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1 Overview of the Language 

Theta is an object-oriented language that was developed for use within the Thor object-oriented 
database system [1, 2], and its origins within Thor have had a major impact on its design. The 
requirement that code run safely inside Thor has led to the inclusion of several features , such 
as strong, static type checking and automatic garbage collection. 

Theta is an extensible language in which users can define and implement new, abstract 
types and new routines. New types and routines are defined by specifications, which describe 
the interface of the new abstraction but give no implementation details; a type specification de­
fines the names and signatures of the methods of objects of that type. Types are implemented 
by classes, and a type can have multiple implementations. Classes and routine implemen­
tations are grouped within modules that encapsulate them. Modules ensure that an object 
or routine can be accessed only through its public interface, but allow related code to share 
implementation-specific information. 

Theta provides separate mechanisms for type hierarchy, parametric polymorphism, and in­
heritance. The type hierarchy mechanism allows the definition of families of types with similar 
behavior; types can have multiple supertypes. The inheritance mechanism is separate from 
hierarchy, so that related types can have independent implementations and unrelated types can 
have related implementations; only single inheritance is supported. The parametric polymor­
phism mechanism supports generic code that is independent of the hierarchy mechanism, and 
does not require recompilation for different instantiations. 

The characteristics of Theta are discussed further in the rest of this chapter. 

1.1 Objects 

Theta programs run in a universe of objects. Each object in the universe has a unique identity, 
an encapsulated state, and a set of methods that can be called to interact with it. Objects 
belong to types that define the names and signatures of their methods. 

Theta provides a rich set of built-in types, and users can define new, abstract types. Users 
can also define new routines. Methods and routines can be either procedures or iterators, 
and when called may either terminate normally or by signaling an exception. Both types and 
routines can be parameterized on one or more parameter types. 

Objects come into existence as a result of calls to certain methods and routines that create 
new objects. Storage for objects that can no longer be accessed is reclaimed automatically by 
the garbage collector. 

1.2 The Theta Type System 

Theta types are arranged in a hierarchy in which every type can have several supertypes. At the 
top of the hierarchy is the built-in type any; any is the supertype of all types. When a new type 
is defined, its definition indicates its supertypes. The Theta compiler ensures conformance: a 
subtype is guaranteed to have the methods of its supertypes, and these methods have compatible 
signatures. The type any has no methods, and therefore it imposes no constraints on its 
subtypes. A supertype's methods can be renamed so that the new names match what is needed 
in the subtype (9.2). 
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Theta provides strong, static type checking. Every variable has a declared type (4.5) that 
determines the type of object it can refer to. A variable is guaranteed to refer to an object 
whose actual type is a subtype of the variable's type (5.1). Every routine and method has a 
declared signature that determines the types of its arguments and results. The compiler ensures 
that all calls and assignments are consistent with this declared information. The conformance 
rule ensures that any call that is legal according to a variable's type will be legal for the actual 
object denoted by the variable. The exact type of a variable's object is not known at compile 
time, but more exact information can be determined by using the typecase statement (8.12), 

which tests an object's type at runtime. 
Type hierarchy provides subtype polymorphism and allows the definition of routines that are 

generic with respect to their arguments and results, and also of data structures that are generic 
with respect to their elements: in each case the actual objects can belong to a subtype of what 
is declared. 

1.3 Specifications 

New types and routines are defined by providing specifications (9). A specification defines 
interface information; it does not include any information about how the new type or routine 
is to be implemented. This is given separately, and a type or routine can have many different 
implementations. 

The specification of a type defines the supertypes, and the names and signatures of the 
methods. A type can have multiple supertypes, and the methods of the supertype can be 
renamed in the subtype. 

A type specification only defines the methods of the type's objects and thus provides no 
way to create new objects "from scratch." Creation is accomplished through the use of routines 
that are not part of the type. Keeping creation separate from the type means that a subtype's 
creators need not be related to those of its supertypes, and it allows different implementations 
of the type to create objects differently. For example, a hash-table based implementation of a 
map abstraction would have a creator that takes the hashing function as an argument, while 
an array-based implementation would have a creator that takes no arguments. 

1.4 Classes and Inheritance 

A type is implemented by one or more classes (10.4). A class contains some instance variables 
that store the state of objects of the type, and routines that implement the object's methods. 
The class can also contain implementations of "private" methods that are not available to 
external code that uses its objects. 

A class can inherit from a single superclass (10.5). Objects of a subclass contain superclass 
instance variables and methods. Superclass methods can be renamed in the subclass. Code 
within a subclass cannot access the inherited instance variables directly; instead, superclass 
methods are used to access these variables. 

A class definition indicates whether subclasses are permitted, and if so, what methods and 
associated routines they can use (10.4). A special kind of operator called a maker must be 
exported so that subclasses can initialize the inherited instance variables (10.5.2); in addition 
private methods can be exported, and public methods can be hidden (10.5.1). This mechanism 
allows users to provide a rich interface for subclasses, while ensuring that subclasses cannot 
damage superclass objects (10.5.4). 
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1.5 Modules 

Classes and routine implementations are placed inside modules (10.1). Each module (10) imple­
ments one or more specifications. For example, a typical module contains a class implementing 
a type plus implementations of routines that create objects of the type. 

A module encapsulates the contained code; details of any classes it contains are visible 
only to other code in the module. However, these details are fully exposed to code within 
a module. Thus, routine implementations in a module have full access to internal details of 
classes within the module. Similarly, classes within the same module can take advantage of 
implementation-specific details of one another. 

1.6 Parametric Polymorphism 

In addition to subtype polymorphism, Theta supports parametric polymorphism, in which a 
routine, type, or class definition is parameterized by one or more types (9.3). Parametric poly­
morphism allows the actual parameter type to be selected by the user, when the type or routine 
is instantiated (3.2.2). For example, array is a parameterized type, with instantiations array[int], 

array[char], and so on. 
Parameters can be constrained to be types whose objects have certain methods with certain 

signatures. These constraints permit parameterized code to be compiled without knowledge of 
the actual instantiation types. Generic code needs to be compiled only once. 

Subtype polymorphism is useful for defining generic behavior over a set of related types, 
while parametric polymorphism is useful for defining generic behavior where the actual param­
eters need not be related in the type hierarchy. 

1. 7 Programs 

A Theta program consists of a group of program units. A program unit is a specification (9), 
equate (4.6), or module (10.1). Specifications define abstract types and routines; modules pro­
vide implementations of these types and routines. Equates provide abbreviations for constants, 
e.g., the name pi might denote the number 3.1416. 

Within program units, external names (4.3) are used to refer to specifications and equates. 
External names can be chosen locally to fit the needs of the unit that uses them; this allows 
different units to define entities with the same name without causing a global name conflict. 
For example, two different specifications could both define a type named inL.set. 

Theta compilers provide separate compilation for program units. The compiler makes use 
of the specifications denoted by external names of the unit being compiled to ensure that the 
type or routine is used in a type-correct manner. During the linking process, an implementation 
is selected for each of these types and routines. 

This manual does not define the mechanisms for interpreting external names during com­
pilation and linking. A compiler might process a file containing many units such that every 
external name is defined somewhere in the file, and every specification in the file is implemented 
in some module in the file. Alternatively, objects recording the meanings of exported names 
might be stored persistently (e.g., in Thor); in this case the compiler might process an individ­
ual unit in a context that associates its external names with appropriate specification objects, 
and the linker might select routine implementations using a context that associates external 
names with appropriate implementation objects. 



2 Lexical Considerations 

2.1 Notation 

We use an extended BNF grammar to define the syntax. The general form of a production is: 

nonterminal ---+ alternative I alternative I alternative I ... 

The following form denotes that optional can appear 0 or 1 times. 

[ optional ] 

The following form denotes that can appear 0 or more times. 

[ optional ] * 

The full Theta reference grammar is given in Appendix A. Productions from this grammar are 
used freely in the following chapters to give the general form for different Theta constructs in 
a concise manner. When the productions relevant to a given construct are presented, some 
nonterminals are naturally left undefined; the interested reader can find the productions for 
these nonterminals in the reference grammar. 

2.2 Lexical Considerations 

2.2.1 Case Insensitivity 

Case does not matter in Theta. For example, THEN, then, and Then are all the same reserved 
word. 

2.2.2 Tokens and Separators 

A module is written as a sequence of tokens and separators. A token is a sequence of 
"printing" ASCII characters representing a reserved word, an identifier, a literal, an operator, 
or a punctuation symbol. A separator is a "blank" character (a space, vertical tab, horizontal 
tab, carriage return, newline, or form feed) or a comment. Zero or more separators may appear 
between any two tokens, where at least one separator is required between any two adjacent non­
self-terminating tokens: reserved words, identifiers, integer literals, and real literals. Tokens are 
described in more detail in the following sections. 

2.2.3 Comments 

A comment begins with a percent sign (%) and ends with the first "line-ending" character (a 
vertical tab, carriage return, newline, or form feed). The enclosed characters serve as a single 
separator and are otherwise ignored by the compiler. 
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2.3 Reserved Words 

The following tokens are reserved words: 

begin if returns 
bind implements same_object 
break in self 
class inherits signal 
continue iter signals 
do make tagcase 
else makes then 
elseif module type 
end others type case 
except proc when 
exit provides where 
for resignal while 
has return yield 
hides yields 

In addition, the following tokens are reserved words because they are the names of the built-in 
types and parameterized types, or the names of literals for these types: 

any maybe sequence 
array nil string 
boo I null struct 
char oneof true 
false real vector 
int record 

The token failure has a special reserved meaning when used as an exception name (8.14) but is 
not a reserved word. 

2.4 Identifiers 

Identifiers are sequences of letters, digits, and underscores that begin with a letter or underscore. 

2.5 Literals 

There are literals for naming objects of the built-in types null, bool, int, real, char, and string 
(see Section 7.1 and also Appendix B). 

2.6 Operators and Punctuation Symbols 

A number of tokens are used as operators and punctuation symbols. The following table lists 
all of the operators and punctuation of Theta. Many of these tokens are used as a shorthand 
for various method invocations (7.11). For each single-character token, the table gives its hex­
adecimal ASCII code. (The notation b_c is the Theta notation for integer constant c given in 
base b (B.4).) 
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II 16_22 < 16_3c 

& 16_26 <= 
16_27 16_3d 

( 16_28 > 16_3e 

) 16_29 >= 
* 16_2a [ 16_5b 

** l 16_5d 

+ 16_2b 16_5e 
16_2c 16_6b 
16_2d { 16-7b 
16_2e I 16-7c 

II 
I 16_2f } 16_7d 

II 16-7e 
16-3a "'= 

·- \ 16_5c 

The following "printing" ASCII characters are not used in the language: 

exclamation 
# pound-sign 
$ dollar-sign 

7 question-mark 
© at-sign 

back-quote 

The ASCII character % (ASCII 16_25) is used for comments (2.2.3). 

16-3f 
16-40 
16_60 



3 Types and Parameterized Types 

A type consists of a set of objects, along with a collection of methods that belong to each of 
these objects. A method can access and manipulate its object's state. If none of an object's 
methods modify its abstract state {the state that can be observed using its methods), we say 
the object is immutable; otherwise it is mutable. We say a type is immutable (mutable) if its 
objects are immutable (mutable). 

A parameterized type defines a family of related types. For example, the array parameterized 
type defines the types array[int], array[char], array[array[int]], and so on. Each type in the family 
is obtained by instantiating the parameterized type (3.2.2), producing a type referred to as an 
instantiation. 

Theta has a number of built-in types and parameterized types. In addition, users can define 
new abstract types and parameterized types (9, 10). 

Theta has strong static type checking. Types are arranged in a type hierarchy: a type can 
be a subtype of several other types (3.4). The hierarchy for the built-in types is quite flat (3.4), 
except that there is a rich hierarchy for routine types (3.4.1). Users define the hierarchy for 
the user-defined types (9.2). The type hierarchy determines the legality of assignment (5) and 
invocation (6.1). 

A type designator denotes a type. For example, a type designator can be the name of an or­
dinary type (int, color) , or an instantiation of a parameterized type (array[int], maybe[ employee]). 

The Theta compiler requires complete information about the type denote by a type desig­
nator. For example it needs to know all methods of the type and their signatures, and also all 
supertypes of the type. This means that any identifiers used as type designators must either 
be defined in the current program unit or in the external compilation environment. If the 
designator denotes a user-defined type, all supertypes of the type must also be defined either 
locally or externally. 

3.1 Built-in Types 

The built-in types are null, any, bool, char, int, real, string, and all routine types. The built-in 
parameterized types are array, sequence, vector, record, struct, oneof, and maybe. 

The type any has no methods and is used as the top of the type hierarchy (3.4): all types, 
both built-in and user-defined, are subtypes of type any. 

The type null has one literal, nil; it is typically used as a placeholder in oneof types. The 
type bool is a conventional Boolean type, with literals true and false. The type int represents a 
subrange of the mathematical integers, and the type real represents a finite-precision approxi­
mation to a subrange of the mathematical real numbers. The type char represents characters 
(typically ASCII), and the type string represents strings of characters (again, typically ASCII). 

The parameterized types array, vector, and sequence are homogeneous collections indexed 
by consecutive integers. Array and vector are mutable types; a vector has a fixed size, while 
an array can grow and shrink dynamically. Sequence is an immutable type. The special types 
record and struct are heterogeneous tuples with names as selectors of fields; record is a mutable 
type, while struct is immutable. The special type oneof is a named, immutable, discriminated 
union. The parameterized type maybe is a special case of oneof which is used to represent an 
object that contains either an object of the parameter type, or the value nil. 

Routine types are also built-in types in Theta. Routines (i.e., the objects of these types) are 
defined by rout ine specifications (9) and routine implementations (10). Routines are first-class 
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objects that can be stored in data structures and passed as arguments and results. 
The full specifications of the built-in types appear in Appendix B. Every Theta implemen­

tation will provide implementations of these types. Appendix C contains specifications of some 
additional types that will be provided by most Theta implementations. 

3.2 Type Designators 

There are four different kinds of types in Theta, each with its own particular type designator 
form. These forms are explained in the following sections. Type designators are also defined 
by equates (4.6). 

3.2.1 Simple Types 

Simple types are defined by non-parameterized type specifications (9). They include all non­
parameterized user-defined types and several of the built-in types. A simple type is designated 
by its name: 

simple_type_desig --+ idn I null I boo I I char I int I real I string I any 

3.2.2 Parameterized Type Instantiations 

A parameterized type has one or more type parameters. A type designator for such a type 
denotes an instantiation by providing an actual type for each type parameter: 

parnLtype_desig --+ parm_type [ type_list J 

where 

parm_type --+ idn I array I sequence [ vector [ maybe 

type_list --+ type_designator [ , type_designator ] * 

The specification (9.3) of a parameterized type can use where clauses to require that actual 
parameters have certain methods. An instantiation of a parameterized type is legal provided it 
has the right number of actual parameters, and the actual parameters satisfy the restrictions of 
the where clauses. For example, consider a user-defined parameterized type, set[T]; since sets 
do not contain duplicate, the specification for set permits instantiation only if the argument 
type provides an equality method (which allows duplicates to be recognized): 

set= type [T] where T has equal: proc (T) returns (bool) 

Here are some instantiations of set: 

set[int] 
set[array[int]] 
set[int,bool] 
set[ employee] 

% supplies the int equal method for T's equal 
% supplies the array[int] equal method for T's equal 
% not legal - compile-time error 
% legal only if employee has an equal method 
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The third instantiation is not legal because it does not supply the right number of parameters. 
The last instantiation will be legal only if type employee has an equal method; otherwise there 
will be a compile-time error. 

Some methods of a parameterized type may place additional constraints on a parameter 
by having where clauses of their own. Such a method is optional: if an instantiation satisfies 
its requirements, the resulting type will have the method, otherwise it will not. When such 
a parameterized type is instantiated, methods are selected to satisfy the constraints of the 
optional methods if possible. The result is a type with all the non-optional methods, plus 
any of the optional methods whose constraints are satisfied. For example, array (B.8) has an 
optional copy method that requires that the actual parameter have a copy method. Here are 
some instantiations of array: 

array[int] % has a copy method 
array[ employee] % may not have a copy method 

If type employee does not have a copy method, the second instantiation results in an array type 
that does not have a copy method. 

3.2.3 Routine Types 

There are two kinds of routines, procedures and iterators (see Section 6.1). Routine type 
designators have the following special form: 

routine_type_desig -+ proc nonparam_proc_sig [ iter nonparam_iter_sig 

nonparam_proc_sig -+ ( [ type_list ] [ returns ] [ signals ] 

nonparam_iter_sig -+ ( [ type_list ] yields [ signals ] 

type_list -+ type_designator [ , type_designator ] * 

These type designators indicate the kind of routine, and the types and numbers of the argu­
ments, results, and exceptions. For example: 

proc(int, int) returns (bool) signals (negative) 
iter(stree[int]) yields (int) 

3.2.4 Tagged Types 

Tagged types include the record, struct, and oneof types. They are special parameterized types 
that possess named fields and are designated by the following special form: 

tagged_type_desig -+ tagged_type [ field [ , field ] * J 

tagged_type -+ record [ struct I oneof 

field -+ idn_list : type_designator 

These type designators provide a name for each field and give its type. For example 

record[x, y: int, s: string] 

defines a record type. Records of this type have three fields: two int fields named x and y, and 
a string field named s. 
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3.3 Type Equality 

Type checking in Theta occurs at compile time and is based on analysis of type designators 
to determine whether they designate the same type. Two type designators are equal if the 
designate the same type and otherwise they are unequal. 

Type equality is defined as follows: 

1. Each simple type is equal only to itself. 

2. Two types obtained by instantiation are equal if they are instantiations of the same (user­
defined or built-in) parameterized type and their parameters are pairwise equal. 

3. Two routine types are equal if: both are proc or both are iter; both have the same 
number of arguments, and types of matching arguments are equal; both have the same 
number of results (yielded results for iterators), and the types of matching results are 
equal; both have the same exceptions, and matching exceptions have the same number 
and types of results. 

4. Two tagged types are equal if each has the same tagged_type, the same field names in the 
same order, and the type of matching field names are equal. E.g., these two types are not 
equal: 

record [a: int, b: int] 
record[b: int, a: int] 

3.4 Type Hierarchy 

Types in Theta are grouped into a type hierarchy. Each type can have several supertypes. At 
the top of the hierarchy is type any, which has no methods and is the supertype of all types. 

The type hierarchy is based on the notion of type equality. A type is always a subtype and 
also a supertype of itself. The subtype (supertype) relation is transitive: if T is a subtype of S 
and S is a subtype of R, then T is a subtype of R. 

Any is the only supertype of the built-in types except that a rich hierarchy is defined for 
routine types. In particular, no subtype relation is provided for record and struct types, e.g., 

record[a: int, b: int, c: int] 

is not a subtype of 

record[a: int, b: int] 

Specifications for user-defined types and user-defined parameterized types indicate the im­
mediate supertypes explicitly (9.2). All supertypes must be user-defined types, except that 
every user-defined type is automatically a subtype of any. All types generated by instantiating 
a user-defined parameterized type are similarly subtypes of any. The Theta compiler guarantees 
that subtypes have all the methods of their supertypes, with compatible signatures (9.2). 
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3.4.1 Routine Type Hierarchy 

Routine type R 1 is a subtype of routine type R 2 if all the following conditions are satisfied: 

1. The two routine types must either both be procedure types or both be iterator types. 

2. Contravariance of arguments: They must have the same number of arguments, and in 
each argument position, the type of Ri 's argument must be a supertype of the type of 
R 2 's argument. 

3. Covariance of results: If the two routine types are procedure types, they must have the 
same number of return results, and the types of Ri 's results must be subtypes of the types 
of the corresponding R 2 results. 

4. Covariance of yields: If the two routine types are iterator types, they must have the same 
number of yielded results, and the types of R 1 's yielded results must be subtypes of the 
types of the corresponding R2 yielded results. 

5. Ri must not have any exceptions that are not also exceptions of R2· 

6. Covariance of exception results: Corresponding exceptions must have the same numbers 
of results, and in the corresponding result positions, the type of Ri 's result must be a 
subtype of the type of R 2 's result. 

These rules ensure that calling a routine of type Ri is always legal wherever a routine of type 
R2 is expected. In particular, the routine will not raise any unexpected exceptions. 



4 Scopes, Declarations, and Equates 

This chapter gives the scoping rules for Theta. It also describes variable declarations and 
equates, two important constructs that introduce scoped identifiers. 

When we say that an identifier is scoped, or that it has a scope, we mean it is defined within 
a particular scope. The scoping rules given below (4.4) ensure that a given identifier is either 
not defined within a scope or is defined exactly once, and that external names (4.3) are never 
confused with scoped identifiers within a program unit (1. 7). 

4.1 Scoped Identifiers 

There are two kinds of scoped identifiers in Theta: equated identifiers and variables. An equated 
identifier is immutable and denotes the same object for its entire lifetime. A variable is mutable; 
it can be modified so that it denotes a different object. When a variable is created, it may not 
denote any object. 

Equated identifiers are introduced by equates (4.6), type specifications (9.2), routine imple­
mentations (10.2), method implementations (10.4), formal parameter declarations (9.3), classes 
(10.4), and superclass declarations (10.5). Variables are introduced by declarations (4.5), in­
stance variable declarations (10.4), formal argument declarations (10.2), and special declaration 
forms in the tagcase (8.11) and typecase statements (8.12). 

An equated identifier has a scope that is the entire scoping unit containing the construct 
that introduces it, while a variable has a scope from its declaration to the end of the containing 
scoping unit. 

4.2 Scoping Units 

The scope of variable declarations and equates is defined in terms of scoping units. This section 
contains a complete list of the scoping units of Theta. 

1. From the start of a routine or type specification (9) to its end. 

2. From the start of a module (10.1), routine implementation (10.2), or class (10.4) to its end. 

3. From a for (8.8), do (8.8, 8.7), begin (8.13), or the then in a make statement (8.17) to 
the matching end. 

4. From a then, elseif, or else in an if statement (8.6) to the end of the corresponding body. 

5. From a when or others in a tagcase statement (8.11), typecase statement (8.12), or 
except statement (8.14) to the end of the corresponding body. 

If one scoping unit overlaps another (textually), then one is fully contained in the other. The 
contained scope is called a nested scope, and the containing scope is called a surrounding scope. 

4.3 External Names 

An identifier that is used in a scope where it is not defined is an external name. External names 
are used to denote specifications and equates from other program units (1.7). 
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4.4 Scope Rules 

The scope rules are: 

1. An identifier may not be defined twice in a scope. Note that this rule implies that an 
identifier defined in a scope may not be redefined in a nested scope. 

2. Within a single program unit (1. 7), an identifier may not appear as an external name in 
one scope and as a scoped identifier in another scope. 

4.5 Variables and Declarations 

Objects are the fundamental runtime entities in Theta. Variables are a way of denoting or 
naming objects. 

Declarations introduce new variables. The scope of a variable is from its declaration to the 
end of the scoping unit containing the declaration. Hence, variables must be declared before 
use. 

A variable has two properties: its type (which determines what can be done with it) and 
the object it denotes, if any. A variable is said to be uninitialized if it does not refer to any 
object. An attempt to use an uninitialized variable at runtime causes the exception (8.14) 
failure{ 11 uninitialized variable") to be raised. 

A declaration without initialization just introduces some new, uninitialized variables: 

decl -+ idn_list : type_designator 

This statement introduces one or more new variables of the specified type. The following are 
examples of legal declarations: 

x, y: int 
parts: set[part] 

% declare two integer variables 
% declare a set{partj variable 

As discussed in the next chapter, new variables can be declared and initialized at the same 
time, in an assignment statement (5.2.1). 

4.6 Equates 

An equate allows a single identifier to be used as an abbreviation for a constant that may have 
a lengthy textual representation; it also allows a mnemonic identifier to be used in place of a 
constant such as a numerical value. 

The syntax of equates is: 

equate -+ idn = expr I idn = type_designator 

For the first form, the expr must be a constant expression (7.15) or a compile-time error will 
occur. 

An identifier equated to an expression may be used as an expression (7); the value of such 
an expression is the constant to which the identifier is equated. An identifier equated to a type 
designator is itself a type designator and denotes the same type as the type designator it is 
equated to. An equated identifier may not be used on the left-hand side of an assignment (5). 

Some examples of legal equates: 
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as = array[string] 
pi= 3.1416 
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% a type equate 
% a constant expression equate 

An equated identifier is defined in the smallest scoping unit surrounding its equate; here we 
mean the entire scoping unit, not just the portion after the equate. Equates that occur within 
the body of a statement must appear prior to any statements in that body. Equates not in such 
a scope (e.g., at the top level of a module) can appear anywhere within the scope. 

All equates in a scope are processed by the compiler as a unit, and forward references 
are allowed. The compiler reports an error if a cyclic dependency is detected without any 
intervening user-defined type. For example, the following set of equates is illegal: 

tree = maybe[tree_node] 
tree_node = record[left: tree, right: tree, val: int] 

However, within a class implementing a tree type we might have 

tree = class ... 
tree_node = record[left: tree, right: tree, val: int] 
t: tree_node 

end tree 

These equates are legal because a user-defined type, tree, breaks the cycle. 



5 Assignment 

Assignment causes a variable to refer to an object. Assignment is a fundamental action m 
Theta: all other actions, including invocation (6.1), depend on the rules for assignment. 

5.1 Type Inclusion 

Based on the declared types of variables and routine headers, the compiler can compute a type 
for any expression; we refer to this type as the apparent type, as opposed to the actual type of 
the object that results when the expression is evaluated at run time. The actual type is always 
a subtype of the apparent type. 

An assignment 

v := e 

is legal if and only if the apparent type of expression e is a subtype of the type of variable v. 
Thus, the compiler guarantees that for any initialized variable v, the type of the object referred 
to by v is a subtype of the type of v. 

5.2 Assignment 

The simplest form of assignment assigns the value of a single expression to a single variable. In 
addition, there are two forms of multiple assignments, one for assigning a set of expressions to 
a set of variables, and one for assigning a set of return results (from a single invocation) to a 
set of variables. (Theta supports multi-valued routines.) 

An assignment statement has one of two forms: 

statement ---+ lhs : = expr [ , expr ] * 
lhs : = invoc 

where 

lhs ---t var [ , var ] * 
var ---t idn [ primary . idn 

A variable var is either an idn, a field selector (for a record or struct), or an instance variable; 
the form primary.idn is used to select a field of a record or struct (B.11, B.12), or an instance 
variable of an object (7.5, 10.4). (Instance variables can be accessed only within the module 
containing the object's class (10.1).) A primary is a limited kind of expression (7.16). 

If the right hand side consists of one or more expressions, the number of expressions on 
the right hand must match the number of variables on the left hand side, and their types 
must be subtypes of the types of the corresponding variables. The primaries and expressions 
are evaluated in arbitrary order; if no exceptions are raised (see 8.14), the result of the first 
expression is assigned to the first variable and so on; as a result the variables (including fields 
of records, structs, and instance variables) refer to the objects obtained from evaluating the 
expressions. This form allows a permutation of variables, e.g., 

x, y := y, x 
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causes x to refer to the object previously referred to by y, and y to refer to the object previously 
referred to by x. 

If the right hand side consists of an invocation, the number of return results must match 
the number of variables and the result types must be subtypes of those of the corresponding 
variables. The primaries on the left hand side and the invocation are evaluated in an arbitrary 
order and if no exceptions occur, the results of the invocation are assigned to the corresponding 
variables. An example of the use of this form is: 

quotient, remainder:= intdiv(a, b) 

It is illegal to invoke a multi-valued routine in a context where a single result is expected (6.1). 

Such a routine can only be invoked in a multiple assignment statement, or in an invocation 
statement (8.1) (where the return results are discarded). 

5.2.1 Initialization Assignment 

The assignment examples shown above use already-declared variables on the left hand side. 
Assignment can also be combined with declarations of new variables, so that new variables can 
be declared and initialized in one statement. In this case, the left hand side has the form 

lhs ---+ decl [ , decl ] * 

Declarations can be used with either expressions or an invocation on the right hand side, as 
above. If there are multiple expressions on the right hand side, they are evaluated in arbitrary 
order. If no exceptions result from evaluating the right hand side, the new variables are created 
and the result objects assigned to them. The statement is legal if the number of objects resulting 
from evaluation of the right hand side matches the number of variables declared and the types 
of these objects are subtypes of the corresponding variable types. 

Note that either an assignment affects already-declared variables, or it affects newly-declared 
variables; the two forms are never mixed. Note also that the newly-declared variables cannot 
be used in the right hand side of the initialization assignment that creates them. 

The following are legal initialization assignments: 

x: int := foo + 5 
c: char, i: int:= 'a', 42 
quotient, remainder: int := intdiv(a, b) 
val: int, in_range: bool := search(myset, low, high) 

provided foo, intdiv, and search have the following types: 

foo: int 
intdiv: proc(int,int) returns(int,int) 
search: proc(set,int,int) returns(int,bool) 



6 Invocation 

There are two kinds of routines in Theta. A procedure produces a group of one or more objects 
when it returns. An iterator produces a sequence of items (where an item is a group of one or 
more objects) one item at a time; it is invoked (only) in a for statement (8.8) and the body of 
the for statement is executed for each item in the sequence. 

Invocation of a routine causes the routine to be executed on the argument objects. This 
section discusses the part of the invocation mechanism that is common to calls of procedures 
and iterators (and also makers (10.5.2)). 

Stand-alone routines are defined by specifications (9.1); such a specification may be param­
eterized, in which case it can be instantiated to obtain a routine. Routines are also obtained 
by evaluating expressions. For example, a routine can be obtained by selecting a method from 
an object (7. 7) or by binding a routine to some actual arguments (7.9). 

6.1 Form of Invocation 

Invocations have the form: 

invoc ---+ exprO ( [ args ] ) 

where 

args ---+ expr [ , expr ] * [ , varying_args ] I varying_args 

varymg_args ---+ •• I .. expr [ , expr ] * 

The varying_args form allows a variable number of arguments (including none) to be supplied; 
these arguments together comprise the elements of a sequence that is the last actual argument 
of the call, and the form is legal only when calling a routine whose last argument is a sequence. 

The sequence of activities in performing an invocation is as follows: 

1. The expressions expr (including exprO) are evaluated in an unspecified order. 

2. The expression exprO must evaluate to a procedure or iterator. 

3. New variables are introduced corresponding to the formal arguments of the routine being 
invoked (that is, a new environment is created for the invoked routine to execute in). 

4. The objects resulting from evaluating the non-varying-argument exprs are assigned to the 
corresponding new variables (the formal arguments). The first formal is assigned the first 
actual, the second formal the second actual, and so on. The type of each expression must 
be a subtype of the type of the corresponding formal argument. 

5. If the varying_arg form is being used, the last argument of the routine must be a se­
quence[T], and the type of each varying_arg must be a subtype of T. The objects resulting 
from evaluating the varying_args are used to construct a sequence[T], with the first vary­
ing_arg being the first element and so on, and the sequence is assigned to the last formal. 

6. Control is transferred to the routine at the start of its body. 
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The invocation is legal in exactly those situations where there are the same number of actual 
arguments as formal arguments (after constructing the sequence from the varying_args), and 
the (implicit) assignments of actuals to formals are legal. 

For example, if procedure p has signature 

proc (int, sequence[int]) returns (sequence[int]) 

then here are some legal calls of p: 

s: sequence[int] 
s := p(0, .. 3,5,7) 
s := p(6, .. ) 
s := p(S, s) 

% second argument is a sequence containing elements 3, 5, and 'l 
% second argument is an empty sequence 
% second argument is the sequence s 

6.2 Call by Sharing 

The caller and called routine communicate only through the argument and result objects; 
routines do not have access to any variables of the caller. 

After the assignments of actual arguments to formal arguments, the caller and the called 
routine share objects. If the called routine modifies a shared object, the modification is visible 
to the caller on return. The names used to denote the shared objects are distinct in the caller 
and called routine; if a routine assigns an object to a formal argument variable, there is no 
effect on the caller. From the point of view of the invoked routine, the only difference between 
its formal argument variables and its other local variables is that the formals are initialized by 
its caller. 

6.3 Run-Time Dispatch 

Although the compiler can determine whether or not an invocation is type-safe, it cannot 
necessarily determine exactly what code will execute. In particular, for a method call the 
compiler usually knows only the apparent type of the object from which the method is being 
selected, and not its actual type; the code to be executed is determined by the object's actual 
type, and the particular implementation used for that type. Therefore a method invocation 
may involve a runtime dispatch. 

6.4 Termination 

Routines can terminate in two ways: normally, or exceptionally, by signaling an exception. 
When a routine terminates normally, any result objects become available to the caller and may 
be assigned to variables or passed as arguments to other routines. When a routine terminates 
exceptionally, the flow of control passes to an exception handler in the caller (8.14). 



7 Expressions 

An expression evaluates to an object in the Theta universe. This object is said to be the 
result or value of the expression. The simplest expressions are literals and identifiers that 
name their result object directly. More complex expressions are generally built up out of 
nested invocations of procedures. The result of such an expression is the value returned by the 
outermost invocation. A primary (7.16) is a limited kind of expression used in left hand sides 
of assignments (5.2) , and also in invocation statements (8.1) and store statements (8.2). 

An expression has a apparent type known at compile time. This type is derived from the 
types of the entities of which it is composed, e.g., the types of the variables used in it, and the 
types of the procedures it invokes. Compile-time type checking guarantees that the apparent 
type of an expression is a supertype of the object obtained by evaluating the expression. 

Theta has prefix and infix operators for the common arithmetic and comparison operations, 
and uses the familiar syntax for array indexing (for example, a[i]). However, in Theta these 
notations are abbreviations for method invocations (7.11). This allows familiar notation to be 
used for user-defined types when appropriate. 

7.1 Literals 

Literals denote objects of the built-in types int, real, char, string, bool, and null. The type of a 
literal expression is the type of the object named by the literal. Some examples of literals being 
assigned to variables are: 

t: boo I :=true 
f: boo I :=false 
s: string := "A string" 
c: char ' c ' -
nl: char := '\n' % newline 
oct47: int := 8-47 % octal integer 
hex7e: int := 16-7e % hexadecimal integer 
p: int := -5 
p1: real := 3.141592 
avog: real := 6.02e23 
empty: null :=nil 

The full syntax for literals is given in Appendix B. 

7 .2 Identifiers that denote objects 

Identifiers that denote objects can be used as expressions. When such an identifier is used as 
an expression, its value is the object it denotes, and the type of the expression is the type of 
the identifier. 

The following kinds of identifiers can be used as expressions: 

• Variables are introduced by declarations ( 4.5), which specify their type, and are caused to 
denote objects by means of assignments (5). 

• Identifiers defined by equates (4.6) can be used as expressions and so can identifiers that 
denote built-in and user-defined routine definitions (9.1, 10.2). Such identifiers denote a 
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particular (constant) object. The type of an equated identifier is the type of the object 
it denotes. 

• The reserved word self is used within a method implementation to denote the method's 
object and its type is the class type (10.4) of the enclosing class (10.4). It is also used 
within the then clause of a make statement to refer to the object being initialized and its 
type is the class type of the object being initialized. 

7 .3 Constructors 

There are special forms called constructors that enable users to create and initialize record, 
struct, oneof, and maybe objects. A constructor has the form 

tagged_type_desig { field_inits } 

where 

field_inits -+ field_init [ , field_init ] * 
field_init -+ idn := expr 

The tagged_type_desig is the type of the constructed object. If a struct or record is being 
constructed, the component names in the field list must be exactly the field names in the 
tagged_type_desig, although the names may appear in any order in the constructor; the type of 
the initialization expression for a field must be a subtype of the declared type of that field. The 
expressions are evaluated in an unspecified order; the results form the components of the newly 
constructed object, which is the value of the constructor expression. For example, 

rt = record[x: int, c: char] 
x: rt:= rt{c :='A', x := 7} 
x := rt{x := 7} 
x := rt{x := 7, d: 'A'} 

% legal 
% compile- time error - - not enough fields 
% compile-time error -- misnamed field 

If a oneof or maybe is being constructed, just one field name of the type can be present, and the 
type of the expression must be a subtype of the declared type of that field; the result is a new 
oneof or maybe object with the given tag whose value is the object resulting from evaluating 
the expression. For example, 

ot =-= oneof[none: null, some: int] 
x: ot :=-= ot{ none :=-= nil} % x's object has tag none and value nil 
x := ot{ some: 7} % now x's object has tag some and value 7 
x := ot{some: 3.1} % compile-time error -- expression has wrong type 

Decomposition of oneof objects is usually done via the tagcase statement (8.11). 

7 .4 Class Constructors 

Within a class (10.4) and its module (10.1), new objects belonging to the class can be created 
and initialized using a special constructor for the class. This constructor is similar to the one 
for records and structs, and also to the specialized constructor in the make statement (8.17). It 
has the form: 
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type_designator { [ ivar_inits ] } 

The type_ designator must name a class type (10.4)); this gives the type of the constructed object. 
All class constructor expressions have a (possibly empty) ivar_inits section surrounded by curly 
braces. This section consists of two parts: 

ivar_inits ---+ field_inits ; maker_invoc I field_inits I maker_invoc 

field_inits ---+ field_init [ , field_init ] * 
field_init ---+ idn : = expr 

maker_invoc ---+ idn [ actuaLparms ] ( [ args ] ) 

actuaLparms ---+ [ type_list ] 

type_list ---+ type_designator [ , type_designator ] * 

The field_inits part initializes the instance variables of the class; there must be one field_init 

for each instance variable. (If the class has no instance variables, field_inits is not used.) The 
maker_invoc part is used to initialize inherited instance variables. This invocation is present iff 
the class named by the type_designator has a superclass (10.5.3); idn must name a maker (10.5.2) 

provided by (10.5.1) the superclass. 

The constructor creates a new object of the class type, evaluates the field_init expressions 
(in an arbitrary order), assigns the results to the associated instance variables of the new object, 
and calls the superclass maker if the maker_invoc part is present. If all of these steps terminate 
normally (i.e., they do not raise an exception), the class construction expression terminates 
normally with the newly-created object as the result. 

For example if a class C has two instance variables, x of type int and y of type char, and 
does not have a superclass, then 

n: C := C {x := 3, y :='A'} 

creates a new C object with the indicated values in its instance variables and assigns it to n. 

7 .5 Instance Variable Selection 

Within a class (10.4) and its module (10.1), the instance variables of objects of the class can be 
accessed directly using the form 

[ expr . ] idn 

where the type of the expr is the class type (10.4), and idn is the name of an instance variable 
of that class. If the expr is omitted, it defaults to self (10.4); i.e., within a method of the class, 
the instance variables of self can be named directly. 

Outside a class's module, the instance variables of an object of the class cannot be accessed 
directly; they can only be accessed indirectly, by invoking methods on the object. 
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7.6 Field Selection 

The form 

expr . idn 

allows fields to be selected from records and structs. The expr must evaluate to a record or struct 
object, and the idn must name one of the fields of the object; the result is the object stored in 
that field. 

7. 7 Routine Instantiation 

Instantiations of parameterized routines can be used as expressions. The form is 

idn actuaLparms 

The idn must denote a routine definition (9.1, 10.2). The actual parameters actual_parms are 
the parameters being supplied and legality checking is the same as for type instantiation (3.2.2). 
The value of such an expression is a routine object. 

The type of the resulting routine is derived from the parameterized routine interface (9.3) 
by replacing each occurrence of a formal parameter with the corresponding actual. Thus for 

p[T] (x: T) returns (T) signals (E) 
where T has lt(T) returns (bool) 

the instantiation 

p[int] 

is legal and has type 

proc (int) returns (int) signals (E) 

Instantiation of parameterized methods is discussed in Section 7.10. 

7.8 Procedure Invocation 

An invocation (6.1) of a procedure with exactly one result can be used as an expression. The 
type of the expression is the result type of the called procedure. 

7.9 Binding 

A routine can have some of its arguments bound, producing another routine that expects fewer 
arguments. Binding is essentially an incomplete invocation (6.1): the binding arguments are 
treated like actuals, and matched up with formals just as in an invocation. An asterisk (*) is 
used as a placeholder; it indicates an argument position for which no binding is made. 

The form for binding is: 

bind ( expr bind_args ) 

where 
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bind_args --+ [ , bind_arg ] * [ , varying_args ] 

bind_arg --+ expr I * 

The expressions are evaluated in an unspecified order. The result of the first expression must 
be a routine. The results of evaluating the bind_arg expressions are treated just as in an 
invocation (6.1), except that when the bind_arg is an asterisk, no assignment is made to the 
corresponding formal. The binding is legal if the right number of arguments is provided and 
the assignments are legal. The result of the bind expression is a new routine. The type of that 
routine has arguments only for the formals where an asterisk appeared. The new routine is the 
same kind (procedure or iterator) as the original routine, and has the same number and types 
of results (yielded results) and exceptions as the original. 

For example, consider a procedure 

p (x: int, y: char) returns (bool) 

Then 

q: proc (int) returns (bool) := bind(p, *· 'c') 

is legal and results in a new procedure q with 'c' bound to the formal Yi q is invoked with a 
single int for the formal x, which was not bound. Thus, invocation q(S) has identical behavior 
to invocation p(5, 'c'). A bound routine can be bound again, e.g., 

r: proc ()returns (bool) := bind(q, 5) 

produces a new procedure r, where invocation r( ) has identical behavior to invocation p(5, 'c'). 
Note that if varying_args are provided, the corresponding formal is bound to the newly­

constructed sequence (6.1). It is not possible to extend the sequence (so that it would contain 
additional elements) in a subsequent bind expression or invocation. 

7.10 Method Selection 

A method selection selects a method from an object, and produces a routine. The form is: 

[ expr . ] method_idn 

where 

method_idn --+ [ ~ ] idn [ actuaLparms ] 

The expr denotes the object from which the method is to be selected; it can be omitted within 
a class to select a method of self. The selection is legal if and only if the (apparent) type of 
the expression has a method named idn. The method might be parameterized; in this case the 
actuaLparms must allow a successful instantiation (7. 7). The optional ~ is used only within a 
subclass definition (10.5) to name an overridden method that comes from the superclass. 

A method selection binds (7.9) the object computed by the expr into the method, producing 
a routine object whose type is the same as that of the method. When the routine runs, it will 
be able to refer to the bound object as self. Thus, given the following code fragment: 
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counter = type 
inc(x: int) 

end counter 

c: counter := ... % some initialization 
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the method selection 

c.inc 

binds c into the method, producing a routine object of type proc (x: int). 

Every method invocation is conceptually a method selection followed by a routine invoca­
tion. Implementations are expected to optimize the common case in which the call happens 
immediately; programmers should expect that the code fragment 

c.inc(l) 

will run faster than the code fragment 

m: proc(x:int) := c.inc 
m(l) 

7.11 Prefix and Infix Operators 

Theta allows prefix and infix notation to be used as a shorthand for calls of certain methods. 
The notation is legal if the corresponding method is a procedure and its call is legal. The 
following table shows the shorthand form and the equivalent expanded form for each operator. 

a+ b a.add{b) a a.not() 
a - b a.sub(b) a < b a.lt(b) 

a * b a.mul(b) a<= b a.le(b) 
a I b a.div(b) a= b a.equal(b) 

a// b a.mod(b) a -=b -(a.equal(b)) 

a ** b a.power(b) a>= b a.ge(b) 
-a a.minus() a > b a.gt(b) 

a II b a.concat(b) 

This notation is used extensively for the built-in types, and may be used for user-defined types 
as well. 

USAGE NOTE 

When these methods are provided for user-defined types, they ought to be side­
effect-free, and they should mean roughly the same thing as they do for the built-in 
types. For example, the comparison methods should only be used for types that 
have a natural partial or total order. 
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7.12 Fetch 

A special form is provided for fetching the element of an array, vector, or sequence, or an abstract 
object with a method named "fetch": 

exprO [ expr 1 ] 

This form is just a shorthand for an invocation of a fetch method and is equivalent to 

exprO . fetch ( exprl ) 

The expression is legal whenever the corresponding invocation is legal. In other words, the type 
of exprO must define a procedure method named fetch with a single argument whose type is a 
supertype of exprl. For example, if a is an array of integers, a[27] is equivalent to the invocation 
a.fetch(27). 

USAGE NOTE 

The use of fetch for user-defined types should be restricted to types with a.rra.y­
like behavior. Objects of such types will contain an indexed collection of objects. 
For example, it might ma.ke sense for an associative map type to provide a fetch 
method to access the value associated with a string key. A fetch method ought not 
to have side effects. 

Array-like types may also provide a. store operation (8.2). 

7.13 & and I 

Two special "short-circuit" binary Boolean operators are provided, & and I· 
expr1 & expr2 

is the boolean and of expr1 and exp12 except that expr1 is guaranteed to be evaluated before 
any part of expr2. If expr1 is false, expr2 is not evaluated. Similarly, I is the same as a boolean 
or except that expr2 is not evaluated if expr1 evaluates to true. For both & and I, the two 
expressions must have type bool and the result is a bool. 

Because of the conditional expression evaluation, uses of & and I are not equivalent to any 
normal invocation. 

7.14 Precedence and Associativity 

When an expression is not fully parenthesized, the proper nesting of subexpressions may in 
principle be ambiguous. The following precedence and associativity rules are used to resolve 
such ambiguity; the table lists the higher-precedence operators before lower-precedence ones: 

[ l ( ) 
- (unary minus) 

** 
11 * I 
II + - (binary minus) 

< <= >= > 
& 
I 
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The binary operators are all left associative, except for the exponentiation operator **; the 
exponentiation operator is right associative. I.e., a+b+c is parsed as (a+b)+c; a**b**c is 
parsed as a**(b**c); a[lO].b is parsed as (a[lO]).b; a.b[lO] is parsed as (a.b)[lO]. 

7.15 Constant Expressions 

Constant expressions are a limited kind of expression that can be used in equates. They are 
evaluated at compile time to produce objects of built-in, immutable types. They can contain 
method calls but only to methods belonging to compile-time known, built-in immutable objects; 
the only other calls are to certain built-in, side-effect-free routines. The following forms are 
allowed: 

• literals (7.1) 

• constructors for structs, oneofs, and maybe's, provided all fields are assigned constant 
expressions (7.3); 

• calls of the built-in routines that create new sequences (B.9), provided all the arguments 
are constant expressions. 

• equated identifiers (4.6); 

• identifiers that name built-in or user-defined stand-alone routines; 

• instantiations of built-in or user-defined parameterized, stand-alone routines; 

• selection of methods of objects denoted by constant expressions; 

• invocation of methods of objects denoted by constant expressions provided the actual 
arguments are also constant expressions. 

Evaluation of a constant expression must terminate normally or there will be a compile-time 
error. 

7.16 Primaries 

A primary is a limited kind of expression that can be used in the left hand side of an as­
signment (5.2), or in an invocation statement (8.1) or a store statement (8.2). The syntax of 
primaries rules out expressions that would be ambiguous in these situations, namely, expres­
sions that begin with a left parenthesis and expressions that use infix and prefix operators at 
the top level. 

Primaries are defined as follows: 

primary --+ simple_expr 

I primary . idn 

I 
primary . method_idn 
simple_invoc 

I primary [ expr ] 

simple_expr --+ literal 

idn [ actuaLparms ] 
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self 
method_idn 
tagged_type_desig { field_inits } 

type_designator { [ ivar_inits ] } 
bind ( expr bind_args ) 

simple_invoc 4 primary ( [ args ] ) 

Here are some examples: 

(a[x]) 
x+y 
a[x+y] 
p(x) 

% not legal -- starts with ( 
% not legal -- infix notation at top level 
% legal (for a: array[int] and x, y: int) 
% legal (for p: proc(int) and x: int) 
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8 Statements 

Theta is a statement-oriented language. There are two kinds of statements: simple statements 
and control statements. Some of the control statements have one or more code bodies as 
components. A body consists of equates followed by statements: 

body --+ [ equate ] * [ statement ] * 

This leads to a nested statement structure. 

8.1 Simple Statements 

Simple statements do the actual computing. They consist of declarations (4.5), assignments (5), 
and invocations (6.1). 

An invocation statement invokes a procedure. Its form is 

primary ( [ args ] ) 

(A primary is a limited kind of expression (7.16).) The semantics of an invocation statement is 
the same as an invocation expression (6.1) except that the procedure invoked may return any 
number of results, and any such results are discarded. 

8.2 Store Statement 

A special statement is provided for updating components of array-like types. The statement 
resembles assignment (5) syntactically, but is really an invocation. It has the form 

primary [ expr 1 ] : = expr2 

(A primary is a limited kind of expression (7.16).) This form is merely a shorthand for an 
invocation of a store method and is equivalent to the invocation statement 

primary . store ( expr1 , expr2 ) 

The evaluation of the primary and the other expressions takes place in an unspecified order. 
The form is legal if the corresponding invocation statement is legal, and therefore it is not 

restricted to arrays but can be used with user-defined types as well. The object resulting from 
primary must have a procedure method named store that takes two arguments whose types are 
supertypes of the types of expr 1 and expr2. 

USAGE NOTE 

The use of store for user-defined types should be restricted to types with a.rra.y­
like behavior, that is, types whose objects contain mutable collections of indexable 
elements. For example, it might make sense for a.n associative ma.p type to provide 
a store operation for changing the value associated with a key. 
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8.3 Return Statement 

The form of the return statement is 

return [ ( expr [ , expr ] * ) ] 

The return statement terminates execution of the containing procedure or iterator. There 
must be the same number of expressions as there are return result types listed in the routine's 
header, and their types must be subtypes of the corresponding listed types. (If return is used in 
an iterator, no results can be given; iterators do not have return result types.) The expressions 
(if any) are evaluated in an unspecified order, and the objects obtained become the results of 
the procedure. 

8.4 Yield Statement 

A yield statement may occur only in the body of an iterator (6). Its form is 

yield ( expr [ , expr ] * ) 

It has the effect of suspending operation of the iterator and returning control to the invoking 
for statement (8.8). There must be the same number of expressions as there are yield types 
listed in the iterator's header, and their types must be subtypes of the corresponding listed 
types. The values obtained by evaluating the expressions (in an unspecified order) are passed 
to the for statement to be assigned to the corresponding loop identifiers. After the body of the 
for loop has been executed, execution of the iterator is resumed at the statement following the 
yield statement. 

8.5 Signal Statement 

An exception is raised with a signal statement, which has the form 

signal name [ ( expr [ , expr ] * ) ] 

where 

name ---+ idn 

The execution of a signal statement begins with evaluation of the expressions (if any), in an 
unspecified order, to produce a list of exception results. The activation of the routine is then 
terminated and execution continues in the caller (8.14). 

The exception name must be either one of the exception names listed in the routine heading 
or failure. If the name is failure, there must be exactly one expression present, of type string. If 
the name is listed in the routine header, there must be the same number of expressions as are 
listed for that exception in the header, and their types must be subtypes of the corresponding 
listed types. 
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8.6 If Statement 

The form of the if statement is 

if expr then body [ elseif expr then body ] * [ else body ] end 

The expressions must be of type bool. They are evaluated successively until one is found to be 
true. The body corresponding to the first true expression is executed, and the execution of the 
if statement then terminates. If none of the expressions is true, the body in the else clause is 
executed (if the else clause is present). The elseif form provides a convenient way to write a 
multiway branch. 

8. 7 While Statement 

The while statement has the form 

while expr do body end 

Its effect is to execute the body repeatedly as long as the expression remains true. The expres­
sion must be of type bool. If the value of the expression is true, the body is executed, and then 
the entire while statement is executed again. When the expression evaluates to false, execution 
of the while statement terminates. 

8.8 For Statement 

A for statement is used to invoke an iterator (6), and is the only way an iterator can be invoked. 
The iterator produces a sequence of items (where an item is a group of one or more objects) 
one item at a time; the body of the for statement is executed for each item in the sequence. 

The for statement has the form 

for for_idns in invoc do body end 

where 

for_idns 4 idn_list I decl [ , decl ] * 

The loop variables are given first. Either a list of already-declared variables is given, or new 
loop variables local to the for statement are introduced using declarations. Previously declared 
variables cannot be mixed with new declarations. The invocation, given next, must be an 
invocation of an iterator. 

The first loop variable is assigned the first object yielded in an item, etc.; the type of each 
yielded object (according to the specification of the iterator) must be a subtype of the type of 
the corresponding loop variable. 

Execution of the for statement proceeds as follows. First the iterator is invoked, and it 
either yields an item or terminates. If the iterator yields an item, its execution is temporarily 
suspended, the objects in the item are assigned to the loop variables, and the body of the 
for statement is executed. The next cycle of the loop is begun by resuming execution of the 
iterator from its point of suspension. Whenever the iterator terminates, the entire for statement 
terminates. If the for statement terminates, this also terminates the iterator. 

The following example creates an array[int] and appends the numbers 1 through 10 to it: 
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a: array[int] := array_new[int]() 
for i: int in l.to(lO) do 

a.append(i) 
end 
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This example uses the to iterator method of int object 1 (B.4), which yields successively larger 
values starting with its object and ending with the argument. 

8.9 Break Statement 

The break statement has the form 

break 

Its effect is to terminate execution of the nearest for or while statement that contains the 
break. It is a compile-time error to use break outside the body of a for or while statement. 

8.10 Continue Statement 

The continue statement has the form 

continue 

Its effect is to terminate execution of the body of the nearest for or while statement that 
contains the continue, and to start the next cycle of that loop (if any). It is a compile-time 
error to use continue outside the body of a for or while statement. 

8.11 Tagcase Statement 

The tagcase statement is a special statement provided for decomposing oneof (B.13) and 
maybe (B.14) objects; it permits the selection of a body to be performed based on the tag 
of the object. Its form is 

tagcase expr tag_arm tag_arm* [ others body ] end 

where 

tag_arm -+ when name [ , name ] * [ ( idn : type_designator ) ] : body 

The expression must evaluate to a oneof or maybe object. The tag of this object is then matched 
against the names on the tag_arms. When a match is found, if a declaration exists in the arm, 
the value component of the object is assigned to the local variable idn. The matching body is 
then executed; the idn is defined only in that body. If no match is found, the body in the others 
arm is executed. When execution of the body completes, control continues at the statement 
after the tagcase. 

In a syntactically correct tagcase statement, the following constraints are satisfied: 

1. The type of the expression is some oneof or maybe type T. 
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2. The tags named in the tag_arms are a subset of the tags of T, and no tag occurs more 
than once. 

3. If all tags of T are present, there is no others arm; otherwise an others arm must be 
present. 

4. On any tag_arm containing a declaration, the type_designator must denote a supertype 
of the type that corresponds to each tag named in the tag_arm. 

Here is an example: 

x: oneof[none: null, some: int] 

tagcase x 
when none: 
when some(y: int): ... y+7 ... 
end 

8.12 Typecase Statement 

A variable or expression in Theta has an apparent type known to the compiler, and the compiler 
guarantees that the actual type of the object denoted by the variable or computed by the 
expression is a subtype of that type. Sometimes it is useful to determine what the actual type 
of the object is, or to narrow its apparent type to some subtype. This is accomplished by the 
typecase statement. The form of this statement is 

typecase expr type_arm [ type_arm ] * [ others body ] end 

where 

type_arm --+ when type_designator [ ( idn ) ] : body 

The expression expr is evaluated, and the actual type A of the resulting object is then used 
to select a type_arm. The type_arms are considered in order, and the first one whose type 
designator denotes a supertype of type A is selected: the object is assigned to the idn of that 
type_arm (if present), and the corresponding body is executed. Within this body the idn can 
be used to refer to the object with the type specified in the arm; the idn is defined only in 
this body. When execution of the body completes, control continues at the statement after 
the typecase. An others arm always matches, but provides no useful additional information 
about the object's type. 

A legal typecase statement satisfies the following constraints: 

1. No type occurs in more than one arm. 

2. The type of each arm must be a proper subtype of the apparent type of expression expr. 
A proper subtype of a type includes all subtypes except for the type itself, so that it is 
always narrower than the type itself. 

3. If S is a subtype of T and both Sand Tare used in type arms, the type arm for S must 
precede the type arm for T. (The more specific type must precede the more general type 
since otherwise the arm with the more specific type is useless.) 
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The following example assumes set and bag are both subtypes of type collection, and stack 
is a subtype of bag: 

x: collection 

typecase x 
when stack(y): 
when bag(z): 
others: 
end 

... % y is a stack in this arm 

... % z is a bag in this arm 

... % x must be used as a collection in this arm 

The others arm will be selected if x's actual type is set (or some other collection type that is 
not a subtype of stack or bag). 

8.13 Begin Statement 

The begin statement permits a sequence of statements to be grouped together into a single 
statement. Its form is 

begin body end 

Since control statements already have bodies that group statements, the main use of the begin 
statement is to group statements together for use with the except statement (8.14). 

8.14 Except Statement 

By attaching handlers to a statement, the caller can specify the action to be taken when an 
exception is signaled by an invocation contained within that statement. (Except statements 
also handle signals raised by contained exit statements (8.16).) A statement with handlers 
attached is called an except statement and has the form 

statement except [ handler ] * [ others [ ( idn : string ) ] body ] end 

where 

handler ---+ when name [ , name ] * [ ( decl [ , decl ] * ) ] : body 

Let S be the statement to which the handlers are attached, and let X be the entire except 
statement. Each handler arm specifies one or more exception names and a body. The body is 
executed if an exception with one of those names is signaled by an invocation in S. All the names 
listed in the arms must be distinct. The optional others arm is used to handle all exceptions 
not explicitly named in a handler arm. S can be any form of statement, even another except 
statement. 

If, during the execution of S, some invocation in S signals an exception E, control imme­
diately transfers to the closest applicable handler: that is, the closest handler for E that is 
attached to a statement containing the invocation. When execution of the handler is complete, 
control passes to the statement following the one to which the handler is attached. Thus if the 
closest handler is attached to S, the statement following S is executed next. If execution of S 
completes without signaling an exception, the attached handlers are not executed. 
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An exception raised by an invocation inside a handler is treated the same as any other 
exception: Control passes to the closest handler attached to a statement containing the invoca­
tion. Note that if handlers Hl and H2 are attached to the same statement S, and Hl makes an 
invocation that raises an exception, H2 cannot handle this exception since H2 is not attached to 
a statement that encloses Hl. Either Hl must handle the exception itself, or a handler attached 
to a statement that contains Hl must handle the exception. 

8.14.1 Handlers without Declarations 

If a handler for exception E has no declarations, then if it is selected to handle E, any results 
raised with E are simply ignored. Such a handler can be used to handle exceptions that are 
raised without results, or in cases where the results are not of interest. 

8.14.2 Handlers with Declarations 

A handler with declarations is used to handle exceptions with the given names when the excep­
tion results are of interest. The declared variables, which are local to the handler, are assigned 
the exception results before the body is executed. 

When matching exceptions to handlers, only the exception names are used. If a handler 
for exception E includes declarations, it must be able to handle all possible exceptional results 
that can be raised with E. For example, suppose in the same statement there are two rou­
tine invocations, where one has signals(foo(int)) in its signature, and the other has signals 
(foo(string,real)). In this case it is impossible to use a handler with declarations to handle 
exception foo; no single handler with declarations could cover both cases. (The solution is 
to use a handler without declarations, or to split the statement up into two different except 
statements, so that different handlers can be used.) 

Stated more formally: If a handler H for exception E has K variable declarations, and is 
attached to statement S, then for each invocation in S that can raise E so that it is handled 
by H, E must be raised with K results and the ith result type must be a subtype of the ith 
variable declared by H; otherwise there is a compile-time error. 

8.14.3 Others Handler 

The others arm is optional and must appear last in a handler list. This form handles any 
exception not handled by other handlers in the list. If a variable is declared, it must be of type 
string. The variable, which is local to the handler, is assigned a lower-case string representing 
the actual exception name; any results of the exception are discarded. 

8.14.4 Example 

The following example assumes that procedure praises exceptions el, e2, and e3, and that el 
and e2 have no results, while e3 has an int result. It also assumes that procedure q raises el 
(with no results) and e4 (also with no results). 

begin 
p(q( )) except when el: % handle el 

when e3(x:int): % handle e3 
end 

end except when others: % handle e2 and e4 here 
end 
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The first arm handles exception el, which might have been raised by either the call of q or the 
call of p. Exceptions e2 and e4 aren't handled by the inner except statement, but are handled 
by the outer one. 

8.14.5 The Failure Exception 

The exception failure(string) is implicitly included in every routine interface; it is illegal to list 
a failure exception explicitly in an interface. 

If a routine performs an invocation that raises an exception not handled by any except 
statements in the routine body, the routine will terminate automatically with the failure ex­
ception. If the unhandled exception is not failure, the failure exception will have as a result a 
string naming the unhandled exception; otherwise its result will be the string argument of the 
unhandled failure exception. The semantics is the same as if every routine body were placed in 
an except statement of this form: 

begin 
% routine_body 

end 
except when failure (s: string): signal failure(s) 

others (s: string): signal failure ("unhandled exception: " II s) 
end 

8.15 Resignal Statement 

A resignal statement is a syntactically abbreviated form of exception handling: 

statement resignal name [ , name ] * 

Each name listed must be distinct, and each must be either one of the condition names listed in 
the routine heading or failure. The resignal statement acts like an except statement containing 
a handler for each condition named, where each handler simply signals that exception with 
exactly the same results. Thus if the resignal clause names an exception with a specification in 
the routine heading of the form name(Tl, ... , Tn) , effectively there is a handler of the form 

when name (xl: Tl, .. ., xn: Tn): signal name(xl. .. ., xn) 

The compiler checks all exceptions that can be raised by the statement that the resignal is 
attached to against these implicit handlers. As discussed above, an error is reported if an 
exception can be raised with the wrong number of arguments, or if the ith result type is not a 
subtype of the type of the ith variable declared in the handler. 

8.16 Exit Statement 

The exit statement provides a signal-like transfer of control to a local handler, without termi­
nating the current invocation. 

The exit statement has the form 

exit name [ ( expr [ , expr ]* ) ] 
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An exit statement raises a local exception that must be handled explicitly by a when arm of 
a containing except statement; the compiler reports an error if an exit is not handled, or is 
handled by a resignal or others handler. Furthermore, the handler must handle any results 
explicitly: if there are K results, the decls in the matching arm must declare K variables, with 
types that are supertypes of the associated expressions in the exit statement. 

8.17 Make Statement 

The make statement is used to initialize a newly created object. It may be used only within 
a maker (10.5.2); the maker's routine interface specifies the class of the object to be initialized. 
Makers use make and not return for termination: if the make statement terminates normally, 
this causes the maker to terminate normally. 

The make statement has the form 

make { [ ivar_inits ] } [ then body end ] 

All make statements have a (possibly empty) ivar_inits section surrounded by curly braces. 
This section (which is identical to the class constructor expression (7.4)) consists of two parts: 

ivar_inits -+ field_inits ; maker_invoc I field_inits I maker_invoc 

field_ in its --+ field_init [ , field_init ] * 
field_ in it -+ idn := expr 

maker_invoc -+ idn [ actuaLparms ] ( [ args ] ) 

The field_inits part initializes the instance variables of the maker's class (10.4); there must be 
one field_init for each instance variable. (If the class has no instance variables, field_inits is not 
used.) The maker_invoc part is used to initialize inherited instance variables. This invocation is 
present iff the maker's class has a superclass (10.5.3); idn must name a maker (10.5.2) provided 
by the superclass (10.5.1). 

The make statement has an optional then body end clause that can be used to do additional 
work after the instance variables have been assigned initial values. Within this clause, the newly 
created object can be referred to using the variable self, and the instance variables of the newly­
created object can be used directly as variables, as in a method body (10.4). 

A make statement is evaluated in three steps; later steps are performed only if earlier steps 
complete normally (i.e., they do not raise an exception). The steps are: 

1. All the exprs in the field_inits are performed in an unspecified order and the resulting 
objects are assigned to the associated instance variables of t he new object. 

2. If present, the invocation maker_invoc is performed. 

3. If present, the body is evaluated. 

If all three steps complete normally, the make statement terminates and causes the containing 
maker to terminate normally. 

A make statement cannot appear in the body of another make statement. 
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New types and routines are introduced by giving specifications. Specifications can be param­
eterized; we describe non-parameterized specifications first, and then discuss parameterization 
in Section 9.3. 

9.1 Stand-Alone Routine Specifications 

A stand-alone routine specification defines the interface of a stand-alone procedure or iterator. 
Both procedures and iterators can have zero or more arguments, and can terminate either 
normally or in some named exception condition; different numbers and types of results can be 
returned in the different cases. An iterator can yield one or more intermediate results and must 
have no results in the case of normal termination. Here are examples: 

% procedures: 
search (a: array[int], x: int) returns (int) signals (noLfound) 
combine (x: sequence[int]) returns (int) 
% an iterator: 
elements (a: array[int]) yields (int) 

Routine specifications have the following form: 

routine_ interface -+ proc_interface I iter_interface 

proc_interface -+ idn [ parms ] formaLargs [ returns ] [ signals ] [ 

iter_interface -+ idn [ parms ] formaLargs yields [ signals ] [ where 

where ] 

] 

The parms and where appear only if the routine is parameterized; we defer discussion of these 
forms to Section 9.3. The formaLargs defines the formal arguments of the routine: 

formaLargs -+ ( [ decl [ , decl ] * ] ) 

The returns clause lists the types of the results of a procedure: 

returns -+ returns ( type_designator [ , type_designator ] * 

There can be zero or more results, and the returns clause is omitted if there are no results. The 
yields clause lists the types of yielded items for an iterator: 

yields -+ yields ( type_designator [ , type_designator ] * 

An iterator must always have a yields clause, and the yielded items must always contain at 
least one result. The signals clause lists the names and result types for the exceptions of the 
routine: 

signals -+ signals ( exception [ , exception ] * ) 

where 

exception -+ name [ ( type_designator [ , type_designator ] * ) ] 
name -+ idn 
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Each exception name must be distinct and none can be failure; in addition to the explicitly 
listed exceptions, every routine can raise the failure exception, with a single string result. 

The type of a routine is derived from its routine_interface in a straightforward way: all 
the information in the interface is significant except for the routine name and the names of 
the formal arguments. For example, the type of the combine procedure shown above is proc 
(sequence[int]) returns (int), the type of the search procedure is proc (array[int], int) returns 
(int) signals (noLfound), and the type of the elements iterator is iter (array[int]) yields (int). 
The failure exception does not appear in these types; it is suppressed because every routine has 
this exception. 

The various routine types form a type hierarchy (3.4.1). 
A routine whose last argument is a sequence can be called usmg a varymg number of 

arguments in that position (6.1). 

9.2 Type Specifications 

A type specification defines the interface of a type. It has the form 

where 

type_interface ---+ idn = type [ parms ] [ supertypes ] [ where ] 

[ interface_or_equate ] * 
end idn 

interface_or_equate ---+ routine_interface I equate 

The initial idn is the identifier of the new type; this identifier will be used throughout the 
specification to refer to the new type. The final idn must be the same as the initial idn. The 
parms and where clauses are present only if the type is parameterized (9.3). In this section we 
consider only non-parameterized types. 

The supertypes clause lists all supertypes of the new type except for any, which is the 
supertype of all types and is never listed. The form is 

supertypes ---+ < super_info [ , super_info ] * 
super_info ---+ type_designator [ { renames [ , renames ] * } ] 

renames ---+ idn for idn 

The type_designator in a super-info clause identifies a type that is an immediate supertype of 
the new type. The optional renames clauses allow methods of that supertype to be renamed; 
the supertype method with the second name will be renamed with the first name in the subtype. 
For example, 

stack= type < bag {push for put, pop for get} 

states that stack is a subtype of bag, except that the bag method named put will be renamed 
push within stack and the bag method named get will be renamed pop within stack. 

The remainder of the definition consists of equates and interfaces of the methods of objects 
of the type. Each method is defined by a routine_interface (9.1), and the type of the method is 
derived from this interface in the usual way. Each method must have a distinct name. Methods 
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can be procedures or iterators; they can have parameters and can contain constraints (9.3). A 
routine_interface must be provided for a method when (1) there is no corresponding supertype 
method or (2) the subtype method has a different signature from that of the corresponding 
supertype method. The new names introduced by the renamings (if any) are used in these 
interfaces. 

USAGE NOTE 

An explicit routineJnterface should be provided for a method whose behavior 
differs from that of the corresponding supertype method, even if the types of the two 
methods are the same, since this will allow the specification of the subtype method 
to be given. 

Names corresponding to operators (7.11) should be used when this makes sense. 
For example, if the new type has an addition method, naming the method add will 
allow t11e + operator to be used wl1en it is ca.lied. 

The methods and their signatures determine the legality of the subtype declarations. A subtype 
must have all the methods of its supertype and the type of the subtype method must be a 
subtype of the type of the corresponding supertype method (3.4.1). Compilation of a type 
specification will fail if these conditions are not satisfied for every declared supertype. 

USAGE NOTE 

The legality constraint ensures that when a call is made to a method based on 
information about the apparent type of its object, tl1e call will be legal even if t11e 
actual type of the object is a subtype of this type. For the call to make sense, the 
definer of a subtype should ensure that objects of the subtype behave similarly to 
those of the supertype. Tllis means roughly that corresponding metlwds do t11e 
same thing, except that the subtype methods might do something extra to those 
parts of the subtype object state that aren't visible through the supertype methods. 
Also, subtype methods that do not correspond to supertype methods should not do 
anything to the part of the subtype object state that is visible via the supertype 
methods that cannot be accomplished using supertype methods. A discussion of 
the meaning of the subtype relation can be found in {3}. 

Renamings should be avoided whenever possible. They are needed, however, 
when a type has multiple supertypes, and these supertypes lmve methods of t11e 
same name but different behavior, or methods of different names and the same 
behavior. 

A type specification provides no way to create objects of the type "from scratch." Instead, new 
objects are created by calls on stand-alone routines. 

USAGE NOTE 

Names for creation routines ought to indicate that they create objects of a given 
type T, e.g., by using names of the form make_T, create_T, or new_T. 

Some examples of type specifications are given in Section 9.4. 
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9.3 Parameterized Specifications 

Routine and type specifications can be parameterized by types, and so can specifications of 
methods, even those contained within parameterized type specifications. In all cases, legal 
instantiations can be constrained by where clauses. 

parms ---+ [ idn_list ] 

where ---+ where restriction [ , restriction ] * 
restriction ---+ idn has nonparam_interface [ , nonparam_interface ] * 

nonparam_interface ---+ idn nonpamm_proc_sig [ idn nonpamm_iter_sig 

nonpamm_proc_sig ---+ [ type_list ] ) [ returns ] [ signals ] 

nonparam_iter_sig ---+ [ type_list ] ) yields [ signals ] 

type_list ---+ type_designator [ , type_designator ] * 

All the parameters are types. The where clause lists any restrictions on a parameter by stating 
methods that objects of the parameter type must have. For example, 

find [T] (a: collection[T], v: T) returns (int) signals (noLfound) 
where T has equal (T) returns (bool) 

defines a parameterized routine with one parameter T. Within the parameterized definition, 
objects of a parameter type can be assumed to have the methods listed in the where clause; 
any instantiation of the parameterized definition will provide a binding for each of these meth­
ods (3.2.2, 7. 7). 

Within the scope corresponding to a parameterized specification, parameter names can 
be used to denote types. If parameters are used in instantiations, any requirements of the 
parameterized types being instantiated must be met in the usual way. For example, consider 
the instantiation collection[T] used in the specification offind; if collection required an It method, 
the Theta compiler would reject the specification of find because the instantiation of collection 
is illegal. 

A parameterized type may have declared supertypes. For example 

stack = type[T] < item, bag[T]. stack_pair[T, int] 

states that every instantiation of stack is a subtype of item and of the corresponding instan­
tiations of bag and stack_pair (e.g., stack[foo] is a subtype of item, bag[foo], and stack_pair[foo, 
int]). There is no subtype/supertype relationship on parameters: for example, stack[foo] is not 
a subtype of stack[bar] even if foo is a declared subtype of bar. Subtyping operates only "outside 
the square brackets" of a type definition. 

9.4 Type Specification Examples 

First we specify a simple bag abstraction and two creation routines for bags: 

bag = type [T] 

put (x: T) 
% effects adds x to the bag 
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get ( ) returns (T) signals (empty) 
% effects removes and returns an arbitrary element of the bag 
% signals empty if bag is empty 

size ( ) returns (int) 
% effects returns the number of elements in the bag 

copy ( ) returns (bag[T]) 
where T has copy() returns (T) 

% effects returns a new bag containing copies of the elements of self 

end bag 

create_bag [T] ( ) returns (bag[T]) 
% effects returns a new, empty bag 

singleton_bag [T] (x: T) returns (bag[T]) 
% effects returns a new bag containing x as its only element 

Note in the specification of copy the use of self to refer to the method's object. Note also that 
the copy method imposes a constraint on T whereas the bag type has no constraint on T; copy 

is an optional method (3.2.2). 
Next we specify type stack, a subtype of bag: 

stack= type [T] < bag[T] {push for put, pop for get} 

push (x: T) 
% effects adds x to the top of the stack 

pop () returns (T) signals (empty) 
% effects removes and returns the top element of the stack 
% signals empty if stack is empty 

top () returns (T) signals (empty) 
% effects returns top element of the stack 
% signals empty if stack is empty 

copy ( ) returns (stack[T]) 
where T has copy ()returns (T) 

% effects returns a new stack containing copies of the elements of self 
% in the same order as in self. 

end stack 

create....stack [T] ( ) returns (stack[T]) 
% effects returns a new, empty stack 

The specification of stack introduces a new method, top. It contains specifications for push and 
pop, since they constrain the behavior of the corresponding bag methods, and for copy, since it 
has a different signature and specification than its counterpart, but it omits the specification 
of size, since it would be identical to its counterpart. Note that there are two creation routines 
for bag but only one for stack. 
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Implementations are provided by modules. A module contains a set of classes (10.4), routine 
implementations, maker definitions, and equates. It can export its routine implementations so 
that they can be used in other modules. Its classes may also be available for use in other classes 
(as superclasses) but this is indicated directly by the class definition (10.5.1). 

10.1 Modules 

The form of a module is: 

module --+ module [ implements ] [ impLelt ] * end 

impLelt --+ routine_def [ class_def [ maker_def [ equate 

Every module must contain at least one class or routine implementation. The implements 
clause identifies the routine specifications that are being implemented by what module and 
defines which routine implementations in the module implement each specification: 

implements --+ implements exported_item [ , exported_ item ] * 
exported_item --+ idn [ { idn_list } ] [ idn [ parms ] { idn_list } 

The first kind of exported_item identifies a routine_interface (9.1) that is being implemented 
within the module. The optional idn_list names the routine_def s that implement that specifica­
tion; the list can be omitted if there is a single implementation with the same name as that of 
the routine interface that is implemented. The second kind of exported_item indicates that the 
module implements a specific instantiation of a parameterized routine_interface (9.3); in this 
case an idn_list naming one or more routine_ def s must be provided. The module must contain 
all the routine_def s indicated in the implements clause, and the type of a routine_ def must be 
a subtype of the type of the routine_interface or instantiation that it implements. The module 
can contain other routine_def s, but these can be used only within the module (unless a class 
provides one of these routines to its subclasses 10.5.1). 

For example, a module that implements the bag type defined in Section 9.4 might say: 

module implements create_bag 

to indicate that it is exporting an implementation of the create_bag routine, and furthermore 
the routine_def within the module is also named create_bag. Users can call this routine (after 
instantiating it) to obtain bags that are implemented with whatever class is indicated in that 
create_bag implementation. Alternatively, a module might provide a specialized implementation 
for bag[char], e.g., 

module implements create_bag[char]{ cbag} 

indicating that internal routine cbag will implement the instantiation create_bag[char]. Users 
can make use of cbag to create a new bag[char] with the specialized implementation. 

Using code does not use the routine names exported by modules. Instead the code uses 
names introduced in routine specifications. Before the code runs, a linker binds every use of 
a routine specification to a routine that implements that specification. For example, in the 
following code: 
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b: bag[char] := create_bag[char]( ) 

create_bag[char] could be linked to cbag. 
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A module defines a scope (4). Modules do not nest: no module is ever contained within 
another module. 

Modules provide encapsulation. Details of a class are visible throughout its module so that, 
for example, a routine in the module can access the instance variables of objects of the class. 
The internal details of a class are never visible to code outside its module. 

USAGE NOTE 

Usually a class will be part of a module that also implements routines that create 
new objects of tl1e class. If the class's module does not export such routines, there 
will be no way for users to create its objects "from scratch." Such a class may still 
be useful as a superclass (10.5) , making definitions of other classes easier to write. 

10.2 Stand-Alone Routine Implementations 

The implementation of a stand-alone routine has the form: 

routine_def -t routine_interface body end idn 

routine_interface -t proc_interface I iter_interface 

The final idn in the routine_def must match the routine name introduced by the name of the 
routine. 

A routine implementation is a scope in which the idns that name the formal parameters 
and formal arguments are defined. These names can be used in the routine body to refer to the 
respective parameters and arguments. Theta uses call-by-sharing (6.2) to pass arguments to a 
routine. Accordingly, making an assignment to a formal argument does not affect the caller; it 
only changes what object is denoted by that formal. The only way a procedure or iterator can 
communicate with its caller is by returning results (yielding results for an iterator), signaling 
exceptions, or modifying mutable argument objects. 

If control reaches the end of the body of a procedure that has results, the procedure will 
terminate with the exception fa ii ure(" no return results"). Iterators, and procedures without 
return results, can terminate normally by reaching the end of their bodies. 

10.3 Parameterized Implementations 

Routine and method implementations, as well as classes, can be parameterized. Within the 
scope of a parameterized implementation, formal parameters can be used as types whose objects 
have only the methods and signatures indicated in the where clause. For example, in 

find [T] (x: collection[T], v: T) returns (int) signals (noUound) 
where T has equal(T) returns (bool) 

w:T 

if v = w ... % short for v. equal(w) 

end find 
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the call v.equal(w) (made using the associated short form) is legal. Such method calls make 
sense because instantiations are only permitted for types whose objects have the required meth­
ods (3.2.2). 

10.4 Classes 

Classes implement user-defined types and user-defined parameterized types. A class has the 
following form: 

where 

class_def -+ idn = class [ parms ] [ for_type ] [ inherits ] 

[ where ] [ provides ] [ hides ] 

[ equate_or_ivar_decl ] * 
[ equate_or _routine_def ] * 
end idn 

equate_or_ivar_decl ---+ equate I ivar_decl 

equate_or_routine_def ---+ equate I routine_def 

The initial idn names the class, and the final idn must match it. The inherits, provides, and 
hides clauses are part of the inheritance mechanism (10.5). 

The for _type clause names the type implemented by the class: 

for_type -+ for type_designator 

If this clause is missing, the class does not implement a type. The primary use of such a class is 
as a superclass to classes defined in other modules (10.5.1); the class could also be used privately, 
within its own module. 

A class is a scope in which the idns that name the formal parameters are defined. Therefore 
these names can be used within the class to refer to the respective parameters. The where 
clause of the class lists the constraints on the parameters. 

The body of a class has two main parts: a set of declarations and a set of method imple­
mentations. All the names in these two sets must be distinct. 

The declarations define the instance variables, which are used to represent the state of 
objects of the class. Every object of the class has its own instance variables; the values of its 
instance variables define the state of the object. An instance variable is declared using a special 
form: 

ivar_decl -+ decl I decl_with_impls 

The decl_with_impls form is used to provide abbreviated implementations (10.4.1) of some meth­
ods. 

Following the instance variable declarations are implementations of the methods. A class 
must implement all methods of its type (although some of these implementations can be in­
herited (10.5) or abbreviated (10.4.1)); these are its "public" methods. A class that does not 
implement a type has no public methods. The signatures of routine_def s that implement pub­
lic methods must have types that are subtypes of those given in the type specification. In 
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addition a class can implement some "private" methods that can be used only within the class 
and its module and possibly within subclasses of the class (10.5). 

A class name (or the name plus the actual parameters if the class is parameterized (10.3)) 

can be used as a type within the class or its module. We refer to this type as the class type. 

The class type describes the set of objects implemented by the class. Objects of this type have 
a field corresponding to each of the instance variables and all the public and private methods 
defined by the class. The "dot" notation is used to access the object's instance variables and 
select it methods, e.g., 

% assume class Chas instance variable v and method m 
x: C % x is an object of class type C 
x.m( ... ) % selects m from x and calls it 
x.v := ... % assigns to x's instance variable v 
y := ... x.v ... % gets value of x's instance variable v 

In addition to its regular arguments, a method has an implicit argument that it can refer 
to by using the keyword self. This argument refers to the method's object. The method can 
use self to access the instance variables and select the methods belonging to its object, e.g., 
self.v, or it can access instance variables and select methods of its object without using the 
"dot" notation, just by using their names, e.g., v means the same thing as self.v. 

If the class implements a type, its class type is a subtype of this type. For example, within 
a class C or its module, the statement 

typecase x 
when C (y): 

end 

% assume x: T 
% in here y refers to x as a C 

allows the use the form y.v to access y's instance variable v within the when arm. The arm will 
be selected if the actual object is a C or some subclass of C (10.5). 

Within a class and its module, new objects of the class type can be obtained by calling the 
class constructor (7.4). 

10.4.1 Abbreviated Implementations 

Sometimes methods merely provide access to instance variables, either to get the value of the 
instance variable, or (more rarely) to set the value. Methods like these can be implemented 
using a short form by annotating the instance variable: 

decLwith_impls --+ idn1 : type_designator implements idn2 [ , idn3 ] 

Here, idnl is the name of a variable being declared, idn2 is the name of a method to get the 
value of the variable, and idn3 (if present) is the name of a method to set the value of the 
variable. A public get method must be a procedure that takes no arguments and returns a 
T where T is a supertype of the type of the associated instance variable; a public set method 
must be a procedure that has no return values and takes one argument of type S, where S is 
a subtype of the type of the associated instance variable. No restrictions are placed on the 
exceptions listed in the type of the get or the set method. For example, it is okay to provide 
abbreviated implementations for the following methods: 

size() returns (int) signals (unknown) 
seLname(name: string) signals (permission_denied) 
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An abbreviated implementation for a method is permitted only if the class provides no other 
implementation for the method. Here is an example of the use of abbreviated implementations: 

point= type 
x( ) returns (int) 
set_x(v: int) 

% returns value of x coordinate 

y( ) returns (int) 
seLy(v: int) 

% changes value of x coordinate to v 
% returns value of y coordinate 
% changes value of y coordinate to v 

end point 

c = class for point 
x_coord: int implements x, seLx 
y_coord: int implements y, seLy 

end c 

USAGE NOTE 

Related names should be used for the get and set methods, and the meaning of 
the methods should be getting and setting abstract fields of tl1e object. 

10.4.2 Same_object 

Within a class a special procedure is available for determining whether two objects of that class 
are actually the very same object. This procedure has the routine_interface: 

same_object (x: C, y: any) returns(bool) 

where C is the name of the class. The procedure returns true if x and y denote the same 
object and false otherwise. For example, the equal method for a mutable type might call 
same_object(self, z) to determine whether object z is the same object as self. 

The same_object procedure is available only within the class. It cannot be used by other 
code in the class's module, and it cannot be exported by the class. 

10.4.3 Example 

Here is an implementation of the bag type whose specification was given in Section 9.4. 

module implements create_bag 

brep = class[T] for bag[T] 

sz: int implements size 
els: array[T] 

% implementation of size method 

% the rep invariant is: sz = els.size{) 

put (x: T) 
els.append(x) 
sz := sz + 1 
end put 
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get ()returns (T) signals (empty) 
x: T :=els.remove( ) except when limits: signal empty end 
sz := sz - 1 
return (x) 
end get 

copy ( ) returns (bag[T]) 
where T has copy () returns (T) 
return (brep[T]{sz := sz, els:= els.copy()}) 
end copy 

end brep 

create_bag [T] ( ) returns (bag[T]) 

end 

return (brep[T]{sz := 0, els:= array_create[T]()}) 
end create_bag 
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This module exports an implementation of the create_bag routine, which enables users to obtain 
bag objects implemented by the brep class. Note the use of the class constructor (7.4) in the 
copy method and create_bag to obtain a new bag object. 

10.5 Inheritance 

Inheritance allows a class, called the subclass, to be implemented as an extension of some other 
class, called the superclass. 

10.5.1 Defining Superclasses 

A class definition must indicate explicitly that it is available for subclassing by explicitly pro­
viding an interface to its subclasses: 

provides -+ provides idn_list 

hides -+ hides idn_list 

The provides clause lists private methods, routines, and makers (10.5.2) implemented in the 
class's module that are available to subclasses; it also lists any public methods where the 
signature given in the class differs from that given in the type and the class definer wishes 
this information to be visible to definers of subclasses. Some makers must be provided, since 
otherwise subclasses will have no way to create new objects of their own; if no maker for the 
class is listed, there will be a compile-time error. The hides clause lists public methods that 
are not available to subclasses. 

USAGE NOTE 

A superclass must permit subclasses to be implemented efficiently. It must 
export enough makers that a subclass can conveniently initialize the superclass 
flelds of its new objects. Also, it must export enough methods so that a subclass 
can access needed information in the superclass flelds of its objects, and modify 
those flelds if that makes sense. 
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The class must also ensure t11at subclasses cannot interfere with it; this require­
ment is discussed further in Section 10.5.4. 

10.5.2 Makers 

A maker is a special operator that fills in the fields of a newly created object: 

maker_def --+ maker_interface body end idn 

maker_interface --+ idn [ parms ] formaLargs makes [ signals ] [ where ] 

makes -t makes ( type_designator ) 

The final idn in the maker_def must match that given in the maker_interface. The type_designator 
in the makes clause must denote a class type implemented in the maker's module; we say this 
is the maker's class. 

The object being initialized by a maker is created by the Theta runtime before the maker is 
called; its class is some subclass of the maker's class, and the new object is an implicit argument 
of the maker. The maker fills in its fields using a make statement; the new object can be referred 
to explicitly by the name self, but only within the optional body of the make statement (8.17). 

The usual scoping rules for self apply: the instance variables of self can also be directly named 
as variables within the body of the make (7.5). 

A maker cannot contain a return statement. Normal termination of a make statement 
causes its execution to terminate normally. If the maker reaches the end of its body, it will 
terminate with the exception failure( 11 no return results"). 

A maker can be called only within a make statement (8.17) or a class constructor (7.4) 

within some subclass of the maker's class; the maker cannot be called within its own class. It is 
used in the subclass to initialize the instance variables inherited from a superclass, and thus its 
use is limited to modules implementing subclasses of its class. It must be listed in the provides 
list of its class. 

USAGE NOTE 

The purpose of a maker is to initialize the new object properly so that its fi.elds 
that belong to the maker's class satisfy the rep invariant for that class. This con­
dition should be satisfi.ed both when the maker calls a maker of its superclass, a.nd 
also when the maker returns, e.g., 

m () makes (C) 
% do some preprocessing 

make { ... ; % initialize class fields so that class rep I holds 
sm ( ) } % call superclass maker; at return all rep I's hold 

then . . . % update class fields so that class rep I holds 
end % all rep I's hold now 

end m 

10.5.3 Subclasses 

To inherit code from a superclass, a class includes the inherits clause in its routine_interface: 

inherits --+ inherits type_designator [ { renames [ , renames ] * } ] 
renames --+ idn for idn 
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The type_designator names the superclass. The inherits clause makes the superclass name and 
the names of provided methods and routines visible to code in the subclass's module. 

The inheritance hierarchy is independent of the type hierarchy. Therefore the type imple­
mented by the superclass might not be a supertype of the type implemented by the subclass. 
For example, it might be convenient to implement stacks by inheriting from a class that im­
plements lists even though stack is not a subtype of list. Note also that either class might not 
implement a type. 

The instance variables declared in the subclass are in addition to those of the superclass: 
objects of the subclass have all the inherited instance variables of the superclass as well as those 
of the subclass. However, the inherited variables cannot be accessed directly in the subclass; it 
can access them only by calling the superclass methods. 

Objects of the subclass have all the methods of the superclass, although the hidden methods 
aren't visible within the subclass. Visible superclass methods can be renamed: the second idn 
in a renames clause gives the name of the method in the superclass; the first gives the new 
name. For example, 

C = class for T inherits D {foo for bar} 

renames D's bar method to foo. All superclass methods not mentioned in a renaming clause 
retain their original names. The effect of the renamings is that the superclass appears to have 
been rewritten with the names needed in the subclass. 

Visible superclass methods can be inherited by the subclass: this is accomplished by simply 
not giving an implementation of a method of that name. Subclass methods can also be 
implemented explicitly. If such a method has the same name as a visible superclass method, 
the new implementation overrides the associated superclass method. In such a case, the subclass 
object has both the overridden method and the new method; the overridden method is a private 
method and it can be named using the the special form A idn. For example, if the subclass 
overrides visible superclass method m, the overriding definition is named m, and the overridden 
method is named A m. Thus code in the subclass and its module can continue to call the 
overridden method using the A form. 

Methods overridden by a subclass can affect the behavior of superclass methods. If a super­
class method calls a method n that has been overridden by the subclass, the implementation 
of n provided by the subclass will run, not the implementation provided by the superclass. For 
example, consider superclass method 

m ( ) returns (int) 
return (self. n ()) 

end m 

and suppose that n is visible and has been overridden in the subclass. When m is called on an 
object of the subclass, its call of n goes to the overriding definition. Therefore, we require that 
the overriding definition have a signature that is a subtype of the signature of the method it 
overrides. 

USAGE NOTE 

This restriction means that the call of an overridden method in the inherited 
superclass method will be legal. For the call to be sensible, the overridden method 
ought to behave like that of the superclass as well. 



50 Chapter 10: Implementations 

Within a class-constructor for the subclass, or within a make statement of a maker for 
the subclass, a maker of the superclass must be called to initialize the superclass fields of the 
new object. For example, inside a parameterized maker make_stack[T], we might have a make 
statement: 

make { ... ; make_list[T]( ... ) } 

where stack is being implemented as a subclass of list and make_list is a maker provided for list. 
A subclass type is not a subtype of the superclass type, nor is it a subtype of the type 

implemented by the superclass, unless the type implemented by the subclass is a subtype of the 
type implemented by the superclass. With one exception, ordinary type checking restrictions 
apply to subclass objects, e.g., a subclass object cannot be assigned to a variable whose type 
is the superclass type. The exception is that the code of a subclass and its module can call the 
methods and routines provided by its superclass passing in subclass objects as arguments in 
positions where an object of the superclass type, or of the type implemented by the superclass, 
is required. 

A subclass can use its hides clause to avoid exporting inherited methods to its subclasses 
and can use its provides clause to export methods, and also routines and makers implemented 
in its module. However, it cannot use the ~ notation to name methods in the provides clause, 
and it cannot provide any methods or routines that have the superclass type in their signatures 
(since its superclass is not visible to its subclasses). 

10.5.4 Rules for Superclasses 

A superclass should guarantee that subclasses cannot interfere with the correct functioning of 
its code and the code in its module. This can be accomplished by care in implementing the 
module and by using the provides and hides clauses appropriately. Below we discuss two 
problems that must be avoided: masquerading, and propagation of bad information. 

None of the methods or routines that the superclass provides to its subclasses should create 
an alias for one of the superclass objects. If such a method or routine were provided, it could 
be used by the code in the subclass and its module to cause subclass objects to masquerade as 
superclass objects. Masquerading is bad because subclass objects may behave differently than 
superclass objects. For example, if the bag copy method were implemented: 

copy ( ) returns (bag[T]) 
return (self) 
end copy 

it would create an alias for self. If copy were provided to subclasses of bag, return(x.copy()) 
within the subclass, where xis an object of the subclass, will cause a subclass object to appear 
to be a bag object, even though it might not behave like one. 

The second problem - propagation of bad information - occurs only if a provided method, 
routine, or maker violates the superclass rep invariant, and is easily avoided by not providing 
such violators. However, providing violators is sometimes useful, and they are bad only in 
combination with propagators: methods, routines, and makers that perform incorrectly if the 
superclass rep invariant doesn't hold for some object they access. For example, suppose the 
bag copy method simply copied its instance variables; if the rep invariant weren't satisfied, the 
result would be a bag object that did not satisfy the rep invariant. So, a class that provides 
violators should not also provide propagator methods, routines, and makers to its subclasses. 
In addition its module should not export to its users any propagator routines, and its other 
classes should not export any propagator methods. 
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10.5.5 Example of Inheritance 

This section illustrates the use of inheritance by means of a simple example. 
Suppose we want to implement the stack abstraction specified in Section (9.4) as a subclass 

of the bag implementation given in Section (10.4.3). To do so, at the least we must provide 
some makers for stack to use: a maker for initializing an empty stack, and also some way of 
initializing the stack returned by the copy method. We must also consider how to implement 
the top method. 

Here is one solution to these problems: bag provides its subclasses with access to the array 
that contains its elements, e.g., by providing a geLels method, which returns the els component 
of a bag. However, this method is effectively a violator, since it allows the subclass to modify 
the array, thus violating the rep invariant. Therefore care must be taken to not provide any 
propagators. 

module implements create_bag 

brep = class[T] for bag[T] 
provides mk_brep, mk_copy, geLels 
hides copy 

sz: int implements size 
els: array[T] implements geLels 

% implementation of size method 
% implementation of get_els method 

% the rep invariant is: sz = els.size() 

put (x: T) 
els.append(x) 
sz := sz + 1 
end put 

get ()returns (T) signals (empty) 
x: T :=els.remove( ) except when bounds: signal empty end 
sz := sz - 1 
return (x) 
end get 

copy ( ) returns (bag[T]) 
where T has copy ( ) returns (T) 

return (brep[T]{sz := sz, els:= els.copy()}) 
end copy 

end brep 

create_bag [T] ( ) returns (bag[T]) 
return (brep[T]{sz := 0, els:= array_create[T]()}) 
end create_bag 

mk_brep[T] () makes (brep[T]) 
make {sz := 0, els := array_create[T]( )} 
end mk_brep 

mk_copy[T] (x: brep[T]) makes (brep[T]) 
where T has copy () returns (T) 
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A Reference Grammar 

This section presents the grammar for Theta. This grammar is authoritative wherever it con­
flicts with syntax productions in the previous section of the manual. 

program units, routine specifications, and equates 

program_ unit -+ routine_interface I equate I type_ interface I module 

routine_interface -+ proc_interface I iter_interjace 

equate -+ idn = expr I idn = type_designator 

prodnterface -+ idn [ parms ] formaLargs [ returns ] [ signals ] [ where ] 

itednterface -+ idn [ parms ] formaLargs yields [ signals ] [ where ] 

parms -+ [ idn_list ] 

idn_list -+ idn [ , idn ] * 
formaLargs -+ ( [ decl [ , decl ] * ] ) 

decl -+ idn_list : type_designator 

returns -+ returns ( type_list ) 

type_list -+ type_designator [ , type_designator ] * 
yields -+ yields ( typdist ) 

signals -+ signals ( exception [ , exception ] * ) 
exception -+ name [ ( type_list ) ] 

name -+ idn 

where -+ where restriction [ , restriction ] * 
restriction -+ idn has nonparam_interface [ , nonparam_interface ] * 

nonparam_interface -+ idn nonparam_proc_sig I idn nonparam_iter_sig 

nonparam_proc_sig -+ [ type_list ] [ returns ] [ signals ] 

nonparam_iter_sig -+ [ type_list ] yields [ signals ] 
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type specifications 

type_interface ---t idn = type [ parms ] [ supertypes ] [ where ] 

[ interface_or_equate ] * 
end idn 

superlypes ---t < superinf o [ , superinfo ] * 
superinfo ---t type_designator [ { renames [ , renames ] * } ] 
renames ---t idn for idn 

interface_or_equate ---t routine_interface I equate 

type_ designator ---t 

simple_type_desig ---t 

routine_type_desig ---t 

parm_type_desig ---t 

pa rm_ type --+ 

actual_parms ---t 

tagged_ type_ desig --+ 

tagged_ type ---t 

field ---t 

type designators 

simple_type_desig I routine_type_desig I parm_type_desig I tagged_type_desig 

idn I null I bool I char I int I real I string I any 

proc nonparam_proc_sig I iter nonparam_iter_sig 

parm_type actuaLparms 

idn I array I sequence I vector I maybe 

[ type_list ] 

tagged_type [ field [ , field ] * ] 
record I struct I oneof 

idn_list : type_designator 



modules 

module --+ module [ implements ] [ impLelt ] * end 

implements --+ implements exported_item [ , exported_item ] * 
exported_item --+ idn [ { idn_list } ] I idn actuaLparms { idn_list } 

impLelt --+ routine_def I class_def I maker_def I equate 

routine_def --+ routine_interface body end idn 

maker_def --+ maker_interface body end idn 

makednterface --+ idn [ parms ] formaLargs makes [ signals ] [ where ] 

makes --+ makes ( type_designator ) 

body --+ [ equate ] * [ statement ] * 
class_def --+ idn = class [ parms ] [ for-type ] [ inherits ] 

[ where ] [ provides ] [ hides ] 

[ equate_or_ivar_decl ] * 
[ equate_or_routine_def ] * 
end idn 

for_type --+ for type_designator 

inherits --+ inherits type_designator [ { renames [ , renames ] * } ] 
provides --+ provides idn_list 

hides --+ hides idn_list 

equate_or_ivar_decl --+ equate I ivar_decl 

ivar_decl --+ decl I decLwith_impls 

decLwith_impls --+ idn : type_designator implements idn [ , idn ] 

equate_or_routine_def --+ equate I routine_def 
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statements 

statement ---+ decl 
lhs : = expr [ , expr ] * 
lhs : = invoc 
simp{e_invoc 

primary [ expr ] : = expr 

return [ ( expr [ , expr ] * ) ] 
yield ( expr [ , expr ] * ) 
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signal name [ ( expr [ , expr ] * ) ] 
exit name [ ( expr [ , expr ] * ) ] 
if expr then body [ elseif expr then body ] * [ else body ] end 
while expr do body end 
for for_idns in invoc do body end 
break 
continue 
begin body end 

tagcase expr tag_arm [ tag_arm ] * [ others : body ] end 

typecase expr type_arm [ type_arm ] * [ others : body ] end 

statement except [ handler ] * [ others [ ( idn : string ) ] : body ] end 

statement resignal name [ , name ] * 
make { [ ivar _in its ] } [ then body end ] 

lhs ---+ var [ , var ] * I decl [ , decl ] * 
var ---+ idn I primary . idn 

mvoc ---+ expr ( [ args ] ) 

args ---+ expr [ expr ] * [ , varying_args ] I varying_args 

varying_args ---+ .. I .. expr [ , expr ] * 
simple_invoc ---+ primary ( [ args ] ) 

for_idns ---+ idn_list I decl [ , decl ] * 
tag_arm ---+ when name [ , name ] * [ ( idn : type_designator ) ] body 

type_arm ---+ when type_designator [ ( idn ) ] : body 

handler ---+ when name [ , name ] * [ ( decl [ , decl ] * ) ] body 

ivar_inits ---+ field_inits ; maker_invoc I field_inits I maker_invoc 

field_inits ---+ field_init [ , field_init ] * 
field_init ---+ idn : = expr 

makednvoc ---+ idn [ actuaLparms ] ( [ args ] ) 



expr ---t simple_expr 
expr . idn 
expr . method_idn 

in voe 
expr [ expr J 

expr 
- expr 

expressions 

expr binary_op expr 
( expr) 

primary ---t simple_expr 
primary . idn 
primary . method_idn 
simple_invoc 
primary [ expr ] 

simple_expr ---t literal 

idn [ actuaLparms ] 
self 
method_idn 
tagged_type_desig { field_inits } 

type_designator { [ ivar_inits ] } 
bind ( expr bind_args ) 

method_idn ---t [ - ] idn [ actuaLparms ] 

bind_args ---t [ , bind_arg ] * [ , varying_args ] 

bind_arg ---t expr I * 
literal ---t nil 

true 

false 
inUiteral 
char _literal 
reaUiteral 
string_literal 

binary_ op ---t ** I / / I I I * I 11 I + I - I < I < = I 
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B Built-in Types and Parameterized Types 

This appendix supplements the material of Chapter 3 by providing a preliminary description of 
the built-in types and parameterized types. The definitions should be considered preliminary; 
we may very well make changes to them later. 

All the built-in types except for any have equal, similar, copy, and unparse methods. These 
methods are optional for the parameterized types such as array[T]: an instantiation will have 
one of these methods only if each of the actual parameter types has the method. 

None of the built-in types and parameterized types can have subtypes, except for any, which 
is the supertype of all types. There is no type hierarchy relating any of the other built-in types, 
except that there is a rich hierarchy for routine types. 

The built-in types and parameterized types are implemented by classes that cannot be 
sub classed. 

The Theta environment contains a number of equates that describe various properties and 
limitations of the built-in types. The corresponding type definitions in this Appendix describe 
these equates in more detail. 

B.1 Any 

The type any is the supertype of all types. It has no methods or associated routines. 

B.2 Null 

The type null is an immutable type with a single object, denoted by the literal nil. It is used 
primarily as a placeholder in a oneof to handle the "empty" case. 

Methods for type null 

equal (n: null) returns (bool) 
% effects returns true 

similar (n: null) returns (bool) 
% effects returns true 

copy ( ) returns (null) 
% effects returns nil 

unparse ( ) returns (string) 
% effects returns the three-character string "nil" 
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B.3 Bool 

Type bool is an immutable type with two objects, denoted by the literals true and false. 

Methods for type bool 

not ( ) returns (bool) 
% effects returns -self 

and (x: bool) returns (bool) 
% effects returns the boolean and of self and x 

or (x: bool) returns (bool) 
% effects returns the boolean or of self and x 

xor (x: bool) returns (bool) 
% effects returns the boolean xor of self and x 

equal (x: bool) returns (bool) 
% effects returns true if self and x are either both true or 
% both false; else returns false 

similar (x: bool) returns (bool) 
% effects returns true if self and x are either both true or both 
% false; else returns false 

copy ( ) returns (bool) 
% effects returns self 

unparse ( ) returns (string) 
% effects if self= true returns the four-character string "true"; 
% else returns the five-character string "false" 
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B.4 Int 

Type int contains a subset of the integer objects. Its objects are immutable. 
Int provides a number of literal forms for its objects. lnts can be denoted in any base from 

2 to 36 inclusive using the literal form: 

integer_literal -t [ base _ ] integer_digits 

The base and the underscore can be omitted to use the default base 10. The base is always 
interpreted as a decimal number and must be between 2 and 36 inclusive. The digits of the 
integer are indicated using the numbers 0 to 9 and, if necessary, the appropriate letters of the 
alphabet. For example, for base 16, the digits are 0 ... 9, a ... f. The upper and lower case 
characters of the alphabet are considered equivalent in integer literals. No spaces are allowed 
within an integer literal. Here are some examples of literals with their corresponding base 10 
form: 

Literal Base 10 form 
25 25 
10_25 25 
16_lc 28 
16_1( 28 
8-72 58 
3_2001 55 
2_1101 13 

The following equates in the Theta environment denote the range of representable integers. 

inLmax 
inLmin 

an integer value indicating the smallest representable integer 
an integer value indicating the largest representable integer 

Integer values are representable in 32 bits and therefore under a twos-complement machine 
representation for integers, inLmax will be 231 - 1 and inLmin will be -231 . 

Methods for type int 

negate ()returns (int) signals (overflow) 
% effects returns -self; signals overflow if the result is not 
% in the representable range. 

add (x: int) returns (int) signals (overflow) 
% effects returns self+ x; signals overflow if the sum is not 
% in the representable range. 

subtract (x: int) returns (int) signals (overflow) 
% effects returns self - x; signals overflow if the result is not 
% in the representable range. 

multiply (x: int) returns (int) signals (overflow) 
% effects returns self* x; signa Is overflow if the result is not 
% in the representable range. 

divide (x: int) returns (int) signals (zero_divide, overflow) 
% effects if x = 0 signals zero_divide. Otherwise returns self /x. 
% The result is rounded toward negative infinity. Signals 
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% overflow if the result is not in the representable range. 

mod (x: int) returns (int) signals (zero_divide) 
% effects if x = 0 signals zero_divide. Otherwise returns self mod x. 
% This is the remainder when self is divided by x, and 
% is defined such that self= (self/x) * x + self.mod(x) 

power (x: int) returns (int) signals (negative_exponent, overflow) 
% effects if x < 0, signa Is negative_exponent. Otherwise returns self to the x power; 
% If self= 0, then self.power(O) is defined to be 1. 
% Signals overflow if the result is not in the representable range. 

abs ( ) returns (int) signals (overflow) 
% effects returns lselfl; signals overflow if the result is not in the representable range. 

to (bound: int) yields (int) 
% effects yields the ints from self to bound in order; if bound < self yields nothing 

to_by (bound: int, step: int) yields (int) 
% effects yields the ints self, self+ step, ... up to bound inclusive. 

max (x: int) returns (int) 
% effects returns the larger of self and x 

min (x: int) returns (int) 
% effects returns the smaller of self and x 

It (x: int) returns (bool) 
% effects returns (self< x) 

le (x: int) returns (bool) 
% effects returns (self :::; x) 

gt (x: int) returns (bool) 
% effects returns (self> x) 

ge (x: int) returns (bool) 
% effects returns (self~ x) 

equal (x: int) returns (bool) 
% effects returns (self= x) 

similar (x: int) returns (bool) 
% effects returns (self= x) 

copy ( ) returns (int) 
% effects returns self 

unparse ( ) returns (string) 
% effects returns a string representing self in base 10. E.g., if self is 123, returns 
% the three character string "123" 

to_real ( ) returns (real) 
% effects converts self to a real and returns the result; 
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% 
% 
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rounds toward zero; 
assumes the range of real values covers range of integer values 

to_char ()returns (char) signals (illegal_char) 
% effects If self represents the ASCII code for a character, then 
% returns that character, else signals illegal_char. 
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B.5 Real 

A real is an immutable, floating-point number. It is represented by a subset of the IEEE 
single-precision format floating-point numbers, with the following changes: 

• Positive and negative infinity are not representable. 

• Positive and negative zero are not distinguishable. 

• Denormalized values are not used. 

The following equates from the Theta environment describe specifics of the range, granularity 
and format of the real numbers as represented in Theta: 

real_emin 
real_emax 
real_precision 

an integer value indicating the smallest binary exponent. 
an integer value indicating the largest bi nary exponent. 
an integer value indicating the number of binary digits of precision available 
in reals. 

The following values describe the range of values and the granularity. 

real_max 
real_min 
real_epsilon 

a real value indicating the maximum value of a real. 
a real value indicating the minimum value of a normalized real number. 
a real value indicating the value of a bit in the least significant position 
in the fraction when the exponent is zero. 

real_round..style an enumerated value indicating the rounding style: 
reaLround_toward__zero 

Note that 

real_max 

real_min 
real_epsilon 

rea Lrou nd _towa rd_m in us_i nfi n ity 
reaLround_other 

= (1 _ 2-reaLprecision) * 2reaLemax 
= 2(reaLemin-1) 
= 2(1-reaLprecision) 

Real literals can have any one of the following forms: 

reaUiteral --+ [ digits ] digits [ exponent ] 
I digits exponent 

exponent --+ e [ + ] digits 

E [ + ] digits 

where digits is a non-empty sequence of digits in the range 0-9. No spaces are allowed in the 
middle of a reaUiteral. Here are some examples of legal reaUiterals: 

2.6 
25.0 
.05 
5.2e-3 
5.2e+3 
2e10 
.02E2 
.OE5 
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Note that a decimal point must be followed by one or more digits, so the following are not 
legal real literals: 

1. 
45.e6 

Methods for type real 

negate ( ) returns (real) 
% effects returns -self. 

add (x: real) returns (real) signals (overflow, underflow) 
% effects returns self+ x. Signals overflow if result is too big to be represented. 
% Signals underflow if result it too close to zero to be represented. 

subtract (x: real) returns (real) signals (overflow, underflow) 
% effects returns self - x. Signals overflow if result is too big to be represented. 
% Signals underflow if result it too close to zero to be represented. 

multiply (x: real) returns (real) signals (overflow, underflow) 
% effects returns self* x. Signals overflow if result is too big to be represented. 
% Signals underflow if result it too close to zero to be represented. 

divide (x: real) returns (real) signals (overflow, underflow, zero_divide) 
% effects returns self/ x. Signals overflow if result is too big to be represented. 
% Signals underflow if result it too close to zero to be represented. 
% Signals zero_divide if x = 0. 

power (x: real) returns (real) signals (overflow, underflow, complex_result, zero_divide) 
% effects returns self raised to the x power. 
% Signals overflow if result is too big to be represented. 
% Signals underflow if result it too close to zero to be represented. 
% Signals zero_divide if self = 0 and x < 0. 
% Signals complex_result if self< 0 and x has a fractional component. 

abs ( ) returns (real) 
% effects returns the absolute value of self. 

exponent ( ) returns (int) signals (undefined) 
% effects returns n such that 2n-l ::;: self < 2n 
% Signals undefined if self = 0. 

mantissa ( ) returns (real) 
% effects returns x such that x x 2self.exponent() self 

max (x: real) returns (real) 
% effects returns the larger of self and x 

min (x: real) returns (real) 
% effects returns the smaller of self and x 

to_int ( ) returns (int) signals (overflow) 
% effects returns self rounded to the nearest integer (towards zero, in the case of a tie). 



B.5. Real 

% Signals overflow if the rounded number can not be represented as an integer. 

floor ( ) returns (real) 
% effects returns self rounded toward negative infinity. 

ceiling ()returns (real) 
% effects returns self rounded toward positive infinity. 

It (x: real) returns (bool) 
% effects returns (self< x) 

le (x: real) returns (bool) 
% effects returns (self ~ x) 

gt (x: real) returns (bool) 
% effects returns (self > x) 

ge ( x: rea I) returns ( bool) 
% effects returns (self:;>- x) 

equal (x: real) returns (bool) 
% effects returns (self= x) 

similar (x: real) returns (bool) 
% effects returns (self= x) 

copy ( ) returns (real) 
% effects returns self 

unparse ( ) returns (string) 
% effects returns the string representation of a literal corresponding to self. 
% The general form is [-]intpart.fractpart[e+/-exp]. 
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B.6 Char 

Type char contains the ASCII characters. Its objects are immutable. Char literals are enclosed 
in single quotes. Printing ASCII characters (octal 40 through octal 176), other than single 
quote or backslash, can be written as that character enclosed in single quotes. Any character 
can be written by enclosing one of the following escape sequences in single quotes: 

escape sequence character 

\' 
\" 
\\ 
\t 
\v 
\n 
\r 

single quote 
double quote 
backslash 
horizontal tab 
vertical tab 
newline character 
carriage return 

\f 
\b 
\ddd 

form feed (or new page) 
backspace 
octal value (specified by exactly three octal digits) 

If the octal value specified in the \ddd form does not correspond to a legal ASCII value, there 
will be a compile-time error. Examples of character literals are 

" '7' I I 'Ill J\11' '\" '\ ' '\000' 
' r a J ' ' r n' 

Methods for type char 

to_int ( ) returns (int) 
% effects returns the integer ASCII code for self. 

to_string ( ) returns (string) 
% effects returns a one character string containing self. 

It (c: char) returns (bool) 
le ( c: char) returns (bool) 
ge (c: char) returns (bool) 
gt ( c: char) returns (bool) 

% effects these orderings are consistent with the ASCII numbering of chars. 

equal (c: char) returns (bool) 
% effects returns true if and only if self is same as c 

similar (c: char) returns (bool) 
% effects returns true if and only if self is same as c 

copy ( ) returns (char) 
% effects returns self 

unparse ( ) returns (string) 
% effects If self is a printable character, then returns a one character string 
% containing self. Else returns a string containing an escape sequence 
% that represents self. 
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B.7 String 

A string is an immutable sequence of character. It is indexable; the low bound of a string is 1. 
The size of strings is limited to what can be indexed using ints. Thus the largest string has 
high bound (and size) i nLmax. 

A string literal is written as a sequence of zero or more character representations enclosed 
in double quotes. Within a string literal, a printing ASCII character other than double quote 
or backslash is represented by itself. Any character can be represented by using the escape 
sequences listed for characters. Examples of string literals are 

"", "ltem\tCost", "hello\n", "\"string\"", 11 'c' 11 

Methods for type string 

length ( ) returns (int) 
% effects returns the size of self. 

empty ( ) returns (bool) 
% effects returns (self.length()= 0) 

fetch (i: int) returns (char) signals {bounds) 
% effects if i is within bounds returns the ith character of self else signals bounds. 

rest (i: int) returns (string) signals (bounds) 
% effects returns a string containing self[i], ... ,self[self.length()]; 
% signals bounds if i is not a legal index in self. 

first (i: int) returns (string) signals (bounds) 
% effects returns a string containing self[l]. ... , self[i]; 
% signals bounds if i is not a legal index in self. 

concat (s: string) returns (string) 
% effects returns a string containing the characters of self followed by the 
% characters of s; signals failure if the resulting string is bigger 
% than what can be represented 

append ( c: char) returns (string) 
% effects returns a string containing the characters of self followed by 
% c; signals failure if the resulting string is bigger than what 
% can be represented. This method has the same effect as 
% self.concat( c.to_string()) 

extract (at: int, count: int) returns (string) signals (bounds, negative_size) 
% effects If count is negative, signals negative_size. 
% If at isn't a legal index in self, signals bounds. 
% Otherwise returns a new string containing the characters 
% self[ at], self[ at+ 1 ], ... ; the new string contains 
% min(count, self.length() - at+ 1) characters. For example, ifs= "abcdef", then 
% s.substr(2, 3) = "bed" 
% s.substr(2, 7) = "bcdef" 

chars ()yields (char) 
% effects yields the characters of self in order from the first to last. 
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It (s: string) returns (bool) 
le (s: string) returns (bool) 
ge (s: string) returns (bool) 
gt (s: string) returns (bool) 
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% effects these are the usual lexicographic ordering operations based on the 
% ASCII ordering of the characters contained in self ands. 

equal (s: string) returns (bool) 
% effects returns (self= s) 

similar (s: string) returns (bool) 
% effects returns (self= s) 

copy ( ) returns (string) 
% effects returns a string that contains self[l], ... ,self[self.size()] 

unparse ( ) returns (string) 
% effects Returns the concatenation of the strings produced by calling unparse 
% on all of the characters contained in self. 

Routines for type string 

string_create (chars: sequence[char]) returns (string) 
% effects returns a new string containing the 
% characters in the sequence in order. 
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B.8 Array 

An array is an indexable, mutable collection. It is a parameterized type; the actual value of the 
parameter when array is instantiated determines the type of element in the array. For example, 
all elements of an array[foo] will belong to subtypes of foo. 

An array can grow and shrink dynamically. The initial bounds of an array are determined 
when it is created. As an array grows (shrinks) its length increases (decreases). The low bound 
is always less than or equal to the high bound, except if the array is empty; in this case, a.low() 
= a.high() + 1. It is always the case that a.size = a.high() - a.low() + 1. The array bounds are 
limited to what can be indexed using ints and to a size that can be represented as an int; thus 
the low bound of an array must be 2: inLmin, and the high bound and size must be ::S inLmax. 

Consider an array a. The legal indexes of a are all integers i such that a.low() ::S i ::S a.high(). 
The elements in the array occur at element positions a.low(), a.low() + 1, .... ; if i is a legal index, 
then we refer to the element it indexes as a[i]. E.g., if a has low bound -2 and contains 1, 2 and 
3, then -2, -1, and 0 are legal indexes and a[-2] , a[-1], and a[O] are legal array elements. 

The array routine array_create allows the new array to be created using the varying argu­
ments form (6.1). For example 

a: array[int] := array_create[int](O, .. 6, 9, 17) 

creates a new array with low bound 0 and containing the elements 6, 9, and 17. 

Methods for type array[T] 

empty ( ) returns (bool) 
% effects returns true if the array is empty, else returns false. 

length ( ) returns (int) 
% effects returns the length of the array (a count of the number of elements it contains). 

low ( ) returns (int) 
% effects returns the low bound of the array. 

high ( ) returns (int) 
% effects returns the high bound of the array. 

fetch (i: int) returns (T) signals (bounds) 
% effects if i is not a legal index in self, signals bounds. Otherwise 
% returns the element self[i]. 

bottom ( ) returns (T) signals (bounds) 
% effects if self is empty, signals bounds. Otherwise returns the first element of self. 

top ( ) returns (T) signals (bounds) 
% effects if self is empty, signals bounds. Otherwise, returns the last element of self. 

store (i: int, v: T) signals (bounds) 
% modifies self 
% effects If i is not a legal index in self, signals bounds. 
% Otherwise, sets the element at self[i] to v. 

append (x: T) 
% modifies self 
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% effects 
% 
% 
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If adding x to the high end of self would cause the high bound 
or size of self to become too large, signals failure. 
otherwise, adds x to the high end of self. 

remove ( ) rettll'ns (T) signals (bounds) 
% modifies self 
% effects 
% 

if self is empty signals bounds. 
otherwise, removes and returns the highest element of self. 

append_low (x: T) 
% modifies self 
% effects if adding x to the low end of self would cause the low bound 
% or size of self to exceed the limits, signals failure. 
% otherwise adds x to the low end of self. 

remove_low ( ) returns (T) signals (bounds) 
% modifies self 
% effects if self is empty signals bounds. 
% otherwise, removes and returns the lowest element of self. 

predict ( cnt: int) 
% effects the method has no effect on the array state. However, it predicts 
% that the array will grow to have size cnt, and the append calls 
% that cause the array to grow may operate faster as a result 
% of the call on predict. 

seLlow (lb: int) 
% modifies self 
% effects 
% 
% 
% 

if changing the low bound of self to lb would cause its size or 
high bound to become too large, signals failure. 
otherwise, sets the low bound of self to lb and renumbers the 
array elements accordingly. 

trim (lb: int, count: int) signals (negative_size, bounds) 
% modifies self 
% effects if count < 0, signals negative_size. if lb< low() or lb > high() + 1, 
% signals bounds. Otherwise, removes all elements with indices less than lb 
% or greater than lb + count - 1; the new low bound is lb. For example, 
% a.trim(3, 2), where a is a 5 element array[int] with low bound 0 and 
% containing the elements 1, 2, 3, 4, 5, changes a to have low bound 3 and 
% contain the two elements 4, 5. a.trim(3, 12) has the same effect. 

indexes ( ) yields (int) 
% effects yields the legal indices of self from the low bound of pre( self) to 
% the high bound of pre( self), where pre(self) is the value of self at 
% the time of the call. Note that any modifications to the array done 
% in the loop body do not affect the integers yielded by this method. 

elements ( ) yields (T) 
% effects The effect of x.elements() is equivalent to the following body: 
% for i: int in x.indexes() do 
% yield (x[i]) except when bounds: signal failure( ... ) end 
% end 
% Thus if the loop body does not modify the array, the array 
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% 
% 

elements are yielded in order. Note, however, that changes 
made by the loop body can affect what is yielded. 

equal (a: array[T]) returns (bool) 
% effects returns true if self and a are the same array object. 

similar (a: array[T]) returns (bool) 
where T has similar (T) returns (bool) 

% effects returns true if self and a have the same size and low bound and the elements at 
% corresponding positions are similar (using the T similar method to do the test). 

copy ( ) returns ( array[T]) 
where T has copy ( ) returns (T) 

% effects returns a new array with the same size and low bound as self and containing 
% a copy of each element of self (using T copy) in the corresponding positions. 

unparse ( ) returns (string) 
where T has unparse ( ) returns (string) 

% effects produces a string representation of the contents of self using the 
% T unparse method to produce string images of the elements. 
% The resulting string has the form array[L: e£, ... ,eH], 
% where ei is obtained by calling the T unparse method for that element, 
% and L and H are the low and high bounds of the array. 

Routines for type array[T] 

array_new[T] ()returns (array[T]) 
% effects creates new empty array with a low bound of 1 

array_create[T] (lb: int, els: sequence[T]) returns (array[T]) 
% effects creates a new array with low bound lb containing the elements of the 
% sequence in order; signals failure if the high bound of the 
% resulting array would be too large. 

array_generate[T] (lb: int, els: iter () yields (T)) returns (array[T]) 
% effects returns a new array containing the elements yielded by the 
% iterator in order; signals failure if the high bound of the 
% resulting array would be too large. 
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B.9 Sequence 

A sequence is an immutable indexed collection. It is a parameterized type; the actual parameter 
of an instantiation determines the type of the sequence elements. The low bound of a sequence 
is always 1. The size of a sequence must be represented as an int and is therefore ~ inLmax. 

The sequence routine sequence_create allows the new sequence to be created using the varying 
arguments form. (6.1). For example 

s: sequence[int] := seq uence_create[int] ( .. 6, 9, 17) 

creates a new sequence containing the elements 6, 9, and 17. 

Methods for type sequence[T] 

empty ( ) returns (bool) 
% effects returns true if the sequence is empty, else returns false. 

length ( ) returns (int) 
% effects returns the length of the sequence (a count of the number of elements it contains). 

fetch (i: int) returns (T) signals (bounds) 
% effects if i is not a legal index in self, signals bounds. Otherwise returns the 
% ith element. 

replace (i: int, v: T) returns (sequence[T]) signals (bounds) 
% effects if i is not a legal index in self, signals bounds. Otherwise, returns a new 
% sequence containing the elements of self, except that the ith element is v. 

append (x: T) returns (sequence[T]) 
% effects returns a new sequence containing the elements of self extended by x on the 
% high end; signals failure if the size of the new sequence would be too large. 

extract (at: int, count: int) returns (sequence[T]) signals (bounds, negative_size) 
% effects if "at" is not a legal index, signal bounds, else if "count" 
% is negative, signal negative_size. Otherwise, 
% return a new sequence containing the elements 
% self[at], ... , self[min(at + count - 1, self.length())] 

concat (s: sequence[T]) returns (sequence[T]) 
% effects returns a new sequence containing the elements of self followed by the elements 
% of s; signals failure if the size of the new sequence would be too large. 

indexes ( ) yields (int) 
% effects yields the legal indexes of self 

elements ( ) yields (T) 
% effects yields the elements of self in order from low bound to high bound. 

equal (s: sequence[T]) returns (bool) 
where T has equal (T) returns (bool) 

% effects returns true if self and s are indistinguishable, i.e. , they are 
% the same size and their corresponding elements are equal. 

similar (s: sequence[T]) returns (bool) 
where T has similar (T) returns (bool) 
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% effects 
% 

returns true if self and s are the same size and their corresponding 
elements are similar, using T similar to do the test. 

copy ( ) returns (sequence[T]) 
where T has copy () returns (T) 

% effects returns a new sequence with the same size as self and containing a copy 
% of each element of self (using T copy) in the corresponding positions. 

unparse ( ) returns (string) 
where T has unparse ( ) returns (string) 

% effects produces a string representation of the contents of self using the 
% T unparse method to produce string images of the elements. 
% The resulting string has the form vector[e1 , ... en]. 
% where ei is obtained by calling the T unparse method for that element. 

Routines for type sequence[T] 

sequence_create[T] (els: sequence[T]) returns (sequence[T]) 
% effects returns a new sequence containing the 
% elements of els in order. 

sequence_generate[T] (n: int, els: iter ()yields (T)) returns (sequence[T]) 
signals (negative....size, noLenough) 
% effects If n < 0, signals negative_size. If the iterator yields less than n elements, 
% signals noLenough. Otherwise, returns a new sequence containing the 
% first n elements yielded by the iterator in order. 
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B.10 Vector 

A vector is a fixed-size , mutable, homogeneous collection with a low bound of 1. The elements 
of a vector[T] are all initialized with some element of type T. The size of a vector must be 
representable by an int and therefore must be less than or equal to inLmax. 

The vector routine vector _create allows the new vector to be created using the varying 
arguments form (6.1). For example 

v: vector[int] := vector _create[int]( .. 6 , 9, 17) 

creates a new vector containing the elements 6, 9, and 17. 

Methods for type vector[T] 

length ( ) returns (int) 
% effects returns the size of the vector (a count of the number of elements it contains). 

fetch (i: int) returns (T) signals (bounds) 
% effects if i is not a legal index in self, signals bounds. Otherwise 
% returns the element self[i]. 

store (i: int , v: T) signals (bounds) 
% modifies self 
% effects If i is not a legal index in self, signals bounds. 
% Otherwise, sets the element at self[i] to v. 

indexes ( ) yields (int) 
% effects yields the legal indexes of self 

elements ( ) yields (T) 
% effects The effect of x.elements() is equivalent to the following body: 
% for i: int in x.indexes() do yield(x[i]) end 
% note that stores to the vector may affect the yielded values. 

equal (v: vector[T]) returns (bool) 
% effects returns true if self and a are the same object. 

similar (v: vector[T]) returns (bool) 
where T has similar (T) returns (bool) 

% effects returns true if self and v have the same size and the elements at 
% corresponding positions are similar (using the T similar method to do the test). 

copy ( ) returns ( vector[T]) 
where T has copy ( ) returns (T) 

% effects returns a new vector with the same size as self and containing a copy 
% of each element of self (using T copy) in the corresponding positions. 

unparse ( ) returns (string) 
where T has unparse ( ) returns (string) 

% effects produces a string representation of the contents of self using the 
% T unparse method to produce string images of the elements. 
% The resulting string has the form vector[e1 , ... e.,.], 
% where ei is obtained by calling the T unparse method for that element. 

Routines for type vector[T] 
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vector_fill[T] ( count: int, elem: T) returns (vector[T]) signals (negative_size) 
% effects creates a new vector containing count elements each of which is elem. 
% Signals negative size if count is negative. 

vector _create[T] (els: sequence[T]) returns ( vector[T]) 
% effects returns a new vector containing the elements of the 
% the sequence in order. 

vector_generate[T] (n: int, els: iter ()yields (T)) returns (vector[T]) 
signals ( negative_size, not-enough) 
% effects If n < 0, signals negative_size. If the iterator yields less than n elements, 
% signals not-enough. Otherwise, returns a new vector containing the 
% first n elements yielded by the iterator in order. 
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B.11 Record 

Records are mutable tuples consisting of a set of fields. An instantiation of the record type 
provides the name and type of each field of the record objects belonging to that type; there 
must be at least one field, and the field names must all be distinct. The case of the field names 
is not significant. Associated with each record type there is a record constructor that can be 
used to create new records of the type (7.3). Each record type has a pair of methods for each 
field that allow users to read and modify the field; for a field named A, these methods are named 
A and seLA. Here is an example: 

rt= record[a: int, b: real] 
x: rt 
x := rt{a: 3, b: 1.1} 
i: int := x.a( ) 
x.set_b(l.7) 

% a record type 
% x will denote objects of this record type. 
% construct an object 
% read the a component 
% modify the b component 

In determining record type equality, the field names and types are significant and so is the order 
of the fields (3). 

A record type rt has the following methods. (st is the related struct type, i.e., it has the 
same field names and types in the same order.) 

Methods for record type rt 

a ( ) returns (T) 
% (here a is a field name and Tis the corresponding type) 
% effects returns the object stored in field a of self 

seLa (x: T) 
% (here a is a field name and Tis the corresponding type) 
% modifies self 
% effects stores x in field a of self 

r _gets_r (x: rt) 
% modifies self 
% effects replaces the fields of self with the objects in the corresponding fields of x 

r _gets_s ( x: st) 
% modifies self 
% effects replaces the fields of self with the objects in the corresponding fields of x 

to_s ( ) returns (st) 
% effects returns an st object containing the elements of self in the corresponding fields. 

equal (x: rt) returns (bool) 
% effects returns true if self and x are the same object else returns false. 

similar (x: rt) returns (bool) 
where all field types T of rt have similar(T) returns (bool) 

% effects returns true if all corresponding fields of self and x are similar 
% (using the T similar method for that field) else returns false 

copy ( ) returns (rt) 
where all field types T of rt have copy ( ) returns (T) 

% effects returns a new record each of whose fields contains a 
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B.12 

% 
% 

copy of the object (obtained by ca Iii ng that object's copy 
method) in the corresponding field of self 

unparse ( ) returns (string) 
where all field types T have unparse ()returns (string) 

% effects returns a string representing the value of self. The form is 
% record{n1 : fi, ... ,n.,,: fn}. where ni is the name of the ith 
% record field and h is obtained by calling the unparse method 
% for the object in the corresponding field. 

Struct 
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Structs are immutable records. Like the record types, there is a method to read each field of 
a struct. Structs are created using constructors; the form of these constructors is identical to 
those for type record. 

A struct type st has the following methods. (rt is the related record type, i.e., it has the 
same field names and types in the same order.) 

Methods for struct type st 

a ( ) returns (T) 
% (here a is a field name and Tis the corresponding type) 
% effects returns the object stored in the a component of self. 

replace_a (x: T) returns (st) 
% effects returns a new struct containing the objects in the 
% corresponding fields of self except that x is in field a 

to_r ( ) returns (rt) 
% effects returns a new record whose fields contain the objects in the 
% corresponding fields of self 

equal (x: st) returns (bool) 
where all field types T of st have equal (T) returns (bool) 

% effects returns true if x and self are pairwise equal (using the equal 
% methods for the fields) else returns false 

similar (x: st) returns (bool) 
where all field types T of st have similar (T) returns (bool) 

% effects returns true if x and self are pairwise similar (using the similar 
% methods for the fields) else returns false 

copy ( ) returns (st) 
where all field types T of st have copy ( ) returns (T) 

% effects returns a new struct containing as components copies of the objects 
% (using the object's copy method) in the corresponding fields of self. 

unparse ( ) returns (string) 
where all field types T of st have unparse ( ) returns (string) 

% effects returns a string representing the value of self. The form of the 
% string is struct{ n 1 : fi , ... , nn: f n}, where ni is the name of the 
% ith struct field and f i is the unparsing of that field. 
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B.13 Oneof 

Oneofs are immutable tagged objects. An instantiation of the oneof type provides the name and 
associated type of each possible tag for the oneof objects belonging to that type; there must be 
at least one tag, and the tag names must all be distinct. Each object of the type has one of 
these tags, and a value of the associated type. Methods exist to determine the tag and value 
of a oneof object, but usually oneofs are decomposed using the tagcase statement (8.11). 

Oneofs are created using constructors. Associated with each oneof type there is a set of 
constructors, one for each tag of the type. Here is an example: 

ot = oneof[some: int, none: null] % a oneof type 
x: ot % a variable to denote objects of this type 
x := ot{ none: ni I} % creating an object with the none tag 

if x. is_none( ) then 
x := ot{some: 7} 
end 

% checking the tag 
% creating an object with the some tag 

tagcase x 
when none: ... 

% decomposing a oneof using the tagcase statement 

when some(y: int): ... 
end 

Methods for oneof type ot 

is_a ( ) returns (bool) 
% (here a is a tag name and T is the corresponding type) 
% effects returns true if the tag of self is a else returns false 

value_a ( ) returns (T) signals (wrong_tag) 
% (here a is a tag name and T is the corresponding type) 
% effects if the tag of self is a returns the associated object else signa Is wrong_tag 

equal (x: ot) returns (bool) 
where all field types T have equal (T) returns (bool) 

% effects returns true if self and x have the same tag and equal values (determined 
% by calling the equal method for the value). 

similar (x: ot) returns (bool) 
where all field types T have similar (T) returns (bool) 

% effects returns true if self and x have the same tag and similar values (determined 
% by calling the similar method for the value). 

copy () returns (ot) 
where all field types T have copy ( ) returns (T) 

% effects returns a new oneof object with the same tag as self and whose value is a 
% copy (obtained by calling the value's copy method) of that of self 

unparse ( ) returns (string) 
where all field types T have unparse ( ) returns (string) 

% effects returns a string representing the tag and value of self. The form of the string 
% is oneof{ t: v }, where t is a string corresponding to the current tag and v is 
% produced by calling the unparse method of the value 
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B.14 Maybe 

Maybes are just oneofs with a somewhat more convenient syntax and a possibly more efficient 
implementation; maybe[T] = oneof[empty: null, full: T]. The methods and routines for a maybe 
type are exactly as defined for the associated oneof type. 

B.15 Routines 

Routines (procedures and iterators) are immutable. They have only equal, similar, copy, and 
unparse methods. The equal and similar methods have weak definitions (see below); they are pro­
vided mainly so that structure and collection types that contain them can have these methods. 
E.g., records of type 

record[i: int, p: proc(int) returns(int)] 

will have equal and similar methods, since both field types have these methods. 

Methods for routine type rt 

equal (p: rt) returns (bool) 
similar (p: rt) returns (bool) 

% effects if a call returns true, then self and p are guaranteed to be 
% indistinguishable: they return the same results for calls with 
% equal arguments and have the same side effects for those calls. 
% if the call of equal or similar returns false, there are no 
% guarantees: self and p might or might not be indistinguishable. 

copy ( ) returns (rt) 
% effects returns self. 

unparse ( ) returns (string) 
% effects Returns a string that indicates whether this routine is a procedure or an 
% iterator. The implementation is free to put more information about the 
% routine (for example the routine signature) in the returned string. 



C Additional Types and Routines 

In addition to the built-in types and routines described in Appendix B, we expect most Theta 
implementations will provide a standard set of other useful types and routines. (They are 
"standard" in the sense that most implementations, if they provide them at all, will provide 
the full set ; Theta implementations are not required to provide any of them.) 

The standard types and routines can all be implemented using the built-in types and rou­
tines; they have no special status in the language. However, the Theta implementation is free 
to implement some of these types and routines directly rather than on top of the built-ins. 
Therefore, these types and routines, if available, may be more efficient than corresponding 
user-defined types and routines. 

The full set of standard types and routines has not been determined; a future version of the 
reference manual will provide the definitive list. We expect to include some parsing routines 
(for converting strings to built-in types). Two types that we expect to include are set and bag 
(multiset). 
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external names, 13 
scoping units, 12 

selection 

self 

from self, 45 
of a method, 23 
of an instance variable, 21 
within a class, 45 

implicit use, 21 
use in make statement, 36, 48 
use in methods, 45 
used in expressions, 20 

separators, 4 
sequences, 7, 72 

constructed from varying args in invo-
cation, 17 

creation using varying arguments, 72 
short form for fetch method, 25 
type instantiation, 8 
use in routine header for varying args, 

38 
set method 

abbreviated implementation, 45 
short circuit boolean operators, 25 
short forms 

for fetch method, 25 
for method calls, 24 
for store method, 28 
rules for use, 39 

signal statement, 29 
specifications, 1, 37 

of bag, 40 
of creation routines, 39 
of stack, 41 
of stand-alone routines, 37 
of types, 2, 38 
parameterized, 40 
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separate from implementations, 2 

stack example 
implementation as subclass, 52 
specification, 41 

stand alone routines, 17 
implementation of, 43 

specification of, 37 
statements, 28 

assignment, 15, 28 
begin, 33 
body of, 28 
break, 31 
continue, 31 
declarations, 13, 16, 28 
except, 33 
exit, 35 
for, 30 
if, 30 
initialization assignment, 16 
invocation, 28 
make, 36 
multiple assignment, 15 
resignal, 35 
return, 29 
signal, 29 
simple, 28 
store, 28 
tagcase, 31 
typecase, 2, 32 
while, 30 
yield, 29 

store method special form, 28 
store statement, 28 
strings, 7, 67 
structs, 7, 77 

constructors for, 20 
field selection, 22 

subclasses, 2, 48 
subtype polymorphism, 1, 2, 38 
subtypes, 1 

conformity rules, 1, 39 
declaration of supertypes, 38, 40 
rules for routines, 11 
semantic rules, 39 

superclasses, 2, 47 
methods used in subclasses, 49 

supertypes, 1 



declared in specification, 38 
of parameterized types, 40 

syntactic sugar 
for fetch method, 25 
for method calls, 24 
for store method, 28 
rules for use, 39 

tagcase statement, 31 
tagged types 

equality of, 10 
Thor, 1 
tokens, 4 
true, 7, 59 
type 

of bound routine, 22 
of instantiated routine 22 

' 
of routine, 38 
of selected method, 23 

type checking, 2, 10 
conformity of subtype, 1, 39 
of expressions, 19 
of invocations, 17 
of type designators, 10 
of variables, 15 

type designators, 7 
defined by equate, 13 
equality of, 10 
for parameterized types, 8 
for records, structs, and oneofs, 9 
for routines, 9 
for simple types, 8 

type equality, 10 
type hierarchy, 1, 7, 10 

and inheritance, 49 
declaring supertypes, 38 
for routines, 11 

type inclusion rule, 15 
type specifications, 38 

parameterized, 40 
typecase statement 2 32 

' ' narrowing to class type, 45 
types, 1, 7 

any, 1, 7 
arrays, 7 
bool, 7 
built-in, 7 
char, 7 

creation routines for 2 
' external names for, 7 

implemented by classes 2 44 
' ' 

int, 7 
maybes, 7 
mutable and immutable, 7 
null, 7 
oneofs, 7 
parameterized, 7 
parameterized specifications of 40 

' 
real, 7 
records, 7 
sequences, 7 
specification of, 2, 38 

string, 7 
structs, 7 
vectors, 7 

uninitialized variable exception, 13 

variables, 13 
assignment to, 15 
declaration of, 13 
exception if uninitialized 13 

' 
instance variables, 15, 21 
type of, 13 
uninitialized, 13 
used in expressions, 19 

varying number of arguments, 17 
in a binding, 22 
in routine specifications, 38 
use in array creation, 69 
use in sequence creation, 72 
use in vector creation 74 , 

vectors, 7, 74 
creation using varying arguments, 74 
short form for fetch method, 25 
short form for store method, 28 
type instantiation, 8 

when arm, 34 
where clauses 

example of use, 8 
in implementations, 43 
in specifications, 40 
use in classes, 44 

while statement, 30 

yield statement, 29 
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