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ABSTRACT 

Human experts far outperform automated arrhythmia detectors in analyzing ECG 
data corrupted by noise and artifact. Humans make use of considerable a priori 
knowledge about cardiac electrophysiology and knowledge acquired from the spe­
cific ECG under analysis. R-R intervals, coupling intervals of ectopic beats, and 
commonly occurring beat patterns observed during noise-free ECG segments form 
a knowledge base which is used in accurately detecting and classifying true QRS 
complexes in the presence of severe noise. 

In the present study, we developed and tested an expert system that improves 
the performance of an arrhythmia detector during noisy ECG data. ·The sys­
tem {CALVIN - CALipers in Very Intense Noise), which was developed utilizing a 
modified version of the YAPS Production System, functions as a postprocessor to 
an existing state-of-the-art arrhythmia detector {ARISTOTLE). During noise-free 
segments of data, CALVIN operates under the assumption that ARISTOTLE's 
beat annotations are accurate and constructs a knowledge base that characterizes 
the relative beat timing, the beat morphology, and the underlying rhythm of the 
ECG under analysis. When the noise level exceeds a predetermined threshold, 
ARISTOTLE's beat annotations become unreliable, while the integrity of the QRS 
sensitivity remains intact. CALVIN then extracts only the time-of-occurrence, the 
morphology measure, and the local noise level estimate of each detected event from 
the data stream. The knowledge base is applied to the extracted information to 
distinguish and classify true QRS complexes from false positive beat detections. 

The expert system was evaluated using 8 tapes selected from the AHA Database to 
which 2 minute bursts of noise {from an existing noise database) were added. The 
noisy data was presented to ARISTOTLE operating alone and to ARISTOTLE 
assisted by CALVIN. The results demonstrate that CALVIN is able to significantly 
improve the accuracy of beat annotations during intense noise. 
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Chapter 1 

Introduction 

1.1 Background Information 

Long-term ambulatory monitoring of the electrocardiogram has become an impor­

tant diagnostic tool for physicians. Patients with various cardiac maladies who 

benefit from such an evaluation include [1,2,3,4,5,6]: 

1. Individuals with known ventricular ectopic activity. 

2. Those with previous myocardial infarctions. 

3. Those with intermittent symptoms possibly related to arrhythmias or is­

chemia. 

4. Those receiving antiarrhythmic drug therapy. 

5. Individuals requiring long-term pacemaker evaluation. 

There are two basic methods for analyzing the ECG during long-term ambu­

latory monitoring [7]. The first method involves continuously recording the ECG 

over a 24-48 hour period. The recording is subsequently analyzed by a trained 

technician using a high speed (60-480X real time) tape scanning system. A disad­

vantage of this approach is that the scanning process takes approximately an hour 
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of technician time. The second method is to process the ECG data in real time, an 

option made possible by microprocessor technology. Most of these systems store 

only the ECG segments that contain significant arrhythmic events. The major dis­

advantage of this type of system is that a large portion of the ECG data is lost, 

making it impossible to correct false negative errors. 

Another very important application of real-time arrhythmia detectors is in 

coronary care units (CCU). In this clinical setting, significant or possibly life­

threatening arrhythmic events must be detected and the appropriate alarms ac­

tivated in order for patients to receive prompt medical intervention. 

Although automated ECG arrhythmia detection has improved considerably over 

the past 15-20 years, noise and artifact are still a significant problem. Of foremost 

concern is noise due to electrode motion that contains strong spectral components 

in the range of the ECG frequency band. This type of artifact tends to cause false 

positive QRS detections and may trigger false alarms. Muscle artifact is also a 

problem, particularly at higher noise to signal ratios. 

Thus, an important requirement for real-time arrhythmia detectors is sufficient 

noise rejection. Conventional arrhythmia detectors employ digital filtering tech­

niques (eg., matched filters) to attain a level of noise rejection compatible with 

clinical application. Yet, many algorithms fall far short of the performance attain­

able by a "human expert". This fact was substantiated by comparing the noise 

performance of a state of the art real-time arrhythmia detection algorithm (ARIS­

TOTLE [8,9] - Developed in the Biomedical Engineering Center, MIT) with the 

performance of a human expert. 1 

A Noise Stress Test [10] was used to superimpose electrode motion and muscle 

artifact noise onto an American Heart Association database tape [11,12] (Series 

4001). The noise was added at various noise to signal ratios and presented to 

both ARISTOTLE and various human experts. As illustrated in Figure 1.1, the 

1The Human Experts used in this study represented individuals with considerable experience in 
analyzing noisy ECG's. Their fields ranged from cardiologist, to research scientist, to system 
developer. 
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QRS sensitivity of ARISTOTLE in the presence of electrode motion noise was 

comparable to that of the human expert. Yet, the human expert far outperformed 

the algorithm in ter~ of the QRS and PVC positive predictivity and the PVC 

sensitivity. In terms of the PVC sensitivity, which is an important measure of 

performance indicating the likelihood that an arrhythmic event will be detected, 

ARISTOTLE's performance was 30% at a noise level of 0.4. 2 The human expert 

did not show signs of failure until subjected to a noise level of 0.9, where the 

PVC sensitivity fell just below 90%. The human expert also far outperformed 

ARISTOTLE with muscle artifact noise superimposed on the ECG. Examples of 

the ECG with various levels of electrode motion noise superimposed are presented 

in Figure 1.2. 

These preliminary experiments revealed that human experts resort to knowledge 

of the underlying rhythm for a given patient, recognition of previous beat patterns, 

timing information (eg., average R-R interval and PVC coupling interval), and 

basic rules for cardiac rhythm disturbances while analyzing noisy ECG recordings. 

The morphology of the beats was of secondary importance in the presence of noise. 

In order to determine whether the timing information was sufficient to accu­

rately analyze noisy ECGs, the human experts were presented with ECG strips with 

most of the morphological information removed. These strips contained ARISTO­

TLE's beat annotations and bipolar spikes whose direction indicated detected peak 

polarities and whose magnitude was proportional to detected peak amplitudes (Fig­

ure 1.3). The experts were given a 30 second segment of "clean" (no noise) ECG 

where ARISTOTLE's beat annotations were correct. This was done in order for 

the expert to compile the appropriate knowledge base. The experts were instructed 

to correct the beat annotations of the contiguous 90 seconds, that contained a 60 

second burst of electrode motion noise. The improvement in performance rela­

tive to ARISTOTLE operating alone is illustrated in Figure 1.4. There was as 

much as a 170% improvement in performance (PVC positive predictivity rose from 

2 The concept of the noise level is defined in chapter 3. 
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Figure 1.1: ARISTOTLE versus Human Expert Performance. 

Plots labelled with A represent Aristotle's performance, while plots la­
belled with H represent the Human Expert. The chosen performance 
measures are the QRS and the PVC sensitivity and positive predictivity. 
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Figure 1.2: ECG with Superimposed Electrode Motion Noise. 

A: AHA Database Tape 4001 (2 channels) without added noise. The truth an­
notations are shown between the 2 channels. N=Normal, V=VPB, S=:SVPB. B: 
Tape 4001 with electrode motion noise added at a level of 0.4. The annotations 
are those generated by ARISTOTLE while analyzing this noisy data segment. C: 
This represents Tape 4001 with electrode motion noise added at a level of 0.8. 
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Figure 1.3: Data Presented to the Human Experts for Editing. 

A: The top tracing represents the output of ARISTOTLE's matched filter. The 
beat annotations are those generated by ARISTOTLE. N=Normal, V=VPB. 
B: Represents the actual ECG segment that produced the matched filter pat­
tern in A. The truth annotations are shown between the 2 ECG channels. 

12 



Arislolle Performance Improvemenl w i lh Experl Edi ling <EH Noise) 

CRS Se Versus Noise Level ORS +P Versus Noise Level 

100 A 100 
B 

80 80 
B 

60 
A - Arislolle 

60 A 

40 B - Ar I slol I e wt lh 40 
Experl Ediling 

20 20 

0 0 
0 .2 .4 .6 .8 0 .2 .4 .6 .8 

PVC Se Versus Noise Level PVC -t-P Versus Noise Level 

100 100 

80 80 

60 60 

40 40 
A 

20 20 

0 0 
0 .2 .4 .6 .8 0 .2 .4 .6 .8 

Figure 1.4: ARISTOTLE's Performance with Human Expert Assistance. 

Plots labelled with A represent ARISTOTLE's performance while processing the 
noisy ECG segment. The plots labelled with B represent ARISTOTLE's perfor­
mance with Human Expert assistance. 
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34% to 95%) over the uncorrected algorithm output using this approach. These 

results show that the timing and limited morphological information contained in 

ARISTOTLE's data stream are not optimally exploited during noisy ECGs. 

1.2 CALVIN: A Novel Approach 

CALVIN (CALipers in Very Intense Noise) represents an attempt to model the 

human expert approach to analyzing noisy ECG data. The system, which oper­

ates in series with ARISTOTLE, assists in the classification of beats during noisy 

segments of ECG by utilizing the knowledge base and the protocol of the human 

expert. The philosophy of the system is that the analysis of noisy ECGs can be 

improved by utilizing the information acquired from prior noise-free data segments. 

This information includes the characteristic timing (eg., R-R intervals and VPB 

coupling intervals) and the underlying rhythm for a given ECG. 

When the noise level is low, the human expert is able to classify beats based 

primarily on visual inspection of the morphology. Under these low noise conditions, 

CALVIN accepts ARISTOTLE's beat classifications. ARISTOTLE behaves like a 

morphology driven algorithm (i.e., the classification of beats is based heavily on 

beat morphology). 

When the noise level rises significantly, it becomes difficult for the human expert 

to visually distinguish true QRS complexes from noise artifact. This is because the 

noise, especially electrode motion noise, has strong spectral components in the 

ECG frequency band. They must therefore rely more heavily on event timing and 

information previously acquired pertaining to the patient's underlying rhythm. By 

comparison, CALVIN ignores ARISTOTLE's beat classifications when the noise 

level rises above a predetermined threshold. The events are then classified by the 

application of the rules along with the information contained in the knowledge base. 

When the noise level rises to extreme levels, the human expert skips those 

regions of the ECG where he is unable to distinguish the true QRS complexes, and 
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searches for a segment of data where he can resume accurate beat classification. 

Under these same conditions, CALVIN skips the segments of data that it is unable 

to process and searches ahead in the data stream for a segment where processing 

can resume. 

The noise added to the ECG has strong spectral components in the ECG fre­

quency band. The actual beats become distorted and visually indistinguishable 

from the noise glitches. 

This thesis further describes the system architecture, the developmental process, 

the system evaluation, and the future prospects of CALVIN: 

• Chapter 2 describes the overall system architecture and the interfaces between 

the various components. 

• Chapter 3 provides an explanation of the need for and the development of 

the Noise Stress Test (NST). A sample NST of two versions of ARISTOTLE 

is included in this section. 

• Chapter 4 describes in detail the system preprocessor (preCAL). 

• Chapter 5 explains some of the basics of the YAPS production system, used 

to implement the human expert protocol. It describes the mechanics of how 

CALVIN's interfaces reformat the data to attain compatibility with this pro­

duction system. 

• Chapter 6 explains how the Human Expert protocol was extracted and im­

plemented with YAPS. It reveals the basic approach of the Human Expert in 

analyzing noisy ECG's. 

• Chapter 7 tells how the system was evaluated. The results are presented and 

discussed. 

• Chapter 8 discusses the future of this project. Possible enhancements to 

CALVIN are presented. 
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Chapter 2 

System Architecture 

2.1 System Function and Interfaces 

The overall system architecture is illustrated in Figure 2.1. ARISTOTLE processes 

the raw ECG data and creates an annotation file. The annotation file (Figure 2.2) 

contains a record for each detected event {including false positive detections) that 

includes the time of occurrence, an event classification (Normal, VPB, SVPB, etc.), 

a noise level estimate for both data channels, an indicator of the ECG channel being 

processed 1 , and a morphology metric for both channels. The morphology metric 

used is the maximum output of a matched filter in ARISTOTLE's QRS detector. 

The annotation file is then processed by CALVIN. 

CALVIN operates in three basic modes, Learn Mode, Assist Mode, and SITU 

Mode (.S.earch Into The Unknown). During the Learn Mode, CALVIN generates a 

knowledge base that characterizes the ECG under analysis. The knowledge base 

consists of: 

• The noise threshold to activate CALVIN. 

1 ARISTOTLE determines which of the 2 channels of input has the lowest noise level and processes 
that channel. 
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Figure 2.1: CALVIN System Architecture 

17 



8:00 120033 N 16 0 10 1100 1450 

8:00 120103 N 16 0 9 947 1248 

8:00 120199 N 15 0 8 983 1376 

2:01 120375 N 14 0 7 1123 1437 

8:01 120455 N 13 0 6 1048 1253 

8:02 120592 N 12 0 5 1178 1352 

8:02 120700 N 11 0 5 1097 1388 

8:04 121009 N 10 1 4 1113 1328 

8:04 121192 N 9 1 3 997 1302 

8:05 121404 N 8 1 5 1037 1299 

Figure 2.2: ARISTOTLE Annotation File 

• The average and standard deviation of the matched filter output fc:>r Normal 

beats a.nd VPBs. 

• The N-N interval (time between two Normal beats) prediction. 

• The N-V interval (time between a Normal beat a.nd a VPB) average, standard 

deviation, and range. 

• The V-V interval (time between two VPBs) average and standard deviation. 

• The V-N interval (time between an isolated VPB and a Normal beat) pre­

diction based on the N-N and the N-V interval information. 

• The V-N interval (subsequent to a run of VPBs) average and standard devi­

ation. 

• The N-S interval (time between a Normal beat and an SVPB) average, stan­

dard deviation, and range, all normalized to the current heart rate. 
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• The S-N interval (time between an SVPB and a Normal beat) average, stan­

dard deviation, and range, all normalized to the current heart rate. 

• The incidence of couplets, triplets, quadruplets, and ventricular tachycardia 

(VT - defined as greater than four successive VPBs). Also, the length of the 

longest run of VPBs. 

• The length of the longest run of SVPBs. 

• The percentage of VPBs that are interpolated and the percentage of prema­

ture beats that are SVPBs. 

The preprocessor (preCAL), is responsible for compiling this knowledge base. 

During an initial 4 minute start-up period (and during all subsequent noise-free 

data segments), ARISTOTLE's beat classifications are assumed to be accurate. 

This assumption is reasonable, since one criteria for tape selection from the AHA 

Database for system evaluation was ARISTOTLE's near perfect performance on 

the tape in the absence of noise. 2 In a clinical setting, the noise level of the 

raw ECG data could be maintained at a low level and ARISTOTLE's performance 

could be evaluated during the learning period with the assistance of a technician 

and a temporarily immobile patient. PreCAL uses the beat classifications to gen­

erate a knowledge base that is representative of the ECG under analysis. Also, 

ARISTOTLE's noise level estimates are used to establish a threshold to distinguish 

"noisy" from "clean" ECG data. Once the 4 minute start-up period has elapsed, 

preCAL updates the knowledge base during all ECG segments with subthreshold 

noise levels. 

PreCAL generates its own annotation file. This annotation file contains basi­

cally the same information as the one generated by ARISTOTLE with a few ex­

ceptions. First of all, the data channel under consideration by CALVIN is always 

channel 0. It does not currently have the capability to choose what it considers to 

be the best channel for analysis as does ARISTOTLE. Secondly, the system user 

2 The tape selection process for the evaluation of CALVIN is explained further in chapter 7. 
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has the option to choose the QRS morphology feature that will be included in the 

7th field of the annotation file and used internally by preCAL to characterize the 

beats on channel 0. Thirdly, this annotation file contains the knowledge base that 

has been compiled by preCAL, which is transferred at the beginning of each noisy 

ECG segment. Finally, since the beat classifications generated by ARISTOTLE 

are unreliable in the presence of noise above the threshold, they are all changed to 

Unknown (Q) by preCAL. 

When the noise level of three consecutive beats exceeds the predetermined 

threshold, CALVIN exits Learn Mode and enters Assist Mode. PreCAL then trans­

fers the current state of the knowledge base to its annotation file in the form of 

10 entries with "NOTE" in the beat classification field. The knowledge base infor­

mation is listed in the 7th field, normally occupied by the beat morphology feature 

(Figure 2.3). During the Assist Mode, preCAL ceases to update the knowledge 

base. The preCAL annotation file is reformatted by the AFTL Interface into a 

form compatible with YAPS. The data is then loaded into Data Memory. The 

human expert protocol residing in Production Memory, along with the knowledge 

base are applied by the Inference Engine to the events detected by ARISTOTLE 

to select and reclassify the true QRS complexes. This information generated by 

CALVIN is used to create a modified and more accurate annotation file. 

When the noise level rises to an extreme level where CALVIN is unable to 

process the event sequence, the system enters SITU Mode. During SITU Mode, 

CALVIN "shuts down" and searches ahead in the data stream for a segment where 

the event sequence matches one of several previously defined templates. When a 

match is located, beat classification resumes. 

Once the noise level remains below the threshold for 20 consecutive beats, 

CALVIN reenters the Learn Mode and the updating of the knowledge base is re­

sumed. The 20 beat lag was provided to give ARISTOTLE a chance to stabilize 

after exposure to noisy ECG data. 
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8:57 134362 N 1 0 3 48 

8:57 134462 v 1 0 2 360 

8:58 134740 N 0 0 1 -428 

8:59 134920 Q 3 0 4 -345 

8:59 134921 NOTE 3 0 4 nthresh 4 

8:59 134922 NOTE 3 0 4 nn 180.1 6.0 18.0 27.0 

8:59 134923 NOTE 3 0 4 nv 103.3 6.0 17.9 29.9 

8:59 134924 NOTE 3 0 4 nvmaxmin 120 96 

8:59 134925 NOTE 3 0 4 vn 256.9 13.4 40.2 67.0 

8:59 134926 NOTE 3 0 4 ns 0.0 0.0 0.0 0.0 

8:59 134927 NOTE 3 0 4 nsmaxmin 0.0 0.0 

8:59 134928 NOTE 3 0 4 sn 0.0 0.0 0.0 0.0 

8:59 134929 NOTE 3 0 4 snmaxmin 0.0 0.0 

8:59 134930 NOTE 3 0 4 vvc 0.0 0.0 vvr 0.0 0.0 rvn 0.0 0.0 

8:59 134931 NOTE 3 0 4 coup 0 trip 0 quad 0 vtach 0 

8:59 134932 NOTE 3 0 4 interp 0.0 svpb 0.0 vrun 1 srun 0 

8:59 134933 NOTE 3 0 4 qamp 2540.4 110.6 331.8 553.1 

8:59 134934 NOTE 3 0 4 vamp 3013.7 80.5 241.5 402.5 

9:00 135100 Q 5 0 5 104 

9:01 135283 Q 5 0 7 -29 

9:01 135380 Q 4 0 10 169 

9:02 135613 Q 6 0 9 -1335 

Figure 2.3: PreCAL Annotation File 
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2.2 Software Physical Location and lmplementa-

ti on 

ARISTOTLE, preCAL and the AHA Database Tapes all reside on the PDP 11/44 

at the Biomedical Engineering Center (BMEC) at MIT. ARISTOTLE and preCAL 

are implemented in the "C" programming language. 

The human expert protocol is implemented on a modified version of the YAPS 

Production System. The AFTL Interface is implemented in Zeta Lisp. Both reside 

on Zermatt (Symbolics 3650) in the Laboratory for Computer Science (LCS) at 

MIT and are run on the Symbolics 3600 series Lisp Machines (Release 6 Operating 

System). 3 

The physical location of the various software components requires that the 

raw ECG data be procesed by ARISTOTLE and preprocessed by preCAL at the 

BMEC. The annotation file generated by preCAL is written onto magnetic tape 

and transferred to the LCS. The data is reformatted by the AFTL Interface and 

processed by CALVIN. It is once again written onto magnetic tape and transferred 

to the BMEC, where the results are used to generate the modified annotation file. 

This process of writing information onto magnetic tape and transferring it between 

the LCS and the BMEC comprises the Walking Interface (see Figure 2.1). A User's 

Manual for CALVIN is under separate cover. 

3 These components of CALVIN should theoretically run with Release 7. It has not been attempted 
and no guarantees are given. 
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Chapter 3 

The Noise Stress Test 

3.1 Background 

An important aspect of cardiac arrhythmia detector performance is noise rejection. 

False positive QRS detections resulting from inadequate noise tolerance are one of 

the most important problems in a clinical setting. Conventional ECG database 

recordings, in general, do not exhibit the variety and intensity of noise necessary 

to sufficiently stress the noise rejection logic of an algorithm. This is especially 

true for the AHA Database, which tends to be relatively noise-free. Algorithm 

evaluations with a conventional ECG database alone would leave the developer 

with an inaccurate estimate of a detector's performance in a clinical environment. 

Developers of arrhythmia detectors require a test of noise rejection that is both 

·quantitative and reproducible. Reproducibility is especially important during the 

algorithm optimization process. This allows the developer to determine the effect of 

modifications on detector performance. Conducting noise performance evaluations 

in a quantitative (and standardized) manner is useful in the comparison of two 

different algorithms, especially those developed at independent sites. 

Investigators have proposed various techniques to test the noise rejection logic 

of arrhythmia detectors [10,13,14]. The methods used to generate the noise include 
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the use of digital and analog simulators, the filtering of the ECG from noisy ECG 

recordings, and the recording of noise from electrodes placed on a subject in a 

configuration that excludes the ECG from the signal. There are drawbacks to each 

of these methods. First of all, one cannot be sure that the noise generated in an 

artificial manner has the same characteristics as that observed in a clinical setting. 

This factor applies to the specially configured electrode method, but is especially 

relevant to the noise simulation technique. Secondly, it is not a trivial matter to 

completely remove the ECG signal from a noisy recording. 

3.2 Development of the Noise Stress Test 

With the above criteria and drawbacks in mind, it was felt that the specially 

configured electrode method provided the best combination of both ease of im­

plementation and real-world noise characteristics. A Noise Stress Test (NST) was 

developed using this method, that will more accurately predict a cardiac arrhyth­

mia detector's performance under noisy conditions. 

Volunteers were chosen to wear the Avionics model 445 Holter recorder, with 

electrodes placed on their arms and thighs such that the ECG was not detected. 

The absense of the ECG was ascertained by observing the signal on a holter scanner. 

The subjects were engaged in vigorous physical activity. They also purposefully 

created electrode motion artifact by moving the electrodes. Thus, a rich and varied 

noise source was created. Approximately 25 hours of 2-channel noise recording were 

generated. The recordings were then digitized at 250 Hz using the same software 

routines and equipment used to generate the MIT-BIH ECG Database [15]. 

The noise on the tapes was sorted into three major categories (baseline wander, 

electrode motion, and muscle artifact) on the basis of visual inspection. Baseline 

wander is a low frequency noise generated by movement of the patient and the 

relative position of an electrode pair. A representative sample of noise visually 

catagorized as baseline wander is shown in Figure 3.1. The second noise class is 
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Figure 3.1: Baseline Wander Noise Sample 
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Figure 3.2: Electrode Motion Noise Sample 

electrode motion. This type of noise has strong spectral components in the ECG 

band, making it the greatest problem for many ECG analysis programs. It is 

generated by transient mechanical forces acting on the electrodes. An example of 

the noise visually catagorized as electrode motion is presented in Figure 3.2. The 

final noise type is muscle artifact, generated by the electrical activity of skeletal 

muscle groups in the proximity of the electrodes. This class of noise is of a high 

frequency and is illustrated in Figure 3.3. 

The 25 hours of data were scanned visually and segments were identified that 

distinctly represented each of the noise classes. It was difficult to find segments 

of electrode motion and muscle artifact noise without an underlying low frequency 
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Figure 3.3: Muscle Artifact Noise Sample 
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component. Therefore this combination of noise types was considered to be accept­

able. The segments of each noise type were sorted, then they were concatenated in 

a random order to generate three continuous 35 minute recordings. Discontinuities 

in the signal were avoided by matching the slopes at the opposing ends of the noise 

segments. The 16 bit format for the data was used rather than the 8 bit first dif­

ference format to avoid slew rate errors, especially with the higher frequency noise 

[16]. Access to these noise tapes is identical to that for the ECG database tapes 

(ie. via the EKG Database Utility Programs). 

The test protocol for the NST is illustrated in Figure 3.4. Noise is added to 

the ECG tape on a sample-by-sample basis for the two channels. It is then input 

to the algorithm being tested. There is an adjustable gain factor for each of the 

noise channels, controlled by a noise protocol file (described in the CALVIN User's 

Guide). The ECG analysis program generates an annotation file that is compared 

to the truth annotation file for the chosen ECG tape to generate the beat-by-beat 

performance statistics, the QRS and PVC sensitivity and positive predictivity. 1 

Before a meaningful NST could be performed on an algorithm, the noise data 

had to be quantified and normalized to the ECG tape being used. A direct mea­

surement of the average amplitude of the noise data would overestimate the value, 

due to the significant low frequency component on each of the noise tapes. There­

fore, the noise tapes were divided into 10 second segments 2, the D.C. components 

were removed, and RMS amplitude was computed for each of the segments. The 

average RMS amplitude over all of the 10 second segments was then computed for 

each noise type. The ECG tapes were characterized by determining the average 

peak-to-peak amplitude of the normal QRS complexes, excluding outliers. 3 

1The compilation of the performance statistics is performed using the compare and the stats 
routines described in the EKG Database Applications Programs Manual. The use of these routines 
is also explained in the CALVIN User's Guide. 

2 This time interval was chosen because it is short relative to the period of the noise low frequency 
component. 

3 The average peak-to-peak amplitude of the ECG tapes was determined using the feature files gen­
erated by ARISTOTLE and the feathist routine also developed by George B. Moody, Biomedical 
Engineering Center, MIT. 
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Figure 3.4: Noise Stress Test Protocol 
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Noise Type RMS Amplitude RMS Amplitude RMS Amplitude Ratio 

Channel 0 Channel 1 Channel 0 / Channel 1 

Baseline Wander 67.95 28.41 2.392 

Electrode Motion 133.9 38.09 3.515 

Muscle Artifact 38.63 35.45 1.090 

Table 3.1: RMS Amplitude Calculation Results for the 3 Noise Types 

The noise was then added to the ECG at gain settings such that the noise-to­

signal amplitude ratio was equal on the two channels. The Average RMS ampli­

tudes for the three noise types are presented in Table 3.1. It should be noted that 

these values are not in volts, but in ADC units. Instead of presenting the data in 

terms of the noise-to-signal ratio, a value referred to as the "noise level" is used. 

This unit of measure, defined in Equations 3.1 and 3.2, was used because the noise 

was uncalibrated in terms of ADC units/mV. 

Noise Level Channel 0 

Noise Level Channel 1 

102 

- Gaino x PPo 

. 102 

- Gam1 x PPi 

Where P Pi = the peak - to - peak amplitude of the i 01 ECG channel 

(3.1) 

(3.2) 

The gain of channel 1 is adjusted (multiplied) by one of the ratios in the 4th column 

of Table 3.1, depending upon the noise type in use. This takes into account the 

disparity between the signal amplitudes on the two noise channels and assures that 

the relative noise-to-signal ratio is identical on both ECG channels. 

3.3 Evaluation of Two Versions of Aristotle 

In order to illustrate the use of the NST, two algorithms were tested. The first 

algorithm was ARISTOTLE, previously described in this document. The other al-
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gorithm BAM (Bedside Arrhythmia Monitor) was developed in the Bioengineering 

Laboratory at the Beth Israel Hospital in Boston. 

The protocol for the addition of noise consisted of an initial 5 minute learn 

period (noise-free region), followed by 4 minute bursts of noise separated by 1 

minute noise-free segments. The Algorithms were stressed using both electrode 

motion and muscle noise. The noise level of the tests with the electrode motion 

noise ranged from 0.0 to 1.2 in increments of 0.2. The noise levels used in the tests 

with the muscle noise were 0.0, 0.1, 0.5, 1.0, 1.4, 1.8, and 2.0. Tape 4001 from the 

AHA Database was used for this series of tests. 

3.4 Discussion of the Noise Stress Test Results 

The results for this series of test are presented in Figures 3.5 - 3.8. Looking first 

at the results of the electrode motion stress tests, ARISTOTLE outperforms BAM 

in terms of the QRS Positive Predictivity, the PVC Sensitivity and the PVC Pos­

itive Predictivity (Figure 3.5B, 3.6A, 3.6B). Yet, ARISTOTLE appears to attain 

this superior performance at the expense of the QRS Sensitivity (Figure 3.5A). 

Looking at the actual number of detections made by both algorithms, it appears 

that ARISTOTLE was not active during some ECG segments at the higher noise 

levels. This accounts for the false negative detections responsible for the low QRS 

sensi ti vi ty. 

The stress tests conducted with muscle noise show that BAM is the superior 

algorithm when exposed to this high frequency noise. ARISTOTLE's performance 

was comparable to BAM's in terms of the QRS sensitivity, yet BAM outperformed 

ARISTOTLE in terms of all the other measures (Figures 3. 7 and 3.8). This fact 

may indicate that BAM has a better defined digital filter passband, especially the 

upper frequency limit. 

Determining which algorithm is superior overall is a very subjective matter, de­

pendent upon the particular application. A high QRS sensitivity is desirable in any 
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application, yet to accomplish this, there is a tradeoff with an increasing false pos­

itive detection rate. In an application such as a real-time halter monitor, a higher 

false positive rate may be acceptable in order to attain a higher QRS sensitivity. 

A high false positive detection rate in the CCU setting would be intolerable, since 

this would lead to a loss of user confidence and an increased response threshold of 

the CCU staff to any arrhythmia alarm, assumed to be a false alarm. Absolute 

superiority can be exhibited, as was shown in the case of the stress tests with the 

muscle noise. But when the results are equivocal, the proposed application must 

be considered. 
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Figure 3.5: NST - QRS Performance with Added Electrode Motion Noise 

These tests were conducted with AHA Database Tape 4001. 
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Figure 3.6: NST - PVC Performance with Added Electrode Motion Noise 

These tests were conducted with AHA Database Tape 4001. 
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Figure 3.7: NST - QRS Performance with Added Muscle Noise 

These tests were conducted with AHA Database Tape 4001. 
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These tests were conducted with AHA Database Tape 4001. 
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Chapter 4 

PreCAL: The System 

Preprocessor 

PreCAL processes the annotation file generated by ARISTOTLE and compiles the 

knowledge base necessary for analyzing the noisy ECG data. In order to completely 

understand the software logic, one must become familiar with the Database Utility 

Programs, developed in the BMEC [17]. These utility programs serve as the direct 

interface between ARISTOTLE (the annotation file) and preCAL. 

It should be mentioned at the outset that this description of the preprocessor 

refers to the most recent version to be used with the latest version of ARISTO­

TLE. The results of the system evaluation presented in chapter 7 correspond to an 

earlier version of both preCAL and ARISTOTLE. The rationale for describing the 

newest system is that future enhancements to CALVIN will use the latest version 

of ARISTOTLE, since it provides the greatest amount of flexibility. Any signifi­

cant differences between the two versions of the preprocessor will be noted. The 

CALVIN User's Guide illustrates the use of both versions of preCAL. 
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4.1 PreCAL Architecture 

The preprocessor architecture is illustrated in Figure 4.1. A beat record from 

ARISTOTLE's Annotation file and the corresponding feature file entry (which 

contains most of the morphological information for each beat) is input to preCAL. 

The Noise Detector then determines whether the beat information is to be processed 

by the Clean Data Processor (subthreshold beat noise level) or the Noisy Data 

Processor (suprathreshold beat noise level). 

The Clean Data Processor (CDP) compiles the knowledge base during noise­

free segments of ECG data. It utilizes ARISTOTLE's beat annotations (assumed 

to be accurate) to construct a knowledge base that is representative of the ECG 

under analysis. The Noisy Data Processor (NDP) operates on the noisy ECG 

segments. At the beginning of each noisy ECG segment, the current state of the 

knowledge base is transferred to preCAL's annotation file. All beat annotations are 

modified to include the noise level estimates and the beat morphology descriptor 

(the matched filter output for this study). The information for each processed beat 

is written to preCAL's annotation file. The preprocessor components are described 

in greater detail in the following sections. 

4.2 The ARISTOTLE Feature File 

In order to understand the flexibility provided by the latest version of ARISTOTLE, 

one must be aware of the information provided in the "feature file". This feature 

file, which is generated by ARISTOTLE, contains all of the data used by the 

algorithm to classify detected beats. 1 • Each feature file entry consists of a 36 byte 

block or 18 - 2 byte integers (Figure 4.2). There is a one-to-one correspondence 

between feature file entries and beat annotations. 

The first item of each entry is the Data Channel. This item indicates which 

1 The older verson of ARISTOTLE does not generate an acceaaible feature file. 
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channel ARISTOTLE is processing for a given beat. A zero indicates channel 0, a 

one indicates channel 1, and a two indicates that both data channels are currently 

being processed (eg., during ARISTOTLE's learning period). The second item is 

the RR Interval, which gives the number of samples between the current and the 

previous beat. The Raw Noise Level Estimates are ARISTOTLE's estimate of the 

noise intensity in the region of the detected beat. 

The 7 Features are computed by ARISTOTLE and used to classify the beat 

morphology. These consist of the offset, the peak to peak amplitude, the T wave 

slope, the time to intrinsicoid deflection, the beat width, the absolute beat area, 

and the signed beat area. Any one of these 7 features or some combination could 

be used to characterize the beat morphology for CALVIN 2 • 

There are three sets of criteria that must be satisfied by the chosen feature(s). 

First of all, the feature should be stable during noise-free segments of data. Sec­

ondly, the feature should exhibit resilience subsequent to a noisy segment of data. 

Finally, it is desirable to have a feature whose value for PVCs is only minimally 

altered during noisy data. 3 Experiments were conducted to identify which of the 

7 features (and the matched filter output) best satisfied these criteria. Noise was 

added to an ECG recording in 4 minute bursts using the NST (Noise Stress Test) 

and the response of each morphology feature was observed. The single feature that 

best satisfied the above criteria was the matched filter output. The use of a multi­

dimensional beat morphology descriptor (ie., more than one morphology feature) 

was not explored in this study. 

PreCAL is currently able to handle any 1 of the 7 feature file morphology 

descriptors or the matched filter output. The noise level estimation and the mor­

phology feature of the detected beats from both channels is extracted from the 
2 1n the older version of ARISTOTLE, the matched filter output was the only morphological 
feature readily available. The matched filter output can also be generated for the latest edition 
of ARISTOTLE. 

3 This quality is desirable since it was noted during the analysis sessions with the human experts 
that PVCs were used as reference points in ECG segments with intense noise. The experts found 
it easier to distinguish PVCs from artifact than Normal beats. This was due to the usually larger 
amplitude of PVCs relative to Normal beats. 
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feature file entry, pro~essed, and included in the preCAL annotation file. The noise 

level estimates for channel 0 and channel 1 are placed in field 4 and field 6 of the 

annotation file respectively. The morphology feature for channel 0 only is placed 

in field 7 of the annotation file. The subsequent processing of this information by 

preCAL is described below. 

4.3 Noise Level Detector 

The noise level estimate contained within the feature file is considered to be a 

"raw" estimate with a. relatively unbounded range. This estimate is filtered {or 

"smoothed") in the noise detector in the following manner 4 • The smoothed noise 

level estimate is an integer in the range of 0-16. If the raw noise level estimate for 

the beat under analysis is greater than the smoothed estimate for the previous beat 

and less than or equal to 16, then the smoothed estimate for the current beat is set 

equal to the raw estimate. If the raw noise level estimate of the current beat is less 

than the previous smoothed noise level estimate, then the smoothed estimate is set 

to the previous smoothed estimate decremented by 1. If the current raw estimate 

is greater than 16, then the smoothed estimate is set equal to 16. This filtering 

routine, illustrated in Figure 4.3, allows a rapid rise, yet forces a gradual decline in 

the noise level estimate. 

CALVIN operates on the assumption that ARISTOTLE's performance is error­

free and the ECG is relatively noise-free during an initial 4 minute start-up period. 

A corollary of this assumption is that the average noise level observed during this 

period is compatible with accurate processing by ARISTOTLE. Therefore, the 

average noise level during the start-up period is computed for both of the ECG 

channels. The noise threshold is set to the largest average value plus 2 units. 

Reinitialization of the system is required to change the noise threshold after the 

start-up period has elapsed. 

'The "smoothed" noise level estimate for both channels is included in field 4 and field 6 of the 
annotation file generated by the older version of ARISTOTLE. 
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The start-up period serves another important function. It assures that a suffi­

cient amount of data has been analyzed by CALVIN in order to generate a repre­

sentative knowledge base prior to the processing of noisy ECG data. 

PreCAL continually analyzes the noise level on both ECG channels. In order 

for CALVIN to pass from Learn Mode to Assist Mode, three consecutive beats on 

either ECG channel must have smoothed noise level estimates greater than the noise 

threshold. This method was used to avoid the activation of CALVIN during very 

transient increases in the noise level. Twenty consecutive beats with subthreshold 

noise levels are required to reenter Learn Mode. This lag period was provided to 

give ARISTOTLE time to stabilize after exposure to noisy ECG data. 

4.4 Clean Data Processor 

The CDP updates the ECG statistics during Learn Mode. Once the noise level 

exceeds the threshold, CALVIN shifts to the Assist Mode and the NDP is invoked. 

The statistics are no longer updated by preCAL, but are stored until the episode 

of noise has ceased. The current state of the knowledge base is transferred to 

the preCAL annotation file at the beginning of the noisy ECG segment. Once a 

subthreshold noise level persists for 20 beats, the CDP is again invoked and the 

updating of the knowledge base is resumed. 

4.4.1 Modular Design of Clean Data Processor 

The CDP consists of modules that operate on various sequences of beat classifica­

tions. During noise-free segments of data, the classification and the sample number 

of the fiducial point assigned by ARISTOTLE is stored for the the previous and 

the current beat. Also, the morphology feature for the current beat is extracted 

from the feature file. The classification of the previous and the current beat deter­

mines the module that is activated in the CDP. Once a CDP module is activated, 
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the appropriate knowledge base statistics are updated. PreCAL recognizes beat 

sequences involving Normal (N), VPB (V), SVPB (S), Ron T PVC (R), Unknown 

or Unclassified (Q), ~d Learn (L - generated by ARISTOTLE during it's startup 

period) annotations used by ARISTOTLE. Currently, when preCAL does not rec­

ognize a beat sequence, it shuts down. This is not an ideal response for clinical 

applications, but proved to be very helpful during the system development. 

In order to further illustrate the modular design of the CDP in preCAL, three 

specific modules will be described in the next few sections. Following this is a sec­

tion providing the definition of the knowledge base parameters and an explanation 

of how the various entries are computed. 

The Normal-PVC Module 

The Normal-PVC Module of the CDP handles the N-V beat sequence. A flowchart 

of the functioning of this module is presented in Figure 4.4. Once the N-V beat 

sequence and the subthreshold noise level have been ascertained, the V morphology 

feature and the N-V coupling interval statistics are updated. Note that when the 

morphology feature statistics are updated, the VPB Counter is incremented. Also, 

the NV coupling interval statistics include the average, the standard deviation, and 

the range. The sample number of both beats and the classification of the current 

beat (V) are stored. The sample number of the Normal beat is stored so that the 

occurence of an interpolated PVC can be detected. The Premature Beat Counter 

is incremented and the SVPB/Total Premature Beats ratio is updated. 6 The beat 

information is then written to the preCAL annotation file. 

6 This ratio, where SVPB represents the total number of observed SVPBs and Total Premature 
Beats refers to the total number of observed premature beats, is used to estimate the probability 
that a given premature beat is an SVPB. 
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The PVC-PVC Module 

The PVC-PVC Module of the CDP handles the V-V beat sequence. A flowchart 

of the functioning of this module is presented in Figure 4.5. The appropriate 

beat sequence and a subthreshold noise level activates this module. A run counter 

that keeps track of the number of successive PVCs is incremented. Then the V 

morphology statistics (including the VPB count) are updated. The V-V coupling 

interval is computed and the appropriate statistic is updated depending upon the 

length of the run. H the current Vis the second beat in a run, an interval statistic 

labelled VVC (V-V Couplet) is updated. H the beat is the third or greater Vin the 

run, another interval statistic labelled VVR (V-V Run) is updated. 6 Finally, the 

sample number of the current beat is stored in order to determine the length of the 

next beat interval. The beat information is then written to the preCAL annotation 

file. 

The PVC-Normal Module 

The PVC-Normal Module of the CDP handles the V-N beat sequence. A flowchart 

of the functioning of this module is presented in Figure 4.6. Again assuming a 

subthreshold noise level and the appropriate beat sequence, the module begins by 

updating the N morphology statistics. Then a variety of operations are performed, 

depending upon the value of the run counter. 

H the run counter has a value of zero, indicating that the PVC is isolated, then 

the module checks whether the PVC is interpolated. The time between the Normal 

beats flanking the PVC is computed and compared to the current state of the NN 

interval prediction. H the interval is within 153 of 1 NN interval, then the PVC is 

considered to be interpolated. The interpolated PVC counter is incremented and 

the Interpolated PVC/Total PVC ratio is updated 7 • Hit is determined that the 

6 The rationale for this definition is explained in the final section of this chapter. 

7 This ratio, where Interpolated PVC refers to the total number of interpolated PVCs observed 
and Total PVC refers to the total number of PVC observed, is used to estimate the probability 
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PVC is not interpolated, then no special action is taken. 

ff the run counter has a value of one, then the Couplet Counter is incremented. 

H the run counter has a value of two, then the Triplet Counter is incremented. ff the 

run counter has a value three, then the Quadruplet Counter is incremented. ff the 

run counter has a value greater than three, then the VTach Counter is incremented. 

Finally, the current beat sample number and classification (N) are stored and 

the Run Counter is reset. The beat information is then written to the preCAL 

annotation file. 

4.4.2 Definition and Computation of the Knowledge Base 

The knowledge base generated by preCAL consists of a series of averages, standard 

deviations, and counts used to characterize an ECG. During noise-free segments 

of ECG, the knowledge base is continuously updated based on the beat classifica­

tions assigned by ARISTOTLE. As mentioned earlier, the assumption is made by 

CALVIN that ARISTOTLE performs perfectly in the absence of noise and that 

the beat annotations are reliable. Once the noise level exceeds the threshold, the 

updating of the knowledge base ceases, and the current state is transferred from 

preCAL to CALVIN. The information is used by CALVIN to accurately analyze 

the noisy ECG segment. Following is a description of the items contained in the 

knowledge base. 

The threshold used to determine the noise level at which CALVIN is activated is 

based on the average of the noise level estimates generated by ARISTOTLE during 

the 4 minute start-up period. ARISTOTLE quantifies the noise level on a scale of 

0 (noise-free) to 16 (intense noise). PreCAL sets the threshold at 2 units above the 

computed average. 

The QRS morphology feature used to characterize the ECG in this study is 

the output of a matched filter in the QRS detector of ARISTOTLE. The average 

that a given PVC is interpolated. 
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Figure 4.7: Definition of the VVC and the VVR Interval 

and standard deviation of this feature is computed for all Normal beats and VPBs 

during the segments of ECG when CALVIN is in the Learn Mode. 

The average and standard deviation is used to characterize the N-V interval. 

This approach was taken because we found that the N-V interval is not significantly 

rate dependent. The average and standard deviation is also used to characterize the 

first V-V interval in a run of VPBs (VVC), and subsequent V-V intervals (VVR). 

We chose to maintain separate VVC and VVR interval statistics, having observed 

that the first V-V interval is more variable than subsequent V-V intervals in a run 

of VPBs. The definition of these two intervals is illustrated in Figure 4.7. 

The N-N interval prediction is determined using a first order low pass digital 

filter approach expressed by Equation 4.1, where RR,. and R"'Rn denote the actual 

and the predicted value of the N-N interval preceeding the n'" beat. 

where a = 0.3 (4.3) 
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This approach to predicting the N-N interval has been shown to be superior to a 

moving average method [18]. The acceptable range used for the N-N interval is 

±10-15% of the current prediction. This adaptive method of predicting the N-N 

· interval responds rapidly to changes in heart rate and is therefore well suited for 

maintaining an accurate prediction. 

The V-N interval in the case of an isolated VPB is often "compensatory". 

That is, the degree of prematurity of a VPB is matched by a corresponding delay 

in the subsequent Normal beat. This relationship is expressed by Equation 4.2, 

where V Ne is the compensatory V-N interval, N N is the local predicted interval 

between two Normal beats, and NV is the average forward VPB coupling interval. 

Obviously the N-N interval varies inversely with heart rate, while the N-V interval 

tends to remain fairly constant. Therefore V Ne is very dependent on heart rate. 

The statistics used to characterize the V Ne interval are shown in Equations 4.3 and 

4.4. They were derived by applying basic probability principles for the mean and 

variance of sums. 

VNe -

E(VNe) -

-

-

Var(V Ne) 

-

2NN-NV 

E(2NN-NV) 

2E(NN) - E(NV) 

2µNN -µNV 

Var(2N N - NV) 

4Var(N N) +Var( NV) 

4 2 2 UNN +uNV 

(4.4) 

(4.5) 

(4.6) 

The NN and the NV intervals are treated as random variables with mean µ and 

variance u 2 • The N-N interval prediction is used for µNN, while 10% of the N-N 

prediction is used for uNN (the standard deviation of NN). The treatment of the 

NN interval as a random variable is reasonable if we assume that the heart rate is 

constant over an arbitrarily short time interval. The 'choice of 10% as the standard 

deviation is arbitrary. 
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The N-N and the V Ne interval predictions contained in Data Memory during 

noisy ECG segments are updated based upon the reclassified data stream gener­

ated by CALVIN. These rate dependent parameters must be continuously updated 

to correspond to the local heart rate. Otherwise, sudden changes in the heart 

rate would render them useless. The updating procedure is further explained in 

Chapter 6. 

The statistics (average and standard deviation) for the V-N intervals subsequent 

to runs of PVCs are computed directly using the events observed during noise-free 

segments of ECG. PreCAL also maintains a count of all the occurances of couplets, 

triplets, quadruplets, and vtach (defined in preCAL as anything greater than four 

consecutive PVCs). The longest run of SVPBs is also recorded. 

An internal count of the interpolated PVCs, the SVPBs, the total PVCs, and 

the total premature beats observed is maintained. The information transferred to 

CALVIN consists of two ratios. The first ratio is the percentage of PVCs that 

are interpolated (interp). This ratio estimates the probability that a given PVC 

is interpolated. The second ratio is the percentage of premature beats that are 

SVPBs (svpb). This ratio estimates the probability that a given premature beat is 

an SVPB. 

4.5 Noisy Data Processor 

The major function of the Noisy Data Processor (NDP) is to transfer the current 

state of the knowledge base to the preCAL annotation file a.t the beginning of 

a.nd to determine the ending boundary of each noisy ECG segment. When three 

consecutive beats with noise estimates greater than the established threshold are 

observed, the NDP is invoked. 

Severa.I computations a.re then performed. First of all, the acceptable range of 

the current NN interval prediction is determined. The computed value is 3.3% of 

the NN prediction. The human expert protocol within Production Memory treats 
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this value as a standard deviation and the acceptable range is in most cases ±3 

standard deviations. Therefore the actual acceptable range is 10%. Secondly, the 

NV interval standard deviation is checked to assure that it is at least 3.3% of the 

average interval length. IT the actual value is less than 3.3%, then 3.3% of the 

average NV interval is substituted as the NV standard deviation. Finally, the VN 

interval statistics a.re computed as described in section 4.4.2. The entire knowledge 

base is then transferred to the preCAL annotation file. 

The classification of the beats within the noisy ECG segment is changed to 

Unknown (Q) by the NDP, since ARISTOTLE's beat classifications are unreliable 

in the presence of noise. The beat information is then transferred to the preCAL 

annotation file. The YAPS Production System will reclassify this noisy ECG data 

by applying the knowledge base and the human expert protocol. Once 20 consecu­

tive beats with noise levels below the threshold are observed, control is transferred 

to the CDP. 
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Chapter 5 

Implementation of the Human 

Expert Protocol with YAPS 

This chapter will explain some of the basic principles of YAPS and the mechanics 

of how CALVIN was implemented with this production system. The next chapter 

will explain how the human expert protocol was extracted and implemented. It 

will develop an abstraction of the protocol to reveal how human experts analyze 

noisy ECG data. 

5.1 Background 

YAPS, Yet .Another £,roduction System, is an antecedent driven production system 

utilizing a discrimination (inference) net similar to the one used in OPS5 [19]. The 

conditional part of each rule (the Left Hand Side - LHS) is encoded within the 

inference net. When facts are added to the database, they are compared to the 

net, generating a list of rules whose LHS has been either partially or completely 

satisfied (bindings). The partial bindings are stored. 'fhe completely satisfied 

bindings constitute a conflict set. YAPS has a conflict resolution strategy, to be 

described in a later section, that it uses to decide which rule within the confiict set 

to invoke (or in Artificial Intelligence vernacular, which rule to fire). The action 
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part of the fired rule (the Right Hand Side - RHS) is implemented, modifying the 

database. The bindings are modified accordingly, generating a new conflict set. 

This iterative process is repeated until the conflict set is empty. 

YAPS in general compares favorably to OPS5, providing greater flexibility in 

the patterns and tests allowable on the LHS and the actions allowable on. the RHS. 

The YAPS Production System is implemented in Zeta LISP. 

5.2 The AFTL Interface 

As mentioned in chapter 4, PreCAL generates an annotation file as its output. 

The data format of the annotation file is incompatible with the YAPS production 

system. It must therefore be reparsed by the AFTL (Annotation File To List) 

Interface to a format compatible with YAPS. 

5.2.1 Noisy Data Segment Extraction 

YAPS is designed to handle lists of data with multiple fields of arbitrary length. 

The AFTL Interface converts the annotation file to a list of noisy segments of 

ECG. Within each of these segments is a list of potential ECG events, which are 

themselves lists with fields representing the data class, the beat classification, the 

sample number of the fiducial point, the noise level estimate, the matched filter 

amplitude, the pointer to the next beat, and the pointer to the previous beat. 

Most of the list items describing a beat are self explanatory. The data class field 

distinguishes the potential beats from the knowledge base entries and the other 

items in the YAPS database. The beat pointers will be explained in the next 

section. The reformatted data list structure is illustrated in Figure 5.1. 

The interface software extracts the noisy ECG segments by first searching the 

preCAL annotation file for the NOTE annotations containing the knowledge base 

information. This indicates the beginning of the noisy data segment. In order for 
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PreCAL Annotation File 

List of Noisy ECG Segments 

Noisy ECG Segment 1 2 3 N 

List of Beata within Segment 

Beat 1 2 3 N 

Li.st of Beat Puameters 

Data Cius Cla.saification Noise Level Amplitude Next-beat Pointer Previou.S-beat Pointer 

(Beat} 

Figure 5.1: Reformatted Data List Structure 
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CALVIN to begin processing in the Assist Mode, a Normal beat must be identified 

at least 4 beats and not more than 8 beats prior to the first beat of the noisy 

segment. 1 All subsequents beats are reclassified to Unknown (Q). 

The integrity of the first Normal beat of a noisy data segment is important, 

since CALVIN will base its initial decisions on the relative timing of this beat 

and the proximal events. Choosing a beat distant from the region of increased 

noise level raises the confidence in the accuracy of the Normal beat classification. 

A more sophisticated approach for a later version of CALVIN will be to have 

CALVIN assure the accuracy of the Normal classification by analyzing the beat 

context within the noise-free segment of data. H the beat classification if found 

to be questionable, the search for a Normal beat would proceed further into the 

noise-free region. 

The end of the noisy ECG segment is determined by searching the the an­

notation file for 20 consecutive noise-free beats. H the 21'' beat is unclassified 

by ARISTOTLE (unknown - Q) the data segment is extended until a classified 

beat is observed. H the noise level should rise above the threshold during such an 

extension, an additional 20 consecutive noise-free beats is required to terminate 

the segment of data to be processed by CALVIN. This data extraction process is 

illustrated in Figure 5.2. 

5.2.2 The Use of Beat Pointers 

.As will be illustrated in the next chapter, all of the rules implemented by CALVIN, 

except for the SITU mode rules that process all unknown events, search the database 

for patterns that contain both classified (NORM, VPB, APB) and unclassified (UN­

KNOWN) beats. The pattern matcher in YAPS does not take advantage of the 

sequential nature of the data. It attempts to match on every combination and 

1 H a Normal beat is not found within 8 beats from the beginning of the noisy data segment, 
CALVIN will commence processing in SITU Mode. This mode of processing will be explained in 
the next chapter. The inability to locate a Normal beat is caused by ARISTOTLE classifying a 
string of events as Unknown (Q) during a noisy ECG segment. 
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N N N N V N N Q NOTE Q Q Q Q Q QQQNNN 

Noise Level 2 1 3 1 3 1 1 4 3 6 4 7 8 010211 

N N V V V N N Q NOTE Q Q Q Q Q Q Q Q Q Q N 

Noise Level 2 1 3 1 3 1 1 4 3 6 4 7 8 010211 

Figure 5.2: Noisy ECG Data Extraction Process 
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permutation of the data for every rule, a process that gives CALVIN a comatose 

appearance of inactivity. In order to restrict the domain of this search and elim­

inate unnecessary processing by CALVIN, each beat is assigned a pointer to the 

. next and the previous beat. Regions of ECG data can be unambiguously defined 

by the use of beat pointers. This is illustrated in Figure 5.3. In Case A without 

the use of pointers, the 3 beat pattern defines 12 sequences from the database. 

Once pointers are introduced in Case B, the 3 beat pattern is satisfied by only one 

sequence from the database. This reduces the overhead processing by a factor of 

12. 

5.2.3 The Sliding Window Approach 

Once the list of data is generated, it must be loaded into the YAPS database. 

Another technique that was found to increase the speed of CALVIN was to restrict 

the number of items in the database to be analyzed. The database window is 

comprised of an 8 event buffer of classified beats (CB Buffer) and an 8 event buffer 

of unclassified beats (UCB Buffer). 2 The Assist Mode initial processing state 

of CALVIN is 1 classified beat and 8 unknown beats in the window. As CALVIN 

begins to classify events, the CB Buffer is filled, while the UCB Buffer is maintained 

at 8 events by adding a new Unknown beat for every beat that is newly classified. 

Once the CB Buffer is filled to capacity, every newly classified beat replaces the 

oldest item in the buffer. This process is illustrated in Figure 5.4. 

5.3 YAPS Conflict Resolution Strategy 

In order to more fully understand the functioning and the modes of operation of 

CALVIN, one must understand the conflict resolution strategy utilized by YAPS. 

YAPS sorts the facts of all the bindings in the conflict set into two lists. One 

:;iThese are the default values. They can be altered by changing the value of the variables •slack­
classified* (default 8) and •window-length* (default 8). This process is explained in the User's 
Guide. 
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• 

A. No Beat Pointers 

N2 Ul 

• 

([Data Type] [Classification] [Sample Number]) 

(beat norm -idO) 
Defines 

(beat unknown -idl) 

(beat unknown -id2) 

B. Next-beat Pointers 

U2 

Nl-Ul-U2 

Nl-Ul-U3 

Nl-U2-Ul 

~ Nl-U2-U3 

Nl-U3-Ul 

Nl-U3-U2 

([Data. Type] [Classification] [Sample Number] [Next-beat Pointer]) 

(beat norm -idO -idl) 

i 
(beat unknown -idl -id2) 

Defines 
N2-Ul-U2 

I 
(beat unknown -id2 -) 

U3 

N2-Ul-U2 

N2-Ul-U3 

N2-U2-Ul 

N2-U2-U3 

N2-U3-Ul 

N2-U3-U2 

Figure 5.3: Definition of an Unambiguous Beat Pattern Using Pointers 
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Old State New State 

empty empty 

empty empty 

empty empty 

empty CB Buffer empty 

empty empty 

empty empty 

empty _!_ Norma.I 0 

A. Norma!O I Norma.I 1 

Unknown 1 --+ Norma.I Unknown 2 

Unknown 2 ... Unknown 3 

Unknown 3 Unknown 4 

Unknown 4 UCB Buffer Unknown S 

Unknown S Unknown 6 

Unknown 6 Unknown 7 

Unknown 7 Unknown 8 

Unknown 8 ..... ,__ __ Unknown 9 Unknown 9 

Old State New State 

• Norma.! 0 • Norma.! I 

Norma.! I Norma.12 

Norma.12 Norma.13 

Norma.I 3 CB Buffer Norma.14 

Norma.14 Norma.l S 

Norma.l S Norma.16 

Norma.16 Norma.I 7 

B. Norma.I 7 Norma.18 

Unknown 8--+ Norma.I Unknown 9 

Unknown 9 • Unknown 10 

Unknown 10 Unknown 11 

Unknown 11 UCB Buffer Unknown 12 

Unknown 12 Unknown 13 

Unknown 13 Unknown 14 

Unknown 14 Unknown lS 

Unknown lS 'ill Unknown 16 Unknown 16 

Figure 5.4: CALVIN Data Buffer Maintenance 
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list contains all the facts with the data class or keyword (the first field in a fact 

list) goal. The other list contains all the other facts used in the bindings. These 

lists of facts are sorted according to age, with the facts most recently added to the 

database placed first. The bindings are compared by looking at the facts in the 

goal list. The binding whose first fact was most recently added to the database is 

chosen by YAPS to be fired. If all of the first goal facts are of the same age (this 

implies it is the same fact), then successive facts in the list are compared for each 

binding. If a tie persists, then the binding with the longest list of facts is fired. If 

the lists are of the same length, then the second list of facts is compared in the 

same manner for each binding. If a tie persists for the second list of facts, then a 

random choice if made. 

The YAPS Conflict Resolution Strategy is ideal for the implementation of the 

various modes of operation in CALVIN. It is also an ideal strategy for modelling the 

human experts' approach to analyzing noisy ECG's. These points will be explained 

further in the next chapter. 
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Chapter 6 

The Human Expert Protocol 

6.1 The Human Expert Approach 

Putting aside for the moment the mechanics of how CALVIN operates, one vital 

question remains unaswered. How does the human expert approach analyzing noisy 

ECGs? The first step to answering this question involved actually observing the 

human experts performing this task. 

As mentioned in Chapter 1, several interviews were held with the experts. They 

were asked to analyze both raw noisy ECG data and the beat annotation stream 

generated by ARISTOTLE. These sessions were recorded so that the rationale 

behind the decisions made could be reviewed. Once these sessions were completed, 

they were analyzed to extract a "universal" approach used by trained individuals in 

annotating noisy ECG recordings. The following observations deal mainly with the 

analysis of the beat annotation stream, except where noted. Review of the sessions 

revealed several common approaches used by the human experts while analyzing 

noisy ECGs. These included: 

1. Events were classified based on their context and their timing relative to 
' proximal events. Morphology information was used to a much lesser degree, 

especially while analyzing the beat annotation stream. The morphology infor-
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mation contained within the raw ECG data was also of little use at the higher 

noise levels, except for VPBs which in many cases had larger amplitudes than 

the Normal beats. 

2. Several hypotheses would be considered and the most probable one was se­

lected. 

3. The human experts were more assured of decisions based on a wider event 

context. 

4. Only gradual changes in the heart rate were found acceptable. A regional 

R-R interval range (ie., local heart rate) was established and those beats that 

deviated from the acceptable range were classified as either VPBs, SVPBs, 

or glitches. The tape used in these sessions (AHA series 4001} represented 

a patient in NSR. Sessions were conducted with the annotation stream of 

patients in AF, but the experts were unable to analyze these in the absence 

of the beat morphologies (ie., the raw ECG data). 

5. An acceptable range for the VPB coupling interval was established. This 

interval was assumed to be independent of the heart rate. 

6. The clean ECG segment was checked for a compensatory pause subsequent 

to a VPB. If this was found to be the norm (as it is in most cases}, then this 

timing pattern was used extensively during the analysis process. 

7. The experts were reluctant to classify events as runs of VPB's (couplets, 

triplets, VTach} if no run was observed during the noise-free data segment. 

8. Segments of data that were too difficult to annotate were skipped. A region 

would be found where accurate event classification could be resumed. The 

experts were usually able to then work backwards to classify portions of the 

skipped ECG data. 

One very importat observation is that the human expert passes through several 

modes of analysis as the ECG noise level increases. At lower noise levels, the 
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morphology information is very reliable (or in the case of the raw ECG data, 

the expert is able to visually distinguish Normal beats from VPBs). Under these 

conditions, the human expert is able to make a majority of his decisions based 

on visual inspection1 • As the noise level increases, the expert relies more heavily 

on the timing information (ie., begins to use his calipers) and relies less on the 

morphological information. At extreme noise levels, the expert losses confidence in 

his decisions and finds it necessary to skip segments of data.2 

In order to further illustrate how the human expert analyzes the noisy ECG, let 

us examine several hypothetical situations where some of the above principles are 

applied. Consider the event pattern illustrated in Figure 6.1. The clean data seg­

ment is used to establish the knowledge base. Recall that the system preprocessor 

(preCAL) changes all of ARISTOTLE's beat annotations to unknown (U) during 

noisy ECG segments. The first unknown beat (Ul) is 1 NN interval from N, while 

U2 is greater than 1 NN interval from N. Ul would be accepted as a Normal beat. 

A decision on event U2 would now be made in the context of Ul as a Normal beat. 

Note that the decision on Ul was based strictly on timing information. 

Another straightforward example is presented in Figure 6.2. Event Ul is 1 NV 

interval from N, while event U2 is greater than 1 NN interval from N. The expert 

would therefore accept Ul as a VPB. A decision on event U2 would again be made 

relative to the previous decision on event Ul (VPB). 

The two previous examples are very basic. Let us now examine a more compli­

cated event sequence. Consider Figure 6.3. In this case, event Ul is 1 NV interval 

from N, while event U2 is 1 NN interval from N. Also, event Ul does not look . 

like a VPB based on the morphology information available. Since the morphology 

1 Accurate analysis of ARISTOTLE's beat annotation stream by the human expert would require 
adequate separation of the Normal beat and the VPB matched filter amplitude distributions. 

:zsome of the human experts required constant encouragement to continue annotating the ECG at 
the higher noise levels for fear of making mistakes. Others proceeded with reckless abandon. 
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True Beat Pattern N N U2 

Figure 6.1: Timing Example 
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Figure 6.2: Timing Example 
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information is unreliable in the presence of noise 5 , a confident decision (p > 0.5) 

cannot be made with this limited context. A wider event sequence is necessary for 

a defini~e decision to be made. This is provided in Figure 6.4. 

Let us assume for the moment that we have not observed any SVPB's during 

the clean segments of ECG. Under Hypothesis 1 in Figure 6.4, event Ul is classified 

as a glitch since it is premature for a Normal beat and does not look like a VPB 

(which presently does not mean very much). Event U2 is 1 NN interval from N 

and is classified as a Normal. Event U3 is classified as an SVPB (the first to be 

observed) since it is premature for a Normal beat relative to U2, yet greater than 1 

NV interval from U2. The fact that no previous SVPBs have been observed makes 

this hypothesis less likely to be true. Under Hypothesis 2, Ul is classified as a VPB 

in that it is 1 NV interval from N. U2 is less than 1 VN interval Ul. Assuming that 

no previous couplets have been observed, U2 is classified as a glitch. Event U3 is 1 

VN interval from Ul and is therefore classified as the compensatory Normal beat. 

Under these conditions, Hypothesis 2 would be accepted as the true beat sequence. 

A decision on event U4 would be deferred, requiring a wider event context. 

There are situations were a definitive event classification cannot be made. In 

Figure 6.5, event Ul is 1 NV interval from N. Event U2 is 1 NN interval from N. 

Event U3 is both 1 VN interval from Ul and 1 NN interval from U2. Ul does not 

look like a VPB. Because of the unreliability of the morphology information and 

the ambiguity of the timing pattern, a confident decision cannot be made between 

Hypothesis 1 and Hypothesis 2. 

The ECG rhythm prior to the unknown events under consideration may contain 

useful information for the handling of an ambiguous event sequence. H, for example, 

the prior beat context was an episode of bigeminy, then this would influence the 

current decision. H preS'ented with the ambiguous event sequence of Figure 6.5 

3 It should be noted that with the matched filter output of ARISTOTLE, 

p(Event = V PBIMorphology = V PB)> p(Event :/- <V PBIMorphology-::/= V PB) 

This fact is strictly empirical. 
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Figure 6.4: Timing Example 
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Figure 6.6: Timing Example 

in the context of bigeminy, the expert would accept Hypothesis 1 as the most 

likely beat sequence. This is illustrated in Figure 6.6. In the context of trigeminy, 

the most likely beat sequence would depend on whether the Normal beat at the 

classification front (ie., the last classified beat) was the first or the second Normal 

beat in the N-N-V sequence. This is shown in Figure 6. 7. The tendency of the 

human expert is that if a particular rhythm has been identified, decisions are biased 

towards maintaining that rhythm. 

Once the human expert skips a segment of data due to an excessive noise level, 

the classification problem becomes more complex. The decisions are no longer 

based on the event timing relative to a set of classified beats. The expert searches 

the event data stream for a pattern that matches a template constructed from 

previously obtained timing information. This is illustrated in Figure 6.8. In this 
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Figure 6.8: N-V-N Template Matching 
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case, the expert observes that VPB's are followed by a compensatory pause. He 

therefore constructs an N-V-N template and searches the unknown beats for an 

event sequence that matches this template. One could also construct and utilize 

an N-N-N template as illustrated in Figure 6.9. Some of the experts actually drew 

marks on a card representing the beat timing and moved the card through the 

annotation data stream in search of a match. Once a match was found, the ex­

perts would resume annotation at the newly classified beats. When noisy segments 

were skipped in the raw ECG data, the experts usually resumed annotation at a 

VPB that was easily distinguishable from the surrounding noise due to their large 

amplitude and width. 

Since we are dealing with noisy ECG segments, the template matching proce­

dure had to be able to tolerate intervening noise glitches. In order for a match 

to be declared, certain criteria must be satisfied regarding the timing of the noise 

glitches In Figure 6.10, the potential N-V-N pattern is interrupted by a noise glitch 

during the V-N segment. The timing of the glitch is such that it is greater than 1 

NN interval from event Ul (potential Normal beat) and greater than 1 NV interval 

from event U2 (potential VPB). H we assume that no couplets have been observed 

during the noise-free ECG, then we would conclude that U3 is a glitch and that 

Ul, U2, and U4 represent the N-V-N beat sequence. 

Consider the similar scenerio with the N-N-N template, shown in Figure 6.11. 

In this case, the glitch (U3) is greater than 1 NN interval from Ul and less than 1 

NV interval from U2. One would also have to rule out the possibility that U3 is a 

compensatory Normal beat relative to event Ul. In this situation, one would have 

to utilize the morphology information to assure that Ul was not a VPB, although 

this would not be very reliable. H the distance between U3 and Ul is greater 

than any previously observed VN interval, then this fact would rule out U3 as a 

compensatory Normal beat. 
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6.2 CALVIN Rule Structure 

Once the basics of the human expert approach were identified, a small subset of 

the rules were generated based on hypothetical event sequences. CALVIN was 

then run on a noisy ECG tape (AHA series 4001). When CALVIN was unable to 

annotate a given segment of the ECG, the event sequence was identified and a rule 

was generated to handle it, provided the sequence was unambiguous. This process 

was continued until a "high" level of system performance was attained. 

The rules consist of four major components, the beat pattern, the knowledge 

base subset, the analytical section and the action section. A representative exam­

ple of a coded rule is shown in Figure 6.12. Section A of this rule represents the 

beat pattern being analyzed, which in this case is a Normal beat followed by three 

unknown beats. 4 The fields for a beat represent the data class, the beat classifi­

cation, the sample number, the noise level, the beat amplitude, the pointer to the 

next beat, and the pointer to the previous beat. Notice that the pointers have all 

of the fields of the top level beat. The pointers are used to unambiguously define a 

sequential set of events. Each beat in the pattern, except for the la.st beat, specifies 

the sample number of the next beat in the pattern. The dashes with no variable 

name after them represent "don't care" fields. In the case of rule 14a, we are not 

interested in the previous beat field (the la.st field) of the top level beats. The 

field must be held by a dash in order for the YAPS pattern matcher to search the 

database for a fact with 7 fields, regardless of how many fields the user is interested 

in. 

Section B of this rule represents the components of the knowledge base applied 

by the rule. In this case, the statistics for the NN interval, the NV interval, the VN 

interval, and the VPB amplitude are used. This rule also used the fact that SVPBs 

represent zero percent of the total premature beats observed (svpb 0.0). The list 

"(goal calvin assist aristotle)" is used to establish the Assist Modes in CALVIN. 

The establishment of the various modes in CALVIN will be explained in a later 

4 An event is a beat until proven otherwise. 
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(p calvin_14a 

A. (beat norm -idO -nlevO -ampO (beat - -id1 - - - -) -) 

(beat unknown -id1 -nlev1 -amp1 (beat - -id2 - - - -) -) 

(beat unknown -id2 -nlev2 -amp2 (beat - -id3 - - - -) -) 

(beat unknown -id3 -nlev3 -amp3 - -) 

B. (goal calvin assist aristotle) 

(nn -nnavg -nnsd -nnsd3 -nnsd5) 

(nv -nvavg -nvsd -nvsd3 -nvsd5) 

(vn -vnavg -vnsd -vnsd3 -vnsd5) 

(vamp -vampavg -vampsd -vampsd3 -vampsd5) 

(svpb 0.0) 

test ( < (// (abs (- (- -id1 -idO) -nvavg)) -nvsd) 3) 

( < (// (abs (- (- -id2 -idO) -nnavg)) -nnsd) 3) 

C. ( < (// (abs (- (- -id3 -id2) -nvavg)) -nvsd) 3) 

(> (// (abs (- -amp1 -vampavg)) -vampsd) 3) 

( < (// (abs (- -amp3 -vampavg)) -vampsd) 3) 

~ (fact glitch -id1 -nlev1 -amp1) 

(remove-beat 2) 

D. (modify 3 beat norm) 

(int-update 6 7 8 (- -id2 -idO)) 

(new-facts 2) 

) 

Figure 6.12: Example of a Coded Rule - Calvin_l4a 
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section. 

The analysis is performed in Section C. Intervals between specified events are 

computed and compared to the averages compiled by the preprocessor. In most 

cases a window of ±3 standard deviations about the mean of a given parameter 

is considered to be the acceptable range of the value. A window of ±5 standard 

deviations is used to establish whether a computed value is out of range for con­

sideration as a given parameter. There are however exceptions to these rules. The 

VN interval distribution, computed from the NN and the NV interval statistics 

as demonstrated in section 4.3.2, tends to be very wide. Therefore ±2 standard 

deviations about the mean is used as the cutoff between the acceptable and the 

unacceptable range of values. In some cases, depending upon the event context, the 

acceptable range of values for the NV interval are from -5 standard deviations to 

+3 standard deviations about the mean value. Due to the usually wide distribution 

of the amplitude statistics, ±3 standard deviations is used as the cutoff between 

the acceptable and the unacceptable values. 

In Rule 14a (Figure 6.12), the first test in the analytical section checks whether 

the interval between the normal beat and the first unknown beat is within 3 stan­

dard deviations of the mean NV interval. The next test checks whether the interval 

between the normal beat and the second unknown beat is within 3 standard devi­

ations of the mean NN interval. The third test of event timing checks whether the 

interval between the third unknown beat and the second unknown beat is within 

3 standard deviations of the mean NV interval. The two final tests check the 

amplitudes of the first and the third unknown beat. The first test assures that 

the amplitude of the first unknown beat is out of the acceptable range for VPB's 

(greater than 3 standard deviations from the mean). The second test assures that 

the amplitude of the third unknown beat is within 3 standard deviations of the 

mean VPB amplitude. 

Sections A, B, and C represent the predicate of this rule or the LHS. Section D 

represents the action part or the RHS of this rule. There are several new functions 
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that have been added to the YAPS production system for this specific application. 

The first of these is the modify routine. This function changes the classification 

of a specified beat. The first argument specifies the location, or the line within 

the rule, of the beat to be modified. The second and the third argument specify 

the data class (beat) and the new beat classification respectively. In Rule 14a 

(Figure 6.12), the modify function is applied to the second unknown beat on 

line 3. The beat classification is changed from unknown to norm (Normal). The 

function also refreshes the modified beat and the flanking beats in order to enable 

the fired rule for data in the region under analysis. 6 

The remove-beat function is used to remove events that have been determined 

to be glitches from within the data structure. The only argument that it requires is 

the line number of the event to be removed. The procedure removes the event from 

the data structure by redirecting the "next-beat" pointer of the left flanking beat 

to the right flanking beat. The "previous-beat" pointer of the right flanking beat 

is redirected to the left flanking beat. This process is illustrated in Figure 6.13. 

Notice that prior to removing the first unknown beat in Rule 14a, a fact "glitch" is 

created with all of the attributes of the removed beat except for the pointers. This 

information allows the location of the detected ECG artifact to be noted within 

CALVIN's annotation file. 

The NN and the VN interval statistics, maintained in Data Memory during 

the Assist Mode, are continually updated by CALVIN. Since the VN interval is 

dependent upon the heart rate, changes in the NN interval statistics must also be 

·reflected in the VN interval statistics. This is accomplished by CALVIN with the 

int-update function. The first three arguments of the int-update function are 

the line numbers within the rule of the NN, the NV, and the VN interval statistics 

respectively. Since it has been determined in Rule 14a that the first unknown beat 

is a glitch and the second unknown beat is a Normal, the NN interval statistics are 

updated based on the length of the interval between the second unknown beat (id2) 

5 The necessity of the refresh procedure is explained in the YAPS User's Manual in the section 
describing the confiict resolution strategy. 
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and the Normal beat (idO). The length of this interval (- -id2 -idO) is the fourth 

argument to int-update. The statistics a.re updated as described in Equations 

4.1-4.4 of section 4.3.2. Note that the NN interval statistics must be updated first 
' 

in order for the change to be reflected in the VN interval statistics. The line number 

of the NV interval statistics is supplied since they are required to compute the VN 

interval statistics. The NV interval statistics are not updated by int-update. 

New unknown events are added to the data buffer in proportion to the number of 

beats classified by CALVIN. This is accomplished by the new-facts function. The 

routine is called with one argument specifying the number of sequential unknown 

events to add to the UCB Buffer. In Rule 14a, two unknown beats were classified, 

therefore new-facts is called with an argument of 2. 

The last function added to the YAPS Production System is clean-up-facts. A 

review of CALVIN's modes of operation will help illustrate the use of this function. 

CALVIN operates in three basic modes, Learn Mode, Assist Mode, and SITU Mode 

as illustrated in Figure 6.14. During Learn Mode, the knowledge base is compiled. 

When the noise level exceeds the threshold, CALVIN enters Assist Mode and begins 

classifying the events in ARISTOTLE's annotation stream. When CALVIN is 

unable to process a segment of data, it enters SITU Mode. During SITU Mode, 

CALVIN skips the difficult segment of ECG and searches the unknown events for 

a recognizable timing pattern. CALVIN first searches the 8 events in the UCB 

Buffer. H a recognizable pattern is not found, a new unknown beat is added to the 

database and the search is repeated. This process is continued until CALVIN finds 

a pattern it recognizes. Then CALVIN reenters Assist Mode and beat classification 

is resumed. 

For each new unknown beat added to the database, the oldest beat (classified 

or unclassified) is removed from the database. This is to maintain the total window 

length (CB Buffer and UCB Buffer) at 16 beats. This is accomplished with the 

new-facts function with a second non-NIL argument. Hone were to call new­

facts under these circumstances without the second argument, the UCB Buffer 
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Old State New State 

....._ 
Normal 6 • ..... empty 

Normal 7 empty 

Normal 8 empty 

Unknown 9 CB Buffer empty 

Unknown 10 empty 

Unknown 11 empty 

Unknown 12 Normal 9 

Unknown 13 

Unknown 14 

clean-up-facts ... Normal 10 

Unknown 21 

Unknown 15 Unknown 22 

Unknown 16 Unknown 23 

Unknown 17 UCB Buffer Unknown 24 

Unknown 18 Unknown 25 

Unknown 19- Normal 9 Unknown 26 

Unknown 20-Normal 10 Unknown 27 

Unknown 21 4 Unknown 22-28 Unknown 28 

Figure 6.15: Action of Clean-up-facts 

would increase in length indefinitely. 

The result of this search process in SITU Mode is a discontinutiy of the regions 

of ECG classified by CALVIN. Since CALVIN is not capable of working backwards, 

the segment of events up to the second set of beats classified in SITU Mode must 

be removed from the database. This is accomplished with the function clean­

up-facts. Clean-up-facts is called with no arguments. Its action is illustrated in 

Figure 6.15. The beats classified by the SITU Mode rule become the sole occupants 

of the CB Buff er. All of the preceding beats are discarded from the database. Since 

the SITU mode rules classify all but the la.st event in its beat pattern, the UCB 

Buffer will contain one unclassified event. Therefore new-facts must be called 
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1. (goal calvin assist aristotle) 

2. (calvin change mode situ) 

3. (calvin advance window situ) 

Figure 6.16: Facts Added to Database During Calvin Boot Sequence 

with an argument of 7 in order to fill the buffer. 

6.3 Establishment of the Assist and the SITU 

Modes 

The rules for the Assist Mode and the SITU Mode reside in the same production 

memory. The rules for the SITU Mode must be disabled during the Assist Mode 

and enabled when the Assist Mode conflict set is empty, implying that CALVIN has 

halted processing due to the inability to process the current ECG segment. This 

is accomplished by taking advantage of the conflict resolution strategy utilized by 

YAPS. 

When CALVIN is initially booted, the three facts presented in Figure 6.16 are 

added to the database in the order shown. Each of CALVIN's Assist Mode rules 

has as the first item in the knowledge base subset the fact "(goal calvin assist 

aristotle)". As mentioned in Chapter 5, YAPS gives priority to rules that match 

facts with the keyword "goal". None of the SITU mode rules match facts with this 

keyword. During the Assist Mode, only one SITU Mode rule is capable of firing. 

This rule, calvin_changemode_situ illustrated in Figure 6.17, matches only on 

fact "(calvin change mode situ)". It is therefore of lower priority than all of the 

Assist Mode rules. This rule is always triggered during Assist Mode, but not fired 

until the Assist Mode conflict set is empty. All of the other SITU mode rules are 

disabled, since they require the fact "(situ mode indicator)", which is created on 
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(p calvin_changemode..situ 

(calvin change mode situ) 

=> (remove 1) 

(fact situ mode indicator) 

) 

Figure 6.17: SITU Mode Rule Calvin_changemode...situ 

the RHS of the rule calvin_changemode...situ. 

Once SITU Mode is invoked by the creation of the fact "(situ mode indicator)", 

the Active Mode rules are implicitly disabled requiring a new set of classified beats 

in the data buffer for triggering. The rule calvin_changemode...situ disables itself 

by removing the fact "(calvin change mode situ)" from the database. The priority 

structure of the SITU Mode productions is such that all of the rules dedicated to 

classifying events take priority over the rule calvin_advance...situ (Figure 6.18), 

which is responsible for adding new unknown beats to the database. This situation 

is just the opposite to that in the Active Mode. In this case, the rule of the lowest 

priority (calvin_advance..situ) continually fires and reenables itself until one of the 

higher priority SITU Mode rules is triggered. The dedicated SITU Mode rule 

classifies the recognized beat sequence, disables the SITU Mode by removing the 

fact "(situ mode indicator)", and reenables the rule calvin_changemode...situ by 

creating the fact "(calvin change mode situ)". The Active Mode is invoked, since 

new classified beats are added to the database by the SITU Mode rule. An example 

of a SITU Mode rule dedicated to classifying events is shown in Figure 6.19. 
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(p calvin_3....situ 

(beat unknown -idO - -ampO (beat - -id1 - - - -) -) 

(beat unknown -id1 - - (beat - -id2 - - - -) -) 

(beat unknown -id2 - - - -) 

(situ mode indicator) 

(nn -nnavg -nnsd -nnsd3 -nnsd5) 

(nv -nvavg -nvsd -nvsd3 -nvsd5) 

(vn - - - -) 

(vamp -vampavg -vampsd -vampsd3 -vampsd5) 

test ( < (// (abs (- (- -id1 -idO) -nnavg)) -nnsd) 3) 

(< (// (abs (- (- -id2 -id1) -nnavg)) -nnsd) 3) 

(> (- -id1 -idO) (+ -nvavg -nvsd3)) 

(> (- -id2 -id1) (+ -nvavg -nvsd3)) 

(> (// (abs (- -ampO -vampavg)) -vampsd) 3) 

=> (fact calvin change mode situ) 

(modify 1 beat norm) 

(modify 2 beat norm) 

(int-update 5 6 7 (- -id1 -idO)) 

(remove 4) 

(clean-up-facts) 

(new-facts 7) 

) 

Figure 6.19: Dedicated SITU Mode Rule 
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Chapter 7 

The Evaluation of CALVIN 

7.1 Selection of the AHA Database Tapes 

Eight ECG tapes were selectively chosen from the AHA database to evaluate 

CALVIN, based on the current capabilities of the system. The tapes represented 

patients in normal sinus rhythm with isolated, unifocal VPBs. Care was taken 

to select tapes on which ARISTOTLE made a minimal number of errors in the 

absence of noise. 

CALVIN is limited in its potential ability to process more complex rhythm 

classes by the morphology descriptor (matched filter output). The matched filter 

output does not provide enough information to make the differentiation between 

Normal beats and VPBs in the presence of noise. Another problem with this 

descriptor is that it is not very consistent during high levels of noise. 

It has been emphasized that the timing information is most important in an­

alyzing noisy ECGs, yet when one is dealing with more complex rhythms, beat 

morphology takes on a more important role. Consider the event sequence illus­

trated in figure 7.1. In this case, we have a VPB followed by 3 unknown beats. 

Assume for the moment that we have observed several episodes of triplets in previ­

ous segments of noise-free ECG. Based on the timing information, Ul and U2 could 
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N v Ul U2 U3 

vvc RVN 

VN 

Figure 7.1: Event Sequence Requiring Morphological Information to Resolve 

be VPBs or V could be an isolated VPB with U3 representing the compensatory 

Normal beat. In the absence of reliable morphology information, a sound decision 

on the true event sequence cannot be made. CALVIN will currently classify any 

beat that is shorter than 1 VN interval from a VPB as a Glitch. 

Another issue is that of SVPBs. There are some instances where the timing 

information is sufficient to distinguish an SVPB from a VPB. But consider the 

situation where the coupling interval distributions for SVPBs and VPBs have sig­

nificant overlap. The morphology information now becomes quite important in the 

classification of premature beats. 

Because of the limitiations imposed by the current morphology descriptor, 

rules have not been developed to handle many complex beat patterns. The AHA 

Database Tapes used to evaluate CALVIN were therefore chosen in accordance 

with this early stage of the rule development. The purpose of the evaluation is not 

to exhibit CALVIN's current domain of application, which is very limited. The 

following evaluation results represent an attempt to reveal the potential usefulness 

of this approach. 
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Another important factor in the choice of the AHA Tapes was that the timing 

characteristics had to be such that PVCs could be distinguished from Normal beats 

based on timing alone. Otherwise, the timing information that CALVIN relies on 

heavily in the classification of beats during noisy ECGs would be useless. Rapid 

heart rates produce NN intervals that do not differ significantly from the NV inter­

vals. Tapes were therefore chosen with heart rates in the range of approximately 

60 to 80 beats per minute, providing adequate separation between the NN and the 

NV interval distributions. 

7.2 Evaluation Protocol 

The evaluation protocol used to evaluate CALVIN is illustrated in Figure 7.2. 

Electrode motion noise was added to the ECGs [10] beginning at 5 minutes into the 

tapes, at a level that was shown to cause significant degradation in the performance 

of ARISTOTLE operating alone. An example of a noisy ECG signal is shown in 

Figure 7.3. The noise was added in 2 minute bursts separated by 2 minute noise­

free regions. The test was conducted over the first 20 minutes of each database 

tape (including the initial 5 minute learn period). Two of the tapes were a part of 

the development set for the system (tapes 4001 and 4009). 

The corrupted ECG data was then processed by ARISTOTLE, which generated 

an annotation file containing the beat classifications. This annotation file was then 

reprocessed by CALVIN, which generated another annotation file with modified 

beat classifications. Both of these annotation files were then compared to the truth 

annotation file for each database tape, resulting in 2 sets of performance statistics. 

7.3 Results 

The performance measures used were the QRS and PVC sensitivity and positive 

predictivity. The statistics were compiled only during those segments of ECG that 
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Databue Tape 
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ARISTOTLE 
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CALVIN 
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Truth 
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... ,.... 

Compare 

_ .... ... 

Performance Statistics 

Figure 7.2: Evaluation Protocol used to Evaluate CALVIN 
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Figure 7.3: Quality of ECG Used to Generate Results. 

The figure shows a 5 

second segment from AHA Tape 4009 with added electrode motion noise. The 

noise was added at an equivalent level to the other ECG tapes used in this study. 
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AHA DatabaH Tape 

Figure 7.4: Percentage of Processing Time in Assist Mode 

CALVIN processed in the Assist Mode. CALVIN processed an average of 58.0% of 

the noisy ECG segments in Assist Mode, while 42.0% of the data segments were 

too noisy to process (SITU Mode). The results for the individual AHA Tapes are 

shown in Figure 7 .4. The only noteworthy result is for Tape 1001, which did not 

have VPBs. The rules were developed under the implicit assumption that VPBs 

are observed during the noise-free data segments. CALVIN will have to be modified 

to handle the situation where no previous VPBs are observed. 1 

The QRS performance statistics are presented in Figure 7 .5. In almost every 

case, CALVIN slightly lowered the overall QRS sensitivity. Since CALVIN was 

actively discarding events determined to be false positive detections, it is evident 

that some true beats were discarded. The average QRS sensitivity for ARISTO-

1 It is felt that the necessary modifications will be relatively minor. 
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2006 :zoog 4001 4003 

AHA Databa1e Tape 

2006 :zoog 4001 4003 

AHA Databa1e Tape 

4004 

4004 

Figure 7.5: QRS Performance Statistics. 

performance is 

4005 

4005 400Q 

represented 

by the black bars, while CALVIN's performance is represented by the open bars. 
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TLE operating alone was 99.0%, while that for CALVIN (i.e., ARISTOTLE plus 

CALVIN) was 98.0%. 

CALVIN improved the QRS positive predictivity for every ECG tape used, 

illustrating the effectiveness of CALVIN in removing the false positive detections 

of ARISTOTLE. The average QRS positive predictivity for ARISTOTLE operating 

alone was 87.0%, while that for CALVIN was 99.0%. 

The most striking results were in the PVC statistics, presented in Figure 7 .6. 

CALVIN significantly outperformed ARISTOTLE in terms of both the sensitivity 

and the positive predictivity. Note that for tape 1001 the PVC sensitivity is un­

defined and the PVC positive predictivity is zero, since there were no VPBs on 

this tape. ARISTOTLE had 22 false positive VPB detections on this tape, while 

CALVIN had only 1. For tape 2006, ARISTOTLE and CALVIN performed at the 

same level in terms of the VPB sensitivity (97.4%), yet CALVIN far outperformed 

ARISTOTLE in terms of the VPB positive predictivity (97.4% versus 30.6%). 

Tapes 4005 and 4009 revealed comparable performance for the two algorithms in 

terms of the VPB positive predictivity, while CALVIN far outperformed ARIS­

TOTLE in terms of the VPB sensitivity for these two tapes. The average PVC 

sensitivity for ARISTOTLE operating alone was 60.0% while that for CALVIN was 

95.0%. The average PVC positive predictivity for ARISTOTLE operating alone 

was 58.2% while that for CALVIN was 88. 7%. These results show that CALVIN is 

able to effectively correct both false positive and false negative VPB detections. 
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Figure 7.6: PVC Performance Statistics. 
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Chapter 8 

Discussion 

8.1 Ongoing Development 

CALVIN is still in the early stages of development. There are several developmental 

issues that need to be addressed. First of all, the current version of CALVIN is not 

able to operate in real time. CALVIN requires 1 to 2 hours (depending upon the 

noise level) to process 2 minutes of noisy ECG data. 1 The slow processing speed is 

attributable to the YAPS production system not taking advantage of the sequential 

nature of the data and therefore performing unnecessary overhead processing. The 

continued development of CALVIN requires a faster production system, since as 

the number of rules increase, the speed of the system decreases. Further customiza­

tion of YAPS is necessary to decrease the processing time of CALVIN. Also, the 

development of a new production system designed specifically for this application 

is now under consideration. 

One might also consider implementing the human expert protocol in "C" during 

the final stages of development when major changes to the rules would not be 

anticipated. This system approach would conceivably amount to representing the 

rules as a series of if-else if/then statements placed sequentially from the highest to 

1This does not include the processing time of the Walking Interface, which can vary depending 
upon such things as weather conditions, physical health status, and tape drive availability. 
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the lowest priority rule. This would provide both real time processing and complete 

compatibility with the preprocessor (preCAL), also written in "C". 

Currently, CALVIN is not capable of handling rhythms such as triplets, quadru­

plets, VT, and supraventricula.r tachycardia (SVT). It can handle SVPBs and cou­

plets to a very limited extent. In order to handle such rhythms, a more advanced 

morphology descriptor is needed. We have emphasized that event timing is most 

important in analyzing noisy ECGs, yet when one is dealing with complex rhythms 

like VT or SVT, the only way to distinguish them from a string of false positive 

QRS detections is to rely more heavily on event morphology. The matched filter 

output alone does not provide enough information in most cases to correctly iden­

tify such rhythms under noisy conditions. Once a more sophisticated morphology 

descriptor is integrated into the system, further sessions will be conducted with 

the human experts and rules will be developed to handle these important rhythm 

classes. 

One potential extension of the CALVIN Project is the identification of recurrent 

beat patterns and their subsequent use as templates while analyzing noisy ECG 

data. The Human Experts used this approach to a moderate degree (espeeially with 

the N-V-N beat sequence) by making timing marks on a card and sliding it through 

the data stream to assist in the identification of specific beat patterns. CALVIN 

constructs its own templates from the timing information within the knowledge 

base, but it does not record the occurence of specific, recurring patterns. Once 

a recurrent pattern is identified, the timing information could be autocorrelated 

with that of the unknown event sequence to provide additional information for 

more accurate beat classification by CALVIN. This approach should prove to be 

very powerful in analyzing noisy ECG data. 
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8.2 Power of the Approach 

There are several reaso:is one would expect CALVIN to outperform a conventional 

arrhythmia detector in analyzing noisy ECGs. Firstly, CALVIN's decision making 

process is adaptive. The bias of the system is dependent upon both the local 

rhythm information and the data. contained in the knowledge base. For example, 

the system is quite reluctant to classify an event as a. couplet if no couplets have 

been observed previously and a "better" hypothesis exists that is more consistent 

with the information in the knowledge base. 

Secondly, conventional arrhythmia detectors tend to be relatively limited in the 

number of beats analyzed at any given time. CALVIN analyzes the data using 

a 16 event window (8 classified beats and 8 unknown events). This allows for a 

much greater degree of contextual analysis of the noisy ECG data. For example, 

an ambiguous event sequence can be resolved in some cases by observing that it 

exists in the context of bigeminy. The process of current decisions being based on 

previous ones makes for a. more self-consistent decision making process. 

Finally, CALVIN represents a sound model of the dynamic thought process 

used by the Human Expert while analyzing noisy ECG data. CALVIN traverses 

all of the modes of analysis invoked by the human expert while analyzing ECG 

data with varying amounts of noise. Many conventional detectors analyze ECGs 

in a mode that is predominently morphology driven (ie., the beats are classified 

based on their morphology), regardless of the noise level of the data. The success 

·of this approach in the tests conducted thus far suggests that by modelling human 

behavior in analyzing noisy ECGs, significant improvement is possible in automated 

arrhythmia detector performance. 
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