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1 PURPOSE AND STRUCTURE
In assembling this report on progress, several objectives were kept in mind:

1. To enumerate our main achievements in the two years since our last major -
report.

2. To characterize the current M.LT. point of view with respect to methodology
and areas to be explored.

3. To introduce advanced topics in Artificial Intelligence.

In working toward these objectives, we have edited, abridged, and assembled
together certain of the laboratory’s Technical Reports, Memoranda, and Working Papers
authored by laboratory members whose names appear in the section headihgs. Some of
the shorter pieces appear nearly in full so as to convey a feeling for the detail and
precision required in implementing a system. Most of the major works have been cut
down considerably so as to avoid the bulk that might discourage readers from reading
the report straight through. This necessarily means that in many cases a section will
describe what can be done but will not describe how. Excited readers should think of
these as hors d’oeuvres to be followed by entrees accessible through the bibliography.

ORGANIZATION
The material is arranged in the following sections:

REPRESENTING KNOWLEDGE
UNDERSTANDING ENGLISH
LEARNING AND DEBUGGING
UNDERSTANDING VISION
PRODUCTIVITY TECHNOLOGY
EDUCATION

POTPOURRI

Other arrangements are possible of course. Many of the topics might equally Well have
been in a different section as the sections are far from mutually exclusive.




PROGRESS REPORT 2 | PURPQOSE AND STRUCTURE

REFERENCES

References to laboratory publications are cited by the following code:
WP ==> Working Paper

AIM ==> Artificial Intelligence Memo

TR ==> Technical Report

PREPARATION

The report was prepared by Patrick H. Winston working with Suzin L. Jabari, Cheryl
Goodman, and Eva I. Kampits. Suzin L Jabari illustrated sections 23, 43, 5.1.1, 5.2.3,
6.2.2, 6.2.3, and 6.3.1. Allison Platt illustrated sections 2.1, 3.3, 4.3, 4.4, and 5.2.3. Cover
design by Suzin L. Jabari.
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2 REPRESENTING KNOWLEDGE

The problem of representation seems central to major artificial intelligence projects.
It is therefore appropriate to begin this progress report by describing some pieces of
work that bear directly on representation issues.

The first is Minsky’s new theory of how to deal with the knowledge required in
understanding the world of commonplace situations -- a visual scene, a children’s
birthday party, or whatever. Minsky proposes organization into chunks called frames and
goes on to show how manipulation of those frames can do 'such things as effect changes
in visual viewpoint or supply unstated, common-sense facts in story analysis.

MINSKYS FRAME SYSTEM THEORY

Here is the essence of the frame theory: When one encounters a new situation (or
makes a substantial change in one’s view of a problem), one selects from memory a
structure called a frame. This is a remembered framework to be adapted to fit reality
by changing details as necessary.

A frame is a data-structure for representing a stereotyped situation like being in a
certain kind of living room or going to a child’s birthday party. Attached to each frame
are several kinds of information. Some of this information is about how to use the frame.
Some is about what one can expect to happen next. Some is about what to do if these
expectations are not confirmed.

We can think of a frame as a network of nodes and relations. The “top levels” of a
frame are fixed, and represent things that are always true about the supposed situation.
The lower levels have many terminals -- "slots” that must be filled by specific instances
or data. Each terminal can specify conditions its assignments must meet. (The
assignments themselves are usually smaller "sub-frames.”) Simple conditions are
specified by markers that might require a terminal assignment to be a person, an object
of sufficient value, or a pointer to a sub-frame of a certain type. More complex
conditions can specify relations among the things assigned to several terminals.

Collections of related frames are linked together into frame-systems. The effects of
important actions are mirrored by transformations between the frames of a system.
These are used to make certain kinds of calculations economical, to represent changes of
emphasis and attention, and to account for the effectiveness of “imagery."

For visual scene analysis, the different frames of a system describe the scene from
- different viewpoints, and the transformations between one frame and another represent
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the effects of moving from place to place. For non-visual kinds of frames, the
differences between the frames of a system can represent actions, cause-effect
relations, or changes in conceptual viewpoint. Different frames of a system share the
same terminals; this is the critical point that makes it possible to coordinate information
gathered from different viewpoints.

Much of the phenomenological power of the theory hinges on the inclusion of
expectations and other kinds of presumptions. A frame’s terminals are normally already
filled with "default™ assignments. Thus, a frame may contain a great many details whose
supposition is not specifically warranted by the situation. These have many uses in
representing general information, most likely cases, techniques for by-passing "logic,” and
ways to make useful generalizations.

The default assignments are attached loosely to their terminals, so that they can be
easily displaced by new items that fit better the current situation. They thus can serve
also as "variables” or as special cases for "reasoning by example,” or as "textbook
cases,” and often make the use of logical quantifiers unnecessary.

The frame-systems are linked, in turn, by an information retrieval network. When a
proposed frame cannot be made to fit reality -- when we cannot find terminal
assignments that suitably match its terminal marker conditions -- this netwark provides a
replacement frame. These inter-frame structures make possible other ways to
represent knowledge about facts, analogies, and other information useful in
understanding.

Once a frame is proposed to represent a situation, a matching process tries to assign
values to each frame’s terminals, consistent with the markers at each place. The
matching process is partly controlled by information associated with the frame (which
includes information about how to deal with surprises) and partly by knowledge about
the system’s current goals. There are important uses for the information, obtained when
a matching process fails; it can be used to select an alternatlve frame that better suits
the situation.

- LOCAL AND GLOBAL THEORIES FOR VISION

When we enter a room we seem to see the entire scene at a glance. But seeing is
really an extended process. It takes time to fill in details, collect evidence, make
conjectures, test, deduce, and interpret in ways that depend on our knowledge,
expectations and goals. Wrong first impressions have to be revised. Nevertheless, all
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this proceeds so quickly and smoothly that it seems to demand a special explanation.

Would parallel processing help? This is a more technical question than it might seem.
At the level of detecting elementary visual features, texture elements, stereoscopic and
motion-parallax cues, it is obvious that parallel processing might be useful. At the level
of grouping features into objects, it is harder to see exactly how to use parallelism, but
one can at least conceive of the aggregation of connected "nuclei” (Guzman TR-228), or
the application of boundary line constraint semantics (Waltz TR-271), performed in a
special parallel network. '

At “higher" levels of cognitive processing, however, one suspects fundamental
limitations in the usefulness of parallelism. Many "integral® schemes were proposed in
the literature on "pattern recognition™ for parallel operations on pictorial material --
perceptrons, integral transforms, skeletonizers, and so forth. These mathematically and
computationally interesting schemes might quite possibly serve as ingredients of
perceptual processing theories. But as ingredients only! Basically, “integral® methods
work only on isolated figures in two dimensions. They fail disastrously in coping with
complicated, three-dimensional scenery.

The new, more successful symbolic theories use hypothesis formation and
confirmation methods that seem, on the surface at least, more inherently serial. It is
hard to solve any very complicated problem without giving essentially full attention, at
different times, to different sub-problems. Fortunately, however, beyond the brute idea
of doing many things in parallel, one can imagine a more serial process that deals with
large, complex, symbolic structures as units! This opens a new theoretical "niche" for
performing a rapid selection of large substructures; in this niche our theory hopes to
find the secret of speed, both in vision and in ordinary thinking.

SEEING A CUBE

In the tradition of Guzman and Winston, we assume that the result of looking at a
cube is a structure something like that in figure 1. The substructures "A" and "B"
represent details or decorations on two faces of the cube. When we move to the right,
face "A" disappears from view, while the new face decorated with "C" is now seen. If
we had to analyse the scene from the start, we would have to

(1) lose the knowledge about "A,"
(2) recompute "B," and
(3) compute the description of "C."
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o~ ' - But since we know we moved to the right, we can save "B" by assigning it also to the -

“left face” terminal of a second cube-frame. To save "A" (just in case!) we connect it
also to an extra, invisible face-terminal of the new cube-schema as in figure 2

invisible

FIGURE 2

If later we move back to the left, we can reconstruct the first scene without any
perceptual computation at all: just restore the top-level pointers to the first cube-
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frame. We now need a place to store "C"; we can add yet another invfsible face to the
- right in the first cube-frame! See figure 3. We could extend this to represent further

Move-Right
transformation

"left-vertical
parallelogram'

"right-vertical
parallelogram'

"square" (in space)

excursions around the object. This would lead to a more comprehensive frame system,
in which each frame represents a different "perspective® of a cube. .In figure 4 there
are three frames corresponding to 45-degree MOVE-RIGHT and MOVE-LEFT actions. If
we pursue this analysis, the resulting system can become very large; more complex
objects need even more different projections. It is not obvious either that all of them
are normally necessary or that just one of each variety is adequate. It all depends.

It is not proposed that this kind of complicated structure is recreated every time
one examines an object. It is imagined instead that a great collection of frame systems
is stored in permanent memory, and one of them is evoked when evidence and
expectation make it plausible that the scene in view will fit it. How are they acquired?
We propose that if a chosen frame does not fit well enough, and if no better one is
easily found, and if the matter is important enough, then an adaptation of the best one so
far discovered will be constructed and remembered for future use.

Each frame has terminals for attaching pointers to substructures. Different frames
can share the same terminal, which can thus correspond to the same physical feature as
seen in different views. This permits us to represent, in a single place, view-
- independent information gathered at different times and places. This is important also in
non-visual applications.

The matching process which decides whether a proposed frame is suitable is
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controlled partly by one’s current goals and partly by information attached to the frame;
the frames carry terminal markers and other constraints, while the goals are used to
decide which of these constraints are currently relevant. Generally, the matching
process could have these components: '

(1) A frame, once evoked on the basis of partial evidence or expectation, would first
direct a test to confirm its own appropriateness, using knowledge about recently
noticed features, loci, relations, and plausible Sub-frames. The current goal list is
used to decide which terminals and conditions must be made to match reality.

(2) Next it would request information needed to assign values to those terminals that
cannot retain their default assignments. For example, it might request a description
s of face "C," if this terminal is currently unassigned, but only if it is not marked
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“invisible." Such assignments must agree with the current markers at the terminal.
Thus, face "C" might already have markers for such constraints or expectations as:

* Right-middle visual field.

* Must be assigned.

* Should be visible; if not, consider moving right.

* Should be a cube-face sub-frame.

* Share left vertical boundary terminal with face "B."
+ If failure, consider box-lying-on-side frame.

+ Same background color as face "B."

(3) Finally, if informed about a transformation (e.g., an impending motion) it would
transfer control to the appropriate other frame of that system.

Within the details of the control scheme are opportunities to embed many kinds of
knowledge. When a terminal-assigning attempt fails, the resulting error message can be
used to propose a second-guess alternative. Later it is shown how memory can be
organized into a "Similarity Network™ as proposed in Winston’s thesis (TR-231).

IS VISION SYMBOLIC?

Can one really believe that a person’s appreciation of three-dimensional structure
can be so fragmentary and atomic as to be representable in terms of the relations
between parts of two-dimensional views? Let us separate, at once, the two issues: is
imagery symbolic? and is it based on two-dimensional fragments? The first problem is
one of degree; surely everyone would agree that at some level vision is essentially
symbolic. The quarrel would be between certain naive conceptions on one side -- in
which one accepts seeing either as picture-like or as evoking imaginary solids -- against
the confrontation of such experimental results of Piaget (1956) and others in which many
limitations that one might fear would result from symbolic representations are shown
actually to exist!

As for our second question: the issue of two- vs. three-dimensions evaporates at
the symbolic level. The very concept of dimension becomes inappropriate. Each type of
symbolic representation of an object serves some goals well and others poorly. If we
attach the relation labels left-of, right-of, and above between parts of the structure,
say, as markers on pairs of terminals, certain manipulations will work out smoothly; for
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example, some properties of these relations are "invariant™ if we rotate the cube while
keeping the same face on the table. Most objects have "permanent® tops and bottoms.
But if we turn the cube on its side such predictions become harder to make; people
have great difficulty keeping track of the faces of a six-colored cube if one makes them
roll it around in their mind.

It one uses instead more Tintrinsic™ relations like next-to and opposite-to, then

turning the object on its side disturbs the "image” much less. In Winston’s thesis we see
how systematic replacements (e.g, of "left* for "behind," and "right” for “in-front-of")

can deal with the effect of spatial rotation.

SEEING A ROOM

Visual experience seems continuous. One reason is that we move continuously. A
deeper explanation is that our “expectations” usually interact smoothly with our
perceptions. Suppose you were to leave a room, close the door, turn to reopen it, and

- find an entirely different room. You would be shocked. The sense of change would be _‘
hardly less striking if the world suddenly changed before your eyes. A naive theory of

phenomenological continuity is that we see so quickly that our image changes as fast as
does the scene. There is an alternative theory: the changes in one’s frame-structure
representation proceed at their own pace; the system prefers to make small changes
whenever possible; and the illusion of continuity is due to the persistence of
assignments to terminals common to the different view-frames. Thus, continuity depends
on the confirmation of expectations which in turn depends on rapid access to
remembered knowledge about the visual world.

Just before you enter a room, you usually know enough to "expect” a room rather
than, say, a landscape. You can usually tell just by the character of the door. And you
can often select in advance a frame for the new room. Very often, one expects a
certain particular room. Then many assignments are already filled in.

The simplest sort of room-frame candidate is like the inside of a box. F. ollowing our

~ cube-model, the room-frame might have the top-level structure shown in figure 5.

One has to assign to the frame’s terminals the things that are seen. If the room is
familiar, some are already assigned. If no expectations are recorded already, the first
priority might be locating the principal geometric landmarks. To fill in LEFT WALL one
might first try to find edges "a” and "d" and then the associated corners "ag" and "gd."

- Edge "g,” for example, is usually easy to find because it should intersect any gye-leve|
~horizontal scan from left to right. Eventually, "ag," "gb," and "ba" must not be too

i s

"~
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FIGURE 5

inconsistent with one another -- because they are the same physical vertex.

- However the process is directed, there are some generally useful knowledge-based
tactics. It is probably easier to find edge "e” than any other edge, because if we have
just entered a normal rectangular room, then we may expect that

+ Edge “e" is a horizontal line.
+ It is below eye level.
* It defines a floor-wall texture boundary.

Given an expectation about the size of a room, we can estimate the elevation of "e,” and
vice versa. In outdoor scenes, "e" is the horizon and on flat ground we can expect to
see it at eye-level. If we fail quickly to locate and assign this horizon, we must consider
rejecting the proposed frame: either the room is not normal or there is a large
obstruction.

The room-analysis strategy might try next to establish some other landmarks. Given
"e,” we next look for its left and right corners, and then for the verticals rising from
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them. Once such gross geometrical landmarks are located, we can guess the room’s
general shape and size. This might lead to selecting a new frame better matched to that
shape and size, with additional markers confirming the choice and completing the
structure with further details.

* SCENE ANALYSIS AND SUBFRAMES

If the new room is unfamiliar, no pre-assembled frame can supply fine details; more
scene-analysis is needed. Even so, the complexity of the work can be reduced, given
suitable subframes for constructing hypotheses about substructures in the scene. How
useful these will be depends both on their inherent adequacy and on the quality of the
expectation process that selects which one to use next. One can say a lot even about
an unfamiliar room. Most rooms are like boxes, and they can be categorized into types:
kitchen, hall, living room, theater, and so on. One knows dozens of kinds of rooms and
hundreds of particular rooms; one no doubt has them structured into some sort of
similarity network for effective access. This will be discussed later.

A typical room-frame has three or four visible walls, each perhaps of a different
"kind." One knows many kinds of walls: walls with windows, shelves, pictures, and
fireplaces. Each kind of room has its own kinds of walls. A typical wall might have a 3 x
3 array of region-terminals (left-center-right) x (top-middle-bottom) so that wall-
objects can be assigned qualitative locations. One would further want to locate objects
relative to geometric inter-relations in order to represent such facts as ™Y is a little
above the center of the line between X and Z*

In three dimensions, the location of a visual feature of a subframe is ambiguous,
given only eye direction. A feature in the middle of the visual field could belong either
to a Center Front Wall object or to a High Middle Floor object; these attach to different
subframes. The decision could depend on reasoned evidence for support, on more
directly visual distance information derived from stereo disparity or motion-parallax, or
on plausibility information derived from other frames: a clock would be plausible only on
the wall-frame while a person is almost certainly standing on the floor.

Given a box-shaped room, lateral motions induce orderly changes in the quadrilateral

‘shapes of the walls as in figure 6. A picture-frame rectangle, lying flat against a wall,

should transform in the same way as does its wall. If a "center-rectangle” is drawn on a
left wall it will appear to project out because one makes the default assumption that any
such quadrilateral is actually a rectangle hence must lie in a plane that would so project.
In figure 7A, both quadrilaterals could "look like" rectangles, but the one to the right
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does not match the markers for a "left rectangle” subframe (these require, e.g., that the
left side be longer than the right side). That rectangle is therefore represented by a
center-rectangle frame, and seems to project out as though parallel to the center wall.

Thus we must not simply assign the label "rectangle” to a quadrilateral but to a
particular frame of a rectangle-system. When we move, we expect whatever space-
transformation is applied to the top-level system will be applied also to its subsystems
as suggested in figure 7B.

Similarly the sequence of elliptical projections of a circle contains congruent pairs
that are visually ambiguous as shown in figure 8. But because wall objects usually lie

Oo0o0 000

100 O 00|

Two figures are congruent, but transform differently.

- FIGURE 8

flat, we assume that an ellipse on a left wall is a left-ellipse, expect it to transform the
same way as the left wall, and are surprised if the prediction is not confirmed.
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DEFAULT ASSIGNMENT

~ While both Seeing and Imagining result in assignments to frame terminals, Imagination
leaves us wider choices of detail and variety of such assignments. Frames are probably
never stored in long-term memory with unassigned terminal values. Instead, what really
happens is that frames are stored with weakly-bound default assignments at every
terminal! These manifest themselves as often-useful but sometimes counter-productive
stereotypes.

Thus in the sentence "John kicked the ball," you probably cannot think of a purely
abstract ball, but must imagine characteristics of a vaguely particular ball; it probably
has a certain default size, default color, default weight. Perhaps it is a descendant of
one you first owned or were injured by. Perhaps it resembles your latest one. In any
case your image lacks the sharpness of presence because the processes that inspect and .
operate upon the weakly-bound default features are very likely to change, adapt, or
detach them.

WORDS, SENTENCES AND MEANINGS

The concepts of frame and default assignment seem helpful in discussing the
phenomenology of "meaning." Chomsky (1957) points out that such a sentence as

(A) "colorless green ideas sleep furiously”
is treated very differently than the non-sentence
(B) "furiously sleep ideas green colorless”

and suggests that because both are "equally nonsensical,” what is involved in the
recognition of sentences must be quite different from what is involved in the
appreciation of meanings. ‘

There is no doubt that there are processes especially concerned with grammar.
Since the meaning of an utterance is "encoded” as much in the positional and structural
relations between the words as in the word choices themselves, there must be
processes concerned with analysing those relations in the course of building the
structures that will more directly represent the meaning. What makes the words of (A)
more effective and predictable than (B) in producing such a structure -- putting aside
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the question of whether that structure should be called semantic or syntactic -- is that
the word-order relations in (A) exploit the (grammatical) convention and rules people
usually use to induce others to make assignments to terminals of structures. This is
entirely consistent with grammar theories. A generative grammar would be a summary
description of the exterior appearance of those frame rules -- or their associated
processes -- while the operators of transformational grammars seem similar enough to
some of our frame transformations. _

We certainly cannot assume that “logical” meaninglessness has a precise
psychological counterpart. Sentence (A) can certainly generate an image! The dominant
frame is perhaps that of someone sleeping; the default system assigns a particular bed,
and in it lies a mummy-like shape-frame with a translucent green color property. In this
frame there is a terminal for the character of the sleep -- restless, perhaps -- and
"furiously” seems somewhat inappropriate at that terminal, perhaps because the terminal
does not like to accept anything so "intentional” for a sleeper. "Idea” is even more
- disturbing, because one expects a person, or at least something animate. One senses
frustrated procedures trying to resolve these tensions and conflicts more properly, here
or there, into the sleeping framework that has been evoked.

Utterance (B) does not get nearly so far because no subframe accepts any
substantial fragment. As a result no larger frame finds anything to match its terminals,
hence finally, no top level "meaning” or "sentence” frame can organize the utterance as
either meaningful or grammatical. By combining this "soft" theory with gradations of
assignment tolerances, one could develop systems that degrade properly for sentences
with "poor” grammar rather than none; if the smaller fragments -- phrases and sub-
clauses -- satisfy subframes well encugh, an image adequate for certain kinds of
comprehension could be constructed anyway, even though some parts of the top level
structure are not entirely satisfied. Thus, we arrive at a qualitative theory of
“grammatical:" if the top levels are satisfied but some lower terminals are not we have
a meaningless sentence; if the top is weak but the bottom solid, we can have an
ungrammatical but meaningful utterance.

- DISCOURSE

Linguistic activity involves larger structures than can be described in terms of
sentential grammar, and these larger structures further blur the distinctness of the
syntax-semantic dichotomy. Consider the following fable, as told by W. Chafe (1972):
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There was once a Wolf who saw a Lamb drinking at a river and wanted an
excuse to eat it. For that purpose, even though he himself was upstream, he
accused the Lamb of stirring up the water and keeping him from drinking...

To understand this, one must realize that the Wolf is lying! To understand the key
conjunctive "even though™ one must realize that contamination never flows upstream.
This in turn requires us to understand (among other things) the word “upstream" itself.
Within a declarative, predicate-based "logical® system, one might try to formalize
“upstream” by some formula like:

[A upstream B] AND [Event T, Stream muddy at A] ===>
[Exists [Event U, Stream muddy at B]] AND [Later U, T]

But an adequate definition would need a good deal more. What about the fact that the
order of things being transported by water currents is not ordinarily changed? A logician
might try to deduce this from a suitably intricate set of "local” axioms, together with
appropriate "induction™ axioms. | propose instead to represent this knowledge in a
structure that automatically translocates spatial descriptions from the terminals of one
frame to those of another frame of the same system. While this might be considered to
be a form of logic, it uses some of the same mechanisms designed for spatial thinking.

In many instances we would handle a change over time, or a cause-effect relation, in
the same way as we deal with a change in position. Thus, the concept river-flow could
evoke a frame-system structure something like the following, where S1, S2, and S3 are
abstract slices of the flowing river shown in figure 9.

There are many more nuances to fill in. What is "stirring up™ and why would it keep
the wolf from drinking? One might normally assign default floating objects to the S’s, but
here S3 interacts with "stirring up” to yield something that "drink”™ does not find
acceptable. Was it "deduced” that stirring river-water means that S3 in the first frame
should have "mud” assigned to it; or is this simply the default assignment for stirred
water? .

Almost any event, action, change, flow of material, or even flow of information can be
represented to a first approximation by a two-frame generalized event. The frame-
system can have slots for agents, tools, side-effects, preconditions, generalized
trajectories, just as in the "trans" verbs of "case grammar” theories, but we have the
additional flexibility of representing changes explicitly. To see if one has understood an
event or action, one can try to build an appropriate instantiated frame-pair.
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However, in representing changes by simple "before-after” frame-pairs, we can
expect to pay a price. Pointing to a pair is not the same as describing their differences.
This makes it less convenient to do planning or abstract reasoning; there is no explicit
place to attach information about the transformation. As a second approximation, we
could label pairs of nodes that point to corresponding terminals, obtaining a structure like
the "comparison-notes” in Winston (TR-231), or we might place at the top of the frame-
system information describing the differences more abstractly. Somethmg of this sort
- will be needed eventually.

SCENARIOS

We condense and conventionalize, in language and thought, complex situations and
' sequences into compact words and symbols. Some words can perhaps be "defined" in
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‘elegant, simple structures, but only a small part of the meaning of "trade” is captured by:

first frame second frame
———

AhasX BhasY B has X AhasY

Trading normally occurs in a social context of law, trust and convention. Unless we also
represent these other facts, most trade transactions will be almost meaningless. It is
usually essential to know that each party usually wants both things but has to
compromise. It is a happy but unusual circumstance in which each trader is glad to get
rid of what he has. To represent trading strategies, one could insert the basic
maneuvers right into the above frame-pair scenario: in order for A to make B want X
more (or want Y less) we expect him to select one of the familiar tactics:

Offer more for Y.

Explain why X is so good.

Create favorable side-effect of B having X.
Disparage the competition.

Make B think C wants X

These only scratch the surface. Trades usually occur within a scenario tied together by
more than a simple chain of events each linked to the next. No single such scenario will
do; when a clue about trading appears it is essential to guess which of the different
available scenarios is most likely to be useful.

Charniak’s thesis (TR-266) studies questions about transactions that seem easy for
people to comprehend yet obviously need rich default structures. We find in elementary
school reading books such stories as: '

Jane was invited to Jack’s Birthday Party.

She wondered if he would like a kite.

She went to her room and shook her piggy bank.
It made no sound.

We first hear that Jane is invited to Jack’s Birthday Party. Without the party
scenario, or at least an invitation scenario, the second line seems rather mysterious:
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She wondered if he would like a kite.

To explain one’s rapid comprehension of this, we make a somewhat radical proposal: to
represent explicitly, in the frame for a scenario structure, pointers to a collection of the
most serious problems and questions commonly associated with it. In fact we shall
consider the idea that the frame terminals are exactly those questions. -

Thus, for the birthday party:

Y must get P for X ~=-==--- Choose P!

X must like P ~=-=-c-ecauu- Will X like P?
Buy P - Where to buy P?

Get money to buy P ---- Where to get money?
(Sub-questions of the "present” frame?)
Y must dress up -=--------- What should Y wear?

Certainly these are one’s first concerns when one is invited to a party.

The reader is free to wonder whether this solution is acceptable. The question
"Will X like P?" certainly matches "She wondered if he would like a kite? and correctly
assigns the kite to P. But is our world regular enough that such queshdn sets could be
pre-compiled to make this mechanism often work smoothly? The answer is mixed. We
do indeed expect many such questions; we surely do not expect all of them. But surely

"expertise” consists partly in not having to realize, ab initio, what are the outstanding
problems and interactions in situations. Notice, for example, that there is no default
assignment for the Present in our party-scenario frame. This mandates attention to that
assignment problem and prepares us for a possible thematic concern. In any case, we
probably need a more active mechanism for understanding "wondered” which can apply
the information currently in the frame to produce an expectation of what Jane will think
about. The key words and ideas of a discourse evoke substantial thematic or scenario
structures, drawn from memory with rich default assumptions.

In any event, the individual statements of a discourse lead to temporary
representations -- which seem to correspond to what contemporary linguists call "deep
structures™ -- which are then quickly rearranged or consumed in elaborating the growing
scenario representation. In order of "scale,” among the ingredients of such a structure
there might be these kinds of leveis:
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Surface Syntactic Frames --- Mainly verb and noun structures.
Prepositional and word-order indicator conventions.

Surface Semantic Frames ---Action-centered meanings of words.
Qualifiers and relations concerning participants, instruments, tra;ectones and
strategies, goals, consequences and side-effects.

Thematic Frames --- Scenarios concerned with topics, activities, portraits, setting.
Outstanding problems and strategies commonly connected with topics.

Narrative Frames --- Skeleton forms for typical stories, explanations, and arguments.
Conventions about foci, protagonists, plot forms, development, etc., designed to
help a listener construct a new, instantiated Thematic Frame in his own mind.

REQUESTS TO MEMORY

We can now imagine the memory system as driven by two complementary needs. On
one side are items demanding to be properly represented by being embedded into larger
frames; on the other side are incompletely-filled frames demanding terminal assignments.
The rest of the system will try to placate these lobbyists, but not so much in accord
with “"general principles” as in accord with special knowledge and conditions imposed by
the currently active goals. _

When a frame encounters trouble -- when an important condition cannot be satisfied
-- something must be done. We envision the following major kinds of accomodation to
trouble.

MATCHING: When nothing more specific is found, we can attempt to use some "basic”
associative memory mechanism. This will succeed by itself only in relatively simple
situations, but should play a supporting role in the other tactics.

EXCUSE: An apparent misfit can often be excused or explained. A "chair” that meets all
other conditions but is much too small could be a "toy.”

ADVICE: The frame contains explicit knowledge about what to do about the trouble.
Below, we describe an extensive, learned "Similarity Network”™ in which to embed such
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knowledge.

SUMMARY: If a frame cannot be completed or replaced, one must give it up. But first
one must construct a well-formulated complaint or summary to help whatever process
next becomes responsible for reassigning the subframes left in limbe.

MATCHING

When replacing a frame, we do not want to start all over again. How can we
remember what was already "seen?” We consider here only the case in which the
system has no specific knowledge about what to do and must resort to some "general”
strategy. No completely general method can be very good, but if we could find a new
frame that shares enough terminals with the old frame, then some of the common
assignments can be retained, and we will probably do better than chance.

The problem can be formulated as follows: let E be the cost of losing a certain
already assigned terminal and let F be the cost of being unable to assign some other
terminal. If E is worse than F, then any new frame should retain the old subframe. Thus,
given any sort of priority ordering on the terminals, a typical request for a new frame
should include:

(1) Find a frame with as many terminals in common with [a,b,..,z] as possible, where
we list high priority terminals already assigned in the old frame.

But the frame being replaced is usually already a subframe of some other frame and
must satisfy the markers of its attachment terminal, lest the entire structure be lost.
This suggests another form of memory request, looking upward rather than downward:

(2) Find or build a frame that has properties [ab,..z]

If we emphasize differences rather than absolute specifications, we can merge (2) and
(1):

(3) Find a frame that is like the old frame except for certain differences [a,b,...,z]
between them.
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One can imagine a parallel-search or hash-coded memory to handle (1) and (2) if the
terminals or properties are simple atomic symbols. (There must be some such
mechanism, in any case, to support a production-based program or some sort of pattern’
matcher.) Unfortunately, there are so many ways to do this that it implies no specific
design requirements.

Although (1) and (2) are formally special cases of (3), they are different in practice
because complicated cases of (3) require knowledge about differences. In fact (3) is too
general to be useful as stated, and we will later propose to depend on specific, learned,
knowledge about differences between pairs of frames rather than on broad, general
principles.

It should be emphasized again that we must not expect magic. For difficult, novel
problems a new representation structure will have to be constructed, and this will
- require application of both general and special knowledge.

EXCUSES

We can think of a frame as describing an "ideal.” If an ideal does not match reality
because it is "basically” wrong, it must be replaced. But it is in the nature of ideals that
they are really elegant simplifications; their attractiveness derives from their simplicity,
but their real power depends upon additional knowledge about interactions between
them! Accordingly we need not abandon an ideal because of a failure to instantiate it,
provided one can explain the discrepancy in terms of such an interaction. Here are some
examples in which such an "excuse” can save a failing match:

OCCLUSION: A table, in a certain view, should have four legs, but a chair might occlude
one of them. One can look for things like T-joints and shadows to support such an
excuse.

FUNCTIONAL VARIANT: A chair-leg is usually a stick, geometrically; but more important,
it is functionally a support. Therefore, a strong center post, with an adequate base
plate, should be an acceptable replacement for all the legs. Many objects are multiple
purpose and need functional rather than physical descriptions.

BROKEN: A visually missing component could be explained as in fact physically missing,
or it could be broken. Reality has a variety of ways to frustrate ideals.
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PARASITIC CONTEXTS: An object that is just like a chair, except in size, could be (and
probably is) a toy chair. The complaint "too small* could often be so interpreted in

contexts with other things too small, children playing, peculiarly large “grain," and so
forth.

In most of those examples, the kinds of knowledge to make the repair -- and thus
salvage the current frame -- are "general” enough usually to be attached to the thematic
context of a superior frame.

ADVICE AND SIMILARITY NETWORKS

In moving about a familiar house, we already know a dependable structure for
"information retrieval” of room frames. When we move through Door D, in Room X, we
expect to enter Room Y (assuming D is not the Exit). We could represent this as an
action transformation of the simplest kind, consisting of pointers between pairs of room
frames of a particular house system.

When the house is not familiar, a "logical” strategy might be to move up a level of
classification: when you leave one room, you may not know which room you are
entering, but you usually know that it is some room. Thus, one can partially evade lack
of specific information by dealing with classes -- and one has to use some form of
abstraction or generalization to escape the dilemma of Bartlett’s commander.

Winston’s thesis (TR-231) proposes a way to construct a retrieval system that can
represent classes but has additional flexibility. His retrieval pointers can be made to
represent goal requirements and action effects as well as class memberships.

What does it mean to expect a chair? Typically, four legs, some assortment of
rungs, a level seat, an upper back. One expects also certain relations between
these "parts.” The legs must be below the seat, the back above. The legs must be
supported by the floor. The seat must be horizontal, the back vertical, and so forth.

Now suppose that this description does not match; the vision system finds four legs,
a level plane, but no back. The "difference” between what we expect and what we
see is "too few backs." This suggests not a chair, but a table or a bench.

- Winston proposes pointers from each description in memory to other descriptions,
wuth each pointer labelled by a difference marker. Complaints about musmatch are
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matched to the difference pointers leaving the frame and thus may propose a better
candidate frame. Winston calls the resulting structure a Similarity Network.

Is a Similarity Network practical? At first sight, there might seem to be a danger of
unconstrained growth of memory. If there are N frames, and K kinds of differences, then
there could be as many as K+N:N interframe pointers. One might fear that:

(1) If N is large, say 107, then NN is very large -- of the order of 10'* -- which
might be impractical, at least for human memory.

(2) There might be so many pointers for a given difference and a given frame that
the system will not be selective enough to be useful.

(3) K itself might be very large if the system is sensitive to many different kinds of
issues. '

But, according to contemporary opinions (admittedly, not very conclusive) about the rate
of storage into human long-term memory there are probably not enough seconds in a
lifetime to cause a saturation problem. _

So the real problem, paradoxically, is that there will be too few connections! One
cannot expect to have enough time to fill out the network to saturation. Given two
frames that should be linked by a difference, we cannot count on that pointer being
there; the problem may not have occurred before. However, in the next section we
see how to partially escape this problem.

CLUSTERS, CLASSES, AND A GEOGRAPHIC ANALOGY

To make the Similarity Network act more "complete,” consider the following analogy. In a
city, any person should be able to visit any other; but we do not build a special road
between each pair of houses; we place a group of houses on a "block." We do not

connect roads between each pair of blocks; but have them share streets. We do not

connect each town to every other; but construct main routes, connecting the centers of
larger groups. Within such an organization, each member has direct links to some other
individuals at his own "level," mainly to nearby, highly similar ones; but each individual
has also at least a few links to “distinguished” members of higher level groups. The
result is that there is usually a rather short sequence between any two individuals, if
one can but find it. ’

~ .

o,
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At each level, the aggregates usually have distinguished foci or capitols. These -
serve as elements for clustering at the next level of aggregation. There is no non-stop

~ airplane service between New Haven and San Jose because it is more efficient overall

to share the "trunk” route between New York and San Francisco, which are the capitols
at that level of aggregation.

The non-random convergences and divergences of the similarity pointers, for each
difference d, thus tend to structure our conceptual world around

(1) the aggregation into d-clusters
(2) the selection of d-capitols

Note that it is perfectly all right to have several capitols in a cluster, so that there need
be no one attribute common to them all. The "crisscross resemblances™ of Wittgenstein
are then consequences of the local connections in our similarity network, which are

“surely adequate to explain how we can feel as though we know what is a chair or a

game -- yet cannot always define it in a "logical” way as an element in some class-
hierarchy or by any other kind of compact, formal, declarative rule. The apparent
coherence of the conceptual aggregates need not reflect explicit definitions, but can
emerge from the success-directed sharpening of the difference-describing processes.

The selection of capitols corresponds to selecting stereotypes or typical elements
whose default assignments are unusually useful. There are many forms of chairs,‘for
example, and one should choose carefully the chair-description frames that are to be the
major capitols of chair-land. These are used for rapid matching and assigning priorities
to the various differences. The lower priority features of the cluster center then serve
either as default properties of the chair types or, if more realism is required, as dispatch
pointers to the local chair villages and towns. Difference pointers could be “functional”
as well as geometric. Thus, after rejecting a first try at "chair™ one might try the
functional idea of "something one can sit on" to explain an unconventional form. This
requires a deeper analysis in terms of forces and strengths. Of course, that analysis
would fail to capture toy chairs, or chairs of such ornamental delicacy that their actual
use would be unthinkable. These would be better handled by the method of excuses, in
which one would bypass the usual geometrical or functional explanations in favor of
responding to contexts invalving art or play.
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ANALOGIES AND ALTERNATIVE DESCRIPTIONS

Suppose your car battery runs down. You believe that there is an electricity
shortage and blame the generator.

The generator can be represented as a mechanical system: the rotor has a pulley
wheel driven by a belt from the engine. Is the belt tight enough? Is it even there? The
output, seen mechanically, is a cable to the battery or whatever. Is it mtact" Are the
bolts tight? Are the brushes pressing on the commutator?

Seen electrically, the generator is described differently. The rotor is seen as a flux-
linking coil, rather than as a rotating device. The brushes and commutator are seen as
electrical switches. The output is current along a pair of conductors leading from the
brushes through control circuits to the battery.

The differences between the two frames are substantial. The entire mechanical
chassis of the car plays the simple role, in the electrical frame, of one of the battery
connections. The diagnostician has to use both representations. A failure of current to
flow often means that an intended conductor is not acting like one. For this case, the
 basic transformation between the frames depends on the fact that electrical continity is
in general equivalent to firm mechanical attachment. Therefore, any conduction disparity
revealed by electrical measurements should make us look for a corresponding disparity
~ in the mechanical frame. In fact, since “repair” in this universe is synonymous with
"mechanical repair,” the diagnosis must end in the mechanical frame. Eventually, we
- might locate a defective mechanical junction and discover a loose connection, corrosion,
wear, or whatever.

One cannot expect to have a frame exactly right for any problem or expect always
to be able to invent one. But we do have a good deal to work with, and it is important

to remember the contribution of one’s culture in assessing the complexity of problems -

people seem to solve. The experienced mechanic need not routinely invent; he already
has engine representations in terms of ignition, lubrication, cooling, timing, fuel mixing,
transmission, compression, and so forth. Cooling, for example, is already subdivided into
fluid circulation, air flow, thermostasis, etc. Most “ordinary™ problems are presumably
solved by systematic use of the analogies provided by the transformations between
pairs of these structures. The huge network of knowledge, acquired from school, books,
apprenticeship, or whatever is interlinked by difference and relevancy pointers. No

doubt the culture imparts a good deal of this structure by its conventional use of the

same words in explanations of different views of a subject.

Eatine. ¥
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SUMMARIES: USING FRAMES IN HEURISTIC SEARCH

Over the past decade, it has become widely recognized how important are the
details of the representation of a "problem space™ but it was not so well recognized
that descriptions can be useful to a program, as well as to the person writing the
program. Perhaps progress was actually retarded by i ingenious schemes to avoid explicit
manipulation of descriptions. Especially in "theorem-proving” and in “game-playing” the
dominant paradigm of the past might be schematized so:

The central goal of a Theory of Problem Solving is to find systematic
ways to reduce the extent of the Search through the Problem Space.

Sometimes a simple problem is indeed solved by trying a sequence of "methods" until
one is found to work. Some harder problems are solved by a sequence of local
improvements, by “hill-climbing™ within the problem space. But even when this solves a
particular problem, it tells us little about the problem-space; hence yielding no improved
future competence. The best-developed technology of Heuristic Search is that of game-
playmg using tree-pruning, plausible-move generatton, and terminal-evaluation methods. _
But even those systems that use hierarchies of symbolic goals do not improve their
understanding or refine their understanding or refine their representations. But there is
a more mature and powerful paradigm: :

The primary purpose in problem solving should be better to understand the
problem space, to find representations within which the problems are easier to
solve. The purpose of search is to get information for this reformulation, not --
as is usually assumed -- to find solutions; once the space is adequately
understood, solutions to problems will more easily be found.

The value of an intellectual experiment should be assessed along the dimension of
success - partial success - failure, or in terms of " improving the situation” or "reducing a
difference.” An application of a "method,” or a reconfiguration of a representation can
be valuable if it leads to a way to improve the strategy of subsequent trials. Earlier
formulations of the role of heuristic search strategies did not emphasize these
pdssibilities, although they are implicit in discusslons of "planning.”

Papert (1972, see also Minsky 1972) is correct in believing that the ability to
'duagnose and modlfy one’s own procedures is a collection of specific and important
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"skills." Debugging, a fundamentally important component of intelligence, has its own
special techniques and procedures. Every normal person is pretty good at them or
otherwise he would not have learned to see and talk! Goldstein (AIM-305) and Sussman
(TR-297) have designed systems which build new procedures to satisfy multiple
requirements by such elementary but powerful techniques as:

1. Make a crude first attempt by the first order method of simply putting together
procedures that separately achieve the individual goals.

2 If something goes wrong, try to characterize one of the defects as a specific (and
undesirable) kind of interaction between two procedures.

3. Apply a "debugging technique” that, according to a record in memory, is good at
repairing that specific kind of interaction.

4. Summarize the experience, to add to the "debugging techniques hbrary in memory.

These might seem simple-minded, but if the new problem is not too radically different
from the old ones, then they have a good chance to work, especially if one picks out the
right first-order approximations. If the new problem is radically different, one should not
expect any learning theory to work well. Without a structured cognitive map -- without
the "near misses™ of Winston, or a cultural supply of good training sequences of
problems -- we should not expect radically new paradigms to appear magically
whenever we need them.
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SUSSMAN AND McDERMOTT’S CONNIVER LANGUAGE

Advanced ideas on representing knowledge require advanced programming languages
if those ideas are to be implemented. We therefore follow the section on frames with a
discussion of the CONNIVER language of Sussman and McDermott, now well established as
a milestone in A. |. programming language development. Historically, the language owes
much to Hewitt’s earlier PLANNER from which CONNIVER inherited a number of central
ideas -- a pattern-directed data base search and pattern-directed subroutine call in
particular. CONNIVER, however, goes considerably beyond PLANNER in providing the
programmer with flexibility, power, and expressiveness, while at the same time avoiding
PLANNER’s bias toward a particular problem solving methodology.

THE PROBLEM WITH PLANNER

A higher level language derives its great power from the fact that it tends to impose
structure on the problem solving behavior of the user. Besides providing a library of
useful subroutines with a uniform calling sequence, the author of a higher level language
imposes his theory of problem solving on the user. By choosing what primitive data
structures, control structures, and operators he presents, he makes the implementation
of some algorithms more difficult than others, thus discouraging some techniques and
encouraging others. So, to be good, a higher level language must not only simplify the
job of programming by providing features which package programming structures
commonly found in the domain for which the language was designed, it must also do its
best to discourage the use of structures which lead to bad algorithms.

A subset of Hewitt’s PLANNER was rather haphazardly implemented by G. J.
Sussman, T. Winograd and E. Charniak. This operational system is called MICRO-PLANNER
(AIM-203A). It incorporates three basic PLANNER ideas: automatic backtrack control
structure, pattern-directed data-base search, and pattern-directed invocation of
procedures. Basically, backtracking is a way of making tentative decisions which can be
taken back if they don’t pan out. The pattern-directed data base search allows the user
to ask for the data items called assertions which match a given pattern, and is intimately
linked via the GOAL function to pattern-directed procedure invocation, which gives the
user the ability to say "Find and run a program whose declared purpose matches this
pattern.” This type of program, called a theorem, is expected to instantiate the pattern
(succeed), and thus simulate an assertion. In fact, it simulates a whole class of them,
since failures back into any such theorem cause it to make different choices and succeed
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with different instances.

How these mechanisms are related can best be illustrated by an example. The
statement (GOAL (?A IN ?B)) is expected to assign the question-marked variables that do
not have values already, or fail if it cannot, causing a backup to the last decision point in
the program. GOAL instantiates its pattern by matching it against successive assertions,
like (BLOCK2 IN BOX1). If it finds none, or enough failures propagate back to the GOAL
to use up those it has found, it calls theorems with matching patterns, such as:

(CONSEQUENT (X 'Y 2) (?X IN ?Y)
(GOAL (?X IN 72))
(GOAL (?Z IN?Y)) )

which expresses one facet of the notion that IN is transitive. A PLANNER program
executing (GOAL (BLOCK2 IN ?B)) first checks to see if it "knows" the answer, and if so
sets B to it. If not, it binds X to BLOCK2, links Y and. B, enters the theorem, and looks
for a Z containing BLOCK2 and contained in some Y. Its net effect is to assign a value to
B. '

If a failure propagates back into the theorem, it finds another Y containing Z, and
hence generates another B; enough failures to use up those Y’s drive it to find another
Z; and a few more will make it and the original GOAL fail themselves. Backtrack control
- structure is the heart of this apparatus.

Automatic backtracking is implemented as follows: A PLANNER program, as it runs,
grows a chronological stack of failpoints each of which corresponds to either a side
effect or a decision point (a place where a choice is made between several alternative
possibilities). A failpoint carries with it all information necessary to reconstruct the
state of the running process at the time the failpoint was made. At some time, the
process may decide to fail, perhaps because some decision made at a previous decision
point led the process into a blocked state from which there are no viable alternatives.
The failure then pops off the latest failpoint on the chronological stack. If this failpoint
was a side effect, then it is undone, and the process continues failing. If this failpoint
was a decision point, and there is another alternative, execution proceeds from that
failpoint with the next choice taken. If there are none the failure continues to
propagate. In these terms, GOAL finds exactly one assertion or theorem each time it is
reached, but sets a failpoint which regains control if a failure should occur later.

Now after studying the experience of laboratory workers using PLANNER, Sussman
and McDermott voice the following opinions:
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1. Programs which use automatic backtracking are often the worst algorithms for
solving a problem.

2. The most common use of backtracking can almost always be replaced by a purely
recursive structure which is not only more efficient but also clearer, both semantically
and syntactically.

3. Superficial analysis of problems and poor programming practice are encouraged by
the ubiquity of automatic backtracking and by the illusion of power that a function like
GOAL gives the user merely by brute force use of invisible failure-driven loops.

4. The attempt to fix these defects by the introduction of "failure messages” is
unnatural and ineffective.

We must stress that PLANNER has introduced many valuable constructs into our way
of thinking, the most important of which is pattern-directed search of a hierarchical data
base. But automatic backtrack control structure has not ‘been so valuable. PLANNER
almost forces inefficiency in exactly the applications for which it was designed.

BUILDING CONNIVER

What then is to be done. What of PLANNER should be preserved and what replaced
and improved upon? We have noted that PLANNER encourages a linkage of the
mechanism for generating alternatives with the mechanism that restores the environment
after the investigation of each one.

It seems to be the linkage of these two mechanisms in the GOAL statement that is at
fault. As an alternative, imagine that we are not allowed to clean things up upon failure;
that everything each goal-directed subrc.tine does stays done. Then, if the speculation
it has indulged in is not to have effects in the environment of its caller (the program
considering the alternatives), it must have a local environment of its own in which to
make changes. These changes may make its model of the problem conflict with its
superior’s model, or may simply be hypothetical additions to it. The important point is
that a simple return to the caller will be sufficient to make the changes invisible.

This concept can be made clear by analogy with the familiar notions of "control
environment” (a stack, for example), and "access environment" (where variables are
bound; the term is Bobrow and Wegbreit’s (1972)); in CONNIVER, we generalize the
latter to "data base environment,” or context. Just as LISP 1.5 supports a tree of
access environments ("association lists”), so CONNIVER supports a tree of contexts, in
which each daughter-context represents a data base incrementally different from her
parent. '
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This tree, it will be made clear, must be grown and maintained in conjunction with a
control environment of equal complexity. But the control structure exists only to exploit
the data base, so we return to it later.

CONNIVER contexts contain items, which are simple list structures like PLANNER’s
assertions (without the theorem-proving connotations that surround the latter term). An
item such as (SQUARE48 PAWN3) may be added to the current context with

(ADD *(SQUARE48 PAWN3))
and taken out with

(REMOVE *(SQUARE48 PAWN3)).
The arguments to ADD and REMOVE are skeletons, list structures that define items after
substitution of the values of their variables. Variables are indicated by ",". Thus, if X =
PAWNZ2, (ADD *(SQUARE49 X)) adds the item (SQUARE49 PAWN2) to the current
context.

Now, if the presence or absence of an item is to be reflected only in a local data
base, that is, be "hypothetical,” the data environment must be "pushed down” before
doing ADD’s and REMOVE’s of this sort. Since, in CONNIVER, a context is a data type,
and the current context is assigned to the variable CONTEXT, all we need to write is:

(PROG "AUX" ((CONTEXT (PUSH-CONTEXT)))
(ADD *(SQUARE48 PAWNS))

)

CONNIVER syntax is roughly that of LISP, but a declaration of local variables must be
explicitly indicated with the atom "AUX", and each such local must be given an explicit
initial value, if it is not to be unassigned, by being declared as "(variable value)” instead
of just "variable." This PROG thus rebinds CONTEXT to the value returned by the
system function PUSH-CONTEXT. The current context has had one more context-frame
pushed onto it. New changes apply to this frame only. After the body of the PROG has
been executed in this "hypothetical® context, the PROG’s control frame will be exited.
CONTEXT will be unbound, restoring its old value, in which the action of the ADD is
invisible; in effect, a data frame has been exited as well.

From now on, we shall abbreviate a construction such as the above as
(ASSUMING (SQUARE48 PAWN3) ..),

. to emphasize concisely the nature of the computation *." as proceeding in a slightly
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new environment. However, it should not be forgotten that, since contexts are data
structures, they can be returned as values of functions, assigned to global variables, etc.,
so that in fact the user has available a tree of contexts his program has left behind, in
the same way that using functional arguments (closures of functions) in LISP creates a
tree of variable-value associations.

Items can be retrieved from the current context by means of the CONNIVER
primitive FETCH, which finds all items present in the context that match a pattern. For
example, if we let the presence of the item (objl ON obj2) mean "object objl is resting
on top of object obj2," we can find all the objects on BOX2 with

(FETCH *(?X ON BOX2)). '
Roughly as in PLANNER, the ™" indicates that the variable X is to be assigned a value
by matching the pattern (?X ON BOX2) against some item. However, FETCH does not
make the assignment. Since backtracking has been exorcised from CONNIVER, it simply
returns a possibilities list which points to all the matching items, rather than hiding them
in a failpoint in GOAL, to be handed to us coyly, one per failure. The user can
manipulate this list in any way he chooses; one way is with the system function TRY-
NEXT, which pops off and returns the first item in the list, and assigns the pattern
variables as the possibility directs. For example, if PYRAMIDG is the first object found,
(TRY-NEXT (FETCH *(?X ON BOX2))) sets X to PYRAMIDS.
_ A useful "canned-loop” function, which is implemented using FETCH and TRY-NEXT, is
FOR-EACH, defined so that

(FOR-EACH pattern ...)
performs the computation "..." for each assignment of the pattern’s variables
corresponding to an item in the data base. Hence,

(FOR-EACH (?X ON TABLE)
(PRINT X))

prints the names of all objects resting on TABLE.

As in PLANNER, we want to be able to include a set of items in the current context
on the basis of some procedural criterion instead of their actual presence. In PLANNER,
this ability was attained by the use of consequent theorems, which behave as failure-
driven assertion-generators when invoked by GOAL statements. Since there is no
backtracking in CONNIVER, the analogous CONNIVER structure, the if-needed method,
must return all of its possibilities in a single bundle. The simplest type of if-needed
uses the primitive NOTE to save the current instantiation of its pattern with the values
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of the variables, which were not assigned when it was entered, but have been computed
by the method. When the method is exited, it returns a posslbshtaes list which includes
all the NOTEd instances.

For example, if the presence of an item of the form (objl SUPPORTS obj2) is to
mean "objl is helping maintain obj2 in its present position,” the following method
expresses part of the idea that if an object is on another, it is supported by it: '

(IF-NEEDED SUP-ON ('X SUPPORTS 1Y) "AUX" (X Y)
(FOR-EACH (?Y ON X)
(NOTE) ))

The ™" and "?" prefix characters mark method-pattern variables that are to receive or
to avoid receiving a value, respectively, when the method is entered. The "1?"-variables
are to be assigned in the body of the method (here, by the TRY-NEXT of a FOR-EACH
loop); hence, this method returns a list of all generated item possibilities for Y’s
supported by a given X.

Methods like SUP-ON are treated by the system, as other data, as present or absent
in a given context. If a method matchmg a FETCH or FOR-EACH pattern is found, a
method possibility is put into the possibilities list produced, to be invoked by TRY-NEXT
when the possibilities before it are used up. Upon returning, the method replaces itself
on the caller’s possibility list by the instances it generated. Hence, the presence of
SUP-ON in a context represents the presence of the items it can produce on demand.

As an illustration, suppose the items (TABLE SUPPORTS APPLE3),
(PLATE1 ON TABLE), and (BOX2 ON TABLE) are present. Then the loop

(FOR-EACH (TABLE SUPPORTS ?0BJ)
(PRINT 0BJ))

prints
APPLE3
PLATE!
BOX2,

with the method SUP-ON simulating the two items for the second two objects.
A more complex method may require the creation of a hypothetical data basg:




SUSSMAN AND McDERMOTT 39 | CONNIVER o

(IF-NEEDED SUP-UN (!X SUPPORTS ?Y) "AUX" (X Y)
(ASSUMING (,X VANISHES)
(FOR-EACH (PHYSICAL-OBJECT ?Y)
(COND ((UNSTABLE Y)
(NOTE)) ) ).

This method creates a hypothetical context in which X no longer exists, and sees which
objects are no longer stably immobile according to the (sophisticated) function
UNSTABLE. These are NOTEd, and, as before, all objects X supports (by this criterion)
are found before SUP-UN returns.

- Qur concept of generator appears simpler than PLANNER’s; methods like these dump
all their instances into the caller’s possibilities list and return, leaving their control
environments and any bindings of CONTEXT to be collected as garbage. Even if its caller
wants only one new item possibility, such generators give him all of them. The scheme
we have described does not allow the caller to influence the order or selection of
objects to be generated. If each generation is expensive, as, in SUP-UN, a call to
UNSTABLE might very well be, a lot of unnecessary overhead may be incurred if not all —
members of the set at issue are wanted. If, in fact, this set is infinite, the scheme
breaks down completely.

We have returned to our original problem: how can we maintain in existence the
control and context structure of a generator while returning from it with only a few of
the possibilities it can find? The answer lies in the structure and function of the
possibilities list; to invoke a method found in such a list is to replace the method by its
value, itself a list of possibilities. If this value list contains a generalized tag back to the
generator’s activation, its environment will be preserved and accessible. Not only that,
but if TRY-NEXT comes upon such a thing in a possibilities list, it is bound to transfer
control to it. Now the method can generate items in finite groups, asking to be
reawakened if none of the items satisfies its caller. A new version of SUP-UN that
‘works this way looks like: '

(IF-NEEDED SUP-UN2 (!X SUPPORTS 1Y) "AUX" (X Y)
(ASSUMING (,X VANISHES)
(FOR-EACH (PHYSICAL-OBJECT ?Y)
(COND ((UNSTABLE Y)
(NOTE)
(AU-REVOIR)) ))) ).




SUSSMAN AND McDERMOTT 40 CONNIVER

- AU-REVOIR causes an immediate return from the method when the first Y is found, but

also returns a tag to its own activation. Remember that SUP-UN2 is interacting with a
possibilities list (perhaps hidden in a FOR-EACH) at a higher level. The method itself
was found there, representing a set of simulated items; now when it returns, it leaves
one new supportee, plus an AU-REVOIR tag which similarly represents the set of
remaining possibilities it knows about. From the point of view of a FOR-EACH loop, this
type of possibilities list is equivalent to the previous exhaustive list, but it di ffers in
several crucial ways.

- First, the list is as short as the generator wishes to make it, no matter how large
the set it can generate if requested Second, such a list represents a generation-in-
progress which is not complete; the calling process that asked for it is in a position to
intervene and advise the generator how to proceed. Third, an AU-REVOIR tag can be
treated explicitly as a datum representing a parallel problem investigation and associated
world-view. A generator’s caller can use such a tag to do relative evaluations, close
functions, and fiddle with its binding of CONTEXT. Notice, for example, that a program
that uses SUP-UN2 has available a pointer to an incompatible environment where the -
object X no longer exists; a more sophisticated version could use this ability to
communicate the context and remaining physical object possibilities to take advice from
its caller on how to generate more objects supported by X.

The requirement that there be generalized tags, tags that mention whole control
environments, makes it necessary that CONNIVER maintain a control tree similar in
structure to the context tree it serves. All such still-viable environments form a set of
processes cooperating to solve a problem. Some of these are generators, using
possibilities lists as communication channels with their callers, but this by no means
exhausts the alternative ways of interacting. In particular, CONNIVER’s generalized
control structure makes it easy to put all of failure and backtracking back in if the user
wants them, but he has the duty (or privilege) of designing and maintaining control over
what he builds.

SOME RELEVANT READING

McCarthy, J., et al. LISP 1.5 Programmer’s Manual. Cambridge: MJ. Press, 1962




SUSSMAN AND McDERMOTT 4] CONNIVER

Winston, P. H. "The M.LT. Robot." Machine Intelligence 7. Ed. D. Michie and B. Meltzer.
Edinburgh: Edinburgh University Press, 1972,

Greenblatt, R., et al. "The Greenblatt Chess Program.”" Proc. Fall Joint Computer
Conference, 31 (1967), 801-810. Also A. |. Memo 174, Publications of the Artificial
Intelligence Laboratory, M.LT., 1967.

Bobrow, D. G. and B. Wegbreit. A Model and Stack Implementation of Multiple
Environments. Report No. 2334, Publications of Bolt, Beranek and Newman, Inc.,
Cambridge, Massachusetts, 1972,




FAHLMAN 42 PLANNING

FAHLMAN'S CONSTRUCTION PLANNER

Having reviewed CONNIVER, we will turn to Fahiman’s BUILD program in part to
demonstrate what can be done with CONNIVER. The BUILD program plans complicated
Blocks world construction sequences using substructures, counterweights, and scaffolds
as required. In the course of this planning, heavy use is made of CONNIVER’s
sophisticated data and control structure whenever some instability erupts and requires
interaction between higher level decision making routines and lower level block movers
and stability analyzers.

BUILD is passed two world models, each showing blocks of various sizes and shapes
piled upon a table. One model represents the current situation, and the other specifies a
desired goal state. BUILD must create a plan for moving from one state to the other
using only those primitive actions which could be accomplished by a one-handed robot:
single block movements and the movement of stable block sub-assemblies. None of the
intermediate block configurations created by this plan may be gravitationally unstable. ‘

It is one-handed operation that makes BUILD’s world interesting. Consider, for
example, how the "seesaw” of figure 1 might be constructed. Straightforward bottom-up
assembly is no good, since block C will topple if either A or B is. placed alone. There
are solutions, however: The A-B-C structure can be assembled on the table, then
grasped by C and lifted into place. If there are some spare blocks available, they can be
used to create a temporary support or "scaffold® to hold up one side of C while A and B
are placed. Figure 2 shows a variable-height scaffold made of two bricks and a wedge.
Finally, a temporary counterweight can be used to hold C down while A and B are
placed, as in figure 3. |

BUILD can employ any of these tricks when necessary -- can even combine several
tricks to build complicated structures -- but far more important is its flexibility in
dealing reasonably with all of the little problems and combinations of problems that
confront it at every turn. Specifically, BUILD can do the following sorts of things:

“+ Dig up needed blocks that are buried under other blocks.
* Find or clear. table space for unwanted blocks and for sub-assembly construction.
* Make use of any pre-existing portions of the goal structure, if practical.

+ Borrow scaffold parts from other structures.
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* Pick the bés; (least-buried) blocks to use when a choice is possible.
% Work backwards from the goal when this is easier.
+ Create and study hypothetical states as intermediate goals.
+ Go back over its own plans to make minor changes or eliminate redundant steps.

* Accept suggestions ("Try counterweight first”) and restrictions ("Don’t move any
block more than once”) easily and naturally, although not in English.

+ Plan in a headlong manner, worrying sbout low-probability disasters only if they
are encountered.

+ Switch control among several search paths, depending upon which looks best at
the moment. '

Build is able to maintain several world models at once by keeping each model in a
separate context in the CONNIVER data base. Routines are provided for determining
face and vertex positions from the shape and position of a block and for checking
whether two objects are touching. A very powerful stability test is able to trace out
the support relationships even in complex scenes involving friction. If a structure is
unstable, this test can determine exactly which blocks will fall, slide, or pivot in which
directions. Such complete information about the nature of a failure is of immense value
to BUILD in finding an appropriate remedy. S
~ BUILD employs a "virtual data base” storage scheme. When it needs some piece of
information -- the position of a vertex, perhaps, or the support relationship between
two blocks -- BUILD sends a pattern match request off to the data base. If the desired
fact is there, fine; if not, an appropriate routine is called to derive the needed
information from other facts, and the answer is saved in the data base for future
reference. Thus, the system has direct access to any fact that is within its power to
compute, without having to work everything out before it is needed. Nothing is
computed and never used; nothing is computed twice. BUILD can jump off to any
routine at any time, without worrying about the state of preparations in the data base.

BUILD’s flexibility and power are made possible by its control structure, which fully
exploits CONNIVER’s multi-process capability. Any function invocation in CONNIVER can
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be kept alive even after the function has returned or passed control elsewhere. This is
done by creating a tag into the body of the function and saving this tag in some external
~ location. Using this tag, other programs can ask any questions they want about the
suspended process or its environment, or they can restart the process by GOing to the
tag. It is this mechanism that allows BUILD to switch control easily from one search path
to another, though only one process is ever running at any given time.

Errors and failures are dealt with in BUILD by something called a CHOICE-GRIPE
mechanism. Whenever a major choice is made, a tag into the choosing routine is pushed
onto a stack and the system proceeds. |f some sub-goal later runs into trouble (a block
structure collapses, for instance) the losing procedure generates a GRIPE consisting of a
tag to itself and a brief message describing the failure, and control is passed to a gripe-
catcher associated with one of the previous choice-tags. Through its tags, this catcher
has access to any information it needs, either about the choice or about the disaster that
resulted from it, and is in an ideal position to propose a fix. Earlier systems either
received no information about a failure or had to make do with a terse and probably
cryptic message.

The catcher can react in any of several ways: It can clean up the mess and try a
different choice. It can splice a minor patch into the losing plan or slightly modify the
losing sub-goal’s instructions if it appears that such actions will help. It can pass the
gripe on up to a catcher associated with a more global choice. If the gripe is non-fatal,
the catcher can either dismiss it, perhaps sending down some advice about how to
proceed, or it can suspend the complaining process while other alternatives are tried.
This ability to analyze a failure and select an appropriate response is something which
has long been discussed in All.circles, but BUILDis one of the first programs to achieve
this. :

Thus BUILD represents an attempt to bring together in a concrete form a large
number of problem-solving ideas that have been in the air for some time. We believe it
will serve as a useful paradigm for problem-solving efforts in many domains.
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3 UNDERSTANDING ENGLISH AND ASSIMILATING KNOWLEDGE

Much of the newer work on understanding English text is of a continuing nature and
will be featured in future reports. This section is confined, for the most part, to
completed pieces of work.

The section opens with a brief review of Winograd’s blocks-world discourse system
because it established the context in which the later work has been done (TR-235). OQur
last major report described Winograd’s ideas at greater length,

WINOGRAD’S DISCOURSE SYSTEM

Winograd’s system contains the syntactic, semantic, and deductive expertise
required to engage in discourse about a simulated Blocks world like that of figure 1.
SHROLU, the robot, can answer questions and respond to commands, all using quite
natural English.

Winograd concentrated on bringing out the semantic issues in his work. His grammar,

for example, is one whose purpose is to find and understand groups of words that
convey meaning. There are four simple kinds of groups:

NOUN GROUP

VERB GROUP
ADJECTIVE GROUP
PREPOSITIONAL GROUP

On a higher level, various combinations of groups may form a clause. These clauses
in turn may legally appear as parts of the various groups, allowing a recursive quality to
be exhibited in sentences understood by the analysis routines.

it is often convenient to show the containment relationships among the various
groups and words of a sentence by using a tree-like diagram like that in figure 2.

In order to understand a sentence, Winograd's syntactic system builds descriptive
properties called features into the nodes in the tree. See figure 3.

For the most part the meaning of the features used can be guessed from their
mnemonic names. The syntax specialist picks up many of them from the word dictionary.
Others are deduced from known rules constraining how sentences are put together. For
example, as soon as the syntax specialist has organized the features derived from the
fragment "Pick up.." it knows that only a noun group or a so-called rank shifted clause




47 .

T fobots Hepit

o |~

N
red {/ \\ \

red /
blue L 273,&45

L, /

FIGURE 1




WINOGRAD 48 DISCOURSE

clause

verb group noun group

pick up a big red ball

FIGURE 2

noun group
obj

obj 1
indef

verb group
imper

pick up a big red ball
vb prt det adj adj  noun
inf indef ns
trans ns

vprt

FIGURE 3




WINOGRAD 49 DISCOURSE

can follow. This together with the dictionary features for "a" allow a node with the
noun-group, object and objectl features to be established immediately. Thus
accumulated features guide the remaining analysis.

A key idea in Winograd’s work is the idea that descriptions in English can be
translated into descriptions in the form of programs. The system translated the fragment
"a big red block which supports the pyramid” into a program matched to it as follows:

A

BIG (FIND >0 (GOAL (BIG ?X))

RED (GOAL (RED ?X))

BLOCK (GOAL (BLOCK ?X))

WHICH

SUPPORTS (FIND =1 (GOAL (SUPPQRTS ?X ?Y))
THE

PYRAMID (GOAL (PYRAMID ?Y)) ))

The program fragments are found in the word dictionary under entries for the words
big, red, block, support, and pyramid. And when assembled as shown the result is a
program which inspects the data base in an effort to find the name, say B18, of some big
red block which in fact supports the pyramid. The English description has become ‘a
~ program whose execution is relevant to answering questions about or manipulating the
object described.

What about the other words in the fragment? What do they contribute? They are
indeed important because the features of the words a, the, and which, provide the
instructions on exactly how the dictionary code fragments must be put together. The
use of >0 and =1 in the example derive directly from such word-feature considerations.
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CHARNIAK’S CHILDRENS STORY SYSTEM

Winograd’s system proved very talented indeed at discourse confined to the
simulated blocks world. It is so good that people often think more of the natural
language problem has been solved than is in fact the case. Deep issues remain, among
them the problem of bringing general common-sense facts to bear on particular story-
like situations. We now turn to Charniak’s brave work on children’s stories to see what
sort of things are involved.

A typical story studied by Charniak might start:

Fred was going to the store.
Today was Jack’s birthday and Fred was going to get a present.

Some typical questions would be:

Why is Fred going to the store?
Who is the present for?
Why is Fred buying a present?

There are two points which we should note about such questions. First, they are not
answered explicitly in the text. That is, the story did not say "Fred was going to the
store because he ..." The story does not even contain a full implicit answer; one cannot
logically deduce an answer from the statements in the story without using general
knowledge about the world such as:

Objects "got™ at stores are usually "bought.”
Presents are often bought at stores.
If a person is having a birthday, he is likely to get presents.

To explicate the role of world knowledge in understanding, Charniak proposes the
following strategy:

1) The problem is divided into two parts. The first half concerns taking the natural
language and translating it into an "internal representation.® This internal
representation is a form which is convenient for making deductions. “Internal
translation,” as we shall call the first part, is restricted to processes which could
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be performed by a person seeing the line completely out of context. The second
part of the two part division is called "Deep Semantic Processing (DSP).

2) Rather than consider the entire problem of natural language comprehensnon, only DSP
is considered.

3) A DSP model should try to "fill in the blanks™ of the story on a line by line basis.
That is, as it goes along, it will try to make connections between events in the
story (usually causal connections) and fill in missing facts which seem |mportant
(such as who was going to receive the present).

4) The model will build up a data base which contains the facts given by the story along
with any deductions made in accordance with (3) above. The model will try to
keep this data base consistent and non-redundant.

5) A fact is only "made available” for making deductions when there is reason to believe
that it is relevant to the story. For example, going back to the first story, the fact
“people get presents from others on their birthdays" would be associated with the
concept "birthday,” and would hence be introduced to the data base by the line
"Today was Jack’s birthday." Typically the mode! will immediately try to use the
newly introduced fact. However, in the "birthday™ example it is not until the next
line, “"Fred was going to get a present” that we find anybody obtaining a present,
and so it is then that our fact can be used and allow us to conclude that the
present is for Jack. So in many cases facts introduced earlier ‘in the story are
used to interpret lines which occur later in the story. Charniak thinks of such facts
as being "demon-like."

6) The model attempts to handle many kinds of statements about intentions, desirés, and
responsibilities which frequently come up in children’s stories. In particular, they
cause portions of general knowledge to become relevant to the story. Hence this
information can affect later lines, as in (5).
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AN EXAMPLE

To provide a better idea of what is involved, this section is devoted to a detailed
example. This example was handled by a computer program, but the model of
comprehension reflected in the computer program was prellmmary and not |dent|cal to
the model Charniak ultimately proposed

WHAT THE PROGRAM DOES

The program’s input (and output) is not English, but "preprocessed® English, in the
sense that it has already been put into a form which closely resembles the internal
format. This however leaves open the question of what information is explicit in the
- input, and what the program deduces for itself. The only information which can be
included in the input is information which a normal reader can get solely out of an
individual sentence without recourse to context. For example, since any noun phrase
might be referring to an object which was introduced by an earlier line of the story, such
reference decisions are not resolved in the input language.

This story is taken directly from "Up and Away,” a first grade reader (Mc Kee et al.
1966). Several sentences have been deleted for brevity.

THE EXAMPLE

Jack and Janet were in the house. Jack was holding a box of penclls and a box of
paints.

EVERYTHING INDENTED AT THIS LEVEL IS COMMENTARY FOR THE READER. The

first two lines of the story are not in the original version which has a picture
instead.

"Janet, see the paints and pencils that Daddy got for us, said Jack.
Janet went to look at them.

"Are the paints for me?" she asked.

"No, the paints are mine,” said Jack. "The pencils are for you, Janet.”

Question: Did Daddy get the paints for Janet?
Answer: No, Daddy got the paints for Jack.
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It should be noted that the original sentence about getting the paints and pencils
for Jack and Janet was ambiguous. It might have meant that they were for the
children to share. If we had asked this question 3 lines ago the program would
have responded I don’t know."

Janet said to herself, "l want the paints.”
- Jack began to paint a picture of a red airplane. Janet went to look at it.

"Those paints make your airplane look funny,” she said. "You could make a good
- picture of a red airplane with these pencils.”

Question: Why did Janet say that the paints were bad?
Answer: She wants the paints.

This question involves several points. The program interprets “funny” as “bad" in
this context (this is not done for it in the input format). Janet really said that
the picture was bad, and it is necessary to transfer this to the paints. We must
know that if you want something another person has, you may make nasty
comments about it in order to get it. Also, if we had asked, "Is the picture
funny?” the response would have been (in essence) "No, she said so but she had
an ulterior motive.” At this point it should be realized that the program needs a
lot of information about wanting, trading, giving, owning, and strategies for getting
something from another person. While this example shows that the program has
some knowledge of these topics, it knows virtually nothing about everything else.

Janet continues "l will let you have the pencils. | will take the paints.”

Question: What does Janet want to do?
Answer: Trade the pencils for the paints.

Jack looked at the pencils.

"No, thank you, Janet,” he said. " want to paint more pictures.”

Janet said to herself, "l do not want these pencils.”

Soon Janet came back with something for Jack.

"Jack, here is a toy cat to put your money into,” she said. ™! will give you this cat and
all my pencils for your paints.”
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Question: Why did Janet get the toy cat?
Answer: To trade with Jack.

The program realizes that “something” (in "Soon Janet came back with something
for Jack.”) and toy cat are the same object. (Again, this is not done in the input
language.) It has to know that returning to a place where you just were with a
given object constitutes getting the object. We might note that we could
remove the “for your paints” from "l will give you this cat and all my pencils for
your paints,” and still understand Janet as meaning "trade." Of course, “give”
does not always mean trade; only in certain contexts. This and the “funny”
example point out the fact that inference is also necessary for deciding
"meanings.”

Question: Why did Janet offer to give Jack the cat and the pencils?
Answer: She wanted the paints, and Jack would not trade for the pencils.

"l have no money," said Jack. "What do | want with a toy cat? | want to paint more
pictures.” ' '

Question: Will Jack trade?

Answer: No.

Question: Why won’t Jack trade?

Answer: He doesn’t want the cat and he wants the paints.

Actually "What do | want with an X" is treated as an idiom, meaning "I don’t want
an X" and is input this way to the program

"I'll have to get some money for Jack," Janet said to herself.
Soon she came back with it. "Jack, here is some money to put into the toy cat,” she
said. "Now you will have some money, a toy cat, and all these pencils.”

The phrases "some money™ and "a toy cat” out of context may or may not refer
to the cat and money Janet is holding. The program decides that they do since it
is anticipating a trade offer, and this can only be construed as a trade if the
objects in question are Janet’s. '
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Jack laughed and said, "Take your things and go away.

Question: Will Jack trade?
Answer: No.

The program interprets the phrase "go away" as implying that the person who
said it does not want to do any current or suggested activity.

| want to paint pictures.”

Question: Why did Janet kick Jack?

Answer: | was not aware that Janet kicked Jack.

Question: Where is Bill?

Answer: | don’t know, but it seems like a silly question since no Bill is mentioned.
Question: When did Janet get the cat?

Answer: Before she offered to trade the pencils and the cat for the pamts

"When" questions are answered by mentioning an event which happaned at
roughly the same time. The major problem is making sure that the event used is
important enough in the story so that the reader is certain to remember it. In a
longer story this becomes very important, though even here it makes a
difference. The response could have been "Just after Jack looked at the paints”
which occurred a few lines before Janet goes to get the cat. However, this
response seems much less natural than the one given. Currently the test for
importance is checking that the line has causal links with other parts of the story.

Question: Does Jack know that Janet wants the paints?

Answer: Yes, he was there when she offered to trade which implied that she wanted
the paints.

When Janet said " want the paints” she said it to herself. While the program
can make use of this information, Jack cannot. So instead the system notes that
"wanting the paints” is the reason for Janet offering to trade. It then assumes
that Jack could figure this out also.
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AN OVERVIEW OF A PROPQSED SYSTEM

Charniak did not implement his ideas other than those required for the handling of
the dialogue fragment given above, believing the specification of a very ambitious
system to be a better allocation of resources than the implementation of a more modest
one. The following sections describe some of his resulting views.

DEEP SEMANTIC PROCESSING
There are four main components of inference or deep semantic processing (DSP):

Demons - Facts which are introduced by "concepts™ occurring in the story are called
"demons” since in many cases they must wait for further information. In
such cases we can think of them "looking” for the appropriate fact. So "not
being willing to trade”™ might put in a demon looking for a better offer.

Base routmes - These constitute what we know about a “concept” independent of
"context.” So, for example, if A gives B to C then C now “has” B This is
not dependent on what happened earlier in the story.

Bookkeeping - This does chores like keeping the data base relatively consistent and
non-redundant. So, should a person in the story change location, the old
location statement must be updated.

Fact finders - These are utility routines for doing standard deductions which are not
worth asserting separately. A typical fact finder might say, "If you want to
know if person P knows fact F, just see if when F occurred, (or was said
by some character in the story) P was around.”

Let us now consider what these notions might involve in more detail.

DEMONS

Consider a fact like:

{48) "If it is raining” and



CHARNIAK 57 STORIES

"If person P is outside” ==> "P will get wet”

We have an intuitive belief that (4) is a fact about "rain,” rather than, say, a fact about
“outside.” Many things happen outside and getting wet is a very small part of them. On
the other hand only a limited number of things happen when it rains.

This belief is embodied by associating (4) with "rain” so that only when "rain" comes
up in the story will we even consider using rule (4). Rain is the "topic concept® of (4).
When a concept is brought up in a story, the facts associated with it are "made
available™ for later use. (The facts are "put in" or "asserted.”) So, if "circus" say, has
never come up, the program will not be able to make deductions using those facts
associated only with "circus.” '

Note however that "rain" does not need to be mentioned exphcutly in the story
before we can use (4). It is only necessary that there be a "rain" assertion put into the
data base. Other parts of the story may provide facts which cause the program to
assert that it is raining. For example:

(5) One afternoon Jack was outside playing ball with Bill. Bill-looked up and noticed
that the sky was getting dark. "I think we should stop™ said Bill. "We will get
wet if we keep playing.”

Here, the sky getting dark in the afternoon suggests that it is going to rain. If this is put
into the data base it will be sufficient to bring in facts associated with "rain" (Actually,
to account for (5) we would need to modify (4) slightly, since (4) requires that |t is
raining, and in (5) we only suggest that it will rain. ‘

~ Also note that a topic concept need not be a single "key word.” A given set of facts
may not become available to the system until a complex set of relations appear in the
data base.

LOOKING FORWARD, LOOKING BACK

Only considering facts after we have seen the "topic™ concept allows us to see the
topic concept before we have all the information needed to make use of the fact. This
would be no problem in a delayed deduction scheme because a rule is only used when
the user askes a question. If the facts which enable the rule to work are missing, it
simply means that the rule will not be used. But, when making deductions "on the fly,” if
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the necessary information comes in after the rule has been introduced we want to make
the deduction when the information comes in. So we might have:

(6) Jack was outside. It was raining.
(7) It was raining. Jack was outside.

In (6) there is no problem. When we introduce "rain™ we have sufficient information to
use (4) and deduce that Jack is going to get wet. But in (7), we only learn that Jack is
outside after we have mentioned rain. If we want to use (4) we will need some way to
have our fact "look forward” in the story. To do this we will break a fact up into two
parts, a pattern and a body (a program). We will execute the body of the fact only
when an assertion is added to the data base which matches the pattern. So with (4) the
pattern would be "someone outside.”" Hence in (7) we introduce (4) when we see "rain."
At that time no assertion matches the pattern. But the next line will create a matching
assertion, so the body of the fact will then be executed. Hence we will say that a fact
is "looking forward" when the assertion which matches its pattern comes after the
assertion which made the fact relevant to the story. When the assertion which matches
the pattern comes before we will say that the fact is "looking backwards.”
We can see how important looking forward is with a few examples.

(8) “Janet and Penny went to the store to get a present for Jack. Janet said I will
get Jack a top’ 'Don’t get Jack a top.’ said Penny. 'He has a top. He will make
you take it back’™ We interpret the line "Jack has a top™ as meaning that he
did not want another. The common sense knowledge is the fact that in many
cases having an X means that one will not want another X. This piece of
information would probably be filed under "things to consider when about to get
something for somebody else.” Naturally it was an earher line which mentioned
that Janet was thinking of getting Jack a top.

(9) "Jack was having a birthday party. Mother baked a cake." The second line is
interpreted as meaning "for the party™ on the basis of mformatuon about
birthday parties brought in by the first line.
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(10) "Bill offered to trade his pocket knife for Jack’s dog Tip. Jack said °l will ask
Janet. Tip is her dog too.™ The last line is interpreted as the reason Jack will
ask Janet because of information about the relation between trading and
ownership.

(11) "Janet wanted to get some money. She found her piggy bank and started to
shake it. She didnt hear anything.” The last line means that there was nothing
in the piggy bank on the basis of facts about piggy banks.

In each of these cases it is an earlier line which contains the information which is used to
assign the interpretation. So in the first example there is nothing inherent in the line
"Jack has a top" which means "don’t get him another.” Suppose there were. Changing
the example to "Jack has a ball," something in the line would have to key a check for the
following situations as well: '

(12) "Bill and Dick wanted to play baseball. When Jack came by Bill said "There is
Jack. He has a ball."

(13) Tom asked his Father if he would buy him a ball. "Jack has a ball” said Tom.

(14) Bill’s ball of string was stuck in the tree. He asked Jane how he could get it out.
Jane said "You should hit it with something. Here comes Jack. He has a ball.”

Those familiar with PLANNER might notice that the "facts" look quite similar to
Planner antecedent theorems, with the exception that facts can "look back” as well as

~ "look forward." Antecedent theorems are only designed to look forward. Another

difference is that while antecedent theorems are automatically executed when a relevant
assertion is entered into the data base, demons will bg called some time after the
assertion has been created.

POSSIBLE FUTURES

Charniak requires that a concept can be introduced by the story before facts
associated with it become available for making further deduction. One aspect of this
decision is the significance it gives to statements about future events. In general,
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statements in future tenses are problematic. While it is usually clear what a present
tense statement means, what is one to make of some statement that "Jack must buy a
new suit?” It does not mean that we can be certain that at some point in the future we
will see Jack buying a new suit. It certainly does not mean that Jack is currently at the
clothing store. So what is one to do with such a statement? Such statements ("possible
futures”) introduce facts that can be used to interpret some of the things which may
happen in the story. Once we see "must buy a new suit™ we will be looking (forward)
- for the person’s going to a clothing store and, when and if he does so, we will know why.
Note that this analysis applies equally well to "can buy a new suit,” "will buy..,” "should
buy..,” etc. This is not to say that all these phrases mean the same thing. Rather, the
concept of possible future is designed to capture what they have in common. Their
differences will have to be accounted for by other means.

BASE ROUTINES

So far we have said that demons are introduced to the story when the proper
concept has been mentioned. But this implies that there is something attached to the
concept name telling us what demons should be put in.

If we look at a particular example, say (10), it is Bill’s offer to trade the pocket
knife for Tip, which sets up the context for the rest of the fragment. So we must have
some information, which this line somehow accesses, telling us to activate certain
demons. We will assume that this information is in the form of a program. Such routines,
which are available to set up demons, will be called "base routines™ and will be
designated by -BASE at the end of their name, as in TRADE-BASE which is act:vated
when an assertion with the symbol TRADE is placed in the data base..

These base routines will be responsible for more than setting up demons. Suppose
we are told that Jack had a ball, and Bill a top. Then Jack traded his ball to Bill for the
top. One question we might ask is "Who now has the top?" Naturally since questions of
"who has what" are important in understanding stories we will want to keep tabs on
such information. In this particular case, it must again be the "trade™ statement which
tells us to switch possession of the objects. To be more formal, we would say "trade”
entails the fact that the objects have switched owners. (Though note that | am not using
the formal logical definition of "entails.") Since every time a trade occurs we will want
to exchange objects, it must be the case that whenever we see "trade™ we execute
TRADE-BASE. Of course, the program can't be too simple minded, since it must also
handle "I will trade ..." and perhaps even "Will you trade ..?"
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There might be some question as to whether demons and base routines are really
distinct entities. When a demon is looking forward it is waiting until an assertion is
added to the data base which matches its pattern. This is exactly what a base routine
does, but while the demon will only be asserted when we have encountered the proper
concept, base routines are always available.

Of course, we are only looking at children’s stories. Will we want the same set of
base routines for reading both fiction and chemistry, or will base routines also be
shuffled in and out, like demons, but only on a broader scale? Rather than being added
and removed within the confines of a single story, they might be added and removed
depending on the type of literature we are reading.

BOOKKEEPING

Up to this point we have introduced two parts of Charniak’s DSP, demons and base
routines. In this section we will introduce bookkeeping.

Again let us consider the situation when Jack had a ball, Bill a top, and they traded.
When we say that Bill now has the ball, it implies that Jack no longer does. That is to
say, we must somehow remove the fact that Jack has the ball from the data base.
Actually we don’t want to remove it, since we may be asked "Who had the ball before
Bill did?" In this particular case we might be able to construct the answer from the fact
. that there was a trade, though we would also have to be on the lookout for "give" and
even Jack losing the ball and Bill finding it. While this would be difficult, in other cases
such an approach would be seemingly impossible. For example, suppose Janet wanted a
doll, and she did several things to get it, but then decided that she didn’t want a doll, but
a paint set. If we were to erase the fact "Janet wants a doll” we would no longer be
able to answer questions like "Why did Janet go to the toy store?™ since we would
- have erased the reason. Charniak proposed to mark the assertions in some way to
indicate that they have been updated. So, going back to Bill, Jack and the trade, we
might have:

(15) (N1 HAVE JACK1 BALL1) TROUBLE: (NEG-UPDATE N4)
(N2 HAVE BILL1 TOP1) TROUBLE: (NEG-UPDATE N5)
(N3 TRADE BILL1 JACK1 TOP1 BALL1)
(N4 HAVE BILL1 BALL1)
(N5 HAVE JACK! TOP1)




CHARNIAK 62 ~ STORIES

In proposing this scheme, Charniak was heavily influenced by the then in vogue
MICROPLANNER programming language. It is interesting to speculate on how his ideas
would have been different if CONNIVER were available to ease the handling of multiple
contexts.

FACT FINDERS

Even deciding that one statement updates another requires special knowledge.
Suppose we have:

(16) Jack was in the house. Sometime later he was at the store.

If we ask "Is Jack in the house?™ we want to answer "No, he is at the store.” But how
is bookkeeping going to figure this out? There is a simple rule which says that (<state>
A B) updates (<state> A C) where C is not the same as B. So (AT JACK FARM) would
update (AT JACK NEW-YORK). But in (16) we can't slmply look for Jack AT <someplace
which is not the store>, since he is IN the house. To make thlngs even worse, we could
have:

(17) Jack was in the house. Sometime later he was in the kitchen.

To solve this problem we will add a theorem which knows about location. Such a
theorem, we will call it AT-NOT-FF, might go: ’
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(18) To establish that PERSON is not at location LOC

Find out where PERSON is, call it X,
If X = LOC , then theorem is false so return "No."”
If X is part of LOC then return "No."

This handles, given appropriate
information, cases like (17).

If LOC is part of X, then try to find a different X.
Else return "Yes”

In (16) the bookkeeper would try to prove that Jack is not at the store, and it would
succeed by using AT-NOT-FF and the statement that Jack is in the house. The
bookkeeper would then mark the earlier statement as updated. Theorems like (18),
called fact finders, will be indicated by -FF at the end of their names, such as AT-NOT-
FF.

Like demons, fact finders have a pattern and a body. A particular fact finder is
called when something else (either a demon, base routine or bookkeeping) wants to
establish a goal which matches the pattern of the fact finder. This is different from
demons which are called when we encounter a given fact. In MICROPLANNER fact finders
are Consequent theorems, while demons, as we have already mentioned, are Antecedent
theorems.

We introduced fact finders via bookkeeping. However, fact finders are needed
elsewhere, and in fact, are a more secure part of the model than is bookkeeping. To
take one example, we could have:

(19) Jack was in the house. Janet was at the park.

We would then ask the program "Is Jack at the park?” and AT-NOT-FF would supply
the answer. To take another case, typically when a person offers a trade, we will want
to make sure he owns the object being traded. One good rule of thumb is if you don’t
have an explicit "own" assertion, then the person who introduced the object into the
story is the owner. Naturally, this rule is also a fact finder.

The basic idea behind fact finders is that they are used to establish facts which are
comparatively unimportant, so that we do not want to assert them and hence have them
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in the data base. So in (16) we do not want to assert "Jack is not in the house™ as well
as "Jack is at the store.” In the same way we will have a fact finder which is able to
derive the fact "<person> knowns <fact>" by asking such questions as "was the <person>
there when <fact> was mentioned or took place?™ Again, since this information is easily
derivable, and not all that important, so there would seem to be no reason to include it
explicitly in the data base.
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McDERMOTTS BELIEF SYSTEMS

We now move to a review of McDermott’s TOPLE which also deals with the issues

of how general knowledge can and should interact with information in a particular story

line. .

TOPLE is a system that attempts to understand new sentences about a simple world
by using a set of programs which embody a logical model of that world. It includes an
understanding of the sorts of causal progressions and assumed presuppositions that are
a large part of the unspoken, but important, contents of speech. Again it does not deal
directly with English sentences, but interprets simple semantic structures such as might
be produced by a natural-language parser.

The world that TOPLE lives in is almost as simple as the BLOCKS world of
Winograd’s (TR-235) language understander, but involves more complex notions of
process and action. The world is that of monkey and experimenter ‘in a single room. The
monkey (named Spiro) is capable of several actions, and driven by simple motives of
hunger, thirst, and curiosity. Wolfgang, the experimenter, can do similar things, and his
motivation is assumed to be seeing what Spiro will do in response to his actions. The
contents and characteristics of the room are not as capturable as in the BLOCKS world;
the program tries to make allowances for sloppiness and incompleteness in describing
the layout of the room. The program listens to a present-tense account of goings-on in
this room, and attempts to understand why things happen, and what can be expected as
“the story progresses. It tells us at the end of every sentence what new assertions it
has assumed as a result of hearing it.

Although, in some sense, question-answering ability is a measure of understanding,
TOPLE does not answer questions. The user must interrogate the data base "by hand,”
or keep track of all the assumptions the program has made.

TOPLE operates as follows. Each chunk of the input language causes a tree of
hypothetical worlds to be created and pondered, one for each interpretation of it. This
tree is built by a function named PLAUSIBLE? which calls methods to turn input formulae
into assertions. Assertions are modeled as items with property-list structures that
relate them to other beliefs in ways TOPLE’s subsystems can utilize. Such methods and
their subroutines attempt to fit what they are told into what they know with as few
conflicts as possible. If a formula cannot be understood by itself, the tree of possible
worlds is preserved while succeeding formulae are read, which hopefully resolves the
problems and points to a single interpretation.

The overall static structure of TOPLE is illustrated by figure 1.
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The center of the system is marked "WORLD MODEL;" this is a set of CONNIVER if-
needed methods and items which embody TOPLE’s knowledge of the world. They are
called by PLAUSIBLE?, either to deduce consequences of already-known items, or to
make changes to the set of items. The methods call the functions PLAUSIBLE?, ASSUME,
and DOUBT to effect needed dependent changes. The boxes marked "if-added methods”
and “ring reconstructors” contain programs with additional knowledge about making
additions to or deletions from the world model.

As an example, consider the following "protocol” of a conversation with TOPLE. In
each case, there is an English sentence, which you are to imagine is actually in a more
formal-looking input language. There is also a description of the actions and assumptions
the machine takes. (The bracketed numbers identify such actions and assumptions. They
are not generated by TOPLE.)

"The banana is under the table, by the ball."

The program treats this as two statements: that the banana is under the table, and
that it is by the ball. The program finds the references first and attempts to resolve
them. In fact, it knows of no banana or table, so its response is to let BAN1 and TABl
name two new objects. The program then files away: '

(AT BANI (PLACE TAB! UNDER)) [1]
(AT TABI (PLACE FLOOR! ON)) [2]

as its response. The latter statement is an assumption made by the spatial reasoning
routines when they hear of something without knowing its supports.

Now it attacks ".., by the ball." This reference is resolved as the others were, and

(AT BANI (PLACE BALL1 BY)) [3]
(AT BALL1 (PLACE TAB1 UNDER)) [4]

become its new “visualization" of the situation. This system of beliefs corresponds to
accepting figure 2(a) rather than figure 2(b), or some representation of indifference or
uncertainty between them. The motivation for forcing a choice is important. TOPLE tries
to visualize concretely a situation surrounding what you tell it, rather than wait for a
question or other problem that would force it to make up its mind. This saves on
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u FIGURE 2

L

computation, but makes it necessary occasionally to undo bugged reasoning.

In this case, the chaice is based on its belief that the object sizes of figure 2(a) are
more likely. '

In the sentence, "The monkey goes over to the table and picks up the bannana,” the
two clauses are not unambiguously related, as they were before. "And” is a word which
has (among other meanings) a simultaneous reading, in which the clauses on either side of
it are both true at once, and a more common reading in which they are temporally (and
possibly causally) related. The first embodies the meaning of "and” in "The monkey was
gone and its mate was scared”; the second, that in, "He stuck his finger in and wiggled it
around.”

When the program encounters such an ambiguity, it is capable of splitting into two or
more parallel investigations to decide which interpretation is most likely. However, in
the case of "and,” there is a nicer way to resolve the ambiguity, at least in simple cases.
‘This is to hand the two clauses of the conjunction to the plausibility checkers in order,
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and allow the second one to be believed in whatever situation the first one leaves. For
simple actions, this reduces to assuming "and" means "first one, then the other;" for
conditions, that it means "both now.”

This way of interpreting "and" is an instance of TOPLE’s general inclination not to
investigate unlikely alternatives at all unless some difficulty in assimilating the first
choice arises. In this case, the reference to MONK1 is resolved as a reference to Spiro,
the only monkey the program knows about. Similarly, TAB2 becomes TABI, the same
table as before.

Consequently, TOPLE must accept (GO SPIRO (PLACE TAB1)). To do so, it must

establish that the monkey can and wants to perform this action. It does not doubt that
Spiro can go to the table, but is uncertain whether he does it out of interest in the
table, the ball, or the banana that are in that spot. There is no reason it can imagine for
Spiro being interested in tables, but balls are fun to play with and bananas can be eaten.
The uncertainty between these two is reflected in the fact that it generates two
alternative versions of what Spiro wants and what he will do:

In situation O:
(WANT SPIRO (HOLD SPIRO BAN1)) [5]
(WANT SPIRO (EAT SPIRQO BAN1)) [6]
(HUNGRY SPIRQ) [7]
(GO SPIRQ (PLACE TABI1)) [8]

In situation 1:
‘ (AT SPIRO (PLACE TAB1)) [9]
(PICK-UP SPIRQ BANI) [10]

In situation 2:
(HOLD SPIRO BANI) [11]

~ In situation 3:
(EAT SPIRO BAN1) [12]

In situation 4:
BANI ceases to exist [13]

OR

L
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In situation O:
(WANT SPIRO (HOLD SPIRO BALL1)) [14]
(WANT SPIRO (PLAY SPIRO BALL1)) [15]
(GO SPIRO (PLACE TAB1)) [16]

In situation 5:
(AT SPIRO (PLACE TAB1)) [17]

In situation 6:
(PLAY SPIRQ BALL1) [18]
(PICK-UP SPIRQO BALL1) [19]

In situation 7:
(HOLD SPIRO BALL1) [20]

Each situation referred to here is a separate state of the world, which represents a
state incrementally different from its predecessor as a result of some action. These two
sequences of situations are mutually exclusive; situations 1 and 5 are both possible
successors to state 0. (Notice that there are two different versions of state O which the
system keeps in mind) The sequences are generated by simulating Spiro with the goals
corresponding to his respective WANTs. "(HUNGRY SPIRO) in situation 0" or "(WANT
SPIRO (PLAY SPIRO BALL1)) in situation 0" are the crucial assumptlons shown--they
were introduced to explain the monkey’s behavior.

The program is now halfway through the sentence, with two completely independent
world-views to choose from. The first seems most likely, since only hunger need be
assumed, but the program suspends judgment.

Now it accepts the sequential mterpretatlon of "and" and attempts to believe (PICK-
UP SPIRO BAN1) (it resolves the reference in favor of a banana it knows rather than a
new one) in the state produced by the previous action. It fits best with the supposition
that the monkey was interested in the banana, since it confirms the sequence of [5]-
[13] Notice that the program has only been told about events through assumption [11];
the beliefs about situations 3 and 4 are predictions. Beliefs [14]-[20] have been
collected as garbage and are no longer accessible. ‘

Now TOPLE informs its interlocutor of its assumptions and awaits the next sentence.

"He eats it."
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"He" (treated as "the male referred to") is obviously Spiro. "It" could be several
things. The top level program keeps track of referred-to objects, and considers each in
reverse chronological order of reference. So, the first object considered is BAN1. (EAT
SPIRO BAN1) is so easy to believe (since it was predicted), that the other alternatives
are not even considered. States 3 and 4 are accepted as reality. At this point the
banana ceases to exist.

This simple monologue suffices to illustrate many of the important features of TOPLE.
Its main characteristic is that it uses what it hears in a constructive way to visualize
what is being talked about. It even goes so far as to have opinions about what the
future will look like, and uses them to disambiguate later parts of the story it is hearing.
Thus TOPLE holds many beliefs which are not in any sense deduced from what it has
heard, but are guessed, so it must keep track of its reasons for believing what it
believes. If later information conflicts with its guesses, it must find new hypotheses
which are good at accounting for both the old and the new data.

This function is accomplished by the belief ring device. Assumptions (such as [2])
are bound up with the previous beliefs that made them necessary (in that case, that
TAB1 is a physical object), plus a program that is capable of debugging this structure if
it is ever challenged. The data that made the assumptions necessary are called primary
elements of the ring; the assumptions themselves are secondary elements; and the
program is called the ring reconstructor. In the case of [2], the primary element is
merely that TABI is a physical object; the secondary element is (AT TAB1 (PLACE
FLOOR1 ON)); and the reconstructor is a program that is called when someone doubts
that the table is on the floor, which asks, "What does support the table, then”™ For
example, if the next sentence were, "The table is on a platform,” the routine in charge
of believing such spatial assertions would have to call DOUBT (cf. figure 1) to remove
(AT TAB1 (PLACE FLOOR! ON)). DOUBT would call the ring reconstructor, which would
insist that something be assumed to be holding the table up, and would be happy when it
saw the newly proposed belief that it be a platform.
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PRATT’S LINGUISTICS LANGUAGE

So far in this section we have seen three studies directed at unravelling the issue of
how world knowledge interacts with language understanding. Pratt has addressed the
relatively applied problem of supplying a general-purpose system for writing natural
language "front ends.”

NOTATIONS FOR DESCRIBING ENGLISH

At the risk of being animistic, let us think of the problem of writing text-oriented
natural language programs as essentially the problem of describing English to the
computer. Thanks to such programs as Winograd’s SHRDLU, we know in principle how to
process English - what remains to be dealt with is the bulk of English. We should
therefore take advantage of this progress by factoring out the programming aspects of
the problem, which can constitute a fatal distraction in a project of this magnitude, and
consider more precisely what English is, with a view to passing this information on to a
program such as SHRDLU. With this point of view, we can consider ourselves not
computational linguists but just plain linguists, albeit with a somewhat unimaginative  and
intolerant audience.

Let us now occupy ourselves with the issues an applied linguist might want to
address, given that he has to set down his impressions of English. One would like firstly
to minimize the effort required to describe phenomena in natural languages, and secondly
to avoid having to duplicate in essence what someone else went to a lot of trouble to
do. The former is an issue because of the complexity of natural languages, the latter
because despite years of research almost every new natural language program starts
from scratch, drawing little if any material from previous efforts.

There are at least two approaches one might take to the complexity issue. One
might try to reduce the complexity by generalizing special cases as far as is consistent
with one’s particular goals. This is understandably very popular. In addition, one might
try to improve on available notational facilities for describing languages by taking into
account those properties of natural languages that are awkward or impossible to
describe with the extant facilities. Those taking this approach have been responsible for
introducing quite a variety of notation into the field, including phrase-structure grammars,
transformational grammars, dependency grammars, systemic grammars, conceptual
dependency grammars, transition networks and case grammars, to name some of the more
prominent notations.
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At least two approaches are possible for the duplication issue too. One may
standardize the notation for descriptions, a dictatorial approach meant to allow any
contribution to be incorporated into any other program. The danger here is that one
might be stuck with an inadequate notation. Alternatively, one may write one’s
descriptions in a way that makes them readily extensible. This is a relatively poorly
understood area, but is well worth pursuing at present. Had SHRDLU been written in a
way more conducive to ready extension, a very impressive_program might have resulted,
considering the effort that others have put into it since Winograd built the original
version. ‘

We have been looking at these approaches in the context of "small” language
processors, that is, programs that work with a fairly small fragment of English, either
question-answering systems or translators into some foreign language. Our intention is
to use the experience gained from working with this variety of programs to help
understand how best to deal with the notational issues. The examples in the
accompanying output from various programs we have written should give the reader a
feeling for the sort of programs we have considered and the size of the fragment of
English we have been working with:

A "DEEP STRUCTURE" ANALYZER:

NONE OF MY FRIENDS WERE EATEN BY A LION .
ASSERTION:
FALSE

ACTOR: LION

ACT: EAT

OBJECT: FRIENDS

' PORTION: SOME
OWNER: |
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THE AUTHORS OF NONE OF THESE BOOKS ARE FRIENDS OF PETER.
ASSERTION:
FALSE
SUBJECT: AUTHORS
SPECIFY: THE
AUTHORS OF: BOOKS
PORTION: SOME
PLACE: HERE
BE: FRIENDS
FRIENDS OF: PETER

IF A MAN CAN EAT A DOG A HORSE CAN EAT A SMALL CAT .
ASSERTION:
ACTOR: HORSE
ACT: EAT
OBJECT: CAT
SMALLNESS: SMALL
& IMMEDIACY: POTENTIAL
CONDITION:
ACTOR: MAN
ACT: EAT
OBJECT: DOG
IMMEDIACY: POTENTIAL

- A MODEST GERMAN TRANSLATOR:

SHE LOVES THE MEN WHO CAN GIVE HER HOUSE FLOWERS.
SIE LIEBT DIE MAENNER DIE IHREM HAUS BLUMEN GEBEN KOENNEN
THE APPLES THAT THE HORSE EATS WILL BE BETTER TOMORROW.
DIE AEPFEL DIE DAS PFERD ISST WERDEN BESSER MORGAN SEIN
THAT THE DOG THAT EATS FLOWERS CAN COME IS BAD.
DASS DER HUND DER BLUMEN ISST KOMMEN KANN IST SCHLECHT
MEN THAT ARE OLD CAN SLEEP BETTER. '
MAENNER DIE ALT SIND KOENNEN BESSER SCHLAFEN
HE SLEEPS BETTER WHILE HIS DOGS EAT.
~ ~ ER SCHLAEFT BESSER WAHREND SEINE HUNDE ESSEN
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HE LIVES WITH HER BECAUSE WHEN HE EATS APPLES SHE EATS WITH HIM.
ER LEBT MIT IHR WEIL WENN ER AEPFEL ISST SIE MIT IHM ISST
SHE SLEEPS WITH HIM BECAUSE SHE LOVES HIS CAT.
~ SIE SCHLAEFT MIT IHM WEIL SIE SEINE KATZE LIEBT
HE IS IN THE HOUSE.
‘ ER IST IN DEM HAUS
HE HITS THE BALL TO THE DOG.
ER SCHLAEGT DAS BALL ZU DEM HUND
THE CAT IS IN THE TREE BY THE HOUSE.
DIE KATZE IST IN DEM BAUM NEBEN DEM HAUS
THE STUDENT WILL SLEEP BETTER WHEN HE UNDERSTANDS THE IDEA.
DER STUDENT WIRD BESSER SCHLAFEN WENN ER DIE IDEE VERSTEHT
WHILE THE FLOWER IS OLD THE APPLE IS YOUNG.
WAHREND DIE BLUME ALT IST IST DER APFEL JUNG
SHE WILL GIVE HIM A FLOWER IF HE EATS THE APPLE TODAY.
SIE WIRD IHM EINE BLUME GEBEN WENN ER DEN APFEL HEUTE ISST
THE HORSE THAT EATS BAD APPLES IS A SICK HORSE.
DAS PFERD DAS SCHLECHTE AEPFEL ISST IST EIN KRANKES PFERD

A COMPREHENSION PROGRAM:

JACK BUILT A RED HOUSE. HE LOVED RATS. MORTIMER WAS JACK ’S RAT. HE
LIVED IN THE HOUSE THAT JACK BUILT. JILL BUILT A BLUE HOUSE. SHE LOVED CATS.
SPOT WAS A CAT WHO ATE MORTIMER. JACK HATED JILL BECAUSE SPOT ATE
MORTIMER. FIDO WAS A BROWN DOG. HE CHASED SPOT. SPIKE WAS A BLACK DOG.
HE CHASED JILL.
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WHAT IS THE COLOR OF THE DOG THAT CHASED THE CAT.
BROWN
DID JACK LOVE MORTIMER.
YES
WHO ATE MORTIMER.
SPOT
WHAT IS THE COLOR OF THE HOUSE IN WHICH THE RAT THAT THE CAT ATE LIVED.
RED
WHY DID JACK HATE JILL.
BECAUSE SPOT EAT MORTIMER
WHO DID THE BLACK DOG CHASE.
JiLL
DID JILL LOVE ANY ANIMALS.
YES

TERMINOLOGY

The system assumes two main phases, cognitive and generative. The cognitive

phase is parsing, in which the input is preprocessed until it is in a form convenient for
operation on by the generative phase, which then produces the translation as output.
This dichotomy does not require that one phase run to completion before the other can
start.
’ By syntax is meant all aspects of the source language involved in the cognitive
phase, including such things as phrase structure rules and semantic markers. Semantics
refers to what is involved in going from the source language (after the syntactic
preprocessing) to the target language during the generative phase. Pragmatics means
knowledge about the universe of discourse, and the local context, that may be consulted
by both the cognitive and generative phases as they make decisions.

DESIGN PHILOSOPHY

There is not one philosophy in LINGOL but three, each tuned to the requirements of
the three concepts defined above. In current version of LINGOL, the philosophies are
roughly as follows.
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SYNTAX

It is necessary to consider syntax since the cognitive phase’s output is the
generative phase’s input. LINGOL is meant to be a practical system suitable for export
and immediate use by practising computational linguists. The technology for phrase
structure is far advanced over any other technology, and every successful program for
the past eight years or so has used it. Also, it is fairly easy to convert a phrase
structure system to a syntactic structure system, by tagging each phrase with the
corresponding governing word together with pointers to the dependent phrases (and
hence words). For these reasons, the decisions was made to use phrase structure as
the output of the cognitive phase, leaving the other representations as projects to be
experimented with in the future.

Given that LINGOL is based on phrase structure, the next issue is that of the user’s
language for describing how that phrase-structure is to be built. The two criteria here
are expressive power and ease of use. For our first interation of LINGOL, since we
were more interested in rapidly developing the semantics technology, we opted to
sacrifice expressive power for ease of use if necessary. This corresponds in a way to
Woods (1967) and Charniak (TR-266) assuming the existence of some sort of parser and
continuing from there.

The user’s language for the cognitive component was therefore chosen to be
context-free rules, since these are very easy to write. They have exactly the same
expressive capacity as Wood’s transition networks (1969). Moreover, just as Woods
extended the capacity of his networks by allowing the user to specify operations on
registers, so do we permit the user to supply code to give hints to the parser whenever
it is about to apply a rule. This code has access to the part of the tree built so far by
the parser and relevant to the rule in question, and also to the user’s data base, or
pragmatics. The form of the hint is a shout of approval or disapproval. So far, however,
none of the programs written in LINGOL have made more than trivial use of this feature,
in sharp contrast to the use made of the features in the semantics stage.

With respect to the actual parser used, the syntax philosophy is that that parser
should be transparent to the user, to within there representation of the parts of the
tree to which the user’s code has access during the cognitive phase. This philosophy has
enabled us to run without alteration each of a number of different LINGOL programs in
conjunction with various parsing algorithms.

Pl
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SEMANTICS

In programming his semantics, the user should be able to work without the
distracting detail of parsing, tree representation, and ambiguity. The point of identifying
the cognitive and generative phases is to isolate these issues logically in order to
achieve this division of labor. Whether writing an English-to-French translation program
or a question answering system, there are many details to worry about that have
absolutely no relevance to the cognitive phase; the myriad idiosyncrasies of French
grammar and style, for example. The cognitive phase can ignore most details of style,
and many details of grammar. '

In taking this point of view, we are following a different philosophy from that of
Winograd, who makes use of strong interaction between the syntax and semantics
components, which is one of the more notable features of his program. However, the
result has been to produce a program whose details are lost in the richness of this
interaction, and Winograd himself can barely understand the code he has written after
being away from it for a while. For the moment let us be willing to sacrifice whatever
additional power this approach has to offer for the sake of being able to write clean,
modular, transparent semantic code. However, we do not believe that in order to
restore this power we need to restore this interaction. Instead, we plan to rely
eventually on strong interaction between syntax and pragmatics, leaving semantics as the
cognition-independent arena. This is not just passing the buck; since we see semantics
as being more complex than syntax, we are trying to divide the work-load more evenly
to keep all modules reasonably small. The interaction of syntax and pragmatics is under
study by others in our group, and is reported in previous sections.

The issue now is simply, how does one write programs that operate on trees (the
output of LINGOL'S cognitive phase)? This issue has been addressed by many during the
past ten years, and the discipline of syntax directed translation has gradually emerged.
An early syntax directed translator is that of Warshall and Shapiro (1964). They used
the tree-walk paradigm, in which the semantics consists of programs that tell a pointer
to move up, down or across the tree and occasionally output information. Floyd
(conversation) has commented that the technique was much too clumsy for practical
applications when compared with techniques that tied the semantics to the syntax rather
than to the output of the syntax. .

Some theoretical work has been done on syntax-directed translation, notably by
Lewis and Stearns (1968), Knuth (1968), and Aho and Uliman (1972). Knuth's paper is of

__interest in that it deals with the problem of passing information up and down a tree, -
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using the notions of inherited (from above) and synthesized (from below) attributes. All
of these studies suffer, from the computational linguist’s point of view, in that they deal
with the microcosm of computer source and target languages, in which the former can be
made a compromise between the user’s needs and the syntax-directed technology, and
the latter is a relatively well-defined, reference-poor language when compared with,
say, French.

~ Knuth’s inherited and synthesized attributes come closest to meeting our needs. The
problem with these attributes lies with his mechanism for moving them around a tree.
Every node through which information is passed must make explicit provision for
forwarding it, even if it is irrelevant to that node.

For example, consider:

No mother of such twins has time to relax.

The mother of no such twins has time to relax.

The mother of such twins does not have time to relax.
The mother of such twins has no time ta relax.

In each case, what is being negated is the whole sentence, yet the negation marker
can be almost anywhere in the sentence. This implies that a large number of rules will
have to make provision for passing a negation marker up the tree. This problem can be
circumvented by using global variables instead of Knuth's attributes. All that is needed
is for the negation marker to set a negation variable, and for the semantics at the
syntactic clause level to read it.

However, consider the following:

The mother who has no twins has time to relax.
This sentence makes a positive claim (as distinct from the negative one of the
_previous example) in that it says that there actually are people who do have the time to
relax, namely those mothers who have no twins. (Moreover, it does not explicitly say
what happens to mothers of twins) This seems to be a situation where synthesized
attributes outperform global variables, since the rule of the relative clause level can
simply refuse to pass on the negation marker.

Negation is not the only such troublemaker. Arranging subject-verb, adjective-noun
and determiner-noun agreement also requires passing information around the tree,
especially when transla’ting into French, where word-for-word translation does not
necessarily result in correct agreement. Again, having more than one clause makes
difficult the use of global variables, particularly when a plural relative clause is
separating a singular subject from its verb. The mechanism we want here is that of the
local variable, whose scope is the clause with which it is associated. With many clauses
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we will associate many more local variables corresponding to the various markers and
other messages that each clause may want. Similarly, we will associate other local
variables with noun phrases, to achieve adjective-noun and determiner-noun agreement.
In the case of the subject, some of these markers (person and number, but not gender)
must be shared with the clause as well, to ensure subject-verb agreement, but we do
not want the clause to share the object’s variables. Also, a relative clause such as "who
sleeps” needs the same information from its governor as does the principal clause.
Moreover, we will want to pass not only markers, but also word specific programs
written at the dictionary level. (Winograd makes use of this technique for putting the
right programs in the right places) The implementation of local variables must be able
to handle these combinations.

All of this is now implemented in the style of the program paradigm. The program
paradigm says that the surface structure tree is a program. At each node of the tree
there is a function, and the subtrees of that node are the arguments of that function.
For example, if we have a tree labelled

PRINT

N

AN
]

This corresponds to the program "(PRINT (A+B) x -(-C+D))".

Since LISP has a mechanism for local variables (two, in fact -- PROG variables and
LAMBDA variables), by adopting the program paradigm we automatically get local
variables. Moreover, because we can write the code for each function separately, we
attain a very high level of modularity, which we have found pays off handsomely when
one tries to add new rules to an already operational LINGOL program.

The mechanism we use for running these programs differs slightly from LISP’s usual
EVAL operator. The main difference is that it evaluates the function at each node first,
giving the function the responsibility for evaluating subtrees at its leisure, and controlling
the scopes of variables for different subtrees.

D
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PRAGMATICS

The first three studies of this section treat aspects of pragmatics in some detail.
LINGOL provides no explicit facilities at present for dealing with world knowledge,
although a large LINGOL program is currently under development that may change this
situation. There is of course the implicit facility provided by the cognitive component,
but the user is really on his own as far as the bulk of the programming effort is
concerned. Pratt hopes to be able to draw on the work of those in the group studying
representation and inference, to the extent that these studies introduce sufficient
regularity into the area to warrant supplying generally useful facilities.
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4 LEARNING AND DEBUGGING

When exposed to the work of artifificial intelligence for the first time, people are
often concerned about whether a program can learn. This section describes the
capabilities of some programs that do indeed learn new things from experience.
Collectively they shed some light on such issues as the following:

1. Is learning a special kind of problem solving?

2. Is learning physical things substantially different from learning how to do
things?

3. What knowledge is prerequisite to learning? How should that knowledge be
organized into chunks? ' ‘

4. How much knowledge is involved? How many facts? How many procedures?

WINSTON’S STRUCTURE LEARNING SYSTEM

To begin we briefly review Winston’s work on learning arches and other simple
physical structures in the blocks world (TR-231). Figure 1 illustrates a series of
samples shown to Winston’s system in teaching it the concept of ARCH. The first sample
is an example whose description is used as the first in an evolving series of models.
The second sample causes refinement of the model by conveying the idea that there
must be a hole. The third sample informs the system that the top object may be a
wedge as well as a brick. And the last sample brings out the fact that the support
relations are essential.

The process by which all this is done consists of the following steps for each sample:

1. The sample is analyzed so as to create a symbolic description of the sort
shown in figure 2, consisting of the nodes and relations of a network.

2. The network description of the sample is compared with the network
description of the model as evolved so far. Decisions are made about
what difference or differences are central to understanding whether the
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s

sample is an instance of the concept.

3. The central differences are used to decide what refinement to make in
the model’s network description. In one case a TOUCH pointer might be
changed to MUST-NOT-TOUCH or in another, a SUPPORTS pointer might
be changed to MUST-SUPPQRT.

The successful results of experiments with programs built around these steps lead
to several conclusions:

1. It is important to use samples which are "near-misses” or non-examples
that differ only slightly from acceptable examples.

2. Good teaching is important inasmuch as samples which are too different

from what has been seen can swamp the system with differences and |
lead to confusion.

3. Much of the knowledge required for learning structures can be placed in
a library relating observed differences to proposed actions on the model

network. The size of this library is not large -- it contains only about
two dozen entries.

These conclusions in turn open up exciting new questions. Can the analysis and
learning of structural form be extended to include description of function? Can similar
ideas work both in the learning of structures and in the debugging of procedures? What
sort of knowledge libraries are needed to learn procedures? How large are they?

The next sections shed considerable light on these question.
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FREILING’S BLOCKS WORLD EPISTEMOLOGY

Winston’s system dealt with objects described only in terms of their structure. Such
descriptions have many inherent limitations:

(a) They db not provide for recognition of objects on the basis of less concrete criteria,
say the uses to which they may be put.

(b)'They do not permit generalization to deal with classes which may be different
structurally but similar in other respects. For example, the class of possible
supports for a television set includes tables and shelves, which share little in the
way of common structural properties.

(c) In many practical problems, it is of great advantage to have many ways of describing
a particular object. Limitation to one specific mode of description severely restricts
the class of problems which may be tackled.

‘These limitations suggest thaf wé seafch fof other;ways to describe objects aside
from pure structural form and attempt to understand the relationships between dlfferent '
ways of describing objects.

FUNCTION
Function is the obvious alternative to form. There are several reasons why:

(a) It may be possible to construct simple representations of the functions of objects in
the blocks world in terms of simple concepts of motion and areas of unoccupied
space.

(b) Many structures in the blocks world have real-world counterparts which are
classified in actuality on the basis of function. An arch is principally something we
can pass through. A table is principally a structure we can put things on.

(c) There are many relationships between the form and function of objects. Since the
possible functions of a class of objects are generally much simpler to enumerate
(assuming we have the proper tools!) than the possible structures, functional
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description enjoys the advantages of more concise forms of representation with a
corresponding increase in our ability to manipulate overall descriptions of objects.

MOTION

In the domain of objects constructed out of blocks, most of the functions one
considers seem to be contingent upon the idea of motion or the restriction of motion.
The hole is the principal part of the arch because it enables the arch to achieve its
function, i.e. one’s ability to move through it. The concept of support, or potential
support, which may be considered the function of objects like a pedestal or table, may
be simply defined as the restriction of motion in a downward direction. A wall may be
considered as a structure which prevents one from proceeding in a given direction
. unless a detour of some sort is taken It seems clear that if we are going to deal with
such functions in a program, we should have a set of primitive concepts with respect to
motion available for use. This section will consider a set (which is by no means to be
thought of as complete) of such primitives as a basis for the study of functional
representation.

The motion we are primarily concerned with will be motion in a straight line, or a
sequence of straight lines. We will consider the motion of three types of objects: (a)
that of a bird, which may move in any direction; (b) that of a ball, whose motion must
have no purely upward components; and (c) that of a creature with legs, for whom the
vertical components (e.g. climbing a staircase) must be suitably small.

It should be noted here, that this definition of "suitably small” is of necessity rather
vague. There will be many other similarly relative concepts mentioned later, in
conjunction with ideas about containment, windows, doors, etc. At the present there
does not seem to be a general, systematic method for handling these concepts
adequately. .

it should be realized that the descriptions of motion and holes given here are not
intended to be the basis of a general theory of motion or space. Rather, they should be
viewed as gross simplifications of complicated concepts which are intended to permit
easy description of more abstract relations. Their chief feature is a large amount of
expressive power at a low level of complexity.

The general primitives deal specifically with the relationship of a (potentially) moving
object with respect to its environment. Basically, they are:
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OBSTRUCTION -- A rolling object is considered obstructed in a specific direction
(perpendicular to the vertical) if it meets an obstacle on traveling in that direction
and must make a suitably long detour (say greater than or equal to the distance
already traveled) before it can continue in that direction. Thus obstruction is a
function of the length of the obstructing object and its position relative to the
moving object.

In figure 1(a), the moving object is obstructed to the "east" because in order to
move east it will be forced to move north from X1 to X2 or south from X1 to X3, a
distance greater than it traveled from X0 to X1 in the easterly direction. In figure
(b) the object is not obstructed because the detour is relatively short. In figures (c)
and (d) we would consider the object obstructed if the perpendicular component of
the total path traveled becomes greater than the component in the desired direction.
In the case of backward motion (e) in either of the two directions, this may be
simply subtracted from the forward component, since one can generally trace an
alternative path which does not contain the components backtracked over. As with
all the motion primitives, it will be useful to add the qualifier RELATIVELY when an
object contains sufficiently sparse (say no more than one fifth the total length) holes
which permit the desired motion, but would represent an obstruction if these holes
were blocked. (This is to be seen as a tentative answer to the "window" problem
where, topologically speaking, a building with an open window does not enclose
anything.)

COVERING -- An object will be considered covered if in traveling upwards, the
resultant of motions perpendicular to the upward directions ever becomes greater
than the upward component of the motion. As with obstruction, backtracking is
subtractive, and there is an analogous notion of relatively covered.

SUPPORT -- It is of interest that the existence of gravity dictates that the concept of
support be not quite analogous to that of covering. First of all we assume that an
object cannot be at rest unless it is supported by another object or group of
objects which are at rest. The actual definition of support, however, is likely to
give us some trouble. We could define support in such a way that an object is
supported by all the objects in contact with its bottom. But this ignores the
question of what would happen if we wanted to remove some of the objects
beneath the supported one. A simple defintion of support is that an object is

. supported by any set of points such that one cannot pass a vertical plane through
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the center of gravity of the object which places all members of the set on one side.
Such a definition at first glance may seem computationally messy, but there are
several alleviating factors. For one we will be dealing with blocks, and in general
the supports will be surfaces rather than points. Any points which do appear will of
necessity arise from pyramid type objects which prevent their being placed
arbitrarily close. In any case, the rule used to determine if an object is supported
will not affect the use of the support predicate in higher level computation.

Another concept which is potentially useful is that of SAFE SUPPORT. An object
is safely supported if it cannot be rolled to a position where it will drop vertically,
i.e. there are no points under it directly in contact with its surface. Since a
relatively safe support would not really be very safe, there doesnt seem to be
much use for it.

SURROUNDED -- We say an object is surrounded if (a) it is safely supported and (b) it
is obstructed in all horizontal directions. In other words, if it were a ball, its motion
would be restricted to a fixed horizontal surface. The concept relatively surrounded
refers to the relative obstruction in all directions.

CONTAINED -- An object is contained if its movement (in any direction) is restricted to
a fixed subspace of the world space. We may make boundary conditions explicit by
considering the "world" we observe as a fixed 3-dimensional rectangle with clear
walls. All things will be considered contained in the world (unlike Columbus, we do
not have to face the prospect of falling off the edge). An object will be considered
relatively contained in the usual manner, as long as it is safely supported.

ATTACHMENT -- Objects which are not attached to each other may move
independently. There are two types of attachment | feel should be considered --
face attachment and edge attachment. If a face (or suitable subregion thereof) is
attached to to the face of another object, the two objects are essentially one object
in that they must move together. If an edge of an object is attached to some other
object, the former object is said to be edge attached and is free to pivot about that
edge with respect to the other object. This will enable us to deal with items such
as doors and gates in a structure. We will ignore tolerance problems in door jambs.
For example in figure 2 (a) if the marked edge is attached as indicated, we will
assume the block A may move freely to the position indicated in 2(b), provided, of
course, it is not obstructed as in (c).
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Using these concepts we can provide simple definitions for many common block
structures. A box (figure 3) is any structure capable of surrounding an object. A
canopy (figure 4) is any structure capable of covering an object. A door (figure 2) is a
block which is edge attached to an arch such that in one possible position, the arch and
door form a wall. A wall is any group of objects which obstruct motion in some direction
for a moving object sufficiently close. Addition of the word "group” is important because
otherwise, any object could serve as a wall for a near enough object.

It seems evident that in a system using both functional and structural definitions, we
must be careful not to confuse them. Hierarchies formed on the basis of function may
differ greatly in their organization from those formed on the basis of structure.
Functionally, a table may serve as a pedestal and vice versa, although they differ
structurally. Despite the fact that functional criteria may prove a valuable aid in
choosing candidates for a class, we will not in general wish to define classes solely in
terms of function. '

HOLES

Since an object may only move through space which is unoccupied, it is a logical step
to desire that freedom and restriction of movement be represented in terms of
unoccupied space or holes. In general, holes are not an easy thing to represent. The
statement "Holes are the complements of simple objects, and the complements of simple
objects are not in general simple” seems to shed some light on the fact. The contour of
free space in a given room at a given time may be exceedingly complex. However, for
the purposes considered here, it should not be necessary to worry about such
complicated questions. Basically, it would be desirable if our representation of holes did
not differ too greatly from our representation of the other items in our world. This
suggests that we consider holes as composed of blocks of free (or as we shall see later,
potentially free) space, generally rectangular in shape. Such a representation also seems
advantageous for other reasons. Dividing the free space up into blocks will also give us
clues as to which parts of a structure should be grouped together. But perhaps most
important, the primitives relating to motion which were discussed in the previous section
lend themselves readily to analogy with holes.

It seems advantageous to define holes with respect to a given structure or group of
structures. Thus a hole may in part consist of solid objects not attached to the given
structure. The reason for this is that any unattached object may be moved
independently of the given structure. Suppose we have a box with a block in it (figure
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5), and we move the block to a different position in the box. We do not want to be
forced to consider these situations as representing two different holes, so we choose to
include the unattached block within the hole which describes the interior of the box.
Besides making the task simpler, however, this scheme should give us a certain power in’
altering descriptions. For instance, suppose we have a ring of blocks surrounding an
object (figure 6), all of which are attached except one. Then with respect to the rest of
the structure that block represents a hole (albeit a hole which has been temporarily
filled) and the presence of that block is not essential. If we are interested in forming an
entrance to the area surrounded by the blocks, we know that all we need do is push the
block out and we have our hole. (In a sense we will get this information for free if the
unattached block is already considered as a hole relative to the attached ring.)

Rectangular holes may be classified according to the number of sides on which they
are bounded. Conveniently the number of bounding sides coincides with the general
purpose of such a hole. '

Passages (ramps) -- Passages are holes which are bounded by three edges, one parallel
to the ground and two which are vertical and parallel, above the horizontal edge.
The key function of a passage is that it limits non-flying objects to motion along enly
one line. Though hard to visualize as holes, they are useful in understanding the
functions of roads and bridges.

Ports -- A port is a space bounded by four edges, all perpendicular to a given plane.
They are similar to passages, in that they restrict motion to a line. A port may be
long, e.g. a tunnel; or short, e.g. an arch and its supporting surface. .Generally, their
purpose is to provide for motion from one region to another. Unlike passages ports
restrict the motion of any object. '

Niches -- A niche is a space bounded by five edges, the lowest of which must be
parallel to the ground. Niches generally provide places for objects to rest or be
contained. Boxes (figure 3) and wall indentations are both examples of niches. Any
niche supports an object, while a niche with only one edge paralle! to the ground will
safely support any object inside.

Rooms -~ Rooms (for want of a better word) are considered to be areas of space
bounded on all sides -- i.e. completely enclosed. They represent the idea of
containment.
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It should be mentioned that the edges bounding holes do not have to be solid. They
may contain reasonably small (say not more than one sixth total surface area) holes, with
the general provision that the floor be solid. For example (figure 7), a box with a port
in one side is still considered a niche, or a tunnel with a window would still be
considered a tunnel. Thus most of the motion concepts to which holes correspond are
the "relative” counterparts of those concepts.

It is interesting to note that some of the motion concepts dlscussed in the previous
section have direct representation in terms of holes. The notion of constraint to one
direction of motion and safe support may be achieved by either a port or a passage.
The notion of surrounded may be directly represented by a niche with only one edge
parallel to the ground. The notion of containment translates directly into a room.

For the sake of simplicity, some perfectly natural conditions have been neglected.
Consider for example a room with a sunken area in the middle. One would like to
consider this still to be a room, but it might conflict with the notion of containment since
containment implies safe support, and a large enough niche in the center might cause us
to consider an object in this particular room not safely supported. The bug here is
~ probably with our notion of "safe-support.” We probably want to permit “sufficiently
small” drops. This would allow us the liberty of considering structures like staircases to
provide safe support.

A FORMALISM FOR FUNCTION

Any system which plans to provide some representation for function must also
provide a formalism for such representation. The preliminary formalism described here is
exceedingly simple (no doubt reflecting the simplicity of the domain) but some aspects
suggest generalization to more complicated areas. Syntactically, ?X represents a pattern
match which binds X to any item occurring in that positon, much like the pattern matching
rules of Planner or Conniver. The symbol "§" represents "self", i.e. "§" is considered a
reference to the object whose function we are describing. For example, (SUPPORTS §
X) indicates that the object we are describing supports an object named X. The
formalism basically consists of a predicate, POSSIBLE, the logical connectives AND, OR,
NOT, and CHOICE, which corresponds to exclusive or, e.g.

(CHOICE (HAVE ?X CAKE) (EAT ?X CAKE))
and some functions and predicates (IN ?X ?Y), (IS ?X ?Y) <true if X is a member of class
Y>, (SUITABLE-OBJECT ?X ?MODE), and PASS, SURROUNDED BY, SUPPORTED BY
CONTAINED-IN, OBSTRUCTED-BY, and COVERED-BY.
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(IN ?X ?Y) returns T if X is located in some hole which is part of the description of
structure Y. (SUITABLE-OBJECT ?X ?MODE) generates a structure representing a
movable object whose size is reasonable with respect to structure X. MODE is optional.
Where specified, it refers to FLY, WALK, or ROLL depending on which motion abilities we
desire the generated objects to posess. The others are all predicates of the form
(PREDICATE ?X ?Y ?MODIFICATIONS) where the possibilities for MODIFICATIONS vary with
the predicate. For COVERED-BY, SURROUNDED-BY and CONTAINED-IN, MODIFICATIONS
may be RELATIVELY or NIL. For SUPPORTED-BY it may be SAFELY or NIL. For
OBSTRUCTED-BY, MODIFICATIONS is a list of the form (DIRECTION, MOD2) where
DIRECTION represents a direction and MOD2 represents RELATIVELY or NIL. For PASS,
MODIFICATIONS may be ON or THRU or BETWEEN. ON may apply only to passages, THRU
- applies to holes in general and BETWEEN to a list of two objects.

POSSIBLE is a general predicate which operates on the motion primitives. It asserts
that there is currently no condition which prevents the relation on which it operates
from taking place. If it can make the predicate true it returns T, otherwise NIL. CHOICE
is a predicate operating on a list (L1 L2 ...LN) of predicates, and can best be understood
in terms of a predicate CAN-MAKE (similar to Planner’s THGOAL) which succeeds if it
proves its argument can be realized through limited manipulation of the structures
involved. (CHOICE L1 L2. . . LN) is equivalent to: '

(AND (CAN-MAKE L1)
(CAN-MAKE L2)

(CAN-MAKE LN)
(NOT (CAN-MAKE (AND L1 (OR L2 ...LN))))

(NOT (CAN-MAKE (AND LN (OR L1 ..LN-1)))) .
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Examples:
ARCH

(POSSIBLE (PASS (SUITABLE-OBJECT 8 WALK) PORT1 THRU)

DOOR

(CHOICE
(POSSIBLE (PASS (SUITABLE-OBJECT § WALK) (B1 B2) BETWEEN))
(NOT POSSIBLE (PASS (SUITABLE-OBJECT § WALK) (B1 B2) BETWEEN)

ROAD

(AND
(POSSIBLE (PASS (SUITABLE-OBJECT 8 WALK) § ON))
(POSSIBLE (SUPPORTED-BY (SUITABLE-OBJECT 8 WALK) 8 SAFELY)

USE OF FUNCTIONAL REPRESENTATION

Assuming we have a program which takes a structure and interprets it in such a way
as to discover all the pertinent holes, we may use the holes and other information to
construct a list of possible functions for the structure. Let us look for example at a
table (figure 8). Our hypothetical hole finder will find the four ports shown in figure 8.
Furthermore the large square area of the top suggests that it will support something.
Consequently the list of possible functions will be:
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(POSSIBLE (PASS (SUITABLE-OBJECT $) PORTL THRU))

" " n PURTZ i

" " 1] PDRT3 "

" " " PDRT4 n
(POSSIBLE (SUPPORTED-BY (SUITABLE-OBJECT $ ROLL) TOP1 ))
(POSSIBLE (COVERED-BY (SUITABLE-OBJECT $ FLY) TOPL))

If we are now searching this structure for a table, and the functional representation of
table is

(POSSIBLE (SUPPORTED-BY (SUITABLE-OBJECT $) T4)
where T4 points to the table top in an internal description of the table, we immediately
have an anchor with which to begin our comparison with the table description. Winston’s
program would have to search the entire description before deciding to link the two
table tops. Furthermore, if we were looking for a house in figure 8, and assuming the
house had a functional representation

(POSSIBLE (CONTAINED-IN (SUITABLE-OBJECT $) R1 RELATIVELY))
we would see that this does not occur in the description and would not even have to
bother trying to match the two descriptions. It is interesting to note that if we are
actually looking for a pedestal (which will have essentially the same functional
description as a table) we will succeed on the functional description but then end up
with a bad match. But we haven't lost entirely, because the machine has discovered an-
important thing. While not strictly speaking a pedestal, the object of figure 8 may be
used for a pedestal if one is needed and none are around. If at some later point the
machine wishes to build something, this information may prove invaluable. Consequently,
we see that certain advantages will accrue from keeping our knowledge of functional
properties separate (in some sense) from our knowledge of structural form. ,

Another interesting action is that of finding an arch in a scene like figure 9, where
the hole is blocked. Assuming an initial grouping by attachment, and that block C is not
attached to the others, C will be represented as a hole with respect to substructure A-
B-D. The arch will be easily found. Winston’s program would have to explore
possibilities A-B-C and B-C-D as well as A-B-D in determining the arch. Suppose now
that C were edge-attached to B or D. Then by considering the extremes of its motion
(figure 2B), our function-finding program should know enough to construct:
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(CHOICE
(POSSIBLE (PASS (SUITABLE-OBJECT 8) (B D) BETWEEN) =~
(NOT (POSSIBLE (PASS (SUITABLE-OBJECT 8) (B 0) BETWEEN))))

matching the description of door.

It is appropriate to wonder if the domain discussed here is not too simple to afford
effective extension to other areas. This is a difficult question. Certainly at some level
of structural complexity much more sophisticated theories of physical laws may be
needed to adequately describe function. Nevertheless, it is quite striking that the
functional concepts discussed find an easy and direct representation in terms of specific
structural properties and that certain structural properties may immediately be singled
out to provide clues as to functional use. Perhaps th|s is an artifact of our simple blocks
world. But perhaps not.
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SUSSMAN’S SKILL LEARNING SYSTEM

In this section we remain in the blocks world, but we turn completely away from
considerations of form and function. Instead we ask about how a program can learn to
do new things by debugging primitive procedures. In particular we study Sussman’s
HACKER system for skill acquisition (TR-297). It sheds light on several important issues,
including the relationship of problem-solving to learning, the relationship between
imperative and declarative aspects of knowledge, the nature of plans and their
teleological structure, and the role of bugs and debugging in the refinement of plans.

A THEORY OF PROBLEM SOLVING

A human problem-solver first tries to classify his problem into a subclass for
which he knows a solution method. If he can, he applies that method. If he cannot, he
must construct a new method by applying some more general problem-solving strategies
to his knowledge of the domain. In constructing the new method, he is careful to avoid
certain pitfalls he has previously encountered and he may use methods he has previously
constructed to salve subproblems of the given problem. The new method is committed
to memory for future use. If any method, new or old, fails on a problem for which it is
expected to work, the failure is examined and analyzed. As a result the method may be
modified to accommodate the new problem. Often the analysis of the failure can also be
classified and abstracted to be remembered as a pitfall to avoid in the future when
constructing new methods.

HOW HACKER WORKS

HACKER’s purpose is to cope with construction planning in the BLOCKS world.
HACKER’s structure is outlined in figure 1. When given a problem, HACKER first checks
to see if it has a program in his Answer Library whose pattern of applicability matches
the problem statement. If so, it runs that program. If not, it must write a new program,
using some general knowledge of programming techniques applied to his knowledge of
the Blocks World. Any proposed program is criticized to avoid certain bugs it has
previously encountered. HACKER may use subroutines (in the Answer Library) it has
previously constructed to solve subproblems of the given problem. After criticism, the
proposed solution program is tried out. The new program is stored in the Answer
Library, indexed by an applicability pattern derived from the statement of the problem
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for which it was written, so that it can be used to solve similar problems in the future.
If any program, new or old, manifests a bug when it is applied to a problem which
matches its pattern of applicability, general debugging knowledge is used to classify the
mode of failure. Often, the nature of the bug can be summarized and remembered as a
critic. The program is patched to fix the bug and tried again.

PROBLEM STATEMENTS AND THE ANSWER LIBRARY

Problems are posed to HACKER in the form of simple patterns such as (ACHIEVE
(ON A B)). These patterns do not completely specify the final state, they only specify a
kernel of the problem to be solved, leaving the problem to be further specified by
"reasonable” completion. For example, suppose the initial situation is as pictured below
and we pose the problem: )

(ACHIEVE (ON A B))

table

We have certainly not told HACKER what to do with bleck C. But the following is a
reasonable completion of the kernel goal state:

table

The most convenient completion of a problem statement depends upon just what method
in the Answer Library is retrieved to compute the answer, or what methods are
retrieved to build and debug an answer if there is not one immediately available.
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The Answer Library is a set of programs indexed by patterns which describe the
problems for which they are considered relevant. The patterns are simple s-
expressions which contain variables and which are matched against the problem posed.
Thus, the Answer Library may contain a method which matches the problem:

(TO (ACHIEVE (ON x y))
(ACHIEVE (CLEARTOP x))
(ACHIEVE (PLACE-FOR x y))
(PUTON x y))

The pattern language is rather poor in expressivity. It is difficult to encode complex
requirements elegantly.

PROPOSAL OF PROGRAMS

If there is no procedure in the Answer Library which matches the problem posed,
a program must be proposed to solve the problem. There are two ways by which a new
program can be proposed by HACKER’s program proposer.
1) By generalization of a piece of code previously written to solve a different but
"similar" problem.
2) By application of a general plan whose pattern of applicability matches the
problem statement.
In the first case, HACKER’s notebook is examined to determine if HACKER has
ever before written code to satisfy a similar goal. If it is possible to variabilize such a
program, and the goal for which it was written so that it matches the new problem, the
old code is extracted and subroutinized (inserted in the Answer Library with the
generalized pattern) so that it is applicable in the new situation as well as the old one.
In the second case HACKER examines his Programming Techniques Library and his
Blocks World Knowledge Library (collectively, his "Bag of Tricks") for a pattern-directed
displacement macro to expand and replace the problem statement. There are three
types of such macros: ) |
1) There are macros which change the representation of the problem. For example,
if the problem is (ACHIEVE (CLEARTOP A)) it is necessary to be able to substitute some
more expanded version of the problem if we do not recognize it directly. Thus, the
Blocks World contains: |
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(MEANING-OF (CLEARTOP x) (NOT (EXISTS (y) (ON y x))))
Expansion of this macro on the given problem yields the changed problem:
(ACHIEVE (NOT (EXISTS (y) (ON y A)))
2) There are also macros which expand problems of a particular form into code. Such
a macro represents a possible imperative semantics for statements of the form they
match. For example:

(CODE-FOR (ACHIEVE (NOT (EXISTS vars pattern)))
(FOR-EACH vars pattern
(ACHIEVE (NOT pattern))))

compiles the following program for the given problem:

(FOR-EACH (y) (ON y A)
(ACHIEVE (NOT (ON 'y A)))

where FOR-EACH is a canned loop often used in CONNIVER programs for iterating
through data items.
| This kind of macro can easily compile a bug. It may not be possible, for example,
to make (NOT (EXISTS (y) (P y))) true by independently making (P a) false for each "a"
for which it is now true. This is most clearly true for the particular macro which
expands conjunctions into a "linear theory” plan.

3) Finally, there are "tricks" concerned with the details of the Blocks World. One of
these (very simplified) is: '

(CODE-FOR (ACHIEVE (NOT (ON x y)))
(ACHIEVE (ON x TABLE)))

Thus when the code for (CLEARTOP A) is run this macro further transforms the program
into:

(FOR-EACH (y) (ON y A)
(ACHIEVE (ON y TABLE))
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THE ORIGINS OF BUGS

HACKER has ways of repairing bugs when they come up, but how do bugs come
up? There are several important sources of bugs. Sometimes, because of
generalizations made when a new program is inserted in the Answer Library, a program
is applied to a kind of situation which was not anticipated when the program was
written. Other bugs result from unanticipated interactions between the steps of a
proposed solution. Let us examine the genesis and repair of a bug of this latter kind.

Suppose that one is confronted with a composite goal in which the problem is to
achieve the conjunction of two conditions. In the absence of any further knowledge
about the structure of the problem, what is a rational strategy to follow in attempting to
solve the problem? The simplest approach, which has had great success in the history of
science, is to begin with a linear theory -- to assume that the two subgoals can be
achieved by independent processes. Thus, the linear theory plan is to break up the
conjunction into its components, and then achieve each component independently, with
the hope that there will be no interference between the subpfoblem solutions. Of
~ course, this assumption is often false and leads to a bug, but it is a place to start.
Understandmg the nature of the resultlng bug will often point out the correct patch to
make and may lead to a more fundamental understanding of the problem domain.

Consider, for example, HACKER’s behavior on the following problem: Suppose that
there are 3 blocks on the table, A, B and C, and we ask HACKER to build a 3-block-high
tower:

(ACHIEVE (AND (ON A B) (ON B C)))

A

B

A B C C
TABLE I TABLE

Before After

- HACKER has already written a program to (ACHIEVE (ON x y)) for any bricks xy. But
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HACKER cannot find any program in his Answer Library which matches the given
conjunction problem. HACKER then goes into program proposal mode. It fishes about for
a strategy which matches the problem posed. The linear theory for achieving
conjunctions is retrieved. It suggests the plan:

(TO AND2 (ACHIEVE (AND (ON A B) (ON B C)))
L3: (ACHIEVE (ON A B))
L4: (ACHIEVE (ON B C)))

That is, in simplified HACKER syntax: first try to get A on B, then try to get Bon C. If
the subgoals are independent, their order doesn’t matter, so the arbitrary order from the
problem statement is used. The proposal is then passed by the criticizer and tried out;
the criticizer does not yet know anything about this kind of problem. '

Of course, it has a bug. The program, AND2, first puts A on B. Next it tries to put
B on C, but that means it must grasp B. It cannot move B with A on it (a physical
restriction of the robot’s hand), so it removes A from B and puts it on the table. (This is
part of that Answer Library subroutine which HACKER has constructed to solve some
earlier problem of the form (ACHIEVE (ON x y)) and which is being used here) Next, it
puts B on C and is done. But it failed to achieve its overall purpose -- A is no longer
on B!

Actually, in HACKER, the program would never get this far. Besides proposing the
plan, the linear theory also placed the following teleologv_"cal commer::y for that plan
into HACKER’s Notebook (figure 1):

(PURPOSE L3 (TRUE (ON A B)) AND2)
(PURPQOSE L4 (TRUE (ON B C)) AND2)

These state that the author of the plan expected that A would be on B starting after
line L3 and remain there at least until the program AND2 was done (the fourth position
could have contained a line number in a more complex plan where L3 was a prerequisite
step rather than a main step) and B would be on C starting after line L4 and remain
there until AND2 was done. When a program is executed for the first time, it is
executed in CAREFUL mode. In CAREFUL mode these comments are interpreted along
with the lines to which they are attached. A demon was set after L3 to protect the
truth of (ON A B) until AND2 is done. This demon interrupted the execution of L4 at the
moment A was lifted off of B. The bug is thus manifest as a PROTECTION-VIOLATION and
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caught. Control now passes from the interrupted process to the bug classifier.

TYPES OF BUGS

We have seen how a bug can be constructed when a powerful but imperfect
method of plausible inference is invoked. What do we do when such a bug comes up?
Until recently, it was thought that a very good idea would have been to include a
combinatorial search mechanism (e.g. backtracking) to unwind the problem solver back to
some earlier point where the next most plausible proposal could be selected and tried
out. The hitch with this idea is that this kind of search rapidly leads to a combinatorial
explosion -- just what is this "next most plausible™ proposal? It might be that the next
most plausible proposal will fail in precisely the way that the current one does and that
only the one-hundredth most plausible will succeed. Perhaps the program should re-
evaluate its plausibilities on the basis of this failure. That is, the program should be able
to learn from its mistakes, not only so as not to make the same error again, but to be
positively guided by analysis of the structure of the mistake.

_If this conclusion is to be taken seriously it becomes important to better
understand the nature of bugs; to classify and name the bugs and repair strategies. The
idea of thinking of bugs as important concepts and BUG as a "powerful idea” may seem
surprising; but we suspect that isolating and systematizing them may become as
important in the study of intelligence as classifying interactions has become in physics!

Now let’s see how HACKER understands the above mentioned bug, which has
manifested itself as a protection violation. What is its underlying cause? The basic
strategy of HACKER in debugging a bug manifestation is to compare (a model of) the
behavior of the misbehaving program with various prototypical bug patterns. If a match
is found, the program is said to be suffering from a bug which is an instance of the
prototype.

What constitutes a model of the behavior of the misbehaving program and how is
it constructed” Here is one scheme: at the time of the PROTECTION-VIOLATION
interrupt, the bug classifier has access to an essentially complete chronological history of
the problem-solving process which was interrupted. (A human debugger often uses a
"tracer" to help him construct such a history, but special features of CONNIVER provide
this and more in CAREFUL mode.) HACKER also has access to a complete teleological
commentary of the proposed solution and access to variable bindings and other relevant
data.

The bug classifier begins by noting two pointers: the current control point and
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the origin of the protection comment whose scope was violated. These pointers are
then traced with the help of the relevant teleclogical commentary and history as follows:

Where was |? In 1: (PUTON A TABLE)
Why? Main Step in 2: (ACHIEVE (ON A TABLE))
Why? Main Step in 3: (ACHIEVE (NOT (ON A B)))
Why? Main Step Generic in 4: (ACHIEVE (CLEARTOP B))
Why? Prerequisite Step for 5: (PUTON B C) '
. Why? Main Step in 6: (ACHIEVE (ON B C))
Why? Main Step in 7: (ACHIEVE (AND (ON A B) (ON B C)))
Why? . 8: COMMAND
Who complained? 9: Protect (TRUE (ON A B))
Why? Result of 10: (ACHEVE (ONA B)) |
Why? Main Step in 7: (ACHIEVE (AND (ON A B) (ON B C)))

A Main Step is a step in a program whose purpose is to achieve a result which
contributes to the overall goal of the program. Its purpose comment states that the
result achieved by that step is needed until the program returns to its caller. A
Prerequisite Step is one whose purpose is to set up for the execution of some other
step. The result of this trace can be summarized in the following schematic diagram of
the buggy process:
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Each box in this diagram is a stack frame of the process. The horizontal dimension is its
extent in time; the vertical dimension is the depth of functional application. Thus, the
blocks labeled 7 and 8 (the AND2 frame and command level frame respectively) exist
from the time the command is typed until it returns. Frame number 10 is the frame of
line L3:(ACHIEVE (ON A B)) and frame number 6 is the frame of line L4:(ACHIEVE (ON B
C)). Frame number 9 is special -- it is the protection demon on the result of L3. It
points at the accused violator. The horizontal arrows indicate the scopes of the
purposes of the steps. Arrows which terminate on boxes are prerequisite step scopes.
(In this trace there is only one prerequisite scope, from 4 to 5.) Other arrows are main
step scopes.

This structure matches a particular prototype bug called PREREQUISITE-
CLOBBERS-BROTHER-GOAL (PCBG): -
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Step | Step2 »

By this we mean a bug which is due to an interaction between two program steps
whose purpose scopes terminate at the same time. A prerequisite step) for a main step
in the code for step 2 clobbered the result of step 1. In this case, the process of
achieving (CLEARTOP B), a prerequisite of (PUTON B C), which is a main step in
L4:(ACHIEVE (ON B C)), destroys the truth of (ON A B), the result of L3{ACHIEVE (ON A
B)). Since both L3 and L4 are main steps in AND2 their purpose scopes terminate when
AND2 returns. _

Just how much generality is there in the concept PCBG? Perhaps it is just
peculiar to the Blocks World? In fact, PCBG is a very common form of non-linearity.

If, for example, one wants to paint the ceiling, it is simultaneously necessary that
the paint be on the platform and that the painter be on the ladder. The linear strategy
is to achieve each subgoal independently. The painter can either first lift the can to the
ladder platform, and then climb the ladder (which works); or he can first climb the ladder
and then lift the can (which doesn’t work). Once he is on the ladder, he has no access to
the can on the ground. He must first come down to get the paint (clobbering the
previously achieved subgoal of being on the ladder). Climbing down -- to achieve the
prerequisite to lifting the paint can -- has clobbered the brother goal of being on the
ladder.

In programming too, one often runs into PCBG’s. Consider the problem of
compiling the LISP expression (F 3 (G 4)). If the argument passing convention is to load
the arguments into successive argument registers and then call the function, we see that
the call to function F requires that 3 be in register 1 and the result of (G 4) be in
register 2. If we try the obvious order -- first put 3 in register 1, then calculate (G 4)
and put it in register 2 -- we find that we must load 1 with 4 to call G, thus clobbering
the brother goal of having 3 in register 1.
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FIXING THE BUG

Now that the bug is classified, can we come up with a modification to the plan
(program) which eliminates the bug? The offending prerequisite must, in any case, be
accomplished before its target step. Its scope must extend until that step. But since
the first and second conjuncts are brothers (they are both for the same target), their
scopes must overlap. Thus, since the scope of the first conjunct and the scope of the
prerequisite of a main step for the second step are incompatible, the only way to
prevent the overlap is to move the step for the second conjunct ahead of the step for
the first. We must assign an order to the plan. Thus, the patcher changes the plan as
follows:

(TO AND2 (ACHIEVE (AND (ON A B) (ON B C)))
L4: (ACHIEVE (ON B C))
L3: (ACHIEVE (ON A B))

A new comment is added to HACKER’s notebook summanzmg this ordering constraint
(BEFORE L4 L3). The program is patched and the result works. In this case a critic is
compiled which summarizes what has been learned. If for any blocks A, B, and C we are
proposing a program which has lines with the purposes of getting A on B and B on C, we
must compile the line which puts B on C before the one which puts A on B. Applied
recursively, this advice is sufficient to ensure that any program which piles up bricks will
do it in the correct order -- from the bottom-up.

OTHER BUGS

Of course, not every bug is a PCBG -- not even every bug which manifests as a
protection violation. If, for example, we try to build an arch -- (ACHIEVE (AND (ON A B)
(ON A C))) -- with a linear theory plan, the bug will manifest as a protection violation
but no interchange or other simple modification of the linear theory plan can succeed.
This kind of bug is a DIRECT-CONFLICT-BROTHERS (DCB) which can only be resolved
using more Blocks World knowledge.
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CONCLUSIONS

We can draw the conclusion that to be effective, a problem-solver need not know
the precise way to solve each kind of problem. It can attempt to break a hard problem
up into subproblems. Sometimes these subproblems can be solved independently, in
which case the linear theory plan will work. Sometimes the steps of the plan will
interact and debugging will be necessary. And sometimes, because of prior experience,
we may know that a particular kind of problem may require a particular kind of nonlinear
plan, such as the ordered plan required for the problem discussed here.

The appearance of a few bugs need not be seen as evidence of a limitation of
problem solving ability, but rather as a step in the effective use of a powerful problem
solving strategy -- approximation of the solution of a problem with an almost-right plan.
This strategy becomes powerful if the bug manifestation that results from the failure of
- such an almost-right plan can be used to focus the problem-solver on the source of the
difficulty. A problem-solver based on debugging need not thrash blindly for an alternate -
plan but can be led by the analysis of the failure -- provided that adequate bug
classifying and repairing knowledge is available.

Thus effective problem solving depends as much on how well one understands
one’s errors as on how carefully and knowledgeably one makes one’s initial choices at
decision points. The key to understanding errors is in understanding how intentions and
purposes relate to plans and actions. This indicates that an important part of the
knowledge of a problem-solver is in teleological commentary about how the subparts of
the performance knowledge relate to each other so as to achieve the overall goals of
the system. It also indicates the need for knowledge about how to trace out bugs and
about the kinds of bugs that might be met in applying a given kind of plausible plan.

SOME RELEVANT READING

- Bobrow, D. G. and B. Wegbreit. A Model and Stack Implementation of Multiple
Environments. Report No. 2334. Publications of Bolt, Beranek and Newman, Inc.,
Cambridge, Masachusetts, 1972.
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GOLDSTEIN'S DRAWING PROGRAM DEBUGGER

In the previous section we saw that Sussman tried to concentrate on domain
independant knowledge about programming, avoiding factors specific to the blocks world
insofar as possible. In this respect, Goldstein’s work on the debugging of simple
children’s display programs complements Sussman’s. Goldstein gives a very thorough
account of the epistemology of the domain and how it interacts with the job of correcting
the drawing procedures (AIM-305).

In this his Ph. D. work has had the following goals:

1. to provide a more precise understanding of the fundamentals of
programming;

2. to facilitate the development of machines capable of debugging and
expanding upon the programs given them by humans;

3. to produce insight into the problem solving process so that it can be
described more constructively to students.

MYCROFT is intended to supply occasional advice to a student to aid in the
debugging of programs that go awry. (Just as the system’s namesake, Mycroft Holmes,
occasionally supplied advice to his younger brother Sherlock on particularly difficult
cases.) In this interaction, the user supplies statements that describe aspects of the
intended picture and plan, and the system fills in details of this commentary, diagnoses
bugs and suggests corrections.

In this brief glance, our primary purpose will be to describe MYCROFT as a model of
the debugging process. This is reasonable since MYCROFT’s utility as an adviser stems
directly from its understanding of debugging skill.

MYCROFT is able to correct the programs responsible for the bugged pictures shown
in figures 2, 3, 4 and 5 so that the intended pictures are achieved. The debugging of
figure 2, a typical example, will be thoroughly explained. Figures 3, 4 and 5 are
corrected in analogous ways.

The pictures are drawn by program manipulation of a graphics device called the
turtle which has a pen that can leave a track along the turtle’s path. Turtles play an
important role in the LOGO environment where chvldren learn problem solving and
mathematics by programming display turtles, physical turtles with various sensors, and
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music boxes (Papert 1972). Turtle programs have proven to be an excellent starting
point for teaching programming to children of all ages, and therefore provide a
reasonable initial problem domain for building a program understanding system. _
The context of MYCROFT’s activity is the interaction of three kinds of description:
graphic (i.e. the picture actually drawn), procedural (the turtle program used to generate
the picture) and predicative (the collection of statements used to describe the desired
scene). For MYCROFT, debugging is making the procedural description produce a
graphical result that satisfies the set of predicates describing intent. Thus, debugging
here is a process that mediates between different representations of the same object.

FLOW CHART OF THE SYSTEM

The organization of the monitor system is illustrated in figure 6. Input to MYCROFT
consists of the user’s programs and a model of the intended outcome. For the graphics
world, the model is a conjunction of geometric predicates describing important properties
of the intended picture. MYCROFT then analyzes the program, building both a Cartesian
annotation of the picture that is actually drawn and a plan explaining the relationship
between the program and model. (Any or all of the plan can be supplied directly by the
_user thereby simplifying MYCROFT’s task.)

The next step is for the system to interpret the program’s performance in terms of
the model and produce a description of the discrepancies. These dis:repancies are
expressed as a list of the violated mode! statements. The task is then for the debugger
to repair each violation. The final output is an edited turtle program (with copious
commentary) which satisfies the model. (Occasionally, the plan that MYCROFT
hypothesizes requires implausible repairs -- for =xample, major deletions of user code -
- resulting in the debugger asking the plan-finder for a new plan.)

We now introduce MYCROFT by describing the debugging of NAPOLEON (figure 2)
and discussing some important ideas about the nature of plans. For a discussion of the
other modules shown in the flowchart, see (AIM-305).

PICTURE MODELS

To judge the success of a program, MYCROFT requires as input from the user a
description of intent. A declarative language has been designed to define picture
models. These models specify important properties of the desired final outcome without
indicating the details of the drawing process. The primitives of the model language are
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geometric predicates for such properties as connectivity, relative position, length and
location. The following models are typical of those that the user might provide to
describe figure 1. '

MODEL MAN

M1 PARTS HEAD BODY ARMS LEGS

M2 EQUITRI HEAD

M3 LINE BODY

M4 V ARMS, V LEGS ‘

M5 CONNECTED HEAD BODY, CONNECTED BODY ARMS, CONNECTED BODY LEGS
M6 BELOW LEGS ARMS, BELOW ARMS HEAD

END ‘

MODEL V
M1 PARTS L1 L2
M2 LINE L1, LINE L2

M3 CONNECTED L1 L2 (VIA ENDPOINTS)
END

MODEL EQUITRI
M1 PARTS (SIDE 3) (ROTATION 3)
M2 FOR-EACH SIDE (= (LENGTH SIDE) 100)
- M3 FOR-EACH ROTATION (= (DEGREES ROTATION) 120)
M4 RING CONNECTED SIDE
END

The MAN and V models are underdetermined: they do not describe, for example, the
actual size of the pictures. The user has latitude in his description of intent because
MYCROFT is designed only to debug programs that are almost correct. Therefore, not
only the model, but also the picture drawn by the program and the definition of the
procedure provide clues to the purpose of the program.
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THE NAPOLEON EXAMPLE

MYCROFT is designed to repair a simple class of procedures called Fixed-Instruction
Programs. These are procedures in which the primitives are restricted to constant
inputs. Subprocedures are allowed; however, no conditionals, variables, recursions or
iterations are permitted. Given below are the three programs which drew figure 2 --
NAPOLEON, VEE, and TRICORN. The "<-" commentary is called the plan and was
generated by MYCROFT to link the picture models -- MAN, V and EQUITRI -- to the
programs.

T4 NAPOLECON <= (accomp!ish man)

18 VEE <- (accomplish legs)

20 FORWARD 100 <- (accomplish (piece 1 body))
38 VEE <- (insert arms body)

4@ FORWARD 108 <- (accomplish (piece 2 body))
590 LEFT 30 <- (setup heading (for head))

60 TRICORN <~ (accomplish head)

END

TO0 VEE <~ (accomplish v)

18 RIGHT 45 <- (setup heading for 11)

20 BACK 100 <~ (accomplish 11)

30 FORWARD 108 <- (retrace 11)

49 LEFT 30 <~ (setup heading for 12)

50 BACK 109 <~ (accomplish 12)

60 FORWARD 100
END

(retrace 12)
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TO TRICORN <~ (accomplish equitri)

19 FORWARD 5@ <- (accomplish (piece 1 (side 1)))
20 RIGHT 96 <- (accomplish (rotation 1))

30 FORWARD 106 <- (accomplish (side 2))

4@ RIGHT J6 <~ (accomplish (rotation 2))

S8 FORWARD 109 <- (accomplish (side 3))

60 RIGHT 396 <- (accomplish (rotation 3))

79 FORWARD 50 <- (accomplish (piece 2 (side 1)))
END

The turtle command FORWARD moves the turtle in the direction that it is currently
pointed: RIGHT rotates the turtle clockwise around its axis. (A complete description of
LOGO is available from the laboratory but is not needed here.)

A Cartesian representation of the picture is generated by an annotator that
describes the performance of turtle programs. The plan is used to bind subpictures to
model parts. This allows MYCROFT to interpret programs with respect to their models
and produce lists of violated model statements. MYCROFT produces the following list of
discrepancies for NAPOLEON:

(NOT (LINE BODY)) ;The body is not a line.

(NOT (BELOW LEGS ARMS)) ;The legs are not below the arms.
(NOT (BELOW ARMS HEAD)) :The arms are not below the head.
(NOT (EQUITRI TRICORN)) ;The head is not an equilateral

MYCROFT is able to correct these bugs and achieve the intended picture using both
planning and debugging knowledge.

PLANS

This section introduces a vocabulary for talking about the structure of a procedure
which is useful for understanding both the design and debugging of programs. A main-
step is defined as the code required to achieve a particular subgoal (subpicture). A
preparatory-step consists of code needed to setup, cleanup or interface between main-
steps. Thus, from this point of view, a program is understood as a sequence of main-
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steps and preparatory-steps. A similar point of view is found in (Sussman TR-297).
The plan consists of the purposes linking main- and preparatory-steps to the model: in
the turtle world, the purpose of main-steps is to accomplish (draw) parts of the model;
and the purpose of preparatory-steps is to properly setup or cleanup the turtle state
between main-steps or, perhaps, to retrace over some previous vector.

A modular main-step is a sequence of contiguous code intended to accomplish a
particular goal. This is as opposed to an interrupted main-step whose code is scattered
in pieces throughout the program. In NAPOLEON, the main-steps for the legs, arms and
head are modular; however, the code for the body is interrupted by the insertion of the
code for arms. The utility of making this distinction is that modular main-steps can often
be debugged in private (i.e. by being run independently of the remainder of the
procedure) while interrupted main-steps commonly fail because of unforseen interactions
with the interleaved code associated with other steps of the plan.

Linearity is an important design strategy for creating programs. It has two stages.
The first is to break the task into independent subgoals and design solutions (main-
steps) for each. The second is then to combine these main-steps into a single procedure
by concatenating them into some sequence, adding (where necessary) preparatory-steps
to provide proper interfacing. The virtue of this approach is that it divides the problem
into manageable subproblems. A disadvantage is that occasionally there may be
constraints on the design of some main-step which are not recognized when that step is
designed independently of the remainder of the problem. Another disadvantage is that
linear design can fail to recognize opportunities for subroutinizing a segment of code
useful for accomplishing more than one main-step. A linear plan will be defined as a plan
consisting only of modular main-steps and preparatory steps: a non-linear plan may
include interrupted main-steps.

LINEAR DEBUGGING

Linearity is a powerful concept for debugging as well as for designing programs.
MYCROFT pursues the following linear approach to correcting turtle programs: the
debugger’s first goal is to fix each main-step independently so that the code satisfies all
intended properties of the model part being accomplished. Following this, the main-steps
are treated as inviolate and relations between model parts are fixed by debugging
preparatory-steps. This is not the only debugging technique available to the system, but
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it is a valuable one because it embodies important heuristics (1) concerning the order in
which violations should be repaired and (2) for selecting the repair-point (location in the
program) at which the edit for each violation should be attempted.

Following this linear approach, MYCROFT repairs the crooked body and the open
head of NAPOLEON before correcting the BELOW relations. Repairing these parts is
done on the basis of knowledge described in the next two sections. Let us assume for

the remainder of this section that these property repairs have been made -- NAPOLEON-

appears as in figure 7 -- and concentrate on the debugging of the violated relations.

NAPOLEON with parts corrected NAPOLEON with statement 15
as RIGHT 135

FIGURE 7 FIGURE 8

Treating main-steps as inviolate and fixing relations by modifying setup steps limits
the repair of (BELOW LEGS ARMS) to three possible repair-points: (1) before the legs
as statement 5, (2) before the first piece of the body as statement 15 and (3) before
accomplishing the arms as statement 25. MYCROFT understands enough about causality
to know that there is no point in considering edits following the execution of statement
30 to affect the arms or legs. The exact changes to be made are determined by
imperative semantics for the model primitives. This is procedural knowledge that
generates, for a given predicate and location in the program, some possible edits that
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would make true the violated predicate. MYCROFT generally considers alternative
strategies for correcting a given violation: it prefers those edits which produce the
most beneficial side effects, make minimal changes to the user’s code or most closely
satisfy the abstract form of the plan. '

For BELOW, the imperative semantics direct DEBUG to piace the legs below the
arms by adding rotations at the setup steps. More drastic modifications to the user’s
code are possible such as the addition of position setups which alter the topology of the
picture; however, MYCROFT tries to be gentle to the turtle program (using the heuristic
that the user’s code is probably almost correct) and considers larger changes to the
program only if the simpler edits do not succeed. The first setup location considered is
the one immediately prior to accomplishing the arms. Inserting a rotation as statement
25, however, does not correct the violation and is therefore rejected. The next
possible edit point is as statement 15. Here, the addition of RIGHT 135 makes the legs
PARTLY-BELOW the arms and produces figure 8. This edit is possible but is not
preferred both because the legs and arms now overlap and because the legs are not
COMPLETELY-BELOW the arms. MYCROFT is cautious, being primarily a repairman rather
than a designer, and is reluctant to introduce new connections not described in the
model. Also, given a choice, MYCROFT prefers the most constrained meaning of the
model predicate. If the user had intended figure 8, then .one would expect the model
description to include additional declarations such as (CONNECTED LEGS ARMS) and
(PARTLY-BELOW LEGS ARMS).

Adding RIGHT 90 as statement 5 achieves (COMPLETELY-BELOW LEGS ARMS) and
the NAPOLEON program now produces the intended picture (figure 1). This correction
has beneficial side effects in also establishing the proper relationship between the head
and arms, confirming for MYCROFT that the edit is reasonable, since a particular
underlying cause is often responsible for many bugs. Thus the result of (DEBUG (BELOW
LEGS ARMS)) is:

S RIGHT 38 <- (setup heading such-that (belou legs arms)
(below arms head))
(assume (= (entry heading) 278))

The assume comment records the entry state with respect to which the edit was
made. If the program is run at a future time in a new environment, then debugging is
simplified. The cause of a BELOW violation will now immediately be seen to be an
incorrect assumption, and the corresponding repair is obvious -- insert code to satisfy
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the entry requirements described by the assumption. This illustrates the existence of
levels of commentary between the model and the program, each layer being more
specific, but also more closely tied to the particular code and runtime environment of the
program.

Linear debugging greatly restricts the possibilities that must be considered to repair
a violation. It is often successful and constitutes a powerful first attack on the problem
of finding the proper edit; however, it is not infallible. Non-linear bugs due to
unexpected interactions between main-steps would not be caught by this technique.

Figure 9 illustrates a non-linear bug. (INSIDE MOUTH HEAD) is violated but it cannot

O
(@) --‘v
O

be repaired by adjusting the interface between these two parts (indicated in figure 9 by
the dotted line OP) since the mouth is longer than the diameter of the head. The
imperative semantics for fixing INSIDE recognize this. Consequently, MYCROFT resorts to
the non-linear technique of modifying main-steps to repair a relation between parts.
The imperative semantics suggest changing the size of one of the parts because this
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transformation does not affect the shape of the part and consequently will probably not
introduce new violations in properties describing the part. Advice is required from the
user to know whether shrinking the mouth is to be preferred to expanding the head.
Two more non-linear debugging techniques are discussed next: one is based upon
knowing the abstract form of plans, and the other uses domain-dependent theorems
about global effects.

INSERTIONS

In programming, an interrupt is a break in normal processing for the purpose of
serVicing a surprise. Interrupts represent an important type of plan: they are a
necessary problem solving strategy when a process must deal with unpredictable events.
Typical situations where interrupts prove useful include servicing a dynamic display, and
arbitrating the conflicting demands of a time sharing system. In the real world, biological
creatures must use an interrupt style of processing to deal with dangers of their
environment such as predators.

A very simple type of interrupt is one in which the program associated with the
interrupt is performed for its side effects and is state-transparent, i.e. the machine is
restored to its pre-interrupt state before ordinary processing is resumed. As a result,
the main process never notices the interruption. In the turtle world, an analogous type
of organization is that of an inserted main-step (insertion). It naturally arises when the
turtle, while accomplishing one part of a model (the interrupted main-step), assumes an
appropriate entry state for another part (the insertion). An obvious planning strategy is
to insert a subprocedure at such a point in the execution of the interrupted-step. Often,
the insertion will be state-transparent: for turtles, this is achieved by restoring the
heading, position and pen state. The insertion of the arms into the body by statement
30 of NAPOLEON is an example of a position- and pen- but not heading- transparent
insertion.

Insertions do not share all of the properties of interrupts. For example, the
insertion always occurs at a fixed point in the program rather than at some arbitrary and
unpredictable point in time. Nor does the insertion alter the state of the main process
as happens in an error handler. However, if one focuses on the planning process by
which the user’s code was written, then the insertion as an intervention in accomplishing
a main-step does have the flavor of an interrupt.
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The FINDPLAN module aids the debugger in a second way beyond just the generation
of the plan. This is through the creation of caveat comments to warn the debugger of
suspicious code that fails to satisfy expectations based on the abstract form of the plan.
. In particular, if FINDPLAN observes an insertion that is not transparent, then the
following caveat is generated:

30 VEE <- (caveat findplan (not (rotation-transparent insert))).

The non-transparent insertion may have been intentional, e.g. the preparation for the
next piece of the interrupted main-step may have been placed within the insertion. The
user’s program may have prepared for the next main-step within the insertion. Hence,
FINDPLAN does not immediately attempt to correct the anomalous code. Only if
subsequent debugging of some model violation confirms the caveat is the code corrected.
There will often be many possible corrections for a particular mode! violation. The
caveat is used to increase the plausibility of those edits that eliminate FINDPLAN’s
complaint. In this way, the abstract form of the plan helps to guide the debugging.

For NAPOLEON, analysis of (NOT (LINE BODY)) leads MYCROFT to consider (1) adding
a rotation as statement 35 to align the second piece of the body with the first or (2)
placing this rotation into VEE as the final statement. Ordinarily, linear debugging would
prevent the latter as it does not respect the inviolability of main-steps. However, it is
chosen here because of the corroborating complaint of FINDPLAN. The underlying cause
of the bug is a main-step error (non-transparent insertion) rather than a preparatory-
step failure. Thus, (DEBUG (LINE BODY)) produces:

70 RIGHT 45 <- (setup heading such-that (transparent vee))
GEOMETRIC KNOWLEDGE

Linearity, preparation and interrupts are general problem-solving strategies for
organizing goals into programs. However, it is important to remember that domain-
dependent knowledge must be available to a debugging system. The system must know
the semantics of the primitives if it is to describe their effects.

The debugger must also have access to domain-dependent information to repair
main-steps in which the subparts must satisfy certain global relationships. For example,
TRICORN has the bug that the triangle is not closed. Each main-step independently
achieves a side but the sides do not have the proper global relationship. Debugging is
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simplified by the explicit statement in the model that:
(FOR-EACH ROTATION (= (DEGREES ROTATION) 120)).

But suppose the model imposed no constraints on the rotations. Then the design of the
rotations would have to be deduced from such geometric knowledge as the fact that N
‘equal vectors form a regular polygon if each rotation equals 360/N degrees.

The pieces of an interrupted-step such as the first side of TRICORN are not always
separated by a state-transparent insert. (This would be a local interruption.) Instead, it
is possible that more global knowledge is needed to understand the properties of the
intervening code which justifies the expectation that the pieces will properly'fit
together. In TRICORN, the second piece (drawn by statement 70) must be colinear with
the first (drawn by statement 10). The global property of the code which justifies this
is that equal sides and 120 degree rotations results in closure. Thus, debugging
violations of globally interrupted-steps requires domain-dependent knowledge.

CONCLUSIONS

The design of MYCROFT required an investigation of fundamental problem solving
issues including description, simplification, linearity, planning, debugging and annotation.
MYCROFT, however, is only a first step in understanding these ideas. Further
investigation of more complex programs, and of the semantics of different problem
domains is necessary. It is also essential to analyze additional planning concepts such as
ordering, repetition and recursion as well as the corresponding debugging techniques.
Ultimately, such research will surely clarify the learning process in both men and
machines by providing an understanding of how they correct their own procedures.
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5 UNDERSTANDING VISION

A system written by Winston, Horn, and Freuder succeeded in copying a block’s
world structure some time ago. Since that early milestone, progress has been steady in
understanding both scene analysis and image analysis, both of which are essential to a
complete understanding of vision and the successful implementation of seeing systems.
To summarize this work, it seems appropriate to divide the section into two parts, one
of which concentrates on what we call the heterarchical approach to system building and
one of which concentrates on understanding how the physical world’s constraints can be
exploited in both scene and image analysis.

THE HETERARCHICAL SCENE COPYING SYSTEM

This first section on heterarchy begins with a description of the heterarchical scene
analysis stucture of the Winston-Horn-Freuder copying system after generalization and
improvement by Finin, Lerman, and others. That system’s objectives were, in part, to
explore some of the characteristics that define the heterarchical approach:

1. A complex system should be goal oriented. Procedures at all levels should be
short and associated with some definite goal. Goals should normally be satisfied
by invoking a small number of subgoals for other procedures or by directly
calling a few primitives.

2. The executive control should be distributed throughout the system. In a
heterarchical system, the modules interact not like a master and slaves but more
like a community of experts.

3. Programmers should make as few assumptions as possible about the state in
which the system will be when a procedure is called. The procedure itself
should contain the necessary machinery to set up whatever conditions are
required before it can do its job. This is obviously of prime impartance when
many authors contribute to the system, for they should be able to add
knowledge via new code without completely understanding the rest of the
system.

4. The system should contain some knowledge of itself. It is not enough to think of
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executives and primitives. There should be modules that act as critics and
complain when something looks suspicious. Others must know how and when the
primitives are likely to fail. Communication among these modules should be more
colorful than mere flow of data and command. It should include what in human
discourse would be called advice, suggestions, remarks, complaints, criticism,
questions, answers, mistakes, lies, and conjectures.

5. A system should have facilities for tentative conclusions. The system will detect
mistakes as it operates. A conjectured configuration may be found to be
unstable or the hand may be led to grasp air. When this happens, we need to
know what facts in the data base are most problematical; we need to know how
to try to fix things; and we need to know how far-ranging the consequences of
a change are likely to be.

COPYING TOY BLOCK STRUCTURES

We give here a brief description of the higher level functions of a heterarchical
vision system built to copy toy block structures. We also provide a scenario giving the
interaction of those functions in a very simple situation. The main purpose is to
illustrate the top down, goal oriented and environment dependent flavor of the system.

Figure 1 shows the possible call paths between some of the programs. Note in
~ particular the network quality that distinguishes the system from earlier pass-oriented
systems.

Clarity requires that only a portion of the system be described. In particular, the
diagram and the discussion omits the following:

1. A large number of MICROPLANNER antecedant and erasing programs which keep
the blocks world model up to date.

2. A large network of programs which track lines.

3. A large network of programs that uses the group-hypothesize-criticize idea to
find otherwise inaccessible properties of hidden objects.

4. A network of programs that jiggles an object if the arm errs too much when
placing it.
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THE FUNCTIONS

COPY .
As figure 1 shows, COPY simply activates programs that handle the two phases of
a copying problem; namely, it calls for the spare parts to be found and put away into
the spare parts warehouse area, and it initiates the replication of the new scene.

STORE-PARTS .
To disassemble a scene and store it, STORE-PARTS loops through a series of
operations. It calls appropriate routines for selecting an object, finding a place for it,
and for enacting the movement to storage.

CHOOSE-TO-REMOVE

The first body examined by CHOOSE-TQO-REMOVE comes directly from a successful
effort to amalgamate some regions into a body using FIND-NEW-BODY. After some body
is created, CHOOSE-TO-REMOVE uses FIND-BELOW to make sure it is not underneath
something. Frequently, some of the regions surrounding a newly found body are not yet
connected to bodies, so FIND-BELOW has a request link to BIND-REGION. (The bodies so
found, of course, are placed in the data base and are later selected by CHOOSE-TO-
REMOVE without appeal to FIND-NEW-BODY.)

FIND-NEW-BODY
FIND-NEW-BODY locates some unattached region and sets BIND-REGION to work

on it. BIND-REGION then calls a collection of programs by Eugene Freuder which do a
- local parse and make assertions of the form:

(R17 IS-A-FACE-OF B2)

(B2 I1S-A BODY)
These programs appeal to a complicated network of subroutines that drive line finding
and vertex finding primitives around the scene looking for complete regions.

FIND-BELOW
As mentioned, some regions may need parsing before it makes sense to ask if a
‘given object is below something. After assuring itself that an adjacent region is
attached to a body, FIND-BELOW calls the FIND-ABOVE programs to do the work of
determining if the body originally in question lies below the object owning that a@jacent
region.




WINSTON 138 HETERARCHY

MOVE
To move an object to its spare parts position, the locations and dimensions are
gathered up. Then MANIPULATE interfaces to the machine language programs driving the
arm. After MOVE succeeds, STORE-PARTS makes an assertion of the form:
(B12 IS-A SPAREPART)

FIND-TOP
The first task in making the location calculations is to identify line-drawing
coordinates of a block’s top. Then FIND-TALLNESS and FIND-ALTITUDE supply other
information needed to properly supply the routine that transforms line-drawing
coordinates to X Y Z coordinates.

FIND-DIMENSIONS
This program uses FIND-TOP to get the information necessary to convert drawing

coordinates to three-dimensional coordinates. If the top is totally obscured then it
appeals instead to FIND-BOTTOM and FIND-TALLNESS-2.

SKELETON
SKELETON identifies connected sets of 3 lines which define the dimensions of a
brick (Finin WP-19, Finin WP-26). It and the programs under it are frequently called to
find instances of various types of lines.

FIND-ALTITUDE
FIND-ALTITUDE determines the height of an object’s base primarily by finding its
supporting object or objects. If necessary, it will use the arm to try to touch the
object’s top and then subtract its tallness.

FIND-STORAGE
Once an object is chosen for removal, FIND-STORAGE checks the warehouse area
for an appropriate place to put it.

MAKE-CQPY
To make the copy, MAKE-COPY, CHOOSE-TO-PLACE, and FIND-PART replace
STORE-PARTS, CHOOSE-TO-REMOVE and FIND- STORAGE Assertions of the form:
(B12 1S-A SPAREPART)
(B2 IS-A-PART-OF COPY)
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(B2 IS-ABQVE B1)
are kept up to date throughout by appropriate routines.

CHOOSE-TO-PLACE
Objects are placed after it is insured that their supports are already placed.

FIND-PART
The part to be used from the warehouse is selécted so as to minimize the
difference in dimensions of the matched objects.

A SCENERIO

In what follows the scene in figure 2A provides the spare parts which first must
be put away in the warehouse. The scene to be copied is that of Figure 28B.

A source of spare parts and a scene to be copied

FIGURE 2
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CCOPY
COPY begins the activities.
STORE-PARTS
STORE-PARTS begins supervision of disassembly.

CHOOSE-TO-REMQVE
FIND-NEW-BODY
BIND-REGION

CHOOSE-TO-REMOVE parses a few regions together into a body, B1. A great deal
of work goes into finding these regions by intelligent driving of low level line and vertex
finding primitives.

FIND-BELOW
BIND-REGION
FIND-ABOVE

A check is made to insure that the body is not below anything. Note that B2 is
parsed during this phase as required for the FIND-ABOVE routines. Unfortunately B1 is
below B2 and therefore CHOOSE-TO-REMOVE must select an alternative for removal.

FIND-BELOW
FIND-ABOVE

B2 was found while checking out Bl. CHOOSE-TO-REMOVE now notices it in the
data base and confirms that it is not below anything.

FIND-STORAGE

FIND-STORAGE finds an empty spot in the warehouse.
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MOVE
MOVE initiates the work of finding the location and dimensions of B2.

FIND-TOP
FIND-ALTITUDE
FIND-SUPPQRTS
FIND-SUPPORT-CANDIDATES
FIND-TQOP-HEIGHT
FIND-ALTITUDE
FIND-SUPPORTS
FIND-SUPPORT-CANDIDATES
FIND-TOP-HEIGHT

FIND-TALLNESS-1

FIND-TALLNESS-1

FIND-BOTTOM proceeds to nail down location parameters for B2. As indicated by
the depth of call, this requires something of a detour as one must first know B2’s
altitude, which in turn requires some facts about B1. Note that no calls are made to
FIND-ABOVE routines during this sequence as those programs previously were used on
both Bl and B2 in determining their suitability for removal.

FIND-DIMENSIONS

A call to FIND-DIMENSIONS succeeds immediately as the necessafy facts for

finding dimensions were already found in the course of finding location. Routines
establish that B2 is a lying brick.

MANIPULATE

MANIPULATE executes the necessary motion.
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CHOOSE-TO-REMOVE
FIND-BELOW
FIND-STORAGE

B2 is established as appropriate for transfer to the warehouse. A place is found
for it there.

MQOVE
FIND-TOP
FIND-DIMENSIONS
MANIPULATE

The move goes off straightforwardly, as essential facts are in the data base as
side effects of previous calculations.

CHOOSE-TO-REMOVE
FIND-NEW-BODY

No more objects are located in the scene. At this point the scene to be copied,
figure 2, is placed in front of the eye and analysis proceeds on it.

MAKE-COPY
CHOOSE-TQ-PLACE
FIND-NEW-BODY
BIND-REGION

B3 is found.
FIND-BELOW
BIND-REGICN
FIND-ABOQVE

B3 is established as ready to be copied with a spare part.
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FIND-PART
FIND-DIMENSIONS
FIND-TOP

Before a part can be found, B3’s dimensions must be found. The first program,
FIND-TOP, fails.

FIND-BOTTOM
FIND-ALTITUDE
FIND-SUPPQRTS
FIND-SUPPORT-CANDIDATES
FIND-TOP-HEIGHT

FIND-DIMENSIONS tries an alternative for calculating dimensions. It starts by
finding the altitude of the bottom.

FIND-TALLNESS-2 ‘
FIND-SUPPORTED
FIND-BELOW
FIND-ABOVE
FIND-SUPPORTS
FIND-SUPPORT-CANDIDATES

FIND-TALLNESS-2 discovers B4 is above B3.
FIND-ALTITUDE
TOUCH-TOP
FIND-TALLNESS-1

FIND-ALTITUDE finds B4’s altitude by using the hand to touch its top subtracting
its tallness. B3’s height is found by subtracting B3’s altitude from that of B4.
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MOVE
MANIPULATE

Moving in a spare part for B3 is now easy. B3’s location was found while dealing
with its dimensions. )

CHOOSE-TO-PLACE
FIND-BELOW
FIND-PART
FIND-DIMENSIONS
FIND-TQP
MOVE
MANIPULATE

Placing a part for B4 is easy as the essential facts are now already in the data
base.

CHOOSE-TO-REMOVE
FIND-NEW-BODY

No other parts are found in the scene to be copied. Success.
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