS. For more information on cross-platform
support, see www.mainsoft.com or www.bristol.com.

Although Windows NT was designed to support multiple programming
interfaces, Win32 is the primary, or preferred, interface to the operating system.
Win32 has this position because, of the three environment subsystems (Win32,
POSIX, and OS/2), it provides the greatest access to the underlying Windows
NT system services. As explained in Chapter 2, application programs on Win
dows NT don't call native Windows NT system services directly-rather, they
must go through one of the provided environment subsystem libraries.

0 NE: Concepts and Tools

Interestingly, Win32 wasn't slated to be the original programming inter
face to Windows NT. Because the Windows NT project started as a replacement
for OS/2 version 2, the primary programming interface was the 32-bit OS/2
Presentation Manager APL A year into the project, however, Microsoft Win
dows 3.0 hit the market and took off. As a result, Microsoft changed direction
and made Windows NT the future replacement for the Windows family of prod
ucts as opposed to the replacement for OS/2. It was at this juncture that the
need to specify the Win32 API arose-prior to this point, the Windows API
existed only as a 16-bit interface.

Although the Win32 API would introduce many new functions that had
not been available on Windows 3.1, Microsoft decided to make the new API
compatible with the 16-bit Windows API in function names, semantics, and use
of data types whenever possible to ease the burden of porting existing 16-bit
Windows applications to Windows NT. So those of you who are looking at the
Win32 API for the first time and wondering why many function names and
interfaces seem inconsistent should keep in mind that the reason for the in
consistency is to ensure that the Win32 API is compatibile with the old 16-bit
Windows APL

Services, Functions, and Routines
Several terms in the Windows NT user and programming documentation have
different meanings in different contexts. For example, the word service can re
fer to a callable routine in the operating system, a device driver, or a server
process. The following list describes what certain terms mean in this book:

• Win32 API functions Documented, callable subroutines in the
Win32 APL Examples include CreateProcess, CreateFile, GetMessage,
and so on.

11111 Windows NT system services (or executive system services)
Undocumented functions callable from user mode. For example,
NtCreateProcess is the internal system service the Win32 CreateProcess
function calls to create a new process.

11111 Windows NT internal routines Subroutines inside the Windows NT
executive, kernel, or hardware abstraction layer (HAL) callable only
from kernel mode (such as from device drivers or other Windows NT
operating system components). For example, ExAllocatePool is the
routine device drivers call to allocate memory from the Windows NT
system heaps.

3

INSIDE WINDOWS NT

II Windows NT services Processes started by the Windows NT service
control manager. (Although the registry defines Windows NT device
drivers as "services;' I don't refer to them as such in this book.) For
example, the Schedule service is a user-mode process that supports
the at command (which is equivalent to the UNIX command cron).

II DLL (dynamic-link library) A set of callable subroutines linked as a
binary image that can be dynamically loaded by applications that use
them. Examples include MSVCRT.DLL (the Microsoft Visual C++
run-time library) and KERNEL32.DLL (one of the Win32 API sub
system libraries).

Processes and Threads

4

Although programs and processes appear similar on the surface, they are
fundamentally different. A program is a static sequence of instructions, whereas
a process is a set of resources reserved for the thread(s) that execute the pro
gram. At the highest level of abstraction, a Windows NT process comprises the
following:

II An executable program, which defines initial code and data

Ill A private virtual address space, which is a set of virtual memory ad
dresses that the process can use

1111 System resources, such as semaphores, communication ports, and
files, that the operating system allocates to the process when threads
open them during the program's execution

II A unique identifier called a process ID (internally called a client ID)

II At least one thread of execution

A thread is the entity within a process that Windows NT schedules for
execution. Without it, the process's program can't run. A thread includes the
following essential components:

II The contents of a set of volatile registers representing the state of the
processor

Ill Two stacks, one for the thread to use while executing in kernel mode
and one for executing in user mode

0 N E: Concepts and Tools

• A private storage area for use by subsystems, run-time libraries, and
DLLs

• A unique identifier called a thread ID (also internally called a client
ID-process IDs and thread IDs are generated out of the same name
space, so they never overlap)

The volatile registers, the stacks, and the private storage area are called
the thread's context. Because this information is different for each machine
architecture that Windows NT runs on, this structure, by necessity, is archi
tecture-specific. In fact, the CONTEXT structure returned by the Win32
GetThreadContext function is the only public data structure in the Win32 API
that is machine-dependent.

Although threads have their own execution context, every thread within
a process shares the process's virtual address space (in addition to the rest of
the resources belonging to the process), meaning that all the threads in a
process can write to and read from each other's memory. Threads can't refer
ence the address space of another process, however, unless the other process
makes available part of its private address space as a shared memory section (called
a file mapping object in the Win32 API).

~ N 0 TE Windows NT 5.0 introduces a job object. A job is a collec-
tion of processes that share a set of quotas, limits, and/or security re
strictions. For more information on this new object, see Chapter 10.

Because in writing about multithreaded processes it's often easier to state
"a process executes" rather than "a thread within a process executes;' in this
text I'll occasionally refer to a process as requesting memory or generating an
exception. You should understand, however, that in Windows NT, the actual
agent of execution is always a thread within the process.

In addition to a private address space and one or more threads, each
process has a security identification and a list of open handles to objects such
as files, shared memory sections, or one of the synchronization objects such as
mutexes, events, or semaphores, as illustrated in Figure 1-1.

The process access token contains the security identification and creden
tials for the process. By default, threads don't have their own access token, but
they can obtain one, thus allowing individual threads to impersonate remote
clients without affecting other threads in the process. (See Chapter 6 for more
details on process and thread security.)

5

INSIDE WINDOWS NT

~,i--------~ I VAD // VAD I
Virtual address space descriptors (VADs)

Handle table
Object

I • [Object

=====:::::1

-----1~1E) E>
Figure 1-1
A process and its resources

Thread

Access token

The virtual address space descriptors (VADs) keep track of the virtual
addresses the process is using. The process can't read or alter these structures
directly; the virtual memory manager creates and modifies them indirectly as
the program allocates memory. These data structures are described in more
depth in Chapter 5.

You'll find out much more about the internal structure of processes and
threads, the mechanics of process and thread creation, and the thread sched
uling algorithms in Chapter 4, which is devoted to these topics.

Virtual Memory

6

Windows NT implements a virtual memory system based on a flat (linear) 32-
bit address space. Thirty-two bits of address space translates into 4 GB of vir
tual memory. On most systems, Windows NT gives half of this address space (2
GB) to processes for their unique private storage and uses the other half for
its own protected operating system memory utilization. However, Windows NT
Server, Enterprise Edition, has a boot-time option on x86 systems (the /3GB
qualifier in boot.ini) that gives processes a 3-GB private address space (leav
ing 1 GB for the operating system). This option (the base support was added
in Windows NT 4.0 Service Pack 3) allows applications such as database serv
ers to keep larger portions of a database in the process address space, thus
reducing the need to map subset views of the database. Figure 1-2 shows the
two virtual address space layouts supported by Windows NT.

Default address space layout

100000000

Unique per
process

I 7FFFFFFF

1, ,
Systemwlde

I''"'"'
Figure 1-2

...L

2-GB user
process
space

:l

2-GB system space
Kernel/executive/HAL ·

Boot drivers
System cache

Paged pool
Nonpaged pool

00000000

0 N E : Concepts and Tools

Windows NT Server, Enterprise
Edition (booted with /3GB)

3-GB user
process
space

l
Unique per
process

BFFFFFFF '-'-'..._ _____ _. _J
C0000000-------.

I
1-GB system space Systemwlde

.________. _J ...
FFFFFFFF

Address space layouts supported by Windows NT

Recall that a process's virtual address space is the set of addresses avail
able for the process's threads to use. Virtual memory provides a logical view
of memory that might not correspond to its physical layout. At run time, the
memory manager, with assistance from hardware, translates, or maps, the vir
tual addresses into physical addresses, where the data is actually stored. By
controlling the protection and mapping, the operating system can ensure that
individual processes don't bump into one another or overwrite operating sys
tem data. Figure 1-3 on the following page illustrates three virtually contiguous
pages mapped to three discontiguous pages in physical memory.

Because most systems have much less physical memory than the total
virtual memory provided to the running processes (2 GB or 3 GB for each
process), when physical memory becomes full, the memory manager transfers,
or pages, some of the memory contents to disk. Paging data to disk frees physical
memory so that it can be used for other processes or for the operating system
itself. When a thread accesses a virtual address that has been paged to disk,
the virtual memory manager loads the information back into memory from
disk.

Details of the implementation of the memory manager, including how
address translation works and how Windows NT manages physical memory, are
described in detail in Chapter 5.

7

INSIDE WINDOWS NT

Virtual memory

Physical memory

Figure 1-3
Mapping virtual memory to physical memory

Kernel Mode vs. User Mode

8

To protect user applications from accessing and/or modifying critical operat
ing system data, Windows NT uses two processor access modes (even if the pro
cessor on which Windows NT is running supports more than two): user mode
and kernel mode. User application code runs in user mode, whereas operating
system code (such as system services and device drivers) runs in kernel mode.
Kernel mode refers to a mode of execution in a processor that grants access
tu all system memory and all CPU instructions. By providing the operating
system software with a higher privilege level than application software has, the
processor provides a necessary foundation for operating system designers to
ensure that a misbehaving application can't disrupt the stability of the system
as a whole.

N 0 TE The architecture of the x86 processor defines four privi
lege levels, or rings, to protect system code and data from being over
written either inadvertently or maliciously by code oflesser privilege.
Windows NT uses privilege level 0 (or ring 0) for kernel mode and
privilege level 3 (or ring 3) for user mode. The reason Windows NT
uses only two levels is to maintain source code portability across the
RISC-based architectures supported by Windows NT, since all main
stream RISC-based processors have only two privilege levels.

For example, although each Win32 process has its own private memory
space, the operating system shares a single virtual address space. Each page in
virtual memory is tagged as to what access mode the processor must be in to

O N E : Concepts and Tools

read and/or write the page. Pages in system space (the upper half of the 4-GB
virtual address space, from x80000000 through xFFFFFFFF) can be accessed
only from kernel mode, whereas all pages in the user address space (the lower
half, addresses xOOOOOOOO through x7FFFFFFF) are accessible from user mode.
Read-only pages (such as those that contain executable code) are not writable
from any mode.

Windows NT doesn't provide any protection for components running in
kernel mode. In other words, once in kernel mode, system code has complete
access to system space memory and can bypass Windows NT security to access
objects. Because the bulk of the Windows NT operating system code runs in
kernel mode, it is vital that it be carefully designed and tested to ensure that
it doesn't violate system security. This lack of protection also emphasizes the
need to take care when loading a third-party device driver since once in ker
nel mode, the software has complete access to all operating system data.

As you'll see in Chapter 2, user applications switch from user mode to kernel
mode when they make a system service call. For example, a Win32 ReadFile
function eventually needs to call the internal Windows NT executive routine
that actually handles reading data from a file. That routine, because it accesses
internal system data structures, must run in kernel mode. The transition from
user mode to kernel mode is accomplished by the use of a special instruction
that causes the processor to change into kernel mode. The operating system
traps this instruction, notices that a system service is being requested, validates
the arguments the thread passed to the system function, and then executes the
service. Before returning control to the user thread, the processor mode is
switched back to user mode. In this way, the operating system protects itself and
its data from perusal and modification by user processes.

NOTE A transition from user mode to kernel mode (and back)
does not affect thread scheduling in itself-a mode transition is not
a context switch. Further details on system service dispatching are
included in Chapter 3.

Thus, it's normal that a user thread spends part of its time executing in
user mode and part in kernel mode. In fact, because the bulk of the graphics
and windowing system also runs in kernel mode, graphics-intensive applica
tions will spend more of their time in kernel mode than in user mode. An easy
way to test this is to run a graphics-intensive application such as Microsoft Paint
or Microsoft Pinball and watch the time split between user mode and kernel
mode using one of the performance counters listed in Table 1-1 on the next page.

9

INSIDE WINDOWS NT

Table 1-1 Mode-Related Performance Counters

Object: Counter Function

System: % Total Privileged Time

System: % Total User Time

Processor: % Privileged Time

Processor: % User Time

Process: % Privileged Time

Process: % User Time

Thread: % Privileged Time

Thread: % User Time

. " : ~ .: .:< : .

Percentage of time that the entire system has run
in kernel mode during a specified interval

Percentage of time that the entire system has run in
user mode during a specified interval

Percentage of time that an individual CPU has run
in kernel mode during a specified interval

Percentage of time that an individual CPU has run
in user mode during a specified interval

Percentage of time that the threads in a process
have run in kernel mode during a specified interval

Percentage of time that the threads in a process
have run in user mode during a specified interval

Percentage of time that a thread has run in kernel
mode during a specified interval

Percentage of time that a thread has run in user
mode during a specified interval

·· To se~ howPetff)>rmanee :.tdonito:rf uSe$ kerriel thne:~d user 1Jme •.

::i ·}=~~=~:~!;:<!=~!:!'Jne:;;~.%Us¢ri•···.
(· . · .

• 2<f~ ••• "it~ 7 r· 7ee boX «=r th~ lt~
. Cliqk.Add;;~t1 then: click D,01~.e ..

~·: Mpve ~em~ I:apidiy ~k·an~ ~Orth'.
. , L

10

0 N E : Concepts and Tools

Figure 1-4
Performance Monitor shoioing time split between kernel mode and
user mode

5. Type Ctrl-H to turn on highlighting mode. This highlights
the currently selected counter in white.

6. Scroll through the counters to identify the processes that were
running when you moved the mcmse, and I?-Ote whether they ·
were running in user mode or kernel mode. ·

. .

You should see Perfomiance Monitor's kernel-mode and user-mode
time go up when you move the mouse, since it is executing application
code in user mode and callliig Win32 functions that run .in kernel mode.

·You'll also notice a process named System tunning in kernel mode.
This process is the home for kerilel-niode system threads.:._pru-ts ofthe
operatirig system or device drivers that are running as independent
threa(ls. (See Ghapter 3 ·for more infonnation about these threads.)
What you're seeing iS' the Win32 subsystem's Raw Input Thread h?11- .
dling the mouse input. Finally,. the process named Idle that you See
spendingnearly 100 percent ofits tin:ie in kernel mode is not really a
process-it's a fake process to account for idle CPU cycles. As you can · ·

. observe from the mode in which th~. Idle process rU.Us, when Window8
NT has nothing to do, it does it in kernel mode'.

11

INSIDE WINDOWS NT

Objects and Handles

12

In the Windows NT executive, an object is a single, run-time instance of a stati
cally defined object type. An object type (sometimes called an object class) com- .
prises a system-defined data type, services that operate on instances of the data
type, and a set of object attributes: If you.write Win32 applications, you encoun
ter process, thread, file, and event objects, to name just a few examples. These
objects are based on lower-level objects that are created and managed by the
Windows NT executive. In Windows NT, a process is an instance of the process
object type, a file is an instance of the file object type, and so on.

An object attribute is a field of data in an object that partially defines the
object's state. An object of type stack, for example, would have a stack pointer
as one of its most important attributes. Object services, the means for manipu
lating objects, usually read or change the object attributes. For example, the
push service for a stack object would change the value of the stack pointer.

N 0 TE Although there is a parameter named ObjectAttributes that
a caller supplies when creating an object using either the Win32 API
or native object services, that parameter should not be confused with
the more general meaning of the term as used in this book.

The most fundamental difference between an object and an ordinary data
structure is that the internal structure of an object is hidden from view. You
must call an object service to get data out of an object or to put data into it.
You can't directly read or change data inside an object. This difference sepa
rates the underlying implementation of the object from code that merely uses
it, a technique that allows object implementations to be changed easily over
time.

Objects provide a centralized means for accomplishing three important
operating system tasks:

Ill Providing human-readable names for system resources

Ill Sharing resources and data among processes

Ill Protecting resources from unauthorized access

Not all data structures in the Windows NT executiye are objects. Only data
that needs to be shared, protected, named, or made visible to user-mode pro
grams (via system services) is placed in objects. Structures used by only one
component of the executive to implement internal functions, for example, are
not objects. Objects and handles (references to an open instance of an object)
are discussed in more detail in Chapter 3.

0 N E : Concepts and Tools

Security
Windows NT supports C2-level security as defined by the U.S. Department of
Defense Trusted Computer System Evaluation Criteria (DoD 5200.28-STD,
December 1985). This standard includes discretionary (need-to-know) protec
tion for all shareable system objects (such as files, directories, processes, threads,
and so forth), security auditing (for accountability of subjects and the actions
they initiate), password authentication at logon, and the prevention of one user
from accessing uninitialized resources that were deallocated by another user
(such as free memory or disk space).

Windows NT 3.51 was formally evaluated at the C2 level and is on the U.S.
government Evaluated Products List. (Windows NT 4.0 is still in the evalua
tion process.) Also, Windows NT has met the European organization ITSEC
(IT Security Evaluation Criteria) at the FC2/E3 (functional level C2 and as
surance level E3, something normally associated only with B-level systems)
security level. Achieving a government-approved security rating allows an oper
ating system to compete in that arena. Of course, many of these required ca
pabilities are advantageous features for any multiuser system.

Windows NT has two forms of access control over objects. The first
form-discretionary access control-is the protection mechanism that most
people think of when they think of protection under Windows NT. It's the
method by which owners of objects (such as files or printers) grant or deny
access to others.

Privileged access control is necessary for those times when discretionary
control isn't enough. It's a method of ensuring that someone can get to protected
objects if the owner isn't available. For example, if the owner of an important
file grants read-only access to a select group of people on Friday and then ends
up in the hospital from a car crash on Saturday, on Monday you're going to
need access to that protected object, just in case you need to change the ac
cess privileges. In that case, under Windows NT, you (as an administrator) can
take ownership of the file so that you can manage its rights as necessary.

Security pervades the interface of the Win32 APL Its security features are
user-mode extensions to the security capabilities originally designed into the
Windows NT executive's object architecture. The Win32 subsystem implements
object-based security in the same way the Windows NT executive does; the
Win32 subsystem protects shared Windows objects from unauthorized access
by placing Windows NT security descriptors on them. As in the Windows NT
executive, the first time an application tries to access a shared object, the Win32
subsystem verifies the application's right to do so. If the security check succeeds,
the Win32 subsystem allows the application to proceed.

13

INSIDE WINDOWS NT

EXPERIMENT: C2 Compliance
C2CONFIG, a toolin the Windows NT Resource Kit, can help you de
termine bow secure your system is and what elements are lacking for
full security. Keep in mind that some security measures reduce the
usefulness of Windows NT. For example, while I can live without the
POSIX subsystem (whose existence is a security violation, since only
the Win32 subsystem is permitted), removing networking capability
seems a little harsh for a network operating system. Figure 1-5 shows
the C2CONFIG utility in action.

OS Configuration
0512 Subsystem
Posix Subsystem
Security Log
Halt on Audit Failure
Displa_1r1 Logon Message
Last Username Displa.Y
Shutdown Button
Password Length
Guest Account
Networking
Drive Letters & Printers

Registr_y Security
File System Secu1ity
Other Securit,Y Items

Figure 1-5

o ume oes not use the N
Boot.IN! Timeout is not 0.
OS/2 Subsystem is installed.
Posix Subsystem is installed.
The Security Log will overwrite events over 7 days old.
The System will not halt when the Security Log is full.
A Logan Message will not be displayed.
The previous username will be displa.Yed at logon.
The shutdown button is not displayed on the logon dialog.
Blank passwords are permitted.
The Guest user account is disabled.
One or more netwmk services are installed on the system.
Any user may assign Drive Lette1s and Printers.

Unable to read the current status of this item.
Unable to read the current status of this item.
Unable to read the cur1ent status of this item.

The C2CONFIG utility from the Windows NT Resource Kit

Closed red padlocks indicate that the security feature is C2-com
pliant. As.you can see in Figure 1-5, the system on which this snapshot
was taken fails miserably. But also notice that not all security measures
on this list are req11ired for compliance.

The Win32 subsystem implements object security on a number of shared
objects, some of which were built on top of native Windows NT objects. The
Win32 objects include desktop objects, window objects, menu objects, and-as
in the Windows NT executive-files, processes, threads, and several synchroni
zation objects. Security internals will be discussed in more detail in Chapter 6.

Registry

14

If you've worked at all with Windows 95 or Windows NT, you've probably heard
about or looked at the registry. You can't talk much about Windows NT internals
without referring to the registry, because it contains the information required

0 N E : Concepts and Tools

to boot and configure the system, systemwide software settings that control the
operation of Windows NT, the security database, and per-user profile settings.

In addition, the registry is a window into in-memory volatile data, such
as the current hardware state of the system (what devices are loaded, the re
sources they are using, and so on) as well as the Windows NT performance
counters. The performance counters, which aren't actually "in the registry;' are
accessed through the registry functions. (See the Win32 API documentation
for more information about accessing performance counter information.)

Although many Windows NT users and administrators will never need to
look directly into the registry (since you can view or change most of the configura
tion settings with standard administrative utilities), it is still a useful source of
Windows NT internals information because it contains the bulk of the infor
mation needed to boot, configure, and operate the system. You'll find refer
ences to individual registry keys throughout this book as they pertain to the
component being described. Since most registry keys referred to in this book
are under HKEY_LOCAL_MACHINE, the abbreviations shown in Table 1-2
are used throughout the book.

Table 1-2 Registry Abbreviations

Registry Path Abbreviation

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services

HKEY_LOCAL_MACHINE\Software

\System\ ... \Control

\System\ ... \Services

\Software

For further information on the registry and its structure, see the Windows
NT Server Concepts and Planning manual as well as the Windows NT Workstation
Resource Guide. Also, the Windows NT Resource Kit has a help file named
regentry.hlp that describes most of the individual registry keys and values. This
file is the best place to go if you find a registry key and aren't sure what it is.

Networking
The increasing availability of personal computers in the 1980s irrevocably al
tered the nature of computing. Whereas once a single, large mainframe com
puter might serve an entire company, smaller and cheaper microcomputers
proliferated and are now standard issue for rank-and-file employees. Enhanced
networking capabilities allow the smaller computers to communicate with one
another, often sharing hardware resources such as disk space or processing
power (in the form of file servers, print servers, or application servers). To

15

INSIDE WINDOWS NT

accommodate this change, the Windows NT system has networking capabili
ties built directly into the operating system and provides the means for appli
cations to distribute their work across multiple computer systems.

Windows NT also interoperates well with other operating systems, even
non-Microsoft ones. Thus, Windows NT is capable of communicating with Mac
intosh, UNIX, Open VMS, NetWare, OS/2, and OS/400 as well as Windows 95,
Windows 3.1, and MS-DOS. It supports the following network transport pro
tocols. (The first three protocols come with both Windows NT Workstation and
Windows NT Server-the latter two only with Windows NT Server.)

• NetBEUI (local Microsoft networks, not routable unless tunneled in
TCP/IP)

• TCP/IP (fully routable, used on the Internet)

• IPX/SPX (NetWare, or high-speed routing)

• DLC (mainframes and printers connected directly to the network)

• AppleTalk (Macintosh networks)

- N 0 TE Windows NT 5.0 will contain significant networking en
hancements, most notably a distributed global directory service named
the Active Directory. Besides storing objects such as computers, users,
groups, and printers, the Active Directory is programmatically ex
tensible. For a brief description of this and other extensions to Win
dows NT networking, see Chapter 10.

As mentioned in the Introduction to this book, networking isn't covered
in this edition of Inside Windows NT. This topic should be treated some day in
detail in a separate Windows NT networking internals book.

Unicode

16

Windows NT differs from most other operating systems in that most internal
text strings are stored and processed as 16-bit-wide Unicode strings. Unicode
is an international character set standard that defines unique 16-bit values for
most of the world's known character sets. (For more information about Uni
code, see www.unicode.org as well as the programming documentation in the
MSDN Library.)

Because most existing applications deal with 8-bit (single-byte) strings,
Win32 functions that accept string parameters have two entry points: a Unicode
(wide) and an ANSI (narrow) version. If you call the narrow version, input
string parameters are converted to Unicode before being processed by the
system and output parameters are converted from Unicode to ANSI before

0 N E: Concepts and Tools

being returned to the application. Thus, if you have an older service or piece
of code that you need to run on Windows NT but this code is written in 8-bit
text strings, Windows NT will convert the 8-bit strings into Unicode for its own
use. However, Windows NT never converts the data inside files-it's up to the
application to decide whether to store data as Unicode or as ANSI.

!~ N 0 TE Windows NT 5.0 reaps the fruits of years of groundwork
laid by basing all text processing on Unicode. This version will have
a single worldwide binary for the operating system (instead of the
separate language versions that currently exist) that allows for the
separation of the language of the user, application, and input method.
Applications can also take advantage of new Win32 functions that
allow single worldwide application binaries that can support multiple
languages. For more information on the use of Unicode under Win
dows NT 5.0, see Chapter 10.

Tools for Digging into Windows NT Internals
Although much of the information in this book is based on the Windows NT
source code, you don't have to take everything on faith. Many details about the
internals of Windows NT can be learned, exposed, and demonstrated using
existing tools that come with Windows NT, the Windows NT Resource Kit, the
Platform SDK, and the Windows NT DDK. These packages are briefly described
later in this section.

Throughout the book are "Experiment" sidebars that describe steps you
can take to examine a particular aspect of Windows NT internal behavior. I
encourage you to try out these experiments so that you can see in action many
of the internals topics described in this book.

Table 1-3 shows a complete list of all the tools used in this book and where
they come from. Although the capabilities of many of these tools overlap quite
a bit in terms of the information that they can display, each of them shows at
least one unique piece of information not available in any other utility.

In addition, you'll find several utilities at www.sysinternals.com that are also
useful for displaying (and even changing) internal Windows NT system infor
mation. Because many of these tools rely on undocumented interfaces, however,
you run them at your own risk: neither I nor Microsoft Corporation endorse
or guarantee these utilities. Also, since many of these utilities involve the in
stallation and execution of kernel-mode device drivers (which require admin
istrator access), you're adding trusted code to the system that can bypass system
security, crash the system, or render the system unbootable. That said, many
of these utilities are useful for digging into the internals of Windows NT.

17

INSIDE WINDOWS NT

Table 1-3 Tools for Viewing Windows NT Internals

Tool Image Name Origin

Performance Monitor PERFMON Windows NT

Task Manager TASKMAN Windows NT

Kernel debugger 1386KD and ALPHAKD Windows NT CD-ROM
\support\debug directory

Windows debugger WIND BG Platform SDK
(another kernel
debugger)

Dependency Walker DEPENDS Resource Kit, Platform
SDK

API Monitor APIMON Windows NT CD-ROM
\support\debug directory
or Resource Kit

Quick Slice QSLICE Resource Kit

Process Viewer PVIEWER (in the Resource Kit) or Resource Kit or Platform
PVIEW (in the Platform SDK) SDK

Process Explode PVIEW Resource Kit

Process Statistics · PSTAT Resource Kit or Platform
SDK

Task List TLIST Resource Kit

Object Viewer WINO BJ Platform SDK

Global Flags GFLAGS Resource Kit*

Open Handles OH Resource Kit*

Process Walker PWALK Platform SDK

Page Fault Monitor PFMON Resource Kit or Platform
SDK

* Supplement 2 or later.

Windows NT Resource Kits
The Windows NT Resource Kits are essential packages for power users, adminis
trators, and even developers. Besides including many tools useful for displaying
internal system state, they contain a significant amount of" internals" documen
tation in the Windows NT Workstation Resource Guide. This guide covers such
topics as system architecture, registry structure, file system structure, perfor
mance monitoring, crash dumps, and how to use the Windows NT kernel debug
ger. (The title of this guide is not representative of its contents, since most of
the material found in the book also applies to Windows NT Server-think of

18

0 NE: Concepts and Tools

the Windows NT Workstation Resource Guide simply as more advanced Windows
NT technical documentation that isn't included in the base product documen
tation set.)

N 0 TE Only a small subset of the Windows NT Resource Kit tools
have shortcuts in the Start menu folder, because many are command
line-based. To see a complete list of the tools, open the Windows NT
Resource Kit Tools help file (rktools.hlp).

There are two editions of the Resource Kits: the Windows NT Worksta
tion Resource Kit and the Windows NT Server Resource Kit. The latter kit is
a superset of the former and can be installed on a Windows NT Workstation
system. In fact, only the Windows NT Server Resource Kit is shipped to MSDN
and TechNet subscribers. (For information on MSDN, go to www.microsoft.com/
msdn. For TechNet information, see www.microsoft.com/technet.)

The license for the Windows NT Resource Kit tools permits multiple in
stallations at a single site. Updates to the kits' tools are available on ftp.microsoft
.com/bussys/winnt/winnt-public/reskit/nt40.

Platform SOK and Windows NT DOK
The Platform SDK and Windows NT DDK are part of the MSDN Development
Platform. They are available through MSDN Professional, a quarterly CD-ROM
subscription.

Items of interest in the Platform SDK from an internals perspective in
clude the Win32 API header files (\mssdk\include) as well as several utilities
(pviewer.exe, pwalk.exe, pfmon.exe, winobj.exe). Some of the Platform SDK
tools are also shipped as example source code in both the Platform SDK and
the MSDN Library.

The Windows NT DDK is an abundant source of internals information.
It documents many of the internal system routines and data structures used
by device drivers. Besides the design and reference documentation, the actual
DDK kit itself contains header files that define key internal data structures
and constants as well as interfaces to many internal system routines. (See the
\ddk\inc directory-in particular, ntddk.h.) Also, the file \ddk\hlp\lsaauth.hlp
describes interfaces related to the security authentication system.

Key Windows NT Base Tools
Two tools that come with Windows NT bear special mention, since they pro
vide access to the majority of the accessible internal Windows NT system infor
mation: Performance Monitor and the kernel debugger.

19

INSIDE WINDOWS NT

20

Performance Monitor
I'll refer to Performance Monitor, in the Administrative Tools folder, through
out this book-it can provide more information about how your system is operat
ing than can any other single utility. It includes hundreds of counters for various
objects. For each major topic described in this book, a table of the relevant
Windows NT performance counters is included.

Performance Monitor contains a brief description for each counter. To
see the descriptions, click the Explain button while selecting a counter. For
information on how to interpret these counters to perform bottleneck detec
tion or capacity planning, see the several chapters on performance monitor
ing in the Windows NT Workstation Resource Guide, which, as mentioned earlier
in the chapter, is part of the Windows NT Resource Kit. These chapters are
"must reading" for anyone seriously interested in understanding Windows NT
performance.

N 0 T E All the Windows NT performance counters are accessible
programmatically-see the documentation on the Win32 perfor
mance counter APis in the MSDN Library. Also, the complete source
code for the Windows NT Performance Monitor utility as well as
the sources for other tools that use performance counters (such as
PVIEWER) are included as sample code with the Platform SDK and
MSDN Library.

Kernel Debuggers
Microsoft provides two kinds of kernel debuggers: the command-line versions
(I386KD.EXE for x86 systems and ALPHAKD for Alpha systems) that ship with
Windows NT and a GUI version (WINDBG.EXE) that ships with the Platform
SDK. You can use either kernel debugger, although some commands work
better in the command-line version (and vice versa). To debug a live system,
the Microsoft kernel debuggers require two computers: one to run the kernel
debugger and one to be the debugging target. There is also a kernel debugger
named SoftICE for Windows NT that doesn't require two machines for live
kernel debugging. It is available for purchase from NuMega Corporation. (See
www.numega.com for details.) SoftICE runs only on x86 systems.

Although the main purpose of a kernel debugger is for crash dump analysis
or device driver debugging, it is also a useful tool for investigating Windows NT
internals because it can display internal Windows NT system information not
visible through any standard utility. For example, it can dump internal data
structures such as thread blocks, process blocks, page tables, I/O, and pool
structures. Throughout the book, the relevant kernel debugger commands and
output are included as they apply to each topic under discussion.

0 N E : Concepts and Tools

The command-line kernel debuggers are documented in the Windows NT
Workstation Resource Guide in the chapter "Windows NT Debugger." Additional
details aimed at device driver writers are included in the Windows NT DDK
(which is also where the GUI version is described). Also, there are several useful
Knowledge Base articles on the kernel debugger. Search for "debugref" in the
Windows NT Knowledge Base on www.microsoft.com (or look on the TechNet
CD-ROM, if you receive it). However, there is no complete list of the full set
of kernel debugger extension commands that dump internal Windows NT
structures. To get a brief list, type !? from the kernel debugger prompt.

The kernel debugger has two modes of operation:

m Open a crash dump file created as a result of a Windows NT system
crash. For additional information, see the Knowlege Base article
Ql48658, "How to Load Windows NT MEMORY.DMP File Using
I386KD.EXE:' (Knowledge Base articles are available online at
www.microsoft.com/support, as well as through TechNet and MSDN.)

• Connect to a live system and examine the system state (or set break
points, if you're debugging system code). This operation requires two
computers-a target and a host. The target system can be either
local (connecting the computer being debugged to a host running
the debugger via a null modem cable) or remote (connecting the
target via a modem). The target system must be booted with the
/DEBUG qualifier (in the boot selection entry in c:\boot.ini or in
firmware settings for RISC systems).

The kernel debuggers and related files are not installed when you install
Windows NT. They reside underneath the \support\debug directory of the
Windows NT Workstation or Server distribution CD-ROM. As for the main
directory tree that contains the Windows NT binaries, there is a subdirectory
for each hardware architecture. For example, the \support\debug\i386 direc
tory contains the kernel debugger and tools for the Intel platform. Also, in each
directory is a kernel debugger for each hardware architecture so that you can,
for example, open an Intel crash dump from an AlphaAXP system or vice versa.

N 0 TE Even though Windows NT no longer runs on the 386 chip,
for historical reasons, the x86 directories on the Windows NT dis
tribution media are still called i386. Thus, the x86 kernel debugger
is called i386kd.exe.

In addition to the kernel debugger and related tools, the Windows NT CD
ROM includes the debug symbol table files for all the Windows NT executable

21

INSIDE WINDOWS NT

images, libraries, and drivers. These are in the \support\debug\<platform>\
symbols tree. The file of most interest for this book is ntoskrnl.dbg (or
ntkrnlmp.dbg for multiprocessor systems), the symbol table file for the base
operating system image (NTOSKRNL.EXE) and the appropriate HAL .dbg
file. Later in the book, you'll see how you can use these symbol table files to
display the names of internal Windows NT system routines and global variables.

N 0 TE Symbol table files must match the version of the image they
were taken from. For example, if you install a Windows NT service
pack, you must obtain the matching, updated DBG files for any of
the images that have changed, or you will get a checksum error when
trying to load them with the kernel debugger. These updated DBG
files are not included or installed when you download and install a
Service Pack from www. microsoft.CO'lr/;-they must be downloaded sepa
rately. (If you receive MSDN Professional or TechNet, they're in
cluded on the Service Pack CD-ROMs in the \support directory.)
Then they must be installed on top of a copy of the base DBG files
off the Windows NT CD-ROM. For more information, see Knowledge
Base article Q148659, "How to Set Up Windows NT Debug Symbols."

The experiment on pages 24-25 will show you how to generate a crash
dump you can use with the kernel debugger.

Free Builds and Checked Builds

22

There are two versions of Windows NT: the free build and the checked build. The
free build is the normal version of the system that you can purchase as a re
tail product. It is built with full compiler optimizations turned on and has
internal symbol table information stripped out from the images. (These sym
bol table files, or .DBG files, are shipped separately on the Windows NT CD
ROM in the \support\debug\xxx\symbols subdirectory.)

The checked build is a special debug version ofWindows NT Workstation
(no checked build is available for Windows NT Server) that is available only
as part of the MSDN Professional (or higher) subscription. The checked build
is created by compiling the Windows NT sources with the compile-time flag
DEBUG set to TRUE. Much of the additional code in the checked-build bina
ries is a result of using the ASSERT macro defined in the DDK header file
NTDDK.H. This macro tests some condition (such as the validity of a data
structure or parameter), and if the expression evaluates to FALSE, sends a
message to the kernel debugger and causes a breakpoint. (If the system was
not booted with the kernel debugger, failure of an ASSERT test will crash the
system.)

0 NE: Concepts and Tools

EXPERIMENT: Generating a Crash
Dump .to Use with the Kernel Debugg.er
For the .purpos('!s of experimentation, the easiest thing to do .is tol()ok
at a static crash dump file, since that doesn'rrequire two ~yst~lllS: I{(j~'
can··you reliably generate.a 'AfindowsNT ·crash ~l!mp?Just killth¢ •. · <

.. Win32 subsystem.process. (cs~ss.eJCe).·.or tl1e'f 11ld<:>1\'S N!'Jogon·f>r<>~·~· .•.. ,
(whtlogon.exe) with .. theWUldows N''f.R~S()Ut'Ce Kit to<Jl~U;3'X~·<<r<JU :···.·.
l)J\lst~a;ve.adl)JinistratotPl'iviJegest():do·~is.)~~t.fi~tn~siJre.~~:•i'
you'yee11abledyourWindows~Tsystemt(j~k.ea'.·cr3sl1 •. ~Q!llJ)·Tc)~?·C.· ···
this, open the .system.·applet in the···.ConttolPanel;di~kthe ·stat'ttJ.P"·.····· .·.
/Shutdown tab, and eru;ure that you've check~d Wl'lt~ .. J)e1;>1l~ < ·
Infwmation To. The . default . name ·. of the• debugging filF is

• MEMORY;DMP, and. it will be located inthe system root directory.If
youd~dn'thave crash dumps enabled,you'llbe instruetedton~~tthe.
system. When you've got th.e settings done properly, the dialog 'Jjox .
should look like the one in. Figare J-6. '· ·· ·

(continued)

23

INSIDE WINDOWS NT

24

EXPERIMENT: Generating a Crash Dump to Use with the Kernel Debugger continued

Jo.crea1¢••~•nienid~d11~·~1~;·y6uilt,~ee<f, •.• ~.·· •. P~~g~f~I~·th~t's;'.ati·•·••·L
le(ls~the~ize .. of the PhY~Fal.1U~lj'o~yout S,y~~~'fllJl) trersp~c~9l1 .. · .. ··• ·
Y9Ul'S):ste~ .• partiyqn··•tgs~qre·t~••·ctllll)P~lr·••.(Il~p.~les.~~t(iel1•····•

. first·t<1the pagingfil~~d ~hen~pied oµt:al't¢r.tne ,,stemboots.)'F()f: · .··
·· ·.· exampler if'your s]'5tell1 ~s64"Mll uf'RAN.f•)'()U'Uneed atl~ast at)4'"Ma ·.

page file ari!i•.an a<lditio~ ()4MB of'freespac"etq copy t}i~·<;rashdµtnp
tq .. · If yoµ warit f() •cre~t¢ ~ sniallet<itnnp.file,•re~o~your systell1af'ter · .. ·.
adding the/MEMU~GE qµa}ifier 1n,f>oot.ini. to tell'1\Jin®'vs NT to

le~sp}iysicalmemoryt}i~ll .is• ~c~~lly pi-esent.i!l t.P:ellll:lChifl~··.···· ·• ·
Whenyou'rei-eagyto t;~ashtb.~ S,yste!U•Jnake $\ll'el() sa\'e•·a11Yt)lll"ls

·. you're)Vorldng?n •..•. ope~a.~qll1~~d.p-t()Il1Pt•.a.~d ~~ ~itzf!f'fo~· ... ··
· ·(This operatio11requiresthevviml0\VS ~.l{~ur7e'K1tt<i~e insthlleg;)·.· · ... ·
.Thiswill.·.teimina.tetheV\Tin32.suhS,Yst~rn.ProceSl!~Wf1ich;tfie11resuJts·•

.. ··in the. session manager (smss~exe) wakingl),pandcrashing the system·
· The.processse.curity.descriptorf?rthi~prpcess d<Jesn't aU{)Wadn:ri!l'"
· istrators to.kill it: •.. (Try.killing itwitl;tTask ~ger·. iyou't1• get a.11. "ac.,
cess denied"error,)The Killutilitr .in t~r ~~¥~:N'f Re~ource ~t,.
however,·. enables alJl)et •. righttnat.aJlowsbypas~ing~hject 1>ecu*y.

After the system.~Qoot~, open thb <:raSh dump r&, fo~l()Wing;these
~ " . ' ': :· ' '.'.. -' ' ~ \-' .- ~' ' ' ' - _ :.: ~-

,. _, ·. - '••, '

Open a. comll131la prorilp~ window.

2. Type set _NLSYMB0L~PA'YHp:\1upPort\dr3bug\i386\Jmbals
(or the address where your. copy of th.e · DBC files resi?es-as
noted earlier, yol.l need to make sure you:havet\leupdated·
versions. if you b.avea Windows NT service pack installed).

3. 'fype i386kd ~~ c:\winnt\~orY·dmp (orwhate,vertpeJilesped
fication ofyour crashdumpfile is).

. .

Once you're in ~~. ~ernel debu~r, trtWe ? and !? cbIIllllap<!s.to
see the online help. For exa.mple, type !process() 8foi-alis! ofthe pro~
cesses that~~ tunni~gat t11e tim,e ofthe .. crash .. l\lote thaty?ucanl()g
yo~r kernel debugger sessi011. to afjle usi!lg the Jogopenand .logclose
commands .•. Speci~kexpefiments with tfiekernel d1pu~er~esp~ad
throughout the rem:runderofthis b()ok. s<:{k.e~p tbjs crash:~ump arouhg
furlater use. ·

0 NE: Concepts and Tools

The checked build is useful for device driver developers because stricter
argument validation is performed by key kernel-mode system support routines.
For example, ifa driver (or some other piece of kernel-mode code) makes an
invalid call to a system function that is checking parameters with ASSERT state
ments (such as acquiring a spinlock and the wrong interrupt level), the system
will stop execution when the problem is detected rather than allowing some
data structure to be corrupted and the system to crash at a later time. There
are more than 15,000 ASSERT tests just in the core operating system compo
nents of Windows NT!

Examining Internal Data Structures and Variables
This book describes the key internal Windows NT data structures through
diagrams that show the connection between structures as well as through tables
that list the important elements of these structures. Although the general layout
and content of these structures is shown, detailed field-level descriptions (such
as size and data types) are not. However, a number of these data structures
(such as object dispatcher headers, wait blocks, events, mutants, semaphores,
and so on) are defined in the Windows NT DDK C header files (see \ddk\inc* .h)
and described in the DDK documentation.

This book also describes a number of internal system global variables.
These variables can contain, for example, numeric values of interest that might
not be accessible through any of the Windows NT performance counters (such
as the system maximum working set size, which is computed each time the
system boots). Or they can contain addresses or list heads of key system data
structures (such as the process or thread list).

Most of these internal structures and variables exist in the system address
space as static global data or are allocated from one of the Windows NT sys
tem heaps (paged and nonpaged pool, which are examined in more detail in
Chapter 5). Since data in the system address space can be accessed only while
in kernel mode, if you want to access this data yourself, you must either write
your own device driver or use one of the system kernel-mode debuggers described
earlier. Of course, the location and content of these variables can change from
release to release, since they are not documented or supported for user access.

Conclusion
In this chapter, you've been introduced to the key Windows NT technical con
cepts and terms that will be used throughout the book. You've also gotten a
glimpse of the many useful tools available for digging into Windows NT internals.
Now we're ready to begin our exploration of the internal design of the system,
beginning with an overall view of the system architecture and its key components.

25

/ , ~ " ~· ,i 'lo. '

L2- ~-' _, __ :..__ ,,
,._ / J

' '
-""--~--------- ' '

C H A P T E R T W 0

System Architecture

Now that we've covered the terms, concepts, and tools you need to be famil
iar with, we're ready to start our exploration of the internal design goals and
structure of Microsoft Windows NT. This chapter explains the overall archi
tecture of the system-the key components, how they interact with each other,
and the context in which they run. To provide a framework for understanding
the internals of Windows NT, let's first review the requirements and goals that
shaped the original design and specification of the system.

Requirements and Design Goals
The following requirements drove the specification ofWindows NT back in 1989:

Ill Provide a true 32-bit, preemptive, reentrant, virtual memory operat-
ing system

II Run on multiple hardware architectures and platforms

Ill Run and scale well on symmetric multiprocessing systems

Ill Be a great distributed computing platform, both as a network client
and a server

Ill Run most existing 16-bit MS-DOS and Microsoft Windows 3.1 appli
cations

Ill Meet government requirements for POSIX 1003. l compliance

Ill Meet government and industry requirements for operating system
security

Ill Be easily adaptable to the global market by supporting Unicode

27

INSIDE WINDOWS NT

To guide the thousands of decisions that had to be made to create a sys
tem that met these requirements, the Windows NT design team adopted the
following design goals at the beginning of the project:

Ill Extensibility The code must be written to comfortably grow and
change as market requirements change.

Ill Portability The system must be able to run on multiple hardware
architectures and must be able to move with relative ease to new ones
as market demands dictate.

II Reliability and robustness The system should protect itself from
both internal malfunction and external tampering. Applications
should not be able to harm the operating system or other running
applications.

Ill Compatibility Although Windows NT should extend existing tech
nology, its user interface and application programming interfaces
(APls) should be compatible with older versions of Windows as well
as older operating systems such as MS-DOS. It should also interoper
ate well with other systems such as UNIX, OS/2, and NetWare.

II Performance Within the constraints of the other design goals, the
system should be as fast and responsive as possible on each hard
ware platform.

As we explore the details of the internal structure and operation of Win
dows NT, you'll see how these design goals and market requirements were wo
ven successfully into the construction of the system. But before we start that
exploration, let's examine the overall design model for Windows NT and com
pare it to other modern operating systems.

Operating System Models

28

In most operating systems, applications are separated from the operating sys
tem itself-the operating system code runs in a privileged processor mode
(referred to as kernel mode in this book), with access to system data and to the
hardware; applications run in a nonprivileged processor mode (called user
mode), with a limited set of interfaces available and with limited access to sys
tem data. When a user-mode program calls a system service, the processor traps
the call and then switches the calling thread to kernel mode. When the system
service completes, the operating system switches the thread context back to user
mode and allows the caller to continue.

T W 0: System Architecture

The design of the internal structure of the kernel-mode portion of such
systems varies widely. For example, traditional operating systems were mono
lithic in nature, as illustrated in Figure 2-1. The system was constructed as a
single, large software system with many dependencies among internal compo
nents. This interdependency meant that extensions to the system might require
many changes across the entire code base. Also, in a monolithic operating
system, the bulk of the operating system code runs in the same memory space,
which means that any operating system component could corrupt data being
used by other components.

A different structuring approach divides the operating system into mod
ules and layers them one on top of the other. Each module provides a set of
functions that other modules can call. Code in any particular layer calls code only

Operating
system

procedures

Figure 2-1

Application
program

Monolithic operating system

Application
program

User mode

Kernel mode

29

INSIDE WINDOWS NT

30

in lower layers. On some systems, such as the Digital Equipment Corporation
(DEC) Open VMS or the old Multics operating system, hardware even enforces
the layering (using multiple, hierarchical processor modes). One advantage of
a layered operating system structure is that because each layer of code is given
access to only the lower-level interfaces (and data structures) it requires, the
amount of code that wields unlimited power is limited. This structure also
allows the operating system to be debugged starting at the lowest layer, add
ing one layer at a time until the whole system works correctly. Layering also
makes it easier to enhance the operating system because individual layers can
be modified or replaced without affecting other parts of the system.

Another approach to structuring an operating system is the client/server
microkernel model. The architecture in this approach divides the operating
system into several server processes, each of which implements a single set of
services-for example, memory management services, process creation ser
vices, or processor scheduling services. Each server runs in user mode, waiting
for a client request for one of its services. The client, which can be either another
operating system component or an application program, requests a service by
sending a message to the server. An operating system microkernel running in
kernel mode delivers the message to the server; the server performs the opera
tion; and the kernel returns the results to the client in another message, as il
lustrated in Figure 2-2.

N 0 T E The client/ server model of networking is distinctly differ
ent from the client/server model of processing. In client/server net
working, a server provides resources (such as files, printer, and storage
space) to the clients. Client/server processing is a method of distrib
uting the processing load required by an application to best suit the
capabilities of network, server, and client so that one part of an applica
tion is processed on a server machine while another is processed on
the client.

In reality, client/server systems fall within a spectrum, some doing very
little work in kernel mode and others doing more. For example, the Carnegie
Mellon University Mach operating system, a contemporary example of the
client/server microkernel architecture, implements a minimal kernel that com
prises thread scheduling, message passing, virtual memory, and device drivers.
Everything else, including various APis, file systems, and networking, runs in
user mode. However, commercial implementations of the Mach microkernel
operating system typically run at least all file system, networking, and memory
management code in kernel mode. The reason is simple: the pure microkernel
design is commercially impractical because it is too computationally expen
sive-that is, it's too slow.

Client Memory
application server

Process File
server server

I

I

' ~
~ .. _______ _

Microkernel

Hardware

Send __..

Reply • ->

Figure 2-2
Client/server operating system

T W 0: System Architecture

Network
server

Display
server

I
I

,

User mode

Kernel mode

So what model does Windows NT embody? It merges the attributes of a
layered operating system with those of a client/server or microkernel operat
ing system. Performance-sensitive operating system components run in kernel
mode, where they can interact with the hardware and with each other without
incurring the overhead of context switches and mode transitions. For example,
the memory manager, cache manager, object and security managers, network
protocols, file systems (including network servers and redirectors), and all thread
and process management run in kernel mode.

Of course, all of these components are fully protected from errant appli
cations, because applications don't have direct access to the code and data of
the privileged part of the operating system (though they can quickly call other
kernel services). This protection is one of the reasons that Windows NT has the
reputation for being both robust and stable as an application server and a
workstation platform yet fast and nimble from the perspective of core operat
ing system services, such as virtual memory management, file 1/0, networking,
and file and print sharing.

31

INSIDE WINDOWS NT

Does the fact that so much of Windows NT runs in kernel mode mean it
is more susceptible to crashes than a true microkernel operating system? Not
really. Consider the following scenario: suppose the file system code of an
operating system has a bug that causes it to crash from time to time. In a tra
ditional operating system or a modified microkernel operating system, a bug
in kernel-mode code such as the memory manager or the file system would
likely crash the entire operating system. In a pure microkernel operating sys
tem, such components run in user mode, so theoretically a bug would simply
mean that the component's process exits. But in practical terms, the failure of
such a critical process would result in a system crash, since recovery from the
failure of such a component would likely be impossible.

The kernel-mode components of Windows NT also embody basic object
oriented design principles. For example, they don't reach into one another's
data structures to access information maintained by individual components.
Instead, they use formal interfaces to pass parameters and access and/or modify
data structures.

Despite its pervasive use of objects to represent shared system resources,
however, Windows NT is not an object-oriented system in the strict sense. Most
of the operating system code is written in C for portability and because devel
opment tools are widely available. C does not directly support object-oriented
constructs, such as dynamic binding of data types, polymorphic functions, or
class inheritance. Therefore, the C-based implementation of objects in Win
dows NT borrows from, but does not depend on, esoteric features of particu
lar object-oriented languages.

Architecture Overview

32

Now that you understand the basic model of Windows NT, let's take a look at
the key system components that comprise its architecture. A simplified version
of this architecture is shown in Figure 2-3. Keep in mind that this diagram is
basic-it doesn't show everything. The various components of Windows NT are
covered in detail later in the chapter.

In Figure 2-3, first notice the line dividing the user-mode and kernel-mode
parts of the Windows NT operating system. The boxes above the line repre
sent user-mode processes, and the components below the line are kernel-mode
operating system services. As mentioned in Chapter 1, user-mode threads execute
in a protected process address space (although while they are executing in
kernel mode, they have access to system space). Thus, system processes, server
processes (services), the environment subsystems, and user applications each
have their own private process address space.

T W 0: System Architecture

System
processes

Server
processes
(services)

Executive

Environment
subsystems

Subsystem DLLs

Device drivers Kernel

Hardware abstraction layer (HAL)

Figure 2-3
Simplified Windows NT architecture

User
applications

Windowing
and graphics

User mode

Kernel mode

The four basic types of user processes are described in the following list:

m Special system support processes, such as the logon process and the ses
sion manager, that are not Windows NT services (that is, not started
by the service controller).

m Server processes that are Windows NT services, such as the Event Log
and Schedule services. Many add-on server applications, such as
Microsoft SQL Server and Microsoft Exchange Server, also include
components that run as Windows NT services.

m Environment subsystems, which expose the native operating system
services to user applications, thus providing an operating system
environment, or personality. Windows NT ships with three environ
ment subsystems: Win32, POSIX, and OS/2 1.2.

m User applications, which can be one of five types: Win32, Windows
3.1, MS-DOS, POSIX, or OS/2 1.2.

In Figure 2-3, notice the "Subsystem DLLs" box below the "User applica
tions" one. Under Windows NT, user applications do not call the native Windows
NT operating system services directly; rather, they go through one or more
subsystem dynamic-link libraries (DLLs). The role of the subsystem DLLs is to trans
late a documented function into the appropriate undocumented Windows NT
system service calls. This translation might or might not involve sending a mes
sage to the environment subsystem process that is serving the user application.

33

INSIDE WINDOWS NT

The kernel mode of the operating system includes these components:

II The Windows NT executive contains the base operating system ser
vices, such as memory management, process and thread manage
ment, security, I/O, and interprocess communication.

II The Windows NT kernel performs low-level operating system func
tions, such as thread scheduling, interrupt and exception dispatch
ing, and multiprocessor synchronization. It also provides a set of
routines and basic objects that the rest of the executive uses to imple
ment higher-level constructs.

II The hardware abstraction layer (HAL) is a layer of code that isolates
the kernel, device drivers, and the rest of the Windows NT execu
tive from platform-specific hardware differences.

II Device drivers include both file system and hardware device drivers
that translate user I/O function calls into specific hardware device
I/O requests.

II The windowing and graphics system implements the graphical user in
terface (GUI) functions (better known as the Win32 USER and GDI
functions), such as dealing with windows, controls, and drawing.

Each of these components is covered in greater detail both later in this chap
ter and in the chapters that follow.

Before we dig into the details of these system components, though, let's
review two key attributes of the Windows NT architecture-portability and
multiprocessing-and also examine the differences between Windows NT Work
station and Windows NT Server.

Portability

34

Windows NT was designed to run on a variety of hardware architectures, in
cluding Intel-based CISC systems as well as RISC systems. The initial release
ofWindows NT supported the x86 and MIPS architecture. Support for the DEC
Alpha AXP was added shortly thereafter. Support for a fourth processor archi
tecture, the Motorola PowerPC, was added in Windows NT 3.51. Because of
changing market demands, however, support for both the MIPS and Power PC
was dropped after the release ofWindows NT 4.0. Windows NT 5.0 will run only
on x86 and Alpha machines. Eventually, Windows NT will also run on the Merced
chip, the first implementation of the new 64-bit architecture family beingjointly
developed by Intel and Hewlett-Packard, called IA64 (for Intel Architecture 64).
As Microsoft has stated publicly, Windows NT will be enhanced to support a
true 64-bit programming interface on both IA64 and Alpha systems.

T W 0 : System Architecture

Windows NT achieves portability across hardware architectures and plat
forms in two primary ways:

II Windows NT has a layered design, with low-level portions of the sys
tem that are processor-architecture-specific or platform-specific iso
lated into separate modules so that upper layers of the system can
be shielded from the differences among hardware platforms. The
two key components that provide operating system portability are
the HAL and the kernel. Functions that are ·architecture-specific;:
(such as thread context switching) are implemented in the kernel.
Functions that can differ from machine to machine within the same
architecture are implemented in the HAL.

II The majority of Windows NT is written in a portable language-the
operating system executive, utilities, and device drivers are written in
C, and portions of the graphics subsystem and user interface are
written in C++. Assembly language is used only for those parts of
the operating system that must communicate directly with system
hardware. (such as the interrupt trap handler) or that are extremely
performance-sensitive (such as context switching). Assembly lan
guage code exists not only in the kernel and the HAL but also in a
few places within the executive (such as the executive routines that
implement interlocked instructions as well as one module in the
local procedure call facility), in the kernel-mode part of the Win32
subsystem, and even in some user-mode libraries, such as the pro
cess startup code in NTDLL.DLL (explained later in this chapter).

Symmetric Multiprocessing
Multitasking is the operating system technique for sharing a single processor
among multiple threads of execution. When a computer has more than one
processor, however, it can execute two threads simultaneously. Thus, whereas
a multitasking operating system only appears to execute multiple threads at
the same time, a multiprocessing operating system actually does it, executing
one thread on each of its processors.

As mentioned at the beginning of the chapter, a key Windows NT design
goal from the start of the project was to run well on multiprocessor computer
systems. Windows NT supports symmetric multiprocessing (SMP). There is no master
processor-the operating system as well as user threads can be scheduled to

35

INSIDE WINDOWS NT

run on any processor. Also, all the processors share just one memory space. This
model contrasts with asymmetric multiprocessing (ASMP), in which the operat
ing system typically selects one processor to execute operating system code
while other processors run only user code. The differences in the two multi
processing models are illustrated in Figure 2-4.

Symmetric Asymmetric

Processor A Processor B Processor A Processor B

1/0 devices

Operating
system

1/0 devices

Figure 2-4
Symmetric vs. asymmetric multiprocessing

36

Windows NT was architecturally designed to run on up to 32 processors.
The number oflicensed processors is stored in the registry at HKLM\System\
CurrentControlSet\Control\Session Manager\LicensedProcessors. (Tamper
ing with that data is a violation of the software license; and besides, modify
ing Windows NT to use more processors is more complicated than just changing
this value.) The default value depends on the edition of Windows NT, as you
can see in Table 2-1.

T W 0 : System Architecture

Table 2-1 Number of Licensed Processors for
Various Editions of Windows NT

Edition

Windows NT Server, Enterprise Edition

Windows NT Server

Windows NT Workstation

Number of
Licensed Processors

8
4

2

System manufacturers that sell Windows NT Server systems that support
more than eight processors must ship their own remastered Windows NT CD
ROM with a registry set to enable a higher number of processors. They might
also need to provide their own HAL.

One of the key issues with multiprocessor systems is scalability. To run
correctly on an SMP system, operating system code must adhere to strict guide
lines and rules to ensure correct operation. Resource contention and other
performance issues are more complicated in multiprocessing systems than in
ordinary operating systems and must be accounted for in the system's design.
Windows NT incorporates several features that are crucial to its success as a
multiprocessing operating system:

Ill The ability to run operating system code on any available processor
and on multiple processors at the same time. With the exception of
its kernel component, which handles thread scheduling and inter
rupts, all operating system code can be preempted (forced to give
up a processor) when a higher-priority thread needs attention.

Ill Multiple threads of execution within a single process, each of which
can potentially execute simultaneously on different processors.

Ill Fine-grained synchronization: within the kernel as well as within
device drivers and server processes allow more components to run
concurrently on multiple processors.

Ill Server processes that use multiple threads to process requests from
more than one client simultaneously.

Ill Convenient mechanisms for sharing objects among processes and
flexible interprocess communication capabilities, including shared
memory and an optimized message-passing facility.

Chapter 4 describes how threads are scheduled in a multiprocessor system.

37

INSIDE WINDOWS NT

38

Are there two versions ofWindows NT-one for uniprocessor systems and
one for multiprocessor ones? Not really. Besides the HAL, which by its very
nature is different for a uniprocessor system than for a multiprocessor system,
of the more than 2000 files on the Windows NT CD-ROM, only one file is shipped
in different uniprocessor and multiprocessor versions: the core operating sys
tem image that contains the executive and kernel, NTOSKRNL.EXE. The rest
of the binary files that comprise Windows NT (including all utilities, libraries,
and device drivers) are built to run properly on both uniprocessor and multi
processor systems. For example, they handle multiprocessor synchronization
issues correctly. You should use this approach on any software you build,
whether it be a Win32 application or a device driver-build your code assum
ing it might run on a multiprocessor system so that if it does, it won't break.

The Windows NT CD-ROM includes two versions of NTOSKRNL:

Ill NTOSKRNL.EXE is the executive and kernel for uniprocessor
systems.

NTKRNLMP.EXE is the executive and kernel for multiprocessor
systems.

These two images are built from the same source files. They are built using
compile-time conditional code so that multiprocessor-specific support is not
included in the uniprocessor version of NTOSKRNL and vice versa. Because
of this, single processor systems don't have to pay for the overhead of multi
processor synchronization at the operating system level.

At installation time, the appropriate file is selected and copied to the local
\winnt\system32 directory. In either case, however, the file is named
NTOSKRNL.EXE on the local hard drive.

You'll notice that on the checked build CD-ROM (the special debug ver
sion of Windows NT, which is explained on page 22 in Chapter 1), both
NTOSKRNL.EXE and NTKRNLMP.EXE are identical-they are both built for
multiprocessor systems. In other words, there is no uniprocessor version of the
checked build version of NTOSKRNL.

T W 0 : System Architecture

EXPERIMENT: Checking Which
Version of NTOSKRNL You're Running
You can tell which version of NTOSKRNL you're running by running
WINMSD.EXE. (From the Start menu, choose Programs, and then
select Administrative Tools, Windows NT Diagnostics.) If you click the

·version tab.you'll see something like the following:

As you can see, the system is running the multiprocessor free build
for X86 systems. (This screen shot was taken from the dual processor
Pentium Pto workstation that Compaq so graciously loaned me for this
book project.)

Windows NT Workstation vs. Windows NT Server
Many people wonder what exactly the differences are between Windows NT
Workstation, Windows NT Server, and Windows NT Server, Enterprise Edition.
First, Windows NT Server behaves differently than Windows NT Workstation
does-Windows NT Server is optimized to be a high-performance network
server platform, whereas Windows NT Workstation, although it has server
capabilities, is optimized for interactive desktop use.

39

INSIDE WINDOWS NT

40

Second, Windows NT Server, Enterprise Edition, is a superset ofWindows
NT Server, which in turn is a superset of Windows NT Workstation. For example,
the following optionally installable networking and server components come
with Windows NT Server but are not available for Windows NT Workstation:

Ill Enterprise network management and directory services through the
formation of domains (groups of Windows NT systems treated as a
single security perimeter)

Ill Disk fault-tolerance features (striping with parity and mirroring)

Ill Services for Macintosh: file and printer sharing, user administration

Ill Gateway Service for NetWare, which permits a number of Windows
NT clients to access a NetWare server using the Windows NT Server
as a gateway

Ill TCP/IP server addressing management, such as a complete Domain
Name System (DNS) and Dynamic Host Configuration Protocol
(DHCP)

Remote boot server for diskless MS-DOS, Windows 3.1, and Win
dows 95 PCs

Windows NT Server, Enterprise Edition, contains additional components
and features beyond those in Windows NT Server, such as Microsoft Cluster
Server, Microsoft Message Queue Server, and Microsoft Transaction Server.
(The Windows NT 4.0 Option Pack, which installs on both Windows NT Server
and Windows NT Server, Enterprise Edition, includes the latter two compo
nents in addition to Microsoft Internet Information Server 4.0 and Internet
Connection Services for Microsoft RAS.) Also, on x86 systems, Windows NT
Server, Enterprise Edition, can allow certain applications to have a 3-GB user
address space (as opposed to 2 GB on the other editions). This capability is
explained in further detail in Chapter 5.

There are also licensing differences between Windows NT Workstation
and Windows NT Server:

Iii The Windows NT Workstation license permits only 10 unique IP con
nections in a IO-minute period (though the code doesn't enforce
this connection limit). Windows NT Server has no such restriction.

Ill Windows NT Server supports an unlimited number of clients (as
suming that you have licenses for all of them) accessing the built-in
file and print-sharing services, whereas Windows NT Workstation

T W 0 : System Architecture

permits only up to 10 simultaneous inbound connections to shared
files or printers.

II Windows NT Server, Enterprise Edition, supports eight processors,
Windows NT Server four, and Windows NT Workstation only two.

Although Windows NT Server and Windows NT Server, Enterprise Edi
tion, contain significant added functionality over Windows NT Workstation, the
majority of the files in all three products are identical, including such core
components as the executive, kernel, device drivers, utilities, and libraries.
However, a number of these components operate differently depending on
which edition is running.

How does Windows NT know which product is running? At boot time, the
registry is queried and the result is stored in the system global variable
MmProductType. One element of this information is in the registry key HKLM\
System\CurrentControlSet\Control\ProductOptions. Changing this informa
tion is a violation of the software license. Table 2-2 shows the values for this key
as they correspond to the different editions of Windows NT.

Table 2-2 Product Type Registry Values

Edition of Windows NT

Windows NT Workstation

Windows NT Server (domain controller)

Windows NT Server (server only)

Value of ProductOptions*

Win NT

LanmanNT

Server NT

* A different key, ProductSuite, distinguishes Windows NT Server, Enterprise Edition.

If user programs need to determine which Windows NT product is run
ning, they can query for this information. (For sample code to do this, see the
article Ql24305 "Which Windows NT (Server or Workstation) Is Running?"
in the MSDN Knowledge Base.) Device drivers running in kernel mode can
call the internal executive routine used by Windows NT itself, MmlsThisAn
NtasSystem, documented in the Windows NT Device Driver Kit (DDK).

Based on the product type, several resource allocation decisions are made
differently at system boot time, such as the size and number of operating sys
tem heaps (or pools), the number of internal system worker threads, and the
size of the system data cache. Also, run-time policy decisions, such as the way
the memory manager trades off system and process memory demands, differ

41

INSIDE WINDOWS NT

42

Windows NT vs. Windows 95 and Windows 98
Windows NT and Windows 95 (and its follow-on release, Windows 98)
are part of the "Windows family of operating systems," sharing a com
mon subsetAPI (Win32 and COM), device driver model (WDM), and
in some cases shared operating system code. Although Windows NT 4.0
doesn't have some of the features that Windows 95 has today, Microsoft
has always made it clear that Windows NT was to be the strategic op
erating system platform for the future-not just for servers and busi
ness desktops but eventually for consumers as well. Following are some
of the architectural differences and advantages that Windows NT has
over Windows 95. (These comparisons also apply to Windows 98.)

• Windows NT supports multiprocessor systems-Windows 95
doesn't. ·

• Windows NT runs on a variety of machine architectures
Windows 95 is limited to x86 systems.

• Windows 95 doesn't have a file system th~l supports security
(such as discretionary access control).

• Windows NT is a fully 32-bit operating system-:it contains no
16-bit code. Windows 95 contains a large amount of old 16-bit
code from its predecessors, Windows 3.1 and MS-DOS.

• Windows NT is fully reentrant..,.,...significant parts of Windows
95 are nonreentrant (mainly the older 16-bit code taken from
Windows 3.1). This nonreenttant code includes the majority
of the graphics and window management functions (USER and
GDI). When a 32-bit application on Windows 95 attempts to call
a system service implemented in nonreentrant 16.:.bit code, it·
must first obtain a systemwide lock (or mutex) to block other
threads from entering the nonreentrant code base. Arid even
worse, a 16-bit application holds this lock while running. Thus,
although the core of Windows 95 contains a preemptive 32-bit
multithreaded scheduler, because so much of the system is
still implemented in nonreentra;nt code, applications many
times run single threaded.

T W 0 : System Architecture

• Windows NT provides an option to run 16-bit Windows appli
cations in· their own address space-Windows 95 always runs
16-bit Windows applications in a shared address space, in which
they cart corrupt (and hang) each other.

• Shared memory on Windows NT is visible only to the processes.
that have the' same shared :memory section (called file mapping
objects in the Wm32 API) open; On Windows ~o, all shared
niemory is visible .aiid writable (tom all p~ce8ses~ ThilS; any.··
p,rOcess can·write, to any file mapping o~eC:t. · · ·

. • • Windqws 95 has som~ ~ritlcal operating system pages .that are ··
writable :from U$er mode, thus ail9Wing·a user application to

crasll• the !Ystem.· .. ·

• . What. dQes W~dows 95 l;lave that Wind(}WS NT 4.0 doesn't? Full
· · Plug art4 Play, Power management, infrared support, and support ~or

. the FAt32 .file system. However; a1l of these features will be a part of
: · .. ··Windows NT 5.0, makfug it the FU'St release ofWin.dows NT to be a true
. super8et of the WllJ.d.pws platfo;rm, ·..

.. , · · The one thing b6th Windows 95 and W'mdaws 9Scan do that Win
. , .dows NT'will nevel;' do is run all older MS-DOS and Wmdows. 3.1 ap-

, . ·plicatiops. (i;tptabfy pnes that'reqUire direct hardware access) as well as .
. l6~bitrM;S..DQS device drivers. Wherea.S 100 percent compatibility With
. Ms~oos and Windows 3.l Wa5 a martdat0ry goal (of Wji,:1~ ~5,,t,he
· · gOOJ, forW'mdows NT Was ~ run most eXistirig 16-bit appliaitlons: ·

between Windows NT Server and Windows NT Workstation. Even some thread
scheduling details are handled differently in the two editions. Where there are
significant operational differences in the two products, these are highlighted
in the pertinent chapters throughout the rest of the book. Thus, unless oth
erwise noted, everything in this book applies to both Windows NT Server and
Windows NT Workstation.

43

INSIDE WINDOWS NT

Key System Components
Now that we've looked at the high-level architecture of Windows NT, let's delve
deeper into the internal structure and the role each of the key operating sys
tem components plays. Figure 2-5 is a more detailed and complete diagram
of the Windows NT system architecture and components than was shown ear
lier in the chapter (in Figure 2-3).

System Services
processes l Replicator t Environment

l Service l RPC subsystems Appllcatlons
controller r-;1

Winlogon l Alerter l POSIX
I:""· ~ l

l Session Event User
. OS/2

rm- Logger
1;-:

applications r:[1
t-

manager Win32
... •• h , •

· Subsystem DLL r-; .. ,.

'~ 'If _f ~~
NTDLL.DLL

System
[

threads J User mode
... '! Kernel mode

Executive API M

1/0system Cache
Win32USER

Processes
Security

Virtual and GDI

File 1 manager and threads memory

systems 1 Object management/Executive RTL

Device drivers I Kernel
Hardware abstraction layer (HAL) L

·1 j

Figure 2-5
Windows NT architecture

44

·The following sections elaborate on each major element of this diagram.
Chapter 3 explains the primary control mechanisms used by the system (such
as the object manager, interrupts, and so forth). Then the remaining chapters
of this book explore in even more detail the internal structure and operation
of key areas such as processes and threads, memory management, security, the
1/0 system, the cache manager, and the Windows NT file system (NTFS).

Table 2-3 lists the filenames of the key components shown in Figure 2-5.
(You'll need to know these filenames because I'll be referring to some system
files by name.)

T W 0 : System Architecture

Table 2-3

Filename

SERVICES.EXE

WINLOGON.EXE

SMSS.EXE

PSXSS.EXE

OS2SS.EXE

CSRSS.EXE*

NTDLL.DLL

KERNEL32.DLL,
USER32.DLL,
GDI32.DLL.

PSXDLL.DLL

NTOSKRNL.EXE**

. HAL.DLL

WIN32K.SYS

Key Windows NT System Files

Component(s)

Service controller process

Logon process

Session manager process

POSIX subsystem process

OS/2 subsystem process

Win32 subsystem process

Internal support functions and system service dis
patch stubs to executive functions

Win32 subsystem DLLs

POSIX subsystem DLL

Executive and kernel

Hardware abstraction layer

Win32 USER and GDI kernel-mode components

* CSRSS stands for "client/server run-time subsystem"-but all the subsystems are client/
server run-time subsystems.

** Remember that there are two versions ofNTOSKRNL on the Windows NT CD-ROM: one
for uniprocessors and one for multiprocessor systems. The correct one is copied to the
local system at installation time. Also, the filename NTOSKRNL is a bit misleading because
the kernel is only a small percentage of the total code in this file. (The majority of the code
comprises the executive.)

Environment Subsystems and Subsystem DLLs
As shown in Figure 2-5, Windows NT has three environment subsystems: POSIX,
OS/2, and Win32. (OS/2 is available only for .x86 systems.) As I'll explain shortly,
of the three, the Win32 subsystem is special in that Windows NT can't run
without it. In fact, the other two ~ubsystems are configured to start on demand,
whereas the Win32 subsystem must always be running.

The subsystem startup information is stored under the registry key HKLM\
System\CurrentControlSet\Control\Session Manager\Subsystems. The screen
shot from the Registry Editor in Figure 2-6 on the next page shows the values
under this key.

45

INSIDE WINDOWS NT

46

Figure 2-6
Registry Editor showing Windows NT startup information

The Required value lists the subsystems that load when the system boots.
The value has two strings: Windows and Debug. The Windows value contains
the file specification of the Win32 subsystem: CSRSS.EXE. Debug is blank (it's
used for internal testing) and therefore does nothing. The Optional value
indicates that the OS/2 and POSIX subsystems will be started on demand. The
registryvalue"!{mode contains the filename of the kernel-mode portion of the
Win32 subsystem, WIN32K.SYS (explained later in this chapter).

The role of an environment subsystem is to expose some subset of the base
Windows NT executive system services to application programs. Each sub
system can provide access to different subsets of the native services in Windows
NT. That means that some things can be done from an application built on one
subsystem that can't be done by an application built on another subsystem. For
example, a Win32 application can't use the POSIX fork function.

Each executable image (.EXE) is bound to one and only one subsystem.
When an image is run, the process creation code examines the subsystem type
code in the image header so that it can notify the proper subsystem of the new
process. This type code is specified with the /SUBSYSTEM qualifier of the link
command and can be viewed with the built-in quick viewer in Windows NT
Explorer, the link /DUMP command, or the Exetype tool in the Windows NT
Resource Kit.

Function calls can't be mixed between subsystems. In other words, a POSIX
application can call only services exported by the POSIX subsystem, and a
Win32 application can call only services exported by the Win32 subsystem. As
I'll explain later, this restriction is the reason that the POSIX subsystem, which
implements a very limited set of functions (only POSIX 1003.1), is not a use
ful environment for porting UNIX applications.

As mentioned earlier, user applications don't call Windows NT system
services directly. Instead, they go through one or more subsystem DLLs. These
libraries export the documented interface that the programs linked to that

T W 0 : System Architecture

EXPERIMENT: Viewing the Image Subsystem iype
You can see the 'image subsystem type by using either the Exetype tool
in the Windows NT Resource Kit or by dumping the image header with
the built-in quick viewer for images in Windows NT. Explorer. For ex
ample, notice the image types for two different· Win32 images~
NOTEPAD.EXE (the sill1ple texte~or) and CMD.EXE (th(! Wmdows
NT cqltlri1and prompt):···.

' '··

C:\>ex'etype \wtnnt\$ystem~2\notepad. exe . . .
File ",\winnt\system32\noteparl, exe" iS of the foll owing type:

.. Windows tff · · . · · . . ·

32 b.it ~athl~~ .
Built for the Intel 80380 processor

·Runs under tbe windows' GUI. su~sntem' . · . ' ' '. . ' ...

· ·· <;:\>ex'etype \winnt\system32\cmd.exe .• ·.
··Fi.le "\w1nnt\system32\c~d.exe" 1s of the following type:

Windows NT · · · . ·
.32 b~ t mac hi ~e ·. . • · · . .· .· .. ··
Built for: the: Intel 80386 processor . ..
Run$ unde:r the Windo.ws character~based subsystein ··

.. c: . In reality, th~te ~just one Wmddws subsysteln, not~~te ones .

. . for graphical images aµd for charactel:Mbased, or conSc;>let ima~. Also,

. ' •.Windows NT 'is not sup}>Qrted ·.cm ·t.he lntcl 3.86 processor-the te1t.

,output by the ~etype prc)gram hasn't been updated. .·.. ·
.•. · You can gleah the ~e information :fr,om the output of the quick · ·
•.. ' Vi.ewet for iµiag~s. The funqWmg example of'a POSIX image was gener.: ·. ·.·.

;i,ted bY pmrungWindoWs Nr Explorer~ selecting the file \NTR)3:.SKIT\
. P()SIX\:(.S.EXE :(<>n¢ .of' tb.e POSIX utilities in the< Windows NT

: ' :: Res0urce Ki~). dQiqg ~fright mo:use click, and scl€:ictmg Qui& View.
·· ·. ·.•, Ndte that the slJ.hsystelll type it f!OSifC, -. : ·

Size of Image:
Size of Headers:

Chee/.<. sum:
Subsystem: Image run in the Posilc

character subsystem ..
Size of Stac/.<. ReseNe: 00100000
Size of Stac/.<. Commit: 00001000

,~f1~}1nonp, .

47

INSIDE WINDOWS NT

48

subsystem can call. For example, the Win32 subsystem DLLs (such as
KERNEL32.DLL, USER32.DLL, and GDI32.DLL) implement the Win32 API
functions. The POSIX subsystem DLL implements the POSIX 1003.1 APL

When an application calls a function in a subsystem DLL, one of three
things can occur:

11111 The function is entirely implemented in user mode inside the sub
system DLL. In other words, no message is sent to the environment
subsystem process, and no Windows NT executive system services are
called. The function is performed in user mode, and the results are
returned to the caller. Examples of such functions include PtlnRect
and IsRectEmpty.

11111 The function requires one or more calls to the Windows NT execu
tive. For example, the Win32 ReadFile and WriteFile functions involve
calling the underlying internal (and undocumented) Windows NT
1/0 system services NtReadFile and NtWriteFile, respectively.

11111 The function requires some work to be done in the environment sub
system process. (The environment subsystem processes, running in
user mode, are responsible for maintaining the state of the client
applications running under their control.) In this case, a client/
server request is made to the environment subsystem in that a mes
sage is sent to the subsystem to perform some operation, perhaps
using the Windows NT executive's local procedure call (LPG) facility
(described in more detail on page 60). The subsystem DLL then
waits for a reply before returning to the caller.

Some functions can be a combination of the second and third items above, such
as the Win32 CreateProcess and CreateThread functions.

Although Windows NT was designed to support multiple, independent
environment subsystems, from a practical perspective, having each subsystem
implement all the code to handle windowing and display 1/0 would result in
a large amount of duplication of system functions that, ultimately, would have
negatively affected both system size and performance. Because Win32 was the
primary subsystem, the Windows NT designers decided to locate these basic
functions there and have the other subsystems call on the Win32 subsystem to
perform display I/0. Thus, the POSIX and OS/2 subsystems will call services
in the Win32 subsystem to perform display 1/0 (specifically, console or char
acter cell 1/0).

Let's take a closer look at each of the environment subsystems.

T W 0 : System Architecture

Win32 Subsystem
The Win32 subsystem consists of the following major components:

• The environment subsystem process (CSRSS.EXE), which contains
support for:

D Console (text) windows

D Creating and deleting processes and threads

D Portions of the support for 16-bit virtual DOS machine (VDM)
processes

D Other miscellaneous functions, such as GetTempFile, DefineDos
Device, ExitWindowsEx, and several natural language support
functions

Ill The kernel-mode device driver (WIN32K.SYS), which contains the
following:

D The window manager controls window displays; manages screen
output; collects input from keyboard, mouse, and other devices;
and passes user messages to applications.

D The Graphical Device Interface (GDI) is a library of functions
for graphics output devices. It includes functions for line, text,
and figure drawing and for graphics manipulation.

111 Subsystem DLLs (such as USER32.DLL, ADVAPI32.DLL, GDl32.DLL,
and KERNEL32.DLL), which translate documented Win32 API func
tions into the appropriate undocumented kernel-mode system service
calls to NTOSKRNL.EXE and WIN32K.SYS.

II Graphics device drivers, which are hardware-dependent graphics
display drivers, printer drivers, and video miniport drivers.

Applications call the standard USER functions to create windows and
buttons on the display. The window manager communicates these requests to
the GDI, which passes them to the graphics device drivers, where they are
formatted for the display device. A display driver is paired with a video miniport
driver to complete video display support. Each video miniport driver provides
hardware-level support for its associated display driver.

The GDI provides a set of standard functions that let applications com
municate with graphics devices, including displays and printers, without know
ing anything about the devices. GDI functions mediate between applications

49

INSIDE WINDOWS NT

50

and graphics devices such as display drivers and printer drivers. The GDI in
terprets application requests for graphic output and sends them to graphics
display drivers. It also provides a standard interface for applications to use
varying graphics output devices. This interface enables application code to be
independent of the hardware devices and their drivers. The GDI tailors its
messages to the capabilities of the device, often dividing the request into man
ageable parts. For example, some devices can understand directions to draw
an ellipse; others require the GDI to interpret the command as a series of pixels
placed at certain coordinates. For more information about the graphics and
video driver architecture, see the book Graphics Drivers Design Guide in the
Windows NT DDK.

Prior to Windows NT 4.0, the window manager and graphics services were
part of the user-mode Win32 subsystem process. In Windows NT 4.0, the bulk
of the windowing and graphics code was moved from running in the context
of the Win32 subsystem process to a set of callable services running in kernel
mode (in the file WIN32K.SYS). The primary reason for this shift was to im
prove overall system performance. Having a separate server process that con
tains the Win32 graphics subsystem required multiple thread and process context
switches, which consumed considerable CPU cycles and memory resources even
though the original design was highly optimized.

For example, for each thread on the client side there was a dedicated,
paired server thread in the Win32 subsystem process waiting on the client
thread for requests. A special interprocess communication facility called fast
LPCwas used to s.end messages between these threads. Unlike normal thread
context switches, transitions between paired threads via fast LPC don't cause
a rescheduling .event in the kernel, thereby enabling the server thread to run
for the remaining time slice of the client thread before having to take its turn
in the kernel's preemptive thread scheduler. Moreover, shared memory buff
ers were used to allow fast passing oflarge data structures, such as bitmaps, and
clients had direct but read-only access to key server data structures to minimize
the need for thread/process transitions between clients and the Win32 server.
Also, GDI operations were (and still are) batched. Batchingmeans that a series
of graphics calls by a Win32 application aren't "pushed" over to the server and
drawn on the output device until a GDI batching queue is filled. You can set
the size of the queue by using the Win32 GdiSetBatchLimit function, and you
can flush the queue at any time with GdiFlush. Conversely, read-only proper
ties and data structures of GDI, once they were obtained from the Win32 sub
system process, were cached on the client side for fast subsequent access.

Despite these optimizations, however, the overall system performance was
still not adequate for graphics-intensive applications. The obvious solution was
to eliminate the need for the additional threads and resulting context switches

T W 0 : System Architecture

by moving the window and graphics system into kernel mode. Also, once ap
plications have called into the window manager and the GDI, those subsystems
can access other Windows NT executive components directly without the cost
of user-mode or kernel-mode transitions. This direct access is especially impor
tant in the case of the GDI calling through video drivers, a process that involves
interaction with video hardware at high frequencies and high bandwidths.

:.:~tr=R~n~i:~~:=:~~Ode?.
· Some developers wcmdered whether moving this, much code int:O keJ..
nel inode would substantially affect system stability. The answer is that
it hasn't~ The reason the impact on system s~bility haS been mlnimal
is: thatpriot roWmdow8 NT 4.0 (and this is .still true today), a bug (such·

, . . --~ 3.J.l access violation) in the user;.mode W.111~~ _S)l..l:>system process
· (pSRSS) resulted in a: sy5teril crash. This. crash .occurs because the

parent process.of CSRSS (the session manager,$~, which is de~
Scribed on page· 75) does a wait operation OD; the proeess handle to
CSR&S, arid if the wait ~er returns, SMSS crashes the system~because

·~ •. c: the "Yin32 subSyste# process' was. (and still is) a Vitaf ptot:ess to the
· tunnfng of the s)rSt:Cµt. Because it was the process that contained the
... 'Glata iitructutes tha(described.the Windows on the dispiay, the death

· 6f rlJt process woUl~· kill the u$ei interfa(;e. Howe\Ter, even a Wmdows
_ NT~em:-Operaitingasa .server.: With•no in.tenf.ctive p~s. cotildn't
fu Withouqhis· process. sip.ce server processes might be makillg use ..
of"wit;ui~me~gmg u; qnve the internal s~te of the appllqition, With
W~ NT 4.0; .an·access violationiri the same code now running ip

. kernel In~ slfup_ly~~r~l!~s the system niore quickly, ~nee ~x;ceptions · · ·
in ke:trnel riiode..result in a system c™h. · ·.·. . .: " ··.·. > .. · · · .. _

· · There iii, however, on,e 3.dqitiona:I i:heoietlrnl dangt!f thatdidn't . ·.
> exiSt prior u;moVirtg' they windowfug:~d gnq>bics s~tem'..into kernel

n1ode~ Became this bQdy.cd' c.ode is now Ilu:lning m.ketPelm~e; a bug
(sril;il as'.the :use 'of'a ba<H)ointer) ~<?uld r~sult i.Jl:t:p~uptiµg·Jiernet~

... ; Il).Qde pri>Wci:ed 'datasti'U~es: Pnor t0 Whld~ 'NT:4,0, s}lch i:ef'er:- '
< 'eri;e:es woiild have caused mi access viC>iatioil, Sirice kernd-tnotle p<tges .
: \ ar~ not wriiabl~ from ~'fn6de~ But a 'Spteip. t:rash.~cihave then.
·• ' resulted. as described earlier~ With the code' now· r'urining-i~ kernel ·.··

_· '_mode;•a ·])rui pointer referenc~ that eallfied a write :operation to sbme
. : ~ ·.: : . , . ' " ' . ·, , '

(continued)

51

INSIDE WINDOWS NT

52

Is Windows NT Less Stable with Win32 USER and GDI in Kernel Mode? continued
..... '·"." ~. . :· ,f • .. ·:. ·:·· •• : •• ~*-': :... < . :. •

·:~-:<< f:'.~>i~ ~::.t., ~~.'> ·.".-: .

'. ~ apd gntp~~s subs}rs~ i.Ii I<ertiel mode) i8 not fund.amen.:
. tally ~· Ids· identiail to tlie approache.~ m;µty other device drivers

. '

' o~her nominally preemptive operatfug sylt-ems;. executing in kernel

T W 0: System Architecture

· .. · .one in the application and one in CSR.SS.EXE. Therefore, on an: SMP
·· •• ·: S,ystem; the two threads could run in parallel, thus improving through~
<< i ,pµt. This analysis shows a misunderstanding of how Wmdows NT worked
· ·>:.:.p;iot;tQvemon 4.0. In most cases, calls fu:>m a.clien,tappllcatibn to.~·

'.; X ·• .. :off With .the bUsy application thread. Indeed, becaUSce the two tlll'eads

53

INSIDE WINDOWS NT

54

So, what remains in the user-mode process part of the Win32 subsystem?
All the drawing and updating for console or text windows are handled by it,
since console applications have no notion of repainting a window. It's easy to
see this activity-simply open a command prompt and drag another window
over it, and you'll see the Win32 subsystem process running like crazy as it
repaints the console window. But other than console window support, only a
few Win32 functions result in sending a message to the Win32 subsystem pro
cess anymore: process and thread creation and termination, network drive
le.tter mapping, and creation of temporary files. In general, a running Win32
application won't be causing many, if any, context switches to the Win32 sub
system process.

POSIX Subsystem
POSIX,,an acronym loosely defined as "a portable operating system interface
based on UNIX;' refers to a collection of international standards for UNIX
style operating system interfaces. The POSIX standards encourage vendors
implementing UNIX-style interfaces to make them compatible so that pro
grammers can move their applications easily from one system to another.

Windows NT implements only one of the many POSIX standards, POSIX.1,
formally known as ISO/IEC 9945-1:1990 or IEEE POSIX standard 1003.1-1990.
This standard was included primarily to meet U.S. government procurement
requirements set in the mid-to-late 1980s that mandated POSIX.1 compliance
as specified in Federal Information Processing Standard (FIPS) 151-2, devel
oped by the National Institute of Standards and Technology. Windows NT 3.5,
3.51, and 4.0 have been formally tested and certified according to FIPS 151-2.
The required POSIX Conformance Document is shipped in the \HELP direc
tory in the Platform SDK.

Because POSIX.1 compliance was a mandatory goal for Windows NT, the
operating system was designed to ensure that the required base system support
was present to allow for the implementation of a POSIX.1 subsystem (such as
the fork service, which is implemented in the Windows NT executive, and the
support for hard file links in the Windows NT file system). However, because
POSIX.1 defines a limited set of services (such as process control, interprocess
communication, simple character cell I/0, and so on), the POSIX subsystem
alone is not a complete programming environment. And because applications
can't mix calls between subsystems on Windows NT, POSIX applications are
limited to the strict set of services defined in POSIX.l. This restriction means
that a POSIX executable on Windows NT can't create a thread or a window or
use remote procedure calls (RPCs) or sockets. You can, however, do all these

T W 0 : System Architecture

EXPERIMENT: Watching the POSIX Subsystem Start
The Windows NT Resource Kit includes an optional set of PO SIX utili
ties that are installed in a \POSIX subdirectory underneath your Re
source Kit directory. If you have this directory installed, follow these
steps:

1. Start a command prompt.

2. 'fype. tlist /t, and check that the POSIX subsystem isn't already
running (that~' that there's no PSXSS.EXE process under- ·

- neath SMSS.EXE).

3. Run one of the POSIX utilities in the Windows NT Resource
Kit (such as \NTRESKIT\POSIX\LS.EXE).

4 .. You'll notice a slight pause while the·POSIX subsystem starts
and· the.LS command displays the directory contents.

5. Run tlist ft again. This time, notiee the existence of PSXSS.EXE
· as a child of SMSS.EXE.

6. Rerun LS.EXE a second time; you'll notice a quicker response
(now that the POSIX subsystem is already started).

7. Rerun LS.EXE, but pause the output by pres8ing Ctrl-S; issue
, a tlist It from another command prompt, and notice that the

PdSIX support image (POSIX.EXE) was the process created .. ·
. from the first command prompt and that it in turn created

the .LS.EXE process. You should see something si:milar tO the
following annotated output: ·

System (2)
smss. exe (23) -------- Session manager

csrss.exe (31}' Win32&ibsystem

' -.;.,-

psxss. exe (187)------- POSIX subsystem
explQrer.exe · (69) Program Manager

CMD.EXE (93) Command Prompt -.ls
pos1x.exe <i7J3)-....------ POSIXsuppo~~l'()Oess · .

ls. exe (97) · POSIX application ·
being: run

55

INSID.E WINDOWS NT

56

things in a Win32 application, the preferred subsystem environment for Windows
NT, which is why several companies-such as DataFocus (urww.datafocus.com)
and ConsenSys (wurw.consensys.com) provide third-party UNIX-to-Win32 port
ing libraries. With this approach, a UNIX application can be recompiled and
relinked as a Win32 executable and can slowly start to integrate calls to native
Win32 functions. For companies that want to port UNIX applications to Win
dows NT with as few changes as necessary, the product OpenNT from Open Way
(wurw.openway.com) includes a replacement (enhanced) POSIX subsystem with
a complete UNIX system service and utilities environment.

To compile and link a POSIX application on Windows NT requires the
POSIX headers and libraries from the Platform SDK. POSIX executables are
linked against the POSIX subsystem library, PSXDLL.DLL. Because by default
Windows NT is configured to start the POSIX subsystem on demand, the first
time you run a POSIX application, the POSIX subsystem process (PSXSS.EXE)
must be started. It remains running until the system reboots. (Hyou kill the
POSIX subsystem process, you won't be able to run more POSIX applications
until you reboot.) The POSIX image itself is not run directly-instead, a spe
cial support image called POSIX.EXE is launched, which in turn creates a child
process to run the POSIX application.

For more information on the POSIX subsystem, see Chapter 29 in the
Windows NT Workstation Resource Guide. For more information on porting UNIX
applications to Windows NT, see the articles in MSDN Library. (Do a search
for POSIX.)

OS/2 Subsystem
The OS/2 environment subsystem, like the POSIX subsystem, is fairly limited
in usefulness:

• It supports only OS/2 1.2 16-bit character-based or video I/O (VIO)
applications.

• It is supported only on x86 systems.

Microsoft does sell an add-on OS/2 1.2 Presentation Manager subsystem
for Windows NT, but even with this addition, you can't run OS/2 2.x (or later)
applications.

Also, because Windows NT doesn't allow direct hardware access by user
applications, OS/2 programs that contairfl/0 privilege segments that attempt
to perform IN/OUT instructions (to access some hardware device) as well
as advanced video 1/0 (AVIO) aren't supported. Applications that use the

T W 0 : System Architecture

CLI/STI instructions are supported-but all the other OS/2 applications in
the system and all the other threads in the OS/2 process issuing the CLI in
structions are suspended until an STI instruction is executed. Also worth noting
is the special support for calling 32-bit DLLs from QS/2 16-bit applications on
Windows NT, which can be useful in porting programs. (See the section "Win32
Thunking Mechanism" in Chapter 28 of the Windows NT Workstation Resource
Guide.)

The 16-MB memory limitation on native OS/2 1.2 doesn't apply to Windows
NT-the OS/2 subsystem uses the 32-bit virtual address space ofWindows NT
to provide up to 512 MB of memory to OS/2 1.2 applications, as illustrated in
Figure 2-7.

The tiled area is 512 MB of virtual address space that is reserved up front
and then committed or decommitted when 16-bit applications need segments.
The OS/2 subsystem maintains a local descriptor table (LDT) for each pro
cess, with shared memory segments at the same LDT slot for all OS/2 processes .

....... 1 _......._.........,...-...-....__.I! 2 GB

Win32 code and data
OS/2 client code and data
RTL code

32-blt

16-bit
Logical video buffer (LVB) mapped
to both 16-bit application code and
32-bit OS/2 subsystem code

Heap area (used for 32-bit
structures that can be mapped into
16-bit application space)

16-bit DLLs and executables

16-bit application shared memory

16-bit application private memory
(DosAl/ocSec and so on)

Rt/ heap and more

Figure 2-7
OS/2 subsystem virtual memory layout

High 32-bit user-mode area

Tiled area (512 MB)

Low 32-bit user-mode area
0

57

INSIDE WINDOWS NT

As we'll discuss in detail in Chapter 4, threads are the element of a pro
gram that execute, and as such they must be scheduled for processor time.
Although Windows NT priority levels range from 0 through 31, the 64 OS/2
priority levels (0 through 63) are mapped to Windows NT dynamic priorities
1 through 15. OS/2 threads never receive Windows NT real-time priorities 16
through 31.

As with the POSIX subsystem, the OS/2 subsystem starts automatically
the first time you activate a compatible OS/2 image. It remains running un
til the system is rebooted.

For more information on how Windows NT handles running POSIX and
OS/2 applications, see the section ''Flow of CreateProcess" on page 156 in Chap
ter 4 of this book. For further information about the OS/2 subsystem on Win
dows NT, see Chapter 28 in the Windows NT Workstation Resource Guide. For a
list of the OS/2 APis supported, unsupported, and partially supported under
Windows NT, refer to the file OS2API.TXT in the Windows NT Resource Kit.

NTDLL.DLL

58

NTDLL.DLL is a special system support library primarily for the use of sub
system DLLs. It contains two types of functions:

1111 System service dispatch stubs to Windows NT exec,titive system
services

1111 Internal support functions used by subsystems, subsystem DLLs,
and other native images

The first group of functions provides the interface to the Windows NT
executive system services that can be called from user mode. There are more than
200 such functions, such as NtCreateFile, NtSetEvent, and so on. As noted ear
lier, most of the capabilities of these functions are accessible through the Win32
API. (A number are not, however, and are for Microsoft internal use only.)

For each of these functions, NTDLL contains an entry point with the same
name. The code inside the function contains the architecture-specific instruc
tion that causes a transition into kernel mode to invoke the system service
dispatcher (explained in more detail later in the chapter), which after making
some verifications, calls the actual kernel-mode system service that contains
the real code inside NTOSKRNL.EXE.

NTDLL also contains many support functions, such as the image loader
(furktions that start with Ldr), the heap manager, and Win32 subsystem process
communication functions (functions that start with C5r), as well as general run-time

T W 0 : System Architecture

library routines (functions that start with Rt[). It also contains the user-mode
asynchronous procedure call (APC) dispatcher and exception dispatcher. (APCs
and exceptions are explained in Chapter 3.)

Executive
The Windows NT executive is the upper layer of NTOSKRNL.EXE. (The ker
nel is the lower layer.) The executive includes five types of functions:

II Functions that are exported and callable from user mode. (The in
terface to these functions exists in NTDLL.DLL, and the functions
are accessible through the Win32 API or some other environment
subsystem.)

II Functions that are exported and callable from user mode but are
not currently available through any documented subsystem func
tion. (Examples include LPCs and various query functions such as
NtQuerylnformationxxx, specialized functions such as NtCreatePaging
File, and so on.)

II Functions that can be called only from kernel mode that are ex
ported and documented in the Windows NT DDK.

II Fu~ctions that are meant to be called between kernel-mode compo
nents but that are not documented (for example, internal support
routines used within the executive).

II Functions that are internal to a component.

The executive contains the following major components, each of which
is covered in detail in a subsequent chapter of this book:

II The process and thread manager (explained in Chapter 4) creates and
terminates processes and threads. The underlying support for pro
cesses and threads is implemented in the Windows NT kernel; the
executive adds additional semantics and functions to these lower
level objects.

II The virtual memory manager (explained in Chapter 5) implements
virtual memory, a memory management scheme that provides a large,
private address space for each process and protects each process's
address space from other processes. The memory manager also pro
vides the underlying support for the cache manager.

59

INSIDE WINDOWS NT

II The security reference monitor (described in Chapter 6) enforces secu
rity policies on the local computer. It guards operating system re
sources, performing run-time object protection and auditing.

II The I/O system (explained in Chapter 7) implements device-ind~- .
pendent input/output and is responsible for dispatching to the ap
propriate device drivers for further processing.

II The cache manager (explained in Chapter 8) improves the perfor
mance of file-based I/O by causing recently referenced disk data to
reside in main memory for quick access (and by deferring disk writes
by holding the updates in memory for a short time before sending
them to the disk). As you'll see, it does this using the memory man
ager's support for mapped files.

In addition, the executive contains four main groups of support functions
that are used by the executive components just listed. About a third of these
support functions are documented in the DDK, since they are also used by
device drivers. The four categories of support functions include:

II The object manager, which creates, manages, and deletes Windows
NT executive objects and abstract data types that are used to repre
sent operating system resources such as processes, threads, and the
various synchronization objects. The object manager is explained
later in this chapter.

II The LPC facility passes messages between a client process and a server
process on the same computer. LPC is a flexible, optimized version
of remote procedure call (RPC), an industry-standard communication
facility for client and server processes across a network.

II A broad set of common run-time library functions, such as string pro
cessing, arithmetic operati?ns, data type conversion, and security
structure processing.

II Execut~ve support routines, such. as system memory allocation (paged
and nonpaged pool), interlocked memory access, as well as two spe
cial types of synchronization objects: resources and fast mutexes.

Kernel

60

The ~ernel performs the most fundamental operations in Windows NT, deter
mining how the operating system uses the processor or processors and ensur
ing that they are used prudently. It is the lowest layer in NTOSKRNL.EXE.

T W 0: System Architecture

These are the primary functions the kernel provides:

II Thread scheduling and dispatching

Ill Trap handling and exception dispatching

11111 Interrupt handling and dispatching

Ill Multiprocessor synchronization

II Providing the base kernel objects that are used (and in some cases
exported to user mode) by the executive

The kernel is different from the rest of the executive in several ways.
Unlike other parts of the executive, the bulk of the kernel is never paged out
of memory. Similarly, although the kernel can be interrupted to execute an
interrupt service routine (see Chapter 3), its execution is never preempted by
another running thread. The kernel always runs in kernel mode and is de
signed to be small, compact, and as portable as performance and differences
in processor architectures allow. For example, it does not probe accessibility
of parameters, since it assumes that its callers know what they are doing. The
kernel code is written primarily in C, with assembly code reserved for those
tasks that require the fastest possible code or that rely heavily on the capabili
ties of the processor.

Like the various executive support functions mentioned in the preced
ing section, a number of functions in the kernel are documented in the DDK
(search for functions beginning with Ke), since they are needed to implement
device drivers.

Kernel Objects
One goal for the kernel was to provide a low-level base of well-defined, pre
dictable operating system primitives and mechanisms that would allow higher
level components of the executive to do what they need to do. The kernel
separates itself from the rest of the executive by implementing operating sys
tem mechanisms and avoiding policy making. It leaves nearly all policy deci
sions to the executive, with the exception of thread scheduling and dispatching,
which the kernel implements.

Outside the kernel, the executive represents threads and other shareable
resources as objects. These objects require some policy overhead, such as object
handles to manipulate them, security checks to protect them, and resource
quotas to be deducted when they are created. This overhead is eliminated in
the kernel, which implements a set of simpler objects, called kernel objects, that

61

INSIDE WINDOWS NT

62

help the kernel control central processing and support the creation of execu
tive objects. Most executive-level objects encapsulate one or more kernel ob
jects, incorporating their kernel-defined attributes.

One set of kernel objects, called control objects, establishes semantics for
controlling various operating system functions. This set includes the kernel
process object, the APC object, the deferred procedure call (DPC) object, and
several objects used by the I/0 system, such as the interrupt object.

Another set of kernel objects, known as dispatcher objects, incorporates
synchronization capabilities and alters or affects thread scheduling. The dis
patcher objects include the kernel thread, mutex (called mutant internally),
event, kernel event pair, semaphore, timer, and waitable timer. The executive
uses kernel functions to create instances of kernel objects, to manipulate them,
and to construct the more complex objects it provides to user mode. Objects
are explained in more detail later in this chapter, and process and thread ob
jects are described in Chapter 4.

Hardware Support
The other major job of the kernel is to abstract or isolate the executive and
device drivers from variations between the hardware architectures supported
by Windows NT. This job includes handling variations in functions such as
interrupt handling, exception dispatching, and multiprocessor synchronization.

Even for these hardware-related functions, the design of the kernel at
tempts to maximize the amount of common code. The kernel supports a set
of interfaces that are portable across architectures and that are semantically
identical across architectures. Most of the code that implements this portable
interface is also identical across architectures.

Some of these interfaces are implemented differently on different archi
tectures, however, or some of the interfaces are partially implemented with
architecture-specific code. These architecturally independent interfaces can
be called on any machine, and the semantics of the interface will be the same
whether or not the code varies by architecture. Some kernel interfaces (such
as spinlock routines, which are described in Chapter 3) are actually imple
mented in the HAL (described in the next section) because their implemen
tation can vary for systems within the same architecture family.

The kernel also contains a small amount of code with x86-specific inter
faces needed to support old MS-DOS programs. These x86 interfaces are not
portable in the sense that they can't be called on a machine based on any other

T W 0 : System Architecture

architecture; they won't be present. This x86-specific code, for example, sup
ports calls to manipulate global descriptor tables (GDTs) and LDTs, hardware
features of the x86.

Other examples of architecture-specific code in the kernel include the
interface to provide translation buffer and CPU cache support. This support
requires different code for the different architectures because of the way caches
are implemented.

Another example is context switching. Although at a high level the same
algorithm is used for thread selection and context switching (the context of the
previous thread is saved, the context of the new thread is loaded, and the new
thread is started), there are architectural differences among the implementa
tions on different processors. Because the context is described by the proces
sor state (registers and so on), what is saved and loaded varies depending on
the architecture.

Hardware Abstraction Layer (HAL)
As mentioned at the beginning of the chapter, one of the crucial elements of
the Windows NT design was its portability across a variety of hardware plat
forms. The HAL is a key part of making this portability possible. The HAL is
a loadable kernel-mode module (HAL.DLL) that provides the low-level inter
face to. the hardware platform on which Windows NT is running. It hides
hardware-dependent details such as 1/0 interfaces, interrupt controllers, and
multiprocessor communication mechanisms-any functions that are architec
ture-specific and machine-dependent.

So rather than access hardware directly, Windows NT internal compo
nents as well as user-written device drivers maintain portability by calling the
HAL routines when they need platform-dependent information. For this rea
son, the HAL routines are documented in the Windows NT DDK. To find out
more about the HAL and its use by device drivers, refer to the DDK.

Although there are many HALs on the Windows NT distribution media
(look for HAL* .DLL), only one is chosen at installation time and copied to the
system disk with the filename HAL.DLL. (Other operating systems, such as
VMS, select the equivalent of the HAL at system boot time.) For HALs needed
to support newer platforms that were not included on the Windows NT CD
ROM, the manufacturer can supply the HAL with the system.

63

INSIDE WINDOWS NT

.· . .·

EXPERIMENT: .. Lfst the HALS ...
-oriYour Windows NT CD~ROM' .·

···cf£~if[=~~~-······
. ; sofversiori of the operating systeiriimage (Nl'KRNLMP.E'.XE) to thtF .. · .·

\winnt\sy8tem32.directory, replacing the uniproce:oofversioil, (NT()$
K.RNL.00)~ (No~ that the file is still Caned:NTQ$K.RNI.,.EXEontht .
system disk.) It.will aiSo cop}"llie appt{)priate HAL for thepardWa.re< .• ·
platform. · · ,. ; · • . . ·· · · · . ·

To run the utility, set your default directory to:ijre R.es0u:fce Kit an<l ···.·. ••
· typ¢ cfrt4omp. The ud,lityJ()oks fot .the Windows NT WorkStatlo11 .or .

. Windows NT Server cD~RQM in the loeation you ihstanedfrom (in
.. . this case, a lCJdtl Cl)..ROM). Jf y()ur cUstrihutipn medi~iS ac~'ble;.you.

should s'ee a dialog box like this: . . . ·

•, ·' . . ., .
. . :

_ To see the list OfHALs, click the HAL To Install drop-dowh llst box.

Device Drivers

64

Although device drivers are explained in detail in Chapter 6, this section pro
vides a brief overview of the types of drivers and explains how to list the driv
ers installed and loaded on your system.

Device drivers are loadable kernel-mode modules (typically ending in .SYS)
that interface between the I/O system and the relevant hardware. As stated in
the preceding section, device drivers on Windows NT don't manipulate hardware

T W 0 : System Architecture

directly, but rather they call parts of the HAL to interface with the hardware.
Drivers are typically written in C (sometimes C++) and therefore, with proper
use of HAL routines, can be source code portable across the CPU architectures
supported by Windows NT and binary portable within an architecture family.

There are several types of device drivers:

Ill Hardware device drivers manipulate hardware (using the HAL) to write
output to or retrieve input from a physical device or network.

Ill File system drivers are Windows NT drivers that accept file-oriented
1/0 requests and translate them into 1/0 requests bound for a par
ticular device.

II Filter drivers, such as those that perform disk mirroring and encryp
tion, intercept I/Os and perform some added-value processing be
fore passing the 1/0 to the next layer.

II Network redirectors and servers are file system drivers that transmit re
mote 1/0 requests to a machine on the network and receive such
requests, respectively.

Because installing a device driver is the only way to add user-written ker
nel-mode code to the system, some programmers have written device drivers
simply as a way to access internal operating system functions or data structures
that are not accessible from user mode. For example, many of the utilities on
www.ntinternals.com combine a Win32 GUI image and a device driver that is
used to gather internal system state not accessible from the Win32 APL

You can list the installed drivers by going to Control Panel and clicking
the Devices icon. This displays the list of device drivers defined in the regis
try. Device drivers and Win32 service processes are both defined in the same
place: HKLM\System\CurrentControlSet\Services. However, they are distin
guished by a type code-type I is a kernel-mode device driver, and type 2 is a
file system driver. For further details on the information stored in the regis
try for device drivers, see the Registry Entries help file (REGENTRY.HLP) in
the Windows NT Resource Kit under the main chapter heading "CurrentControl
Set\Services Subkeys."

You can also list the currently loaded device drivers with the Drivers utility
(DRIVERS.EXE in the Windows NT Resource Kit) or the Pstat utility (shipped
in the Windows NT Resource Kit as well as in the \support\debug directory on
a Windows NT CD-ROM). The output at the top of the next page comes from
the Drivers utility.

65

INSIDE WINDOWS NT

C:\>drivers
ModuleName Code Data Bss Paged I nit LinkDate

--
ntoskrnl .exe 282816 42112 0 435392 84352 Sun May 11 00:11:27 1997

ha l. dll 24992 4224 0 9920 21120 Mon Mar 10 16:40:06 1997
atapi.sys 20736 1088 0 0 768 Thu Apr 10 15:06:59 1997

SCSIPORT.SYS 9824 32 0 15552 2208 Mon Mar 10 16:42:27 1997
cpq32fs2.sys 62080 288 0 0 640 Tue Aug 13 02:19:00 1996

Disk.sys 3328 0 0 7072 1600 Thu Apr 24 22:27;46 1997
CLASS2.SYS 7040 0 0 1632 1152 Thu Apr 24 22:23:43 1997

Ntfs.sys 68160 5408 0 269632 8704 Thu Apr 17 22:02:31 1997
Floppy.SYS 1088 672 0 7968 6112 Wed Jul 17 00:31:09 1996
Cdrom.SYS 12608 32 0 3072 3104 Wed Jul 17 00:31:29 1996

Null .SYS 0 0 0 288 416 Wed Jul 17 00:31:21 1996
KSecDD.SYS 1280 224 0 3456 1024 Wed Jul 17 20:34:19 1996

Beep.SYS 1184 0 0 0 704 Wed Apr 23 15:19:43 1997
auddrive.SYS 15296 320 0 17632 11008 Wed Sep 04 17:09:02 1996

--
Total 2540928 219552 0 1689184 320736

Each loaded kernel-mode component (NTOSKRNL, the HAL, as well as
device drivers) is shown, along with the sizes of the sections in each image. (The
meaning of these sizes is explained in Chapter 5 in the experiment ''Account
ing for Physical Memory" on page 288.)

The Pstat utility also shows the loaded driver list, but only after it first
displays the process list and the threads in each process. Pstat includes one
important piece of information that the Drivers utility doesn't: the load address
of the module in system space. As I'll explain later, this address is crucial to
mapping running system threads to the device driver in which they exist.

Device drivers run in one of three contexts:

II In the context of the user thread that initiated an I/O function

II In the context of a kernel-mode system thread

II As a result of an interrupt (called arbitrary thread context)

Interrupt processing is explained in Chapter 3. Further details about the
I/O system, including the flow of control of an I/O request, are included in
Chapter 7.

Peering into Undocumented Interfaces

66

Just examining the names of the exported or global symbols in key system
images (such as NTOSKRNL.EXE, HAL.DLL, or NTDLL.DLL) can be very
enlightening-you can get an idea of the kinds of things Windows NT can do

T W 0 : System Architecture

versus what happens to be documented and supported today. Of course, just
because you know the names of these functions doesn't mean that you can or
should call them-the interfaces are undocumented and are subject to change.
I suggest that you look at these functions purely to gain more insight into the
kinds of internal functions Windows NT performs, not to bypass supported
interfaces.

For example, looking at the list of functions in NTDLL.DLL gives you the
list of all the system services that Windows NT provides to user-mode subsystem
DLLs vs. the subset that each subsystem exposes. Although many of these func
tions map clearly to documented and supported Win32 functions, several are not
exposed via the Win32 APL Conversely, it's also interesting to examine the
imports ofWin32 subsystem DLLs (such as KERNEL32.DLL or ADVAPI32.DLL)
and which functions they call in NTDLL. Table 2-4 lists most of the commonly
used function name prefixes in alphabetical order.

Prefix

Cc

Ex

FsRtl

Hal

Io

Ke

Lsa

Mm

Nt

Ob

Ps

Rtl

Se

Zw

Table 2-4 Commonly Used Prefixes

Component

Cache manager
Executive support routines
File system driver run-time library
Hardware abstraction layer
1/0 system
Kernel
Local security authentication
Memory manager
Windows NT system services (most of which are exported as
Win32 functions)
Object manager
Process support
Run-time library
Security
Mirror entry point for functions beginning with Nt that assume
the previous caller was in kernel mode

Another interesting image to dump is NTOSKRNL.EXE-although many
of the exported routines used by kernel-mode device drivers are documented
in the Windows NT DDK, quite a few are not. You might also find it interesting

67

INSIDE WINDOWS NT

68

..••... EXPEfll:ft1l:NT:•·.·1..1stlr;t9;Un~~m8rde~'r:u,nc;tl~it'.>.';,:··········

;:tl~l[fJlllt~\
cated here; ihere are ~3F6 (1o14) expo~cl ~~ti<>riSV ... · .' '·· · < ?.: ·:F~>

Name: ntoskrnl. exe
Characteristics: oomoooo

Time Date Stamp: 337546b5
Version: 0.00

Base: 00000001
Number of Functions: 00000316

Number of Names: 00000316

Ordinal
0022
0023
0024
0025
0026
0027
0028
0029

~
0003be70
0003bea0
0003bfd0
0003bf20
0003bf44
0003be8c
0000Bb74
0003bea8
0003beb4
0003becc

Nfilll.e.
CcCanlWrite
CcCopyR9ad
CcCopyWrite
CcDeferWrite
CcFastCopyRead
CcFastCopyWrite
CcFastMdlReadWait
CcFastReadNotPossible
CcFastReadWait
CcFlushCache

~;

.::): ".' . . · .. ~::.:·:

.. Ailofuer tool· to exain~et~~ ~~~~sr~(f iipport~of itnages·is~he·
Dependency Walk.er (DEP:i!NDS~EXE}, wpie~ is corif4in~d;i:6 ;t1leW*~~"
dows NT server Reso\lfte Kit:(SupplemeJit.2.otla.ter).and the Plat£ci~ ;,, .

\·:. "·: ...

T W 0 : System Architecture

Here is a sample of output you can see by viewing the dependen
cies of NTOSKRNL using this tool:

W<:>rmation .on ·how to use this tool, see the Dependency
(DEPENDS.HLP}.

to take a look at the import table for NTOSKRNL and the HAL; this table
shows the list of functions in the HAL that NTOSKRNL uses and vice versa.

You can decipher the names of these exported functions more easily if
you understand the naming convention for Windows NT system routines. The
general format is:

<Prefix><Operation><O bj ect>

In this format, Prefix is the internal component that exports the routine, Opera
tion tells what is being done to the object or resource, and Object identifies what
is being operated on.

For example, ExAllocatePoolWithTag is the executive support routine to
allocate from paged or nonpaged pool. KelnitializeThread is the routine that
allocates and sets up a kernel thread object.

69

INSIDE WINDOWS NT

System Processes

70

The following system processes appear on every Windows NT system. (Two of
these-Idle and System-don't have a user-mode address space.)

II Idle process (contains one thread per CPU to account for idle CPU
time)

II System process (contains the kernel-mode system threads)

II Session manager (SMSS.EXE)

11 Win32 subsystem (CSRSS.EXE)

11 Logon process (WINLOGIN.EXE)

II Local security authentication server (LSASS.EXE)

II Service controller (SERVICES.EXE) and its associated service
processes

To help you understand the relationship of these processes, use the Win
dows NT Resource Kit tlist /t command to display the process "tree;' that is, the
parent/child relationship between processes. Here is some annotated output
from tlist /t:

C:\>tlist /t
System Process (0)------- Idle process
System (2) Home for kernel-mode system threads

smss. exe (20)--------- Session manager
csrss .exe (30)------- Win32 subsystem
WINLOGON.EXE (34) Logonprocess

SERVICES. EXE (40) Service controller
SPOOLSS.EXE (65) Spoolerservice
RPCSS. EXE (80) RPC services
NETOOE. EXE (194) Network DDE service

LSASS. EXE (43) Local security authentication server
EXPLORER. EXE (87) Shell (parent of user process tree)

CMD. EXE (156) Process from which tlist was launched
TL I ST. EXE (17 4) Process running tlist producing this output

The next sections explain the key system processes shown in this output.

Idle Process
Despite the name shown, the first process listed in the preceding sample tlist /t
output (process ID 0) is actually the System Idle process. As explained in Chap
ter 4, processes are identified by their image name. However, this process (as

T W 0 : System Architecture

well as process ID 2, named System) is not running real user-mode images.
Hence, the names shown by the various system display utilities are hard-coded
text values that differ from utility to utility. Although most utilities call process
ID 2 System, not all do. Table 2-5 lists several of the names given to the Idle
process. (The Idle process is explained in detail in Chapter 4.)

Table 2-s Names for Process ID 0 in Various Utilities

Utility Name for Process ID O

Task Manager

Process Viewer (PVIEWER.EXE)

Process Status (PSTAT.EXE)

Process Exploder (PVIEW.EXE)

Task List (TLIST.EXE)

Quick Slice (QSLICE.EXE)

System Idle process

Idle process

Idle process

System process

System process

System process

Now let's look at system threads and the purpose of each of the system
processes that are running real images.

System Process and System Threads
The System process (always process ID 2) is the home for a special kind of
thread that runs only in kernel mode: a system thread. System threads have all
the attributes and contexts of regular user-mode threads (such as a hardware
context, priority, and so on) but are different in that they run only in kernel
mode executing code loaded in system space, whether that be in NTOS
KRNL.EXE or in any other loaded device driver. In addition, system threads
don't have a user process address space and hence must allocate any dynamic
storage from operating system memory heaps, such as paged or nonpaged pool.

System threads are created by the PsCreateSystemThread function (docu
mented in the DDK), which can be called only from kernel mode. Windows NT
as well as various device drivers create system threads during system initializa
tion to perform operations that require thread context, such as issuing and
waiting for I/Os or other objects or polling a device.

71

INSIDE WINDOWS NT

72

For example, the memory manager uses system threads to implement
such functions as writing dirty pages to the page file or mapped files, swapping
processes in and out of memory, and so forth. The kernel creates a system
thread called the balance set manager that wakes up once per second to check
and possibly initiate various scheduling and memory management-related
events. The cache manager also uses system threads to implement both read
ahead and write-behind I/Os. The file server device driver (SRV.SYS) uses
system threads to respond to network I/O requests for file data. Even the floppy
driver has a system thread to poll the floppy device. Further information on
specific system threads is included in the chapters in which the component is
described.

When you're troubleshooting or going through a system analysis, it's use
ful to be able to map the execution of individual system threads back to the
driver or even to the subroutine that contains the code. For example, on a
heavily loaded file server, the System process will likely be consuming consid
erable CPU time. But the knowledge that when the System process is running
"some system thread" is running isn't enough to determine which device driver
or operating system component is running.

So if the System process is running, look at the execution of the threads
within that process (for example, with Performance Monitor). Once you find
the thread (or threads) that is running, get the start address of the thread (for
example, with Process Viewer, Pstat, or Tlist utility). Then, using the system
memory map displayed at the end .of the output from the Pstat utility, you can
determine which system component contains the system thread that is running.
The detailed steps in the following experiment describe exactly how you can
map a system thread to a device driver.

T W 0 : System Architecture

EXPERIMENT: Mapping a
System Thread to a Device Driver
In this experiment, we'll firid the Raw Mouse Input thread, a system
thread in the Win32 subsystem that determines which threads should
be 110tified· of me>4se llle>vem~:nts .imd eventS. To cause this sys.tern

.. ·. tht¢ad·to ru,n, simply mQVe th¢ mouse back ~d fo,rth rapidly. while ...
~oilitoririg pf()c~ss Gl?U t4ft~ (1lsfilgi':l'~ M'.ap~r, J?erfe>rm~<:~ ·
Monit:Or,.· ()r the Win~ws 1'ff :Resource Kit ~lice utilio/),,and·riotke

·. ·=~=:~:~s~~J:~~=:s=~~:~::~~.~.~· ..
specific driver 'that the systemthread resides in; The following stepS ·
.show h9W to go down to the thread gnmUlarity to fuldout which driver · .•..
conWhs t~e thre~d tha~ is running. . '' ' '' '· '' '' ' '

1. Run Per£wni.kce 'Monitor; click Add tkµnter (Or type ~!).
select µi~ threacr'objecii Jl,nd then seleci; the % Processor Time
cquhtei; ·(or% PclVll¢ged Tim¢-:0.the .value would be i(fentical}: .

2·~5~~af~E
···pro~es8 ~aine qhanges.You, sl:\Quld see._someth~g like this:

. . . : ~ . . .

(continued)

73

INSIDE WINDOWS NT

74

EXPERIMENT:. Mapping a System Thread to a Device Driver continued

3. Click Add, and then move the mduse rapidly bf).ck and forth.
·until you see one or two of the ~steni threads rurihing in Pei>.:

. . formance Monitor's display. · · · · .- . · ··. ··
•t Type . Ctrl-H. to turn on highlighting mode. (Thi.$ highlig)lt~ : >

the currently selected counter in white.) · . · ·. · ..

5. Scroll through the counters to identify a thread that wa.S tun';~/· ·
ning when you moved the mouse. : ; . ·.

' ' . ·:-".,,:·

6.. Notice. the relative thread number in the instance column on: ... · ...
. the bottom of Perform;mce Monitor's. graph wind<>W. .· ,

7. Now run Ptoee8sVieW"er (PVIEWER.EXE in the Windmw Nr .··.··· .: ,
Resource Kit or PVIEW.EXE in the Platform SDK or in. Visual.
C++); and select the System process (proceSs ID 2). .·.

8. Scroll through the list of threads until you find the thread with• ...
the same relative thread number you obtained in step· 5. Se-···

-lect this thread by clicking on it with the mouse, as shown here: ... · ..

9. Notice that the start address for urread 19 is OxaOOacefe.. , '.

10. Run Pstat, and.find the dri\>er that has the start and.end ad- :
dress contaihing the start address of the thread_ in ·q~stion~ ..
In the following ·partial output, notice that WIN32K.SYS •starts. ·
at OxaOOOoOoO and continues for 1;162,624 bytes (Odlbd80). ,

T W 0 : System Architecture

ModuleName Load Addr Code Data Paged L1nkDate

ntoskrnl.exe 80100000 282816 42112 435392 Sat May 10 21:11:27 1997
hal.dll 80001000 24992 4224 9920 Mon Mar 10 13:40:06 1997
atapi. sys 80012000 20736 1088 0 Thu Apr 10 12:06:59 1997 .. .
w1ri32k.sys a0000000 .1162624 40064 0 Fri Apr 25 18:17:32 1997

Therefore, the ending address would be OxaOll bd80, and the thread
,in question dearly falls within this range.

If the address falls within NTOSKRNL.EXE, you cap. determine
the name of the specific rnbroutine by looking it up in the list.of global
symbols oontained in the associated symb61 table file NTOSKRNL.DBG.
The easiest way _to generate the list of global symbols in NTOSKRNL
is to start the kernel debugger (either by connecting to a live system
or by OJ>e11ing a crash dump file) and typing !:he x * colllilliµld in the ...
kernel debugger with just NTOSKRNL.DBG loaded. Before typing x *,

.· !USC the !logopen command to create a log file of your kernel-debugging
'ses~ion. That way, you can save the output in a file and then search for
'the addresses in question. You can also use the VISual· C++ Dumpbin

.·· .. utility (fype dumjmn /syrfibols ntOSkrnl.dbg), but you then have to seareh ·~ ..
lot the 'address minu8 the base address of NTOS:KRNL, since only the

· offsets are listed.'

Session Manager (SMSS)
The session manager (SMSS.EXE) is the first user-mode process created in the
system. A kernel-mode system thread running the routine ExlnitializeSystem
creates the actual SMSS process. Besides performing a number of key system
initialization steps, the session manager acts as a switch and monitor between
applications and debuggers.

Much of the configuration information in the registry that drives the
initialization steps of SMSS can be found under \System ... \Control\Session
Manager. You'll find it interesting to examine the kinds of data stored there.
(For a description of the keys and values, see the Registry Entries help file,
REGENTRY.HLP, in the Windows NT Resource Kit.)

75

INSIDE WINDOWS NT

76

The following is a list of the initialization steps performed by the main
thread of SMSS:

1. Creates an LPC port object (\SmApiPort) and two threads to wait for
client requests (such as to load a new subsystem or create a session).

2. Creates system environment variables.

3. Defines the symbolic links for MS-DOS device names (such as COMI
and LPTI).

4. Creates additional paging files.

5. Opens known DLLs (so that the pages can be reused even if no user
processes are active).

6. Loads the kernel-mode part of the Win32 subsystem (WIN32K.SYS).

7. Starts the subsystem processes. (As noted earlier, the POSIX and
OS/2 subsystems are defined to start on demand.)

8. Starts the logon process (WINLOGON).

9. Creates LPC ports for debug event messages (DbgSsApiPort and
DbgUiApiPort) and threads to listen on those ports.

After performing these initialization steps, the main thread in SMSS waits
forever on the process handles to CSRSS and WINLOGON. If either of these
processes terminates unexpectedly, SMSS crashes the system, since Windows
NT relies on their existence.

Of course, the other threads inside SMSS are responding to messages sent
to the LPC ports listed above, such as requests to load subsystems, new sub
systems starting up, and debug events.

Logon (WINLOGON)
The Windows NT logon process, WINLOGON, handles interactive user logons
and logoffs. WINLOGON is notified of a user logon request when the secure
attention sequence (SAS) keystroke combination is entered. The default SAS on
Windows NT is the combination Ctrl-Alt-Delete. The reason for the SAS is to
protect users from password-capture programs that simulate the logon process.
Once the username and password have been captured, they are sent to the local
security authentication server process (described in the next section) to be
validated. If they match, a process named USERINIT.EXE is created. This
process then looks in the registry and creates the system-defined shell (by
default, EXPLORER.EXE). Then USERINIT exits. This is the reason

T W 0 : System Architecture

EXPLORER is shown with no parent-its parent has died, and as explained
earlier, Tlist left-justifies processes whose parent is not running. (In reality,
EXPLORER is the grandchild of WINLOGON.)

The identification and authentication aspects of the logon process are
implemented in a replaceable DLL named GINA (Graphical Identification and
Authentication). The standard Windows NT GINA DLL, MSGINA.DLL, imple
ments the default Windows NT logon interface. However, developers can pro
vide their own GINA DLL to implement other identification and authentication
mechanisms in place of the standard Windows NT usemame/password method.
In addition, WINLOGON can load additional network provider DLLs that need
to perform secondary authentication. This capability allows multiple network
providers to gather identification and authentication information all at one
time during normal logon.

WINLOGON is active not only during user logon and logoff but also
whenever it intercepts the SAS from the keyboard. For example, when you press
Ctrl-Alt-Delete while logged in, the Windows NT Security dialog box comes up,
providing the options to log off, start the Task Manager, lock the workstation,
shut down the system, and so forth. WINLOGON is the process that handles
this interaction.

Local Security Authentication Server (LSASS)
The local security authentication server process receives authentication re
quests from WINLOGON and calls the appropriate authentication package
(implemented as a DLL) to perform the actual verification, such as checking
whether a password matches what is stored in the SAM (the part of the regis
try that contains the definition of the users and groups).

Upon a successful authentication, LSASS generates an access token ob
ject that contains the user's security profile. WINLOGON then uses this access
token to create the initial shell process. Processes launched from the shell then
by default inherit this access token.

For more details about security authentication and authentication pack
ages, check out the DDK help file LSAAUTH.HLP.

Service Controller (SERVICES)
Recall from earlier in the chapter that "services" on Windows NT can refer
either to a server process or to a device driver. This section deals with services
that are user-mode processes. Services are like UNIX "daemon processes" or
VMS "detached processes" in that they can be configured to start automatically
at system boot time without requiring an interactive logon. They can also be

77

INSIDE WINDOWS NT

78

started manually (such as by the Control Panel Services applet or by calling the
Win32 StartService function).

Service programs are really just Win32 images that call special Win32
functions to interact with the service controller, such as registering their suc
cessful startup, responding to status requests, or pausing or shutting down the
service. For information on building services, see the technical articles as well
as the sample code in MSDN Library.

A number ofWindows NT components are implemented as services, such
as the spooler, event log, support for RPCs, and various other networking compo
nents. You can list the installed services by running Control Panel and click
ing the Services icon or by using the Windows NT Resource Kit Netsvc utility.
Services are defined in the registry under HKLM\System\CurrentControlSet
\Services. The Resource Kit registry Entries help file (REGENTRY.HLP) docu
ments the subkeys and values for services.

Services are started and stopped by the service controller, a special sys
tem process running the image SERVICES.EXE that is responsible for start
ing, stopping, and interacting with service processes. As mentioned earlier,
using the tlist /t command makes it easy to see which .of the processes are ser
vice processes. As shown in the following code, the processes underneath
SERVICES.EXE are service processes:

WINLOGON.EXE (34) Logonprocess
SERVICES.EXE (40)-- Service controller

SPOOLSS. EXE (65) -- Spooler service
RPCSS.EXE (80) RPCservices
NETDDE.EXE (194)-- NetworkDDEservice

Keep in mind that services have three names: the process name you see
running on the system, the internal name in the registry, and the display name
shown in Control Panel and in other utilities. (Not all services have a display
name-if a service doesn't have a display name, the internal name is shown.)
So, to map a service process you see running back to the actual service that is
started, search the registry for the image name and you'll find the service that
is defined to run that image.

There isn't always one-to-one mapping between service process and run
ning services, however, because some services share a process with other ser
vices. In the registry, the type code indicates whether the service runs in its own
process or shares a process with other services in the image. But at least you
can get some idea of the services that might be running inside that process.

T W 0: System Architecture

Conclusion
In this chapter, we've taken a broad look at the overall system architecture of
Windows NT. We've examined the key components of Windows NT and seen
how they interrelate. In the next chapter, we'll look in more detail at the core
system mechanisms that these components are built on, such as the object
manager and various synchronization objects.

79

C H A P T E R T H R E E

System Mechanisms

. Microsoft Windows NT provides several base mechanisms that kernel-mode
components such as the executive, the kernel, and device drivers use. This chap
ter explains the following system mechanisms and describes how they are used:

1111 Trap dispatching, including interrupts, deferred procedure calls
(DPCs), asynchronous procedure calls (APCs), exception dispatch
ing, and system service dispatching

1111 The executive object manager (briefly introduced in Chapter 1)

1111 Synchronization, including spinlocks, kernel dispatcher objects, and
how waits are implemented

1111 Miscellaneous mechanisms such as Windows NT global flags

1111 Local procedure calls (LPCs)

Trap Dispatching
Interrupts and exceptions are operating system conditions that divert the pro
cessor to code outside the normal flow of control. Either hardware or software
can detect them. The term trap refers to a processor's mechanism for capturing
an executing thread when an exception or an interrupt occurs, switching it
from user rriode into kernel mode, and transferring control to a fixed location
in the operating system. In Windows NT, the processor transfers control to the
kernel's trap handler, a module that acts as a switchboard, fielding exceptions
and interrupts detected by the processor and transferring control to code that
handles the condition. Figure 3-1 on the following page illustrates some of the
conditions that activate the trap handler and the modules the trap handler calls
to service them.

81

INSIDE WINDOWS NT

Interrupt

Trap handler

Interrupt
dispatcher

Interrupt
service
routines

System service call - -
System
service

dispatcher
System
services

Hardware exceptions - - - - - - - - -
Software exceptions

(Exception
frame)~ Exception

dispatcher
Exception
handlers

Virtual address - - - - - - - - -
exceptions

Virtual memory .
manager's

pager

Figure 3-1
Trap dispatching

82

The kernel distinguishes between interrupts and exceptions in the fol
lowing way. An interrupt is an asynchronous event (one that can occur at any
time) that is unrelated to what the processor is ·executing. Interrupts are gen
erated primarily by 1/0 devices, processor clocks, or timers, and they can be
enabled (turned on) or disabled (turned off). An exception, in contrast, is a
synchronous condition that results from the execution of a particular instruc
tion. Running the same program with the same data under the same condi
tions can reproduce exceptions. Examples of exceptions include memory access
violations, certain debugger instructions, and divide-by-zero errors. The ker
nel also regards system service calls as exceptions (although technically they're
system traps).

Either hardware or software can generate exceptions and interrupts. For
example, a bus error exception is caused by a hardware problem, whereas a
divide-by-zero exception is the result of a software bug. Likewise, an 1/0 de
vice can generate an interrupt, or the kernel itself can issue a software inter
rupt (such as an APC or DPC, described later in this section).

When invoked, the trap handler disables interrupts briefly while it records
the machine state (information that would be wiped out if another interrupt
or exception occurred). It creates a trap frame in which it stores the execution
state of the interrupted thread. This information allows the kernel to resume

TH R E E : System Mechanisms

execution of the thread after handling the interrupt or the exception. The trap
frame is usually a subset of a thread's complete context. (Thread context is
described in Chapter 4.)

The trap handler resolves some problems (such as some virtual address
exceptions) itself, but in most cases, it determines the condition that occurred
and transfers control to other kernel or executive modules. For example, if
the condition was a device interrupt, the kernel transfers control to the inter
rupt service routine (JSR) that the device driver provided for the interrupting
device. If the condition was caused by a call to a system service, the trap handler
transfers control to the system service code in the executive. The remaining
exceptions are fielded by the kernel's own exception dispatcher. The follow
ing sections describe interrupt, exception, and system service dispatching in
greater detail.

Interrupt Dispatching
Hardware-generated interrupts typically originate from 1/0 devices that must
notify the processor when they need service. Interrupt-driven devices allow the
operating system to get the maximum use out of the processor by overlapping
central processing with I/0 operations. The processor starts an I/0 transfer
to or from a device and then executes other threads while the device completes
the transfer. When the device is finished, it interrupts the processor for service.
Pointing devices, printers, keyboards, disk drives, and network cards are gen
erally interrupt driven.

System software can also generate interrupts. For example, the kernel can
issue a software interrupt to initiate thread dispatching and to asynchronously
break into the execution of a thread. The kernel can also disable interrupts
so that the processor isn't interrupted, but it does so only infrequently-at
critical moments while it's processing an interrupt or dispatching an exception,
for example.

A submodule of the kernel's trap handler, called the interrupt dispatcher,
responds to interrupts. It determines the source of an interrupt and transfers
control either to an external routine (the ISR) that handles the interrupt or
to an internal kernel routine that responds to the interrupt. Device_ drivers
supply ISRs to service device interrupts, and the kernel provides interrupt
handling routines for other types of interrupts.

In the following subsections, you'll find out about the types of interrupts
the kernel supports, the way device drivers interact with the kernelJas a part
of interrupt processing), and the software interrupts the kernel recognizes
(plus the kernel objects that are used to implement them).

83

INSIDE WINDOWS NT

84

Interrupt Types and Priorities
Different processors are capable of recognizing different numbers and types
of interrupts. The interrupt dispatcher maps hardware-interrupt levels onto a
standard set of interrupt request levels (IRQLs) recognized by the operating system.

IRQL priority levels have a completely different meaning than thread
scheduling priorities (which are described in Chapter 4). A scheduling prior
ity is an attribute of a thread, whereas an IRQL is an attribute of an interrupt
source, such as a keyboard or a mouse. In addition, each processor has an IRQL
setting that changes as operating system code executes~

The kernel defines a set of portable IRQLs, which it can augment if a
processor has special interrupt-related features (a second clock, for example).
These IRQL levels are not the same as interrupt requests (IRQs) on an x86
system-the x86 architecture doesn't implement the concept ofIRQLs in hard
ware (Alpha does). IRQLs rank interrupts by priority. Interrupts are serviced
in priority order, and a higher-priority interrupt preempts the servicing of a
lower-priority interrupt. Fjgure 3-2 shows the mapping of the portable IRQLs
to the Alpha and x86 architectures.

The IRQLs from high level down through device level are reserved for
hardware interrupts. Dispatch/DPC-level and APC-level interrupts are soft
ware interrupts that the kernel and device drivers generate. (DPCs and APCs

Alpha

7 High· ..
F--..-__,,.._.....,...._ __ __._.;,f;

6

5

3

2

0

Figure 3-2

d6

31

30 . . .: PoW'et:(ail

29 .•. : . rllt&~(, h'lterrufit

28

2

1

0

Interrupt request levels (IRQLs)

Hardware Interrupts

Normal thread execution

T H R E E : System Mechanisms

are explained in more detail later in the chapter.) The low IRQL (also called
passive level) isn't really an interrupt level at all; it's the setting at which nor
mal thread execution takes place and all interrupts are allowed to occur.

Each processor's IRQL setting determines which interrupts that proces
sor can receive. IRQLs are also used to synchronize access to kernel-mode data
structures. (You'll find out more about synchronization later in the chapter.)
As a kernel-mode thread runs, it raises or lowers the processor's IRQL. As
Figure 3-3 illustrates, interrupts from a source with an IRQL above the current
setting interrupt the processor, whereas interrupts from sources with IRQLs
equal to or below the current level are blocked, or masked, until an executing
thread lowers the IRQL.

Processor A

Interrupts masked on
Processor A

Figure 3-3
Masking interrupts

IRQL setting

High

Power

lnte~cessor notification

Clock

Device n

Processor B

EEf 1·+--l 1RQL = Dispatch/DPC l
Interrupts masked on
Processor B

A kernel-mode thread raises and lowers the IRQL of the processor on which
it is running, depending on what it's trying to do. For example, when an inter
rupt occurs, the trap handler (or perhaps the processor) raises the processor's
IRQL to the assigned IRQL of the interrupt source. This elevation blocks all
interrupts at and below that IRQL (on that processor only), which ensures that
the processor servicing the interrupt is not waylaid by an interrupt at the same
or a lower level. The masked interrupts are either handled by another processor
or held back until the IRQL drops. Because changing a processor's IRQL has
such a significant effect on system operation, the change can be made only in
kernel mode-user-mode threads can't change the processor's IRQL.

85

INSIDE WINDOWS NT

86

Each interrupt level has a specific purpose. For example, the kernel is
sues an interprocessor interrupt in order to request that another processor
perform an action, such as dispatching a particular thread for execution or
updating its translation look-aside buffer cache. The system clock generates
an interrupt at regular intervals, and the kernel responds by updating the clock
and measuring thread execution time. If a hardware platform supports two
clocks, the kernel adds another clock interrupt level to measure performance.
The HAL provides a number of interrupt levels for use by interrupt-driven
devices; the exact number varies with the processor and system configuration.
The kernel uses software interrupts (described later in this chapter) to initiate
thread scheduling and to asynchronously break into a thread's execution.

Interrupt Processing
When an interrupt occurs, the trap handler saves the machine's state and then
calls the interrupt dispatcher with interrupts disabled. The interrupt dispatcher
immediately raises the processor's IRQL to the level of the interrupt source to
mask interrupts at and below that level while interrupt servicing is in progress.
It then reenables interrupts so that higher-priority interrupts can still be serviced.

Windows NT uses an interrupt dispatch table (IDT) to locate the routine
that will handle a particular interrupt. The IRQL of the interrupting source
serves as a table index, and table entries point to the interrupt-handling rou
tines, as shown in Figure 3-4.

On x86 systems, the IDT is a hardware structure pointed to by the pro
cessor control region (PCR), whereas on Alpha systems, the IDT is a software
structure filled in at system initialization. The PCR and its extension the pro
cessor control block (PRCB) contain information about the state of each pro
cessor in the system. The kernel and the hardware abstraction layer (HAL) use
this information to perform architecture-specific and machine-specific actions.
The structures include such information as the currently running thread, the
next thread selected to run, the interrupt level of the processor, and so forth.
On Alpha systems, the PCR includes information on the version of the PAL
code ("Privileged Architecture Library"-the Alpha operating system-specific
support code that is similar to BIOS libraries), the sizes of the various proces
sor caches, the address of the machine check handler, and so forth. The PCR
and PRCB structures are defined publicly in the Windows NT Device Driver
Kit (DDK) header file ntddk.h, so you can examine that file for a complete
definition of these structures.

T H R E E : System Mechanisms

Interrupt dispatch
table (IDT)

- ..loo ,. High System shutdown routine

~ ,. (D An interrupt occurs. Power System power-down routine

IPI

Clock

Device n
@ The interrupt dispatcher

retrieves the IRQL of the
interrupt source and indexes
into the IDT.

'----.Device 1

Dispatch/DPC

APC

Low

Figure 3-4
Servicing an interrupt

-
. . .
--
-

__)o, -,
__)o,
--,.

__)o,
--,.

--" --,.

Interprocessor interrupt handler

Clock handler

Device n ISR

@ The interrupt dispatcher
follows the pointer and calls
the correct handling routine.

Device 1 ISR

....llo. Thread dispatcher/DPC handler

APC handler

,

"' ,
~ ,. (none)

On x86 systems, external I/O interrupts actually come into one of the
lines on an interrupt controller. The controller in turn interrupts the proces
sor on a single line. Once the processor is interrupted, it queries the control
ler to get the interrupt vector. The processor uses this vector to index into the
hardware IDT and to transfer control to the appropriate interrupt dispatch
routine. Although the x86 architecture can support up to 256 interrupt lines,
the number of lines a particular machine can support is determined by the
design of the interrupt controller the machine uses. Most x86 PCs have inter
rupt controllers that use 16 interrupt lines.

On Alpha systems, when an interrupt occurs, PALcode determines the
vector at which the interrupt occurred. The PALcode makes this determina
tion in a processor-specific manner using system-specific information from the
HAL. The PALcode also disables interrupts appropriately so that it can pass
control to the kernel. Once the PALcode has determined the vector at which
the interrupt occurred and disabled further interrupts, it calls the kernel,
passing the vector. The kernel uses this vector to index into the IDT and jump
to the appropriate interrupt dispatch routine.

87

INSIDE WINDOWS NT

88

EXPERINIENT:'•·.··.Viewing·the··:·Processor··control .. Region
Youcanyiew .·tne conu~nts)ofthe.}YCRwith.the•kernel.·debuggei using
t}le. !pcrc9mm~~d.J'hef()ll9~ng exatllple isfi-om an x66 sys~m .• (You
won't b~ .able. tovie,fthe P~Clton an ,x86system becau.se. thek~rnel
debugger doesn't have a ;.~ro Cl)'.m,mand; you can, ·however, view the··
PRCB on an Alpha system.) · · ·

> !per
PCR Processor 0 ~ffdff000 .

NtHb'.EtcceptionLtst: a014a96c
NtTib.StackBase: 80148c50

NtTib;StacHi rnit: 80l45eC:0
NtTib.SubSy.stemUb: 00000000

Ntn b. Ver iii on.: 00000000
NtTib.Us¢f Pointer: 000000e0

NtTib.SelfTib: 00000eee

Self Per: ffdff0e0
Prcb: ffdffl20
Irql: 0000e0lc
IRR:00000G04
!DR! ffff28d0

InterruptMode;. 00000000
IOT: 80036400
GOT: 800.36000
TSS: 80264000·

CurrentThtead: 80l45a80
NextThread: 00000000
IdleThread: 80l45a80

After the service routine executes, the interrupt dispatcher lowers the
processor's IRQL to where it was before the interrupt occurred and then loads
the saved machine state. The interrupted thread resumes executing where it
left off. When the kernel lowers the IRQL, lower-priority interrupts that were
blocked might materialize.· If this happens, the kernel repeats the process to
handle the new interrupt.

Each processor has a separate IDT so that different processors can run
different ISRs, if appropriate. For example, in a multiprocessor system, each
processor receives the clock interrupt, but only one processor updates the
system clock in response to this interrupt. All the processors, however, use the
interrupt to measure thread quantum and to initiate rescheduling when a

T H R E E : System Mechanisms

thread's quantum ends. Similarly, some system configurations might require
that a particular processor handle certain device interrupts.

Most of the routines that handle interrupts reside in the kernel. The
kernel updates the clock time, for example, and shuts down the system when
a power-level interrupt occurs. External devices such as keyboards, pointing
devices, and disk drives, however, also generate many interrupts. Therefore,
device drivers need a way to tell the kernel which routine to call when a de
vice interrupt occurs.

The kernel provides a portable mechanism-a kernel control object called
an interrupt ollject-that allows device drivers to register ISRs for their devices.
An interrupt object contains all the information the kernel needs to associate
a device ISR with a particular level of interrupt, including the address of the
ISR, the IRQL at which the device interrupts, and the entry in the kernel's IDT
with which the ISR should be associated. When an interrupt object is initial
ized, a few instructions of assembly language code, called the dispatch code, are
stored in the object. When an interrupt occurs, this code is executed. This
interrupt-object resident code calls the real interrupt dispatcher, passing it a
pointer to the interrupt object. The interrupt object contains information this
second dispatcher routine needs in order to locate and properly call the ISR
the device driver provides. This two-step process is required because there is
no way to pass a pointer to the interrupt object (or any other argument for that
matter) on the initial dispatch since the initial dispatch is done by hardware.

Associating an ISR with a particular level of interrupt is called connecting
an interrupt ollject, and dissociating an ISR from an IDT entry is called discon
necting an interrupt object. These operations, accomplished by calling a kernel
function, allow a device driver to "turn on" an ISR when the driver is loaded
into the system and to "turn off" the ISR if the driver is unloaded.

Using the interrupt object to register an ISR prevents device drivers from
fiddling directly with interrupt hardware (which differs among processor
architectures) and from needing to know any details about the IDT. This ker
nel feature aids in creating portable device drivers because it eliminates the
need to code in assembly language or to reflect processor differences in de
vice drivers.

Interrupt objects provide other benefits as well. By using the interrupt
object, the kernel can synchronize the execution of the ISR with other parts
of a device driver that might share data with the ISR. (See Chapter 7 for more
information about how device drivers respond to interrupts.) Furthermore,
interrupt objects allow the kernel to easily call more than one ISR for any
interrupt level. If multiple device drivers create interrupt objects and connect
them to the same IDT entry, the interrupt dispatcher calls each routine when
an interrupt occurs at the specified interrupt line. This capability allows the

89

INSIDE WINDOWS NT

90

kernel to easily support "daisy-chain" configurations, in which several devices
interrupt on the same interrupt line.

Software Interrupts
Although hardware generates most interrupts, the Windows NT kernel also
generates software interrupts for a variety of tasks, including these:

1111 Initiating thread dispatching

Ill Handling timer expiration

Ill Asynchronously executing a procedure in the context of a particu
lar thread

1111 Supporting asynchronous 1/0 operations

These tasks are described in the following subsections.

Dispatch or deferred procedure call (DPC) interrupts When a thread can
no longer continue executing, perhaps because it has terminated or because
it voluntarily enters a wait state, the kernel calls the dispatcher directly to ef
fect an immediate context switch~ Sometimes, however, the kernel detects that
rescheduling should occur when it is deep within many layers of code. In this
situation, the ideal solution is to request dispatching but defer its occurrence
until the kernel completes its current activity. Using a DPC software interrupt
is a convenient way to achieve this delay.

The kernel always raises the processor's IRQL to dispatch/DPC level or
above when it needs to synchronize access to shared kernel structures. This
disables additional software interrupts and thread dispatching. When the
kernel detects that dispatching should occur, it requests a dispatch/DPC-level
interrupt; but because the IRQL is at or above that level, the processor holds
the interrupt in check. When the kernel completes its current activity, it low
ers the IRQL below dispatch/DPC level, and the dispatch interrupt surfaces.

Activating the thread dispatcher by using a software interrupt is a way to
defer dispatching until conditions are right. However, Windows NT uses soft
ware interrupts to defer other types of processing as well.

In addition to thread dispatching, the kernel also processes deferred
procedure calls (DPCs) at this IRQL. A DPC is a function that performs a sys
tem task-a task that is less important than the current one. The functions are
called deferred because they might not execute immediately.

DPCs provide the operating system with the capability to generate an
interrupt and execute a system function in kernel mode. The kernel uses DPCs

TH R E E : System Mechanisms

to process timer expiration (and release threads waiting on the timers) and to
reschedule the processor after a thread's quantum expires. Device drivers use
DPCs to complete 1/0 requests. (See Chapter 7 for more information on DPCs
and the 1/0 system.)

A DPC is represented by a DPC object, a kernel control object that is not
visible to user-mode programs but is visible to device drivers and other system
code. The most important piece of information the DPC object contains is the
address of the system function that the kernel will call when it processes the
DPC interrupt. DPC routines that are waiting to execute are stored in a ker
nel-managed queue called the DPC queue. To request a DPC, system code calls
the kernel to initialize a DPC object and then places it in the DPC queue.

Placing a DPC in the DPC queue prompts the kernel to request a software
interrupt at dispatch/DPC level. Because DPCs are generally queued by soft
ware running at a higher IRQL, the requested interrupt doesn't surface until
the kernel lowers the IRQL to APC level or low level. DPC processing is de
picted in Figure 3-5.

<D A timer expires, and the kernel
queues a DPC that will release
any threads waiting on the
timer. The kernel then
requests a software interrupt.

Interrupt
dispatch table

High

Power failure

@ When the IRQL drops below
dispatch/DPC level, a DPC

@ After the DPC interrupt,
control transfers to the
(thread) dispatcher.

;"~"~ ="" f ~sp&re:: 1---:~~~:"""'"•1 Dispatcher

Figure 3-5
Delivering a DPC

© The dispatcher executes each DPC routine
in the DPC queue, emptying the queue
as it proceeds. If required, the dispatcher
also reschedules the processor.

91

INSIDE WINDOWS NT

92

Because user-mode threads execute at low IRQL, the chances are good
that a DPC will interrupt the execution of an ordinary user's thread. DPC rou
tines execute without regard to what thread is running, meaning that when a
DPC routine runs, it can't assume what process address space is currently
mapped. DPC routines can call kernel functions, but they can't call system
services, generate page faults, or create or wait on objects. They can, however,
access nonpaged system memory addresses, since system address space is always
mapped regardless of what the current process is.

DPCs are provided primarily for device drivers, but the kernel uses them
too. The kernel most frequently uses a DPC to handle quantum expiration. At
every tick of the system clock, an interrupt occurs at clock IRQL. The clock
interrupt handler (running at clock IRQL) updates the system time and then
decrements a counter that tracks how long the current thread has run. When
the counter reaches zero, the thread's time quantum has expired and the ker
nel might need to reschedule the processor, a lower-priority task that should
be done at dispatch/DPC IRQL. The clock interrupt handler queues a DPC
to initiate thread dispatching and then finishes its work and lowers the pro
cessor's IRQL. Because the DPC interrupt has a lower priority than do device
interrupts, any pending device interrupts that surface are handled before the
DPC interrupt occurs.

Asynchronous procedure call (APC) interrupts Asynchronous procedure
calls (APCs) provide a way for user programs and/or system code to execute
code in the context of a particular user thread (and hence a particular process

EXPERIMENT: Monitoring Interrupt and DPC A~i~t~··· ·. i'

Using Performance Monitor, you can watch the percentag~of'#lll~/ .
your system spends on handling interrupts artdDPCs. The processor\·.
object and the system object both have % Interrup~ Tiipe and %.D~ ~ ..
Time counters, which.means you can monitor the aefivityon~ per.(;lll1 C·t
or a systemwide basis. These objects also have counters to measur~ :t.}l~·J r
number ofinterrupts and DPCsper s~cond. ·····•·. ·. .• .•. < . . .r·? ~;{

One situation in which you might want to look ~ttlles~ cour,,~
is if your system is spending an inordinate aniount o~ time 1111<.ern~I;• ·.
mode and you can't attribute all·· the kernel-mode CPU tillle t() pr~i .:}
cesses. If total kernel-mode time is greater than thetotal kern.ei.µme : : ·
of all processes, the remaining time has to be interrupts or l)~,)x~.:. '.
cause time spent at interrupt level and DPq level is notcha~# l() any ;C
thread or process. u·,r·

T H R E E : System Mechanisms

address space). Because APCs are queued to execute in the context of a par
ticular thread and run at an IRQL less than 2, they don't operate under the
same restrictions as a DPC. An APC routine can acquire resources (objects),
wait on object handles, incur page faults, and call system services.

Like DPCs, APCs are described by a kernel control object, called an APC
object. APCs waiting to execute reside in a kernel-managed APC queue. Unlike
the DPC queue, which is systemwide, the APC queue is thread-specific-each
thread has its own APC queue. When asked to queue an APC, the kernel in
serts it into the queue belonging to the thread that will execute the APC rou
tine. The kernel, in turn, requests a software interrupt at APC level, and when
the thread eventually begins running, it executes the APC.

There are two kinds of APCs: user mode and kernel mode. Kernel-mode
APCs don't require "permission" from a target thread to run in that thread's
context, as user-mode APCs do. Kernel-mode APCs interrupt a thread and
execute a procedure without the thread's intervention or consent.

The executive uses kernel-mode APCs to perform operating system work
that must be completed within the address space (in the context) of a particular
thread. It can use kernel-mode APCs to direct a thread to stop executing an
interruptible system service, for example, or to record the results of an asyn
chronous 1/0 operation in a thread's address space. Environment subsystems
use kernel-mode APCs to make a thread suspend or terminate itself or to get
or set its user-mode execution context. The POSIX subsystem uses kernel-mode
APCs to emulate the delivery of POSIX signals to POSIX processes.

Device drivers also use kernel-mode APCs. For example, if an 1/0 opera
tion is initiated and a thread goes into a wait state, another thread in another
process can be scheduled to run. When the device finishes transferring data,
the 1/0 ·system must somehow get back into the context of the thread that
initiated the 1/0 so that it can copy the results of the 1/0 operation to the
buffer in the address space of the process containing that thread. The 1/0
system uses a kernel-mode APC to perform this action. (The use of APCs in
the 1/0 system is discussed in more detail in Chapter 7.)

Several Win32 APls, such as ReadFileEx, WriteFileEx, and QueueUserAPC,
use user-mode APCs. For example, the ReadFileEx and WriteFileEx functions
allow the caller to specify a completion routine to be called when the 1/0
operation finishes. The 1/0 completion is implemented by queueing an APC to
the thread that issued the 1/0. However, the callback to the completion rou
tine doesn't necessarily take place when the APC is queued, because user-mode
APCs are delivered to a thread only when it's in an alertable wait state. A thread
can enter a wait state either by waiting on an object handle and specifying that
its wait is alertable (with the Win32 WaitForMultipleObjectsEx function) or by

93

INSIDE WINDOWS NT

testing directly whether it has a pending APC (using SleepEx). In both cases, if
a user-mode APC is pending, the kernel interrupts (alerts) the thread, trans
fers control to the APC routine, and resumes the thread's execution when the
APC routine completes.

APC delivery can reorder the wait queues-the lists of which threads are
waiting on what, and in what order they are waiting. (Wait resolution is described
later in this chapter.) If th~ thread was in a wait state when an APC is delivered,
after the APC routine completes, the wait is reissued or reexecuted. If the wait
is still not resolved, the thread returns to the wait state, but now it will be at the
end of the list of objects it is waiting on. For example, because APCs are used to
suspend a thread from execution, if the thread was waiting on any objects, its
wait will be removed until the thread is resumed, after which it will be at the end
of the list for the objects it was waiting on. For further details on the queue wait
order, see the Win32 Software Development Kit (SDK) Knowledge Base article
Q125657 "Mutex Wait Is FIFO But Can Be Interrupted" (which you can find at
http://support.microsoft.com/support/ or on the MSDN Library CD-ROMs).

Exception Dispatching

94

In co·ntrast to interrupts, which can occur at any time, exceptions are condi
tions that result directly from the execution of the program that is running.
Win32 introduced a facility known as structured exception handling, which allows
applications to gain control when exceptions occur. The application can then
either fix the condition and return to the place the exception occurred, un
wind the stack (thus terminating execution of the subroutine that raised the
exception), or declare back to the system that the exception isn't recognized,
and to continue searching for an exception handler that might process the
exception. This section assumes you're familiar with the basic concepts behind
Win32 structured exception handling-if you're not, you should read the over
view in the Win32 API reference documentation on the Platform SDK or
Chapter 16 in Jeffrey Richter's book Advanced Windows (third edition, Microsoft
Press, 1997) before proce~ding. Keep in mind that although exception han
dling is made accessible through language extensions (for example, the __ try
construct in Microsoft Visual C++), it is a system mechanism and hence is not
language-specific. Other examples of consumers of Windows NT exception
handling include C++ and Java exceptions.

All exceptions, except those simple enough to be resolved by the trap
handler, are serviced by a kernel module called the exception dispatcher. The
exception dispatcher's job is to find an exception handler that can "dispose of"
the exception. Examples of architecture-independent exceptions that the ker
nel defines include memory access violations, integer divide-by-zero, integer

T H R E E : System Mechanisms

overflow, floating-point exceptions, and debugger breakpoints. For a complete
list of architecture-independent exceptions, consult the Win32 API reference
documentation.

The kernel traps and handles some of these exceptions transparently to
user programs. For example, encountering a debugger breakpoint while ex
ecuting a program being debugged generates an exception, which the kernel
handles by calling the debugger. The kernel handles certain other exceptions
by returning an unsuccessful status code to the caller.

A few exceptions are allowed to filter back, untouched, to user mode. For
example, a memory access violation or an arithmetic overflow generates an
exception that the operating system doesn't handle. An environment subsystem
can establish frame-based exception handlers to deal with these exceptions. The
term frame-based refers to an exception handler's association with a particular
procedure activation. When a. procedure is invoked, a stack frame represent
ing that activation of the procedure is pushed onto the stack. A stack frame
can have one or more exception handlers associated with it, each of which
protects a particular block of code in the source program. When an exception
occurs, the kernel searches for an exception handler associated with the cur
rent stack frame. If none exists, the kernel searches for an exception handler
associated with the previous stack frame, and so on, until it finds a frame-based
exception handler. If no exception handler is found, the kernel calls its own
default exception handlers.

When an exception occurs, whether it.is explicitly raised by software or
implicitly raised by hardware, a chain of events begins in the kernel. The CPU
hardware transfers control to the kernel trap handler, which creates a trap
frame (as it does when an interrupt occurs). The trap frame will allow the sys
tem to resume where it left off if the exception is resolved. The trap handler
also creates an exception record that contains the reason for the exception and
other pertinent information.

If the exception occurred in kernel mode, the exception dispatcher sim
piy calls a routine to locate a frame-based exception handler that will handle
the exception. Because unhandled kernel-mode exceptions are considered
fatal operating system errors, you can assume that the dispatcher always finds
an exception handler.

If the exception occurred in user mode, the exception dispatcher does
something more elaborate. As you'll see in Chapter 4, the Win32 subsystem has
a debugger port and an exception port to receive notification of user-mode
exceptions in Win32 processes. The kernel uses these in its default exception
handling, as illustrated in Figure 3-6.

95

INSIDE WINDOWS NT

Exception~ Trap
handler r--- (Exception

frame, client
thread/DJ.....,,,_

Exception
handlers

Exception
dispatcher

Debugger
(first chance)

Frame-based
handlers

Debugger
(second chance)

Kernel default
handler

Figure 3-6
Dispatching an exception

96

Debugger breakpoints are common sources of exceptions. Therefore, the
. first action the exception dispatcher takes is to see whether the process that

incurred the exception has an associated debugger process. If so, it sends the
first-chance debug message (via an LPC port) to the debugger port associated
with the process that incurred the exception. (The message is sent to the ses
sion manager process, which then dispatches it to the appropriate debugger
process.)

If the process has no debugger process attached, or if the debugger doesn't
handle the exception, the exception dispatcher switches into user mode and
calls a routine to find a frame-based exception handler. H none is found, or if
norie handles the exception, the exception dispatcher switches back into ker
nel mode and calls the debugger again to allow the user to do more debugging.
(This is called the second-chance notification.)

All Win32 threads have an exception handler declared at the top of the
stack that processes unhandled exceptions. This exception handler is declared
in the internal Win32 start-ofprocess or start-of thread function. The start-of
process function runs when the first thread in a process begins execution. It
calls the main entry point in the image. The start-of-thread function runs when
a user creates additional threads. It calls the user-supplied thread start routine
specified in the CreateThread call.

T H R E E : System Mechanisms

EXPERIMENT: Viewing the Real
User Start Address for Wln32 Threads
The fact that each Win32 thread begins execution in a system-supplied
function (and not the user-supplied function) explains why the start
address for thread 0 is the same for every Win32 process in the system
(and why the.start addresses .for secondary threads are also the same).
The start address for thread 0 in Win32 processes is the Win32 start-'
of-process function; the start address for any other threads would be
theWin32 start-of-thread function. To see the user-supplied function
address, use theTlist utilityin the WindowsNT Resource Kit. Type Tlist
process-nameor·Tlist process-id to get the detailed process output that·
includes this information. For example, compp.re the thread start
addresses for· the Windows NT Explorer process as reported by Pstat
and Tlist:

C:\> pstat

pid: 96 pri: 8 Hnd: 63 Pf:
tid pri Ctx Swtch StrtAddr·
95 14 21525 77f052cc
56 14 9BB 77f052c0
3e 14 108]7f052c0
b3 B 2397 77f052c0

Ci\>-tlist expiorer

7573 Ws:
User Time

0:00i09.373
0:00:00.020
0:00:00.010
0:00:01.992

1796K explorer.exe
Kernel Time State
0:00:45.745 Wait:UserRequest
0:00:00.140 Wait:UserRequest
0:00:00.010 Wait:LpcReceive
0:00: 04 .. 496 Wait: UserRequest

150 explorer.exe Program Manager
CWD: C: \IHNNT\Profi les\Admi ni strator\Desktop\

. Cmdline: Explorer;exe
V1rtua1Sfze: 25348 KB PeakVirtualSize: 31052 KB
WorkingSetSize: 1804 KB PeakWorkingSetSize: 3276 KB
NUmberOfThreads: 4
149 Win32StartAddr:0x01009dM LastErr:0x0000007e State:Waiting
86 Win32StartAddr:0x77c5d4a5 LastErr:0x00000000 State:Waiting
62.Win32StartAddr:0X00000977 lastErr:0x00000000 State:Waiting

179 Win32StartAddr:0x0100d8d4 LastErr:0x00000002 State:Waiting

' ' . '

The start address of thread 0 reported by Pstat is the. interna1Win32
. start-of-process function; the start fiddresses for th.reads l through .3
are l)le internal vvin32 start-of-thread functions. Tlist, on the other
hand, shows the user-supplied Win32 start address .(the user function
called by the internal. Win32 start function). ·

97

INSIDE WINDOWS NT

98

The generic code for these internal start functions is shown here:

void Win32Start0fProcess(
LPTHREAD_START_ROUTINE lpStartAddr,
LPVOID lpvThreadParml{,
__ try {

DWORD dwThreadExitCode = lpStartAddrClpvThreadParm);
ExitThread(dwThreadExitCode);

} __ except(UnhandledExceptionFilter(
GetExceptioninformation())) {

ExitProcess(GetExceptionCode());
}

Notice that the Win32 unhandled exception filter is called if the thread
has an exception that it doesn't handle. This function looks in the registry in
the HKLM\Software\Microsoft\Windows NT\CurrentVersion\AeDebug key
to determine whether to run a debugger immediately or to ask the user first.
The default "debugger" on Windows NT is DRWTSN32.EXE (Dr. Watson),
which isn't really a debugger but rather a postmortem tool that captures the
state of the application "crash" and records it in a log file. If you have a com
piler such as Visual C++ installed, the debugger that is to be run is changed
to MSDEV.EXE so you can debug programs that incur unhandled exceptions.

If the debugger isn't running and no frame-based handlers are found, the
kernel sends a message to the exception port associated with the thread's pro
cess. This exception port, if one exists, was registered by the environment sub
system that controls this thread. The exception port gives the environment
subsystem, which presumably is listening at the port, the opportunity to trans
late the exception into an environment-specific signal or exception. For ex
ample, when POSIX gets a message from the kernel that one of its threads
generated an exception, the POSIX subsystem sends a POSIX-style signal to
the thread that caused the exception. However, if the kernel progresses this
far in processing the exception and the subsystem doesn't handle the excep
tion, the kernel executes a default exception handler that simply terminates
the process whose thread caused the exception.

YQu.can.monit-Or··•the jdceptiQ*-~spatclxipg.·•raf~.8I1·Mur;~~~th. .. ····
l:'eeforp:ian<:e•Monitor.:·E11ter()~~t}liew,:pr~Ctrl-lto~9 "1 ~tert~. ; ·.·.,
the chart, •• select theSystemobj~ct1.sel~~··tJ¥E'!'~eptjfJti.Wspatl;:hesj1Ses
counter, and then elk~ th~ A.qd britton ~o adclth.e <;()UI1t~to;t'necllam;. · ;·

T H R E E : System Mechanisms

System Service Dispatching
As Figure 3-1 illustrated, the kernel's trap handler dispatches interrupts, ex
ceptions, and system service calls. In the preceding sections, you saw how in
terrupt and exception handling work; in this section, you'll learn about system
services. A system service dispatch is triggered as a result of executing a syscall
instruction on Alpha processors or an int 2E on Intel x86 processors. Both of
these instructions cause a system trap, which causes the executing thread to
transition into kernel mode and enter the system service dispatcher. A numeric
argument indicates the system service number being requested. As Figure 3-7
illustrates, the kernel uses this argument to locate the system service informa
tion in the system service dispatch table. This table is similar to the interrupt dis
patch table described earlier in the chapter except that each entry contains a
pointer to a system service rather than to an interrupt handling routine.

System
service call

Figure 3-7

Trap handler

System
service

dispatcher

System service exceptions

0

2

3

n

System service
dispatch table

.... ..lo.

. . .

I
I

L System ,
L service 1

1 extensions 1
r

,.

User mode

Kernel mode

System service 2

99

INSIDE WINDOWS NT

100

The system service dispatcher verifies the correct minimum number.of
arguments and copies the caller's arguments from the thread's user-mode stack
to its kernel-mode stack (so that the user can't change the arguments willy-nilly)
and then executes the system service. If the arguments passed to a system ser
vice point to buffers in user space, these buffers must be probed for accessi
bility before kernel-mode code can copy data to or from them.

As you'll see in Chapter 4, each thread has a pointer to its system service
table. Windows NT has two built-in system service tables (though more can be
supported). The primary default table defines the core executive system ser
vices implemented in NTOSKRNL.EXE. The other table includes the Win32
USER and GDI services implemented in the kernel-mode part of the Win32
subsystem, WIN32K.SYS. The first time a Win32 thread calls a Win32 USER
or GDI service, the address of the thread's system service table is changed to
point to a table that includes the Win32 USER and GDI services.

The system service dispatch instructions for Windows NT executive ser
vices exist in the system library NTDLL.DLL. Subsystem DLLs call functions
in NTDLL to implement their documented functions. The exception is Win32
USER and GDI functions, in which the system service dispatch instructions are
implemented directly in USER32.DLL and GDI32.DLL-there is no NTDLL
.DLL in the middle. These two cases are shown in Figure 3-8.

As shown in Figure 3-8, the Win32 WriteFilefunction in KERNEL32.DLL
calls the NtWriteFile function in NTDLL.DLL, which in turn executes the ap
p.ropriate instruction to cause a system service trap, passing the system service
number representing NtWriteFile. The system service dispatcher (function Ki
SystemService in NTOSKRNL. EXE) then calls the real NtWriteFile to process
the I/0 request. For Win32 USER and GDI functions, the system service dis
patch calls functions in the loadable kernel-mode part of the Win32 subsystem,
WIN32K.SYS.

EXPERIMENT: Viewing System Service Activity
You can monitor system service activity by watching the System Calls/
Sec performance counter in the System object,.Run Performance Moni
tor, and in chart view, press Ctrl-I to add a counter to the chart; select
the System object, select the System Calls/Sec counter, and then click
the Add button to add the counter to the chart.

T H R E E : System Mechanisms

Win32 kernel APls
Win32 USER and

GDI APls

Win32 application

WriteFile in
KERNEL32.DLL

NtWriteFile in
NTDLL.DLL

Software interrupt

~.....-----.......
KiSystemService in Call NtWril!iiAle

NTOSKRNL.EXE Dismiss interrupt

NtWriteFile in Do.th~ operation
NTOSKRNL.EXE Return to caller

Figure 3-8
System service dispatching

Object Manager

Win32-
specific

Used by all
subsystems

Application

GDl32.DLL
or USER32.DLL

Software interrupt

~.---------.
KiSystemService in Call Win32 routine

NTOSKRNL.EXE Dismiss interrupt

Service entry point in Do the operation
WIN32K.SYS Return to caller

Win32-
specific

User mode

Kernel mode

As mentioned in Chapter 2, Windows NT implements an object model to pro
vide consistent and secure access to the varied internal services implemented
in the executive. This section describes the Windows NT object manager, the
executive component responsible for creating, deleting, protecting, and track
ing objects. The object manager centralizes resource control operations that
otherwise would be scattered throughout the operating system. It was designed
to meet the goals listed on page 103.

101

INSIDE WINDOWS NT

102

EXPERIMENT: Exploring the ObJeet Manager'
' - .. ·- ' ' ._ '

Throughout this section, you'll find experimentstlia~!~9\\fYo~fi?~tci
peer into the object manager database .. The~e ~xp~~nt~ ~kellSe
of the following tools, which you should becom~ fainilia,:-\Vitf1 if'YO"ll
aren't already; · · · · ·•· ·

, , -- .· ,.··-' :-':>.:· ::.::-·/. ,·-_.'C

• Object viewer (Platform SDK, •in \MSSDK\BIN\'\VINNT\
WINOBJ.EXE)

• Open handles (Windows NT Resource Kit, in\~TR~SKJJ~\
OH.EXE) (This utility was added to the }'Vi~d~ ~TSe~~
Resource Kit Supplement Two .. You wcm'tfind it in earlier
editions of the Windows NT Server Resource Kit.)

• Kernel debugger !handle and !ol?jectcomll\ands

CJ arcname
D BaseNamedObjects
L:ldevice
LJ driver
CJ FileS ystem
CJ KnownOlls
CJnls
CJ Object Types
LJ psxss
CJ RPCControl
CJ securit_y
CJ windows

, L::larcname

L:lBaseNamedObjectsO
c:::idevice
CJ driver
CJFileSystem
L!KnownDlls
CJnls
CJObjectT ypes
LJps:-:ss
CJRPC Control
L:Jsecurit_yd
LI windows

111 DosDevices
,,.ErrorlogPortL
OVCfat

1.~~ LanmanServerAnnounceE ve
,rLsaO.uthenticationPort
\)\' NETLOGON_SERVICE_STA
DVCntf:s<
i'NtlmSecuritySupportP1ovider
~registr_y<
';;;' SAM_SERVICE_STARTEO
,rseLsaCommandPort4
rirr S els al nitE vent

,rseRmCommandPort
,,.Sml\piPoft
f.!§ S_ystemRoot
,,-xactSrvLpcPorl

In the Windows NT Resource Kittools help for OH, you'fffind oiit
that you must enable object tracking:-an internal deb0:ggi~g feature
in the executive-to run this utility .• T(), enable objecttracki~,.setone
of the Windows NT global flags and reboot your system. ;(See pag~ 135
for more on global flags.) If you run OHand the flag isn't 011, the~ utility

T H R E E : System Mechanisms

will set the flag in the registry and tell you to reboot. Because this flag
uses additional memory to track object usage information, you should
disable it with the Gflags utility after you've experimented with OH and
then reboot your system· again.

· An object viewer utility named Winobj is also available; you can
fin.ditatwww.ntinternals.com. Although not shown in the examples that
,oll<)w, Winobj displays mote information about objects (such as the
reference count, the number of open handles, security descriptors, and
sofckth) than the objci:t viewer in the Platform SDK does.

The object manager was designed to meet these goals:

II Provide a common, uniform mechanism for using system resources

II Isolate object protection to one location in the operating system so
that C2 security compliance can be achieved

II Provide a mechanism to charge processes for their use of objects so
that limits can be placed on the usage of system resources

Ill Establish an object-naming scheme that can readily incorporate ex
isting objects, such as the devices, files, and directories of a file sys
tem, or other independent collections of objects

Ill Support the requirements of various operating system environments,
such as the ability of a process to inherit resources from a parent
process (needed by Win32 and POSIX) and the ability to create case
sensitive filenames (needed by POSIX)

Ill Establish uniform rules for object retention (that is, keeping an ob
ject available until all processes have finished using it)

Internally, Windows NT has two kinds of objects: executive objects and ker
nel objects. Executive objects are objects implemented by various components
of the executive (such as the process manager, memory manager, I/0 sub
system, and so on). Kernel objects are a more primitive set of objects imple
mented by the Windows NT kernel. These objects are not visible to user-mode
code but are created and used only within the executive. Kernel objects pro
vide fundamental capabilities, such as synchronization, on which executive
objects are built. Thus, many executive objects contain (encapsulate) one or
more kernel objects, as shown in Figure 3-9.

103

INSIDE WINDOWS NT

Owned by the
object manager

Owned by the
kernel

. Owned by the
executive

Figure 3-9
Executive objects that contain kernel objects

Details about the structure of kernel objects and how they are used to
implement synchronization are given later in this chapter. In the remainder
of this section, we'll focus on how the object manager works and on the struc
ture of executive objects, handles, and handle tables. And although I'll describe
only briefly here how objects are involved in implementing Windows NT se
curity access checking, I'll cover this topic thoroughly in Chapter 6.

Executive Objects

104

Each Windows NT environment subsystem projects to its applications a differ
ent image of the operating system. The executive objects and object services
are primitives that the environment subsystems use to construct their own
versions of objects and other resources.

Executive objects are typically created either by an environment sub
system on behalf of a user application or by various components of the
operating system as part of their normal operation. For example, to create a file,
a Win32 application calls the Win32 CreateFile function, implemented in the
Win32 subsystem DLL KERNEL32.DLL. After some validation and initializa
tion, CreateFile in turn calls the native Windows NT service NtCreateFile to create
an executive file object.

T H R E E : System Mechanisms

The set of objects an environment subsystem supplies to its applications
might be larger or smaller than that the executive provides. The Win32 sub
system uses executive objects to export its own set of objects, many of which
correspond directly to executive objects. For example, the Win32 mutexes and
semaphores are directly based on executive objects (which are in turn based
on corresponding kernel objects). In addition, the Win32 subsystem supplies
named pipes and mailslots, resources that are based on executive file objects.
Some subsystems, such as POSIX, don't support objects as objects at all. The
POSIX subsystem uses executive objects and services as the basis for present
ing POSIX-style processes, pipes, and other resources to its applications.

Table 3-1 lists the primary objects the executive provides and briefly de
scribes what they represent. You can find further details on executive objects
in the chapters that describe the related executive components (or in the case
of executive objects directly exported to Win32, in the Win32 API reference
documentation).

Table 3-1 Executive Objects

Object Type Represents

Object directory A container object for other objects. The object directory is used to
implement the hierarchical namespace within which other object types
are stored.

Symbolic link A mechanism for referring to an object name indirectly.

Process The virtual address space and control information necessary for the
execution of a set of thread objects.

Thread An executable entity within a process.

Section A region of shared memory (called a file mapping object in Win32).

File An instance of an opened file or an 1/0 device.

Port A mechanism to pass messages between processes.

Access token The security profile (security ID, user rights, and so on) of a process
or a thread.

Event An object with a persistent state (signaled or not signaled) that can be
used for synchronization or notification.

Semaphore A counter that provides a resource gate by allowing some maximum
number of threads to access the resources protected by the semaphore.

Mutant* A synchronization mechanism used to serialize access to a resource.

Timer A mechanism to notify a thread when a fixed period of time elapses.

* Externally in the Win32 API, mutants are called mutexes. References to mutexes.from here on refer to the
kernel mutant object.

(continued)

105

INSIDE WINDOWS NT

Table 3-1 continued

Object Type Represents

Queue

Key

Profile

A method for threads to enqueue and dequeue notifications of the
completion of I/0 operations (called an 1/0 completion port in the
Win32 API).

A mechanism to refer to data in the registry. Although keys appear in the
object manager namespace, they are managed by the registry, in a way
similar to that in which file objects are managed. Zero or more key values
are associated with a key object; key values contain data about the key.

A mechanism for measuring execution time for a process within an
address range.

Object Structure

106

As shown in Figure 3-10, each object has an object header and an object body.
The object manager controls the object header, and the owning executive com
ponents control the object bodies of the object types they create. In addition,
each object header points to the list of processes that have the object open and
a special object called the type object that contains information common to each
instance of the object.

Object name
Object header Object directory

Security descriptor
Quota charges
Open handle count
Open handles list
Object type --.....i----~•
Reference count

Object body

Figure 3-10
Structure of an object

Type object

Type name
Access types
Synchronizable? (Y/N)
Pageabfe? (YIN)
Methods:

Open, close, delete,
parse, security,
query name

T H R E E : System Mechanisms

Object Headers
The object manager uses the data stored in an object's header to manage ob
jects without regard to their type. Table 3-2 briefly describes the object header
attributes.

Table 3-2 Standard Object Header Attributes

Attribute

Object name

Object directory

Security descriptor

Quota charges

Open handle count

Open handles list

Object type

Reference count

Purpose

Makes an object visible to other processes for sharing

Provides a hierarchical structure in which to store object names

Determines who can use the object and what they can do with it

Lists the resource charges levied against a process when it opens a
handle to the object

Counts the number of times a handle has been opened to the object

List of the processes that have opened handles to the object

Points to a type object that contains attributes common to objects
of this type

Counts the number of times a kernel-mode component has referenced
the address of the object

In addition to an object header, each object has an object body whose
format and contents are unique to its object type; all objects of the same type
share the same object body format. By creating an object type and supplying
services for it, an executive component can control the manipulation of data
in all object bodies of that type.

The object manager provides a small set of generic services that operate
on the attributes stored in an object's header and can be used on objects of any
type (although some generic services don't make sense for certain objects).
These generic services, some of which the Win32 subsystem makes available
to Win32 applications, are listed in Table 3-3 on the following page.

Although these generic object services are supported for all object types,
each object has its own create, open, and query services. For example, the 1/0
system implements a create file service for its file objects, and the process man
ager implements a create process service for its process objects. Although a
single create object service could have been implemented, such a routine would
have been quite complicated, because the set of parameters required to initial
ize a file object, for example, differs markedly from that required to initialize
a process object. Also, the object manager would have incurred additional
processing overhead each time a thread called an object service to

107

INSIDE WINDOWS NT

108

Service

Close

Duplicate

Query object

Table 3-3

Query security

Set security

Wait for a single object

Wait for multiple objects

Generic Object Services

Purpose

Closes a handle to an object

Shares an object by duplicating a handle and
giving it to another process

Gets information about an object's standard
attributes

Gets an object's security descriptor

Changes the protection on an object

Synchronizes a thread's execution with one object

Synchronizes a thread's execution with multiple
objects

determine the type of object the handle referred to and to call the appropri
ate version of the service. For these reasons and others, the create, open, and
query services are implemented separately for each object type.

Type Objects
Object headers contain data that is common to all objects but that can take on
different values for each instance of an object. For example, each object has
a unique name and can have a unique security descriptor. However, objects also
contain some data that remains constant for all objects of a particular type.
For example, you can select from a set of access rights specific to a type of object
when you open a handle to objects ofa particular type. The executive supplies
terminate and suspend access (among others) for thread objects and read,
write, append, and delete access (among others) for file objects. Another ex
ample of an object-type-specific attribute is synchronization, the ability of a
thread to wait for objects of a particular type to be set to the signaled state,
described shortly.

To conserve memory, the object manager stores these static, object-type
specific attributes once when creating a new object type. It uses an object of
its own, a type object, to record this data. As Figure 3-11 illustrates, a type object
also links together all objects of the same type, allowing the object manager
to find and enumerate them, if necessary.

T H R E E : System Mechanisms

Process
Object.1

Figure 3-11

Process Process Process
Object 2-+---+ Object 3-+----+-.0b)ect 4

Process objects and the process type object

EXPERIMENT: Vi•wing_the Type Objects··
·You can see the list of type ob,jects declared to.the object ifianager.~th ...
. the Object Viewer utilityin·the Platform·SDK .. Run\MSSDK\BIN\
· WINNT\WINOBJ.ExE, and click on the \ObjectTypes dfreqory,, as
shoWn.he~: · · . ·. .

!J c::J arcname ·
ii CJ BaseNamedObjects

. J CJ device
ii CJdriver
;j CJ FileSystem
·~ CJ KnovoiDls
j; CJnls

!i f-l!CJilpl.,,1,,Dll
I CJ RPC Control
!~ LJ security
l~ LJ windows

Controller
Mciesklop
Mdevice
MDirectory
Mdriver
Mevent

\. MEventPai
Mlil•<
MloCompletion4
Mkey

· · '. Iii mutant
MportB
Mproces•
lliil;profile

·:'. · !ilsection
MSemaphore

. _J,. ,t ".'',-:''

·_,·_.:.·

109

INSIDE WINDOWS NT

Type objects can't be manipulated from user mode because the object
manager supplies no services for them. However, some of the attributes they
define are visible through certain native services and through Win32 API rou
tines. The attributes stored in the bodies of type objects are described in Table
3-4.

Table 3-4 Type Object Attributes

Attribute Purpose

Object type name The name for objects of this type ("process;' "event;' "port;'
and so on)

Pool type

Default quota charges

Access types

Whether objects of this type should be allocated from
paged or nonpaged memory

Default paged and nonpaged pool values to charge to
process quotas

The types of access a thread can request when opening a
handle to an object of this type ("read;' "write;' "terminate,"
"suspend," and so on)

Generic access rights mapping A mapping between the four generic access rights (read,
write, execute, and all) to the type-specific access rights

Synchronization

Methods

Whether a thread can wait on objects of this type

One or more routines that the object manager calls
au~omatically at certain points in an object's lifetime

110

Synchronization, one of the attributes visible to Win32 applications, refers
to a thread's ability" to synchronize its execution by waiting for an object to
change from one state to another. A thread can synchronize with executive
process, thread, file, event, semaphore, mutex, and timer objects. Section, port,
access token, object directory, symbolic-link, profile, and key objects don't sup
port synchronization.

Object Methods
The last attribute in Table 3-4, methods, comprises a set of internal routines
that are similar to C++ constructors and destructors, that is, routines that are
automatically called when an object is created or destroyed. The object man
ager extends this idea by calling an object method in other situations as well,
such as when someone opens or closes a handle to an object or when some
one attempts to change the protection on an object. Some object types specify
methods, whereas others don't, depending on how the object type is to be used.

T H R E E : System Mechanisms

When an executive component creates a new object type, it can register
one or more methods with the object manager. Thereafter, the object manager
calls the methods at well-defined points in the lifetime of objects of that type,
usually when an object is created, deleted, or modified in some way. The meth
ods that the object manager supports are listed in Table 3-5.

Table 3-5 Object Methods

Method When Method Is Called

Open When an object handle is opened

Close When an object handle is closed

Delete Before the object manager deletes an object

Query name When a thread requests the name of an object, such as a file,
that exists in a secondary object domain

Parse When the object manager is searching for an object name
that exists in a secondary object domain

Security When a process reads or changes the protection of an object,
such as a file, that exists in a secondary object domain

An example of the use of a close method occurs in the I/O system. The
I/O manager registers a close method for the file object type, and the object
manager calls the close method each time it closes a file object handle. This
close method checks whether the process that is closing the file handle owns
any outstanding locks on the file and, if so, removes them. Checking for file
locks is not something that the object manager itself could or should do.

The object manager calls a delete method, if one is registered, before it
deletes a temporary object from memory. The memory manager, for example,
registers a delete method for the section object type that frees the physical
pages being used by the section. It also verifies that any internal data structures
the memory manager has allocated for a section are deleted before the section
object is deleted. Once again, this is work the object manager can't do because
it knows nothing about the internal workings of the memory manager. Delete
methods for other types of objects perform similar functions.

The parse method (and similarly, the query name method) allows the
object manager to relinquish control of finding an object to a secondary object
manager if it finds an object that exists outside the object manager namespace.
When the object manager looks up an object name, it suspends its search when
it encounters an object in the path that has an associated parse method. The
object manager calls the parse method, passing to it the remainder of the object
name it is looking for.

111

INSIDE WINDOWS NT

112

For example, when a process opens a handle to the object named \Device
\FloppyO\docs\resume.doc, the object manager traverses its name tree until
it reaches the device object named FloppyO. It sees that a parse method is as
sociated with this object, and it calls the method, passing to it the rest of the
object name it was searching for-in this case, the string \docs\resume.doc. The
parse method for device objects is an I/O routine. The routine takes the name
string and passes it to the appropriate file system, which finds the file on the
disk and opens it.

The security method, which is used by the I/0 system, is similar to the
parse method. It is called whenever a thread tries to change the security infor
mation protecting a file. This information is different for files than for other
objects because security information is stored in the file itself rather than in
memory. The 1/0 system, therefore, must be called in order to find the secu
rity information and change it.

Object Handles and the Process Handle Table
When a process creates or opens an object by name, it receives a handle that
represents its access to the object. Referring to an object by its handle is faster
than using its name because the object manager can skip the name lookup and
find the object directly. Processes can also acquire handles to objects by inher
iting handles at process creation time (if the creator specifies the inherit handle
flag on the CreateProcess call and the handle was marked as inheritable, either
at the time it was created or afterwards by using the Win32 SetHandlelnformation
function) or by receiving a duplicated handle from another process. (See the
Win32 DuplicateHandle function.)

All user-mode processes must own a handle to an object before their threads
can use the object. Using handles to manipulate system resources is not a new
idea. C and Pascal (and other language) run-time libraries, for example, re
turn handles to opened files. Handles serve as indirect pointers to system re
sources; this indirection keeps application programs from fiddling directly with
system data structures.

N 0 TE Executive components and device drivers can access ob
jects directly, since they are running in kernel mode and therefore
have access to the object structures in system memory. However, they
must declare their usage of the object by incrementing either the
open handle count or the reference count so that the object will not
be deallocated while it's still being used. (See the description of ob
ject retention later in this section.)

T H R E E : System Mechanisms

Object handles provide additional benefits. First, except for what they
refer to, there is no difference between a file handle, an event handle, and a
process handle. This similarity provides a consistent interface to reference
objects, regardless of their type. Second, the object manager has the exclusive
right to create handles and to locate an object that a handle refers to. This
means that the object manager can scrutinize every user-mode action that
affects an object to see whether the security profile of the caller allows the
operation requested on the object in question.

EXPERIMENT: . Viewing Open Handles with OH
As shown in the following example, the OH tool in the Windows NT
Server Resource Kit (supplement 2 or later) can display the handles
open by any or all processes. (Remember that OH requires enabling
an internal option to track object information.)

C:\>cih /?
Usage: OH [cp n] [-t typeName] [-a] [name]
where: -p n -
displays only open handles for process with Clientld of n

• t type Name -
displays -0nly open object names of specified type.

-a includes objects with no name.
name - displays only handles that contain the. specified name.

C:\>oh -a
2 Syit~m Process 000~
2 System Key 0008 \REGISTRY
2 System Key 000c

\REGISTRY\Machine\Hardware\Description\System\PCMCIA PCCARDs
2 System File 0010 \WINNT\system32\config\system.
2 System P-0rt 0014 · \SeRmCommandPort
2 System Key 0018 \REGISTRY\Machine\System\Setup
2 System Directory 001c \Device\Harddisk0
2 System Thread 0020

The display above shows the first eight open handles in the System
proci!ss. The process ID appears first, followed by the process image
name· (except that the System process, as explained in. Chapter l, doesnt
have an image), o~ect type, handle value, and object name. Because
we specified the -a flag, handles to objects that don't have names (handle
~·numbers Ox4, Oxle, and Ox20) are included.

113

INSIDE WINDOWS NT

An object handle is an index into a process-specific handle table, pointed
to by the executive process (EPROCESS) block (described in Chapter 4). The
first handle index is 4, the second 8, and so on. A process's handle table con
tains pointers to all the objects that the process has opened a handle to. It
consists of a fixed header and a variable size portion. The variable size part is
an array of handle table entries, each describing one open handle. If a pro
cess opens more handles than can fit in the variable portion, the system allo
cates a new, larger array and copies the old array into the new one.

Bii» N 0 TE In Windows NT 5.0, the handle table is implemented as a
three-level tree that can expand without requiring the recopying of
the existing handle table.

114

As shown in Figure 3-12, each handle entry consists of a structure with two
32-bit members. The first 32-bit member contains both a pointer to the object
header and three flags. (Because object headers are always 32-bit aligned, the
low-order 3 bits of this field are free for use as flags.) The second member is the
granted access mask for that object. (Access masks are described in Chapter 6.)

I Audit on close

I Protect from close

I I Inheritable

..--~~~~~-P-o_i_n-te-r-to~o-bj-.e-c-th_e_a_d_e_r~~~~~,rA-,....,P-.-,---.1 t

Access mask

32 bits

Figure 3-12
Structure of a handle table entry

The first flag is the inheritance designation-that is, whether processes
created by this process will get a copy of the handle in their handle tables. As
already noted, handle inheritance can be specified on handle creation or later
with the SetHandlelnformation function. The second flag indicates whether the
caller is allowed to close this handle. (This flag can also be specified with the
Win32 SetHandlelriformation function.) The third flag indicates whether clos
ing the object should generate an audit message. (This flag is not exposed to
Win32-it is used internally by the object manager.)

T H R E E : System Mechanisms

EXPERIMENT: Viewing the
Handle Table with the Kernel Debugger
The !handle command in the kernel debuggc;r takes three argw::nents:

!handle <handle index> <flags> <processid>

The handle index identifies the handle entry in the handle table.
(Zero means display all handles.) The first h~isindex 4, the second.
8, and so on. For example, typing !handle 4willshow the first handle
for the current process. ·

The flags you can specify are a bitmask, where bit 0 means display·
only the information in the handle entry, bit 1 means dispbf free handles
(not just used handles), and bit 2 means displays information aboutthe
object that the handle refers to. The following command displays full

. details about the handle table for p~ce$8.ID ~;

> !handle 0 7 aa
processor number 0
Searching for Process with Cid == aa
PROCESS 8053f670 ·Cid: 00aa Peb: 7ffdf000 ParentCid: 005b

D,rBase: 01549000 ObJectT:atle: 80699a88· lableSize:· 30.
Image: CMD.EXE

Handle Table at 80699a88 with 30. Entries at elab3410 -
FIFO Order. . . .

0004: Object: e.19be540 Grantt!dAccess: 000fil01 f
Object: eJ9be540 Type: (8069lbc0) Section

ObJectHeader: e19b,e528
Handl eCount: l Po1 nterCount: 1

·. :

0008: Object: 80570J10 .GrantedAccess: 0010~003
'Object: 80570310 Type: ·< 80694160 > Event

-Obje-ctHeader~ 80S7tl2f8 ·
· · · Handlecount: · l Poiilt~rcount: . 1 ·

Object Security
When you open a file, you must specify whether you intend to read or to write.
If you try to write to a file that is opened for read access, you get an error.
Likewise, in the executive, when a process creates an object or opens a handle
to an existing object, the process must specify a set of desired access rights---that ·
is, what it wants to do with the object. It can request either a set of standard
access rights (such as read, write, and execute) that apply to all object types or

115

INSIDE WINDOWS NT

116

specific access rights that vary depending on the object type. For example, the
process can request delete access or append access to a file object. Similarly,
it might require the ability to suspend or terminate a thread object.

When a process opens a handle to an object, the object manager calls the
security reference monitor, the kernel-mode portion of the security system, send
ing it the process's set of desired access rights. The security reference monitor
checks whether the object's security descriptor permits the type of access the
process is requesting. If so, the reference monitor returns a set of granted ac
cess rights that the process is allowed, and the object manager stores them in
the object handle it creates. How the security system determines who gets ac
cess to which objects is explored in Chapter 6.

Thereafter, whenever the process's threads use the handle, the object
manager can quickly check whether the set of granted access rights stored in
the handle corresponds to the usage implied by the object service the threads
have called. For example, if the caller asked for read access to a section object
but then calls a service to write to it, the service fails.

Object Retention
Because all user-mode processes that access an object must first open a handle
to it, the object manager can easily track how many of these processes, and even
which ones, are using an object. Tracking these handles represents one part
in implementing object retention-that is, retaining temporary objects only as
long as they are in use and then deleting them.

The object manager implements object retention in two phases. The first
phase is called name retention, and it is controlled by the number of open handles
that exist to an object. Every time a process opens a handle to an object, the
object manager increments the open handle counter in the object's header. As
proc;.:esses finish using the object and close their handles to it, the object man
ager decrements the open handle counter. When the counter drops to zero, the
object manager deletes the object's name from its global namespace. This dele
tion prevents new processes from opening a handle to the object.

The second phase of object retention is to stop retaining objects (that is,
to delete them) when they are no longer in use. Because operating system code
usually accesses objects by using pointers instead of handles, the object man
ager must also record how many object pointers it has dispensed to operating
system processes. It increments a reference count for an object each time it gives
out a pointer to the object; when kernel-mode components finish using the
pointer, they call the object manager to decrement the object's reference count.
(For further details on object retention, see the DDK documentation on the
functions ObReferenceObjectByPointer and ObDereferenceObject.)

T H R E E : System Mechanisms

Figure 3-13 illustrates two event objects that are in use. Process A has the
first event open. Process B has both events open. In addition, the first event
is being referenced by some kernel-mode structure; thus the reference count
is 1. So even if process A and B closed their handles to the first event object,
it would remain because its reference count is 1. However, when process B closes
its handle to the second event object, the object would be deallocated.

Process A

Handles

Handle table

Index

DuplicateHandle

Process B

Handle table

Figure 3-13
Handles and reference counts

System space

Event object

Hand/eCount=2

ReferenceCount= 1

Event object

HandleCount=1
ReferenceCount=O

Other structure

So even after an object's open handle counter reaches 0, the object's ref
erence count might remain positive, indicating that the operating system is still
using the object. Ultimately, the reference count also drops to 0. When this
happens, the object manager deletes the object from memory.

Because of the way object retention works, an application can ensure that
an object and its name remain in memory simply by keeping a handle open
to the object. Programmers who write applications that contain two or more
cooperating processes need not be concerned that one process might delete

117

INSIDE WINDOWS NT

an object before the other process has finished using it. In addition, closing
an application's object handles will not cause an object to be deleted if the
operating system is still using it. For example, one process might create a sec- ·
ond process to execute a program in the background; it then immediately
closes its handle to the process. Because the operating system needs the sec
ond process to run the program, it maintains a reference to its process object.
Only when the background program finishes executing does the object man
ager decrement the second process's reference count and then delete it.

Resource Accounting
Resource accounting, like object retention, is closely related to the use of object
handles. A positive open handle count indicates that some process is using that
resource. It also indicates that some process is being charged for the memory
the object occupies. When an object's handle count drops to 0, the process that
was using the object should no longer be charged for it.

Many operating systems use a quota system to limit processes' access to
system resources. However, the types of quotas imposed on processes are some
times diverse and complicated, and the code to track the quotas is spread
throughout the operating system. For example, in some operating systems, an
I/O component might record and limit the number of files a process can open,
whereas a memory component might impose a limit on the amount of memory
a process's threads can allocate. A process component might limit a user to
some maximum number of new processes he or she can create or a maximum
number of threads within a process. Each of these limits is tracked and en
forced in different parts of the operating system.

In contrast, the Windows NT object manager provides a central facility
for resource accounting. Each object header contains an attribute called quota
charges that records how much the object manager subtracts from a process's
allotted paged and/or non paged pool quota when a thread in the process opens
a handle to the object.

:liile N 0 TE Windows NT 5.0 adds significant new capabilities in the
areas of quotas. A new object, called a job, will allow the grouping
of processes together that then share a set of quotas. These quotas
will include per-process and perjob user-mode CPU time, minimum
and maximum working set size, and number of active processes. It
will also allow limiting access to windows outside the job and the
clipboard as well as security characteristics. For more information
on how quotas will change in Windows NT 5.0, see Chapter 10.

118

T H R E E : System Mechanisms

Each process on Windows NT points to a quota structure that records the
limits and current values for nonpaged pool, paged pool, and page file usage.
However, all the processes in your interactive session share the same quota
block (there is no documented way to create processes with their own quota
blocks), and system processes, such as services, have no quota limits.

The quotas start at 512 KB for paged pool and 64 KB for nonpaged pool.
The limits are "soft;' however, in that the system attempts to increase process
quotas automatically when they are exceeded. If opening an object will exceed
the paged or nonpaged quota, the memory manager is called to see whether
the quotas can be increased. The memory manager makes this decision on the
basis of the amount of memory remaining in the system pools. If it determines
that the quota can't be increased, the open request to the object fails with a
"quota exceeded" error. But on most systems, quotas continue to grow as needed.

EXPERIMENT: Viewing Process Quoms
You can view the paged pool, nonpaged pool, and page file current
usage, peak usage, and quota (limit) for a process with the Windows
NT Resource Kit Process Explode utility, PVIEW.EXE. (Performance
Monitor displays only the usage informatfon, not the quotas~) In the
following example, the process selected has a peak paged pool usage
of 1536 KB, current usage of 1332 KB,. and a quota of 1836 KB: .

Peak paged pool usage

Current usage

119

INSIDE WINDOWS NT

120

Object Names
An important consideration in creating a multitude of objects is devising a
successful system for keeping track of them. The object manager requires the
following to help you do so:

Ill A way to distinguish one object from another

Ill A method for finding and retrieving a particular object

The first requirement is served by allowing names to be assigned to ob
jects. This is an extension of what most operating systems provide-the abil
ity to name selected resources, files, pipes, or a block of shared memory, for
example. The executive, in contrast, allows any resource represented by an
object to have a name. The second requirement, finding and retrieving an
object, is also satisfied by object names. If the object manager stores objects by
name, it can find an object by looking up its name.

Object names also satisfy a third requirement, allowing processes to share
objects. The executive's object namespace is a global one, visible to all processes
in the system. One process can create an object and place its name in the glo
bal namespace, and a second process can open a handle to the object by speci
fying the object's name. If an object is not meant to be shared in this way, its
creator doesn't need to give it a name.

To increase efficiency, the object manager doesn't look up an object's
name each time someone uses the object. Instead, it looks up a name under
only two circumstances. The first is when a process creates a named object: the
object manager looks up the name to verify that it doesn't already exist before
storing the new name in the global namespace. The second is when a process
opens a handle to a named object: the object manager looks up the name, finds
the object, and then returns an object handle to the caller; thereafter, the caller
uses the handle to refer to the object. When looking up a name, the object
manager allows the caller to select either a case-sensitive or a case-insensitive
search, a feature that supports POSIX and other environments that use case
sensitive filenames.

Where the names of objects are stored depends on the object type. Table
3-6 lists the standard object directories found on all Windows NT systems and
what types of objects have their names stored there. Of the directories listed,
only \BaseNamedObjects and\?? are visible to user programs.

T H R E E : System Mechanisms

Table 3-6 Standard Object Directories

Directory Types of Object Names Stored

\?? MS-DOS device names (\DosDevices is a symbolic
link to this directory.)

\BaseNamedObjects Mutexes, events, semaphores, waitable timers, and
section objects

\device Device objects

\driver Driver objects

\FileSystem File system driver objects and file system recognizer
device objects

\KnownDlls Section names and path for known DLLs (DLLs mapped
by the system at startup time)

\nls Section names for mapped national language
support tables

\ObjectTypes Names of types of objects

\RPC Control Port objects used by remote procedure calls (RPCs)

\security Names of objects specific to the security subsystem

\windows - Win32 subsystem ports and window stations

Because the base kernel objects such as mutexes, events, semaphores,
waitable timers, and sections have their names stored in a single object direc
tory, no two of these objects can have the same name, even if they are of a
different type. This restriction emphasizes the need to choose names carefully
so that they don't collide with other names (for example, prefix names with
your company and product name).

Object names are global to a single computer (or to all processors on a
multiprocessor computer), but they're not visible across a network. The object
manager does, however, supply a hook-called a parse method-for accessing
named objects that exist on other computers. For example, the I/O manager,
which supplies file object services, extends the functions of the object manager
to remote files. When asked to open a remote file object, the object manager
calls a parse method, which allows the I/0 manager to intercept the request
and deliver it to a network redirector, a driver that accesses files across the
network. Server code on the remote Windows system calls the object manager
and the I/O manager on that system to find the file object and return the
information back across the network.

121

INSIDE WINDOWS NT

122

EXPERIMENT: Looking at the Base Named ObJec:ts
You can see the list of base objects that have names with the Obj~ct
Viewer utility in the PlatformSDK. Run \MSSDK\BIN\WINNT\WIN
OBJ.EXE, and dick on \BaseNamedObjects, as shown here:

LJ device
CJ driver

E:l FileSystem
E:l KnownDlls
E:l nls
E:l ObjectTypes
EJ psxss
E:J RPC Control
LJ securit}I
L:J windows

ISharedHeap2944AC
$11DISharedHeap3CE6<
'.K'DHCPNEWIPADDRESS@
$11emsclglnstData
~ emscfgM utex
'.)';' LSA._R PC_SERVE R_ACTIVE
$11MAPl·HP'4D417049E81 CAADED
1'f,' MAPl·HP"4D417049E81CAADE8
1'f,' MAPl·HP+4D417049E81CAADE<
·'!If MCICDA_DeviceCritSec_O
·'!If MCICDA_DeviceCritSec_1
·'!If MCICDA_DeviceCritSec_10
l'i:' MCICDA_DeviceCritSec_ 11
~ MCICDA_DeviceCritSec_ 12
l'i:' MCICDA_DeviceCritSec_13
1'f,' MCICDA_DeviceCritSec_14
1'f,' MCICDA_DeviceCritSec_15

The named objects are shown on the right. The. icons indicate the
object type. (Waitable timers aren't shown.)

• Mutexes are indicated with a strange..tooking bug, because, as
I explained earlier, the kernel objeet that implements mutexes
is called a mutant. (I'll leave it up to your imagination to de
cide whether or not this bug resembles a mutant.)

• Sections (Win32 file mapping objects) are shown as a section
·(slice) of a pie.

• Events don't have an icon-the word "event" .is spelled out (but
broken into two lines).

• Semaphores are indicated with an icon thatresembles a train
signal or semaphore,

Object directories The object directory object is the object manager's means for
supporting this hierarchical naming structure. This object is analogous to a
file system directory and contains the names of other objects, possibly even
other object directories. The object directory object maintains enough infor
mation to translate these object names into pointers to the objects themselves.

T H .R E E : System Mechanisms

The object manager uses the pointers to construct the object handles that it
returns to user-mode callers. Both kernel-mode code and user-mode code (such
as subsystems) can create object directories in which to store objects. For ex
ample, the I/0 manager creates an object directory named \Device, which
contains the names of objects representing I/O devices.

Symbolic links In certain file systems (on some UNIX systems, for example),
a symbolic link lets a user create a filename or a directory name that, when
used, is translated by the operating system into a different file or directory
name. Using a symbolic link is a simple method for allowing users to indirectly
share a file or the contents of a directory, creating a cross-link between different
directories in the ordinarily hierarchical directory structure.

The object manager implements an object called a symbolic link object,
which performs a similar function for object names in its o~ect namespace.
A symbolic link can occur anywhere within an object name string. When a
caller refers to a symbolic link object's name, the object manager traverses its
object namespace until it reaches the symbolic link object. It looks inside the
symbolic link and finds a string that it substitutes for the symbolic link name.
It then restarts its name lookup.

One place in which the executive uses symbolic link objects is in trans
lating MS-DOS-style device names into Windows NT internal device names. In
~S-DOS, a user refers to floppy and hard disk drives using the names A:, B:, C:,
and so on. Moreover, the user can add pseudo drive names with the subst (sub
stitute) command or by mapping a drive letter to a network share. Once they
are created, these drive names must be visible to all processes on the system.

The Win32 subsystem makes drive letters protected, global data by plac
ing them in the object manager namespace under the\?? object directory. (Prior
to Windows NT 4.0, this directory was named \DosDevices; it was renamed\??
for performance reasons, since that name places it first alphabetically.) When
the user or an application creates a new drive letter, the Win32 subsystem adds
another object under the\?? object directory.

Synchronization
The concept of mutual exclusion is a crucial one in operating systems develop
ment. It refers to the guarantee that one, and only one, thread can access a
particular resource at a time. Mutual exclusion is necessary when a resource
doesn't lend itself to shared access or when sharing would result in an unpre
dictable outcome. For example, if two threads copy a file to a printer port at
the same time, their output could be interspersed. Similarly, if one thread reads

123

INSIDE WINDOWS NT

124

a memory location while another one writes to it, the first thread will receive
unpredictable data. In general, writable resources can't be shared without re
strictions, whereas resources that aren't subject to modification can be shared.
Figure 3-14 illustrates what happens when two threads running on different
processors both write data to a circular queue.

Because the second thread got the value of the queue tail pointer before
the first thread had updated it, the second thread inserted its data into the same
location that the first thread had used, overwriting data and leaving one queue
location empty. Even though this figure illustrates what could happen on a
multiprocessor system, the same error could occur on a single-processor sys
tem if the operating system were to perform a context switch to the second
thread before the first thread updated the queue tail pointer.

Sections of code that access a nonshareable resource are called critical
sections. To ensure correct code, only one thread at a time can execute in a
critical section. While one thread is writing to a file, updating a database, or
modifying a shared variable, no other thread can be allowed to access the same
resource. The code shown in Figure 3-14 is a critical section that incorrectly
accesses a shared data structure without mutual exclusion.

The issue of mutual exclusion, although important for all operating sys
tems, is especially important (and intricate) for a tightly coupled, symmetric multi
processing (SMP) operating system such as Windows NT, in which the same

Time

Processor A

Get queue tail
Insert data at current location

Increment tail pointer

Figure 3-14
Incorrect sharing of memory

Processor B

Get queue tail

Insert data at current location /*ERROR*/
Increment tail pointer

T H R E E : System Mechanisms

system code runs simultaneously on more than one processor, sharing certain
data structures stored in global memory. In Windows NT, it is the kernel's job
to provide mechanisms that system code can use to prevent two threads from
modifying the same structure at the same time. The kernel provides mutual
exclusion primitives that it and the rest of the executive use to synchronize their
access to global data structures.

In the following sections, you'll find out how the kernel uses mutual ex
clusion to protect its global data structures and what mutual-exclusion and
synchronization mechanisms the kernel provides to the executive that it, in
turn, provides to user mode.

Kernel Synchronization
At various stages during its execution, the kernel must guarantee that one, and
only one, processor at a time is executing within a critical section. Kernel critical
sections are the code segments that modify a global data structure such as the
kernel's dispatcher database or its DPC queue. The operating system can't
function correctly unless the kernel can guarantee that threads access these
data structures in a mutually exclusive manner.

The biggest area for concern is interrupts. For example, the kernel might
be updating a global data structure when an interrupt occurs whose interrupt
handling routine also modifies the structure. Simple single-processor operating
systems sometimes prevent such a scenario by disabling all interrupts each time
they access global data, but the Windows NT kernel has a more sophisticated
solution. Before using a global resource, the kernel temporarily masks those
interrupts whose interrupt handlers also use the resource. It does so by rais
ing the processor's IRQL to the highest level used by any potential interrupt
source that accesses the global data. For example, an interrupt at dispatch/DPC
level causes the dispatcher, which uses the dispatcher database, to run. There
fore, any other part of the kernel that uses the dispatcher database raises the
IRQL to dispatch/DPC level, masking dispatch/DPC-level interrupts before
using the dispatcher database.

This strategy is fine for a single-processor system, but it's inadequate for
a multiprocessor configuration. Raising the IRQL on one processor doesn't
prevent an interrupt from occurring on another processor. The kernel also
needs to guarantee mutually exclusive access across several processors.

The mechanism the kernel uses to achieve multiprocessor mutual exclu
sion is called a spinlock. A spinlock is a locking mechanism associated with a
global. data structure, such as the DPC queue shown in Figure 3-15.

125

INSIDE WINDOWS NT

126

Processor A

Do
Try to acquire-----~
DPC queue
spin lock
Until SUCCESS

Begin
Remove DPC from queue
End

Release DPC queue spinlock

L=:J Critical section

Figure 3-15
Using a spinlock

Processor B

Do
.,_---Try to acquire

DPCqueue

DPC queue
spin lock
Until SUCCESS

Begin
Add DPC from queue
End

Release DPC queue spinlock

Before entering either critical section shown in the figure, the kernel must
acquire the spinlock associated with the protected DPC queue. If the spinlock
isn't free, the kernel keeps trying to acquire the lock until it succeeds. The
spinlock gets its name from the fact that the kernel (and thus, the processor)
is held in limbo, "spinning," until it gets the lock.

Spinlocks, like the data structures they protect, reside in global memory.
The code to acquire and release a spinlock is written in assembly language for
speed and to exploit whatever locking mechanism the underlying processor
architecture provides. (For example, on Intel processors, Windows NT uses an
instruction that exists only on 486 processors or better; this is one of the rea
sons that Windows NT doesn't run on Intel 386 platforms anymore.) On many
architectures, spinlocks are implemented with a hardware-supported test-and
set operation, which tests the value of a lock variable and acquires the lock in
one atomic instruction. Testing and acquiring the lock in one instruction pre
vents a second thread from grabbing the lock between the time when the first
thread tests the variable and the time when it acquires the lock.

When a thread is trying to acquire a spinlock, all other activity ceases on
that processor. Therefore, a thread that holds a spinlock is never preempted
but is allowed to continue executing so that it will release the lock quickly. The
kernel uses spinlocks with great care, minimizing the number of instructions
it executes while it holds a spinlock.

T H R E E : System Mechanisms

The kernel makes spinlocks available to other parts of the executive
through a set of kernel functions. Device drivers, for example, require spinlocks
in order to guarantee that device registers and other global data structures are
accessed by only one part of a device driver (and from only one processor) at
a time. Spinlocks are not for use by user programs-user programs should use
the objects described in the next section.

Executive Synchronization
Executive software outside the kernel also needs to synchronize access to global
data structures in a multiprocessor environment. For example, the memory
manager has only one page frame database, which it accesses as a global data
structure, and device drivers need to ensure that they can gain exclusive ac
cess to their devices. By calling kernel functions, the executive can create a
spinlock, acquire it, and release it.

Spinlocks only partially fill the executive's needs for synchronization mech
anisms, however. Because waiting on a spinlock literally stalls a processor, spin
locks can be used only under the following strictly limited circumstances:

Ill The protected resource must be accessed quickly and without com
plicated interactions with other code.

Ill The critical section code can't be paged out of memory, can't make
references to pageable data, can't call external procedures (includ
ing system services), and can't generate interrupts or exceptions.

These restrictions are confining and can't be met under all circumstances.
Furthermore, the executive needs to perform other types of synchronization
in addition to mutual exclusion, and it must also provide synchronization mech
anisms to user mode.

The kernel furnishes additional synchronization mechanisms to the execu
tive in the form of kernel objects, known collectively as dispatcher objects. The user
visible synchronization objects acquire their synchronization capabilities from
kernel dispatcher objects. Each user-visible object that supports synchronization
encapsulates at least one kernel dispatcher object. The executive's synchroniza
tion semantics are visible to Win32 programmers through the WaitForSingleObject
and WaitForMultipleObjects functions, which the Win32 subsystem implements by
calling analogous system services supplied by the object manager. A thread in a
Win32 application can synchronize with a Win32 process, thread, event, sema
phore, mutex, waitable timer, 1/0 completion port, or file object.

127

INSIDE WINDOWS NT

128

One other type of executive synchronization object worth noting is called
executive resources. Executive resources provide both exclusive access (like a
mutex) as well as shared read access (multiple readers sharing read-only ac
cess to a structure). However, they're available only to kernel-mode code and
thus are not accessible from the Win32 APL Resources are not dispatcher ob
jects, but rather data structures allocated directly from non paged pool that have
their own specialized services to initialize, lock, release, query, and wait on them.
The executive resource structure is defined in NTDDK.H, and the executive
support routines are documented in the DDK reference documentation.

The remaining subsections describe the implementation details of wait
ing on dispatcher objects.

Waiting on Dispatcher Objects
A thread can synchronize with a dispatcher object by waiting on the object's

· handle. Doing so causes the kernel to suspend the thread and change its dis
patcher state from running to waiting, as shown in Figure 3-16. The kernel
removes the thread from the dispatcher ready queue and no longer considers
it for execution .

.. • >-l......,..•,,.n,....lti a 11ze d...,.....f - -
~

' ,
t

Set object to ---•....ii Ready
signaled state .

~~· I I
Waiting # I

I

' # ,

\.. ~ Transition I /
41l---~- . #

-------------··/I. ~!'.:.I

Figure 3-16
Waiting on a dispatcher object

T H R E E : System Mechanisms

At any given moment, a synchronization object is in one of two states:
either the signaled state or the nonsignaled state. A thread can't resume its exe
cution until the kernel changes its dispatcher state from waiting to ready. This
change occurs when the dispatcher object whose handle the thread is waiting
on also undergoes a state change, from the nonsignaled state to the signaled
state (when a thread sets an event object, for example). To synchronize with
an object, a thread calls one of the wait system services supplied by the object
manager, passing a handle to the object it wants to synchronize with. The thread
can wait on one or several objects and can also specify that its wait should be
canceled if it hasn't ended within a certain amount of time. Whenever the
kernel sets an object to the signaled state, it checks to see whether any threads
are waiting on the object. If they are, the kernel releases one or more of the
threads from their waiting state so that they can continue executing.

The following example of setting an event illustrates how synchronization
interacts with thread dispatching:

1. A user-mode thread waits on an event object's handle.

2. The kernel changes the thread's scheduling state from ready to
waiting and then adds the thread to a list of threads waiting for the
event.

3. Another thread sets the event.

4. The kernel marches down the list of threads waiting on the event. If
a thread's conditions for waiting are satisfied,* the kernel changes
the thread's state from waiting to ready. If it is a variable-priority
thread, the kernel might also boost its execution priority.

5. Because a new thread has become ready to execute, the dispatcher
reschedules. If it finds a running thread with a priority lower than
that of the newly ready thread, it preempts the lower-priority thread
and issues a software interrupt to initiate a context switch to the
higher-priority thread.

6. If no processor can be preempted, the dispatcher places the ready
thread in the dispatcher ready queue to be scheduled later.

* Some threads might be waiting for more than one object, so they continue waiting.

129

INSIDE WINDOWS NT

What Signals an Object
The signaled state is defined differently for different objects. A thread object
is in the nonsignaled state during its lifetime and is set to the signaled state
by the kernel when the thread terminates. Similarly, the kernel sets a process
object to the signaled state when the process's last thread terminates. In con
trast, the timer object, like an alarm, is set to "go off" at a certain time. When
its time expires, the kernel sets the timer object to the signaled state.

When choosing a synchronization mechanism, a program must take into
account the rules governing the behavior of different synchronization objects.
Whether a thread's wait ends when an object is set to the signaled state varies
with the type of object the thread is waiting on, as Table 3-7 illustrates.

Table 3-7 Definitions of the Signaled State

Set to Signaled Effect on
Object Type. State When Waiting Threads

Process Last thread terminates All released

Thread Thread terminates All released

File 1/0 operation completes All released

Event (notification type) Thread sets the event All released

Event (synchronization type) Thread sets the event One thread released;
event object reset

Semaphore Semaphore count drops All released

Timer

Mutex

130

to 0

Set time arrives or time All released
interval expires

Thread releases One thread released
the mutex

When an object is set to the signaled state, waiting threads are generally
released from their wait states immediately. Some of the kernel dispatcher
objects and the system events that induce their state changes are shown in
Figure 3-17.

For example, a notification event object (called a manual reset event in
the Win32 API) is used to announce the occurrence of some event. When the
event object is set to the signaled state, all threads waiting on the event are
released. The exception is any thread that is waiting on more than one object
at a time; such a thread might be required to continue waiting until additional
objects reach the signaled state.

T H R E E : System Mechanisms

Dispatcher
object

Mutex (kernel
mode use only)

State change

Owning thread
releases the mutex.

I Nonsignaled i;::::::::: ~ Signaled

Resumed thread
acquires the mutex.

Owning thread or other
thread releases the mutex.

Mutex (exported to I ~ ~
user mode) Nonsignaled ~ __.-I Signaled

Semaphore

Event

Event pair

Timer

Thread

Figure 3-17

Resumed thread
acquires the mutex.

One thread releases the
semaphore, freeing a resource.

I Nonsignaled i;::::::::: ~ Signaled

A thread acquires the
semaphore. More resources

are not available.

A thread sets the event.

I Nonsignaled i;::::::::: ~ Signaled

Kernel resumes one
or more threads.

Dedicatied thread sets one
event in the event pair.

I Nonsignaled i;::::::::: ~ Signaled

Kernel resumes the
other dedicated thread.

Timer expires.

I Nonsignaled i;::::::::: ~ Signaled

A thread (re)initia/izes
the timer.

Thread terminates.

I Nonsignaled i;::::::::: ____ ~_ Signaled

A thread reinitializes the
thread object.

Selected kernel dispatcher objects

Effect of signaled state
on waiting threads

Kernel resumes one
waiting thread.

Kernel resumes one
waiting thread.

I Kernel resumes one or
more waiting threads.

I Kernel resumes one or
more waiting threads.

I Kernel resumes waiting
dedicated thread.

Kernel resumes all
waiting threads.

Kernel resumes all
waiting threads.

131

INSIDE WINDOWS NT

132

In contrast to an event object, a mutex object has ownership associated
with it. It is used to gain mutually exclusive access to a resource, and only one
thread at a time can hold the.mutex. When the mutex object becomes free, the
kernel sets it to the signaled state and then selects one waiting thread to exe
cute. The thread selected by the kernel acquires the mutex object, and all other
threads continue waiting.

This brief discussion was not meant to enumerate all the reasons and
applications for using the various executive objects, but rather to list their basic
functionality and synchronization behavior. For information on how to put
these objects to use in Win32 programs, see the Win32 reference documenta
tion on synchronization objects or Richter's Advanced Windows.

Data Structures
Two data structures are key to tracking who is waiting on what: dispatcher headers

and wait blocks. Both of these structures are publicly defined in the DDK include
file ntddk.h. The definitions are reproduced here for convenience:

typedef struct _DISPATCHER_HEADER {
UCHAR Type;
UCHAR Absolute;
UCHAR Size;
UCHAR Inserted;
LONG SignalState;
LIST_ENTRY WaitlistHead;

} DISPATCHER_HEADER;

typedef struct _KWAIT_BLOCK {
LIST_ENTRY WaitlistEntry;
struct _KTHREAD *RESTRICTED_POINTER Thread;
PVOID Object;
struct _KWAIT_BLOCK *RESTRICTED_POINTER NextWaitBlock;
US HORT Wait Key;
USHORT Wait Type;

} KWAIT_BLOCK, *PKWAIT_BLOCK, *RESTRICTED_POINTER PRKWAIT_BLOCK;

The dispatcher header contains the object type, signaled state, and a list
of the threads waiting on that object. The wait block represents a thread wait
ing on an object. Each thread that is in a wait state has a list of the wait blocks
that represent the object(s) the thread is waiting on. Each dispatcher object
has a list of the wait blocks that represent which threads are waiting on the ob
ject. This list is kept so that when a dispatcher object is signaled, the kernel can
quickly determine who is waiting on that object. The wait block has a pointer

T H R E E : System Mechanisms

to the object being waited on, a pointer to the thread waiting on the object,
and a pointer to the next wait block (if the thread is waiting on more than one
object). It also records the type of wait (any or all) as well as the position of that
entry in the array of handles passed by the thread on the WaitForMultipleObjects

call (zero if the thread was waiting on only one object).
Figure 3-18 shows the relationship of dispatcher objects to wait blocks to

threads. In this example, thread 1 is waiting on object B, and thread 2 is wait
ing on objects A and B. If object A is signaled, the kernel will see that because
thread 2 is also waiting on another object, it can't be readied for execution. On
the other hand, if object B is signaled, the kernel can ready thread 1 for exe
cution right away since it isn't waiting on any other objects.

Thread objects

"'1L._
Thread 1

Wait block list Thread 2 1+-
Wait block list

D ispatcher objects

Size jType
L State

..... Wait blocks

~Wait list head "'1L._ ~ List entry _,
"""' -, Object A

Object-type- Thread
specific data Object

Key I Type

Next link 91 I-
Size jType

.......
Thread 2 wait block

State _,. l>..
"'1L._ -.: ""'-

17
~Wait list head """' --- List entry """'

List entry _,
Object B

Object-type- ~ Thread ~ 14 Thread

specific data Object Object

Key I Type Key I Type

Next link Next link

Thread 1 wait block Thread 2 wait block

Figure 3-18
Wait data structures

133

INSIDE WINDOWS NT

134

EXPERIMENT: Looking at Wait Queues
Although many process viewer utilities indicate whether a thread is in
a wait state (and if so, what kind of wait), you can see the list ofo~ects
a thread is waiting on only with the kernel debugger !th~adcommand ..
For example, the following excerpt from the output ofa !process com•
mand shows that the thread is waiting on an event object:

> !process . ,
THREAD 80618030 Cid 97.?f . Teb: 7ffde000 Win32Thread: el99cea8
WAIT: CWrUserRequest) UserMode Non•Alertable

805b4ab0 SynchronizationEvent

Although the kernel debugger doesn't have a command for format
ting the contents of a dispatcher header, we know the layout (described
on page 132), so we can interpret its contents manually:

> dd 805b4ab0
0x805B4A80 00040001 00000000 8061809c 8061809c .•..•.•••• a ..• a~

From this, we can ascertain that no bther threads are waiting on this
event object, because the wait list head forward and backward point
ers (the third and fourth 32-bit values) pointto the same location (a
single wait block). Dumping the waitblock (at address Ox8061809c)
yields the following:

> dd 8061809c
0x8061809C 805b4ab8 805b4ab8 80618030 805b4ab0 .J[.. J[.0"a .. J[.
0x806180AC 8061809c 00010000 00000000 00000000 .. a •.•.....•....

The first two 32-bit values point to the list head of the wait blocks
in the dispatcher header. The third 32-bit value is the pointer to the
thread object. The fourth value points to the dispatcher object itself.
The fifth value· (Ox8061809c) is the pointer to the next_ wait block. From
this, we can conclude that the thread is notwaiting on any other ob·
jects, since the next wait block field points to the wait block itself.

TH R E E : System Mechanisms

Windows NT Global Flags
Windows NT has a set of flags stored in a systemwide global variable named
NtGloba!Flag that enable various internal debugging, tracing, and validation
support in the operating system. The system variable NtGloba!Flagis initialized
from the registry key HKLM\System\CurrentControlSet\Control\Session
Manager\GlobalFlag at system boot time. By default, this registry value is 0, so
it's likely that on your systems, you're not using any global flags. In addition,
each image has a set of global flags that also turns on internal tracing and vali
dation code (though the bit layout of these flags is entirely different than the
systemwide global flags). Although the use of these flags is not documented
or supported for customer use, they can be a useful tool for exploring the
internal operation of Windows NT.

Fortunately, the Windows NT Resource Kit (supplement 2 or later) con
tains a utility named GFLAGS.EXE that allows you to view and change the
system global flags (either in the registry or in the running system) as well as
image global flags. Gflags has both a command-line and a GUI interface. To
see the command-line flags, type GFLAGS /?.If you run the utility without any
switches, the dialog box shown in Figure 3-19 is displayed.

Figure 3-19
Setting system debugging options with Gflags

135

INSIDE WINDOWS NT

136

You can toggle between the settings in the registry (by clicking System
Registry) and the current value of the variable in system memory (by clicking
Kernel Mode). You must press the Apply button to make the changes. (You'll
exit if you press the Okay button.) Although you can change flag settings on
the running system, most flags require a reboot to take effect, and there is no
documentation on which do and which don't require rebooting. So when in
doubt, reboot after changing a global flag.

The Image File Options choice requires that you fill in the filename of
a valid executable image. This option is used to change another set of global
flags that apply to an individual image (rather than to the whole system). In
Figure 3-20, notice that the flags are different than the operating system ones
shown in Figure 3-19.

Figure 3-20
Setting image global flags with Gflags

T H R E E : System Mechanisms

EXPERIMl;NT: Enabllng Image Loader Tracing . ·
To see an example of the detailed tracing information you can obtain
by setting global flags,· try running GFLAGS on a sys'tem booted with
the ker11el debugger that is conne<=ted to ~ hostsystem runnirig KD or
WINDBG. . .

: & al} example, tfy .enabling th~ Show Lo~e~ Sm;l~ fl~~ T(1 do
·thi.$, s~~t l{efuef Mode, click the Show Loader Snaps cheGkbox, ah<;l
··.click theApply button. Then n.rii. an image on this]1l:a<:hine; ~din.the .. · •.
lrerneLclebugger you'll see volull1es ofo1.ltput like.the follOwing~: .. ·

LOR:. PID:. 0xb8 started - 'notepad'
L~R: NEW PROCESS

Image Path: c: \WINNT\sys.tem32\notepad .• exe (notepad~e:xer
. Current Di rectory: C: \ddk\btn · · .·
Search Path: C:\WINNT\System32;C:\WINNT\system;C:\WINNT

. J. .. DR:. notepad~exe. bound to comdlg32 .dl l .· c-.

· LDR: ntdlL'dll used by comdlg32.d1T · . .
LOR: Snappfog imports for comdlg32.dl1 from.iltdl1.dn

.. . .
"'.:~DR: KERNE:J32.dll l.o.aded. -_Callfng irii.t routine. at 1if01000·
·.-.LoR: RPCRT4.dll.loaded. -·Calling iriit ro.utine at 77elb6d5 ·

LOR: ADVAPI32.dll loaded. - CalHng: in1t routine at ·]zdcl00.0 ·
'I.DR! USER32·.dll loadli!d. ~.Calling :init routine at 77e78037 ..

Local Procedure Calls (LPCs)
A local procedure call (LPC) is an interprocess communication facility for
high-speed message passing. It is not available through the Win32 API; it is an
internal mechanism available only to Windows NT operating system compo
nents. Here are some examples of where LPCs are used:

Ill Remote procedure calls use LPCs to communicate between processes
on the same system.

• A few Win32 APis result in sending messages to the Win32 subsystem
process.

• WinLogon uses LPC to communicate with the local security authen
tication server process, LSASS.

Ill The security reference monitor (an executive component explained
in Chapter 6) uses LPC to communicate with the LSASS process.

137

INSIDE WINDOWS NT

138

'•··EXPE~IMENT: Viewing LPC Port· Objects
.· .. · ... · .. •· y()u can s~e named LPC port (ibjects with the ObjectViewenitility in
. · •the J;>latfo:rm SDI{. ~tin \ms8dk\bin\winobj, and select the rootdirec~ .

·.·.· tory. Apfog:k<:,n.identifies.theportoijects, as shown here: . ··.

Oarcname
L:l BaseNamedObjects
L:l device
E:I drivei
L:l FileSystem
Ll Kn""'1Dll•
L:lrJs
L:l ObjectT ypes

E:IP'"'
t::J RPC Control
Cl security
L:lwindows

L:larcname
L:JB...,NamedObject.O
Cl device
·Llctiver
LJFileSystem
LJKnownDlls
L:ln~
LJObjectTypes

LlP'"''
LJRPC Conbol
E:lsecurityd
CJ windows
DVCcdf:S(

,r'DbgSsApiPort4
,r'DbgUil\piPortO

Fri DosDevices
,r'ErrorlogPortL
INtfat

~E LanmanServerAnnounceE ven
,r'Lsa<l.LthenacationPort
1l\'NETLOGON_SERVICE_STA
™~ntfs<

,r'NtLmSecuril)'Supportl'lovider
!!'! reg~by<
'.'/!SAM_SERVICE_STARTED
,r'SeLsaCommandPoM
WrtSelsaln~Event
,r'SeRmConvnandPort
,r'SmApiPo~
Rl SystemRoot
,r'XactSrvLpcPort

To see the LPC port objects used by RPC, select the \RPC Control
directory, as shown here: · ·

I
E:i??
L.J arcname
E:I BaseNamedObjects
L:l device
L:l driver
L:l FileSy•tem
L:l KnownDUs

ii L:l nls
ii E:I ObjectT ypes
it LJ s~ss

. ~.'1, ...
E:lsecuril)I

;j t:J windows

- ~
'

• protectecL storage
,r'epmappei
,r'l~lpc
,r'ole18
,r'ole20
,r'ole34
,r'ole41
,r'ole45
,r'ole4c
,r'ole4f
,r'ole5@
,r'ole52
,r'•poolss

TH A E E : System Mechanisms

Typically, LPCs are used between a server process and one or more client
processes of that server. An LPC connection can be established between two
user-mode processes or between a kernel-mode component and a user-mode
process. For example, as noted in Chapter 2, Win32 processes send occasional
messages to the Win32 subsystem by using LPC. Also, some system processes
use LPC to communicate, such as WinLogon and LSASS. An example of a
kernel-mode component using LPC to talk to a user process is the communi
cation between the security reference monitor and the LSASS process.

LPC is designed to allow three methods of exchanging messages:

II A message that is shorter than 256 bytes can be sent by calling LPC
with a buffer containing the message. This message is then copied
from the address space of the sending process into system address
space, and from there to the address space of the receiving process.

II If a client and a server want to exchange more than 256 bytes of data,
they can choose to use a shared section to which both are mapped.
The sender places message data in the shared section and then sends
a small message to the receiver with pointers to where the data is to
be found in the shared section.

Ill When a server wants to read or write larger amounts of data than
will fit in a shared section, data can be directly read from or written
to a client's address space. The LPC component supplies two func
tions that a server can use to accomplish this. A message sent by the
first method is used to synchronize the message passing.

LPC exports a single executive object called the port object to maintain the
state needed for communication. Although LPC uses a single object type, it has
several kinds of ports:

Ill Server connection port A named port that is a server connection
request point. Clients can connect to the server by connecting to
this port.

II Server communication port An unnamed port a server uses to
communicate with a particular client. The server has one such port
per active client.

Ill Client communication port An unnamed port a particular client
thread uses to communicate with a particular server.

II Unnamed communication port An unnamed port created for use
by two threads in the same process.

139

INSIDE WINDOWS NT

LPG is typically used as follows: A server creates a named server connec
tion port object. A client makes a connect request to this port. If the request is
granted, two new unnamed ports, a client communication port and a server com
munication port, are created. The client gets a handle to the client communi
cation port, and the server gets a handle to the server communication port. The
client and the server will then use these new ports for their communication.

A completed connection between a client and a server is shown in Figure
3-21.

Client address
space

Figure 3-21
Use of LPC ports

Kernel address space

Connection port

Server address
space

Conclusion

140

In this chapter, we've examined the key base system mechanisms on which the
Windows NT executive is built. With this foundation laid, we're ready to explore
the individual executive components in more detail, starting with processes and
threads.

C H A P T E R. F 0 U R

Processes and Threads
This chapter explains the data structures and algorithms that deal with pro
cesses and threads in Microsoft Windows NT 4.0. The first section focuses on
the internal structures that make up a process. In the second section, the steps
involved in creating a process (and its initial thread) are outlined. Then comes
the section on thread internals. The chapter concludes with a description of
the thread-scheduling algorithms.

Where there are relevant performance counters or system variables, these
are mentioned. Although this book is not a Microsoft Win32 programming
book, the process-related and thread-related Win32 functions are listed so that
you can pursue additional information on their use.

Because processes and threads touch so many components in Windows
NT, a number of terms and data structures (such as working sets, objects and
handles, the system memory heaps, and so on) are referred to in this chapter
but are explained in detail elsewhere in the book. To fully understand this
chapter, you need to be familiar with the terms and concepts explained in
Chapter 1 and Chapter 2, such as the difference between a process and a thread,
the Windows NT virtual address space layout, the difference between user
mode and kernel mode, and the role of key system components such as the ex
ecutive, kernel, and hardware abstraction layer (HAL).

Process Internals
This section describes the key Windows NT process data structures. Also listed
are key system variables, performance counters, and functions and tools that
relate to processes.

Data Structures
Each Windows NT process is represented by an executive process (EPROCESS)
block. Besides containing many attributes about a process, an EPROCESS block
contains and points to a number of other related data structures. For example,

141

INSIDE WINDOWS NT

142

each process has one or more threads, represented by executive thread
(ETHREAD) blocks. (Thread data structures are explained in the section
"Thread Internals" on page 171) The EPROCESS block and its related data
structures exist in system space, with the exception of the process environment
block (PEB), which exists in the process address space (since it contains infor
mation that is modified by user-mode code).

In addition to the EPROCESS block, the Win32 subsystem process
(CSRSS) maintains a parallel structure for each Windows NT process that
executes a Win32 program. Also, the kernel-mode part of the Win32 subsystem
(WIN32K.SYS) has a per-process data structure that is created the first time
a thread calls a Win32 USER or GDI function that is implemented in kernel
mode.

Figure 4-1 is a simplified diagram of the process and thread data structures.
Each data structure shown in the figure is described in detail in this chapter.

Process
block

Figure 4-1

Process
environment

block

Process address space

System address space

I Win32 process block I
I Handle table I

Thread
block

Data structures associated with processes and threads

Thread
environment

block

F 0 U R : Processes and Threads

First let's focus on the process block. (We'll get to the thread block in the
section "Thread Internals" later in the chapter.) Figure 4-2 shows the key fields
in an EPROCESS block.

Kernel process block (or PCB)

Process ID

Parent process ID

Exit status

Create and exit times

PsActiveProcessHead Next process block MEPROCESS

Quota block

Memory management information

Exception port

Debugger port

~1 Primary access token]

~{Handle table J
Process environment block

Image filename

Image base address

Process priority class

... ~ I Win32 process block I
Figure 4-2
Structure of an executive process block

143

INSIDE WINDOWS NT

144

. . ..

EXPERIMENT: Displaying the
Format C)f an EPAOCESS Block
For a list of most of the fields that make up an EP}lOCESS block ,and:
their offsets ill. hexadecimal; type !pro.cessfields in the kernel debugg.er:.
(To learn.how to set up and use the kernet debugger, see page :l?l in
Chapter 1.) The outptitlooks like this: ·

KDx86> lprocessfields
EPROCESS structure offsets:

Pcb: 0x0
ExttStatus: 0x68
LockEvent: 0x6c
LockCount: 0x7c.
Create Time: 0x80.
ExitTime: ·exes
LockOwner: 0x90
UniqueProcessid: 0x94
ActiveProcessLinks: 0x98
Quota Pea kpoo 1Usa·ge(0): 0xa0
QuotaPoo1Usage[0]: 0xa8

.PagefileUsage: 0xb0
Commit.Charge: 0xb4
PeakPageftleUsage: 0xb8
PeakVirtualSize: 0xbc
Virtual Size: 0xc0
Vm: 0.xc8
La~fPiotoPteFault: 0xf8
DebugPort: 0xfc
Exception Port: 0x100
ObjectTable: 0xl04
Token: 0xl08
WorkingSetloc1<: 0xt0c
WorkingSetPage: 0xl2c.
ProcessOutswapEnabled: 0xl30
Processoutswapped: 0x131
AddressSpacelnitialized: 0xl32
AddressSpaceDeleted: 0xl33
AddresscreationLock: 0xt34
ForkinProgress: 0xl58
VmOperation: 0xl5c
VmOperationEvent: 0x160
Page Di rectoryPte: 0x164
LastFa.ultCount: 0x168
VadRoot: 0xl70
VadHint:. 0xl74

F 0 U R : Processes and Threads

CloneRoot:
NumberOfPrivatePages:
NumberOfLockedPages:
ForkWasSuccessful:
ExitProcessCalled:
C reateProcess Reported:
Sectionliandle:
Peb:
SedionBaseAddress:
OuotaBlock:
LastThreadExitStatus:
WorkingSetWatch~

InheritedFromUni~ueProcessid:

GrantedAccess•
DefaultHardErrorProiessing:
Ldtrnformati on:
VadFre.eH~i nt:
VdmObjects:
ProcessMutant:
ImageFi 1. eName[0]:
VmTrimFaultValue:
Win32Process:
Wfo32W1ndowStation:

0x178
0x17c
0xl80
0xl5e
0x186
0xl87
0xl88
0xl8c
0xl90
0xl94
0xl98
0xl9c
0xla4
0xla8
0xlac
0xlb0
.0~xlb4

0xlb8
0xlbc
0xldc
0xlec
0xlf4
0xla0

The !processfields command shows the format of a process block, not
its contents. (The !process command actually dumps the contents of a
process block. An annotated example of the output from this com
mand.18 included later 1n this. section, in Figure 4-5, on page 156.) Al
though some of the field names are self-explanatory, the output doesn't
give the data type of the fields, nor does it show the format of the struc.;
tures that are included within or pointed to by the EPROCESS block
(such as the kernel process block;quota block, and so on). By exam
ining the. offsets, however, you can at least tell the length of a field ..
(Hint: Fields that are 4 bytes long and refer to some other structure

. are likely pointers.)

Table 4-1 explains some of the fields in the preceding experiment in more
detail and includes references to other places in the book where you can find
more information about them. As I've said before and will no doubt say again,
processes and threads are such an integral part of Windows NT that it's impos
sible to talk about them without referring to many other parts of the system.
To keep this chapter manageable, however, I've covered those related subjects
(such as memory management, security, objects, and handles) elsewhere.

145

INSIDE WINDOWS NT

Table 4-1 Contents of the EPROCESS Block

Element

Kernel process
(KPROCESS) block

Process
identification

Quota block

Virtual address space
descriptors (VAD)

Working set
information

Virtual memory
information

Exception local
procedure call
(LPC) port

Debugging LPC port

Access token
(ACCESS_ TOKEN)

Handle table

146

Purpose

Common dispatcher object header, pointer to
the process page directory, list of kernel
thread (KTHREAD) blocks belonging to the
process, default base priority, quantum, affinity
mask, and total kernel and user time for the
threads in the process.

Unique process ID, parent process ID, name
of image being run, window station process is
running on.

Limits on nonpaged pool, paged pool, and
page file usage plus current and peak process
nonpaged and paged pool usage. (Note: This
structure can be shared by several processes:
all the system processes point to the single
systemwide default quota block; all the pro
cesses in the interactive session share a single
quota block set up by Winlogon [WINLOG
ON. EXE].)

Series of data structures that describes the
status of the portions of the address space
that exist in the process.

Pointer to working set list (MMWSL structure);
current, peak, minimum, and maximum work
ing set size; last trim time; page fault count;
memory priority; outswap flags; page fault
history.

Current and peak virtual size, page file usage,
hardware page table entry for process page
directory.

Interprocess communication channel to which
the process manager sends a message when
one of the process's threads causes an
exception.

Interprocess communication channel to which
the process manager sends a message when one
of the process's threads causes a debug event.

Executive object describing the security pro
file of this process.

Address of per-process handle table.

Additional
Reference

Thread scheduling
(page 184)

Memory
management
(Chapter 5)

Memory
management
(Chapter 5)

Memory
management
(Chapter 5)

Local procedure calls
(Chapter 3, page 127)

Local procedure C'i!lls
(Chapter 3, page 127)

Security (Chapter 6)

Object handles
(Chapter 3, page 112)

F 0 U R : Processes and Threads

Element

Process environment
block (PEB)

Win32 subsystem
process block
(W32PROCESS)

Purpose

Image information (base address, version
numbers, module list), process heap infor
mation, thread-local storage utilization.
(Note: The pointers to the process heaps start
at the first byte after the PEB.)

Process details needed by the kernel-mode
component of the Win32 subsystem.

Additional
Reference

Page 166

Two key substructures of the executive process block are the kernel pro
cess (KPROCESS) block and the process environment block (PEB). The KPRO
CESS block (which is sometimes called the PCB, or process control block)
is illustrated in Figure 4-3 and contains the basic information that the Windows
NT kernel needs to schedule threads. (Page directories are covered in Chap
ter 5, and kernel thread blocks are described in more detail later in this chapter.)

Dispatcher header

~ -, I Process page directory

Kernel time

User time

lnswap/Outswap list entry

~ -, I KTHREAD I •...
Process spinlock

Processor affinity

Resident kernel stack count

Process base priority

Default thread quantum

Process state

Thread seed

Disable boost flag

Figure 4-3
Structure of the kernel process block

147

INSIDE WINDOWS NT

The PEB, which lives in the user process address space, contains informa
tion needed by the image loader, the heap manager, and other Win32 system
DLLs that need to be writable from user mode. (The EPROCESS and KPRO
CESS blocks are accessible only from kernel mode.) The PEB is always mapped
at address Ox7FFDFOOO. The basic structure of the PEB is illustrated in Figure
4-4 and is explained in more detail later in the chapter.

Image base address

Module list

Thread-local storage data

Code page data

Critical section time-out

Number of heaps

Heap size information

-"' - ---,. I Process heap I
GDI shared handle table

Operating system version number information

Image version information

Image process affinity mask

Figure 4-4
Fields of the process environment block

System Variables
A few of the key system global variables that relate to processes are listed in
Table 4-2. These variables are referred to later in the chapter, when the steps
in creating a process are described.

Performance Counters

148

Windows NT maintains a number of counters with which you can track the pro
cesses running on your system; you can retrieve these counters programmati
cally or view them with the Performance Monitor utility (PERFMON.EXE).
Table 4-3 lists the performance counters relevant to processes (except for
memory management-related counters, which are described in Chapter 5).

F 0 U R : Processes and Threads

Table 4-2 Process-Related System Variables

Variable Type Description

PsActiveProcessH ead Queue header List head of process blocks

Psl dleProcess EPROCESS Idle process block

PslnitialSystemProcess Pointer to Pointer to the process block of the initial
EPROCESS system process (process ID 2) that contains

the system threads

PspCreateProcess- Array of 32-bit Array of pointers to routines to be called on
NotifyRoutine pointers process creation and deletion (maximum

of eight)

PspCreateProcess- DWORD Count of registered process notification
NotifyRoutineCount routines

PspCidTable Pointer to Handle table for process and thread client
HANDLE_ TABLE IDs

Table 4-3 Process-Related Performance Counters

Object: Counter Function

Process: % Privileged Time Describes the percentage of time that the threads in
the process have run in kernel mode during a specified
interval.

Process: % Processor Time

Process: % User Time

Process: Elapsed Time

Process: ID Process

Process: Thread Count

Describes the percentage of CPU time that the threads
in the process have used during a specified interval. This
count is the sum of% Privileged Time and% User Time.

Describes the percentage of time that the threads in
the process have run in user mode during a specified
interval.

Describes the total elapsed time in seconds since this
process was created.

Returns the process ID. This ID applies only while the
process exists, because process IDs are reused.

Returns the number of threads in the process.

149

INSIDE WINDOWS NT

Relevant Functions

150

For reference purposes, the Win32 functions that apply to processes are de
scribed in Table 4-4. For further information, consult the Win32 API documen
tation in the MSDN Library.

Table 4-4 Process-Related Functions

Function

CreateProcess

CreateProcess
As User

OpenProcess

ExitProcess

TerminateProcess

Flushlnstruction
Cache

GetProcessTimes

GetExitCodeProcess

GetCommandLine

GetCurrent
ProcessID

GetProcess Version

GetStartuplnfo

GetEnvironment
Strings

GetEnvironment
Variable

Get/SetProcess
ShutdawnParameters

Description

Creates a new process and thread using the caller's
security identification

Creates a new process and thread and its primary thread
using an alternate security identification and then
executes a specified .EXE

Returns a handle of the specified process object

Exits the current process

Terminates a process

Empties another process's instruction cache

Obtains another process's timing information, describing
how much time the process has spent in user and kernel
mode

Returns the exit code for another process, indicating how
and why the process shut down

Returns the command-line string passed to the process

Returns the ID of the current process

Returns the major and minor versions of the Windows
version on which the specified process expects to run

Returns the contents of the STARTUPINFO structure
specified during CreateProcess

Returns the address of the environment block

Returns a specific environment variable

Defines the shutdown priority and number of retries for
the current process

F OU R: Processes and Threads

Relevant Tools
A number of tools for viewing (and modifying) processes and process infor
mation are available. These tools are included within Windows NT itself and
within the Windows NT Resource Kit, the Platform Software Development Kit
(SDK), and the Device Driver Kit (DDK). The trouble is, you can't get all the
information you need with one single tool-most information is available from
more than one tool, and the data is sometimes identified by different names (and
sometimes assigned different values) in each of the tools. To help you deter
mine which tool to use to get the basic process information you need, consult
Table 4-5. This table isn't a comprehensive list of all the information available
about a process-for example, you'll find out what tools you can use to gather
memory management information in Chapter 5-but if you need the basics,
you'll find them here.

N 0 TE For a dynamic view of process data, use QuickSlice
(QSLICE.EXE), the Task Manager (TASKMGR.EXE), or Process
Monitor (PMON.EXE)-all other tools listed here take a snapshot
of the system and present only a static view.

Table 4-5 Process-Related Tools

Process ID ../ ../ ../ ../ ../ ../ ../ ../ ../

Image Name ../ ../ ../ ../ ../ ../ ../ ../ ../

Total CPU Time ../ ../ ../

% CPU Time ../ ../ ../ ../ ../

Handle Count ../

Thread Count ../ ../ ../ ../ ../ ../ ../

View Priority Class ../ ../ ../

% User Time ../ ../

% Privileged Time ../ ../

Total User Time ../ ../ ../

Total Privileged Time ../ ../ ../

Quota Limits ../

Elapsed Time ../ ../ ../

Creating Process ../

Current Directory ../

Command Line ../

Security ID ../

151

INSIDE WINDOWS NT

152

, 4 .EXPERIMENT:· Viewing Process Information
The built~in Windows NT Task Manager provides a quick list of the

· processes running on the system but not of threads within processes.
You can start: Task Manager in one of three ways: (1) press Gtrl-Shift

. Esc, (2) right-click on the t,askbar and select Task Manager, or (3) press
Gtrt~Alt~Del and click.the Task Managerbntton. Performance Monitor
can also display most (but not all) process and thread information.

Several Windows NT Resource .Kit utilities make it easy to get infor
.mation about currently running processes: QuickSlice (QSLICE.EXE),
ProcessV!ewer (PVIEWER;EXE), Task List (TLIST.EXE). Process
Status (PSTAT.EXE), Process Monitor (PMON.EXE), and Process User
List (PULIST.EXE). Each of these utilities displays overlapping sub
sets of the information available about processes and threads .. (Refer
to Table 4-5.)

How do you determine the creator of a process? Although there
is no documented Win32 service to retrieve this information, the
Windows NT Resource Kit tlist It command can display the "process
tree," which shows the relationship of a process to its parent. (It uses
an undocumented system service call to get the information.) Here is
an example output from tlist /t.
C:\>tlist It
System Process (0)
System (2)

smss .exe (21)
csrss.exe (24)
winlogon.exe (35)
services.exe (41)
spoolss.exe (69)
11 ssrv. exe (94)
LOCATOR.EXE (96)
RpcSs.exe (112)

inetinfo.exe (128)
lsass.exe (44)
nddeagnt.exeH19)

Explorer.axe (123) Program Manager
USA.EXE (121) .

·WINWORD.EXE C117) Microsoft Word - msch02(s).doc
cmd.exe (72) Command Prompt - tlist /t
t11it.EXE C100J .

For an explanation Of the system processes shown in this output,
see Chapter 3.

F 0 U R : Processes and Threads

Quick Slice gives a quick, dynamic view of the proportions of sys
tem and kernel time each of the processes currently running on your
system is using. Online, the red part of the bar shows the amount of CPU
time spent in kernel mode, and the blue part shows the useP.mode time.
(Although reproduced below in black and white, the bars in the online
<llsplay are always red and blue.) The. total of all bars shown in the ,
QuickSlice window should. add up to 100 percent of CPU time. To run
Q.UickSlice,did the Sta.rt button and .choose Programs. Resoti.rce Kit 4.0,
Diagnostics, Quick Slice (or run QUCE.EXE in the Resource Kit direc
tory). For example; try running a graphics-intensive application such

·as Windom· Paint (MSPAlNT.EXE). Open Quick Slice and Paint side
by side, .and draw squiggles in the Paint window. When you do so,

·. MSPAINT~EXJ!: will be running, as shown here: ·

. 'For additfo~al illforination abolit the threw u:i a process, you can
· 3.Iso 4ouble-cli~k-cii:\ia process (ori either the pro,C~8s-iiame or the col::

· · Oredbar).Here you can see the threads within the process and.the ·
relative CP.tJ time ll8ed by each thfead (not across the system): .

. : - : .:. ' , ,; .. ,_' .• . ' ' . ' ' ' .. '

(continued)

153

INSIDE WINDOWS NT

154

Viewing Process Information continued

The Process Viewer (PVIEWER.EXE) tliatcomes with theWmd6ws ·; ·.· ····
NT Resource Kit permits you to View informatjdri a})out th¢ lilnnirig •
processes and threads as well as to killproceStles artd c.haxige process
priority classes., You can \lSe·this toc:>lt() VieW'pl'.OCe~s t>C>ili<>~.·th,t,.lQ~al: : ..
computer and on remote Windows NT niachines acroS8 t1te .. J1e1:work."' ·.·
This toolis aiSO available in the PlatformSDKandWlthVJ,SUal c++. (bi .. · ..
both of these, it's called PVIEW.EXE.) Don'tcollfu$e PVIEWER.EXE .·
with.PVIEW~EXE in the Windows NT ReS()urce Kit; PVIEW;EXl?.is a .
different utility entirely.· : · .. ·· .. ·. ·.· ··.·. . · / ··••

The Process Viewer is well documented in the Windo-WS NT R,e.. · ··
source Kit tools 'help file, but here's a quick ()Verview ·of the J.>ptions . ••·
available. to you. The basic display .of the Process Viewer'lPOks like tliis.:)·· .

Here's what the various. ()ptions do:

• The Co~p~ter textbOx diSplays the name of the compuJr '
whose processes are currently displaye4. Click the Connect .·

· button to browse for another computer. · · · ·

F 0 U R : Processes and Threads

• The Memory Detail button shows memory management
details about the selected process, such as the amount of
memory committed to the process, the size of the working
set, and so forth.

• The Kill Process button kills the. selected process~ Be very
careful which process you kill, since the process will have no
chance to perform any cleanup.

• The Refresh button refreshes the display-Process Viewer
does not update the infonnation unless you request it.

• The Processor Time columns in the Process and Thread(s) list
boxes show the total processor time the process or thread has
used since it was 'Created.

• •The Priority collection of radio bllttons regulates the selected
·process's priority class (the ReaI.;.time priority class is not
shown), and the Thread Priority collection displays the rela
tive thread f>riorities of the threads within a process.

• At the bottom of the screen, the number of context switches .
and the thread's dynamic priority, start address, and current

.. PC are displayed. · ·

. To see the other displays of proceS.s and th~ad information, try
running TLIST.EXE, PSTAT.EXE, PMON.EXE, and PULIST.EXE
using the Rti.n comµland on the Start menu. (None of these utilities
are in the Windo~ NT Resource Kit Start.menu folders.)

Kernel Debugger !process Command
The !process command for the kernel debugger (described in Chapter 1) dis
plays a subset of the information in an EPROCESS block. This output is ar
ranged in two parts for each process. First you see the information about the
process, as shown in Figure 4-5. (Not all the fields in the output are labeled
here_.:_only the parts germane to this section.)

155

INSIDE WINDOWS NT

Address of process
EPROCESS address Process ID environment block

~~f i:F~z''"
:~}:~ ... '.'.'.~~:~~·,! .. :~:~ !>

·• .. El aps.edTi~e · ·
· : UserTi me
'. KernelTime

Time the process has been running,
divided into user time and kernel time

Figure 4-5
Process details of!process output

Process ID of
parent process

After the basic process output comes a list of the threads in the process.
That output is explained in the section "Kernel Debugger !thread Output" on
page 179. Other commands that display process information include !handle, ·
which dumps the process handle table (described in more detail in the section
"Object Handles and the Proc.ess Handle Table" in Chapter 3 on page 112). Pro
cess and thread security structures are described in Chapter 6.

Flow of CreateProcess

156

So far in this chapter, you've seen the structures that are part of a process and
the API functions with which you (and the operating system) can manipulate
processes. You've also found out how you can use tools to view how processes
interact with your system. But how did those processes come into being, and

F 0 U R : Processes and Threads

how do they exit once they've fulfilled their purpose? In the following sections,
you'll discover how a Win32 process comes to life.

A Win32 process is created when an application calls the Win32 Create
Process function. Creating a Win32 process consists of several stages carried out
in three parts of the operating system: the Win32 client-side library KERNEL-
32.DLL, the Windows NT executive, and the Win32 subsystem process (CSRSS).
Because of the multiple environment subsystem architecture of Windows NT,
creating a Windows NT executive process object (which can be used by other
subsystems) is separated from the work involved in creating a Win32 process.
So, although the following description of the flow of the Win32 CreateProcess
function is complicated, keep in mind that part of the work is specific to the
semantics added by the Win32 subsystem as opposed to the core work needed
to create a Windows NT executive process object.

The following list summarizes the main stages of a Win32 CreateProcess.
The operations performed in each stage are described in detail in the subse
quent sections.

1. Open the image file (.EXE) to be executed inside the process.

2. Create the Windows NT executive process object.

3. Create the initial thread (stack, context, and Windows NT executive
thread object).

4. Notify the Win32 subsystem of the new process so that it can set up
for the new process and thread.

5. Start execution of the initial thread (unless the CREATE_SUSPEN
DED flag was specified).

6. In the context of the new process and thread, complete the initial
ization of the address space (such as load required DLLs) and begin
execution of the program.

Figure 4-6 on the next page shows an overview of the stages Windows NT
follows to create a process.

157

INSIDE WINDOWS NT

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Creating process

Open EXE and
create selection

object

Create NT
process object

Create NT thread
object

Notify Win32
subsystem

Start execution
of the initial

thread

Figure 4-6

Win32
subsystem

Set up for new
process and

thread

Stage 6

The main stages Windows NT follows to create a process

158

New process

Final
process/image

initialization

Start execution
at entry point to

image

F 0 U R : Processes and Threads

Before describing these stages in more detail, I should mention a few
notes that pertain to all the stages.

II In CreateProcess, the priority class for the new process is specified as
independent bits in the CreationFlags parameter. Thus, you can specify
more than one priority class for a single CreateProcess call. Windows
NT resolves the question of which priority class to assign to the pro
cess by choosing the lowest-priority class set.

• If no priority class is specified for the new process, the priority class
defaults to Normal unless the priority class of the process that cre
ated it is Idle, in which case the priority class of the new process will
be Idle as well.

II If a Real-time priority class is specified for the new process and the
process's caller doesn't have the Increase Scheduling Priority privi
lege, the High priority class is used instead. In other words, Create
Process doesn't fail just because the caller has insufficient privileges
to create the process in the Real-time priority class; the new process
just won't have as high a priority.

II All windows are associated with desktops, the graphical representa
tion of your workspace. If no desktop is specified in CreateProcess,
the process is associated with the caller's current desktop.

Enough background. The steps of CreateProcess are described in detail in
the following sections.

N 0 T E Many steps of CreateProcess are related to the setup of the
process virtual address space and hence refer to many memory man
agement terms and structures, which are defined in Chapter 5.

Stage 1: Opening the Image to Be Executed
As illustrated in Figure 4-7, the first stage in CreateProcess is to find the appro
priate Win32 image that will run the executable file specified by the caller and
to create a section object to later map it into the address space of the new pro
cess. If no image name is specified, the first token of the command line (de
fined to be the first part of the command-line string ending with a space or tab
that is a valid file specification) is used as the image filename.

159

INSIDE WINDOWS NT

160

Run GMO.EXE Run NTVDM.EXE Use .EXE directly

' MS-DOS .BAT
t

. Win16
/

Win32 or .CMD

Run 082.EXE

Figure 4-7

MS-DOS .EXE, i .COM, or~

Run POSIX.EXE Run NTVDM.EXE

Choosing a Win32 image to activate

If the executable file specified is a Win32 .EXE, it is used directly. If it is
not a Win32 .EXE (for example, if it's an MS-DOS, a Winl6, a POSIX, or an
OS/2 application), CreateProcess goes through a series of steps to find a Win32
"support image" to run it. This process is necessary because non-Win32 appli
cations are not run directly-Windows NT instead uses one of a few special
support images that in turn are responsible for actually running the non-Win32
program. For example, if you attempt to run a POSIX application, CreateProcess
identifies it as such and changes the image to be run on the Win32 executable
file POSIX.EXE. If you attempt to run an MS-DOS or a Win16 executable, the
image to be run becomes the Win32 executable NTVDM.EXE. In short, you can't
directly create a process that is not a Win32 process. If Windows NT can't find
a way to resolve the activated image as a Win32 process (as shown in Table 4-6),
CreateProcess fails.

Specifically, the decision tree that CreateProcess goes through to run an
image is as follows:

II If the image is an OS/2 I.x application, the image to be run changes
to OS2.EXE and CreateProcess restarts at Stage 1. (OS2.EXE begins
only on x86-compatible processors; OS/2 images are not supported
on RISC processors.)

Ill If the image is an MS-DOS application with an .EXE, a .COM, or a
.PIF extension, a message is sent to the Win32 subsystem to check
whether an MS-DOS support process (NTVDM.EXE, specified in the

F 0 U R : Processes and Threads

Table 4-6 Decision Tree for Stage 1 of CreateProcess

If the image is a/an

POSIX executable file

OS/2 I.x image

MS-DOS application with an
.EXE, a .COM, or a .PIF
extension

Win16 application

Command procedure
MS-DOS application with
a .BAT or a .CMD extension

This image will run

POSIX.EXE

OS2.EXE

NTVDM.EXE

NTVDM.EXE

CMD.EXE

And this will happen

CreateProcess restarts Stage 1

CreateProcess restarts Stage 1

CreateProcess restarts Stage 1

CreateProcess restarts Stage 1

CreateProcess restarts Stage 1

registry key HKLM\System ... \Control\WOW\cmdline) has already
been created for this session. If a support process has been created,
it is used to run the MS-DOS application (the Win32 subsystem sends
the message to the VDM (Virtual DOS Machine) process to run the
new image) and CreateProcess returns. If a support process has not been
created, the image to be run changes to NTVDM.EXE and Create
Process restarts at Stage 1.

II If the file to run has a .BAT or a .CMD extension, the image to be
run becomes CMD.EXE, ·the Windows NT command prompt, and
CreateProcess restarts at Stage 1. (The name of the batch file is passed
as the first parameter to CMD.EXE.)

• If the image is a Winl6 (Windows 3.1) executable, CreateProcess must
decide whether a new VDM process must be created to run it or
whether it should use the default systemwide shared VDM process
(which might not yet have been created). This decision is controlled
by the CreateProcess flags CREATE_SEPARATE_WOW_VDM and
CREATE_SHARED_WOW_VDM. If these flags are not specified,
the default behavior is dictated by the registry field HKLM\System ... \
Control\WOW\DefaultSeparateVDM. If the application is to be run
in a separate VDM, the image to be run changes to the value of
HKLM\Systein ... \Control\WOW\wowcmdline and CreateProcess

161

INSIDE WINDOWS NT

restarts at Stage 1. Otherwise, the Win32 subsystem sends a message
to see whether the systemwide VDM process exists and can be used.
(If the VDM process is running on a different desktop or the VDM
process is not running under the same security as the caller, it can't
be used and a new VDM process must be created.) If a systemwide
VDM process can be used, the Win32 subsystem sends a message to it
to run the new image and CreateProcess returns. If the VDM process
hasn't yet been created (or if it exists but can't be used), the image to
be run changes to the VDM support image and CreateProcess restarts
at Stage 1.

At this point, CreateProcess has successfully opened a valid Windows NT
executable file and created a section object for it. The object is not mapped
into memory yet, but it is open.Just because a section object has been success
fully created doesn't mean that the file is a valid Win32 image, however; it could
be a DLL or a POSIX executable. If the file is a POSIX executable, the image
to be run changes to POSIX. EXE and CreateProcess restarts from the beginning
of Stage 1. If the file is a DLL, CreateProcess fails.

Now that CreateProcess has found a valid Win32 executable, it looks in the
registry under \Software\Microsoft\Windows NT\CurrentVersion\Image File
Execution Options to see whether a subkey with the filename and extension
of the executable image (but without the directory and path information-for
example, IMAGE.EXE) exists there. If it does, CreateProcess looks for a value
named Debugger for that key. If the value is not null, the image to be run
becomes the value of that key and CreateProcess restarts at Stage 1.

TI P You can take advantage of this CreateProcess behavior and debug
the startup code of Windows NT service processes before they start
rather than attach the debugger after starting the service, which
doesn't allow you to debug the startup code. If you happen to be
feeling mischievous, you can also exploit this behavior to confuse
people by causing another file to be run rather than the one they
specified.

Stage 2: Creating the Windows NT Executive Process Object

162

At this point, CreateProcess has opened a valid Win32 executable fiie and created
a section object to map it into the new process address space. Next it creates a
Windows NT executive process object to run the image by calling the internal

F 0 U R : Processes and Threads

system function NtCreateProcess. Creating the executive process object involves
the following substages:

A. Setting up the EPROCESS block

B. Creating the initial process address space

C. Creating the kernel process block

D. Concluding the setup of the process address space

E. Setting up the PEB

F. Completing the setup of the executive process object

N 0 TE The only time there won't be a parent process is during
system initialization. After that point, a parent process is always re
quired to provide a security context for the new process.

Stage 2A: Setting Up the EPROCESS Block
This substage involves five steps:

1. Allocate and initialize the Windows NT EPROCESS block.

2. Set the new process's quota block to the address of its parent
process's quota block, and increment the reference count for the
parent's quota block.

3. Store the parent process's process ID in the InheritedFromUnique-
Processld field in the new process object.

N 0 TE The parent's process ID is st6red so that you can determine
the creator process. This information is not available through any
Win32 function (it's not defined for Win32, although POSIX re
quires this information), but the Tlist utility in the Windows NT Server
Resource Kit uses this information to show the process "tree" when
the "/t" qualifier is specified as shown in the experiment "Viewing
Process Information" on page 152.

4. Set the new process's exit status to STATUS_PENDING.

5. Create the process's primary access token (a duplicate of its parent's
primary token). New processes inherit the security profile of their
parent (unless the CreateProcessAsUser function is used, which allows
specification of a different access token for a new process).

163

INSIDE WINDOWS NT

164

Stage 28: Creating the Initial Process Address Space
The initial process address space consists of three pages:

11111 Page directory

Ill Hyperspace page

1111 Working set list

To create these three pages, the following steps are taken:

1. Page table entries are created in the appropriate page tables to map
the three initial pages listed above.

2. To account for these new pages, the value 3 is deducted from the sys
tem variable MmTotalCommittedPages and added to MmProcessCommit.

3. The systemwide default process minimum working set size (PsMini
mum WorkingSet) is deducted from MmResidentAvailablePages.

4. The page table pages for the nonpaged portion of system space and
the system cache are mapped into the process.

5. The process minimum and maximum working set size are set to
the values of PsMinimum WorkingSet and PsMaximum WorkingSet,
respectively.

Stage 2C: Creating the Kernel Process Block
The next stage of CreateProcess is the initialization of the KPROCESS block,
mentioned on page 147, which contains a pointer to a list of kernel threads. (The
kernel has no knowledge of handles, so it bypasses the object table.) The ker
nel process block also points to the process's page table directory (used to keep
track of the process's virtual address space), the total time the process's threads
have executed, the process's default base-scheduling priority, the default proces
sor affinity for the threads in the process, and the initial value of the process
default quantum, which is taken from the value of PspForegroundQuantum[O],
the first entry in the systemwide quantum array.

N 0 TE The initial quantum differs between Windows NT Worksta
tion and Windows NT Server. For more information on thread quan.:
turns, turn to their discussion in the section "Thread Scheduling"
on page 184.

F 0 UR: Processes and Threads

Stage 20: Concluding the Setup of the Process Address Space
Setting up the address space for a new process is somewhat complicated, so let's
look at what's involved a step at a time. To get the most out of this section, you
should have some familiarity with the internals of the Windows NT memory
manager, which are described in Chapter 5.

1. The virtual memory manager sets the value of the process's last
trim time to the current time. This value is used by the working set
manager (which runs in the context of the balance set manager
system thread) to determine when to initiate working set trimming.

2. The page frame number (PFN) database for the page directory
as well as the page directory entry, which maps hyperspace, are
initialized.

3. The memory manager initializes the process's working set list
page faults can now be taken.

4. The major and minor version numbers are copied from the execut
able file to the EPROCESS block.

5. The section (created when the image file was opened) is now map
ped into the new process's address space, and the process section
base address is set to the base address of the image.

6. NTDLL.DLL is mapped into the process.

7. The systemwide national language support tables are mapped into
the process's address space.

N 0 T E PO SIX processes clone the address space of their parents,
so they don't have to go through these steps to create a new address
space. In the case of POSIX applications, the new process's section
base address is set to that of its parent process, and the parent's PEB
is cloned for the new process.

8. CreateProcess inserts the new process block at the end of Windows
NT's list of active processes (PsActiveProcessHead).

165

INSIDE WINDOWS NT

166

Stage 2E: Setting Up the PEB
CreateProcess allocates a page for the PEB and initializes a number of fields as
shown in Table 4-7.

Table 4-7 Initial Values of the Fields of the PEB

Field

ImageBaseAddress

J\fumber()~rocessors

J\ftGloba~lag

CriticalSection Timeout

HeapSegmentReserve

HeapSegmentCommit

HeapDeCommitTotal
FreeThreshold

HeapDeCommitFree
BlockThreshold

J\fumber()jHeaps

Maximuml\fumber
()jHeaps

ProcessHeaps

()SMajorVersion

()SMinorVersion

()SBuildl\fumber

()SPlatf orml d

Initial Value

Base address of section

Kel\fumberProcessors system variable

J\ftGloba~lag system variable

MmCriticalSectionTimeout system variable

MmHeapSegmentReserve system variable

MmHeapSegmentCommit system variable

MmHeapDeCommitTota~reeThreshold system variable

MmHeapDeCommitFreeBlockThreshold system variable

0

(Size of a page - size of a PEB) I 4

First byte after PEB

J\ftMajorVersion system variable

J\ftMinorVersion system variable

J\ftBuildl\fumber system variable & Ox3FFF

2

If the image file specifies explicit Win32 version values, this information
replaces the initial values shown above. The mapping from image version in
formation fields to PEB fields is shown in Table 4-8.

Table 4-8 Win32 Replacements for Initial PEB Values

Field Name Value Taken from Image Header

()SMajorVersion OptionalHeader.Win32VersionValue & OxFF

()SMinorVersion

()SBuildl\fumber

OSPlatformld

OptionalHeader.Win32VersionValue » 8) & OxFF

OptionalHeader.Win32VersionValue » 16) & Ox3FFF

OptionalHeader.Win32VersionValue » 30) A Ox2

F 0 U R : Processes and Threads

Stage 2F: Completing the Setup of the Executive Process Object
Before the handle to the new process can be returned, a few final setup steps
must be completed:

1. The process handle table is initialized; if the duplicate handle flag
is set for the parent process, any inheritable handles are copied from
the parent's object handle table into the new process. (For more
information about object handle tables, see Chapter 3.)

2. If you're running Windows NT Workstation and the image header
specifies IMAGE_FILE_AGGRESIVE_WS_TRIM, the PS_WS_TRIM
_FROM_EXE_HEADER flag is set in the process block. If you're
running Windows NT Workstation on a small-memory .x86 system,
the PS_WS_TRIM_BACKGROUND_ONLY_APP flag is set in the
process block.

3. If the image header characteristics IMAGE_FILE_UP_SYSTEM
_ONLY flag is set (indicating that the image can run only on a uni
processor system), a single CPU is chosen for all the threads in this
new process to run on. This choosing process is done by simply
cycling through the available processors-each time this type of
image is run, the next processor is used. In this way, these types of
images are spread out across the processors evenly.

4. If the image specifies an explicit processor affinity mask (for ex
ample, a field in the configuration header), this value is copied to
the PEB and later set as the default process affinity mask.

5. If the parent process had an event log section in its PEB, the event
log is copied to the new process and a handle is duplicated to the
section for the new process.

6. If systemwide auditing of processes is enabled (choose Audit from
the Policies menu in the User Manager utility), the process's cre
ation is written to the audit log.

7. The process's creation time is set, the handle to the new process is
returned to the caller (CreateProcess in KERNEL32.DLL), and execu
tion continues back in user mode.

167

INSIDE WINDOWS NT

Stage 3: Creating the Initial Thread and Its Stack and Context
At this point, the Windows NT executive process object is completely set up.
It still has no thread, however, so it can't do anything yet. Before the thread
can be created, it needs a stack and a context in which to run, so these are set
up first. The stack size for the initial thread is taken from the image-there
is no way to specify another one.

Now the initial thread can be created, which is done by calling NtCreate
Thread. (For a detailed description of how a thread is created, see the section
"Flow of CreateThread" on page 180.) The thread parameter (which can't be
specified in CreateProcess but can be specified in CreateThread) is the address of
the PEB. This parameter will be used by the initialization code that runs in the
context of this new thread (as described in Stage 6). However, the thread won't
do anything yet-it is created in a suspended state and is not resumed until the
process is completely initialized (as described in Stage 5).

Stage 4: Notifying the Win32 Subsystem About the New Process
After all of the necessary executive process and thread objects have been cre
ated, KERNEL32.DLL sends a message to the Win32 subsystem so that it can
set up for the new process and thread. The message includes the following
information:

168

11111 Process and thread handles

II Entries in the creation flags

II ID of the process's creator

II Flag indicating whether the process belongs to a Win32 application
(so that CSRSS can determine whether or not to show the startup
cursor)

The Win32 subsystem performs the following steps when it receives this
message:

1. CreateProcess duplicates a handle for the process and thread. This
step increments the usage count of the process and the thread from
1 (set at creation time) to 2.

2. If a process priority class is not specified, CreateProcess sets it to Nor
mal, unless the creating process's priority class was Idle. In that case,
it sets the new process priority class to Idle as well.

3. The CSRSS process block is allocated.

4. The new process's exception port is set to be the general function
port for the Win32 subsystem so that the Win32 subsystem will

F 0 U R : Processes and Threads

receive a message when an exception occurs in the process. (For
further information on exception handling, see Chapter 3.)

5. If the process is being debugged (that is, if it is attached to a debug
ger process), the process debug port is set to the Win32 subsystem's
general function port. This setting ensures that Windows NT will
send debug events that occur in the new process (such as thread
creation and deletion, exceptions, and so on) as messages to the
Win32 subsystem so that it can then dispatch the events to the pro
cess that is acting as the new process's debugger.

6. The CSRSS thread block is allocated and initialized.

7. CreateProcess inserts the thread in the list of threads for the process ..

8. The count of processes in this session is incremented.

9. The process shutdown level is set to x280 (the default process shut
down level-see the documentation for SetProcessShutdown
Parameters).

10. The new process block is inserted into the list of Win32 subsystem
wide processes.

11. The per-process data structure used by the kernel-mode part of the
Win32 subsystem (W32PROCESS structure) is allocated and initial
ized.

12. The application start cursor is displayed. This cursor is the familiar
arrow with an hourglass attached-Windows NT's way of saying to
the user, "I'm starting something, but you can use the cursor in the
meantime:' If the process doesn't make a GUI call after 2 seconds,
the cursor reverts to the standard pointer. If the process does make
a GUI call in the allotted time, CreateProcess waits 5 seconds for the
application to show a window. After that time, CreateProcess will reset
the cursor again.

Stage 5: Starting Execution of the Initial Thread
At this point, the process environment has been determined, resources for its
threads to use have been allocated, the process has a thread, and the Win32
subsystem knows about the new process. Unless the caller specified the CREATE
_SUSPENDED flag, the initial thread is now resumed so that it can start run
ning and perform the remainder of the process initialization work that occurs
in the context of the new process (Stage 6).

169

INSIDE WINDOWS NT

Stage 6: Performing Process
Initialization in the Context of the New Process

170

The new thread begins life running the kernel mode thread startup routine
KiThreadStartup. (For a more detailed description of the thread startup steps
leading to this, see the section "Flow of CreateThread" on page 180.) The KiThread
Startup routine performs the following steps:

1. Lowers the IRQL level from Dispatch level to APC (asynchronous
procedure call) level.

2. Enables working set expansion.

3. Queues a user mode APC to the new thread to execute the user
mode thread startup routine LdrlnitializeThunk inside NTDLL.DLL.

4. Lowers the IRQL level to 0, causing the APC to fire and Ldrlnitialize
Thunk to be called. The LdrlnitializeThunk routine initializes the
loader, heap manager, NLS tables, TLS array, and critical section
structures. It then loads any required DLLs and calls the DLL entry
points with .the DLL_PROCESS_ATTACH function code.

5. If the process being created is a debuggee, all threads in the pro
cess are suspended. (Threads might have been created during step
3.) A create process message is then sent to the process's debug port
(the Win32 subsystem function port because this is a Win32 pro
cess) so that the subsystem can deliver the process startup debug
event (CREATE_PROCESS_DEBUG_INFO) to the appropriate
debugger process. KiThreadStartup then waits for the Win32 sub
system to get the reply from the debugger (via the ContinueDebug
Event function). When the Win32 subsystem replies, all the threads
are resumed.

6. Finally, the image begins execution in user mode. This is done by
creating a trap frame that specifies the previous mode as user and
the address to return to as the main entry point of the image. Thus,
when the trap that caused the thread to start execution in kernel
mode is dismissed, the program begins running in user mode at the
right place.

F 0 U R : Processes and Threads

Thread Internals
Now that we've dissected processes, let's turn our attention to the structure of
a thread. Unless explicitly stated otherwise, you can assume that anything in
this section applies to both normal user-mode threads and kernel-mode sys
tem threads (described in Chapter 3).

Data Structures
At the operating system level, a Windows NT thread is represented by an ex
ecutive thread (ETHREAD) block, which is illustrated in Figure 4-8 on the
next page. The ETHREAD block and the structures it points to exist in the sys
tem address space, with the exception of the thread environment block (TEB),
which exists in the process address space. In addition, the Win32 subsystem
process (CSRSS) maintains a parallel structure for each thread created in a
Win32 process. Also, for threads that have called a Win32 subsystem USER or
GDI function, the kernel-mode portion of the Win32 subsystem (WIN32K.SYS)
maintains a per-thread data structure (called the W32THREAD structure) that
is pointed to by the ETHREAD block.

Fibers vs. Threads
. . .

Beginning with Service Pack 3 for Windows NT 3.51, Microsoft has
included fiber support within. Windows NT. Fiber functions were added
to the Win32 APLset primarily for server applications being ported
from UNIX that were designed to schedule their own threads rather
··than relying on a priority system.

Fibers are subsets of threads contained within a thread object.
They, are often called "lightweight" threads, and in terms of scheduling,

··they are invisible to the operating system. Whereas threads are alfocated
CPV time.based on th.eir thread priority (as discussed in thesection
"Thread Scheduling" on page 184), fibers are not allocated CPU time
by the system at all. Instead,· the programmer manm1lly schedules the
fibers to run. The scheduled fiberswon'trun unless the thread in which
they are contained .is scheduled to run; once this condition is met, a
fiber within a thread will ruri. until it's finished or until the fiber in
structs Windows NT to run anotherfiber. For furtherinformation, see ·
the documentation on. the Win32. ConvertThreadToFiber,. Crea.tiFiber, ·and
SwitchToFiberfunctions.

171

INSIDE WINDOWS NT

172

KTHREAD

Create and exit times

Process ID

--'" -, IEPROCEssf

Thread start address

~ , I Access token I
Impersonation information

LPC message information

Timer information

-~
~ I Pending 1/0 requests I

Figure 4-8
Structure of the executive thread block

Most of the fields illustrated in Figure 4-8 are self-explanatory. The first
field is the kernel thread (KTHREAD) block. Following that are the thread
identification information, the process identification information (including
a pointer to the owning process so that its environment information can be
accessed), security information in the form of a pointer to the access token and
impersonation information, and finally, fields relating to LPC messages and
pending 1/0 requests. As you can see in Table 4-9, some of these key fields are
covered in more detail elsewhere in this book.

For more details on the internal structure of an ETHREAD block, you
can use the kernel debugger !threadfields command to display the offsets in
hexadecimal for almost every field in the structure. Although many of the field
names are self-explanatory, the output does not give the data type of the fields,
nor does it show the format of the structures that are included within or pointed
to by the ETHREAD block.

Let's take a closer look at two of the key thread data structures referred
to above: the KTHREAD block and the TEB. The KTHREAD block contains
the information that the Windows NT kernel needs to access to perform thread
scheduling and synchronization on behalf of running threads. Its layout is
illustrated in Figure 4-9.

F 0 U R : Processes and Threads

Table 4-9 Key Contents of the Executive Thread Block

Element

KTHREAD
block

Thread time
information

Process
identification

Start address

Impersonation
information

LPC
information

1/0
information

Description

See Table 4-10

Thread create and exit time

Process ID and pointer to EPROCESS block
of the process that the thread belongs to

Address of thread start routine

Access token and impersonation level (if the
thread is impersonating a client)

Message ID that the thread is waiting for and
address of message

List of pending 1/0 request packets (IRPs)

Dispatcher header

Total user time

Total kernel time

_)lo, ,
..Jo. ,

I Kernel stack information

I System service table

Thread-scheduling information

Trap frame

Additional Reference

Page 174

Security (Chapter 6)

Local procedure calls
(Chapter 3, page 137)

1/0 system (Chapter 7)

~ -, I Thread local storage array

Synchronization information

List of pending APCs

Timer block and wait block

List of objects thread is waiting on

..Jo. ,
~

Figure 4-9
Structure of the kernel thread block

173

INSIDE WINDOWS NT

The key fields of the KTHREAD block are described briefly in Table 4-10.

Table 4-10 Contents of the KTHREAD Block

Element

Dispatcher header

Execution time

Kernel stack
information

Pointer to system
service table

Scheduling
information

Wait blocks

Wait information

Mutant list

APC queues

Timer block

Queue list

Pointer to TEB

Description

Because the thread is an object that can
be waited on, it starts with a standard kernel
dispatcher object header.

Total user and kernel CPU time.

Base and upper address of kernel stack.

Each thread starts out with this field.
pointing to the main system service table
(KeServiceDescriptorTable). When a thread
first calls a Win32 GUI service, its system
service table is changed to one that includes
the GDI and USER services in WIN32K.SYS.

Base and current priority, quantum, affinity
mask, ideal processor, scheduling state,
freeze count, suspend count.

The thread block contains four built-in
wait blocks so that wait blocks don't have to
be allocated and initialized each time the
thread waits on something. (One is dedi
cated to timers.)

List of objects the thread is waiting on,
wait reason, time at which the thread
entered the wait state.

List of mutant objects owned by the thread.

List of pending user-mode and kernel-mode
APCs, alertable flag.

Built-in timer block (also a corresponding
wait block).

Additional Reference

Dispatcher objects
(Chapter 3, page 127)

Memory management
(Chapter 5)

System service dispatch
ing (Chapter 3, page 99)

Thread scheduling
(page 184)

Synchronization
(Chapter 3, page 123)

Synchronization
(page 123)

Synchronization
(page 123)

APC queues
(Chapter 3, page 93)

List of queue objects the thread is waiting on. Synchronization
(page 123)

Thread ID, TLS information, PEB pointer,
GDI and OpenGL information.

The TEB, illustrated in Figure 4-10, is the only data structure explained
in this section that exists in the process address space (as opposed to the sys
tem space).

174

F 0 U R : Processes and Threads

Exception list

Stack base

Stack limit

- Subsystem TIB J ,
-"' Fiber information J - --,

Thread ID

Active RPC handle

~ IPEBI

LastError value

Count of owned critical sections

Current locale

User32 client information

GDl32 information

OpenGL information

TLS array

.. . h, ... ········~·'·''

~ I ~in~o~k data J
Figure 4-10
Fields of the thread environment block

The TEB stores context information for the image loader and various
Win32 DLLs. Because these components run in user mode, they need a data
structure writable from user mode. That is why this structure exists in the user
address space instead of in the system space, where it would be writable only
from kernel mode. You can find the address of the TEB with the kernel debug
ger !thread command.

System Variables
As with processes, a number of Windows NT system variables control how
threads run. Table 4-11 shows the kernel-mode system variables that relate to
threads.

175

INSIDE WINDOWS NT

Table 4-11 Thread-Related System Variables

Variable Type Description

PspCreateThread
NotifyRoutine

Array of 32-bit Array of pointers to routines to be called on during

PspCreateThread
NotifyRoutineCount

pointers thread creation and deletion (maximum of eight)

DWORD Count of registered thread-notification routines

Performance Counters
Most of the key information in the thread data structures is exported as per
formance counters, which are listed in Table 4-12. You can extract much infor
mation about the internals of a thread just by using the standard Performance
Monitor utility.

Table 4-12 Thread-Related Performance Counters

Object: Counter

Process: Priority
Base

Thread: % Privileged
Time

Thread: % Processor
Time

Function

Returns the current base priority of the process. This is the start
ing priority for threads created within this process.

Describes the percentage of time that the thread has run in kernel
mode during a specified interval.

Describes the percentage of CPU time that the thread has used
during a specified interval. This count is the sum of% Privileged
Time and % User Time.

Thread: % User Time' Describes the percentage of time that the thread has run in user
mode during a specified interval.

Thread: Context
Switches/Sec

Thread: Elapsed Time

Thread: ID Process

Thread: ID Thread

176

Returns the number of context switches per second that the system
is executing. The higher this number, the more threads of an equal
priority are attempting to execute.

Returns the amount of CPU time (in seconds) that the thread
has consumed.

Returns the Process ID of the thread's process. This ID is valid only
during the process's lifetime, because process IDs are reused.

Returns the thread's thread ID. This ID is valid only during the
thread's lifetime, because thread IDs are reused.

(continued)

F 0 U R : Processes and Threads

Object: Counter Function

Thread: Priority Base Returns the thread's current base priority. This number might be
different from the thread's starting base priority.

Thread: Priority Returns the thread's current dynamic priority.
Current

Thread: Start Address Returns the thread's starting virtual address (Note: This address
will be the same for most threads.

Thread: Thread State Returns a value from 0 through 7 relating to the current state of
the thread.

Thread: Thread Wait Returns a value from 0 through 19 relating to the reason why the
Reason thread is in a wait state.

Relevant Functions
Table 4-13 shows the Win32 functions for creating and manipulating threads.
This table doesn't include functions that have to do with thread scheduling and
priorities-those are included in the section "Thread Scheduling" later in this
chapter.

Table 4-13 Win32 Thread Functions

Function Description

CreateThread Creates a new thread

CreateRemoteThread Creates a thread in another process

ExitThread Ends execution of a thread normally

TerminateThread Terminates a thread

GetExitCodeThread Gets another thread's exit code

GetThreadTimes Returns another thread's timing information

Get/SetThreadContext Returns or changes a thread's CPU registers

GetThreadSelectorEntry Returns another thread's descriptor table entry
(applies only to ~6 systems)

177

INSIDE WINDOWS NT

Relevant Tools

178

Besides Performance Monitor, several other tools expose various elements of
the state of Windows NT threads. (The tools that show thread-scheduling in
formation are listed in the section "Thread Scheduling" on page 184). These
are itemized in Table 4-14.

N 0 TE To display thread details with Tlist, you must type tlist xxx,
where xxx is a process image name or window title. (Wildcards are
supported.)

Table 4-14 Thread-Related Tools and Their Functions

~o<:- ~ ~e~ t\.
'?>o.

• c,'\. &Ce \\~~e
o-0'0 ((0(1. . ~\0 {(-.i\0 (('?:>'\.'<> O"'~ -<...\'""'\. -tS> .

Thread ID ./ ./ ./ ./ ./

Actual start address ./ ./ ./ ./ ./
Win32 start address ./ ./
Current address ./ ./ ./ ./

Number of context switches ./ ./ ./ ./

Total user time ./ ./ ./

Total privileged time ./ ./ ./

Elapsed time ./ ./ ./

Thread state ./ ./ ./ ./

Reason for wait state ./ ./ ./ ./
Last error ./

Security descriptor ./

Access token ./

Percentage of CPU time ./ ./

Percentage of user time ./ ./ ./

Percentage of privileged time ./ ./ ./

Address of TEB ./

Address of ETHREAD ./

Objects waiting on ./

F 0 U R : Processes and Threads

Kernel Debugger !thread Output
The kernel debugger !thread command dumps a subset of the information in
the thread data structures. Some key elements of the information displayed
by the kernel debugger cannot be displayed by any Windows NT utility: inter
nal structure addresses; priority details; stack information; the pending 1/0
request list; and, for threads in a wait state, the list of objects the thread is
waiting on. (Refer back to Table 4-14.)

To display thread information, use either the !process command (which
displays all the thread blocks after displaying the process block) or the !thread
command to dump a specific thread. The output of the thread information, ·
along with some annotations of key fields, is shown in Figure 4-11.

EXPE.RIMENT: Viewing Thread Information
The following output is the detailed display of a process using the Tlist
utility in the Windows NT Resource Kit. Notice that the thread list
shows the actual Win32 start address. (All the other utilities that show
the thread start address show the actual start address, not the Win32

· start address.)

C:\> tlist winword
155 WINWORD.EXE

CWD: C:\book\

. .
Microsoft Word - Oocumentl

Cmdli ne: "C :\MSOffi ce\Wi nword\WINWORO. EXE"
Virtua1Size: 64448 KB PeakVirtualSize: 106748 KB
WorkingSetSize: 1104 KB PeakWorkingSetSize: 6776 KB
NumberOfThreads; 4
156 Win32StartAddr:0x5032cfdb lastErr:0x00000000 State:Waiting
167 Win32StartAddr:0x00022982 LastErr:0x00000000 State:W9iting
192 Win32StartAddr:0x7.7fde4b2 LastErr:0x00000000 State:Waiting
196 Win32StartAddr:0x77fd694a LastErr:0x00000000 State:Waiting

0x50080000 WINWORD.EXE
4 .. 0.1381.4 shp 0x77f60000 ntdl Ldll

0x50800000 wwi ntl32. dll
4AL138L4 shp ~0x7.7f00000 KERNEL3.2 ,dll

list of DUs loaded in process

179

INSIDE WINDOWS NT

Address of Address of thread Address of system
ETHREAD Thread ID environment block service dispatch table

Stack trace

Figure 4-11
Output a/!thread

Flow of CreateThread

180

A thread's life cycle starts when a program creates a new thread. The request
filters down to the Windows NT executive, where the process manager allocates
space for a thread object and calls the kernel to initialize the kernel thread
block. The steps in the following list are taken inside the Win32 CreateThread
function in KERNEL32.DLL to create a Win32 thread. The work that occurs
inside the Windows NT executive are substeps of step 3, and the work that
occurs in the context of the new thread are substeps of step 7. Because process
creation includes creating a thread, some of the information here is repeated
from the earlier description of the flow of CreateProcess.

1. CreateThread creates a user-mode stack for the thread in the process's
address space.

2. CreateThread initializes the thread's hardware context (CPU archi
tecture-specific). (For further information on the thread context
block, see the Win32 API reference documentation on the CON
TEXT structure.)

F 0 U R : Processes and Threads

3. NtCreateThread is called to create the executive thread object in the
suspended state. The following steps execute in kernel mode inside
the Windows NT executive and kernel:

a. The thread count in the process object is incremented.

b. An executive thread block (ETHREAD) is created and initial
ized.

c. A thread ID is generated for the new thread.

d. The thread's kernel stack is allocated from the nonpaged pool.

e. The TEB is set up in the user-mode address space of the process.

f. The thread start address (KiThreadStartup) and the user's speci
fied Win32 start address are stored in the ETHREAD block. The
thread starts execution in KiThreadStartup, which performs thread
specific initialization, and then the actual thread routine specified
by the caller of CreateThread is invoked.

g. KelnitializeThread is called to set up the KTHREAD block. The
thread's initial and current base priorities are set to the process's
base priority, and its affinity and quantum are set to that of the
process. This function also sets the initial thread ideal processor
based on the process thread seed (a random number set during
CreateJ'rocess). The seed is then incremented so that each thread
in the process will have a different ideal processor, assuming the sys
tem has more than one. KelnitializeThread next sets the thread's
state to Initialized and initializes the machine-dependent hard
ware context for the thread, including the context, trap, and ex
ception frames. The thread's context is set up so that the thread
will start in kernel mode at the systemwide startup routine KiThread
Startup (described in step 6a).

h. Any registered systemwide thread creation notification routines
are called.

i. The thread's access token is set to point to the process access token,
and an access check is made to determine whether the caller has
the right to create the thread. This check will always succeed if
you are creating a thread in the local process but might not if you
are using CreateRemoteThread to create a thread in another process.

4. CreateThread notifies the Win32 subsystem about the new thread,
and the subsystem does some setup work for the new thread.

181

INSIDE WINDOWS NT

182

5. The thread handle and the thread ID (generated during step 3) are
returned to the caller.

6. Unless the caller created the thread with the CREATE_SUSPENDED
flag set, the thread is now resumed so that it can be scheduled for
execution. When the thread starts running, it executes the follow
ing additional steps (in the context of the new thread) before calling
the actual user's specified start address. (A flowchart of this final
part of thread creation is shown in Figure 4-12.)

a. KiThreadStartup lowers the thread's IRQL level from Dispatch level
to APC level and then calls the system initial thread routine, Psp
UserThreadStartup. The user-specified thread start address is passed
as a parameter to this routine.

b. The system initial thread routine enables working set expansion
and then queues a user mode APC to run the image loader ini
tialization routine (LdrlnitializeThunk in NTDLL.DLL). The IRQL
(interrupt request level) is lowered to 0, thus causing the pending
APC to fire.

c. The loader initialization routine then performs a number of ad
ditional thread-specific initialization steps, such as calling loaded
DLLs to notify them of the new thread. (The detailed steps of
the initialization of the Win32 subsystem DLLs, such as USER32,
KERNEL32, and GDI32, are not covered in this edition of the
book.)

d. If the process has a debugger attached, the thread startup rou
tine suspends all other active threads in the process and notifies
the Win32 subsystem so that it can deliver the thread startup de
bug event (CREATE_THREAD_DEBUG_INFO) to the appropri
ate debugger process. It then waits for the Win32 subsystem to get
the reply from the debugger (via the ContinueDebugEvent function).
When the Win32 subsystem replies, all the threads are resumed.

e. Finally, the main thread begins execution in user mode at the en
try point to the image being run. Execution begins when the trap
that started the thread execution using a trap frame (built earlier
when the kernel thread block was being iniatialized) that specifies
previous mode as user and the PC as the start address of the thread
is dismissed.

Kernel mode

Lower IRQL
toAPC

Enable working
set expansion

Queue user-mode
APC to run

Ldrlnitialize Thunk
and lower IRQL

to O

No

Restore trap
frame and dismiss

exception

Begin execution in
user mode

Figure 4-12

F O U R : Processes and Threads

Thread Startup
Inside new thread

I

Kernel mode

APC fires

Suspend all
threads

User mode

Perform in-process
context initialization

(Initialize loader, load
required DLLs, etc.)

Inside CSRSS

Notify debugger
Send new thread LPC send/receive process of new

message to i....i:~..;;;;...;.. _____ lil'i process and wait

subsystem for reply

Resume all
threads

In-context thread initialization

183

INSIDE WINDOWS NT

Thread Scheduling
This section describes the Windows NT scheduling policies and algorithms. The
first subsection gives a condensed description of how scheduling works on Win
dows NT and a definition of key terms. Then Windows NT priority levels are
described from both the Win32 API and the Windows NT kernel points of view.
After a review of the relevant Win32 functions and Windows NT utilities and
tools that relate to scheduling, the detailed data structures and algorithms that
comprise the Windows NT scheduling system are presented.

Overview of Windows NT Scheduling

184

Windows NT implements a priority-driven, preemptive scheduling system
the highest-priority runnable (ready) thread always runs, with the caveat that
the thread chosen to run might be limited by the processors on which the
thread is allowed to run, a phenomenon called processor affinity. By default,
threads can run on any available processor, but you can alter processor affin
ity by using one of the Win32 scheduling functions.

When a thread is selected to run, it runs for an amount of time called a
quantum. A quantum is the length of time a thread is allowed to run before
Windows NT interrupts the thread to find out whether another thread at the
same priority level is waiting to run or whether the thread's priority needs to
be reduced. Quantum values can vary from thread to thread (and differ be
tween Windows NT Workstation and Windows NT Server). (Quantums are
described in more detail on page 195.) A thread might not get to complete its
quantum, however. Because Windows NT implements a preemptive scheduler,
if another thread with a higher priority becomes ready to run, the currently
running thread is preempted before finishing its time slice. In fact, a thread
can be selected to run next and be preempted before even beginning its quan
tum!

The Windows NT scheduling code is implemented in the kernel. There
is no single "scheduler" module or routine, however-the code is spread through
out the kernel in which scheduling-related events occur. The routines that
perform these duties are collectively called the kernel's dispatcher. Thread
dispatching occurs at IRQL 2 and is triggered by any of the following events:

• A thread becomes ready to execute-for example, a newly created
thread or one just released from the wait state.

II A thread leaves the running state because its time quantum ends, it
terminates, or it enters a wait state.

F 0 U R : Processes and Threads

Ill A thread's priority changes, either because of a system service call
or because Windows NT itself changes the priority value. (See the
section ''Adjusting Thread Scheduling" on page 204.)

111111 The processor affinity of a running thread changes.

At each of these junctions, Windows NT must determine which thread
should run next. When Windows NT selects a new thread to run, it performs a
context switch to it. A context switch is the procedure of saving the volatile machine
state associated with a running thread, loading another thread's volatile state,
and starting the new thread's execution.

As already noted, Windows NT schedules at the thread granularity. This
makes sense when you consider that processes don't run but only provide re
sources and a context in which their threads run. Because scheduling decisions
are made strictly on a thread basis, no consideration is given to what process
the thread belongs to. For example, if process A has 10 runnable threads and
process B has 2 runnable threads, and all 12 threads are at the same priority,
each thread would receive one-twelfth of the CPU time-Windows NT wouldn't
give 50 percent of the CPU to process A and 50 percent to process B.

To understand the thread-scheduling algorithms, you must first under
stand the priority levels that Windows NT uses .

. EXPERIMENT: Thread-Scheduling State Changes
You· can watch thread~scheduling state changes with Performance
M~nitor. This utility c~n be useful when you're debugging a multi
threadeclapplicationif you're unsure about the state of the threads
running in the process. To watch thread-scheduling stage changes
using Performance Monitor,Jollow these steps:

1. Rtinthe Notepad utility {NOTEPAD.EXE).

2. Start Performance Monitor. (Select chart viewif you're in

soll1e other view.) . . ·. . . .

Choose Chart from the Options menu. Change the chart ver
tical maximum to 7, and click OK. (Asyou'U see from the ex-
planation text for. the performance counter, thread states· are
riµgibers from 0 through 7.) ·

(continued)

185

INSIDE WINDOWS NT

186

Thread-Scheduling State Changes continued

4.

5. Select the Thread object, and then select the Thread State
counter. Click the Explain button to see the definition ofthe
values.

6. Go to· the Instance box and scroll down until you see the Note,-
pad process; select it, and click the Addbutton, ·

7. Scroll down in the Instance box to the PerfMon process,se.;
lect its second thread (thread 1), and add it to the chart by
clicking the Add button. You should see something like this:

8. Now close the Add To Chart dialog box by clicking Done.

9. You should see the state of the Notepad thread as a 5, which.,
as shown in the explanation text in the dialog box, represents
the wait state. (The thread is waiting for GUl input.)· PerfMon,
on the other hand, is in the running state (2): the thread you
selected is the thread that is gathering the thread states, so.
when it goes to look at the state of the thrt~ads, itis, of course;
running.

10. Now bring Notepad to the foreground (Alt-Iab to it or click
its icon in the taskbar), and drag it around rapidly across the
screen. You should see the thread move from Waiting to Reaciy

F 0 U R : Processes and Threads

and back. When you see it in the ready state, PerfMon is catch
ing Notepad while it has some window message pending, and
the thread that is processing it is ready to run. You should see
a display like this:

11. Again, you'll never see Notepad in the running state (unless
you are on a multiprocessor system) because PerfMon is al
ways in the .running state when it gathers the state of the
threads you are monitoring.

Priority Levels
As illustrated in Figure 4-13, internally, Windows NT uses 32 priority levels,
ranging from 0 through 31. These values divide up as follows:

• Sixteen real-time levels (16-31)

• Fifteen variable levels (1-15)

1111 One system level (0), reserved for the zero page thread

Thread priority levels are assigned from two different perspectives: those
of the Win32 API and those of the Windows NT kernel. The Win32 API first
organizes processes by the priority class to which they are assigned at creation

187

INSIDE WINDOWS NT

188

....-------. 31

.....,....,.__....,...15

.-------.15

.,__...,.,.. ___ __.1

16 real-time levels

15 variable levels

.,___,,___...,....,.0--1 system level
(Zero page thread, one per system)

Figure 4-13
Thread priority levels

(Real-time, High, Normal, or Idle) and then by the relative priority of the
individual threads within those processes (Time-critical, Highest, Above-normal,
Normal, Below-normal, Lowest, and Idle).

To the Win32 API, each thread has a priority based on a combination of
its process priority class and its relative thread priority. The mapping from
Win32 priority to internal Windows NT numeric priority is shown in Table 4-15.

Win32

thread

priorities

Table 4-15 Win32 vs. Windows NT Kernel Priorities

Win32 process priority classes

Real time High Normal Idle

Time critical 31 15 15 15

Highest 26 15 10 6

Above normal 25 14 9 5

~~ormal 24 13 8 4

Below normal 23 12 7 3

Lowest 22 11 6 2

Idle 16 1 1 1

F 0 U R : Processes and Threads

The priorities shown in Table 4-15 are thread base priorities. The row
labeled "Normal" is also the process base priority for the four priority classes.
Threads start out inheriting the process base priority, which can be changed
with Task Manager (as described in the section "Relevant Tools" on page 190)
or with the Win32 SetProcessPriority function.

Normally, the process base priority (and hence the starting thread base
priority) will be one of the values in the "Normal" row above (24, 13, 8, or 4).
Some Windows NT system processes (such as the session manager, service
controller, and local security authentication server), however, have a base
process priority slightly higher than the default for the Normal class (8). This
is so that the threads in these processes will all start at a higher priority than
the default value of 8. A system process accomplishes this by using internal
Windows NT functions to set its process base priority to a numeric value other
than its default starting Win32 base priority.

Whereas a process has only a single priority value (base priority), each
thread has two priority values: current and base. As you'll see (in the section
"Adjusting Thread Scheduling" on page 204), the current priority for threads
in the dynamic range (1 through 15) might be, and often is, higher than the
base priority. Threads in the real-time range (16 through 31) never have their
priority adjusted by Windows NT, so they always have the same base and cur
rent priority.

Win32 Scheduling APls
The Win32 API functions that relate to thread scheduling are shown in Table
4-16. (For more information, see the Win32 API reference documentation.)

Table 4-16 Scheduling-Related APls and Their Functions

API Function

Suspend/ResumeThread Suspends or resumes a paused thread fiom execution.

Get/SetPriorityClass Returns or sets a process's priority class (base priority).

Get/SetThreadPriority Returns or sets a thread's priority (relative to its process base
priority).

Get/SetProcessAffinityMask

SetThreadAffinityMask

Returns or sets a process's affinity mask.

Sets a thread's affinity mask (must be a subset of the process's
affinity mask) for a particular set of processors, restricting it
to running on those processors.

(continued)

189

INSIDE WINDOWS NT

Table 4-16 continued

API Function

Get/SetThreadPriorityBoost Returns or sets the ability for Windows NT to boost the priority
of a thread temporarily (applies only to threads in the dynamic
range).

SetThreadldeafProcessor Establishes a preferred processor for a particular thread but
does not restrict the thread to that processor.

Get/SetProcessPriorityBoost Returns or sets the default priority boost control state of the
current process. (This function is used to set the thread pri
ority boost control state when a thread is created.)

SwitchToThread Yields execution for one quantum to another thread that is
ready to run on the current processor.

Sleep Puts the current thread into a wait state for a specified time
interval (figured in milliseconds [msec]). A zero value relin
quishes the rest of the thread's quantum.

SleepEx Causes the current thread to go into a wait state until either
an 1/0 completion callback is completed, an APC is queued
to the thread, or the specified time interval ends.

Relevant Tools
As illustrated in Table 4-17, you can view (and change) the base-process prior
ity class with Task Manager, Pview, or Pviewer. You can view the numeric base
process priority value with PerfMon or Pstat. You can view thread priorities with
Performance Monitor, Pview, Pviewer, and Pstat. There is no general utility to
change relative thread priority levels, however.

Table 4-17 Scheduling-Related Tools

<S''0-0 ~00 ~e'
-o.o

. e<J ·e~ <('O\.'C}-
\X°'{e

o'O'\ '\'0-s~ <?e'~ <(-,i\e <('1~ -t--'0 \

Process priority class ../ ../ ../

Process base priority ../ ../

Thread base priority ../

Thread current priority ../ ../

190

F 0 U R : Processes and Threads

The only way to specify a starting priority class for a process is with the
START command in the Windows NT command prompt.

EXPERIMENT: Examining and
Specifying Process and Thread Priorities
Try the following experiment:

1. From the command prompt, type start/realtirne notepad.
Notepad should open.

2. Run Pview, and select NOTEPAD.EXE from the list of pro
cesses.You should see a dialog box like the one shown here.
(The dynamic priority of the thread in Notepad is 24.)

3. The Task Manager can. show you similar information. Press
Ctrl-Shift-Esc to start the Task Manager, and turn to the Pro
cesses tab shown here. Right-dick on the Notepad process,
and select the Set Priority option, noting that Notepad's pro
cess priority class is Realtime, as shown on the following page,

(continued)

191

INSIDE WINDOWS NT

Examining and Specifying Process and Thread Priorities continued

Real-Time Priorities

192

You can raise or lower thread priorities within the dynamic range in any ap
plication; however, you must have the increase scheduling priority privilege to
enter the real-time range. (If you attempt to move a process into the Real-time
priority class and don't have the privilege, the operation doesn't fail-the High
class is used.) Be aware that many important Windows NT kernel-mode system
threads run in the real-time priority range, so if you spend excessive time run
ning in this range, you might be blocking critical system functions in the memory
manager, cache manager, local and network file systems, and even other de
vice drivers. As noted earlier, you won't block hardware interrupts because they
have a higher priority than any thread, but you might block system threads
from running.

NOTE Although Windows NT has what are called real-time priority
levels, it is not a true real-time operating system in that it doesn't
provide a guaranteed interrupt latency or a way for threads to obtain
a guaranteed execution time. For more information, see the MSDN
Library article "Real-Time Systems and Microsoft Windows NT:'

F 0 UR : Processes and Threads

Interrupt Levels vs. Priority Levels
As illustrated in Figure 4-14, all threads (whether they are running in user
mode or kernel mode) run at IRQL 0or1. (For a description of how Windows
NT uses interrupt levels, see page 86 in Chapter 3.) Threads normally run at
IRQL 0. Only kernel mode APCs execute at IRQL 1, since they interrupt the exe
cution of a thread. (For more information on APCs, see page 92 in Chapter 3.)
Because of this, no thread, regardless of its priority, blocks hardware interrupts
(although high-priority real-time threads can block the execution of impor
tant system threads).

Thread-scheduling decisions are made at IRQL 2 (called Dispatch level
for thread dispatching). Thus, while the kernel is deciding which thread should
run next, no thread can be running and possibly changing scheduling-related
information (such as priorities). On a multiprocessor system, access to the
thread-scheduling data structures is synchronized by acquiring the Dispatcher
spinlock (KiDispatcherLock).

31

30

29

28

2

Th<ead p<lorltles 0-31 {

Figure 4-14

IRQLs

High

Power fail

Interprocessor interrupt

Clock

Device n

Device 1

Dispatch/DPC

APC
.··.. · ..
PassiVEL,Level.

' ~<"

Interrupt priorities vs. thread priorities

- Hardware interrupts

J -Software interrupts

193

INSIDE WINDOWS NT

Thread States

194

Before you can comprehend the thread-scheduling algorithms and data struc
tures, you need to understand the various execution states that a thread can
be in. Figure 4-15 illustrates the state transitions for a Windows NT thread.
More details on what happens at each transition are described later in this
section.

Create and initialize
thread object

Reinitialize
Initialized

Execution
completes

Thread
waits on
an object ~0

handle ~0
o~

G
. .;._,«>

~~
Preempt (or time __ ,
quantum ends)

Place in ready queue

execution

Standby

Context-switch to it and start
------ its execution (dispatching) _____ ..

Figure 4-15
Thread states

The thread states are as follows:

Preempt

II! Ready When looking for a thread to execute, the dispatcher con
siders only the pool of threads in the ready state. These threads are
simply waiting to execute.

II! Standby A thread in the standby state has been selected to run
next on a particular processor. When the correct conditions exist,
the dispatcher performs a context switch to this thread. Only one
thread can be in the standby state for each processor on the system.

II! Running Once the dispatcher performs a context switch to a
thread, the thread enters the running state and executes. The
thread's execution continues until either the kernel preempts it to

Quantum

F 0 U R : Processes and Threads

run a higher priority thread, its quantum ends, it terminates, or it
voluntarily enters the wait state.

• Waiting A thread can enter the wait state in several ways: a thread
can voluntarily wait on an object to synchronize its execution, the
operating system (the I/0 system, for example) can wait on the
thread's behalf, or an environment subsystem can direct the thread
to suspend itself. When the thread's wait ends, depending on the
priority, the thread either begins running immediately or is moved
back to the ready state.

• Transition A thread enters the transition state if it is ready for ex
ecution but its kernel stack is paged out of memory. For example,
the thread's kernel stack might be paged out of memory. Once its
kernel stack is brought back into memory, the thread enters the
ready state.

• Terminated When a thread finishes executing, it enters the termi
nated state. Once terminated, a thread object might or might not
be deleted. (The object manager sets policy regarding when to de
lete the object.) If the executive has a pointer to the thread object,
it can reinitialize the thread object and use it again.

As mentioned earlier in the chapter, a quantum is the amount of time a thread
gets to run before Windows NT checks whether another thread at the same
priority should get to run. If a thread completes its quantum and there are no
other threads at its priority, Windows NT reschedules the thread to run for
another quantum.

How long is a quantum? There is no simple answer, because a quantum
can vary from thread to thread and from machine to machine. Also, there is
no registry setting for a quantum. So how does Windows NT compute a quan
tum? Several factors come into play:

• Each thread has a quantum value that represents how long the
thread can run until its quantum expires. This value is not a time
length but rather a simple integer value, which I'll call quantum units.

• By default, threads start with a quantum value of 6 on Windows NT
Workstation and 36 on Windows NT Server. The reason for the
longer value on Windows NT Server is because of the assumption
that when a server application wakes up as the result of a client

195

INSIDE WINDOWS NT

196

request, it should get enough CPU time to complete the request
and go back into a wait state. Thus, threads on Windows NT Server
run longer so that they can (hopefully) respond to whatever need
they are answering within one quantum.

Ill Each time the clock interrupts, the clock-interrupt routine deducts
a fixed value (3) from the thread quantum. If the thread quantum
is 0 or less, the quantum end processing is triggered and another
thread might be selected to run. On Windows NT Workstation, since
3 is deducted each time the clock interrupt fires, a thread runs for
2 clock intervals; on Windows NT Server, a thread runs for 12 clock
intervals.

Ill The length of the clock interval varies according to hardware plat
form. The frequency of the clock interrupts is up to the HAL, not
the kernel. For example, the clock interval for some Intel systems is
10 milliseconds, while for some other systems it is 15 milliseconds.
Currently, all Digital Equipment Corporation (DEC) Alpha AXP
systems have a clock interval of 7.8125 milliseconds.

II On Windows NT Workstation, a quantum might be temporarily in
creased for the threads in the foreground application. Depending
on the system setting, one of three quantum values might be added
to the base quantum value. (This is described in the section "Quan
tum Stretching" on page 205.)

1111 A quantum is doubled when Windows NT boosts a thread's priority
to try to avoid priority inversion. (For more information, see the
section "Priority Boosts for CPU Starvation" on page 210.)

Ill When a thread comes out of a wait state, its quantum is adjusted.
Threads in the real-time range (priority 16 through 31) have their
quantum reset to the process default value. Threads in the dynamic
priority range (priority 0 through 15) have their quantum decre
mented by 1. If this adjustment results in a 0 quantum, the quantum
is reset to the process default value; if the thread is running with a
boosted priority (see page 207), the priority is adjusted accordingly.

F 0 U R : Processes and Threads

Table 4-18 lists the approximate values for the clock interval timer and
the corresponding default thread quantums for several different hardware
platforms.

Table 4-18 Architectural Differences in Default Quantum

Default Quantum Default Quantum
on Windows NT on Windows NT

Processor Clock Interval Workstation Server

Typical uniprocessor IO msec 20 msec 120 msec
486

Typical uniprocessor 15 msec 30 msec 180 msec
Pentium, Pentium Pro

Some multiprocessor IO msec 20 msec 120 msec
486s

Other multiprocessor 15 msec 30 msec 180 msec
Intel systems

DEC AXP systems 7.8 msec 15.6 msec 93.6 msec

Scheduling Data Structures
To make thread-scheduling decisions, the kernel maintains a set of data struc
tures known collectively as the dispatcher database, which is illustrated in Fig
ure 4-16. The dispatcher database keeps track of which threads are waiting to
execute and which processors are executing which threads. The most impor
tant structure in the dispatcher database is the dispatcher ready queue (located
at KiDispatcherReadyListHead) . This queue is really a series of queues, one queue
for each scheduling priority. The queues contain threads that are in the ready
state, waiting to be scheduled for execution.

197

INSIDE WINDOWS NT

31

• Default base priority
Process •Default processor affinity

• Default quantum

Thread

Ready queues

31

0

Ready summary

Thread

0 31

• Base priority
• Current priority
• Processor affinity
•Quantum

Idle summary

Figure 4-16
Dispatcher database

0

To speed up the selection of which thread to run or preempt, Windows
NT maintains a 32-bit bitmask called the ready summary (KiReadySummary).
Each bit set indicates one or more threads in the ready queue for that prior
ity level. (Bit 0 represents priority 0, and so on.) Windows NT maintains another
bitmask, the idle summary (KildleSummary), in which each set bit represents an
idle processor.

As noted earlier, thread dispatching takes place at IRQL 2. In addition
to preventing other threads from running, being at IRQL 2 synchronizes ac
cess to the dispatcher database. On a multiprocessor system, however, changes
to the dispatcher database require the additional step of acquiring the kernel
dispatcher spinlock (KiDispatcherLock).

System Variables

198

Table 4-19 shows the kernel-mode system variables that are related to thread
scheduling.

F 0 U R: Processes and Threads

Table 4-19 Scheduling System Variables

Variable Type

KiDispatcherLock Spinlock

KeNumber Byte
Processors

KeActiveProcessors Bitmask (32 bits)

KildleSummary Bitmask (32 bits)

KiReadySummary Bitmask (32 bits)

KiDispatcherReady Array of 32 list
ListHead entries

PspForeground Array of schar
Quantum

Scheduling Scenarios

Description

Dispatcher spinlock

Number of processors active in system

Bitmask of active processors in system

Bitmask of idle processors

Bitmask of priority levels that have I or more
ready threads

List heads for the 32 ready queues

Note: A quantum is measured in units of
clock ticks.

[O]=default thread quantum value - (6 on
Windows NT Workstation, 36 on Windows NT
Server)

[I] =quantum for foreground threads (middle
setting) - (12 on Windows NT Workstation, 36
on Windows NT Server)

[2] =quantum for foreground threads (maximum
setting) - (18 on Windows NT Workstation, 36 on
Windows NT Server)

Windows NT bases the question of "Who gets the CPU?" on thread priority;
but how does this work in practice? The following sections illustrate just how
priority-driven preemptive multitasking works on the thread level.

Voluntary Switch
First a thread might voluntarily relinquish use of the processor by entering a
wait state on some object (such as an event, mutex, semaphore, 1/0 comple
tion port, process, thread, window message, and so on) by calling one of the
many Win32 wait functions (such as WaitForSingleObject or WaitForMultiple

Objects). Waiting on objects is described in more detail in Chapter 2.
Voluntary switching is roughly equivalent to a thread ordering an item that

isn't ready to go at a fast-food counter. Rather than hold up the queue of the
other diners, the thread will step aside and let the next thread execute its rou
tine while the first thread's hamburger is being prepared. When the hamburger
is ready, the first thread goes to the end of the ready queue of the priority level.

199

INSIDE WINDOWS NT

200

However, as you'll see later in the chapter, most wait operations result in a
temporary priority boost so that the thread can pick up its hamburger right
away and start eating.

Figure 4-17 illustrates a thread entering a wait state and Windows NT
selecting a new thread to run.

20
Running

19

16

15

14

To wait state

Figure 4-17
Voluntary switching

Ready

In Figure 4-17, the top block (thread) is voluntarily relinquishing the
processor so that the next thread in the ready queue can run (as represented
by the halo it has when in the Running column). Although it might appear from
this figure that the relinquishing thread's priority is being reduced, it's not
it's just being moved to the wait queue of the object(s) the thread is waiting on.
What about any remaining quantum for the thread? The quantum value is not
reset when a thread enters a wait state-in fact, when the wait is satisfied, the
thread's quantum value is decremented by 1 quantum unit, equivalent to one
third of a clock interval.

Preemption
In this scheduling scenario, a lower-priority thread is preempted when a higher
priority thread becomes ready to run. This situation might occur for a couple
of reasons.

F 0 U R : Processes and Threads

• A higher-priority thread's wait completes. (The event that the other
thread was waiting on has occurred.)

• A thread priority is increased or decreased.

In either of these cases, Windows NT must determine whether the cur
rently running thread should still continue to run or whether it should be
preempted to allow a higher-priority thread to run.

N 0 TE Threads running in kernel mode can be preempted by
threads running in user mode-the mode in which the thread is
running doesn't matter. The thread priority is the determining factor.

When a thread is preempted, it is put at the head of the ready queue for
the priority it was running at so that it can finish its quantum when it gets to run
again. Although the thread won't get to restart its time slice, it will get to com
plete any time remaining in its quantum. Figure 4-18 illustrates this situation.

Running Ready

"'-~
18 rn;~,'ll4' ------ From wait state

17

16

15

14

13

Figure 4-18
Preemptive thread scheduling

In Figure 4-18, a thread with priority 18 emerges from a wait state and
repossesses the CPU, causing the thread that had been running (at priority 16)
to be bumped to the head of the ready queue. Notice that the bumped thread
is not going to the end of the queue but to the beginning; when the preempt
ing thread has finished running, the bumped thread can complete its quantum.
In this example, the threads are in the real-time range; as explained in the

201

INSIDE WINDOWS NT

202

section ''.Adjusting Thread Scheduling" on page 204, no dynamic priority boosts
are allowed for threads in the real-time range.

If voluntary switching is roughly equivalent to a thread letting another
thread place its lunch order while the first thread waits for its meal, preemp
tion is roughly equivalent to a thread being bumped from its place in line
because the president of the United States has just walked in and ordered a
hamburger. The preempted thread doesn't get bumped to the back of the line
but is simply moved aside while the president gets his lunch. As soon as the
president leaves, the first thread can resume ordering its meal.

Quantum End
When the running thread exhausts its CPU quantum, Windows NT must deter
mine whether the thread's priority should be decremented and then whether
another thread should be scheduled on the processor.

If the thread priority is reduced, Windows NT looks for a more appropri
ate thread to schedule. (For example, a more appropriate thread would be a
thread in a ready queue with a higher priority than the new priority for the
currently running thread.) If the thread priority is not reduced, Windows NT
selects the next thread in the ready queue at that same priority level and moves
the previously running thread to the tail of that queue (giving it a new quan
tum value and changing its state from running to ready). This case is illustrated
in Figure 4-19. If no other thread of the same priority is ready to run, the thread
gets to run for another quantum.

15
Running Ready

14

13

12

11

Figure 4-19
Quantum end thread scheduling

The fact that a thread has a quantum does not mean that it must finish
the quantum. A thread might voluntarily relinquish control of the CPU before
its time slice ends by going into a wait state, or it might be preempted before

F 0 U R : Processes and Threads

finishing its time slice by a thread with a higher priority. As discussed earlier,
if the thread voluntarily relinquishes the CPU, it will start with a new quantum
when it begins running again. If the thread is preempted, however, it moves
to the head of the ready queue for the priority it was running at and, later, when
it is scheduled again, finishes the remaining time slice it had already begun.

Termination
When a thread finishes running (either because it returned from its main
routine, called ExitThread, or was killed with TerminateThread), it moves from
the running state to the terminated state. If there are no handles open on the
thread object, the thread is removed from the process thread list and the as
sociated data structures are deallocated and released.

Context Switching
A thread's context and the procedure for context switching vary depending on
the architecture of a processor. A typical context switch requires saving and
reloading the following data:

ill Program counter

ill Processor status register

II Other register contents

II User and kernel stack pointers

II A pointer to the address space in which the thread runs (the
process's page table directory)

To make a context switch, the kernel saves the old thread's kernel stack
pointer in the KTHREAD block and then sets the stack pointer to the new
thread's kernel stack address. The kernel then saves the above information
about the old thread by pushing it onto the current thread's kernel-mode stack
and updating the stack pointer. The kernel loads the new thread's context and,
if the new thread is in a different process, loads the address of its page table
directory (so that its address space is available) and flushes the translation
buffer cache. If a kernel APC that needs to be delivered is pending, an interrupt
at IRQL 1 is requested. Otherwise, control passes to the new thread's restored
program counter and the thread resumes execution.

203

INSIDE WINDOWS NT

Idle Thread
When no runnable thread exists on a CPU, Windows NT dispatches the per
CPU idle thread. Each CPU is allotted one idle thread since on a multipro
cessor system one CPU can be executing a thread while other CPUs might have
no threads to execute. Windows NT reports the priority of the idle thread as
0. In reality, however, such threads don't have a priority level because they run
only when there are no threads to run. (Remember, only one thread per Win
dows NT system is actually running at priority 0-the zero page thread.) In fact,
the idle loop runs at dispatch level (IRQL 2), polling for work to do: deferred
procedure calls (DPCs) to deliver or threads to dispatch to. Although some
details of the flow vary between architectures, the basic flow of control of the
idle thread is as follows:

1. Enables and disables interrupts (allowing any pending interrupts to
be delivered).

2. Checks whether any DPCs (described in Chapter 3) are pending on
the processor. If DPCs are pending, clears the pending software in
terrupt and delivers them.

3. Checks whether a thread has been selected to run next on the pro
cessor, and if so, dispatches that thread.

4. Calls the HAL processor idle routine (in case any power manage
ment functions need to be performed).

Various Windows NT process viewer utilities report the idle process us
ing different names. Task Manager calls it "System Idle Process;' Pview and
Pviewer report it as "Idle;' Pstat calls it "Idle Process," Tlist calls it "System Pro
cess;' and Qslice calls it "SystemProcess:' The names vary because there is no
real process name in the process block; each utility had to pick its own name.
No matter what it's called, however, the Idle process is always process ID 0.

Adjusting Thread Scheduling

204

In some situations, Windows NT adjusts the priority or quantum value of threads.
The intent of these adjustments is to improve system throughput and respon
siveness. Like any scheduling algorithms, however, these adjustments are not
perfect, and they might not be beneficial to all applications.

N 0 TE Windows NT never boosts the priority of threads in the
real-time range (16 through 31)-Windows NT assumes that if you're
using the real-time thread priorities, you know what you're doing.

F 0 U R : Processes and Threads

Here are the four types of scheduling adjustments:

• Increasing the quantum for the threads in the foreground process

• Boosting priority upon wait completion

• Boosting priority for threads entering a wait state

• Boosting priority for threads that are not getting any CPU time

Quantum Stretching
The first of these adjustments involves increasing the quantum for threads
running inside the foreground application. The foreground application is the
process that owns the thread that owns the window that is in focus. This ad
justment occurs only on Windows NT Workstation and only to interactive pro
cesses (processes launched from the interactive session) in the Normal, High,
or Real-time priority class.

If you open the System applet in the Control Panel and turn to the Per
formance tab, you'll see a dialog box like the one shown in Figure 4-20. The
Application Performance section has a slider control with three settings: None,
in the middle, and Maximum. This setting is stored in the registry in HKLM\
System ... \Control\PriorityControl\Win32PrioritySeparation. The value is 0, 1,
or 2, corresponding to the three selections on the slider bar. (The default
setting on all Windows NT systems is Maximum, or 2.)

Figure 4-20
Adjusting the foreground application's quantum

205

INSIDE WINDOWS NT

If you set the boost to None, the foreground thread's quantum is the
system default quantum. If set to the middle notch, the default quantum
doubles. And if set to the Maximum setting, the default quantum triples. As
mentioned earlier, Windows NT Server uses the same quantum value for
foreground and background processes, regardless of the system performance
boost setting.

When the foreground window changes, the Win32 subsystem changes the
quantum values for all the threads in the foreground process by using the value
of the Win32PrioritySeparation registry field as an index into a three-element
array named PspForegroundQuantum. Each element in the array contains the
quantum value that should be used for threads in the foreground process for
the three application boost settings in Control Panel. The values of this array
are shown in Table 4-20.

Table 4-20 Quantum Values at Each Boost Setting

Windows NT Windows NT
Boost Setting System Variable Workstation Server

None PspForegroundQuantum[O] 6 36

Middle PspForegroundQuantum[1] 12 36

Maximum PspForegroundQuantum[2] 18 36

206

Quantum stretching is new to Windows NT 4.0. In earlier versions of
Windows NT, the system increased the base priority of the threads in the fore
ground process by either I (middle setting) or 2 (Maximum setting). The prob
lem with this approach was that when a process was brought into the foreground
and run, it would completely block execution of background interactive pro
cesses because the foreground threads were running at a l,iigher priority than
the background threads.

For example, if you started a long-running spreadsheet recalculation and
then switched to another application that was CPU-intensive (such as a graph
ics-intensive game), the spreadsheet process running in the background would
get little CPU time even though, from the point of the user, both processes were
running at the same priority class. Quantum stretching also does not prevent
other background applications from running but does give the one in the
foreground a little longer to run before relinquishing the processor. So, while
this new method of increasing the quantum of foreground threads instead of

F 0 U R : Processes and Threads

their priority can reduce the quick responsiveness of foreground applications
in relation to how they ran under Windows NT 3.x, it is fairer to background
applications. Of course, if you do want to run an interactive application at a
higher priority than all other interactive processes, you can always change the
priority class to High using Task Manager (or use the start I high command from
the command prompt).

Priority Boosting After I/Os
Windows NT gives temporary priority boosts upon completion of certain 1/0
and wait operations so that threads that were waiting on 1/0 or a kernel object
will have more of a chance to run right away and process whatever was being
waited on, issue some other 1/0 or wait request, and go back to sleep.

The amount of boost a thread receives depends on the kind of wait it has
just completed. If the thread has finished a long wait for a slow device, it gets
a big boost; if the thread had a short wait for a fast device, it gets a smaller boost.
Thus, waiting on fast devices such as hard disks or CD-ROMs nets a thread a
small boost; waiting on something somewhat slower, such as the network, nets
it a larger boost; and waiting on a slow device nets it the largest boost. Boosts
are also given when completing a wait on various synchronization objects, such
as events or semaphores.

Although it is up to the device driver to specify the priority boost when
it completes an 1/0 request, the values shown in Table 4-21 are the suggested
default boost values as defined in \ddk\include\ntddk.h (one of the include
files in the Windows NT Device Driver Kit).

Table 4-21 Default Boost Values for Some Devices

Device or Object

Event, semaphore

Disk, CD-ROM, parallel, video

Network, mailslot, named pipe, serial

Keyboard, mouse

Sound

Boost

1

1

2
6

8

As illustrated in Figure 4-21, after the boost is applied, the thread gets
to run for one quantum at the elevated priority level. After the thread has
completed its quantum, it decays one priority level and then runs another quan
tum. This cycle continues until the thread's priority level has decayed back to
its base priority.

207

INSIDE WINDOWS NT

208

Time

•
Figure 4·21
Life cycle of a thread

Notice that the boosted thread can still be preempted by another thread
with a higher priority, but the interrupted thread gets to finish its time slice
at the boosted priority level before it decays to the next lower priority.

As noted earlier, these boosts apply only to threads in the dynamic pri
ority range (0 through 15). No matter how large the boost is, the thread will
never be boosted beyond level 15 into the real-time priority range. In other
words, a priority-14 thread that receives a boost of 5 will go up to priority 15.
A priority-15 thread that receives a boost will remain at priority 15.

Priority Boosts for GUI Threads Entering a Wait State
By default, all threads in processes started in your interactive session have a
base priority of 8, the initial priority of a thread in the Normal process priority
class. If you look at the current thread priority of a thread waiting for a win
dow message, however, you'll notice the current priority is 14. (To try this, start
a copy of Notepad and use PerfMon to examine its current and base priority.)

· The kernel-mode component of the Win32 subsystem boosts the current pri
ority of threads waiting for user input or window messages to 14 so that when
input is available the thread will have a greater chance of running right away
it can process the user input and likely return to a wait state. Unlike the boosts
described in the previous section, with this boost, the priority drops immedi
ately back to the base priority of the thread when it finishes its quantum.
However, Windows NT doubles the quantum when it grants the priority boost
so that when the thread does run, it will run for twice the normal quantum
before dropping all the way down to its previous base priority.

F 0 U R : Processes and Threads

EXPERIMENT: Watching Priority Boosts and Decays
Using the CPUSTRES tool in the Win32 SDK (\MSTOOLS\BIN\
CPUSTRES.EXE), you can watch priority boosts in action. Take the
following steps:

1. Run \MSTOOLS\BIN\CPUSTRES.EXE.

2. Run Performance Monitor. (Select chart view if you're in some
other view.)

3: Click on the Chart menu item, and select Optfons. Change
the chart interval to 0.1 (one-tenth) second and the vertical
maximum to 15 (because priority values inthe dynamic
range only go up to 15).

4. Click the (or press Ctrl-I) to bring up the Add Counters
dialog box.

5. Select the Thread objed, and then select both Priority Base
Prfority Current counters. (Hold down the Ctrl button to se
lect ·the second· counter while keeping the seleetion of the
firSt counter.) ·

6. Go .to the Instance box, and scroll down the list until you see
the:.CPUSTRES pro~ess. Select the second thread, (The first
thread is the GUI thread.)You should see something like_ this:

Cli~kthe Add button,and then dick the Done·button, .. ·

Bring CPUSTRES to the foreground. (Alt-Tab to it,· or dick
on its. icon inthe task'bar.) . ·

9 .. You should see the current priority being. boosted and then.
· decaying back down to the base priority.

209

INSIDE WINDOWS NT

210

Priority Boosts for CPU Starvation
Imagine the following situation: you've got a priority-7 thread that's running,
preventing a priority-4 thread from ever getting the CPU; however, a priority-11
thread is waiting on some resource that the priority-4 thread has locked. But
because the priority-7 thread in the middle is eating up all the CPU time, the
priority-4 thread will never run long enough to finish whatever it's doing and
release the resource blocking the priority-11 thread.

What does Windows NT do to address this situation? Once a second, the
balance set manager (a system thread that exists primarily to perform memory
management functions and is described in more detail in Chapter 5) scans the
ready queues for any threads that have been in the ready state (that is, have
not run) for longer than 300 clock ticks (approximately 3 to 4 seconds, depend
ing on the clock interval). If it finds such a thread, the balance set manager

EXPERIMENT: Watching Priority
Boosts for CPU Starvation
You can watch this priority boost for CPU starvation using the CPU
STRES tool in the Resource Kit and the Platform SDK by following
these steps:

1. Run \MSTOOLS\lUN\CPUSTRES,EXE, and make thread 2
active by clicking on the checkbox labeled ''.Active" under
neath thread 2. Change the activity of thread 2 to Maximum.

2. Run Performanc~ Monitor. (S~lect chart view if you're in some
other view.)

3. Choose Chart from the Options menu. Change the chart in
terval to 0.1 (one-tenth) second and the vertical maximum to
15 (because priority values in the dynamic range only go up
through 15). ·

4. Click the+ (or press Ctr~I) to bring up the Add Counters
dialog box.

5. Select the Thread object, and then select both the Priority
Base and the Priority Current counters. (Hold down the Ctrl
key to select the second counter.while keeping the selection
of the first counter.)

6. Co to the Instance box, and scroll down until you· see the
CPUSTRES process. You Should see three threads. Select the
second thread. (The first.thread.is.the GUI thread, and the

F 0 U R : Processes and Threads

third thread is what the application calls thread 2, which you
activated earlier and set to maximum activity.) You should see
something like this:

7. Click Add, and then click Done.

8. Bring CPUSTRES to the foreground. {Alt-Thb to it, or click
its icon in the task.bar'.) ·

9. Every 4 ~conds,)iou should see the current priority ooosted
· : : · .to 14 and then dropped back to 7, as shown here:

211

INSIDE WINDOWS NT

boosts the thread's priority to 15 and gives it double the normal quantum. Once
the 2 quantums are up, the thread's priority decays immediately to its original
base priority. If the thread wasn't finished and there is a higher priority thread
ready to run, the decayed thread will return to the ready queue, where it again
becomes eligible for another boost if it remains there for another 300 clock ticks.

The balance set manager doesn't actually scan all ready threads every time
it runs. To minimize the CPU time it uses, it scans only 16 ready threads; if there
are more threads at that priority level, it remembers where it left off and picks
up again on the next pass. Also, it will boost only 10 threads per pass-if it finds
10 threads meriting this particular boost (which would indicate an unusually
busy system), it stops the scan at that point and picks up again on the next pass.

Will this algorithm always solve the priority inversion issue? No-it's not
perfect by any means. But over time, CPU-starved threads should get enough
CPU time to finish whatever processing they were doing and reenter a wait
state.

Thread Scheduling on Symmetric Multiprocessing Systems

212

If scheduling access to system processors is based on thread priority, what
happens if you're using more than one processor? In summary, Windows NT
attempts to schedule the highest priority runnable threads on all available
CPUs. However, several factors influence the choice of which CPU a thread
will run on. Before I describe the algorithms, I'll need to define a few terms.

Affinity
Each thread has an affinity mask that specifies the processors on which the
thread is allowed to run. The thread affinity mask is inherited from the pro
cess affinity mask. By default, all processes (and therefore all threads) begin
with an affinity mask that is equal to the set of active processors on the system
in other words, all threads can run on all processors.

Two things can ,alter that:

• A call made by the application to the SetProcessAJ!inityMask or
SetThreadAJ!inityMask functions.

11111 An imagewide affinity mask specified in the image header. (For
more information on the detailed format of Windows NT images,
see the article "Portable Executable and Common Object File For
mat Specification" in the MSDN Library.)

F 0 U R : Processes and Threads

Ideal and Next Processor
Each thread has two CPU numbers stored in the kernel thread block:

Ill Ideal processor, or the preferred processor that this thread should
run on

Ill Next processor, or the processor on which the thread has been se
lected to run next (or did run last)

The ideal processor is chosen randomly when a thread is created, based
on a seed in the process block. The seed is incremented each time a thread is
created so that the ideal processor for each new thread in the process will rotate
through the available processors on the system. Windows NT does not change
the ideal processor once the thread is created; however, an application can
change the ideal processor value for a thread using the SetThreadldea!Processor
function.

Choosing a Processor for a Ready Thread
When a thread becomes ready to run, Windows NT first tries to schedule the
thread to run on an idle processor. If there is a choice of idle processors, pref
erence is given first to the thread's ideal processor, then to the thread's next
processor, then to the currently executing processor (that is, the CPU on which
the scheduling code is running). If none of these CPUs are idle, Windows NT
picks the first available idle processor by scanning the idle processor mask from
lowest to highest CPU number.

If all processors are currently busy and a thread becomes ready, Windows
NT looks to see whether it can preempt a thread in the running or standby state
on one of the CPUs. Which CPU is examined? The first choice is the thread's
ideal processor, and the second choice is the thread's next processor. If neither
of those CPUs are in the thread's affinity mask, Windows NT selects the first
processor in the active processor mask that the thread can run on.

If the processor selected already has a thread selected to run next (wait
ing in the standby state to be scheduled) and that thread's priority is less than
the priority of the thread being readied for execution, the new thread preempts
that thread out of the standby state and becomes the next thread for that CPU.
If there is no next thread selected to run for that CPU, Windows NT checks
whether the priority of the currently running thread is less than the thread
being readied for execution. If so, the currently running thread is marked to
be preempted and Windows NT queues an interprocessor interrupt to kick off
the currently running thread in favor of this new thread.

213

INSIDE WINDOWS NT

214

N 0 T E Windows NT does not look at the priority of the current
and next threads on all the CPUs-just on the one CPU selected as
described above. If no thread can be preempted on that one CPU,
the new thread is put in the ready queue for its priority level, where
it awaits its turn to get scheduled.

Selecting a Thread to Run on a Specific CPU
In several cases (such as when a thread lowers its priority, changes its affinity,
or delays or yields execution), Windows NT must find a new thread to run on
the CPU that the currently executing thread was running on. On a single
processor system, Windows NT simply picks the first thread in the ready queue,
starting with the highest-priority ready queue with at least one thread and
working its way down. On a multiprocessor system, however, Windows NT
doesn't simply pick the first thread in the ready queue. Instead, it looks for a
thread that meets one of the following conditions:

Ill Ran last on the specified processor

Ill Has its ideal processor set to the specified processor

Ill Has been waiting to run for longer than 2 quantums

Ill Has a priority greater than or equal to 24

Why does it matter which processor a thread was last running on? As
usual, the answer is speed-giving preference to the last processor a thread
executed on maximizes the chances that thread data remains in the second
ary cache of the processor in question.

When the Highest-Priority Ready Threads Are Not Running
As explained in the preceding section, on a multiprocessor system, Windows
NT doesn't always select the highest-priority thread to run on a given CPU.
Thus, a thread with a higher priority than the currently running thread on a
given CPU can become ready but might not immediately preempt the current
thread.

Another situation in which the highest-priority thread might not preempt
the current thread is when a thread's affinity mask is set as a subset of the
available CPUs. In that case, the processors to which the thread has affinity are
currently running higher-priority threads and the thread must wait for one of
those processors-even if another processor is free or running lower-priority
threads that it could otherwise preempt. Windows NT will not move a running

F 0 U R : Processes and Threads

thread that could run on a different processor from one CPU to second pro
cessor to permit a thread with an affinity for the first processor to run on the
first processor.

For example, consider this scenario: CPU 0 is running a priority-8 thread
that can run on any processor, and CPU 1 is running a priority-4 thread that
can run on any processor. A priority-6 thread that can run on only CPU 0
becomes ready. What happens? Windows NT will not move the priority-8 thread
from CPU 0 to CPU 1 (preempting the priority-4 thread) so that the priority-
6 thread can run.

Conclusion
In this chapter, we've examined the structure of processes and threads, seen
how they are created and destroyed, and looked at how Windows NT decides
which threads should run and for how long.

Many references in this chapter are to topics related to memory manage
ment. Because threads run inside processes and processes in large part define
an address space, the next logical topic is how Windows NT performs virtual
and physical memory management-the subjects of Chapter 5.

215

C H A P T E R F V E

Memory Management

In this chapter, you'll learn how Microsoft Windows NT implements virtual
memory and how it manages the subset kept in physical memory. These jobs
involve two primary tasks:

II Translating, or mapping, a process's virtual address space into physi
cal memory so that when a thread running in the context of that
process reads or 'writes to the virtual address space, the correct physi
cal address is updated

Ill Paging some of the contents of memory to disk when it becomes over
committed-that is, when running threads or system code try to use
more physical memory than is currently available-and bringing the
contents back jnto physical memory when needed

Although the details by which the hardware maps virtual memory onto
physical memory create some differences in the way Windows NT accomplishes
these tasks, in this chapter I'll focus primarily on the platform-independent
characteristics of the memory manager that are the same on both x86 and
Alpha systems. (I'll point out any significant differences as they come up.)

In addition to providing 32-bit virtual memory management, the memory
manager provides a core set of services on which the various Windows NT en
vironment subsystems are built. These services include memory mapped files
(internally called section objects), copy-on-write memory, and support for appli
cations using large, sparse address spaces. In this chapter, I'll summarize these
basic services and review pertinent concepts such as reserved versus commit
ted memory and shared memory. I'll also describe the internal structure and
components that make up the memory manager, including key data structures
and algorithms.

217

INSIDE WINDOWS NT

Services the Memory Manager Provides

218

The memory manager provides a set of system services to environment sub
systems to allocate and free virtual memory, share memory between processes,
map files into memory, flush virtual pages to disk, retrieve information about
a range of virtual pages, change their protection, and lock them into memory.

Like other Windows NT executive services, the memory management
services allow their caller to supply a process handle, indicating the particu
lar process whose virtual memory is to be manipulated. The caller can thus
manipulate both its own memory or (with the proper permissions) that of
another process. For example, as explained in Chapter 4, one process can
create another, giving itself the right to manipulate the child process's virtual
memory. Thereafter, the parent process can allocate, deallocate, read, and write
memory on behalf of the child process by calling virtual memory services and
passing a handle to the child process as an argument. This feature is used by
subsystems to manage the memory of their client processes, and it is also key
for implementing debuggers-since debuggers must be able to read and write
to the memory of the process being debugged.

Most of these services are exposed through the Win32 APL The Win32
API has three groups of functions for managing memory in applications: page
granularity virtual memory functions (Virtualxxx), memory-mapped file func
tions (CreateFileMapping, Map ViewofFile), and heap functions (Heapxxx and the
older interfaces Localxxx and Globalxxx). (I'll describe the heap manager later
in this section.)

The memory manager also provides a number of services to device driv
ers (and other kernel-mode system code), such as allocating and deallocating
physical memory and locking pages in physical memory for direct memory
access (DMA) transfers. These functions begin wit;_h the prefix Mm. In addi
tion, though not strictly part of the memory manager, the executive support
routines that begin with Ex that are used to allocate and deallocate from the
system heaps (paged and nonpaged pool) as well as manipulate look-aside lists.
I'll touch on these topics later in this chapter, in the section "System Memory
Pools" on page 227.

Although I'll be referring to Win32 functions and kernel-mode memory
management and memory allocation routines provided for device drivers, I won't
cover the interface and programming details, since this book describes the
internal operations of these functions. Refer to the Win32 application program
ming interface (API) and Device Driver Kit (DDK) documentation on MSDN
for a complete description of the available functions and their interfaces.

F I V E : Memory Management

Reserving and Committing Virtual Memory
Windows NT provides an optional two-phase approach to memory allocation
applications can first reserve address space and then commit storage in that address
space (either in the paging file or by mapping a view of a mapped file). Or they
can reserve and commit in the same function call. These services are exposed
through the Win32 VirtualAlloc and VirtualAllocEx functions~

Reserved memory is simply a way for a thread to reserve a range of vir
tual addresses for future use. You reserve address space, but you commit stor
age. Accessing reserved memory results in an access violation because there's
no committed storage behind the memory to contain or store the data. Com
mitted memory, in contrast, is memory for which the memory manager has
corresponding disk storage, called the backing store. Accessing committed memory
results in the page being brought into physical memory (if it isn't already there).

Pages in a process address space are either free (not committed or re
served, and inaccessible), reserved, or committed. Committed pages are either
private (and thus inaccessible to any other process) or mapped into a view of
a section (which might or might not be mapped by other processes). Sections
are described in the next section as well as in the "Section Objects" section on
page 298.

You can decommit storage and/or release address space with the Virtua/Free
or Virtua/FreeEx functions. The difference between decommittal and release is
similar to the difference between reservation and committal-decommitted
memory is still reserved, but released memory is neither committed nor re
served. (It's free.)

Using the two-step process of reserving and committing memory can re
duce page file usage by deferring committing storage until needed. Reserving
memory is a relatively fast and inexpensive operation under Windows NT because
it doesn't consume any page file space (a precious system resource) or process
page file quota (a limit on the page file space a process can consume). All that
need to be updated or constructed are the relatively small internal data struc
tures that represent the state of the process address space. (I'll explain these data
structures, called virtual address space descriptors, or VADs, later in the chapter.)

Reserving and then committing memory is useful for applications that
need a potentially large contiguous memory buffer; rather than committing
page file storage for the entire region, the address space can be reserved and
then committed later when needed. An application of this technique in the
operating system is the user-mode stack for each thread. When a thread is
created, a stack is reserved. (1 MB is the default; you can override this size with
the CreateThread function call or on an imagewide basis by using the /STACK

219

INSIDE WINDOWS NT

linker flag.) However, only two pages are committed: one for the initial page
in the stack and one as a guard page to trap references beyond the end of the
committed portion of the stack and automatically expand it.

Windows NT aligns each region of reserved process address space to be
gin on an integral boundary defined by the value of the system allocation granu
larity, which can be retrieved from the Win32 GetSystemlnfofunction. Currently,
this value is 64 KB on all systems. This size was chosen so that if support were
added for future processors with large page sizes (for example, up to 64 KB),
the risk of requiring changes to applications that made assumptions about
allocation alignment would be reduced. (Windows NT kernel-mode code is not
subject to the same restrictions; it can reserve memory on the basis of page
granularity.)

Finally, when you reserve a region of address space, Windows NT ensures
that the size of the region is a multiple of the system page size, whatever that
might be. For example, since .x86 systems use 4-KB pages, if you tried to reserve
a region of memory 18 KB in size, the actual amount reserved on an .x86 sys
tem would be 20 KB. (On .x86 systems only, Windows NT does make use of the
4-MB "large page" feature of the .x86 architecture to map NTOSKRNL.EXE
in system address space.)

Shared Memory and Mapped Files

220

As is true with most modern operating systems, Windows NT provides a mecha
nism to share memory among processes and the operating system. Shared memory
can be defined as memory visible to more than one process or that is present
in more than one virtual address space. For example, if two processes compile
C programs, it would make sense to load the compiler into memory only once,
and when another process invokes it, simply map the second process's virtual
addresses to the physical page frames already occupied by the compiler, as
illustrated in Figure 5-1.

Each process would still maintain its private memory areas in which to
store private data, but the compiler code and unmodified data pages could be
shared without harm. As I'll explain later, this kind of sharing happens by
default on Windows NT because executable images are mapped as read-only
sections and therefore the code portion is never written to and any read/write
data is marked copy-on-write. (See the section "Copy-on-Write" on page 224
for more information.)

The underlying primitives in the memory manager used to implement
shared memory are called section objects. In the Win32 API, they are called file
mapping objects. The internal structure and implementation of section objects
are described later in the chapter (beginning on page 298).

Process 1 virtual
memory

Process 2 virtual
memory

Figure 5-1
Sharing memory between processes

F I V E : Memory Management

Physical memory

This fundamental primitive in the memory manager is used to map vir
tual addresses to pages on disk, whether that is in the page file or in some other
file that an application wants to access as if it were in memory. A section can
be opened by one process or by many; in other words, section objects don't
necessarily imply shared memory.

221

INSIDE WINDOWS NT

A section object can be connected to an open file on disk (called a mapped
file) or to a chunk of the paging file (to provide shared memory). To create a
section object, call the Win32 CreateFileMapping function, specifying the file
handle to map it to (-1 for a page file backed section), and optionally a name
and security descriptor. If the section has a name, other processes can open it
with openFileMapping. Or you can grant access to section objects through handle
inheritance or handle duplication. Device drivers can also manipulate section
objects with the ZwDpenSection, ZwMap ViewOJSection, and ZwUnmap VzewOJSection
functions. (See the Windows NT DDK documentation for details.)

A Windows NT section object can refer to files that are much larger than
can fit in the address space of a process. (If the paging file backs a section
object, sufficient space must exist in the paging file to contain it.) Therefore,
to access a section object, a process can map only the portion of the section
object that it requires (called a view of the section) by calling the Map ViewOJFile
function and then specifying the range to map. Mapping views permits pro
cesses to conserve address space, since only the views of the section object needed
at the time must be mapped into memory.

Win32 applications can use mapped files to conveniently perform I/O
to files by simply making them appear in their address space. But user appli
cations aren't the only consumers of section objects: the image loader uses sec
tion objects to map executable images, dynamic-link libraries (DLLs), and
device drivers into memory, and the cache manager uses them to access data
in cached files. (For information on how the cache manager integrates with
the memory manager, see Chapter 8.)

How shared memory sections are implemented both in terms of address
translation and the internal data structures is explained later in this chapter.

Protecting Memory

222

Windows NT provides memory protection for processes and the operating
system itself so that no user process can inadvertently corrupt the address space
of another process (or the operating system itself). Windows NT affords this
protection in four primary ways.

First, all systemwide data structures and memory pools used by kernel
mode components of the system can be accessed only while in kernel mode
user-mode threads can't access these pages. If they attempt to do so, the hardware
generates a fault, which in turn the memory manager reports to the thread
as an access violation.

F I V E : Memory Management

N 0 TE In contrast, Microsoft Windows 95 and Microsoft Windows
98 have some pages in system address space that are writable from
user mode, thus allowing an errant application to corrupt key sys
tem data structures and crash the system.

Second, each process has a separate, private address space, protected from
being accessed by any thread belonging to another process (except when
shared memory is being used, in which case just the shared pages can be seen
by more than one process). Each time a thread references an address, the vir
tual memory hardware, in concert with the Windows NT memory manager,
intervenes and translates the virtual address into a physical one. By control
ling how virtual addresses are translated, Windows NT can ensure that threads
running in one process don't inappropriately access a page belonging to an
other process.

Third, in addition to the implicit protection virtual-to-physical address
translation offers, all processors supported by Windows NT provide some form
of hardware-controlled memory protection (such as read/write, read-only, and
so on); the exact details of such protection vary according to the processor. For
example, code pages in the address space of a process are marked read-only
and are thus protected from modification by user threads. Table 5-1 lists the
memory protection options defined in the Win32 APL (See the Virtua!Protect,
VirtualProtectEx, VirtualQuery, and VirtualQueryEx functions.)

And finally, shared memory section objects have standard Windows NT
access control lists (ACLs) that are checked when processes attempt to open
them, thus limiting access of shared memory to those processes with the proper
rights. Security also comes into play when a thread creates a section to contain
a mapped file. To create the section, the thread must have at least read access
to the underlying file object or the operation will fail.

Once a thread has successfully opened a handle to a section, its actions
are still subject to the memory manager and the hardware-based page protec
tions described earlier. A thread can change the page-level protection on vir
tual pages in a section if the change doesn't violate the permissions in the ACL
for that section object. For example, the memory manager allows a thread to
change the pages of a read-only section to have copy-on-write access, but not
to have read/write access. The copy-on-write access is permitted because it has
no effect on other processes sharing the data.

These four primary memory protection mechanisms are part of the rea
son that Windows NT has the reputation of being a robust, reliable operating
system that is impervious and resilient to application errors.

223

INSIDE WINDOWS NT

Table s-1 Memory Protection Options Defined in the Win32 API

Attribute Description

PAGE_NOACCESS

PAGE_READONLY

PAGE_READWRITE

PAGE_EXECUTE*

PAGE_ EXECUTE_ READ*

PAGE_EXECUTE_READWRITE*

PAGE_WRITECOPY

PAGE_EXECUTE_WRITECOPY

PAGE_GUARD

Any attempt to read from, write to, or execute code
in this region causes an access violation.

Any attempt to write to or execute code in memory
causes an access violation, but reads are permitted.

The page is readable and writable-no action will
cause an access violation.

Any attempt to read from or write to code in memory
in this region causes an access violation, but execution
is permitted.

Any attempt to write to code in memory in this re
gion causes an access violation, but executes and
reads are permitted.

The page is readable, writable, and executable-no
action will cause an access violation.

Any attempt to write to memory in this region causes
the system to give the process a private copy of the
page of physical storage. Attempts to execute code
in memory in this region cause an access violation.

Any attempt to write to memory in this region causes
the system to give the process a private copy of the
page of physical storage.

Any attempt to read from or write to a guard page
raises an EXCEPTION_GUARD_PAGE exception
and turns off the guard page status. Guard pages
thus act as a one-shot alarm.

* Execute-only access is not implemented by the x86 or Alpha architecture and so is not supported by
Windows NT in any practical sense. Instead, these processors always allow readable pages to be executed.

Copy-On-Write

224

Copy-on-write page protection is an optimization the memory manager uses
to conserve physical memory. When a process maps a copy-on-write view of a
section object that contains read/write pages, instead of making a process
private copy at the time the view is mapped (as the Digital Open VMS operat
ing system does), the memory manager defers making a copy of the pages until
the page is modified. All modern UNIX systems use this technique as well. For
example, as shown in Figure 5-2, two processes are sharing three pages, each
marked copy-on-write.

Process
address
space

Figure 5-2
The "before" of copy-on-write protection

F I V E : Memory Management

Process
address
space

If a thread in either process writes to the page, a memory management
fault is generated. The memory manager sees that the write is to a copy-on-write
page, so instead of reporting the fault as an access violation, it allocates a new
read/write page in physical memory (backing the page in the paging file),
copies the contents of the original page to the new page, updates the corre
sponding page-mapping information (explained later in this chapter) in this
process only to point to the new location, and dismisses the exception, thus
causing the instruction that generated the fault to be reexecuted. This time,
the write operation succeeds, but as shown in Figure 5-3 on the next page, the
newly copied page is now private to the process that did the writing and isn't
visible to the other processes still sharing the copy-on-write page. Each new
process that writes to that same shared page will also get its own private copy.

Copy-on-write is used to implement breakpoint support in debuggers. For
example, by default, code pages start out as read-only. If a programmer sets a
breakpoint while debugging a program, however, the debugger must add a
breakpoint instruction to the code. It does this by first changing the protec
tion on the page to copy-on-write and then changing the instruction stream.
The memory manager then immediately creates a private copy of the code page
for the process whose thread set the breakpoint, while other processes continue
using the unmodified code page.

Copy-on-write is one example of an evaluation technique known as lazy
evaluation that the memory manager uses as often as possible. Lazy-evaluation
algorithms avoid performing an expensive operation until absolutely required
if the operation is never required, no time is wasted on it.

225

INSIDE WINDOWS NT

Process
address
space

Figure 5-3
The "after" of copy-on-write protection

Process
address
space

The POSIX subsystem takes advantage of copy-on-write. Typically, when
a UNIX application calls the fork function to create another process, the first
thing that the new process does is call the exec function to reinitialize the ad
dress space with an executable program. Instead of copying the entire address
space on fork, the new process shares the pages in the parent process by mark
ing them copy-on-write. If the child writes to the data, a process private copy
is made. If not, the two processes continue sharing and no copying takes place.
One way or the other, the memory manager copies only the pages the process
tries to write to rather than the entire address space.

To examine the rate of copy-on-write faults, see the Memory: Write Cop
ies/ Sec performance counter.

Heap Functions

226

A heap is a region of one or more pages that can be subdivided and allocated
in smaller chunks by a set of functions provided by the heap manager (described
on page 233). Every process starts out with a default process heap (usually I
MB in size, unless specified otherwise in the image file by using the I HEAP
linker flag). This size is just the initial reserve, however-it will expand auto
matically as needed. Several Win32 functions that might need to allocate tem
porary memory blocks as well as Win32 applications use this process default
heap. Processes can also create additional private heaps with the HeapCreate
function. When a process no longer needs a private heap, it can recover the
virtual address space by calling HeapDestroy. Only a private heap created with
HeapCreate-not the default heap-can be destroyed during the life of a process.

F I V E : Memory Management

To allocate memory from the default heap, a thread must obtain a handle
to it by calling GetProcessHeap. (This function returns the address of the data
structure that describes the heap, but callers should never rely on that.) With
a heap handle, a thread can then call HeapAlloc and HeapFree to allocate and
free memory blocks from that heap. The heap manager also provides an op
tion for each heap to serialize allocations and deallocations so that multiple
threads can call heap functions simultaneously without corrupting heap data
structures. The default process heap is set to have this serialization by default
(though you can override this on a case-by-case basis). For additional private
heaps, a flag passed to HeapCreate is used to specify whether serialization should
be performed.

For more information on the heap functions, see the Win32 API refer
ence documentation on MSDN or Chapter 9 in Jeffrey Richter's book Advanced
Windows (third edition, Microsoft Press, 1997).

System Memory Pools
At system initializaton, the memory manager creates two dynamically sized
memory pools that the kernel-mode components use to allocate system memory:

Ill Nonpaged pool Consists of ranges of system virtual addresses that
are guaranteed to be resident in physical memory at all times and
thus can be accessed from any address space without incurring pag
ing 1/0.

Ill Paged pool A region of virtual memory in system space that can
be paged in and out of the system process's working set. Because of
this flexibility, there is no guarantee that an address within the paged
portion of the system will not cause a page fault. For this reason,
data structures that are accessed at interrupt request levels (IRQLs)
at dispatch/DPC level or above must be allocated from nonpaged
pool. (IRQLs are explained in Chapter 3.)

Both memory pools are located in the system part of the address space
and are mapped to the same virtual address in every process. (In Table 5-9 on
page 248, you'll find out where in the system memory they start.) The execu
tive provides routines to allocate and deallocate from these pools; for informa
tion on these routines, see the functions that start with ExAllocatePool in the
Windows NT DDK documentation.

227

INSIDE WINDOWS NT

There are two types of nonpaged pools: one for general use and a small
one (four pages) reserved for emergency use when nonpaged pool is full and
the caller can't tolerate allocation failures. Uniprocessor systems have two paged
pools; multiprocessor systems have four. Having more than one paged pool
reduces the frequency of system code blocking on simultaneous calls to pool
routines.

Both nonpaged and paged pool grow automatically to a system-defined
maximum computed at system boot time. The initial size of these pools is also
calculated during system initialization and depends on memory size. You can
override the initial size of these pools by changing HKLM\System ... \Control\
Session Manager\Memory Management\NonPagedPoolSize or \PagedPoolSize
from 0 (which causes the system to compute the size) to the size desired in
bytes. You can't, however, increase the system-defined maximum size.

The computed sizes are stored in four global system variables, three of
which are exposed as performance counters. These three, as well as the two
registry keys that can alter the sizes, are listed in Table 5-2.

Table s-2 System Pool Size Variables and Performance Counters

Performance Registry Key
System Variable Counter to Override Description

MmSizeOJNonPaged- Memory: Pool HKLM\System\ ... \ Current size of
PoollnBytes Nonpaged Bytes Control\SessionManager\ nonpaged pool

NonPagedPoolSize

MmMaximumNon- Not available Not available Maximum size of
PagedPoollnBytes nonpaged pool

MmSizeOf PagedPool- Memory: Pool HKLM\System\ ... \Control\ Maximum (virtual)
lnBytes Paged Bytes Session Manager\Paged- size of paged pool

PoolSize

MmPagedPoolPage Memory: Not applicable Current physical
(number of pages) Pool Paged (resident) size of

Resident Bytes paged pool

228

F I V E : Memory Management

Q '-• ·EXPERIMENT! Monitoring Pool Usage
'Qie Memory I>t'.rformance CQUilter object has separate counters for the
size of nonpaged pool and paged pool (both virtual and physkal). In

· · ~tion, the Poolrilod utility (shipped in the \support\debug direc-
... ·· · t()tjt;<>ll tl:ieWind.ows NTretajl'CD".RQM ~well as ~n the DPK) allows

Yo~~ monitor the detailed ~ge 9f notipaged and paged· pool. To do ·
8o~ Yoli: nf9~t:h~v~ tlt~ miem~ Ell.able J;'ooJTagging optiol). selected.

··. ,(P<;)~ltag~is alwa,ys turJ}eq on in the checked huild}You should
'' ·./. b~ ~ that un$'6ption'diSables pool quota. che'cldng, which can. re;. ·· ..

·· . stilfm · · s ·. · · · on&their a. ed and non a ed ool uota~ ~ gqµigb# .. , p g.. p g ... P. q
··;.Tot~ on pool tagging, run the Gflags utility in the Windows NT

• .. ·· .. : :~~Jilice Kit ~d ~lect Enable Pool Tagging, as shown here:

, ·. : ·•··. :; ~ft click Apply and ~ebootthe system; After the system rebbots~ ..
. · Jrull :foolnipn; you s)lould see a display ljke the one at the' top of the
: .f<>uoWuig l>a!Je.. · · · ·

(continued)

229

INSIDE WINDOWS NT

230

EXPERIMENT: Monitoring Pool Usage continued

" ' ' .' : . " .. .·

The-highlighted lines represent changes: to t~e d1spiay; · CYou~citn- _-, -·
disable the highlighting fe!lture.) Type ? while Poohµon is rlliining'to
bring up its help screen. You can.configurewhich1>0()ls yoµ wan(to
monitor (paged, nonpaged, or both). and the sort order. Also, the
.command-line options are shown, which allow you to ri:ionitor specific .-.. -.
structures (or everythlng but one structure type). For example, the

. command poolriwn -iCM will monitor only structures of type CM. (the -
configuration manager, another name for the registry). The columns
have the following meanings: · · .

Column

Tag

Type
Allocs

Frees

Diff

Bytes-

Explanation

Four-byte tag given to the pool allocation - -- · - - ---- · -, ----- -- ·

Pool type (paged or nonpaged pool)

Count of all allocations (The ·number in parentheses shows
.the difference in. the Allocs column since the last update.)'

Count of all Frees (The nuinber in parentheses shOws_ the
difference in the Frees column ~ince the last update.)
Allocs minus Frees' · ·. · · · · · · -. · . -·

Total bytes consumed bftbis strUctµre type (The number m .
parentheses shows the difference fo the Bytes• cohrrnn since
the last update.) ·· ·· - - ·· -- --.- ·

Per Alloc · Size in bytes of a single instance of this structure type

In this exaniple, the CM structure is talcing up. the most space in ; .
paged pool, and Cc structures (cache manager) are :taking µp the mosf c

space in nonpftged pool. · · . . · ..

F I V E : Memory Management

Windows NT also provides a fast memory allocation mechanism called
look-aside lists. The basic difference between pools and look-aside lists is that
although general pool allocations can vary in size, a look-aside list contains only
fixed-sized blocks. Look-aside lists can be either pagable or nonpagable, so they
are allocated from paged or nonpaged pool. So although the general pools are

EXPERIPJIENT: Viewing the System Look-Aside Lists
· You can;display the contents and sizes of the various system look-aside
lists With the kernel debugg~r !iookaside command. The following ex
cerpt is from the output of this command:

.KDx86> llookaside

·lookas.i de "Ntfs I Ntf sScbData Lookas i deL i st" @ 8021 f790 "Ntfs"
·· ··· Tyipe · =. 0011 PagedPool RaiseifA1locationFailure

Current Depth. :;. 0 Max Depth = 4
Size = 3~0 Max A 11 oc = 1280
An ocateM·1 sses = 0 · FreeMi sses = 0
TotalAllocates = 0. TotalFrees = 0
Hit ,Rate; 0% HU Rate = 0%

. iotal: NonP~ged c~rreritly allocat~d for above lists =
:1-otal N:on Paged potential for above 1 i sts

: .. Total Paged currently al located for above 1 ists
1'ota1 Pagell·potenttal for' above '11 sts

· Expsmal,lNPageclLookasidelists@ 80.14bbc0
. . . . : . , ~ .

. ·,N9npaged 32 ~ytes @:8014bbc0

..

· ' Cufren:t ·Depth 4 · Max Deptrr
.. Size · . = . • 32 Max Alloc
:Al 1-0cateHi ts 59574 . FreeH1ts
totalAllocates = .. p1419 Total Frees =
'Hit Rat,e =· ·96% Hit Rate

Nonp~ged 64 bytes @ 8014bbe8
current Depth = 4 Max Depth =
Size , = 64 . Max A l1 oc
Al1acateH1ts. = 3'800~ · FreeHits
T.ota1Allocates =
Hit Rate · =

4504~ .· .. Tota TFrees =
· 84% Hit R,ate =

4
128

59578
'60585

. 98%

4·
256

38013
41655.

·91%

4864
4608
952

2896

231

INSIDE WINDOWS NT

more flexible in terms of what they can supply, look-aside lists are faster be
cause you don't have to search for free memory that fits a varying size alloca
tion (unless the look-aside list is empty, in which case the system must allocate
from the normal paged or nonpaged pool). Also, look-aside lists are generally
accessed by using fast atomic processor exchange instructions instead of by us
ing mutexes or spinlock acquisition.

By default, eight nonpaged and eight paged look-aside lists are created
at system initialization time, with size allocations starting at 32 and going up
to 256 in multiples of 32 bytes. Executive components and device drivers can
create look-aside lists that match the size of frequently allocated data structures.
For information on the functions involved in creating, deleting, and using look
aside lists, see the DDK documentation.

Digging into the Memory Manager
Now that we've reviewed the basic services the memory manager provides, we're
ready to begin our exploration of its internal structure and operation.

Components

232

The memory manager is part of the Windows NT executive and therefore exists
in the file NTOSKRNL.EXE. No parts of the memory manager exist in the
hardware abstraction layer (HAL). The memory manager consists of the fol
lowing components:

1111 A set of executive system services for allocating, deallocating, and
managing virtual memory, most of which are exposed through the
Win32 API or kernel-mode device driver interfaces.

11111 A translation-not-valid and access fault trap handler for resolving
hardware-detected memory management exceptions and making
virtual pages resident on behalf of a process.

1111 Several support routines that run in the context of six different
kernel-mode system threads:

0 The balance set manager (priority 16), which runs once per sec
ond, drives the overall memory management policies, such as
working set trimming, aging, and modified page writing. It works
in conjunction with system threads to do the actual work.

0 The process/stack swapper (priority 23) performs both process
and kernel thread stack inswapping and outswapping. It is awak-

F I V E : Memory Management

ened by the balance set manager and by the thread-scheduling
code in the kernel when an inswap or outswap operation needs to
take place.

D The modified page writer (priority 17) writes dirty pages on the
modified list back to the appropriate paging files. This thread is
awakened when the size of the modified list needs to be reduced.

D The mapped page writer (priority 17) writes dirty pages in
mapped files to disk. This second modified page writer thread is
needed because it can generate page faults that result in requests
for free pages. If there were no free pages and there was one modi
fied page writer thread, the system would deadlock waiting for
free pages.

D The dereference segment thread (priority 18) is responsible for
system cache and page file growth.

D The zero page thread (priority 0) zeros out pages on the free list
so that a cache of zero pages is available to satisfy future demand
zero page faults.

Each of these components is covered in more detail later in the chapter.
Built on top of the memory manager is the Windows NT heap manager, a

set of functions that allocate and deallocate variable amounts of memory (not
on a page-size granularity). A heap is simply a region of reserved address space
that is committed and parceled out as needed. The heap manager functions
exist in two places: NTDLL.DLL and NTOSKRNL.EXE. The subsystem APis
(such as the Win32 heap APis) use the copy in NTDLL, and various executive
components and device drivers use the copy in NTOSKRNL.

Although not documented, the heap manager supports a number of inter
nal validation checks that you can enable on a systemwide or a per-image ba
sis by using the Gflags utility in the Windows NT Resource Kit. Many of the flags
are self-explanatory in terms of what they cause the heap manager to do. In
general, enabling these flags will cause invalid use or corruption of the heap
to be caught either by returning an error code to the caller or by raising an
exception.

Internal Synchronization
Like all other components of the Windows NT executive, the memory manager
is fully reentrant and supports simultaneous execution on multiprocessor sys
tems-that is, it doesn't permit two threads to acquire resources in such a way

233

INSIDE WINDOWS NT

that they corrupt each other's data. To accomplish the goal of being fully re
entrant, the memory manager uses several different internal synchronization
mechanisms to control access to its own internal data structures, such as spinlocks
and executive resources. (Synchronization objects are discussed in Chapter 3.)

Systemwide resources to which the memory manager must synchronize
access include the page frame number (PFN) database (controlled by a spin
lock), section objects and the system working set (controlled by executive re
sources), page file creation (controlled by a mutex), as well as other internal
structures. Per-process memory management data structures are synchronized
using two mutexes: the working set lock and the address creation lock. The
address creation lock is held while the process is being created. The working
set lock is held while changes are made to the virtual address space descrip
tors (VADs) and working set lists. (I'll describe both VADs and working set lists
later in this chapter.)

Tuning the Memory Manager

234

Like most of Windows NT, the memory manager implements a self-tuning ap
proach in that it attempts to provide optimal system performance for varying
workloads and system sizes and types. Many internal "knobs" and control val
ues affect policy decisions the memory manager makes in this process of self
tuning. A few are in the registry, but the majority are undocumented global
variables accessible only from kernel mode.

WARN I NG Although you'll find references to many of these
knobs, you shouldn't change them. Windows NT has been tested to
operate properly for the current possible permutations of these val
ues that can be computed. Changing the registry might render the
system unbootable. Changing the value of system variables on a run
ning system can result in unpredictable system behavior, including
system hangs or even crashes.

You can find the registry values that affect memory management under .
the HKLM\System ... \Control\Session Manager\ Memory Management key.
For convenience, they're also listed in Table 5-3. (Windows NT 5.0 supplies
additional values.) For more details on these registry values, see the Windows
NT Resource Kit Registry Entries help file.

Most of the interesting tuning controls exist as system global variables
(look for names beginning with Mm) that contain hard-coded, fixed values,
or more often, values that are computed at system boot time on the basis of
memory size and product type (that is, Windows NT Workstation or Windows NT

F I V E : Memory Management

Table 5-3 Registry Variables That Affect the Memory Manager

Registry Value Description

ClearPageFileAtShutdown Specifies whether inactive pages in the paging file are filled
with zeros when the system stops. This is a security feature.

DisablePagingExecutive Specifies whether user-mode and kernel-mode drivers and
kernel-mode system code can be paged to disk when not in use.
If the value of this entry is 1, drivers and the kernel must re
main in physical memory. If the value is set to 0 (the default),
they can be paged to disk as needed.

IoPageLockLimit Specifies the limit of the number of bytes that can be locked
for I/0 operations. When this value is 0, the system uses the
default (512 KB). The maximum value is approximately the
equivalent of physical memory minus 7 MB.

LargeSystemCache Affects whether the file system cache or the working sets of
processes are given priority for space in memory. (You can
adjust this value only on Windows NT Server.)

NonPagedPoolSize Indicates initial size of nonpaged pool in bytes. When this
value is 0, the system calculates the value.

PagedPoolSize Indicates maximum size of paged pool in bytes. When the
value of this entry is 0, the system calculates the value.

NonPagedPoolQuota Indicates maximum nonpaged pool that can be allocated by
any process (in megabytes). If the value of this entry is set to 0,
the system calculates the value.

PagedPoolQuota Indicates maximum paged pool that can be allocated by any
process (in megabytes). If the value of this entry is set to 0,
the system calculates the value.

SystemPages Indicates number of system page table entries reserved for
mapping I/0 buffers, device drivers, kernel thread stacks,
or pages for programmed I/O into the system address space.
If the value is 0, the system calculates the value.

Server). Examples of these variables include the sizing of system memory (paged
pool, nonpaged pool, system cache, number of system page table entries), page
read cluster size, counters that trigger working set trimming, and thresholds
for the modified page writer.

The current memory sizes that determine whether Windows NT consid
ers a system to have a small, medium, or large amount of memory are listed
in Table 5-4. (These values are likely to increase over time as memory prices
continue to fall and the typical memory size on PCs increases.)

235

INSIDE WINDOWS NT

Table 5-4 Values That Determine System Memory Size

Size x86 Alpha

Small :o;l9MB ::;31 MB

Medium 20-32 MB Can't occur

Large :2:32 MB if Windows NT Workstation Same as x86
:2:64 MB if Windows NT Server

Determining the System Memory Size
Because device drivers (as well as other Windows NT kernel-mode com~
ponents) might make resource allocation and run-time policy decisions
based on these values, the following kernel-mode routines have been
provided (and are documented in the DDK):

Function Description

MmQuerySystemSize Returns whether the machine has a small,
medium, or large amount of available memory.

MmlsThisAnNt.AsSystem Returns TRUE for Windows NT Server and
Windows NT Server, Enterprise Edition, and
FALSE for Windows NTWorkstation. (This
routine's name contains a vestige of the ori
ginal product name planned for Windows
NT Server: "Windows NT Advanced Server."'

Examining Memory Usage

236

The Memory and Process performance counter objects provide access to most
of the details about system and process memory utilization. Throughout the
chapter, I'll include references to specific performance counters that contain
information related to the component being described. For a general overview
of how to interpret these counters, see Chapter 12, "Detecting Memory Bottle
necks;' in the Windows NT Workstation Resource Guide.

Besides Performance Monitor, a number of tools in Windows NT and in
the Windows NT Resource Kit display different subsets of memory usage in
formation. I've included relevant examples and experiments throughout the

F I V E : Memory Management

chapter. One particularly interesting experiment, ''Accounting for Physical
Memory" (on page 288), shows how to account for the physical memory on a
Windows NT system by using the available Drivers and Pstat tools. Although
you can't track all the memory with 100 percent accuracy, you can get a good
idea of how processes and the various components of the operating system use
memory.

One word of caution, however-different utilities use varying and some
times inconsistent or confusing names when displaying memory information.
The following experiment illustrates this point. (I'll explain the terms used
in this example in subsequent sections.)

EXPERIMENT: Viewing System MemQry Information
Both the Task·Manager Performance tab and the Windows NT Diag
nostics utility (WINMSD,EXE) Memory tab display the same system
memory information. The following screen shot shows the Performance
tab of the Windows NT Task Manager.

Actual physical memory
on machine

Total size of standby,
free, and zero lists

System working set size
(includes file cache and
three bther components)

Noopaged pool physical size

(continued)

237

INSIDE WINDOWS NT

EXPERIMENT: Viewing System Memory Information continued

.. ' . .-: -

. rn.,:·th~ .• ~ ... : ... ·~.·~ .. fl.:.,~.·~ ~P;.1~ .. proce$$··.·.··. ' .. (JOt·,···.·· .. : ·• . : . _' \ i ·:. ·~ldefit· r
· -LVLQI .,,,, .. _ R9sident ~.• · .. · ·ed·"-·· .. ··.:.: "··'

..:m&moeyu~;..,..,.. .
·,•foiaJ p~r~ . T.l.qt,~tW/.

·., ·.: .·. / ..

, , .. ':.:: .. ' .
• ··. "<, ..

· · size · · ·· ·. ' : vlrlual · ·· .

.. ""' ,,. ·':'.:),!'.iN·~IfJtr::!:~; .. ~~:~.t•· '. •...•.•.••..
·· · .·. " :;::: ::: :::.· ' ··~;et\ t~:4tl:·:··· .. · ·.·'. 2;··'

1
!.··. ; ... ·.·:···;.·,·.· .. :.:.· •.. ····"··:·.:.• ..• ··' ... ;.' :6;.~5.· .. "·.•.'.···· • i~· i .. •·,.·,··.·;.1 .•. ':

4
'.:
5
·.: .. ;.: .. '..2,.····.!·

9
•·.·•.···•.•.•··. 2:....··!. './:··•.,.,!.·.···.~$··.·.·!r··• .. ;% ... •.: : .. ,: ; ... ".: .. ·.:·P;.··.: •.• ~ ... •.•· .. •.:.· •. ·s··.· .. ·.·,.··.'··: ' .• • ' .. · . ' · ·!::::::~~::A·.:~!!i:i~::: Q • Q , • :1~: ;~ , . .. ~p y ~~ ~~

'·. . . .:.·.·.; ·.·j
""".'·,

Address Space Layout

238

By default, each user process on Windows NT can have up to a 2-GB private
address space; the operating system takes the remaining 2 GB. Windows NT
Server, Ent~rprise Edition, has a boot-time option (supported only on x86
systems) that allows 3-GB user address spaces. The address space layout for x86
systems is shown in Figure 5-4. (The layout on Alpha systems is similar, except
the 3-GB user space is not available.)

00000000

........
......

7FFFFFFF
80000000

cooooooo

C0800000

FFFFFFFF

Figure 5-4

1

Application code
Globals

Per-thread stacks
DLLcode

Kernel and executive
HAL

Boot drivers

Process page tables
Hyperspace

System cache
Paged pool

Nonpaged pool

, .. .M •••

x86 virtual address space layouts

F I V E : Memory Management

l
1 1

3-GB user space

.....
BFFFFFFF......,,..,....,.,.,_.,...,...,.,...,...,.._,.,.,.,.....,.,,...

cooooooo

1-GB system space

FFFFFFFF

The 3-GB address space option (enabled by the /3GB flag in BOOT.IN!)
gives processes a 3-GB address space (leaving 1 GB for system space). This
feature was added as a short-term solution to accommodate the need for ap
plications such as database servers to keep more data in memory than could
be done with a 2-GB address space. Windows NT 5.0 on Alpha alleviates this
restriction with its support for 64-bit large memory addressing.

For a process to access the full 3-GB address space, the image file must
have the IMAGE_FILE_LARGE_ADDRESS_AWARE flag set in the image
header. Otherwise, Windows NT reserves the third gigabyte so that the appli
cation won't see virtual addresses greater than Ox7FFFFFFF. You can set this
flag by using IMAGECFG.EXE (in the \support directory on the Windows NT
Server, Enterprise Edition, CD-ROM) or by specifying the new linker flag
/LARGEADDRESSAWARE when building the executable. This flag has no
effect when running the application on a system with a 2-GB user address space.

239

INSIDE WINDOWS NT

240

. :

. OOO()QOOO

User accessible

'""'."'

l
J_

; · Unique per Pl'9CSSS
' (per.app1icirticm).

userrnOde

'1FFFFA=I='"-.. __-___ _.... .
..

Shared, process-writable , Systemwide,
(DLLs, shared memory, i user mode

Wln16 applicatlons) ~-·

'' .

. ·.

' .. ·.·. : ,:·. ',

~ ' .

systemwide,
• kemelmode

, -· . ~--=-·---~ . - ---· - , : : . ;

' ~~:Z~ms space iayout ffl mriduw; '95. ~nk w-mduws' 9iY .·.· : ..

~~~::=~~~~~~;~:~:r· 
.. if they donJ h.ave thatsectipri object (r!Jemaf>p~:qg.obJeh w Wfu.3~ 
. tertns) opeti. Wind<>Ws NT,ontbe other hand,' places shctied inemory , 

.. · ::;;h1!:!'1A::!:: ~~~~~:~~fu:p~:clt~:n~:!:· ·· . 
. · .. ·same Shared 17GBregi<l~Win32 proeesi;eg·am corrupt the ~.space··:· 
· · o{Winl6 an.4 MS-DOS applicatiol'lS in:'Wmd()WS 95 ii!lld.Win~ 9~. 

. . :J: ' ~ ' ;· .. : • '. 



F I V E : Memory Management 

~ N 0 TE Windows NT 5.0 on Alpha systems supports an extension 
called Very Large Memory (or VLM) that allows user processes to al
locate memory beyond the 32-bit address space limit. This support 
is being provided by a new set of Win32 VLM functions that return 
a 64-bit pointer. These functions allow a process to allocate up to 28 
GB of additional virtual memory and use it to map files (such as large 
databases) into memory. Only data is allowed in the large memory 
area, however-not code. Also, pages mapped in this area are not 
pagable-once the data is read in, it can't be paged out. Thus, VLM 
doesn't provide true general-purpose 64-bit virtual memory address
ing for user processes. However, Microsoft has announced plans to 
provide a true 64-bit implementation of Windows NT for Alpha and 
IA64 (Merced) systems. For more information on this and other 
enhancements coming in Windows NT 5.0, see Chapter 10. 

User Address Space Layout 
Table 5-5 details the layout of the 2-GB Windows NT user process address space. 

Table 5-5 Windows NT User Process Address Space Layout 

Range Size 

OxO through OxFFFF 64KB 

OxlOOOO through 2GBminus 
Ox7FFEFFFF at least 

l92KB 

Ox7FFDEOOO 4KB 
through Ox7FFDEFFF 

Ox7FFDFOOO 4KB 
through Ox7FFDFFFF 

Ox7FFEOOOO 4KB 
through Ox7FFEOFFF 

Function 

No-access region to aid programmers in avoiding 
incorrect pointer references; attempts to access an 
address within this range will cause an access violation. 

The private process address space. 

Thread environment block (TEB) for first thread. 
(See Chapter 4.) Additional TEBs are created at 
the page prior to this page (starting at address 
Ox7FFDDOOO and working backward). 

Process environment block (PEB). (See Chapter 4.) 

Shared user data page. This read-only page is mapped 
to a page in system space that contains information 
such as system time, clock tick count, and version 
number. This page exists so that this data is directly 
readable from user mode without requiring a kernel
mode transition. 

(continued) 

241 



INSIDE WINDOWS NT 

Table 5-5 continued 

Range Size Function 

Ox7FFE1000 60 KB 
through Ox7FFEFFFF 

No-access region (remainder of 64-KB region following 
shared user data page). 

Ox7FFFOOOO 64 KB 
through Ox7FFFFFFF 

No-access region that prevents threads from passing 
buffers that straddle the user/system space boundary. 
MmUserProbeAddress contains the start of this page. 

The system variables shown in Table 5-6 define the range of the user 
address space. 

Table 5-6 Windows NT User Address Space System Variables 

System 
Variable 

MmHighest
UserAddress 

MmUser
ProbeAddress. 

Description 

Highest user address (The 
highest usable address is 
actually less because of 
TEBs and PEBs.) 

Highest user address + 1 
(used in probing acces
sibility of user buffers) 

x86 2-GB 
User Space 

Ox7FFEFFFF 

Ox7FFFOOOO 

Alpha 2-GB 
User Space 

Ox7FFEFFFF 

Ox7FFFOOOO 

x86 3-GB 
User Space 

OxBFFEFFFF 

OxBFFFOOOO 

The performance counters listed in Table 5-7 provide information about 
total system virtual memory utilization. 

Table 5-7 Windows NT Virtual Memory Use Performance Counters 

Performance Counter 

Memory: Committed 
Bytes 

Memory: Commit Limit 

Memory: % Committed 
Bytes in Use 

242 

System Variable 

MmTotalCommittedPages 

MmTotalCommitLimit 

MmTotalCommittedPages I 
MmTotalCommitLimit 

Description 

The amount of committed 
private address space that has a 
backing store 

The amount (in bytes) of memory 
that can be committed without 
increasing the size of the paging 
file (Page files are extensible.) 

Ratio of committed bytes to 
commit limit 



F I V E : Memory Management 

You can obtain the address space utilization of a single process via the 
process performance counters in Table 5-8. 

Table 5-8 Windows NT Address Space Use 
for Single Process's Performance Counters 

Performance Counter Description 

Process: Virtual Bytes Total size of the process address space (includ
ing shared as well as private pages) 

Process: Private Bytes Size of the private (nonshared) committed 
address space (same as Process: Page File Bytes) 

Process: Page File Bytes Size of the private (nonshared) committed 
address space (same as Process: Private Bytes) 

Process: Peak Page File Bytes Peak of Process: Page File Bytes 

There is also a performance object named Process Address Space that is 
not displayed by Performance Monitor. There are 32 counters that identify the 
address space usage of the selected process. For each of the four types of pro
cess address space (Image, Mapped, Reserved, and Unassigned), eight sepa
rate counters exist (No Access, Read Only, Read/Write, Write Copy, Executable, 
Exec Read Only, Exec Read/Write, and Exec Write Copy). In addition, there 
are counters for the total process address space reserved and free. For even 
more details about user address space layouts, you can query the Image per
formance object to report per-image (for example, DLLs) memory utilization. 

EXPERIMENT:· Viewing Process Memory Utilization 
-~-; .. ' - "~ ---- - : , : "" -~- """ , " : , "-, - " , , ' 

'fry examiµing the various process memory performance counters listed 
in· Tables 5-7 and· 5 ... 3 with Performance Monitor.You can also· use sev
efafotlie.rutilities to examine process physicalandvirtrnil memory usage. 

Forexample, startTaskMana~i:.(typeCtrl-Shift-Esc), .. and dickthe 
Pfo?esses tal:J.1,JJ,en from tfie View menu, <:hoose &lect Columns' Se-

. lect MemorylJsage and Virtual Memory Size, and tlien dick OK. You 
should .see a displayHke the ope at the top.of the following page. 

Keep in miµd thatthe VM Size columpJs not. the process virtual 
m~morysizeybut :rather, th~ process private virtual size (the same as. the 
Process: Private Bytes ~rformante connter deSCfibed in Table 5-~). 

(continued) 

243 



INSIDE WINDOWS NT 

244 

Viewing Process Memory Utilization continued 

systray.exe 
inojobsv.exe 
Hssrv.ei-:e 
CMD.EXE 
RPCSS.EXE 
DDHELP.EXE 
MS PAINT.EXE 
WINWORD.EXE 
EXPLORER.EXE 
PSTORES.EXE 

Process working set size-memory 
used by this process (but since this 
Includes shared pages, you can't total 
this coliJmn to get the total physical 
memQry iJSed by all processes) 

16 0 K 
120K 36K 
120K 164K 
712K 1420K 

OK 1120K 
1264 K 1224 K 
1282K 916K 

84K 316K 
OK 2056K 

204 K 292 K 
3282 K 3876 K 
280 K 532 K 
12K 416K 

1108K 912K 
604K 516K 
604K 3116K 

5728 K 3476 K 
4800 K 1608 K 

OK 1824K 

Process private bytes 
(also called page file 
bytes}.;.notthe total 
process virtual size 

Also, as you'll discover in the section on working sets, the Mem Usage 
column counts shared pages in each process's memory usage total. 

The Process Viewer utility (PVIEWER.EXEin the Windows NT 
Resource Kit; PVIEW.EXE in Visual C++ or the Platform Software Devel
opment Kit [SDK]) can display per-process address space details. (The 
source of this utility is one of the Win32 sample programs on MSDN.) 
Click the Start button, and work through the Programs, Resource Kit, 
and Diagnostics menus. Click on Process Viewer, select a process, and 
click the Memory Detail button. You should see something like the top 
screen shot on page 245. Try dicking on the User Address Space For 
list box-you can select the address space used by the image alone or 
by loaded DU_.s. 

The Process Explode utility (PVIEW.EXE in the Resource Kit) 
displays the same information as Process Viewer (in a slightly differ
ent form) plus 15 additionalprocess performance .counters, including 
quota information. (See the screen shot at the bottom of page 245.) 
This utility can also show process and thread security information, as 
described in Chapter 6. 



F I V E : Memory Management 

Select total, the 
.EXE alone, or 
any.DLL 

245 



INSIDE WINDOWS NT 

System Address Space Layout 
This section describes the detailed layout and contents of system space. Figure 
5-6 shows the overall structure on x86 and Alpha systems with a 2-GB system 
space. (The details of x86 systems with a 1-GB system space are included later 
in this section.) 

80000000 

AOOOOOOO 

A3000000 

cooooooo 

C0400000 

co8ooooo 

cocooooo 
C1000000 

E1000000 

x86 

System code (NTOSKRNL, 
HAL, boot drivers) and initial 

nonpaged pool on some systems 

System mapped views 
(e.g., WIN32K.SYS) 

Unused - no access 

Process page tables 
and page directory 

Hyperspace and process 
working set list 

Unused -no access 

System working set list 

System cache 

Paged pool 

1· 

l 

u 

I' 

80000000 

cooooooo 

C1000000 

C2000000 

C3000000 

C4000000 

DEOOOOOO 

Alpha 

System code (NTOSKRNL, 
HAL, boot drivers) and initial 

nonpaged pool 

Process page tables 
and page directory 

Hyperspace and process 
working set list 

Unused'- no access 

System working set list 

System cache 

System mapped views 
(e.g., WIN32K.SYS) 

Paged pool 

EBOOOOOO (min) 
System PTEs 

E1000000 

EBOOOOOO (min) System PTEs 

246 

FFBEOOOO 

FFCOOOOO 

Nonpaged pool expansion 

Crash dump information 

HAL usage 

Nonpaged pool expansion 

FDFECOOO 
Crash dump information 

and HAL usage 

Figure 5-6 
x86 and Alpha system space layout (not proportional) 

Although the order and sizes differ, both architectures have the same 
basic components in system space: 

Ill System code Contains the operating system image, HAL, and de
vice drivers used to boot the system. 

Ill System mapped views Used to map WIN32K.SYS, the loadable 
kernel-mode part of the Win32 subsystem, as well as kernel-mode 
graphics drivers it uses. (See Chapter 2 for more information on 
WIN32K.SYS.) 



F IV E : Memory Management 

• Process page tables and page directory Structures that describe 
the mapping of virtual addresses. 

• Hyperspace A special region used to map the process working set 
list and to temporarily map other physical pages for such operations 
as zeroing a page on the free list (when the zero list is empty and a 
zero page is needed), invalidating page table entries in other page 
tables (such as when a page is removed from the standby list), and 
on process creation to set up a new process's address space. 

• System working set list The working set list data structures that 
describe the system working set. I 

1111 System cache Pages used to map files open in the system cache. 
(See Chapter 8 for detailed information about the cache manager.) 

• Paged pool Pagable system ~emory heap. 

• System page table entries {PTEs) Pool of system PTEs used to map 
system pages such as I/O space, kernel stacks, and memory 
descriptor lists. You can see how many system PTEs are available by 
examining the value of the Memory: Free System PTEs counter in 
Performance Monitor. 

• Nonpaged pool Nonpagable system memory heap, usually existing 
in two parts-one in the lower end of system space and one in the 
upper end. 

• Crash dump information Reserved to record information about 
the state of a system crash. 

1111 HAL reserved System memory reserved for HAL-specific structures. 

The rest of this section consists of three tables that list the detailed struc
ture of system space. Table 5-9 on the following page lists the global system vari
ables that contain start and end addresses of various system space regions. Some 
of these regions are fixed-some are computed at system boot time on the basis 

1. Internally, the system working set is called the system cache working set. This term is mislead
ing, however, because it includes not only the system cache but also the paged pool, pagable 
system code and data, and pagable driver code and data. 

247 



INSIDE WINDOWS NT 

of memory size and whether the system is running Windows NT Workstation 
or Windows NT Server. Table 5-10 lists the structure of system space on x86 
systems. And Table 5-11 on page 250 lists the structure of system space on 
Alpha systems. 

Table 5-9 System Variables That Describe System Space Regions 

x86 2-GB x86 1-GB Alpha 2-GB 
System System System System 
Variable Description Space Space Space 

MmSystemRange- Start address of Ox80000000 OxCOOOOOOO Ox80000000 
Start system space 

MmSystemCache- System working OxCOCOOOOO OxCOCOOOOO OxC3000000 
WorkingSetList set list 

MmSystemCache- Start of system OxCIOOOOOO OxCIOOOOOO OxC4000000 
Start cache 

MmSystemCache- End of system Calculated Calculated Calculated 
End cache 

MmPagedPoolStart Start of paged OxEIOOOOOO OxEIOOOOOO OxEIOOOOOO 
pool 

MmPagedPoolEnd End of paged Calculated Calculated Calculated 
pool (maximum (maximum (maximum 

size is 192 MB) size is 192 MB) size is 240 MB) 

MmNonPaged- Start of system Calculated Calculated Calculated 
SystemStart PTEs (lowest value is (lowest value is 

OxEBOOOOOO) OxEBOOOOOO) 

MmNonPaged- Start of non- Calculated Calculated Calculated 
PoolStart paged pool 

MmNonPagedPool- Start of non- Calculated Calculated Calculated 
ExpansionStart paged pool 

expansion 

MmNonPagedPool- End of non- OxFFBEOOOO OxFFBEOOOO OxFDFEOOOO 
End paged pool 

248 



Range 

Ox80000000through 
Ox9FFFFFFF 

OxAOOOOOOOthrough 
OxA2FFFFFF 

OxA3000000through 
OxBFFFFFFF 

OxCOOOOOOOthrough 
OxC03FFFFF 

OxC0400000 through 
OxC07FFFFF 

OxC08000000 through 
OxCOBFFFFF 

OxCOCOOOOOthrough 
OxCOFFFFFF 

OxClOOOOOOthrough 
OxEOFFFFFF 

OxElOOOOOOthrough 
OxECFFFFFF* 

OxEBOOOOOO through 
OxFFBDFFFF 

OxFFBEOOOOthrough 
OxFFFFFFFF 

F I V E : Memory Management 

Table s-10 x86 System Space 

Size 

512 MB 

48MB 

464MB 

4MB 

4MB 

4MB 

4MB 

512MB 
(maximum) 

192MB 
(maximum) 

331.875 MB 
(339,840 KB) 

4.125 MB 
(4224 KB) 

Function 

System code used to boot the system 
(NTOSKRNL.EXE, HAL.DLL, boot drivers) 
and the initial part of nonpaged pool. On 
x86 systems with a 2-GB system space and 
32 MB or more of RAM (64 MB in Windows 
NT 5.0), the first 4 MB is mapped using an 
x86 large page PTE. 

Space for system mapped views (currently 
used to map WIN32K.SYS, the kernel-mode 
portion of the Win32 subsystem, as well as 
the kernel-mode graphics drivers it uses). 

Unused on most Windows NT systems (will be 
used by Terminal Server on Windows NT 5.0). 

Process page tables (page directory is at 
OxC03000000 and is 4 KB in size). This is 
per-process data mapped in system space. 

Working set list and hyperspace. This is per
process data mapped in system space. 

Unused. 

System working set list. 

System cache (size calculated at boot 
time). 

Paged pool (size calculated at boot time). 

System PTEs and nonpaged pool (size calcu
lated at boot time). 

Crash dump structures and private HAL data 
structures. 

* Because paged pool is limited by the start address of the region containing non paged pool and the system 
PTEs, it can go beyond address OxEBOOOOOO only if those addresses aren't used. 

249 



INSIDE WINDOWS NT 

Table s-11 Alpha System Space 

Range Size Function 

Ox80000000through 1024 MB System code used to boot the system 
OxBFFFFFFF (NTOSKRNL.EXE, HAL.DLL, boot drivers) 

and the initial part of nonpaged pool 

OxCOOOOOOO through 2MB Process page tables (The page directory is at 
OxCOIFFFFF OxC01800000 and is 8 KB in size, though only 

1 KB is used.) 

OxC0200000 through 14MB Unused 
OxCOFFFFFF 

OxCIOOOOOOthrough 16MB Working set list and hyperspace 
OxCIFFFFFF 

OxC20000000 through 16MB Unused (in Windows NT 5.0, used forVLM 
OxC2FFFFFF PTEs) 

OxC3000000 through 16MB System working set list 
OxC3FFFFFF 

OxC4000000 through 416MB System cache (size calculated at boot time) 
OxDDFFFFFF (maximum) 

OxDEOOOOOO through 48MB Space for system mapped views (currently 
OxEOFFFFFF used only to map WIN32K.SYS, the kernel-

mode portion of the Win32 subsystem) 

OxEIOOOOOOthrough 240MB Paged pool (size calculated at boot time) 
OxEFFFFFFF* (maximum) 

OxEBOOOOOO through 304.125 MB System PTEs and nonpaged pool (size calcu~ 
OxFDFEOOOO (311,424 KB) lated at boot time) 

OxFDFEOOOO through 31.875 MB Crash dump structures and private HAL data 
OxFFFFFFFF (32,640 KB) structures 

* Because paged pool is limited by the start address of the region containing nonpaged pool and the system 
PTEs, it can go beyond address OxEBOOOOOO only if those addresses aren't used. 

Address Translation 

250 

Now that you've seen how Windows NT structures the 32-bit virtual address 
space, let's look at how it maps these address spaces to real physical pages. 2 I'll 
describe what happens when such a translation doesn't resolve to a physical 
memory address (paging) and expiain how Windows NT manages physical 
memory via working sets and the page frame database. 

2. The CPU hardware architecture dictates much of what is described in this section. For more 
details on the structures used to perform address translation, see the appropriate processor 
hardware documentation (such as the Intel486 Microprocessor Family Programmer's &ference 
Manual or the Alpha AXP Architecture &ference Manual). 



F I V E : Memory Management 

User applications reference 32-bit virtual addresses. The CPU, using data 
structures the memory manager creates and maintains, translates virtual ad
dresses into physical addresses. For example, Figure 5-7 shows three consecu
tive virtual pages mapped to three physically discontiguous pages. 

The dashed line connecting the virtual pages to the PTEs in Figure 5-7 
represents the indirect relationship between virtual pages and physical memory. 
Virtual addresses are not mapped directly to physical ones. Instead, as you'll 
discover in this section, each virtual address is associated with a system-space 
structure called a page table entry (PTE), which contains the physical address 
to which the virtual one is mapped. 

7FFFFFFF 
80000000 

cooooooo 

C1000000 

FFFFFFFF 

Figure 5-7 

Virtual 
pages 

Page table 
entries 

Mapping virtual addresses to physical memory 

Physical memory 

251 



INSIDE WINDOWS NT 

N 0 TE Kernel-mode code (such as device drivers) can reference 
physical memory addresses by mapping them to virtual addresses. 
For more information, see the memory descriptor list (MDL) sup
port routines described in the DDK documentation. 

Throughout the remainder of this section, I'll explain the details of how 
Windows NT accomplishes this mapping. 

Translating a Virtual Address 

252 

Windows NT uses a two-level page table structure (as defined in the x86 and 
Alpha architectures) to translate virtual to physical addresses. A 32-bit virtual 
address is interpreted as three separate components-the page directory in
dex, the page table index, and the byte index-that are used as indexes into 
the structures that describe page mappings, as illustrated in Figure 5-8. 

31 

x86: 10 bits 
Alpha: 8 bits 

x86: 10 bits 
Alpha: 11 bits 

Virtual page number 

Figure 5-8 
Components of a 32-bit virtual address 

x86: 12 bits 
Alpha: 13 bits 

0 (LSB) 

The differences in field width between the x86 and Alpha platforms are 
dictated by the page size for each platform. For example, on x86 systems, the 
byte index is 12 bits, since pages are 4096 bytes (212 = 4096). On Alpha systems, 
the byte index is 13 bits, since pages are 8192 bytes (213 = 8192). 

The page directory index is used to locate the page table in which the vir
tual address's PTE is located. The page table index is used to locate the PTE, 
which, as mentioned earlier, contains the physical address to whicr a virtual 
page maps. The byte index finds the proper address within that physical page. 
Figure 5-9 shows the relationship of these three values and how they are used 
to map a virtual address into a physical address. 



F I V E : Memory Management 

KPROCESS 

Page directory Page table Byte 
Index Index index 

~Physical address 

Index 

Desired page 

PFN Index 

PDE-t----•· 

PFN 

PTE-+---• 
Page directory Page tables 

(one per process, 1024 entries) (up to 512 per process 
plus up to 512 systemwide, 

1024 entries per table) 

Physical address 
space 

Figure 5-9 
Translating a valid virtual address (x86-specific) 

The following basic steps are involved in translating a virtual address: 

1. The memory management hardware locates the page directory for 
the current process. On each process context switch, the hardware 
is told the address of a new process page directory, typically by the 
operating system setting a special CPU register. 

2. The page directory index is used as an index into the page direc
tory to locate the page directory entry that describes the location of 
the page table needed to map the virtual address. 

3. The page table index is used as an index into the page table to 
locate the PTE that describes the location of the virtual page in 
question. 

4. The PTE is used to locate the page. If the page is valid, it contains 
the physical page number, or page frame number, of the page in 
physical memory that contains the virtual page. If the page is not 
valid, the memory management fault handler locates the page and 
tries to make it valid. (See the section on page fault handling on 
page 265.) If the page can't be made valid (for example, because of 

253 



INSIDE WINDOWS NT 

a protection fault), the fault handler generates an access violation 
or a bug check. 

5. When the PTE is pointed to a valid page, the byte index is used to 
locate the address of the desired data within the physical page. 

Now that you have the overall picture, let's look at the detailed structure 
of page directories, page tables, and PTEs. 

Page Di rectories 

254 

Each process has a single page directory, a page the memory manager creates to 
map the location of all page tables for that process. The physical address of the 
process page directory is stored in the kernel process (KPROCESS) block but 
is also mapped virtually at address OxC0300000 on x86 systems (OxC0180000 
on Alpha systems), since nearly all code running in kernel mode references 
virtual addresses, not physical ones. (For more detailed information about 
KPROCESS and other process data structures, refer to Chapter 4.) 

The CPU knows the location of the page directory page because a spe
cial register (CR3 on x86, PDR on Alpha) inside the CPU that is loaded by the 
operating system contains the physical address of the page directory. Each time 
a context switch occurs to a thread that is in a different process than that of 
the currently executing thread, this register is loaded from KPROCESS by the 
context-switch routine in the kernel. Context switches between threads in the 
same process do not result in reloading the physical address of the page direc
tory because all threads within the same process share the same process address 
space. 

The page directory is composed of page directory entries (PDEs), each of 
which is currently 4 bytes long and describes the state and location of all the 
possible page tables for that process. (As described later in the chapter, page 
tables are created on demand, so the page directory for most processes points 
only to a small set of page tables.) The format of a PDE is not repeated here, 
since it is mostly the same as a hardware PTE (shown on page 258). 

On x86 systems, 1024 page tables are required to describe the full 4-GB 
virtual address space. The process page directory that maps these page tables 
contains 1024 PDEs. Therefore, the page directory index needs to be 10 bits 
wide (210 = 1024). On Alpha systems, only 256 page tables are needed to map 
4 GB, because pages are twice as large as on x86 systems (and each page table 
maps twice as many pages). 



F I V E : Memory Management 

EXPERIMENT: Examining the Page Directory and PDEs 
You can see the physical.address of the currently running process's 
page directory by examining the DirBase field in the !process kernel 
debugger output: · 

Phyal~ addre81 of .PDE 

KDx86>· ! 1>rocess · 1·· 
PROCESS 80.145'880 Cid; 0900 Peb: 00000000 ParentCid1 0000 

D1rBase: 00030000 QbjectTable: 80695668 TableSize; 1e6. 

Image: Idle 
-(. ' '' ... ' '' ,_, 

VadRoot 0 Clone 0 Private 0. Modified 0. Locked 0. 
80145A3<; Muta.ntState Locked OwningThread .0 

. Process Lock .owned by Thread. 0 

, You c:an see the page directory's virtual address by examining ·the 
kernel debugger output for the PTE of a particular virtual address, as 

... , .. Sbowrt hen:; · 

Virtual address of PDE . 

I Contents of PDE 

_KDx86> lpte ~0001 J 
00050001 . PDE at C0300000 PTE at C0000140 

contains 00700067 contains 00E63047 
pfn 00700' • ·OA··UW .. pfn 1'10E63 --D··UWV 
I . I 
PR'.! ot page state and 
table page protection Of 

. . . page table 
page 

. The PTE ~a,rt of the kernel debugger output is defined in·~ sec'." . 
· · tion "'Page Thb~e Entries" on the following page .. · 

255 



INSIDE WINDOWS NT 

Process and System Page Tables 
Before referencing a byte within _a page with the byte offset, the CPU first needs 
to be able to find the page that contains the desired byte of data. To do this, 
the operating system constructs another page of memory that contains the 
mapping information needed to find the desired page containing the data. 
This page of mapping information is called a page table. Because Windows NT 
provides a private address space for each process, each process has its own set 
of process page tables to map that private address space, since the mappings 
will be different for each process. 

The page tables that describe system space are shared among all pro
cesses, however. When a process is created, system space page directory entries 
are initialized to point to the existing system page tables. But as shown in Fig
ure 5-10, not all processes have the same view of system space. For example, if 
paged pool expansion requires the allocation of a new system page table, the 
memory manager doesn't go back and update all the process page directories 
to point to the new system page table. Instead, it updates the process page 
directories when the processes reference the new virtual address. 

Thus, a process can take a page fault when referencing paged pool that 
is in fact physically resident because its process page directory doesn't yet point 
to the new system page table that describes the new area of pool. Page faults 
don't occur when accessing nonpaged pool, even though it too can be expanded, 
because Windows NT builds enough system page tables to describe the maxi
mum size during system initialization. 

System PTEs are not an infinite resource-Windows NT calculates how 
many system PTEs to allocate based on the memory size. You can see how many 
system PTEs are available by examining the value of the Memory: Free System 
PTEs counter in Performance Monitor. You can also override the calculation 
made at boot time by setting the registry value HKLM\System ... \Control
\Session Manager\SystemPages to the number of PTEs you want. However, the 
maximum that Windows NT will allocate is 50,000 on x86 systems and 20,000 
on Alpha systems. , 

Page Table Entries 

256 

As mentioned earlier, page tables are composed of an array of page table entries 
(PTEs). You can use the !ptecommand in the kernel debugger to examine PTEs. 
(See the experiment "Translating Addresses" on page 263.) Valid PTEs (the 
kind we'll be discussing here; invalid PTEs are covered in a later section) have 



Process 1 
page tables 

PTEO 

. 

. 

. 

Figure 5-10 

I• 
Process 1 

F I V E : Memory Management 

~ 

Process 2 

Process 2 
page tables 

PTEO 

page directory page directory 

Private ___. -lo- PDEO ,..,__ PDEO • 
. 

i""""' . 
. . . . . . . 

PDE 511 PDE 511 

PDE 512 •I'- t-e PDE 512 . . . . . . 
PDEn • PDEn f+ Process has not . . yet referenced . . system page tabl . . e 

.... """ 

System 
page tables 

~ Sys PTE 0 ~ 

. . . 
I+ Sys PTE n . . . 

System and process-private page tables 

two main fields: the page frame number (PFN) of the physical page contain
ing the data or of the physical address of a page in memory, and some flags 
that describe the state and protection of the page, as shown in Figure 5-11. 

N 0 TE In reality, hardware PTEs on Alpha systems are 64 bits in 
size. But since Windows NT assumes a 32-bit PTE, what the memory 
manager views as the 32-bit "hardware PTE" shown in Figure 5-11 
is interpreted by the PALcode to construct the real 64-bit hardware 
PTE. 

257 



INSIDE WINDOWS NT 

______________ _,.Reserved (writable on multi

processor systems) _____________ ..,.Reserved 
____________ ,.Reserved 

-----------•Global 
-----------i• Reserved (large page if PDE) 

--------..-Dirty 
-------,...Accessed 
-------i~Cache disabled 

------1~Write through 
-----~owner 

__ _,..Write (writable on multi-

processor systems) 
Valid 

Page frame number U 

31 12 n 10 .. le_· ·_a_· · __ ._6_···-s .. 14 3 2 

------ Protection 
x86 hardware PTE 

____________ ,...Reserved 

------------1~ Write through 
---------Granularity hints 

-------i• Global 
------1~ Reserved 

------~Dirty 
--,..Owner 

Valid 

Page frame number Gr GI U D 0 

31 9 8 7 6 5 4 3 2 0 

Alpha hardware PTE 

Figure 5-11 
Valid hardware PTEs 

258 

As you'll see later, the bits labeled Reserved in Figure 5-11 are used only 
when the PTE is not valid (the bits are interpreted by software). Table 5-12 
briefly describes the hardware-defined bits in a valid PTE. Notice that not all 
bits apply to both platforms-those that don't are marked N/A. 



Name of 
Bit 

Accessed 

Cache 
Disabled 

Dirty 

Global 

Granularity 
Hints 

Large Page 

Owner 

Valid 

Write 
Through 

Write 

F I V E : Memory Management 

Table s-12 PTE Status and Protection Bits 

Meaning on x86 

Page has been read. 

Disables caching for that page. 

Page has been written to. 

Translation applies to all processes. 
(For example, a translation buffer 
flush won't affect this PTE.) 

NIA 

Indicates that the PDE maps a 
4-MB page (used to map 
NTOSKRNL). 

Indicates whether user-mode code 
can access the page or whether the 
page is limited to kernel-mode 
access. 

Indicates whether the translation 
maps to a page in physical memory. 

Disables caching of writes to this 
page so that changes are immedi
ately flushed to disk. 

On uniprocessor systems, indicates 
whether the page is read/writ¢ or 
read-only; on multiprocessor sys
tems, indicates wh~ther the page is 
writable. (The Write bit is stored in 
a reserved bit in the PTE.) 

Meaning on Alpha 

N/A 
NIA 

Before a page has been written to, 
this bit serves as a write-protect bit. 
After a page has been written to, 
this bit indicates that the page has 
been written to. 

Translation applies to all processes. 
(For example, a translation buffer 
flush won't affect this PTE.) 

Provides for mapping translations 
larger than the standard page size 
(8 KB), since these large pages must 
be virtually and physically aligned. 

N/A 

Indicates whether user-mode code 
can access the page or whether the 
page is limited to kernel-mode 
access. 

Indicates whether the translation 
maps to a page in physical memory. 

, Disables caching of writes to this 
page so that changes are immedi
ately flushed to disk. 

N/A 

259 



INSIDE WINDOWS NT 

260 

Two bits worth describing in more detail relate to the differences in the 
way page protection and access information is represented on x86 and Alpha 
systems. On x86 systems, a hardware PTE contains a Dirty bit and an Accessed 
bit. The Aq::essed bit is clear if a physical page represented by the PTE hasn't 
been read or written; the processor sets this bit when the page is first read or 
written. The processor sets the Dirty bit only when a page is first written. In 
addition to those two bits, the x86 architecture has a Write bit that provides page 
protection-when this bit is clear, the page is read-only; when it is set, the page 
is read/write. If a thread attempts to write to a page with the Write bit clear, a 
memory management exception occurs and the memory manager's access fault 
handler (described in the next section) must determine whether the thread 
can write to the page (for example, if the page was really marked copy-on-write) 
or whether an access violation should be generated. 

The Alpha platform uses these bits differently. First, it doesn't implement 
an Accessed or a Write bit in hardware. Second, the meaning of the Dirty bit 
differs from its meaning on x86 systems in that it's used for write protection. 
If this bit is clear, the page has never been written to and therefore might be 
read-only. If it's set, the page has been written to and therefore must have been 
a read/write page. When a thread attempts to write to a page on which the 
Dirty bit isn't set, a memory management exception occurs. Windows NT dif
ferentiates between a read-only page and a read/write page that hasn't been 
written to yet by using a reserved bit in the PTE (the Write bit) to store the 
protection of the page. In that way, it can determine whether the thread should 
be permitted to write to the page or whether an access violation should be 
generated. 

Hardware PTEs on multiprocessor x86 systems have an additional Write 
bit implemented in software that is intended to avoid stalls when flushing the 
PTE cache (called the translation look-aside .buffer) across processors. Basi
cally, it serves the same function as the Dirty bit does on the Alpha platform,· 
indicating that a page has been written to by a thread running on some pro
cessor or another. 

On the hardware platforms currently supported by Windows NT, PTEs 
are always 4 bytes (32 bits) in size, so the number of PTEs per page table de
pends on the page size. On x86 systems, each page table contains 1024 PTEs 
(4096 bytes per page at 4 bytes per PTE) and therefore can map 1024 pages, 
for a total of 4 MB of data pages. On Alpha systems, each page table contains 
2048 PTEs (8192/4), mapping a maximum of 2048 pages (a total of 16 MB of 
data pages). 



F I V E : Memory Management 

The virtual address's page table index field indicates which PTE within 
the page table maps the data page in question. On x86 systems, the page table 
index is 10 bits wide, allowing you to reference up to 1024 PTEs. On Alpha 
systems, the page table index is 11 bits, because each page table contains 2048 
PTEs. However, because Windows NT provides a 4-GB private virtual address 
space, more than one page table is needed to map the entire address space. 
To calculate the number of page tables required to map the entire 4-GB pro
cess virtual address space, divide 4 GB by the virtual memory mapped by a single 
page table. Recall that each page table on an x86 system maps 4 MB of data 
pages. Therefore, on x86 systems, 1024 page tables (4 GB/4 MB) are required 
to map the full 4-GB address space. On Alpha systems, each page table maps 
16 MB, so only 256 page tables (4 GB/16 MB) are required. 

Byte Within Page 
Once the memory manager has found the physical page in question, it must 
find the requested data within that page. This is where the byte index field 
comes in. The byte index field tells the CPU which byte of data in the page you 
want to reference. On x86 systems, the byte index is 12 bits wide, allowing you 
to reference up to 4096 bytes of data (the size of a page). On current Alpha 
systems, the page size is 8192 bytes of data, so the byte index field is 13 bits wide. 

Translation Look-Aside Buffer 
As we've learned so far, each address translation requires two lookups: one to 
find the right page table in the page directory and one to find the right entry 

·in the page table. Becalise doing two additional memory lookups for every 
reference to a virtual address would result in unacceptable system performance, 
most CPUs cache address translations so that repeated accesses to the same 
addresses don't have to be retranslated. Both the x86 and Alpha processors 
provide such a cache in the form of an array of associative memory called the 
translation look-aside buffer, or TLB. Associative memory, such as the TLB, is a 
vector whose cells can be read simultaneously and compared to a target value. 
In the case of the TLB, the vector contains the virtual-to-physical page map
pings of the most recently used pages and the type of page protection applied 
to each page, as shown in Figure 5-12. Each entry in the TLB is like a cache 
entry, whose tag holds portions of the virtual address and whose data portion 
holds a physical page number, protection field, valid bit, and usually a dirty 

261 



INSIDE WINDOWS NT 

262 

Virtual address Match 

Virtual page number: 17 •••••••• 
I:~ .. .. 

Figure 5-12 

~ ... -...... .. .. ' .. t' .... 
:\' .... 
~:\' .. 

\: ' ' ,, ' ,, ' 
''' Simultaneous read ' , ' 

and compare ' ' ' 
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 

Accessing the translation look-aside buffer 

TLB 
I 

Virtual page 5 1 Page frame 290 
I 

I 
Virtual page 64 1 Invalid 

Virtual page 17 

Virtual page 7 1 

Virtual page 6 

I 

Page frame 
1004 

Invalid 

Page frame 14 

Virtual page 65 1 Page frame 801 

bit indicating the condition of the page to which the cached PTE corresponds. 
If a PTE's global bit is set, the TLB entry is not invalidated on process context 
switches. 

Virtual addresses that are used frequently are likely to have entries in the 
TLB, which provides extremely fast virtual-to-physical address translation and, 
therefore, fast memory access. If a virtual address isn't in the TLB, it might still 
be in memory, but multiple memory accesses are needed to find it, which makes 
the access time slightly slower. If a virtual page has been paged out of memory 
or if the memory manager changes the PTE, the memory manager must ex
plicitly invalidate the TLB entry. If a process accesses it again, a page fault 
occurs and the memory manager brings the page back into memory and re
creates an entry for it in the TLB. 

To maximize the amount of common code, the memory manager treats 
all PTEs the same whenever possible, whether they are maintained by hardware 
or by software. For example, the memory manager calls a kernel routine when 
a PTE changes from invalid to valid. The job of this routine is to load this new 
PTE into the TLB in whatever hardware-specific manner the architecture re
quires. On Alpha systems, the software loads the new PTE. On x86 systems, the 
code is a NO-OP since the processor loads the TLB without any intervention 
from the software. 



F I V E : Memory Management 

EXPERIMENT: Translatlng Addresses 
To clarify how address translation works, let's go through a real ex
ample of translating a virtual address on an x86 system, using the avail
ablet()t)ls in the kernel debugger to examine page directories, page 
taoles, ~d PTEs; In this example, we'll use a process that has virtual 
~s:~~Olcurre;ntly mapped to a valid physical address. In later 

, ~P~¢~iroii'U\see, li9W «>fallow address translation for invalid .ad-
.eke~ With:tb:e M!niel'clebugger• . . .. 

·· .. Fitst)et's.cori.veri'oi50001 tc)'binary and break it into the three 
. . . flelas that M:e used. to translate an ad(iress. In binary, Ox50.001 is .. 

lOIAX>OO.ooOO'.()OOO.OOOLBreaking into the component fields yields the 
.J~~o~g: . .. . 

.st . ·· 22 12 

•••1•«·.···· . ·=· ···.· ''.··:~~··· .. ···· ··: ... ~ .... 
, f>• directory ., ' Page table lndeX . 

. l:ildeX ,(0) · (80 or Qx50) 
'.-'' _.., "' . ;,. '" --; -;. 

·o 

0000.0000.0001 

·':""'· 

~indeX 
(1) 

, ·•·• · l,'o:stjttt * ~slation pfo~ess, the ;CPU needs the physical ad
, . , .. ~ss:~fth,~ pnX:ess page;directory, stored in the CR3 register while a 
. , ; .:*aj. ~ 1f¥ll proces8 'is :running. You can dlspla:y this address either 

i JlY' e~iting ij\e-CR1ftegi$tet itsel( or by dumping the KPROCESS 
· blQ(:kfor the process in, question rising the !process command, as shown 
J:lere:'· . . . . . 

· . 'Kil-x.a&>' J proten . . , · · 
.:PlilicEss' a15a502e ~ctd: .009~. ·· Peb:. 1ffdt00a tarentc1d: · 0094 

.>:o.1rll'~s~f 012iliee0 ObJeetTable: 80695ba8 TableSize.: : 46. 

,··.J~~~~r1·a ...... ~;--d-~-· .. 
(continued) 

263 



INSIDE WINDOWS NT 

264 

EXPERIMENT: Translating Addresses continued 

,·,,· 
·--.- -- - .. ' 

. ·.· : The PTE·is at vittna1 ;,iddress Oxd0000140; You dm compute this 
address ,by rnultipl}fing qi~ J>age tabl.e index; (()X5() in this eXa.lnple) by· 
the Sire ()fa P!J,"E: ~ inqltiplied lJ.Y 4, equals Ox14(). Bediuse.the memoty •. 

•· · manager µiaps page ):a~Ie8 st;rrtil!g at ~orn)ooo~ 'a(}ding 140 yields •.. ·· 
. the virtual address ~howri in di¢ ~emd debugger output;: ~COOOOl40. .• · 
The page table page i~at PFN Ox700, and the data page. is' at PF;.r-rnxe63 ... 

The PTE flags a,t'e :displayed to the .tigh~.;~C:the PFN ·•ljer. For · .· 

;r;~:==~s~s:~i! . 
. page (rat:her thati ri!ad~llly), and Vfor valid: (The PTE rep~ents a : . 
valid page in phy~al m(!mory.) • · · · · ·- ·· --·- ·· · · 



F I V E : Memory Management 

Page Fault Handling 
In the preceding section, you saw how address translations are resolved when 
the PTE is valid. When the PTE valid bit is clear, this indicates that the desired 
page is for some reason not (currently) accessible to the process. This section 
describes the types of invalid PTEs and how references to them are resolved. 

A reference to an invalid page is called a page fault. The kernel trap han
dler (introduced in Chapter 3 on page 81) dispatches this kind of fault to the 
memory manager fault handler (MmAccessFault) to resolve. This routine runs 
in the context of the thread that incurred the fault and is responsible for at
tempting to resolve the fault (if possible) or raise an appropriate exception. 
These faults can be caused by a variety of conditions, as listed in Table 5-13. 

Table 5-13 Reasons for Access Faults 

Reason for Fault Result 

Accessing a page that is not resident in 
memory but is on disk in a page file or 
mapped file 

Accessing a page that is on the standby 
or modified list 

Accessing a page that has no committed 
storage (for example, reserved address 
space or address space that is not 
allocated) 

Accessing a page from user mode that 
can be accessed only in kernel mode 

Writing to a page that is read-only 

Accessing a demand-zero page 

Writing to a guard page 

Writing to a copy-on-write page 

Allocate a physical page and read the desired 
page from disk and into the working set 

Transition the page to the process or system 
working set 

Access violation 

Access violation 

Access violation 

Add a zero-filled page to the process working 
set 

Guard-page violation (if a reference to a user
mode stack, perform automatic stack 
expansion) 

Make process-private copy of page and replace 
original in process or system working set 

(continued) 

265 



INSIDE WINDOWS NT 

Table 5-13 continued 

Reason for Fault Result 

Referencing a page in system space that 
is valid but not in the process page direc
tory (for example, if paged pool expan
ded after the process page directory was 
created) 

Copy page directory entry from master sys
tem page directory structure and dismiss 
exception (This fault is never pointed to by 
hardware.) 

On a multiprocessor system, writing to 
a page that is valid but hasn't yet been 
written to 

Set dirty bit in PTE 

The following section described the four basic kinds of invalid PTEs that 
are processed by the access fault handler. Following that is an explanation of 
a special case of invalid PTEs, prototype page table entries, which are used to 
implement (potentially) shared pages. 

Invalid PTEs 

266 

The following list details the four kinds of invalid PTEs and their structure. 
(The x86 format is shown; the Alpha format is similar but not exactly the same 
in all cases.) Some of the flags are the same as those for a hardware PTE as 
described in Table 5-12 on page 259. 

II Page file The desired page resides within a paging file. An in-page 
operation is initiated, as illustrated here: 

I i : ;:::: rValid 
31 12 11 10 9 5 4 0 

Page file offset I I I Protection I PFN I 0 I 

II Demand zero The desired page must be satisfied with a page of 
zeros. The pager looks at the zero page list. If the list is empty, the 
pager takes a page from the standby list and zeros it. The PTE for
mat is the same as the page file PTE shown above, but the page file 
number and offset are zeros. 



F I V E : Memory Management 

• Transition The desired page is in memory on either the standby, 
modified, or modified-no-write list. The page is removed from the 
list and added to the working set, as shown here: 

--------------1~Transition 

------------..Prototype 
---------•Protection 

------,..Cache disable 
------.Write through 

~~~~er 
I I !Valid

31 12 11 10 9 54 3 2 1 0

PFN 1 1 Protection 0

II Unknown The PTE is zero, or the page table doesn't yet exist.
In both cases, this means you should examine the virtual address
descriptors (VADs) to determine whether this virtual address has
been reserved. If so, page tables are built to represent the newly
committed address space. (See the discussion ofVADs on page 273.)

Prototype PTEs
If a page can be shared between two processes, the memory manager relies on
a software structure called prototype page table entries (prototype PTEs) to map
these potentially shared pages. An array of prototype PTEs is created when a
section object is first created. These prototype PTEs are part of the segment
structure, described at the end of this chapter.

When a process first references a page mapped to a view of a section
object (recall that the VADs are created only when the view is mapped), the
memory manager uses the information in the prototype PTE to fill in the real
PTE used for address translation in the process page table.

When a shared page is made valid, both the process PTE and the proto
type PTE point to the physical page containing the data. To track the number
of process PTEs that reference a valid shared page, a counter in the PFN da
tabase entry (described on page 285) is incremented. Thus, the memory man
ager can determine when a shared page is no longer referenced by any page
table and thus can be made invalid and moved to a transition list or written
out to disk.

267

INSIDE WINDOWS NT

268

When a page is invalidated, the PTE in the process page table is filled in
with a special PTE that points to the prototype PTE entry that describes the
page, as shown in Figure 5-13.

------------••Prototype rValid
31 11 10 9 8 7 0

PTEaddress
(bits 7 through 27)

PTEaddress
(bits O through 6) O

Figure 5-13
Structure of an invalid PTE that points to the prototype PTE

Thus, when the page is later accessed, the memory manager can locate
the prototype PTE using the information encoded in this PTE, which in turn
describes the page being referenced. A shared page can be in one of five dif
ferent states as described by the prototype PTE entry:

111111 Active/valid The page is in physical memory as a result of another
process that accessed it.

Ill Transition The desired page is in memory on the standby or modi
fied list.

Ill Demand zero The desired page should be satisfied with a page of
zeros.

111111 Page file The desired page resides within a page file.

Ill Mapped file The desired>page resides within a mapped file.

Although the format of these prototype PTE entries is the same as that
of the real PTE entries described earlier in the chapter, these prototype PTEs
are not used for address translation-they are a layer between the page table
and the page frame database and never appear directly in page tables. (The
only type of "real" PTE that doesn't show up in a prototype PTE entry is the
prototype PTE entry itself.)

By having all the accessors of a potentially shared page point to a proto
type PTE to resolve faults, the memory manager can manage shared pages
without needing to update the page tables of each process sharing the page.
For example, a shared code or data page might be paged out to disk at some
point. When the memory manager retrieves the page from disk, it needs only

PFN

F I V E : Memory Management

to update the prototype PTE to point to the page's new physical location-the
PTEs in each of the processes sharing the page remain the same (with the valid
bit clear and still pointing to the prototype PTE).

Figure 5-14 illustrates two virtual pages in a mapped view. One is valid,
and the other is invalid and in the page file. As shown, the first page is valid
and is pointed to by the process PTE and the prototype PTE. The second page
is in the paging file-the prototype PTE contains its exact location. The pro
cess PTE (and any other processes with that page mapped) points to this pro
totype PTE.

~

_,.,
~ u ~I PFN n ~ lo-' Valid-PFN n Segment

Invalid - points structure
to prototype ~ n ~ PFN n PTE Valid-PFN 5

~I Invalid-in PTE address
_mig_e file

Page directory Page table Share count=1 ·

Figure 5-14
Prototype page table entries

In-Paging 1/0

Prototype page
table

Physical
memory

PFN entry

In-paging I/O occurs when a read operation must be issued to a file (paging
or mapped) to satisfy a page fault. Also, since page tables are pagable, the
processing of a page fault can incur additional page faults when the system is
loading the page table page that contains the PTE or the prototype PTE that
describes the original page being referenced.

The in-page 1/0 operation is synchronous-that is, the thread waits on
an event until the 1/0 completes-and is not interruptible by asynchronous
procedure call (APC) delivery. The pager uses a special modifier in the 1/0
request function to indicate paging I/O. Upon completion of paging I/0, the
I/0 system sets an event, which wakes up the pager and allows it to continue
in-page processing.

269

INSIDE WINDOWS NT

While the paging 1/0 operation is in progress, the faulting thread does
not own any critical memory management synchronization objects. This allows
other threads within the process to issue virtual memory functions and handle
page faults while the paging I/O takes place. But it also exposes a number of
interesting conditions that the pager must recognize when the 1/0 completes:

R Another thread in the same process or a different process could have
faulted the same page (called a collided page fault and described in
the next section).

R The page could have been deleted (and remapped) from the vir
tual address space.

Ill The protection on the page could have changed.

Ill The fault could have been for a prototype PTE, and the page that
maps the prototype PTE could be out of the working set.

The pager handles these conditions by saving enough state on the thread's
kernel stack before the paging 1/0 request such that when the request is com
plete, it can detect these conditions and, if necessary, dismiss the page fault
without making the page valid. When the faulting Instruction is reissued, the
pager is again invoked and the PTE is reevaluated in its new state.

Collided Page Faults

270

The case when another thread or process faults a page that is currently being
in-paged is known as a collided page fault. The pager detects and handles collided
page faults optimally since they are common occurrences in multithreaded
systems. If another thread or process faults the same page, the pager detects
the collided page fault, noticing that the page is in transition and that a read
is in progress. (This information is in the PFN database entry.) In this case,
the pager issues a wait operation on an event specified in the PFN database
entry. The thread that first issued the 1/0 needed to resolve the fault initial
ized this event.

When the 1/0 operation completes, all threads waiting on the event have
their wait satisfied. The first thread to acquire the PFN database lock is respon
sible for performing the in-page completion operations. These operations
consist of checking 1/0 status to ensure the 1/0 operation completed success
fully, clearing the read-in-progress bit in the PFN database, and updating the
PTE element.

F I V E : Memory Management

When subsequent threads acquire the PFN database lock to complete the
collided page fault, the pager recognizes that the initial updating has been
performed as the read-in-progress bit is clear and checks the in-page error flag
in the PFN database element to ensure that the in-page 1/0 completed suc
cessfully. If the in-page error flag is set, the PTE is not updated and an in-page
error exception is raised in the faulting thread.

Page Files
Windows NT 4.0 supports up to 16 paging files on x86 systems and 16 on Al
pha systems. When the system boots, the session manager process (described
in Chapter 2) reads the list of page files to open by examining the registry value
HKLM\System ... \Control\Session Manager\Memory Management\Paging
Files. Once open, the page files can't be deleted while the system is running,
because the System process (also described in Chapter 2) maintains an open
handle to each page file.

: EXPERIMENT:' vieWing System Page .Files
. To view: the list of page files, look iµ theregistry at HKLM\System ... \ ··

··. -· .·.control\Bession Manager\Memory Mariagemeiit\PagirigFUes; To add,
or reniove page filesj !use Control Panel's ;System applet. Click. the· Per

·, formarice. tab,, arnfcli~ the Virtual.Memory Change button: .·

To add a new page file, Control Panel uses the (internal only) NtCreate
PagingFilesystem service defined in NTDLL.DLL. Page files are always created
as noncompressed files (even if the directory they are in is compressed). To
keep new page files from being deleted, a handle is duplicated into the Sys
tem process so that when the handle to the new page file is closed by the cre
ating process, the page file will still be open by another process.

The memory management system keeps track of page file usage on a
global basis, termed commitment, and on a per-process basis as page file quota.
Commitment and page file quota are charged whenever virtual addresses that
require backing store from the paging file are committed. Once the global
commit limit has been reached, allocating virtual memory will fail.

The performance counters listed in Table 5-14 allow you to examine page
file usage on a system-wide or per-page-file basis.

r

271

INSIDE WINDOWS NT

272

Table 5-14 Page File Performance Counters

Performance Counter

Memory: Committed
Bytes

Memory: Commit Limit

Paging File: % Usage

Paging File: % Usage
Peak

Description

Number of bytes of virtual (not reserved) mem
ory that has been committed.

Number of bytes of virtual memory that can be
committed without having to extend the paging
file (s); if the paging file (s) can be extended, this
limit is soft.

Percentage of the paging file committed.

Highest percentage of the paging file committed.

.·····.···EXPERIMENT: Viewing. PageiFHe
·· ·. ··.·• 'lJS.g •.. wftl'fTask :llanager . · ._:; -~ :·. :

·······you can.also view system pageftle and memory u5~ge pe:rforbnce ·
· ... · ·, .·. counters with Task Manager by clicking its Perf9rxnance tab, You'U'see

:the folloWing counters I"elated tt) page files; , , , ' , , , ,

·. ·.. Total virrual' ·. ..
··· ·· · memory that has .

<)ommitted ~or~· ·.

Maxi~ virtual
~without .. • .. ·
extencliOQ page file . · ·

.··

. .~ : : ..

F I V E : Memory Management

Virtual Address Descriptors
The memory manager uses a demand-paging algorithm to know when to load
pages into memory, waiting until some thread references an address and in
curs a page fault before retrieving the page from disk. Like copy-on-write,
demand paging is a form of lazy evaluation-waiting to perform a task until
it is required.

The memory manager uses lazy evaluation not only to bring pages into
memory but also to construct the page tables required to describe new pages.
For example, when a thread commits a large region of virtual memory with
VirtualAlloc, the memory manager could immediately construct the page tables
required to access the entire range of allocated memory. But what if some of
that range is never accessed? Creating page tables for the entire range would
be a wasted effort. Instead, the memory manager waits to create a page table
until a thread incurs a page fault, and then it creates a page table for that page.
This method significantly improves performance for processes that reserve
and/or commit a lot of memory but access it sparsely.

With the lazy-evaluation algorithm, allocating even large blocks of memory
is a fast operation. This performance gain is not without its trade-offs, however:
when a thread allocates memory, the memory manager must respond with a
range of addresses for the thread to use. Because the memory manager doesn't
build page tables until the thread actually accesses the memory, it can't look
there to determine which virtual addresses are free. To solve this problem, the
memory manager maintains another set of data structures to keep track of
which virtual addresses have been reserved in the process's address space and
which have not. These data structures are known as virtual address descriptors
(VADs). For each process, the memory manager maintains a set ofVADs that
describes the status of the process's address space. VADs are structured as a self
balancing binary tree to make lookups efficient. A diagram of a VAD tree is
shown in Figure 5-15 on the following page.

When a process reserves address space or maps a view of a section, the
memory manager creates a VAD to store any information supplied by the al
location request, such as the range of addresses being reserved, whether the
range will be shared or private, whether a child process can inherit the con
tents of the range, and the page protection applied to pages in the range.

273

INSIDE WINDOWS NT

Range: 20000000 through 2000FFFF
Protection: Read/write
Inheritance: Yes

Range: 00002000 through OOOOFFFF
Protection: Read-only

Range: 4EOOOOOO through 4FOOOOOO
Protection: Copy-on-write
Inheritance: Yes Inheritance: No

Range: 32000000 through 3300FFFF
Protection: Read-only
Inheritance: No

Range: 7 AAAOOOO through 7 AAAOOFF
Protection: Read/write
Inheritance: No

Figure 5·15
Virtual address descriptors

274

When a thread first accesses an address, the memory manager must cre
ate a PTE for the page containing the address. To do so, it finds the VAD whose
address range contains the accessed address and uses the information it finds

EXPERIMENT: Viewing Virtual Address Descriptors
You can use the kernel debugger's /vadcommand to view the VADs for
a given process. First find the address of the root of the VAD tree with
the !process command. Then specify that address to the !vad command,
as shown in the following example:

KDx86> !process 73
Searching for i>rocess with Ctd == 73
PROCESS 80568020 Cid: 0073 Peb: 7ffdf000 ParentCid: 002b

DirBase: 022a4000 ObjectTable: 805fc008 TableSize: 30.
Image: atsvc.exe
VadRo&t 80565108·Clone 0 Private 84. Modified 91.. tocked 0.

F I V E : Memory Management

KDx86> lvad 80565108
YAO level $tart end commit
805650e8 C l l 10000 10fff l .Private . R.EAPWRITE
805650c8 (2) 20000 20fff 1 Private READWRITE
80565108 (0) . 30.000 12ffff 3 Pr1.vate READWRITE

'$l0568d48 (3)' 130000 l':ttlfff ' 1 Pl"ivate REAt>WRIIE
80568d28 (2) 140000 23ffff ;!!Private READWRITE

'. l.l05688e8 (' 4> • '. 240900 • ,·. 24ffff'' . ' . / .··.9 .. Mopped ' REA.DWRtrE
.· S056UZ8 c 3> · 2s0e0t 26sf°'ff . 0 illapped>. · JUAOONl.Y ·,·

' •.···. l3056aiei:H. 5) .. 270000 '293fff ' .. 0 tilapplicl' < ' '.READONLY' ..
$'0$$87118 c 4) . . eir . 0 ··.. ·.·.· •.•. ' •.. · REAOCNL'f'

. ' aes6.arn~ i ~.) : ~+::ea <i~2~:~ ' '' ' ·: =~~:: ' REAOONLY
•.'80568748 (5) .·. 300'000 .. 38ff:ff 2. Private • . . . REAWRITE .

· 80568728 (.7} ·31&000< ·70fff'f'· '' l6> Private . , REAiiWRfrE ' ·
, ll056&70S,(6) '71000& ?leff(1 Pr1vate' READWRITE .
8~5fSl48 (.7) 7.20800 . 7.e7fff . ··• lkMapped ·· EXECUTLREAD

'8tsf5d61.l :c '8) : 7f0900: ' 83.?fff : . 0 Mapped REAOONLY
·ses68668· (9) ' . '850!!00: b4ffff > . 0 Mapped . EXECllTLREAD
· 80568628 ;~ l0l b5000t .. b50fff . • 1 P.rfvate - ·. READWRitE
M5685ea 01) . b60009 b68fff 115rfv'ate: 'READWRITE

·· a0s6s6aa 02~ b70000 . bBffff: i Pr1\tate: · READWRITE ·
80565c88 03l .. .b9~000 , fSffff · , , 2 Private · .. < READWRiTE

: • 1 8056Sb68· (14} . · ,c~*000 : d8ffff · < .2 Prtvate . : ! READWRITE ·.· · ·.· ·· ·
a056beca: c' i> . i01~000. :101s.ftt : ·. 2 Mapped ;Exe • ExEcurUIRnEcoPv· ·

• S0Sf0808' C. 7) '5f8Hill00 5f816fff • .· , 2 Mapped . Exe. EXECUTURITECOPV:
: 80tf68948' {' 6) : 77'.7e~000 777~cfff : . • 2 f.ilijiped :Exe EXECUTURITECOPY:

.. ' ; S0'S68Sc8; (5) . 71800000 17:S39fff . : . 3 Mapped : Exe. EXECUTUIUTECOPY
, ' 80S68S88 (6) • i7'840il00]~848ftT : • : , 2 Mapped Exe'' EXECUtEJJRlTECQPY

.: .. ·a~!.·s5 .. 6f81 •. 8~;:88 ... · ... ~:74)) . 77dc01l00>77dfd:fff . '. •· .. 7 Mapped . Exe ' EXECUT.LIRITECOPY
., ~ ' ; 77e00~ee tite05fff, ' • i Mapped ' Exe '. EXECUTLIRITECOPY

•. · ... ··' P.J . .55 .. 66'. s8~ 08a8 ~J ... ···'.i•· .. 65>>. • t7'eU000• 17e6lfff : · .2 Mapp~d".E¥e: EXECUTLWIHTECOP'v "'" " ' i 77e10000 7'7ec3fff> 2 Mapped : Exe· EXEClltLIRITECOPY
, !.80568\148 (6) , . 77ed0000 77efbfff ... , :2 Mapped .Exe.' EXECUlUll~trECOPY
. 'aas6a •a:a ' 3} •. ~7f900~0: Jlf?dfff •'' ' ,3 ,Mapped: : Exe' EX,ECUTLWRITECOPY

.•. ,'~'tilI~•,••.~~m~iit~·· ... ·· ···~ .• ~;i~~.·~,,m~f [~~~: ••..
. • •• •.:;•!·,· .. ····fffdd~~. ! .. 77 .. ff. ff.~.~. ,ff,' ff·.··.:.·.· • •. ·.· ... ·.' ~·Private'., j E.ltEClif~READ\tj'RITE · • 80565&$8 >(51 : ,, ,,., ,..,.. T. • •• I P~Jvate: .· : EXECUTLREADWRITE

: : i~S,6'si2aT(.• 4) l 't e0: 7ffdfff:f: .·· . l Prh.ate: .• ! EX:ECU'rE.~)EADWRU'.E ..
. ·.;; :~: ,'':< : '"·~· "-:-+~t<·~·":'+.-·--)·~-; ·,;·~.-.~·--·~··:. . ·. _. __ ;_
.) r~t~t vAiis•: : 4'~ ~verage .level: · . }i. ·. m11:x;lmum. dept~: · u. ; ;

to fill in the PTE. If the address falls outside the range covered by the VAD,
the memory manager knows that the thread did not allocate the memory before
attempting to use it and therefore generates an access violation.

275

INSIDE WINDOWS NT

Working Sets
In the last several sections, we've concentrated on the virtual view of a Windows
NT process-page tables, PTEs, and virtual address space descriptors. In the
remainder of this chapter, I'll explain how Windows NT keeps a subset of vir
tual addresses in physical memory.

As you'll recall, the term used to describe a subset of virtual pages resi
dent in physical memory is called a working set. There are two kinds of work
ing sets-process working sets and the system working set.

Illa. N 0 TE The kernel extensions to support Terminal Server for
Windows NT (which supports multiple independent interactive user
sessions on a single Windows NT server system) add a third type of
working set: the session working set. A session consists of a set of
processes as well as a system working set for kernel-mode session
specific data structures allocated by the kernel-mode part of the
Win32 subsystem (WIN32K.SYS).

Before examining the details of each type of working Set, let's look at the
overall policy for deciding which pages are brought into physical memory and
how long they remain. After that, we'll explore the two types of working sets.

Paging Policies

276

Virtual memory systems generally define three policies that dictate how (or
when) paging is performed: a fetch policy, a placement policy, and a replace
ment policy.

A fetch policy determines when the pager brings a page from disk into
memory. One type of fetch policy attempts to load the pages a process will need
before it asks for them. Other fetch policies, called demand-paging policies, load
a page into physical memory only when a page fault occurs. In a demand-paging
system, a process incurs many page faults when its threads first begin execut
ing, because the threads reference the initial set of pages they need to get
going. Once this set of pages is loaded into memory, the paging activity of the
process decreases.

N 0 TE To optimize the startup time of an image, a tool named the
Working Set Tuner has been provided in the Platform SDK. This
utility reorders the pages in an executable image, placing them in
the order in which they are referenced during image startup and
thus decreasing load time.

F I V E : Memory Management

The Windows NT memory manager uses a demand-paging algorithm with
"clustering" to load pages into memory. When a thread receives a page fault,
the memory manager loads into memory the faulted page plus a small num
ber of pages surrounding it. This strategy attempts to minimize the number
of paging I/Os a thread will incur. Because programs, especially large ones,
tend to execute in small regions of their address space at any given time, load
ing clusters of virtual pages reduces the number of disk reads. The values that
determine the default page read cluster size are listed in Table 5-15. Notice that
the values differ for data pages and code pages.

Memory
Size

Small
Medium
Large

Table 5-15 Page Fault Clustering Values

Cluster Size for
Data Page

0

1

3

Cluster Size for
Code Page

1

2
7

When a thread receives a page fault, the memory management system
must also determine where in physical memory to put the virtual page. The
set of rules it uses to do this is called a placement policy. Windows NT considers
the size of CPU memory caches when choosing page frames to minimize un
necessary thrashing of the cache.

If physical memory is full when a page fault occurs, a replacement policy is
used to determine which virtual page must be removed from memory to make
room for the new page. Common replacement policies include least recently used
(LRU) and first in, first out (FIFO). The LRU algorithm requires the virtual
memory system to track when a page in memory is used. When a new page
frame is required, the page that hasn't been used for the greatest amount of
time is paged to disk and its frame is freed to satisfy the page fault. The FIFO
algorithm is somewhat simpler; it removes the page that has been in physical
memory for the greatest amount of time, regardless of how often it's been used.

Replacement policies can be further characterized as either global or
local. A global replacement policy allows a page fault to be satisfied by any page
frame, whether or not that frame is owned by another process. For example, a
global replacement policy using the FIFO algorithm would locate the page that
has been in memory the longest and would free it to satisfy a page fault; a local
replacement policy would limit its search for the oldest page to the set of pages

277

INSIDE WINDOWS NT

already owned by the process that incurred the page fault. Global replacement
policies make processes vulnerable to the behavior of other processes-an ill
behaved application can undermine the entire operating system by inducing
excessive paging activity in all processes.

·On multiprocessor x86 systems and on all Alpha systems, Windows NT
implements a variation of a local FIFO replacement policy. On uniprocessor
x86 systems, it implements something closer to a least recently accessed policy
(known as the clock algorithm, as implemented in some versions of Berkeley
UNIX). It allocates a number of page frames (dynamically adjusted) to each
process, called the process working set (or in the case of pagable system code and
data, to the system working set). When a process working set reaches its limit and/
or a working set needs to be trimmed because of demands for physical memory
from other processes, the memory manager removes pages from the working
set until it has determined there are enough free pages. How Windows NT
determines whether there are enough pages is explained in the next section.

'
Process Working Sets

278

Every process starts with the same default working set minimum and maximum.
These values, which are listed in Table 5-16, are calculated at system initializa
tion time and are based strictly on the size of physical memory. (For an expla
nation of small, medium, and large memory systems, see page 236.)

Memory
Size

Small
Medium
Large

Table 5-16 Default Minimum and Maximum
Working Set Sizes in Pages

Default Minimum Working
Set Size (in Pages)

20

30
50

Default Maximum Working
Set Size (in Pages)

45

145

345

You can change these default values on a per-process basis with the Win32
SetProcessWorkingSetSizefunction, though you must have the "increase schedu
ling priority" user right to do this. The maximum working set size can't exceed
the systemwide maximum calculated at system initialization time and stored
in the global variable MmMaximum WorkingSetSize. This value is set to be the
number of available pages (the size of the zero, free, and standby list) at the
time the computation is made minus 512 pages. However, this computed value
has a fixed limit of 1984 MB for both .x86 and Alpha systems or 3008 MB on
an .x86 system running with a 3-GB user space.

F I V E : Memory Management

When a page fault occurs, the process's working set limits and the amount
of free memory on the system are examined. If conditions permit, the memory
manager allows a process to grow to its working set maximum (or beyond
the maximum can be exceeded if enough free pages are available). If the pro
cess reaches its limit and requires more pages, the memory manager removes
one of the process's pages for each new page fault the process generates.

When physical memory runs low, the memory manager uses a technique
called automatic working set trimming to increase the amount of free memory
available in the system. The working set trimmer, a routine that runs in the
context of the balance set manager (described on page 281), examines each
process in memory, comparing the current size of its working set to its mini
mum working set value. When it finds processes using more than their mini
mums, it removes some pages from their working sets, making the pages available
for other uses. If the amount of free memory is still too low, the memory man
ager continues removing pages from processes' working sets until it achieves a
minimum number of free pages on the system. If since the last time a process
was trimmed it has incurred more than a few page faults, it becomes exempt
from trimming, the theory being that if the memory manager makes a mistake
and trims pages that were being used, it won't trim any more out until the next
periodic trim cycle (6 seconds later). With the Win32 SetProcessWorkingSetSize
function mentioned earlier, you can also initiate working set trimming of your
own process, for example, after the initialization in your application takes place.

The algorithm to determine which pages to remove from a working set
is different on a single-processor x86 system than on a multiprocessor x86
system or an Alpha system. On a single-processor x86 system, the memory man
ager tries to remove pages that haven't been accessed recently. It does this by
checking the accessed bit in the hardware PTE to see whether the page has
been accessed. If the bit is clear, the page is removed from the working set. If
the bit is set, the memory manager clears it and goes on to examine the next
page in the working set. In thjs way, if the accessed bit is clear the next time
the working set manager examines the page, it knows that the page hasn't been
accessed since the last time it was examined. This scan for pages to remove
continues through the working set list until either the number of desired pages
has been removed or the scan has returned to the starting point. (The next
time the working set is trimmed, the scan picks up where it left off last.)

On a multiprocessor x86 system and on all Alpha systems, the working set
manager does not check the access bit; clearing it would require invalidating TLB
entries on other processors, which would result in unnecessary TLB cache misses
by threads in the same process that might be running on other processors. Thus,
on a multiprocessor system, pages are removed from the working set without re
gard to the state of the accessed bit.

279

INSIDE WINDOWS NT

-- N 0 TE The algorithm for working set trimming is being improved
in Windows NT 5.0 to be more intelligent when deciding which pages
to remove from a working set.

280

As a process incurs page faults, if enough memory is available, the memory
manager expands the working set. If memory is tight, the memory manager
decides whether or not to expand the working set, depending on the process's
page fault rate. If, however, the process incurs no page faults for a period of time,
either the code the process's threads are executing fits comfortably within the
process's minimum working set or none of the process's threads are executing.

EXPFRIMENT: Viewing .Pr0cess Working Set.Sizes
Xou ~use PerfortUan~ Mo:iµt;Qi::to e:xiunine pro~ess 'Workmg set.sizes
bY looking at the. following performance. c~l1nt:ers: .
'•o"-c

·,. c ,··

Counter
Process: Working Set

· ProcesS; Woi:king Set Peak
. .

' ' , •,

·· fiocess~ Page Faults/Sec
' .,, , ;

Description

.Current size of the selected pr~cess's work-.
·.. }ng set iri bytes .

Pea.k si.ze of the selected process's working
. set in bytes . · ·

Number of page faUlts for the. process that
occur each secorid . . .

. '

.. Several other process Viewer U:tilities (such as Task Manager, Pview,
Pviewer, and so on) also display the process working set size •
. You can also get the .total. or all the pJ;~~s,s working set~ by select:

• illg ·--Total process ill the.·instance box in Performance· Monitor~ This·
· · · process is:n't real-it'ssin:lplya total of the process•specific counters for . ·

all processes currently rullirlngon the system. The total you see is mis
leading, however, .because the. size ofeach individual ptoce8s working
setfocluciespagesbeingsharetlbyotherprotesses.Thus;lftwoot.more

.. process:es share a page, the page is counted in each process's working set.

F I V E : Memory Management

Balance Set Manager and Swapper
Working set expansion and trimming take place in the context of a system
thread called the balance set manager (routine KeBalanceSetManager). The bal
ance set manager is created during system initialization. Although the balance
set manager is technically part of the kernel, it calls the memory manager's
working set manager to perform working set analysis and adjustment.

The balance set manager waits on two different event objects: an event
that is signaled when a periodic timer set to fire once per second expires and
an internal working set manager event that the memory manager signals at
various points when it determines that working sets need to be adjusted. For
example, if the system is experiencing a high page fault rate or the free list is
too small, the working set manager wakes up the balance set manager so that
it will call the memory manager to begin trimming working sets. When memory
is more plentiful, the working set manager will permit faulting processes to
gradually increase the size of their working sets by faulting pages back into
memory, but the working sets will grow only as needed.

When the balance set manager wakes up as the result of its I-second timer
expiring, it takes the following four steps:

I. Every fourth time the balance set manager wakes up because its
I-second timer has expired, it signals an event that wakes up another
system thread called the swapper (routine KeSwapProcessOrStack).

2. It then checks the look-aside lists and adjusts their depths if neces
sary (to improve access time).

3. It looks for threads that might warrant having their priority boosted
because they are CPU starved. (See the section "Priority Boosts for
CPU Starvation" in Chapter 4 on page 210)

4. Call the memory manager's working set manager. (The working set
manager has its own internal counters that regulate when to per
form working set trimming and how aggressively to trim.)

The swapper is also awakened by the sc;heduling code in the kernel if a
thread that needs to run has its kernel stack swapped out or if the process that
contains the thread has its working set swapped out. The swapper looks for
threads that have been in a wait state for a specified amount of time (3 seconds
on small memory systems, 7 seconds on medium or large memory systems). If
it finds one, it marks the thread's kernel stack to be swapped out to the pag
ing file so as to reclaim its physical memory, operating on the principle that,
if a thread's been waiting that long, it's going to be waiting even longer. When

281

INSIDE WINDOWS NT

the last thread in a process has its kernel stack removed from memory, the
process working set is marked to be entirely outswapped. That is why, for ex
ample, processes that have been idle for a long time (such as WinLogon is after
you log on) can have a zero working set size.

Some of the system variables that affect working set expansion and trim
ming are listed in Table 5-17. The values of these variables are fixed, and you
can't change them without using the kernel debugger or writing a device driver.

Table 5-17 Working Set-Related System Control Variables

Variable Value Description

MmWorkingSetSize- 6
Increment

Mm WorkingSetSize- 20
Expansion

Mm WsExpand- 90
Threshold

MmPagesAboveWs- 37
Threshold

Mm WsAdjustThreshold 45

Mm WsTrimReduction- 29
Goal

System Working Set

The number of pages to add to a working set if there
are sufficient available pages and the working set is
below its maximum.

The number of pages by which to expand the maxi
mum working set if it is at its maximum and there are
sufficient available pages.

The number of pages that must be available to expand
the working set above its maximum.

If memory is getting short and MmPagesAboveWsMinimum
is above this value, trim working sets.

The number of pages required to be freed by working
set reduction before working set reduction is attempted.

The total number of pages to reduce by working set
trimming.

Just as processes have working sets, the pagable code and data in the operat
ing system are managed by a. single system working set. Five different kinds of
pages can reside in the system working set:

282

II System cache pages

II Paged pool

II Pagable code in NTOSKRNL.EXE

II Pagable code in device drivers

111111 System mapped views (sections mapped at OxAOOOOOOO, such as
WIN32K.SYS)

F I V E : Memory Management

You can examine the size of the system working set or the size of the five
components that contribute to it with the performance counters or system
variables shown in Table 5-18. Keep in mind that the performance counter
values are in bytes whereas the system variables are measured in terms of pages.

Table 5-18 System Working Set Performance Counters

Performance Counter
(in Bytes)

Memory: Cache Bytes*

Memory: Cache Bytes
Peak

Memory: System Cache
Resident Bytes

Memory: System Code
Resident Bytes

Memory: System Driver
Resident Bytes

Memory: Paged Pool
Resident Bytes

System Variable
(in Pages)

MmSystemCacheWs
. WorkingSetSiz.e

MmSystemCacheWs.Peak

MmSystemCachePage

MmSystemCodePage

MmSystemDriverPage

MmPagedPoo!Page

Description

Total size of system working set
(including the cache, paged pool,
pagable NTOSKRNL and driver
code, and system mapped views);
this is not the size of the system
cache alone, even though the name
implies that it is.

Peak system working set size.

Physical memory consumed by the
system cache.

Physical memory consumed by
pagable code in NTOSKRNL.EXE.

Physical memory consumed by
pagable device driver code.

Physical memory consumed by
paged pool.

* Internally, this working set is called the system cache working set, even though the system cache is just one
of four different components in it. Thus, several utilities think they are displaying the size of file cache
when they are displaying the total size of the system working set. '

You can also examine the paging activity in the system working set by ·
examining the Memory: Cache Faults/Sec performance counter, which de
scribes page faults that occur in the system working set (both hard and soft).
The system variable that contains the value for this counter is MmSystemCache
Ws.PageFaultCount.

· The miniml1m and maximum system working set size is computed at sys
tem initialization time based on the amount of physical memory on the ma
chine and whether the system is running Windows NT Workstation or Windows
NT Server. The initial values, which are listed in Table 5-19, are chosen based
on system memory size.

283

INSIDE WINDOWS NT

Table 5-19 Minimum and Maximum Size of System Working Set

System Working Set System Working Set
Memory Size Minimum (in Pages) Maximum (in Pages)

Small 388 500

Medium 688 1150

Large 1188 2050

These numbers are further altered if the registry field HKLM\Sys
tem ... \Control\Session Manager\Memory Management\LargeSystemCache is
set to 1 (the default is 0) and the number of available pages (MmAvailablePages,
as described on page 298) is greater than 350 plus 6 MB (a total of 1886 pages
on x86 systems and 1118 pages on Alpha systems). In this case, the system work
ing set maximum is set to available pages minus 4 MB. If this value is greater
than the maximum working set size supported by Windows NT (1984 MB for
~ormal x86 and Alpha systems or 3008 MB on an x86 system running with a
3-GB user space), the system working set maximum is reduced to that maximum
value minus 5 pages.

Windows NT then checks to see whether the new system working set maxi
mum is greater than the virtual size of the system cache-if it is, the working
set is reduced to the virtual size of the system cache. In other words, the sys
tem working set could potentially expand to use all of the virtual memory re
served for the system cache. (See Chapter 8 for more information about the
virtual size of the system cache.)

Finally, a check is made to determine whether the difference between the
system working set minimum and maximum is less than 500 pages. If it is, the
working set minimum is reduced to the working set maximum minus 500 pages.

The final calculated working set minimum and maximum are then stored
in the system variables shown in Table 5-20. (These variables are not available
through any performance counter.)

Table 5-20 System Variables That Store Working Set
Minimums or Maximums

Variable Type Description

MmSystemCacheWsMinimum or

MmSystemCacheWs.Minimum WorkingSetSize

MmSystemCacheWsMaximum or
MmSystemCacheWs.Maximum WorkingSetSize

284

ULONG Minimum working set size

ULONG Maximum working set size

F I V E : Memory Management

Page Frame Database

Status

Whereas working sets describe the resident pages owned by a process or the
system, the page frame database describes the state of each page in physical mem
ory. Pages are in one of eight states, as shown in Table 5-21.

Table s-21 Page States

Description

Active (also
called valid)

The page is part of a working set (either a process working set or the
system working set), and a valid PTE points to it.

Transition A temporary state for a page that is not owned by a working set and is
not on any paging list. A page is in this state when an 1/0 is in progress
to the page. The PTE is encoded so that collided page faults can be
recognized and handled properly.

Standby The page previously belonged to a working set but was removed. The
page was not modified since it was last made resident. The PTE still
refers to the physical page but is marked invalid and in transition.

Modified The page previously belonged to a working set but was removed. How
ever, the page was modified while it was in use and its contents haven't
yet been written to disk. The PTE still refers to the physical page but is
marked invalid and in transition.

Modified
no write

Same as a modified page, except that it has been marked so that the
memory manager's modified page writer won't write it to disk. The
cache manager marks pages as modified no write at the request of file
system drivers. NTFS uses this for pages containing file system metadata
so that it can first ensure transaction log entries are flushed to disk
before the pages they are protecting are written to disk. (NTFS transac
tion logging is explained in Chapter 9.)

Free The page is free but has dirty data in it. (Dirty pages can't be given as a
user page to a user process without being initialized with zeros.)

Zeroed The page is free and has been initialized with zeros by the zero page
thread.

Bad The page has generated parity or other hardware errors and can't be used.

The PFN database consists of an array of structures numbered from 0
through the number of physical pages of memory on the system (minus 1). The
page frame database and its relationship to page tables are shown in Figure
5-16. As this figure shows, valid PTEs point to entries in the page frame data
base, and the page frame database entries (for nonprototype PFNs) point back
to the page table that is using them. For prototype PFNs, they point back to
the prototype PTE.

285

INSIDE WINDOWS NT

286

Process 1
page table

Valid

Invalid:
disk address

Invalid:
transition

. . .

Process2
page table

Valid

Invalid:
disk address

Valid

. . .

Process 3
page table

Valid

Invalid:
transition

Invalid:
disk address

. . .

~---------- L ~

' I ---------------
--""

---~---------------------~

-""

---~---------------------·
Prototype PTE r-

~-r J•- -_: ~I ,

--"" ·-, ----. I
I
I
I
I
I
I
I
I
I

~-----------------·

Forward pointer ------·~
Backward pointer • • • • • •

Figure 5-16

Page tables and the page frame database

Page frame
database

In use

Standby list

In use

In use

Modified list

. . .

'

;

~

;

F I V E : Memory Management

Of the page states listed in Table 5-21 on page 285, six are organized into
linked lists so that the memory manager can quickly locate pages of a specific
type. (Active/valid pages and transition pages aren't in any systemwide page list.)
Figure 5-17 shows an example of how these entries are linked together.

Zeroed

Standby

Bad

Modified

Modified no
write

Figure 5-17
Page lists in the PFN database

Page frame
database

Active

•

Active

Active

•
•

•

287

INSIDE WINDOWS NT

288

With•the.Wind?ws .. NT.llesotlrCeKitto0Isattd,l'etforntari~eMorptor,.ygli·····
can cgme close to accountiI1gfor allof physical Ill~rX. J:oadd·upt}ie
memofy on your machine, nm. Performance Monitor andaddthe fol· •
lowing counters: · .

• Total process. working set size . Tnaddthis COU1lter1 select the
Process: Working Set .Size counter for the _J:otalproces~. Re·
member that the process working set size is larger tlian the ac·
tual total process meniory utilization since sforred pages are
counted in each process :worlting set. · · · ·

• Totat.systemworklng sefslze ·. To.addthiscounter,select
Memory: Cache Bytes. As you~n see, this <;ounter is lllore than
just the cache size-it includes three other .components, all -0£
which comprise the system working set.

• Size of nonpaged poOI Add this counterbyselecting Meu,iory:
Pool Nonpaged Bytes. · · ·

• ·Size of the free, .zero, and standby llsta Specify the siies of
these lists by selecting Memory: Available Bytes~

Your graph now contai:ns a representation ofaU ofphysicalmeµID.ry
• .. e.xceptfortwo components:

• Nonpagedoperating system and drivercode

• The modified and modified nnwrite paging lists

Although there is noway t() getthe exact size of the nonpaged
operating system and driver code, you can obtain an estimate by total"
ing the first two .columns of the ·loaded. kernel·mode.module list.from
the Drivers or Pstat utilityandthen subtracting the size of\V1N32K.SYS.
(The image sections in WIN32K.SYS are marked ri.onpaged~ butthe
loader has special casecode that marks them all as pa~ble.) A saniple
of the output from the .Drivers utilityis shown ~t the top pf thenextpage.

. (Pstat's output is similar but includes the ado/~ of the loa~ed module
· in system space.) In this e~ple, the total nonpaged syste!lJ: code and
data is 2,453,536 (code) + 218,6!)6:(data) -l,162,624 (WIN3tK,SYS
code) - 40,064 (WIN32K.SYS data) = 1,46?,5()4 bytes, on1bout 1. 5 MB,

F I V E : Memory Management

ModuleName Code Data Bss Paged I nit LinkOate

ntoskrnl.exe 282816 42112 0 435392 84352 Sat May 10 21 :11 :27 1997
hal.d11 24992 4224 0 9920 21120 Mon Mar 10 13:40:06 1997

atapi. sys l?0736 1088 0 0 768 Thu Apt". 10 12: 06: 59 1997
SCSIPORT.SYS 9824 32 0 15552 2208 Mon Mar 10 13:42:27 1997
cpq32f$2.sys '62080 288 0 0 640 Mon Aug 12 23:19:00. 1996

Disk.sys 3-328 0 0 7072 1600 Thu Apr 24 19:27:46 1997
CLAS$2 .• SYS 1e40 < 0 0 Hi3Z 1152 Thu Apr 24 19:23:43 1997.

Ntfs.Syl! 68Ull 54118 0 269632 8704 Thu Apr fl 19£021311997.
Floj)pY,.SYS •· 1088 ' 672 ··' 0 7968 6112 Tue Jui 16 2l\3i :09 1996.
c<l'rotii;s¥s·. 1~08 · 32 0 3012 a104 'rue Jul 16 2iiai:29.J9~6
fsJ~c:svs · ... ~.··.··.5.·.49· ... ·.·· 0 .0 •.... ~12 i152 Mon· .. Mar 10 13:51:19 1997

··· Null.SYS 0 iJ. ' 288 ... 416 Tuecjii:Ll6 21;·31:21 1996'
K.s oli svs 1280 224 0 3456 1024 tied .Jul 11 17:'34:191996 ·· ·:~ei>:svs< n04·· 0 ·· ·0 11 704 1tted Apr 23 12:19:43 1997

auddrive.SYS · 1S296 .· .. 320 0 17632 11008 Wed Sep 04 14:09:02 1996
f8042pr1;.sY$ 10784 12 0 0 10976 Mon Apr 21 13:.03:54 1997.

:m:o•uclass.sy$. · .1984 0 0 0 .. 3968 Mon Mar lll 13:43:11 1997
kbdc1ass;sys 1952· 0 0 e 3840 Tue "Jt.11 16 21:31!16 i99'6

· vntoPRr.svs. .20a0' 12a e 11296 2752 Mon Marie .13:41:37 1997
.m91164;.sys '.19~8", ;6!1768·... t ··30112 6880 Tue Aug 27 .06:26i50 1996

Vga;.sy$ 12s .. " ·· 32 e . 10704 832 Tue Jul. 16 2h30:.37. 1996
.. Msfs;svs . 864:, " 32 0 · 15328 -1664 M<m Mar 10 13:45:01 1991
-:'. "Npfs.svs .. ,. !i!.>60; "192 ·· 0 22624 ·· .3200 Mon Mar. 10.13:44:48 1997

:.···· .s~;·MGMnKD3. :~: •• ssslis'_\i_1:.it.·~!.i2·.: .. ·........ , '.;:~ : 967!~ 4::~: ~~~ ~:; i~ ~i:i!~!! i::~
- ·ff' r=· ~ r.'"'" ... 40064 '· '0 ·a 640Jf Fri,Apr25 18:17:3? 1997

;NTDLU;ol.l ·237568 i 20480 :: . 0 . 0 e Fri Apr 1~ 13:38:58 1997
'~ ... ·~ ~ ';,. • .,:;.- ___ :...: .. !.., ... :;. ~:~--~- :.." ... :.. v .. ~:,,;:. ... ~ ~~ .. =... _ w .. -- ... ~ - -- __ ·,.. ... ;. "'

· · t~ta1 24s3s3i.," z~Sf>se:. · 0 1s6a032. 311264

, . , , : Th~ ~.pf t;he fudtvidUalpagillg listSis availa};lle only from th~ ker
. }i~licfetiuggef!mem~dge comtnan~. The following eXc:erpt iS from the
• ~1,itput frornj thi~ conunand; . . .

. ~~~~~ri!ni::z~~:i~tiase· '· : .. ' :~ .. ,. ;: .. :
· · ··• · z~eoed}: · ,j;45 (2sse kb)

F e . 4 (16 kb) .· >s~~n~:yi " 2105 < s740 kb>
· Mo'difie.(!;: .. :591i1 (, 2360 Jib)

ModffiedN~wrtti:i:: : .. e { ·. e kb)
Act~ve./V)1lH!i.. ~8l5J 21?60 kb)
.· rran$,it;~on: :' e (0 kb)'

;. unknown: ., L 0 c 0 kb'>
'}or..6.u _>1~239 < 4095~ kb)

' ' The iasd:igu.re yo~.~eed to compl~te this exercise ofaccounting' for
:~Ro£physic~lll.emory~·th_e size of the'~~~~~ 3P.~. ~difi~n~ write
ll:;tjl; wltlch iii this .tfl,Se comes out to appr.oxll:nately 2.3 f\.fB (2~6(} l\B) .

. '·. : . . : .. . '

·. ~:'

289

INSIDE WINDOWS NT

In the next section, you'll find out how these lists are used to satisfy page
faults and how pages move to and from the various lists.

Page List Dynamics
Figure 5-18 shows a state diagram for page frame transitions. For simplicity, the
modified no write list is not shown.

Process
working

sets

Figure 5-18

Page read from
disk or kernel
allocations

Standby
page llst

Modified
page list

State diagram for page frames

290

Free
page
llst

Zero
page
list

Bad
page
list

FI V E : Memory Management

Page frames move between the paging lists in the following ways:

Ill When the memory manager needs a zero-initialized page to service
a demand-zero page fault (a reference to a page that is defined to
be all zeros, or to a user-mode committed private page that has never
been accessed), it first attempts to get one from the zero page list; if
the list is empty, it gets one from the free page list and zeros the page.
If the free list is empty, it goes to the standby list and zeros that page.

One reason zero-initialized pages are required is to meet C2
security requirements. C2 specifies that user-mode processes must
be given initialized page frames to prevent them from reading a pre
vious process's memory contents. Therefore, the memory manager
gives user-mode processes zeroed page frames unless the page is be
ing read in from a mapped file. If that's the case, the memory mana
ger uses nonzeroed page frames, initializing them with the data off
the disk.

The zero page list is populated from the free list by a system
thread called the zero page thread (thread 0 in the System process). It
waits on an event object to signal it to go to work. When the free list
has eight or more pages, this event is signaled. However, the zero
page thread will run only if all other threads are not running, be
cause the zero page thread runs at priority 0 and the lowest priority
that a user thread can be set to is 1.

II When the memory manager doesn't require a zero-initialized page,
it goes first to the free list; if that is empty, it goes to the zeroed list.
If the zeroed list is empty, it goes to the standby list. Before the mem
ory manager can use a page frame from the standby or modified
list, it must first backtrack and remove the reference from the invalid
PTE (or prototype PTE) that still points to the page frame. Since
entries in the page frame database contain pointers back to the pre
vious user's page table (or to a prototype PTE for shared pages), it
can quickly find the PTE and make the appropriate change.

II When a process has to give up a page out of its working set (either
because it referenced a new page and its working set was full, its work
ing set was trimmed by the memory manager, or the process exits),
the page goes to the standby list if the page was clean (not modi
fied) or to the modified list if the page was modified while it was
resident.

291

INSIDE WINDOWS NT

.·EXPERIMENT:. Viewing Page Fault BehllVIQr
.. With thePFMONtQ-Ofiri theW'"ui(fQW8.NT~~~tift~1tit:,}roudm'watcli
· page fault beh~vior as it oc<:lfrs. spft faUltsfefer to a pag~ fau}t sati$fied ·
from one· of the trtlnsition lists. H:ircl faultS cari be either a ~read dr
a demand-~o fault; The f(>U~wmg~ple~ ap~rtion of:ohtP~tyodll·.·
see tfyou staJ,'t Microsoft N<:ltepad Wi~hPfmon aridtheneXit. Be sure to
notice the sumni:u-y of page fau1t)tctivitr at the efid•

C: \> pfmon note'pad .. · . . • . , .•.. ·. .
$OFT: KiUserApcDfs"{)atctier ; .Kiµ!ierApcoiS:patcher ·
SOFT: Ldrinitial1zeThunk : Ldrlnlti a11 zelhi.mk .
SOFT: 0x77f6l0lfi : : 0x77f'61016 • ,

. SOFT: .0x77f6105b : : fl tused+.llxe00
HARO: 0x77f6105b': : fltused+0Xe0f . , .. •· · • . .. · . ··
SOFT: l.drQueryimageFileExecuti cinOpti ons. ·: •LdrQuerylmageFi ieExecution.Opti ons
SOFTi RtlAppendUnicodefoString : .RtlAppendUnfcodeT~String · · · ·
SOFT:. RtlinitUn1codeStr1ng : Rt1InitUntcodeStr1ng ·

notepad.dbg Caused
ntdll.dbg Caused.

comdlg32.dbg Caused
kerne132.dbg Caused

user32.dbq Caused
gdi32.d:bg Caused

advapi32.dbg Cause_d
rpcrt4.dbg Caused

shel132.dbg Caused
COl1!C1;13_2.db_9 •Caused

8 filul ts .had
183 faults had
· 1 faults tfad
53 faults had ...
56 faLfl ts nad
22 faults had
12 faults had
3 faults had

i& faults had .
5 faults had

.17 Soft
48 Sdft ·.
12 Soft
45,Soft
53•.Soft
19. Soft
21 Soft
11 Soft ,
2'2 Soft.
12 Soft

. , 3 Hard faulted VA' s
· 5 Hard faulted VA's

5 Hard faulted VA• s
3 Hard faulted' VA.' s .
2 Har~ fa1,11ted VA• s
2.Hard faulted VA's

. 3 Hard faulted VA' s
·2 Hard faulted .VA's
4 Hard .. f!!Ulted VA'S.

... 2 Haril faulted VA~ s

When the modified list gets too big, or if the size of the zeroed and standby
lists falls below a minimum threshold (as indicated by the kernel variable Mm
MinimumFreePages, which is computed at system boot time), a system thread
called the modified page writer is awakened to write pages back to disk and move
the pages to the standby list.

Modified Page Writer

292

The modified page writer is responsible for limiting the size of the modified
page list by writing pages to their backing store locations when the list becomes
too big. It consists of two system threads: one to write out modified pages
(MiModifiedPageWriter) to the paging file and a second one to write modified
pages to mapped files (MiMappedPageWriter). Two threads are required to avoid
creating a deadlock, which would occur if the writing of mapped file pages
caused a page fault that in turn required a free page when no free pages were

F I V E : Memory Management

available (thus requiring the modified page writer to create more free pages).
By having the modified page writer perform mapped file paging I/Os from a
second system thread, that thread can wait without blocking regular page file
I/0.

Both threads run at priority 17 and, after initialization, wait on separate
event objects to trigger their operation. The modified page writer event is set
when the number of modified pages exceeds the maximum value computed
at system initialization (MmModifiedPageMaximum). It is also set by the working
set management code when the number of available pages (MmAvailablePages)
goes below MmMinimumFreePages.

Table 5-22 shows the number of pages that trigger the waking of the modi
fied page writer to reduce the size of the modified list and how many pages it
leaves on the list. As with other memory management variables, this value is
computed at system boot time and depends on the amount of physical memory.

Table 5-22 Modified Page Writer Values

Modified Page Retain Modified
Memory Size Threshold Pages

Small 100 40

Medium 150 80

Large 300 150

>33MB 400 800
(special case)

When invoked, the modified page writer attempts to write as many pages
as possible to the backing store with a single I/O request. It accomplishes this
by examining the original PTE field of the PFN database elements for pages
on the modified page list to locate pages in contiguous locations in the back
ing store. Once a list is created, the pages are removed from the modified list,
an 1/0 request is issued, and at successful completion of the 1/0 request, the
pages are placed at the tail of the standby list.

Pages that are in the process of being written can be referenced to disk.
When this happens, the reference count and the share count in the PFN en
try that represents the physical page are incremented to indicate that the page
is being used by another process. When the 1/0 operation completes, the modi
fied page writercnotices that the share count is no longer 0 and doesn't place
the page on the standby list.

293

INSIDE WINDOWS NT

PFN Data Structures

'294

Although PFN entries are of fixed length, they can be in several different states,
depending on the state of the page. Thus, individual fields have different mean
ings depending on the state. The states of a PFN entry are shown in Figure 5-19.

Working set index

PTEaddress c :

Share count

Reference count} Type J Flags

Or1ginal PTE contents

PFN of PTE

PFN for a page In a
working set

Forward link

PTE address

Backward link

'

'

Reference countj Type J Flags

Color chain PFN number.

PFN of PTE

PFN for a page on the
zero or free list

Figure 5-19
States of PFN entries

.. "' ·>

Forward link
•·.· h. '' -· i

Backward link

Reference count} Type } Flags :

0rig1~ rn~·' .·. ··
PFN of PTE

"·"··· •v••

PFN for a page on the standby
or the modified list

Event address
...

. PTE addrasS-

Share count

Reference countj Type J Flags •·
. .

Or1glilal PTE cor)tents

PFN of PTE
..•••• •"¥•

PFN for a page with a
1/0 in progess

Several fields are the same for several of the PFN types, but others are
specific to a given type of PFN. The following fields appear in more than one
PFN type:

Ill PTE address Virtual address of the PTE that points to this page.

Ill Reference count The number of references to this page. The ref~
erence count is incremented when a page is first added to a working
set and/or when the page is locked in memory for I/0 (for example,
by a device driver). The reference count is decremented when the
share count becomes 0 or when pages are unlocked from memory.
When the reference count becomes 0, the page is no longer owned

F I V E : Memory Management

by a working set, and depending on its status, the PFN entry that
describes the page is updated to add the page to the free, standby,
or modified list.

• Type The type of page represented by this PFN (active/valid, tran
sition, standby, modified, modified no write, free, zeroed, bad, and
transition).

• Flags The information contained in the flags field is shown in
Table 5-23 on the following page.

• Original PTE contents All PFN entries contain the original con
tents of the PTE that pointed to the page (which could be a proto
type PTE). Saving the contents of the PTE allows it to be restored
when the physical page is no longer resident.

• PFN of PTE Physical page number of the page table page contain
ing the PTE that points to this page.

The remaining fields are.specific to the type of PFN. For example, the
first PFN in Figure 5-19 represents a page that is active and part of a working
set. The share count field represents the number of PTEs that refer to this page.
(Pages marked read-only or copy-on-write can be shared by multiple processes.)
For page table pages, this field is the number of valid PTEs in the page table.
As long as the share count is greater than 0, the page is not eligible for removal
from memory.

The working set index field is an index into the process (or system) work
ing set list where the virtual address that maps this physical page resides. If the
page is a private page, the working set index field refers directly to the entry
in the working set list, since the page is mapped only at a single virtual address.
In the case of a shared page, the working set index is a hint that is guaranteed
to be correct only for the first process that made the page valid. (Other pro
cesses will try to use the same index where possible.) The process that initially
sets this field is guaranteed to refer to the proper index and doesn't need to
add a working set list hash entry referenced by the virtual address into its work
ing set hash tree. This guarantee reduces the size of the working set hash tree
and makes searches faster for these particular direct entries.

The second PFN in Figure 5-19 is for a page on either the standby or the
modified list. In this case, the forward and backward link fields link the ele
ments of the list together within the list. This linking allows pages to be easily
manipulated to satisfy page faults. When a page is on one of the lists, the share

295

INSIDE WINDOWS NT

Table 5·23 Flags Within PFN Entries

Flag Meaning

Modified state Indicates whether the page·was modified. (If the page is modified,
its contents must be saved to disk before removing it from memory.)·

Prototype PTE Indicates that the PTE referenced by the PFN entry is a prototype
PTE. (For example, this page is sharable.)

Parity error Indicates that. the physical page contains parity or error correction
control errors.

Read in progress Indicates that an in-page operation is in progress for the page. The
first DWORD contains the address of the event object that will be
signaled when the 1/0 is complete; also used to indicate the first
l>FN for nonpaged pool allocations.

Write in progress Indicates that a page write operation is in progress. The first DWORD
contains the address of the event object that will be signaled when
the 1/0 is complete; also used to indicate the last PFN for nonpaged
pool allocations.

Start of nonpaged
pool

For nonpaged pool pages, indicates that this is the first PFN for a
given nonpaged pool allocation.

End of nonpaged
pool

For nonpaged pool pages, indicates that this is the last PFN for a
given nonpaged pool allocation.

In-page error Indicates that an 1/0 error occurred during the in-page operation
on this page. (In this case, the first field in the PFN contains the
error code.)

296

count is by definition 0 (since the page is not in use by any working set) and
therefore can be overlaid with the backward link. However, the reference count
might not be 0, since an 1/0 could be in progress for this page (for example,
when the page is being ~itten to disk).

The third PFN in Figure 5-19 on page 294 is for a page on the free or ze
roed list. Besides being linked together within the two lists, these PFN entries
use an additional field to link physical pages by "color;' their location in the
processor memory cache. Windows NT attempts to minimize unnecessary
thrashing of CPU memory caches by mapping virtually contiguous I?ages to
pages that are physically contiguous in the cache. It achieves this optimization
by avoiding using the same cache entry for two different pages wherever pos
sible. For processors with direct mapped caches, optimally using the hardware's
capabilities can result in a significant performance advantage.

F I V E : Memory Management

The fourth PFN in Figure 5-19 on page 294 is for a page that has an 1/0
in progress (for example, a page read). While the 1/0 is in progress, the first field
points to an event object that will be signaled when the 1/0 completes. If an in
page error occurs, this field contains the Windows NT error status code repre
senting the 1/0 error. This PFN type is used to resolve collided page faults.

EXPEFUMEl\IT:. Vl.evvlng P~N .Entrlt$ ·
You can examine individual PFN entries with the kerneld~b~gger lpfn
command .. You first.nee<f to supply.·thePF;N·~··· an.at~nt.·(Forex
ample~ !pjn-Oshowst~e firstentry,. !pfnl shows the second,andso on.)· ·
In the following exampte, the PTE for virtctal address Ox50000 i.s dis~
pl~yed, followed by the PFNthat contains the page d!rectory and then
the· actqal page:

KDx86>!pte 50000
000.!>00l!.0. . . • PD.E · at C0300000

·.· cqnta i nll 007·00067
pfn00700 "-DA-•UWV

· KPxB6>fpfri.7J~0 •. ••··

PTE at.C0000140
contains.00DAA047

pfn 00DAAc-o~--uwv

PF~ ~ddre•ss 827CDS00.
" fHnk 00000004 •. blink I

· share .count 00000010 pteaddress c0ae0000
. . refere.!'lc:e· coun1; 0001

res1;or~ pte 00000080
Modified ·

In addition to the PFN database, the system variables in Table 5-24 de
scribe the overall state of physical memory.

297

INSIDE WINDOWS NT

Table 5-24 System Variables That Describe Physical Memory

Variable Description

MmNumberof PhysicalPages

MmAvailablePages

MmResidentAvailablePages

Total number of physical pages available on the
system

Total number of available pages on the system
the sum of the pages on the zeroed, free, and
standby lists

Total number of physical pages that would be
available if every process were at its minimum
working set size

Section Objects

298

As you'll remember from the section on shared memory earlier in the chap
ter, the section object, which the Win32 subsystem calls a file-mapping object, rep
resents a block of memory that two or more processes can share. A section
object can be mapped to the paging file or to another file on disk.

The executive uses sections to load executable images into memory, and
the cache manager uses them to access data in a cached file. (See Chapter 8
for more information on how the cache manager uses section objects.) You can
also use section objects to map a file into a process address space. The file can
then be accessed as a large array by mapping different views of the section
object and reading or writing to memory rather than to the file (an activity
called mapped file 1/0). When the program accesses an invalid page (one not
in physical memory), a page fault occurs and the memory manager automati
cally brings the page into memory from the mapped file. If the application
modifies the page, the memory manager writes the changes back to the file
during its normal paging operations (or the application can flush a view us
ing the Win32 Flush ViewOfFile function).

Section objects, like other objects, are allocated and deallocated by the
object manager. The object manager creates and initializes an object header,
which it uses to manage the objects; the memory manager defines the body of
the section object. The memory manager also implements services that user
mode threads can call to retrieve and change the attributes stored in the body
of section objects. The structure of a section object is shown in Figure 5-20.

F I V E : Memory Management

r
Object type Section

Object body attributes Maximum size
Page protection
Paging file/Mapped file
Based/Not based

Services Create section
Open section
Extend section
Map/Unmap view
Query section

\. ... =,,) .. ,,

Figure 5-20
A section object

Table 5-25 summarizes the unique attributes stored in section objects.

Table 5-25 Section Object Body Attributes

Attribute Purpose

Maximum size The largest size to which the section can grow
in bytes; if mapping a file, the maximum size is
the size of the file.

Page protection Page-based memory protection assigned to all
pages in the section when it is created.

Paging file/Mapped file

Based/Not based

Indicates whether the section is created empty
(backed by the paging file) or loaded with a
file (backed by the mapped file).

Indicates whether a section is a based section,
which must appear at the same virtual address
for all processes sharing it, or a nonbased sec
tion, which can appear at different virtual ad
dresses for different processes.

299

INSIDE WINDOWS NT

300

,:,imr~~r;-=~=~~r~=·····
... ·· .. ·. ~~ tllese:nameiarestoredintheo~ectnmnagerdirectory\BaseNamed.,. ·.

·: 91,l.1¢.tj:s.;- . . ··.. . . .· ·. >
... ·. , Withthe'Wui~owsNTResourceKitOH (Open Handles) tool,you

· .. · can ngu,be opcm handles to section objects. The foliowfog co:mmand ,·
· ·. dis}llays all open fuindles to objects of type section, whether or not they .

'hay~ µames, (A ~tion must have a name only if other processes need
·, -ro.apen ifl>y narne.)

. ··.· .

c::\), oh •t •sectioi'l -a
2· Syst!i!l!I • Sectfon

:23·sms.s;exe• Section
.. · 23.siiiss~exe· Section

... 31.cs:rss.exe Section
· · 31 csrss.exe· · section

·. 31.csrss.exe ·· section
.. , 31 csrss.exe ·· Section.

.31 csrss •. exe ·· Section
3t csrss.exe ·
3.1 cs rss. exe

··31 csrss.exe

Section
.. Section

Sect;! on
:31: csrss,exe Section

·•.:ff csrss.exe section
h csrs·s.~exe •·.'• Section

''31 · • · s·· x .··. · '·• .. ~··se«::tion ·

. 3i ~:~:r:~: sec:t;1on
·· 37 WINLOOONAXE ·Section

' ,37 'wrNLOGON. EXE Sectio.n
·.· · .. 43SE:RVlCES.EXE Section

.• 43 ··SERVICES; EXE-' ·section
, · .,43 SERVICES. EXE ·Section

··.·43 SERV·ICES.EXE Section
43 SERVICES:. EXE . Section
46 LSASS.EXE Section

.· 46 LSASS .• EXE-· Sectfon ·

0.12c
0004
0020
0004
00lc \NLS\NlsSecttbnLotale
0020 \NLS\NlsSectionUnicode
0030
0038 \NLS\NlsSectionUnitode
003c \NLS\NlsSecttonLocale
0044 \NLS\NlsSectionCType
004c \N LS\Nl s.Sect 1 onCType
0050
0054. \N LS\ Nl ssecti o~Sortkey
005c. \NLS\NlsSectionSortkey:
0084'\NLS\NlsS~cttonSortTbls
006c \NLS\NlsSectionSortTbls
0004
0018
0004
0030
0100.
0llc
0138
0004
0028

F I V E : Memory Management

The data structures maintained by the memory manager that describe
mapped sections are shown in Figure 5-21. These structures ensure that data
read from mapped files is consistent, regardless of the type of access (open file,
mapped file, and so on).

File object

Section object
pointers

File object

Figure 5-21
Internal section structures

VAD

Data section
control area

Subsection

Next
subsection

Image section control area .
(if file is an executable image) ;

Page
directory

Page table

Section
object

Segment

Prototype
PT Es

PFN entry

For each open file (represented by a file object), there is a single section
object pointers structure. (This structure is also discussed in Chapter 8). This
structure is the key to maintaining data consistency for all types of file access
as well as to providing caching for files. The section object pointers structure
points to one or two control areas. One control area is used to map the file when
it is accessed as a data file, and one is used to map the file when it is run as an
executable image. A control area in. turn points to subsection structures that

301

INSIDE WINDOWS NT

302

describe the mapping information for each section of the file (read-only, read
write, copy-on-write, and so on). The control area also points to a segment struc
ture allocated in paged pool that contains the prototype PTEs used to map to
the actual pages mapped by the section object. As described earlier in the
chapter, process page tables point to these prototype PTEs, which in turn map
the pages being referenced.

Although Windows NT ensures that any process that accesses (reads or
writes) a file will always see the same, consistent data, there is one case in which
two copies of pages of a file can reside in physical memory (but even in this
case, all accessors get the latest copy and data consistency is maintained). This
can happen when an image file has been accessed as a data file (having been
read or written) and then run as an executable image (for example, when an
image is linked and then run-the Linker had the file open for data access,
and then when the image was run, the image loader mapped it as an execut
able). Internally, the following actions occur:

1. When the image file is created, a data control area is created to rep
resent the data pages in the image file being read or written.

2. When the image is run and the section object is created to map the
image as an executable, the memory manager finds that the section
object pointers for the image file point to a data control area and
flushes the section. This step is necessary to ensure that any modi
fied pages have been written to disk before accessing the image
through the image control area.

3. The men:_iory manager then creates a control area for the image file.

4. As the image begins execution, its (read-only) pages are faulted in
from the image file.

Because the pages mapped by the data control area might still be resident
(on the standby list), this is the one case in which two copies of the same data
are in two different pages in memory. However, this duplication does not re
sult in a data consistency issue, because, as mentioned, the data control area
has already been flushed to disk, so the pages read from the image are up to
date.

FI V E : Memory Management

EXPERIMENT: Viewing Control Areas
To find the address of the control area structures for a file, you must
first get the address of the file object in question. You can obtain this
address by dumping. the process handle table with the !handle com
mand and noting the object address of a file object. Although the ker-

. nel debugger !file command displays the basic information in a file
object, it doesn't display the pointer to. the sedi.on object pointers
structure. However, since file "objects are defined in the public DDK
h~ader file \ddk\inc\ntddk.h, you can look up theoffset. (Ox2Q in
Windows NT 4.0). So, simply examine the pointer;.:ttoffset0x20into
the file object, and you'll have the section object pointers structure.
Thatstructure is also defined in ntddk.h. Itconsists of three 32-bit
pointers: a pointer to the data control area, a pointer to the shared
caclle map (explained in Chapter8), and a pointer to the image con
trol area. From.the section object pointers structure, you can obtain
the address ofa control area for the file (if one exists) and feed that
address into Jhe !ca command.

Another technique is to display the list of all conttol areas with the
!memusage command. The following excerpt is from the output of this
command. · ·

KDx86> !memusage
loading PFN database .•• ,;, .••••.••••••.•••

Zeroed: 645 (2580 kb)
Free' 4 (16 kb)

.Standby; 2185 (87 40 kb)
Modified: S90 (2360 kb}

Modi ffec!NoWrite: · 0 (0 kb)
Active/Va 1 id: 6815 { 27260 kb)

Transition: 0 (0 kb)
Unknown: 0 (0 kb)

TOTAL: 10239 (40956 kb)

Usage Summary.in, Kil oBytes (Kb):
Control Valid Standby Dirty Sh.a red Locked PageTabl es name
8054e9a8 8 360 0 0 0 0 mapped_file(eudora32.dll
B055a5a8 0 792 0 0 0 0 mapped;;...fUe! MM2048.DAT)
8B62dSe8 2080 44 0 0 0 0 No Name for File
80607328 180 256 0 84 0 0 mapped_file(OLE32.DLL)
8062e9a8 948 32 0 0 0 0 No Name for Fll e ·
805ed208 8 0 0. 0 0 0 mapped:...flle(MSV1_0.DLL

(continued)

303

INSIDE WINDOWS NT

EXPERIMENT: Viewing Control Areas continued

.. ·.·•··.•·• the ''Contrpl"•c(>lumn ~oints to the controLarea st{uct\Jre that·· :··
describes themawe(ifile.You can dlSJ)laycpnJ:rolareas, segrue~, ~d ·

·•···· subsectionswiththe kerneldebugger···!t;a command:'J'hisoutpu~is
from. a lea command: · · ·

"; __ :· <

. M>· lca ifbtltJ20~·
controli\rea ®ffb6b2&8

Segment~ el7dZ008
Section·. Ref 1
User Ref 0
FiJ~ ObjeCt ff35e54& ModWi'iteCount
Flags (8080) Fi le Was Purged

0 Total. J>tes
0 Contro.1Are~ffb6h20$
0 Committed 0

. aa.se address
lmage commit
Ima~e Base
Based · Addres ·. 0 ProtoPtes el7d2040

Subs.ection 1 .• @. ff)l6b238
ControlArea.: ffll6b208 Starting Sectw. 0
Ba11e Pte el7d2040 Ptes In subsect
f}ags 6.0 Sector Offset

· 100 Unused Ptes
0 Protectfo.n

Conclusion

304

In this chapter, we've examined how the Windows NT memory manager imple
ments 32-bit virtual memory management. As with most 32-bit operating sys
tems, each process is given access to a private 32-bit address space, protecting
one process's memory from another's but allowing processes to share memory
efficiently and securely. Advanced capabilities, such as the inclusion of mapped
files and the ability to sparsely allocate memory, are also available. The Win32
environment subsystem makes most of the memory manager's capabilities avail
able to applications through the Win32 APL

The memory manager's implementation relies on lazy-evaluation tech
niques whenever possible to avoid performing time-consuming and unneces
sary operations unless they are required. It is also self-tuning, adapting to both
large multiprocessor servers as well as uniprocessor desktop workstations.

One aspect of the memory manager that I didn't describe in this chapter
is its tight integration with the cache manager, which I'll cover in Chapter 8.
But before we get to that, let's take a closer look at the Windows NT security
mechanisms.

C H A P T E R S I X

Security

As mentioned in Chapter 1, Microsoft Windows NT provides a comprehensive,
configurable set of security services that meets the requirements of the U.S.
government Department of Defense C2 level for trusted operating systems. In
1995, two stand-alone configurations ofWindows NT Server and Workstation 3.5
were formally certified at the C2 level by the United States National Computer
Security Center (NCSC). (See http://www.radium.ncsc.mil/tpep/eplfor more de
tails.) In 1996, Windows NT Server and Windows NT Workstation 3.51 in both
stand-alone and networked configurations were certified at the F-C2/E3 level
by the UK Information Technology Security Evaluation and Certification
(ITSEC) board. This evaluation is equivalent to the U.S. C2 evaluation. (For
more information on the ITSEC evaluation, see http://www.itsec.gov.uk.) Win
dows NT 4.0 is currently under evaluation by both the U.S. NCSC and ITSEC.

Here are the security services and their required basic features:

Ill A secure wgon facility requires users to identify themselves by entering
a unique logon identifier and a password before they are allowed
access to the system.

1111 Discretionary access control allows the owner of a resource to deter
mine who can access the resource and what they can do with it. The
owner grants rights that permit various kinds of access to a user or
to a group of users.

Ill Security auditing affords the ability to detect and record security
related events or any attempts to create, access, or delete system
resources. Logon identifiers record the identities of all users, mak
ing it easier to trace anyone who performs an unauthorized action.

Ill Memory protection prevents unauthorized processes from accessing
the private virtual memory of another process. In addition, Win
dows NT guarantees that when a page of physical memory is allo
cated to a user process, that page will never contain dirty data from
another process.

305

INSIDE WINDOWS NT

Windows NT meets these requirements through its security subsystem and
related components.

To fully understand this chapter, you'll need to be familiar with security
terms such as users, groups, domains, security IDs, access control lists, access
tokens, user rights, and security auditing. Because this is an internals book, I'm
not going to explain these user-visible objects and mechanisms or the Win32
programming interfaces that manage them. Also, because security is one of the
areas that is being significantly enhanced and changed in Windows NT 5.0, I've
gone into less detail in this chapter than in other chapters in this book.

-~ N 0 TE Windows NT 5.0 extends the security model in several key
ways, particularly in distributed systems environments. Briefly, the
enhancements include integration with the new Active Directory to
provide scalable, flexible account managemf!nt for large domains,
allowing fine-grain access control and delegation of administration;
Kerberos version 5 authentication protocol, a mature Internet secu
rity standard as the default protocol for network authentication,
providing a foundation for authentication interoperability, and
authentication using public key certificates; secure channels based
on Secure Sockets Layer 3.0; and CryptoAPI version 2.0, delivering
industry-standard protocols for data integrity and privacy across pub
lic networks. For more information on the security enhancements
in Windows NT 5.0, see Chapter 10.

306

Several existing sources describe Windows NT security in great detail:

1111 For a description of Windows NT security from the user's and admin
istrator's perspective, see the chapters "Working with User and Group
Accounts;' "Managing User Work Environments;' "Managing Shared
Resources and Resource Security;' and "Monitoring Events" in the
Windows NT Server Concepts and Planning Manual (available in the
\support\books directory on the Windows NT Server CD-ROM as
well as on MSDN Library and TechNet).

1111 The Windows NT Workstation Resource Guide contains an even more
in-depth description of Windows NT security, specifically in Chap
ter 6 ("Security") and Appendix B ("Security in a Software Devel
opment Environment").

1111 For a detailed description of security from the programmer's per
spective, see the security section of the Platform Software Devel
opment Kit (SDK) documentation as well as the variety of security
programming articles and sample programs on MSDN Library. The

S I X : Security

kernel-mode interface to security functions (such as SeAccessCheck)
is described in the Windows NT Device Driver Kit (DDK) docu
mentation.

II The interface between the local server authority server (LSASS)
and authentication packages is described in a help file that comes
with the Windows NT DDK (\ddk\hlp\lsaauth.hlp).

So without repeating the information in the above sources, in this chap
ter, I'll focus on describing the internal components involved in providing
security on Windows NT.

Security Syste.m Components
Here are some of the components and databases that implement Windows NT
security:

II Security reference monitor (SRM) A component in the Windows
NT executive (NTOSKRNL.EXE) that is responsible for perform
ing security access checks on objects, manipulating privileges (user
rights), and generating any resulting security audit messages.

II Local security authority (LSA) server A user-mode process run- .
ning the image LSASS.EXE that is responsible for the local system
security policy (such as which users are allowed to log on to the ma
chine, password policies, the list of privileges granted to users and
groups, and the system security auditing settings), user authentica
tion, and sending security audit messages to the Event Log.

II LSA policy database A database that contains the system security
policy settings. This database is stored in the registry under HKEY
_LOCAL_MACHINE\Security. It includes such information as what
domains are trusted to authenticate logon attempts, who has per
mission to access the system and how (interactive, network, and
service logons), who is assigned which privileges, and what kind of
security auditing is to be performed.

II Security accounts manager (SAM) server A set of subroutines re
sponsible for managing the database that contains the usernames
and groups defined on the local machine or for a domain (if the
system is a domain controller). The SAM runs in the context of the
LSASS process. ·

307

INSIDE WINDOWS NT

II SAM database A database that contains the defined users and
groups, along with their pasSW-ords and other attributes. This database
is stored in the registry under HKEY_LOCAL_MACHINE\SAM.

II Default authentication package A dynamic-link library (DLL)
named MSVLO.DLL that runs in the context of the LSASS process
that implements Windows NT authentication. This DLL is respon
sible for checking whether a given username and password match
what is specified in the SAM database, and if they do, returning the
information about that user.

II Logan process A user-mode process running WINLOGON.EXE
that is responsible for capturing the username and password, send
ing them to the LSA for verification, and creating the initial process
in the user's session.

II Network logon service A user-mode service inside the process
SERVICES.EXE that responds to network logon requests. Authenti
cation is handled as local logons are, by sending them to the LSASS
process for verification.

Figure 6-1 shows the relationships among these components and the databases
they manage.

l WinLogon

·~ LSASS •

-"' Event ,. Logger

~~ LSA. L ""1L... ...31. § r SAM l_ lot_
policy _- -, server : serv~r J ~

MSV1~~-DLL J,~

User mode

Kernel mode
Executive

l/Omanager Cache Security reference Processes Virtual

File 1 manager monitor (SRM) and threads memory

systems l Object manager/Executive RTL

Device drivers :r Kernel

l Hardware abstraction layer (HAL)

Figure 6·1
Windows NT security components

308

S I X : Security

s d' et au 1t event
Create logon session Local security
Delete logon session authority (LSA) server

r Communication SeLsaCommandPort Communication l
port port

~~ ~~

User mode

Kernel mode

~~ ~~ l Sha~ed]
[Communication Communication]

section
SeRmCommandPort

port port

Security reference Write audit message
monitor (SRM)

Delete logon session

Figure 6-2
Communication between the SRM and the LSA

The SRM, which runs in kernel mode, and the LSA, which runs in user
mode, communicate using the local procedure call (LPG) facility described
in Chapter 3. During system initialization, the SRM creates a port, named
SeRmCommandPort, to which the LSA connects. When the LSA process starts,
it creates an LPG port named SeLsaCommandPort. The SRM connects to this
port, resulting in the creation of private communication ports. The SRM cre
ates a shared memory section for messages longer than 256 bytes, passing a
handle in the connect call. Once the SRM and the LSA connect to each other
during system initialization, they no longer listen on their respective connect
ports. Therefore, a later user process has no way to connect successfl;llly to
either of these ports for malicious purposes-the connect request will never
complete. The communication ports used by the SRM and the LSA are un
named and thus can't be, opened by another process.

Figure 6-2 shows the communication paths as they exist after system ini
tialization.

309

INSIDE WINDOWS NT

Protecting Objects
Protecting objects is the essence of discretionary access control and auditing.
The objects that can be protected on Windows NT include files, devices, mail
slots, named and anonymous pipes, processes, threads, events, mutexes, sema
phores, waitable timers, access tokens, window stations, desktops, network shares,
services, registry keys, and printers.

Because system resources that are exported to user mode (and hence
require security validation) are implemented as objects, the Windows NT ob
ject manager is a key gate at which security access checks are performed. To
control who can manipulate an object, the security system must first be sure
of each user's identity. This need to guarantee the user's identity is the reason
that Windows NT requires authenticated logon before accessing any system
resources. When a thread opens a handle to an object, the object manager and
the security system use the caller's security identification to determine whether
the caller should be given the handle it is requesting.

The following sections examine object protection from two perspectives:
controlling which users can access which objects and identifying a user's secu
rity information.

Security Descriptors and Access Control

310

All securable objects are assigned security descriptors when they are created. A
security descriptor controls who has what access to the object. It consists of the
following main attributes:

• Owner SID The owner's security ID1

R Group SID The security ID of the primary group for the object
(used only by POSIX)

• Discretionary access control list (DACL) Specifies who has what
access to the object

• System access control list (SACL) Specifies which operations by
which users should be logged in the security audit log

1. The format and structure of security IDs are described in the security section of the Platform
SDK documentation.

S I X : Security

- N 0 TE Windows NT 5.0 offers a new set of Win32 API security
functions to manipulate security information for objects. For more
information about these functions, see the description of Set/Get
SecuritylnfoEx, Set/GetNamedSecuritylnfoEx, ConvertSecurityDescriptor
ToAccess, and the new ACTRL_ACCESS structure in the Platform
SDK documentation in MSDN Library.

An access control list (ACL) is made up of an ACL header and zero or more
access control entry (ACE) structures. AnACL with zeroACEs is called a nullACL
and indicates that no user has access to the object.

In a DACL, each ACE contains a security ID and an access mask. Two
types of ACEs can appear in a DACL: access allowed and access denied. As.you
would expect, the access-allowed ACE grants access to a user, and the access
denied ACE denies the access rights specified in the access mask. The accu
mulation of access rights granted by individual ACEs forms the set of access
rights granted by an ACL. If no DACL is present in a security descriptor, ev
eryone has full access to the object. On the other hand, ifthe DACL is null (has
0 ACEs), no user has access to the object.

An SACL contains only one type of ACE, called a system audit ACE, which
specifies which operations performed on the object by specific users or groups
should be audited. (The audit information is stored in the system audit log.)
Both successful and unsuccessful attempts can be audited. If the SACL is null,
no auditing takes place on the object. (Security auditing is described later in
this chapter.)

Figure 6-3 is a simplified picture of a file object and its ACL.

File object

{
Security

Object header 1----'---+--t• desc!iptor

Figure 6-3
Access control list (AGL)

Access control list

ACE ACE ACE

311

INSIDE WINDOWS NT

312

As shown in Figure 6-3, the first ACE allows DAVEC to read the file. The
second ACE allows members of the group TEAMI to have read and write ac
cess, and the third ACE grants all other users (Everyone) execute access.

Assigning ACLs
To determine which ACL to assign to a new object, the security system applies
one of three mutually exclusive rules, in the following order:

1. If a caller explicitly provides a security descriptor when creating the
object, the security system applies it to the object.

2. If a caller doesn't supply a security descriptor and the object has a
name, the security system looks at the security descriptor in the ob
ject directory in which the new object name is stored. Some of the
object directory's ACEs might be marked as inheritable2, meaning
that they should be applied to new objects created in the object di
rectory. If any of these inheritable ACEs are present, the security
system forms them into an ACL, which it attaches to the new object.
(Separate flags indicate ACEs that should be inherited only by con
tainer objects rather than by objects that are not containers.)

3. If neither of the first two cases occurs, the security system retrieves
the default ACL from the caller's access token and applies it to the
new object. Several subsystems on Windows NT have hard-coded
DACLs that they assign on object creation (for example, services,
LSA, and SAM objects).

Determining Access
Two algorithms are used for validating access to an object:

Ill One to determine the maximum ac_cess <ii.lowed to the object
(which can be done with the new Windows NT 5.0 Win32 function
GetEffectiveRightsFromAcl).

Ill One to determine whether a specific desired access is allowed (which
can be done with the Win32 AccessCheck function and the new Win
dows NT 5.0 functions AccessCheckByType* and TrusteeAccessToObject).

2. For a description of ACE inheritance rules, see the Platform SDK documentation.

S I X : Security

The first algorithm builds a granted-access mask and a denied-access mask
by examining the entries in the ACL as follows:

1. If the object has no DACL, the object has no protection and the se
curity system grants all access.

2. If the caller has the take-ownership privilege, the security system
grants the write-owner access before examining the DACL.

3. If the caller is the owner of the object, the read-control and write
DACL access rights are granted.

4. For each access-denied ACE that contains a SID that matches one
in the caller's access token, the ACE's access mask is added to the
denied-access mask.

5. For each access-allowed ACE that contains a SID that matches one
in the caller's access token, the ACE's access mask is added to the
granted-access mask being computed, unless that access has been
denied.

When all the entries in the DACL have been examined, the computed granted
access mask is returned to the caller as the maximum allowed access to the
object.

The second algorithm is used to determine whether a specific access request
can be granted, based on the caller's access token. Each open function in the
Win32 API that deals with securable objects has a parameter that specifies the
desired access mask. To determine whether the caller has access, the following
steps are performed:

1. If the object has no DACL, the object has no protection and the se
curity system grants the desired access.

2. If the caller has the take-ownership privilege, the security system
grants the write-owner access before examining the DACL. The se
curity system grants write-owner access if it was the only access re
quested.

3. If the caller is the owner of the object, the read-control and write
DACL access rights are granted. If these rights were the only access
rights requested, access is granted without examining the DACL.

313

INSIDE WINDOWS NT

4. Each ACE in the DACL is examined from first to last. If the SID
in the ACE matches an enabled SID (SIDs can be enabled and dis
abled) in the caller's access token (whether that be the primary
SID or a group SID), the ACE is processed. Ifit is an ~ccess-allowed
ACE, the rights in the access mask in the ACE are granted; if all
the requested access rights have been granted, the access check suc
ceeds. If it is an access-denied ACE and any of the requested access
rights are in the denied-access rights, access is denied to the object.

5. If the end of the DACL is reached and some of the requested access
rights still haven't been granted, access is denied.

Both access-validation algorithms rely on the fact that access-denied ACEs
are placed before access-allowed ACEs. This arrangement is done by conven
tion-the raw Win32 ACL functions allow building an ACL with the ACEs out
of order. (The ACL functions added in Windows NT 4.0 automatically place
ACEs in the correct order.)

- N 0 TE In Windows NT 5.0, the order of ACEs is more complicated
because of the introduction of object-specific ACEs and automatic
inheritance. Noninherited ACEs go before inherited ACEs. Within
the noninherited ACEs and inherited ACEs, the ACEs are placed
according to ACE type: access-denied ACEs that apply to the object
itself, followed by access-denied ACEs that apply to a subobject of the
object, followed by access-allowed ACEs that apply to the object it
self, followed by access-allowed ACEs that apply to a subobject of the
object. For more information, see the description of the new Win
dows NT 5.0 Win32 security functions in the Platform SDK reference
documentation in MSDN Library.

314

Because it wouldn't be efficient for the security system to process the DACL
every time a process uses a handle, this check takes place only when a handle
is opened, not each time the handle is used. Also keep in mind that because
kernel-mode code uses pointers rather than handles to _access objects, the access
check is not performed when the operating system uses objects. In other words,
the Windows NT executive "trusts" itself in a security sense.

Once a process successfully opens a handle, the security system can't revoke
the access rights that have been granted, even if the object's DACL changes.
This capability would require a complete security check each time a handle is
used rather than only when the handle is originally created. Storing granted

S I X : Security

access rights directly in handles improves performance significantly, especially
for objects with long DACLs attached.

Access Tokens and Impersonation
An access token is the data structure that contains the security identification of
a process or a thread: its security ID (SID), the list of groups that the user is a
member of, and the list of privileges that are enabled and disabled. Because
access tokens are exported to user mode, a number ofWin32 functions cre
ate and manipulate them. (See the Platform SDK reference documentation for
details about the Win32 functions that relate to access tokens.) Internally, the
kernel-mode access-token structure is an object the object manager allocates
that the executive process block or the thread block points to. You can exam
ine access-token objects with the Pview utility and the kernel debugger, as
demonstrated in experiments later in this section.

Each process has a primary access token that it inherits from its creating
process. At logon, the LSASS process verifies that the username and password
match the information stored in the SAM. If they do, it returns an access to
ken to WinLogon, which then assigns that access token to the initial process
in the user's session. (You'll find more information on the logon process and
security in the section "Logon" on page 321.) Further processes created in the
user's session inherit this access token. You can also generate an access token
by using the Win32 LogonUserfunction. You can then use this access token to
create a process with a specific access token by using the Win32 CreateProcess
AsUser function.

Individual threads can also have their own access tokens-if they are
impersonating a client. This capability allows threads to have a different access
token than that of the process. For example, server processes typically imper
sonate client processes so that a server process (which is likely running with
administrative rights) can perform operations on behalf of the client using the
client's security profile rather than its own. A client process can limit the level
of impersonation that a server process can perform by specifying a security
quality of service (SQOS) when connecting to the server. For examples of the
variations of impersonation that are possible, see the SECURITY_ANONY:.
MOUS, SECURITY_IDENTIFICATION, and SECURITY_IMPERSONATION
flags that can be specified with the Win32 CreateFile function.

By default, a thread doesn't have its own access token unless it requests
one using the Win32 ImpersonateSelf function, which clones the process primary
access token and assigns it to the thread. Once a thread has its own access

315

INSIDE WINDOWS NT

316

token, it can use one of the four Win32 impersonation functions to take on the
security token of a client on whose behalf the thread is about to operate. These
functions are ImpersonateNamedPipeClient, RpclmpersonateClient, Ddelmpersonate
Client, and ImpersonateLoggedOnUser. If the security support provider interface
is being used, the ImpersonateSecurityContext function is another way to imper
sonate a client access token. For details about the interfaces to these functions,
see the Platform SDKreference documentation as well as the technical articles
explaining how to apply them, both in MSDN Library.

Figure 6-4 illustrates the basic process and thread security structures. In
the figure, notice that the process object and the thread objects have security
descriptors, as do the access-token objects themselves. Also in this figure, thread
2 has an impersonation token. (Thread 1 defaults to the process access token.)

Security
descriptor

2J-------i

Security
descriptor

Figure 6-4

Process and thread security structures

3>------.

Security
descriptor

Security
descriptor

Security
descriptor

The following experiments demonstrate how to view process access to
kens, security descriptions, and security descriptors for access tokens.

S I X : Security

EXPERIMENT: Viewing Process
and Thread Security Information
You can view process and thread security descriptors and access tokens
with the Windows NT Resource Kit Process Explode utility, PVIEW~
.EXE (not to be confused with PVIEW.:EXE in the Platform SDK and
Visual C++, whk:h is a different utility). The numbering of the six but
. tons in the Security and Token sections of the. Pview utility match up
Wi~h the p:roc;('!ss and thread se<;urity structures shown in Figure 6-4.

. In this example, buttons 4 (security descriptor for thread token)
and 6 (thread access token) are grayed out (~bled) because the. ciir~
rently selected thread (number 119) has no thread-specifit aecess token.

317

INSIDE WINDOWS NT

318

kd~' I tokenfiel<ls
TOKEN structure offsets:

TokenSource:
Authenticationld: ·
Exp1rat1onTime:
Modifiedid:

· UserAndGroupCount:
PrivilegeCount:
VariableLength:
Dynami cCha rged :.
DynamicAvailable:· -
DefaultOwnerindex:
DefaultOacl:
Token Type:
ImpersonationLevel: ··

.. TokenFlags:
TokeninUse:
Pl'OXyData:.
AuditOata:

0x0
·-0xl8

0x.20
0x2a· ' ' •.:

0x30 , ·.
0X34
0x38 ·

0x~C

.0x40
~x44' ·
~x5B

0x5c
0:X60. ·. ·. f

0x64: , '

0x6s ·•
0x68
0xJ)c

· VariablePart: 0x7ll

You can examine-the access· t6k~~ fo~ a•proeeSs ~~~ihe.f~(;oill~ · , .
mand. You'll find the address Of the to'keh iii ·the 9litj:nl'.f·()f ~ ~' • ''
command, as shown here: ' ... ' '• '' ;, ' .. '<' .. · ... ' '

...

:.,: ':

kd> !token e198fbf0
TOKEN el98fbf0. Flags: 1

Type:
Token ID:
Modified 10:
SidCount:
Si ds:.
PrivilegeCount:
Privileges:

S I X : Security

Source *SYSTEM* Authentid (0, 3e7)
Primary (IN USE)
26fl
C 0, 13a9.)
3
el98fd50
20
el98f c60

Many system processes run under a special access token named SYSTEM.
This account is not the same as the Administrators account in the SAM, al
though it does have similar privileges. Figure 6-5 shows the contents of the
SYSTEM access token using the Windows NT Resource Kit Process Explode
utility (\NTRESKIT\PVIEW.EXE).

Figure 6-5
SYSTEM access token

A process running under the SYSTEM access token has several restric
tions. For example, it doesn't have domain credentials, which means it has lim
ited or no access to network resources. Also, it can't share objects with other
non-SYSTEM user processes unless it creates them using either a DACL, which
allows a user or group of users access to the object, or a NULL DACL, which
allows everyone access. For more information about security for Windows NT ser
vice processes, see the Platform SDK documentation section ''About Services:'

319

INSIDE WINDOWS NT

Security Auditing
The object manager can generate audit events as a result of an access check,
and Win32 functions available to user applications can generate them directly.
Kernel-mode code is always allowed to generate an audit event. Processes that
call audit system services, however, must have the SeAuditPrivilege privilege to
successfully generate an audit record. This requirement prevents a malicious
user-mode program from flooding the Security Log.

The audit policy of the local system controls the decision to audit a par
ticular type of security event. The audit policy, called the local security policy,
is one part of the security policy the LSA maintains on the local system. The
LSA sends messages to the SRM to inform it of the auditing policy at system
initialization time and when the policy changes. The LSA is responsible for
receiving audit records from the SRM, editing them, and sending the records
to the Event Log. The LSA (instead of the SRM) sends these records because
it adds pertinent details, such as the information needed to more completely
identify the process that is being audited.

The SRM sends these audit events via its LPC connection to the LSA. The
Event Logger then writes the audit event to a Security Log'. In addition to audit
events passed by the SRM, both the LSA and the SAM generate audit records
that the LSA sends directly to the Event Logger. Figure 6-6 depicts this over
all flow.

Protected
subsystem

Audit calls

Security subsystem

LSA SAM
authentication

LSA Event
Wln32 auditing Logger

server LPG LPG

Audit system
service calls Audit policy Audit records

Security
reference

monitor (SRM)

Object manager
1/0 parse
NTFS
Mailslot
NPFS
Configuration registry
Process manager

To Security Log

F1
LiJ

User mode

Kernel mode

Figure 6-6
Flow of security audit records

320

S IX : Security

Audit records are put on a queue to be sent to the LSA as they are re
ceived-they are not submitted in batches. The audit records are moved from
the SRM to the security subsystem in one of two ways. If the audit record is small
(less than the maximum LPC message size), it is sent as an LPC message. The
audit records are copied from the address space of the SRM to the address
space of the LSASS process. If the audit record is large, the SRM uses shared
memory to make the message available to LSASS and simply passes a pointer
in an LPC message.

Log on
Logon occurs through the interaction of the logon process (WinLogon), the
LSA, one or more authentication packages, and the SAM. Authentication pack
ages are DLLs that perform authentication checks. MSVLO is the Windows NT
authentication package for interactive logon.

WinLogon is a trusted process responsible for managing security-related
user interactions. It coordinates logon, starts the user's shell at logon, handles
logoff, and manages various other operations relevant to security, including
entering passwords at logon, changing passwords, and locking and unlocking
the workstation. The WinLogon process must ensure that operations relevant
to security are not visible to any other active processes. For example, WinLogon
guarantees that an untrusted process can't get control of the desktop during
one of these operations and thus gain access to the password.

WinLogon is the only process that intercepts logon requests from the
keyboard. It makes calls to the LSA to authenticate the user attempting to log
on. If the user is authenticated, the logon process activates a logon shell on
behalf of that user. The interaction between the components involved in logon
is illustrated in Figure 6-7.

LSA Server Process -------------------•

WinLogon LPC ~
1

process -,
......,_"""".....,._:communication 1

channel :

Authentication
packages

•------------------
Figure 6-7
Components involved in logon

321

INSIDE WINDOWS NT

As mentioned in Chapter 2, the identification and authentication as
pects of the logon process are implemented in a replaceable DLL named GINA
(Graphical Identification and Authentication). The standard Windows NT GINA
DLL, MSGINA.DLL, implements the default Windows NT logon interface.
However, developers can provide their own GINA DLL to implement other
identification and authentication mechanisms in place of the standard Win
dows NT user name/password method. In addition, WinLogon can load addi
tional network provider DLLs that need to perform secondary authentication.
This capability allows multiple network providers to gather identification and
authentication information all at one time during normal logon. For more
information on GINA, see the documentation in MSDN Library.

Winlogon Initialization

322

During system initialization, before any user applications are active, WinLogon
performs certain steps to ensure that it controls the workstation once the sys
tem is ready for the user:

Ill Creates and opens a window station to represent the keyboard,
mouse, and monitor. WinLogon creates a security descriptor for
the station that has one and only one ACE containing only the
WinLogon SID. This unique security descriptor ensures that no
other process can access the workstation unless explicitly allowed
by WinLogon.

Ill Creates and opens three desktops: an application desktop, a
WinLogon desktop, and a screen saver desktop. The security on the
WinLogon desktop is created so that only WinLogon can access
that desktop. The other two desktops allow both WinLogon and us
ers to access them. This arrangement means that any time the
WinLogon desktop is active, no other process has access to any ac
tive code or data associated with the desktop. Windows NT uses this
feature to protect the secure operations that involve passwords and
locking and unlocking the desktop.

• Establishes an LPC connection with the LSA. This connection will
be used for exchanging information during logon, logoff, and pass
word operations and is made by calling LsaRegisterLogonProcess.

Ill Calls LsaLookupAuthenticationPackage to get an association ID for
MSVLO, which will be used for authentication operations when a
logon is attempted.

S I X : Security

WinLogon then performs certain Windows operations to set up the win
dow environll).ent:

• Initializes and registers a window class data structure that associates
a WinLogon procedure with the window it subsequently creates.

B Registers the secure attention sequence (SAS) hot-key sequence as
sociating it with the window just created, guaranteeing that
WinLogon's window procedure is called whenever the user enters
the SAS. This measure prevents Trojan horse programs from gain
ing control of the screen when the SAS is entered.

B Registers the window so that the procedure associated with this win
dow gets called if a user logs off or if the screen saver times out. The
Win32 subsystem checks to verify that the process requesting notifi
cation is the WinLogon process.

Once the WinLogon desktop is created during initialization, it becomes
the active desktop. When the WinLogon desktop is active, it is always locked.
WinLogon unlocks it only to switch to the application desktop or to the screen
saver desktop. (Only the WinLogon process can lock or unlock a desktop.)

User Logon Steps
Logon begins when a user presses the SAS (Ctrl-Alt-Delete). After the SAS is
pressed, WinLogon switches to the secure desktop and prompts for username
and password. WinLogon also creates a unique local group for this user that it
assigns to this instance of the desktop (keyboard, screen, and mouse). WinLogon
passes this group to the LSA as part of the LsaLogontfser call. If the user is suc
cessfully logged on, this group will be included in the logon process token
a step that protects access to the desktop. For example, another user logging on
to the same account.but on a different system will be unable to write to the first
ilser's desktop because this second user won't be in the first user's group.

When the username and password have been entered, WinLogon calls
the LSA, passing the logon information and specifying which package is to
receive them for authentication (as mentioned earlier, MSVLO implements
Windows NT authentication; all the authentication packages on the system are
defined in the registry at HKLM\System\CurrentControlSet\Control\Lsa).
The LSA calls the authentication package based on this information, passing
the logon information through.

The MSVLO authorization package takes the username and password
information and sends a request to the SAM to retrieve the account informa
tion, including the password, the groups to which the user belongs, and any

323

INSIDE WINDOWS NT

account restrictions. MSVLO first checks the account restrictions, such as hours
or type of accesses allowed. If the user can't log on because of the restrictions
in the SAM database, the logon call fails and MSVLO returns a failure status
to the LSA.

MSVLO then compares the password and username to that stored by
SAM. If the information matches, MSVLO generates a unique identifier for
the logon session (called a logon user ID, or LUID) and creates the logon
session by calling the LSA associating this unique identifier with the session,
passing the information needed to ultimately create an access token for the
user. (Recall that an access token includes the user's SID; group SIDs; and user
profile information, such as home directory.)

Then, the LSA looks in the local policy database for this user's allowed
access-interactive, network, or service process. If the requested logon doesn't
match the allowed access, the logon attempt will be terminated. The LSA deletes
the newly created logon session by cleaning up any of its data structures and
then returns failure to WinLogon, which in turn displays an appropriate mes
sage to the user. If the requested access is allowed, the LSA adds any additional
security IDs (such as Everyone, Interactive, and the like). It then checks its
policy database for any granted privileges for all the IDs for this user and adds
these privileges to the user's access token.

When the LSA has accumulated all the necessary information, it calls the
executive to create the access token. The executive creates a primary access
token for an interactive or a service logon and an impersonation token for a
network logon. After the access token is successfully created, the LSA dupli
cates the token, creating a handle that can be passed to WinLogon, and closes
its own handle. If necessary, the logon operation is audited. At this point, the
LSA returns success to WinLogon along with a handle to the access token, the
LUID for the logon session, and the profile information, if any, that was re
turned by MSVLO.

Conclusion

324

Windows NT provides an extensive array of security functions that meet the
key requirements of both government agencies and commercial installations.
In this chapter, we've taken a brief tour behind the scenes of the internal compo
nents behind these security features. As mentioned, the Platform SDK and
Windows NT Resource Kit describe Windows NT security from the programmer's
and system administrator's points of view in great detail.

In the next chapter, we'll look at the next major executive component of
Windows NT: the 1/0 system.

C H A P T E R S E V E N

The 1/0 System

The Microsoft Windows NT 1/0 system is a component of the Windows NT
executive and therefore resides in the file NTOSKRNL.EXE. It accepts 1/0
requests (from both user-mode and kernel-mode callers) and delivers them,
in a different form, to 1/0 devices. Between the user-mode 1/0 functions and
the actual 1/0 hardware lie several discrete system components, including file
system drivers, filter drivers, and low-level device drivers. (Network device
drivers are beyond the scope of this book.)

The design goals for the Windows NT 1/0 system included the following:

Ill Make 1/0 processing fast on both single and multiprocessor systems

Ill Protect shareable resources using the standard Windows NT secu
rity mechanisms (described in Chapter 6)

Ill Meet the requirements for 1/0 services dictated by the Microsoft
Win32, OS/2, and POSIX subsystems

Ill Provide services to make device driver development as easy as pos
sible and allow drivers to be written in a high-level language

Ill Allow device drivers to be added or removed from the system
dynamically

Ill Provide support for multiple installable file systems, including
the FAT, the CD-ROM file system (CDFS), and the Windows NT
file system (NTFS)

Ill Provide mapped file 1/0 capabilities for image activation, file
caching, and application use

325

INSIDE WINDOWS NT

In this chapter, we'll first examine the structure and components of the
I/O system and the various types of device drivers. We'll then look at the key
data structures that describe devices, device drivers, and I/O requests. Finally,
we'll go over the steps necessary to complete I/0 requests as they move through
the system.

N 0 TE This chapter does not contain enough information for you
to write Windows NT device drivers. Its purpose is simply to explain
the structure and k~y components of the I/O system, the types of
device drivers, and the way I/O processing occurs. For details on
writing device drivers, consult the Windows NT Device Driver Kit
(DDK) documentation on MSDN Library (or on MSDN Online).

1/0 System Structure and Model

326

On Windows NT, programs perform I/O on virtual files. A virtual file refers
to any source or destination for I/0 that is treated as if it were a file (such as
files, directories, pipes, and mailslots.) All data that is read or written is re
garded as a simple stream of bytes directed to these virtual files. User-mode
applications (whether they be Win32, POSIX, or OS/2) call documented func
tions, which in turn call internal I/O subsystem functions to read from a file,
write to a file, and perform other operations. The I/0 manager dynamically
directs these virtual file requests to the appropriate device driver. Figure 7-1
illustrates this basic structure, along with the other key components that com
prise the Windows NT I/0 system.

The components shown in Figure 7-1 have the following roles:

11111 The I/O subsystem API is the internal executive system services (such
as Nt&adFile and NtWriteFile) that subsystem DLLs call to implement
a subsystem's documented I/0 functions.

11111 The I/0 manager is responsible for driving the processing of I/O
requests.

II Kernel-mode device drivers translate I/O requests into specific con
trol requests to hardware devices.

11111 Kernel-mode device drivers translate I/0 requests into specific con
trol requests to hardware devices.

Driver suJ:iport
routiries (Jp,: ·

·<~~Ks;Mm,

1/0 subsystem API (Ntxxx)

1/0 manager (toxxx)

.Hsf,Fsl!tt1;··· 1)11~1
· Kemel-mode
device drivers

~aoon)

HAL.l/O access routines

1/0 ports and registers

Figure 7-1
I/O system structure

S E V E N : The 1/0 System

• Driver support routines are called by device drivers to accomplish
their I/O requests.

• Hardware abstraction layer (HAL) I/O access routines insulate
device drivers from variations in the hardware platform, allowing
them to be binary portable across a given architecture family and
source portable across the hardware architectures that Windows NT
supports.

In the following sections, we'll be looking at some of these components
more closely, examining the 1/0 manager in more detail, reviewing the basic
1/0 services visible in the Win32 API, and covering the various types of device
drivers and the key 1/0 system data structures.

327

INSIDE WINDOWS NT

&119· N 0 TE Windows NT 5.0 introduces some major changes to the
I/O system and device driver architecture, namely Plug and Play and
power management. Driver initialization is quite different in the
Plug and Play world. For a brief review of these new features, see
Chapter 10. For a detailed description of how the I/O system will be
enhanced, refer to the Windows NT 5.0 DDK documentation.

1/0 Manager

328

The I/O manager defines the orderly framework, or model, within which I/O
requests are delivered to device drivers. The I/O system is packet driven. Most
I/O requests are represented by an J/O request packet (/RP), which travels from
one I/0 system component to another. (As you'll discover on page 330, fast
I/O is the exception; it doesn't use IRPs.) An IRP is a data structure that con
trols how the I/O operation is processed at each stage. (You'll find more in
formation about IRPs on page 348.)

The I/0 manager creates an IRP that represents each I/0 operation,
passing the IRP to the correct driver and disposing of the packet when the
I/O operation is complete. In contrast, a driver receives an IRP, performs the
operation the IRP specifies, and either passes the IRP back to the I/0 man
ager for completion or on to another driver (via the I/O manager) for further
processing.

In addition to creating and disposing ofIRPs, the I/O manager supplies
code that is common to different drivers and that the drivers call to carry out
their I/0 processing. By consolidating common tasks in the I/0 manager,
individual drivers become simpler and more compact. For example, the I/0
manager provides a function that allows one driver to call other drivers. It also
manages buffers for I/O requests, provides time-out support for drivers, and
records which installable file systems are loaded into the operating system.
These support routines are documented in the DDK.

The I/O manager also provides flexible I/O services that allow environ
ment subsystems, such as Win32 and POSIX, to implement their respective
I/0 functions. These services include sophisticated services for asynchro
nous I/0 that allow developers to build scalable high-performance server
applications.

The uniform, modular interface that drivers present allows the I/O man
ager to call any driver without requiring any special knowledge of its structure
or internal details. Drivers can also call each other (via the I/0 manager) to
achieve layered, independent processing of an I/O request.

S E V E N : The 1/0 System

1/0 Functions
Besides the normal open, close, read, and write functions, the Windows NT
I/O system provides several advanced features, such as asynchronous I/0 and
mapped files.

N 0 TE Many other file-related and I/0-related functions in the
Win32 API, such as LockFile (byte range locking), CopyFileand Move
File (high-performance file copying), CanceUo, FlushFileBuffers, direc
tory manipulation, and file search functions are not detailed in this
chapter. For a complete list of the Win32 file and I/O functions avail
able in the Win32 API, see the section "Files and I/O" in the Plat
form SDK documentation.

Asynchronous 1/0
Most I/0 operations that applications issue are synchronous; that is, the device
performs the data transfer and returns a status code when the I/O is complete.
The program can then access the transferred data immediately. When used
in their simplest form, the Win32 ReadFile and WriteFile functions are executed
synchronously. They complete an I/0 operation before returning control to
the caller.

Asynchronous 1/0 allows an application to issue an I/O request and then
continue executing while the device transfers the data. This type of I/O can
improve an application's throughput because it allows the application to con
tinue with other work while an I/O operation is in progress. To use asynchro
nous I/O, you must specify the FILE_FLAG_OVERLAPPED flag on the Win32
CreateFilefunction. Of course, after issuing asynchronous I/0 operations, the
thread must be careful not to access any data from the I/O operation until the
device driver has finished the data transfer. The thread must synchronize its
execution with the completion of the I/O request by waiting on a handle to
some synchronization object (whether that is an event object, an I/O comple
tion port, or the file object itself) that will be signaled when the I/O is com
plete. (For information on how to use these objects, see the Platform SDK
documentation.)

Regardless of the type of I/O request, internally I/0 operations repre
sented by IRPs are performed asynchronously; that is, once an I/O request has
been initiated, the device driver returns to the I/O system. Whether or not the
I/O system returns to the caller depends on whether the file was opened for
asynchronous I/O. Figure 7-2 illustrates the flow of control when a read op
eration is initiated. Notice that the wait is done in kernel mode by the NtReadFile

function depending on the overlapped flag in the file object.

329

INSIDE WINDOWS NT

Read File

Ki System Service

NtReadFi/e

Whether to wait depends ---.. ·~
on overlapped flag

Application

KERNEL32.DLL

NTDLL.DLL

User mode

Kernel mode

NTOSKRNL.EXE

NTOSKRNL.EXE

DRIVER.SYS

Figure 7-2
Control flow for an I/O operation

330

You can test the status of a pending asynchronous 1/0 with the Win32
HasOverlappedloCompletedfunction. If you're using 1/0 completion ports, you
can use the GetQueuedCompletionStatus function.

Fast 1/0
Fast 1/0 is a special mechanism that allows the 1/0 system to bypass generat
ing an IRP and instead go directly to the file system driver or cache manager
to complete an 1/0 request. (Fast 1/0 is described in detail in Chapter 8.)

S E V E N : The 1/0 System

Mapped File 1/0 and File Caching
Mapped file I/O is an important feature of the I/0 system, one that the I/O
system and the memory manager produce jointly. (See Chapter 5 for details
on how mapped files are implemented.) Mapped file 1/0 refers to the ability to
view a file residing on disk as part of a process's virtual memory. A program
can access the file as a large array without bufferiµg data or performing disk
I/0. The program accesses memory, and the memory manager uses its paging
mechanism to load the correct page from the disk file. If the application writes
to its virtual address space, the memory manager writes the changes back to
the file as part of normal paging.

Mapped file I/O is available to user mode through the Win32 CreateFile
Mapping and Map ViewOJFile functions. Within the operating system, mapped
file I/O is used for important operations such as file caching and image acti
vation (loading and running executable programs). The other major consumer
of mapped file I/0 is the cache manager. File systems use the cache manager
to map file data in virtual memory to provide better response time for I/0-
bound programs. As the caller uses the file, the memory manager brings accessed
pages into memory. Whereas most caching systems allocate a fixed number of
bytes for caching files in memory, the Windows NT cache grows or shrinks
depending on how much memory is available. This size variability is possible
because the cache manager relies on the memory manager to automatically
expand (or shrink) the size of the cache, using the normal working set mecha
nisms explained in Chapter 5. By taking advantage of the memory manager's
paging system, the cache manager avoids duplicating the work that the memory
manager already performs. (The workings of the cache manager are explained
in detail in Chapter 8.)

Scatter/Gather 1/0
Windows NT also supports a special kind of high-performance I/O that is
called scatter/gather, available via the Win32 ReadFileScatterand WriteFileScatter
functions. These functions allow an application to issue a single read or write
from more than one buffer in virtual memory to a contiguous area of a file on
disk. To use scatter/gather I/O, the file must be opened for noncached I/O,
the user buffers being used have to be page-aligned, and the I/Os must be asyn
chronous (overlapped).

331

INSIDE WINDOWS NT

Device Drivers

WriteFi/e,

Windows NT supports several types of device drivers. Figure 7-3 shows the
relationship between the Win32 1/0 functions and the three main categories
of device drivers.

I MS-DOS or Win16 application I
Win32 GDlcalls

VDM

1[Virtual device driver
appllcatlon

,K ~ Wln32 API DLL --~
Z--1 ~ User mode

y Kernel mode

Windows NT executive services

Win32 L GDI (graphics engine) J
subsystem Display I Pri_nter I

dnver (WIN32K.SYS) driver
l Spooler J

Executive

DeviceJoControl and kernel '~
(and so on) calls l Video port driver

~r ~~ I '~
Kemel-mode device

Kernel-mode device
Video Parallel

driver (possibly
driver (KDD)

mini port port
application-specific) KOO KOO

Figure 7-3
Types of device drivers

332

• Virtual device drivers (VDDs) are used to emulate 16-bit MS-DOS ap
plications. They trap what an MS-DOS application thinks are refer
ences to 1/0 ports and translates them into native Win32 1/0
functions. Because Windows NT is a fully protected operating sys
tem, user-mode MS-DOS applicatipns can't access hardware directly
and thus must go through a real kernel-mode device driver.

• Win32 subsystem display drivers and printer drivers translate device
independent graphics (GDI) requests into device-specific requests.
These drivers are collectively called kernel-nwde graphics drivers. Dis
play drivers are paired with a video miniport driver to complete video

S E V E N : The 1/0 System

display support. Each video miniport driver provides hardware-level
support for its associated display driver.

Ill Kernel-mode device drivers are the only type of driver that can directly
control and access hardware devices.

In this chapter, the focus is on kernel-mode device drivers. For more
information on VDDs or graphics device drivers, consult the DDK documen
tation.

There are several types of kernel-mode device drivers:

Ii Low-level hardware device drivers directly control and access hard
ware devices.

Ii Class drivers implement the I/0 processing for a particular class of
devices, such as disk, tape, or CD-ROM.

Ill Port drivers implement the processing of an I/0 request specific to a
type of I/0 port, such as SCSI.

Ill Miniport drivers map a generic I/0 request to a type of port into a
adapter type, such as a specific SCSI adapter.

Ii File system drivers accept I/O requests to files and satisfy the re
quests by issuing their own, more explicit, requests to physical de
vice drivers.

II File system filter drivers intercept I/O requests, perform additional
processing, and pass them on to lower-level drivers. Examples in
clude FTDISK.SYS (the fault-tolerant disk driver).

Figure 7-4 on the following page shows the relationships among the vari-
ous types of kernel-mode device drivers.

N 0 T E File system drivers are not currently documented in the
DDK. However, an Installable File System Kit that contains the header
file needed to build file systems as well as sample source code for
several local and network file system drivers is available from
Microsoft. For more information about this kit, visit http://www.micro
soft.com/hwdev/ntifskit.

333

INSIDE WINDOWS NT

334

l

'~
CD-ROM
file system

'~

CD-ROM
class driver

'T

Figure 7-4
Driver structure

Windows NT 1/0 system interface

I
NTFS

~

I
~~

FTDisk
driver

(striping,
Tape class mirroring)

driver l
.= I

'~
NT port
driver

[

}

f
FAT file
system

I

l
Disk class

driver

:.r

l
j_ _I

Miniport
drivers I"""

An example will help demonstrate how these device drivers work. A file
system driver accepts a request to write data to a particular file. It translates
the request into a request to write a certain number of bytes to the disk at a
particular "logical" location. It then passes this request to a simple disk driver.
The disk driver, in turn, translates the request into a cylinder/track/sector
location on the disk and manipulates the disk heads to retrieve the data. This
layering is illustrated in Figure 7-5.

This figure illustrates the division of labor between two layered drivers.
The I/O manager receives a write request that is relative to the beginning of
a particular file. The 1/0 manager passes the request to the file system driver,
which translates the write operation from a file-relative operation to a starting
location (a sector boundary on the disk) and a number of bytes to read. The
file system driver calls the 1/0 manager to pass the request to the disk driver,
which translates the request to a physical disk location and transfers the data.

S E V E N : The 1/0 System

User mode

Kernel mode

<D NtWriteFile(fi/e_handle, char_buffer)

t

File system
driver

System services

® Write data at specified
byte offset within a file

@ Translate file-relative byte
offset into a disk-relative
byte offset, and call next
driver (via 1/0 manager)

~~
~

.--------.,,,_ ____________________ J __ #

Disk driver

Figure 7-5

© Call driver to write data
at disk-relative byte offset

@ Translate disk-relative byte
offset into physical
location, and transfer data

Layering a file system driver and a disk driver

1/0
manager

' ' I
I ,

Because all drivers-both device drivers and file system drivers-present
the same framework to the operating system, another driver can easily be in
serted into the hierarchy without altering the existing drivers or the 1/0 sys
tem. For example, several disks can be made to seem like a very large single
disk by adding a driver. Such a driver actually exists in Windows NT to provide
fault-tolerant disk support. This logical, multivolume driver is located between
the file system and the disk drivers, as shown in Figure 7-6.

335

INSIDE WINDOWS NT

User mode

Kernel mode
<D NtWriteFile(fi/e_handle, char_buffer) • System services

•••••••• , •••••••••• v ••••

® Write data at specified
byte offset within a file 110

manager
File system

driver
~

@ Translate file-relative byte
~
~

offset into a disk-relative ~

byte offset and call next ' I
driver (via 1/0 manager) I

I © Call next driver to write I

data at disk-relative byte I
offset #

--Multivolume
disk driver

~

@ Translate disk-relative ~
~

byte offset into disk ' number and offset, and I

call next driver (via 1/0 I
I

manager) #
_,

Disk driver @ Call next driver to write
data to disk 3 at disk-
relative byte offset

2 3

Figure 7-6
Adding a layered driver

336

S E V E N : The 1/0 System

EXPERIMENT: Viewing the Loaded Driver List
Although you can see which drivers have been loaded by going to the
Control Panel Devices applet, you won't be able to see the driver names
there. To display the list ofloaded kerrtelwmode drivers, you'll need to
use the Drivers utility in the Windows NT Resource Kit or the Pstat
utility (shipped in the WindoWS NT Resource Kit and also available in
the \support\debug directory on a Windows NTCD--ROMJ. Pstat lists
the drivers at the end of its display. (It first listsaU the processes and
threa,dS in the system.) The ·only difference in ·the .outp1,1t of thetwo
utilities is that Pstat shows the load address· of the driver in system
address space. The following output is from Pstat:

C:\>pstat

: (Process and thread list display not shown)

Modul eNanie Load Add r Code

ntoskrnl.exe 80100000
haT.dll 80001000

atapi.sys 80012000
SCSIP'ORT.SYS 80fdb000

. cpq32f s2. sys ''801e3000
Disk. sys 80018000

CLASS2.SYS,8001C00e
.Ntfs.sys 801f3000

Floppy. SYS f8e98000
. C(!rom,SYS f8ea8000
FLRec.SYSf910a000

.··••·.·Null.SYS f91ce000
VIDEOPRT. SYS f8ef0000

n\ga64.sysfe4ce000
vga.sys f90a8000

. : (Partial <)isplay)

282816
24992
20736
9824

62080
. 3328.

7040
68160
1088

12608
64
0

2080
1920

128

Data Paged LfokDate

42112 435392 Sat May10 21: 11; 27 1997
4224 99.20 Mon Mar l0 13:40:06 1997
1088 0 Thu Apr .10 12:06:59 1.997

32 15552 Mon Mar 10 13:42:271997
288 0 Mon Aug 12 23:rn:00 .1996

0 ·7072.Thu Apr 24 19:27:46 1997.
0 1632ThuApr 24. 19:23:431997.

.5408 269632 Thu Apr 1.719:02:311997
672 7968. Tue Jul 16 21:31: 091996
32 3072 Tue Jul 16 21:31:29 1996
0 2912 Mon Mar 10 13:51:191997
0 288 Tue Jul 16 21:31:21 .1996

128 11296 Mon Mar10 13:41:37 1997
68768 30112 Tue Ault 27 06:26:5.01996

32 10784 Tue Jul 16 21:30:37 1996

c , ' ,

H you're looking at~ :crash dump (or live system} with the kernel
debugger,you can get asimilar displaywith the kernel debugger. !dfive:r
c'Ommand. ·

337

INSIDE WINDOWS NT

Structure of a Driver

338

The I/0 system drives the execution of device drivers. Device drivers consist
of a set of routines that are called to process the various stages of an I/0 re
quest. Figure 7-7 illustrates the key driver-function routines.

Dispatch routines

Initialization
routine

Figure 7-7

Start 1/0 routine

Primary device driver routines

Interrupt serllice
roUtlne

OPCroutine

These five main device driver routines are shown in Figure 7-7:

Iii An initialization routine The I/0 manager executes a driver's ini
tialization routine when it loads the driver into the operating sys
tem. The routine creates system objects that the I/O manager uses
to recognize and access the driver.

Iii A set of dispatch routines Dispatch routines are the main func
tions that a device driver provides. Some examples are open, close,
read, and write and any other capabilities the device, file system, or
network supports. When called on to perform an I/0 operation,
the I/O manager generates an IRP and calls a driver through one
of the driver's dispatch routines.

II A start 1/0 routine The driver can use a start I/0 routine to ini
tiate a data transfer to or from a device.

Iii An interrupt service routine (ISR) When a device interrupts, the
kernel's interrupt dispatcher transfers control to this routine. In the
Windows NT I/0 model, ISRs run at a high device interrupt request
level (IRQL), so they perform as little work as possible to avoid block-

S E V E N : The 1/0 System

ing lower-level interrupts unnecessarily. An ISR queues a deferred
procedure call (DPC), which runs at a lower IRQL, to execute the
remainder of interrupt processing. (Only drivers for interrupt-driven
devices have ISRs; a file system, for example, doesn't have one.)

Ill An interrupt-servicing DPC routine A DPC routine performs most
of the work involved in handling a device interrupt after the ISR
executes. The DPC routine executes at an IRQL that is lower than
that of the ISR to avoid blocking other interrupts unnecessarily. A
DPC routine initiates 1/0 completion and starts the next queued
1/0 operation on a device.

Although the following routines are not shown in Figure 7-7, they are
found in many types of device drivers:

Ill One or more completion routines A layered driver might have com
pletion routines that will notify it when a lower-level driver finishes
processing an IRP. For example, the 1/0 manager calls a file system's
completion routine after a device driver finishes transferring data
to or from a file. The completion routine notifies the file system
about the operation's success, failure, or cancellation, and it allows
the file system to perform cleanup operations.

!ii A cancel 1/0 routine If an 1/0 operation can be cancelled, a driver
can define one or more cancel 1/0 routines. The cancel routine
that the 1/0 manager calls can vary depending on how far along
the operation has progressed when it is cancelled. The IRP records
that cancel 1/0 routines are active at any given time.

Ill An unload routine An unload routine releases any system resources
a driver is using so that the 1/0 manager can remove them from
memory. A driver can be loaded and unloaded while the system is
running.

II A system shutdown notification routine This routine allows driver
cleanup on system shutdown.

!ii Error-logging routines When unexpected errors occur (for ex
ample, when a disk block goes bad), a driver's error-logging rou
tines note the occurrence and notify the 1/0 manager. The 1/0
manager writes this information to an error log file.

339

INSIDE WINDOWS NT

Synchronization

340

Drivers must synchronize their access to global driver data for two main reasons:

II The execution of a driver can be preempted by higher-priority
threads and time-slice (or quantum) expiration or interrupted by
interrupts.

Ill On multiprocessor systems, Windows NT can run driver code simul
taneously on more than one processor.

Without synchronization, corruption could occur-for example, because
device driver code running at a low IRQL when a caller initiates an I/O op
eration can be interrupted by a device interrupt, causing the device driver's
ISR to execute while its own device driver is already running. If the device
driver was modifying data that its ISR also modifies, such as device registers,
heap storage, or static data, the data can become corrupted when the ISR exe
cutes. Figure 7-8 illustrates this problem.

To avoid this situation, a device driver written for Windows NT must syn
chronize its access to any data that the device driver shares with its ISR. Be
fore attempting to update shared data, the device driver must lock out all other
threads (or CPUs, in the case of a multiprocessor system) to prevent them from
updating the same data structure.

Low IRQL

Figure 7-8

Data corruption in a device driver

Interrupt
service
routine
(ISR)

Dispatch
routine(s)

@ ISR executes and
writes shared data,
possibly corrupting it

G) Device driver is
writing shared data

S E V E N : The 1/0 System

The Windows NT kernel provides special synchronization routines that
device drivers must call when they access data that their ISRs also access. These
kernel-synchronization routines keep the ISR from executing while the shared
data is being accessed. On a single CPU system, these routines raise the IRQL
to a specified level before updating a structure. On a multiprocessor system,
however, since a driver can execute on two or more processors at once, this tech
nique is not enough to block other accessors. Therefore, another mechanism,
spinlocks, is used to lock a structure for exclusive access from a particular CPU.
(Spinlocks are explained in the section "Kernel Synchronization" in Chapter 3.)

By now, you should realize that although ISRs require special attention,
any data that a device driver uses is subject to being accessed by the same device
driver running on another processor. Therefore, it is critical for device driver
code to synchronize its use of any global or shared data (or any accesses to the
physical device itself). If that data is used by the ISR, the device driver must
use kernel-synchronization routines; otherwise, the device driver can use a
kernel spinlock.

Data Structures
Four primary data structures represent I/O requests: file objects, driver ob
jects, device objects, and I/O request packets (IRPs).

Each of these structures is defined in the DDK header file \DDK\INC\
NTDDK.H as well as in the DDK documentation. You can display each of them
with the kernel debugger using the !file, !devobj, !drvobj, and !irp commands.

File Objects
Files clearly fit the criteria for objects in Windows NT: they are system resources
that threads in t:Wo or more user-mode processes can share; they can have names;
they are protected by object-based security; and they support synchronization.
Although most shared resources in Windows NT are memory-based resources,
most of those that the I/O system manages are located on physical devices or
are actual physical devices. Despite this difference, shared resources in the 1/0
system, like those in other components of the Windows NT executive, are man
ipulated as objects. (See Chapter 2 for a description of the object manager and
Chapter 6 for information on object security.)

File objects provide a memory-based representation of shareable physi
cal resources (except named pipes and mailslots, which are memory-based
rather than physical resources). File objects also represent these resources in
the Windows NT 1/0 system. Table 7-1 lists some of the file object's attributes.
For specific field declarations and sizes, see the structure definition for FILE
_OBJECT in NTDDK.H.

341

INSIDE WINDOWS NT

342

Attribute

Filename

Byte offset

Share mode

Open mode

Table 7-1

Pointer to device object

Pointer to the volume
parameter block

Pointer to section object
pointers

Pointer to private
cache map

File Object Attributes

Purpose

Identifies the physical file that the file object refers to

Identifies the current location in the file
(valid only for synchronous I/O)

Indicates whether other callers can open the file
for read, write, or delete operations while this
caller is using it

Indicates whether I/O will be synchronous or
asynchronous, cached or noncached, sequential or
random, and so on

Indicates the type of device on which the file resides

Indicates the volume, or partition, that the file
resides on

Indicates a root structure that describes a
mapped file

Identifies which parts of the file are cached by the
cache manager and where they reside in the cache

When a caller opens a file or a simple device, the I/O manager returns
a handle to a file object. Figure 7-9 illustrates what occurs when a file is opened.

In this example, a C program calls the run-time library function fopen,
which in turn calls the Win32 CreateFile function. The Win32 subsystem DLL
(in this case, KERNEL32.DLL) then calls the native NtCreateFile function in
NTDLL.DLL. The routine in NTDLL.DLL contains the appropriate instruc
tion to cause a transition into kernel mode to the system service dispatcher,
which then calls the real NtCreateFileroutine in NTOSKRNL.EXE. (See Chap
ter 3 for more information about system service dispatching.)

Like other executive objects, file objects are protected by a security de
scriptor that contains an access control list (ACL). The I/0 manager consults
the security subsystem to determine whether the file's ACL allows the process
to access the file in the way its thread is requesting. If it does, the object man
ager grants the access and associates the granted access rights with the file
handle that it returns. If this thread or another thread in the process needs
to perform additional operations not specified in the original request, the
thread must open another handle, which prompts another security check. (See
Chapter 6 for more information about object protection.)

(j) fp = fopen("D:\myfi/e.dat", r)

run-time
DLL

@ CreateFile("D:\myfile.dat", .. .)

----"""('

S E V E N : The 1/0 System

~
~
~
~
~

~

@ Return file handle

@ NtCreateFile("D:\mytile.dat", .. .)

System services

© Create file object
-: ___.. •• • • • • • • • •@ Return object handle
~ --- . --

Security Local Virtual
Object reference Process procedure memory

manager monitor manager call facility manager

Kernel

Figure 7-9
Opening a file object

' '
I
I

User mode

Kernel mode

1/0 manager
File systems
Cache manager

Device drivers

Network drivers

Because a file object is a memory-based representation of a shareable
resource and not the resource itself, it is different from other executive objects.
A file object contains only data that is unique to an object handle, whereas the
file itself contains the data or text to be shared. Each time a thread opens a
file handle, a new file object is created with a new set of handle-specific at
tributes. For example, the attribute byte ?ffset refers to the location in the file
at which the next read or write operati~n using that handle will occur. Each

343

INSIDE WINDOWS NT

thread that opens a handle to a file has a private byte offset even though the
underlying file is shared. A file object is also unique to a process, except when
a process duplicates a file handle to another process or when a child process
inherits a file handle from a parent process. In these situations, the two pro
cesses have separate handles that refer to the same file object.

Although a file handle might be unique to a process, the underlying physi
cal resource is not. Therefore, as when using any shared resource, threads must
synchronize their access to shareable files, file directories, or devices. If a thread
is writing to a file, for example, it should specify exclusive write access when
opening the file handle to prevent other threads from writing to the file at the
same time. Alternatively, by using the Win32 LockFile function, it could lock
portions of the file while writing to it.

Driver Objects and Device Objects

344

When a thread opens a handle to a file object, the I/O manager must deter
mine from the file object's name which driver (or drivers) it should call to
process the request. Furthermore, the 1/0 manager must be able to locate this
information the next time a thread uses the same file handle. The following
system objects fill this need:

Ill A driver object represents an individual driver in the system and
records for the I/O manager the address of each of the driver's
dispatch routines (entry points).

Ill A device object represents a physical, logical, or virtual device on the
system and describes its characteristics, such as the alignment it re
quires for buffers and the location of its device queue to hold in
coming 1/0 request packets.

The 1/0 manager creates a driver object when a driver is loaded into the
system, and it then calls the driver's initialization routine, which fills in the
object with the driver's entry points. The initialization routine also creates one
device object for each device to be operated by this driver. It hangs the device
objects off the driver object, as shown in Figure 7-10.

When a file is opened, the filename includes the name of the device object
on which the file resides. For example, the name \Device\FloppyO\myfile.dat
refers to the file myfile.dat on the floppy disk drive A. The substring \Device
\FloppyO is the name of the internal Windows NT device object representing

code 1

Function
code 2

Function
code n

Figure 7-10
The driver object

Driver object

----i---~Read

----i---~Write

___ ...,. ~Device control

---+-~Start 110

---+-~Unload

---+-~Cancel

Device
object

(Disk)

Device
object

(Disk
partition)

S E V E N : The 1/0 System

Device
object

(Disk
partition)

Devices
operated by
this driver

that floppy disk drive. When opening myfile.dat, the I/O manager creates a
file object and stores a pointer to the FloppyO device object in the file object
and then returns a file handle to the caller. Thereafter, when the caller uses
the file handle, the I/O manager can find the FloppyO device object directly.
Keep in mind that internal Windows NT device names can't be used in Win32
applications-instead, the device name must appear in a special directory in
the object manager's namespace, \?? (formerly named \DosDevices). This di
rectory contains symbolic links to the real, internal Windows NT device names.
Device drivers are responsible for creating links in this directory so that their
devices will be accessible to Win32 applications. You can examine or even
change these links programmatically with the Win32 QueryDosDevice and Define
DosDevice functions.

345

INSIDE WINDOWS NT

346

L::J arcname
L.J BaseNamedObjects
CJ device
CJ driver
CJ FileSystem
CJKnownDlls
CJnh
CJ Object Types
CJ RPC Control
CJ security

1'!1 a:
Al adlib.midO
Hf. au1-:
AB c:
AS coml
AB com2
Ir~ d:
A1 dispfayl 4
R1 display28

111 i:
'1; IND-FILTER
'1\ INOFL-FILTERO
fi1J lpt10
A6 mailslotO
A1; midiinO
Fr3 midiout08
ff1* ndis4
AB nul
rr~ PhysicalDriveO
we PhysicalDrivel

S EV E N : The 1/0 System

As Figure 7-10 on page 345 illustrates, a device object points back to its
driver object, which is how the 1/0 manager knows which driver routine to call
when it receives an 1/0 request. It uses the device object to find the driver
object representing the driver that services the device. It then indexes into the
driver object using the function code supplied in the original request; each
function code corresponds to a driver entry point.

A driver object often has multiple device objects associated with it. The
list of device objects represents the physical, logical, and virtual devices that
the driver controls. For example, each partition of a hard disk has a separate
device object that contains partition-specific information. However, the same
hard disk driver is used to access all partitions. When a driver is unloaded from
the system, the 1/0 manager uses the queue of device objects to determine
which devices will be affected by the removal of the driver.

Using objects to record information about drivers prevents the 1/0 man
ager from needing to know details about individual drivers. The 1/0 manager
merely follows a pointer to locate a driver, which provides a layer of portability
and allows new drivers to be loaded easily. Representing devices and drivers
with different objects also makes it easy for the 1/0 system to assign drivers to
control additional or different devices if the system configuration changes.

EXPERIMENT: Displaying Driver and Device Objects
You. can display driver and device objects with the kernel debugger
!devobfand !drvobj commands. In the following example, a device ob
ject is displayed. The device object output contains the address of the
corresponding driver olaject. Notice that the !drvobj command displays
a small subsetof the information contained in a driver olaject structure.

kd> !devobj .ff67l030
Device object is for:
NamedPipe \FileSystem\Npfs DriverObject ff672970

Current Irp 00000000 RefCount 91 Type 00000011 DevExt ff6710e8
Devi Ce queue is not busy. ·
kd> !drvobj ff672970
Driver object is for:

\FtleSystem\Npfs
[)evice Object list:
ff67l03tl

347

INSIDE WINDOWS NT

1/0 Request Packet
The IRP is where the 1/0 system stores information it needs to process an 1/0
request. When a thread calls an 1/0 service, the 1/0 manager constructs an
IRP to represent the operation as it progresses through the 1/0 system. The
1/0 manager stores a pointer to the caller's file object in the IRP.

Figure 7-11 shows the relationship between an IRP and the file, device,
and driver objects described in the preceding sections. Although this example
shows an 1/0 request to a single-layered device driver, most 1/0 operations are
not this direct; they involve one or more layered drivers. This case will be shown
later in this section.

G) An application writes a
file to the printer, passing
a handle to the file object

® The 1/0 manager creates an
IRP and initializes the first
stack location

IRPstack{
location

@ The 1/0 manager uses the
driver object to locate the
WRITE dispatch routine and
calls it, passing the IRP

Figure 7-11

Services

1/0 manager

IRP header

WRITE
parameters __ ..,..,,......,............,.,. ...

-....

......
1

Dispatch
routine(s) Start 1/0 ISR

Device driver

DPC
routine

Data structures involved in a single-layered driver I/O request

348

User mode

Kernel mode

....

S E V E N : The 1/0 System

An IRP consists of two parts: a fixed portion (called a header) and one
or more stack locations. The fixed portion contains information such as the
type and size of the request, whether the request is synchronous or asynchro
nous, a pointer to a buffer for buffered 1/0, and state information that changes
as the request progresses. An IRP stack location contains a function code,
function-specific parameters, and a pointer to the caller's file object.

While active, each IRP is stored in an IRP queue associated with the thread
that requested the 1/0. This arrangement allows the 1/0 system to find and
free any outstanding IRPs if a thread terminates or is terminated with outstand
ing I/O requests. For more information on IRPs and the system routines that
process them, see the DDK documentation.

EXPERIMENT: Examining IRPs
and the Thread IRP Queue

. You can examine the pending IRPs for a thread with the !thread com
mand in the kernel debugger. This command shows the address·and
basic information for each pending IRP, but not the details. If you want
to display the detailed contents, you can do so with the !irp command.
Il'.l the following example, a !process command has been issued, and it
displays the threads in a process. One of the threads has an 1/0 pend
ing, as indicated by the IRP shown in the thread IRP list. The address
of the IRP is then fed to the !irp command. The I/O in this example
is to a named pipe.

THREAD ffbbb020 Cid 46.2b Teb: 7ffdc000 Win32Thread: 00000000
WAIT: {UserRequest) UserMode Non-Alertable

ffbbc400 NotificationEvent
ffbbb6e4 NotificationEvent

IRP List:
ff6edb28: (0006,00b8) Flags: 00000800 Mdl: 00000000

kd> !irp ff6edb28
Irp is active wrth 2 stacks 2 is current

No Mdl Tbread. ffbbb020: Irp stack trace.
cmd flg cl Device File Completion-Context

0 0 0 00000000 00000000 00000000-00000000
Args: 0000000.0 00000000 00000000 00000000

> d 0 1 ff671030 ffbbb688 00000000-00000000 pending
\FileSystem\Npfs

Args: 00000000 00000000 00110008 00000000

349

INSIDE WINDOWS NT

1/0 Processing
Now that we've covered the structure and types of drivers and the data struc
tures that support them, let's look at how I/O requests flow through the sys
tem. 1/0 requests pass through several predictable stages of processing. The
stages vary depending on whether the request is destined for a device operated
by a single-layered driver or for a device reached through a multilayered driver.
Because processing varies further depending on whether the caller specified
synchronous or asynchronous I/O, let's first consider these two types of 1/0.

1/0 Request to a Single-Layered Driver

350

This section traces a synchronous 1/0 request to a single-layered kernel-mode
device driver. Handling a synchronous 1/0 to a single-layered driver consists
of six steps:

I. The I/O request passes through a subsystem DLL.

2. The subsystem DLL calls the I/O manager's NtWriteFile service.

3. The 1/0 manager sends the request in the form of an lRP to the
driver (a device driver, in this case).

4. The driver starts the 1/0 operation.

5. When the device completes the operation and interrupts the CPU,
the device driver services the interrupt.

6. The I/O manager completes the 1/0 request.

These six steps are illustrated in Figure 7-12.
Now that we've seen how an 1/0 is initiated, let's take a closer look at

interrupt processing and 1/0 completion.

Servicing an Interrupt
After an 1/0 device completes a data transfer, it interrupts for service and the
Windows NT kernel, 1/0 manager, and device driver are called into action.
Figure 7-13 on page 352 illustrates the first phase of the process. (Chapter 3
describes the interrupt dispatching mechanism, including DPCs. I've included
a brief summary here since DPCs are key to 1/0 processing.)

<D NtWriteFile(fi/e_handle, ... ,
char_buffer)

Figure 7-12

® Create IRP, and call
device driver

@ Transfer data
specified in IRP

Services

1/0 manager

Device
driver

Queuing and completing a synchronous request

S E V E N : The 1/0 System

@ Complete IRP, and return
success or error status

@ Handle interrupt, and
return success or
error status

User mode

Kernel mode

When a device interrupt occurs, the processor transfers control to the
kernel trap handler, which indexes into its interrupt dispatch table to locate
the lSR for the device. lSRs on Windows NT typically handle device interrupts
in two steps. When an lSR is first invoked, it usually remains at device lRQL
only long enough to capture the device status and then stop the device's inter
rupt. It then queues a DPC and exits, dismissing the interrupt. Later, when the
DPC routine is called, the device finishes processing the interrupt. When that's
done, the device calls the 1/0 manager to complete the l/O and dispose of the
lRP. It might also start the next 1/0 request that is waiting in the device queue.

351

INSIDE WINDOWS NT

352

Device driver

Dispatch
routine(s)

Start 1/0

@ The ISR stops the device
interrupt and queues a DPC

(DPC).....(• • ~~ • • • #

DPC queue

CD The device
interrupts for
service

Figure 7-13

Power failure

Device IRQL

Dispatch/DPC

APC

Normal execution

Servicing a device interrupt (phase 1)

ISR
DPC

routine(s)

@ The kernel's interrupt
dispatcher transfers control
to the device's service routine

'
l-/ -I

Interrupt
dispatch table

The advantage of using a DPC to perform most of the device servicing is
that any blocked interrupt whose priority lies between the device IRQL and the
dispatch/DPC IRQL is allowed to occur before the lower-priority DPC process
ing occurs. Intermediate-level interrupts are thus serviced more promptly than
they otherwise would be. This second phase of an 1/0 (the DPC processing)
is illustrated in Figure 7-14.

Dispatch
rouline(s)

Device driver

Start 1/0 ISR

@ The DPC routine starts the next 1/0
request in the printer queue and
then completes interrupt servicing

@§ - -~@ffi - ~
' t

Device queue

Power failure

Device IRQL

@ The IRQL drops, and

DPC processing occurs Dispatch/DPC

S E V E N : The 1/0 System

DPC
rouline(s)

@ The interrupt dispatcher
transfers control to the
driver's DPC routine

(DPCJ > APC

., ., ~ Normal execution t--------1 .

., ..
I
~

~-~--.(ope)
DPCqueue

Figure 7-14
Servicing a device interrupt (phase 2)

Completing an 1/0 Request

Interrupt
dispatch table

After a device driver's DPC routine has executed, some work still remains before
the I/0 request can be considered finished. This third stage of I/0 process
ing is called 1/0 completion, and what it entails varies with different I/O opera
tions. For example, all the I/O services record the outcome of the operation

353

INSIDE WINDOWS NT

354

in an 1/0 status block, a data structure supplied by the caller. Similarly, some
services that perform buffered I/0 require the I/O system to return data to
the calling thread.

In both cases, the I/O system must copy some data that is stored in sys
tem meinory into the caller's virtual address space. To gain access to the caller's
virtual address space, the I/O manager must transfer the data "in the context
of the caller's thread," that is, while the caller's thread is executing. It does so
by queueing a kernel-mode asynchronous procedure call (APC) to the thread.
This process is illustrated in Figure 7-15.

As explained in Chapter 3, APCs execute in the context of a particular
thread, whereas a DPC executes in arbitrary thread context, meaning that the
DPC routine can't touch the user-mode process address space. Remember too
that DPCs have a higher software interrupt priority than APCs.

l/Omanager

@ The 1/0 manager queues an
APC to complete the 1/0 request
in the caller's context

C§B
0 The DPC routine calls the 1/0

manager to complete the
original 1/0 request

Device driver

Dispatch
routine(s)

Start 1/0

[;}~{;)
Thread's APC queue

Figure 7-15
Completing an I/0 request (phase 1)

ISR DPC
routine(s)

S E V E N : The 1/0 System

The next time that thread begins to execute at low IRQL, the pending
APC is delivered. The kernel transfers control to the 1/0 manager's APC rou
tine, which copies the data (if any) and the return status into the original
caller's address space, frees the IRP representing the I/O operation, and sets
the caller's file handle (or caller-supplied event or I/O completion port) to the
signaled state. The I/O is now considered complete. The original caller or any
other threads that are waiting on the file (or other object) handle are released
from their waiting state and readied for execution.

Figure 7-16 illustrates the second stage of 1/0 completion.

® The next time the
caller's thread
runs, an APC
interrupt occurs

IRP

Thread's APC queue

Figure 7-16

Power failure

Device printer

Dispatch/DPC

Completing an J/O request (phase 2)

1/0 manager

APC
routine

Interrupt
dispatch table

User mode

Kernel mode

@ The kernel-mode
APC routine writes
data to the thread's
address space, sets
the original file
handle to the
signaled state,
queues any user
mode APCs for
execution, and
disposes of the IRP

@) The interrupt
dispatcher transfers
control to the 1/0
manager's APC
routine

355

INSIDE WINDOWS NT

A final note about 1/0 completion: the asynchronous 1/0 functions Read
FileEx and WriteFileEx allow a caller to supply a user-mode APC as a parameter.
If the caller does so, the 1/0 manager queues this APC to the caller as the last
step of 1/0 completion. This feature allows a caller to specify a subroutine to
be called when an 1/0 request is complete. As explained in the Platform SDK
documentation for these functions, user-mode APC completion routines exe
cute in the context of the requesting thread and are delivered only when the
thread enters an alertable wait state (such as calling the Win32 SleepEx, WaitFor
SingleObjectEx, or WaitForMultipleObjectsEx function).

1/0 Requests to Layered Drivers

356

The preceding section showed how an 1/0 request to a simple device controlled
by a single device driver is handled. 1/0 processing for file-based devices or
for requests to other layered drivers happens in much the same way. The major
difference is, obviously, that one or more additional layers of processing are
added to the model.

Figure 7-17 shows how an asynchronous 1/0 request travels through lay
ered drivers. It uses an example of a disk controlled by a file system.

Once again, the 1/0 manager receives the request and creates an 1/0
request packet to represent it. This time, however, it delivers the packet to a
file system driver. The file system driver exercises great control over the 1/0
operation at that point. Depending on the type of request the caller made, the
file system can send the same IRP to the device driver or it can generate addi
tional IRPs and send them separately to the device driver.

The file system is most likely to reuse an IRP if the request it receives
translates into a single straightforward request to a device. For example, if an
application issues a read request for the first 512 bytes in a file stored on a floppy
disk, the FAT file system would simply call the disk driver, asking it to read one
sector from the floppy disk, beginning at the file's starting location.

To accommodate its reuse by multiple drivers in a request to layered driv
ers, an IRP contains a series of !RP stack locations. These data areas, one for
every driver that will be called, contain the information that each driver needs
in order to execute its part of the request-for example, function code, parame
ters, and driver context information. As Figure 7-17 illustrates, additional stack
locations are filled in as the IRP passes from one driver to the next. You can
think of an IRP as being similar to a stack in the way data is added to it and
removed from it during its lifetime. However, an IRP is not associated with any

G) Call 1/0 service

@ 1/0 manager creates IRP, fills
in first stack location, and calls
a file system driver

PBD Current~t:::::j

@ File system driver fills in a
seco,nd IRP stack location
and calls the disk driver

PBD
Current ~t:::::j

@ Send IRP data to device
(or queue IRP), and return

Figure 7-17

Services

1/0 manager

File
system
driver

Disk
driver

Queuing an asynchronous request to layered drivers

S E V E N : The 1/0 System

Q) Return 1/0 pending status

User mode

Kernel mode

@ Return 1/0 pending status

@ Return 1/0 pending status

particular process, and its allocated size doesn't grow and shrink. The 1/0
manager allocates an IRP from nonpaged system memory at the beginning of
the I/0 operation.

After the disk driver finishes a data transfer, the disk interrupts and the
I/0 completes, as shown in Figure 7-18.

357

INSIDE WINDOWS NT

Services

1/0 manager

File
system
driver

Disk
driver

@ During 1/0 completion, results are
returned to the caller's address space

@) The file system driver performs a any necessary cleanup work
p

...._Current

User mode

Kernel mode

PBE:l
@ The disk driver services the interrupt

and then queues a DPC to complete
the 1/0, which will "pop" the second
stack location off the IRP stack and l:::::::j.._ Current
call the file system driver

@ Device-level interrupt occurs

Figure 7-18
Completing a layered I/O request

358

As an alternative to reusing a single IRP, a file system can establish a group
of associated IRPs that work in parallel on a single 1/0 request. For example,
if the data to be read from a file is dispersed across the disk, the file system
driver might create several IRPs, each of which reads some portion of the
request from a different sector. This queueing is illustrated in Figure 7-19.

<D Call 1/0 service

@ 110 manager creates an IRP
and calls a file system driver

(IRP 0 J

@ File system driver creates
associated IRPs and calls
the disk driver one or more
times

@B)· · ·(IRPn)

© Queue IRPs to the
device, and return

@B)· · ·(IRPn)

Figure 7-19
Queueing associated IRPs

Services

1/0 manager

File
system
driver

Disk
driver

5 E VE N : The 1/0 System

(f) Return 1/0 pending status

User mode

Kernel mode

@ Return 1/0 pending status

@ Return 1/0 pending status

The file system driver delivers the associated IRPs to the device driver,
which queues them to the device. They are processed one at a time, and the
file system driver keeps track of the returned data. When all the associated IRPs
complete, the I/O system completes the original IRP and returns to the caller,
as shown in Figure 7-20.

359

INSIDE WINDOWS NT

Services

1/0 manager

File
system
driver

Disk
driver

® When all associated IRPs complete, the
original IRP completes, returning status
information or data to the caller

@) Step 9 repeats, completing IRPs
2 through n, and the file system
performs cleanup after each one

@ The disk driver services the interrupt and
then queues a DPC, which starts the next
IRP on the device and calls the 1/0
manager to complete the first IRP

@ After transferring data for one
IRP, the device interrupts

User mode

Kernel mode

Figure 7-20
Completing associated IRPs

Conclusion

360

The I/0 system defines the model of I/O processing on Windows NT and
performs functions that are common to or required by more than one driver.
Its chief responsibility is to create IRPs representing I/O requests and to shep
herd the packets through various drivers, returning results to the caller when
an I/O is complete. The I/0 manager locates various drivers and devices by

S E V E N : The 1/0 System

using I/0 system objects, including driver and device objects. Internally, the
Windows NT I/0 system operates asynchronously to achieve high performance
and provides both synchronous and asynchronous I/0 capabilities to user
mode applications.

Device drivers include not only traditional hardware device drivers but
also file system, network, and layered filter drivers. All drivers have a common
structure and communicate with one another and the I/O manager by using
common mechanisms. The 1/0 system interfaces allow drivers to be written
in a high-level language to lessen development time and to enhance their porta
bility. Because drivers present a common structure to the operating system,
they can be layered one on top of another to achieve modularity and reduce
duplication between drivers. Also, all Windows NT device drivers should be
designed to work correctly on multiprocessor systems.

In the next chapter, we'll look at the last core executive component exa
mined in detail this book: the Windows NT cache manager.

361

CHAP"fER E G H T

Cache Manager

The Microsoft Windows NT cache manager is a set of kernel-mode functions
and system threads that cooperate with the memory manager to provide data
caching for all Windows NT file system drivers (both local and network). In
this chapter, I'll explain how the Windows NT cache manager, including its key
internal data structures and functions, works; how it is sized at system initial
ization time; how it interacts with other elements of the operating system; and
how you can observe its activity through performance counters. I'll also describe
the four flags on the Win32 CreateFile function that affect file caching.

N 0 TE None of the internal functions of the cache manager are
outlined in this chapter beyond the depth required to explain how
the cache manager works. The programming interfaces to the cache
manager are defined in the Windows NT Installable File System (IFS)
kit. As of this writing, the kit includes the C header files that define
the interfaces as well as sample file system drivers, including the
source code to the FAT file system and a network redirector. Future
versions of the kit might include more complete documentation of
the interfaces. For more information about the IFS kit, see http://
microsoft.com/hwdev/ntifskit.

Key Features of the Windows NT Cache Manager
The Windows NT cache manager has several key features:

• Supports all file system types (both local and network), thus remov
ing the need for each file system to implement its own cache man
agement code

• Uses the memory manager to control what parts of what files are in
. physical memory (trading off demands for physical memory between
user processes and the operating system)

363

INSIDE WINDOWS NT

II Caches data on a virtual block basis (offsets within a file)-in con
trast to most caching systems, which cache on a logical block basis
(offsets within a disk partition)-allowing for intelligent read-ahead
and high-speed access to the cache without involving file system driv
ers (This method of caching, called fast 1/0, is described later in
the chapter.)

111111 Supports "hints" passed by applications at file open time (such as
random vs. sequential access, temporary file creation, and so on)

111111 Supports recoverable file systems (for example, those that use trans
action logging) to recover data after a system failure

Although I'll talk more throughout this chapter about how these features
are used in the cache manager, in this section I'll introduce you to the concepts
behind these features.

Single, Centralized System Cache
Some operating systems rely on each individual file system to cache data, a
practice that results either in duplicated caching and memory management
code in the operating system or in limitations on the kinds of data that can be
cached. In contrast, Windows NT offers a centralized caching facility that caches
all externally stored data, whether on local hard disks, floppy disks, network
file servers, or CD-RO Ms. Any data can be cached, whether it's user data streams
(the contents of a file and the ongoing read and write activity to that file) or
file system metadata (such as directory and file headers). As you'll discover in
this chapter, the method Windows NT uses to access the cache depends on the
type of data being cached.

The Memory Manager

364

One unusual aspect of the Windows NT cache manager is that it never knows
how much cached data is actually in physical memory. This statement might
sound strange, since the purpose of a cache is to keep a subset of frequently
accessed data in physical memory as a way to improve 1/0 performance. The
reason Windows NT cache manager doesn't know how much data is in physi
cal memory is that it accesses data by mapping views of files into system virtual
address spaces, using standard section objects (file mapping objects in Win32 termi
nology). (Section objects are the basic primitive of the memory manager and
are explained in detail in Chapter 5.) As addresses in these mapped views are
accessed, the memory manager pages in blocks that are not in physical memory.
And when memory demands dictate, the memory manager pages data out of
the cache and back to the files that are open in (mapped into) the cache.

E I G H T : Cache Manager

By caching on the basis of a virtual address space using mapped files, the
cache manager avoids generating read or write 1/0 request packets to access
the data for files it is caching. Instead, it simply copies data to or from the vir
tual addresses where the portion of the cached file is mapped and relies on
the memory manager to fault in (or out) the data into (or out of) memory as
needed. This process allows the memory manager to make global trade-offs
on how much memory to give to the system cache versus to the user processes.
(The cache manager also initiates 1/0, such as lazy writing, which is described
later in the chapter; however, it calls the memory manager to write the pages.)
Also, as you'll learn in the next section, this design makes it possible for pro
cesses that open cached files to see the same data as do those processes map
ping the same file into their user address spaces.

Cache Coherency
One important function of a cache manager is to ensure that any process ac
cessing cached data will get the most recent version of that data. A problem
can arise when one process opens a file (and hence the file is cached) while
another process maps the file into its address space directly (using the Win32
Map ViewOJFilefunction). This potential problem doesn't occur under Windows NT
because both the cache manager and the user applications that map files into
their address spaces use the same memory management file mapping services.
Because the memory manager guarantees that it has only one representation
of each unique mapped file (regardless of the number of section objects or
mapped views), it maps all views of a file (even if they overlap) to a single set
of pages in physical memory, as shown in Figure 8-1. (For more information
on how the memory manager works with mapped files, see Chapter 5.)

So, for example, if Process I has a view of the file mapped into its address
space and Process 2 is accessing the same view via the system cache, Process 2
will see any changes that Process I makes as they're made, not as they're flushed.
The memory manager won't flush all user-mapped pages-only those that it
knows have been written to (because they have the modified bit set). There
fore, any process accessing a file under Windows NT always sees the most up
to-date version of that file, even if some processes have the file open through
the 1/0 system and others have the file mapped into their address space us
ing the Win32 file mapping functions.

N 0 TE Cache coherency is a little more difficult for network re
directors than for local file systems because network redirectors must
implement additional flushing and purge operations to ensure cache
coherency when accessing network data.

365

INSIDE WINDOWS NT

366

Process 1
virtual memory

4GB .

System
cache

System
address
space

2 GB 1---------1

Mapped file

User
address
space

o~-------'

Process 2
virtual memory

4 GB---------.

System
cache

System
address
space

2 GB 1--------1

User
address
space

O'--------'

Figure 8-1
Coherent caching scheme

Physical
memory

o------

E I G HT : Cache Manager

Virtual Block Caching
Most operating system cache managers (including Novell NetWare, Open VMS,
OS/2, and most UNIX systems) cache data on the basis of logical blocks. With
this method, the cache manager keeps track of which blocks of a disk parti
tion are in the cache. The Windows NT cache manager, in contrast, uses a
method known as virtual block caching, in which the cache manager keeps track
of which parts of which files are in the cache. The cache manager is able to
monitor these file portions by mapping 256-KB views of files into system vir
tual address spaces, using special system cache routines found in the memory
manager. This approach has the following key benefits:

II It opens up the possibility of doing intelligent read-ahead; because
the cache tracks which parts of which files are in the cache, it can
predict where the caller might be going next.

II It allows the I/0 system to bypass going to the file system for re
quests for data that is already in the cache (fast I/O). Because the
cache manager knows which parts of which files are in the cache,
it can return the address of cached data to satisfy an I/0 request
without having to call the file system.

Details of how intelligent read-ahead and fast I/O work are provided later
in this chapter.

Stream-Based Caching
Windows NT's cache manager is also designed to do stream caching, as opposed
to file caching. A stream is a sequence of bytes within a file. Some file systems,
such as NTFS, allow a file to contain more than one stream; the cache man
ager accommodates such file systems by caching each stream independently.
NTFS can exploit this feature by organizing its master file table (described in
Chapter 9) into streams and by caching these streams as well. In fact, although
the Windows NT cache manager might be said to cache files, it in fact caches
streams (all files have at least one stream of data) identified by both a filename
and, if more than one stream exists in the file, a stream name.

367

INSIDE WINDOWS NT

Recoverable File System Support

368

Recoverable file systems such as NTFS are designed to reconstruct the disk
volume structure after a system failure. This capability means that 1/0 opera
tions in progress at the time of a system failure must be either entirely com
pleted or entirely backed out from the disk when the system is restarted.
Half-completed 1/0 operations can corrupt a disk volume and even render an
entire volume inaccessible. To avoid this problem, a recoverable file system
maintains a log file in which it records every update it intends to make to the
file system structure (the file system's metadata) before it writes the change to
the volume. If the system fails, interrupting volume modifications in progress,
the recoverable file system uses information stored in the log to reissue the
volume updates.

N 0 T E The term metadata applies only to changes in the file sys
tem structure: file and directory creation, renaming, and deletion.

To guarantee a successful volume recovery, every log file record docu
menting a volume update must be completely written to disk before the update
itself is applied to the volume. Because disk writes are cached, the cache man
ager and the file system must work together to ensure that the following ac
tions occur, in sequence:

1. The file system writes a log file record documenting the volume up
date it intends to make.

2. The file system calls the cache manager to flush the log file record
to disk.

3. The file system writes the volume update to the cache; that is,
it modifies its cached metadata.

4. The cache manager flushes the altered metadata to disk, updating
the volume structure. (Actually, log file records are batched before
being flushed to disk, as are volume modifications.)

When a file system writes data to the cache, it can supply a logical sequence
number (LSN) that identifies the record in its log file, which corresponds to the
cache update. The cache manager keeps track of these numbers, recording

E I G H T : Cache Manager

the lowest and highest LSNs (representing the oldest and newest log file records)
associated with each page in the cache. In addition, data streams that are
protected by transaction log records are marked as "no write" by NTFS so that
the modified page writer won't inadvertently write out these pages before the
corresponding log records are written. (When the modified page writer sees
a page marked this way, it moves the page to a special list that the cache man
ager then flushes at the appropriate time, such as when lazy writer activity takes
place.)

When it prepares to flush a group of dirty pages to disk, the cache man
ager determines the highest LSN associated with the pages to be flushed and
reports that number to the file system. The file system can then call the cache
manager back, directing it to flush the log file up to the high-water mark rep
resented by the reported LSN. After the cache manager flushes the log file up
to that LSN, it flushes the corresponding volume structure updates to disk, thus
ensuring that it records what it's going to do before actually doing it. These
interactions between the file system and the cache manager guarantee the
recoverability of the disk volume after a system failure.

Cache Structure
Because the Windows NT system cache manager caches data on a virtual ba
sis, it is given a region of system virtual address spaces to manage (instead of
a region of physical memory). The cache manager then divides each address
space region into 256-KB slots called views, as shown in Figure 8-2 on the fol
lowing page. (For a detailed description of the layout of system space, see
Chapter 5.)

At a file's first 1/0 (read or write) operation, the cache manager maps a
256-KB view of the 256-KB-aligned region of the file that contains the re
quested data into a free slot in the system cache. For example, if 10 bytes starting
at an offset of 300,000 bytes were read into a file, the view that would be mapped
would begin at offset 262144 (the second 256-KB-aligned region of the file) and
extend for 256 KB.

369

INSIDE WINDOWS NT

370

0

10000

7FFFOOOO

80000000

AOOOOOOO

A3000000

cooooooo
C0400000

C0800000

cocooooo
C1000000

E1000000

Figure 8-2

64•KS. no access area

User address space

All pages within this range are
potentially accessible while the CPU

· is in USER mode.

64-KB no access area

System code
(NTLSKRNL, HAL, boot drivers)

System mapped views (WIN32K.SYS)

Unused no access

Process page tables and page directory

Process working set list

Unused no access

System working set list

Paged pool

Nonpaged pool

System cache address space (Intel-specific)

ViewO } 256 KB

View 1

View2

View3

View4

View5

View6

View?

Viewn

The cache manager maps views of files into slots in the cache on a round
robin basis, mapping the first requested view into the first 256-KB slot, the
second view into the second 256-KB slot, and so forth, as shown in Figure 8-3.
In this example, File B was mapped first, File A second, and File C third, so
File B's mapped chunk occupies the first slot in the cache. Notice that although
File C is only 100 KB (and thus smaller than one of the views in the system
cache), it requires its own 256-KBslot in the cache.

Views of files remain mapped into the system cache until all handles to
the file they correspond to are closed. A view is marked active, however, only
during a read or write operation to or from the file. If the cache manager needs
to map a view of a file and there are no more free slots in the cache, it will unmap

System cache

Viewo

View1

View2

View3

View4

View5

Views

View7

View a

Viewn

Figure 8-3

t.
~

Fiie A (500 KB)
~------- Section O
~ _ ------------1

\ Section 1

~
;

__ \ __ \ ___,......,.,,,...___,,, :
\ ', \
\\ \ \

File B (750 KB)

Section o

:

1
f

;

;

'

\\ ~
\\
\\
\\
\\
\\
\\

']
J.

Section 1

Section 2

File C (100 KB)

Section O J

Files of varying sizes mapped into the system ~ache

E I G H T : Cache Manager

the oldest inactive view and use that slot. If no views are available, an I/O error
is returned, indicating that insufficient system resources were available to per
form the operation. Given that views are marked active only during a read or
write operation, however, this scenario is extremely unlikely since thousands
of files would have to be accessed simultaneously for this situation to occur.

Cache Size
In the following sections, I'll explain how Windows NT computes the size of
the system cache (both virtually and physically). As with most calculations
related to memory management, the size of the system cache depends on a
number of factors, including memory size and which version of Windows NT
is running.

Cache Virtual Size
The virtual size of the system cache is a function of the amount of physical
memory installed. The default size is 64 MB on x86 systems and 128 MB on
Alpha systems. If the system has more than 4032 pages of physical memory (16
MB on x86 systems, 32' MB on Alpha systems), the cache size is set to 128 MB

371

INSIDE WINDOWS NT

plus 64 MB for each additional 1024 pages: 4 MB on x86 systems and 8 MB
on Alpha systems. (As always, details such as these are subject to change in fu
ture releases.) For example, an x86 system with 64 MB of physical memory has
16,384 pages. Using the above algorithm, the virtual size of the system cache
for this computer will be:

128 MB + (16384 pages - 4032 pages) I 1024 pages * 64 MB = 900 MB

Table 8-1 shows the minimum and maximum virtual size of the system
cache, along with the start and end addresses.

Table 8-1 Size and Location of System Data Cache

Platform Address Range
Minimum/Maximum
Virtual Size

x86 2-GB system space
x86 1-GB system space
Alpha 2-GB system space

OxClOOOOOO-EOFFFFFF
OxClOOOOOO-DCFFFFFF
OxC4000000-DDFFFFFF

64-512 MB
64-448MB

128-416MB

Table 8-2 lists the system variables that contain the virtual size and address
of the system cache.

Table 8-2 System Variables for the Virtual Size and Address
of the System Cache

System Variable

MmSystemCacheStart

MmSystemCacheEnd

MmSizeOJSystemCachelnPages

Description

Starting virtual address of cache
Ending virtual address of cache
Maximum size of cache in pages

Cache Physical Size

372

As mentioned earlier, one of the key differences in the design of the Windows
NT cache manager from that of other operating systems is the delegation of
physical memory management to the global memory manager. Because of this,
the existing code that handles working set expansion and trimming as well as
manages the modified and standby list is also used to control the size of the
system cache, dynamically balancing demands for physical memory between
processes and the operating system.

E I G HT : Cache Manager

The system cache doesn't have its own working set but rather shares a
single system set that includes cache data, paged pool, pageable NTOSKRNL
code, and pageable driver code. As explained in the section "System Working
Set" in Chapter 5 (on page 282), this single working set is called internally the
system cache working set even though the system cache is just one of the compo
nents that contribute to it. For the purposes of this book, I'll refer to this work
ing set simply as the system working set.

You can examine the physical size of the system cache compared to that
of the total system working set as well as page fault information on the system
working set by examining the performance counters or system variables listed
in Table 8-3.

Table 8-3 System Variables for the Physical Size of the
System Cache and Page Fault Information

Performance Counter
(in bytes)

Memory: System Cache
Resident Bytes

Memory: Cache Bytes

Memory: Cache Bytes Peak

Memory: Cache Faults/Sec

System Variable
(in pages)

MmSystemCachePage

MmSystemCacheWs. Working
SetSize

MmSystemCacheWs.Peak

MmSystemCache Ws.Page
FaultCount

Description

Physical memory consumed by
the system cache.

Total size of the system working
set (including the cache, paged
pool, and pageable code). This is
not the size of the cache (as the
name implies)!

Peak system working set size.

Page faults in the system working
set (notjust the cache).

Most utilities that claim to display the size of the system cache (such as
Task Manager, Pview, Pstat, Pmon, Perfintr, and so on) in fact display the total
system working set size, not just the cache size. The reason for this inaccuracy
is that the performance counter Memory: Cache Bytes (see Table 8-3) returns
the total system working set size, which includes the system cache, paged pool,
and pageable system code, even though the name and explanatory text imply
that it represents just the cache size. For example, if you start Task Manager
(by pressing Ctrl-Shift-Esc) and click the Performance tab, the field named File
Cache is actually the system working set size, as you can see in Figure 8-4.

373

INSIDE WINDOWS NT

Figure 8-4

This is not the size of
the system cache.

The Windows NT Task Manager does not report the size of the system cache

A number of internal system variables control working set expansion and
trimming, such as MmWorkingSetReductionMaxCacheWs, MmWorkingSetReduc

tionMinCacheWs, Mm WorkingSetVolReductionMaxCache Ws, and MmPeriodicAgres
siveCache WsMin. Although I don't cover these variables in detail in this book,
in Chapter 5, I do describe the memory manager's general policies for work
ing set management.

Cache Data Structures

374

The cache manager uses these data structures to keep track of cached files:

II Each 256-KB slot in the system cache is described by a virtual ad
dress control block.

II Each separately opened cached file has a private cache map, which
contains information used to control read-ahead (discussed later in
the chapter).

II Each cached file has a single shared cache map structure, which points
to slots in the system cache that contain mapped views of the file.

These structures and their relationships are described in the next sections.

E I G H T : Cache Manager

Systemwide Cache Data Structures
The cache manager keeps track of the state of the views in the system cache
using an array of data structures called virtual address control blocks (VACBs).

During system initialization, the cache manager allocates a single chunk of
nonpaged pool to contain all the VACBs required to describe the system cache.
It stores the address of the VACB array in the variable CcVacbs. Each VACB
represents one 256-KB view in the system cache, as shown in Figure 8-5. The
structure ofa VACB is shown in Figure 8-6.

VACBO

VACB1

VACB2

VACB3

VACB4

VACB5

VACB6

VACB7

Viewn

Figure 8-5
System VACB array

Virtual address in system cache

Pointer to shared cache map

File offset

Active count

Figure 8-6
VACB structure

System cache

ViewO

View 1

View2

View3

View4

View5

View6

View?

View a

Viewn

375

INSIDE WINDOWS NT

As you can see in Figure 8-6, the first field in a VACB is the virtual address
of the data in the system cache. The second field is a pointer to the shared cache
map structure, which identifies which file is cached. The third field identifies
the offset within the file at which the view begins (always based on a 256-KB
granularity). Finally, the VACB contains the number ofreferences to the view,
that is, how many adive reads or writes are accessing the view. During an I/O
operation on a file, the file's VACB reference count is incremented and then
decremented when the I/0 operation is over. For access to file system metadata,
the active count represents how many file system drivers have the pages in that
view locked into memory.

Per-File Cache Data Structures

376

Each open handle to a file has a corresponding file object. (File objects are
explained in detail in Chapter 7.) If the file is cached, the file object points to
a private cache map structure that contains the location of the last two reads so
that the cache manager can perform intelligent read-ahead (described in the
section "Intelligent Read-Ahead" on page 382). In addition, all the private cache
maps for a file object are linked together.

Each cached file (as opposed to file object) has a shared cache map structure
that describes the state of the cached file, including its size and (for security
reasons) its valid data length. (The function of the valid data length field is
explained in the section "Write-Back Caching and Lazy Writing" on page 3 79)
The shared cache map also points to the section object pointers (maintained by
the memory manager), which describe the file's mapping into virtual memory,
the list of private cache maps associated with that file, and any VACBs that de
scribe currently mapped views of the file in the system cache. (See page 301
in Chapter 5 for more about section object pointers.) The relationships among
these per-file cache data structures are illustrated in Figure 8-7.

When asked to read from a particular file, the cache manager must de
termine the answers to two questions:

1. Is the file in the cache?

2. If so, which VACB, if any, refers to the requested location?

In other words, the cache manager must find out whether a view of the file
at the desired address is mapped into the system cache. Ifno VACB contains
the desired file offset, the requested data is not currently mapped into the sys
tem cache.

E I G H T : Cache Manager

File object

~
Private cache map ----__,,,

_.... -,..
Read-ahead information Next private

-"" cache map for _r "7'

this file

Section object pointers
-'"
~
"7' - Shared cache map

i.. J Next shared l
~ """"!:" cache map

~ List of private

,.. -,

File object cache maps

Open count

File size

Valid data length

I\. ~I VACB I VACBO

[)" VACB '"""" """>'
VACB 1

VACB2

VACB3

Figure 8-7
Perjile cache data structures

To keep track of which views for a given file are mapped into the system
cache, the cache manager maintains an array of pointers to VACBs, the VACB
index array. The first entry in the VACB index array refers to the first 256 KB
of the file, the second entry to the second 256 KB, and so on. The diagram in
Figure 8-8 on the following page shows four different sections of three differ
ent files that are currently mapped into the system cache.

When a process accesses a particular file in a given location, the cache
manager looks in the appropriate entry in the file's VACB index array to see
whether the requested data has been mapped into the cache. If the array entry
is nonzero (and hence contains a pointer to a VACB), the area of the file be
ing referenced is in the cache. The VACB, in turn, points to the location in the
system cache where the view of the file is mapped. If the entry is zero, the cache
manager must find a free slot in the system cache (and therefore a free VACB)
to map the required view.

377

INSIDE WINDOWS NT

FileAVACB
index array System cache

Entry O Viewo

File A (500 KB) / Entry 1 View 1
VACBO

I Section O "/ Entry 2

I Section 1 Entry 3

View2
VACB 1

View3
VACB2

View4
VACB3

Views
VACB4

index array View6
VACB5

File B (750 KB) - Entry 0 View7
VACB6

Section O Entry 1 Views
VACB7

Section 1 Entry 2

Section 2 Entry 3

index array

File C (100 KB)
Entry 0

/
Viewn

I Section o
Entry 1

Entry 2

Entry 3

Figure 8-8
VACB index arrays

As a size optimization, the shared cache map contains a VACB index array
that is 4 entries in size. Since each VACB describes 256 KB, this small fixed
size array can describe a file of up to I MB. If a file is larger than I MB, a sepa
rate VACB index array is allocated from nonpaged pool, based on the size of
the file divided by 256 KB and rounded up in the case of a remainder. The
shared cache map then points to this separate structure.

Cache Operation

378

In this section, you'll see how the cache manager implements reading and
writing file data on behalf of file system drivers. Keep in mind that the cache
manager is involved in file 1/0 only when a file is opened (for example, us
ing the Win32 CreateFile function). Mapped files do not go through the cache
manager, nor do files opened with the FILE_FLAG_NO_BUFFERING flag set.

E I G HT : Cache Manager

Write-Back Caching and Lazy Writing
The Windows NT cache manager implements a write-back cache with lazy write.
This means that data written to files is first stored in memory in cache pages
and then written to disk later. Thus, write operations are allowed to accumu
late for a short time and are then flushed to disk all at once, reducing the overall
number of disk 1/0 operations.

The cache manager must explicitly call the memory manager to flush
cache pages because the memory manager writes memory contents to disk only
when demand for physical memory exceeds supply, as is appropriate for vola
tile data. Cached file data, however, represents nonvolatile disk data. If a pro
cess modifies cached data, the user expects the contents to be reflected on disk
in a timely manner.

The decision about how often to flush the cache is an important one. If
the cache is flushed too frequently, system performance will be slowed by un
necessarily increased 1/0. If the cache is flushed too rarely, you risk losing
modified file data in the case of a system failure (a loss especially irritating to
users who know that they asked the application to save the changes) ·and running
out of physical memory (because it's being used by an excess of modified pages).

To balance these concerns, once per second a system thread created by the
cache manager-the lazy writer-queues one quarter of the dirty pages in the
system cache to be written to disk. The 1/0 operations are actually performed
by system worker threads from the systemwide critical worker thread pool.

N 0 TE For C2-secure file systems (such as NTFS), the cache man
ager provides a means for the file system to track when and how
much data has been written to a file. After the lazy writer flushes
dirty pages to the disk, the cache manager notifies the file system,
instructing it to update its view of the valid data length for the file.

You can examine the activity of the lazy writer by examining the cache
performance counters or system variables listed in Table 8-4.

Table 8-4 System Variables for Examining the Activity
of the Lazy Writer

Performance Counter
(frequency)

System Variable
(count) Description

Number of lazy writer flushes Cache: Lazy Write Flushes/Sec

Cache: Lazy Write Pages/Sec

CcLazy Writelos

CcLazy WritePages Number of pages written by the lazy writer

379

INSIDE WINDOWS NT

380

Calculating the Dirty Page Threshold
The dirty page threshold is the number of pages that the system cache keeps in
memory before waking up the lazy writer system thread to write out pages back
to the disk. This value is computed at system initialization time and depends
on physical memory size and the value of the registry key \System ... \Control\
SessionManager\Memory Management\LargeSystemCache. This key is 0 by
default on both Windows NT Workstation and Windows NT Server. It can be
adjusted only on Windows NT Server systems, by modifying the properties of
the server's network service within the Network applet in Control Panel. (Even
though this service exists on Windows NT Workstation, its parameters can't be
adjusted.) Figure 8-9 shows the dialog box you use when modifying the prop
erties of the Server network service.

Figure 8-9
Server dialog box, which is used to modify the amount of memory allocated
for local and network applications in Windows NT Server

The setting shown in Figure 8-9, Maximize Throughput For Network Appli
cations, is the default-the LargeSystemCache key is 0. Changing the setting
to Maximum Throughput For File Sharing would change the value of Large
SystemCache from 0 to 1. The settings Minimize Memory Used and Balance
change Large System Cache back to 0. Although each of the four settings in the
Server dialog box affect the behavior of the file server service, they also modify
the value ofLargeSystemCache, which affects the system cache in general (for
both local and network file access).

Table 8-5 contains the algorithm used to calculate the dirty page threshold.
The calculations in Table 8-5 are overridden if the system maximum working set
size is greater than 4 MB-and it often is. (See page 284 in Chapter 5 to find
out how the memory manager chooses system working set sizes, that is, how it
determines whether the size is small, medium, or large.) When the maximum
working set size exceeds 4 MB, the dirty page threshold is set to the value of
the system maximum working set size minus 2 MB.

E I G H T : Cache Manager

Table 8-5 Algorithm for Calculating the Dirty Page Threshold

System Memory Size

Small

Medium

Large and registry
LargeSystemCache=O

Dirty Page Threshold

Physical pages I 8

Physical pages I 4

Sum of the above two values

Large and registry
LargeSystemCache=l

Same as preceding entry; however, if the computed
value is less than the size of physical memory, the dirty
page threshold is set to the size of physical memory.

Disabling Lazy Writing for a File
If you create a temporary file by specifying the FILE_ATTRIBUTE_TEMP
ORARY flag on the Win32 CreateFile function, the lazy writer won't write dirty
pages to the disk unless there is a severe shortage of physical memory. This
characteristic of the lazy writer improves system performance-the lazy writer
doesn't immediately write data to a disk that might ultimately be discarded.

Forcing the Cache to Write Through to Disk
Because some applications can't tolerate even momentary delays between writ
ing a file and seeing the updates on disk, the cache manager also supports
write-through caching on a per-file basis; changes are written to disk as soon
as they're made. To turn on write-through caching, set the FILE_FLAG_WRITE
_THROUGH flag when opening a file. Alternatively, a thread can explicitly
flush an open file using the Win32 FlushFileBuffers function when it reaches a
point at which the data needs to be written to disk. You can observe cache flush
operations that are the result of write-through 1/0 requests or explicit calls
to FlushFileBuffers via the performance counters or system variables shown in
Table 8-6.

Table 8-6 System Variables for Viewing Cache Flush Operations

Performance Counter
(frequency)

Cache: Data Flushes/Sec

Cache: Data Flush Pages/Sec

System Variable
(count) Description

CcDataFlushes Number of times cache pages were flushed
explicitly or because of write through

CcDataPages Number of pages flushed explicitly or
because of write through

381

INSIDE WINDOWS NT

Flushing Mapped Files
If the lazy writer must write data to disk from a view that's also mapped into
another process's address space, the situation becomes a little more complicated
because the cache manager will only know about the pages it has modified.
(Pages modified by another process are known only to that process because
the modified bit in the page table entries for modified pages are kept in the
process private page tables.) To address this situation, the memory manager
informs the cache manager when a user maps a file. When such a file is flushed
in the cache (for example, as a result of a call to the Win32 FlushFileBuffers
function), the cache manager writes the dirty pages in the cache and then
notices that the file is also mapped by another process. It then flushes the entire
view of the section in order to write out pages that might have been modified
by the second process. If a user maps a view of a file that is also open in the
cache, when the view is unmapped, the modified pages are marked as dirty so
that when the lazy writer thread later flushes the view, those dirty pages will
be written to disk. This procedure works as long as the sequence occurs in the
following order:

1. A user unmaps the view.

2. A process flushes file buffers.

If this sequence is not followed, you can't predict which pages will be written
to disk.

Intelligent Read-Ahead

382

The Windows NT cache manager uses the principle of spatial locality to per
form intelligent read-ahead by predicting what data the calling process is likely
to read next based on the data that it is reading currently. Because the system
cache is based on virtual addresses, which are contiguous for a particular file,
it doesn't matter whether they're juxtaposed in physical memory. File read
ahead for logical block caching is an impossibility because that cache system
is based on the relative positions of the accessed data on the disk, and of course,
files are not necessarily stored contiguously on disk.

The two types of read-ahead-virtual address read-ahead and asynchro
nous read-ahead with history-are explained in the next two sections. You can
examine read-ahead activity by using the Cache: Read Aheads/Sec perfor
mance counter or the CcReadAheadlos system variable.

E I G HT : Cache Manager

Virtual Address Read-Ahead
Recall from Chapter 5 that when the memory manager resolves a page fault,
it reads into memory several pages near the one explicitly accessed, a method
called in-page clustering. For applications that read sequentially, this virtual
address read-ahead operation reduces the number of disk reads necessary to
retrieve data. The only disadvantage to the memory manager's method is that
because this read-ahead is done in the context of resolving a page fault it must
be performed synchronously, while the thread waiting on the data being paged
back into memory is waiting. The cache manager improves on this scheme for
cached files by prereading their data asynchronously. When called to retrieve
cached data, the cache manager first accesses the requested virtual page to
satisfy the request and then queues an additional 1/0 request to retrieve ad
ditional data to a system worker thread. The worker thread then executes in
the background, reading additional data in 64-KB blocks in anticipation of the
caller's next read request. The preread pages are faulted into memory while
the program continues executing so that when the caller requests the data, it's
already in memory.

Asynchronous Read-Ahead with History
The virtual address read-ahead performed by the cache manager improves
1/0 performance, but its benefits are limited to sequentially accessed data. To
extend read-ahead benefits to certain cases of randomly accessed data, the cache
manager maintains a history of the last two read requests in the private cache map
for the file handle being accessed, a method known as asynchronous read-ahead
with history. If a pattern can be determined from the caller's apparently ran
dom reads, the cache manager extrapolates it. For example, if the caller reads
page 4000 and then page 3000, the cache manager assumes that the next page
the caller will require is page 2000 and prereads it.

N 0 T E Although a caller must issue a minimum of three read opera
tions to establish a predictable sequence, only two are stored in the
private cache map.

To make read-ahead even more efficient, the Win32 CreateFile function
provides a flag indicating sequential file access: FILE_FLAG_SEQUENTIAL
_SCAN. If this flag is set, the cache manager doesn't keep a read history for
the caller for prediction but instead performs sequential read-ahead. It also
reads ahead three times as much data (192 KB instead of64 KB) using a sepa
rate 1/0 operation for each read. As the caller continues reading, the cache

383

INSIDE WINDOWS NT

manager prereads additional blocks of data, always staying about 192 KB ahead
of the caller. Although the asynchronous read-ahead with history technique
uses more memory than the standard read-ahead, it minimizes disk I/O and
further improves the performance of applications reading large amounts of
cached sequential data. The Cache: Read Aheads/Sec performance counter
indicates sequential access read-ahead operations.

For applications that have no predictable read pattern, the FILE_FLAG
_RANDOM_ACCESS flag can be specified when the file is open. This flag
instructs the cache manager not to attempt to predict where the application
is reading next and thus disables read-ahead. This flag isn't currently imple
mented in Windows NT 4.0, however, but it will be in Windows NT 5.0. In the
meantime, applications that know they are doing random file I/O should
specify this flag now, even though it won't affect the cache manager until
Windows NT 5.0.

1161• N 0 TE The FILE_FLAG_RANDOM_ACCESS flag, which is cur
rently ignored, will be supported by the cache manager in Windows
NT5.0.

System Threads

384

As mentioned earlier, the cache manager performs lazy write and read-ahead
1/0 operations by submitting requests to the common critical system worker
thread pool. However, it does limit the use of these threads to one less than
the total number of critical worker system threads for small and medium memory
systems (two less than the total for large memory systems).

Internally, the cache manager organizes its work requests into two lists
(though these are serviced by the same set of executive worker threads):

Ill The express queue is used for read-ahead operations.

Ill The regular queue is used for lazy write scans (for dirty data to flush),
write behinds, and lazy closes.

To keep track of the work items the worker threads need to perform, the
cache manager creates its own internal look-aside list, a fixed-length list of worker
queue item structures. (Look-aside lists are discussed in Chapter 5.) The num
ber of worker queue items depends on system size: 32 for small-memory sys
tems, 64 for medium-memory systems, 128 for large-memory Windows NT
Workstation systems, and 256 for large-memory Windows NT Server systems.

E I G H T : Cache Manager

Fast 1/0
Whenever possible, reads and writes to cached files are handled by a high-speed
mechanism named fast I/0. Fast I/0 is a means of reading or writing a cached
file without going through the work of generating an I/0 request packet (IRP),
as described in Chapter 7. With fast I/O, the I/O manager calls the file system
driver's fast I/O routine to see whether I/O can be satisfied directly from the
cache manager without generating an IRP.

Because the Windows NT cache manager keeps track of which blocks of
which files are in the cache, file system drivers can use the cache manager to
access file data simply by copying to or from pages mapped to the actual file
being referenced without going through the overhead of generating an IRP.

Fast I/0 doesn't always occur. For example, the first read or write to a file
requires setting up the file for caching (mapping the file into the cache and
setting up the cache data structures, as explained in the section "Cache Data
Structures" on page 374). Also, ifthe caller specified an asynchronous read or
write, fast I/O isn't used since the caller might be stalled during paging I/O
operations required to satisfy the buffer copy to or from the system cache and
thus not really providing the requested asynchronous I/O operation. But even
on a synchronous I/O, the file system driver might decide that it can't process
the I/O operation using the fast I/0 mechanism, say, for example, if the file
in question has a locked range of bytes (as a result of calls to the Win32 LockFile
and UnlockFilefunctions). Because the cache manager doesn't know what parts
of what files are locked, the file system driver must check the validity of the read
or write, which requires generating an IRP. The decision tree for fast I/O is
shown in Figure 8-lOon the following page.

These steps are involved in servicing a read or a write with fast I/O:

1. A thread performs a read or write operation.

2. If the file is cached and the I/O is synchronous, the request passes
to the fast I/O entry point of the file system driver. If the file is not
cached, the file system driver sets up the file for caching so that the
next time, fast I/O can be used to satisfy a read or write request.

3. If the file system driver's fast I/O routine determines that fast I/O is
possible, it calls the cache manager read or write routine to access
the file data directly in the cache. (If fast I/O is not possible, the
file system driver returns to the I/O system, which then generates
an IRP for the I/O and eventually calls the file system's regular read
routine.)

385

INSIDE WINDOWS NT

386

NTReadFile

Yes

No

Generate IRP

Figure 8-10
Fast I/O decision tree

File system driver

Yes

No

Cache manager

Cache manager
copies data to
process buffer

Cache manager
initializes cache

Cache complete

4. The cache manager translates the supplied file offset into a virtual
address in the cache.

5. For reads, the cache manager copies the data from the cache into
the buffer of the process requesting it; for writes, it copies the data
from the buffer to the cache.

6. One of the following actions occurs:

0 For reads, the read-ahead information in the caller's private
cache map is updated.

0 For writes, the dirty bit of any modified page in the cache is set
so that the lazy writer will know to flu~h it to disk.

0 For write-through files, any modifications are flushed to disk.

E I G H T : Cache Manager

N 0 TE The fast 1/0 path is not limited to occasions when the re
quested data already resides in physical memory. As noted in steps
5 and 6 of the preceding list, the cache manager simply accesses the
virtual addresses of the already opened file where it expects the data
to be. If a cache miss occurs, the memory manager dynamically pages
the data into physical memory.

The performance counters or system variables listed in Table 8-7 can be
used to determine the fast 1/0 activity on the system.

Table 8-7 System Variables for Determining Fast 1/0 Activity

Performance Counter
(frequency)

Cache: Synch Fast Reads/Sec

Cache: Async Fast Reads/Sec

Cache: Fast Read Resource
Misses/Sec

Cache: Fast Read Not
Possibles/Sec

System Variable
(count) Description

CcFastReadWait Synchronous reads that were handled
as fast 1/0 requests

CcFastReadNo Wait Asynchronous reads that were handled
as fast 1/0 requests (These are always
zero because asynchronous fast reads
aren't done in Windows NT.)

CcFastRea,dR.esourceMiss Fast 1/0 operations that couldn't be
satisfied because of resource conflicts
(This situation can occur with FAT
but not with NTFS.)

CcFastReadNotPossible Fast 1/0 operations that couldn't be
satisfied (The file system driver decides;
for example, files with byte range locks
can't use fast 1/0.)

Cache Support Routines
The first time a file is accessed, the file system driver is responsible for deter
mining whether some part of the file is mapped in the system cache. If not, it
must call the CclnitializeCacheMapfunction to set up the per-file data structures
described in the preceding section.

Once a file is set up for cached access, the file system driver calls one of
several functions to access the data in the file. There are three primary meth
ods for accessing cached data, each intended for a specific situation.

387

INSIDE WINDOWS NT

II The first method (copy read) copies user data between cache buff
ers in system space and a process buffer in user space.

II The second method (mapping and pinning) reads and writes data
directly to cache buffers using virtual addresses.

II The third method (physical memory access) reads and writes data
directly to cache buffers using physical addresses.

File system drivers must provide two versions of the file read operation
cached and noncached-to prevent an infinite loop when the memory man
ager processes a page fault. When the memory manager resolves a page fault
by calling the file system to retrieve data from the file (via the device driver,
of course), it must specify this noncached read operation by setting the "no
cache" flag in the IRP.

The next three sections explain these cache access mechanisms, their
purpose, and how they are used.

Copying to and from the Cache
Because the system cache is in system space, it is mapped into the address space
of every process. As with all system space pages, however, cache pages are not
accessible from user mode, since that would be a potential security hole. (For
example, a process might not have the rights to read a file whose data is cur
rently contained in some part of the system cache.) Thus, user application file
reads and writes to cached files must be serviced by kernel-mode routines that
copy data between the cache's buffers in system space and the application's
buffers residing in the process address space. The functions that file system
drivers can use to perform this operation are listed in Table 8-8.

Table 8-8 Kernel-Mode Functions for Copying to and from the Cache

Function Description

CcCopyRead

CcFastCopyRead

CcCopy Write

CcFastCopy Write

388

Copies a specified byte range from the system cache to a user buffer

Faster variation of CcCopyRead but limited to 32-bit file offsets and synchro
nous reads (used by NTFS, not FAT)

Copies a specified byte range from a user buffer to the system cache

Faster variation of CcCopy Write but limited to 32-bit file offsets and synchro
nous, non-write-through writes (used by NTFS, not FAT)

E I G H T : Cache Manager

You can examine read activity from the cache via the performance counters
or system variables listed in Table 8-9.

Table 8-9 System Variables for Examining Read Activity from the Cache

Performance Counter
(frequency)

Cache: Copy Read Hits %

Cache: Copy Reads/Sec

Cache: Synch Copy Reads/Sec

Cache: Async Copy Reads/Sec

System Variable
(count)

(CcCopyReadWait +
CcCopyReadNo Wait) I
(CcCopyReadWait +
CcCopyReadNo Wait) +
(CcCopyReadWaitMiss +
CcCopyReadNo WaitMiss)

CcCopyReadWait +
CcCopyReadNo Wait

CcCopyReadWait

CcCopyReadNo Wait

Description

Percentage of copy reads to parts of
files that were in the cache (A copy
read can still generate paging 1/0-
the Memory: Cache Faults/Sec counter
reports page fault activity for the
system working set but includes both
hard and soft page faults, so the
counter still doesn't indicate actual
paging 1/0 caused by cache faults.)

Total copy reads from the cache

Synchronous copy reads from the
cache

Asynchronous copy reads from the
cache

Caching with the Mapping and Pinning Interfaces
Just as user applications read and write data in files on a disk, file system driv
ers need to read and write the data that describes the files themselves (the
metadata, or volume structure data). However, since the file system drivers run
in kernel mode, they could, if the cache manager were properly informed,
modify data directly in the system cache. To permit this optimization, the cache
manager provides the functions shown in Table 8-10 on the following page.
These functions permit the file system drivers to find where in virtual memory
the file system metadata resides, thus allowing direct modification without the
use of intermediary buffers.

If a file system driver needs to read file system metadata in the cache, it
calls the cache manager's mapping interface to obtain the virtual address of
the desired data. The cache manager touches all the requested pages to bring
them into memory and then returns control to the file system driver. The file
system driver can then access the data directly.

389

INSIDE WINDOWS NT

Table a-10 Functions for Finding Metadata Locations

Function Description

CcMapData Maps the byte range for read access

CcPinRead Maps the byte range for read/write access

CcPreparePin Write

CcPinMappedData

CcSetDirtyPinnedData

CcUnpinData

Prepares a page to be written to

Pins a previously mapped buffer

Notifies the cache manager that the data has been
modified

Releases the pages so that they can be removed
from memory

If the file system driver needs to modify cache pages, it calls the cache
manager's pinning services, which keep the pages being modified in memory.
The pages are not actually locked into memory (such as when a device driver
locks pages for direct memory access transfers). Instead, the memory manager's
mapped page writer (explained in Chapter 5) sees that these pages are pinned
and doesn't write the pages to disk until they are unpinned (released) by the
file system driver. When the pages are released, the cache manager flushes any
changes to disk and releases the cache view that the metadata occupied.

The mapping and pinning interfaces solve one thorny problem ofimplement
ing a file system: buffer management. Without directly manipulating cached
metadata, a file system must predict the maximum number of buffers it will need
when updating a volume's structure. By allowing the file system to access and
update its metadata directly in the cache, the cache manager eliminates the
need for buffers, simply updating the volume structure in the virtual memory
provided by the memory manager. The only limitation the file system encoun
ters is the amount of available memory.

You can examine pinning and mapping activity in the cache via the per
formance counters or system variables listed in Table 8-11.

Caching with the Direct Memory Access Interfaces

390

In addition to the mapping and pinning interfaces used to access metadata
directly in the cache, the cache manager provides a third interface to cached
data: direct memory access (DMA). These DMA functions are used to read from
or write to cache pages without intervening buffers, such as when a network
file system is doing a transfer over the network.

E I G H T : Cache Manager

Table s-11 System Variables for Examining Pinning and Mapping Activity

Performance Counter System Variable
(frequency) (count) Description

Cache: Data Map Hits % (CcMapData Wait + CcMap- Percentage of data maps to parts
DataNo Wait) I of files that were in the cache
(CcMapData Wait + (A copy read can still generate
CcMapDataNoWait) + paging 1/0.)
(CcMapData WaitMiss +
CcMapDataNo WaitMiss)

Cache: Data Maps/Sec CcMapData Wait + Total data maps from the cache
CcMapDataNo Wait

Cache: Synch Data Maps/Sec CcMapData Wait Synchronous data maps from
the cache

Cache: Async Data Maps/Sec CcMapDataNo Wait Asynchronous data maps from
the cache

Cache: Data Map Pins/Sec CcPinMappedDataCount Number of requests to pin
mapped data

Cache: Pin Read Hits % (CcPinReadWait + CcPin- Percentage of pinned reads to
ReadNoWait) I (CcPinRead- parts of files that were in the cache
Wait+ CcPinReadNoWait) + (A copy read can still generate

, (CcPinReadWaitMiss + paging 1/0.)
CcPinReadNo WaitMiss)

Cache: Pin Reads/Sec CcPinReadWait + Total pinned reads from the
CcPinReadNo Wait cache

Cache: Synch Pin Reads/Sec CcPinReadWait Synchronous pinned reads from
the cache

Cache: Async Pin Reads/Sec CcPinReadNo Wait Asynchronous pinned reads from
the cache

The DMA interface returns to the file system the physical addresses of
cached user data (rather than the virtual addresses, which the mapping and
pinning interfaces return), which can then be used to transfer data directly
from physical memory to a network device. Although small amounts of data
(1 KB to 2 KB) can use the usual buffer-based copying interfaces, for larger
transfers, the DMA interface can result in significant performance improve
ments for a network server processing file requests from remote systems.

391

INSIDE WINDOWS NT

To describe these references to physical memory, a memory descriptor list
(MDL) is used. (MDLs are described in Chapter 5.) The four separate func
tions described in Table 8-12 create the cache manager's DMA interface.

Table 8-12 Functions That Create the OMA Interface

Function Description

CcMd!Read

CcMd!ReadComplete

CcMdlWrite

CcMdlWriteComplete

Returns an MDL describing the specified byte range

Frees the MDL

Returns an MDL describing a specified byte range
(possibly containing zeros)

Frees the MDL and marks the range for writing

You can examine MDL activity from the cache via the performance coun
ters or system variables listed in Table 8-13.

Table 8-13 System Variables for Examining MDL Activity from the Cache

Performance Counter
(frequency) .

Cache: MDL Read Hits %

Cache: MDL Reads/Sec

Cache: Synch MDL Reads/Sec

Cache: Async MDL Reads/Sec

Write Throttling

System Variable
(count)

(CcMd!ReadWait +
CcMd!ReadNoWait) I
(CcMd!ReadWait +
CcMd!ReadNoWait) +
(CcMd!ReadWaitMiss +
CcMd!ReadNoWaitMiss)

CcMd!ReadWait +
CcMdlReadNo Wait

CcMd!ReadWait

CcMd!ReadNo Wait

Description

Percentage of MDL reads to parts
of files that were in the cache
(References to pages satisfied by
an MDL read can still generate
paging 1/0.)

Total MDL reads from the cache

Synchronous MDL reads from
the cache

Asynchronous MDL reads from
the cache

Windows NT must -determine whether the scheduled writes will affect system
performance and then schedule any delayed writes. First it asks whether a cer
tain number of bytes can be written right now without hurting performance
and blocks that write if necessary. Then it sets up callback for automatically

392

E I G H T : Cache Manager

writing the bytes when writes are again permitted. Once it is notified of an
impending write operation, the cache manager determines how many dirty
pages are in the cache and how much physical memory is available. If few phys
ical pages are free, the"cache manager momentarily blocks the file system thread
that is requesting to write data to the cache. The cache manager's lazy writer
flushes some of the dirty pages to disk and then allows the blocked file system
thread to continue. This write throttling prevents system performance from
degrading because of a lack of memory when a file system or network server
issues a large write operation.

Write throttling is also useful for network redirectors transmitting data
over slow communication lines. For example, 'suppose a local process writes a
large amount of data to a remote file system over a 1200-baud line. The data
isn't written to the remote disk until the cache manager's lazy writer flushes the
cache. If the redirector has accumulated lots of dirty pages that are flushed
to disk at once, the recipient could receive a network time-out before the data
transfer completes. By using the CcSetDirtyPageThreshold function, the cache
manager allows network redirectors to set a limit on the number of dirty cache
pages they can tolerate, thus preventing this scenario. By limiting the number
of dirty pages, the redirector ensures that a cache flush operation won't cause
a network time-out.

Conclusion
The Windows NT cache manager provides a high-speed, intelligent mechanism
for reducing disk I/0 and increasing overall system throughput. By caching
on the basis of virtual blocks, the Windows NT cache manager can perform
intelligent read-ahead. By relying on the global memory manager's mapped
file primitive to access file data, the cache manager can provide the special fast
I/0 mechanism to reduce the CPU time required for read and write opera
tions and also leave all matters related to physical memory management to the
single Windows NT global memory manager, thus reducing code duplication
and increasing efficiency.

393

C H A P T E R N N E

Windows NT File System (NTFS)

This chapter details the internal structure and operation of the Microsoft
Windows NT File System (hereafter referred to as NTFS). After reviewing the
NTFS design goals and major features, I'll describe the NTFS on-disk structure
and explain how NTFS implements transaction-based file system recovery.
Finally, I'll cover the implementation of the optional fault tolerance support.

111111,. N 0 TE Some of the exciting NTFS extensions being introduced in
Windows NT 5.0 are noted throughout this chapter. For a complete
list of these new extensions, see Chapter 10.

NTFS Design Goals and Features
In 1988, Microsoft already supported two file systems-the FAT file system for
MS-DOS and Microsoft Windows and the high-performance file system (HPFS)
for OS/2. Unfortunately, both of these file systems suffered from limitations
that made them either less reliable than a file system for Windows NT should
be or unable to handle the large system configurations that were expected to
run the Windows NT operating system. After careful consideration, the Win
dows NT team decided to create a new file system-NTFS. Although the design
for NTFS was new, it was influenced by FAT and HPFS as well as by certain
features required by the POSIX standard.

The following section describes the requirements that drove the design
of NTFS. The subsequent section examines the advanced features of NTFS.

High-End File System Requirements
MS-DOS uses the FAT file system, which was originally designed for floppy disks
of a relatively small size, generally 1 MB or less. As hard disks became the stan
danl storage device for personal computers and over time grew larger, they
began to stretch the limits of the FAT file system. The OS/2 operating system
introduced HPFS to address some of the limitations of the FAT file system. For

395

INSIDE WINDOWS NT

396

example, HPFS greatly improved file access times for large directories and
could be used on hard disks up to 4 GB in size. HPFS was later expanded to
support disk sizes up to 2 TB (terabytes), or approximately 2 trillion bytes.

The FAT file system worked well for small disks, and HPFS added some
new capabilities, greater file access efficiency, and support for larger media.
However, neither file system was suitable for mission-critical applicatiens that
required recoverability, security, data redundancy and fault tolerance, and
support for even larger storage media than HPFS provided.

Recoverability
As far as disk I/O is concerned, personal computer users have tended to care
most about speed-above all, they've usually just wanted to get their work done
fast. As Windows NT moves the personal computer into more businesses and
corporations, however, the reliability of tp.e data stored on the system becomes
increasingly important relative to the speed with which a user can access data
on a disk drive. In other words, ifthe system fails and a disk drive is corrupted
or becomes inaccessible, the speed of the preceding I/O operations is largely
irrelevant.

To address the requirement for reliable data storage and data access,
NTFS provides file system recovery based on a transaction-processing model.
Transaction processing is a technique for handling modifications to a database
so that system failures don't affect the correctness or integrity of the database.
The basic tenet of transaction processing is that some database operations,
called transactions, are all-or-nothing propositions. (A transaction is defined
as an 1/0 operation that alters file system data or changes the volume's direc
tory structure.) The separate disk updates that make up the transaction must
be executed atomically; that is, once the tnmsaction begins to execute, all of
its disk updates must be completed. If a system failure interrupts the transac
tion, the part that has been completed must be undone, or rolled back. The
rollback operation returns the database to a previously known and consistent
state, as if the transaction had never occurred.

NTFS uses the transaction-processing model to implement its file system
recovery feature. If a program initiates an 1/0 operation that alters the struc
ture of the NTFS-that is, changes the directory structure, extends a file, allo
cates space for a new file, and so on-NTFS treats that operation as an atomic
transaction. It guarantees that the transaction is either completed or, if the
system fails while executing the transaction, rolled back. The details of how
NTFS does this is explained in the section "Recoverability Support" on page 426.

In addition, NTFS uses redundant storage for vital file system informa
tion so that if one location on the disk goes bad, NTFS can still access the
volume's critical file system data. This redundancy of file system data contrasts

N I N E : Windows NT File System (NTFS)

with the on-disk structures of both the FAT file system and HPFS, which have
single sectors containing critical file system data. If a read error occurs in one
of these sectors, an entire volume is lost.

Security
Data security is crucial to customers who process private or sensitive informa
tion-banks, hospitals, and national defense-related agencies, for example.
Such customers need guarantees that their data will be secure from unautho
rized access.

Security in NTFS is derived directly from the Windows NT object model.
(For more information on NTFS security, see Chapter 6.) An open file is imple
mented as a file object with a security descriptor stored on disk as a part of the
file. Before a process can open a handle to any object, including a file object,
the Windows NT security system verifies that the process has appropriate au
thorization to do so. The security descriptor, combined with the requirement
that a user log on to the system and provide an identifying password, ensures
that no process can access a file unless given specific permission to do so by a
system administrator or by the file's owner. (For more information about secu
rity descriptors, see the section on page 310 in Chapter 6, and for more details
about file objects, see the section on page 341 in Chapter 7.)

Data Redundancy and Fault Tolerance
In addition to recoverability of file system data, some customers require that
their own data not be endangered by a power outage or catastrophic system
failure. The NTFS recovery capabilities do ensure that the file system on a
volume remains accessible, but they make no guarantees for complete recov
ery of user files. For applications that can't risk losing file data, data redundancy
provides an extra level of protection.

The Windows NT layered driver model (explained in Chapter 7) is used
to provide fault tolerant disk support. NTFS communicates with a fault tolerant
disk driver, which in turn communicates with a hard disk driver to write data to
disk. This communication allows a Windows NT system to establish fault toler
ant disk storage by installing an additional driver. The fault tolerant driver can
mirror, or duplicate, data from one disk onto another disk so that a redundant
copy can always be retrieved. This support is commonly called RAID level 1.
The fault tolerant driver also allows data to be written in stripes across three
or more disks, using the equivalent of one disk to maintain parity information.
If the data on one disk is lost or becomes inaccessible, the driver can recon
struct the disk's contents by means of exclusive-OR operations. This support
is called RAID level 5.

397

INSIDE WINDOWS NT

398

Large Disks and Large Files
Engineering and other scientific applications often store and process extremely
large quantities of information. Hard disks with over 8 GB of storage and disk
arrays with 100 GB to 500 GB of storage are no longer uncommon. NTFS sup
ports very large disks and large files more efficiently than does either the FAT
file system or HPFS.

Until the introduction of Microsoft Windows 95 OSR2, the FAT file sys
tem used a table 16 bits wide to record the allocation status of a disk volume.
Because a volume is divided into same-sized allocation units-called cluster~
and each cluster must be uniquely numbered using 16 bits, FAT can support
a maximum of216, or 65,536, clusters per volume (although the FAT reserves some
of this space for itself). A single FAT volume is limited to containing 65,518 files
(the maximum number of available clusters), regardless of the disk size.

N 0 TE Windows NT 5.0 will support FAT32, the enhanced version
of FAT shipped as part of Microsoft Windows 95 OEM Service Re-
lease 2 (as well as Microsoft Windows 98). FAT32 alleviates some of
the restrictions of the FAT16 design by allowing smaller clusters
(4 KB for drives up to 8 GB) as well as support for hard disk sizes
larger than 2 GB. FAT32 also has the ability to relocate the root
directory and use the backup copy of the FAT instead of the default
copy. The boot record on FAT32 drives has been expanded to include
a backup of critical data structures, making FAT32 partitions less
susceptible to a single point of failure than are existing FAT16 vol
umes. Finally, the root directory on a FAT32 drive is now an ordinary
cluster chain, so it can be located anywhere on the drive. For this
reason, the previous limitations on the number of root directory en
tries no longer exist.

HPFS uses 32 bits to enumerate its allocation units, a strategy that yields
232, or over 4 billion, numbers. HPFS uses signed numbers, however, which
reduces this number to 2 billion possible allocation units on an HPFS volume.
Rather than clusters, HPFS allocates disk space in terms of physical sectors,
each set at 512 bytes. This lack of flexibility can b.e a problem, particularly in
Asian markets, where disk drives commonly have a hardware sector size of 1024
bytes. HPFS can't be used on such drives because disks can't allocate space in
increments smaller than their hardware sector size. HPFS is also limited to a
maximum file size of 4 GB.

NTFS allocates clusters and uses 64 bits to number them, which results
in a possible 264 (over 16,000,000,000,000,000,000, or 16 billion billion) clusters,
each up to 64 KB. Each file can be 264 bytes long, which should satisfy data
storage requirements for some time to come. As in the FAT file system, the

N I N E : Windows NT File System (NTFS)

cluster size in NTFS is adjustable, but it is not required to grow proportionally
to the disk size. NTFS uses a cluster size of 512 bytes on small disks and a maxi
mum cluster size of64 KB on large disks. Although NTFS uses a 64-bit (8-byte)
disk address to represent each run (disk allocation), it "encodes" the addresses
so that they occupy only 3 to 5 bytes per run. (Look ahead to Figure 9-17 to
see an example of address encoding.) HPFS uses 12 bytes to represent each run.

Additional Features in NTFS
In addition to NTFS being recoverable, secure, reliable, and efficient for mis
sion-critical systems, it includes the following advanced features that allow it
to support a broad range of applications.

Multiple Data Streams
In NTFS, each unit of information associated with a file, including its name, its
owner, its time stamps, its contents, and so on, is implemented as a file attribute
(object attribute). Each attribute consists of a single stream, that is, a simple
sequence of bytes. This generic implementation makes it easy to add more
attributes (and therefore more streams) to a file. Because a file's data is 'just
another attribute" of the file and because new attributes can be added, NTFS
files (and file directories) can contain multiple data streams.

An NTFS file has one default data stream, which has no name. An appli
cation can create additional, named data streams and access them by referring
to their names. To avoid altering the Microsoft Win32 I/0 APis, which take a
string as a filename argument, the name of the data stream is specified by
appending a colon (:) to the filename. Because the colon is a reserved char
acter, it can serve as a separator between the filename and the data stream
name, as illustrated in this example:

myfile.dat:stream2

Each stream has a separate allocation size (how much disk space has been
reserved for it), an actual size (how many bytes the caller has used), and a valid
data length (how much of the stream has been initialized). In addition, each
stream is given a separate file lock that is used to lock byte ranges and to al
low concurrent access. To reduce processing overhead, sharing is done per file
rather than per stream.

The one component in Windows NT that uses multiple data streams is the
Apple Macintosh file server support that comes with Windows NT Server. Mac
intosh systems use two streams per file- one to store data and the other to store
resource information, such as the file type and the icon used to represent the
file. Because NTFS allows multiple data streams, a Macintosh user can copy an
entire Macintosh folder (analogous to a directory) to a Windows NT Server,

399

INSIDE WINDOWS NT

and another Macintosh user can copy the folder from the server without losing
resource information. Other applications can use the multiple data stream
feature as well. A backup utility, for example, might use an extra data stream to
store backup-specific time stamps on files. Or an archival utility might imple
ment hierarchical storage in which files that are older than a certain date or
that haven't been accessed for a specified period of time are moved to tape.
The utility could copy the file to tape, set the file's default data stream to 0, and
add a data stream that specifies the name and location of the tape on which
the file is stored.

Unicode-Based Names
Like Windows NT as a whole, NTFS is fully Unicode enabled, using Unicode
characters to store names of files, directories, and volumes. Unicode, a 16-bit
character-coding scheme, allows each character in each of the world's major
languages to be uniquely represented, which aids in moving data easily from
one country to another. Unicode is an improvement over traditional represen
tation of international characters-using a double-byte coding scheme that
stores some characters in 8 bits and others in 16 bits, a technique that requires
loading various code pages to establish the available characters. Because Uni
code has a unique representation for each character, it doesn't depend on
which code page is loaded. Each directory and filename in a path name can
be as many as 255 characters long and can contain Unicode characters, em
bedded spaces, and multiple periods.

General Indexing Facility
The NTFS architecture is structured to allow indexing of file attributes on a
disk volume. This structure enables the file system to efficiently locate files that
match certain criteria-for example, all the files in a particular directory. The
FAT file system indexes filenames but doesn't sort them, making lookups in
large directories slow. HPFS indexes and sorts filenames as NTFS does, but the
design of NTFS allows for indexing other file attributes as well.

- N 0 TE In Windows NT 5.0, NTFS is being extended to index other
attributes, such as object IDs (enterprise-wide unique identifiers for
files). For more information on the additional indexing capabilities
planned for the NTFS in Windows NT 5.0, see Chapter 10.

400

Dynamic Bad-Cluster Remapping
Ordinarily, if a program tries to read data from a bad-disk sector, the read
operation fails and the data in the allocated cluster becomes inaccessible. If
the disk is formatted as a fault tolerant NTFS volume, however, the Windows
NT fault tolerant driver dynamically retrieves a good copy of the data that was

N I N E : Windows NT File System (NTFS)

stored on the bad sector and then sends NTFS a warning that the sector is bad.
NTFS allocates a new cluster, replacing the cluster in which the bad sector
resides, and copies the data to the new cluster. It flags the bad cluster and no
longer uses it. This data recovery and dynamic bad-cluster remapping is an
especially useful feature for file servers and fault tolerant systems or for any
application that can't afford to lose data. If the fault tolerant driver isn't loaded
when a sector goes bad, NTFS still replaces the cluster and doesn't reuse it, but
it can't recover the data that was on the bad sector.

POSIX Support
As explained in Chapter 1, one of the mandates for Windows NT was to fully
support the POSIX.l standard. In the file system area, the POSIX standard
requires support for case-sensitive file and directory names, a "file-change
time" time stamp (which is different than the MS-DOS "time-last-modified"
stamp), and hard links (multiple directory entries that point to the same file).
NTFS implements each of these features.

EXPERllVHiNT: Creating a Hard Link
To er~ a hard link, use.the hl .utiljtY in the. Windows NT Resource .
Kit. For e~mple, type the following linesof code:

. ' ' - _, '._- __ ' .

C :\>cd \ntreskit\posh
C:'d4TRESKil'\POSIX>dtf' ln,exe

Volurne Jn' drive. c. has.·· no. 1 abel,
Volume Serial Number is 281lC-F247
Directory . of C:\.NTRESKIT\P0S IX

03/0119c8 l2:00a 90,960 LN. EXE
1 Pfle(s) 90,960 bytes

317,863,936 bytes free .
cc•' - '_. ' ,

.·· C:\NTRESKIT\P.OSIX>ln ln.exe fo-0 .• exe
1 n: ln. exe: No in,u:;IJ ftl E! or di rector,y

C:\NTRESKlT\POSI.X>ln LN.EXE foo.exe ·

.. ·.··The s~ondt? [agtco1llmatidfaile<fbecause the POSIX subsystetll .
processes filena1lles as ca.~et}sitive (WIB32. does not). So in the last ..
command,.refetencing LN'.EXE (uppercase letters) work~d and create<l··.·.
the har<;l lin~ >a directory entry c~lled ''foo.e~e" wp.s creatM tog9illt ·.
t<>11ie same fileth,~LN.KXE points to.If you delete LN.EXE, tf1~ f~e
rerruiins.because.thereisstill ·a link to it·. (foo:exe) .. When .the·.la~tlirik\
to a·f,ile is deleted~ the ,space for the file it Self is· released ..

401

INSIDE WINDOWS NT

NTFS Internal Structure

402

As described in Chapter 7, in the framework of the Windows NT 1/0 system,
NTFS and other file systems are loadable device drivers that run in kernel
mode. They are invoked indirectly by applications that use Win32 or other 1/0
APis (such as POSIX). As Figure 9-1 shows, the Windows NT environment
subsystems call Windows NT system services, which in turn locate the appro
priate loaded drivers and call them. (For a description of system service dis
patching, see page 99 in Chapter 3.)

NT
executive

Figure 9-1
Components of the Windows NT I/O system

Environment
subsystem

or DLL

User mode

Kernel mode

1/0 manager

The layered drivers pass I/0 requests to one another by calling the Win
dows NT executive's 1/0 manager. Relying on the I/0 manager as an interme
diary allows each driver to maintain independence so that it can be loaded or
unloaded without affecting other drivers. In addition, the NTFS driver inter
acts with the three other NT executive components, shown in the left side of
Figure 9-2, that are closely related to file systems.

Log the transaction

Log file r s_e_rv,..l_ee_ ...

Read/write the file

Write the
cache

Access the mapped
file or flush the cache

Figure 9-2

f
Virtual memory

manager

NTFS and related components

Load data
from disk

into
memory

N I N E : Windows NT File System (NTFS)

1/0 manager

NTFS driver

Fault tolerant
driver

Disk driver

Read/write
a mirrored
or striped
volume

Read/write
the disk

The log file service (LFS) is the part of NTFS that provides services for
maintaining a log of disk writes. The log file it writes is used to recover an NTFS
formatted volume in the case of a system failure.

The cache manager is the component of the Windows NT executive that
provides systemwide caching services for NTFS and other file system drivers,
including network file system drivers (servers and redirectors). All file systems
implemented for Windows NT access cached files by mapping them into virtual
memory and then accessing the virtual memory. The cache manager provides
a specialized file system interface to the Windows NT virtual memory manager
for this purpose. When a program tries to access a part of a file that is not
loaded into the cache (a cache miss), the memory manager calls NTFS to access
the disk driver and obtain the file contents from disk. The cache manager
optimizes disk I/O by using its lazy writer, a set of system threads that call the
memory manager to flush cache contents to disk as a background activity (asyn
chronous disk writing). (For a complete description of the cache manager, see
Chapter 8.)

NTFS participates in the Windows NT object model by implementing files
as objects. This implementation allows files to be shared and protected by the
object manager, the component of Windows NT that manages all executive
level objects. (The object manager is described on page 101 in Chapter 3.)

403

INSIDE WINDOWS NT

404

An application creates or accesses a file just as it does other Windows NT
objects: by means of object handles. By the time an I/O request reaches NTFS,
the Windows NT object manager and security system have already verified that
the calling process has the authority to access the file object in the way it is
attempting to. The security system has compared the caller's access token to
the entries in the access control list for the file object. (See Chapter 6 for more
information about access control lists.) The 1/0 manager has also transformed
the file handle into a pointer to a file object. NTFS uses the information in the
file object to access the file on disk.

Figure 9-3 shows the data structures that link a file handle to the file
system's on-disk structure. ·

Object
manager

data
structures

Figure 9-3

Process

NTFS data structures

NTFS data
structures

(used to manage
the on-disk
structure)

Stream
control
blocks

I_ Data
~attribute

User
defined
attribute

File
control
b!cc~

NTFS
database
(on disk)

Master file
table

By the time the I/0 system calls NTFS, the handle has been translated
to a pointer to a file object. NTFS then follows several pointers to get from the
file object to the location of the file on disk. As Figure 9-3 shows, a file object,
which represents a single call to the open-file system service, points to a stream

N I N E : Windows NT File System (NTFS)

control block (SCB) for the file attribute that the caller is trying to read or write.
In Figure 9-3, a process has opened both the data attribute and a user-defined
attribute for the file. The SCBs represent individual file attributes and contain
information about how to find specific attributes within a file. All the SCBs for
a file point to a common data structure called a file control block (FCB). The FCB
contains a pointer (actually, a file reference, explained in the section "File
Reference Numbers" later in this chapter) to the file's record in the disk-based
master file table (or MFT), which is described in detail in the following section.

NTFS On-Disk Structure
This section describes the on-disk structure of an NTFS volume, including how
disk space is divided and organized into clusters, how files are organized into
directories, how the actual file data and attribute information is stored on disk,
and finally, how NTFS data compression works.

Volumes
The structure of NTFS begins with a volume. A volume corresponds to a logical
partition on a disk, and it is created when you format a disk or part of a disk
for NTFS. You can also create a fault tolerant volume that spans multiple disks
by using the Windows NT Disk Administrator utility.

A disk can have one volume or several. NTFS handles each volume inde
pendently of the others. Three sample disk configurations for a 150-MB hard
disk are illustrated in Figure 9-4.

C: C:
(75 MB) NTFS (60 MB) FAT

Volume C: NTFS Volume 1
(150 MB) Volume

D: D: NTFS
(75 MB) NTFS (90 MB) Volume

Volume 2

Figure 9-4
Sample disk configurations

A volume consists of a series of files plus any additional unallocated space
remaining on the disk partition. In the FAT file system, a volume also contains
areas specially formatted for use by the file system. An NTFS volume, however,
stores all file system data, such as bitmaps and directories, and even the system
bootstrap, as ordinary files.

405

INSIDE WINDOWS NT

Clusters

406

NTFS is like the FAT file system in that it uses the cluster as its fundamental
unit of disk allocation. The cluster size on a volume, or the cluster factor, is estab
lished when a user formats the volume with either the Format command or the
Disk Administrator utility. The cluster factor varies with the size of the volume,
but it is an integral number of physical sectors, always a power of 2 (1 sector,
2 sectors, 4 sectors, 8 sectors, and so on), as shown in Figure 9-5. The cluster
factor is expressed as the number of bytes in the cluster, such as 512 bytes, 1
KB, or2 KB.

Sector

Figure 9-5
Sectors and a cluster on a disk

Cluster
(4 sectors)

Internally, NTFS refers only to clusters and is unaware of a disk's sector
size. NTFS uses the cluster as its unit of allocation in order to maintain its
independence from physical sector sizes. This independence allows NTFS to
efficiently support very large disks by using a larger cluster size or to support
nonstandard disks that have a sector size other than 512 bytes. On a larger
volume, use of a larger cluster size can reduce fragmentation and speed alloca
tion, at a small cost in terms of wasted disk space. The Format command (avail
able from the Windows NT command prompt) as well as the Format command
on the Tools menu in Disk Administrator choose a default cluster size based
on the volume size, but you can override this size.

N 0 TE The default cluster size for small disks {up to 512 MB) is 512
bytes (or the hardware sector size if it is larger than 512 bytes). For disks
up to 1 GB, the default cluster size is 1 KB. For disks between 1 GB
and 2 GB, the default cluster size is 2 KB. For disks larger than 2 GB,
the default cluster size is 4 KB. This default balances the inherent
trade-off between the disk fragmentation that can occur with too
small a cluster size and the wasted space (internal fragmentation)
that can occur with too large a cluster size.

N I N E : Windows NT File System (NTFS)

NTFS refers to physical locations on a disk by means of logical cluster num
bers (LCNs). LCNs are simply the numbering of all clusters from the beginning
of the volume to the end. To convert an LCN to a physical disk address, NTFS
multiplies the LCN by the cluster factor to get the physical byte offset on the
volume, as the disk driver interface requires. NTFS refers to the data within a
file by means of virtual cluster numbers (VCNs). VCNs number the clusters be
longing to a particular file from 0 through m. VCNs are not necessarily physi
cally contiguous, however; they can be mapped to any number ofLCNs on the
volume.

Master File Table (MFT)
In NTFS, all data stored on a volume is contained in a file, including the data
structures used to locate and retrieve files, the bootstrap data, and the bitmap
that records the allocation state of the entire volume (the NTFS metadata).
Storing everything in files allows the file system to easily locate and maintain
the data, and each separate file can be protected by a security descriptor. In
addition, if a particular part of the disk goes bad, NTFS can relocate the meta
data files to prevent the disk from becoming inaccessible.

The master file table (MFT) is the heart of the NTFS volume structure. The
MFT is implemented as an array of file records. The size of each file record is
fixed at 1 KB, regardless of cluster size. (The structure of a file record is described
in the "File Records" section on page 410.) Logically, the MFT contains one row
for each file on the volume, including a row for the MFT itself. In addition to
the MFT, each NTFS volume includes a set of metadata files containing the in
formation that is used to implement the file system structure. Each of these
NTFS metadata files has a name that begins with a dollar sign ($),although
the signs are hidden. For example, the filename of the MFT is $MFT. The rest
of the files on an NTFS volume are normal user files and directories, as shown
in Figure 9-6 on the following page.

Usually, each MFT record corresponds to a different file. If a file has a
large number of attributes or becomes highly fragmented, however, more than
one file record might be needed. In such cases, the first record, which stores
the locations of the others, is called the· base file record.

407

INSIDE WINDOWS NT

408

File 0 MFT

MFT copy (partial)

2 Log file

3 Volume file

4 Attribute definition table

5 Root directory

6 Bitmap file

7 Boot file

8 Bad-cluster file

)

16 User files and directories

Figure 9-6
File records for NTFS metadata files in the MFT

)

NTFS
metadata

files

When it first accesses a volume, NTFS must mount it-that is, prepare it
for use. To mount the volume, NTFS looks in the boot file (defined on page
409) to find the physical disk address of the MFT. The MFT's own file record
is the first entry in the table; the second file record points to a file located in
the middle of the disk called the MFT mirror (filename $MFTMirr) that con
tains a copy of the first few rows of the MFT. This partial copy of the MFT is
used to locate metadata files if part of the MFT file can't be read for some
reason.

Once NTFS finds the file record for the MFT, it obtains the VCN-to-LCN
mapping information in the file record's data attribute, decompresses it, and
stores it in memory. This mapping information tells NTFS where the runs com
posing the MFT are located on the disk. NTFS then decompresses the MFT
records for several more metadata files and opens the files. Next, NTFS per
forms its file system recovery operation (described in the section "Recovery"
on page 436), and finally, it opens its remaining metadata files. The volume is
now ready for user access.

N I N E : Windows NT File System (NTFS)

As the system runs, NTFS writes to another important metadata file, the
logfile (filename $LogFile). NTFS uses the log file to record all operations that
affect the NTFS volume structure, including file creation or any commands,
such as Copy, that alter the directory structure. The log file is used to recover
an NTFS volume after a system failure.

Another entry in the MFT is reserved for the root directory (also known
as "\"). Its file record contains an index of the files and directories stored in
the root of the NTFS directory structure. When NTFS is first asked to open a
file, it begins its search for the file in the root directory's file record. After
opening a file, NTFS stores the file's MFT file reference so that it can directly
access the file's MFT record when it reads and writes the file later.

NTFS records the allocation state of the volume in the bitmap file (file
name $Bitmap). The data attribute for the bitmap file contains a bitmap, each
of whose bits represents a cluster on the volume, identifying whether the cluster
is free or has been allocated to a file.

Another important system file, the boot file (filename $Boot), stores the
Windows NT bootstrap code. For the system to boot, the bootstrap code must
be located at a specific disk address. During formatting, however, the Format
utility defines this area as a file by creating a file record for it. Creating the boot
file allows NTFS to adhere to its rule of making everything on the disk a file.
The boot file as well as NTFS metadata files can be individually protected by
means of the security descriptors that are applied to all Windows NT objects.
Using this "everything on the disk is a file" model also means that the bootstrap
can be modified by normal file I/O, although the boot file is currently pro
tected from editing.

, EXPERIMeNT: Viewing NTFS Metadata FJles
' .. ·, Smee· the Nm meta&tifiles are regclar NTFS files, they can be'
~ wi* the ~~t9ry ,com~d if you use the /<Ch (hidden) quali~
Aer. anct ~.the: correct name of the file, as shmvn he~: .. ·. ·
c;\~~Jr/~;h $mfr ,• . y • . - ., ' .•

, VoluJll~ .in dr:1v,~ .c has ~o.Ja~e.l.
· Volµm,e ~er1 al , Numb~r 1.~ _28BC- F247 .

01' rect'ory of (t; \ . "

163/0~/97 '0&:1i~'' .

409

INSIDE WINDOWS NT

NTFS also maintains a bad-cluster file (filename $BadClus) for recording
any bad spots on the disk volume and a file known as the volume file (filename
$Volume), which contains the volume name, the version of NTFS for which the
volume is formatted, and a bit that when set signifies that a disk corruption has
occurred and must be repaired by the Chkdsk utility. (The Chkdsk utility is
covered in more detail later in the chapter.) Finally, NTFS maintains a file
containing an attribute definition table (filename $AttrDef) that defines the
attribute types supported on the volume and indicates whether they can be
indexed, recovered during a system recovery operation, and so on.

File Reference Numbers
A file on an NTFS volume is identified by a 64-bit value called a file reference.
The file reference consists of a file number and a sequence number. The file
number corresponds to the position of the file's file record in the MFT minus
I (or to the position of the base file record minus I if the file has more than
I file record). The file reference sequence number, which is incremented each
time an MFT file record position is reused, enables NTFS to perform internal
consistency checks. A file reference is illustrated in Figure 9-7.

63 47 I Seq. uence I
number

Figure 9-7
File reference

0

File number

Files Records

410

Instead of viewing a file as just a repository for textual or binary data, NTFS
stores files as a collection of attribute/value pairs, one of which is the data it
contains (called the unnamed data attribute). Other attributes that comprise a
file include the filename, time stamp information, security descriptor, and
possibly additional named data attributes. Figure 9-8 illustrates an MFT record
for a small file.

Each file attribute is stored as a separate stream of bytes within a file.
Strictly speaking, NTFS doesn't read and write files-it reads and writes at
tribute streams. NTFS supplies these attribute operations: create, delete, read
(byte range), and write (byte range). The read and write services normally
operate on the file's unnamed data attribute. However, a caller can specify a
different data attribute by using the named data stream syntax.

NINE: Windows NT File System (NTFS)

Master file table

Standard Security
information Filename descriptor Data

I I
Figure 9-8
MFT record for a small file

Table 9-1 lists the standard attributes for files on an NTFS volume. (Not
all attributes are present for every file.)

Table 9-1 Standard Attributes for NTFS Files

Attribute Description

Standard information

Filename

Security descriptor,

File attributes such as read-only, archive, and so
on; time stamps, including when the file was crea
ted or last modified; and how many directories
point to the file (its hard link count).

The file's name in Unicode characters. A file can
have multiple filename attributes, as it does when
a POSIX hard link to a file exists or when a file
with a long name has an automatically generated
"short name" for access by MS-DOS and 16-bit
Microsoft Windows applications.

The security data structure that protects the file
from unauthorized access. The security descriptor
attribute specifies who owns the file and who can
access it.

(continued)

411

INSIDE WINDOWS NT

Table 9-1 continued

Attribute

Data

Index root, index

Attribute list

Description

The contents of the file. In NTFS, a file has one
default unnamed data attribute and can have addi
tional named data attributes; that is, a file can have
multiple data streams. A directory has no default
data attribute but can have optional named data
attributes.
Three attributes used to implement filename
allocation, bitmap indexes for large directories
(directories only).
A list of the attributes that make up the file and the
file reference of the MFT file record in which each
attribute is located. This seldom-used attribute is
present when a file requires more than one MFT
file record.

;-.. N 0 TE To save disk space, security descriptors in Windows NT 5.0
are stored in a central file and referenced by each file record.

Each attribute in a file record has a name (optional) and a value. NTFS
identifies an attribute by its name in uppercase letters preceded by a dollar sign
($), such as $FILENAME or $DATA. An attribute;s value is the byte stream
composing the attribute. For example, the value of the $FILENAME attribute
is the file's name; the value of the $DATA attribute is whatever bytes the user
stored in the file. These attribute names, however, actually c;orrespond to numeric
type codes, which NTFS uses to order the attributes within a file record. The
file attributes in an MFT record are ordered by these type codes (numerically
in ascending order), with some attribute types appearing more than once
if a file has multiple data attributes, for example, or multiple filenames.

Filenames

412

Both NTFS and FAT allow each filename in a path to be as many as 255 charac
ters long. Filenames can contain Unicode characters as well as multiple periods
and embedded spaces. However, the FAT file system supplied with MS-DOS is
limited to 8 (non-Unicode) characters for its filenames, followed by a period
and a 3-character extension. Figure 9-9 provides a visual representation of the
different file namespaces Windows NT supports and shows how they intersect.

Figure 9-9
Windows NT file namespaces

N I N E : Windows NT File System (NTFS)

Examples

"Trail i ngDots ... "
"SameNameDifferentCase"
"samenamedifferentcase"

---1~ "Trail i ngSpaces "

"LongFileName"
"Uni code Name. ct>AITA"
"File.Name.With.Dots"
"File.Name2.With.Dots"
"Name With Embedded Spaces"
".BeginningDot"

__ ,.._ "EIGHTCHR.123"
"CASEBLND. TYP"

The POSIX subsystem requires th.e biggest namespace of all the applica
tion execution environments that Windows NT supports, and therefore the
NTFS namespace is equivalent to the POSIX namespace. The POSIX subsystem
can create names that are not visible to Win32 and MS-DOS applications, includ
ing names with trailing periods and trailing spaces. Ordinarily, creating a file
using the large POSIX namespace is not a problem because you would do that
only if you intended that file to be used by the POSIX subsystem or by POSIX
client systems.

The relationship between 32-bit Windows (Win32) applications and MS
DOS-Windows applications is a much closer one, however. The Win32 area in
Figure 9-9 represents filenames that the Win32 subsystem can create on an
NTFS volume but that MS-DOS and 16-bit Windows applications can't see. This
group includes filenames longer than the 8.3 format of MS-DOS names, those
containing Unicode (international) characters, those with multiple period
characters or a beginning period, and those with embedded spaces. When a
file is created with such a name, NTFS automatically generates an alternate,
MS-DOS-style filename for the file. Windows NT displays these short names
when you use the /x option with the Dir command.

The MS-DOS filenames are fully functional aliases for the NTFS files and
are stored in the same directory as the long filenames. The MFT record for a
file with an autogenerated MS-DOS filename is shown in Figure 9-10.

413

INSIDE WINDOWS NT

414

Standard
information

Figure 9-10

NTFS
filename

MS-DOS
filename

I ,
l

New filename attribute

Security
descriptor

I I

MFT file record with an MS-DOS filename attribute

Data

The NTFS name and the generated MS-DOS name are stored in the same
file record and therefore refer to the same file. The MS-DOS name can be used
to open, read from, write to, or copy the file. If a user renames the file using
either the long filename or the short filename, the new name replaces both
of the existing names. If the new name is not a valid MS-DOS name, NTFS
generates another MS-DOS name for the file.

N 0 TE POSIX hard links are implemented in a similar way. When
a hard link to a POSIX file is created, NTFS adds another filename
attribute to the file's MFT file record. The two situations differ in one
regard, however. When a user deletes a POSIX file that has multiple
names (hard links), the file record and the file remain in place. The
file and its record are deleted only when the last filename (hard link)
is deleted. If a file has both an NTFS name and an autogenerated
MS-DOS name, however, a user can delete the file using either name.

Here's the algorithm NTFS currently uses to generate an MS-DOS name
from a long filename:

1. Remove from the long name any characters that are illegal in
MS-DOS names, including spaces and Unicode characters. Remove
preceding and trailing periods. Remove all other embedded periods,
except the last one.

2. Truncate the string before the period (if present) to six characters,
and append the string "-1". Truncate the string after the period
(if present) to three characters.

3. Put the result in uppercase letters. MS-DOS is case-insensitive, and
this step guarantees that NTFS won't generate a new name that dif
fers from the old only in case.

4. If the generated name duplicates an existing name in the directory,
increment the "-1" string.

N I N E : Windows NT File System (NTFS)

Table 9-2 shows the long Win32 filenames from Figure 9-9 and their
NTFS-generated MS-DOS versions. The current algorithm and the examples
in Figure 9-9 on page 413 should give you an idea of what NTFS-generated MS
DOS-style filenames look like. Application developers shouldn't depend on this
algorithm, though, because it might change in the future.

Table 9-2 NTFS-Generated Filenames

Win32 Long Name NTFS-Generated Short Name

LongFileName LONGFI-1

UnicodeName.<I>.MIA UNI COD-1

File.Name.With.Dots FILENA-1.DOT

File.Name2.With.Dots FILENA-2.DOT

Name With Embedded Spaces_

.BeginningDot

Resident and Nonresident Attributes

NAMEWI-1

BEGINN-1

If a file is small, all its attributes and their values (its data, for example) fit in
the file record. When the value of an attribute is stored directly in the MFT,
the attribute is called a resident attribute. (In Figure 9-8, for example, all attributes
are resident.)

Each attribute begins with a standard header containing information
about the attribute, information that NTFS uses to manage the attributes in
a generic way. The header, which is always resident, records whether the attri
bute's value is resident or nonresident. For resident attributes, the header also
contains the offset from the header to the attribute's value and the length of
the attribute's value, as Figure 9-11 on the following page illustrates for the
filename attribute.

When an attribute's value is stored directly in the MFT, the time it takes
NTFS to access the value is greatly reduced. Instead of looking up a file in a
table and then reading a succession of allocation units to find the file's data
(as the FAT file system does, for example), NTFS accesses the disk once and
retrieves the data immediately.

415

INSIDE WINDOWS NT

416

Standard Security
information Filename descriptor Data

mil Attribute header

C=:J Attribute value

Figure 9-11

MYFILE.DAT

Resident attribute header and value

The attributes for a small directory, as well as for a small file, can be resi
dent in the MFT, as Figure 9-12 shows. For a small directory, the index root at
tribute contains an index of file references for the files and the subdirectories
in the directory.

Standard Security
information Filename descriptor

Figure 9-12
MFT file record for a small directory

Index
root

Index of files

file1, file2, file3, ...

Of course, many files and directories can't be squeezed into the 1-KB
fixed-size MFT record. If a particular attribute, such as a file's data attribute,
is too large to be contained in the MFT file record, NTFS allocates a 2-KB area
on the disk (4 KB for volumes with a 4 KB or larger cluster size), separate from
the MFT. This area, called a run (or an extent), stores the value of the attribute
(the file's data, for example). If the attribute's value later grows (if a user appends
data to the file, for instance), NTFS allocates another run for the additional
data. Attributes whose values are stored in runs rather than in the MFT are
called nonresident attributes. The file system decides whether a particular at
tribute is resident or nonresident; the location of the data is transparent to the
process accessing it.

N I N E : Windows NT File System (NTFS)

When an attribute is nonresident, as the data attribute for a large file might
be, its header contains the information NTFS needs to locate the attribute's value
on the disk. Figure 9-13 shows a nonresident data attribute stored in two runs.

Standard Security
information Filename descriptor Data

Data

Figure 9-13
MFI' file record for a large file with two data runs

HPFS
extended
attributes

Data

Among the standard attributes, only those that can grow can be nonresi
dent. For files, the attributes that can grow are the security descriptor, the data,
and the attribute list (not shown in Figure 9-13). The standard information and
filename attributes are always resident.

A large directory can also have nonresident attributes (or parts of at
tributes), as Figure 9-14 shows. In this example, the MFT file record doesn't have
enough room to store the index of files that make up this large directory. A
part of the index is stored in the index root attribute, and the rest of the index
is stored in nonresident runs called index buffers. The index root, index allo
cation, and bitmap attributes are shown here in a simplified form. They are
described in more detail in the next section. The standard information and
filename attributes are always resident. The header and at least part of the value
of the index root attribute are also resident for directories.

Standard Security
information Filename descriptor

Index Index
root allocation Bitmap

Index of filee

file4 files

file1 file2 file3 file5 file6

Figure 9-14
MFI' file record for a large directory with a nonresident filename index

417

INSIDE WINDOWS NT

418

When a file's (or a directory's) attributes can't fit in an MFT file record
and separate allocations are needed, NTFS keeps track of the runs by means
ofVCNs. LCNs represent the sequence of clusters on an entire volume from
0 through n. VCNs number the clusters belonging to a particular file from 0
through m. For example, the clusters in the runs of a nonresident data attribute
are numbered as shown in Figure 9-15.

Standard Security
information Filename descriptor Data

File 16 I I

VCN 0 1 f 2 3 4 7

LCN 1355 1356 1357 1358 1588 1589 1590 1591

Figure 9-15
VCNs for a nonresident data attribute

If this file had more than two runs, the numbering of the third run would
start with VCN 8. As Figure 9-16 shows, the data attribute header contains VCN
to-LCN mappings for the two runs here, which allows NTFS to easily find the
aiiocations on the disk.

Standard Security
information Filename descriptor Data

File 16

VCN 0 2 3 4 5 6 7

I ofta I _I __ of_ta ___ I_
LCN 1355 1356 1357 1358 1588 1589 1590 1591

Figure 9-16
VCN-to-LCN mappings for a nonresident data attribute

N I N E : Windows NT File System (NTFS)

Although Figure 9-16 shows just data runs, other attributes can be stored
in runs if there isn't enough room in the MFT file record to contain them. And
if a particular file has too many attributes to fit in the MFT record, a second
MFT record is used to contain the additional attributes (or attribute headers
for nonresident attributes). In this case, an attribute called the attribute list is
added. The attribute list attribute contains the name and type code of each
of the file's attributes and the file reference of the MFT record where the at
tribute is located. The attribute list attribute is provided for those cases in which
a file grows so large or so fragmented that a single MFT record can't contain
the multitude ofVCN-to-LCN mappings needed to find all of its runs. NTFS
needs this attribute so rarely that special dysfunctional programs had to be
written to test the NTFS code that implements attribute lists.

l!IEIB N 0 TE With Windows NT 5.0, NTFS will support efficient alloca
tion of sparse files, that is, files that might contain large amounts of
unused (either zero or undefined) space.

Filename Indexing
In NTFS, a file directory is simply an index of filenames-that is, a collection
of filenames (along with their file references) organized in a particular way for
quick access. To create a directory, NTFS indexes the filename attributes of the
files in the directory. The MFT record for the root directory of a volume is
shown in Figure 9-17.

Standard Index Index
Information Fiiename root allocation Bitmap

Index of fil$$
File 5 "\" file4 file10 file15 VCN-to-LCN

mappings

VCN 0 2 3 VCN 8 9

I fileO J file1 J files I file11 file14

VCN 4 5 6 7

I file6 I files I I file9 I
Figure 9-17
Filename index for a volume's root directory

419

INSIDE WINDOWS NT

420

Conceptually, an MFT entry for a directory contains in its index root
attribute a sorted list of the files in the directory. For large directories, how
ever, the filenames are actually stored in 4-KB fixed-size index buffers that
contain and organize the filenames. Index buffers implement a b+ tree data
structure, which minimizes the number of disk accesses needed to find a par
ticular file, especially for large directories. The index root attribute contains
the first level of the b+ tree (root subdirectories) and points to index buffers
containing the next level (more subdirectories, perhaps, or files). The index
allocation attribute maps the VCNs of the index buffer runs to the LCNs that
indicate where the index buffers reside on the disk.

Figure 9-17 on the preceding page shows only filenames in the index root
attribute and the index buffers (file6, for example), but each entry in an index
also contains the file reference in the MFT where the file is described and time
stamp and file size information for the file. NTFS duplicates the time stamp and
file size information from the file's MFT record. This technique, which is used
by FAT and NTFS, requires updated information to be written in two places.
Even so, it's a significant speed optimization for directory browsing because it
enables the file system to display each file's time stamps and size without open
ing every file in the directory.

The index allocation attribute contains the VCN-to-LCN mappings for the
index buffers, and the bitmap attribute keeps track of which VCNs in the in
dex buffers are in use and which are free. Figure 9-17 shows one file entry per
VCN (that is, per cluster), but filename entries are actually packed into each
cluster. Each 4-KB index buffer can contain about 20 to 30 filename entries.

The b+ tree data structure is a type of balanced tree that is ideal for or
ganizing sorted data stored on a disk because it minimizes the number of disk
accesses needed to find an entry. In the MFT, a directory's index root attribute
contains several filenames that act as indexes into the second level of the b+
tree. Each filename in the index root attribute has an optional pointer associ
ated with it that points to an index buffer. The index buffer it points to contains
filenames with lexicographic values less than its own. In Figure 9-17, for example,
file4 is a first-level entry in the b+ tree. It points to an index buffer containing
filenames that are (lexicographically) less than itself-the filenames fileO,filel,
andfile3.

Storing the filenames in b+ trees provides several benefits. Directory look
ups are fast because the filenames are stored in a sorted order. And when higher
level software enumerates the files in a directory, NTFS returns already-sorted
names. Finally, because b+ trees tend to grow wide rather than deep, NTFS's
fast lookup times don't degrade as directories get large.

N I N E : Windows NT File System (NTFS)

NTFS currently indexes only the filename attribute, but as noted earlier,
NTFS in Windows NT 5.0 will index other file attributes.

Data Compression
NTFS supports compression on a per-file, per-directory, or per-volume basis.
(Currently, NTFS compression is performed only on user data, not file ~ystem
metadata.) You can tell if a volume is compressed by using the Win32 GetVolume
Information function. To retrieve the actual compressed size of a file, use the
Win32 GetCompressedFileSize function. Finally, to examine or change the com
pression setting for a file or directory, use the Win32 DeviceloControl function.
(See the FSCTL_GET_COMPRESSION and FSCTL_SET_COMPRESSION I/0
function codes.) Keep in mind that although setting a file's compression state
compresses (or decompresses) the file right away, setting a directory's compres
sion state doesn't cause any immediate compression or decompression. Instead,
setting a directory's compression state sets a default compression state that will
be given to all newly created files and subdirectories.

The following section introduces NTFS compression by examining the
simple case of compressing sparse files. The subsequent section extends the
discussion to the compression of ordinary files.

Compressing a Sparse File
Sparse files are files, often large, that contain only a small amount of nonzero
data relative to their size. A sparse matrix stored on disk is one example of a
sparse 0 file.

N 0 TE In this section, sparse files do not refer to the upcoming
Windows NT 5.0 enhancement to eliminate allocation of unused or
empty space in sparse files.

NTFS uses VCNs, from 0 through m, to enumerate the clusters of a file.
Each VCN maps to a corresponding LCN, which identifies the disk location
of the cluster. Figure 9-18 illustrates the runs (disk allocations) of a normal,
noncompressed file, including its VCNs and the LCNs they map to.

VCN 0 2 3 4 5 6 7 8 9 10 11

I +a I I of ta I .__I___.D~...._la___.
LCN 1355 1356 1357 1358 1588 1589 1590 1591 2033 2034 2035 2036

Figure 9-18
Runs of a noncompressed file

421

INSIDE WINDOWS NT

422

This file is stored in 3 runs, each of which is 4 clusters long, for a total of
12 clusters. Figure 9-19 shows the MFT record for this file. To save space, the
MFT record's data attribute, which contains VCN-to-LCN mappings, records
only one mapping for each run, rather than one for each cluster. Notice, how
ever, that each VCN from 0 through 11 has a corresponding LCN associated
with it. The first entry starts at VCN 0 and covers 4 clusters, the second entry
starts at VCN 4 and covers 4 clusters, and so on. This entry format is typical for
a noncompressed file.

Standard Security
information Filename descriptor Data

Figure 9•19
MFI' record for a noncompressed file

When a user selects a file on an NTFS volume for compression, one NTFS
compression technique is to remove long strings of zeros from the file. If the
r~1_• ___ ·--·~· • 11 1 •1 ~ r ,• r,1 1•1 •• ,,
J.Ut: lS spa1sc::, ll typu;auy SllllllKS LU ULLupy d UdLllUU UJ. lilt: UlSK spaLt: 1l WUUlU

otherwise require. On subsequent writes to the file, NTFS allocates space only
for runs that contain nonzero data.

Figure 9-20 depicts the runs of a compressed sparse file. Notice that cer
tain ranges of the file's VCNs (16-31 and 64-127) have no disk allocations.

The MFT record for this sparse file omits blocks ofVCNs that contain
zeros and therefore have no physical storage allocated to them. The first data
entry in Figure 9-21, for example, starts at VCN 0 and covers 16 clusters. The
second entry jumps to VCN 32 and covers 16 clusters.

When a program reads data from a compressed file, NTFS checks the
MFT record to determine whether a VCN-to-LCN mapping covers the location
being read. If the program is reading from an unallocated "hole" in the file,
it means that the data in that part of the file consists of zeros, so NTFS returns
zeros without accessing the disk. If a program writes nonzero data to a "hole;'
NTFS quietly allocates disk space and then writes the data. This technique is
very efficient for sparse files that contain a lot of zero data.

N I N E : Windows NT File System (NTFS)

VCN 0 15

-1 1-1 -1 -1 1-1 -1 Da-:ta 1-1 -1 1-1--1 -1 I
32 47

I I I I I I I I D~ta I I I I I I I I
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

~ ~

I I I I I I I I D~ta I I I I I I I I
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

128 143

I I I I I I I · I D~ta I I I I I I I I
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

Figure 9-20
Runs of a compressed sparse file

Standard Security
information Filename descriptor Data

Figure 9-21
MFT record for a compressed sparse file

Compressing Nonsparse Data
The preceding example of compressing a sparse file is somewhat contrived. It
describes "compression" for a case in which whole sections of a file were filled
with zeros but the remaining data in the file wasn't affected by the compression.
The data in most files is not sparse, but it can still be compressed by the appli
cation of a compression algorithm.

423

INSIDE WINDOWS NT

424

In NTFS, users can specify compression for individual files or for all the
files in a directory. When it compresses a file, NTFS divides the file's unpro
cessed data into compression units 16 clusters long (equal to 8 KB for a 512-byte
cluster). Certain sequences of data in a file might not compress much, if at all;
so for each compression unit in the file, NTFS determines whether compress
ing the unit will save at least 1 cluster of storage. If compressing the unit won't
free up at least 1 cluster, NTFS allocates a 16-cluster run and writes the data
in that unit to disk without compressing it. If the data in a 16-cluster unit will
compress to 15 or fewer clusters, NTFS allocates only the number of clusters
needed to contain the compressed data and then writes it to disk. Figure 9-22
illustrates the compression of a file with four runs. The unshaded areas in this
figure represent the actual storage locations that the file occupies after com
pression. The first, second, and fourth runs were compressed; the third run
was not. Even with one noncompressed run, compressing this file saved 26
clusters of disk space, or 41 percent.

VCN 0 15

Compressed data

LCN 19 20 21 22

16 31

Compressed data
' '

23 24 25 26 27 28 29 30

~ Q

I I I I I I No~com:pres~ed +ta I I I I I I I
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

48 63

Compressed data

113 114 115 116 117 118 119 120 121122

Figure 9-22
Data runs of a compressed file

N 0 T E Although the diagrams in this chapter show contiguous
LCNs, a compression unit need not be stored in physically contigu
ous clusters. Runs that occupy noncontiguous clusters produce slightly
more complicated MFT records than the one shown in Figure 9-23.

N I N E : Windows NT File System (NTFS)

When it writes data to a compressed file, NTFS ensures that each run
begins on a virtual 16-cluster boundary. Thus the starting VCN of each run is
a multiple of 16, and the runs are no longer than 16 clusters. NTFS reads and
writes at least one compression unit at a time when it accesses compressed files.
When it writes compressed data, however, NTFS tries to store compression units
in physically contiguous locations so that it can read them all in a single 1/0
operation. The 16-cluster size of the NTFS compression unit was chosen to
reduce internal fragmentation: the larger the compression unit, the less the
overall disk space needed to store the data. This 16-cluster compression unit
size represents a trade-off between producing smaller compressed files and
slowing read operations for programs that randomly access files. The equiva
lent of 16 clusters must be decompressed for each cache miss. (A cache miss
is more likely to occur during random file access.) Figure 9-23 shows the MFT
record for the compressed file shown in Figure 9-22.

Standard Security
information Fiiename descriptor Data

Figure 9-23
MFT record for a compressed file

One difference between this compressed file and the earlier example of
a compressed sparse file is that three of the compressed runs in this file are
less than 16 clusters long. Reading this information from a file's MFT file record
enables NTFS to know whether data in the file is compressed. Any run shorter
than 16 clusters contains compressed data that NTFS must decompress when
it first reads the data into the cache. A run that is exactly 16 dusters long doesn't
contain compressed data and therefore requires no decompression.

If the data in a run has been compressed, NTFS decompresses the data
into a scratch buffer and then copies it to the caller's buffer. NTFS also loads
the decompressed data into the cache, which makes subsequent reads from the
same run as fast as any other cached read. NTFS writes any updates to the file

425

INSIDE WINDOWS NT

in the cache, leaving the lazy writer to compress and write the modified data
to disk asynchronously. This strategy ensures that writing to a compressed file
produces no more significant delay than writing to a noncompressed file would.

NTFS keeps disk allocations for a compressed file contiguous whenever
possible. As the LCNs indicate, the first two runs of the compressed file shown
in Figure 9-22 on page 424 are physically contiguous, as are the last two. When
two or more runs are contiguous, NTFS performs disk read-ahead, as it does
with the data in other files. Because the reading and decompression of con
tiguous file data take place asynchronously before the program requests the
data, subsequent read operations obtain the data directly from the cache, which
greatly enhances read performance.

Recoverability Support
NTFS recovery support ensures that if a power failure or a catastrophic system
failure occurs, no file system operations (transactions) will be left incomplete
and the structure of the disk volume will remain intact without the need to run
a disk repair utility. The NTFS Chkdsk utility is used to repair catastrophic disk
corruption caused by 1/0 errors (bad disk sectors, electrical anomalies, or disk
failures, for example) or software bugs. But with the NTFS recovery capabilities
in place, Chkdsk is rarely needed.

NTFS uses a transaction-based logging scheme to implement recoverabil
ity. This strategy ensures a full disk recovery that is also extremely fast (on the
order of seconds) for even the largest disks. NTFS limits its recovery procedures
to file system data to ensure that at the very least the user will never lose a
volume because of a corrupted file system; however, user data is not guaran
teed to be fully updated if a crash occurs. Transaction-based protection of user
data is available in most of the database products available for Windows NT,
such as Microsoft SQL Server. The decision not to implement user data recovery
in the file system represents a trade-off between a fully fault tolerant file system
and one that provides optimum performance for all file operations.

The following sections describe the evolution of file system reliability as
a context for an introduction to recoverable file systems, detail the transaction
logging scheme NTFS uses to record modifications to file system data structures,
and explain how NTFS recovers a volume if the system fails.

Evolution of File System Design

426

The development of a recoverable file system is a step forward in the evolution
of file system design. In the past, two techniques were common for construct
ing a file system's I/O and caching support: careful write and lazy write. The file

N I N E : Windows NT File System (NTFS)

systems developed for Digital Equipment Corporation's VAX/VMS and for
some other proprietary operating systems employed a careful write algorithm,
while OS/2 HPFS and most older UNIX file systems used a lazy write file sys
tem scheme.

The next two subsections briefly review these two types of file systems and
their intrinsic trade-offs between safety and performance. The third subsec
tion describes NTFS's recoverable approach and explains how it differs from
the two other strategies.

Careful Write File Systems
When an operating system crashes .or loses power, 1/0 operations in progress
are immediately, and often prematurely, interrupted. Depending on what I/O
operation or operations were in progress and how far along they were, such
an abrupt halt can produce inconsistencies in a file system. An inconsistency
in this context is a file system corruption-a filename appears in a directory
listing, for example, but the file system doesn't know the file is there or can't
access the file. The worst file system corruptions can leave an entire volume
inaccessible.

A careful write file system doesn't try to prevent file system inconsisten
cies. Rather, it orders its write operations so that, at worst, a system crash will
produce predictable, noncritical inconsistencies, which the file system can fix
at its leisure.

When any kind of file system receives a request to update the disk, it must
perform several suboperations before the update will be complete. In a file
system that uses the careful write strategy, the suboperations are always writ
ten to disk serially. When allocating disk space for a file, for example, the file
system first sets some bits in its bitmap and then allocates the space to the file.
If the power fails immediately after the bits are set, the careful write file sys
tem loses access to some diskspace-to the space represented by the set bits
but existing data is not corrupted.

Serializing write operations also means that 1/0 requests are filled in the
order in which they are received. If one process allocates disk space and shortly
thereafter another process creates a file, a careful write file system completes
the disk allocation before it starts to create the file because interleaving the
suboperations of the two 1/0 requests could result in an inconsistent state.

N 0 TE The FAT file system uses a wr.ite-through algorithm that
causes disk modifications to be immediately written to the disk. Un
like the careful write approach, the write-through technique doesn't
require the file system to order its writes to prevent inconsistencies.

427

INSIDE WINDOWS NT

428

The main advantage of a careful write file system is that in the event of
a failure the volume stays consistent and usable without the need to immedi
ately run a slow volume repair utility. Such a utility is needed to correct the
predictable, nondestructive disk inconsistencies that occur as the result of a
system failure, but the utility can be run at a convenient time, typically when
the system is rebooted.

Lazy Write File Systems
A careful write file system sacrifices speed for the safety it provides. A lazy wr·ite
file system improves performance by using a write-back caching strategy; that
is, it writes file modifications to the cache and flushes the contents of the cache
to disk in an optimized way, usually as a background activity.

The performance improvements associated with the lazy write caching
technique take several forms. First, the overall number of disk writes is reduced.
Because serialized, immediate disk writes aren't required, the contents of a
buffer can be modified several times before they are written to disk. Second,
the speed of servicing application requests is greatly increased because the file
system can return control to the caller without waiting for disk writes to be
completed. Finally, the lazy write strategy ignores the inconsistent intermedi
ate states on a file volume that can result when the suboperations of two or more
1/0 requests are interleaved. It is thus easier to make the file system multi
threaded, allowing more than one I/O operation to be in progress at a time.

The disadvantage of the lazy write technique is that it creates intervals
during which a volume is in too inconsistent a state to be corrected by the file
system. Consequently, lazy write file systems must keep track of the volume's
state at all times. In general, lazy write file systems gain a performance advan
tage over careful write systems-at the expense of greater risk and user incon
venience if the system fails.

Recoverable File Systems
A recoverable file system tries to exceed the safety of a careful write file system
while achieving the performance of a lazy write file system. A recoverable file
system ensures volume consistency by using logging techniques originally devel
oped for transaction processing. If the operating system crashes, the recov
erable file system restores consistency by executing a recovery procedure that
accesses information that has been stored in a log file. Because the file system
has logged its disk writes, the recovery procedure takes only seconds, regard
less of the size of the volume.

The NTFS recovery procedure is exact, guaranteeing that the volume will
be restored to a consistent state. None of the inadequate restorations associ
ated with lazy write file systems can happen with NTFS.

N I N E : Windows NT File System (NTFS)

A recoverable file system incurs some costs for the safety it provides. Every
transaction that alters the volume structure requires that one record be writ
ten to the log file for each of the transaction's suboperations. This logging
overhead is ameliorated by the file system's "batching" of log records-writing
many records to the log file in a single I/0 operation. In addition, the recov
erable file system can employ the optimization techniques of a lazy write file
system. It can even increase the length of the intervals between cache flushes
becau.se the file system can be recovered if the system crashes before the cache
changes have been flushed to disk. This gain over the caching performance
of lazy write file systems makes up for, and often exceeds, the overhead of the
recoverable file system's logging activity.

Neither careful write nor lazy write file systems guarantee protection of
user file data. If the system crashes while an application is writing a file, the
file can be lost or corrupted. Worse, the crash can corrupt a lazy write file
system, destroying existing files or even rendering an entire volume inaccessible.

NTFS implements several strategies that improve its reliability over tha.t
of the traditional file systems. First, NTFS recoverability guarantees that the
volume structure won't be corrupted, so all files will remain accessible after a
system failure.

Second, although NTFS doesn't currently guarantee protection of user
data in the event of a system crash-some changes can be lost from the cache
applications can take advantage of the NTFS write-through and cache-flushing
capabilities to ensure that file modifications are recorded on disk at appropri
ate intervals. Both cache write-through-forcing write operations to be imme
diately recorded on disk-and cache flushing-forcing cache contents to be
written to disk-are efficient operations. NTFS doesn't have to do extra disk
1/0 to flush modifications to several different file system data structures be
cause changes to the data structures are recorded-in a single write opera
tion-in the log file; if a failure occurs and cache contents are lost, the file
system modifications can be recovered from the log. Furthermore, unlike the
FAT file system, NTFS guarantees that user data will be consistent and avail
able immediately after a write-through operation or a cache flush, even if the
system subsequently fails.

Finally, NTFS has all the underpinnings to support logging for user files
in the future. In lieu of user data logging, users who require an added mea
sure of data reliability can use FtDisk, the Windows NT fault tolerant disk driver,
to set up and maintain redundant data storage. (See the section "Fault Tolerance
Support" later in this chapter for more information about data redundancy.)

429

INSIDE WINDOWS NT

Logging

430

NTFS provides file system recoverability by means of a transaction-processing
technique called loggi,ng. In NTFS logging, the suboperations of any transac
tion that alters important file system data structures are recorded in a log file
before they are carried through on the disk. That way, if the system crashes,
partially completed transactions can be redone or undone when the system
comes back online. In transaction processing, this technique is known as write
ahead loggi,ng. In NTFS, transactions include writing to the disk or deleting a
file and can be made up of several suboperations.

Log File Service (LFS)
LFS is a series of kernel-mode routines inside the NTFS driver that NTFS uses
to access the log file. Although originally designed to provide logging and
recovery services for more than one client, LFS is currently used only by NTFS.
The caller-NTFS in this case-passes the LFS a pointer to an open file ob
ject, which specifies a log file to be accessed. The LFS either initializes a new
log file or calls the Windows NT cache manager to access the existing log file
through the cache, as shown in Figure 9-24.

1 •. Logflle l
Log the transaction

n service l
Flush the Re~d7~rite/flush

log file the log file

.. . .

·.Cache
manager

~--· - :...~. ; __ --

Call the virtual memory
manager to access

the mapped file

t
Figure 9-24.
Log file service (LFS)

Write the
vuiume updaie:s

1/0 manager

The LFS divides the log file into two regions: a restart area and an "infinite"
loggi,ng area, as shown in Figure 9-25.

LFS restart area

Copy 1 Copy2

Figure 9-25
Log file regions

N I N E : Windows NT File System (NTFS)

"Infinite" logging area l L~raro'~ J
NTFS calls the LFS to read and write the restart area. NTFS uses the restart

area to store context information such as the location in the logging area at
which NTFS will begin to read during recovery after a system failure. The LFS
maintains a second copy of the restart data in case the first becomes corrupted
or otherwise inaccessible. The remainder of the log file is the logging area,
which contains transaction records NTFS writes in order to recover a volume
in the event of a system failure. The LFS makes the log file appear infinite by
reusing it circularly (while guaranteeing that it doesn't overwrite information
it needs). The LFS uses logical sequence numbers (LSNs) to identify records writ
ten to the log file. As the LFS cycles through the file, it increases the values of
the LSNs. The number of possible LSNs is so large as to be virtually infinite.

NTFS never reads transactions from or writes transactions to the. log file
directly. The LFS provides services NTFS calls to open the log file, write log
records, read log records in forward or backward order, flush log records up
to a particular LSN, or set the beginning of the log file to a higher LSN. Dur
ing recovery, NTFS calls the LFS to read forward through the log records in
order to redo any transactions that were recorded in the log file but were not
flushed to disk at the time of the system failure. NTFS calls the LFS to read
backward through the log records in order to undo, or roll back, any transac
tions that weren't completely logged before the crash. NTFS calls the LFS to
set the beginning of the log file to a record with a higher LSN when NTFS no
longer needs the older transaction records in the log file.

Here's how the system guarantees that the volume can be recovered:

1. NTFS first calls the LFS to record in the (cached) log file any transac
tions that will modify the volume structure.

2. NTFS modifies the volume (also in the cache).

431

INSIDE WINDOWS NT.

432

3. The cache manager calls the LFS to prompt the LFS to flush the
log file to disk. (The LFS implements the flush by calling the cache
manager back, telling it which pages of memory to flush. Refer back
to the calling sequence shown in Figure 9-24 on page 430.)

4. After the cache manager flushes the log file to disk, it flushes the
volume changes (the transactions themselves) to disk.

These steps ensure that if the file system modifications are ultimately
unsuccessful, the corresponding transactions can be retrieved from the log
file and can be either redone or undone as part of the file system recovery
procedure.

File system recovery begins automatically the first time the volume is used
after the system is rebooted. NTFS checks whether the transactions that were
recorded in the log file before the crash were applied to the volume, and if they
weren't, it redoes them. NTFS also guarantees that transactions not completely

· logged before the crash are undone so that they don't appear on the volume.

Log Record Types
The LFS allows its clients to write any kind of record to their log files. NTFS
writes several types of records. Two types, update records and checkpoint records,
are described here.

Update records Update records are the most common type of record NTFS
writes to the log file. Each update record contains two kinds of information:

II Redo information How to reapply one suboperation of a fully
logged ("committed") transaction to the volume if a system failure
occurs before the transaction is flushed from the cache

II Undo information How to reverse one suboperation of a transac
tion that was only partially logged ("not committed") at the time of
a system failure

Figure 9-26 shows three update records in the log file. Each record rep
resents one suboperation of a transaction, creating a new file. The redo en
try in each update record tells NTFS how to reapply the suboperation to the
volume, and the undo entry tells NTFS how to roll back (undo) the suboperation.

After logging a transaction (in this example, by calling the LFS to write
the three update records to the log file), NTFS performs the suboperations on
the volume itself, in the cache. When it has finished updating the cache, NTFS

N I N E : Windows NT File System (NTFS)

LFS restart area

Redo: Allocate/initialize an MFT tile record
Undo: Deallocate the tile record

T1c

Redo: Set bits 3-9 in the bitmap
Undo: Clear bits 3-9 in the bitmap

Redo: Add the filename to the index
Undo: Remove the filename from the index

Figure 9-26
Update records in the log file

writes another record to the log file, recording the entire transaction as com
plete-a suboperation known as committing a transaction. Once a transaction
is committed, NTFS guarantees that the entire transaction will appear on the
volume, even if the operating system subsequently fails.

When recovering after a system failure, NTFS reads through the log file
and redoes each committed transaction. Although NTFS completed the com
mitted transactions before the system failure, it doesn't know whether the cache
manager flushed the volume modifications to disk in time. The updates might
have been lost from the cache when the system failed. Therefore, NTFS executes
the committed transactions again just to be sure that the disk is up to date.

After redoing the committed transactions during a file system recovery,
NTFS locates all the transactions in the log file that were not committed at
failure and rolls back (undoes) each suboperation that had been logged. In
Figure 9-26, NTFS would first undo the Tlc suboperation and then follow the
backward pointer to Tlb and undo that suboperation. It would continue to
follow the backward pointers, undoing suboperations, until it reached the first
suboperation in the transaction. By following the pointers, NTFS knows how
many and which update records it must undo to roll back a transaction.

Redo and undo information can be expressed either physically or logi
cally. Physical descriptions specify volume updates in terms of particular byte
ranges on the disk that are to be changed, moved, and so on. Logical descrip
tions express updates in terms of operations such as "delete file A.DAT:' As the
lowest layer of software maintaining the file system structure, NTFS writes
update records with physical descriptions. Transaction-processing or other
application-level software might benefit from writing update records in logical
terms, however, because logically expressed updates are more compact than

433

INSIDE WINDOWS NT

434

physically expressed ones. Logical descriptions necessarily depend on NTFS
to understand what operations, such as deleting a file, involve.

NTFS writes update records (usually several) for each of the following
transactions:

Ill Creating a file

Ill Deleting a file

Ill Extending a file

Ill Truncating a file

Ill Setting file information

Ill Renaming a file

Ill Changing the security applied to a file

The redo and undo information in an update record must be carefully
designed because although NTFS undoes a transaction, recovers from a sys
tem failure, or even operates normally, it might try to redo a transaction that
has already been done or, conversely, to undo a transaction that never occurred
or that has already been undone. Similarly, NTFS might try to redo or undo a
transaction consisting of several update records, only some of which are com
plete on disk. The format of the update records must ensure that executing
redundant redo or undo operations is idempotent, that is, has a neutral effect.
For example, setting a bit that is already set has no effect, but toggling a bit that
has already been toggled does. The file system must also handle intermediate
volume states correctly.

Checkpoint records In addition to update records, NTFS periodically writes
a checkpoint record to the log file, as illustrated in Figure 9-27.

LFS restart area

NTFS restart

Figure 9-27

ILsNl
~

Checkpoint record in the wg file

Logging area
L,o file records

ILsNl ILsNl
~~

Checkpoint record

N I N E : Windows NT File System (NTFS)

A checkpoint record helps NTFS determine what processing would be
needed to recover a volume if a crash were to occur immediately. Using infor
mation stored in the checkpoint record, NTFS knows, for instance, how far back
in the log file it must go to begin its recovery. After writing a checkpoint record,
NTFS stores the LSN of the record in the restart area so that it can quickly find
its most recently written checkpoint record when it begins file system recovery
after a crash occurs.

Although the LFS presents the log file to NTFS as if it were infinitely large,
it isn't. The generous size of the log file and the frequent writing of checkpoint
records (an operation that usually frees up space in the log file) make the
possibility of the log file's filling up a remote one. Nevertheless, the LFS ac
counts for this possibility by tracking several numbers:

II The available log space

Ill The amount of space needed to write an incoming log record and ·
to undo the write, should that be necessary

Ill The amount of space needed to roll back all active (noncommitted)
transactions, should that be necessary

If the log file doesn't contain enough available space to accommodate the
total of the last two items, the LFS returns a "log file full" error and NTFS raises
an exception. The NTFS exception handler rolls back the current transaction
and places it in a queue to be restarted later.

To free up space in the log file, NTFS must momentarily prevent further
transactions on files. To do so, NTFS blocks file creation and deletion and then
requests exclusive access to all system files and shared access to all user files.
Gradually, active transactions either are completed successfully or receive the
"log file full" exception. NTFS rolls back and queues the transactions that
receive the exception.

Once it has blocked transaction activity on files as described above, NTFS
calls the cache manager to flush unwritten data to disk, including unwritten
log file data. After everything is safely flushed to disk, NTFS no longer needs
the data in the log file. It resets the beginning of the log file to the current
position, making the log file "empty:' Then it restarts the queued transactions.
Beyond the short pause in I/O processing, the "log file full" error has no ef
fect on executing programs.

This scenario is one example of how NTFS uses the log file not only for
file system recovery but also for error recovery during normal operation. You'll
find out more about error recovery in the following section.

435

INSIDE WINDOWS NT

Recovery

436

NTFS automatically performs a disk recovery the first time a program accesses
an NTFS volume after the system has been booted. (If no recovery is needed,
the process is trivial.) Recovery depends on two tables NTFS maintains in
memory:

• The transaction table keeps track of transactions that have been
started but are not yet committed. The suboperations of these ac
tive transactions must be removed from the disk during recovery.

• The dirty page table records which pages in the cache contain modi
fications to the file system structure that have not yet been written
to disk. This data must be flushed to disk during recovery.

NTFS writes a checkpoint record to the log file once every 5 seconds. Just
before it does, it calls the LFS to store a current copy of the transaction table
and of the dirty page table in the log file. NTFS then records in the checkpoint
record the LSNs of the log records containing the copied tables. When recovery
begins after a system failure, NTFS calls the LFS to locate the log records con
taining the most recent checkpoint record and the most recent copies of the
transaction and dirty page tables. It then copies the tables to memory.

The log file usually contains more update records following the last check
point record. These update records represent volume modifications that oc
curred after the last checkpoint record was written. NTFS must update the
transaction and dirty page tables to include these operations. After updating
the tables, NTFS uses the tables and the contents of the log file to update the
volume itself.

To effect its volume recovery, NTFS scans the log file three times, load
ing the file into memory during the first pass to minimize disk I/O. Each pass
has a particular purpose:

1. Analysis

2. Redoing transactions

3. Undoing transactions

Analysis Pass
During the analysis pass, as shown in Figure 9-28, NTFS scans forward in the
log file from the beginning of the last checkpoint operation in order to find
update records and use them to update the transaction and dirty page tables
it copied to memory. Notice in the figure that the checkpoint operation stores

N I N E : Windows NT File System (NTFS)

Analysis pass

Dirty page Update Transaction Checkpoint Update Update
table record table record record record

Beginning of checkpoint operation

Figure 9-28
Analysis pass

End of checkpoint operation

three records in the log file and that update records might be interspersed
among these records. NTFS therefore must start its scan at the beginning of
the checkpoint operation.

Each update record that appears in the log file after the checkpoint
operation begins represents a modification to either the transaction table or
the dirty page table. If an update record is a "transaction committed" record,
for example, the transaction the record represents must be removed from the
transaction table. Similarly, ifthe update record is a "page update" record that
modifies a file system data structure, the dirty page table must be updated to
reflect that change.

Once the tables are up to date in memory, NTFS scans the tables to de
termine the LSN of the oldest update record that logs an operation that has
not been carried out on disk. The transaction table contains the LSNs of the
noncommitted (incomplete) transactions, and the dirty page table contains the
LSNs of records in the cache that have not been flushed to disk. The LSN of
the oldest record that NTFS finds in these two tables determines where the redo
pass will begin. If the last checkpoint record is older, however, NTFS will start
the redo pass there instead.

Redo Pass
During the redo pass, as shown in Figure 9-29 on the following page, NTFS scans
forward in the log file from the LSN of the oldest record it has found in the
analysis pass. It looks for "page update" records, which contain volume modi
fications that were written before the system failure but that might not have
been flushed to disk. NTFS redoes these updates in the cache.

When NTFS reaches the end of the log file, it has updated the cache with
the necessary volume modifications and the cache manager's lazy writer can
begin writing cache contents to disk in the background.

437

INSIDE WINDOWS NT

438

Redo pass

Dirty page Update Transaction Checkpoint Update
table record table record record

Beginning of checkpoint operation

Oldest unwritten log record

Figure 9-29
Redo pass

Undo Pass
After it completes the redo pass, NTFS begins its undo pass, in which it rolls back
any transactions that weren't committed when the system failed. Figure 9-30
shows two transactions in the log file; transaction 1 was committed before the
power failure, but transaction 2 was not. NTFS must undo transaction 2.

W!)0}''LJ Transaction 1

D Transaction 2

Figure 9-30
Undo pass

Undo pass

ILsNl
~

A
T

I

Power failure

~~
,~~
I (

"Transaction Committed" record

Suppose that transaction 2 created a file, an operation that comprises
three suboperations, each with its own update record. The update records of
a transaction are linked by backward pointers in the log file because they are
usually not contiguous.

The NTFS transaction table lists the LSN of the last-logged update record
for each noncommitted transaction. In this example, the transaction table
identifies LSN 4049 as the last update record logged for transaction 2. As shown
from right to left in Figure 9-31, NTFS rolls back transaction 2.

Each update record contains two kinds of information: how to redo a
suboperation and how to undo it. After locating LSN 4049, NTFS finds the
undo information and executes it, clearing bits 3 through 9 in its allocation
bitmap. NTFS then follows the backward pointer to LSN 4048, which directs it

Transaction 1

D Transaction 2

N I N E : Windows NT File System (NTFS)

Redo: Set bits 3-9 in the bitmap
Undo: Clear bits 3-9 in the bitmap

Redo: Add the filename to the index
Undo: Remove the filename from the index

Redo: Allocate/initialize an MFT file record
Undo: Deallocate the file record

Figure 9-31
Undoing a transaction

to remove the new filename from the appropriate filename index. Finally, it
follows the last backward pointer and deallocates the MFT file record reserved
for the file, as the update record with the LSN 4046 specifies. Transaction 2
is now rolled back. If there are other noncommitted transactions to undo,
NTFS follows the same procedure to roll them back. Because undoing trans
actions affects the volume's file system structure, NTFS must log the undo
operations in the log file. After all, the power might fail again during the re
covery, and NTFS would have to redo its undo operations!

When the undo pass of the recovery is complete, the volume has been
restored to a consistent state. At this point, NTFS flushes the cache changes to
disk to ensure that the volume is up to date. NTFS then writes an "empty" LFS
restart area to indicate that the volume is consistent and that no recovery need
be done if the system should fail again immediately. Recovery is complete.

NTFS guarantees that recovery will return the volume to some preexist
ing consistent state, but not necessarily to the state that existed just before the
system crash. NTFS can't make that guarantee because, for performance, it uses
a "lazy commit" algorithm, which means that the log file is not immediately
flushed to disk each time a "transaction committed" record is written. Instead,
numerous transaction committed records are batched and written together, .
either when the cache manager calls the LFS to flush the log file to disk or when
the LFS writes a checkpoint record (once every 5 seconds) to the log file. Another
reason the recovered volume might not be completely up to date is that several
parallel transactions might be active when the system crashes and some of their
transaction committed records might make it to disk whereas others might not.
The consistent volume that recovery produces includes all the volume updates
whose transaction committed records made it to disk and none of the updates
whose transaction committed records didn't make it to disk.

439

INSIDE WINDOWS NT

NTFS uses the log file to recover a volume after the system fails, but it also
takes advantage of an important "freebie" it gets from logging transactions.
File systems necessarily contain a lot of code devoted to recovering from file
system errors that occur during the course of normal file I/0. Because NTFS
logs each transaction that modifies the volume structure, it can use the log file
to recover when a file system error occurs and thus can greatly simplify its error
handling code. The "log file full" error described earlier is one example of
using the log file for error recovery.

Most I/O errors a program receives are not file system errors and there
fore can't be resolved entirely by NTFS. When called to create a file, for ex
ample, NTFS might begin by creating a file record in the MFT and then enter
the new file's name in a directory index. When it tries to allocate space for the
file in its bitmap, however, it could discover that the disk is full and the create
request can't be completed. In such a case, NTFS uses the information in the log
file to undo the part of the operation it has already completed and to deallocate
the data structures it reserved for the file. Then it returns a "disk full" error
to the caller, which in turn must respond appropriately to the error.

Fault Tolerance Support
The capabilities ofNTFS are enhanced by underlying support from a Windows
NT driver called FtDisk.sys, the fault tolerant disk driver. FtDisk lies ahove harcl

disk drivers in the I/O system's layered driver scheme and provides volume
management capabilities, redundant data storage, and dynamic data recovery
from bad sectors on SCSI (small computer system interface) disks.

Although FtDisk works with all of the Windows NT-supported file systems,
using it with NTFS provides the highest level of data integrity. Even without
FtDisk, NTFS removes bad clusters from use and provides the equivalent of
FtDisk's bad-sector recovery for non-SCSI hard disks. It also also monitors and
detects corruption in file system data structures and uses FtDisk to recover its
own data and to ensure its own reliability.

The following two sections describe the volume management and data
redundancy capabilities ofFtDisk. The third section describes the additional
features of NTFS that improve data reliability and recovery.

Volume Management Features

440

Although FtDisk is called the fault tolerant driver, it also implements some
volume management features unrelated to fault tolerance. Volume sets and
stripe sets don't provide data redundancy, but they do aid in organizing vol
umes and increasing I/O efficiency, respectively.

N I N E : Windows NT File System (NTFS)

Volume Sets
A volume set is a single logical volume composed of a maximum of 32 areas of
free space on one or more disks. The Windows NT Disk Administrator utility
combines the areas into the volume set, which can then be formatted for any
of the Windows NT-supported file systems. Figure 9-32 shows a 100-MB vol
ume set identified by drive letter D: that has been created from the last third
of the first disk and the first third of the second.

C:
(100 MB)

D:
{50 MB)

Figure 9-32
Volume set

NTFS
Volume 1

D:
(50 MB)

E:
(100 MB)

NTFS
Volume 2

NTFS
Volume3

A volume set is useful for consolidating small areas of free. disk space to
create a larger volume or for creating a single, large volume out of two or more
small disks. If the volume set has been formatted for NTFS, it can be extended
to include additional free areas or additional disks without affecting the data

. already stored on the volume. This is one of the biggest benefits of describing
all data on an NTFS volume as a file. NTFS can dynamically increase the size
of a logical volume because the bitmap that records the allocation status of the
volume is just another file-the bitmap file. The bitmap file can be extended
to include any space added to the volume. Dynamically extending a FAT vol
ume, on the other hand, would require the FAT itself to be extended, which
would dislocate everything else on the disk.

FtDisk hides the physical configuration of disks from the file systems
installed on Windows NT. NTFS, for example, views D: in Figure 9-32 as an
ordinary 100-MB volume. NTFS consults its bitmap to determine what space
in the volume is free for allocation. It then calls FtDisk to read or write data
beginning at a particular byte offset on the volume. FtDisk views the physical
sectors i.n the volume set as numbered sequentially from the first free area on
the first disk to the last free area on the last disk. It determines which physi
cal sector on which disk corresponds to the supplied byte offset.

Stripe Sets
A stripe set is a series of partitions, one partition per disk, that the Disk Adminis
trator utility combines into a single logical volume. Figure 9-33 shows a stripe

441

INSIDE WINDOWS NT

442

Stripe 1

2

3

4

5

6

7

Figure 9-33
Stripe set

2

3

4

5

6

7

set consisting of three partitions, one on each of three disks. (A partition in a
stripe set need not span an entire disk; the only restriction is that the partitions
on each disk be the same size.)

To a file system, this stripe set appears to be a single 450-MB volume, but
FtDisk optimizes data storage and retrieval times on the stripe set by distrib
uting the volume's data among the physical disks. FtDisk accesses the physical
sectors of the disks as if they were numbered sequentially in stripes across the
disks, as illustrated in Figure 9-34.

(150 MB) (150 MB)

Figure 9-34
Logi,cal numbering of physical sectors on a stripe set

Because each stripe is a relatively narrow 64 KB (a value chosen to pre
vent individual reads and writes from accessing two disks), the data tends to be
distributed evenly among the disks. Stripes thus increase the probability that

NI N E : Windows NT File System (NTFS)

multiple pending read and write operations will be bound for different disks.
And because data on all three disks can be accessed simultaneously, latency
time for disk 1/0 is often reduced, particularly on heavily loaded systems.

Fault Tolerant Volumes
Volume sets make managing disk volumes more convenient, and stripe sets
spread the 1/0 load over multiple disks. These two volume-management fea
tures don't provide the ability to recover data if a disk fails, however. For data
recovery, FtDisk implements three redundant storage schemes: mirror sets,
stripe sets with parity, and sector sparing. These features are created with the
Windows NT Disk Administrator utility. ·

Mirror Sets
In a mirror set, the contents of a partition on one disk are duplicated in an equal
sized partition on another disk. A mirror set is shown in Figure 9-35.

C:

Figure 9-35
Mirror set

C:
(mirror)

When a program writes to C:, FtDisk writes the same data to the same
location on the mirror partition. If the first disk or any of the data on its C:
partition becomes unreadable because of a hardware or software failure, FtDisk
automatically accesses the data from the mirror partition. A mirror set can be
formatted for any of the Windows NT-supported file systems. The file system
drivers remain independent and are not affected by FtDisk's mirroring activity.

Mirror sets can aid in 1/0 throughput on heavily loaded systems. When
1/0 activity is high, FtDisk balances its read operations between the primary
partition and the mirror partition (accounting for the number of unfinished
1/0 requests pending from each disk). Two read operations can proceed siinul
taneously and thus theoretically finish in half the time. When a file is modi
fied, both partitions of the mirror set must be written, but disk writes are done
asynchronously, so the performance of user-mode programs is generally not
affected by the extra disk update:

443

INSIDE WINDOWS NT

444

Stripe Sets with Parity
A stripe set with parity is a fault tolerant variant of a regular stripe set. Fault
tolerance is achieved by reserving the equivalent of one disk for storing par
ity for each stripe. Figure 9-36 is a visual representation of a stripe set with
parity.

Stripe 1

2

3

4

5

6

7

Disk 1

Liii Parity

Figure 9-36
Stripe set with parity

Dlsk2 Disk3

In Figure 9-36, the parity for stripe 1 is stored on disk 1. It contains a byte
for-byte logical sum (XOR) of the first stripe on disks 2 and 3. The parity for
stripe 2 is stored on disk 2, and the parity for stripe 3 is stored on disk 3. Ro
tating the parity across the disks in this way is an I/0 optimization technique.
Each time data is written to a disk, the parity bytes corresponding to the modi
fied bytes must be recalculated and rewritten. If the parity were always written
to the same disk, that disk would be busy continually and could become an I/O
bottleneck.

Recovering a failed disk in a stripe set with parity relies on a simple arith
metic principle: in an equation with n variables, if you know the value of n - 1
of the variables, you can determine the value of the missing variable by sub
traction. For example, in the equation x + y = z, where z represents the parity
stripe, FtDisk computes z - y to determine the contents of x; to find y, it com
putes z - x. FtDisk uses similar logic to recover lost data. If a disk in a stripe
set with parity fails or if data on one disk becomes unreadable, FtDisk recon
structs the miss~ng data by using the XOR operation (bitwise logical addition).

N I N E : Windows NT File System (NTFS)

If disk 1 in Figure 9-36 fails, the contents of its stripes 2 and 5 are calcu
lated by XOR-ing the corresponding stripes of disk 3 with the parity stripes on
disk 2. The contents of stripes 3 and 6 are similarly determined by XOR-ing
the corresponding stripes of disk 2 with the parity stripes on disk 3. At least
three disks (or rather, three same-sized partitions on three disks) are required
to create a stripe set with parity.

Sector Sparing
Redundant data storage is used not only for recovering data after a complete
disk failure but also for recovering data from a single physical sector that goes
bad. In a technique called sector sparing, FtDisk uses its redundant data storage
to dynamically replace lost data when a disk sector becomes unreadable. The
sector-sparing technique exploits a feature of some hard disks, which provide
a set of physical sectors reserved as "spares:' If FtDisk receives a data error from
the hard disk, it obtains a spare sector from the disk driver to replace the bad
sector that caused the data error. FtDisk recovers the data that was on the bad
sector (by either reading the data from a disk mirror or recalculating the data
from a stripe set with parity) and copies it to the spare sector. FtDisk performs
sector sparing dynamically, without intervention from the file system or the
user, and sector sparing works with any Windows NT-supported file system on
SCSI-based hard disks. ·

If a bad-sector error occurs and the hard disk doesn't provide spares, runs
out of them, or is a non-SCSI-based disk, FtDisk can still recover the data. It
recalculates the unreadable data by accessing a stripe set with parity, or it reads
a copy of the data from a disk mirror. It then passes the data to the file system
along with a warning status that only one copy of the data remains in a disk
mirror or that one stripe is inaccessible in a stripe set with parity and that data
redundancy is therefore no longer in effect for that sector. It's up to the file
system to respond to (or ignore) the warning. FtDisk will re-recover the data
each time the file system tries to read from the bad sector.

NTFS Bad-Cluster Recovery
FtDisk can recover data from a bad sector on a fault tolerant volume, but if the
hard disk doesn't use the SCSI protocol or runs out of spare sectors, FtDisk can't
perform sector sparing to replace the bad sector. When the file system reads
from the sector, FtDisk instead recovers the data and returns the warning to
the file system that there is only one copy of the data.

445

INSIDE WINDOWS NT

446

The FAT file system doesn't respond to this F~Disk warning. Moreover,
neither these file systems nor FtDisk keeps track of the bad sectors, so a user
must run the Chkdsk or Format utility to prevent FtDisk from repeatedly recov
ering data for the file system. Both Chkdsk and Format are less than ideal for
removing bad sectors from use. Chkdsk can take a long time to find and remove
bad sectors, and Format wipes all the data off the partition it is formatting.

In the file system equivalent ofFtDisk's sector sparing, NTFS dynamically
replaces the cluster containing a bad sector and keeps track of the bad cluster
so that it won't be reused. (As described earlier, NTFS maintains portability by
addressing logical clusters rather than physical sectors.) NTFS performs these
functions when FtDisk can't perform sector sparing or when FtDisk is not installed
in the system. When FtDisk returns a bad-sector warning or when the hard disk
driver returns a bad-sector error, NTFS allocates a new cluster to replace the
one containing the bad sector. If FtDisk is present, NTFS copies the data that
FtDisk has recovered into the new cluster to reestablish data redundancy.

Figure 9-37 shows an MFT record for a user file with a bad cluster in one
of its data runs. When it receives a bad-sector error, NTFS reassigns the clus
ter containing the sector to its bad-cluster file. This prevents the bad cluster
from being allocated to another file. NTFS then allocates a new cluster for the
file and changes the file's VCN-to-LCN mappings to point to the new cluster.
This bad-cluster remapping (introduced earlier in this chapter) is illustrated
in Figure 9-38 on pagt> 44R f:h1ster mnnber 1357, which contains the bad sec
tor, is replaced by a new cluster, number 1049 (as you'll see in Figure 9-38).

User
file

Standard Security
information Filename descriptor

VCN

LCN 1355 1356 1357

Figure 9-37
MFT record for a user file with a bad cluster

Data

3 4 5

1588 1589 1590

NI NE: Windows NT File System (NTFS)

Bad-sector errors are undesirable, but when they do occur, the combina
tion of NTFS and FtDisk provides the best possible solution. If the bad sector
is on a redundant volume, FtDisk recovers the data and replaces the sector if
it can. If it can't replace the sector, it returns a warning to NTFS and NTFS
replaces the cluster containing the bad sector.

If FtDisk isn't loaded or if the volume isn't configured as a redundant
volume, the data in the bad sector can't be recovered. When the volume is for
matted as a FAT volume and FtDisk can't recover the data, reading from the bad
sector yields indeterminate results. If some of the file system's control structures
reside in the bad sector, an entire file or group of files (or potentially, the whole
disk) can be lost. At best, some data in the affected file (often, all the data in
the file beyond the bad sector) is lost. Moreover, the FAT file system is likely
to reallocate the bad sector to the same or another file on the volume, caus
ing the problem to resurface.

Like the other file systems, NTFS can't recover data from a bad sector
without help from FtDisk. However, NTFS greatly contains the damage a bad
sector can cause. If NTFS discovers the bad sector during a read operation, it
remaps the cluster the sector is in, as shown in Figure 9-38 on the following
page. If the volume is not configured as a redundant volume, NTFS returns a
"data read" error to the calling program. Although the data that was in that
cluster is lost, the rest of the file-and the file system-remains intact; the
calling program can respond appropriately to the data loss; and the bad clus
ter won't be reused in future allocations. If NTFS discovers the bad cluster on
a write operation rather than a read, NTFS remaps the cluster before writing
and thus loses no data and generates no error.

The same recovery procedures are followed if file system data is stored
in a sector that goes bad. If the bad sector is on a redundant volume, NTFS
replaces the cluster dynamically, using the data recovered by FtDisk. If the
volume isn't redundant, the data can't be recovered and NTFS sets a bit in the
volume file that indicates corruption on the volume. The NTFS Chkdsk utility
checks this bit when the system is next rebooted, and if the bit is set, Chkdsk
executes, fixing the file system corruption by reconstructing the NTFS metadata.

In rare instances, file system corruption can occur even on a fault toler
ant disk configuration. A double error can destroy both file system data and
the means to reconstruct it. If the system crashes while NTFS is writing the
mirror copy of an MFT file record, of a filename index, or of the log file, for
example, the mirror copy of such file system data might not be fully updated.
If the system were rebooted and a bad-sector error occurred on the primary
disk at exactly the same location as the incomplete write on the disk mirror,

447

INSIDE WINDOWS NT

448

Bad
cluster

file

User
file

Standard Security
information Filename descriptor

VCN

LCN 1357

Standard Security
information Filename descriptor

VCN 0 --....--....

LCN 1355 1356

Figure 9-38
Bad-cluster remapping

Data

Data

1049 1588 1589 1590

NTFS would be unable to recover the correct data from the disk mirror. NTFS
implements a special scheme for detecting such corruptions in file system data.
If it ever finds an inconsistency, it sets the corruption bit in the volume file,
which causes Chkdsk to reconstruct the NTFS metadata when the system is next
rebooted. Because file system corruption is rare on a fault tolerant disk
configuration, Chkdsk is seldom needed. It is supplied as a safety precaution
rather than as a first-line data recovery strategy.

Use of Chkdsk on NTFS is vastly different from its use on the FAT file
system. Before writing anything to disk, FAT sets the volume's "dirty bit" and
then resets the bit after the modification is complete. If any 1/0 operation is
in progress when the system crashes, the dirty bit is left set and Chkdsk runs
when the system is rebooted. On NTFS, Chkdsk runs only when unexpected

N I N E : Windows NT File System (NTFS)

or unreadable file system data is found and NTFS can't recover the data from
a redundant volume or from redundant file system structures on a single volume.
(The system boot sector is duplicated, as are the parts of the MFT required for
booting the system and running the NTFS recovery procedure. This redun
dancy ensures that NTFS will always be able to boot and recover itself.)

Table 9-3 summarizes what happens when a sector goes bad on a disk
volume formatted for one of the Windows NT-supported file systems accord
ing to various conditions that have been described in this section.

Table 9-3 Summary of FtDisk and NTFS Data Recovery Scenarios

Scenario

Fault tolerant
volume**

Non-fault-tolerant
volume

FtDisk
Installed ...

With a SCSI disk With a non-SCSI
that has spare disk or a disk with
sectors no spare sectors*

1. FtDisk recovers 1. FtDisk recovers
the data. the data.

2. FtDisk performs 2. FtDisk sends
sector sparing the data and a
(replaces the bad bad-sector error
sector). to the file system.

3. File system 3. NTFS performs
remains unaware cluster remapping.
of the error.

1. FtDisk can't 1. FtDisk can't
recover the data. recover the data.

2. FtDisk sends 2. FtDisk sends a
a bad-sector error bad-sector error
to the file system. to the file system.

3. NTFS performs 3. NTFS performs
cluster remapping. cluster remapping.
Data is lostt. Data is lostt.

FtOisk
Not Installed ...

With any
kind of disk

NIA

1. Disk driver
returns a
error to the
file system.

2. NTFS performs
cluster remapping.
Data is lostt.

* In neither of these cases can FtDisk perform sector sparing: (1) hard disks that don't use the SCSI
protocol have no standard interface for providing sector sparing; (2) some hard disks don't provide
hardware support for sector sparing, and SCSI hard disks that do provide sector sparing can eventually
run out of spare sectors if a lot of sectors go bad.

** A fault tolerant volume is one of the following: a mirror set or a stripe set with parity.

t In a write operation, no data is lost: NTFS remaps the cluster before the write.

449

INSIDE WINDOWS NT

Note that if FtDisk is installed, if the volume on which the bad sector
appears is a fault tolerant volume, and if the hard disk is one that supports
sector sparing (and that hasn't run out of spare sectors), which file system you
are using-FAT or NTFS-doesn't matter. FtDisk replaces the bad sector with
out the need for user or file system intervention.

If FtDisk is not installed or is installed on a hard disk that doesn't support
sector sparing, the file system is responsible for replacing (remapping) the bad
sector or-in the case of NTFS-the cluster in which the bad sector resides.
The FAT file system does not provide sector or cluster remapping. The benefits
of NTFS cluster remapping are that bad spots in a file can be fixed without
harm to the file (or harm to the file system, as the case may be) and that the
bad cluster won't be reallocated to the same or another file.

Conclusion

450

As you saw in the introduction to this chapter, the overriding goal for NTFS was
to provide a file system that was not only reliable but also fast. The performance
of Windows NT disk 1/0 is not due solely to the implementation of NTFS,
however. It comes in large measure from synergy between NTFS and the Windows
NT cache manager. Together, NTFS and the cache manager achieve respect
able 1/0 performance while providing an unprec~dented level of reliability
and high-end data storagP fe~t11res for hoth workstation and server systems.

C H A P T E R T E N

Windows NT 5.0 and Beyond

In this chapter, we'll take a look ahead at Microsoft Windows NT 5.0. Windows
NT 5.0 is a massive release, with significant new operating system and network
functionality being added to many areas of the system. It is not, however, a
rewrite-many aspects of the kernel system architecture remain the same or
are being extended. And like all releases of Windows NT, it will be upward
compatible with existing applications and network installations.

The first part of this chapter is an overview of the new features ill Win
dows NT 5.0. I won't describe the internal changes here (and I'll explain why in
a bit) but rather the new external features. Although some of these features
required extensions to the executive and the kernel (notably Plug and Play,
power management, 64-bit large memory support, and the job object), most
of them are additions to the existing code base and didn't involve major struc
tural changes. In other words, the fundamental operating system architecture
is not changing in Windows NT 5.0. This stability affirms that Windows NT has
met one of its key design goals mentioned in Chapter I-extensibility. The fact
that the system has been able to evolve to the degree it has without rearchi
tecting fundamental mechanisms in the executive and the kernel is a testimony
to the forward thinking of the original design team.

I'll also briefly describe the enhancements being made to Microsoft Clus
ter Server and Microsoft Windows NT Terminal Server. We'll then take a closer
look at Plug and Play and power management, since the changes to these fea
tures are been more significant and involve the subsystems covered in this
book. At the end of the chapter, you'll get a brief introduction to the plans for
a true 64-bit version of Windows NT.

Overview of the New Features in Windows NT 5.0
In this section, I'll briefly summarize the major new features in Windows NT
5.0. This overview is based on information available in early 1998. Many of you
will already be running Windows NT 5.0 (either in its beta form or possibly in
its final release) and hence are already working with these new features.

451

INSIDE WINDOWS NT

When Microsoft released the Windows NT 5.0 beta 1, it made available a
number of technical white papers that explain the key enhancements in Win
dows NT 5.0. You can find these white papers at www.microsoft.com/ntserver
(just follow the links to Windows NT 5.0 white papers) and www.microsoft.com/
ntworkstation. The new programming interfaces in the Microsoft Win32 appli
cation programming interface (API) are already showing up in the Platform
Software Development Kit (SDK) documentation on MSDN. (Even the Win32
API header files in the Platform SDK contain the entry points for new Windows
NT 5.0 functions.) The changes to the device driver model are also explained
in the beta version of the Windows NT Device Driver Kit (DDK).

Now let's begin our tour of Windows NT 5.0.

Active Directory

452

The Active Directory is one of the most important new features in Windows NT
5.0. It will greatly simplify the tasks involved in administering and managing
large Windows NT networks, and it will improve the user's interaction with
networked resources.

The Active Directory stores information about all resources on the net
work and makes this information easy for developers, administrators, and users
to find and use. It provides a single, consistent, open set of interfaces for per
forming common administrative tasks, such as adding new users, managing
T'\rint-,::a.rQ -::rinrl lnr":ltintT rP'1.n11rrP'1 thrn110"hr\11t thP rli'1.trih11tPrl rnrnn11tincr Pnlri-
r••u·-·~, -·- ·---····o ·-~--·--~ --··--o··--· --·- -·---·--·-- --···r--···o -····
ronment. The Active Directory data model has many concepts similar to X.500.
The directory holds objects that represent various resources, which are de
scribed by attributes. The universe of objects that can be stored in the direc
tory is defined in the schema. For each object class, the schema defines what
attributes an instance of the class must have, what additional attributes it can
have, and what object class can be a parent of the current object class. This
directory structure has the following key features:

II Flexible hierarchical structure

Ii Efficient multimaster replication

II Granular security delegation

II Extensible storage of new classes of objects and properties

II Standards-based interoperability through Lightweight Directory
Access Protocol (LDAP) version 3 support

II Scalability to millions of objects per store

TE N : Windows NT 5.0 and Beyond

• Integrated dynamic Domain Name System (DNS) server

• Programmable class store

The Active Directory also makes it easier for users, administrators, and
application code to find resources on the network. A user can search for re
sources from the In The Directory option on the Find utility or browse for
resources from the Directory icon in Network Neighborhood. Application code
can also search or browse for resources using a well-defined set of APis from
any programming language.

Programmability and extensibility are significant capabilities of the Active
Directory. Developers and administrators deal with a single set of directory ser
vice interfaces, regardless of the inst.alled directory service (s). The programming
interface, called the Active Directory Service Interfaces (ADSI), is accessible by
any language. Details on ADSI are on MSDN in the Platform SDK documenta
tion. You can also access the directory using the LDAP APL The LDAP C API,
defined in RFC 1823, is a lower-level interface available to C programmers.

The Active Directory is also the key underpinning that enables the im
provements in distributed system security.

Distributed Security Extensions
Windows NT distributed security has many new features to simplify domain
administration, improve performance, and integrate Internet security technol
ogy based on public-key cryptography. Here are some highlights of the Win
dows NT 5.0 Distributed Security Services:

• The Active Directory provides the store for all domain security policy
and account information. The Active Directory, which provides rep
lication and availability of account information to multiple Domain
Controllers (formerly known as Backup Domain Controllers), is
available for remote administration. Multiple master replicas of
the Active Directory at other Domain Controllers are updated and
synchronized automatically.

• The Active Directory supports a multilevel hierarchical tree name
space for user, group, and machine account information. Accounts
can be grouped by organizational units rather than with the flat
domain account namespace provided by earlier versions of Windows
NT. Management of trust relationships among domains is simplified
through treewide transitive trust throughout the domain tree.

453

INSIDE WINDOWS NT

454

II Administrator rights to create and manage user or group accounts
can be delegated to the level of organizational units. Access rights
can be granted to individual properties on user objects to allow, for
example, a specific individual or group to have the right to reset
passwords but not to modify other account information.

1111 Windows NT security includes new authentication based on Internet
standard security protocols, including Kerberos version 5 and trans
port layer security (TLS) for distributed security protocols, in addi
tion to supporting Windows NT LAN Manager authentication
protocols for compatibility.

1111 The implementation of secure channel security protocols supports
strong client authentication by mapping user credentials in the form
of public-key certificates to existing Windows NT accounts. Common
administration tools are used to manage account information and
access control, whether you are using shared secret authentication
or public-key security.

II Windows NT supports the optional use of smart cards for interac
tive logon in addition to passwords. Smart cards support cryptogra
phy and secure storage for private keys and certificates, enabling
strong authentication from the desktop to the Windows NT domain.

II Windows NT provides the Microsoft Certificate Server for organi
zations to issue X.509 version 3 certificates to their employees or
business partners. Windows NT 5.0 introduces CryptoAPI certificate
management APis and modules to handle public-key certificates,
including standard format certificates issued by either a commer
cial certificate authority, third-party certificate authority, or the
Microsoft Certificate Server included in Windows NT. System ad
ministrators define which certificate authorities are trusted in their
environment and, therefore, which certificates are accepted fqr cli
ent authentication and access to resources.

Ill External users who don't have Windows NT accounts can be au
thenticated using public-key certificates and mapped to an exist
ing Windows NT account. Access rights defined for the Windows
NT account determine the resources the external users can use on
the system. Client authentication using public-key certificates allows
Windows NT to authenticate external users based on certificates
issued by trusted certificate authorities.

Ill Windows NT users have easy-to-use tools and common interface
dialog boxes for managing the private-key /public-key pairs and

Encryption

T E N : Windows NT 5.0 and Beyond

the certificates they use to access Internet-based resources. Storage
of personal security credentials, which uses secure disk-based storage,
is easily transported with Microsoft's proposed industry-standard pro
tocol, Personal Information Exchange. The operating system also has
integrated support for smart-card devices.

The encrypting file system (EFS) in Windows NT 5.0 allows the storing of en
crypted files on NTFS volumes. The EFS particularly addresses security concerns
raised by tools that allow users to access files from an NTFS volume without
an access check (such as NtRecover from www.winternals.com). With the EFS,
data in NTFS files is encrypted on disk. The encryption technology used is
based on public keys and runs as an integrated system service, making it easy
to manage, difficult to attack, and transparent to the user. If a user attempt
ing to access an encrypted NTFS file has the private key to that file, he or she
will be able to open the file and work with it as a normal document. A user
without the private key to the file is simply denied access.

The EFS is tightly integrated with NTFS. Its device driver component runs
in kernel mode and uses the nonpaged pool to store file-encryption keys, ensur
ing that they never make it to the paging file. The following key components
comprise the EFS:

II Win32 APls These APis provide programming interfaces for en
crypting plaintext files, decrypting or recovering ciphertext files,
and importing and exporting encrypted files (without decrypting
them first).

II EFS driver The EFS driver is layered on top of the NTFS. It com
municates with the EFS service to request file-encryption keys, DDFs,
DRFs, and other key management services. It passes this information
to the EFS file system run-time library (FSRTL) to perform various
file system operations (open, read, write, and append) transparently.

II FSRTL callouts The FSRTL is a module within the EFS driver that
implements NTFS callouts to handle various file system operations
(such as reads, writes, and opens) on encrypted files and directories
as well as operations to encrypt, decrypt, and recover file data when
it is written to or read from disk. Even though the EFS driver and
the FSRTL are implemented as a single component, they never com
municate directly. They use the NTFS file control callout mechanism
to pass messages to each other, which ensures that NTFS participates

455

INSIDE WINDOWS NT

in all file operations. The operations implemented using the file
control mechanisms include writing the EFS attribute data (data
decryption field [DDF] and date recovery field [DRF]) as file at
tributes and communicating the file-encryption key computed in
the EFS service to FSRTL such that it can be set up in the open file
context. This file context is then used for transparent encryption
and decryption on writes and reads of file data from disk.

Ill EFS service The EFS service is part of the security subsystem. It
uses the existing LPC communication port between the local secu
rity authority server and the kernel-mode security reference moni
tor (described in Chapter 6) to communicate with the EFS driver.
In user mode, the EFS service interfaces with CryptoAPI to provide
file-encryption keys and generate DDFs and DRFs.

These components are illustrated in Figure 10-1.

1/0 manager

EFSdriver

NTFS

Hard drive

-----.... ~ LPC communication for all key
management support

FSRTL callouts ,

User mode

Kernel mode

Figure 10-1
Encryption architecture

456

T E N : Windows NT 5.0 and Beyond

File encryption can use any symmetric encryption algorithm. The first
release of the EFS will expose DES (Data Encryption Standard) as the encryp
tion algorithm. Future releases will allow alternate encryption schemes.

Security Configuration Editor
Another key enhancement in the area of security is the new Security Configura
tion Editor. The primary goal of this editor is to provide a single point of ad
ministration for Windows NT-based system security. It will allow administrators
to configure and analyze the system security policy, such as how and when users
can log on to the system, password policy, overall system object security, audit
settings, domain policy, and so forth. It can also be used to modify security
settings on users, files, directories, services, and the registry.

To address the need for security analysis in Windows NT, the Security
Configuration Editor will provide analysis at a micro level. It is designed to
provide information about all system aspects related to security. Security ad
ministrators can view the information and perform security risk management
for their entire information technology (IT) infrastructure.

The process of configuring security in a Windows NT-based network can
be complex and detailed in terms of the system components involved and the
level of change that might be required. The Security Configuration Editor
alfows the administrator to define a number of configuration settings and have
them enacted in.the background. With this tool, configuration tasks can be
grouped and automated; they no longer require numerous, iterative key presses
and repeat visits to a number of different applications to configure a group of
machines.

What the Security Configuration Editor is not designed to do is replace
system tools that address different aspects of system security-such as User
Manager, Server Manager, Access Control List Editor, and so forth. Rather, its
goal is to complement them by defining an engine that can interpret a stan
dard configuration template and perform the required operations automati
cally in the background. Administrators can continue to use existing tools to
change individual security settings whenever necessary.

Distributed File Services
Microsoft Distributed File System (DFS) for Windows NT Server is a network
server component that makes it easier for users to find and manage data on
the network. DFS makes it easy to create a single directory tree that includes
multiple file servers and file shares in a group, division, or enterprise. In ad
dition, DFS gives the user a single directory that can span a vast number of file

457

INSIDE WINDOWS NT

servers and file shares, making it easy to "browse" the network to find the data
and files needed. Browsing the DFS directory is easy because DFS subdirectories
can be assigned logical, descriptive names no matter what name the file server
or file share has.

DFS was shipped as a layered extension to Windows NT 4.0, but it had a
number oflimitations that are corrected with Windows NT 5.0 (such as a single
location for the distributed directory information, which, if not accessible,
limits access to DFS shares).

NTFS Extensions

458

Besides integration with encryption, NTFS in Windows NT 5.0 contains a num
ber of extensions for server systems. These extensions require converting ex
isting NTFS 4.0 partitions to a modified on-disk format called NTFS 5. Here
are the main enhancements:

• Disk quotas can be specified on a per-user basis, thus providing the
ability to limit the use of disk storage.

• Security descriptors (access control lists, or ACL;) can be stored once
but referenced in multiple files, thus saving disk space.

II Native support for properties (such as found on OLE compound
files), including general indexing support for these properties, is
available. Properties are stored natively as NTFS streams, allowing
fast querying.

• Reparse points, which allow the implemention of symbolic links,
mount points for arbitrary file system volumes, and remote storage
for Hierarchical Storage Management (HSM).

• Support for sparse files means that you can create files or extend
them to a large size without allocating the disk space at the time of
the file extend. Instead, disk allocation is deferred until specified in
a write operation.

II Distributed link tracking through the use of unique IDs that can be
assigned to files or directories is now possible. This capability will
improve the current method of storing a reference to a file (for ex
ample, in OLE links or desktop shortcuts). Renaming the target file
breaks the links to that file. Renaming a directory breaks all the links
to files in that directory and all files and directories underneath it.
NTFS 5.0 will support the creation and assignment of unique IDs to
a file or directory and guarantee that it will retain that ID.

T E N : Windows NT 5.0 and Beyond

• The ability to add disk space to an NTFS volume without rebooting
has been added.

• Decompressing and recompressing compressed file data when trans
mitted over a network can be avoided, reducing CPU overhead on
the server.

Microsoft Management Console
The Microsoft Management Console (MMC) provides system administrators
with a common console for viewing network functions and using administra
tive tools. The MMC displays consoles that host programs called snap-ins, which
provide the functionality needed to administer the network. The MMC meets
the following goals:

• Offers a single, integrated user interface for management tools
Instead of the variety of interfaces in today's management tools,
MMC provides a common, consistent user interface to manage
ment functions.

111111 Provides a single host for all management tools The MMC doesn't
replace existing enterprise console and management applications; it
allows them to be packaged as snap-ins so that they can be accessed
from a single interface.

111111 Facilitates task delegation Using the MMC, a system administrator
can group subsets of administrative tasks into tools and forward
those tools to other users for task completion.

111111 Lowers total cost of ownership for the desktop Being able to dele
gate tasks, group tools and processes logically, and manage through a
single interface allows systems administrators to better organize their
tools and tasks and simplify remote administration.

In addition to providing integration and commonality of administrative·
tools, the MMC also enables total console customization so that administrators
can create management consoles that include only the administrative tools they
need. Customization helps make administration more task-based because the
tools relate more closely to the tasks that need to be performed.

Besides the MMC, Windows NT 5.0 adds Web-Based Enterprise Manage
ment (WBEM), which provides the Common Information Model (CIM)-based
system instrumentation required to build management applications. The
Windows Management Interface (WMI) layer enables device drivers and system

459

INSIDE WINDOWS NT

components to surface instrumentation data and events to WBEM-based ap
plications. Microsoft will use the MMC (not WBEM) for future management
applications in Windows NT and the BackOffice family of applications. Also,
the MMC is user extensible-the programming interfaces will be documented
onMSDN.

Microsoft Software Installer

460

Automatic application in~tallation allows an administrator to specify a set of
applications that will always be available to a user or a group of users. If a re
quired application isn't available when needed, it is automatically installed. By
using Windows NT 5.0 installation services, IT managers will be able to deploy
or update applications to any user or group of users with a few simple steps from
a central location. Applications will be automatically loaded onto the machine
of a user in the group either in part or entirely, depending on the need, the
next time the user logs on.

The new Windows NT Server 5.0 transaction-based software installer plays
a key role in the Zero Administration Windows initiative by providing several
key features, including these:

II Integration with the Active Directory

11111 Standard package format and installation service, which handles
irn.talling, repaidng, le1nuvi1:ig, a.ml ut:pt:uut:m:y lla.1..:k.iug uf 1..:umpu
nents

11111 Resiliency, which means that products can be repaired, transactions
can be rolled back, and redundant install points can be used to help
maintain applications over time

II Just-in-time (JIT) installations in which applications can be designed
to install components on demand

II Support for lockdown, which allows installation of advertised applica
tions to be successfully completed even when logged-on users don't
have enough rights to install these applications

The Microsoft Software Installer (MSI) allows "no touch" application and
.operating system maintenance. Windows NT Workstation 5.0 will virtually elimi
nate the need to "visit" desktops for any type of software-related issues. MSI
is an enabling technology on which scalable software life-cycle management
products can be built.

T E N : Windows NT 5.0 and Beyond

Storage Management
Windows NT 5.0 includes improved disk management capabilities that allow
administrators to perform online tasks without shutting down the system or
interrupting users (for example, to create, extend, or mirror a volume). The
new Windows NT 5.0 Backup utility allows administrators to back up data to
disk as well as to tape. Unlike previous versions of the Windows NT Backup
utility, which required users to back up data to tape drives only, this version
allows users to back up data to a wide variety of media, such as tape drives,
external hard disk drives, Zip disks, and logical drives.

Management tasks such as mounting and dismounting media or drive
functions are now done by a utility called the Windows NT Media Services
(NTMS). This utility presents a common interface to robotic changers and
media libraries, enables multiple applications to share local libraries and tape
or disk drives, and controls removable media within a single-server system.

Other improvements include an enhanced version of the NTFS file sys
tem, which offers many performance enhancements and support for file en
cryption and per-user disk quotas to monitor and limit disk space use.

lntelliMirror
IntelliMirror is a set of management technologies that benefits users and IT
managers by combining the power and flexibility of distributed computing
with the reliability and security of a tightly managed environment. At its core,
IntelliMirror works by "intelligently mirroring" a user's data, applications, sys
tem files, and administrative settings on Windows NT 5.0-based servers. The
MIS is an enabler of IntelliMirror. This new technology enables the following
improvements in administration, setup, and recovery of user environments:

Ill Replaceable PCs If a user's PC breaks, because the user's environ
ment is mirrored on the server, PCs will be easily and quickly re
placed. When the user logs on, his or her complete environment,
including data, applications, preferences, and administrative poli
cies is automatically restored.

Ill Policy-based administration Administrators will find it easy to ap
ply policies, such as custom desktops, automatic application installa
tion, and controlled access to applications, to any user or group of
users. To support roaming users, these profiles follow the user while
he or she is logging onto any Windows NT Workstation 5.0-based
PC on the corporate network.

461

INSIDE WINDOWS NT

IntelliMirror offers the following user-oriented benefits:

II Automatic installation of operating system and applications If a
user's PC stops working, the complete desktop environment-includ
ing data, applications, preferences, and administrative policies-will
be restored quickly and easily the next time the user logs on to an
existing or a new Windows NT Workstation 5.0-based PC.

II True roaming user support Users will be able to access their com
plete desktop environment while "roaming" to any Windows NT
Workstation 5.0-based PC on a corporate network.

II Offline storage Users will be able to more easily take local and key
network-based resources offline, such as on a laptop computer. Per
sonal data will automatically synchronize when the user reconnects
to the network.

Application Development
Windows NT 5.0 is the platform that enables the next generation of distrib
uted Internet and intranet applications. Built-in services such as Active Direc
tory, Microsoft Internet Information Server, Microsoft Message Queue Server,
and Microsoft Transaction Server provide developers with the infrastructure
to rapidly develop richer, more reliable enterprise applications. Application

scripting enable rich clients and robust servers.
Extensions to Distributed COM (DCOM) will support communication

among objects on different computers-on a local area network (LAN), on a
wide area network (WAN), or even on the Internet-so that applications can
be distributed at locations that make the most sense. DCOM makes it easy to
write a distributed application that scales from the smallest single computer
environment to the largest pool of server machines while using network band
width carefully and providing great response times for users. DCOM also takes
advantage of existing custom and off-the-shelf components and provides a
smooth migration path to sophisticated load-balancing and fault-tolerance
features.

Job Object

462

Windows NT 5.0 contains an extension to the process model called a job. A job
object is a namable, securable, sharable object that controls certain attributes
of processes associated with the job. A job object's basic function is to allow
groups of processes to be managed and manipulated as a unit. Jn some ways,

TE N : Windows NT 5.0 and Beyond

the job object compensates for the lack of a structured process tree on Win
dows NT (yet in many ways is more powerful than a UNIX-style process tree).
The job object also records basic accounting information for all processes asso
ciated with the job and for all processes that were associated with the job but
have since terminated.

A job object can contain limits that are forced on each process associated
with the job, limits such as these:

Ill Default working set minimum and maximum Defines the specified
working set minimum and maximum for each process in the job.
(This is not a jobwide working set-each process has its own work
ing set with the same minimum and maximum values.)

Ill Jobwide user-mode CPU time limit Limits the maximum amount
of user-mode CPU time that the processes in the job can consume
(including processes that have run and exited). Once this limit is
reached, all the processes in the job will be terminated with an er
ror code and no new processes can be created in the job (unless the
limit is reset). The job object is signaled, so any threads waiting on
the job will be released.

!Ill Per-process user-mode CPU time limit Allows each process in the
job to accumulate only a fixed maximum amount of user-mode CPU
time and then terminates it (with no chance to clean up).

Ill Maximum number of active processes Limits the number of con
currently executing processes in the job.

Ill Job processor affinity Sets the processor affinity mask for each
process in the job. (Individual threads can alter their affinity to any
subset of the job affinity, but processes can't alter their process af
finity setting.)

Ill Job process priority class Sets the priority class for each process
in the job. Threads can't increase their priority relative to the class
(as they normally can). Attempts to increase thread priority are ig
nored. (No error is returned on calls to SetThreadPriority, but the
increase doesn't occur.)

Jobs can also be set to queue an entry to an 1/0 completion port object,
which other threads might be waiting on with the Win32 GetQueuedCompletion
Status function.

463

INSIDE WINDOWS NT

You can also place security limits on processes in a job. You can set a job
such that each process runs under the same jobwide access token. You can then
create a job to restrict processes from impersonating or creating processes that
have access tokens that contain the local administrator's group. In addition,
you can apply security filters such that when threads in processes contained
in a job impersonate client threads, certain privileges and security IDs (SIDs)
can be eliminated from the impersonation token.

Finally, you can also place user interface limits on processes in a job. Such
limits include being able to restrict processes from opening handles to win
dows owned by threads outside the job, reading and/or writing to the clip
board, and changing the many user interface system parameters via the Win32
SystemParameterslnfo function.

A process can be a member of only one job object, and once established,
its association with the job can't be broken; all processes created by the pro
cess and its descendents are associated with the same job as well. Operations
performed on the job object affect all processes associated with the job object.

As you can see in Table 10-1, several new Win32 functions are being added
to create and manipulate jobs.

Table 10-1 New Win32 API Functions for Jobs

F1inction

Createf obObject

Open job Object

AssignProcessTojobObject

TerminatefobObject

Setlnformation]obObject

Querylnformation]obObject

ni=>c::rrintinn - ---· ·.-~·-·.

Creates a job object (with an optional name)

Opens an existing job object by name

Adds a process to a job

Terminates all processes in a job

Sets limits

Retrieves information about the job, such as
CPU time, page fault count, number of pro
cesses, list of process IDs, quotas or limits, and
security limits

Details on the job object will be included in a future edition of the Plat
form SDK.

Plug and Play and WDM

464

Windows NT 5.0 will include enhancements to simplify device driver development
and device management. These enhancements include power management, Plug
and Play, and support for the new Microsoft Win32 Driver Model (WDM).

TE N : Windows NT 5.0 and Beyond

Plug and Play makes it easy to install and troubleshoot new hardware. Plug
and Play support in Windows NT 5.0 includes a new Hardware Wizard, the
Device Manager, and improved support for laptop computers. The new Hard
ware Wizard consolidates the most commonly used hardware-related tools and
functions into a single wizard, making device management easier and faster.
Adding new hardware, changing device properties, unplugging or ejecting
devices, and resolving hardware conflicts are just a few of the operations that
the Hardware Wizard can perform.

Plug and Play is part of the WDM, which is a new, unified driver model for
Windows NT 5.0 and Microsoft Windows 98. WDM will enable new devices to have
a single driver for both operating systems. (Windows NT 5.0 will continue to
support existing Windows NT 4.0 drivers.) WDM drivers are binary-compatible
across Windows NT 5.0 x86 and Windows 98 platforms and are source-portable
to Windows NT 5.0 RISC-based platforms. The WDM interfaces are based on
the Windows NT driver model but have significant extensions for Plug and Play
and power management.

A WDM driver includes the DDK header file wdm.h. Exclusively Windows
NT 5.0 kernel-mode drivers continue to include the same DDK header file as
for previous releases, ntddk.h, or another system-supplied header specific to a
type of device, such as scsi.h.

Windows NT 5.0 Plug and Play drivers aren't limited to using the WDM
interfaces. Drivers can call other interfaces to support legacy Windows NT
drivers, detection, or other Windows NT-specific capabilities that WDM doesn't
provide. Keep in mind that if a driver uses features specific to Windows NT, it
is no longer compatible with Windows 98. If a driver will be used under both
Windows NT and Windows 98, only WDM interfaces can be used.

Plug and Play is described in more detail later in the chapter.

Very Large Memory on Alpha
Windows NT 5.0 adds support for accessing up to 28 GB of memory on Digi
tal Alpha AXP systems. This extension is called VLM, for Very Large Memory.
VLM won't be supported on the x86 family of processors. As you'll see in the
next section, Microsoft is building a true 64-bit version of Windows NT that will
run on the Alpha AXP and the upcoming Intel IA64 architecture.

Windows NT 4.0 has always supported 64-bit offsets for file I/O opera
tions but has limited each process to a private 2-GB (or on Windows NT Server,
Enterprise Edition, a 3-GB) address space. VLM allows an application to use
64-bit pointers and therefore directly access an address space that is much
larger than 2 GB. This extension is being implemented to meet the needs of

465

INSIDE WINDOWS NT

466

data-intensive applications, such as database management systems, in which
the application needs to keep a large amount of information in physical memory.
Restricting that information to fit within the 2-GB (or even the 3-GB) address
space isn't acceptable for such applications.

With VLM, applications on Alpha systems can address up to 28 GB of
memory beyond their 2-GB private address space. Figure 10-2 shows the address
space layout and where the VLM region exists.

I OxOOOOOOOO 00000000

2-GB user space

.__....,.__.........,_..,.___. OxOOOOOOOO 7FFFFFFF

....---------. Ox00000001 00000000
28-GB VLM space

(accessible only with
__ ptr64 pointers)

.___,.......,....,_..,..........,.....,__. Ox00000007 FFFFFFFF

Ox00000008 00000000

Invalid addresses

...._ ______ __. OxFFFFFFFF 7FFFFFFF

....---------. OxFFFFFFFF 80000000

2-GB kernel space

....,.......,,..,.....,,.,...,...... __ ...,.o .,.,J OxFFFFFFFF FFFFFFFF

Figure 10-2
Address space layout on Alpha

To provide access to the large memory area, a 64-bit pointer data type is
required. (See __ ptr64 added in Visual C++ 5.0 for Alpha.) A small set of new
Win32 APis is being added to operate on memory using 64-bit pointers. These
functions provide the following basic services:

Ill Allocate, free, protect, and query page-aligned blocks of memory
addressable through 64-bit pointers (VirtuaAllocVlm, Virtua!FreeVlm,
VirtualProtectVlm, and VirtualQuery Vlm).

Ill Copy, move, zero, and fill memory using either 32-bit or 64-bit ad
dresses (MoveMemoryVlm, CopyMemoryVlm, FillMemoryVlm, and Zero
Memory Vlm).

Ill Map files into the large memory area (MapViewOJFileVlm, UnMap

ViewOJFileVlm).

TE N : Windows NT 5.0 and Beyond

11111 Read data from a noncached file into memory using a 64-bit address.
I/0 can be done asynchronously only by using either an I/0 comple
tion port or an event object for notification (ReadFileVlm).

II Write data from memory into a noncached file using a 64-bit pointer.
1/0 can be done asynchronously only by using either a completion
port-based completion or an event-object-based completion (Write-
FileVlm). ·

II Read and write the virtual memory of a specified process using 64-
bit pointers to define the memory range in the other process to be
addressed (ReadProcessMemory Vlm, WriteProcessMemory Vlm).

For interface details on these services, see MSDN.
VLM has an important restriction on the virtual addresses that can be

addressed by 64-bit pointers, namely that such addresses must be backed by
locked-down physical memory. In other words, all committed VLM memory
must be backed by physical memory that must be available at the time the
address space is committed. The virtual address space used to map this memory
can be reserved, but the actual memory committed must be backed by physi
cal memory. Page faults are never taken on VLM addresses unless these ad
dresses are being used to map an actual data file; hence, paging files are never
used for any of this memory. Page faults are taken only on mapped data files,
and each page will be faulted only once (when first accessed) and then effec
tively locked into memory, never to be removed.

Despite these restrictions, VLM does meet the need for the class of ap
plications described above that demand high-speed access to large portions
of memory.

User Improvements
Windows NT 5.0 will include the same Web-integrated graphical user interface
(GUI) as Windows 98, called the Active Desktop. This GUI is based on the evo
lution of Dynamic HTML rendering technology. The Active Desktop allows you
to browse your computer in the same way you surf Web sites. You can also use
Web pages as backgrounds in individual folder windows supported by the shell.
The following are some of the other user interface improvements included in
Windows NT 5.0:

II Customizable taskbar with a user-defined toolbar

II Personal FAX services (This capability was added after the release
of Windows NT 4.0.)

467

INSIDE WINDOWS NT

468

II Content-indexing support in the file system, which allows searches
based on the value of attributes of compound documents

II DirectX 5.0 support, which affords high-performance execution of
graphics-intensive applications, such as games

II DVD support

II Multiple monitor support

Three other user improvements-Task Scheduler, Windows Scripting Host, and
international extensions-warrant special attention.

Task Scheduler
Windows NT has a rudimentary scheduling facility called the Schedule service.
Its basic user interface is the At command, not an especially user-friendly tool
because it requires a fair amount of familiarity with the arcane world of the
command prompt. (The Windows NT Resource Kit includes a GUI interface
to the Schedule service.)

The new Task Scheduler in Windows NT 5.0 provides a user-friendly GUI
that is the same on both Windows 98 and Windows NT, with the exception of
added security features in Windows NT. The interface is fully integrated into
the operating system and is accessible from the My Computer icon on the desk
top. You can drag and drop programs right into Task Scheduler to quickly add
a new task, or you can use the Create Scheduled Task wizard.

You can schedule any script, program, or document to be invoked at any
time or any interval, every day to once a year, and on events such as system boot,
user logon, or system idle. A task is saved as a file with a .JOB extension, which
enhances the ability to move from computer to computer. Administrators can
create scheduled maintenance task files and place them where needed. You can
access the Task Folder remotely from the Network Neighborhood as well as
send tasks in e-mail.

On Windows NT, scheduled tasks are created and executed based on
standard Windows NT security permissions. Because Windows NT is a multiuser
environment, when tasks are created, a username and password are required
that will set the current security context in which the task will execute. This
requirement allows multiple tasks to run on a single computer in the security
context that was supplied. Multiple users can each have their own individual
scheduled tasks.

The Task Scheduler also provides a fully programmable set of interfaces.
The Task Scheduler is a COM-based object, which adds all the advantages of

T E N : Windows NT 5.0 and Beyond

COM, including language independence and platform independence (as well
as remote capabilities provided by DCOM). All of the functionality in the Task
Scheduler is completely accessible from these APis.

Windows Scripting Host
Windows NT 5.0 supports direct script execution from the GUI or the com
mand line. This support is provided through the Windows Scripting Host (WSH)
and allows administrators or users to save time by automating many user in
terface actions, such as creating a shortcut, connecting to a network server,
disconnecting from a network server, and so on.

Previously, the only native scripting language supported by the Windows
operating system was based on the MS-DOS command language. Although this
MS-DOS-based scripting language is fast and small, it has limited features com
pared to modern scripting languages. WSH supports a language-independent
architecture called ActiveX scripting, which supports newer, more robust script
ing languages such as Microsoft Visual Basic script and JavaScript but also allows
other software companies to build Microsoft ActiveX scripting engines for
languages such as Perl, TCL, REXX, and Python.

International Extensions
Since its initial design stages, Windows NT has incorporated international
support through Unicode and resource files that store user interface elements
in multiple languages. Windows NT 5.0 is the culmination of several years of
progressive improvements in the operating system's international support.

In previous editions of Windows NT, Asian and Middle East editions were
a superset of the core U.S. and European editions and contained additional
APis to handle more complex text input and layout requirements. In Windows
NT 5.0, all APis are contained in all language editions.

Windows NT 5.0 will support the input and display of languages used in
many locales. Because all language editions of Windows NT 5.0 are based on
the same core code-the same API set, the same character encoding, the same
fonts and character tables-it will be much easier to maintain multilingual
networks and machines using Windows NT 5.0 and to create applications that
can easily support multilingual documents.

In addition, every language edition will ship with the components nec
essary to support the input, display, and formatting of text in all languages that

. Windows NT supports. For example, each CD will include at least one font to
represent each script supported by the system.

469

INSIDE WINDOWS NT

System Extensions
Windows NT Server supports two integrated extensions to the operating sys
tem: Microsoft Cluster Server (bundled with Windows NT Server, Enterprise
Edition) and Windows NT Terminal Server for Windows NT Server 4.0. Win
dows NT 5.0 is being enhanced to support the evolution of these products.

Clusters
The first release of clustering support for Windows NT shipped with Windows
NT Server, Enterprise Edition 4.0. This initial version supported a two-server
cluster. This feature improves data and application availability by allowing two
servers to trade ownership of the same hard disks within a cluster. When a
system in the cluster fails, the cluster software automatically recovers the re
sources and transfers the work from the failed system to the other server within
the cluster. As a result, the failure of one system in the cluster doesn't affect
the other systems, and in many cases, the client applications are completely
unaware of the failure-meaning high server availability for users. In addition,
this two-server cluster system can be used for manual load-balancing and for
unloading servers for planned maintenance, without downtime.

With Windows NT 5.0, the same technology will roll forward with en
hancements for setup and ease of management as the primary focus. Future
releases will incorporate support for mere tha...-ri tv:o nodes.

Microsoft Terminal Server

470

Microsoft Windows NT Terminal Server is an extension to Windows NT Server
4.0 that provides multiuser access support to the Windows operating system
family product line. This allows access to 16-bit or 32-bit Windows-based appli
cations from any of the following types of desktops:

II A new class of low-cost hardware, commonly referred to as Win
dows-based Terminals, that will be marketed by third-party hard
ware vendors

II Any existing 32-bit Windows desktop operating system, such as
Microsoft Windows 95, Windows 98, or Windows NT Workstation
(running the 32-bit Windows NT Terminal Server client as a window
within the local desktop environment)

II Older 16-bit Windows-based desktops running the Windows 3.11
operating system (running the 16-bit Windows NT Terminal Server
client as a window within the local desktop environment)

TEN: Windows NT 5.0 and Beyond

• X-based Terminals, Apple Macintosh, MS-DOS, Network Comput
ers, and UNIX-based desktops (via a third-party add-on product)

Components of Windows NT Terminal Server
Windows NT Terminal Server consists of three components-the Windows NT
Server multiuser core, the "super-thin" Windows-based client software, and the
Remote Desktop Protocol.

Windows NT Server multiuser core The multiuser server core provides the
ability to host multiple, simultaneous client sessions on Windows NT Server.
Windows NT Terminal Server is capable of directly hosting compatible multi
user client desktops running on a variety ofWindows-based and non-Windows
based hardware. Standard Windows-based applications don't need to be
modified to run on the Windows NT Terminal Server, and all standard Win
dows NT-based management infrastructure and technologies can be used to
manage the client desktops.

Super-thin client The client software presents, or displays, the familiar 32-
. bit Windows user interface on a range of desktop hardware, from Windows

based Terminal devices to PCs running Windows 95, Windows 98, Windows NT
Workstation, or Windows for Workgroups.

Remote Desktop Protocol This protocol allows a super-thin client to com
municate with the Windows NT Terminal Server over the network. This pro
tocol is based on the International Telecommunications Union (ITU) T.120
protocol, which is currently used in Microsoft NetMeeting. It is tuned for high
bandwidth enterprise environments and will also support encrypted sessions.

Operating System Support in Windows NT 5.0
Windows NT Terminal Server for Windows NT 4.0 replaced a number of key
system components, such as the Win32 subsystem and NTOSKRNL.EXE. In
Windows NT 5.0, all the changes necessary to support Windows NT Terminal
Server are being integrated into the base product. (Details on packaging, pric
ing, and licensing ofWindows NT Terminal Server in the Windows NT 5.0 time
frame are yet to be decided.)

The main extension is the virtualization of sessions. A session consists of
the processes and other system objects (such as the window station, desktops,
and windows) that represent a single user's workstation logon session. Each
process will now map to a session-specific copy of the kernel-mode portion of
the Win32 subsystem (WIN32K.SYS). In addition, each session will have its

471

INSIDE WINDOWS NT

own copy of the Win32 subsystem process (CSRSS.EXE) and logon process
(WINLOGON.EXE). The session manager process (SMSS.EXE) is responsible
for creating new session objects, which means loading a session-private copy
of WIN32K.SYS and creating the session-specific instances of CSRSS and
WINLOGON.

To accomplish the virtualization of sessions, all sessionwide data structures
allocated by the Win32 subsystem are being moved from systemwide paged
pool to a new session pool, mapped at system virtual address OxA4000000.
When the process is first created, the address range OxAOOOOOOO through
OxAFFFFFFFF will be mapped to the session-specific copy ofWIN32K.SYS and
its associated memory pool that corresponds to the session that process belongs
to. A session working set is also being added so that processes within a session
will compete for physical memory among themselves, not against other sessions.

The system will still see a single pool of threads when it comes to sched
uling decisions-the scheduling code isn't being changed to be aware of ses
sions. And no changes are being made to the context-switch code to recognize
when switching from one thread in one session to another thread in another
session, because the process page directory for the process that owns the thread
will already have been initialized properly to point to the session-specific memory
areas in system space.

Session objects are created only if Terminal Server is enabled-in other
words, a typical Windows NT Workstation or Windows NT Server system won't
have the additional session data structures added to support Terminal Server.

Plug and Play and Power Management

472

Plug and Play is a combination of hardware and software support that enables
a computer system to recognize and adapt to hardware configuration changes
with little or no user intervention. With Plug and Play, a user can add or remove
devices dynamically, without manual configuration and without any intricate
knowledge of computer hardware. For example, a user can dock a portable
computer and use the docking station's Ethernet card to connect to the net
work without changing the configuration. Later, the user can undock that same
computer and use a modem to connect to the network-again without mak
ing any manual configuration changes.

Plug and Play allows a user to change a computer's configuration with the
assurance that all devices will work together and that the machine will boot
correctly after the changes are made. Before I describe the changes being made
to Windows NT to support Plug and Play and power management, let's review
how the Plug and Play architecture has evolved.

T E N : Windows NT 5.0 and Beyond

The Evolution of Plug and Play
Support for Plug and Play was first provided in Windows 95; since that time,
however, Plug and Play has evolved dramatically. This evolution is largely a
result of the OnNow design initiative, which defines a comprehensive, systemwide
approach to controlling system and device configuration and power manage
ment. One product of the OnNow initiative is the Advanced Configuration and
Power Interface (ACPI) version 1.0 specification, which defines a new system
board and BIOS interface that extends Plug and Play data to include power
management and other new configuration capabilities, all under complete
control of the operating system.

Unlike Plug and Play support in Windows 95, the Windows NT 5.0 Plug
and Play implementation doesn't rely on an Advanced Power Management
(APM) BIOS or a Plug and Play BIOS. These two BIOS implementations de
signed for Windows 95 were early attempts to support Plug and Play and power
management. ACPI provides these services for both Windows NT 5.0 and
Windows 98.

The ACPI methods defined are independent of the operating system or
the CPU. ACPI specifies a register-level interface to core Plug and Play and
power management functions and defines a descriptive interface for additional
hardware features. This arrangement gives system designers the ability to imple
ment a range of Plug and Play and power management features with different
hardware designs while using the same operating system driver. ACPI also
provides a generic system-event mechanism for Plug and Play and power
management.

Windows NT 5.0 Implementation
The Windows NT 5.0 Plug and Play architecture is designed to meet the fol
lowing two goals:

m Extend the existing Windows NT input/output infrastructure to sup
port Plug and Play and power management while also supporting
industry hardware standards for Plug and Play

m Achieve common device driver interfaces that support Plug and Play
and power management for many device classes under Windows NT
5.0 and Windows 98

In Windows NT 5.0, Plug and Play support is optimized for laptop, work
station, and server computers that include ACPI system boards. In addition,
Plug and Play device driver supporffor many device classes is provided by

473

INSIDE WINDOWS NT

474

WDM, which also supports power management and other new capabilities that
the operating system can configure and control.

Windows NT 5.0 provides the following support for Plug and Play:

• Automatic and dynamic recognition of installed hardware This
support includes initial system installation, recognition of Plug and
Play hardware changes that occur between system boots, and re
sponse to run-time hardware events such as dock/undock and de
vice insertion/removal.

ii Hardware resource allocation (and reallocation} Drivers for Plug
and Play devices do not assign their own resources. Instead, the re
quired resources for a device are identified when the operating sys
tem enumerates the device. The Plug and Play Manager retrieves
µte requirements for each device during resource allocation. Based
on the resource requests each device makes, the Plug and Play Man
ager assigns the appropriate hardware resources such as I/O ports,
IRQs, DMA channels, and memory locations. The Plug and Play Man
ager reconfigures resource assignments when needed, such as when
a device is added to the system and requests resources that are al
ready in use.

11111 Loading of appropriate drivers The Plug and Play Manager deter
mines which drivers are required to support a particular device and
loads those drivers.

Iii An interface for driver interaction with the Plug and Play system
The interface consists primarily of I/O routines, Plug and Play I/O
request packets (IRPs), required driver entry points, and informa
tion in the registry.

• Interaction with power management One of the key features of
both Plug and Play and power management is dynamic handling of
events. The addition or removal of a device is an example of such a
dynamic event, as is the ability to awaken a device or put it to sleep.
Plug and Play and power management both use WDM-based func
tions and have similar methods for responding to dynamic events.

II Registration for device notification events Plug and Play enables
user-mode code to register for and be notified of certain Plug and
Play events. The R.egi,sterDeviceNotification routine allows callers to
filter exactly the class or device for which they want to receive noti-

T E N : Windows NT 5.0 and Beyond

fication. The method of notification can be specific, such as a file
system handle, or general, such as a class of devices. Legacy Win
dows NT notification methods will continue to work as before.

Driver Changes
The native Windows NT 5.0 Plug and Play support results in the following
changes for developers who previously created drivers under the Windows NT
4.0 device driver model:

• Bus drivers separate from the HAL Bus drivers control an I/O bus,
including per-slot functionality that is device-independent. In the
new architecture, bus drivers have moved out of the hardware ab
straction layer (HAL) to coordinate with changes and extensions
made to existing kernel-mode components, such as the executive, de
vice drivers, and the HAL. (Microsoft generally provides Bus drivers.)

Ill New methods and capabilities to support device installation and
configuration The new design includes changes and extensions to
existing user-mode components, such as the Spooler, class install
ers, Control Panel applications, and Setup. In addition, new kernel
mode and user-mode Plug and Play-enabled components have been
added.

• New Plug and Play APls to read and write information from the registry
For the new design, changes and extensions were made to the regis
try structure. This structure supports Plug and Play and allows the
registry to be enhanced in future versions of Windows NT, while also
providing backward compatibility.

Windows NT 5.0 will support legacy Windows NT drivers, but since these
don't support Plug and Play and power management, systems running these
drivers will have reduced capabilities in these two areas. Manufacturers who
want to support complete Plug and Play capabilities for their devices and who
want the same drivers to function on both Windows NT and Windows 98 will
need to develop new drivers that integrate the latest Plug and Play and power
management functionality.

The Windows NT 5.0 DDK documents the driver modifications required
to allow current drivers to work in a Windows NT 5.0 Plug and Play system.

475

INSIDE WINDOWS NT

Windows NT 5.0 Plug and Play Architecture
The components involved in Plug and Play are shown in Figure 10-3 and de
scribed in the following subsections.

Class
installers

Plug and Play manager

Enumeration
control

Hardware
event

management .

Control panel
applets

Spooler Other

.---------- ...
1 Applications ~

----.:ooo~
··-·-.. ··-·-· ·-- -·~·-.>-·-' User mode

Kernel mode

Other executive components

Executive 1/0 interface Plug and Play interface Power management interface

~ - - - - - - - - - - - - - -1 ~ - - - - - - - - - - : •w1nCiowsNT Plug}

1 WDM Plug and Play bus drivers : 1 WDM device drivers •. : and Play drivers 1

:1ACPI 11PCCardl~EJ::ooot:ooi
·-·~. - •.. ~ .-· "'!"" -··""':' - ~ - .- -,--- ..;. 1_ ~ ~ ~.-.~-..~.~ !"!!'~~,.-':I,~,?!'\,,!"'"'<.,...-"'"!,.!'!"'",·.- .. ~!

1, Hardware abstraction layer (HAL)

Figure 10-3
Windows NT 5.0 Plug and Play architecture

476

1/0 Manager
The I/O manager, described in Chapter 7, provides core services for device
drivers. It translates user-mode read and write commands into read or write
IRPs. It manages all the other main operating system IRPs. These interfaces
work as they did in Windows NT 4.0.

T E N : Windows NT 5.0 and Beyond

Kernel-Mode Plug and Play Manager
The kernel-mode Plug and Play Manager directs bus drivers to perform enu
meration and configuration and device drivers to add devices, start devices,
and so on. It also coordinates with the user-mode Plug and Play counterpart
to pause or remove devices that are available for such actions.

The Plug and Play Manager maintains a device tree, viewable through
Device Manager, which keeps track of the active devices in the system and
information about those devices. The Plug and Play Manager updates the de
vice tree as devices are added and removed or as resources are reallocated. The
device tree is hierarchical, with devices on a bus represented as children of the
bus adapter or controller. The registry is the central repository for static hard
ware information. Plug and Play system components and drivers build, main
tain, and access new and existing subtrees in the registry.

Power Manager and Policy Manager
The Power Manager is the kernel-mode component that works in combination
with the Policy Manager to handle power management APls, coordinate power
events, and generate power management IRPs. For example, when several
devices need to be turned off, the Power Manager collects those requests, de
termines which requests must be serialized, and then generates appropriate
power management IRPs.

The Policy Manager monitors activity in the system and integrates user
status, application status, and device driver status into power policy. In speci
fied circumstances or on request, the Policy Manager generates IRPs to change
device power states.

WDM Interface for Plug and Play
The I/O system provides a layered architecture for drivers that includes WDM
drivers, driver layers, and device objects.

Types of drivers From the Plug and Play perspective, there are three kinds
of drivers:

ill A bus driver services a bus controller, adapter, bridge, or any de
vice that has child devices. Bus drivers are required drivers, and
Microsoft generally provides them; each type of bus on a system
has one bus driver.

477

INSIDE WINDOWS NT

478

II A function driver is the main device driver and provides the opera
tional interface for its device. It is a required driver unless the de
vice is used raw (an implementation in which I/O is done by the
bus driver and any bus filter drivers). The function driver for a de
vice is typically implemented as a driver/minidriver pair. In such
driver pairs, a class driver (usually written by Microsoft) provides the
functionality required by all devices of that type, and a minidriver
(usually written by the device vendor) provides device-specific func
tionality. The Plug and Play Manager loads one function driver for
each device.

II A filter driver sorts 1/0 requests for a bus, a device, or a class of de
vices. Filter drivers are optional and can exist in any number, placed
above or below a function driver and above a bus driver. Usually, fil
ter drivers are supplied by system original equipment manufacturers
(OEMs) or independent hardware vendors (IHVs).

In most cases, lower-level filter drivers modify the behavior of device hard
ware. For example, a lower-level class-filter driver for mouse devices could pro
vide acceleration, performing a nonlinear conversion of mouse movement data.

Upper-level filter drivers usually provide added-value features for a de
vice. For example, an upper-level device filter driver for a keyboard can enforce
additional security checks.

Driver layers Each device has two or more driver layers: a bus driver for the
underlying I/0 bus (or the Plug and Play Manager for root-enumerated de
vices) and a function driver for the device. Optionally, one or more filter drivers
can be provided for the bus or device.

Device objects A driver creates a device object for each device it controls;
the device object represents the device to the driver. The three kinds of device
objects that pertain to Plug and Play are physical device objects, functional
device objects, and filter device objects. Physical device objects represent a
device on a bus; every Plug and Play API that refers to a device refers to the
physical device object. Functional device objects represent the functionality of
a device to a function driver. Filter device objects represent a filter driver as
a hook _to add value. These three kinds of device objects are all of the type
DEVICE_OBJECT, but they are used differently and can have different device
extensions.

T E N : Windows NT 5.0 and Beyond

WDM Bus Drivers
Bus power management and Plug and Play are controlled by WDM bus driv
ers, which are standard WDM drivers that expose bus capabilities. In the Plug
and Play context, any device from which other devices are enumerated is re
ferred to as a bus. A bus driver responds to new Plug and Play and power
management IRPs and can be extended using filter drivers.

The bus driver is primarily responsible for the following tasks:

II Enumerating the devices on its bus

• Reporting dynamic events on its bus to the operating system

II Responding to Plug and Play and power management IRPs

II Multiplexing access to the bus (for some buses)

• Generically administering the devices on its bus

During enumeration, a bus driver identifies the devices on its bus and
creates device objects for them. The method a bus driver uses to identify con
nected devices depends on the particular bus.

A bus driver performs certain operations on behalf of the devices on its
bus but usually doesn't handle reads and writes to the devices on its bus. (A
device's function driver handles these.) A bus driver acts as a function driver
for its controller, adapter, bridge, or other device.

Microsoft provides bus drivers for most common buses, including Periph
eral Component Interconnect (PCI), Plug and Play Industry Standard Archi
tecture (ISA), Small Computer System Interface (SCSI), and universal serial
bus (USB). IHVs or OEMs can provide other bus drivers. A bus driver can be
implemented as a driver/minidriver pair, the way a SCSI port/miniport pair
drives a SCSI host adapter. In such driver pairs, one driver is linked to the
second driver, and the second driver is a DLL.

The ACPI driver fulfills the role of both bus driver and function driver.
ACPI allows the system to learn about devices that either don't have a standard
way to enumerate themselves (that is, legacy devices) or are newly defined ACPI
devices to be enumerated by ACPI. ACPI also installs upper-level filter drivers
for devices that have functionality beyond the standard for their bus. For ex
ample, if a PCI bus driver installs a graphics controller with power controls that
aren't supported by the PCI bus, the device can access its added functionality
if the ACPI driver loads an upper-level filter driver for it.

479

INSIDE WINDOWS NT

WDM Device Drivers
WDM device drivers are usually the function driver/minidriver pair and filter
drivers mentioned earlier. In addition to providing the operational interface
for its device, function drivers play an important role in a power-managed
system, contributing information (as the policy owner for the device) about
power management capabilities and carrying out actions related to transitions
between sleeping and fully-on power states.

User-Mode Plug and Play Components
The Windows NT 5.0 user-mode APis for controlling and configuring devices
in a Plug and Play environment are 32-bit extended versions of Windows 95-
based Configuration Manager APis. In Windows 95, the Configuration
Manager is a virtual device driver (V xD) that exposes these routines as services
to both ring 0 and ring 3 components. In Windows NT 5.0, these routines ex
pose functionality from the user-mode Plug and Play Manager and are exclu
sively user-mode APis. These APis can be used by applications for customized
hardware event management and to create new hardware events.

Plug and Play Certification
Although Plug and Play brings exciting new functionality to the Windows NT
I/O system, its success will rely on the timely availability of certified Plug and
Play device drivers when the operating system ships. Therefore, device driver
writers need to incorporate Plug and Play and power management function
ality into their drivers as soon as possible so that they can be submitted to the
Microsoft Windows Hardware Quality Lab for testing and certification. (See
www.microsoft.com/hwdev for more information.)

64-Bit Windows NT

480

In 1997, Microsoft announced plans to implement a fully 64-bit version of
Windows NT. The target processor architectures are the existing 64-bit Alpha
AXP platform and the upcoming Intel 64-bit (IA64) processor family (the
first implementation code-named Merced). A fully 64-bit Windows NT means
that each 64-bit process will have a large, flat address space (initially at least
512 GB in size). The reason for supporting this platform is the same reason
Microsoft moved from a 16-bit to a 32-bit address space-ever increasing
requirements for storing and processing huge amounts of data in memory.

TE N : Windows NT 5.0 and Beyond

N 0 TE Although the VLM extensions in Windows NT 5.0 allevi
ate to some degree the address space limitations in 32-bit Windows
NT, they present a variation of the process address space that re
quires special application support. Also, processes are limited to the
storing of data in the large memory area. Finally, only the VLM
enabled Win32 API functions support 64-bit pointers-many other
system functions don't. In 64-bit Windows NT, all APis that accept
pointers will accept 64-bit pointers.

In 64-bit Windows NT, the Win32 API will be extended to a true 64-bit
programming interface. All the parameters that currently reference 32-bit
memory addresses will be widened to 64-bit pointers. This new API will be
designed to make porting from Win32 as straightforward as possible and will
allow a vendor to maintain a single source that can be compiled to produce
both Win32 and 64-bit binaries. The 64-bit Windows NT will run existing 32-bit
applications on both Alpha and Merced and new 64-bit applications in native
64-bit mode. However, mixing of the two within the same process won't be
permitted.

This was just a brief preview of the strategy to provide 64-bit Windows NT.
Developers should stay tuned for further information from Microsoft on
plans for 64-bit Windows NT and how you can prepare for 64-bit applications
now by using the new Win32 header files and data type definitions to produce
a source code base that can be compiled to produce both 32-bit and 64-bit
binaries.

Conclusion
In this chapter, you've gotten a glimpse of the changes in Windows NT 5.0.
Again, for inore complete information about the new or enhanced features in
Windows NT 5.0, see the white papers and technical specifications available on
Microsoft's Web site as well as on MSDN and TechNet.

481

GLOSSARY

access control list (ACL) The part of a security descriptor that enumerates
who has what access to an object. The owner of an object can change the
object's ACL to allow or disallow others access to the object. An ACLis made
up of an ACL header and zero or more access control entry (ACE) struc
tures. An ACL with zero ACEs is called a null ACL and indicates that no user
has access to the object.

access token A data structure that contains the security identification of a
process or a thread, which includes its security ID (SID), the list of groups
that the user is a member of, and the list of privileges that are enabled and
disabled. Each process has a primary access token that it inherits by default
from its creating process.

affinity mask A bitmask that specifies the processors on which the thread is
allowed to run. The initial thread affinity mask is inherited from the pro
cess affinity mask.

APC queue A queue in which asynchronous procedure calls (APCs) waiting
to execute reside. The APC queues (one for user mode and one for kernel
mode) are thread-specific-each thread has its own APC queues (unlike the
DPC queue, which is systemwide).

asymmetric multiprocessing (ASMP) A multiprocessing operation system
that typically selects one processor to execute operating system code while
other processors run only user code.

asynchronous 1/0 An 1/0 model that allows an application to issue an 1/0
request and then continue executing while the device transfers the data.
This type ofl/O can improve an application's throughput because it allows
the application to continue with other work while an 1/0 operation is in
progress.

asynchronous procedure call (APC) A function that provides a way for user ·
programs and system code to execute code in the context of a particular user
thread (and hence a particular process address space). An APC can be either

483

INSIDE WINDOWS NT

484

kernel mode or user mode. (Kernel-mode APCs don't require "permission"
from a target thread to run in that thread's context, as user-mode APCs do.)

attribute list A special kind of file attribute in an NTFS file header that con
tains additional attributes. The attribute list is created if a particular file has
too many attributes to fit in the MFT record. The attribute list attribute
contains the name and type code of each of the file's attributes and the file
reference of the MFT record where the attribute is located.

automatic working set trimming A technique the memory manager uses
when physical memory runs low to increase the amount of free memory
available in the system.

bad-cluster file A system file (filename $BadClus) that records any bad spots
on the disk volume.

balance set manager A system thread that wakes up once per second to
check and possibly initiate various scheduling and memory management
related events.

bitmap file A system file (filename $Bitmap) in which NTFS records the
allocation state of the volume. The data attribute for the bitmap file con
tains a bitmap, each of whose bits represents a cluster on the volume, iden
tifying whether the cluster is free or has been allocated to a file.

boot file A system file (filename $Boot) that stores the Windows NT boot
strap code.

cache manager The component of the Windows NT executive that provides
systemwide caching services for NTFS and other file system drivers, includ
ing network file system drivers (servers and redirectors).

careful write A technique for constructing a file system's l/0 and caching
support. See also write-through.

checked build A special debug version of Windows NT Workstation that is
available only as part of the MSl)N Professional (or higher) subscription.
(No checked build is available for Windows NT Server.) The checked build
is created by compiling the Windows NT sources with the compile-time flag
DEBUG set to TRUE.

Glossary

checkpoint records A checkpoint record that helps. NTFS determine what
processing would be needed to recover a volume if a crash were to occur
immediately. This record also includes redo and undo information.

class drivers A type of kernel-mode device driver that implements the J/0
processing for a particular class of devices, such as disk, tape, or CD-ROM.

clock interrupt handler A system routine that updates the system time and
then decrements a counter that tracks how long the current thread has run.

cluster factor The cluster size on a volume, which is established when a user
formats the volume with either the Format command or the Disk Adminis
trator utility.

clusters Same-size allocation units into which a volume is divided. Each cluster
must be uniquely numbered using 64 bits.

collided page fault A fault that occurs when another thread or process faults
a page that is currently being in-paged.

context switch The procedure of saving the volatile machine state associated
with a running thread, loading another thread's volatile state, and starting
the new thread's execution.

control objects A set of kernel objects that establishes semantics for control
ling various operating system functions. This set includes the kernel process
object, the asynchronous procedure call (APC) object, the deferred proce
dure call (DPC) object, and several objects used by the I/O system, such as

. the interrupt object.

deferred procedure call (DPC) A routine that performs most of the work
involved in handling a device interrupt after the interrupt service routine
(JSR) executes. The DPC routine executes at an interrupt request level (JRQL)
that is lower than that of the JSR to avoid blocking other interrupts unnec
essarily. A DPC routine initiates I/O completion and starts the next queued
J/O operation on a device.

device drivers Loadable kernel-mode modules (typically ending in .SYS)
that interface between the I/O system and the relevant hardware. Device
drivers on Windows NT don't manipulate hardware directly, but rather they
call parts of the HAL to interface with the hardware.

485

INSIDE WINDOWS NT

486

device objects Data structures that represent a physical, logical, or virtual
device on the system and describe its characteristics, such as the alignment
it requires for buffers and the location of its device queue to hold incom
ing 1/0 request packets.

dirty page threshold The number of pages that the system cache keeps in
memory before waking up the cache manager's lazy writer system thread to
write out pages back to the disk. This value is computed at system initializa
tion time and depends on physical memory size and the value of the regis
try key HKLM\System ... \Control\Session Manager\Memory Management\
LargeSystemCache.

dispatch code Instructions of assembly language code stored in an interrupt
object when it is initialized. When an interrupt occurs, this code is executed.

dispatch routines The main functions that a device driver provides. Some
examples of dispatch routines are open, close, read, and write, and any other
capabilities the device, file system, or network supports. When called on to
perform an 1/0 operation, the 1/0 manager generates an IRP and calls a
driver through one of the driver's dispatch routines.

dispatcher database A set of data structures the kernel maintains to make
thread-scheduling decisions. The dispatcher database keeps track of which
threads are waiting to execute and which processors are executing which
threads. See also dispatcher ready queue.

dispatcher header A data structure that contains the object type, signaled
state, and a list of the threads waiting on that object.

dispatcher objects A set of kernel objects that incorporates synchronization
capabilities and alters or affects thread scheduling. The dispatcher objects
include the kernel thread, mutex (called mutant internally), event, kernel
event pair, semaphore, timer, and waitable timer.

dispatcher ready queue The most important structure in the dispatcher
database (located at KiDispatcher&adyListHea<l). The dispatcher ready queue
is really a series of queues, one queue for each scheduling priority. The
queues contain threads that are in the ready state, waiting to be scheduled
for execution.

driver objects Data structures that represent an individual driver in the
system and record for the 1/0 manager the address of each of the driver's
dispatch routines (entry points).

Glossary

driver support routines Routines called by device drivers to accomplish their
I/0 requests.

dynamic-link library (DLL) A set of callable subroutines linked as a binary
image that can be dynamically loaded by applications that use them.

environment subsystems User processes that expose the native operating
system services to user applications, thus providing an operating system
environment, or personality. Windows NT ships with three environment
subsystems: Win32, POSIX, and OS/2 1.2.

event An object with a persistent state (signaled or not signaled) that can be
used for synchronization.

exception A synchronous condition that results from the execution of a par
ticular instruction. Running the same program with the same data under the
same conditions can reproduce exceptions.

exception dispatcher A kernel module that services all exceptions, except
those simple enough to be resolved by the trap handler. The exception
dispatcher's job is to find an exception handler that can "dispose of" the
exception.

executive The upper layer of NTOSKRNL.EXE. (The kernel is the lower
layer.) The executive contains the process and thread manager, the virtual
memory manager, the memory manager, the security reference monitor, the
I/O system, and the.cache manager. See also kernel.

executive objects Objects implemented byvarious components of the exe
cutive (such as the process manager, memory manager, I/O subsystem, and
so on). The executive objects and object services are primitives that the en
vironment subsystems use to construct their own versions of objects and
other resources. Because executive objects are typically created either by an
environment subsystem on behalf of a user application or by various com
ponents of the operating system as part of their normal operation, many of
them contain (encapsulate) one or more kernel objects. See also kernel objects.

executive resources Resources that provide both exclusive access (like a
· mutex) as well as shared read access (multiple readers sharing read-only

access to a structure). Because executive resources are available only to kernel
mode code, they are not accessible from the Win32 APL

487

INSIDE WINDOWS NT

488

fast 1/0 A means of reading or writing a cached file without going through
the work of generating an I/O request packet (IRP).

fast LPC A special interprocess communication facility used to send messages
between threads.

file mapping objects Win32 API underlying primitives in the memory man
ager that are used to implement shared memory (called section objects inter
nally). See also section object.

file reference A 64-bit value that identifies a file on an NTFS volume. The
file reference consists of a file numb.er and a sequence number. The file
number corresponds to the position of the file's file record in the master file
table minus 1 (or to the position of the base file record minus 1 if the file
has more than one file record).

file system driver A type of kernel-mode device driver that accepts I/0 re
quests to files and satisfies the requests by issuing its own, more explicit,
requests to physical device drivers.

file system filter driver A type of kernel-mode device driver that intercepts
I/O requests, performs additional processing, and passes them on to lower
level drivers.

filter drivers See file system filter driver.

foreground application The process that owns the thread that owns the win
dow that is in focus.

free build The version of the Windows NT system that can be purchased as
a retail product. It is built with full compiler optimizations turned on and
has internal symbol table information stripped out from the images. See also
checked build.

GDI batching A technique for accumulating graphics calls made by a Win32
application and then sending them as a "batch." GDI batching prevents
unnecessary calls to the graphics subsystem, thus improving graphics per
formance.

hardware abstraction layer (HAL) A loadable kernel-mode module
(HAL.DLL) that provides the low-level interface to the hardware platform
on which Windows NT is running. The HAL hides hardware-dependent

Glossary

details such as I/O interfaces, interrupt controllers, and multiprocessor.
communication mechanisms-any functions that are architecture-specific
and machine-dependent.

heap A region of one or more pages that can be subdivided and allocated
in smaller chunks by a set of functions provided by the heap manager.

heap manager A set of functions that allocate and deallocate variable amounts
of memory (not on a page-size granularity). The heap manager functions
exist in two places: NTDLL.DLL and NTOSKRNL.EXE. The subsystem
APis (such as the Win32 heap APis) use the copy in NTDLL, and various
executive components and device drivers use the copy in NTOSKRNL.

hyperspace A special region used to map the process working set list and to
temporarily map other physical pages for such operations as zeroing a page
on the free list (when the zero list is empty and a zero page is needed), in
validating page table entries in other page tables (such as when a page is
removed from the standby list), and on process creation to set up a new
process's address space.

1/0 request packet (IRP) A data structure that controls how the I/0 opera
tion is processed at each stage. Most I/0 requests are represented by an IRP,
which travels from one I/O system component to another.

1/0 subsystem API The internal executive system services (such as NtReadFile
and NtWriteFile) that subsystem DLLs call to implement a subsystem's docu
mented I/O functions.

1/0 system The Windows NT executive component that accepts I/O requests
(from both user-mode and kernel-mode callers) and delivers them, in a
different form, to I/O devices.

ideai processor The preferred processor that a particular thread should run
on.

idle summary A bitmask (KildleSummary) in which each set bit represents
an idle processor.

impersonation A capability that allows threads to have a different access
token than that of the process.

489

INSIDE WINDOWS NT

490

initialization routine A driver routine that the I/O manager executes when
it loads the driver into the operating system. The initialization routine cre
ates system objects that the I/O manager uses to recognize and access the
driver.

in-paging 1/0 A condition that occurs when a read operation must be issued
to a file (paging or mapped) to satisfy a page fault. The in-page I/O opera
tion is synchronous-the thread waits on an event until the I/0 completes
and is not interruptible by asynchronous procedvre call (APC) delivery.

intelligent file read-ahead A technique that predicts what data the calling
thread is likely to read next based on the data that it is currently reading.

interrupt An asynchronous event (one that can occur at any time) that is
unrelated to what the processor is executing. Interrupts are generated pri
marily by I/0 devices, processor clocks, or timers, and they can be enabled
(turned on) or disabled (turned off).

interrupt dispatch table (IDT) A data structure that Windows NT uses to
locate the routine that will handle a particular interrupt. The interrupt
request level (IRQL) of the interrupting source serves as a table index, and
table entries point to the interrupt-handling routines.

interrupt dispatcher A submodule of the kernel's trap handler that responds
to interrupts.

interrupt object A kernel control object that allows device drivers to register
interrupt service routines (ISRs) for their devices. An interrupt object con
tains all the information the kernel needs to associate a device ISR with a
particular level of interrupt, including the address of the ISR, the interrupt
request level (IRQL) at which the device interrupts, and the entry in the
kernel's interrupt dispatch table with which the ISR should be associated.

interrupt request levels (IRQLs) A ranking of interrupts by priority. A pro
cessor has an IRQL setting that threads can raise or lower. Interrupts that
occur at or below the processor's IRQL setting are blocked, or masked, whereas
interrupts that occur above the processor's IRQL setting are not masked.

interrupt service routine (ISR) A device driver routine that the kernel's inter
rupt dispatcher transfers control to when a device issues an interrupt. In the
Windows NT I/0 model, ISRs run at a high device interrupt request level

Glossary

(IRQL), so they perform as little work as possible to avoid blocking lower
level interrupts unnecessarily. An ISR queues a deferred procedure call
(DPC), which runs at a lower IRQL, to execute the remainder of interrupt
processing. Only drivers for interrupt-driven devices have ISRs; a file system,
for example, doesn't have one.

job object New namable, securable, sharable object in Windows NT 5.0 that
controls certain attributes of processes associated with the job. A job object's
basic function is to allow groups of processes to be managed and manipu
lated as a unit. The job object als~ records basic accounting information for
all processes associated with the job and for all processes that were associ
ated with the job but have since terminated.

kernel The lowest layer in NTOSKRNL.EXE. The kernel, a component of
the executive, determines how the operating system uses the processor or
processors and ensures that they are used prudently. The kernel provides
thread scheduling and dispatching, trap handling and exception dispatch
ing, interrupt handling and dispatching, and multiprocessor synchroniza
tion. See also executive.

kernel mode A privileged mode of code execution in a processor in which
all memory is totally accessible and all CPU instructions can be issued.
Operating system code (such as system services and device drivers) runs in
kernel mode. See also user mode.

kernel objects A primitive set of objects implemented by the Windows NT
kernel. These objects are not visible to user-mode code but are created and
used only within the executive. Kernel objects provide fundamental capa
bilities, such as synchronization, on which executive objects are built. See also
executive objects.

kernel-mode device driver The only type of driver that can directly control
and access hardware devices.

kernel-mode graphics driver A Win32 subsystem display or print device
driver that translates device-independent graphics (GDI) requests into device
specific requests.

key A mechanism to refer to data in the registry. Although keys appear in
the object manager namespace, the registry manages them, in a way simi
lar to how it manages file objects. Zero or more key values are associated with
a key object; key values contain data about the key.

491

INSIDE WINDOWS NT

492

lazy writer A set of system threads that call the memory manager to flush
cache contents to disk as a background activity (asynchronous disk writing).
The cache manager optimizes disk 1/0 by using its lazy writer.

local procedure call (LPC) An interprocess communication facility for high
speed message passing (not available through the Win32 API but rather an
internal mechanism available only to Windows NT operating system com
ponents). LPCs are typically used between a server process and one or more
client processes of that server. An LPC connection can be established be
tween two user-mode processes or between a kernel-mode component and
a user-mode process.

local security authority (LSA) server A user-mode process running the image
LSASS.EXE that is responsible for the local system security policy (such as
which users are allowed to log on to the machine, password policies, the list
of privileges granted to users and groups, and the system security auditing
settings), user authentication, and sending security audit messages to the
Event Log.

local security authority (LSA) server policy database A database (stored
in the registry under HKEY_LOCAL_MACHINE\Security) that contains
the system security policy settings. This database includes such information
as what domains are trusted to authenticate logon attempts, who has per
mission to access the system and how (interactive, network, and service logons),
who is assigned which privileges, and what kind of security auditing is to be
performed.

log file A metadata file (filename $LogFile) NTFS uses to record all opera
tions that affect the NTFS volume structure, including file creation or any
commands, such as Copy, that alter the directory structure. The log file is
used to recover an NTFS volume after a system failure.

logging A transaction-processing technique NTFS uses to maintain file sys
tem integrity in the case of system crashes or other failures. In NTFS log
ging, the suboperations of any transaction that alters important file system
data structures are recorded in a log file before they are carried through
on the disk so that if the system crashes, partially completed transactions
can be redone or undone when the system comes back online.

logical cluster numbers (LCNs) The numbering of all clusters from the
beginning of the volume to the end with which NTFS refers to physical .

Glossary

locations on a disk. To convert an LCN to a physical disk address, NTFS mul
tiplies the LCN by the cluster factor to get the physical byte offset on the
volume, as the disk driver interface requires.

logical sequence numbers (LSNs) The numbers that NTFS uses to identify
records written to the log file.

logon process A user-mode process running WINLOGON.EXE that is re
sponsible for capturing the username and password, sending them to the
local security authority server for verification, and creating the initial pro
cess in the user's session.

look-aside list A fast memory allocation mechanism that contains only fixed
sized blocks. Look-aside lists can be either pagable or nonpagable, so they
are allocated from paged or nonpaged pool.

mapped file 1/0 The ability to view a file residing on disk as part of a process's
virtual memory. A program can access the file as a large array without buff
ering data or performing disk 1/0. The program accesses memory, and the
memory manager uses its paging mechanism to load the correct page from
the disk file. If the application writes to its virtual address space, the memory
manager writes the changes back to the file as part of normal paging.

master file table (MFT) The heart of the NTFS volume structure. The MFT
is implemented as an array of file records. The size of each file record is fixed
at 1 KB, regardless of cluster size.

memory manager The Windows NT executive component that implements
demand-paged virtual memory, giving each process the illusion that it has
a 4-GB 32-bit address space (while mapping a subset of that address space
to physical memory).

metadata Data that describes the files on a disk; also called volume structure data.

metadata files A set of files in each NTFS volume that contains the informa
tion used to implement the file system structure.

MFT mirror An NTFS metadata file (filename $MFTMirr) located in the
middle of the disk called that contains a copy of the first few rows of the
master file table.

493

INSIDE WINDOWS NT

494

.miniport drivers A type of kernel-mode device driver that maps a generic
1/0 request to a type of port into a adapter type, such as a specific SCSI
adapter.

mirror A capability of the fault tolerant driver to duplicate data from one disk
onto another disk so that a redundant copy can always be retrieved. This
support is commonly called RAID level 1.

mirror set A technique by which the contents of a partition on one disk are
duplicated in an equal-size partition on another disk.

modified page writer A thread in the virtual memory manager that is respon
sible for limiting the size of the modified page list by writing pages to their
backing store locations when the list becomes too big. The modified page
writer consists of two system threads: one to write out modified pages
(MiModifiedPageWriter) to the paging file and a second one to write modi
fied pages to mapped files (MiMappedPageWriter).

mount A technique NTFS uses when it first accesses a volume; in this context,
to mount means to prepare the volume for use. To mount the volume, NTFS
looks in the boot file to find the physical disk address of the master file table.

MSDN Microsoft Developer Network, Microsoft's support program for devel
opers. MSDN offers four CD-ROM subscription programs: MSDN Library,
Professional, Enterprise, and Universal

mutant Internal name for a mutex.

mutex A synchronization mechanism used to serialize access to a resource.

network logon service A user-mode service inside the SERVICES.EXE pro
cess that responds to network logon requests. Authentication is handled as
local logons are, by sending them to the LSASS process for verification.

network redirectors and servers File system drivers that transmit remote
1/0 requests to a machine on the network and receive such requests, respec
tively.

nonpaged pool Memory pool that consists of ranges of system virtual ad
dresses that are guaranteed to be resident in physical memory at all times
and thus can be accessed from any address space without incurring paging

Glossary

I/O. Nonpaged pool is created at system initialization and is used by kernel
mode components to allocate system memory. There are two types of non
paged pools: one for general use, and a small one (four pages) reserved for
emergency use when nonpaged pool is full and the caller can't tolerate al
location failures.

NTDLL.DLL A special system-support library primarily for the use of sub
system DLLs that contains System service dispatch stubs to Windows NT
executive system services and internal support functions used by subsystems,
subsystem DLLs, and other native images.

NTKRNLMP.EXE The executive and kernel for multiprocessor systems.

NTOSKRNL.EXE The executive and kernel for uniprocessor systems.

object In the Windows NT executive, a single, run-time instance of a stati
cally defined object type.

object attribute A field of data in an object that partially defines the object's
state.

object directory A container object for other objects. The object directory
is used to implement the hierarchical namespace within which other object
types are stored.

object handle An index into a process-specific handle table, pointed to by
the executive process (EPROCESS) block.

object manager The Windows NT executive component responsible for creat
ing, deleting, protecting, and tracking objects. The object manager centralizes
resource control operations that would otherwise be scattered throughout
the operating system.

object type A system-defined data type, services that operate on instances of
the data type, and a set of object attributes (sometimes called an object class).

page directory A page the memory manager creates to map the location of
all page tables for that process. Each process has a single page directory.

page directory entries (PD Es) The page directory is composed of PD Es, each
of which is currently 4 bytes long and describes the state and location of all
the possible page tables for that process.

495

INSIDE WINDOWS NT

496

page fault A reference to an invalid page. The kernel trap handler dispatches
this kind of fault to the memory manager fault handler (MmAccessFault) to
resolve.

page frame database A database that describes the state of each page in
physical memory. Pages are in one of eight states: active (also called valid),
transition, standby, modified, modified no write, free, zeroed, or bad.

page table A page of mapping information (made up of any array of page
table entries) the operating system constructs that describes the location of
the virtual pages in a process address space. Because Windows NT provides
a private address space for each process, each process has its own set of
process page tables to map that private address space, since the mappings
will be different for each process. The page tables that describe system space
are shared among all processes.

page table entry {PTE) An entry in a process's page table that contains the
address to which the virtual address is mapped. The page can be in physi
cal memory or it can be on disk.

paged pool A region of virtual memory in system space that can be paged
in and out of the system process's working set. Paged pool is created at sys
tem initialization and is used by kernel-mode components to allocate sys
tem memory. Uniprocessor systems have two paged pools; multiprocessor
systems have four. Having more than one paged pool reduces the frequency
of system code blocking on simultaneous calls to pool routines.

PALcode "Privileged Architecture Library;' the Alpha operating system
specific support code that is similar to BIOS libraries.

port drivers A type of kernel-mode device driver that implements the pro
cessing of an 1/0 request specific to a type of 1/0 port, such as SCSI.

private cache map A structure that contains the location of the last two reads
so that the cache manager can perform intelligent read-ahead.

process The virtual address space and control information necessary for the
execution of a set of thread objects.

process ID A unique identifier for a process (internally called a client ID).

Glossary

prototype page table entries (prototype PTEs) A software structure the
memory manager relies on to map potentially shared pages when a page can
be shared between two processes. An array of prototype PTEs is created
when a section object is first created.

quantum The length of time a thr.ead is allowed to run before Windows NT
interrupts the thread to find out whether another thread at the same priority
level is waiting to run or whether the thread's priority needs to be reduced.

queue A method for threads to enqueue and dequeue notifications of the
completion ofl/O operations (called an 1/0 completion portin the Win32 API).

quota charges In the Windows NT object manager, the record of how much
the object manager subtracts from a process's allotted paged and/or non
paged pool quota when a thread in the process opens a handle to the object.

ready summary A 32-bit mask (KiReadySummary) that Windows NT main
tains to speed up the selection of which thread to run or preempt.

redo information Information included in the NTFS checkpoint record that
explains how to reapply one suboperation of a fully logged ("committed")
transaction to the volume if a system failure occurs before the transaction
is flushed from the cache.

reference count The object manager's record of how many object pointers
it has dispensed to operating system processes. The object manager incre
ments a reference count for an object each time it gives out a pointer to the
object; when kernel-mode components finish using the pointer, they call the
object manager to decrement the object's reference count.

resident attribute Ha file is small, all its attributes and their values (its data,
for example) fit in the file record. When the value of an attribute is stored
directly in the master file table, the attribute is called a resident attribute.

SAM database A database (stored in the registry under HKEY_LOCAL
_MACHINE\SAM) that contains the defined users and groups, along with
their passwords and other attributes.

scatter/gather 1/0 A kind of high-performance I/0 Windows NT supports,
available via the Win32 ReadFileScatterand WriteFileScatterfunctions. These
functions allow an application to issue a single read or write from more than

497

INSIDE WINDOWS NT

498

one buffer in virtual memory to a contiguous area of a file on disk. To use
scatter/gather I/O, the file must be opened for noncached I/O, the user
buffers being used have to be page-aligned, and the I/Os must be asynchro
nous (overlapped).

section See section object.

section object An object that represents a block of memory that two or more
processes can share. A section object can be mapped to the paging file or
to another file on disk. The executive uses section objects to load execut
able images into memory, and the cache manager uses them to access data
in a cached file. In the Win32 subsystem, a section object is called a file
mapping object.

section obj~ct pointers Structure for each open file (represented by a file
object) that is the key to maintaining data consistency for all types of file
access as well as to providing caching for files. The section object pointers
structure points to one or two control areas. One control area is used to map
the file when accessed as a data file, and one is used to map the file when it
is run as an executable image.

secure attention sequence (SAS) A keystroke combination that when en
tered notifies WINLOGON of a user logon request.

security accounts manager (SAM) server A set of subroutines responsible
for managing the database that contains the usernames and groups defined
on the local machine or for a domain (if the system is a domain controller).
The SAM runs in the context of the LSASS process.

security auditing A way in which Windows NT detects and records impor
tant security-related events or any attempts to create, access, or delete sys
tem resources. Logan identifiers record the identities of all users, making
it easier to trace anyone who performs an unauthorized action.

security descriptor Information that controls who has what access to an
object. A security descriptor consists of the owner's security ID; the security
ID of the primary group for the object (used only by POSIX); the discretion
ary access control list (DACL), which specifies who has what access to the
object; and the system access control list (SACL), which specifies which op
erations by which users should be logged in the security audit log.

Glossary

security reference monitor (SRM) A component in the Windows NT execu
tive (NTOSKRNL.EXE) that is responsible for performing security access
checks on objects, manipulating privileges (user rights), and generating any
resulting security audit messages.

semaphore A counter that provides a resource gate by allowing some maxi
mum number of threads to access the resources protected by the semaphore.

server processes User processes that are Windows NT services, such as the
Event Log and Schedule services. Many add-on server applications, such as
Microsoft SQL Server and Microsoft Exchange Server, also include compo
nents that run as Windows NT services.

shared cache map A structure that describes the state of a cached file, in
cluding its size and (for security reasons) its valid data length.

shared memory Memory visible to more than one process or that is present
in more than one virtual address space.

signal state The state of a synchronization object.

sparse files Files, often large, that contain only a small amount of nonzero
data relative to their size.

spinlock The locking mechanism the kernel uses to achieve multiprocessor
mutual exclusion. The spinlock gets its name from the fact that the kernel
(and thus, the processor) is held in limbo, "spinning;' until it gets the lock.
Spinlocks, like the data structures they protect, reside in global memory.

stream A sequence of bytes within a file.

stripe set with parity A fault tolerant variant of a regular stripe set. Fault
tolerance is achieved by reserving the equivalent of one disk for storing parity
for each stripe.

structured exception handling A type of exception handling that allows
applications to gain control when exceptions occur. The application can
then either fix the condition and return to the place the exception occurred,
unwind the stack (thus terminating execution of the subroutine that raised
the exception), or declare back to the system that the exception isn't recog
nized, and to continue searching for an exception handler that might pro
cess the exception.

499

INSIDE WINDOWS NT

500

subsystem dynamic-link libraries (DLLs) DLLs that translate a documented
function into the appropriate undocumented Windows NT system service
calls. This translation might or might not involve sending a message to the
environment subsystem process that is serving the user application.

symbolic link A mechanism for referring to an object name indirectly.

symmetric multiprocessing (SMP) A multiprocessing operating system in
which there is no master processor-the operating system as well as user
threads can be scheduled to run on any processor. All the processors share
just one memory space.

synchronization A thread's ability to synchronize its execution by waiting for
an object to change from one state to another. A thread can synchronize with
executive process, thread, file, event, semaphore, mutex, and timer objects.
Section, port, access token, object directory, symbolic-link, profile, and key
objects don't support synchronization

synchronous 1/0 A model for 1/0 in which a device performs a data trans
fer and returns a status code when the 1/0 is complete. The program can
then access the transferred data immediately. When used in their simplest
form, the Win32 ReadFileand WriteFilefunctions are executed synchronously.
They complete an 1/0 operation before returning control to the caller.

system cache Pages used to map files open in the system cache.

system page table entries (PTEs) Pool of system PTEs used to map system
pages such as 1/0 space, kernel stacks, and memory descriptor lists.

system service dispatch table Table in which each entry contains a pointer
to a system service rather than to an interrupt handling routine.

system support processes User processes, such as the logon process and
the session manager, that are not Windows NT services (that is, not started
by the service controller).

system thread A kind of thread th;:it runs only in kernel mode. System threads
always reside in the System process (always process ID 2). These threads have
all the attributes and contexts of regular user-mode threads (such as a hard
ware context, priority, and so on) but run only in kernel-mode executing
code loaded in system-space code, whether that be in NTOSKRNL.EXE or
in any other loaded device driver. System threads don't have a user process

Glossary

address space and hence must allocate any dynamic storage from operating
system memory heaps, such as paged or nonpaged pool.

system working set The physical memory being used by the system cache,
paged pool, pagable code in NTOSKRNL.EXE, and pagable code in device
drivers.

thread An entity_within a process that Windows NT schedules for execution.
A thread includes the contents of a set of volatile registers representing the
state of the processor; two stacks, one for the thread to use while executing
in kernel mode and one for executing in user mode; a prjvate storage area
for use by subsystems, run-time libraries, and DLLs; a unique identifier called
a thread ID (also internally called a client ID).

thread context A thread's volatile registers, the stacks, and the private stor
age area.

timer A mechanism that notifies a thread when a fixed period of time elapses.

transaction An 1/0 operation that alters file system data or changes the
volume's directory structure. The separate disk updates that make up the
transaction must be executed atomically; that is, once the transaction begins
to execute, all of its disk updates must be completed. If a system failure
interrupts the transaction, the part that has been completed must be un
done, or rolled back. The rollback operation returns the database to a pre
viously known and consistent state, as if the transaction had never occurred.

transaction table A table that keeps track of transactions that have been
started but that are not yet committed. The suboperations of these active
transactions must be removed from the disk during recovery.

transition A kind of invalid page table entry (PTE) in which the desired page
is in memory on either the standby, modified, or modified-no-write list. The
page is removed from the list and added to the working set.

translation look-aside buffer A CPU cache of recently translated virtual
page numbers.

trap A processor's mechanism for capturing an executing thread when an
exception or an interrupt occurs, switching it from user mode into kernel
mode, and transferring control to a fixed location in the operating system.
In Windows NT, the processor transfers control to the kernel's trap handler.

501

INSIDE WINDOWS NT

502

trap frame A data structure in which the execution state of the interrupted
thread is stored. This information allows the kernel to resume execution of
the thread after handling the interrupt or the exception~ The trap frame
is usually a subset of a thread's complete context.

trap handler A module in the kernel that acts as a switchboard, fielding ex
ceptions and interrupts detected by the processor and transferring control
to code that handles the condition.

type object An internal system object that contains information common to
each instance of the object.

Unicode An international character set standard that defines unique 16~bit
values for most of the world's known character sets.

update records The most common type of record NTFS writes to the log file.
Each update record contains the information needed to redo an operation
that updated the file system structure.

user mode The nonprivileged processor mode that applications run in. A
limited set of interfaces are available in this mode, and the access to system
data is limited. See also kernel mode.

virtual address descriptors (VADs) Data structur~s the memory manager
maintains that keep track of which virtual addresses have been reserved in
the process's address space. VADs are structured as a self-balancing binary.
tree to make lookups efficient.

virtual address space A set of virtual memory addresses that the process can
use.

virtual block caching A method the Windows NT cache manager uses to
keep track of which parts of which files are in the cache.

virtual cluster numbers (VCNs) VCNs number the clusters belonging to a
particular file from 0 through m. VCNs are not necessarily physically contigu
ous, but they can be mapped to any number oflogical cluster numbers (LCNs)
on a volume.

virtual device drivers (VDDs) Drivers used to emulate 16-bit MS-DOS ap
plications. They trap what an MS-DOS application thinks are references to

Glossary

1/0 ports and translate them into native Win32 1/0 functions. Because Win
dows NT is a fully protected operating system, user-mode MS-DOS applica
tions can't access hardware directly and thus must go through a real kernel-mode
device driver.

volume One or more logical disk partitions that are treated as a single unit.

volume file A system file (filename $Volume) that contains the volume name,
the version ofNTFS for which the volume is formatted, and a bit that when
set signifies that a disk corruption has occurred and must be repaired by the
Chkdsk utility.

volume set A single logical volume composed of a maximum of 32 areas of
free space on one or more disks.

wait block A data structure that represents a thread waiting on an object.
Each thread that is in a wait state has a list of the wait blocks that represent
the object(s) the thread is waiting on. Each dispatcher object has a list of the
wait blocks that represent which threads are waiting on the object.

Win32 application programming interface (API) The primary programming
interface to the Microsoft Windows operating system family, including Win
dows NT, Microsoft Windows 9x (including both Windows 95 and Windows
98), and Microsoft Windows CE.

Windows NT internal routines Subroutines inside the Windows NT execu
tive, kernel, or hardware abstraction layer (HAL) callable only from kernel
mode (such as from device drivers or other Windows NT operating system
components).

Windows NT services Processes started by the Windows NT service control
manager. For example, the Schedule service is a user-mode process that
supports the at command (which is equivalent to the UNIX command cron).

Windows NT system services Undocumented functions callable from user
mode (also called executive system services). For example, NtCreateProcess is
the internal system service the Win32 CreateProcess function calls to create a
new process.

working set A subset of virtual pages resident in physical memory. There are
two kinds of working sets-process working sets and the system working set.

503

INSIDE WINDOWS NT

504

write-back A caching strategy the lazy write file system uses to improve per
formance. In write-back, the file system writes file modifications to the cache
and flushes the contents of the cache to disk in an optimized way, usually
as a background activity.

write-through An algorithm the FAT file system uses that causes disk modi
fications to be immediately written to the disk. Unlike the careful-write ap
proach, the write-through technique doesn't require the file system to order
its writes to prevent inconsistencies. See also careful write.

INDEX
Note: Italicized page references indicate figures or tables.

Numbers
/3GB flag in BOOT.INI, 239

64-bit extension to Win32 application program
ming interface (API), 481

64-bit pointer functions in Win32 (Windows
NT 5.0), 466-67

64-bit Windows NT, 480-81

A
AccessCheckByType function, 312

AccessCheck function, 312

access control and security descriptors, 310--15, 311

access control entry (ACE) structures, 311-15, 311

access control lists (ACLs), 310-15, 311

access tokens and impersonation, 315-19, 316,
317, 319

ACE (access control entry) structures, 311-15,
311

ACLs (access control lists), 310-15, 311

ACPI (Advanced Configuration Power Interface),
473

Active Desktop, 467

Active Directory (Windows NT 5.0), 452-53
Active Directory Service Interfaces (ADSI), 453

ActiveX scripting (Windows NT 5.0), 469

address space layout

introduced, 6, 7, 7, 238-41, 239, 240

system, 246-48, 246, 248, 249, 250

user, 241-42, 243-44, 243, 244, 245

address translation

byte within page, 261
experiment, 263-64, 263, 264

introduced, 250--52, 251

page directories, 254-55

page table entries (PTEs), 251, 251, 252, 253-54,
253, 255, 256-58, 258, 259, 260-61

address translation, continued

process and system page tables, 256, 257

translating virtual addresses, 252-54, 252, 253

translation look-aside buffer (TLB), 261-62,
262

ADSI (Active Directory Service Interfaces), 453
Advanced Configuration Power Interface

(ACPI), 473

Advanced Power Management (APM), 473
allocation granularity, 220
Alpha systems

page table entry (PTE) status and protection
bits, 258, 259, 260-61

page tables and, 254
system cache virtual size, 371-72, 372

system memory size, 236, 236

system space layout, 246-47, 246, 248, 250

Very Large Memory (VLM), 241, 465-67, 466,
481

virtual address space layout, 238, 241
analysis pass, 436-37, 437

APCs (asynchronous procedure calls)
interrupts, 92-94
objects, 93
queue,93

APM (Advanced Power Management), 473

application development (Windows NT 5.0), 462
application programming interfaces (APis). See

Win32 application programming interface
(API); Win64 application programming
interface (API)

ASMP (asymmetric multiprocessing), 36, 36

ASSERT statement, 22, 25
Assig;nProcessTefobObject function (Windows NT 5.0),

464

asymmetric multiprocessing (ASMP), 36, 36

asynchronous I/0, 329-30, 330

505

INSIDE WINDOWS NT

asynchronous procedure calls (APCs)

interrupts, 92-94

objects, 93

queue, 93
asynchronous read-ahead with history, 383-84

attribute definition table, 408, 410

attributes
for files, 410, 411-12, 412
resident and nonresident, 415-19, 416, 417,

418

auditing, security, 305, 320-21, 320

automatic work set trimming, 279

B
b+ tree structure, 420

backing store, 219

bad-cluster file, 408, 410
bad-cluster recovery, 445-50, 446, 448, 449

bad-cluster remapping, 400-401
balance set manager, 72, 281-82, 282

base file record, 407

bitmap file, 408, 409

boot file, 408, 409

builds

checked, 22,25

free, 22
bus drivers, 477, 479

byte index, 252-54, 252, 253

byte index field, 261

c
C2 Configuration Manager, 14, 14
C2-level security, 13-14, 14

cache coherency, 365, 366

cache flushing, 429
cache manager

cache size

introduced, 371

physical, 372-74, 373, 374

virtual, 371-72, 372
cache structure, 369-71, 370, 371

data structures

introduced, 374

506

cache manager, data structures, continued

per-file, 376-78, 377, 378

systemwide, 375-76, 375

features
cache coherency, 365, 366

introduced, 363-64

memory manager, 364-65

recoverable file system support, 368-69

single, centralized system cache, 364

stream-based caching, 367

virtual block caching, 367
introduced, 60, 363, 403, 403

operation

asynchronous read-ahead with history, 383-84

calculating the dirty page threshold, 380,
380, 381

disabling lazy writing for files, 381

fast 1/0, 330, 385-87, 386, 387

flushing mapped files, 382

forcing the cache to write through to disk,
381, 381

intelligent read-ahead, 382
introduced, 378

system threads, 384

virtual address read-ahead, 383

write-back caching and lazy writing, 379, 379

support routines
caching with the direct memory access (DMA)

interfaces, 390-92, 392

caching with the mapping and pinning inter-
faces, 389-90, 390, 391

copying to and from the cache, 388, 388, 389
introduced, 387-88

write throttling, 392-93

cache size

introduced, 371
physical, 372-74, 373, 374

virtual, 371-72, 372

cache structure, 369-71, 370, 371

cache write-through, 429

!ca command, 303, 304

careful write file systems, 427-28

CcCopy&ad function, 388

CcCopy&adNoWaitMiss system variable, 389

CcCopy&adNoWait system variable, 389

CcCopy&adWaitMiss system variable, 389

CcCopy&adWait system variable, 389

CcCopy Write function, 388

CcDataFlushes system variable, 381

CcDataPages system variable, 381

CcFastCopy&ad function, 388

CcFastCopy Write function, 388

CcFast&adNotPossibl,e system variable, 387

CcFast&adNoWait system variable, 387

CcFast&ad&sourceMiss system variable, 387

CcFast&adWait system variable, 387

CclnitializeCacheMap system variable, 387

CcLazyWritelos system variable, 379

CcLazyWritePages system variable, 379

CcMapData function, 390

CcMapDataNoWaitMiss system variable, 391

CcMapDataNoWait system variable, 391

CcMapDataWaitMiss system variable, 391

CcMapDataWait system variable, 391

CcMdlReadCompl,ete function, 392

CcMdlReadfunction,392

CcMdlReadNoWaitMiss system variable, 392

CcMdl&adNoWait system variable, 392

CcMdl&adWaitMiss system variable, 392

CcMdlReadWait system variable, 392

CcMdlWriteCompl,ete function, 392

CcMdlWrite function, 392

CcPinMappedDataCount system variable, 391

CcPinMappedData function, 390

CcPin&ad function, 390

CcPin&adNoWaitMiss system variable, 391

CcPin&adNoWait system variable, 391

CcPin&adWaitMiss system variable, 391

CcPin&adWait system variable, 391

CcPreparePin Write function, 390

Cc&adAheadlos system variable, 382

CcSetDirtyPageThreshold function, 393

CcSetDirtyPinnedJJata function, 390

CcUnpinData function, 390

checked builds, 22, 25

checkpointrecords,434-35, 434

CIM (Common Information Model), 459

Index

class drivers, 333, 334, 478

ClearPageFileAtShutdown registry value, 235

client communication ports, 139, 140, 140

client IDs, 4

client/server models

networking, 30

processing, 30

client/server operating systems, 30, 31

cwck algorithm, 278
Close method, 111

cluster factor, 406

clustering support for servers (Windows NT 5.0),
470

clustering values for page faults, 277

clusters
bad-cluster file, 408, 410

bad-cluster recovery, 445-50, 446, 448, 449

bad-cluster remapping, 400-401
introduced, 398, 406-7, 406

size of, 398-99, 406

Cluster Server, 470

coherent caching, 365, 366

collided page faults, 270-71

commitment, defined, 271

committing transactions, 432-33

Common Information Model (CIM), 459

compressing nonsparse data, 423-26, 424, 425

compressing sparse files, 421-22, 421, 422, 423

compression units, 424

context of threads, 5

CONTEXT structure, 5

context switching, 185, 203

control objects, 62

copying to and from the cache, 388, 388, 389

copy-on-write page protection, 224-26, 225, 226

CreateFil,e function, 315, 329, 342, 343, 363, 378,
381,383

CreateFil,eMappingfunction, .218, 222, 331

CreatejobObjectfunction (Windows NT 5.0), 464

CreateProcessAsUserfunction, 150, 315

CreateProcess function

flow
introduced, 156-59, 158

overview, 158

507

INSIDE WINDOWS NT

CreateProcess function, flow, continued

Stage 1: opening the image to be executed,
159-62, 160, 161

Stage 2: creating the executive process object,
162-67, 166 .

Stage 3: creating the initial thread and its
stack and context, 168

Stage 4: notifying the Win32 subsystem about
the new processes, 168-69

Stage 5: starting execution of the initial
thread, 169

Stage 6: performing process initialization in
the context of the new process, 170

summarized, 157

introduced, 150

CreateRemoteThread function, 177

CreateThread function, 177, 180-82, 183, 219-20

critical sections, 124, 124

D
DACL (discretionary access control list), 310-15

data compression, 421-26, 421, 422, 423, 424,
425

data redundancy, 397
data streams, 367, 399-400

data structures
access control entry (ACE), 311-15, 311

b+ tree, 420
cache manager

introduced, 374
per-file, 376-78, 377, 378

systemwide, 375-76, 375

CONTEXT, 5

dispatcher headers, 132-33, 133

executive synchronization, 132-34, 133

1/0
driver objects and device objects, 344-47,

345, 346

file objects, 341-44, 342, 343

introduced, 341

1/0 request packets (IRPs), 328, 348-49,
348, 385, 386 (see also 1/0 requests)

1/0 status blocks, 353-54

process
executive process (EPROCESS) block, 141-45,

142, 143, 146-47, 163

508

data structures, process, continued

kernel process (KPROCESS) block, 147, 147,
164

overview, 14 2

process control block (PCB), 147, 147

process environment block (PEB), 148, 148,
166, 166

scheduling
dispatcher database, 197-98, 198

dispatcher ready queue, 197-98, 198

idle summary, 198, 198

ready summary, 198, 198

section object pointers, 301

shared cache map, 376

thread
executive thread (ETHREAD) block, 171-72,

172, 173

kernel thread (KTHREAD) block, 172, 173,
174

overview, 142

thread environment block (TEB), 171, 174-75,
175

wait blocks, 132-34, 133

DCOM (Distributed COM) extensions (NT 5.0),
462

DdelmpersonateClient function, 316

DDKs (Device Driver Kits), 19

default authentication package, 308
deferred procedure calls (DPCs)

interrupts, 90-92, 91

introduced, 338-39, 338

objects, 62, 91
queue, 91, 91

DefineDosDevice function, 345
Delete method, 111

demand-paging policies, 276-77

Dependency Walker, 68-69, 69

desired access rights, 115-16

Device Driver Kits (DDKs), 19

DeviceloControl function, 421

device objects, 344-47, 345, 346

!devobj command, 347
DFS (Distributed File System), 457-58

direct memory access (DMA), 390-92, 392

directories for objects, 120, 121, 122-23

dirty page table, 436

dirty page threshold, 380, 380, 381

DisablePagingExecutive registry value, 235

discretionary access control, 13, 305

discretionary access control list (DACL), 310-15

dispatch code, 89

dispatcher database, 197-98, 198

dispatcher header structures, 132-33, 133

dispatcher objects, 62, 127, 128-29, 128, 131,
133, 133

dispatcher ready queue, 197-98, 198

display drivers, 332-33
Distributed COM (DCOM) extensions (Windows

NT 5.0), 462

Distributed File System (DFS), 457-58

DLL. See dynamic-link libraries (DLLs)

DMA (direct memory access), 390-92, 392

DPCs (deferred procedure calls)

interrupts, 90-92, 91

introduced, 338--39, 338

objects, 62, 91

queue, 91, 91

!driver command, 337

driver objects, 344-47, 345, 346

drivers

bus, 477, 479
changes in Windows NT 5.0, 475

class, 333, 334, 478

display, 332-33
file system, 65, 333, 334

filter, 65, 478

FtDisk.sys (see fault tolerance in NTFS)

function, 4 78

hardware,65,333, 334

introduced, 64-66, 332-35, 332, 334, 335, 336

kernel-mode, 332, 333, 334

loaded driver list experiment, 337

minidrivers, 4 78

miniport, 333, 334

network redirectors and servers, 65

port, 333, 334

printer, 332

structure, 338--39, 338

synchronization, 340-41, 340

Index

drivers, continued

virtual device drivers (VDDs), 332

Win32 Driver Model (WDM), 464-65, 476,
477-80

!drvobj command, 347

dynamic-link libraries (DLLs)

defined,4

Graphical Identification and Authentication
(GINA), 77, 322

NTDLL.DLL, 58--59

subsystem, 33, 33, 46, 48, 58-59

E
encrypting file system (EFS), 455-57, 456

EPROCESS (executive process) block, 141-45,
142, 143, 146-47, 163

ETHREAD (executive thread) block, 171-72,
172; 173

event objects, 130

ExAllocatePool function, 227

exceptions, 82, 82, 94-98, 96

exec function, 226

executive. See also cache manager; 1/0 system;
kernel; object manager

introduced, 59-60

process and thread manager, 59

security reference monitor (SRM), 60, 116,
307,309, 309

system services, 3, 82, 99-100, 99, 101

virtual memory (VM) manager, 59, 403, 403

executive objects, 103, 104-5, 104, 105-6

executive process (EPROCESS) block, 141-45,
142, 143, 146-47, 163 .

executive process object, 167
executive resources, 128

executive synchronization
data structures, 132-34, 133

introduced, 127-28

waiting on dispatcher objects, 128--29, 128

what signals objects, 130, 130, 131, 132
executive thread (ETHREAD)',block, 171-72,

172, 173

ExitProcess function, 150

ExitThread function, 177

509

INSIDE WINDOWS NT

experiments
access tokens, 318-19

address translation, 263-64, 263, 264

base named objects, 122, 122

C2 security compliance, 14, 14

control areas, 303-4

deferred procedure calls (DPCs), 92

driver and device objects, 347
exception activity, 98

executive process (EPROCESS) block format,
144-45

handles using the Open Handles (OH) tool,
113

handle table using the kernel debugger, 115

hard link creation, 401

hardware abstraction layer (HAL) listings, 64,
64

image loader tracing, 137

image subsystem type, 47, 47

interrupt monitoring, 92

I/O request packets (IRPs) and thread IRP
queues, 349

kernel debugger crash dumps, 23-24, 23

kernel mode vs. user mode, 10-11, 11
loaded driver.list, 337

local procedure call (LPC) port objects, 138,
138

mapping system threads to device drivers, 73-75,
73, 74

NT File System (NTFS) metadata files, 409

NTOSKRNL version check, 39, 39

object manager exploration, 102-3, 102
page directory and page directory entries

(PDEs), 255

page fault behavior, 292

page file usage, 272, 272

page frame number (PFN) entries, 297
physical memory, 288-89

pool usage, 229-30, 229, 230

POSIX subsystem, 55

priority boosts and decays, 209, 209

priority inversion, 210-11, 211

process information, 152-55, 153, 154

process memory utilization, 243-44, 244, 245

processor control region (PCR), 88

510

experiments, continued

process priorities, 191, 191, 192

process quotas, 119, 119

process work set sizes, 280

section objects, 300

security information for processes and threads,
317,317

system look-aside lists, 231
system memory information, 237-38, 7
system page files, 271
System process examination, 72 ·

system service activity, 100
thread information, 179

thread priorities, 191, 191, 192

thread-scheduling state changes, 185-87, 186,
187 .

type objects, 109, 109
undocumented function listings, 68-69, 68, 69

virtual address descriptors (VADs), 274-75

wait queues, 134

Win32 device name to Windows NT device
name mappings, 346, 346

Win32 thread user start address, 97

F
fast 1/0, 330, 385-87, 386, 387
FAT (file allocation table) file system, 395-96,

398-90,405,406,427,448,450
fault tolerance in NTFS

bad-cluster recovery, 445-50, 446, 448, 449

fault tolerant volumes
introduced, 443
mirror sets, 443, 443

sector sparing, 445

stripe sets with parity, 444-45, 444

introduced, 397, 440

RAID level 1 support, 397

RAID level 5 support, 397
volume management features

introduced, 440

stripe sets, 441-43, 442
volume sets, 441, 441

FCBs (file control blocks), 404, 405

fetch policies, 276

fibers, 171

FIFO (first in, first out) policies, 277-78

file allocation table (FAT) file system, 395-96,
398-90, 405,406, 427, 448,450

FILE_ATTRIBUTE_ TEMPORARY flag, 381

file caching and mapped file 1/0, 331

!file command, 303

file control blocks (FCBs), 404, 405

FILE_FLAG_NO_BUFFERING flag set, 378

FILE_FLAG_OVERLAPPED flag, 329

FILE_FLAG_RANDOM_ACCESS flag, 384

FILE_FLAG_SEQUENTIAL_SCAN flag, 383

FILE_FLAG_ WRITE_ THROUGH flag, 381

file mapping objects, 43, 220, 298-304, 299, 301,
364, 376

filename indexing, 419-21, 419

filenames, 412-15, 413, 414, 415

file namespaces, 412-13, 413

file objects, 341-44, 342, 343

file reference numbers, 410, 410

files records, 410, 411-12, 412

file systems

careful write, 427-28

drivers, 65, 333, 334

file allocation table (FAT), 395-96, 398-90,
405, 406,427, 448, 450

high-performance file system (HPFS), 395-96,
398-90

lazy write, 428

NTFS (see Microsoft Windows NT File System
[NTFS])

recoverable, 368-69,428-29

requirements, 395-96

filter drivers, 65, 4 78

first in, first out (FIFO) policies, 277-78

flags, global, 135-37, 135, 136. See al,so specific flags

FlushFileBuffers function, 381, 382

flushing mapped files, 382

FlushlnstructionCache function, 150

Flush ViewOJFile function, 298

/open function, 342, 343

foreground applications, 205

fork function, 226

frame-based exception handlers, 95

free builds, 22

FtDisk.sys driver. See fault tolerance in NTFS

function drivers, 4 78

functions. See al,so specific functions

process, 150

thread, 1 77, 177

G
GDI (Graphical Device Interface), 49-53

GetCommandLine function, 150

GetCompressedFileSize function, 421

GetCurrentProcessID function, 150

GetE.ffectiveRightsFromAcl function, 312

GetEnvironmentStrings function, 150

GetEnvironmentVariable function, 150

GetExitCodeProcess function, 150

GetExitCodeThread function, 177

GetProcessHeap function, 227

GetProcessTimes function, 150

Index

GetProcessVersion function, 150

GetQueuedCompletionStatus function, 330, 463

Get/SetPriorityClass function, 189

Get/SetProcessA.ffinityMask function, 189

Get/SetProcessPriorityBoost function, 190

Get/SetProcessShutdownParameters function, 150

Get/SetThreadContext function, 177

Get/SetThreadPriorityBoost function, 190

Get/SetThreadPriority function, 189

GetStartuplnfo function, 150

GetSystemlnfo function, 220

GetThreadSelectorEntry function, 177

GetThreadTimes function, 177

GetVolumelnformation function, 421

GINA (Graphical Identification and Authentica-
tion), 77, 322

global flags, 135-37, 135, 136. See al,so specific flags

Global Flags utility, 135-37, 135, 136

Globalxxx functions, 218

granted access rights, 116

granularity of allocations, 220

Graphical Device Interface (GDI), 49-53

Graphical Identification and Authentication
(GINA), 77, 322

group SID, 310

511

INSIDE WINDOWS NT

H
HAL (hardware abstraction layer), 63-64, 64, 4 75

!handle command, 115, 303

handles

introduced, 12

objects, 112-15, 114, 116-18

handle table for processes, 114-15, 114

hardware abstraction layer (HAL), 63-64, 64, 475

hardware drivers, 65, 333, 334

HasOverlappedloCompleted function, 330

HeapAlloc function, 227

HeapCreate function, 226, 227

HeapDestroy function, 226

HeapFree function, 227

heap functions, 226-27

heap manager, 227, 233

Heapxxx functions, 218

Hierarchical Storage Management (HSM), 458

high-performance file system (HPFS), 395-96,
398-90

HPFS (high-performance file system), 395-96,
398-90

HSM (Hierarchical Storage Management), 458

I
ideal processor, 213

Idle process, 70-71, 71

idle summary, 198, 198

idle threads, 204

IDs

client, 4

process, 4

security IDs (SIDs), 310, 313, 314, 315

thread, 5

IDT (interrupt dispatch table), 86, 87, 88-90, 91

IFS (Installable File System), 363

ImpersonateLoggedOnUser function, 316

ImpersonateNamedPipeClient function, 316

ImpersonateSecurityContext function, 316

ImpersonateSelffunction, 315-16

impersonation and access tokens, 315-19, 316,
317, 319

index buffers, 417

indexing facility in NTFS, 400

512

indexing filenames, 419-21, 419

inheritance designation, 114, 114

in-page clustering, 383

in-paging 1/0, 269-70

Installable File System (IFS), 363

intelligent read-ahead, 382

IntelliMirror (Windows NT 5.0), 461-62

internal routines, 3

internal synchronization, 233-34

international extensions (Windows NT 5.0), 469

interrupt dispatching

interrupt processing, 86-90, 87

interrupt types and priorities, 84-86, 84, 85

introduced, 82, 83

software interrupts, 90-94, 91

interrupt dispatch table (IDT), 86, 87, 88-90, 91

interrupt levels vs. priority levels, 193, 193

interrupt objects, 89-90

interrupt processing, 86-90, 87

interrupt request levels (IRQLs), 84-86, 84, 85,
88,90,91-92,93, 125,351-52, 353, 355

interrupt requests (IRQs), 84

interrupts

asynchronous procedure call (APC), 92-94

deferred procedure call (DPC), 90-92, 91

defined,82

masking, 85, 85
servicing, 86-90, 87, 350-52, 352, 353

interrupt service routines (ISRs), 83, 89-90,
338-39, 338

invalid page table entries (PTEs), 266-67, 266,
267

1/0 completion, 353-56, 354, 355

1/0 functions

asynchronous I/0, 329-30, 330

fast 1/0, 330, 385-87, 386, 387

introduced, 329

mapped file 1/0 and file caching, 331

scatter/gather 1/0, 331

synchronous 1/0, 329

1/0 manager, 328, 402-3, 402, 403, 476, 476

IoPageLockLimit registry value, 235

I/0 request packets (IRPs), 328, 348-49, 348,
385, 386. See also 1/0 requests

I/0 requests

introduced, 350
to layered drivers, 356-59, 357, 358, 359, 360

to single-layered drivers, 350-56, 351, 352, 353,
354, 355

I/0 status blocks, 353-54

1/0 system

data structures

driver objects and device objects, 344-47,
345, 346

file objects, 341-44, 342, 343

introduced, 341

1/0 request packets (IRPs), 328, 348-49,
348, 385, 386 (see also 1/0 requests)

design goals, 325

device drivers

introduced, 332-35, 332, 334, 335, 336

loaded driver list experiment, 337

structure, 338-39, 338

synchronization, 340-41, 340

in-paging, 269-70

introduced, 60, 325-26
1/0 functions

asynchronous I/0, 329-30, 330

fast 1/0, 330, 385-87, 386, 387

introduced, 329

mapped file 1/0 and file caching, 331

scatter/gather 1/0, 331

synchronous I/O, 329

I/O manager, 328, 402-3, 402, 403, 476, 476

1/0 requests

introduced, 350

to layered drivers, 356-59, 357, 358, 359, 360

to single-layered drivers, 350-56, 351, 352,
353, 354, 355

mapped file, 298
structure and model overview, 326-28, 327

!irp command, 349

IRPs (1/0 request packets), 328, 348-49, 348,
385, 386. See also 1/0 requests

IRQLs (interrupt request levels), 84-86, 84, 85,
88, 90,91-92, 93, 125, 351-52, 353, 355

IRQs (interrupt requests), 84
ISRs (interrupt service routines), 83, 89-90,

338-39, 338

Index

J
job object (Windows NT 5.0), 5, 118, 462-64, 464

K
KeActiveProcessors system variable, 199

KeBalanceSetManager function, 281
KelnitializeThread function, 181

KeNumberProcessors system variable, 199

kernel. See also executive

hardware support, 62-63

introduced, 60-61

kernel debugger

access token experiment, 318-19

!ca command, 303, 304

!devobj command, 347

!driver command, 337

!drvobj command, 347

!file command, 303
!handle command, 115, 303

introduced, 20-22, 23-24, 23

!irp command, 349
!lookaside command, 231

!memusage command, 289, 303

!pcrb command, 88

!per command, 88

!pfn command, 297
!process command, 134, 145, 155-56, 156, 179,

255, 263-64, 274,318, 349

!processfields command, 144-45

!pte command, 255, 264, 297
!thread command, 134, 179, 180, 349

!threadfields command, 1 72

!token command, 319

!tokenfields command, 318

!vad command, 274, 275

kernel dispatcher, 184

kernel mode

device drivers, 333, 334

GDI in, 51-53

graphics drivers, 332
introduced, 8-9

operating system models and, 28-32, 29, 31,
32-34, 33, 44

performance counters, JO

513

INSIDE WINDOWS NT

kernel mode, continued

Performance Monitor experiment, 10-11, 11

Plug and Play Manager, 476, 477

Policy Manager, 476, 477

Power Manager, 476, 477

Win32 USER in, 51-53

kernel objects, 61-62, 103-4, 104

kernel process (KPROCESS) block, 147, 147,
164, 253, 254

kernel synchronization, 125-27, 126

kernel thread (KTHREAD) block, 1 72, 17 3, 174

KeSwapProcessOrStack, 281

KiDispatcherLock system variable, 199

KiDispatcherReadyListHead system variable, 199

Kild/,eSummary system variable, 199

KiReadySummary, 199

KiThreadStartup, 182

KPROCESS (kernel process) block, 147, 147,
164, 253, 254

KTHREAD (kernel thread) block, 172, 173, 174

L
LargeSystemCache registry value, 235

layered operating systems, 29-30

lazy evaluation algorithms, 225

lazy write file systems, 428

lazy writing and write-back caching, 379, 379

LCNs (logical cluster numbers), 407

least recently used (LRU) policies, 277

LFS (log file service), 403, 403, 430-32, 430, 431

link command, 46

In utility, 401

local procedure calls (LPCs), 137-40, 138, 140

local security authentication server (LSASS), 77

local security authority (LSA) policy database, 307

local security authority (LSA) server, 307, 309, 309

Localxxx functions, 218

LockFile function, 344, 385

log file, 408, 409

log file service (LFS), 403, 403, 430-32, 430, 431

logging

introduced, 430

log file service (LFS), 403, 403, 430-32, 430, 431

log record types, 432-35, 433, 434

514

logical blocks, 367

logical cluster numbers (LCNs), 407

logical sequence numbers (LSNs), 368-69, 431

logon process (WinLogon)

initialization, 322-23

introduced, 76-77, 308, 321-22, 321

user logon steps, 323-24

LogonUser function, 315

!lookaside command, 231

look-aside lists, 231-32, 384

LPCs (local procedure calls), 137-40, 138, 140

LRU (least recently used) policies, 277

LsaLogonUser function, 323

LsaLookupAuthenticationPackage function, 322

LSA (local security authority) policy database, 307

LsaRegisterLogonProcess function, 322

LSA (local security authority) server, 307, 309, 309

LSASS (local security authentication server), 77

LSNs (logical sequence numbers), 368-69, 431

M
mapped files

and file caching, 331

flushing, 382

introduced, 298

and shared memory, 220-22, 221

mapping interface, 389-90, 390, 391

MapViewOJFikfunction, 218, 222, 331, 365

masking interrupts, 85, 85

master file table (MFT), 407-10, 408

MDLs (memory descriptor lists), 392, 392

memory. See also physical memory; virtual memory

incorrect sharing of, 124, 124

memory descriptor lists (MDLs), 392, 392

memory management. See also physical memory;
virtual memory

address space layout

introduced, 6, 7, 7, 238-41, 239, 240

system, 246-48, 246, 248, 249, 250

user, 241-42, 243-44, 243, 244, 245

address translation

byte within page, 261

experiment, 263-64, 263, 264

introduced, 250-52, 251

memory management, address translation,
continued

page directories, 254-55

page table entries (PTEs), 251, 251, 252,
253-54, 253, 255, 256-58, 258, 259, 260-61

process and system page tables, 256, 257
translating virtual addresses, 252-54, 252,

253
translation look-aside buffer (TLB), 261-62,

262
components, 232-33

internal synchronization, 233-34

memory usage examination, 236-38, 237
page fault handling

collided page faults, 270-71

in-paging I/O, 269-70

introduced, 265, 265-66, 266
invalid page table entries (PTEs), 266-67,

266, 267
page files, 271, 272, 272

prototype page table entries (PTEs), 267-69,
268, 269

page frame database
introduced, 285, 285, 286, 287-89, 287
modified page writer, 292-93, 293
page frame number (PFN) structures, 294-97,

294, 296, 298
page list dynamics, 290-92, 290
state diagram for page frames, 290

section objects, 220, 298-304, 299, 301
services

copy-on-write page protection, 224-26, 225,
226

heap functions, 226-27

introduced, 218

protecting memory, 222-23, 224
reserving and committing virtual memory,

219-20

shared memory and mapped files, 220-22,
221

system memory pools, 227-32, 228, 229, 230
tuning, 234-36, 235, 236
virtual address descriptors (VADs), 6, 6, 273-75,

274
working sets

balance set manager and swapper, 281-82, 282

Index

memory management, working sets, continued

expanding and trimming, 281-82, 282
introduced, 276

paging policies, 276-78, 277
process, 278-80, 278
system, 282-84, 283, 284

memory manager, 364-65
memory pools

nonpaged,227,228

paged, 227, 228

system, 227-32, 228, 229, 230
memory protection, 305
!memusage command, 289, 303

metadata, 364, 368, 389-90, 390, 407-10, 408

methods

Close, 111
Delete, 111
objects, 110-12, 111
Open, 111
Parse, 111
parse, 112, 121

Query name, 111
Security, 111

MFT (master file table), 407-10, 408

Microsoft Cluster Server, 470

Microsoft Developer Network (MSDN), 2
Microsoft Management Console (MMC), 459-60

Microsoft Software Installer (MSI), 460

Microsoft Windows 95

virtual address space layout, 240, 240
Windows NT vs., 42-43

Microsoft Windows 98

virtual address space layout, 240, 240
Windows NT vs., 42-43

Microsoft Windows NT. See also executive;
experiments; kernel; Win32 application
programming interface (API); Win64
application programming interface (API)

64-bit, 480-81

architecture overview, 32-34, 33, 44

checked builds, 22, 25
design goals, 28

device driver overview, 64-66

examining internal data structures and
variables, 26

515

INSIDE WINDOWS NT

Microsoft Windows NT, continued

free builds, 22

global flags, 135-37, 135, 136

hardware abstraction layer (HAL), 63-64, 64,
475

internal routines, 3

model used, 31-32

networking capabilities, 15-16

NTOSKRNL.EXE core image file, 38-39, 39,
67-69, 68, 69

number of licensed processors, 36--37, 37

portability, 34-35 (see also hardware abstraction
layer [HAL]; kernel)

prefixes for function names, 67

product type registry values, 41, 41

requirements, 27

security and (see security)

services, 4

stability with Win32 USER and GDI in kernel
mode, 51-53

subsystems

DLLs, 33, 33, 46, 48, 58-59

introduced, 45-48, 46, 47

OS/2, 56-58, 57

POSIX, 54-56

Win32, 49-54

symmetric multiprocessing (SMP) and, 35-39,
36, 37, 39, 124-25, 212-15

system files, 45

system process overview, 70

system services, 3

tools (see also kernel debugger; Performance
Monitor)

introduced, 17, 18

Platform SDK, 2, 19

Windows NT DDK, 19

Windows NT Resource Kits, 18-19

undocumented interfaces, 66-69, 67, 68, 69

versions, 22, 25, 36--37, 37, 38-39, 39

Windows 95 and Windows 98 vs., 42-43

Windows NT Server, 39-41, 41, 43

Windows NT Server, Enterprise Edition, 39-41,
41, 43

Windows NT Workstation, 39-41, 41, 43

516

Microsoft Windows NT 5.0

new features

Active Desktop, 467

Active Directory, 452-53

application development, 462

Distributed File System (DFS), 457-58

distributed security extensions, 453-55

encrypting file system (EFS), 455-57, 456

IntelliMirror, 461-62

international extensions, 469

introduced, 451-52

job object, 5, 118, 462-64, 464

Microsoft Management Console (MMC),
459-60

Microsoft Software Installer (MSI), 460

NTFS extensions, 458-59

Plug and Play (see Plug and Play in Windows
NT 5.0)

Security Configuration Editor, 457

storage management, 461

Task Scheduler, 468-69

user improvements, 467-68

Very Large Memory (VLM) on Alpha systems,
241,465-6~ 466, 481

Win32 Driver Model (WDM), 464-65, 476,
477-80

Windows Scripting Host (WSH), 469

Plug and Play (see Plug and Play in Windows
NT 5.0)

security model extensions, 306

system extensions

clustering support for servers, 4 70

introduced, 470

Microsoft Terminal Server, 470-72

Very Large Memory (VLM), 241, 465-67, 466,
481

Microsoft Windows NT File System (NTFS)

attributes for files, 410, 411-12, 412

design goals and features

bad-cluster remapping, 400-401

data redundancy, 397

fault tolerance (see fault tolerance in NTFS)

high-end file system requirements, 395-96

indexing facility, 400

Microsoft Windows NT File System (NTFS),
design goals and features, continued

introduced, 395
large disks and large files, 398-99

multiple data streams, 399-400

POSIX support, 401

recoverability, 396-97

security, 397
Unicode-based names, 400

fault tolerance and (see fault tolerance in
NTFS)

internal structure, 402-5, 402, 403, 404

logging

introduced, 430

log file service (LFS), 403, 403, 430-32, 430,
431

log record types, 432-35, 433, 434

on-disk structure

clusters, 406-7, 406

data compression, 421-26, 421, 422, 423, 424,
425

filename indexing, 419-21, 419

filenames, 412-15, 413, 414, 415

file reference numbers, 410, 410

files records, 410, 411-12, 412

introduced, 405
master file table (MFT), 407-10, 408

resident and nonresident attributes, 415-19,
416, 417, 418

volumes, 405, 405

recoverability in (see recoverability support in
NTFS)

Windows NT 5.0 extensions, 458-59

Microsoft Windows NT Terminal Server, 470-72

MiMappedPageWriter thread, 292-93

MiModifiedPageWriter thread, 292-93
minidrivers, 4 78

miniport drivers, 333, 334

mirroring data, 397

mirror sets, 443, 443

MmAccessFault function, 265

MmAvailablePages system variable, 284, 293, 298

MMC (Microsoft Management Console), 459-60

MmHighestUserAddress system variable, 242

Index

MmlsThisAnNtAsSystem function, 236

MmMaximumNonPagedPoollnBytes system variable,
228

MmMaximum WorkingSetSize system variable, 278
MmMinimumFreePages system variable, 284, 292,

293
MmModifiedPageMaximum system variable, 293

MmNonPagedPoolEnd system variable, 248

MmNonPagedPoolExpansionStart system variable,
248

MmNonPagedPoolStart system variable, 248

MmNonPagedSystemStart system variable, 248

MmNumberOJPhysica!Pages system variable, 298

MmPagedPoolEnd system variable, 248

MmPagedPoolPage system variable, 228, 283

MmPagedPoolStart system variable, 248

MmPagesAboveWsThreshold system variable, 282

MmPeriodicAgressiveCacheWsMin system variable,
374

MmQuerySystemSize function, 236

MmResidentAvailablePages system variable, 284,
293, 298

MmSizeOJNonPagedPoollnBytes system variable, 228

MmSizeOJPagedPoollnBytes system variable, 228

MmSizeOJSystemCachelnPages system variable, 248,
372

MmSystemCacheEnd system variable, 248, 372

MmSystemCachePage system variable, 283, 373

MmSystemCacheStart system variable, 248, 372

MmSystemCacheWorkingSetList system variable, 248

MmSystemCacheWsMaximum system variable, 284

MmSystemCacheWs.Maximum WorkingSetSize system
variable, 284

MmSystemCacheWsMinimum system variable, 284

MmSystemCache Ws.Minimum WorkingSetSize system
variable, 284

MmSystemCacheWs.PageFaultCount system variable,
283, 373

MmSystemCacheWs.Peak system variable, 283, 373

MmSystemCacheWs. WorkingSetSize system variable,
283, 373

MmSystemCodePage system variable, 283

MmSysternDriverPage system variable, 283

MmSystemRangeStart system variable, 248

MmUserProbeAddress system variable, 242

517

INSIDE WINDOWS NT

MmWorkingSet&ductionMaxCacheWs system
variable, 374

MmWorkingSet&ductionMinCacheWs system
variable, 374

MmWorkingSetSizeExpansion system variable, 282

Mm WorkingSetSizelncrement system variable, 282

Mm WorkingSetVolReductionMaxCache Ws system
variable, 374

Mm WsAdjustThreshold system variable, 282

MmWsExpandThreshold system variable, 282

Mm WsTrim&ductionGoal system variable, 282

modified page writer, 292-93, 293

monolithic operating systems, 29, 29

mounting volumes, 408

MSDN (Microsoft Developer Network), 2

MSI (Microsoft Software Installer), 460

multiple data streams, 399-400

multi processing

asymmetric (ASMP), 36, 36

symmetric (SMP), 35-39, 36, 37, 39, 124-25,
212-J5

mutex objects, 132

mutual exclusion, 123-25, 124

N
name retention, 116

names of objects, 120-23, 121, 122

networking

capabilities, 15-16

client/server model, 30

network logon service, 308

network redirectors and servers, 65

next processor, 213

NonPagedPoolQuota registry value, 235

nonpaged pool, 227, 228, 235

NonPagedPoolSize registry value, 235

nonresident attributes, 415-19, 416, 417, 418

nonsignaled state of synchronization objects,
129, 131

nonsparse data, compressing, 423-26, 424, 425

NtCreateFile function, 342, 343

NtCreatePagingFile system service, 271

NtCreateThread function, 181

NTDLL.DLL, 58-59

518

NTFS. See Microsoft Windows NT File System
(NTFS)

NtGloba/Flags system variable, 135

NTMS (Windows NT Media Services), 461

NTOSKRNL.EXE core image file, 38-39, 39,
67-69, 68, 69

Nt&adFile function, 329, 330

NtWriteFilefunction, 350, 351

null access control lists (ACLs), 311

null discretionary access control lists (DACLs),
311

0
object directory object, 122-23

object manager. See also executive

executive objects, 103, 104-5, 104, 105-6

introduced, 101-4, 102, 104

object handles, 112-15, 114, 116-18

object headers, 106, 106, 107-8, 107, 108

object methods, 110-12, 111

object names, 120-23, 121, 122

object retention, 116-18, 117

object security, 115-16

object services, 107-8, 108

object structure overview, 106, 106

resource accounting, 118-19, 119

type objects, 106, 106, 108-10, 109, 110

objects

asynchronous procedure call (APC), 93

attributes, 12

body, 106, 106, 107

class, 12

control, 62

deferred procedure call (DPC), 62, 91

defined, 12

device,344-47, 345, 346

directories, 120, 121, 122-23

dispatcher, 62, 127, 128-29, 128, 131, 133, 133

driver, 344-47, 345, 346

event, 130

executive, 103, 104-5, 104, 105-6

file, 341-44, 342, 343

file mapping, 43, 220, 298-304, 299, 301, 364,
376

objects, continued

handles, 112-15, 114, 116-18

headers, 106, 106, 107-8, 107, 108

interrupt, 89-90

introduced, 12

job (Windows NT 5.0), 5, ll8, 462-64, 464

kernel, 61-62, 103-4, 104

methods, ll0-12, 111

mutex, 132

names, 120-23, 121, 122

object directory, 122-23

port, 138, 138, 139-40, 140

process, 109

protecting

access tokens and impersonation, 315-19,
316, 317, 319

introduced, 310

security descriptors and access control, 310-15
311 '

retention of, 116-18, 117

section, 43, 220, 298-304, 299, 301, 364, 376

security of, 115-16

services, 12, 107-8, 108

structure overview, 106, 106

symbolic link, 123

thread, 133

type, 12, 106, 106, 108-10, 109, 110

Object Viewer

base named objects experiment, 122, 122

local procedure call (LPC) port objects
experiment, 138, 138

object manager exploration experiment, 102-3
102 '

section objects experiment, 300

type object experiment, 109, 109

Win32 device name to Windows NT device
name mapping experiment, 346, 346

OH tool. See Open Handles (OH) tool

OnNow design initiative, 473

OpenFileMapping function, 222

Open Handles (OH) tool

handles experiment, 113

section objects experiment, 300

Open]obObject function (Windows NT 5.0), 464

Open method, 111

OpenProcess function, 150

operating systems. See also Microsoft Windows
entries

client/server, 30, 31

introduced, 28

layered, 29-30

monolithic, 29, 29

OS/2 subsystem, 56-58, 57
owner SID, 310

p
page directories, 254-55

page directory entries (PDEs), 253, 254

Index

page directory index, 252-54, 252, 253

PagedPoolquota registry value, 235

PagedPoolSize registry value, 235

PAGE_EXECUTE attribute, 224

PAGE_EXECUTE_READ attribute, 224

PAGE_EXECUTE_READWRITE attribute, 224

PAGE_EXECUTE_ WRITECOPY attribute, 224

page fault handling
clustering values, 277

collided page faults, 270-71

in-paging I/0, 269-70

introduced, 265, 265-66, 266

invalid page table entries (PTEs), 266-67, 266,
267

page files, 271, 272, 272

prototype page table entries (PTEs), 267-69,
268, 269

page faults, defined, 265

page file quota, 271

page files, 271, 272, 272

page frame database

i'ntroduced, 285, 285, 286, 287-89, 287

modified page writer, 292-93, 293

page frame number (PFN) structures, 294-97,
294, 296, 298

page list dynamics, 290-92, 290

state diagram for page frames, 290

page frame numbers (PFNs), 253, 256-57, 258,
267

page frame number (PFN) structures, 294-97,
294, 296, 298

519

INSIDE WINDOWS NT

PAGE_GUARD attribute, 224

page list dynamics, 290-92, 290
PAGE_NOACCESS attribute, 224

page protection, copy-on-write, 224-26, 225, 226
PAGE_READONLY attribute, 224
PAGE_READWRITE attribute, 224

paged pool, 227, 228
page table entries (PTEs), 251, 251, 252, 253-54,

253, 255,256-58, 258, 259, 260-61
invalid, 266-67, 266, 267

prototype, 267-69, 268, 269
page table index, 252-54, 252, 253

page tables, process and system, 256, 257
PAGE_ WRITECOPY attribute, 224

paging policies, 276-78, 277
PALcode (Alpha systems), 86, 87
Parse method, 111

parse method, 112, 121
PCB (process control block), 147, 147

PCR (processor control region), 86, 88
!pcrb command, 88
!per command, 88

PDEs (page directory entries), 253, 254
PEB (process environment block), 148, 148, 166,

166

per-file cache manager structures, 376-78, 377,
378

performance counters

address space use for single process, 243
cache flush operations, 381

cache memory descriptor list (MDL) activity,
392

cache read activity, 389
fast I/O activity, 387

lazy writer activity, 379
mode-related, 10

page file usage, 272

pinning and mapping activity, 391
process, 148, 149

read-ahead, 382, 384
system cache physical size and page fault

information, 373
system pool, 228

system working set, 283
thread, 176, 176-77

virtual memory, 242

520

Performance Monitor

deferred procedure call (DPC) experiment, 92

exception activity experiment, 98
interrupt monitoring experiment, 92

introduced, 20, 21

kernel mode vs. user mode experiment, 10-11,
11

memory utilization experiment, 243-44, 244, 245

physical memory experiment, 288-89

priority boosts and decays experiment, 209, 209

priority inversion experiment, 210-11, 211

process work set size experiment, 280
system service activity experiment, 100

thread-scheduling state changes experiment,
185-87, 186, 187

PFMON tool, page fault behavior experiment, 292

!pfn command, 297
PFNs (page frame numbers), 253, 256-57, 258, 267

PFN (page frame number) structures, 294-97,
294, 296, 298

physical cache size, 372-74, 373, 374

physical memory. See also memory management;
virtual memory

experiment, 288-89
introduced, 7, 8

system variables, 298

pinning interface, 389-90, 390, 391

placement policies, 277

Platform Software Development Kit (SDK), 2, 19

Plug and Play in Windows NT 5.0
architecture, 476-80, 476

certification, 480
driver changes, 475

evolution of, 473

implementation, 473-75

introduced, 464-65, 472
Plug and Play Manager, 476, 477

Policy Manager, 476, 477

pools. See memory pools

portability, 34-35. See also hardware abstraction
layer (HAL); kernel

port drivers, 333, 334

port objects, 138, 138, 139-40, 140

POSIX subsystem, 54-56, 226

POSIX support in NTFS, 401

power management. See Plug and Play in
Windows NT 5.0

Power Manager, 476, 477
PRCB (processor control block), 86, 88

preemptive scheduling, 200-202, 201
prefixes for function names, 67

printer drivers, 332

priority boosts
after I/Os, 207-8, 207, 208

for GUI threads entering-wait states, 208

priority inversion, 210-12, 211

priority levels, 187-89, 188, 193, 193
private cache map, 376

privileged access control, 13

privilege levels (rings), 8

process address space

concluding setup, 165
initial, 164

process and thread manager, 59
!process command, 134, 145, 155-56, 156, 179,

255,263-64,274,318,349

process control block (PCB), 147, 147
process environment block (PEB), 148, 148, 166,

166

processes

components of, 4

CreateProcess function flow
introduced, 156-59, 158

overview, 158

Stage 1: opening the image to be executed,
159-62, 160, 161

Stage 2: creating the executive process object,
162-67, 166

Stage 3: creating the initial thread and its
stack and context, 168

Stage 4: notifying the Win32 subsystem about
the new processes, 168-69

Stage 5: starting execution of the initial
thread, 169

Stage 6: performing process initialization in
the context of the new process, 170

summarized, 157

data structures

executive process (EPROCESS) block, 141-45,
142, 143, 146-47, 163

Index

processes, data structures, continued
kernel process (KPROCESS) block, 147, 147,

164
overview, 142
process control block (PCB), 147, 147
process environment block (PEB), 148, 148,

166, 166

defined,4
functions, 150
handle table, 114-15, 114
IDs, 4

introduced, 4-6, 6
kernel debugger !process command, 134, 145,

155-56, 156
memory utilization experiment, 243-44, 244, 245

objects, 109
page tables, 256, 257
performance counters, 148, 149
process information experiment, 152-55, 153,

154
quotas, 118-19, 119
security structures, 316, 316

sharing memory between, 220-22, 221
system variables, 148, 149
tools, 151, 151
working sets, 278-80, 278

Process Explode utility, 119, 119, 191, 244, 245,
317, 317

!processfields command, 144-45
processing, client/server model, 30
Process Monitor, 151
processor access modes. See kernel mode; user

mode
processor affinity, 184
processor control block (PRCB), 86, 88

processor control region (PCR), 86, 88
Processor Upgrade Utility, 64, 64
Process Viewer, 154-55, 154, 244, 245

programs, defined, 4
protecting memory, 222-23, 224
protecting objects

access tokens and impersonation, 315-19, 316,
317, 319

introduced, 310
security descriptors and access control, 310-15,

311

521

INSIDE WINDOWS NT

prototype page table entries (PTEs), 267-69,
268, 269 .

PsActiveProcessHead system variable, 149

PsCreateProcessNotifjRnutineCount system variable
149 '

PsCreateProcessNotifjRnutine system variable, 149

PsldleProcess system variable, 149

PslnitialSystemProcess system variable, 149

PspCidTable system variable, 149

PspCreateThreadNotifjRoutineCount system variable
JU '

PspCreateThreadNotifjRnutine system variable, 176

PspForegroundQuantum system variable, 199

Pstat utility, 337
!pte command, 255, 264, 297
PTEs (page table entries), 251, 251, 252, 253-54,

253, 255, 256-58, 258, 259, 260-61
invalid, 266-67, 266, 267

prototype, 267-69, 268, 269

Q
quantum end scheduling, 202-3, 202

quantums
introduced, 184
scheduling and, 195-96, 197, 202-3, 202

quantum stretching, 205-7, 205, 206

QueryDosDevice function, 345
QuerylnformationjobObject function (Windows

NT 5.0), 464

Query name method, 111

Quick Slice, 151, 153, 153

Quick View

image subsystem type experiment, 47, 47

undocumented function listing experiment
68, 68 '

quotas

changes, 116
process, 118-19, 119

R
RAID level 1 and 5 support, 397
read-ahead

asynchronous, with history, 383-84
intelligent, 382
virtual address, 383

522

ReadFileEx function, 93, 356
ReadFile function, 329
ReadFileScatterfunction, 331
ready state, 194, 194

ready summary, 198, 198

real-time priorities, 192
recoverability support in NTFS. See also fault

tolerance in NTFS

evolution of file system design

careful write file systems, 427-28
introduced, 396-97, 426-27

lazy write file systems, 428
recoverable file systems, 428-29

introduced, 426

logging
introduced, 430
log file service (LFS), 403, 403, 430-32, 430, 431

log record types, 432-35, 433, 434

recovery

analysis pass, 436-37, 437

introduced, 436

redo pass, 437, 438

undo pass, 438-40, 438, 439

recoverable file systems, 368-69, 428-29
recovery

analysis pass, 436-37, 437

introduced, 436
redo pass, 437, 438

undo pass, 438-40, 438, 439

redo pass, 437, 438

reference counts, 116-17, 117

Regi,sterDeviceNotification routine, 474-75

registry
abbreviations, 15

introduced, 14-15, 15

memory manager variables, 235

product type registry values, 41, 41

Windows NT startup information, 45-46, 46

replacement policies, 277-78
resident and nonresident attributes, 415-19, 416,

417, 418

resource accounting, 118-19, 119

Resource Kits, 18-19

retention of objects, 116-18, 117

rings (privilege levels), 8

rollback operations, 396

RpclmpersonateClient function, 316

running state, 194-95, 194

s
SACL (system access control list), 310, 311

SAM (security accounts manager) database, 308

SAM (security.accounts manager) server, 307

SAS (secure attention sequence), 76

scatter/gather I/O, 331

SCBs (stream control blo.cks), 404-5, 404

scheduling. See also threads

adjusting

introduced, 204-5

priority boosts after I/Os, 207-8, 207, 208

priority boosts and decays experiment, 209,
209

priority boosts for GUI threads entering wait
states, 208

priority inversion, 210-12, 211

quantum stretching, 205-7, 205, 206

context switching, 203

data structures

dispatcher database, 197-98, 198

dispatcher ready queue, 197-98, 198
idle summary, 198, 198

ready summary, 198, 198

idle thread, 204

interrupt levels vs. priority levels, 193, 193

overview, 184-85

preemptive,200--202, 201

priority levels, 187-89, 188

process priorities experiment, 191, 191, 192

quantum end, 202-3, 202

quantums, 195-96, 197

real-time priorities, 192

symmetric multiprocessing (SMP) and, 212-15

system variables, 199

termination, 203

thread priorities experiment, 191, 191, 192

thread-scheduling state changes experiment,
185-87, 186, 187

thread states, 194-95, 194

scheduling, continued

tools, 190-91, 190

voluntary switching, 199-200, 200

Win32 scheduling APis, 189-90

SDKs (Software Development Kits), 2, 19

SeAuditPrivilege privilege, 320

section object pointers, 301

Index

section objects, 43, 220; 298-304, 299, 301, 364,
376

sectors, 406, 406

sector sparing, 445

secure attention sequence (SAS), 76

secure logon facility, 305

security

auditing,305,320--21,320

C2 compliance experiment, 14, 14

C2-level, 13-14, 14

components and database, 307-9, 308, 309

default authentication package, 308

desired access rights, 115-16

discretionary access control, 13, 305

discretionary access control list (DACL), 310--15

distributed security extensions in Windows NT
5.0, 453-55

experiment for process and thread security
information, 317, 317

granted access rights, 116

group SID, 310

introduced, 13-14, 305-7

local security authentication server (LSASS), 77

local security authority (LSA) policy database,
307

local security authority (LSA) server, 307, 309,
309

logon process (WinLogon)

initialization, 322-23

introduced, 76-77, 308, 321-22, 321

user logon steps, 323-24

memory protection, 305

network logon service, 308

in NTFS, 397

of objects, 115-16

owner SID, 310

privileged access control, 13

process security structures, 316, 316

523

INSIDE WINDOWS NT

security, continued

protecting objects
access tokens and impersonation, 315-19,

316, 317, 319

introduced, 310

security descriptors and access control, 310-15,
311

secure attention sequence (SAS), 76
secure logon facility, 305
security accounts manager (SAM) database, 308
security accounts manager (SAM) server, 307

security auditing, 305
security quality of service (SQOS), 315
security reference monitor (SRM), 307, 309, 309

system access control list (SACL), 310, 311
thread security structures, 316, 316

Win32 API and, 13-14
Windows NT 5.0 extensions, 306

security accounts manager (SAM) database, 308
security accounts manager (SAM) server, 307

Security Configuration Editor (Windows NT 5.0),
457

security descriptors, 116
and access control, 310-15, 311

security IDs (SIDs), 310, 313, 314, 315
Security method, 111

security quality of service (SQOS), 315
security reference monitor (SRM), 60, 116, 307,

309, 309

SeLsaCommandPort port, 309, 309

SeRmCommandPort port, 309, 309

server communication ports, 139, 140, 140

server connection ports, 139, 140
servers

clustering support for (Windows NT 5.0), 470
local security authority (LSA), 307, 309, 309

Microsoft Terminal Server, 470-72
network redirectors and, 65
security accounts manager (SAM), 307

service controller (SERVICES), 77-78
services,4, 12, 107-8, 108

SERVICES (service controller), 77-78
servicing interrupts, 86--90, 87, 350-52, 352, 353

session manager (SMSS), 75-76

session working set, 4 72

524

SetHandlelnformation function, 114
Setlnformation]obObjectfunction (Windows NT 5.0),

464

SetProcessWorkingSetSize function, 278, 279

SetThreadA!finityMask function, 189

SetThreadldealProcessorfunction, 190, 213

SetThreadPriority function, 463

shared cache map structure, 376
shared memory and mapped files, 220-22, 221

SIDs (security IDs), 310, 313, 314, 315

signaled state of synchronization objects, 129,
130, 130, 131, 132

SleepEx function, 190

Sleep function, 190

SMP (symmetric multiprocessing), 35-39, 36, 37,
39, 124-25, 212-15

SMSS (session manager), 75-76

Software Development Kits (SDKs), 2, 19

software interrupts, 90-94, 91

sparse files, compressing, 421-22, 421, 422, 423

spinlocks, 125-27, 126, 341

SQOS (security quality of service), 315
SRM (security reference monitor), 307, 309, 309

standby state, 194, 194

start-of-process function, 96

start-of-thread function, 96

storage management (Windows NT 5.0), 461

stream-based caching, 367
stream control blocks (SCBs), 404-5, 404

streams, 367, 399-400

stripe sets with parity, 444-45, 444

structured exception handling, 94

structures. See data structures

subsystems
DLLs, 33, 33, 46, 48, 58--59

dynamic-link libraries (DLLs), 33, 33, 46, 48
introduced, 45-48, 46, 47

OS/2, 56--58, 57

POSIX, 54-56

Win32, 49-54

Suspend/ResumeThread function, 189

swapper, balance set manager and, 281-82, 282

Switch To Thread function, 190

symbolic link objects, 123

symbolic links, 123

symmetric multiprocessing (SMP), 35-39, 36, 37,
39, 124-25, 212-15

synchronization

defined, 110

device drivers, 340-41, 340

executive

data structures, 132-34, 133

introduced, 127-28

waiting on dispatcher objects, 128-29, 128

what signals objects, 130, 130, 131, 132
introduced, 123-25, 124

kernel, 125-27, 126

synchronous I/0, 329

syscall instruction, 99

system access control list (SACL), 310, 311

SYSTEM access token, 319, 319

system address space layout, 246-48, 246, 248,
249, 250

system files, 45

system memory pools, 227-32, 228, 229, 230

SystemPages registry value, 235

system page tables, 256, 257

SystemParameterslnfo function, 464

System process, 71-75, 73, 74

system processes

Idle process, 70-71, 71

introduced, 70

local security authentication server (LSASS),
77

logon (see logon process (WinLogon))

service controller (SERVICES), 77-78

session manager (SMSS), 75-76

System process, 71-75, 73, 74

System Properties, 24-25, 24, 205, 205

system services, 3, 82, 99-100, 99, 101

system threads, 71-75, 73, 74, 384

system variables. See also specific variabl,es

cache flush operations, 381

cache memory descriptor list (MDL) activity,
392

cache read activity, 389

fast I/O activity, 387

lazy writer activity, 379

system variables, continued

physical memory, 298

pinning and mapping activity, 391

pool size, 228

process, 148, 149

scheduling, 199

system cache physical size and page fault
information, 373

Index

system cache virtual size and addresses, 3 72

system space regions, 248

thread, 175, 176

user address space, 242

working set-related, 282, 284

systemwide cache manager structures, 375-76,
375

system working sets, 282-84, 283, 284, 373, 373

T
Task Manager

file cache (not system cache) size, 374

introduced, 151

memory utilization experiment, 243-44, 244,
245

page file usage experiment, 272, 272

process information experiment, 152-55, 153,
154

system memory information experiment, 237-38,
237

Task Scheduler (Windows NT 5.0), 468-69

TEB (thread environment block), 171, 174-75,
175

Terminal Server, 470-72

terminated state, 194, 195

TerminatefobObject function (Windows NT 5.0),
464

TerminateProcess function, 150

TerminateThread function, 177

termination scheduling, 203

!thread command, 134, 179, 180, 349
thread environment block (TEB), 171, 174-75,

175

!threadfields command, 172

thread IDs, 5

thread objects, 133

525

INSIDE WINDOWS NT

threads. See also scheduling

balance set manager, 72

components of, 4-5

context of, 5

CreateThread function, 177, 180-82, 183

data structures

executive thread (ETHREAD) block, 171-72,
172, 173

kernel thread (KTHREAD) block, 172, 173,
174

overview, 142

thread environment block (TEB), 171, 174-75,
175

defined, 4

fibers vs., 171

functions, 177, 177

idle, 204

introduced, 4-6, 6

kernel debugger !thread command, 134, 179,
180

MiMappedPageWriter, 292-93

MiModifiedPage Writer, 292-93

modified page writer, 292-93, 293

performance counters, 176, 176-77

quantums and, 195-96, 197

security structures, 316, 316

states, 194-95, 194

symmetric multiprocessing (SMP) and, 212-15

system, 71-75, 73, 74, 384

system variables, 175, 176

thread information experiment, 179

tools, 178, 178

Win32, 96-98

zero page, 291

TLB (translation look-aside buffer), 261-62, 262

Tlist utility, 97, 152, 179
!token command, 319

!tokenfields command, 318

tools. See also kernel debugger; Performance
Monitor

introduced, 17, 18

process, 151, 151

scheduling, 190-91, 190

thread, 178, 178

526

transaction processing, 396. See also logging;
rec.overy

transaction table, 436

transition state, 194, 195

translation look-aside buffer (TLB), 261-62, 262

trap dispatching

exception dispatching, 82, 94-98, 96

interrupt dispatching

interrupt processing, 86-90, 87

interrupt types and priorities, 84-86, 84, 85

introduced, 82, 83

software interrupts, 90-94, 91

introduced, 81-83, 82

system service dispatching, 82, 99-100, 99, 101

trap frames, 82-83

trap handler, 81-83, 82

traps, defined, 81

trimming working sets, 279, 281-82, 282

TrusteeAccessToObject function, 312

type objects, 12, 106, 106, 108-10, 109, 110

u
undocumented interfaces, 66-69, 67, 68, 69

undo pass, 438-40, 438, 439

Unicode, 16-17, 400

UnlockFile function, 385

unnamed communication ports, 139

unnamed data attributes, 410

update records, 432-34, 433

user address space layout, 241-42, 243-44, 243,
244, 245

user improvements (Windows NT 5.0), 467-68

user mode

introduced, 8-9

operating system models and, 28-32, 29, 31, 44

performance counters, 10

Performance Monitor experiment, 10-11, 11

Plug and Play components, 476, 480

v
VACBs (virtual address control blocks), 375-78,

375, 377, 378

!vad command, 274, 275

VADs (virtual address descriptors), 6, 6, 273-75,
274

VCNs (virtual cluster numbers), 407
VDDs (virtual device drivers), 332

versions of Windows NT, 22, 25, 36-37, 37, 38-39,
39

Very Large Memory (VLM), 241, 465-67, 466,
481

views, 222, 369-71, 370, 371

virtual address control blocks (VACBs), 375-78,
375, 377, 378

virtual address descriptors (VADs), 6, 6, 273-75,
274

virtual addresses, translating, 252-54, 252, 253
virtual address read-ahead, 383

VirtualAllocEx function, 219

VirtualAlloc function, 219, 273

virtual block caching, 367
virtual cache size, 371-72, 372

virtual cluster numbers (VCNs), 407

virtual device drivers (VDDs), 332

virtual files, 326

VirtualFreeEx function, 219
VirtualFree function, 219

virtual memory. See also memory management;
physical memory

introduced, 6-7, 7, 8

OS/2 subsystem, 57, 57

reserving and committing, 219-20

virtual memory (VM) manager, 59, 403, 403

Virtualxxx functions, 218

VLM (Very Large Memory), 241, 465-67, 466,
481

VM. See virtual memory

volume file, 408, 410

volume management features

introduced, 440
stripe sets, 441-43, 442

volume sets, 441, 441

volumes

fault tolerant

introduced, 443
mirror sets, 443, 443

sector sparing, 445

stripe sets with parity, 444-45, 444

introduced, 405, 405

volume sets, 441, 441

voluntary switching, 199-200, 200

w
wait block structures, 132-34, 133

WaitForMultipleObjects function, 127, 133

WaitForSingleObject function, 127

waiting state, 194, 195

Index

WBEM (Web-Based Enterprise Management),
459-60

WDM (Win32 Driver Model), 464-65, 476, 477-80

Web-Based Enterprise Management (WBEM),
459-60

Win32 application programming interface (API)

64-bit extension to, 481

64-bit pointer functions (Windows NT 5.0),
466-67

introduced, 2-4

job functions (Windows NT 5.0), 464

memory protection options, 224

process-related functions, 150

scheduling functions, 189-90

security and, 13-14

subsystem, 49-54

thread-related functions, 177

threads, 96-98

Very Large Memory (VLM), 241, 465-67, 466,
481

Win32 Driver Model (WDM), 464-65, 476, 477-80

Win32 Software Development Kit (SDK), 2

Windows. See Microsoft Windows entries
Windows Management Interface (WMI), 459-60

Windows NT DDK, 19

Windows NT Diagnostics, 39, 39

Windows NT File System. See Microsoft Windows
NT File System (NTFS)

Windows NT Installable File System (IFS), 363

Windows NT Media Services (NTMS), 461

Windows NT Resource Kits, 18-19

Windows NT Server, 39-41, 41, 43

Windows NT Server, Enterprise Edition, 39-41,
41, 43

Windows NT Terminal Server, 470-72

Windows NT Workstation, 39-41, 41, 43

527

INSIDE WINDOWS NT

Windows Scripting Host (WSH), 469
WinLogon (logon process)

initialization, 322-23
introduced, 76-77, 308, 321-22, 321

user logon steps, 323-24
WMI (Windows Management Interface), 459-60
working sets

balance set manager and swapper, 281-82, 282
expanding and trimming, 281-82, 282

introduced, 276

paging policies, 276-78, 277
process, 278-80, 278
system, 282-84, 283, 284

write-ahead logging, 430
write-back caching, 379, 379, 428
WriteFileEx function, 93, 356

WriteFile function, 329
WriteFileScatter function, 331

write throttling, 392-93

write-through algorithms, 427

WSH (Windows Scripting Host), 469

528

x
x86 systems

page table entry (PTE) status and protection
bits, 258, 259, 260-61

page tables and, 254

system cache address space, 370

system cache virtual size, 371-72, 372

system memory size, 236, 236

system space layout, 246-47, 246, 248, 249

virtual address space layouts, 238-39, 239

z
zero page thread, 291

ZwMap ViewOJSection function, 222

ZwOpenSection function, 222

ZwUnmapViewOJSection function, 222

David Solomon
David Solomon, president of David Solomon Expert Seminars,
Inc. (www.solsem.com), has been teaching seminars on Microsoft
Windows NT internals and systems programming since 1992.
His company delivers high-end developer training to the world's
major software and hardware vendors.·

Formerly a consulting software engineer at Digital Equipment
Corporation (DEC), David worked for over nine years as a
project leader and developer in the VMS operating system
development group. He left DEC to focus on evangelizing
Windows NT to the VMS customer base. His first book, Windows
NT for OpenVMS Professionals (Digital Press/Butterworth
Heinemann), was based on his initial classes, which explained
Windows NT to VMS-knowledgeable programmers and system
managers.

Ill addition to organizing and teaching seminars, David is
a regular speaker at industry events such as Microsoft TechEd,
WinDev, and Software Development. He has also served as
technical chair for several Windows NT conferences. When
he's not res~arching Windows NT, David enjoys sailing, reading,
and Star Trek.

T he manuscript for this book was prepared

and submitted to Micrpsoft Press in electronic

form. Text files were prepared using Microsoft Word 97.

Pages were composed by Microsoft Press using Adobe

PageMaker 6.5 for Windows, with text in New Baskerville

and display type in Helvetica bold. Composed pages

were delivered to the printer as electronic prepress files.

Cover Graphic Designer

Tim Girvin Design, Inc.

Cover Illustrator

Glenn Mitsui

Interior Graphic Artist

Joel Panchot

Principal Compositor

Jeffrey Brendecke

Principal Proofreader/Copy Editor

Devon Musgrave

Indexer

Hugh Maddocks

This is how
w;rlllOMNr

become
incredibly

resourceful.

U.S.A. $149.95
U.K. £140.99 [V.A.T. included]
Canada $199.95
ISBN 1-57231-344-7

Microsoft Press® products are available worldwide wherever quality computer
books are sold. For more information, contact your book or computer retailer,
software reseller, or local Microsoft Sales Office, or visit our Web site at
mspress.microsoft.com. To locate your nearest source for Microsoft Press
products, or to order directly, call 1-800-MSPRESS in the U.S. (in Canada, call
1-800-268-2222).

Prices and availability dates are subject to change.

This three-volume kit provides the valuable
technical and performance information
and the tools you need for handling rollout
and support issues surrounding Microsoft®
Windows NT® Server 4.0. You get a full 2500
pages-plus a CD-ROM-loaded with
essential information not available anywhere
else. For support professionals, MICROSOFT
WINDOWS NT SERVER RESOURCE KIT is more
than a guide. It's a natural resource.

Micl'Osott®Press

Thefti ~~ u ma&e .
companion to

U.S.A. $69.95
U.K. £64.99 [V.AJ. included]
Canada $94.95
ISBN 1-57231-343-9

NT.

This exclusive Microsoft kit, written in cooperation with the
Microsoft Windows NT Workstation development team,
provides the complete technical information and tools you

need to understand and get the most out of Microsoft Win
dows NT Workstation version 4.0. The comprehensive techni
cal guide and a CD-ROM containing more than 100 useful
tools help you take full advantage of the power of Microsoft
Windows NT Workstation version 4.0. Administrators will
especially like the section that describes strategies for deploy
ment in large organizations and compatibility with other net
work and operating systems. Get the MICROSOFT WINDOWS NT
WORKSTATION RESOURCE KIT-and get the essential reference
for installing, configuring, and troubleshooting Microsoft
Windows NT Workstation version 4.0.

Microsoft Press® products are available worldwide wherever quality
computer books are sold. For more information, contact your book or
computer retailer, software reseller, or local Microsoft Sales Office, or visit
our Web site at mspress.microsoft.com. To locate your nearest source for
Microsoft Press products, or to order directly, call 1-800-MSPRESS in the
U.S. (in Canada, call 1-800-268-2222). Aficl'Osott®Press Prices and availability dates are subject to change.

You'vEread THEIR .BOOKS •••

• Now hear THEM SPEAK

on-Siie IN PERSON!

Have the fallowing authors and industry experts come to
your company to deliver their personally developed courses.

COMING SOON!

COMING SOON!

COMING SOON!

David Solomon Expert Seminars
Offers These Leading Edge Developer Courses

On-Site Seminars: These
seminars are available for delivery
on-site at companies worldwide.
Classes are available in lecture
format or with hands-on labs.

Public Seminars: We
occasionally run public seminars.
Please check our web site to see
when and where our next seminars
are scheduled.

Interest List: To receive
notifications of new seminars and
public offerings, join either our
electronic mail or regular postal
mailing list. Just fill out our on-line
form on our web site, or send an
email to seminars@solsem.com
stating your preference. If you wish
to receive printed mailings, please
include your full mailing address.

Windows NT, Win32, and Visual C++ are registered trademarks of Microsoft Corporation.
© 1998 David Solomon Expert Seminars, Inc.
All Rights Reserved

"""""".solsem.com

For More Information:
See our web site for the latest
course map and ...

• Detailed course descriptions,
prerequisites, and durations for all our
seminars.

• Biographies of each of our instructors
with links to their books and articles.

• List of conferences at which we are
speaking or exhibiting.

• Schedules for upcoming public
seminars.

• Current pricing and terms.

Web: http://www.solsem.com
Email: seminars@solsem.com
Tel: 800-492-4898

outside USA: + 1-860-355-9029
Fax:: 860-355-9050

Learn to.administer

thishof -neUloperating
'~Ir system-

and prepare for the
Microsoft Certified

Professional exam

U.S.A. $79.99
U.K. £7 4.99 [V.A.T. included]

Canada $107.99
ISBN 1-57231-439-7

at the same time.

It you're a system administrator or need to
become one, you can teach yourself to manage
today's hot operating system technology
Microsoft® Windows NT® Workstation 4.0 and
Microsoft Windows NT Server 4.0. Work through
this self-paced learning package and you'll be
able to provide critical day-to-day administration
in any environment-single user, single domain,
or enterprise. And because this kit is based on
Microsoft Official Curriculum, it also prepares
you for the Microsoft Certified Professional
exams. Get the hands-on training you want. Get
MICROSOFT WINDOWS NT NETWORK ADMINISTRA

TION TRAINING.

Microsoft Press® products are available worldwide wherever quality
computer books are sold. For more information, contact your book or
computer retailer, software reseller, or local Microsoft Sales Office, or visit
our Web site at mspress.microsoft.com. To locate your nearest source for
Microsoft Press products, or to order directly, call 1-800-MSPRESS in the
U.S. (in Canada, call 1-800-268-2222). Mictosott®Press Prices and availability dates are subject to change.

Inside
Windows NT

Second Edition

The official, comprehensive
developer's guide to the
Windows NT kernel.
Unlock the full power and performance of Microsoft® Windows NT
with this classic-and newly updated-guide to Windows NT
architecture. Written in full partnership with the product
development team, it takes you deep into the core components
of Windows NT. INSIDE WINDOWS NT, Second Edition, shares an
abundance of information and insight based on the Windows
NT 4.0 source code. This information will help you make better
design decisions, debug more effectively, understand system
performance, and troubleshoot problems. Improvements in this
edition of the book include:

• More detailed descriptions of code flows , data structures ,
and other elements

• Chapters on the cache manager and NTFS

• Hands-on experiments that let you see the internal behavior
of Windows NT using available utilities

• A look ahead to Windows NT 5.0 via notes throughout the
book and a final chapter devoted to upcoming developments

In short, INSIDE WINDOWS NT, Second Edition, is mandatory
reading for developers, technical managers, and all IS
professionals who want to get the most from Microsoft
Windows NT.

I S BN 1-57231-677- 2 9 Q Q Q Q

7 90145 16772 9 9 781572 316775

