
Theta Reference Manual
Preliminary Version

Barbara Liskov
Dorothy Curtis

Mark Day
Sanjay Ghemawat

Robert Gruber
Paul Johnson

Andrew C. Myers

Programming Methodology Group Memo 88
MIT Laboratory for Computer Science

Cambridge, MA 02139

February 8, 1995

This document describes a new programming language called Theta. Theta is a sequential,
strongly-typed, object-oriented language. It provides separate mechanisms for type hierarchy,
inheritance, and parametric polymorphism. It also provides separate mechanisms for specifi­
cations, which define the interfaces of new abstractions, and code that implements the new
abstractions, and it allows multiple implementations of types and routines. It has a module
mechanism that encapsulates the details of type and routine implementations, while allowing
related implementations to share implementation-specific information. Theta is largely derived
from CLU, but has also been influenced by Trellis/Owl, Modula-3, C++, and Emerald.

This research was supported in part by the Advanced Research Projects Agency of the Department of Defense,
monitored by the Office of Naval Research under contract N00014-91-J-4136 and in part by the National Science
Foundation under Grant CCR-8822158.

The authors also wish to thank all the members of the Programming Methodology Group at MIT for their
help and suggestions; there were many group meetings that helped us refine the Theta design.

Contents

1 Overview of the Language 1

1.1 Objects .. 1
1.2 The Theta Type System 1
1.3 Specifications .. 2
1.4 Classes and Inheritance 2
1.5 Modules 3
1.6 Parametric Polymorphism 3
1.7 Programs 3

2 Lexical Considerations 4

2.1 Notation 4

2.2 Lexical Considerations .. 4
2.2.1 Case Insensitivity . 4

2.2.2 Tokens and Separators . 4

2.2.3 Comments. 4
2.3 Reserved Words . 5
2.4 Identifiers 5
2.5 Literals 5
2.6 Operators and Punctuation Symbols 5

3 Types and Parameterized Types 7
3.1 Built-in Types 7
3.2 Type Designators 8

3.2.1 Simple Types 8
3.2.2 Parameterized Type Instantiations 8
3.2.3 Routine Types 9

3.2.4 Tagged Types . 9
3.3 Type Equality. 10

3.4 Type Hierarchy .. 10

3.4.1 Routine Type Hierarchy 11

4 Scopes, Declarations, and Equates 12

4.1 Scoped Identifiers . 12
4.2 Scoping Units . 12
4.3 External Names .. 12
4.4 Scope Rules . 13
4.5 Variables and Declarations . 13
4.6 Equates 13

11

5 Assignment
5.1 Type Inclusion
5.2 Assignment

5.2.1 Initialization Assignment

6 Invocation
6.1 Form of Invocation
6.2 Call by Sharing ..
6.3 Run-Time Dispatch
6.4 Termination .

7 Expressions
7.1 Literals
7.2 Identifiers that denote objects .
7.3 Constructors
7.4 Class Constructors
7.5 Instance Variable Selection
7.6 Field Selection
7. 7 Routine Instantiation .
7.8 Procedure Invocation .
7.9 Binding
7.10 Method Selection .. .
7.11 Prefix and Infix Operators .
7.12 Fetch
7.13 & and I ·
7.14 Precedence and Associativity
7.15 Constant Expressions
7.16 Primaries

8 Statements
8.1 Simple Statements
8.2 Store Statement ..
8.3 Return Statement
8.4 Yield Statement
8.5 Signal Statement
8.6 If Statement . . .
8. 7 While Statement
8.8 For Statement . .
8.9 Break Statement
8.10 Continue Statement
8.11 Tagcase Statement
8.12 Typecase Statement
8.13 Begin Statement ..
8.14 Except Statement ..

8.14.1 Handlers without Declarations
8.14.2 Handlers with Declarations
8.14.3 Others Handler
8.14.4 Example

15
15
15
16

17
17
18
18
18

19
19
19
20
20
21
22
22
22
22
23
24
25
25
25
26
26

28
28
28
29
29
29
30
30
30
31
31
31
32
33
33
34
34
34
34

8.14.5 The Failure Exception
8.15 Resignal Statement .
8.16 Exit Statement .
8.17 Make Statement

9 Specifications
9.1 Stand-Alone Routine Specifications .
9.2 Type Specifications
9.3 Parameterized Specifications .
9.4 Type Specification Examples

10 Implementations
10.1 Modules
10.2 Stand-Alone Routine Implementations
10.3 Parameterized Implementations
10.4 Classes

10.4.1 Abbreviated Implementations .
10.4.2 Same_object .
10.4.3 Example

10.5 Inheritance
10.5.1 Defining Superclasses
10.5.2 Makers
10.5.3 Subclasses
10.5.4 Rules for Superclasses
10.5.5 Example of Inheritance

A Reference Grammar

B Built-in Types and Parameterized Types
B.1 Any
B.2 Null
B.3 Bool
B.4 Int .
B.5 Real
B.6 Char
B.7 String
B.8 Array
B.9 Sequence .
B.10 Vector .
B.11 Record .
B.12 Struct
B.13 Oneof .
B.14 Maybe .
B.15 Routines .

C Additional Types and Routines

Ill

35
35
35
36

37
37
38
40
40

42
42
43
43
44
45
46
46
47
47
48
48
50
51

53

58
58
58
59
60
63
66
67
69
72

74
76
77
78
79
79

80

1 Overview of the Language

Theta is an object-oriented language that was developed for use within the Thor object-oriented
database system [1, 2], and its origins within Thor have had a major impact on its design. The
requirement that code run safely inside Thor has led to the inclusion of several features , such
as strong, static type checking and automatic garbage collection.

Theta is an extensible language in which users can define and implement new, abstract
types and new routines. New types and routines are defined by specifications, which describe
the interface of the new abstraction but give no implementation details; a type specification de­
fines the names and signatures of the methods of objects of that type. Types are implemented
by classes, and a type can have multiple implementations. Classes and routine implemen­
tations are grouped within modules that encapsulate them. Modules ensure that an object
or routine can be accessed only through its public interface, but allow related code to share
implementation-specific information.

Theta provides separate mechanisms for type hierarchy, parametric polymorphism, and in­
heritance. The type hierarchy mechanism allows the definition of families of types with similar
behavior; types can have multiple supertypes. The inheritance mechanism is separate from
hierarchy, so that related types can have independent implementations and unrelated types can
have related implementations; only single inheritance is supported. The parametric polymor­
phism mechanism supports generic code that is independent of the hierarchy mechanism, and
does not require recompilation for different instantiations.

The characteristics of Theta are discussed further in the rest of this chapter.

1.1 Objects

Theta programs run in a universe of objects. Each object in the universe has a unique identity,
an encapsulated state, and a set of methods that can be called to interact with it. Objects
belong to types that define the names and signatures of their methods.

Theta provides a rich set of built-in types, and users can define new, abstract types. Users
can also define new routines. Methods and routines can be either procedures or iterators,
and when called may either terminate normally or by signaling an exception. Both types and
routines can be parameterized on one or more parameter types.

Objects come into existence as a result of calls to certain methods and routines that create
new objects. Storage for objects that can no longer be accessed is reclaimed automatically by
the garbage collector.

1.2 The Theta Type System

Theta types are arranged in a hierarchy in which every type can have several supertypes. At the
top of the hierarchy is the built-in type any; any is the supertype of all types. When a new type
is defined, its definition indicates its supertypes. The Theta compiler ensures conformance: a
subtype is guaranteed to have the methods of its supertypes, and these methods have compatible
signatures. The type any has no methods, and therefore it imposes no constraints on its
subtypes. A supertype's methods can be renamed so that the new names match what is needed
in the subtype (9.2).

2 Chapter 1: Overview of the Language

Theta provides strong, static type checking. Every variable has a declared type (4.5) that
determines the type of object it can refer to. A variable is guaranteed to refer to an object
whose actual type is a subtype of the variable's type (5.1). Every routine and method has a
declared signature that determines the types of its arguments and results. The compiler ensures
that all calls and assignments are consistent with this declared information. The conformance
rule ensures that any call that is legal according to a variable's type will be legal for the actual
object denoted by the variable. The exact type of a variable's object is not known at compile
time, but more exact information can be determined by using the typecase statement (8.12),

which tests an object's type at runtime.
Type hierarchy provides subtype polymorphism and allows the definition of routines that are

generic with respect to their arguments and results, and also of data structures that are generic
with respect to their elements: in each case the actual objects can belong to a subtype of what
is declared.

1.3 Specifications

New types and routines are defined by providing specifications (9). A specification defines
interface information; it does not include any information about how the new type or routine
is to be implemented. This is given separately, and a type or routine can have many different
implementations.

The specification of a type defines the supertypes, and the names and signatures of the
methods. A type can have multiple supertypes, and the methods of the supertype can be
renamed in the subtype.

A type specification only defines the methods of the type's objects and thus provides no
way to create new objects "from scratch." Creation is accomplished through the use of routines
that are not part of the type. Keeping creation separate from the type means that a subtype's
creators need not be related to those of its supertypes, and it allows different implementations
of the type to create objects differently. For example, a hash-table based implementation of a
map abstraction would have a creator that takes the hashing function as an argument, while
an array-based implementation would have a creator that takes no arguments.

1.4 Classes and Inheritance

A type is implemented by one or more classes (10.4). A class contains some instance variables
that store the state of objects of the type, and routines that implement the object's methods.
The class can also contain implementations of "private" methods that are not available to
external code that uses its objects.

A class can inherit from a single superclass (10.5). Objects of a subclass contain superclass
instance variables and methods. Superclass methods can be renamed in the subclass. Code
within a subclass cannot access the inherited instance variables directly; instead, superclass
methods are used to access these variables.

A class definition indicates whether subclasses are permitted, and if so, what methods and
associated routines they can use (10.4). A special kind of operator called a maker must be
exported so that subclasses can initialize the inherited instance variables (10.5.2); in addition
private methods can be exported, and public methods can be hidden (10.5.1). This mechanism
allows users to provide a rich interface for subclasses, while ensuring that subclasses cannot
damage superclass objects (10.5.4).

1.5. Modules 3

1.5 Modules

Classes and routine implementations are placed inside modules (10.1). Each module (10) imple­
ments one or more specifications. For example, a typical module contains a class implementing
a type plus implementations of routines that create objects of the type.

A module encapsulates the contained code; details of any classes it contains are visible
only to other code in the module. However, these details are fully exposed to code within
a module. Thus, routine implementations in a module have full access to internal details of
classes within the module. Similarly, classes within the same module can take advantage of
implementation-specific details of one another.

1.6 Parametric Polymorphism

In addition to subtype polymorphism, Theta supports parametric polymorphism, in which a
routine, type, or class definition is parameterized by one or more types (9.3). Parametric poly­
morphism allows the actual parameter type to be selected by the user, when the type or routine
is instantiated (3.2.2). For example, array is a parameterized type, with instantiations array[int],

array[char], and so on.
Parameters can be constrained to be types whose objects have certain methods with certain

signatures. These constraints permit parameterized code to be compiled without knowledge of
the actual instantiation types. Generic code needs to be compiled only once.

Subtype polymorphism is useful for defining generic behavior over a set of related types,
while parametric polymorphism is useful for defining generic behavior where the actual param­
eters need not be related in the type hierarchy.

1. 7 Programs

A Theta program consists of a group of program units. A program unit is a specification (9),
equate (4.6), or module (10.1). Specifications define abstract types and routines; modules pro­
vide implementations of these types and routines. Equates provide abbreviations for constants,
e.g., the name pi might denote the number 3.1416.

Within program units, external names (4.3) are used to refer to specifications and equates.
External names can be chosen locally to fit the needs of the unit that uses them; this allows
different units to define entities with the same name without causing a global name conflict.
For example, two different specifications could both define a type named inL.set.

Theta compilers provide separate compilation for program units. The compiler makes use
of the specifications denoted by external names of the unit being compiled to ensure that the
type or routine is used in a type-correct manner. During the linking process, an implementation
is selected for each of these types and routines.

This manual does not define the mechanisms for interpreting external names during com­
pilation and linking. A compiler might process a file containing many units such that every
external name is defined somewhere in the file, and every specification in the file is implemented
in some module in the file. Alternatively, objects recording the meanings of exported names
might be stored persistently (e.g., in Thor); in this case the compiler might process an individ­
ual unit in a context that associates its external names with appropriate specification objects,
and the linker might select routine implementations using a context that associates external
names with appropriate implementation objects.

2 Lexical Considerations

2.1 Notation

We use an extended BNF grammar to define the syntax. The general form of a production is:

nonterminal ---+ alternative I alternative I alternative I ...

The following form denotes that optional can appear 0 or 1 times.

[optional]

The following form denotes that can appear 0 or more times.

[optional] *

The full Theta reference grammar is given in Appendix A. Productions from this grammar are
used freely in the following chapters to give the general form for different Theta constructs in
a concise manner. When the productions relevant to a given construct are presented, some
nonterminals are naturally left undefined; the interested reader can find the productions for
these nonterminals in the reference grammar.

2.2 Lexical Considerations

2.2.1 Case Insensitivity

Case does not matter in Theta. For example, THEN, then, and Then are all the same reserved
word.

2.2.2 Tokens and Separators

A module is written as a sequence of tokens and separators. A token is a sequence of
"printing" ASCII characters representing a reserved word, an identifier, a literal, an operator,
or a punctuation symbol. A separator is a "blank" character (a space, vertical tab, horizontal
tab, carriage return, newline, or form feed) or a comment. Zero or more separators may appear
between any two tokens, where at least one separator is required between any two adjacent non­
self-terminating tokens: reserved words, identifiers, integer literals, and real literals. Tokens are
described in more detail in the following sections.

2.2.3 Comments

A comment begins with a percent sign (%) and ends with the first "line-ending" character (a
vertical tab, carriage return, newline, or form feed). The enclosed characters serve as a single
separator and are otherwise ignored by the compiler.

2.3. Reserved Words 5

2.3 Reserved Words

The following tokens are reserved words:

begin if returns
bind implements same_object
break in self
class inherits signal
continue iter signals
do make tagcase
else makes then
elseif module type
end others type case
except proc when
exit provides where
for resignal while
has return yield
hides yields

In addition, the following tokens are reserved words because they are the names of the built-in
types and parameterized types, or the names of literals for these types:

any maybe sequence
array nil string
boo I null struct
char oneof true
false real vector
int record

The token failure has a special reserved meaning when used as an exception name (8.14) but is
not a reserved word.

2.4 Identifiers

Identifiers are sequences of letters, digits, and underscores that begin with a letter or underscore.

2.5 Literals

There are literals for naming objects of the built-in types null, bool, int, real, char, and string
(see Section 7.1 and also Appendix B).

2.6 Operators and Punctuation Symbols

A number of tokens are used as operators and punctuation symbols. The following table lists
all of the operators and punctuation of Theta. Many of these tokens are used as a shorthand
for various method invocations (7.11). For each single-character token, the table gives its hex­
adecimal ASCII code. (The notation b_c is the Theta notation for integer constant c given in
base b (B.4).)

6 Chapter 2: Lexical Considerations

II 16_22 < 16_3c

& 16_26 <=
16_27 16_3d

(16_28 > 16_3e

) 16_29 >=
* 16_2a [16_5b

** l 16_5d

+ 16_2b 16_5e
16_2c 16_6b
16_2d { 16-7b
16_2e I 16-7c

II
I 16_2f } 16_7d

II 16-7e
16-3a "'=

·- \ 16_5c

The following "printing" ASCII characters are not used in the language:

exclamation
pound-sign
$ dollar-sign

7 question-mark
© at-sign

back-quote

The ASCII character % (ASCII 16_25) is used for comments (2.2.3).

16-3f
16-40
16_60

3 Types and Parameterized Types

A type consists of a set of objects, along with a collection of methods that belong to each of
these objects. A method can access and manipulate its object's state. If none of an object's
methods modify its abstract state {the state that can be observed using its methods), we say
the object is immutable; otherwise it is mutable. We say a type is immutable (mutable) if its
objects are immutable (mutable).

A parameterized type defines a family of related types. For example, the array parameterized
type defines the types array[int], array[char], array[array[int]], and so on. Each type in the family
is obtained by instantiating the parameterized type (3.2.2), producing a type referred to as an
instantiation.

Theta has a number of built-in types and parameterized types. In addition, users can define
new abstract types and parameterized types (9, 10).

Theta has strong static type checking. Types are arranged in a type hierarchy: a type can
be a subtype of several other types (3.4). The hierarchy for the built-in types is quite flat (3.4),
except that there is a rich hierarchy for routine types (3.4.1). Users define the hierarchy for
the user-defined types (9.2). The type hierarchy determines the legality of assignment (5) and
invocation (6.1).

A type designator denotes a type. For example, a type designator can be the name of an or­
dinary type (int, color) , or an instantiation of a parameterized type (array[int], maybe[employee]).

The Theta compiler requires complete information about the type denote by a type desig­
nator. For example it needs to know all methods of the type and their signatures, and also all
supertypes of the type. This means that any identifiers used as type designators must either
be defined in the current program unit or in the external compilation environment. If the
designator denotes a user-defined type, all supertypes of the type must also be defined either
locally or externally.

3.1 Built-in Types

The built-in types are null, any, bool, char, int, real, string, and all routine types. The built-in
parameterized types are array, sequence, vector, record, struct, oneof, and maybe.

The type any has no methods and is used as the top of the type hierarchy (3.4): all types,
both built-in and user-defined, are subtypes of type any.

The type null has one literal, nil; it is typically used as a placeholder in oneof types. The
type bool is a conventional Boolean type, with literals true and false. The type int represents a
subrange of the mathematical integers, and the type real represents a finite-precision approxi­
mation to a subrange of the mathematical real numbers. The type char represents characters
(typically ASCII), and the type string represents strings of characters (again, typically ASCII).

The parameterized types array, vector, and sequence are homogeneous collections indexed
by consecutive integers. Array and vector are mutable types; a vector has a fixed size, while
an array can grow and shrink dynamically. Sequence is an immutable type. The special types
record and struct are heterogeneous tuples with names as selectors of fields; record is a mutable
type, while struct is immutable. The special type oneof is a named, immutable, discriminated
union. The parameterized type maybe is a special case of oneof which is used to represent an
object that contains either an object of the parameter type, or the value nil.

Routine types are also built-in types in Theta. Routines (i.e., the objects of these types) are
defined by rout ine specifications (9) and routine implementations (10). Routines are first-class

8 Chapter 3: Types and Parameterized Types

objects that can be stored in data structures and passed as arguments and results.
The full specifications of the built-in types appear in Appendix B. Every Theta implemen­

tation will provide implementations of these types. Appendix C contains specifications of some
additional types that will be provided by most Theta implementations.

3.2 Type Designators

There are four different kinds of types in Theta, each with its own particular type designator
form. These forms are explained in the following sections. Type designators are also defined
by equates (4.6).

3.2.1 Simple Types

Simple types are defined by non-parameterized type specifications (9). They include all non­
parameterized user-defined types and several of the built-in types. A simple type is designated
by its name:

simple_type_desig --+ idn I null I boo I I char I int I real I string I any

3.2.2 Parameterized Type Instantiations

A parameterized type has one or more type parameters. A type designator for such a type
denotes an instantiation by providing an actual type for each type parameter:

parnLtype_desig --+ parm_type [type_list J

where

parm_type --+ idn I array I sequence [vector [maybe

type_list --+ type_designator [, type_designator] *

The specification (9.3) of a parameterized type can use where clauses to require that actual
parameters have certain methods. An instantiation of a parameterized type is legal provided it
has the right number of actual parameters, and the actual parameters satisfy the restrictions of
the where clauses. For example, consider a user-defined parameterized type, set[T]; since sets
do not contain duplicate, the specification for set permits instantiation only if the argument
type provides an equality method (which allows duplicates to be recognized):

set= type [T] where T has equal: proc (T) returns (bool)

Here are some instantiations of set:

set[int]
set[array[int]]
set[int,bool]
set[employee]

% supplies the int equal method for T's equal
% supplies the array[int] equal method for T's equal
% not legal - compile-time error
% legal only if employee has an equal method

3.2. Type Designators 9

The third instantiation is not legal because it does not supply the right number of parameters.
The last instantiation will be legal only if type employee has an equal method; otherwise there
will be a compile-time error.

Some methods of a parameterized type may place additional constraints on a parameter
by having where clauses of their own. Such a method is optional: if an instantiation satisfies
its requirements, the resulting type will have the method, otherwise it will not. When such
a parameterized type is instantiated, methods are selected to satisfy the constraints of the
optional methods if possible. The result is a type with all the non-optional methods, plus
any of the optional methods whose constraints are satisfied. For example, array (B.8) has an
optional copy method that requires that the actual parameter have a copy method. Here are
some instantiations of array:

array[int] % has a copy method
array[employee] % may not have a copy method

If type employee does not have a copy method, the second instantiation results in an array type
that does not have a copy method.

3.2.3 Routine Types

There are two kinds of routines, procedures and iterators (see Section 6.1). Routine type
designators have the following special form:

routine_type_desig -+ proc nonparam_proc_sig [iter nonparam_iter_sig

nonparam_proc_sig -+ ([type_list] [returns] [signals]

nonparam_iter_sig -+ ([type_list] yields [signals]

type_list -+ type_designator [, type_designator] *

These type designators indicate the kind of routine, and the types and numbers of the argu­
ments, results, and exceptions. For example:

proc(int, int) returns (bool) signals (negative)
iter(stree[int]) yields (int)

3.2.4 Tagged Types

Tagged types include the record, struct, and oneof types. They are special parameterized types
that possess named fields and are designated by the following special form:

tagged_type_desig -+ tagged_type [field [, field] * J

tagged_type -+ record [struct I oneof

field -+ idn_list : type_designator

These type designators provide a name for each field and give its type. For example

record[x, y: int, s: string]

defines a record type. Records of this type have three fields: two int fields named x and y, and
a string field named s.

10 Chapter 3: Types and Parameterized Types

3.3 Type Equality

Type checking in Theta occurs at compile time and is based on analysis of type designators
to determine whether they designate the same type. Two type designators are equal if the
designate the same type and otherwise they are unequal.

Type equality is defined as follows:

1. Each simple type is equal only to itself.

2. Two types obtained by instantiation are equal if they are instantiations of the same (user­
defined or built-in) parameterized type and their parameters are pairwise equal.

3. Two routine types are equal if: both are proc or both are iter; both have the same
number of arguments, and types of matching arguments are equal; both have the same
number of results (yielded results for iterators), and the types of matching results are
equal; both have the same exceptions, and matching exceptions have the same number
and types of results.

4. Two tagged types are equal if each has the same tagged_type, the same field names in the
same order, and the type of matching field names are equal. E.g., these two types are not
equal:

record [a: int, b: int]
record[b: int, a: int]

3.4 Type Hierarchy

Types in Theta are grouped into a type hierarchy. Each type can have several supertypes. At
the top of the hierarchy is type any, which has no methods and is the supertype of all types.

The type hierarchy is based on the notion of type equality. A type is always a subtype and
also a supertype of itself. The subtype (supertype) relation is transitive: if T is a subtype of S
and S is a subtype of R, then T is a subtype of R.

Any is the only supertype of the built-in types except that a rich hierarchy is defined for
routine types. In particular, no subtype relation is provided for record and struct types, e.g.,

record[a: int, b: int, c: int]

is not a subtype of

record[a: int, b: int]

Specifications for user-defined types and user-defined parameterized types indicate the im­
mediate supertypes explicitly (9.2). All supertypes must be user-defined types, except that
every user-defined type is automatically a subtype of any. All types generated by instantiating
a user-defined parameterized type are similarly subtypes of any. The Theta compiler guarantees
that subtypes have all the methods of their supertypes, with compatible signatures (9.2).

3.4. Type Hierarchy 11

3.4.1 Routine Type Hierarchy

Routine type R 1 is a subtype of routine type R 2 if all the following conditions are satisfied:

1. The two routine types must either both be procedure types or both be iterator types.

2. Contravariance of arguments: They must have the same number of arguments, and in
each argument position, the type of Ri 's argument must be a supertype of the type of
R 2 's argument.

3. Covariance of results: If the two routine types are procedure types, they must have the
same number of return results, and the types of Ri 's results must be subtypes of the types
of the corresponding R 2 results.

4. Covariance of yields: If the two routine types are iterator types, they must have the same
number of yielded results, and the types of R 1 's yielded results must be subtypes of the
types of the corresponding R2 yielded results.

5. Ri must not have any exceptions that are not also exceptions of R2·

6. Covariance of exception results: Corresponding exceptions must have the same numbers
of results, and in the corresponding result positions, the type of Ri 's result must be a
subtype of the type of R 2 's result.

These rules ensure that calling a routine of type Ri is always legal wherever a routine of type
R2 is expected. In particular, the routine will not raise any unexpected exceptions.

4 Scopes, Declarations, and Equates

This chapter gives the scoping rules for Theta. It also describes variable declarations and
equates, two important constructs that introduce scoped identifiers.

When we say that an identifier is scoped, or that it has a scope, we mean it is defined within
a particular scope. The scoping rules given below (4.4) ensure that a given identifier is either
not defined within a scope or is defined exactly once, and that external names (4.3) are never
confused with scoped identifiers within a program unit (1. 7).

4.1 Scoped Identifiers

There are two kinds of scoped identifiers in Theta: equated identifiers and variables. An equated
identifier is immutable and denotes the same object for its entire lifetime. A variable is mutable;
it can be modified so that it denotes a different object. When a variable is created, it may not
denote any object.

Equated identifiers are introduced by equates (4.6), type specifications (9.2), routine imple­
mentations (10.2), method implementations (10.4), formal parameter declarations (9.3), classes
(10.4), and superclass declarations (10.5). Variables are introduced by declarations (4.5), in­
stance variable declarations (10.4), formal argument declarations (10.2), and special declaration
forms in the tagcase (8.11) and typecase statements (8.12).

An equated identifier has a scope that is the entire scoping unit containing the construct
that introduces it, while a variable has a scope from its declaration to the end of the containing
scoping unit.

4.2 Scoping Units

The scope of variable declarations and equates is defined in terms of scoping units. This section
contains a complete list of the scoping units of Theta.

1. From the start of a routine or type specification (9) to its end.

2. From the start of a module (10.1), routine implementation (10.2), or class (10.4) to its end.

3. From a for (8.8), do (8.8, 8.7), begin (8.13), or the then in a make statement (8.17) to
the matching end.

4. From a then, elseif, or else in an if statement (8.6) to the end of the corresponding body.

5. From a when or others in a tagcase statement (8.11), typecase statement (8.12), or
except statement (8.14) to the end of the corresponding body.

If one scoping unit overlaps another (textually), then one is fully contained in the other. The
contained scope is called a nested scope, and the containing scope is called a surrounding scope.

4.3 External Names

An identifier that is used in a scope where it is not defined is an external name. External names
are used to denote specifications and equates from other program units (1.7).

4.4. Scope Rules 13

4.4 Scope Rules

The scope rules are:

1. An identifier may not be defined twice in a scope. Note that this rule implies that an
identifier defined in a scope may not be redefined in a nested scope.

2. Within a single program unit (1. 7), an identifier may not appear as an external name in
one scope and as a scoped identifier in another scope.

4.5 Variables and Declarations

Objects are the fundamental runtime entities in Theta. Variables are a way of denoting or
naming objects.

Declarations introduce new variables. The scope of a variable is from its declaration to the
end of the scoping unit containing the declaration. Hence, variables must be declared before
use.

A variable has two properties: its type (which determines what can be done with it) and
the object it denotes, if any. A variable is said to be uninitialized if it does not refer to any
object. An attempt to use an uninitialized variable at runtime causes the exception (8.14)
failure{ 11 uninitialized variable") to be raised.

A declaration without initialization just introduces some new, uninitialized variables:

decl -+ idn_list : type_designator

This statement introduces one or more new variables of the specified type. The following are
examples of legal declarations:

x, y: int
parts: set[part]

% declare two integer variables
% declare a set{partj variable

As discussed in the next chapter, new variables can be declared and initialized at the same
time, in an assignment statement (5.2.1).

4.6 Equates

An equate allows a single identifier to be used as an abbreviation for a constant that may have
a lengthy textual representation; it also allows a mnemonic identifier to be used in place of a
constant such as a numerical value.

The syntax of equates is:

equate -+ idn = expr I idn = type_designator

For the first form, the expr must be a constant expression (7.15) or a compile-time error will
occur.

An identifier equated to an expression may be used as an expression (7); the value of such
an expression is the constant to which the identifier is equated. An identifier equated to a type
designator is itself a type designator and denotes the same type as the type designator it is
equated to. An equated identifier may not be used on the left-hand side of an assignment (5).

Some examples of legal equates:

14

as = array[string]
pi= 3.1416

Chapter 4: Scopes, Declarations, and Equates

% a type equate
% a constant expression equate

An equated identifier is defined in the smallest scoping unit surrounding its equate; here we
mean the entire scoping unit, not just the portion after the equate. Equates that occur within
the body of a statement must appear prior to any statements in that body. Equates not in such
a scope (e.g., at the top level of a module) can appear anywhere within the scope.

All equates in a scope are processed by the compiler as a unit, and forward references
are allowed. The compiler reports an error if a cyclic dependency is detected without any
intervening user-defined type. For example, the following set of equates is illegal:

tree = maybe[tree_node]
tree_node = record[left: tree, right: tree, val: int]

However, within a class implementing a tree type we might have

tree = class ...
tree_node = record[left: tree, right: tree, val: int]
t: tree_node

end tree

These equates are legal because a user-defined type, tree, breaks the cycle.

5 Assignment

Assignment causes a variable to refer to an object. Assignment is a fundamental action m
Theta: all other actions, including invocation (6.1), depend on the rules for assignment.

5.1 Type Inclusion

Based on the declared types of variables and routine headers, the compiler can compute a type
for any expression; we refer to this type as the apparent type, as opposed to the actual type of
the object that results when the expression is evaluated at run time. The actual type is always
a subtype of the apparent type.

An assignment

v := e

is legal if and only if the apparent type of expression e is a subtype of the type of variable v.
Thus, the compiler guarantees that for any initialized variable v, the type of the object referred
to by v is a subtype of the type of v.

5.2 Assignment

The simplest form of assignment assigns the value of a single expression to a single variable. In
addition, there are two forms of multiple assignments, one for assigning a set of expressions to
a set of variables, and one for assigning a set of return results (from a single invocation) to a
set of variables. (Theta supports multi-valued routines.)

An assignment statement has one of two forms:

statement ---+ lhs : = expr [, expr] *
lhs : = invoc

where

lhs ---t var [, var] *
var ---t idn [primary . idn

A variable var is either an idn, a field selector (for a record or struct), or an instance variable;
the form primary.idn is used to select a field of a record or struct (B.11, B.12), or an instance
variable of an object (7.5, 10.4). (Instance variables can be accessed only within the module
containing the object's class (10.1).) A primary is a limited kind of expression (7.16).

If the right hand side consists of one or more expressions, the number of expressions on
the right hand must match the number of variables on the left hand side, and their types
must be subtypes of the types of the corresponding variables. The primaries and expressions
are evaluated in arbitrary order; if no exceptions are raised (see 8.14), the result of the first
expression is assigned to the first variable and so on; as a result the variables (including fields
of records, structs, and instance variables) refer to the objects obtained from evaluating the
expressions. This form allows a permutation of variables, e.g.,

x, y := y, x

16 Chapter 5: Assignment

causes x to refer to the object previously referred to by y, and y to refer to the object previously
referred to by x.

If the right hand side consists of an invocation, the number of return results must match
the number of variables and the result types must be subtypes of those of the corresponding
variables. The primaries on the left hand side and the invocation are evaluated in an arbitrary
order and if no exceptions occur, the results of the invocation are assigned to the corresponding
variables. An example of the use of this form is:

quotient, remainder:= intdiv(a, b)

It is illegal to invoke a multi-valued routine in a context where a single result is expected (6.1).

Such a routine can only be invoked in a multiple assignment statement, or in an invocation
statement (8.1) (where the return results are discarded).

5.2.1 Initialization Assignment

The assignment examples shown above use already-declared variables on the left hand side.
Assignment can also be combined with declarations of new variables, so that new variables can
be declared and initialized in one statement. In this case, the left hand side has the form

lhs ---+ decl [, decl] *

Declarations can be used with either expressions or an invocation on the right hand side, as
above. If there are multiple expressions on the right hand side, they are evaluated in arbitrary
order. If no exceptions result from evaluating the right hand side, the new variables are created
and the result objects assigned to them. The statement is legal if the number of objects resulting
from evaluation of the right hand side matches the number of variables declared and the types
of these objects are subtypes of the corresponding variable types.

Note that either an assignment affects already-declared variables, or it affects newly-declared
variables; the two forms are never mixed. Note also that the newly-declared variables cannot
be used in the right hand side of the initialization assignment that creates them.

The following are legal initialization assignments:

x: int := foo + 5
c: char, i: int:= 'a', 42
quotient, remainder: int := intdiv(a, b)
val: int, in_range: bool := search(myset, low, high)

provided foo, intdiv, and search have the following types:

foo: int
intdiv: proc(int,int) returns(int,int)
search: proc(set,int,int) returns(int,bool)

6 Invocation

There are two kinds of routines in Theta. A procedure produces a group of one or more objects
when it returns. An iterator produces a sequence of items (where an item is a group of one or
more objects) one item at a time; it is invoked (only) in a for statement (8.8) and the body of
the for statement is executed for each item in the sequence.

Invocation of a routine causes the routine to be executed on the argument objects. This
section discusses the part of the invocation mechanism that is common to calls of procedures
and iterators (and also makers (10.5.2)).

Stand-alone routines are defined by specifications (9.1); such a specification may be param­
eterized, in which case it can be instantiated to obtain a routine. Routines are also obtained
by evaluating expressions. For example, a routine can be obtained by selecting a method from
an object (7. 7) or by binding a routine to some actual arguments (7.9).

6.1 Form of Invocation

Invocations have the form:

invoc ---+ exprO ([args])

where

args ---+ expr [, expr] * [, varying_args] I varying_args

varymg_args ---+ •• I .. expr [, expr] *

The varying_args form allows a variable number of arguments (including none) to be supplied;
these arguments together comprise the elements of a sequence that is the last actual argument
of the call, and the form is legal only when calling a routine whose last argument is a sequence.

The sequence of activities in performing an invocation is as follows:

1. The expressions expr (including exprO) are evaluated in an unspecified order.

2. The expression exprO must evaluate to a procedure or iterator.

3. New variables are introduced corresponding to the formal arguments of the routine being
invoked (that is, a new environment is created for the invoked routine to execute in).

4. The objects resulting from evaluating the non-varying-argument exprs are assigned to the
corresponding new variables (the formal arguments). The first formal is assigned the first
actual, the second formal the second actual, and so on. The type of each expression must
be a subtype of the type of the corresponding formal argument.

5. If the varying_arg form is being used, the last argument of the routine must be a se­
quence[T], and the type of each varying_arg must be a subtype of T. The objects resulting
from evaluating the varying_args are used to construct a sequence[T], with the first vary­
ing_arg being the first element and so on, and the sequence is assigned to the last formal.

6. Control is transferred to the routine at the start of its body.

18 Chapter 6: Invocation

The invocation is legal in exactly those situations where there are the same number of actual
arguments as formal arguments (after constructing the sequence from the varying_args), and
the (implicit) assignments of actuals to formals are legal.

For example, if procedure p has signature

proc (int, sequence[int]) returns (sequence[int])

then here are some legal calls of p:

s: sequence[int]
s := p(0, .. 3,5,7)
s := p(6, ..)
s := p(S, s)

% second argument is a sequence containing elements 3, 5, and 'l
% second argument is an empty sequence
% second argument is the sequence s

6.2 Call by Sharing

The caller and called routine communicate only through the argument and result objects;
routines do not have access to any variables of the caller.

After the assignments of actual arguments to formal arguments, the caller and the called
routine share objects. If the called routine modifies a shared object, the modification is visible
to the caller on return. The names used to denote the shared objects are distinct in the caller
and called routine; if a routine assigns an object to a formal argument variable, there is no
effect on the caller. From the point of view of the invoked routine, the only difference between
its formal argument variables and its other local variables is that the formals are initialized by
its caller.

6.3 Run-Time Dispatch

Although the compiler can determine whether or not an invocation is type-safe, it cannot
necessarily determine exactly what code will execute. In particular, for a method call the
compiler usually knows only the apparent type of the object from which the method is being
selected, and not its actual type; the code to be executed is determined by the object's actual
type, and the particular implementation used for that type. Therefore a method invocation
may involve a runtime dispatch.

6.4 Termination

Routines can terminate in two ways: normally, or exceptionally, by signaling an exception.
When a routine terminates normally, any result objects become available to the caller and may
be assigned to variables or passed as arguments to other routines. When a routine terminates
exceptionally, the flow of control passes to an exception handler in the caller (8.14).

7 Expressions

An expression evaluates to an object in the Theta universe. This object is said to be the
result or value of the expression. The simplest expressions are literals and identifiers that
name their result object directly. More complex expressions are generally built up out of
nested invocations of procedures. The result of such an expression is the value returned by the
outermost invocation. A primary (7.16) is a limited kind of expression used in left hand sides
of assignments (5.2) , and also in invocation statements (8.1) and store statements (8.2).

An expression has a apparent type known at compile time. This type is derived from the
types of the entities of which it is composed, e.g., the types of the variables used in it, and the
types of the procedures it invokes. Compile-time type checking guarantees that the apparent
type of an expression is a supertype of the object obtained by evaluating the expression.

Theta has prefix and infix operators for the common arithmetic and comparison operations,
and uses the familiar syntax for array indexing (for example, a[i]). However, in Theta these
notations are abbreviations for method invocations (7.11). This allows familiar notation to be
used for user-defined types when appropriate.

7.1 Literals

Literals denote objects of the built-in types int, real, char, string, bool, and null. The type of a
literal expression is the type of the object named by the literal. Some examples of literals being
assigned to variables are:

t: boo I :=true
f: boo I :=false
s: string := "A string"
c: char ' c ' -
nl: char := '\n' % newline
oct47: int := 8-47 % octal integer
hex7e: int := 16-7e % hexadecimal integer
p: int := -5
p1: real := 3.141592
avog: real := 6.02e23
empty: null :=nil

The full syntax for literals is given in Appendix B.

7 .2 Identifiers that denote objects

Identifiers that denote objects can be used as expressions. When such an identifier is used as
an expression, its value is the object it denotes, and the type of the expression is the type of
the identifier.

The following kinds of identifiers can be used as expressions:

• Variables are introduced by declarations (4.5), which specify their type, and are caused to
denote objects by means of assignments (5).

• Identifiers defined by equates (4.6) can be used as expressions and so can identifiers that
denote built-in and user-defined routine definitions (9.1, 10.2). Such identifiers denote a

20 Chapter 7: Expressions

particular (constant) object. The type of an equated identifier is the type of the object
it denotes.

• The reserved word self is used within a method implementation to denote the method's
object and its type is the class type (10.4) of the enclosing class (10.4). It is also used
within the then clause of a make statement to refer to the object being initialized and its
type is the class type of the object being initialized.

7 .3 Constructors

There are special forms called constructors that enable users to create and initialize record,
struct, oneof, and maybe objects. A constructor has the form

tagged_type_desig { field_inits }

where

field_inits -+ field_init [, field_init] *
field_init -+ idn := expr

The tagged_type_desig is the type of the constructed object. If a struct or record is being
constructed, the component names in the field list must be exactly the field names in the
tagged_type_desig, although the names may appear in any order in the constructor; the type of
the initialization expression for a field must be a subtype of the declared type of that field. The
expressions are evaluated in an unspecified order; the results form the components of the newly
constructed object, which is the value of the constructor expression. For example,

rt = record[x: int, c: char]
x: rt:= rt{c :='A', x := 7}
x := rt{x := 7}
x := rt{x := 7, d: 'A'}

% legal
% compile- time error - - not enough fields
% compile-time error -- misnamed field

If a oneof or maybe is being constructed, just one field name of the type can be present, and the
type of the expression must be a subtype of the declared type of that field; the result is a new
oneof or maybe object with the given tag whose value is the object resulting from evaluating
the expression. For example,

ot =-= oneof[none: null, some: int]
x: ot :=-= ot{ none :=-= nil} % x's object has tag none and value nil
x := ot{ some: 7} % now x's object has tag some and value 7
x := ot{some: 3.1} % compile-time error -- expression has wrong type

Decomposition of oneof objects is usually done via the tagcase statement (8.11).

7 .4 Class Constructors

Within a class (10.4) and its module (10.1), new objects belonging to the class can be created
and initialized using a special constructor for the class. This constructor is similar to the one
for records and structs, and also to the specialized constructor in the make statement (8.17). It
has the form:

7.5. Instance Variable Selection 21

type_designator { [ivar_inits] }

The type_ designator must name a class type (10.4)); this gives the type of the constructed object.
All class constructor expressions have a (possibly empty) ivar_inits section surrounded by curly
braces. This section consists of two parts:

ivar_inits ---+ field_inits ; maker_invoc I field_inits I maker_invoc

field_inits ---+ field_init [, field_init] *
field_init ---+ idn : = expr

maker_invoc ---+ idn [actuaLparms] ([args])

actuaLparms ---+ [type_list]

type_list ---+ type_designator [, type_designator] *

The field_inits part initializes the instance variables of the class; there must be one field_init

for each instance variable. (If the class has no instance variables, field_inits is not used.) The
maker_invoc part is used to initialize inherited instance variables. This invocation is present iff
the class named by the type_designator has a superclass (10.5.3); idn must name a maker (10.5.2)

provided by (10.5.1) the superclass.

The constructor creates a new object of the class type, evaluates the field_init expressions
(in an arbitrary order), assigns the results to the associated instance variables of the new object,
and calls the superclass maker if the maker_invoc part is present. If all of these steps terminate
normally (i.e., they do not raise an exception), the class construction expression terminates
normally with the newly-created object as the result.

For example if a class C has two instance variables, x of type int and y of type char, and
does not have a superclass, then

n: C := C {x := 3, y :='A'}

creates a new C object with the indicated values in its instance variables and assigns it to n.

7 .5 Instance Variable Selection

Within a class (10.4) and its module (10.1), the instance variables of objects of the class can be
accessed directly using the form

[expr .] idn

where the type of the expr is the class type (10.4), and idn is the name of an instance variable
of that class. If the expr is omitted, it defaults to self (10.4); i.e., within a method of the class,
the instance variables of self can be named directly.

Outside a class's module, the instance variables of an object of the class cannot be accessed
directly; they can only be accessed indirectly, by invoking methods on the object.

22 Chapter 7: Expressions

7.6 Field Selection

The form

expr . idn

allows fields to be selected from records and structs. The expr must evaluate to a record or struct
object, and the idn must name one of the fields of the object; the result is the object stored in
that field.

7. 7 Routine Instantiation

Instantiations of parameterized routines can be used as expressions. The form is

idn actuaLparms

The idn must denote a routine definition (9.1, 10.2). The actual parameters actual_parms are
the parameters being supplied and legality checking is the same as for type instantiation (3.2.2).
The value of such an expression is a routine object.

The type of the resulting routine is derived from the parameterized routine interface (9.3)
by replacing each occurrence of a formal parameter with the corresponding actual. Thus for

p[T] (x: T) returns (T) signals (E)
where T has lt(T) returns (bool)

the instantiation

p[int]

is legal and has type

proc (int) returns (int) signals (E)

Instantiation of parameterized methods is discussed in Section 7.10.

7.8 Procedure Invocation

An invocation (6.1) of a procedure with exactly one result can be used as an expression. The
type of the expression is the result type of the called procedure.

7.9 Binding

A routine can have some of its arguments bound, producing another routine that expects fewer
arguments. Binding is essentially an incomplete invocation (6.1): the binding arguments are
treated like actuals, and matched up with formals just as in an invocation. An asterisk (*) is
used as a placeholder; it indicates an argument position for which no binding is made.

The form for binding is:

bind (expr bind_args)

where

7.10. Method Selection 23

bind_args --+ [, bind_arg] * [, varying_args]

bind_arg --+ expr I *

The expressions are evaluated in an unspecified order. The result of the first expression must
be a routine. The results of evaluating the bind_arg expressions are treated just as in an
invocation (6.1), except that when the bind_arg is an asterisk, no assignment is made to the
corresponding formal. The binding is legal if the right number of arguments is provided and
the assignments are legal. The result of the bind expression is a new routine. The type of that
routine has arguments only for the formals where an asterisk appeared. The new routine is the
same kind (procedure or iterator) as the original routine, and has the same number and types
of results (yielded results) and exceptions as the original.

For example, consider a procedure

p (x: int, y: char) returns (bool)

Then

q: proc (int) returns (bool) := bind(p, *· 'c')

is legal and results in a new procedure q with 'c' bound to the formal Yi q is invoked with a
single int for the formal x, which was not bound. Thus, invocation q(S) has identical behavior
to invocation p(5, 'c'). A bound routine can be bound again, e.g.,

r: proc ()returns (bool) := bind(q, 5)

produces a new procedure r, where invocation r() has identical behavior to invocation p(5, 'c').
Note that if varying_args are provided, the corresponding formal is bound to the newly­

constructed sequence (6.1). It is not possible to extend the sequence (so that it would contain
additional elements) in a subsequent bind expression or invocation.

7.10 Method Selection

A method selection selects a method from an object, and produces a routine. The form is:

[expr .] method_idn

where

method_idn --+ [~] idn [actuaLparms]

The expr denotes the object from which the method is to be selected; it can be omitted within
a class to select a method of self. The selection is legal if and only if the (apparent) type of
the expression has a method named idn. The method might be parameterized; in this case the
actuaLparms must allow a successful instantiation (7. 7). The optional ~ is used only within a
subclass definition (10.5) to name an overridden method that comes from the superclass.

A method selection binds (7.9) the object computed by the expr into the method, producing
a routine object whose type is the same as that of the method. When the routine runs, it will
be able to refer to the bound object as self. Thus, given the following code fragment:

24

counter = type
inc(x: int)

end counter

c: counter := ... % some initialization

Chapter 7: Expressions

the method selection

c.inc

binds c into the method, producing a routine object of type proc (x: int).

Every method invocation is conceptually a method selection followed by a routine invoca­
tion. Implementations are expected to optimize the common case in which the call happens
immediately; programmers should expect that the code fragment

c.inc(l)

will run faster than the code fragment

m: proc(x:int) := c.inc
m(l)

7.11 Prefix and Infix Operators

Theta allows prefix and infix notation to be used as a shorthand for calls of certain methods.
The notation is legal if the corresponding method is a procedure and its call is legal. The
following table shows the shorthand form and the equivalent expanded form for each operator.

a+ b a.add{b) a a.not()
a - b a.sub(b) a < b a.lt(b)

a * b a.mul(b) a<= b a.le(b)
a I b a.div(b) a= b a.equal(b)

a// b a.mod(b) a -=b -(a.equal(b))

a ** b a.power(b) a>= b a.ge(b)
-a a.minus() a > b a.gt(b)

a II b a.concat(b)

This notation is used extensively for the built-in types, and may be used for user-defined types
as well.

USAGE NOTE

When these methods are provided for user-defined types, they ought to be side­
effect-free, and they should mean roughly the same thing as they do for the built-in
types. For example, the comparison methods should only be used for types that
have a natural partial or total order.

7.12. Fetch 25

7.12 Fetch

A special form is provided for fetching the element of an array, vector, or sequence, or an abstract
object with a method named "fetch":

exprO [expr 1]

This form is just a shorthand for an invocation of a fetch method and is equivalent to

exprO . fetch (exprl)

The expression is legal whenever the corresponding invocation is legal. In other words, the type
of exprO must define a procedure method named fetch with a single argument whose type is a
supertype of exprl. For example, if a is an array of integers, a[27] is equivalent to the invocation
a.fetch(27).

USAGE NOTE

The use of fetch for user-defined types should be restricted to types with a.rra.y­
like behavior. Objects of such types will contain an indexed collection of objects.
For example, it might ma.ke sense for an associative map type to provide a fetch
method to access the value associated with a string key. A fetch method ought not
to have side effects.

Array-like types may also provide a. store operation (8.2).

7.13 & and I

Two special "short-circuit" binary Boolean operators are provided, & and I·
expr1 & expr2

is the boolean and of expr1 and exp12 except that expr1 is guaranteed to be evaluated before
any part of expr2. If expr1 is false, expr2 is not evaluated. Similarly, I is the same as a boolean
or except that expr2 is not evaluated if expr1 evaluates to true. For both & and I, the two
expressions must have type bool and the result is a bool.

Because of the conditional expression evaluation, uses of & and I are not equivalent to any
normal invocation.

7.14 Precedence and Associativity

When an expression is not fully parenthesized, the proper nesting of subexpressions may in
principle be ambiguous. The following precedence and associativity rules are used to resolve
such ambiguity; the table lists the higher-precedence operators before lower-precedence ones:

[l ()
- (unary minus)

**
11 * I
II + - (binary minus)

< <= >= >
&
I

26 Chapter 7: Expressions

The binary operators are all left associative, except for the exponentiation operator **; the
exponentiation operator is right associative. I.e., a+b+c is parsed as (a+b)+c; a**b**c is
parsed as a**(b**c); a[lO].b is parsed as (a[lO]).b; a.b[lO] is parsed as (a.b)[lO].

7.15 Constant Expressions

Constant expressions are a limited kind of expression that can be used in equates. They are
evaluated at compile time to produce objects of built-in, immutable types. They can contain
method calls but only to methods belonging to compile-time known, built-in immutable objects;
the only other calls are to certain built-in, side-effect-free routines. The following forms are
allowed:

• literals (7.1)

• constructors for structs, oneofs, and maybe's, provided all fields are assigned constant
expressions (7.3);

• calls of the built-in routines that create new sequences (B.9), provided all the arguments
are constant expressions.

• equated identifiers (4.6);

• identifiers that name built-in or user-defined stand-alone routines;

• instantiations of built-in or user-defined parameterized, stand-alone routines;

• selection of methods of objects denoted by constant expressions;

• invocation of methods of objects denoted by constant expressions provided the actual
arguments are also constant expressions.

Evaluation of a constant expression must terminate normally or there will be a compile-time
error.

7.16 Primaries

A primary is a limited kind of expression that can be used in the left hand side of an as­
signment (5.2), or in an invocation statement (8.1) or a store statement (8.2). The syntax of
primaries rules out expressions that would be ambiguous in these situations, namely, expres­
sions that begin with a left parenthesis and expressions that use infix and prefix operators at
the top level.

Primaries are defined as follows:

primary --+ simple_expr

I primary . idn

I
primary . method_idn
simple_invoc

I primary [expr]

simple_expr --+ literal

idn [actuaLparms]

7 .16. Primaries

self
method_idn
tagged_type_desig { field_inits }

type_designator { [ivar_inits] }
bind (expr bind_args)

simple_invoc 4 primary ([args])

Here are some examples:

(a[x])
x+y
a[x+y]
p(x)

% not legal -- starts with (
% not legal -- infix notation at top level
% legal (for a: array[int] and x, y: int)
% legal (for p: proc(int) and x: int)

27

8 Statements

Theta is a statement-oriented language. There are two kinds of statements: simple statements
and control statements. Some of the control statements have one or more code bodies as
components. A body consists of equates followed by statements:

body --+ [equate] * [statement] *

This leads to a nested statement structure.

8.1 Simple Statements

Simple statements do the actual computing. They consist of declarations (4.5), assignments (5),
and invocations (6.1).

An invocation statement invokes a procedure. Its form is

primary ([args])

(A primary is a limited kind of expression (7.16).) The semantics of an invocation statement is
the same as an invocation expression (6.1) except that the procedure invoked may return any
number of results, and any such results are discarded.

8.2 Store Statement

A special statement is provided for updating components of array-like types. The statement
resembles assignment (5) syntactically, but is really an invocation. It has the form

primary [expr 1] : = expr2

(A primary is a limited kind of expression (7.16).) This form is merely a shorthand for an
invocation of a store method and is equivalent to the invocation statement

primary . store (expr1 , expr2)

The evaluation of the primary and the other expressions takes place in an unspecified order.
The form is legal if the corresponding invocation statement is legal, and therefore it is not

restricted to arrays but can be used with user-defined types as well. The object resulting from
primary must have a procedure method named store that takes two arguments whose types are
supertypes of the types of expr 1 and expr2.

USAGE NOTE

The use of store for user-defined types should be restricted to types with a.rra.y­
like behavior, that is, types whose objects contain mutable collections of indexable
elements. For example, it might make sense for a.n associative ma.p type to provide
a store operation for changing the value associated with a key.

8.3. Return Statement 29

8.3 Return Statement

The form of the return statement is

return [(expr [, expr] *)]

The return statement terminates execution of the containing procedure or iterator. There
must be the same number of expressions as there are return result types listed in the routine's
header, and their types must be subtypes of the corresponding listed types. (If return is used in
an iterator, no results can be given; iterators do not have return result types.) The expressions
(if any) are evaluated in an unspecified order, and the objects obtained become the results of
the procedure.

8.4 Yield Statement

A yield statement may occur only in the body of an iterator (6). Its form is

yield (expr [, expr] *)

It has the effect of suspending operation of the iterator and returning control to the invoking
for statement (8.8). There must be the same number of expressions as there are yield types
listed in the iterator's header, and their types must be subtypes of the corresponding listed
types. The values obtained by evaluating the expressions (in an unspecified order) are passed
to the for statement to be assigned to the corresponding loop identifiers. After the body of the
for loop has been executed, execution of the iterator is resumed at the statement following the
yield statement.

8.5 Signal Statement

An exception is raised with a signal statement, which has the form

signal name [(expr [, expr] *)]

where

name ---+ idn

The execution of a signal statement begins with evaluation of the expressions (if any), in an
unspecified order, to produce a list of exception results. The activation of the routine is then
terminated and execution continues in the caller (8.14).

The exception name must be either one of the exception names listed in the routine heading
or failure. If the name is failure, there must be exactly one expression present, of type string. If
the name is listed in the routine header, there must be the same number of expressions as are
listed for that exception in the header, and their types must be subtypes of the corresponding
listed types.

30 Chapter 8: Statements

8.6 If Statement

The form of the if statement is

if expr then body [elseif expr then body] * [else body] end

The expressions must be of type bool. They are evaluated successively until one is found to be
true. The body corresponding to the first true expression is executed, and the execution of the
if statement then terminates. If none of the expressions is true, the body in the else clause is
executed (if the else clause is present). The elseif form provides a convenient way to write a
multiway branch.

8. 7 While Statement

The while statement has the form

while expr do body end

Its effect is to execute the body repeatedly as long as the expression remains true. The expres­
sion must be of type bool. If the value of the expression is true, the body is executed, and then
the entire while statement is executed again. When the expression evaluates to false, execution
of the while statement terminates.

8.8 For Statement

A for statement is used to invoke an iterator (6), and is the only way an iterator can be invoked.
The iterator produces a sequence of items (where an item is a group of one or more objects)
one item at a time; the body of the for statement is executed for each item in the sequence.

The for statement has the form

for for_idns in invoc do body end

where

for_idns 4 idn_list I decl [, decl] *

The loop variables are given first. Either a list of already-declared variables is given, or new
loop variables local to the for statement are introduced using declarations. Previously declared
variables cannot be mixed with new declarations. The invocation, given next, must be an
invocation of an iterator.

The first loop variable is assigned the first object yielded in an item, etc.; the type of each
yielded object (according to the specification of the iterator) must be a subtype of the type of
the corresponding loop variable.

Execution of the for statement proceeds as follows. First the iterator is invoked, and it
either yields an item or terminates. If the iterator yields an item, its execution is temporarily
suspended, the objects in the item are assigned to the loop variables, and the body of the
for statement is executed. The next cycle of the loop is begun by resuming execution of the
iterator from its point of suspension. Whenever the iterator terminates, the entire for statement
terminates. If the for statement terminates, this also terminates the iterator.

The following example creates an array[int] and appends the numbers 1 through 10 to it:

8.9. Break Statement

a: array[int] := array_new[int]()
for i: int in l.to(lO) do

a.append(i)
end

31

This example uses the to iterator method of int object 1 (B.4), which yields successively larger
values starting with its object and ending with the argument.

8.9 Break Statement

The break statement has the form

break

Its effect is to terminate execution of the nearest for or while statement that contains the
break. It is a compile-time error to use break outside the body of a for or while statement.

8.10 Continue Statement

The continue statement has the form

continue

Its effect is to terminate execution of the body of the nearest for or while statement that
contains the continue, and to start the next cycle of that loop (if any). It is a compile-time
error to use continue outside the body of a for or while statement.

8.11 Tagcase Statement

The tagcase statement is a special statement provided for decomposing oneof (B.13) and
maybe (B.14) objects; it permits the selection of a body to be performed based on the tag
of the object. Its form is

tagcase expr tag_arm tag_arm* [others body] end

where

tag_arm -+ when name [, name] * [(idn : type_designator)] : body

The expression must evaluate to a oneof or maybe object. The tag of this object is then matched
against the names on the tag_arms. When a match is found, if a declaration exists in the arm,
the value component of the object is assigned to the local variable idn. The matching body is
then executed; the idn is defined only in that body. If no match is found, the body in the others
arm is executed. When execution of the body completes, control continues at the statement
after the tagcase.

In a syntactically correct tagcase statement, the following constraints are satisfied:

1. The type of the expression is some oneof or maybe type T.

32 Chapter 8: Statements

2. The tags named in the tag_arms are a subset of the tags of T, and no tag occurs more
than once.

3. If all tags of T are present, there is no others arm; otherwise an others arm must be
present.

4. On any tag_arm containing a declaration, the type_designator must denote a supertype
of the type that corresponds to each tag named in the tag_arm.

Here is an example:

x: oneof[none: null, some: int]

tagcase x
when none:
when some(y: int): ... y+7 ...
end

8.12 Typecase Statement

A variable or expression in Theta has an apparent type known to the compiler, and the compiler
guarantees that the actual type of the object denoted by the variable or computed by the
expression is a subtype of that type. Sometimes it is useful to determine what the actual type
of the object is, or to narrow its apparent type to some subtype. This is accomplished by the
typecase statement. The form of this statement is

typecase expr type_arm [type_arm] * [others body] end

where

type_arm --+ when type_designator [(idn)] : body

The expression expr is evaluated, and the actual type A of the resulting object is then used
to select a type_arm. The type_arms are considered in order, and the first one whose type
designator denotes a supertype of type A is selected: the object is assigned to the idn of that
type_arm (if present), and the corresponding body is executed. Within this body the idn can
be used to refer to the object with the type specified in the arm; the idn is defined only in
this body. When execution of the body completes, control continues at the statement after
the typecase. An others arm always matches, but provides no useful additional information
about the object's type.

A legal typecase statement satisfies the following constraints:

1. No type occurs in more than one arm.

2. The type of each arm must be a proper subtype of the apparent type of expression expr.
A proper subtype of a type includes all subtypes except for the type itself, so that it is
always narrower than the type itself.

3. If S is a subtype of T and both Sand Tare used in type arms, the type arm for S must
precede the type arm for T. (The more specific type must precede the more general type
since otherwise the arm with the more specific type is useless.)

8.13. Begin Statement 33

The following example assumes set and bag are both subtypes of type collection, and stack
is a subtype of bag:

x: collection

typecase x
when stack(y):
when bag(z):
others:
end

... % y is a stack in this arm

... % z is a bag in this arm

... % x must be used as a collection in this arm

The others arm will be selected if x's actual type is set (or some other collection type that is
not a subtype of stack or bag).

8.13 Begin Statement

The begin statement permits a sequence of statements to be grouped together into a single
statement. Its form is

begin body end

Since control statements already have bodies that group statements, the main use of the begin
statement is to group statements together for use with the except statement (8.14).

8.14 Except Statement

By attaching handlers to a statement, the caller can specify the action to be taken when an
exception is signaled by an invocation contained within that statement. (Except statements
also handle signals raised by contained exit statements (8.16).) A statement with handlers
attached is called an except statement and has the form

statement except [handler] * [others [(idn : string)] body] end

where

handler ---+ when name [, name] * [(decl [, decl] *)] : body

Let S be the statement to which the handlers are attached, and let X be the entire except
statement. Each handler arm specifies one or more exception names and a body. The body is
executed if an exception with one of those names is signaled by an invocation in S. All the names
listed in the arms must be distinct. The optional others arm is used to handle all exceptions
not explicitly named in a handler arm. S can be any form of statement, even another except
statement.

If, during the execution of S, some invocation in S signals an exception E, control imme­
diately transfers to the closest applicable handler: that is, the closest handler for E that is
attached to a statement containing the invocation. When execution of the handler is complete,
control passes to the statement following the one to which the handler is attached. Thus if the
closest handler is attached to S, the statement following S is executed next. If execution of S
completes without signaling an exception, the attached handlers are not executed.

34 Chapter 8: Statements

An exception raised by an invocation inside a handler is treated the same as any other
exception: Control passes to the closest handler attached to a statement containing the invoca­
tion. Note that if handlers Hl and H2 are attached to the same statement S, and Hl makes an
invocation that raises an exception, H2 cannot handle this exception since H2 is not attached to
a statement that encloses Hl. Either Hl must handle the exception itself, or a handler attached
to a statement that contains Hl must handle the exception.

8.14.1 Handlers without Declarations

If a handler for exception E has no declarations, then if it is selected to handle E, any results
raised with E are simply ignored. Such a handler can be used to handle exceptions that are
raised without results, or in cases where the results are not of interest.

8.14.2 Handlers with Declarations

A handler with declarations is used to handle exceptions with the given names when the excep­
tion results are of interest. The declared variables, which are local to the handler, are assigned
the exception results before the body is executed.

When matching exceptions to handlers, only the exception names are used. If a handler
for exception E includes declarations, it must be able to handle all possible exceptional results
that can be raised with E. For example, suppose in the same statement there are two rou­
tine invocations, where one has signals(foo(int)) in its signature, and the other has signals
(foo(string,real)). In this case it is impossible to use a handler with declarations to handle
exception foo; no single handler with declarations could cover both cases. (The solution is
to use a handler without declarations, or to split the statement up into two different except
statements, so that different handlers can be used.)

Stated more formally: If a handler H for exception E has K variable declarations, and is
attached to statement S, then for each invocation in S that can raise E so that it is handled
by H, E must be raised with K results and the ith result type must be a subtype of the ith
variable declared by H; otherwise there is a compile-time error.

8.14.3 Others Handler

The others arm is optional and must appear last in a handler list. This form handles any
exception not handled by other handlers in the list. If a variable is declared, it must be of type
string. The variable, which is local to the handler, is assigned a lower-case string representing
the actual exception name; any results of the exception are discarded.

8.14.4 Example

The following example assumes that procedure praises exceptions el, e2, and e3, and that el
and e2 have no results, while e3 has an int result. It also assumes that procedure q raises el
(with no results) and e4 (also with no results).

begin
p(q()) except when el: % handle el

when e3(x:int): % handle e3
end

end except when others: % handle e2 and e4 here
end

8.15. Resignal Statement 35

The first arm handles exception el, which might have been raised by either the call of q or the
call of p. Exceptions e2 and e4 aren't handled by the inner except statement, but are handled
by the outer one.

8.14.5 The Failure Exception

The exception failure(string) is implicitly included in every routine interface; it is illegal to list
a failure exception explicitly in an interface.

If a routine performs an invocation that raises an exception not handled by any except
statements in the routine body, the routine will terminate automatically with the failure ex­
ception. If the unhandled exception is not failure, the failure exception will have as a result a
string naming the unhandled exception; otherwise its result will be the string argument of the
unhandled failure exception. The semantics is the same as if every routine body were placed in
an except statement of this form:

begin
% routine_body

end
except when failure (s: string): signal failure(s)

others (s: string): signal failure ("unhandled exception: " II s)
end

8.15 Resignal Statement

A resignal statement is a syntactically abbreviated form of exception handling:

statement resignal name [, name] *

Each name listed must be distinct, and each must be either one of the condition names listed in
the routine heading or failure. The resignal statement acts like an except statement containing
a handler for each condition named, where each handler simply signals that exception with
exactly the same results. Thus if the resignal clause names an exception with a specification in
the routine heading of the form name(Tl, ... , Tn) , effectively there is a handler of the form

when name (xl: Tl, .. ., xn: Tn): signal name(xl. .. ., xn)

The compiler checks all exceptions that can be raised by the statement that the resignal is
attached to against these implicit handlers. As discussed above, an error is reported if an
exception can be raised with the wrong number of arguments, or if the ith result type is not a
subtype of the type of the ith variable declared in the handler.

8.16 Exit Statement

The exit statement provides a signal-like transfer of control to a local handler, without termi­
nating the current invocation.

The exit statement has the form

exit name [(expr [, expr]*)]

36 Chapter 8: Statements

An exit statement raises a local exception that must be handled explicitly by a when arm of
a containing except statement; the compiler reports an error if an exit is not handled, or is
handled by a resignal or others handler. Furthermore, the handler must handle any results
explicitly: if there are K results, the decls in the matching arm must declare K variables, with
types that are supertypes of the associated expressions in the exit statement.

8.17 Make Statement

The make statement is used to initialize a newly created object. It may be used only within
a maker (10.5.2); the maker's routine interface specifies the class of the object to be initialized.
Makers use make and not return for termination: if the make statement terminates normally,
this causes the maker to terminate normally.

The make statement has the form

make { [ivar_inits] } [then body end]

All make statements have a (possibly empty) ivar_inits section surrounded by curly braces.
This section (which is identical to the class constructor expression (7.4)) consists of two parts:

ivar_inits -+ field_inits ; maker_invoc I field_inits I maker_invoc

field_ in its --+ field_init [, field_init] *
field_ in it -+ idn := expr

maker_invoc -+ idn [actuaLparms] ([args])

The field_inits part initializes the instance variables of the maker's class (10.4); there must be
one field_init for each instance variable. (If the class has no instance variables, field_inits is not
used.) The maker_invoc part is used to initialize inherited instance variables. This invocation is
present iff the maker's class has a superclass (10.5.3); idn must name a maker (10.5.2) provided
by the superclass (10.5.1).

The make statement has an optional then body end clause that can be used to do additional
work after the instance variables have been assigned initial values. Within this clause, the newly
created object can be referred to using the variable self, and the instance variables of the newly­
created object can be used directly as variables, as in a method body (10.4).

A make statement is evaluated in three steps; later steps are performed only if earlier steps
complete normally (i.e., they do not raise an exception). The steps are:

1. All the exprs in the field_inits are performed in an unspecified order and the resulting
objects are assigned to the associated instance variables of t he new object.

2. If present, the invocation maker_invoc is performed.

3. If present, the body is evaluated.

If all three steps complete normally, the make statement terminates and causes the containing
maker to terminate normally.

A make statement cannot appear in the body of another make statement.

9 Specifications

New types and routines are introduced by giving specifications. Specifications can be param­
eterized; we describe non-parameterized specifications first, and then discuss parameterization
in Section 9.3.

9.1 Stand-Alone Routine Specifications

A stand-alone routine specification defines the interface of a stand-alone procedure or iterator.
Both procedures and iterators can have zero or more arguments, and can terminate either
normally or in some named exception condition; different numbers and types of results can be
returned in the different cases. An iterator can yield one or more intermediate results and must
have no results in the case of normal termination. Here are examples:

% procedures:
search (a: array[int], x: int) returns (int) signals (noLfound)
combine (x: sequence[int]) returns (int)
% an iterator:
elements (a: array[int]) yields (int)

Routine specifications have the following form:

routine_ interface -+ proc_interface I iter_interface

proc_interface -+ idn [parms] formaLargs [returns] [signals] [

iter_interface -+ idn [parms] formaLargs yields [signals] [where

where]

]

The parms and where appear only if the routine is parameterized; we defer discussion of these
forms to Section 9.3. The formaLargs defines the formal arguments of the routine:

formaLargs -+ ([decl [, decl] *])

The returns clause lists the types of the results of a procedure:

returns -+ returns (type_designator [, type_designator] *

There can be zero or more results, and the returns clause is omitted if there are no results. The
yields clause lists the types of yielded items for an iterator:

yields -+ yields (type_designator [, type_designator] *

An iterator must always have a yields clause, and the yielded items must always contain at
least one result. The signals clause lists the names and result types for the exceptions of the
routine:

signals -+ signals (exception [, exception] *)

where

exception -+ name [(type_designator [, type_designator] *)]
name -+ idn

38 Chapter 9: Specifications

Each exception name must be distinct and none can be failure; in addition to the explicitly
listed exceptions, every routine can raise the failure exception, with a single string result.

The type of a routine is derived from its routine_interface in a straightforward way: all
the information in the interface is significant except for the routine name and the names of
the formal arguments. For example, the type of the combine procedure shown above is proc
(sequence[int]) returns (int), the type of the search procedure is proc (array[int], int) returns
(int) signals (noLfound), and the type of the elements iterator is iter (array[int]) yields (int).
The failure exception does not appear in these types; it is suppressed because every routine has
this exception.

The various routine types form a type hierarchy (3.4.1).
A routine whose last argument is a sequence can be called usmg a varymg number of

arguments in that position (6.1).

9.2 Type Specifications

A type specification defines the interface of a type. It has the form

where

type_interface ---+ idn = type [parms] [supertypes] [where]

[interface_or_equate] *
end idn

interface_or_equate ---+ routine_interface I equate

The initial idn is the identifier of the new type; this identifier will be used throughout the
specification to refer to the new type. The final idn must be the same as the initial idn. The
parms and where clauses are present only if the type is parameterized (9.3). In this section we
consider only non-parameterized types.

The supertypes clause lists all supertypes of the new type except for any, which is the
supertype of all types and is never listed. The form is

supertypes ---+ < super_info [, super_info] *
super_info ---+ type_designator [{ renames [, renames] * }]

renames ---+ idn for idn

The type_designator in a super-info clause identifies a type that is an immediate supertype of
the new type. The optional renames clauses allow methods of that supertype to be renamed;
the supertype method with the second name will be renamed with the first name in the subtype.
For example,

stack= type < bag {push for put, pop for get}

states that stack is a subtype of bag, except that the bag method named put will be renamed
push within stack and the bag method named get will be renamed pop within stack.

The remainder of the definition consists of equates and interfaces of the methods of objects
of the type. Each method is defined by a routine_interface (9.1), and the type of the method is
derived from this interface in the usual way. Each method must have a distinct name. Methods

9.2. Type Specifications 39

can be procedures or iterators; they can have parameters and can contain constraints (9.3). A
routine_interface must be provided for a method when (1) there is no corresponding supertype
method or (2) the subtype method has a different signature from that of the corresponding
supertype method. The new names introduced by the renamings (if any) are used in these
interfaces.

USAGE NOTE

An explicit routineJnterface should be provided for a method whose behavior
differs from that of the corresponding supertype method, even if the types of the two
methods are the same, since this will allow the specification of the subtype method
to be given.

Names corresponding to operators (7.11) should be used when this makes sense.
For example, if the new type has an addition method, naming the method add will
allow t11e + operator to be used wl1en it is ca.lied.

The methods and their signatures determine the legality of the subtype declarations. A subtype
must have all the methods of its supertype and the type of the subtype method must be a
subtype of the type of the corresponding supertype method (3.4.1). Compilation of a type
specification will fail if these conditions are not satisfied for every declared supertype.

USAGE NOTE

The legality constraint ensures that when a call is made to a method based on
information about the apparent type of its object, tl1e call will be legal even if t11e
actual type of the object is a subtype of this type. For the call to make sense, the
definer of a subtype should ensure that objects of the subtype behave similarly to
those of the supertype. Tllis means roughly that corresponding metlwds do t11e
same thing, except that the subtype methods might do something extra to those
parts of the subtype object state that aren't visible through the supertype methods.
Also, subtype methods that do not correspond to supertype methods should not do
anything to the part of the subtype object state that is visible via the supertype
methods that cannot be accomplished using supertype methods. A discussion of
the meaning of the subtype relation can be found in {3}.

Renamings should be avoided whenever possible. They are needed, however,
when a type has multiple supertypes, and these supertypes lmve methods of t11e
same name but different behavior, or methods of different names and the same
behavior.

A type specification provides no way to create objects of the type "from scratch." Instead, new
objects are created by calls on stand-alone routines.

USAGE NOTE

Names for creation routines ought to indicate that they create objects of a given
type T, e.g., by using names of the form make_T, create_T, or new_T.

Some examples of type specifications are given in Section 9.4.

40 Chapter 9: Specifications

9.3 Parameterized Specifications

Routine and type specifications can be parameterized by types, and so can specifications of
methods, even those contained within parameterized type specifications. In all cases, legal
instantiations can be constrained by where clauses.

parms ---+ [idn_list]

where ---+ where restriction [, restriction] *
restriction ---+ idn has nonparam_interface [, nonparam_interface] *

nonparam_interface ---+ idn nonpamm_proc_sig [idn nonpamm_iter_sig

nonpamm_proc_sig ---+ [type_list]) [returns] [signals]

nonparam_iter_sig ---+ [type_list]) yields [signals]

type_list ---+ type_designator [, type_designator] *

All the parameters are types. The where clause lists any restrictions on a parameter by stating
methods that objects of the parameter type must have. For example,

find [T] (a: collection[T], v: T) returns (int) signals (noLfound)
where T has equal (T) returns (bool)

defines a parameterized routine with one parameter T. Within the parameterized definition,
objects of a parameter type can be assumed to have the methods listed in the where clause;
any instantiation of the parameterized definition will provide a binding for each of these meth­
ods (3.2.2, 7. 7).

Within the scope corresponding to a parameterized specification, parameter names can
be used to denote types. If parameters are used in instantiations, any requirements of the
parameterized types being instantiated must be met in the usual way. For example, consider
the instantiation collection[T] used in the specification offind; if collection required an It method,
the Theta compiler would reject the specification of find because the instantiation of collection
is illegal.

A parameterized type may have declared supertypes. For example

stack = type[T] < item, bag[T]. stack_pair[T, int]

states that every instantiation of stack is a subtype of item and of the corresponding instan­
tiations of bag and stack_pair (e.g., stack[foo] is a subtype of item, bag[foo], and stack_pair[foo,
int]). There is no subtype/supertype relationship on parameters: for example, stack[foo] is not
a subtype of stack[bar] even if foo is a declared subtype of bar. Subtyping operates only "outside
the square brackets" of a type definition.

9.4 Type Specification Examples

First we specify a simple bag abstraction and two creation routines for bags:

bag = type [T]

put (x: T)
% effects adds x to the bag

9.4. Type Specification Examples 41

get () returns (T) signals (empty)
% effects removes and returns an arbitrary element of the bag
% signals empty if bag is empty

size () returns (int)
% effects returns the number of elements in the bag

copy () returns (bag[T])
where T has copy() returns (T)

% effects returns a new bag containing copies of the elements of self

end bag

create_bag [T] () returns (bag[T])
% effects returns a new, empty bag

singleton_bag [T] (x: T) returns (bag[T])
% effects returns a new bag containing x as its only element

Note in the specification of copy the use of self to refer to the method's object. Note also that
the copy method imposes a constraint on T whereas the bag type has no constraint on T; copy

is an optional method (3.2.2).
Next we specify type stack, a subtype of bag:

stack= type [T] < bag[T] {push for put, pop for get}

push (x: T)
% effects adds x to the top of the stack

pop () returns (T) signals (empty)
% effects removes and returns the top element of the stack
% signals empty if stack is empty

top () returns (T) signals (empty)
% effects returns top element of the stack
% signals empty if stack is empty

copy () returns (stack[T])
where T has copy ()returns (T)

% effects returns a new stack containing copies of the elements of self
% in the same order as in self.

end stack

create....stack [T] () returns (stack[T])
% effects returns a new, empty stack

The specification of stack introduces a new method, top. It contains specifications for push and
pop, since they constrain the behavior of the corresponding bag methods, and for copy, since it
has a different signature and specification than its counterpart, but it omits the specification
of size, since it would be identical to its counterpart. Note that there are two creation routines
for bag but only one for stack.

10 Implementations

Implementations are provided by modules. A module contains a set of classes (10.4), routine
implementations, maker definitions, and equates. It can export its routine implementations so
that they can be used in other modules. Its classes may also be available for use in other classes
(as superclasses) but this is indicated directly by the class definition (10.5.1).

10.1 Modules

The form of a module is:

module --+ module [implements] [impLelt] * end

impLelt --+ routine_def [class_def [maker_def [equate

Every module must contain at least one class or routine implementation. The implements
clause identifies the routine specifications that are being implemented by what module and
defines which routine implementations in the module implement each specification:

implements --+ implements exported_item [, exported_ item] *
exported_item --+ idn [{ idn_list }] [idn [parms] { idn_list }

The first kind of exported_item identifies a routine_interface (9.1) that is being implemented
within the module. The optional idn_list names the routine_def s that implement that specifica­
tion; the list can be omitted if there is a single implementation with the same name as that of
the routine interface that is implemented. The second kind of exported_item indicates that the
module implements a specific instantiation of a parameterized routine_interface (9.3); in this
case an idn_list naming one or more routine_ def s must be provided. The module must contain
all the routine_def s indicated in the implements clause, and the type of a routine_ def must be
a subtype of the type of the routine_interface or instantiation that it implements. The module
can contain other routine_def s, but these can be used only within the module (unless a class
provides one of these routines to its subclasses 10.5.1).

For example, a module that implements the bag type defined in Section 9.4 might say:

module implements create_bag

to indicate that it is exporting an implementation of the create_bag routine, and furthermore
the routine_def within the module is also named create_bag. Users can call this routine (after
instantiating it) to obtain bags that are implemented with whatever class is indicated in that
create_bag implementation. Alternatively, a module might provide a specialized implementation
for bag[char], e.g.,

module implements create_bag[char]{ cbag}

indicating that internal routine cbag will implement the instantiation create_bag[char]. Users
can make use of cbag to create a new bag[char] with the specialized implementation.

Using code does not use the routine names exported by modules. Instead the code uses
names introduced in routine specifications. Before the code runs, a linker binds every use of
a routine specification to a routine that implements that specification. For example, in the
following code:

10.2. Stand-Alone Routine Implementations

b: bag[char] := create_bag[char]()

create_bag[char] could be linked to cbag.

43

A module defines a scope (4). Modules do not nest: no module is ever contained within
another module.

Modules provide encapsulation. Details of a class are visible throughout its module so that,
for example, a routine in the module can access the instance variables of objects of the class.
The internal details of a class are never visible to code outside its module.

USAGE NOTE

Usually a class will be part of a module that also implements routines that create
new objects of tl1e class. If the class's module does not export such routines, there
will be no way for users to create its objects "from scratch." Such a class may still
be useful as a superclass (10.5) , making definitions of other classes easier to write.

10.2 Stand-Alone Routine Implementations

The implementation of a stand-alone routine has the form:

routine_def -t routine_interface body end idn

routine_interface -t proc_interface I iter_interface

The final idn in the routine_def must match the routine name introduced by the name of the
routine.

A routine implementation is a scope in which the idns that name the formal parameters
and formal arguments are defined. These names can be used in the routine body to refer to the
respective parameters and arguments. Theta uses call-by-sharing (6.2) to pass arguments to a
routine. Accordingly, making an assignment to a formal argument does not affect the caller; it
only changes what object is denoted by that formal. The only way a procedure or iterator can
communicate with its caller is by returning results (yielding results for an iterator), signaling
exceptions, or modifying mutable argument objects.

If control reaches the end of the body of a procedure that has results, the procedure will
terminate with the exception fa ii ure(" no return results"). Iterators, and procedures without
return results, can terminate normally by reaching the end of their bodies.

10.3 Parameterized Implementations

Routine and method implementations, as well as classes, can be parameterized. Within the
scope of a parameterized implementation, formal parameters can be used as types whose objects
have only the methods and signatures indicated in the where clause. For example, in

find [T] (x: collection[T], v: T) returns (int) signals (noUound)
where T has equal(T) returns (bool)

w:T

if v = w ... % short for v. equal(w)

end find

44 Chapter 10: Implementations

the call v.equal(w) (made using the associated short form) is legal. Such method calls make
sense because instantiations are only permitted for types whose objects have the required meth­
ods (3.2.2).

10.4 Classes

Classes implement user-defined types and user-defined parameterized types. A class has the
following form:

where

class_def -+ idn = class [parms] [for_type] [inherits]

[where] [provides] [hides]

[equate_or_ivar_decl] *
[equate_or _routine_def] *
end idn

equate_or_ivar_decl ---+ equate I ivar_decl

equate_or_routine_def ---+ equate I routine_def

The initial idn names the class, and the final idn must match it. The inherits, provides, and
hides clauses are part of the inheritance mechanism (10.5).

The for _type clause names the type implemented by the class:

for_type -+ for type_designator

If this clause is missing, the class does not implement a type. The primary use of such a class is
as a superclass to classes defined in other modules (10.5.1); the class could also be used privately,
within its own module.

A class is a scope in which the idns that name the formal parameters are defined. Therefore
these names can be used within the class to refer to the respective parameters. The where
clause of the class lists the constraints on the parameters.

The body of a class has two main parts: a set of declarations and a set of method imple­
mentations. All the names in these two sets must be distinct.

The declarations define the instance variables, which are used to represent the state of
objects of the class. Every object of the class has its own instance variables; the values of its
instance variables define the state of the object. An instance variable is declared using a special
form:

ivar_decl -+ decl I decl_with_impls

The decl_with_impls form is used to provide abbreviated implementations (10.4.1) of some meth­
ods.

Following the instance variable declarations are implementations of the methods. A class
must implement all methods of its type (although some of these implementations can be in­
herited (10.5) or abbreviated (10.4.1)); these are its "public" methods. A class that does not
implement a type has no public methods. The signatures of routine_def s that implement pub­
lic methods must have types that are subtypes of those given in the type specification. In

10.4. Classes 45

addition a class can implement some "private" methods that can be used only within the class
and its module and possibly within subclasses of the class (10.5).

A class name (or the name plus the actual parameters if the class is parameterized (10.3))

can be used as a type within the class or its module. We refer to this type as the class type.

The class type describes the set of objects implemented by the class. Objects of this type have
a field corresponding to each of the instance variables and all the public and private methods
defined by the class. The "dot" notation is used to access the object's instance variables and
select it methods, e.g.,

% assume class Chas instance variable v and method m
x: C % x is an object of class type C
x.m(...) % selects m from x and calls it
x.v := ... % assigns to x's instance variable v
y := ... x.v ... % gets value of x's instance variable v

In addition to its regular arguments, a method has an implicit argument that it can refer
to by using the keyword self. This argument refers to the method's object. The method can
use self to access the instance variables and select the methods belonging to its object, e.g.,
self.v, or it can access instance variables and select methods of its object without using the
"dot" notation, just by using their names, e.g., v means the same thing as self.v.

If the class implements a type, its class type is a subtype of this type. For example, within
a class C or its module, the statement

typecase x
when C (y):

end

% assume x: T
% in here y refers to x as a C

allows the use the form y.v to access y's instance variable v within the when arm. The arm will
be selected if the actual object is a C or some subclass of C (10.5).

Within a class and its module, new objects of the class type can be obtained by calling the
class constructor (7.4).

10.4.1 Abbreviated Implementations

Sometimes methods merely provide access to instance variables, either to get the value of the
instance variable, or (more rarely) to set the value. Methods like these can be implemented
using a short form by annotating the instance variable:

decLwith_impls --+ idn1 : type_designator implements idn2 [, idn3]

Here, idnl is the name of a variable being declared, idn2 is the name of a method to get the
value of the variable, and idn3 (if present) is the name of a method to set the value of the
variable. A public get method must be a procedure that takes no arguments and returns a
T where T is a supertype of the type of the associated instance variable; a public set method
must be a procedure that has no return values and takes one argument of type S, where S is
a subtype of the type of the associated instance variable. No restrictions are placed on the
exceptions listed in the type of the get or the set method. For example, it is okay to provide
abbreviated implementations for the following methods:

size() returns (int) signals (unknown)
seLname(name: string) signals (permission_denied)

46 Chapter 10: Implementations

An abbreviated implementation for a method is permitted only if the class provides no other
implementation for the method. Here is an example of the use of abbreviated implementations:

point= type
x() returns (int)
set_x(v: int)

% returns value of x coordinate

y() returns (int)
seLy(v: int)

% changes value of x coordinate to v
% returns value of y coordinate
% changes value of y coordinate to v

end point

c = class for point
x_coord: int implements x, seLx
y_coord: int implements y, seLy

end c

USAGE NOTE

Related names should be used for the get and set methods, and the meaning of
the methods should be getting and setting abstract fields of tl1e object.

10.4.2 Same_object

Within a class a special procedure is available for determining whether two objects of that class
are actually the very same object. This procedure has the routine_interface:

same_object (x: C, y: any) returns(bool)

where C is the name of the class. The procedure returns true if x and y denote the same
object and false otherwise. For example, the equal method for a mutable type might call
same_object(self, z) to determine whether object z is the same object as self.

The same_object procedure is available only within the class. It cannot be used by other
code in the class's module, and it cannot be exported by the class.

10.4.3 Example

Here is an implementation of the bag type whose specification was given in Section 9.4.

module implements create_bag

brep = class[T] for bag[T]

sz: int implements size
els: array[T]

% implementation of size method

% the rep invariant is: sz = els.size{)

put (x: T)
els.append(x)
sz := sz + 1
end put

10.5. Inheritance

get ()returns (T) signals (empty)
x: T :=els.remove() except when limits: signal empty end
sz := sz - 1
return (x)
end get

copy () returns (bag[T])
where T has copy () returns (T)
return (brep[T]{sz := sz, els:= els.copy()})
end copy

end brep

create_bag [T] () returns (bag[T])

end

return (brep[T]{sz := 0, els:= array_create[T]()})
end create_bag

47

This module exports an implementation of the create_bag routine, which enables users to obtain
bag objects implemented by the brep class. Note the use of the class constructor (7.4) in the
copy method and create_bag to obtain a new bag object.

10.5 Inheritance

Inheritance allows a class, called the subclass, to be implemented as an extension of some other
class, called the superclass.

10.5.1 Defining Superclasses

A class definition must indicate explicitly that it is available for subclassing by explicitly pro­
viding an interface to its subclasses:

provides -+ provides idn_list

hides -+ hides idn_list

The provides clause lists private methods, routines, and makers (10.5.2) implemented in the
class's module that are available to subclasses; it also lists any public methods where the
signature given in the class differs from that given in the type and the class definer wishes
this information to be visible to definers of subclasses. Some makers must be provided, since
otherwise subclasses will have no way to create new objects of their own; if no maker for the
class is listed, there will be a compile-time error. The hides clause lists public methods that
are not available to subclasses.

USAGE NOTE

A superclass must permit subclasses to be implemented efficiently. It must
export enough makers that a subclass can conveniently initialize the superclass
flelds of its new objects. Also, it must export enough methods so that a subclass
can access needed information in the superclass flelds of its objects, and modify
those flelds if that makes sense.

48 Chapter 10: Implementations

The class must also ensure t11at subclasses cannot interfere with it; this require­
ment is discussed further in Section 10.5.4.

10.5.2 Makers

A maker is a special operator that fills in the fields of a newly created object:

maker_def --+ maker_interface body end idn

maker_interface --+ idn [parms] formaLargs makes [signals] [where]

makes -t makes (type_designator)

The final idn in the maker_def must match that given in the maker_interface. The type_designator
in the makes clause must denote a class type implemented in the maker's module; we say this
is the maker's class.

The object being initialized by a maker is created by the Theta runtime before the maker is
called; its class is some subclass of the maker's class, and the new object is an implicit argument
of the maker. The maker fills in its fields using a make statement; the new object can be referred
to explicitly by the name self, but only within the optional body of the make statement (8.17).

The usual scoping rules for self apply: the instance variables of self can also be directly named
as variables within the body of the make (7.5).

A maker cannot contain a return statement. Normal termination of a make statement
causes its execution to terminate normally. If the maker reaches the end of its body, it will
terminate with the exception failure(11 no return results").

A maker can be called only within a make statement (8.17) or a class constructor (7.4)

within some subclass of the maker's class; the maker cannot be called within its own class. It is
used in the subclass to initialize the instance variables inherited from a superclass, and thus its
use is limited to modules implementing subclasses of its class. It must be listed in the provides
list of its class.

USAGE NOTE

The purpose of a maker is to initialize the new object properly so that its fi.elds
that belong to the maker's class satisfy the rep invariant for that class. This con­
dition should be satisfi.ed both when the maker calls a maker of its superclass, a.nd
also when the maker returns, e.g.,

m () makes (C)
% do some preprocessing

make { ... ; % initialize class fields so that class rep I holds
sm () } % call superclass maker; at return all rep I's hold

then . . . % update class fields so that class rep I holds
end % all rep I's hold now

end m

10.5.3 Subclasses

To inherit code from a superclass, a class includes the inherits clause in its routine_interface:

inherits --+ inherits type_designator [{ renames [, renames] * }]
renames --+ idn for idn

10.5. Inheritance 49

The type_designator names the superclass. The inherits clause makes the superclass name and
the names of provided methods and routines visible to code in the subclass's module.

The inheritance hierarchy is independent of the type hierarchy. Therefore the type imple­
mented by the superclass might not be a supertype of the type implemented by the subclass.
For example, it might be convenient to implement stacks by inheriting from a class that im­
plements lists even though stack is not a subtype of list. Note also that either class might not
implement a type.

The instance variables declared in the subclass are in addition to those of the superclass:
objects of the subclass have all the inherited instance variables of the superclass as well as those
of the subclass. However, the inherited variables cannot be accessed directly in the subclass; it
can access them only by calling the superclass methods.

Objects of the subclass have all the methods of the superclass, although the hidden methods
aren't visible within the subclass. Visible superclass methods can be renamed: the second idn
in a renames clause gives the name of the method in the superclass; the first gives the new
name. For example,

C = class for T inherits D {foo for bar}

renames D's bar method to foo. All superclass methods not mentioned in a renaming clause
retain their original names. The effect of the renamings is that the superclass appears to have
been rewritten with the names needed in the subclass.

Visible superclass methods can be inherited by the subclass: this is accomplished by simply
not giving an implementation of a method of that name. Subclass methods can also be
implemented explicitly. If such a method has the same name as a visible superclass method,
the new implementation overrides the associated superclass method. In such a case, the subclass
object has both the overridden method and the new method; the overridden method is a private
method and it can be named using the the special form A idn. For example, if the subclass
overrides visible superclass method m, the overriding definition is named m, and the overridden
method is named A m. Thus code in the subclass and its module can continue to call the
overridden method using the A form.

Methods overridden by a subclass can affect the behavior of superclass methods. If a super­
class method calls a method n that has been overridden by the subclass, the implementation
of n provided by the subclass will run, not the implementation provided by the superclass. For
example, consider superclass method

m () returns (int)
return (self. n ())

end m

and suppose that n is visible and has been overridden in the subclass. When m is called on an
object of the subclass, its call of n goes to the overriding definition. Therefore, we require that
the overriding definition have a signature that is a subtype of the signature of the method it
overrides.

USAGE NOTE

This restriction means that the call of an overridden method in the inherited
superclass method will be legal. For the call to be sensible, the overridden method
ought to behave like that of the superclass as well.

50 Chapter 10: Implementations

Within a class-constructor for the subclass, or within a make statement of a maker for
the subclass, a maker of the superclass must be called to initialize the superclass fields of the
new object. For example, inside a parameterized maker make_stack[T], we might have a make
statement:

make { ... ; make_list[T](...) }

where stack is being implemented as a subclass of list and make_list is a maker provided for list.
A subclass type is not a subtype of the superclass type, nor is it a subtype of the type

implemented by the superclass, unless the type implemented by the subclass is a subtype of the
type implemented by the superclass. With one exception, ordinary type checking restrictions
apply to subclass objects, e.g., a subclass object cannot be assigned to a variable whose type
is the superclass type. The exception is that the code of a subclass and its module can call the
methods and routines provided by its superclass passing in subclass objects as arguments in
positions where an object of the superclass type, or of the type implemented by the superclass,
is required.

A subclass can use its hides clause to avoid exporting inherited methods to its subclasses
and can use its provides clause to export methods, and also routines and makers implemented
in its module. However, it cannot use the ~ notation to name methods in the provides clause,
and it cannot provide any methods or routines that have the superclass type in their signatures
(since its superclass is not visible to its subclasses).

10.5.4 Rules for Superclasses

A superclass should guarantee that subclasses cannot interfere with the correct functioning of
its code and the code in its module. This can be accomplished by care in implementing the
module and by using the provides and hides clauses appropriately. Below we discuss two
problems that must be avoided: masquerading, and propagation of bad information.

None of the methods or routines that the superclass provides to its subclasses should create
an alias for one of the superclass objects. If such a method or routine were provided, it could
be used by the code in the subclass and its module to cause subclass objects to masquerade as
superclass objects. Masquerading is bad because subclass objects may behave differently than
superclass objects. For example, if the bag copy method were implemented:

copy () returns (bag[T])
return (self)
end copy

it would create an alias for self. If copy were provided to subclasses of bag, return(x.copy())
within the subclass, where xis an object of the subclass, will cause a subclass object to appear
to be a bag object, even though it might not behave like one.

The second problem - propagation of bad information - occurs only if a provided method,
routine, or maker violates the superclass rep invariant, and is easily avoided by not providing
such violators. However, providing violators is sometimes useful, and they are bad only in
combination with propagators: methods, routines, and makers that perform incorrectly if the
superclass rep invariant doesn't hold for some object they access. For example, suppose the
bag copy method simply copied its instance variables; if the rep invariant weren't satisfied, the
result would be a bag object that did not satisfy the rep invariant. So, a class that provides
violators should not also provide propagator methods, routines, and makers to its subclasses.
In addition its module should not export to its users any propagator routines, and its other
classes should not export any propagator methods.

10.5. Inheritance 51

10.5.5 Example of Inheritance

This section illustrates the use of inheritance by means of a simple example.
Suppose we want to implement the stack abstraction specified in Section (9.4) as a subclass

of the bag implementation given in Section (10.4.3). To do so, at the least we must provide
some makers for stack to use: a maker for initializing an empty stack, and also some way of
initializing the stack returned by the copy method. We must also consider how to implement
the top method.

Here is one solution to these problems: bag provides its subclasses with access to the array
that contains its elements, e.g., by providing a geLels method, which returns the els component
of a bag. However, this method is effectively a violator, since it allows the subclass to modify
the array, thus violating the rep invariant. Therefore care must be taken to not provide any
propagators.

module implements create_bag

brep = class[T] for bag[T]
provides mk_brep, mk_copy, geLels
hides copy

sz: int implements size
els: array[T] implements geLels

% implementation of size method
% implementation of get_els method

% the rep invariant is: sz = els.size()

put (x: T)
els.append(x)
sz := sz + 1
end put

get ()returns (T) signals (empty)
x: T :=els.remove() except when bounds: signal empty end
sz := sz - 1
return (x)
end get

copy () returns (bag[T])
where T has copy () returns (T)

return (brep[T]{sz := sz, els:= els.copy()})
end copy

end brep

create_bag [T] () returns (bag[T])
return (brep[T]{sz := 0, els:= array_create[T]()})
end create_bag

mk_brep[T] () makes (brep[T])
make {sz := 0, els := array_create[T]()}
end mk_brep

mk_copy[T] (x: brep[T]) makes (brep[T])
where T has copy () returns (T)

bag

stack brep

srep

is a subtype of

implements

inherits from

A Reference Grammar

This section presents the grammar for Theta. This grammar is authoritative wherever it con­
flicts with syntax productions in the previous section of the manual.

program units, routine specifications, and equates

program_ unit -+ routine_interface I equate I type_ interface I module

routine_interface -+ proc_interface I iter_interjace

equate -+ idn = expr I idn = type_designator

prodnterface -+ idn [parms] formaLargs [returns] [signals] [where]

itednterface -+ idn [parms] formaLargs yields [signals] [where]

parms -+ [idn_list]

idn_list -+ idn [, idn] *
formaLargs -+ ([decl [, decl] *])

decl -+ idn_list : type_designator

returns -+ returns (type_list)

type_list -+ type_designator [, type_designator] *
yields -+ yields (typdist)

signals -+ signals (exception [, exception] *)
exception -+ name [(type_list)]

name -+ idn

where -+ where restriction [, restriction] *
restriction -+ idn has nonparam_interface [, nonparam_interface] *

nonparam_interface -+ idn nonparam_proc_sig I idn nonparam_iter_sig

nonparam_proc_sig -+ [type_list] [returns] [signals]

nonparam_iter_sig -+ [type_list] yields [signals]

54 Appendix A: Reference Grammar

type specifications

type_interface ---t idn = type [parms] [supertypes] [where]

[interface_or_equate] *
end idn

superlypes ---t < superinf o [, superinfo] *
superinfo ---t type_designator [{ renames [, renames] * }]
renames ---t idn for idn

interface_or_equate ---t routine_interface I equate

type_ designator ---t

simple_type_desig ---t

routine_type_desig ---t

parm_type_desig ---t

pa rm_ type --+

actual_parms ---t

tagged_ type_ desig --+

tagged_ type ---t

field ---t

type designators

simple_type_desig I routine_type_desig I parm_type_desig I tagged_type_desig

idn I null I bool I char I int I real I string I any

proc nonparam_proc_sig I iter nonparam_iter_sig

parm_type actuaLparms

idn I array I sequence I vector I maybe

[type_list]

tagged_type [field [, field] *]
record I struct I oneof

idn_list : type_designator

modules

module --+ module [implements] [impLelt] * end

implements --+ implements exported_item [, exported_item] *
exported_item --+ idn [{ idn_list }] I idn actuaLparms { idn_list }

impLelt --+ routine_def I class_def I maker_def I equate

routine_def --+ routine_interface body end idn

maker_def --+ maker_interface body end idn

makednterface --+ idn [parms] formaLargs makes [signals] [where]

makes --+ makes (type_designator)

body --+ [equate] * [statement] *
class_def --+ idn = class [parms] [for-type] [inherits]

[where] [provides] [hides]

[equate_or_ivar_decl] *
[equate_or_routine_def] *
end idn

for_type --+ for type_designator

inherits --+ inherits type_designator [{ renames [, renames] * }]
provides --+ provides idn_list

hides --+ hides idn_list

equate_or_ivar_decl --+ equate I ivar_decl

ivar_decl --+ decl I decLwith_impls

decLwith_impls --+ idn : type_designator implements idn [, idn]

equate_or_routine_def --+ equate I routine_def

55

56

statements

statement ---+ decl
lhs : = expr [, expr] *
lhs : = invoc
simp{e_invoc

primary [expr] : = expr

return [(expr [, expr] *)]
yield (expr [, expr] *)

Appendix A: Reference Grammar

signal name [(expr [, expr] *)]
exit name [(expr [, expr] *)]
if expr then body [elseif expr then body] * [else body] end
while expr do body end
for for_idns in invoc do body end
break
continue
begin body end

tagcase expr tag_arm [tag_arm] * [others : body] end

typecase expr type_arm [type_arm] * [others : body] end

statement except [handler] * [others [(idn : string)] : body] end

statement resignal name [, name] *
make { [ivar _in its] } [then body end]

lhs ---+ var [, var] * I decl [, decl] *
var ---+ idn I primary . idn

mvoc ---+ expr ([args])

args ---+ expr [expr] * [, varying_args] I varying_args

varying_args ---+ .. I .. expr [, expr] *
simple_invoc ---+ primary ([args])

for_idns ---+ idn_list I decl [, decl] *
tag_arm ---+ when name [, name] * [(idn : type_designator)] body

type_arm ---+ when type_designator [(idn)] : body

handler ---+ when name [, name] * [(decl [, decl] *)] body

ivar_inits ---+ field_inits ; maker_invoc I field_inits I maker_invoc

field_inits ---+ field_init [, field_init] *
field_init ---+ idn : = expr

makednvoc ---+ idn [actuaLparms] ([args])

expr ---t simple_expr
expr . idn
expr . method_idn

in voe
expr [expr J

expr
- expr

expressions

expr binary_op expr
(expr)

primary ---t simple_expr
primary . idn
primary . method_idn
simple_invoc
primary [expr]

simple_expr ---t literal

idn [actuaLparms]
self
method_idn
tagged_type_desig { field_inits }

type_designator { [ivar_inits] }
bind (expr bind_args)

method_idn ---t [-] idn [actuaLparms]

bind_args ---t [, bind_arg] * [, varying_args]

bind_arg ---t expr I *
literal ---t nil

true

false
inUiteral
char _literal
reaUiteral
string_literal

binary_ op ---t ** I / / I I I * I 11 I + I - I < I < = I

57

I>= I> I

B Built-in Types and Parameterized Types

This appendix supplements the material of Chapter 3 by providing a preliminary description of
the built-in types and parameterized types. The definitions should be considered preliminary;
we may very well make changes to them later.

All the built-in types except for any have equal, similar, copy, and unparse methods. These
methods are optional for the parameterized types such as array[T]: an instantiation will have
one of these methods only if each of the actual parameter types has the method.

None of the built-in types and parameterized types can have subtypes, except for any, which
is the supertype of all types. There is no type hierarchy relating any of the other built-in types,
except that there is a rich hierarchy for routine types.

The built-in types and parameterized types are implemented by classes that cannot be
sub classed.

The Theta environment contains a number of equates that describe various properties and
limitations of the built-in types. The corresponding type definitions in this Appendix describe
these equates in more detail.

B.1 Any

The type any is the supertype of all types. It has no methods or associated routines.

B.2 Null

The type null is an immutable type with a single object, denoted by the literal nil. It is used
primarily as a placeholder in a oneof to handle the "empty" case.

Methods for type null

equal (n: null) returns (bool)
% effects returns true

similar (n: null) returns (bool)
% effects returns true

copy () returns (null)
% effects returns nil

unparse () returns (string)
% effects returns the three-character string "nil"

B.3. Bool

B.3 Bool

Type bool is an immutable type with two objects, denoted by the literals true and false.

Methods for type bool

not () returns (bool)
% effects returns -self

and (x: bool) returns (bool)
% effects returns the boolean and of self and x

or (x: bool) returns (bool)
% effects returns the boolean or of self and x

xor (x: bool) returns (bool)
% effects returns the boolean xor of self and x

equal (x: bool) returns (bool)
% effects returns true if self and x are either both true or
% both false; else returns false

similar (x: bool) returns (bool)
% effects returns true if self and x are either both true or both
% false; else returns false

copy () returns (bool)
% effects returns self

unparse () returns (string)
% effects if self= true returns the four-character string "true";
% else returns the five-character string "false"

59

60 Appendix B: Built-in Types and Parameterized Types

B.4 Int

Type int contains a subset of the integer objects. Its objects are immutable.
Int provides a number of literal forms for its objects. lnts can be denoted in any base from

2 to 36 inclusive using the literal form:

integer_literal -t [base _] integer_digits

The base and the underscore can be omitted to use the default base 10. The base is always
interpreted as a decimal number and must be between 2 and 36 inclusive. The digits of the
integer are indicated using the numbers 0 to 9 and, if necessary, the appropriate letters of the
alphabet. For example, for base 16, the digits are 0 ... 9, a ... f. The upper and lower case
characters of the alphabet are considered equivalent in integer literals. No spaces are allowed
within an integer literal. Here are some examples of literals with their corresponding base 10
form:

Literal Base 10 form
25 25
10_25 25
16_lc 28
16_1(28
8-72 58
3_2001 55
2_1101 13

The following equates in the Theta environment denote the range of representable integers.

inLmax
inLmin

an integer value indicating the smallest representable integer
an integer value indicating the largest representable integer

Integer values are representable in 32 bits and therefore under a twos-complement machine
representation for integers, inLmax will be 231 - 1 and inLmin will be -231 .

Methods for type int

negate ()returns (int) signals (overflow)
% effects returns -self; signals overflow if the result is not
% in the representable range.

add (x: int) returns (int) signals (overflow)
% effects returns self+ x; signals overflow if the sum is not
% in the representable range.

subtract (x: int) returns (int) signals (overflow)
% effects returns self - x; signals overflow if the result is not
% in the representable range.

multiply (x: int) returns (int) signals (overflow)
% effects returns self* x; signa Is overflow if the result is not
% in the representable range.

divide (x: int) returns (int) signals (zero_divide, overflow)
% effects if x = 0 signals zero_divide. Otherwise returns self /x.
% The result is rounded toward negative infinity. Signals

B.4. Int

% overflow if the result is not in the representable range.

mod (x: int) returns (int) signals (zero_divide)
% effects if x = 0 signals zero_divide. Otherwise returns self mod x.
% This is the remainder when self is divided by x, and
% is defined such that self= (self/x) * x + self.mod(x)

power (x: int) returns (int) signals (negative_exponent, overflow)
% effects if x < 0, signa Is negative_exponent. Otherwise returns self to the x power;
% If self= 0, then self.power(O) is defined to be 1.
% Signals overflow if the result is not in the representable range.

abs () returns (int) signals (overflow)
% effects returns lselfl; signals overflow if the result is not in the representable range.

to (bound: int) yields (int)
% effects yields the ints from self to bound in order; if bound < self yields nothing

to_by (bound: int, step: int) yields (int)
% effects yields the ints self, self+ step, ... up to bound inclusive.

max (x: int) returns (int)
% effects returns the larger of self and x

min (x: int) returns (int)
% effects returns the smaller of self and x

It (x: int) returns (bool)
% effects returns (self< x)

le (x: int) returns (bool)
% effects returns (self :::; x)

gt (x: int) returns (bool)
% effects returns (self> x)

ge (x: int) returns (bool)
% effects returns (self~ x)

equal (x: int) returns (bool)
% effects returns (self= x)

similar (x: int) returns (bool)
% effects returns (self= x)

copy () returns (int)
% effects returns self

unparse () returns (string)
% effects returns a string representing self in base 10. E.g., if self is 123, returns
% the three character string "123"

to_real () returns (real)
% effects converts self to a real and returns the result;

61

62

%
%

Appendix B: Built-in Types and Parameterized Types

rounds toward zero;
assumes the range of real values covers range of integer values

to_char ()returns (char) signals (illegal_char)
% effects If self represents the ASCII code for a character, then
% returns that character, else signals illegal_char.

B.5. Real 63

B.5 Real

A real is an immutable, floating-point number. It is represented by a subset of the IEEE
single-precision format floating-point numbers, with the following changes:

• Positive and negative infinity are not representable.

• Positive and negative zero are not distinguishable.

• Denormalized values are not used.

The following equates from the Theta environment describe specifics of the range, granularity
and format of the real numbers as represented in Theta:

real_emin
real_emax
real_precision

an integer value indicating the smallest binary exponent.
an integer value indicating the largest bi nary exponent.
an integer value indicating the number of binary digits of precision available
in reals.

The following values describe the range of values and the granularity.

real_max
real_min
real_epsilon

a real value indicating the maximum value of a real.
a real value indicating the minimum value of a normalized real number.
a real value indicating the value of a bit in the least significant position
in the fraction when the exponent is zero.

real_round..style an enumerated value indicating the rounding style:
reaLround_toward__zero

Note that

real_max

real_min
real_epsilon

rea Lrou nd _towa rd_m in us_i nfi n ity
reaLround_other

= (1 _ 2-reaLprecision) * 2reaLemax
= 2(reaLemin-1)
= 2(1-reaLprecision)

Real literals can have any one of the following forms:

reaUiteral --+ [digits] digits [exponent]
I digits exponent

exponent --+ e [+] digits

E [+] digits

where digits is a non-empty sequence of digits in the range 0-9. No spaces are allowed in the
middle of a reaUiteral. Here are some examples of legal reaUiterals:

2.6
25.0
.05
5.2e-3
5.2e+3
2e10
.02E2
.OE5

64 Appendix B: Built-in Types and Parameterized Types

Note that a decimal point must be followed by one or more digits, so the following are not
legal real literals:

1.
45.e6

Methods for type real

negate () returns (real)
% effects returns -self.

add (x: real) returns (real) signals (overflow, underflow)
% effects returns self+ x. Signals overflow if result is too big to be represented.
% Signals underflow if result it too close to zero to be represented.

subtract (x: real) returns (real) signals (overflow, underflow)
% effects returns self - x. Signals overflow if result is too big to be represented.
% Signals underflow if result it too close to zero to be represented.

multiply (x: real) returns (real) signals (overflow, underflow)
% effects returns self* x. Signals overflow if result is too big to be represented.
% Signals underflow if result it too close to zero to be represented.

divide (x: real) returns (real) signals (overflow, underflow, zero_divide)
% effects returns self/ x. Signals overflow if result is too big to be represented.
% Signals underflow if result it too close to zero to be represented.
% Signals zero_divide if x = 0.

power (x: real) returns (real) signals (overflow, underflow, complex_result, zero_divide)
% effects returns self raised to the x power.
% Signals overflow if result is too big to be represented.
% Signals underflow if result it too close to zero to be represented.
% Signals zero_divide if self = 0 and x < 0.
% Signals complex_result if self< 0 and x has a fractional component.

abs () returns (real)
% effects returns the absolute value of self.

exponent () returns (int) signals (undefined)
% effects returns n such that 2n-l ::;: self < 2n
% Signals undefined if self = 0.

mantissa () returns (real)
% effects returns x such that x x 2self.exponent() self

max (x: real) returns (real)
% effects returns the larger of self and x

min (x: real) returns (real)
% effects returns the smaller of self and x

to_int () returns (int) signals (overflow)
% effects returns self rounded to the nearest integer (towards zero, in the case of a tie).

B.5. Real

% Signals overflow if the rounded number can not be represented as an integer.

floor () returns (real)
% effects returns self rounded toward negative infinity.

ceiling ()returns (real)
% effects returns self rounded toward positive infinity.

It (x: real) returns (bool)
% effects returns (self< x)

le (x: real) returns (bool)
% effects returns (self ~ x)

gt (x: real) returns (bool)
% effects returns (self > x)

ge (x: rea I) returns (bool)
% effects returns (self:;>- x)

equal (x: real) returns (bool)
% effects returns (self= x)

similar (x: real) returns (bool)
% effects returns (self= x)

copy () returns (real)
% effects returns self

unparse () returns (string)
% effects returns the string representation of a literal corresponding to self.
% The general form is [-]intpart.fractpart[e+/-exp].

65

66 Appendix B: Built-in Types and Parameterized Types

B.6 Char

Type char contains the ASCII characters. Its objects are immutable. Char literals are enclosed
in single quotes. Printing ASCII characters (octal 40 through octal 176), other than single
quote or backslash, can be written as that character enclosed in single quotes. Any character
can be written by enclosing one of the following escape sequences in single quotes:

escape sequence character

\'
\"
\\
\t
\v
\n
\r

single quote
double quote
backslash
horizontal tab
vertical tab
newline character
carriage return

\f
\b
\ddd

form feed (or new page)
backspace
octal value (specified by exactly three octal digits)

If the octal value specified in the \ddd form does not correspond to a legal ASCII value, there
will be a compile-time error. Examples of character literals are

" '7' I I 'Ill J\11' '\" '\ ' '\000'
' r a J ' ' r n'

Methods for type char

to_int () returns (int)
% effects returns the integer ASCII code for self.

to_string () returns (string)
% effects returns a one character string containing self.

It (c: char) returns (bool)
le (c: char) returns (bool)
ge (c: char) returns (bool)
gt (c: char) returns (bool)

% effects these orderings are consistent with the ASCII numbering of chars.

equal (c: char) returns (bool)
% effects returns true if and only if self is same as c

similar (c: char) returns (bool)
% effects returns true if and only if self is same as c

copy () returns (char)
% effects returns self

unparse () returns (string)
% effects If self is a printable character, then returns a one character string
% containing self. Else returns a string containing an escape sequence
% that represents self.

B.7. String 67

B.7 String

A string is an immutable sequence of character. It is indexable; the low bound of a string is 1.
The size of strings is limited to what can be indexed using ints. Thus the largest string has
high bound (and size) i nLmax.

A string literal is written as a sequence of zero or more character representations enclosed
in double quotes. Within a string literal, a printing ASCII character other than double quote
or backslash is represented by itself. Any character can be represented by using the escape
sequences listed for characters. Examples of string literals are

"", "ltem\tCost", "hello\n", "\"string\"", 11 'c' 11

Methods for type string

length () returns (int)
% effects returns the size of self.

empty () returns (bool)
% effects returns (self.length()= 0)

fetch (i: int) returns (char) signals {bounds)
% effects if i is within bounds returns the ith character of self else signals bounds.

rest (i: int) returns (string) signals (bounds)
% effects returns a string containing self[i], ... ,self[self.length()];
% signals bounds if i is not a legal index in self.

first (i: int) returns (string) signals (bounds)
% effects returns a string containing self[l]. ... , self[i];
% signals bounds if i is not a legal index in self.

concat (s: string) returns (string)
% effects returns a string containing the characters of self followed by the
% characters of s; signals failure if the resulting string is bigger
% than what can be represented

append (c: char) returns (string)
% effects returns a string containing the characters of self followed by
% c; signals failure if the resulting string is bigger than what
% can be represented. This method has the same effect as
% self.concat(c.to_string())

extract (at: int, count: int) returns (string) signals (bounds, negative_size)
% effects If count is negative, signals negative_size.
% If at isn't a legal index in self, signals bounds.
% Otherwise returns a new string containing the characters
% self[at], self[at+ 1], ... ; the new string contains
% min(count, self.length() - at+ 1) characters. For example, ifs= "abcdef", then
% s.substr(2, 3) = "bed"
% s.substr(2, 7) = "bcdef"

chars ()yields (char)
% effects yields the characters of self in order from the first to last.

68

It (s: string) returns (bool)
le (s: string) returns (bool)
ge (s: string) returns (bool)
gt (s: string) returns (bool)

Appendix B: Built-in Types and Parameterized Types

% effects these are the usual lexicographic ordering operations based on the
% ASCII ordering of the characters contained in self ands.

equal (s: string) returns (bool)
% effects returns (self= s)

similar (s: string) returns (bool)
% effects returns (self= s)

copy () returns (string)
% effects returns a string that contains self[l], ... ,self[self.size()]

unparse () returns (string)
% effects Returns the concatenation of the strings produced by calling unparse
% on all of the characters contained in self.

Routines for type string

string_create (chars: sequence[char]) returns (string)
% effects returns a new string containing the
% characters in the sequence in order.

B.8. Array 69

B.8 Array

An array is an indexable, mutable collection. It is a parameterized type; the actual value of the
parameter when array is instantiated determines the type of element in the array. For example,
all elements of an array[foo] will belong to subtypes of foo.

An array can grow and shrink dynamically. The initial bounds of an array are determined
when it is created. As an array grows (shrinks) its length increases (decreases). The low bound
is always less than or equal to the high bound, except if the array is empty; in this case, a.low()
= a.high() + 1. It is always the case that a.size = a.high() - a.low() + 1. The array bounds are
limited to what can be indexed using ints and to a size that can be represented as an int; thus
the low bound of an array must be 2: inLmin, and the high bound and size must be ::S inLmax.

Consider an array a. The legal indexes of a are all integers i such that a.low() ::S i ::S a.high().
The elements in the array occur at element positions a.low(), a.low() + 1, ; if i is a legal index,
then we refer to the element it indexes as a[i]. E.g., if a has low bound -2 and contains 1, 2 and
3, then -2, -1, and 0 are legal indexes and a[-2] , a[-1], and a[O] are legal array elements.

The array routine array_create allows the new array to be created using the varying argu­
ments form (6.1). For example

a: array[int] := array_create[int](O, .. 6, 9, 17)

creates a new array with low bound 0 and containing the elements 6, 9, and 17.

Methods for type array[T]

empty () returns (bool)
% effects returns true if the array is empty, else returns false.

length () returns (int)
% effects returns the length of the array (a count of the number of elements it contains).

low () returns (int)
% effects returns the low bound of the array.

high () returns (int)
% effects returns the high bound of the array.

fetch (i: int) returns (T) signals (bounds)
% effects if i is not a legal index in self, signals bounds. Otherwise
% returns the element self[i].

bottom () returns (T) signals (bounds)
% effects if self is empty, signals bounds. Otherwise returns the first element of self.

top () returns (T) signals (bounds)
% effects if self is empty, signals bounds. Otherwise, returns the last element of self.

store (i: int, v: T) signals (bounds)
% modifies self
% effects If i is not a legal index in self, signals bounds.
% Otherwise, sets the element at self[i] to v.

append (x: T)
% modifies self

70

% effects
%
%

Appendix B: Built-in Types and Parameterized Types

If adding x to the high end of self would cause the high bound
or size of self to become too large, signals failure.
otherwise, adds x to the high end of self.

remove () rettll'ns (T) signals (bounds)
% modifies self
% effects
%

if self is empty signals bounds.
otherwise, removes and returns the highest element of self.

append_low (x: T)
% modifies self
% effects if adding x to the low end of self would cause the low bound
% or size of self to exceed the limits, signals failure.
% otherwise adds x to the low end of self.

remove_low () returns (T) signals (bounds)
% modifies self
% effects if self is empty signals bounds.
% otherwise, removes and returns the lowest element of self.

predict (cnt: int)
% effects the method has no effect on the array state. However, it predicts
% that the array will grow to have size cnt, and the append calls
% that cause the array to grow may operate faster as a result
% of the call on predict.

seLlow (lb: int)
% modifies self
% effects
%
%
%

if changing the low bound of self to lb would cause its size or
high bound to become too large, signals failure.
otherwise, sets the low bound of self to lb and renumbers the
array elements accordingly.

trim (lb: int, count: int) signals (negative_size, bounds)
% modifies self
% effects if count < 0, signals negative_size. if lb< low() or lb > high() + 1,
% signals bounds. Otherwise, removes all elements with indices less than lb
% or greater than lb + count - 1; the new low bound is lb. For example,
% a.trim(3, 2), where a is a 5 element array[int] with low bound 0 and
% containing the elements 1, 2, 3, 4, 5, changes a to have low bound 3 and
% contain the two elements 4, 5. a.trim(3, 12) has the same effect.

indexes () yields (int)
% effects yields the legal indices of self from the low bound of pre(self) to
% the high bound of pre(self), where pre(self) is the value of self at
% the time of the call. Note that any modifications to the array done
% in the loop body do not affect the integers yielded by this method.

elements () yields (T)
% effects The effect of x.elements() is equivalent to the following body:
% for i: int in x.indexes() do
% yield (x[i]) except when bounds: signal failure(...) end
% end
% Thus if the loop body does not modify the array, the array

B.8. Array

%
%

elements are yielded in order. Note, however, that changes
made by the loop body can affect what is yielded.

equal (a: array[T]) returns (bool)
% effects returns true if self and a are the same array object.

similar (a: array[T]) returns (bool)
where T has similar (T) returns (bool)

% effects returns true if self and a have the same size and low bound and the elements at
% corresponding positions are similar (using the T similar method to do the test).

copy () returns (array[T])
where T has copy () returns (T)

% effects returns a new array with the same size and low bound as self and containing
% a copy of each element of self (using T copy) in the corresponding positions.

unparse () returns (string)
where T has unparse () returns (string)

% effects produces a string representation of the contents of self using the
% T unparse method to produce string images of the elements.
% The resulting string has the form array[L: e£, ... ,eH],
% where ei is obtained by calling the T unparse method for that element,
% and L and H are the low and high bounds of the array.

Routines for type array[T]

array_new[T] ()returns (array[T])
% effects creates new empty array with a low bound of 1

array_create[T] (lb: int, els: sequence[T]) returns (array[T])
% effects creates a new array with low bound lb containing the elements of the
% sequence in order; signals failure if the high bound of the
% resulting array would be too large.

array_generate[T] (lb: int, els: iter () yields (T)) returns (array[T])
% effects returns a new array containing the elements yielded by the
% iterator in order; signals failure if the high bound of the
% resulting array would be too large.

71

72 Appendix B: Built-in Types and Parameterized Types

B.9 Sequence

A sequence is an immutable indexed collection. It is a parameterized type; the actual parameter
of an instantiation determines the type of the sequence elements. The low bound of a sequence
is always 1. The size of a sequence must be represented as an int and is therefore ~ inLmax.

The sequence routine sequence_create allows the new sequence to be created using the varying
arguments form. (6.1). For example

s: sequence[int] := seq uence_create[int] (.. 6, 9, 17)

creates a new sequence containing the elements 6, 9, and 17.

Methods for type sequence[T]

empty () returns (bool)
% effects returns true if the sequence is empty, else returns false.

length () returns (int)
% effects returns the length of the sequence (a count of the number of elements it contains).

fetch (i: int) returns (T) signals (bounds)
% effects if i is not a legal index in self, signals bounds. Otherwise returns the
% ith element.

replace (i: int, v: T) returns (sequence[T]) signals (bounds)
% effects if i is not a legal index in self, signals bounds. Otherwise, returns a new
% sequence containing the elements of self, except that the ith element is v.

append (x: T) returns (sequence[T])
% effects returns a new sequence containing the elements of self extended by x on the
% high end; signals failure if the size of the new sequence would be too large.

extract (at: int, count: int) returns (sequence[T]) signals (bounds, negative_size)
% effects if "at" is not a legal index, signal bounds, else if "count"
% is negative, signal negative_size. Otherwise,
% return a new sequence containing the elements
% self[at], ... , self[min(at + count - 1, self.length())]

concat (s: sequence[T]) returns (sequence[T])
% effects returns a new sequence containing the elements of self followed by the elements
% of s; signals failure if the size of the new sequence would be too large.

indexes () yields (int)
% effects yields the legal indexes of self

elements () yields (T)
% effects yields the elements of self in order from low bound to high bound.

equal (s: sequence[T]) returns (bool)
where T has equal (T) returns (bool)

% effects returns true if self and s are indistinguishable, i.e. , they are
% the same size and their corresponding elements are equal.

similar (s: sequence[T]) returns (bool)
where T has similar (T) returns (bool)

B.9. Sequence

% effects
%

returns true if self and s are the same size and their corresponding
elements are similar, using T similar to do the test.

copy () returns (sequence[T])
where T has copy () returns (T)

% effects returns a new sequence with the same size as self and containing a copy
% of each element of self (using T copy) in the corresponding positions.

unparse () returns (string)
where T has unparse () returns (string)

% effects produces a string representation of the contents of self using the
% T unparse method to produce string images of the elements.
% The resulting string has the form vector[e1 , ... en].
% where ei is obtained by calling the T unparse method for that element.

Routines for type sequence[T]

sequence_create[T] (els: sequence[T]) returns (sequence[T])
% effects returns a new sequence containing the
% elements of els in order.

sequence_generate[T] (n: int, els: iter ()yields (T)) returns (sequence[T])
signals (negative....size, noLenough)
% effects If n < 0, signals negative_size. If the iterator yields less than n elements,
% signals noLenough. Otherwise, returns a new sequence containing the
% first n elements yielded by the iterator in order.

73

74 Appendix B: Built-in Types and Parameterized Types

B.10 Vector

A vector is a fixed-size , mutable, homogeneous collection with a low bound of 1. The elements
of a vector[T] are all initialized with some element of type T. The size of a vector must be
representable by an int and therefore must be less than or equal to inLmax.

The vector routine vector _create allows the new vector to be created using the varying
arguments form (6.1). For example

v: vector[int] := vector _create[int](.. 6 , 9, 17)

creates a new vector containing the elements 6, 9, and 17.

Methods for type vector[T]

length () returns (int)
% effects returns the size of the vector (a count of the number of elements it contains).

fetch (i: int) returns (T) signals (bounds)
% effects if i is not a legal index in self, signals bounds. Otherwise
% returns the element self[i].

store (i: int , v: T) signals (bounds)
% modifies self
% effects If i is not a legal index in self, signals bounds.
% Otherwise, sets the element at self[i] to v.

indexes () yields (int)
% effects yields the legal indexes of self

elements () yields (T)
% effects The effect of x.elements() is equivalent to the following body:
% for i: int in x.indexes() do yield(x[i]) end
% note that stores to the vector may affect the yielded values.

equal (v: vector[T]) returns (bool)
% effects returns true if self and a are the same object.

similar (v: vector[T]) returns (bool)
where T has similar (T) returns (bool)

% effects returns true if self and v have the same size and the elements at
% corresponding positions are similar (using the T similar method to do the test).

copy () returns (vector[T])
where T has copy () returns (T)

% effects returns a new vector with the same size as self and containing a copy
% of each element of self (using T copy) in the corresponding positions.

unparse () returns (string)
where T has unparse () returns (string)

% effects produces a string representation of the contents of self using the
% T unparse method to produce string images of the elements.
% The resulting string has the form vector[e1 , ... e.,.],
% where ei is obtained by calling the T unparse method for that element.

Routines for type vector[T]

B.10. Vector 75

vector_fill[T] (count: int, elem: T) returns (vector[T]) signals (negative_size)
% effects creates a new vector containing count elements each of which is elem.
% Signals negative size if count is negative.

vector _create[T] (els: sequence[T]) returns (vector[T])
% effects returns a new vector containing the elements of the
% the sequence in order.

vector_generate[T] (n: int, els: iter ()yields (T)) returns (vector[T])
signals (negative_size, not-enough)
% effects If n < 0, signals negative_size. If the iterator yields less than n elements,
% signals not-enough. Otherwise, returns a new vector containing the
% first n elements yielded by the iterator in order.

76 Appendix B: Built-in Types and Parameterized Types

B.11 Record

Records are mutable tuples consisting of a set of fields. An instantiation of the record type
provides the name and type of each field of the record objects belonging to that type; there
must be at least one field, and the field names must all be distinct. The case of the field names
is not significant. Associated with each record type there is a record constructor that can be
used to create new records of the type (7.3). Each record type has a pair of methods for each
field that allow users to read and modify the field; for a field named A, these methods are named
A and seLA. Here is an example:

rt= record[a: int, b: real]
x: rt
x := rt{a: 3, b: 1.1}
i: int := x.a()
x.set_b(l.7)

% a record type
% x will denote objects of this record type.
% construct an object
% read the a component
% modify the b component

In determining record type equality, the field names and types are significant and so is the order
of the fields (3).

A record type rt has the following methods. (st is the related struct type, i.e., it has the
same field names and types in the same order.)

Methods for record type rt

a () returns (T)
% (here a is a field name and Tis the corresponding type)
% effects returns the object stored in field a of self

seLa (x: T)
% (here a is a field name and Tis the corresponding type)
% modifies self
% effects stores x in field a of self

r _gets_r (x: rt)
% modifies self
% effects replaces the fields of self with the objects in the corresponding fields of x

r _gets_s (x: st)
% modifies self
% effects replaces the fields of self with the objects in the corresponding fields of x

to_s () returns (st)
% effects returns an st object containing the elements of self in the corresponding fields.

equal (x: rt) returns (bool)
% effects returns true if self and x are the same object else returns false.

similar (x: rt) returns (bool)
where all field types T of rt have similar(T) returns (bool)

% effects returns true if all corresponding fields of self and x are similar
% (using the T similar method for that field) else returns false

copy () returns (rt)
where all field types T of rt have copy () returns (T)

% effects returns a new record each of whose fields contains a

B.12. Struct

B.12

%
%

copy of the object (obtained by ca Iii ng that object's copy
method) in the corresponding field of self

unparse () returns (string)
where all field types T have unparse ()returns (string)

% effects returns a string representing the value of self. The form is
% record{n1 : fi, ... ,n.,,: fn}. where ni is the name of the ith
% record field and h is obtained by calling the unparse method
% for the object in the corresponding field.

Struct

77

Structs are immutable records. Like the record types, there is a method to read each field of
a struct. Structs are created using constructors; the form of these constructors is identical to
those for type record.

A struct type st has the following methods. (rt is the related record type, i.e., it has the
same field names and types in the same order.)

Methods for struct type st

a () returns (T)
% (here a is a field name and Tis the corresponding type)
% effects returns the object stored in the a component of self.

replace_a (x: T) returns (st)
% effects returns a new struct containing the objects in the
% corresponding fields of self except that x is in field a

to_r () returns (rt)
% effects returns a new record whose fields contain the objects in the
% corresponding fields of self

equal (x: st) returns (bool)
where all field types T of st have equal (T) returns (bool)

% effects returns true if x and self are pairwise equal (using the equal
% methods for the fields) else returns false

similar (x: st) returns (bool)
where all field types T of st have similar (T) returns (bool)

% effects returns true if x and self are pairwise similar (using the similar
% methods for the fields) else returns false

copy () returns (st)
where all field types T of st have copy () returns (T)

% effects returns a new struct containing as components copies of the objects
% (using the object's copy method) in the corresponding fields of self.

unparse () returns (string)
where all field types T of st have unparse () returns (string)

% effects returns a string representing the value of self. The form of the
% string is struct{ n 1 : fi , ... , nn: f n}, where ni is the name of the
% ith struct field and f i is the unparsing of that field.

78 Appendix B: Built-in Types and Parameterized Types

B.13 Oneof

Oneofs are immutable tagged objects. An instantiation of the oneof type provides the name and
associated type of each possible tag for the oneof objects belonging to that type; there must be
at least one tag, and the tag names must all be distinct. Each object of the type has one of
these tags, and a value of the associated type. Methods exist to determine the tag and value
of a oneof object, but usually oneofs are decomposed using the tagcase statement (8.11).

Oneofs are created using constructors. Associated with each oneof type there is a set of
constructors, one for each tag of the type. Here is an example:

ot = oneof[some: int, none: null] % a oneof type
x: ot % a variable to denote objects of this type
x := ot{ none: ni I} % creating an object with the none tag

if x. is_none() then
x := ot{some: 7}
end

% checking the tag
% creating an object with the some tag

tagcase x
when none: ...

% decomposing a oneof using the tagcase statement

when some(y: int): ...
end

Methods for oneof type ot

is_a () returns (bool)
% (here a is a tag name and T is the corresponding type)
% effects returns true if the tag of self is a else returns false

value_a () returns (T) signals (wrong_tag)
% (here a is a tag name and T is the corresponding type)
% effects if the tag of self is a returns the associated object else signa Is wrong_tag

equal (x: ot) returns (bool)
where all field types T have equal (T) returns (bool)

% effects returns true if self and x have the same tag and equal values (determined
% by calling the equal method for the value).

similar (x: ot) returns (bool)
where all field types T have similar (T) returns (bool)

% effects returns true if self and x have the same tag and similar values (determined
% by calling the similar method for the value).

copy () returns (ot)
where all field types T have copy () returns (T)

% effects returns a new oneof object with the same tag as self and whose value is a
% copy (obtained by calling the value's copy method) of that of self

unparse () returns (string)
where all field types T have unparse () returns (string)

% effects returns a string representing the tag and value of self. The form of the string
% is oneof{ t: v }, where t is a string corresponding to the current tag and v is
% produced by calling the unparse method of the value

B.14. Maybe 79

B.14 Maybe

Maybes are just oneofs with a somewhat more convenient syntax and a possibly more efficient
implementation; maybe[T] = oneof[empty: null, full: T]. The methods and routines for a maybe
type are exactly as defined for the associated oneof type.

B.15 Routines

Routines (procedures and iterators) are immutable. They have only equal, similar, copy, and
unparse methods. The equal and similar methods have weak definitions (see below); they are pro­
vided mainly so that structure and collection types that contain them can have these methods.
E.g., records of type

record[i: int, p: proc(int) returns(int)]

will have equal and similar methods, since both field types have these methods.

Methods for routine type rt

equal (p: rt) returns (bool)
similar (p: rt) returns (bool)

% effects if a call returns true, then self and p are guaranteed to be
% indistinguishable: they return the same results for calls with
% equal arguments and have the same side effects for those calls.
% if the call of equal or similar returns false, there are no
% guarantees: self and p might or might not be indistinguishable.

copy () returns (rt)
% effects returns self.

unparse () returns (string)
% effects Returns a string that indicates whether this routine is a procedure or an
% iterator. The implementation is free to put more information about the
% routine (for example the routine signature) in the returned string.

C Additional Types and Routines

In addition to the built-in types and routines described in Appendix B, we expect most Theta
implementations will provide a standard set of other useful types and routines. (They are
"standard" in the sense that most implementations, if they provide them at all, will provide
the full set ; Theta implementations are not required to provide any of them.)

The standard types and routines can all be implemented using the built-in types and rou­
tines; they have no special status in the language. However, the Theta implementation is free
to implement some of these types and routines directly rather than on top of the built-ins.
Therefore, these types and routines, if available, may be more efficient than corresponding
user-defined types and routines.

The full set of standard types and routines has not been determined; a future version of the
reference manual will provide the definitive list. We expect to include some parsing routines
(for converting strings to built-in types). Two types that we expect to include are set and bag
(multiset).

Bibliography

[1] B. Liskov, M. Day, S. Ghemawat, R. Gruber, U. Maheshwari, A. Myers, and L. Shrira. The
Language-Independent Interface of the Thor Persistent Object System. In 0. Bukhres and
A. Elmagarmid, editors, Object-Oriented Multidatabase Systems. Prentice-Hall, 1994. Also
available as Programming Methodology Group Memo 80, MIT Lab. for Computer Science,
Cambridge, MA, March 1994.

[2] B. Liskov, R. Gruber, P. Johnson, and L. Shrira. A Highly Available Object Repository
for Use in a Heterogeneous Distributed System. In Proceedings of the Fourth International
Workshop on Persistent Object Systems, pages 255-266, Martha's Vineyard, MA, September
1990. Proceedings published as Implementing Persistent Object Bases: Principles and Prac­
tice, A. Dearle, G. Shaw, and S. Zdonik, editors, Morgan Kaufmann, 1991. Also available as
Programming Methodology Group Memo 70, MIT Lab. for Computer Science, Cambridge,
MA, August 1990.

[3] B. Liskov and J. Wing. Family Values: A Behavioral Notion of Subtyping. ACM Transac­
tions on Programming Languages and Systems, November 1994.

Index

actual type, 15
any, 7, 58

as a supertype, 1, 10, 38
apparent type, 15

of expressions, 19
arguments

varying number of, 17
arithmetic operators, 60, 64
array-like types, 25, 28
arrays, 7, 69

creation using varying arguments, 69
short form for fetch method, 25
short form for store method, 28
type instantiation, 8

assignment, 15
legality of, 15
multiple, 15
within a declaration, 16

associativity, 25

bag example
implementation, 46
specification, 40
using implementation as superclass, 51

begin statement, 33
binding

in method selection, 23
of routines, 22
varying number of arguments, 22

BNF grammar, 53
form of, 4

body
as a scoping unit, 12
of a statement, 28

booleans, 7, 59
break statement, 31
built-in types , 7

call by sharing, 18, 43
case insensitivity, 4
characters, 7, 66
class constructors, 20
class type

definition of, 45

82

relation to superclass, 50
use in typecase statement, 45

classes, 1, 2, 44
constructors for, 20, 45
exporting enough methods & routines,

47
inheritance in, 47
makers for, 2, 48
public and private methods, 2, 44
rules for, 50

comments, 4
compilation of program units, 3
conformance

of routine signatures, 11
of subtype definitions, 1, 39

constant expressions, 26
constraints , 3

in implementations, 43
in method specifications, 38
in specifications, 40
satisfying in instantiations, 8

constructors
for classes, 20, 45
for records, structs, oneofs, and maybes,

20, 76
continue statement, 31
contravariance rule, 11
covariance rule, 11
creation routines, 2

choice of names, 39
exported by modules, 43
implementation of, 2
in implementation module, 43
specification of, 39

currying, 22

declarations, 13
as a statement, 28
implementation of get and set methods,

45
in for statement, 30
of instance variables, 44, 45
with initialization, 16
without initialization, 13

dispatch, 18

encapsulation, 3
in modules, 43

encapsulation in modules, 3, 43
equated identifiers

defined in equates, 13
used in expressions, 19

equates, 13
no recursion in, 14
scope of, 14

examples
bag implementation, 46, 51
bag specification, 40
stack implementation, 52
stack specification, 41

except statement, 33
use with exit statement, 35

exceptions
for use of uninitialized variable, 13
from exit statement, 35
handled by except statement, 33
maker reaches end of body, 48
procedure reaches end of body, 43
raised by routine invocation, 18
signaling of, 29

exit statement, 35
exporting

in classes, 4 7
in subclasses, 50
safety considerations, 50

expressions, 19
actual type of, 15
apparent type of, 15, 19
associativity of operators, 25
bind, 22
constants, 26
constructors, 20
equated identifiers, 19
fetch, 25
identifiers denoting routines, 19
identifiers that denote objects, 19
instance variables, 21
literals, 19
method selection, 23
new_object, 19
precedence of operators, 25
prefix and infix operators, 24

procedure invocation, 22
routine instantiations, 22
self, 20
short circuit boolean operators, 25
variables, 19

external names, 3
definition of, 12
for types, 7
linking, 43
scope rules, 13
use in implements clause, 42

failure exception, 35
for use of uninitialized variable, 13
maker reaches end of body, 48
not listed in routine interface, 37
procedure reaches end of body, 43

false, 7, 59
fetch method special form, 25
for statement, 30

garbage collection, 1
get method

abbreviated implementation, 45
grammar

BNF form, 4
case insensitivity, 4
comments, 4
operators, 5
punctuation symbols, 5
reserved words, 5
tokens and separators, 4

handlers
for exceptions, 33
for exit statement, 35

hides clause
of a class, 4 7
restrictions in a subclass, 50

identifiers, 5
used in expressions, 19

idns, 12
if statement, 30
immutable objects, 7
implementations

of bag, 46, 51
of stack, 52
of stand-alone routines, 43

83

84

of types by classes, 44
parameterized, 43

implements clause, 42
infix operators, 24
inheritance, 1, 2, 4 7

and type hierarchy, 49
example of, 51
renaming of superclass methods, 49

inheriting methods in a subclass, 49
instance variables

assignment to, 15
declarations of, 44
hidden from subclasses, 2, 49
implementing get and set methods, 2,

45
in a subclass, 49
selection of, 21
use in expressions, 21, 45
use in make statement, 36, 48

instantiation, 3, 7, 8, 22
for tagged types, 9
general form, 8
legality, 8
of methods, 23
of routines, 22

integers, 7, 60
invocation, 17

as a statement, 28
in primaries, 26
legality of, 18
method dispatch, 18
of bound routine, 23
of iterator in for statement, 30
of maker in class constructor, 20
of maker in make statement, 36
of selected method, 23
used in expressions, 22
using varying number of args, 17

iterators
as methods, 38
implementation of, 43
invocation of, 17
specification of, 37
used in for statement, 30

linking
for external names, 3, 43

literals, 5, 19

Appendix C: Additional Types and Routines

for booleans, 59
for characters, 66
for integers, 60
for reals, 63
for strings, 67
for type null, 58
used in expressions, 19

make statement, 36
use in makers, 48

makers, 2, 48
provided by a class, 4 7
use in a subclass, 50
use in class constructors, 20
use of make statement in, 36
used to implement routines, 43

maybes, 7, 79
constructors for, 20
type instantiation, 8
use in tagcase statement, 31

method calls
in parameterized implementations, 44
short forms, 24

methods, 1
abbreviated implementations of, 45
calls in parameterized implementation,

43
can be procedures or iterators, 38
choice of names in, 39
constraints, 38
dispatch at runtime, 18
hidden by class, 47
implementation of, 44
inherited in a subclass, 49
instantiation of, 23
invocation of, 17
named using the ~ form, 49
optional, 9, 38
overridden in a subclass, 49
parameterized, 9, 38
private, 2, 44
provided by class, 4 7
public, 44
selection of, 23
specifications, 38

modules, 1, 3, 42
multiple assignment, 15
mutable objects, 7

nil, 7, 58
null, 7, 58

use in maybes, 7, 79

objects
actual type of, 15
creation of, 1
creation routines, 39
in object universe, 1
initialized by class constructors, 20
initialized by makers, 48
initialized in make statement, 36
mutable and immutable, 7
same_object procedure, 46

oneofs, 7, 78
constructors for, 20
relationship to maybes, 79
use in tagcase statement, 31

operators
arithmetic, 60, 64
associativity rules, 25
fetch form, 25
infix, 24
precedence rules, 25
prefix, 24
short circuit boolean, 25

optional methods, 9, 38
others arm, 34

not used with exits, 35
overriding methods, 49

effect on superclass methods, 49

parameterized implementations, 43
parameterized specifications, 40
parameterized types, 7

instantiation, 8
parametric polymorphism, 1, 3, 40
polymorphism

parametric, 1, 3
subtype, 1, 2

precedence, 25
prefix operators, 24
pnmanes

definition of, 26
use in left hand side of assignment, 15
used in invocation statement, 28
used in store statement, 28

private methods, 2, 44

procedures
as methods, 38
implementation of, 43
invocation of, 17
invoked as a statement, 28
invoked in expressions, 22
invoked in multiple assignment, 16
reaching end of body, 43
specification of, 37

program units, 3
provides clause

of a class, 4 7
restrictions in a subclass, 50

public methods, 44

raising exceptions, 29
reals, 7, 63
records, 7, 76

constructors for, 20
field selection, 22

renaming
in a subclass, 2, 49
of supertype methods, 1, 38

reserved words, 5
resignal statement, 35

not used with exits, 35
return statement, 29
routine objects, 22
routine types

contra and covariance, 11
equality of, 10

routines, 17, 79
are first class objects, 7
binding, 22
currying, 22
for creating objects, 2, 39, 43
identifiers used in expressions, 19
implementation of, 43
implemented by makers, 43
instantiation of, 7, 22
kinds of, 17
methods of, 79
parameterized implementations, 43
parameterized specifications of, 40
procedures and iterators, 17
provided by class, 4 7
specifications of, 37
stand alone, 1, 17

85

86

sub typing rules for, 11
termination of, 18
type derived from specification, 38
type designators for, 9
type hierarchy of, 11
ways of obtaining, 17

rules for classes, 50

same_object procedure, 46
scopes and scope rules, 12, 13

containment, 12
external names, 13
scoping units, 12

selection

self

from self, 45
of a method, 23
of an instance variable, 21
within a class, 45

implicit use, 21
use in make statement, 36, 48
use in methods, 45
used in expressions, 20

separators, 4
sequences, 7, 72

constructed from varying args in invo-
cation, 17

creation using varying arguments, 72
short form for fetch method, 25
type instantiation, 8
use in routine header for varying args,

38
set method

abbreviated implementation, 45
short circuit boolean operators, 25
short forms

for fetch method, 25
for method calls, 24
for store method, 28
rules for use, 39

signal statement, 29
specifications, 1, 37

of bag, 40
of creation routines, 39
of stack, 41
of stand-alone routines, 37
of types, 2, 38
parameterized, 40

Appendix C: Additional Types and Routines

separate from implementations, 2

stack example
implementation as subclass, 52
specification, 41

stand alone routines, 17
implementation of, 43

specification of, 37
statements, 28

assignment, 15, 28
begin, 33
body of, 28
break, 31
continue, 31
declarations, 13, 16, 28
except, 33
exit, 35
for, 30
if, 30
initialization assignment, 16
invocation, 28
make, 36
multiple assignment, 15
resignal, 35
return, 29
signal, 29
simple, 28
store, 28
tagcase, 31
typecase, 2, 32
while, 30
yield, 29

store method special form, 28
store statement, 28
strings, 7, 67
structs, 7, 77

constructors for, 20
field selection, 22

subclasses, 2, 48
subtype polymorphism, 1, 2, 38
subtypes, 1

conformity rules, 1, 39
declaration of supertypes, 38, 40
rules for routines, 11
semantic rules, 39

superclasses, 2, 47
methods used in subclasses, 49

supertypes, 1

declared in specification, 38
of parameterized types, 40

syntactic sugar
for fetch method, 25
for method calls, 24
for store method, 28
rules for use, 39

tagcase statement, 31
tagged types

equality of, 10
Thor, 1
tokens, 4
true, 7, 59
type

of bound routine, 22
of instantiated routine 22

'
of routine, 38
of selected method, 23

type checking, 2, 10
conformity of subtype, 1, 39
of expressions, 19
of invocations, 17
of type designators, 10
of variables, 15

type designators, 7
defined by equate, 13
equality of, 10
for parameterized types, 8
for records, structs, and oneofs, 9
for routines, 9
for simple types, 8

type equality, 10
type hierarchy, 1, 7, 10

and inheritance, 49
declaring supertypes, 38
for routines, 11

type inclusion rule, 15
type specifications, 38

parameterized, 40
typecase statement 2 32

' ' narrowing to class type, 45
types, 1, 7

any, 1, 7
arrays, 7
bool, 7
built-in, 7
char, 7

creation routines for 2
' external names for, 7

implemented by classes 2 44
' '

int, 7
maybes, 7
mutable and immutable, 7
null, 7
oneofs, 7
parameterized, 7
parameterized specifications of 40

'
real, 7
records, 7
sequences, 7
specification of, 2, 38

string, 7
structs, 7
vectors, 7

uninitialized variable exception, 13

variables, 13
assignment to, 15
declaration of, 13
exception if uninitialized 13

'
instance variables, 15, 21
type of, 13
uninitialized, 13
used in expressions, 19

varying number of arguments, 17
in a binding, 22
in routine specifications, 38
use in array creation, 69
use in sequence creation, 72
use in vector creation 74 ,

vectors, 7, 74
creation using varying arguments, 74
short form for fetch method, 25
short form for store method, 28
type instantiation, 8

when arm, 34
where clauses

example of use, 8
in implementations, 43
in specifications, 40
use in classes, 44

while statement, 30

yield statement, 29

87

