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0. Introduction.

At one time or another, every programmet has cama across the need to be able to
state some property of his pregram or programs in m o way. Quite often this
property s related in some mmmmﬁ b prOgramt Wmm sorts
its input iniascending order”, "this program right Mﬁa a purugiéaph of input text”
etc. Often.it is an undesirable property that is. eﬁm WW contains an
infinite loop”, "this PL /.1 transiation of this - Fertran pregirans dow:not behave exactly
as the original" etc. Certainly these statements are not precise and cannot be taken as a
basis for a serious discussion about the pragram #n question. Moreover, the need might
arise, whether initiated by the programmer Mm& W outiider, to supply-sertie kind
of ﬁroofof the truth .of such claims.

In this thesis we takeuaon wﬂmmmﬁmm tools for
expressing-interesting assetions MWM&WM of 'thiem which, m [ 8
well defined sense, are true. These two concerns, Shpe andiproving, witl serve ss”
landmarks throughout the thesis. Vasious formaliiogios ses-defind; the motivation for
constructing them lying in the kiods of things we would Hike 10 be sble to express; then
axiom systems are developed for them, the motivation hmmud in the needi%be lb"‘le
to prove those things. This,-then, explains our title, .

. We believe that the virtues of research in this area are mainly in providing a
sound and rigoraus foundational basis upon which reasoning abeut programs can be carried
out. [t is not essential, in our opinian, to carry out a proof of the correctness of
every program ofe writes, and certainly not a proof within some formal axiom system.
However, it is important to possess the ability of doing so when required. In addition,
work in logics of programs provides a theoretical basis for developing mputer—alded
tools for reasoning about programs, such as interactive verifiers or automatic
proof-checkers. We are also of the opinion that, much as a mathematician, when provlng a
theorem in algebraic topology, benefits from his knowledge of, say, the basics of
predicate calculus, an understanding of issues such as those discussed in this thesis
results in a subconscious accumulation of important programming knowledge. This
- knowledge, attainable even at the level of an ordinary programmer, includes understanding

the inner workings of such basic programming concepts a3 mmndng choice, iteration,
recursion, infinite computations etc.
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The remainder of this introduction is. devated to a brief historical account of
work which influenced the development. of the material presented (Section 0.1), a
Chapter-by-Chapter summary. and dncrlpﬂm of what is to come. (Semion 02) and a short
explanation of the policy adopted, by which m work other, :hm the mthor's own is also
included (Section 0.3)

0.1 History.b

Early work towards providing mathematical tools for rggg;omng qhout programs. dates
back to Turing [65] and von Neumann [66). Mgs, it is ganerally accepted that the
first serious attempts solely devoted to that end are those of Fbyd {17 and ch (461 on .
the invariant assertion method for proving the partial correctness of programs, followed .

by the intreduction, bx Hoare £27], of an axiom systern ang that method,.

The work we present in this thesls is to. agreu m&m hmd on Pratt's [521 _
foundational study of the semautics of Floyd- m logic, {n fact, a g:elimlnary verslon
of [52] in. the form of class notes, was written bx?mm Apﬂlmu Itisin (523
that the “modal logic of, programs”.(later termed dynemic logic, or DL, in [22]) was
'suggested asa powerfulml.mmoffmm MMW“ Ll.ﬁlon the ‘

propositional version, and, further, wark by. - and Prap £221, Harel and Pratt
[253, Pratt [53, Harel [203, (213, Parikh 143, 149, berman. and I;'mrson {93 and more.

The idea of comtrucnng ﬁrst-order—like Iogla for reamhng about programs is
not new. A logic quite similar. in conception to DL, gl geritAmic logic, has been defined .
by Salwlcki [59] foltowing work of Engder 1:15:1. mmm the situation with DL,
Salwicki's original -Raper stimulated researchers. atthe U“QWW of Vlmaw and resukted ,
in extensive study branching off in various dirgctions. Some mnph papers are erkomkn
[41], Kreczmar [33], Banachowski (6] and Rasiowa [SSJ. A survey of their work can be
found in [7]. Interestingly, a definition of dynamic logic appears in an appendix-of
Schwarz [60] and js credited. tmwkqm Howeye ,,;hudgawpsnotpunmd any -
further there. Also, a very: similar logic | lm be:n tud od for qmn a whﬂc by
Constable, and reported on in [11], Some conmn mmlug thc mtagonshtps holdlng
between DL, algorithmic logic, and Comtnblg's m mpm’ in ﬁzll :

A Iarge amount of rclated wurk, which hq; bsen af mudﬁlble help in deveioping
the material presented, has been pubmhed over the years. Some notabie examples are
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Manna's work in [37] and [383, on the formalization of Floyd's method and related
concepts, Cook's [12] relative rompleteness result for Hoare's axiom system, the work of

de Bakker et al [3], [4] and I5) and that of Hitchcotk snd ?'lfi ‘126 on recursive programs,
the completeness resutts of Harel, Pruel and Stavi T3] und Coretick £193 for recursive
programs, and Dijkstra's [13] logic of total correctness.

0.2 Bynopsis.

This thesis consists of seven chapters which are organized into two parts. At the
end of this section we show aemepmm WWM«‘ 1 wmch can be read
lndependemty

Part | is concerned with logics which reuson ibout programs dased upon their
input-output behavior. Here programs (nondeterministic ones in the general case) are
viewed as binary relations on States, with mmﬁmm ‘of ‘stites 1s refated

via a program a Hf starting in the firs, @ ‘can setmivinti i the swcond. “Two primitive
notions refevant to this level of Sescription are WW Ribertitg that P is true'in all
final states accesstbie from a'given state vix t i, aidts Ydal, nsserting that
there exists such a 'findl 'stare 1 whith - itm'%‘“mﬁﬁﬁm logte, due in

large to Prawt [52], is to augnvertt 'a chustical amc"m‘*wa: as prédicate calculus

with primitives for expressing these notions, antf to ‘uje'tdeis borrowed from Kripke's [34]
work on modal logic for defining the semantics of the resuiting language.

Chapter 1 provides a definition of PDL, the propoesitie piit version of dynamic
logic, together with resutts concerning (%) ‘the decidaliihty of its ‘validity problem,
(b) the power cbtained by alfowing propositioma pregrams: ‘té-vest ‘their environment, and
(c) the problem of cem;ﬂeteiy txmwwn. SRR

In Chapter 2, the first order version of dynaniic ‘fogic over regzltar (ﬁowchart)
programs, DL, is rigorously defimed using the fiotiows ‘of ‘state,’ varse, and
uninterpreted symbois 1t 1s shown that many MWM; #hd ‘well known properties of
programs, suth as partial correctness and equivaience; o be qufte mcctncﬂy ‘expressed
as formulae of DL. -Section 2.3 is aimed at showing that the chiss of programs atfowed in
DL is in fact a parameter, ‘and that different classes of prograns give rise to different

variants of DL. Some open pmblenu mmm wﬂpwm expmﬂve power of these
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variations are stated. Section 24 contains results which show that validity for DL and
some simple sublanguages is cxu:omely» hard to-decide. - .

In Chapter 3 we show how an intuitive way in which assertions about programs can
be proved. is captured formally. by allowing the reasoning.to be carried out in a - '
first-order language in which, besides any other domain of discourse, the natural numbeﬂ
and operations on.them have their standard interpsetations, . This.is done by introducing
the notion of an gritAmetical uniperses and then showing that it.is:pessible to givea .
concise axiomatization of DL which is complete relative to any such unjverse. We do not
require programs to be written over these universes, but.singe asy universe can be
extended to an arithmetml one; this kind of reasoning can always, in principle, be
carried out. We show, in Section 34, that aritAmetical ness is strongly related
to Cook's £12] notion of relative completeness, and also discuss the approach of supplying
DL with an.infinitary, but absolutely complete, axiomatization. ... -

In Chapter 4 we extend the definitions and results of Chapter 3 to the case in -
which the programs are allowed to be recursive. The recyrsive program construct
introduced . is simple encugh so that a slear. analogy. m sasening ahout lterm md
recursion emerges. In particuar, the axi : | Sectior @,};, of the resulting .~
togic CFDL is far more natural and concise thm WMQ mﬂm from MYW the

relevant hteraturc. ‘

T

Part 1] is concerned with the two operational notions of diverging and failing
(i.e. entering an "infinite loop” and. aborting dug to the failing of a test) which are
captured paturally by computation trees, These m ‘CMTY. in their lgaves the
information present in the binary relations of Past |, pn& &lso contain mt'ormation
regarding eg. the presence of divergences and faijures. -In.Chagter 5 we define these new .
concepts and tnmediately apply them 10 the probmm' d{(m a phn;ible notlon of the
total correctness of a general nandeterministic program. As it tyrns out, qxawung a
program corresponds. to traversing mmm a task_igt which thepe are four
natural methods, dual to one another. We shiow that each of these methods gives rise to a
different notion of total correctness, and hence to a different notion of the weakest
precondition which, if true before execution, guarantees total correctness. A detailed
analysis is carried out in Sections 5.4 and 55 aimed at showing which (if any) of our |
four notions is the ene described. informally by Dijkatca.[13].apd which has been widely
adopted for. smwhaz mys&mous reasons. T
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Chapter 6 is devoted ta investigating the mathematical properties of diverging and
failing. In particular, it is shown in Section 6.1 thet -both thiese notiens are
expressible
in DL, albeit by complicated formulae which have same undesirable pwpertm. In Section
6.2 we augment DL to DL* by providing it with the power to express diverging directly, and
show that this augmentation gives rise to a surpridingly elegant snd natural
arithmetically complete axiomatization of the notion of Siveging, to be contrasted with
the axiomatization obtained by mmmmmxm equivalent and then
relying on the axiomatization of DL. In Section’ 63 we shew that there isa pretty -
pattern of dualities associated with the constrixction of aritheneticat axiom systems for DL
and DL*. In Section 6.4 we e the obasrvations inspired by tmmmabum a
straightforward axiumatizatim of & retated togic, ADL. o

Chapter 7 is concerned with supplying results um ‘to those of Chapter 6 for
the case of recursive programs. Here special methads have to be developed in order to be
able to completely axtomatize CFDL*, L cm mw mm and in-addition
we can only get halfway thraugh showing that CFBL in'g s '
Consequently, a question wivich arists isthad”'f sthier (e J,, uits in the:
indicate the existence of mmmm* " '?‘; e

‘We cannot supply ‘more than intultion: towards’ shewering i “Sectios
definition of plausible notions of diverging and fm wbieh éo mt depend on
compututm ttees and whicb gmdm to otber dma cf mam m ~

As far as reading the thesis is concerned, after reading Gﬁw fand 2 (whkh
are a prerequisite for any other chapter) the resder Vﬂﬁm £ 5 M understanding of the
basics of dynarhic dogic. He can then read Chapter 5 thiil complieting a feading aimed at
grasping the main definitions for the regular case. Seqisnice 1,2,3«' 1,234 coaﬂaem
reader to dynamic Jogic  no extensions) but, i sddition; m:&ww SR
arithmetical completeness for the regular and context+frod mases resgaci eiy. Gm ‘might
also read 1,2,3,5,6 thus skipping anything to do with récusiive progran

a.3 Gredlts.

The occaston of writing this thesis has pwvmé zmwmny (md cxcuse)
for preparing a coherent and comprehensive descrigition’ of the Work done recently (mostly
by members of the Theory of Computation Cmp of the Laboratory of Computer Science at
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MIT) concerning a new approach towards reasoning about programs, to which the general term’
dynamic logic has been attached. This apportunity has been taken advantage of, and
consequently some of the material in the thesis is not due to the author. Any result

which is not original with the author is stated with a reference to its originator. Also,

we do not supply proofs of resulis which are not .gur own, but ather occasionaily comment
briefly as to the method involved, A consequence is the fact thxt many results are stated
here for the first time and, as of now, no adequate do;umgmanon of their proofs is
available. We feel, however, that these technicalities are lrrek?m when balanced

against the .virtues of the kind of prmmauon we. have m Ecllqwmg is a quick
reference to. the. notable parts of the thesis which are m; ortgtml ‘with the author,

of which are included-in Cbapters 1.and 2.

The ndeas upon whk:h thc d:ﬁnmm of PDL lg bucd are dug to V R. Pr;tt, and
were published, in somewhat different form, in [52). The deﬂniﬂon of PDL in Chapte_r 1
is due to M.L. Fischer and R:E. Ladner and was published in [16). The author's own
contributions in that chapter are confined to the mn:gtjmion of EPDL in Section 111
and its investigation in Appendix A, The material in Chapter 2, alto stemming from the
ideas of Pratt.[52], was developed over a.Jong.period jointly by AR, Meyer, VR. Prant
and the author (with the exception of Section 24 with which the author had | Hittle to do’
A preliminary version of the rigorous definition of DL’ pmelmd here was published in
[221.

Some of the ideas present in the definition of the compmanoﬁ trees in Section
5.2, in particular the concept of failing, were: worked gut by the-authar Jjeintly with VJ!
Pratt, and appeared in preliminary form in [2s1. The motivation for developing the
material in that section was influenced in large by discussions with N..Dershowitz. As
noted in the text, the central theorem in Section 6.1.1 is.based on. uewlt of Wlnklmmn _
[l < Section 7.4 is based upon an idea of AR, Meyser ' .

I would like to take this opportunity to express my gratitude to the
aforementioned individuals for allowing me to include their own work in this thesis.
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PART I: Binary-Relation Based Logios.

1. Regular Propositional Dynamic Logie (PDL).

PDL is: the:propositional version of dynamic legic, snd was defined by MJ. Fischer
and R.E. Ladner in [16] “tw): Miﬂh&!hﬁﬁm ‘anslogous to the role
the propositional calculus plays in the chaicil] first-ondh *iqtk. Thcy camumnt, "We
have attempted to abstract from:Twork on ‘lagics of pregrm
underlying these formal systems. We feel a thorough' tiderstantti g f this structure is 3
prerequisite to obtaining a.good grasp on memmm, Mt more appuub!e,
systems, just as classical: Wi WC”# Amids - 1 :
first-order predicate calculus.” :

We first define an elententary version of ‘PDL' fEﬂMJ almud at capturing the
structunofmeinmﬁmhmmmm, Pegay of the kintds
programs involved. We theri téfive PBL: esentiiy %3 ﬁtm,w state some results
concemmg‘PDL md a2 ﬁfdfvtﬂmm f&“ﬁﬂ.

11 Definitions.

extended to allow many- mmm ‘
Syntax:

" “We have two sets of symbols, AF and AP, standing for atomic formulge and atomic
: progmm. We use p, q,,... and a, b,... req:mv:ely to demate elements of these two sets

The set of well-formed formulae of EPDL (Ewm) is defined inductively as
follows:

(1) :Allelements of AF are EPDL-wffs, -
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(2) For every a in AP and EPDL-wffs P.and Q,
(PvQ), ~P and <a>P are EPDL-wffs. '

We abbreviate ~(~Pv-Q) to PAQ, -vPvQ to P=Q, (P’Q)A(Qaf’) to PEQ, .
-and ~Ca>-P to [aIP. We will often omit parenthem, using double spacing when agprogﬂm
to prevent ambiguities. The construct <a>P is read "dhmond-a P", and [lJP “box-a P*.

Semantics:

The central notion in the semantics of EPDL is that of a universe W, which is a
nonempty set, each element of which can be thotght of as a state or world in _Which certain
facts are frue and others are not.' We use s, (,... e i’mu. Thus ¢ our semantics.
will have to specify for each EPDL-wff P and state v, whetﬁer Pis gruc ins( s
satisfies P) or not. H!nce it ik plautﬂe to deﬁne thé hing of such a formula as the

srecisitv of ot whicl sittsfylt. Fotherm ore, when
viewing programs as objects which can change the state of the world”, it is phuslble to
define the meaning of & program as’a binary relation on W,‘ﬁic‘udln‘ the pair (sl!)
in that relation iff the program in question started in state 3 &u lnile?d termmae in
~ state t. Thus our programs are nondeterministic; there anfﬁ:‘r a.given s, be more than
one ¢ such that (:,t) is in that rehtion

A structure S, then, is defined as a triple (V,f,ml ?’ﬁhere
W is a nonempty sct, ‘
wAF>2% and
m: AP - 2"’"?’"1 !

Thus, = and m provide the meanings for the bauc formulae lqdip;mams (Le. AF and AP).
| L is extended inductively to the set of EPDL-wft,‘a as follows:
x(PvQ) = #(P) u x(Q) = {s] séx(P) or sex(Q)},

#(-P) = W-x(P) = {s] sf #(P)},
#(<a>P) = {s| (Ie)((s,0)€m(a) and tex(P))}.

Denoting s¢éx(P) by sFP and (s,)€ém(a) by sat and ads r
conventional logical symbols in our discus:lom, we may rite f@' ﬂ,xed S
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k<P iff Isme A BP)

reading‘ 'dnmd-aanmm:mthcnamgm; chable from s via a, -
which satisfies P Ommymmuymrwh#(mummmm
~<i‘5-?) wé lnve o -~ I

seLalP if Vi(sar o &eP)

reading"’box—al’istruetnm;mn«ym fm:vhasmsmsl’"

LSRR

" Gtven a structure S=(W,x,m) we say that an F.Pﬁ!.-pfl‘ Ph S-nm (md wrlte ,
Ils P) if for every ﬁ'nluve.ﬁ’ w;nyfhn&d(mmﬂ’) l!‘itiss-vaud
 for every structure S. P is id. to be S-safisfiel v@rmﬂ e haye P, and

(Cadp A ommud) 2 (op, mmmm v,
<aX(pngq) > ((a)pa <a>q), :
<{pvq) = ((a)pV“ﬁq)

ThefimuMmmmsmmwpmmnmm
you can go somewhere, tm mm pm Miﬂb ,

At&hwﬂnnfutﬁcmﬁubknﬁhﬁ”ﬂlmmmm
relationa! afgebra wiich employs only two operations ow relgl :
compusitionoperm M&emmmm‘*)ma

o= {(s;s) ¥(s m'eﬂ

We show zhmmmumzmmmm mwt?mmammmmmn
format, and point to some questions which seem to_justify further investigation of this direction.

11.2 PDL.

In the prépos ‘L'f'_‘?mhtkwmmw . :tﬁemdr},,f%
to be the set of reguler expréssions over KP. Tiis e ,
nmam*pwmmupmm,w mm
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Syntax:

Here too we have the two sets of symbols AF and AP, and in addition we require .
‘that AP contain one special element, denoted by #, which ewmponds to the empty pmram.

The set R of regular programs is defined inductivdy as foﬂows:
(1) Allclements of AP arein R,
(2) Foralle and Bin R, («;h), (auﬂ) and a* are in R.

The set of well-formed formulae of PDL (Pm«m) Is deﬁned inducnveiy similarly -
to EPDL:
(1) An elements of AF are PDL—wffs, _
(2) For every @ in R and PDL-wffs P and Q, .
(PvQ), -P and <a>P are PDL-wffs.

We abbreviate as in Section 1.1.1.
' Semanttcs:

.. Here too we have the notion of a strucnm §= (W,w,m), However, we are now
obliged to extend m to the class of programs. R. Ttm ls done u follow:: i

m(8) =4,
m(a;8) = m(a) « m(8) = {(s,0)] (3u)((s,u)€m(a) and (u t)Gm(ﬂ)))
m(aup) = m(a) u m(B) = {(s,0)] (s,1)ém(a) or (s,t)fm(ﬂ)} |
m(a®) = (m(@))* = {(5,0] (310) (8t

(so-: and 5=t and (Vi>j20)((sj,srl)6m(a)))}

Here the double usages of U and * on both sides of the gquauon represent operations in the
formal language we are defining and operations on binary relations respectively; in the
latter U is union and * is reflexive and transitive clasure. Thus, our programs are
literally the regular expressions over the. alphabet AP ‘with ‘,4,& auB, and a* meaning
“respectively "the empty program”, "do a followed by 8, "do- either & or f the choice being
nondeterministic”, and “do @ any (nmnegattvg) number of times.the choice being
nondeterministic”. Here "doing & 0 times” is like m no;hia(" # is extended
inductively to the set of PDL-wffs as,in EPDL, and the daftammof validity 'ﬂd
satisfiability are the same too. The. following are examples of valid PDL-wffs: '
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<aubX(paq) 2 ((<adp A <adq) Vv (<bdp A <bdg)),
[a%;a%p = [a%lp,
(I(mal"‘b A [a.(a,ae)'}-p) ' (pA [a%-‘iﬁht\ ('m):’[l]n))

The last of these (due to AR Neyer). asserts the squivale dmwof stating that
pmwmmmmam -

. Takmfdnmahbmmnv,mm:namphds-vm formuhe
where tthSbMW&!*m

B

<Caub>Ea®ICa; (auc) X <bdtrus A [glﬁlsd
Caub>Ea*Ka; Cac) H{ DbJmise A (ﬁmw)

l.ﬂf Results.
Fimwemtemmmwwmmaimmmdmide
proofsofmmrMem '

Lemma L1: For every m‘?ﬁ’l"m:wﬁm mm ng sre vabidt

} (a) [a,m‘[‘w o

Proof: Vepmve(a) :ﬁtc,ﬂ? i Vf(m;ﬁ*ﬁm iﬁ‘ Vi(ﬂu(mn
uBr) > PPY T Ve,ul(sms A Wty > BPY MY Viilsht 3 (il P T

Vu(sau > Vi(uar > #PYY ity W’“"miw ‘e .
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Lemma 1.2: For every PDL-wff P and a¢R, skLa*IP iff for evefy n20 we have
:F[a"]P where a° is true? and o el is a; a

Proof sHZa*]P iff Ve(sa®*r > eP) iff Ve((3Indsyos, )(:a:l A A
Sn- las A s =) D teP) iff VnVﬁfm"t:tN’) #f fmmnw :Hc"]P N

Lemma 1.3: For every a¢R and PDL-wffs P and Q the foilowing are valid

(a) [a]( PAQ) L ({clP A L«JQ),

(b) [ad(P2Q) > (LalP > [a)Q),
c) <a>(PvQ) & (<adP v <a>Q),
(d) <a>X(PAQ) = {<aXP A <a>Q).

Proof: We prove (a). sklad(PAQ) iff Ve(sat > dF( PAQ)) if Ve(sat 2 (PP A
#=Q)) iff (Vi(sat 2 FP) A Ve(sat o tI'Q)) iff sF([a]P A [alQ). ]

Note that a trivial. counter-example to the other dmction of both (b) and (d) is the
structure with two states .and ¢ in which P is trug-only in 5 and Q only in t, and in
which we have both sas and sat.

Theorem 1.4 (Fiscﬁer and Ladner [16],: Thc validitypmblem for PDL is decidable.

This result is obtained by establishing a "finite model theorem™ for PDL, stating that a
PDL-wff is satisfiable iff it is S-satisfiable. for some structure §.in which the universe

W is finite and in fact bounded by an exponemm in the size of the wff The following
theorem essentially establishes an upper bound on this decision method. - ”

Theorem 1.5 (Fischer and Ladner [161): Satisfiabilty in PDL can be decided in
nondeterministic time c for some constant ¢, where n is the length of the_ formula tested.

Pratt [53] has recently developed ‘av‘iledsl'on procadure for PDL, based on the tableau
method, which, in many naturally arising cases, h more efficient than the one implicit
_in the proof of Thcorem LSin [161

T heorem 1.6 (Fischer and Ladner [161): ‘There is a mnstant c>l such that satlsflabmty ln
PDL cannot be decided in determlnistic time /i m ' .
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This lower bound tspmdnmhowmm&lmmofm akernating
Turing machine with a PDL<wiY. '

The following resutts are concerned with a viriation of PDL in which programs are
aliowed to test:thie:truth of Tartain futmeline; inpiyingosisiinntion ﬁ% test prodaces
l‘apmlﬂnmwmdm#m N

Fmﬂnpamdﬂnmﬁa-kaum‘Mfwm Nw, for
any izl define PDL muyummwm,w\uh‘ uuaedmnnof
thesetofpmgrmﬂthedm ‘

(3) ruwm, 1"“”? PR,
and to the definition ummﬁmum the chidee
- m(PY) = f(s,s)ls@r(P)L
© Thus, fwm Bk TOWTIR SN M mm, wm.,
Lemma :.7..-”;«% PBL.,W;P m Q, m -M uu mu Pmm-—wff

me smmmmwm N zl .

rm rrmwwwm B .
ondeterministic tme " for some conan ¢

i Pthmadsf
_whilePdom
FPomflQWF
DOP-u,ﬁMm

in which clause (3) above aukm oo;e -
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(3) For any p in AF, p?is inR.

Thus, we allow only testing of propositional letters from AF. W this varlant of PDL

Theorem 1.9 (Berman and Paterson [91): There exlm a PDLO‘S-'\m‘ P sw:!t that there is-
no PDLO-wff Q. such that E(P=Q) (where PsQ is to be viewed as a PDLas—wff)

T heorem 1.10 (Berman [81): For any i20, there exists a PDL l-wﬂ‘ P, such that tlme ls
no PDL,-wff Q such that E(P2Q) (where P5Q is to be vhwed as a PDL‘,l-\vff)

Informally, these results mean that each "level of testing” suppltu lncreasingly more
expressive power, or in other words,

PDLy<PDlgs, ~ and
 (Viz0)(PDL, < POL,y),

the second, say, reading “for every i, PDL,, Is meﬂunln than PDL,".

Theorem 19 (and similarly 1.10) is proved by a subtle argument-intvolving the construction |
of two families of structures $ [ and §; gor every j20, and the exhibition of a '

PDLO_S-wff P which can "dtstinguish" between SJ and S, for L i o Onecan:then show
that corresponding to any PDLg-wff-Q thete cxiu = uwegcr J(Q))O such that Q cannot
dlstinguish beérween SJ(Q, aﬁSj(Q’ S na

Berman [8] has also shmm that PD(.os < PD!:.l

1.3 Axiomatizatlon of PDL.

A problem left’ openau{lﬂ was: amoffm&mmmnm syswm for
PDL. Consider the follawing dxiom system X:

Axioms: A ’ ‘ e
(1) An taumomu of mposmen:! mm
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(2) Lad{(P2Q) D(Eﬁi’ 35&30),;'
'(3) e,

(4) ta,m e (aXPIP,

(5) Cau@IP = GMA[HP),
(6) w ® ﬂ’ A EaXaTIP) ‘

lnfcnnce Ms
@ P, PaQ

. talP
1f PDL, o consiairad thvenwid sheiom .
R t@m & X Qur
' and uarunw e

. Provabﬂkym eruwmmmwm.?nm(mt, P) f
thenexmsaﬂmmof?DLmMMd&tm:
axioms or is obtained from previous | , : s fher
of mn;mmmmbywhwi%whm but final
confirmation of this fact came recently, M,MM M, Pm [533,
Wmi}m c'bbﬂtm I CE S SR S L FR

rm\mq(.mm? Sageshecg-and Cablay); . Foreny. PRL - (resps

As an example:of a preef-in X', mmm to- familiarize the reader with
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C(<adtrue?;a)*lp > [a*lp..

Abbreviating (<adtrue?;a) to § and [A*Ip to Q, we state the main points in the proof |
omitting reference to (1) and (8). The reader is umd to convince himself that each wep
can be rigorously justified in X, N N SR

L. Q>(Qv false),

2. [IQ >[aMQvV folss),

3. [alfaise @ CaX(Q v false),

4. (La¥aise v [a1Q) > [a)(false v Q)

5. (<adtrue > [a]Q) 2 [aQ,. '
. 6. [(a)tru;?][a]Q > [alQ,

7. [AIQ o [a1Q,

8. Q>oIlpIQ,

3. Q>MhlQ,

10. [a*X(Q = [aIQ),

11. Q o [a*1Q,

12. Q>p, ‘

13. [a*1Q = [a*Ip,

14. Q o [a*Jp.

line 1, (9), m.'-
nes 23,

_llnq 5, (10),

(4, line 6,

(6),
lines 1,8,

: .,19).Imc9,
. (7, line 10,
Asmlz. 9, (2).

lines 11,13,

bty ot SRS IRRTR T RI IRE e e it el T




2. Regular First-order n,m Logio (DL).

In this chapter we define a first order wcbuad upon ideas from Pratt (521
further developed in [32]. The logic, first order dynsmic logic, or' ‘DA for short, is
designed to reason about "real” mtlr programs; ie. the awtvﬁtm of mmmmstic
flowcharts or recursion-free loop programe:~The shitse’in WHIH the prigrams are ‘real is
in that they employ the conventional nﬂhm ot changing the' m arvm by
assigning to them and festing the uhe of & . Programi'm DL are no’ Wtf
combinations of atomic program sysibol, uﬁ%wm fmmhe am longer
proposmonal

After defining DL we elaborate on the kinds of facts expressible in it. Section
2.3 contains some extensions of and" restfkmns upon the class of programs ﬂ!hwed in DL
viewing all the resulting logics as vtrtatmﬁ( DL. Section 2.4 contsins results -
concerning the question of hew hard it swmmmamm of
formulae of DL.

241 mriuiﬂmg

Syntax:

We are given a set of function symbols and a set of predicate symbols, each symbol
with a fixed nonnegative arity. We assume the inclusion of the special binary predicate
symbol "=" (equality) in the latter set. We denate predicate symbols by p, q,.. and
k-ary function symbels for k>0 by f, g,.. Zeroary function symbels are denoted by
Z,X,Y,.. and are called variables. A term is some k-ary function symbol followed by a
k-tuple of terms; where we restrict ourseives to terms. ressiting from applying this
formation rule finitely many times only. For a variable x we abbreviate x() to x, thus
f(g(x),y) is a term provided f and g are binary and unary respectively. An afomic formula
is a k-ary predicate symbol followed by a k-tuple of terms.
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We define by simultaneous induction the set RC. of first-order regular pmgrams and
the set of DL-wffs:

(1) For any variable x and term e, x«e is in RC,
(2) For any program-free (see helow) DL-wff, P, P? is in RG,
- (3) Foranyaandﬂtnlﬁ, (o M)md“anmlc
(4) . Any atomic formsila is a.DL-th, L
(S) For any DL-wifs P and Qeain Bc md Vlﬂlbk Xs
=P, (PvQ), 3IxP and <a>P are DL-wifs.

A DL-wff which contains no occurrence of a pmcnm of RC is called progmm [ree or simply
_ a first order formula. Programs of the form indicated § ' 1) nd (2

respectively (simple) asslg'nmu and (simple}‘u{;,i We use A, 5 = and [a] for
abbreviations as in the previous chapter, and in addition abbrevlate ~3x-P to VxP.

(Remark: As will be seen in Sectlon 2.3 the pammm class of pmgrams allowed in
DL-wffs can be. viewed as being a pamm ent chm gxe rise mdjfferem

variations. Even within the particular class of ragn!;r pmgmns the set of m;s can be
allowed to vary; it can be the set of quantifier-free tests or, inductlvely, the set of
question-marked DL-wifs. Yarigus kinds.of assignments
facts here, even before completing the dc{mitlm ﬂf 01.,

associate any particular class of prqgrpms vmh the wnﬂc tmh dwm fogu.)

Semantics:

The semantics of DL is based on the concept of a state, The difference ‘h:‘w‘vever,
is that we are now concerned. with specific atomic programs and specific atomic formulae.

A state J consists of a non empty domain D and a mapping from the sets of function
and predicate symbols to the sets of functions and pudmms over D, such that to a k-ary
function symbol f (resp. predicate symbol p) there corhspon&! a total k-ary function
(resp. predicate) over D denoted by f 1 (resp. pé) In_particular, to a variable there
correspends an element of the domain and to a, Q—lgy prpdm symbnﬂ (Pl’wwma!
letter) atruth vale. (true or false). The standard. equality. redicate aver D is that
corresponding to the equality. symbol (=).. We will sometiroes mlcr ta the, dqmain of 1 s D,




24

Observe that the way states are defined no distinction. is made between what are
normally called variables and constants. These however, will be defined below for simple
universes, .

| We denote by T' the coftection of al possible states md call it the grand

universe. Our semantics will assign to a program & KW ‘retation m( &) over I', and
to a formula P a subset of rmammmwv hthe sequel
however, we will be mm n MMW fw mses:

A pseudo-universe U is a set of states all of which have a common domain D. A
function symbol f (resp. predicate symbd p) is calied uﬁmmml in U if for every
state J€U and for every function F (resp. predicaté P) dver D there exists JeU such that J
and J dlffer z:mostmmevmeorf(mp) Mmtnﬂmp.l’)

Notation: For any function G: A - B, arbitrary element e, and a€A, we define [e/alC to
be the function with domain A and range Bufe} wmm umc vﬂua at poiim in A*{a} a
C, and such that G(a)ee. MMW crilbiel ke ) ster

simply J=(F / f1J. R

A symbol is called fixed in U if its vatue is the same in ait states of U. Thus,
"=" is fixed in any universe. A universe isa WW 19 Which every predicate
symbol is fixed and in which every function syrnWol Is eihier fixed or uhinterpreted. A
universe is called simple if the only uninterpreted symbols in it are a designated set of
variables. In a simple universe the fixed variables will sometimes be caﬂed constants
following ordinzry usage. :

The value of a term e = f{ el,...,ek) in a stite I is defined muuctmw foﬂowtng
Tarski (641, by '

eg = ff(elJ,..,ekJ)

We now define by simultaneous indtction the binary: ‘relation over I' correspmding to a
program a of RC, and those states J'in T" which- Wy’t%«-ﬁﬁ? The refation witt be
denoted by m(a) and for the latter we write 18P (3’,3% 3y elemeént ‘of mer) can be
thought of as representing the fact that there exists &' comgiionton sequence (or path) of

a starting in state J and terminating in §. Thus, JH &P will be seen to be making an-
assertion about all terminating computations of & starting in state J; namiely the
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assertion that the final smas of these computations satisfy P. Simtlarly, Jea>P

asserts the existence of a termimung compumioa of « mrtlng in m J and endlng in
a state satisfying P. S _ ’

(1') For any variable x and term-e,

- mixee) = {(J, ) §Ley/ 1), |

(2') for any progmn—free DL—wff P,  7
m(P?) = {(J,2)| J¥P)}, ‘

(3') For any « and # in RG,
m(a;B) = m(a) « m(B),
m(auB) = m(a) u m(f),
m(«*) = (m(a))*, =
(see Section 1.1 for further spedfmtion)

(4') For an atomic foxmuh p(el,...,ek), | L
Jhp(el,_,ek) vhenever pl(elj,..,ek&) istrue, ) -

(5') For any DL-wifs P and Q, ainRC md nﬂfalﬂe"it, S
JE-P iff it is not the case that JkP,
JF(PVQ) iff cither TEP o ™,
JE3xP irf there exists an elememd in DJ such that [d /x3J ¥ P,

Jh(a)P Hf there eﬂm a state § mch that (1,’)6m(a) and P

Note that the onty kinds of fomulge whose truth m?um J depmds posslbly upon states
other than J are those containing subformutae of tf fom\, 38" md (a)‘P

In most of this thesis we will primarily be interested in lmrestggating the truth
of DL-wffs in a given simple universe U. However, one can sée that for some J€U and some
assignment x«e¢ the unique state § such that (J ,’)Gm(xd-e) Le the stnte"’[e, /x13,

might not be in U at all. We outlaw this phenmm by m from‘now on, the
convention that in the context of a given universe the onlry programs we consider are
those in which the variables assigned to (e.g. X in x+e) and the quantified variables

-(eg. x in 3xP) are uninterpreted. Thus, for 36“ MM&?M-W? tlie tmth of J
in P can be seen todependoniyonuatesinu
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We use abbreviauom as in Chapter 1, and thus will write JuS for (1,9 )em( a), :md
for [al, which stands for ~Cad~, we have again '

JEladP iff v:( Jag o JH’)

Given a universe U we say that a DL-wff'P is Usnalid "'U P) if for every JeU

we have JEP. We say P is salid (FP) if it is U-walig for every universe U in which, in
line with the above convention, the assigned and qunwm vm of P are uninterpreted.

The following are examples of valid DL-wffs:

[(x=z ‘A y=u) ?;(x+f(x) u yef(y) )M x=z v y=u),
xzy 2 [(xef{f(x)))*K(yef(y)) ®ox=y,
xzy 2 [{xef(x))*Hp(x) 2 (xzy v (yﬂ‘(yl .(y‘*ﬂy) )"‘)p(v)))

The first asserts that at most one of thc components qf Y is exemced The second states

that the process of repeatedly wlytng 2 fuﬂmm lv;ﬁh M is a special case
of that of repeatedly applying it. The third 3 t the process of achieving a

property of x by repeatedly nppalymg f can MM )ﬂ V

Denote by N the simple universe of pure aritm ie thc domain D is the set

of natural numbers and +,  and 0 are fixed with M mrd wexprmtws- We

freely use standatd u&hmm abbreviations such #s 2, ged eic. (Whepever, in the
_context of the natural numbers, we uje the symbol -, it 48 $o be understood to stand for
the so called "menus” operation, Le. x-y is MMMW X and y if x2y, and 0
otherwise. Also, we abb;evim X3X to trise md -vmn mﬁ&ﬁj -
The following are N »vnlid DL-wifs:

((x%x—l)*)xzo '
y>0 v <y=0")mw ,
o x=x' A y3y' A X y>0)71((x#y?
(x>y?;xex-y v x<y?,y¢-y~x)}*,xay')x-gcd(x ,y)

The fast example asserts that the program inside the cmmond under the assumption that
its two inputs are positive integers, termimteﬁ,md mpum the gul of the:e inputs.
This program can be written in more popular terms ass
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while x#y do.
if x>y then Xex-y
, else y«y-x
. end.

We adopt the standard definition of a frn mrrmc ofa varfab‘k xin a first
order formula Q to be m océurrmofx wﬁﬂm iﬁ}aii'y1 Orrhili ‘of the form IxP.
: caléd bound. Abo, 6 i Wit ¥ nd term e to
be the formula whlch is obmm?f fmm Q by um?ermiy mnm&ujﬁ'boﬁnd variabtes of Q

which appear in e and replacing all free occumof xpye .-

Lemma 2.1+ For every asslgnment xee, and first-order: formuta Q, ;
we. wmcmn Q0 .

RN Y ‘3}}; SN o B

2.2 Dosortj:tivé Power.

One of the virtues of lozm wch as DL is tln qutthu tbg vm a genenl
framework in which it is possible to express a wide variety’ dww&ﬁbﬂs for
each of which one would otherwise have to invent a special notation. The advantages of
this uniformity are by no means only notational; elementary results -ng : e much..

" more obscure and thwmbymmMquﬁ«upnmm
‘This argument is implicit in Sec ns. J%and 63 » qcﬂ L) n Cm

stemmlng from p perties of |
arithmetic. Indeed, when' ally
have in mind a particular murpretatim for the syallnh w in thi prothm. ‘

VConsequently, we will be more lmed in &QM In providing adequate. tools for

universe U

es of thé}peclfk unl *
‘people

Although we wish to stress the "flct that one can write complex DL-wffs (eg.
alternations of boxes and diamonds of arbitrary length ae certainly permitted) , we point
to some particular emmdmmmmwamm, with
relatively simple formuhe in DL given a universe U.
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- Partial correctness.of a wrt P and Q (Hoare's [27] ﬂlﬁk"uﬂ’i‘m) ,

- Existence of a Q-terminating path of a: I'u<¢>Q, |

" Existence of 2 Q-—ueymimtm pathof & mder the assum
(This wmmw&thw adio
| Alw see semmm

;;dnmgu s .
_j&l varisty ﬁ,mbm, m[211
Sem.a

e

For any a€RG, define var(#) as a finite vector consisting, in some fixed standard
.order, of all variables ammmmmammw« iu @«

- Equtvalence of @ and 8 By Y (RaYEsT = (ﬁZtZ‘), where

Z=var(a)=var(B), and Z' i3 a vector of the mm a3 Z whose components are
distinct variables not in aw(c)

- Determinacy of a (all verminating paths lm'e‘; mﬁaﬂ um)
Fu V?‘N’cﬂ.@ :f’( sz ot A

23 Vectatloms.

Regular programs of the kind we have emgloyed
. contrary, the reader mdm VWW ﬂf D*- “ Sosenialn. o
(as poﬂrayed’ say in EPDL) freety wit kit

ﬂrst-order tests. ln thls uuiou ;
this set of p@rm T

We are about winfrmevm“ Mﬂv&tﬁmnm, and we would liketobe
able to compare.their expressive power. W&fstﬁtmm,&mm’m:&hb‘m )
A and B, the wffs of A are a subset of those of B, we will denote by A C B the assertion
that there exists a B-wff P such that for ne A-wff Q is K the case that PQ is a valid B-wif.
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2.3.1 Array Assignment.

An array-assignment is a basic program which can change the value of a function
symbol at a specific point. This is done by writing f(z)«e where f, z and e are
respectively, a k-ary function symbol, a k-tuple of variables, and a_ term. We restrict
ourselves for simplicity to the case w_here k=1.

To obtain this new language, which we call‘ armyDL, the followihg |
clauses are added to the definitions of the syntax and mntics,of DL re;pectjvely:

" (1a) For any unary function symbol f, variable x and term e,
f(x)«e is in RG, . :

(la) For any unary function symbo f, variable x and terme,
m(f(x)«e) = {(I,[F /1IN] Fiej/xj]fl)

Note that although a program with array assignments can change the value of f at
unboundedly many points (. as might be the case with the _program (x“g( x); f(x)"y)* ),
it cannot in general change the "entire” value of f asin a. moad order asslgnment of the
form feg, which, although constituting another phu&ihle warmiom is not aliowed here.
We extend our convention of Section 2.1 to require that in the context of a given universe
U we allow array assignments of the form f(x)«e only if f is uninterpreted in U.

Open Problem: Is DL < array-DL?

Answering this question in the affirmative would involve exhibiting an
array-DL-wff P, and showing that for no DL-wff Q do we have F(P=Q). Certainly, the
obvious fact that certain programs can be written easily and succinctly using array
assignments will not be affected by an-answer to this question; it is stru:tly a question
about the power of expression of a formal logic for reasoning. about thcse programs.

2.3.2 Random Assignmen,t. '

A réndom-assignment is a basic program which in a state J can change the value of
a variable x nondeterministically to any element of the domain D ¥ Strictly speaking_
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however, this type of assignawent is appropriate (and of use) MWM x s
uninterpre_ud, in which cmenry damm of 01 s m‘g M value of x.

of DL to obtain’ faudmnt. : s 4. i b

(1b) For any variable x, x¢? uhﬂ
(18") For any variable x, m{x«?) = ﬁf,ﬁf’ *[x’fﬂﬂ}

Thus, x«-"whenstart«nn.‘! mmﬁmhm%&%&ﬂytﬁevﬂdxhu
been changed.

Lemma 2.2: For any universe U, uninterpreted variible x and DL-wft' P‘ we have
H(3xP = mvm nd’ ivmv eExerP).

This obvious fact, which on mcm MMMdWM raﬁdom-BL

pr " -h - p ok t, :: 5 VV_} o . ;:}w S .

Open Problem: Is BL < randem-DL ?

We do have the fouwing muk, whkh ufers to D!. wim Imb array md :
ranéom assignmen& ol

T heorem 23 fmﬂ' 44n:
m array-DL. < randons-»

This result ismvedbymmgmummhMWth!.mhmymMu
random-assignment (buat net both) which is equt i e "m P B Vy<Brue;
whmwedeﬁm '

at x*—z,(u#-'*fex)w'x*f(xl)" and’
B:  xez;(xef{x))}*;(x=zy)T;( xef(x})*; A(xsz)?'
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P is a formula of this doubly augmented DL, which is true in a state J iff the domain of J
is finite. & makes possible assigning f(z), f( f( z)) etc. to some random elements of the
domain, and f makes sure that y is on the "f-cycle" starting from z Finiteness, then, '

is definable in DL with both array- and, random-assigmncnt. It can be shown however, and
this is the content of the remainder of the proof of Theorem 23, that finlteness is not
definable in either array-DL or in random-DL.

Y

2.3.3 Rich Test.

Rich-test-DL is the first-order version of PDL defined in Secélon 12. It

allows tests in programs to involve other programs. (wmch thgmsehm mlght involve such
tests etc.). Thus a program a. mgght Ppause, asking something. like ™ can program ] halt
on input x if started right now?”, an;! continue. witm ;;de c{fgcts lff the answer was

yes'".

The definition of rich-test-DL is ldentlcal to that of DL except that clause ( 2)
in that definition is changed to read:

(2) For any rich-test-DL-wff P, P?is in RC.

So that, for example, a desired effect could be guarantéed "in advance as in the program
a: ((CAIP)?;8)*, for which P[alP is valid. Here 8. s not executed unless Pis
guaranteed to hold upon completion.

Open Problem: s DL < rich-test-DL?

2.3.4 Deterministic Dynamic Logic (DDL).

DDL is the deterministic version of DL, Le. the only pxugrams aliowed inside
boxes and diamonds are deterministic ones. We do this by defining the set of DDL-wfifs to
- be simply the set of DL-wffs in which U and * Aappear only .in constructs of the form
(P?a u (-P)?;8) and ((P2;)*;(-P)7), and we abbreviate these to (tfP then @
else ) and (while P do &) respectively. We call this restricted class of programs
DRG, and clearly they correspond to the well known while . The semantics of DDL
is the same as that of DL. ‘ ' '
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Lemma 2.4 Foranyuryiverseﬂ m!@Uandmam Mlsatmostoneum
J€U such tha! Iaj ’

Corollary 2.5: ThefoMnguevahdfwmydeém-vamQ'
 (a) <P T ([aIP A Codtrue),
(b) <aXPAQ) * (<P A (DQ).

Proof: We prove (a). .ﬂ‘(c)? iff 3§(Jag A J#P) if (by the lemma) 3J(Jad A

v§(lag Djl‘l‘P)) if ”‘MAMAM”D”') WY Pe(Cadirue A
CalP). '

Mthqmammmmm«mmum
mm&iug,mwm*‘udrm & Woid Hop suwly ‘
insight into the proposal to employ ieriinermibited SMMW

Open Probiem: |5 DDLCDL?

One can ammePMamemmmm&aofRorm
expressions over AP. Thmtmmhlw :

Open Problem: Is DPDL ¢ POL?

Note though, that the prograss in DPDL can e nendens
interpretation assigning a non-functional relation 1o an a0URIC A
restrict the structures and ask the same questioms

by vmcfme |

A binary rdamarhuuwkﬁmmﬁﬁrmuﬁmhummbmh
that (a,b)€r. '

Open Problem: -Is it the case that for every PDLW P ﬂnre cwms a DPDL—wff Q such that
"&‘ P=Q) far every ‘structare W,’,m? in m m ( dw kfi k mm

£3ET

We nuw definethenotim dm&mwwmm‘tﬁm

program wm terminm wmg ﬂn m" ? » ;

Definition: A program a.in DRC umwwﬁwuamtmu and
DDL-wifs P and Q, if by (P3¢<adQ).
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" Note that Corollary 2.5(a) substantiates the widely used fact that for deterministic
programs, proving partial correctness and termination u ‘the same as provmg total
correctness (see for example Manna [39]).

Thus, DL is a tool powerful enough to express the concept of total correctncss for
deterministic programs. ,However, in Chapter S we will see that thls notion is: much more
~ subtle when nondeterministic prognms are allowed. T :

Another interesting restriction on the. programs in DL is the. guarded commands
language of Dijkstra [13]. We define this language in Section 55.. :

2.3.6 R.e. Dynamic Log'io.‘.

As it turns out (see for example Secnon 24), many Imemtlng properttes of
dynamic logic are invariant under drastic changes to the complexity of the programs
involved. To provide a definite class which-can Qg thmght of Ba pla;uible upper bound'
on this complexity, we introduce re. ‘programs. :

A regular program of RG can be thought of asa regular set of strings over the

basic alphabet of assignments and tests. [t 15-easy to séé-that taking the iveaning. of
“these programs to be the union (over this set) of the binary relations obtained by

composing the relations correspording to the oonipdmms of eack’ string in order, is
consistent with our definition of the meaning of tive regular expressions over this -
alphabet. R.e.-DL is obtained in a similar way by adopting as programs r.e. sets of
strings over the above siphabet and defining therecmeshing simitarly.: One particular way
in which to represent these programs is to supply a description-of. the Turing machine
which recognizes this r.e. set; along with the (finite} sets of assignments and tests
involved. The semantics of rie.~DL-wifs is ther cbtatned: Wﬂy to'that.of DL.-

Thus, these programs are so complex, that merely deciding at each polnt in
the execution "what to do next” might take the fult power of Taring machines.
Nevertheless, it turns out that this complexity doa not: :!tect m of the re!l!lts about
the valldity problem-in DL. : :




U
2.4 The Validity Problem for DL.

In this section we state some results concerning the question of how hard it is to
decide whether a given DL-wff is valid. Since a valid DL-wif is one which is true in
‘every state of every umvcug, this s nat, nww a m d’gpmdem ‘question
but rather a question involving the behavior of completely unintrpreted programs.
Throughout this section, we will use the notation of Rogars £3K i
undecidability. ,

The first fact about DL is the weli-known mmm of the set of und
first-order formulae:

Lemma 2.6: The vahd program-free Dt-ﬂfsfama’gm"“ mplete set,
Proof ThmmMMvwmwmdmm L

Lemma 2.7 (Pratt [521): Thwm-wmwbummdehe'w, forma
Eg-compkteset.

Proof: Trtvm.mkmumuﬁcmwdmm-fmm B

Thmm 2.8 (Mes and Prae [22)): ?Iu W Dk-\!ﬁ: @ﬂnm (cl& where P is
first-order antl @ is any: mmM:loMm : ,,

mmm mmm{mummmwmm
it) to a flsss-erder formuia, dees net mehe the:validity prabium-any. more difficuk. s
particular, amecan extend: this:-retukt 1o faamwlie of the.Sopm:F4e2Q fer program-free P
and Q, mwmmmﬁmmmm S
umnmwed pngrmusanr.e.pmbm '

T heorem 29‘(!&5'« md Fmﬂﬂ)* The valid: Bk-m«mmul?.m Pis
pugmﬁeend&eu&dm&%ﬁ&ﬂ m&tﬂﬂh&m
or as small as the singleton { xey;(x+f(x})* }, form Ms&a

Thus, attaching one box to a first-order formuls gives rise to a very hard validity
problem (as hard, in fact, as the totality problem for Turing machines). (Similarly, one
can extend thtstothechuufvahql partial correctness axertions.) However, if the
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formula P to which [a] is attached (the output specification of the partial correctness
assertion). is free of existenstial quantifiers, i.e. is a universal formula, the problem
is easier: ‘ -

T heorem 2.10 (Meyer and Pratt [22]) ‘The valid DL-wf{s of the ferm [a]P Where & is
as in Theorem 29 and Pisa universal first-order formula, form a Il 1 camplete set.

The hopes of keeping thef va!idity: p;qblqlg~{m,' ;&e,.gv{m,gf DL down to somé place
in the arithmetic hierarchy are Shmcr'ed;by the iow theorem:

T heorem 2. ll (Meyer, [22] and (44]) The va!id DL*wff; oﬂeach of the following fm'ms,
form a l'[l-m;alete set,; where the set of programs involved can, in each case, be

taken to be as large as the set of re. pmgrmor "» mﬂt a Mmlemn
{ X*y.(x*f(x))"' | SR

(a) 3xEalP & :. Pafirst-order formuta,
- (b) 3x3y[¢]? S - P a quentifier—free:first-order formula,
(¢} <ByiBylalp Pa qmmm fmtwordcr fmh,

@wer “PaDlowr.

Thus, the validity probhm for B‘h s eamrmﬂy Hard, in fact as hard as deciding
the validity of generat !mmmi second ordeér formiitae of the form VP, where P is
a first-order fermula of arithmetic.. It geﬁfﬂm way however, for quite simple formulae:
with only one “alternation” of programs (here we like to view Ix as <x¢?>). The upper
bound of TT{ can be shown to'hold for all the variations we have considered, In
particular, the set of valid fdrmulae of rich-test—randm-lrfay-DL also form a
nl i -complete set,

These results then, eliminate any possibitity of obmning (abaoluteiy) complete
axiomatizations of any intgrestmg portiom of‘ DL In the next c!\aptcr we wm see
however, that the sltuation is not so grim :

'We remark here that Meyer [44] has also been able to show that the set of valid
formulae of Salwicki s [59] algomlamic Logu gs also Ilrcmbu. 'I:hla is contrary
.to erroneous results in Kreczmar £321 ﬂld [331. ) .
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In- this chapter we immduee thc mudt-a‘ uppm wsymamc chamcteﬂzaﬂon
of the U-valitt DiLi-wifi for spett ' _ ‘
of arithmetic.. mumm&&mmwrf&m :
which mwkesexpﬁck mﬁmﬁa&uwmmmm memh
that then. Maﬁ‘m umymmwmwm
DL-wff. This propevtyy:we: tesrts: sxiffimstionl somplotemess.. . G

As: will: becorne: evidient: ity tite: sequl,;the: natural numbers sre-uséd!in first order
formulae to:"count” the: emises: of tinves-e is: executed: in: &, mj’n&faw%t extra .
- power ine wiviclt: we: inndulge: i order to:introtion: "arithmetical' ipaigtwienis
programs, i assignments: to: variabies witich: tenge: over thie naturat’ uumhr!, a8 Is done
‘eg. by Owicki E471. for WMMW Jtv fact, one’s programs might
not involve- integers: at all and: suilhy, sinos:th '
can be extervded.to. anvarithmatical .
Mm,;mhcmm via-an arith

A"‘W'uﬁm Mmm ahlisaat s 3
and 1, wessmmdprma“_' g ' ppion: 3.1 . )
generalization: wthemmmmwm&wm fwww tmm mSecuon
3.2 Thismismwmmmwﬁwmmmm |
this thesis,. and in: fact we envision itau&y;, oareof & g
similar completeness | remﬁ: in ﬁu fectle
an arithmetical uiiverse, rioting : m &

It is then: proved that for- myammm% pists, ’kremyﬂt-wff a
first order formula equivalent o it over that universe. SWQ coptains, our axiom
system P for DL and proofs of its mmm souridiness: afid' completeness. Section 33
contains thz“rumctmﬂ?‘ PR “veit) ) 4 I Secrion 34
compleuneu, and’ Mirkowska's: E’tﬂ luﬁum mwm.
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8.4 'I.‘h_g Theorem of Completeness and ‘A_,:r,i_tthmgtiqal Universes.

In this section we prove a general theorem which will be applied five times in the
thesis for obtammg completeness resuits for amhmetical axiomattzatlom of various
logics of programs.” It wift aflow us to ded’uce, for ex wple, '
completeness of an axiom syitem for DL given that that qmemb coh\plete for proving o
basic formutae involving at most one program.’ The theorem, however, will ‘be stated in
very general terms.

Denote the set of first-order formulae by L. “Assume we arc given a universe u, a
set K, and a functional

M: Kxal -2l

The M-extension of L, L(M), is defined to be the followwg language which is L
augmented with one formauon-rulc' :

(1) Any atomic formula is in L(M),
(2) For any k€K, variable x and L(M)- -wffs P and Q,
-P, (PVQ) 3xP and (Mk)P m L‘( M) -wffs.

The semantics of L(M) are defined such that: JHMk)P holds whenever |
JeM(k,{J| §FP}); all the other clauses receive their standard meanings.

 Sofne intuition might be gained at this point by noticing that if K is taken to be -
‘the class of programs-RC and (M) P is interpreﬁed“ﬁ’(&)?,tﬁeh L(M) is-in fact
regular first order dynamic hglc, l.e DL, '

We now define some impomnt coneepu to be’ used in the' uquek

We say that L is U-—expresswe for L( M) if for every L(M) -wff P there exists an l.-wff Q.
such that I=U P=Q. .

"An axiom system P(M) for L(M) is any set of axioms (or axiom s;!)emas) and infgre‘nce mm
over L{M).. Provability of an L{M)-wif P in P(M)-is defined in the standard way and is -
denoted by '-P(M) P. P(M) is said to be U-sound'if a¥l the dxjoms are:U-vatid and all -
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the rules of iafermce preserve H-validity. Note lhm, tiat i P(ﬂ) is U-sound, then
whenever "P{M}R holds, Ful deu too.

P(M) is said to be proposisionally complete if i, mv cautologies of propositional |
calculnsmthewmﬂfffm and modus pone MM¢ !9#’- Itis
said to he U-compate wwmkfmwmi,tf l‘{j wm wtmre Ffm Il.}_

rkmmnmummorcmmm) memmuwu-umumou a
U-sound NMSWMP‘(WS«NH}&U@WW PR ,

(1} P(M) is propositionaily complete,
(2) L is U-expressive for L(M),

(3) Fermynermd!.mi«wmnmq,, , o
if Fpy)(R>Q) then I-,,m € R > (u,‘)m and

€4) For any keK and L—uff; R and Q’
| if By R then .} R, . | '
u s
it Fy(RM,)Q) then Pmmemngqy nd
i PyRIAMIQ) . thew bpgan (Bn(BIQN

Proof: We havewpmvem WP umummﬂmmhuv M’P(M)P

By the propositional completeness of PCM). we oy swwme thit P is. given in conjunctive
normat form, and, we procesd: by induction. e the sim-of the mumber;of sppeacances. of M and
the number of quantifiers in P. Amm:mmm m&mn-lam
appearances of M and quantifiers. If P a«mmmnm-’e hme.'v Pl and

ky P2, both of which have to-be praved in P, 10 that, wo.can sestrict: oy, atsention to
asingtedtajnm:ﬁon Wmmdmmywm,m,mtmfnd

Piv{ M, P2, Plv-v( Mk)PZ Plv.'!x?! or Ptv-ﬁxPz

wmue&mmmmmma-&wmmwnmm betu
use.p to dewote (M), iﬂk,kaﬁumnmsmm _——
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L is exprmlve for L(M), and so-for any. L&MJ-wﬁ Q there. ls some. L-wff Q
which is equivaient 10 Q. We-have then F@n?ll‘ g1 pﬂi) !lowm asumm (4)

(slnce PlL and P2L are L-wffs) we also have :

| Now surely, by the deﬂnmon of PlL and P2L, we have "U (~P1 o -'PlL) and
Fy (P2 3°'P2). Both these hust formutie haveiustban L Wd‘ﬂ and
quantmers, and hence by the tnductlve hypam :

*P(M) ‘”L 2 "”

By assumptlon (3) or the first. clause in ”) (depe m whither p is an appearance
of Mora quanuﬁer) t@ether wm\ the pmposmm we obtain from the latter

( '04-4-)

remsoning, I-Pm,(-srlnprz).

From (%), (“) and (***)mgu,m~”
or. E-P(M)(Plvpl’m | v

-Our goal In the next section is to apply this t w DL irlewed as an

~ M=extension of 1 as Indicated above. 'Tn. prder wﬁ this, we now define a set of umvefses,
the arithmetical universes, each of which satisfiés’ requiremei f‘ﬁ‘) ‘ot tﬁt“ Thmm. ‘ﬂm

fact is proved below in Theorem 3.2,

“An arnhmaicat universe A°Is a universe in wﬁtéh the domain includes the set of namm
numbers, the binary function syriibols + nd’ 17 aré fixed lnﬂ*m thelt 2% '

(addition and muitiphicition respectivély) whisi: appiied st tive natiiral seinbers. fh the
domain, and 0.and- 1 are fixed zeroary-order wmw as the natoral
numbers “zero” and “"one” respectively. Furthermose there:is.a Sixed unary pradicate -
symbol nat with the interpretation "nat (d) is'true iff d is a natural number”, that is,

for every state J {d€D Jl nat J(d)} is the set of natural numbers. Thus, we are able to
 distinguish the natural numbers in the domath from the other elements and we do. not care,
say, what the value of x+y is in state J when it hmtthecaethat natj(xj) holds.




4

An additional property we require of an arithmeticil untvérse i the abiiity to encode
finite sequences of glments #to one element. - mwmmmm A

a3 follows:

There exists a total predicate l{x,i,y) over mm or A,
~ such thutfwmnmdnuﬁuakmmmhln
(Vxl....x )uy)mmuwwmu; > mx,w » xax i)
The intuition is:¢hat Mx,u) mm‘ X smmmgy ,m«thqtmy fmu .
sequence XX mbeemudednmchng, : e e

Note that one pamcuhr arithroetical m&vem is;the mene N of "pure -
arithmetic” ,that is, thﬂmhMﬁMhMMmdmnl
numbers, and *, 1., 0, = and nat (which in this case s identically true), are the only
function and predicate symboks. cwsamfmm“mw

[621) serves as the mmmm

, Itsstmp«tammmmamymcmllmhexmnmarmmeﬂcal
universe A; by augmenting it, umy,m_ Rater mmw
apparatus for encoding finite sequences. MM“mkmdm,
written over nvmmmnm&auﬂmﬁxmw

universe,

TakeAmbcmr ~ ﬂm«nnqséhgm-amwmbrmw
, and tasts. ‘Me;llnh:m,,, '

ovgr 3% & LTS okl AT il ot ’-g-js;! ISR 8
M(a i3l P = (1] 15C3ad A $P)], ymmm P ot JCOP. Cerainty then, .
L( M) is umply DL. ’ , .

Wemtkthmfmmwhme&lhmmmmh _
Sunctionals M. Lauch 33 <a2) for which me. are ints t qne of the @ates .
satisfying P. Gansaquently, we-cauid dmawe defined 6 Eabl - 3U, and then, mmr w
ISP A M1 D). Mmmwﬂmﬁmummm» '
fmmmmcn i ‘
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T heorem 3.2: L is A-e_xpressive for'DL.

Proof: We have to show that for every DL-wff P there exists an L—wff Py, such that
E,(P=P;). We proceed by induction on P. Tbg,;gm where P .As,m atamic formula, or of
one of the forms ~Q, QwvR.or IxQ uewmfm P is.of the form
<a>Q for a¢RC and assume Q is the L-wff which is.A-e wamaq Q::Denote var(a) by Z,
and by Z' denote a vector of the same length as Z whose components are distinct variables
not in var(a). By convention we can denote by x' the element. .of.Z' corresponding to an
element x of Z. We show, by induction on the structure of a, that there exists an'L-wff
F (Z 7 ) such that for any DL-wff Q we have .

';a‘ g B e
WHF

where (QL)7) is the obvious genemhzation of (QL) ) vectoi's ‘of variables.
Thus in a sense, we find a formula Fo whicll is trye of Z lgd Z' m‘ @ can change the o
value of Z to that of 7'

For an. amgnment take. Fx*e to hc xs& Sure;y (;*@QA; A—eqmvalcnt to .
(x(-e)QL which is A-equivalent to (QL) or in fact to 3x'(x ze A (QL) )

For the case where & is of the form Buf’, take F/; (M’ w0 be' ﬂ"a V- ?H-)

Sinﬁlarly, when @ is 8;8', F(g. g is taken.to.be. 3z F‘,)g 4 ;(E,.) 7. ..

Here Z" is a "fresh" vector mmZ' ktsqmum g _‘,,__V,mmvenffv that,("‘) holds
for both thesceascs. Co i

Assumeaiebeofthe fvm#* By stand;rdmhmqnu, usmg tt,em of
finite sequerices into single elements of the.domain, we can coastruct an - iteration
formula ITRg with a-free.variable, such: that-we have AT Mﬁ MZ(%) here: Z=Z'

- abbreviates the con junction:of the equality of:the: corresponding e afledZ',

ITRg(1) 2 Fg, and for any natural number a»l we have ﬁmw m& steict notation)s

ITRg(m) = (3Z1) . BZn-D((FgP A (FgBE & (FBFE A AlFQTY).

It is then easy to see that for any n, <a™Q is Awwwn(ﬂ'(lrﬂp(&) A (’Qg)%'))a
and hence that Fgx can be taken to be (3n)(nat(n) A ITR,@"”, and that’
then (*) will hold. | ' e
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Thus by inspecting the mmsarmummmw arrive at the

mchmmthatifwcanfmdmA mdnmw?fum,mhthu
‘{x) P is propositienilly complete, BT el e s
(b) Pmmmuvm%um, R
tc) quwmm L

P P S

<R > <¢)Q,

and (d)wecmmcmf?f«mwmmmln(aw
. , amaxcqmrmmnﬂ& o ; . :

then indeed by “Theorein %1 wé Fave sy xm MU& Colitplete’ a¥ it systin for DL. Mt
axiom system which, f«mymmkmwmnnwm
L-wmaumuh-mmkmummm hmenext :

In mmmnmmwmﬁwrm DL. -
In the seqtiel A stivnds $6i°iny M nNRINER whiwitee, Wil L Jorithe s of firstsorder o
formutae. When tatking abowt arithmetical universes we will offens want SPASSe W, 'Th,.00 stand
for variables ranging only over the natural nembers. We do this by adopting the
followithy CONVERNIHE My L - wits ued v witkehr W S0vh wiplicioty shenttomed , say,

. the vzriab!e'w wcmemm wmmw o, . mfnr

zzzzzz

( ?ﬁ n)nm n’em o :Wuusm WM bvm, :
- VriPEH) stanidi for WM*W mfrmmw vast umem

memmmum iymf&nw SRS % A R
Axtoms :
N 7] mmwwm
(B) Aﬁmm e T
(C) [xeelP = Px, for an L-wff N
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(D) [QMIP = (Q=P).
(E) C[a;BIP = [adBIP.
(F) CauBlP .= (LalP A [BIP).

Inference rules:

(6) p . pag
Q
(W) pog
[alP > (a1Q
(1) PaLalP
Pala*1P

(J) P(n+l) 2 <adP(n) ;o : 1
for an L-wff P with free:n, st. nf

var(a).
P(n) > <a*>P(0)

Rutes (1) and (J) are called the rules of imrtancc and tonvcrg\mu respectively.

A DL-wff P is said to be provable in P, written I'P P, if there exists a finite sequence

S of DL-wffs the last one being P and such that exchi foimula in § is an‘axiom (or
instance of an axiom scheme) or is obtained from previous formul:e of S by one of the
rules of inference. v -

We first establish the soundness of the inference rules which appesr in P:

Lemma 3.3: For any universe U, DL-wffs R and Q, and’dém
it Py R3Q then by (o > TadQ).

Proof: Assume Fi; R3Q, and JktalR for som&JGU TMB for every Jeu such ﬂ!ﬂ ", we
have SFR Surely then, from JERSQ we have Q. Thus, IP[&]Q B
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Lemma 3.4: For any universe U, DL-wff P and &¢RC, if !'U(PISI;CIP)
then bk (P>la*IP).

Proof: Assume ki, (Po[alP) and JEP for some J¢U. We have to show Jk[a"IP for all

n We'proceed:bymmmmn. For n=0 Je(a®IP i JCerue?¥P it I*(true > P) if
JEP which is assumed. Assume JHa™IP. By i'u{l’aﬁus.'ﬂ’) we can obtain :
Fy(La"IP > [a"KalP), and then conciude JHa™XadP or m-"*iw |

Lemma 3.5: Fer any L-wff P(n) and a¢RC, where nf var{a),
if B, {(P(n+1) 5 <adXP(n)) then b A(P(n} 3 <a™>P(0)).

Proof: Assume K ,(P(m1)  <a>P(n}) and JWP(n), We show TH<a®>P(0) or
JrEIn<a™>P(0) by induction on n 7 For n ,ao we have. J& (true A P(0)) or

JECtrue™P(0) which is Jrca®>P(0). Assume.that Frca®HYP(0) holds whenever
J¥P(m) and m’cn k. By ¥,(P(n«l) > dP(n)) we conclude 3§(Jad A
F=P(n)) and ng=ng-L lmmn ma*maa, from which we have zmxa*ww)
or Je<a®™>P(0). |

We remark here that the rule of invariance (1) can be: mpmed by the induction
axiom scheme

[a*KP3lalP) > (P(a*IP),
which is derivable from P, and from which, n P, rule.(1} can be derived.
Theorem 3.6 (A-soundness of P): For any DL-wft P, if Fg P then ®,P.
Proof: Foﬂ&s from Lemmas 1.1, 1.7, 21, 33, 34 and 35, I o

We now apply the general Theorem of Compieteness of the previous section to obtain
an arithmetical completeness resukt for P. Herwever, in order to apply that theorem we
have to prove that P is A-complete for formulse of the forms RiﬂQ and Ko<adQ with
program-free R and Q. These two resuks; Box-compieeness { Thearem 3.9) and ‘
Diamond -completeness ( Theorem 3.11) are obitsined snelogousty. They are both proved by
induction on the structure of . The difficulty s when & is of the form 8%, in which
case we show that when, say, RO[S*IQ is A-valid, then there s a way of proving that fact
in P. This is dene by exhibiting derived rules (I') and (J') below to cover these cases,
and proving that they can be applied. '
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Lemma 3.7: The following are derived rules of P:
<a>P > <adQ

(I') RoP , PolalP , P5Q

| RD[&*‘]Q/
(J')) R>3nP(n) P(n+1) 3(a)P(n) , P(O)'—"Q
. et P and nas
R:»(a*>Q : " in rule (J). |

me (H'): From tp (Pw) #eoudmusmt(h)w (6); "P {~Q 2.-P).
Apply (H) toget Fp (m-e :{u}-ﬁ) then (M w(@e) wanm ’*P (<P > <¢>@)

(I): Fromkp (PDII«]P) we have by (1) k) k(Pﬂ[u‘]P) and then using
Fp(R>P) and (A) and (C), we obtilin’ "P (! SEa®T ) FramPP P5Q and (H) we have
Fp (La*1P > Ta*1Q) and thus agiif with (ar and iﬁ), l-,,‘(aata*m R

(J'): Like (I) but using the fact that from' PP tm(n)) and Fp (P(n)‘a(C*)Q)
we can deduce Fp. (R3¢a*>Q) “using (B);' {A) nd- B) . -»‘

An L-wff P which A-validates the premises of (l’) is catled an invariant of & with
respect to R and Q. The concept of invariance has been studied quite extensively in the
literature on program vefification, see for ‘example-E393. - An L-wif P{n) -which A-Va!m
the premises of (J') wtmammtd%mwl and Q. Thaw
does not seem to have received adequate treatment.

We now show that it is alwayspombtetofhtdmkwurim:ofamkmdq,
under the assumptm that the conclusion of rule{I'} is A-valid.

Lemma 3.8 '(Invariam !.qmma)t For ea_rery uem:m DL-wiisR and Q, ik Aﬁl‘w} _
then there exists an' L-wif P such that B (R>P),- ky(P{adP) and b, (P>Q).
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Proof: By Theorem 32 there is an L-wff P which is A-equivalent to [a*1Q
(i.e. FA(Ps[a*]Q) ). Certainly by F (R:[a‘!Q) we have k¥ (k:P).
Similarly, it is easy to see that ¥ A(PSQ) and ¥ A(P:’[alﬂ l

T heorem 3.9 (Box—mpletenm Theorem) Foremy Mﬂ*&wﬁsi and Q,

Proof: We proceed by indmhnmﬁnmrevf“u ‘Assume the assertion of the
theorem to hold for any 8 which is “smaller” m.hwmmmse, and
assume FA(Rz’[alQ) :

For & an assignment or a test, {G) and (D) «redaee mm to that of “proving”
an A-valid L-wff, which is simply an axiom. .-

If & is Sufl’, then: pmdsh?ofiwmﬁ%m}mbem by(f) to

aproofnf%atﬂm MdMWAMMWM«WEy
both.

ifa rsﬂ,ﬂ' then mpme IWJQ hPln &:m»y md thm use (E)
to obtain the desired: l' A{Ro(f #Q): Cer have (34, ARp ,‘) and hence.
kA(RDEQJP) where P 6: an L-wif whtch is eqaivﬂem m{’IQ (and uisu by Theorem 3.2).
* However, R2[SIP beiag A-valid, we apply-the indudive. hypsthesis to obtain +p (RLAIP).
Similarly we can show F (PoE8Q), and M’*’ m Wﬂ) from which,
using (A) and (C), we get tp (RSIBXAN).

For thex:asewhenakﬂ,mMmLmMMgmrmﬁeuMemsm .
of an L-wff P which renders the premises of thwe derived: rule-(1') A~valid. By the -

inductive-irypothesis these can be proved haﬂ, and then sne mumbn of: (i') yiekds the
final resutt. g

smmay, under the assumption that mm of (1) 15 A- nue, we can.
always find a convergent of & wrt Rand Q’

Lemma 2.10 (Convergence Lemma): For m:-y &B@ and DL-% Rand-Q, if k,(R2¢a™Q) |
then there exists-an L-wif P{n) with-nf ver{a), such thiat abafna:hﬂa)),
kA (P(n+1) > <a>P(n)), and #A(P(O)DQ) |




-

1

Proof: By the proof of Theorem 3.2 one can construct an L-wif P(n) such that for every
state J€A ‘and natural number i, if n J-i then (ai)Q is quivnnut ind to P( n). This

 we can write (slightly abusing notation) as ¥, (Vn)(nat(n) o ( <¢")Q % P(n))). Certainly

by FA(RD(Q*)Q) we deduce FA(RzﬂnP(n)) Mhﬂy,lt‘lswywmthattheother
A*vallditiesholdtou. o S I_‘ L ‘ :

S
<

Tlaeorem n (Diamond—oompleteness Theonm)‘ ﬁn every aélc and L-wffs R and Q,
itk A(KD(«)Q) ‘then "P ﬂm) e |

- Proof: The proof follows that of Theorem 39, uslng the derived duals of (Cf'( F) and
using Lemma 3.10 instead of 3.8 B

We can now conclude that, for’ DL-wm, Amﬁdﬁy lnépronbﬂity in P are
equivalent conccpts . ,

T heorem 3.12 (Amhmeucal Soundnm and Compuwuea for DL): fw any DL-wfﬁ P E
FpAP o |~P

Proof One direction is Theorem 3.6, mdfﬁéoﬁnr fﬂbm fmm’fbeamm 3.1 33, 39 =

- and 3.11, together with the fact that (A) (B) (G) md (H) are part of P. . _.

RPN ‘;';

Theorem 312 is slgniﬁcant in that it shows that a very slmple and elegant axlom o
system is sufficient for carrying out the (A-vaﬁ&lﬁy-m‘vﬁiﬂ transtution of DL-wffs
to formulae of arithmetic, in a structured manner. As we point out in Section 34.1,
viewing the process of proving properties of programs as supplying a prdof of a formula in
an axiom system which takes all the validities of the underlying first-order language as
axioms, is due to Cook [12]. This observation then, gives rise to viewing suchy uiom
systems as mechanlsms for carrying out this transiation,

Appendix B contains a proof in P, of the A—valldtty of a nomrivial DL-wff which
asserts the total correctness of an iterative version of M&iﬂhy‘t fm 9l-fuactbn program.

We remark that P is also an arithmetically <complete: syster. for: rich-test-DL (see
Section 2.3.3). Also, random-DL (2.3.2) is completely axiomatized by adding
the axiom [xeT]P = VxP to P, under the condition that in a -
universe A, the only x's we allow in random assignment statements of the form x«?, are
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uninterpreted ones. Pratt [523 has :peiled out the aiom ea»he adﬂed to P in order to
'cmnpietely axiomatize arruy-m; (2:3.2) : :

Wea!sgmhere tbatmhmmda mm’mmhmmovmgour
completmesstheemn. This can be seen in mmkin?ﬁthmwmu(rup.
P(n) in the proof of Lemma 310), wukw&nmm P
proof ef Lemma. 38 (but not.of 340) exis, eny . o Mrongest conse
approach. This proof invelves taking P nm&mn %ﬁ,_
defined as {( 1,3} (J,J?*m(e)}. A clarification of tis-ebser
context in Secvton 6.3. : ,

8.3 Amwdmm&m

lnthasmmwmwmwmm:ymDmeDﬂL (see
Section 23.4) and compare it to the:systens of Hoare (271 and Wang [631. DP is-basically. a
"special case” ofPhMmﬁmam“mhmMﬂmwan
straightforwardly derived from, those of P. Mewsthelug, one pol tuwrylmoutthe
:yMsofﬂPm?uMwmmmm pecial-purpase systems
muM:mMWM:MMMR o :

Cmuidermemm:xm:yml”’fwm

‘ (M (M,LC)mdLaamp, e .
, ,(a:r‘)\ s mu dse 8.5 ((SAEaQ) A H?m@u
Inference Rules: ‘ R e

(C) and (H) as in P,

-(zt"i, ; ‘P?\Sl n[ﬂ!’ '

P E WSM?M& Lo
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(J) P(nsl) 2 (SA<adP(n))., P(O)2S . . |
) P 2 (pwPy POIES e,

P(n) > Covhile Sdo a)P(Q)

Provabjmy inDP Is defined as usual. o
Lemma 3.13: For any &« and § in RC, Dl.-wff Q  test $?, the following are valid:
(1) Cif S then @ alte B35 = (fﬁﬁmb) A (=S 2 [81Q)),
(2) Cwhite SdoalQ * [(S".a)"‘l(SyQ)

Proof: Trivial from the deﬂmuons ofthe Aeter ninistic constructs
Lemmas NG and 17 .“ e ﬁr oo
We now show the soundness of rules (1") }aﬁd,(}') e

Lemma 3.14: For any universe U “DL-wHt’ P, ackC’ tﬁ &ﬁ%? i T'UWAS') 2‘-’[’«]‘”
_then Fy(Polwhile S do al(PA~S)).

SIS e nY vy

Proof: We have FU(PnfS:'[ﬂP)) "t&? 2 3.4 we have
FU(PDE(S",a)*]P) and hence also (PS[‘S?.C)‘](% J?A*S)n which is simply
E(PAL(STi@) - STHPAS)).

Lemma 3.15: For any L-wff P(n), test S? and a¢RC, where of sar(S7;a), iIf
hA(P(ml) > (SA;@P(n))) and. K, (R(0)2:5) M-&g@(@ 5 il

Proof: By a;sumption we: luvs J‘*(P(mﬂl ? &M@lmn ba! W 3-5 "‘“’
ko (P(n) =<;(S":a)"‘>§{q@)s)ﬂ By-the mmmmgm:ﬁwhtﬂn)
2 <(S" (S A PLO)) ) 0r ﬁlﬂn&m&&ﬂﬁm&ﬂés s < «l . i

.S do ¢>P(0) ).

T heorem 3:.16 ( Arithmetical Soundness and Comph&uw for DDL) For any DDI.-wff P
WP W top R |
Proof: Soundness follows from Theotem 3.6 tnd Lemmu 3.13{ l) 3.14 tnd 3.15.

Completeness mmmwww@mwm o
3.12, using: !l&e ﬁmwmwémammh R IRAYTROIN o a7 ST




U™ RoP , (PAS)oaIP , (PAS)5Q

RolohleSdbal)

(") RadnPln) , Plmi) ¢ *n , mmems)

k:wtﬁw T a

We remark that (1"} is precisely Mmmm ﬁming the

partial correctness of while programs. He writes Fla)Q for M(PkalQ]). Ab

precisely one of Wang's (833 inference rutes (rute T7 of (681 gthe foral
carrmefvwcpm e et wwmmmem‘mnmk
nuesmbedmmumwmmm“wmﬁwmmmma
mwsmmm Mmqu vnprolignd,. :

We refer mmmwmmn Mnmm

Obmvatm m"m m‘u MW“W R m [ mmm
determmmm, WWW%& e

3.4 Related Wwﬁ. |

, Vﬁewmmmwmmammmmwu
inspired by, w;un mef mm BvAmnwwm up

[593. Shcmwm:ry Mtsrewer: ot in.
(awmuwm) mwmm

3.4.1 Rdwﬁw vs. MW W

Mmmwmmwwm MﬁMm axiom system: for
the partial correctiess of programs, one whidh:isasicatle a: subsyetery:of B -For the
sake of this discussion we can i fact think of the corresponding: subsysteny: of P
consisting of (&), (C)-(C) and rule (1) ax Howe's. systam:and: demote it by H. Cook [12]
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investigated the question of mmpktmes of Hoare's system and managed to formalize what ‘
seems to be the intuitive way in Which pebp“b pméu”_ eréctinéts {partial'in this case) of

programs in line with the matho& suggeste WTM tm mmr C461 Cook scinﬂwtl
the reasomng about the grqgmn frqm 1 g sbou

requires some pr@nm-orftm Y in-one ' ‘
formuta, ‘wheréas'the ‘sscond o mot. w,w WW‘&W Hodr¥'s system with
a generous ordéhe Which: vadthe: ability to sewer qiilestions cdtering the tmtl'l oP fmt '
order formuiae.* I this' wary heswas able to'shift conceniration o Heure's-rutes -
themselves which were to:serve: i a tool for perferming u stép-by -siép &rmﬁmmtm of
partial correctness assertions (of the form Po{alQ) into equivalent:first-order formulse. . -
The truth of the latter is then checked usmg the om:h.

_ WenwfamﬂlymmsLMMﬂmmumtm -
terminolegy we have develaped.. Amﬂmmwvmmm Al m—m« -
formulae as wifs; thus L is part of-L'. MAKﬂM aione system: for.L" and -
 denote by AX(; theaystem AX u {Bl:Péband F5P):. In.other wards, AXj is-AX -
augmented with all the U-vahid first-order mum “axioms. AX-Hs: uid*mbe
complete for L' retative:to L if for every uritvarse & sasch that:h wﬂ-upmhe m v,

AXyyis: «U-compleln for:L! {my kuwmmnmuu). EEC

T heorem 3 17 (Cook m])z H is mhtefor M &m Q are. L-wm} zelauve to l.. v
The proof is in fact identical to tlnt d‘ our«&m-cotmm Theomm (Thm. 3.9)

Now, if we restrict oursejves to hnguages L' mch that for any arithmetica!
universe A, L:is A-expressive for L', we noteithal seithrisetical completeness is a special
case of-relative completeness; ~:m»dcwfmu;ﬂ:ﬂw:&xn%&i8m for.all .
universes U which make-L U-expressive forl!,; but:only that that Be the'case for any
arithmetical univetse. Consequiently then; in AX Reel weicah uscsymbols iniways which -
take their standard interpretation for granted. "Thil'i-thé favor oF:the usage:of. n, +
and 0 in the Rule of Convergence (rule (1) of P).

The flurry of "positive™ research which: followisd Cook's: abservation, and: Wd’l was
aimed at providing similar mmwmmmdm ey
programming language (eg. €191, £843'and £473) led Muamm«vf SRR
"negative” research aimed at proving incompleteness resulkts which indicate when Hoare-like

e SR \a%%mw: ,_,,..\.;T*‘iﬁ.gfs;\’gg_j't;“.;m-;.-wy Pl ungee Gl LN D e
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systems are doomnd to be immhm even in the, maum m of ka The first notable
resylt.in this direction is that of Wmd CQ?ZL whe M exentially that it is nat the case
,that L is wapm»ive t‘er ewery. mminm U. Thus ! m M thm ems uruverm u.

me th% iﬂ IA tsm
(call the tapter a. finite uninersal). Mmmmwmnm fcr

which a Hoare-like systam:can he:relalively- compivie-aee the-arithypeticat ones ard. the

finite- ones. S0 Cook's (423 requirernent mmnmmm Mtgw Umhm for
these twe kinds of ‘universes. : '

The finite universes, however, cause trouble: Clarke [101 has shown that
introducing: { into the programming: language: in- which) the-piegeems of 'lyy are written)
various Programming concepls-suth Ay precedures: S parameters-or toroutines, in the
presence-of recursitn and other: wm, mmmm of
obtaining relatively. compiete axtom:systems. The: bt i £30) 12 basedi on the fact
that tise: fiest-order language L it Al-axpremive mt*mm&mm U The
incompleteness results-are MW by-shaviing 4 8 ' 5
languages have an undecidable: mmmmmm hence the set: of
diverging programs is not re., a fact whieb would contyadict the existence of any
relatively: complete: Hosre«die aivm. sytbeds:foi mmim«m of one
implying that, in particular, the set of valid formule: of the form true=falfalse is re.).
Hence, the essense’of Glarkels ressits: o in the fhct this Mwm gﬁammms

of L is samﬁ«l by muwus th ﬂam Mm.

Tive: remmv of Lipm and: Shm eaeaw imm mlmm in a
generalization and extension of-Clarkels results, with-arthaorem (Fivesrern | in:£351) wmc&
seemns ta tie up asoquivsitnt thedwo.propmties of a pragramming Baguage - (1) ‘having s -
decidable: haling: probiem-oner Einite-universes, ad:-43 - thecansof formuine: P2{adQ over:
it being r.e: inthe set of alf MM Tor mi,ﬂvm%;&&«m m »
Ly

- We-conclude that relaxing the requiresent: mﬁ, sing. that . AXU‘M U-complete

only for all armwumcwmmm game}
msammmmmaamﬁ-m ) ,,’,ﬁ'pﬁc&mm, L”.
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) In addition, it seems that in order for axioman;atiqm of much richer logics |
like, say, DL (and the logics appearing in the nquei ‘GFoL, AM', DU* ahd CTFDL*) to be
relatively complete (i.e that they work. for finite universes too), the rules that involve =
arithmetic (i.e rule (1)) woult have to be modified to deal with the finite~domain case,

and would probably result in a system nfmh s ftt w nmnt‘ ana"‘emam, L

o We are.of the opiqiqn, therefon, that the naiu”*’
(1) the concept treated mostextensﬁdyby resea | 4 Wis
correctness ([alP essentially), snd (2) a mtujfﬁvd efet

ensure the existence of an. ehgant rehuvely ogmplm a;;mmmn of this pamcular
concept on its own.. ‘

3%

reasoning language, in order to make possible the kil of "tounth
(and lateron inR, P*eic). i x

_ Thus we feel that it is natural and mll‘to aliow the megm tnto ones

Note that by agopting the "Hoare spirit” of stmcmred, natural axiom systems, thc
remark in [67, pp. 301 "if the language is expressive’ ﬁ”ut@iﬁiﬂgw write'down a
complete axiom system for partial correctness” becomes . We are not interested
in'a one-rule system which has buikt into it essentialy tht Nﬂm of Fow to
Codel-encode any wff and how to construct the qmniut fonmh of arithmetic. Rather,
we want systems for composing our formulae step: Wf”*“m vatlous’ im&? ‘of assertions
~ on the way. Of course, the proof that these systers: #ré toiiflute Mt involve relying on
the expressive power of arithmetic, and hence might call upon the use of Godel encuding,
in turn making "the formulae .. be less than perspicubtié™T672 (as is the case with our
- completeness results which at various points require finding the arithmetical equivalent
to formulxe). Neverthiless, we believé that MW%‘MW»& ‘contributes .
considerably:to the understanding oftfie evcipts B¢ Provides ithe framewerk n .
which the natural and intuifive: prodfs one Nguwnmr onébiprageams: can be: mﬂm

€

8.4.2 Infinitary Axiomatization.

In 1970 Salwicki-[59]. intraduced:an algerithmic laghc: (AL) which is very e,mam
DL in many respects, the main differance being that ﬂmﬁmm ‘abOut
deterministic reguldr programs only: - Varieus Givedthing: of:nissrth-were followed by, zhe
researchers at Wanaw mw sm, mmmmmz m
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the problem of axiomatizing AL.- (Sne 3] for a survey of their work and [21] for a
comparison with DL.) ' '

In thls section wewmnotmnwttodcfmkl. mrwm wm myofthe ,'

results relevant to it. ‘We will, however, give a brief description ‘of an infifiitary axiom

system IX for DL dmved fmﬂm nfull and state a_w zheorem for u. This
(supphed in [42]) ofthe mahtam ]

The objective in constructing IX is entirely different from that of constructing
P; the idea in IX is to provide a syntactical characterization of the valid DL-wffs, as
opposed to the U-valid ones for specific mtvm D, Crmeqw as we shall see, IX
seems to be inadequate for proving prop ; grams wmth aperate over
specific domains, and which use fmtctions md Mm over m do(nm, luvmg their
standard mterpretatiom in mind.

IX is an axiom system, which makes use of the foMug two udls for deaung with a*:

Theaxiom  aMP = (PV(@xaP),
andthe rule \ | ,
{ lbtuhQ ,l(zg |
(o) i
R«?,[a*JQ

Besides these, [X includes the axioms (A}, (D), &Eimd(l') Mnmlesfnr Vx, l:heaxiom
[aXP2Q) > ([P o (adQ), m;meguc; catering for

the case where P is a:genera) DL-wff. Ah&,(&)%m' farenc emheflx,nkthe
LalP .

"A. proof of a DL-wff P in IX is a tree with root-labeled by P, in which all paths
are finite, and in which a node and its mm;nw in accordance with
a rule of inference, the leifs being iabeled with instances-of axioms. . Sumy, by virtue
of rute (), a pmef-ueem ‘be infinite; mammm is that all. putg

are finite.




S5

Theorem 3.18 (Mirkowska [413): For every DL-wf P, ¥P iff . by P

Thus, IX characterlzgs the set of DL-wffs which are U-valnd in every universe U.
P on the other hand, is designed to characterize the sets of Dl.-mffs which are valid in
arithmetical universes. Specifically, assume A .is.some.a _universe. with.
‘uninterpreted function and predicate symbols. The set of A-vaﬁd DL-wffs and the set of

A -valid. firstrorder wffs are hotbgﬂ*:\, 1.9 Ou; axm system P "gets its

Hl power™ from ‘axiom scheme (B} Le. from’ taking the elementt of the latter set ‘as
axioms The rest of P then, can “afford™ being finttary. IX also Characterizes’a

Hl -complete set, namely the set of valid DL-wffs (see Theorem 2.11) however it geu
its power" from the infimtary rule {o0) rather than from the set of axioms (which in the
case of IX is m) We can think of this situation as a trade-off between throwing. the
bulk of the ﬂl -responsibility on the axioms or on the lnference rules.

Another way of looking at the relationshtp is to note that sinoe one can assert
the existence of infinite trees, such as proofs in IX, using finite sentences of arithmetic,
it is obvious that one can indeed give finitary inference rules to supplement a set of
axioms which includes all valid sentences of arithmetic, and still be able to assert that
a formula has an infinite proof in the IX sense.

Note for example, that the formula
(*) nat(x) > <(xex-1)*>x=0

is an A-valid wff, but not a valid one, and hence the reader should not be surprised that
he cannot see how to prove it using the circular-looking axiom for <a*> above. The valid
wff which perhaps conveys the same idea as (*) is more complicated, and in it we have to
replace nat(x) with a statement of the fact that x is accessible from z (standing for 0)

via f (standing for successor), and that f acts on the set {z, f(l) f(f(z)), -} like

. successor does on the natural numbers:
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(£(2) #2 A Dyez;(yef(y))®Hglf(y))sy)) > Exez;(xeflx)1*Kixeg(x)) *>xsz.
This formula is valid, and provable in 1x by vire nf‘m uimﬁm of me sot |
(02 A N RN = BemtaetaPKOxeg s 1o
being provable. This can be done farmaiuwmgmmmmm,

i times to <(x+g(x))*>, thus "unraveling the loop™ enough o obisis x=2. (In fact the
pfmfsofmhdtmmamh(a}demm(ui sgain.)
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4. Recursive .Prégx'?ams: Contixt*meymmioLogic (CFDL) .

‘In this chapter we enrich the prognmmm language we have been. cogsldeﬂng by
replacing the * operator with a rwﬁm operﬂer on m "‘fhu;s in a weil defined
sense we obtain context-free programs over mlinm w}%m as oppoaed to the

regular ones we had previously.

" The development of me material in this. chupuf u stron:ly atfeaed by the
analogy existing between, dn thé one Wand; the'cohaept OF iikiting 85 ciptured by the a®
construct, and, on the other, thit of recurring wa& Mmuvewm
construct: introduted below<The-busic ideas: presunt:in {iwe:axiom systems: appearing in.
191 and (23] for proving the partial correctness of recursive programs are captured .
concisely. by our box -rule for the recursive program construct, much as Hoare's [27] while
rule is concisely: captured by the rule of invarisnos of Section 3.8: Fumhermare, we show
that this rule is simply:an instance:of -2 principle of Ruek (531 There iy seeminglya
drawback to our treatment, in the fact that we do notpravide. mte; mgg any. klnds
of parameters in the programming language, . The, reason.is in our, wanking fo achieve 2.
clarification of the mechanisms.for reasoning abeut fre recursian Qur experience. “'
digesting the literatuze op this sgbj;;t tnd«_,; tes mg in most of :gae, cases the , e _
presentation of the basit principles suffers from being obscured by rules for dealing wlth ,
the parameters (i.e. rules of substitution, adaptation etc.). We consider one of ‘the S
goals of this chapter the elimination of these rules md the equutlon of the, stmilarlty
between reasoning about iterm and recurslon. o

4.1 Deﬂniﬂmm.

 The definiion of CFDLs. idntical o that o %mm s différent set of
programs, u‘m’y CFQ jlwm of m Lo ‘ -




. Syntax:

We assume given, besides the sets of symbels of Chaptcr 2, a set © of program
variables, elements of whlch we denote by X Xl, X&, e Theset ef progrcm terms is
defined as follows: i

(1) Every an&nmxw,zeu?’ar progrs gmxfﬂlsaterm,
(2) Fora!ftermstl,.., a1 PTOgTam vark X, ymsXp 0 @, and for |

every i=l,..,n, T;;Ty, TUTy and nixl;x (ti,..,tw) are terms.

The u,X;..X (tl,...,tn) clause is intended, km;@ttvefx, to represent the ,
program consisting of an gxmimoft ‘where the appearances of the Vatbus inﬂ
the various T represent T, ulaagt: 'Fhus; we have nm recussive

procedures. The -bulk ef mmhm m,mmwmm »- m
below.

An occurrence of Xj inaterm € is m»&m»ifuum-a subterm: of the
form . j..ftl,...,t ), ‘and free othverwise; i A verawith no free ocoderences of -
any program variable is cafed closed. mufeﬁmp& wa*m of the set
of terms, and ‘is obtaitved’ Uf?mmm -
XX (T €, ) i5 closed. The et T, OF simpie Seriid of m mm
from T by restricting the value of nin my subterm ae m‘%‘m ugf ..x ftl,...,t )
to be at most b . _

 The set CF of context -free programs is taken to be ! the closed terms in
T). In Section 44 we sketch theextenﬂonofmmuhhﬁnmﬂwaethem

of programs is taken to be T = UmFoT At this pem though, we can omit
subscripts and, in the flavour of the semantics given below, can in facy sdopt the
convention of denoting pXT(X) by t*(f). Abo, we have need only for one program

variable X to-serve as a "place holder’. Thusj (yeypsliil: v 0TI is:n egul mmn
in CF. Contcxtfree DL (CFDL) nmmwumwwww* S

Semantics:

Al we really have to do here is define, for every a¢CF, the binary relation
m(a), over the grand universe I'; which & denotes. lnspection of the definition of CF
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shows that in fact all we have to add to the deﬁnltlon of m in Chapter 2 is how to deflne
m(T*(f)).

For clarification we will sometimes write T(X) fer a term T which has free
occurrences of X, and no frée ocaitrences of any other X'€®. “Recordtitgly then, for such
€ we may take’ t(u) to-abbreviate € wmu aa fmmmﬂéa“bﬁi hﬁacedty the pfozrm «.

Define ©'(a) zy¢ @, and T lig) « at cfr'm) Now define
m(e*(f) =4 U m(c‘(fanm, -
which to some extent expwm our use of t“(f) to denote pXt(X).
Example: Consider the progmn
LR S 8 ((zzo?,yc-n v (z#OTw-l + X ;mﬂ ,ybv’%))"‘(ﬁ
which is of tive form z«-x,t*m The Follewing 1s the progiusi t3(ﬁluﬂe

((z-O?,y*—l) u (1#07,14-1—1,
((2=0?;y¢l) U (xﬁo’,m-h
((zﬂO? y«-l) u (z#O? zt-z-l,
Salse?;
zﬁ-vi; yiH); ‘
zez+liyey)) ; | o
zez+l;yey'z)). o

. One can check that in any state JEN for which x 5=2, we have JF<zex ;ts(fcl:(’))'!iu'c,'

Jelzex; ,t3( false?) Jy=2, md for every n#3,.we also: have JFlzex; € (false?) Yalse.
Thus a, given x=2, computes 2 in y. In-general it can be seen that in the universe N of
pure arithmetic, we have that m(a) is the binary retation {(1,9)1 § = [(x J)'/ y)] }, and

thus « is a program- oomputlng f«tm:tal over the nmmm , |

One can see then, that (J J)Gmlt*(ﬂ) iff theu exuu an lmeger n such that

(J ,S)Gm(t"( false?)). In other wards the. intyition is :hu “executing” a recursive o
program T(X) which “calls itself" in effect at anch. & ce of X, is executing, fnr. some
n, the program comlstlng of atlowing calls of at most "depth" n Thus, a successful
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execution of the factorial program above, which is of the form zex;(8 U v;X;8)*(f),
is any successful execution of z¢x ;'y‘ ] ;ﬂ' for some 1.

(We remark that in £act this dcﬁmition is in perfect agreement with ﬁxpunt semantics of
. recursive programs, as. defined, say, in [4)or 153, Using terminslogy .from these papers
our T's are all continuous over the domain of binary relations, and therefore deﬂnlng the
meaning of #,X;..X (€y,...,T) tobe the ith companent of the Jeast selutibn of -

the corresponding system of relational equations, in the sense of 41 and €261, is, by
Kieene's [30] theorem, consistent with ‘eur defiritton 'of /m(T*(f)),'or:m(uXT(X)).)

In the sequel we will need some additional notation to aid 4n constructing -our
rules of inference and in conducting our meta-reasoning. Note that any program &«€CF .
changes the values of at most the elements of var{a), all of wivichare variables. : That
is, a cannot change the value of any second-order function symbol or of any predicate
symbol. Consequently, we weuld like to make it possitie to talk about binary relations,
such as those represented by programs, in a first-order framework. We do this by defining

an augmented pregramming language CF' in which. there are pregrans mrmm to
these re|ations. ‘

Forma"y, the set CF' is defined as- fom

For any L-wif P and vector of disjoint v:rilbies Z, PZ is in CF".
Any assignment x«e or test P? is in CF",

- Any closed term T*(f}€T 1s in CF,

For any a,8¢CF', a;f and auf are in CF",

The meaning of PLis given by the fcﬂuwingadﬂltionﬂ @huse,_, to ghe dgﬂnition of m: -

m(P?) = {(3,9)1'§ =LV /731 ‘for some vetror ¥ of dlements from D, and
| Zg/TIERY.

Thus, P is thought of as having free variables Z and'Z', where Z' {in line with the remark
in Section 2.2) is a vector of "primed versions” of the members of Z. Thus, for example,

(x,y)" is {x',y*). Intuitively then, PZ is the ‘program ‘which asiigns ' (ﬁondetermimstkally)

to Z any vatue V such that in state J P Ismufthcv&!md‘im J and V. Thus, pZ
“achieves” between J and d the rehﬂoh‘ ind%eﬂ WWZ Z",
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Example: With Z=(x) and P(Z,Z') being (x'=x v x'=f(x)), we have that
 m(P%) = mltrue? u xef(x))). . |

Now, CF'DL is defined precisely as CFDL but using CF lnmad of CF. Of course, we are
interested in CFDL, not in GF'DL, but need CF'DL in: which to carry out our reasoning. Our
axioms and rules will take advamase of beir ,abb, ln aﬂthmatkal unmrns. :
construct an "achieve program™ of thefomf,P.w,_; to cotrespond to a given "real” prognm.
Note that we could have defined GF' simply by adding P -; mum to. ihc set of basic
programs (i.e. besides assignments and tests), and then deﬂnlng CF to be the set of _
closed terms of width 1. However, we want to outlaw the possiblﬂty of 1”, appetﬂng n
-€(X), and then being "*-ed", i.e. we do not want programs of the form T*(f) in which €
 includes an "achieve” pregnm. The reason for this will become apparent in. the proaf of
Lemrna 46. . :

4.2 Rcsults.
Theomn 4.1: For any arlthmcttcal unwerse A, L is A-expresslve for CF'DL.

Proof: The Theorem is proved simllaﬂy to Tbeomm 3.2 but hm a slightly dtfferent
treatment for T*( f) is necessary. It can be shown, by the encodlng of finite sequences of
elements of the domain of A (deseribed in Section 3.1), ‘that there exists, for' every term

T(X), an L-wif ITR.(n) such that for eveiy n ITR (W) “expresses” €"(false?), in the -

sense that m(ITR( n)z) = m(Tt"(false?)), where Zﬁﬁr(t) As in Theorem 32, if Q; is
an arithmetical equtvalent of Q then an arithmetical equivalent of <t*( j) Qis
3n32’(nat(n) A TTR.(n) A (QL)Z) B

We now show that in fact RG is embedded in CF.

. Lémm 4.2: For every aGC}", , ‘
m(a*) = m((rrue? u a;X)*(f)) = m((erue?u X.;a)*(ﬂ).
Proof: m(a*) = UT0y m(al) = m(rrue?) um(kq)»t_)"m(c;c)’ d_.. =
m(false?) U m(true?) u m(a;true?) U m(u*;'a;t}r’:;c?)fu .3 U F‘ﬂm( (true? u
a;X)(false?)) = m((true? v a;X)*(f)) . Similarly for the second equality. I

aﬂmgfm\.fwvve RPN S e L D B o e 5o
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A counter example to the other direction of the fact implied by Lemma 4.2 is the
following program a€CF, for which it can be M m that there does not exist any
B€RC such that m(a)=m(#):

- (true? u (xef(x) ; X;xeg(x) 71“({)
~ Thus, CFDL falis between DL and: re.-DL (s00-Section 235). cmmmﬂy, Theorems

2.8-2.11 are true of CFDL. hwwﬂﬁim mmm fee-opin pmblamsof
Chapter 2, tokmmmamm : ‘

Open Problem: ls DL < le.?
Open Problem: Is CFDL < re-DL?

Note the analogy between a® and €*(/), wmchcmbecwwmby relaxing
~ notation and writing

o* = UT a" ™ Vo < false?),
[(a*IP = Vnla™P IO = VabeR(fulse?) P,
<a*™P = In<a™P | . AP = aaaze“(fa«?)w.

ln the sequel we wm wrm 7?2’ t0 zbbmm Aﬂ(x&x‘i, and wm assnme

that«far programs of the form. BZ Z apd T appens-in shat wrder in ftiu,- pmmmmd list
of free variables of P. Thus for example, P(Z",Z') il Al Furthermore,

 we will assume ehamwmtdawummu, &Mdt Z" etc.
oonsist of uninterpreted variables,

Weanhowwummmszumwwmmdmtm
relation represemed by a program &, mmgm

Theorem 4.3: For any universe U and GGCF' if Zﬂm(&) ;Mn

(1) k(27 2 aIP(Z,2)) i m(a)cmﬂ’?),_
and (2) ky(P(ZZ) 2 <ZT) r m(PY)cm(.)

Proof: (1}: Assume PylZ'cZ > LaIP(Z',Z)) and s (1. $) el w). We have to show
that 3=V / 73] for some vector V of elements of D4, and Mfz, /T1¥P(Z,Z). The
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first is trivial by the fact Mz-w'(q)g Ng!..ﬁb! the glef gf m( &), and -,
since @ does not change Z, if (1,9)ém{«) then sl (1.3 mia), where P2 /271"
and §' = [ZJ/Z']’ ={Z /Z'IZ,/Z]J However, by the assumgption, since we have .
- constructed J* such that J'N?JZ'), we must mm&km@&lm,ﬂ;& L AA R
~ which is the same uumtz,/mMS'.Z’) S

Conversely, mm(c)ﬁm@z), a-:lvm mmm#u nhﬂs I*QZ’*ZL '
and that (J1,)¢m(a). We must show that JeP(Z",Z). By asspmption, (3,9)em( ,
that [Z.4 / ZFWHZ,T0Y, wiich oy T2} & mﬂ,v’%ﬁ&ﬂ%’zk 9Hm
j)em(q) we knw that; ,ﬂ,/zlhm -

e PR

(2): Assume FU(P(Y 7') E) <a>7’-7)), A i (i,ﬂfﬁﬁz) V@ prové (J,ﬂt’- .
By the second as i'l‘!mw),«%m:vymmmm G ey e
‘ ({Z 1,23 Elf/].lz J)embad.. Thwn, o consomcidsithat .
- (3, [7347‘31““5 m%ﬁﬂﬁv/ém&”; mpoe Y. e genc) “‘“ ";Z,oala-
and hesce that (5§} émie). C o

N <
e

Conversety, assume m(PZ)Sm(C) md tbu for wme 1‘“ J.'P?V,Z') We show tlnc
existence of JEU such that (J,§)ém(a) and Z"PZ’- Take § to be !?'1 7713, |

Certainly Z'g=Zg. Furthermore, by the Mﬂ} mwffm:m

WWJMammwumm IP(Z,7),. tzggt (142*"'“’2) and
hm(l,})ﬂu)r; : o R

We nate that m;nm the exm dm '!' 0k AT ITMPRICIL Ih varops
places in the liverature, and *ﬂm we.mention the work on 'inclision correctness”
! “‘ [3] BopEEeTLE SRR IR R TSTEREGE N By Ny T T

Wempmmtmmub, aﬂdm\vdﬁmwc‘im“““f"‘ jes’
relations, functionais and least fixpoints. m,mwﬂmmmmmt
mmmmmm“mmmmmhmgwﬁmfm
- m(a) for some a¢CF".

Lemma 4.4: 'Fpr any &, (-CF' md term t(X), tfm(u)i;h(d) ’tﬁn m(ﬂc))ﬁm(ﬂa'n

, Proof: Thisiszhem«outd&ydwrt‘somthdomdndmmm,audwe; 7
- omit the standard proof. B

RO 4
! .
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~ Lemma 4.5 (Park [511): For any a¢CF* and tery ’C( )ﬂ, tf’Mﬂﬂ)ﬁm(d)
then m(f"‘(ﬁ)ﬁiﬂa) |

This is Park’s €513 Fixpoint Induction Prmcm

Lemma 46: For every g, @y,-€CF', and term T( X) o m(uohd and i fmthermou
fot all i20 ‘we have n«u,qﬂ:ﬂfﬂaiﬁ then for atm&, m(-i'mu( eé"(m

Proof: By induction on 1. for 120 we: have m( dﬂtﬂiﬂt@ﬂmf t(fam?) =

(U™ n=0 ™ f"(falu")))~m( (). Assume m(a,)mt"fﬁh so that by Eemma i
m( t(ai))cm( t(Tt*(£))). Thus we have m(am)crg(t(a‘))cm( T TX( j))) However, ‘

.one can show by induction on the siructure of €. tharand S(U m?"(jdbe’l)l =

UTzp m(T(T"(false?))). (This folows freny the: contisiiity of X 'over.the domain of
binary relations; cf. [5). ‘We niote that this would hot have beew troe in goweral if CF'
would have allowed achieve programs:of the form Pz to appear I the tdims) And so we -
have m(ajﬁ) < Uml m(t“(jalu?) )=m(t*(f)) l

4.3 Axiomat!satian of GFBL. _

In this section we present an amhm:ﬁy mm system R for proving
the A-valid CF'DL-wffs; as a corollary, of course, R is arithmetically complete for CFDL
too. In the sequel then, A is any arithmetial uuivem, and we adopt the same
conv,entions regardlng formulae with appeaunas “of R n, ,...’htﬁ‘%&tlﬁh 3. Mso ‘the

"achieve" program correspmdlng to tbe L-Wff Pfﬂ Z 2'7 w’ﬂl be ed by P( n)Z,

COﬂSldel‘ now the foihwing axiom system R for CF'DL.

Axioms: o
(A)-(F) from P,

(K) PPIQ= (VZ)P(ZZ) 2 QG) forl-wifsPand Q,
(L) (P> [t*(ﬂ]Q) > ((PAR) :![t"(f))(QAR)) " where var(R)Nzar(T)=d4 ,

Inference Rules:
~(©) and (H) from P
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(M) 257, 3 mvé)mz',z)
M‘z:,"(,)

,z=z=tc*wmz.n> S L
(M) P(aZZ).2 SABNDNIIE, o, PG

e i

P(.,z, zZ) s <ém>z:z'""

picme o4

Provamut;&mkisdm:sm TQ!!__ PSOR X .,'[Vk'fsmn!“a@ﬁibm
“carrying” nmammwmmmmwmax We now
establish the mmmﬁmﬁdwmﬁ} LRy

Lcmm 4.7: For any L-wifs T M P(7,Z‘) CF’DLM&&,{MS,M <(X), the
following are valid v

1) e ENMET) 2 T A R

(2) (s2 usmn;.am.:mxw mf(l)nm(t)"

i“bu‘\,"‘
iy

Proof: s:mgmfmrd fm the: m L l' '

Lemma 4.8 For any- ummi&.; & km%@ rht LemariTho M
my(ZeZ = LAPAIIPIZ Z5), then, ru(-_;;_‘_; RIENAMZ 7))

Proof: By 7%4#(1)ﬂ hypartust

principle(LemaLS)an(f'w 1 A RGN ERANRETR ik 115 118,
precisely the conclusion, 8 | » ; TOUMED T

Lémma 4. 9: Fer any L-m Pm.@)*mmq‘mm}mmm

- Proof: One can show that A*FTO,*Z,!‘? Wﬁ
Furtbgrmqu by T 3!;
 m(P(n+1)? ):mmr(ui*}'i
- Thus, m»g m&),ﬁm MaYe.

b 2% -~:~;w Aers & “‘ffg*&! Crwerrni ] VLB acaNa
x LA S - Laan =
capwed e Rl TR e e

O
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Theorem 4.10 (A-soundness of R): For any CF'DL-wff P, 4f 'i"ka? then & AP’.‘)
Proof: Follows from Theorem 3.6 and Lemmas 4.7, 48 and 49, ‘W
- Again we will. apply Theotem 31 to prove: the aritfimbtical tompleteness of R, bat
we are required first to prove the appropriate bx wmmm
These will be estiblished with the aid ot~

Lemma 4.11: Thefauomngmdmveamcfﬁmzm»msm(m and(zﬂ)t =

(M) Z'=Z:[t(PZ)3P(Z’,Z) g usrﬂw

RoLE*() T

(N') P(n+1 7 7-) 2 <l P(n)7)>7-7' wcoz z*) n::a-mn)zm

(S ik

=<c*( mQ

Proof (M'): Assume FR(T"Y o [t(P7)]F(Z',7n We w&y (M) to cbttiﬂ
FR(Z'=Z > LT IMZ 7). Uuing dxion (L) ﬂte*g(m A

(VI P2, 7) 500 ) > [eAUPIZ,Z) A (VEH(PT, m:o;"m) from

which we deduce (V) (P(7,2)205). amﬁ T by andoen (K)
and’ the'décond -assumption: the: cohdsion m s
(N'): Simitar to (M"). '

Note the similarity between rules:(1') -and ifﬂxﬂm&'lw'm@gm, and (M)
and (N') on the other. Here too, for the [£%f)J mwammmg,mm what
we might call an "invanam P under the application. of T, mﬁ ?;getmen Rand Q in

the sense of Rorp” ‘1Q. For the(t“(ﬁ)cmmm eamm themunb:rofapp&cmom
oftmkrmwkmmmamwmﬁ’ )

We now show ttm tule (M‘) can indeed alwzys be zppund when m camlusion ls A—valld

Lemma 4.12 (Invariance Lcmma for CF'DL): “For every tetm T(X) ind CFDL-wfts R and Q, if
&, (RSLT¥(£)1Q) then there exists an L-wif P(Z,Z') with Zzpar(T), such that

F A (R3LPZIQ) and ¥, (Z=Z = tx(P2)IP(Z',Z)).
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Proof lmpued by the way Theorem 4. is provad is the faq that there exists a first.
order formula of arithmetic P(Z,Z'). chh repm the pra Xam t"(f) in the sense that
m(PZ)=m(£*(£)). Certainly then, by the assumption, we have b ofRAPZIQ). Alsa, ms
" noted in the proof of Lemma 6, m(c(t*(m)m(f*(m, and iﬁ“n have m(t(Pznr-fm( ?d),
which by Theorem 43(1) s by (Z<Z 5 Te(PiyIP(Z2)).

T heorem 4.13 ( Box-completeness Theorem for CF'DL): For evety aGCF' and L-wffs R and Q, if
S l'A(R:[aJQ) then FR(R:&JQ)

Proof: The proof follows Theorem 39 precisely, but um Lemma 4.1“2 and rule (M')
instead of Lemma 38 and me(r). f ‘

Lemma 4.14 (Convergence Lemma for CF’BL) For every eermi‘fm and CF‘DL-wffs R and Q, if
E A (RXTH(£)5Q) then ‘there exists an Lowfr POR;ZZY) suckthat S

b\ (P(n41,Z,Z) o <t(P(m)Z)>Z:2), FAP(OZZ), s b*(lnluiP(n)z>Q)

Proqf Again, by the mqelmd u;ad in ;he pmaf of Thmem 4.;, rthere exm; an I--wﬂ‘
P( n,Z,Z') representing t“(fdu?) in the sense that. for avery-n.we have

m{P(n) ‘)ﬁm( ﬂ“(fuu!)’) k is easy to see that all: mmvmm
hold for P. 8 ! ,

T heorem 4.15 (Diamond—completeness Theorem for CF'DL): For every aGCF' and L-wffs ll and

Proof: 'Precisely as Theorem 3.11, but: uﬁng Lemma 4.“ and mh (N') ‘Instead -of Lemma
3.10 and mle (.l‘) SRR ‘I

Here too we conclude that for CF'DL-wffs, A-validity md p’tonbﬂky iﬂ\R are
equivalent concepts: '

T heorem 4.16 (Arithmetical Souadnus and Cmnpm for CF‘DL)a For evcry CF‘DI.-wﬁ' P,
- By P out kP

Proof: One direction is Theorem 4.10, and the other follows from Theorems 31, 41,
4.13 and 4.15. | |
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We remark that the Tad part of R, in particutir the derived rule (M), conveys

_ the essential ideas appearh‘lg‘m the axtom systems of T193 awd 1233 for’ 'ﬁmiﬁg the
. _partial cotrectness of recirsive programs:: We have csstntiilly ‘sowsy that the: central

- idea in 'these axiomatizations (refeved o in [23] as.the. “freeaing of the yariables”
method) is in fact a rephrasing of Park's [513 induction. mmu ma ]ogk:ﬂ framework.
Rule (N) for <T*(#)> is very similar to the rute in T63) for mme total correctness
nf deterministic recumve programs. . :

The results in this section indicate that reusonm; about ™ pure recursion is
analogous to that of reasonmg about regular ones. Here we are using | the integers to
_count how "deep” we are in thwmon (mngP{a) '), whege ; forq"‘wecountedhow
“far™ we are in the iteration. Other than having to devise the P machmery, there was
. wo real.-difficulty -at: this point in extending the methods of Chapter 3 to recursive
programs. In Chapter 1, though, a mmdtﬁbmmbm necessary. .

An interesting remark, ‘which we do not efaborate upon ot Justify farther here, is
the fact that the proof method for formutae of the form Ro[aJQ which is incorporated into
R boits down to Floyd's U113 inductive assertion sithta widt 16" Matrss and ‘Wegbreit's €351

" subgoal induction method Tespectively, when regular Program: we trirstated ‘0 Tecursive .
ones via the two metheds: appearing-in Lemms 4l MWMWM
~ two methods shows up nicely as stemming from twé:dual ways of viewing a®. :

4.4 Mutual Recursion.

In this section we briefly indicate how mm.m,umm of Section
4.3 to the case where the programs can be mutuallyrecursive. Specifically, we consider -
the programming language MCF (giving rise to the hgic ucrm), which is the set of all

simple-closed terms, ke, T B "’poT

We do not provide here a precise definition of m(u, X)X, (tl,...,t )),

‘but ratherasstiné that tive reader is fanviltar with the standard-définition of 1t (cf. [3)
or [261) as the i'th component of the least solution of W# syshém of ‘rejitional equations
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Xy =yl "1'-»""’

x = t (Xl‘*,x“)’
where the ordermg on the binary re!atlons is that of set inclmion.

The axiom system MR- for MCFDL is WAﬁWw R. Axiom (L) is
rephrased for a general p-term as

(1) (Pu K3, I0) > (PR > oy (12 HQANY,
where var{R)war(t u.ut )=, |
Denote by " j(l,a) the prognm

ijl--x —lxid"'x (tl(xp-s -lrutxplr—’x )ﬂ-r‘r'-;c (xp--: -p‘ xt...p“-’x ».

[ (i,a) is the program g jxl"'xn(:‘l""t ) in which the £t *pecs mm :
replaced by the prog‘rm «; wherever a ctll“ u mwma pmadure, tn whlch cue t‘
is to be executed a is exetuted istead. © "

The rules for the recursive constructs are

(M) Z=Z .0t () (1,P2) ;1 (1,P7) P2, 1 (1,PD) o (1,PE)) IP(Z,2)

257, 2 D0y X €y Ky K ) € KX VI 2)

where Z=var( tlu..ut"‘ ),



(N) |
P(nel,7,2) 3 <€, uy (1, P(R)Z) ey (4, P(n)zhﬂm?z*;imﬁ,mn)z‘)..-.u,,(l rmA»zT |,
POLE) | ,, , |
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where l:mr(tlu...ut ) and nf nr(tlu..ut ).

ltshwhbemdthumﬁmhsﬂmmmemdkn

One can nowmmrm byadeWmmmeM '.

Theorem ﬂIZFﬁM -MOFDhowil P, . akﬁ R ‘ﬁ *’m? o

We remark that ruk (N’) m febwwr mm
correctness of roeumvc programs.
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PART II: Computation-'l‘reo Bmd'Log\ics.

5. Computation Trees,_ o
‘ Total corrm:ucs and quknt Pmmlitions.

Up to this point we have been devehptng mathemgucalémls, namely the various
dynamic logics, which enabled us to write down and | pron r ‘”(vsformulae which made
_ assertions about programs. Ih Section 2.2 we commented to thc amnt'ﬂut some. .
conventional properties of programs which have inmuive(y plwﬂble meanlngs, luppen to
be expressible as simple fwmulae of dymmlc logic.

In this chapter we show th;t an impomm pgoperty of gpregram, namely its so -
called "total correctness”, does not have a strai ht ward inty meaning, and that v
its definition requires careful analysis of the notion of "executing” a program. In Tact,
the definition of the total correctness of a pmzrwm: upon the particular method of
“execution one has in mind. Consequently, it i§ nu at all clear & priovi whether this
praperty of a program can be expressed- in dynamlc logic. "An upshot is the fact that the :
closely related notion of the weskest precondition (wp) of a program, aithough introduced
by Dijkstra in [13] and used. extensively in the tmnture, hu not reaelved aproper
definition in [13] or in [14]. The objective of this chapter is to clarify, and to preclsely
define, both of these conccpts.

_ In Section 5.1 we motivate and introduce the problem. Section 5.2 contains a
refinement of the binary relation semantics for our program ming lgnguage RG, using
computation trees, and giving rise to the two important mqepuof diverging and
fatling. In Sectnon 53 we introduce four plausible ‘methods fo éiecutlng

nondeterministic programs, by descﬂblng four methodxf tfavming oomputation trees

in search of a final state. Thc mal comctum of a prognm is then ﬂefwcd as being
dependent upon these methods. in Section 54 ‘e use ‘)t!pm iqm to define the a
corresponding weakest preconditnon which simllir_w depends onk'gxecunon methods, and tof’_
analyze each of the four resulting wps as to whether tbey utis( r{ﬂw p,rppemes required _
of Dijkstra's wp in [14). We find that two of them do. Then, in Section 55, we define
the guarded commands language introduced in [133, and carry out a formal amﬂysis aimed at
showing that Di jkstra really had in mind one ptrtiwlar potion of wp, which corresponds
only to one of our four execution methods, namdy dw-ﬁm qetrch wjthout backtucking.
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5.1 Motivation.
Let us look at two examples.

(1) It is easy to see that any DL-wff P(a) involying the mm«variublea has the
property that P(#) is equivalent to P(#") in e»my state, um l 1s cﬁm to be (xe«e)
and #' to be (x+eu (y~e iflse?). This is: use mif ;

like tobcable msmeehmw‘u exetmed'by m f
components of the U connective and exeeuﬂng i, the %K\(r-e‘tfcln") happem m be
chosen this “execution wifl not minm ' -

(2) Simitarly, P(%) is ahvays equivalent to P('), where « is.taken to be
(x+e) and 7' to be (x¢e;(xex)*). Here too M(‘I'hm('{l but we would like to
be able to state that #f (xex)* is ‘executed by the vable
at each stqp either terminating or exmlﬁnt Xex, a

. * - ‘H“T’A" :";‘*i":,?f",.;'~:,‘-\ § o )
XG-x’ < J

then there is a pessibmty of never cheomg to termimtt md hcuee ezecuﬁng XX "for )

GVCI‘

We would like to refer to the phenomenon illustrated by enmpk (l) as afcaurc
and to that illustrated by (2) a2 ducrmce. ,

lntyitlvely, a failure lndlcates reaehing a false mt m no tmmedme '
alternative at hand. In exampk (1) above, n order t;o wrydnthe afternative x+e when

faiture. Howfevcr, ﬂte if P then @ cl.n 8 mmt
2.3 4) should not cmtain a faikme a

what is more pomlhl‘l}‘ C&M an "ﬁm f p" ;. L
termlmte 'fhue two eoncapts wiil receive fort ‘
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true, then "no matter how « is executed" (i.e. "no matter how choices are made™) it is
the case that & will indeed terminate in a state satisfying Q, 5!: might seem plausible at
this point that we would want this definition to be such: that B.and 7 are, but §' and

%' are not, totally correct with respect to true and. true., ‘ln other words, it might

seem that the possibility of either diverging or failing/ render a program not
totally correct. We will see in Section 5.3 that this kiu the'case, In Tact, we will

show that the four possibilities obtained by having the pm of a dtvergence/ failure
affect / not-affect. the total correctiiess of A-progrim, éorress 3 ‘ it
different methods of extecution of nofideterministit’ Wﬂﬁ&

~ We now set up the technical machinery we need.

5.2 »-Gamputaﬁén Trees. Diverging and . fﬂﬂ!’ng‘.

ln this section we introduce the notion of the Impumm tree'of a program a, .
denoted by ct{a;,J). We present some pmperém ‘of compustation tr!é'l"md wm pammhr
show that one might view computation treés as. an ‘dlternitive Sevi for thesetof
regular programs RC, consistent with the binary rchthn mantks. The trees however, n
addition to the input-output information, mmﬂchm*fﬁrﬁimmw contain *
‘information regarding the presence or absence of divergeme: a\d m\ures.

Each node of ct(a,J) will be labeled with a state in I' or with the’ symbol F
(denoting failure), and will be of outdegree at most'Z. The rodt is Igbeled with J and
nodes labeled with F will always be leaves. The intuition is that a path from the root
represents alegal computation ‘of ‘@ starting in state’ 3 )\Wﬁy,’i Jeaf" rqmm a
termination state if it is labeled with a state in I', or a failure if it is labeled with
F. Any node with desceridunts: npresent: an mm state of .. [f'a nbde has two
descendants then there is, so to speak, a choice is Yo oW t6 "continue execution®.

A node will be represented’ by a piir (1, l); Mm!t is a‘ finite s‘tring over (0 l)

example, the tree



is rqpre#ented a8 {(M&,;QJQ;,&L}’E,(%¥MJWL umhml,mm .
string, marks the root of the tree. By convention, a singie dexcendant. is. marked as
"going left", ie. by 0.

In order to define ct(a,J) we first define a preliminary m'pa(a,J) in which
every false test will be indicated by a failure node. ct{a,)) will then be obtained from
pct(a,]) by deleting mmmmmm s.an: inghediate nan-failare:

Formally, for any J€I'" and a€RG, we define, by induction.on the structure of &,
the preliminary. computation tree pot{&,]). to he asubset.of {041 x (I u {F}).as
follows, where we use | ta.range over (I' U {F]), and s, t,,‘mm over. @JE"

() parlxead) = {(0,1),(00e,/510),
(LD} i P
(2) petPBD) = |
. {%F)} i Je-P,

4 m E= uc.z)em-,.tn 46T A (Yhel0 D06 cmmmum,
S : and ht Gs= MQA}F& 'l’hm i H

pet(aif, 1) = Cu uu,m(az}uc,:m A (3,1)% ,;wu, ._
() pet(a®,2) = pet((erue? u asa®), ). |
Note that clause (5) might give rise to an infinite tree.

Now obtain ct(ea,]) frc;m pet(a,]) by deleting some of the failure nodes as follows: for
any t€{0,1}* and J¢I', replace every pair in.pet{a,J) of the form (t0,F), (¢1,§) by




()

(t1,4), and of the form (t1,F), (10,§) by (10,§).. Thus -we ave ignoring false tests which
occur as a component of the U gperator, when the other ou’m‘ponmt is not a false test.

Examples: We describe by means of simple diagrams, some eomputation trees for various a.
In each case, whenever they are not identical, we glvqhqh nﬁg inary tree pet(e,J)
and the final tree ct(a,J). In all the examples J is somi 'fixed state of the arithmetical
universe N, for which x 40, ajid in the diagrams we let § genote the state [1 / x3J.

« , pet(a,]) ct(a,d)

x=07;xex+1 U x<27;xex42

x=20?;xex+]l U x90?;xex+2

x=0? U (x=0? u x=07)
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xex+1;(x=0? v (xex+1;x=17)) 0 0

(xex+1)*

(x<2?;xex+1)*




(x<2?xex+1)*;x=27

Tm,xmmm%llhf‘wgth?%‘vaﬂduv -
and whtlcsl? de 8. (ummi »mm;mw m;hwm-mm s
insidcﬂof‘r e 5 gt AR

Lemme u, For emy «€RC, Mwn and J¢T,
(1) thereisa unique node (AJ') ln,ﬁ( ﬁ., ml‘y(f}) e
(2) for every t¢{0,1}* there is at most one node in-ct(a,J) of the form (t,1), |
(3) for every t€{0,1)* and be{0,1}, if (&,!)MGJ) then (t,ﬂga(a,l) fOl’ S
some J¢T.

Proof: Omitted. : ]

Thus, for every @ and 1, ct(a,]) is a nonempty, pessibly infinite trge of finite
outdegree with nodes hbka ' Mi m of W{F}). Nodes of

(t1,1) are called descendents of a node of M 2 (4,9), i

is called a leaf. By Lemma 51(2,3) ail nodes Mfﬁﬁﬁ“ﬁi feaves.

We now show that computation trees subsime the anmncs of Chapter 2.
Theorem 5.2: For any a€RG, (J,§)ém(a) iff ct(a,d) hasa teaf Tabeled with J.

Proof: By induction on the structure of a. Denotéd’ bY I&‘m%& “' 3¢’}; ard by
s(a,]) the set {J! there is a leaf of pu‘fa, el w1 W Brove first that Ja
= s(@,J), and then the resukt follows by mmmmm fm pct(a,J) to
“ct(@,]) does fiot delete any MM cOEPIIOR 1 th ﬁtﬁ%ﬁ’ﬂ |
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For an assignment, we have J(xve) = {[e, / x1J} = s(x«e,1). For a test, if J**P
then J(P?) = ¢ =s(P?,]), and if .ﬂ‘? then J(P?) = {J} = l&”i‘)

Assume Ja = s(a,]) and Jﬂ = 5(8,7). Cerm:ﬂy thai by definition of
.r.—{(t,gnses(a,gn Gmmnﬂy,mecmmﬂm a(;;l,.‘l) z
(Usfs(a J))G(a,S) s (Uyﬂya))a’ = {3" (”}(w A M) = J(a;B)..

Similarly, one can show that s(a*,J) = U ,03(¢ ,3)* U J(ln) = J(ﬁ*) |

It is therefore the case:that, with J rangiog bverf the leafs of ct{a,]) which
are labeled with states convey the input-output information contaihed in the binary
relation m{ea): Nete that Kithis Franewoiic TR Pl alistiRs>Mhe eivtévie iy e, 7) of at
least orve 1esf: Litseled with ' Jtilte Whitl:iathFity P:- Siady, JPERP wsterts that P |
holds in any state which labels a leaf in ct(a,]). However, ct{®,]) contains mach-more
information than is contained in m(a). In particutar we pow Mm, for wery program
a¢RC, two Boolean constants loop, and fail ;. wiidht sve s ‘vl etié v

being true in mtehfruwa b ‘*MW

Formal?y, we define

JFloop,, iff ct(a,d) is infinite, .
Jefau, it ct(a@,J) hasa mm with F.

lemma (see [31]) to

'Note that, ct(a,]) being of ﬂntte wm ‘“Clﬂal ! L
conclude that in fact JHloof, T there exits an inftnbe park tro th
there is an lnﬁm;e mmm of Mﬂ lﬂ a(q,Jf gt

0, (o2, (byog,dg), (g3,
Hence the term "divrrgenx';gf'.

'An interesting problem is that of detemlmng ‘how hard it is to decide if a
program diverges for unmpmed ﬂmqm Fmﬂr

Open Problem: What is the degree of uﬂdecidahimy of &he m of valid formutae of the
form P::loopa, where P is an L-wif 7




M

We now prove some praperties of>loop,, and faily which. will be needed in
Section 54. However, the main logical treatment of thue eonoepts wﬂl be glven In
Chapters 6 and '1 . ‘

_ Lemm 5.3 For any Q,GERG thé foﬁawhg m vwdt '_‘ i

(1) loopa ﬂ x (loopav<¢)loofp)
(2) fail. a;p 2 oty v<a)faila).
(3) faily > fally.g,

(4) Calfalse > (faa v loopy).

Proqf: (1): Assuming JNoop“;a consider an lnﬂnite p;th from the root in
ct(a;B,7). It is easy to see that either that whol!pa&h s g(c .ﬂ.orl
finite initial segment of it does, and the rest (i.e. an infinite patb) appears in
ct(B,d) for some J¢( Ja). anvem;!y an infinjte. path n either q(q,J) orin
~ct(B,§) for some 36( Jn), yill qlway: ;how up ln-a(u.ﬂ,]) , ,

(2): Comtder a failure in ct(a,ﬂ,J) and asmme » that .ﬁ"’fw md
SF-fail for every J¢(a). “The F-node in ala;B, D w in pct(u,ﬂ,.”, and |
also in either pee(8,]) or in ﬁct(ﬂ,,) for some $¢(Ja). Homer, for it to have been
-~ deleted in the process of constructing cf(a,J) or Cd’.”o i had to hl" appeared (wig)

ina subtree of the form

This subtree appears also in pct(a.ﬁ J ), and the F-node would have had to be deleted
from it too. . v , ;

The proofs of (3) and (4) follow similar reason mg,andm omitt ed B K| |

Note that a counter example to the other direction of Lemma 53(2) is obtained by -
taking a& to be (true? u xc—l) and f to be x:l? When xfo we have (J J)Gm(c) md -

Jl‘failﬂ, but JF-falIa
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5.3 Execution Metheds and Total Correctaess.

In this section we define four algorithms for traversing the J-computation tree
ct(a,]) of a program a€RC in search of a final state; Le. a Jeaf of ctf(a,]) of the
~ form (1,J) for some J€I'. The algorithms will owtput.this state §.. Fhen.we define the
_ notion of total correctness of a program & with respect to wput-eumut cmditlom R and
Qasbeingdependentupmtheme&ods. ‘ :

We use informal terms for describing our algorithms:

Depth Search (D): Starting from the root of t{a,]) proceed down the tree by moving
from father to son. Whenever a node with two sons is reached ome. of them is chmen

nondetermlmsticaﬂy and traversal continues on ix. 'I"he m mmlhates when a leaf‘ is
reached ; its Libel is takéd as the'result.

Note that if Jkloop,, holds then, using method” fﬂ) lt mm Be the case that the
particular sequence of choices madeé slong the way y ‘will result in the tnverhl proceeding
along an infinite path ( divergence of u) anq hence mver tcmunaung Msa if J#faa

holds, then that :equem:e might rcwlt in the trtverst! afrlvmggat a fatlm’e leaf and
thus producmg F as the rewk '

Depth Search with Bachtrccktﬁg (DT): As in (D) the &!‘férém being that if a leaf
labeled F is reached the procedure backtracks to the mdst:recent choice point and tries
the alternative. If that has already been tried it bamkm:he next recent one
and so on. lf the tree is exhausted this way executihn’teﬂmm with F as the

: result

Note that here tdo, J#loopa implies that the traversal might continue for ever along a
divergence. However, the existence of at least one non-F leaf {which can be asserted by
JE<adtrue) guarantees that even if JFfait olds the traversal will not end with F as
the result.

Breadth Searcln (B): A nonnegatlve integer k is chosen uondetermmistically Startmg .
from the root the procedure moves down the tree from father to son. Whenever a node
‘with two sons is encountered track is kept of both akernatives by working in parallel,
When any leaf is encountered its label is added to an initially empty set RES. When
" depth k of the tree is reached, or when the tree kas been exhausted, RES is checked
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for emptiness. If RES#d. the. traveral termipates. and. an mtnf RES is chosen

nondeterministically as the result.. Jt 8584 mdmms hax.not yet been exhaugted

another integer k'>k is chosen nwdmzmm tically ag%thc.mute wmmucs as
~ above. Otherwise.the: procedure terminates w&h Easthe m o

(Remark: the mechanism d lmoducm; a chﬂqdmm Hlmmt in orqer to '
render each leaf a possible oytcome of the m%g imple brepdth -ﬁrs: mh
- would favour higher. Juvgs.)

Note that here if, thau _holds then. the F smhq; m gnd u,g being the result, as a
consequence of a particular choice of k-and of.the.clesient im RES. }lcms: A 2t Jeast
one leaf (F or other) is present, then even if TWjoap . hoids the procedure.is
guaranteed to terminate eventually because RES will MW at mmt-

Breadth Search with Ignoring (BC)S As in (B), the diﬂ'm hchg thlt if an F-leaf is

encountered the symbo! F is not added to the set IES.

Note that here, if at least one non-F leaf is premt, neither can the truth of lnop“
in state Jmumlnthemmmm,ﬁewﬂMMNﬁtéMJM
in the procedure producml as itsresult, | : :

~ We remark here that. nu feur mm: W fm Mm means 2 mmpm list, ..
. Qne can think of other methods, such as "left-first search”, in which the left branch is
‘always tried first: We foel,-however, that the four amwm the reasonable
- “fair” muhod: in which no. spadﬂe group ef Joaves. hmgwwtd over. nﬂm’&

We summarize the remarks that were made after mh mtthod was dacribed as
follows, where the entry 0 for a certain method under divergence (resp. fatlure) means -
that even under the assumption Jk<adtrue, the fagt thet ey, 4 eemp. JM.) fpids
can result in the procedure famng to pmduoe a ﬁnll state ’d‘ s its resyls

dtmpuc fsunm
- D 0 0
DL -0 1
B ¢4 t - 0
BC | R 1




82

. We now take a close look at the sought notion ﬁ%mﬁectmss. We would like
to define & to be totally correct with respect & an W idition’ N and: th output
condition Q if; Intultively, staring execution bf o i’ 2 m m‘wich“a 5 -true will :
undoubtly result in that exectition terminating i 4" 3ate Tn Whith Q+i8'trie. “Assume that
J is a state such that JBR holds. Forutebemiiywwm‘mpmtokmd Q
there ceﬁtailﬁy must &iﬂt /emﬁﬁwm %m s guisk thie Ihcadrrue
holds. Furtherinore, alt:Such. lafs aré v i R e lbf‘Wﬁitofﬂwar
procedures described abeve. Thm we requm ln adw that evély ‘ate with which such
a leaf is labeled should satisfy Q; motlmmamMMtohold It is now
quite ev:dem‘ ‘that in order for a Mveﬂﬂ, uiing: one of thé four tieshods, to be

guaranteed to Yernile j%wﬁn&&ﬂw%&m W have 10 Tequire that ct(a,J)
be free of divergentes or fiiihiires: EMWH‘;&‘ ’ ‘jj’[‘hmvebmdmgm!umn
for that method in the sbiove:tibh; £ gt T

We- thus arrive at mmw
Definition: Civen a umvem U, a pxcgrm aélc md fmm & am Q, we say that aits -

'D-torally correct wrt ltand Q tfﬁ ll && SMM WA Wh 3 Wi))a

DT -totally correct wrt R and Q f l- j (R 3 (<odtome: (oI wopy - Dy
B-totally correct wrt R and Q  iff ? (R > (<adtrue A Ecn A "fq!lla) )y
'Bc«-rmﬂyam mkand@ m‘ ﬁgﬁ@ﬁww{mﬁ it S ).

In the next section vie use %MﬂMﬁ! ordes to'defisie the mm of the
weakest precoridition: of i prisgram-aw if*mﬁwmw wmmmms
[131 notion of wp{a,P)

T

5.4 W e;kost Wham

The notion of the weakest preconémon nf a pmgrm « wtth respact to a post
condition Q was introduced by Dijkstra [13] mmﬁw mt

(*)  "We shall use the notation wp( aaQ) to denote the weﬁest gr&mduion for
the initial state of the system such that aclivation of a5 guiranteed to lead

to a properly terminating activity tnvingm :yihm in a firfal Jtate satisfying
the post condition Q." :
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Here "weakest" is in the sense that wp(a,Q) is to be the largest sct of states each of
which has the property that activatian of a un&ng froﬁ) thag sthte "ls guarameed to
lead to ... , etc.”, : . ;

Other than (*), there.is no formal deﬁnmon af wp(a Q) ejther in [13] or In (141
However, cm contains us@tﬁi&ﬁy*fmr erties t e &i uﬁsfy’

PL k (wp(a,false) l!fal.w) ’ ki

P2 if E(PoQ) then F (wp(a,P) o w;(c.Q)),

P3. .k (wp(a,PAQ) ¥ (wi &,P) A wi(WiD}Y,

P4.  (continuity): for any arithmetical universe A, if PA( Vn)(P(n) 3"("*1))

then F, (wp(a, ZnP(nﬂ '(fﬁ‘)(tﬂ’f,f( )1)3 Wharé nf. uur(a)

Our plan is to precisely define the m!tim opr(&{;Q) u bm depefident upon the four
execution methods or Section §3, ind thm o Ww m uim faur fesulting Wp's
corréipoiding 16 ARSIV 1Y sbd T do. However, In
the next section we introduce Dikstra s gwd«l mnds (GG) programming language and
show that, restricting ourselvés to’ pogtarris sl i NGHEE; iie Wmm bf vp whicﬁ
is conslstent with the way in which CC is deﬂna%mwﬁiﬂ oF
D, i.e. depth search with no backtracklng 'rm, M m are four mdependem
notions of the welkest préca “program, IR glrticaty %ﬂ" tf(é’Q, thlt

Dijkstra had th’mind in'€183 m&‘uﬁz D'}

by de Bakker T4}, Plotkin (s :
~ also indicated that one has to outlaw M inﬁnm WMW&
(failures) in order to capture Dijkstra’s notion of vﬁ.

L o =
BRI Y b

Defnmon Given.a universe U, a program aGRG md a fotmuh Q, the maluxt [mcoudtmu
of & with mn@a«smmwwmmm. ; o

p.

y ,'wrb(a - (WWAIQIQAM‘@W
wpprled) = o - Kedmwwea [«Waq ot ;,? :
wpgla,J} = A<adtrme ATaIA - ’f"’q}.
"'PBC(“ 1) s (<¢)a‘uhtﬂe rotn £ ). e

Certainly, by deﬁnttim, giumtmil,m& Nging. o D. DT, B md wo!
program a is X-totally. correst. wit ftiand-Q 4f: WM}L e e
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Note that all of our four wp's satisfy the informal dacﬂpﬂon (*) in which the word
“activation” is now interpreted as “activation nm execution ‘method X*. Tn aher words, N
we claim that

it is indeed the case that using method X, uﬂx(gtgj is the weakat
precondition which guarantees that execution of & m method X wm
zwstmmaummmo %

Let us lsee which of our wﬁs samfy Dt‘m;.pw PI;PL
Lemma 5.4: PI—P3 held for wpD, wpﬁ-p wham! um

Proof: Pl: Since for any X¢{D,DT,B,BC}, (wpx(q,Qb( Cedtrue A [aJQ)),

((<a>true A [alQ) > ¢aXQ),, and ((QW“"H )., y!iﬁw; Plcqp be seen
to follow. weommema;hmyudmmfufmmﬁn I

Lemma 5.5: Thereemum ukbmm unmm A, &m«!ﬁ and afommh P(n),
sueh;hatmdmmwm%w”, . . :

Proof: Take A to be the unmmeo{pmeaﬂthmu,m Pin) gobenzx .
Certainly for any n, we have. hﬁ(nzx 2 (n*l)2x). Take & to be. {xe0;(xex+1)%),

One can then check that KeC@derue and. bM mm a,mr"ma»(m)
However F odnlal(nax): d-um : s :

Tloeorem 5.6: P4 holds for upD and ”’D’l"

Proof Assume F Vn(PeaM?(ml)) Bemn ntmeea. ¥ h wmm that
(3n( wppla, P(n))) £ (Cadtrue A -vlonp‘ 'g[dl' A Zln[gF(n))) s A-valid Also, it is
trivial to show that for the sage season, so'is { kadP(n) > EalinP(n)). Assume now:that
JFal3nP(n) holds. We show that JhIndalPtnd: does ton By .ﬂ'-loop, -halding, we know
that cr(@,J) is finite. Consiier the set Ja = {§{ . Jaf}. By virwe of JHLalinPin) -
holding, there is an integer i{ ) associated with-agly F¢{.Jo)y 39¢ch that for any n, :}P(u)
whenever ng-—i( $). Since Ja is finite (by Lemima 5.2 together with the fact that ct(a,§)
is a finife tree) , taking: Emax gep 33,1@‘} . mmmmké we have
J¥(P(n)2P(m)) where m,u; ‘we-coniclade tHat m#mwﬂ
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For wp » it suffices to observe that under- the condition. nf var(a). we have that
(3In( wpDT(a P(n))) = (Cadtrue A ~oop, A Jt{c]P(n))) is A—valid The proof then
proceeds ex:ctly as above. o B ‘

Thus, we».;snmm,aﬂze as follows:

PIP3l 1 1. 1
P |1 1 0

T
0

and concu.lda that the properuu PI-PLQG m zlvc mm a v IQotjpn of up. there b
are at least two equaily plausible »deﬂn}thn&whigh saijsfy meu rties. We remark ..
that [13 included only P1-P3, and these are y&hﬁu by [ ug'fw; wps. [lqne: P4,

which was added in [14], can ‘be seen to be. equfv:'fint to mbm'that the ;mtrumu B
divergence-free.” Wahd [%ﬁ b“*essenﬁaﬁy shd‘m’ tfnt ﬁ&ﬁhﬁ 3 or ‘tf’iln* :"D’I Y
- satisfies PI-N ' B A

Foorry

R

6.6 The Guarded Commnnds L&n&mge (GO)

In this section we ccrnpkte our ana'y;ts of iﬂé nuﬂon of Witikest precmdltlom by
restricting ourselves, as did Diﬁmtra in (13, to'a wblihghage ﬁiﬁé‘lﬁiﬁuﬁe RC’of
regular expressions over assigivitents and &ﬁf% \siiviety o tie 1NgUage of gizrded commatids
(GC). We show that only one of the four. notions of wp, namely wpp), is consistent with |
the manner in which GC was alleged to have been defined in TX3J ,Sjmé wpD utisﬁgs P1-P4
of [141 too, we conclude that Dijkstra had been pruuppoﬂng ﬂm mgtbod D was to be used in
executing the programs in GC.

We define CC as a subset of RC with the same wmmics, as Touom-

(1) An assignment xee is a nmgrmm GC.
(2) For any &;f%GC and fitst-order tests P? and »,
a;B,
(P?;a u R?;8), and :
((PVR)?;(P?;a u R?;8))*;(~P A ~R)?  are'in GC.



Throughout, we abbreviate t&n hst cammct in f2) M to ( P‘? & x R",ﬁ)

One can see that inCCmdomappurasmMthmngmbm
only as guards preceding “real" statements. Thus, in the akernative construct (P?a u
R?;8) (written IF Poa || R+ Fl in [13]), either & or # is execunmido@epencing on whether it
is P or R which is true. if both are, then one of & and § uchmmdmmmmxaﬂy,
and if neither is then.the statement fatls. Thus this enstruct ds:k:wondetermisistic
generalization of if P then & els¢ §. Simitarty, mwmfm = R%;:A)
( written DO P-e || R-ﬂ OD in [13]} generalizes uwc P do a

In [13] the language defined is seemingly somewhat less restrictive. For example, -
(P20 U . v P Tiar ) is-aflowed for any w0, Wwwmwm
is eqmvakm to (P’;u UW‘) Mwl ,‘lu '2 A ﬂ" d ’? :ﬁ f"'l? '1 u
(Py?ey u P3 ,a:,‘)) Ahu, Bijkstns skip md Mmaﬁ bewrmen as
(true?;xex U true?;xex) apd (fcgn‘i,x«x‘u?pf %ea) respectively; thus, CC can be seen to

' be sufficient. (Remark: abort was described in [14] as being & stasement that always
fails, and so is written differently fram the statement (M,xvx » trie?sxex) ‘which
always diverges and which we cail dlwrge)

In [13] and (141 tbe semantics of CC was defined amkg the (mfmay described)
notion of wp{@,Q). We rephrase these "definitions” as fegical eauiy e that
a candidate of ours for %Mﬁm Mfﬂw v ‘ﬁc m my stau. As we
shall see, only one of aur four wp's satisties them ; lﬁ ;-,., es are:

vm.. ) wp(sup, Q) £ Q,
D2 wp(abort,Q) = false,
D3 wplxee,Q) = Q : :
Dé. wp(a;8,Q) = wﬁ(u,wp(ﬂ,Q)), o h
DS, wp((PauR2:8),Q) = ((Pvnu(?m(-,m) A(Rawﬂﬂ,Q)).
D6. wp((P?;a » R7;8),Q) = V,we(ﬂ"), o
 where Ho (+PA-RAQ,
and . “ R (%vsﬂ(ﬂmvgweﬂa)' :
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Lemma 5.7 Dl D2 and D3 hold for wﬁD, "’Pm" wpy gnd wg‘c

- Proof: DI: For skip, defined abovg a (lm’.;*& U M?»!“"Q we sertainly have N
B<shipdtrue, and simihrly, for any J&" one m see mm( :Efg,,ﬂ, s free of tgmum =
and is finite. Also, [:hlp]Q = [mu",x‘-x]Q = (x‘-x]Q L Qx L Q Thus Dl follows.

D2: <abort>true = (<false?;xexDtrue v <f¢ls¢",x¢-x):m) ) Wsc A <x¢-x>tru¢) ' faln, |
~ and thus since for any X¢{D:DT,;B,BG] we hm ugx(m,e) 2 4«:&:&, we.obtain DZ. - -
D3: Since we have F((x*—e)mw A -'lo(afa,"_e A M,_e), we oom_lude t‘ha‘\t, |

for-any. X as above, upx(x«e&) s {xbsBQf'Q': S e

T’heorem 5.8: For‘@ach o£ '#DT' %m W m% ‘
D4 is not valid. 3

Proof: Take & to be (true‘";x*-l U true?;xe2) and Qto be trus.

DT Take 6 to be (x-l",xt-x v x=l?,x¢-x) The Ieft hund%af [M for tb# mu -
((a,ﬂ)trm A ~loopy . A [a;Blirue). All three conjuncts enftairdy hold in

any state JEN. Howismiy the right-head.side ts Ghadfuen~aope A -
Cal<B>true A [a]-‘loopﬂ A CaXAltrue), and [aXMtrue dowww inany

state J€N, since for any such J, we have (J ,[2/ x]J )Gm(fk, W E!‘/%”V’fﬁlﬂ“

B: Take B to be (x=1?;xex g x=1?;xex). smwwwpm cuse: muﬂ see
that Fpwpp(@;8,Q), but CaXBtrur is not satisfied by any state ?R’N stnce
Nt / x1J)€m(a) hoids, but [1 / x1J¥ <B>true.:

BG: Take 8 to be any one of the above two. Th: m:toftherpmingﬁiulmﬂar i |
In order to show that D4 holds for wpp) we need the fdbwing‘
Lemma 5.9: For any a,8¢CC, Flfaily g% (faily v (a)fatlﬁ))
(Remark)this lemma should be contrasted with Lamma 53(%.3) and the remark foﬂowlng
‘its proof.

Proof: Having Lemma 5.3(2 ,3) at hand and mﬂng that GC £°RC, 'all we"have left to pme
is I‘((a)fat(a ﬂ’ for ,aeca ‘Tndeed, 'thie ol Why' thete can be a Taltufe'n
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ct(8,d) for some J€( Ja), sueh that that fallure dissppéurs in cr{a;8,;]), is.in the case -
where ct(a,]) has a leaf (1,§), the ancestor afﬁichhu mmm which is not
a leaf, and’ funhem:t(f hs"f’"": p {ly,F1). Yolieier, vi'c '
no progf:m ﬂ(m fer wﬁﬁ:ﬁ‘ ﬂj’f ii i singieton. ’¢ "

Theorcm 5.10: For any a,&GC D$ holds for npD.

Proof Expmﬁiwg“gwu %@ﬂ#w“ QW&{’T QA stoopa.,

~fail ﬂ) and similarly w (a,wpp(ﬂ,Q)) E (Kadtrue A W A faily A [a](ﬂ)tnu
A [a]-vloop A [awaatI ‘A TaX#X). ﬁl«mﬁi,ﬁ bie divéction s séen to fol
immediate!y Assume now that .ﬂ‘wm(wm “Using Leérniwa-53 and Lewmnm 5.9 for dealing
with the clauses involving luop md fdl, we hwe only to show that Mc}(ﬂ)mu hotds.

This follows from: ¥fal: %Mﬁm & 2o

We now cohsider -DS'

.Lemmasn For eachoprm-, wp,mdupm,ﬂmuuuawm (P’,cuk’,ﬂ) |
mGCsuchm:Dstmm e o o y

Proof: Take P, R an&waetM m«mmm;
DT: Take B to.hetabort,- . - =i ove IS S
B:- Take il %b@#m& | WAL P wage sl ;ltmf’..‘;:» e BTN
. BGC: Takeﬂtoheeitheroftheabove.
n each.case m*fmmmm o e the. righ me is ot even-
satisﬁable. We_omit g&mdgujk. L

Wh A ARG

- Lemma 5 IZ For any a,ﬂGGC DS hoids for af.pB,
Proof Straightforw:rd using Lemma 53(4) and m 59 | g
We now consider D6:

Theorem 5.13: For each of upr, upB and wm, m«m a mnm (P?,a = R7;8)
in CC such that D6 is not vdid. L . .

. . Proof: Here tqo, there is a gcmral structure to ¢ E%’W mﬂwﬁu Ve present .
them for each case but omit the m;ow, but straightformasd, detpils mm in, proving




SESHATEE: s L L S .

89

the claim. In each case, however, one can show that in any st;pgeu such that x -ﬂ, the
left hand side of D6 is frue bu the rjgh; hand. side is.nat. In f:ct, the clause. CP?.q U oo
R?;:8XP?%au R? ,p)true! which shows. up i in H of the rggg-t hand Me, is the clause ulhicb
is not true in J, and which falslﬁes H for my Iz2. HG and Hi cln be &wcked

manually to be false in .T

Deﬁne Q to be true. Taking vy to be ‘the | prognm alwt “the the DT Case, dum‘c

for the B case, and either of thesé for tﬁ! BE case, w&m«y pmgrﬁm ﬂ” H. ™ R?,ﬂ
to be ((x-O",xc-x+3) * (2zx7 x+-x+1 ((x=1?,x!-x+l) v (xv‘l? 7)))) -

RERNIO

Theorem 5.14: For any a,B8¢GC, D6 holds fer wpD.

Proof: For simplicity, deniote by # the programy (P’,a v Rm, and by *w the program
(P?;a x R?;8). We note that for every J such that J"vfn( "p.Q) holds, Jh"lﬂ’i‘*’,}

holds, and thus the tree ct(*,J) is finite. Note gtm under. tiw same assumnnon, mh .
leaf of ct(*x,J) is labeled with a state § such that $¥(~P A ~R), and also f#Q.' We now
show that for every J€I' such that Jl‘wﬁD( 7,Q), we have, Mk’ by indodion on k, where

k is the depth of the tree ct(*x,J).

If k=0 then ct(*»,) = {(x F)}, Jl-(-vP A R l\ Q) s0 that J#Ho.
Assume that -J is a state siich.that k,.the depth: of 24(%m,3) Wigrester than:0, and -
assume shat Jrmpg (", 7). Asware also that for- ay-state-§-such;that the depth. of o
ct(*x,J) isk' and k'<k,: i &wpnth,ﬂ hmm»stmm Neuww that Jbﬂl
by’ showing that Jhcwmk -+ Thisis:sufficient bicwuse siice o 3¢,7) Wifatlure<free = *
and its depth fs not e, niﬁuscbe me case thit ﬂ«ﬁw i‘tsﬁ ﬂf "o JP*M?,. lﬂd Wﬁ,

Take any SG( Ja) ‘Certainly the depth of ci(’r.’l i Wis than K. Msu,
can show that from the fact that thpn(*t,Q) holds, we can deduce that

JEwpp(r;*7,Q) holds too, and then using Lemma 5.12, that #wpD( *»,Q) also holds.
By the inductive hypothesis we obtain SFHk. for k'<k (here k' is is the depth of

ct(*x,§)). However, it is easy to establish that for any i, k(H, o H ), s0

that we also have JFH, ;. Hence JF[:]Hk .1+ This completes one direction of the lemma..

Conversely, Assume .1|=H for some k. Vllthout loss of genera!ity we can assume
that J¥ Hy for all k'<k. If k=0 then trivially JB(-P A -R A Q), and hence
JEwpp (* 1r 7). Assume that k>0, and that for any state § such that min ("‘H )is
defined and is smaller than k, we have JFwpp(*s,Q). Certainly by JFHk and k>0 we
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have J¥ (-P A -R A Q), so that JP((r)truc A “fatl, A ~Noop A

[r]Hk 1) Smce Jﬁ(r)mnf, we can denote by J'a state in In. We kiow that
IeCwIH, , and so, ﬂ-l-! . Therefore, by the Mucﬁve ﬁypoﬂ\em wc canclude

that 3hapD(" %,Q), or th:t S (Fxdtrue A yctt(.,, A wmp(.,) l\ L

[*x1Q). Now, since §¢(Jw) and ﬁ(‘w)tru‘, we have JECEedtrue. Similarly we can
establish Jk{*ﬂQ from m:mk 1 whk:h umna that ﬁ-t"ﬂg holds for any Je(In).

Thus to summarize, we hzve the fe&lowm ub!e, where a Indicam vaﬁdky for
all programs in GC: ' ‘ '

| wpp whDT why  whyg,
p1-D3 | 1 B T T |
D4-D6 | 1 0 0 0

We remark that relaxing our restrictions on prognm ﬁudcanﬁdeﬂng general
pregrams in RC, D4-DG do not hold in gment, cvun fqr va. '

We regard our resaits in this section ”WWW of the
intuition Dijkstra: displayed when. nem 96 mﬁ@wa*mm pmgrammhg
language: suitable for "totals ss-oriented” . Ahough thereis no. -
a priori yeason for: pmm umm 9 &pnmﬁ the oqheng we have shown that .,
adepting this method in- con junction with the sublanguag ,ZGC,M&; in D1-D6 holding, a 5
fact which nicely gives rise to what Dijkstra calts a mm for computing the weakest
precondition of a pregram, and hence for detesmining. whether a.program is totally correct.

Sy
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8. The Mathematios of Divcrging%ﬁ?xgg Fuﬂing I N

In this chapter we concentrate on some of the mathemattc;l properties of the two
concepts of diverging and failing introduced i Chapber 3" Mbit of ‘the chapter, however,
will be concerned with loop,. In particular we cmphajn the probkms qf expressing this

Uy

concept in DL and providing a suitable arithmeﬂcz! lxiom;ﬂiﬂon of lt.

In Sectnon 6.1 we consider the queﬁioh of cbtaimng maﬁﬁc eduivalent, in DL,
of loop,, and fail , for the class of mmm Jwpurticulyy,- v 6.1.1; ‘we show how a
recent theorem of Winkimann [11] serves as the central part_ in 2 preof that such an
equivalent exists for loopa ‘We'then show, in 61.2, ik an eqttﬁ:hnt ‘ists for
fail, too. Thus, as far as expressive power is congmed loa{’ and ,[atl add nothing
In Section 6.2 we introduce an cxtens:on of Dl, l;; whkh xgcre is a speclally o
designated primitive for loopa A, natm';l anJ m. amv,f :Vtcﬂ axiomatization, P’
of DL* is given in Section 6.2.2. Section”bj 15 devoted to exhibiting the remarkable
similarity in form: betvwcn‘mt ﬂlﬁs !'dr ﬁ"mﬁm&f?‘* WB ebierv fon
supply a framework to aid when constwcting such a eiydrions'in: geneﬁﬁf The
framework also supplies a broad perspective for uadeutandm, say, the invariant
assertion method of FIoy&# T2T] and Noure T2Y) ai wpgttihl tase’ 6 arithinietical
axiomatizations. Section 6.4 contains an appucmen d‘ thue ideas in the form of an
arithmetically- complete-ak fomaitrition: of ' '
operator ‘'of :Salwicki £593: < In this exeension ¢ADE) he vechartish for .
expressing Joop; is not quite-as direct am:ttiat’ w&sﬁhilm ookl (as
is essentiatly done in- DL}, but nq%aﬂmas W m thng but: mhcr
relying on the equivalent. DL -wff.of Section 6.11. e

8.1 Diverging andFaumzin pL.

It might seem at first that a simple indoctive chatacterization of loop, and
fail, is possible, along the lines, say, of Lemma 536 Thert. we ahow that loopy.g .-
is equivalent to (loopa v (a)leop‘) In other words, that being able to determlne
whether a;8: cmﬂaimvt i‘llverg‘!hée boils mw%ﬁ%ﬂmm shether &and §

%y R
™ . |
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do, given in addition the tools of DL. This task, however, .is not quite as simple as. it
seems. In Sections 6.1.1 and 61.2 we focus, respectively, on loop, and fail ..
6.1.1 Expressing looﬁa in DL.
Lemma 6.1: For véver_y u,ﬁm, uﬁamem x*—emdmll’?, the Wing are viltd: |
(1) lbop e ® false,
(2) looppy ® false,
(3) loopeg = (toopy v mp‘),
(4 M‘;’ M‘V<]z

Proof: (4) 15 Lemma 53(1). Theottmsfoﬁwfrmmmabaofa(a . B

in order to be able to tafk about &* we aliow qanetm, in this chapter, the
freedom of writing, 2y, Mm«%P instead cf"‘fa' éi‘};, m’w holds". (Recall
that a? is lrue" and « l is u,u ") We alio m X x P .
“there. cxns;inimlv mny n;mmaﬂﬁmh I "ia™>P
that <a">P holds of mm large n,

Theorem 6.2: For every ueuc. h(m,.. 5 (m*am. v Vm"z:m))

( Remark: In dine with the: sbove mem mm m “lnmy state J,
JEloop o x holds 4ff either JRca™Disop,, hokts o for.evey n. we have. e true”)

Proof: As temmarked in Chapter 5, by Keenig's:benna for ma,M frolds 1ff
there is an infinite path in at(#,3). -Now amume Jisop u. By thé.tonstruction of
pet(a*,1) as pet((true? v «;6*),]) it mwmmarﬂm ‘Holds for
every JeJ(a®) (ie. if W hoids), then an infinite path. ﬁ(J 11,12, )
in pet(a®,]) must be an infinite a-path, m:mmheymaqmonm which
every two ad jacent states are related via ().’  Seqiohce by i'éffo,,l, =)
where §,=1 and for every n20 we have “EJNM‘Q‘ ’ﬂpmcqumty

(1.4, )fm(ﬂ“) snd henoe. M%mn.

Conversely, we first note that it is easy ta aee ;tut i‘( (ﬂ")lmg' 2. lmfdu)
Assume now that .ﬂ"VMc")tm By the construction of pa(a"’ J) this implies that
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pet(a*,3) (and .hence also ct(a*,J)) has Jeaves at ;
implies. that ct(a*,J ) is infimtg,

: Jb@h"hkhby K“"'f"""”‘

EERRRVSE L TR S

Thus, a divergence in a®* is due either to a divcrgence i & ftself ‘after executim
of some number of a's (local diverging), o to being able to run a's repeatedly for'ever
( gtobal diverginz)

_ B It'is immediate tben thnt the only obstacle 0 M‘li_!tn Mhtforward
translation of leop,, into a DL-wff'Q s the fact that WnéaSirue W n i;ot a m—wff
However, we have the following recently esttMtthed fact: | e

T heorem 6.3 (Winklmann mny: For every a€RC aag.tl.\; nff P thcre exlsts a DL-wff Q
' such that t"(Q LB %(9)’?

The (canstructive) proqf mvolve; a very subtle ugmt bued on the uructurg of the set

J(a*) for. some fixed state I, making ‘.%q ction hetwpen thik set being mnniie due ta w S

some repetition of a state (um ’fl( A Jiaie it beiny ’

but repetition-free. Thus, by neting that Yoge #@iﬁh; \

conclude from laemmasﬂaﬂd&,a, and Theagam 63 . . . -

Y Dl.vwﬂ‘ L such,that. l'(.&xw‘),
mavnd B
It is easy to generalize the definition of ct(u,J ) to cover the prog'ramming
languages "array-RC" and “rich-test-RC" which are the seis of programs aliowed in array-DL
(Section 2.3.1) and rich-test-DL (Section 2.3.3) mpqivgly ’ﬂi‘eu trees are also of ‘
finite outdegree and for them too we can define Jiioap, to betme irf ct(a N
infinite. We then have | -

T heorem 6.5 (Meyer [433): For every cfarray-ltc arid L-wif 9  there exists an
- array-DL-wit Q such, that Qs ) ¢">P)

Theorem 6.6 (Winkimann [103): For every afric_ﬁ-uit-?ic and-L-wif P there exlitsl L
. rich-test-DL-wif Q.such that R(Q .5_.3."?‘45'.‘3?)-

Corollary 6.7: For array-RGC (resp. rich-test-RC), lﬂg i;exprqsib!e in
: arraypL (r"eap. rich—test-Dl.)
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" One can define ct(a 1) for randomi-DL; (Section 232), a,mm resuRs in trees -
of infinite outdegree, and then define M to hold if cr(a,T¥ ‘Has ‘an infinite path
Parikh [50] has been able to show that for mm-lﬁ, loop,, is not expressible in
random-DL. R |

. Recently Pratt [54] has shown how a plaﬁbh definition of loep for PDL, when the .'
atomicprogrmmﬁ(m Chagtsr 1) are assigned | . N'ﬁh‘m‘qm
nammzdmmmmmnMMﬁwwmwa
is not expressible in PDL.

S 1
S 14

8.1.2 Expressing ful, in DL.

We now turn to fail Here too D{. is pomrf‘ul emugh to express ful for any

cases in which a faiture mdg in fct(.t!n
comphcation arises.in ‘the case'of com