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INTRODUCTION

The subject of this course is the Logical Structure of Digital Com-
puters. By "compier logic" one means the set of rules which the
computer follows in carrying out its operations. Logical structure
is to be distinguished from physical structure. The electronic
components, wires, motors, and other hardware, comprising the
physical structure of the computer, do no more than mechanize the
operating rules defining the logical structure of the computer. It
is completely irrelevant to the logic that the computer is built of
vacuum tubes, or relays, or paper, as long as the rules are properly
represented and followed.

The digital computer is essentially a symbol-manipulating machine.
It accepts a set of symbols defining a problem to be solved and the
data on which to operate. It then performs various operations on
these symbols according to the rules defining its logical structure,
and thereby produces a new set of symbols which comprise the solu-
tion to the problem. The rules thus take the form of a set of
statements describing the manuner in which certain symbols are to be
replaced with new symbols. (Consider, for example, a particular
sequence of five.symbols. One useful rule in a computer dealing
with this sequence would be: "If the first symbol is a ‘1%, the
second '+';, the third '1', the fourth '=', and the fifth *x', then
replace the symbol 'x‘ with the symbol *2'.")

THE TURING MACHINE

A simple abstract model of the general symbol-manipulation process
(and, therefore, of digital computer logical structure) was formu-
lated by the British mathematician, Turingl as a conceptual aid in
proving certain results in mathematical logic. He defined a class
of symbol processing mechanisms which he called simply "automatic

machines,” but which are now generally known as "Turing machines."

The elements of the Turing machine are illustrated below:

T
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M

1a. M. Turing: On Computable Numbers, with an Application to the
Entscheidungs Problem, Proc. Lond. Math. Soc., series 2, V2k,
pp. 230-265, 1936.
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A machine, M, having a finite number of internal configurations or
states operates on an infinitely long tape, T, which is divided
into cells. EKach cell is capable of bearing one symbol from a
specified, finite set of symbols, Sg, Sy, S ° * * Sy, e.g., the
alphabet, the digits, etc. The machine deals with one cell at a
time (called the scanned cell) and can read the symbol in this cell
and write a new symbol in its place, or move to the next cell to
the right or to the left.

An operation 1s carried out concurrently with a jump from one mach-
ine state to another. This action is completely determined by the
current state of the machine and the currently scanned symbol. Each
move results in a new configuration of machine and tape in which the
scanned symbol and machine state determine the next move, and so on.

A notation will now be described and some examples of Turing machines
"presented. This material will differ from that in Turing's original
presentation, but the essential features are retained.

The operations to be discussed are:

1) Replace the scanned symbol, Si, with the symbol S3s
abbreviated:
Si:SJ

where i and j may have any particular values O, 1,
2, ° * * n. The symbol Sp will represent blank tape
to complete the description. .

2) 1If the scanned symbol is Sj, move to the next cell
on the right:
S;i : R

3) If the scanned symbol is Si, move to the next cell
on the left:
S ¢ L

These operations can be abbreviated:

Tx = print Sy k=0,1, ° ° *n
Sy ¢ Tx Ty =move "R k=n+1
Tk =move "L" k=n+ 2

The rules by which the machine operates are then formulated in terms
of these operations and the internal states of the machine. Each
rule will be of the form:
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which will be abbreviated to the guadruple:

(P: Si : Tk, Cl)

For example, the quadruple (3, x : R, 1ll4) means "If the machine is
in state 3 and the scanned symbol is x, move to the next cell on the
right and jump to state 14."

The logical structure of the machine is thus specified by a finite
set of guadruples of the above form.

The ordered pair of symbols p, Si will be called a determinant,
since it determines the subseguent move of the machine according to
the remaining terms in the yundruple. To be consistent, the require-
ment is imposed that no two guadruples describing a given machine
can have the same determinant.

The logical structure of a Turing machine may be represented conven-
iently as a network in which each node correspcnds to a state of

the wachine and each directed branch between ncdes corresponds to

a Jjump between states. The branch is labeled with the operation
which occurs during the jump. ZFor example, the network

corresponds  to the set of three guadruples

(1, x : R, 2)
gz, Xy, 2)
(2, ¥y + R, 1)

A drawing of the network for a given machine is variocusly called a
state diagram or transition. diagram. Two conventions which simplify
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the drawing of transition diagrams for processes involving a large
number of symbols Sg, S;, Sp, ° ° ° Sy are the following:

a) If all branches from a given state, p, lead to state q,
and involve the same operation, Ty

Sl T

OQERIS-C

then the diagram may be abbreviated to

——®

b) If all branches except the one for a particular scanned
symbol, 54, lead from state p to state g, and involve
the same operation, Ty

then the diagram may be abbreviated to
ST

where S; is read "not S;."

A few examples of Turing machines will now be given to illustrate
the preceding definitions and concepts.
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Example 1

Given a tape on which the symbols Sp, Sj, 82, ° ° ° S, appear
in any order and number. The machine starts in state 1 scan-
ning any cell to the left of a cell holding the symbol, S;

SQ SO 83 37 Sh S3 SZ Sl SQ Sl S

4

The machine is to "hunt" for the first cell to the right.
which holds S; and jump to state 2 when it is scanning this
cell. The transition diagram is

The machine remains in state 1 and scans the next cell on
the right until S is found, whereupon it jumps to state’2
with no change of symbol on the scanned cell.

Examgle 2

Consider a process of simple cryptographic encoding. Letters
of the alphabet are to be scrambled according to the code

a—o0
b =1
C—>—DD
°
o

o

7 e

e.g., the word "cab" becomes "por", etc. The message to be
encoded is printed on the tape with an arbitrary number of
spaces between words.
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The machine starts in state 1, scanning the indicated cell.
Its diagram is

The symbol Sy represents blank tape.‘ The machine continues_
indefinitely, changing letters of the message to their equiva-
lent code value.

Example 3
.

A block of five cells, each holding the digit 0, is separated
from the rest of the tape by the symbol E on the left and C
on the right. , \

The machine starts in state 1, scanning a cell to the right
of C. It is to print in succession the 5-digit decimal
numbers from O to 99,999 on the marked block of cells, reset
them to O, and then jump to state 5. Its diagram is

C:¢
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The machine finds the first digit following symbol C and
Jumps .to state 2. If this digit is not 9, it is replaced
with the next larger digit and the machine jumps to state 3.
In state 3, the machine moves right until it finds C and
backs up one cell, jumping back to state 2. When the digit
is 9, it is replaced with O and the machine jumps to state
4 and moves left one cell (corresponding to a "carry" from
one digit position to the next), returning to state 2 again.
Clearly, this process results in the printing of the required
sequence of numbers up to 99,999. At this point, the re-
peated sequence of transitions (2, 9 : 0, 4) (4, 0 : L, 2)
resets the five cells to O and the process terminates with
(2, E: E, 5).

Example U4

Consider a tape marked with A, 1, O; and x in the following
manner:

The 1's and O's are intermixed with x's to the right of A

in an arbitrary way. The machine starts in state 1, scanning
a cell to the left of A,and is to compact the sequence of 1l's
and O's into a block following A. The order of the 1l's and
O's is to-be retained. The diagram is

In state 1, the machine finds the first symbol to the right
of A and jumps to 2. In state 2, the machine skips over
cells holding x's and finds the nearest O or 1, replaces it
with an x and jumps to state 6 or 3, respectively. In the
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case illustrated, the nearest non-x symbol is a 1, and the
machine will go to state 3. In state 3, the machine finds
the leftmost x, jumps to 4, prints a 1, and moves to the
right, returning to state 2 via 5. Note that in taking
either the upper or lower branch, (2, 1 : x, 3) or

(2, 0 ¢+ x, 6) , the machine in effect "remembers" that
the last symbol scanned was a 1 or 0, respectively. The
reader should verify that the tape illustrated becomes:

| I | Tafafofs Jxfaxfxfxfxf [ |

It is possible to restrict the Turing machine to two symbols, O
and 1, without loss of generality.

Consider a problem which is expressed in terms of four symbols:
So0s 51, S2, S3. These can be encoded into groups of 1l's and O's
in many ways. For example:

SO = 000 SO = 00
S1 = 001 S = ol
S2 = 010 Sz = 10
S3 = 100 S3 =11
(1) (2)

Case (2) will be discussed in more detail. The tape is divided
into groups of two cells each:
h
| lolofofalafola]a] |
T8 ’L Sz 8
Then consider a section of the transition diagram of a machine
dealing with g, S;, S2, S3 which is of the form
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This is squivalent to the following in which only O and 1 are used:

Similarly, a change of symbol, say (1, Sy 82,2) can be represented
as:

Note that the interpretation of the sequence of 1's and O's depends
on the direction of travel. This dependence could be eliminated
by using a symmetrical code:

Sp = 000
S1 = 010
Sz = 101
83 = 111

We have now shown that the operations of any Turing machine can be
reduced to the set

print O

print 1

move right one cell
move left one cell

This can be reduced still further. The only possible symbol-printing
situations are:
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O O
(o o
N

3 ao
= O
SN/

The first two cases involve a change of information on the tape;
the second two do not. We can define an operation "complement,"
abbreviated "C", to replace the two print operations. The cases
involving no change of symbol are replaced with two complement
operations done in sequence:

Q:0 becomes . 9:C . ):C .

Thus, the set of Turing machine operations reduces to:
C
L
R

This can be reduced again to any of the three sets:

(1) (cL complement and move left
R move right
(2 (L move left
CR complement and move right
(3) {cL. - complement and move left
CR complement and move right

The proofs for (1) and (2) reduce to showing that "CL" can be
broken into "C" and "L":

. O:CL . R e
is the equivalent of

o:C

and

@ o:clL @ R@HCL 0

is the equivalent of

®0:L @
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The other possible actions on O and 1 for cases (1) and (2) are
proved in a similar manner.

Case (3) requires a different arrangement of symbols on the tape.
- Alternate cells are used to hold the symbols of the problem. The
cells in between aid in "phasing" the complementing, but hold no

significant information:

- — N =
CEH 1 EE1 E

1

The equivalent forms are:

'CL @ => 0

.

c

@_O:CR@ FL — : 0:"%"

The other ‘forms can be obtained directly from these.
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1.1)

1.2)

1.3)

PROBLEMS

A Turing machine tape is marked in the following manner:

Pld;| dj|dx|dy] dm

Symbol "P" marks the beginning of a block of 5 different
decimal digits, di, dj, dy, d1, dnm. (e.g., TOO 3 &),

Describe (draw a state-and-transition diagram of) a machine

which will rearrange the digits in descending order on the

5 cells following "P" and move on to the right when finished.
Any additional symbols and cells may be used in the process
providing they are erased upon completion. The machine is
to start on any cell to the left of "P",

Restate problem 1.1 in terms of a tape on which only the
symbols "Sg" and "S;" appear. (Invent a suitable code for
the symbols "P", blank, 0, 1, « « - 9, etc., and describe
the initial tape configuration). Redraw the state-and-
transition diagram accordingly, using only the operations
"complement" (change Sg to 81 or S; to Sg), "move right",
and "move left", abbreviated "C","R", and "L", respectively.

Non-erasable tape can be defined as tape on which it is
possible to write a symbol in a given cell only if the cell
ts blank. Show that it is possible for any Turing machine

"to use non-erasable tape.
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THE UNIVERSAL TURING MACHINE

Preliminary Remarks

We have seen that a very general class of Turing machines can be
defined which use a single tape on which only the symbols "O" or
"1" appear in any cell ("O" corresponding to blank tape) and which
perform only the operations "print O," "print 1," "move right one
cell," and "move left one cell." For convenience in subsequent
reference, we will call these machines "Class A Turing machines"
to distinguish them from other machines which use more symbols,
different operations, more tapes, etc. Within a given class one
might measure the complexity of a particular machine by the number
of its internal states or, perhaps better, by the number of quad-
ruples required to describe its logical structure. Thus, a 100-
guadruple Class A Turing machine would be more complicated than a
10=-guadruple Class A Turing machine.

It seems reasonable to attempt to relate a machine's complexity to
its capability. For example, it is possible to combine a machine,
M), which is capable of counting, with a machine, My, which is
capable of ordering a set of numbers, and thereby obtain a more
complicated machine, M3, which is capable of both ordering and
counting. It might be supposed that it is always possible to in-
crease the generality of a machine by increasing its complexity in
this way. The fact is, however, that there is a critical complexity
beyond which no further increase in generality can be guaranteed!
That is, at a certain level of complexity it becomes possible to de-
sign a Turing machine which is universal in the sense that it can
perform any calculation which any other Turing machine can perform,
even if the other machine is more complicated than the universal
machine. The universal Turing machine achieves this generality by
having the ability to simulate any machine whose calculation it is
required to duplicate. The tape of the simulated machine appears

as a designated sequence of cells on the tape of the universal
machine. We will consider these points in more detail later.

Quadruple Manipulation

The simulation is itself a symbol manipulation process in which the
symbols represent the set of quadruples describing the simulated
machine. As an example of the manipulation of quadruples, consider
the following simple Class A machine and the set of quadruples de-
scribing its logical structure:
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(1, 0:1, 1)
(1, 1L : R, 2)
(2, T:0, 2)
(2, 0 : R, 1)

This machine, starting in state 1, will print the sequence 10101010..
ssseo Its operation will now be described in terms of the gquadruples
and scanned symbols:

Define active quadruple to be that quadruple which describes
the action of the machine at any given point in the process.
The active determinant is then the determinant found in

the active quadruple (see page 3). The first term of the .
active quadruple will be called the initial state; and the
last term, the final state. The second term of the active
quadruple is, of course, the scanned symbol, and the third
term is the specified operation.

In the illustration, if the maschine is in state 1, the ac-
tive quadruple is the second one in the list, namely:

(1, 1 : R, 2)
The machine will move one cell to the right and jump to the
final stateiza State 2 thus becomes the initial state of
the next machine action and the new scanned symbol is a "1".
Therefore, the next active determinant will be:

The next active gquadruple can be found by ageain examining
the list of quadruples and finding the quadruple which
starts with the determinant 2, 1. In this case, it is the
third determinant:

(2, 1 :0, 2)

The machine will print a “O" and jump to the final state 2.
The scanned symbol is now "O" and the next initial state is 2;



6M-3938, Supplement 1 ' Page 15
thus, the next active determinant will be
2, 0
and the next active quadruple is found to be
| (2, 0 : R, 1)
ete,

This example illustrates the use of the set of quadruples in
describing a sequence of machine actions. '

General Description of the Universal Turing Machine

The basic simuletion process can be represented in the following
way:
4

A. Given the active determinant,
find the active guadruple.

\

B. !Carry out the specified
operstion.

Y

C. Form the next active deter-
minant from the new scanned
symbol and the new initial
state (the previous final
state.), :

It is, of course, necessary to start this sequence witﬁ the first
active determinant at A.

The Universal Turing Machine, UM, will be designed to carry out the
above steps A, B, and C for any list of quadruples describing a
given simulated machine, SM, which will be encoded in a suitable
manner and printed on the universal machine tape, UMT. As we men-
tioned earlier, this tape will also hold a sequence of cells

which correspond to the cells of the simulated machine tape, SMT.
It will also require cells on which to print the active determin-

~ ant symbols, and cells to mark significant points on the tape,
e.8., the SMI' scanned cell.
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Before UM begins its calculation, the quadruples defining SM are
printed on UMT, the cells on UMT corresponding to SMT are marked
to match the initial configuration of SMT, and the first active
determinant is printed on UMT. UM is started in a specified
initial state scanning a specified cell on UMI. It then carries
out steps A, B, and C without end and prints the results of SM's
calculation on the designated UMI' cells corregponding to SMT.

It is assumed that the set of symbols used by SM is included
within the set of symbols used by UM.

Detailed Description of a Class A Universal Turing Machine

The general description of the previous section will now be
related to a particular Class A Universal Turing Machine. It is
seen that the first problem is that of finding a suitable code
using the symbols O and 1 to represent quadruples, determinants,
etc. The coding scheme pregsented here is the work of E. F. Moore
who employed it in a description of a 3-tape universal machineZ.
The second problem is that of finding a suitable arrangement of
the symbols on the universal machine tape. Finally, a descrip-
tion of the universal machine itself must be developed.

Consider first the coding of a Class A machine quadruple
(r, Si ¢+ Txys). Each determinant must be one of the two forms:

2E, F. Moores A Simplified Universal Turing Machine, Bell Tele-
phone System Monograph 2098, presented at the Meeting of the
Association for Computing Machinery, Toronto, Canada, Sept. 8,

1952,
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r, O

or o .
r, 1 e e - .
where r takes on any: integral value 1, 2, - ° ¢ M (for an M-state
machine). The specified operation, Ty, is any one of the four
forms: ' ' '

0

1

R

L

|
and finally, the final state,”s, is an integer from 1 to M.
The schgmcmppgppsed by Moore is the followings

Determinantg

Code r; O as a block of 3r + 1 successive 1's

" r 5 l . n on " 1 3r '5', 2 " l 1] s
|
ggeration:
Code O as O immediately following determinant.
" l as OO 11} n n
n R as OOO 7" " n
n L as OOOO n " "

Final State:

Code s as a block of 3s successive 1l's immediately following
the operation.

For example, the quadruple (1, O : 1, 1) would become:
111100111
and the quadruple (1, 1 : R, 2) would become:
11111000111111
A list of quadruples is coded by stringing together in any order the

codes of member gquadruples, separating one quadruple from the next by
at least one O. For example, the machine described on page 14

(1, 0 s 1, 1)
(1, 1 : R, 2)
(2, 0 ¢ Ry, 1)
(2, 1 : 0, 2)
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is completely (although not uniquely) coded by the sequence: . .

+++000011110011101 11111 1101111110001 111 110001110011 11100011 111100 -

Notice that any block of ones in this sequence has a unique interpre-
tation, e.g.; a block of N ones represents a final state only if N is
divisible by 3, etc. A block of zeros following a determinant repre--
sents an operat10n9 a block of zeros following a final state is simply

a separation. |

We now proceed to describe the arrangement of symbols on the universal
machine tape, UMI. UMT will need to be endless only on the right.

The class of machines which the universal machine will simulate will
also use tapes which are endless only on the right. This causes no
restriction in the generality of these machines over that of doubly
endless tape machines (see problem 2.1).

UMT will be divided into groups of 7 cells each. The guadruple list,
active determinant; SMT cells, and various marking cells will be
interleaved on UMT in the following manner:

51 4 % Ez a Q I.E3 43 Q3 ly

i TITITT A

The E cells are used to mark the end of the tape (6nly Ey holds a
"1"s all other E cells hold "o". These are not changed.

The D cells hold the active determinant.
The Q cells hold the list of quadruples.
The T cells correspond to the cells of the simulated machine tape.

The cells labeled d; g, and t are used to mark the following D, Q, and
T cells, respectively. Only one cell of each will hold a "1" at any
given point in the calculation. For example;, a "1" in t, indicates
that T3 would be the scamned cell on SMT. The use of thése marker
cells will become clear later.

To go from cell Qi to Qj4+] for example, it is necessary to slip over
the intervening 6 cells. This process is diagrammed:

‘lRchak,\RC O O—E>®)

and will be abbreviated:

RrT

" -
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The process of locating the end of the tape will now be described.
Suppose that UM is scanning some Q cell and is to find the cell Ej
if the scanned symbol is "1". The diagram is:

The letters Q and E below the state node in this diagram indiecate
which "phase” of the 7 tape phases the machine will end in after the
transition to that state. The machine starts in state "a" scanning
a Q cell, (i .e., in Q-phase). If the scanned symbol is a "1", the’
machine moves 3 cells to the right (to the nearest E cell) and " jumps
to state "b". Now in E phase, the machine scans successive E cells
to the left until a "1" is found, which occurs on Ej at the end of
the tape.

AL

UM will start in state 1 scanning Ej. The quadruple list for SM is
printed on the Q cells beginning with Q1 and q; holds a "1" (ql marks
Q1). The first active determinant is printed on D1, D2, D3, etc.,
and d; holds a "1" (d; marks Dj). Finally, the T cells are marked
according to SMT and the initial simulated scanned cell Ty will be
marked (tg holds a "1").

It will be noted that UM must move to the end of UMT before search-
ing for a "1" on any marker cell in order to guarantee that the
marked cell will not be missed°

Parts A; B, and C of the operation of one particular Class A Univer-
sal Turing Machine will be described separately on the following
pages.



I

6M-3938, Supplement 1 - S Page 20

A. Given the active determinant 5 find the active quadxmple,

a:R? 3 16 "'-.vf i * « From State 67

Start

Mark hext Q cell (blocks =)
' to state 26

The next D cell is marked (a "L" is printed in the associated d cell)

in states 2 to 4 and the previously marked D cell is examined (sta'.te 5)
If it holds a "1", UM checks the currently marked Q cell (and marks the
next Q cell) in s'ba,te 10 anc if it holds a "1"; prepares to compare the
next D and Q cells by returning to state 1. If the D and Q blocks are
of unequal length, UM marks the next Q block of 1l's, marks the beginning
of the active determinant again, and starts the comparison with the new
Q block by returning to state 1. When both D and Q cells hold O°'s con-
currently, the active quadruple has been found and UM Jumps to state 26
to begin part B.
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B. -Carry out the specified operation.

0:7

12 R? L
34 - - .
to state 43

Return to E;

d:R3 m‘

The active quadruple has been located and UM determines which SM
operation is specified by counting the number of successive O's in

the operation code. If ome O; UM finds the scanned cell on SMI' and
prints a "O"; if two O's, a "1"; if three O's, UM marks the T cell

on the right of the currently marked T cell; if four O's, UM marks the
T cell on the left of the currently marked T cell. UM then returns
“to the end of the tape and moves om 't¢ part C. '
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C. Form the next active determinant from the new scanned symbol
and the new initial state (the previous final state).

Examine scanned

' D
Erase old determinant

symbol on SMT
"Add" 1's to new
active determinant
\1R7 o:’ 0=} o;R7. OZR;’ 0:L?

| ) Q
Extend D block cne cell Mark fina.l—state block

Copy final state onto D
cells

d 9. to state 1
Examine next Q cell : Mark Dj and Q.l

“The o0ld active determinant is erased (states 43 to 46) and the current
scanned symbol on SMT is examined. If it is a "O", a "1" is printed
on D1 to start the next active determinant; if the scanned cell on SMT
‘holds a "1", then a "1" is printed on both D1 and Dy, UM then combines
the block of "1's" which code the final state of the active quadruple
with the one or two 1l's now on the initial D cells, thus forming the
new active determinant. Dj and Q; are marked (1°'s printed on d; and

) and UM returns to state 1 to repea.t A, B, and C for the next simu-

la.ted transition.
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2. l

2.2

2.3

204

PROBLEMS

Show that any problem which can be solved by a Turing machine
using doubly infinite tape (infinitely long in both directions)
can also be solved by a Turing machine using singly infinite
tape.

Consider the class of Turing machines which use only the.
symbols "0" and "1" and which perform only the operations
"print 0", "print 1", "move right one", “move left one",

abbreviated O, 1, R, L, respectively.

How many one-state machines of this class are there? Two-state?
N-state?

A Turing machine calculation which never uses more than a
finite length of tape might be called limited; otherwise. non-
limited. (For example, the machine (1,0:0,1) (1,1:R,1) per-
forms a limited calculation if the tape holds a "0" to the
right of the scanned cell.)

Write the set of quadruples for each one-state machine of the
class defined in 2.2 which is non-limited for all possible
arrangements of symbols on the tape.

Design a Universal Turing Machine using as few internal states
as possible. The design msy use any finite number of symbols
to aid in reducing the number of states required. Make a count
of the number of states and the number of quadruples.
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The Class A Universal Turing Machine described on the preceding
pages provides us' with one value for the critical complexity dis-
cussed earlier. A count of transitions shows that about 800
quadruples are required to describe this machine. Other universal
machines using more symbols and fewer internal states have been
desggned (see also problem 2.4t); Shannon has shown3 that it is pos-
sible to design a two-state universal machine (and:impossible to
design a one-state universal machine) by using a large enough
number of syrzﬁ:olso

Variations o the Turing Machine Theme

There are many possible variations to the Turing machine concept.
In the example presented earlier, the machine operated on a linear
array of symbols printed on an infinitely long tape. Another class
of machine might be defined which operates on a two-dimensional
array of symbols printed on an infinite plane.

2,C
- +{a|blr|7 |4
el/ |2|© (s|3
d-1-|dla ]2
al2|4| +
PIT|sI0]|/ |-
alz|4 |03
] h

" on

The operations of this machine would include “"move right," "move
left," "move up,"” and "move down." Extension of these ideas to
n-dimensional arrays readily follows.

A three=tape Turing machine was mentioned earlierl‘o In this case,
the machine deals with three separate linear arrays scanning three
cells simultaneously but cperating on only one tape at a time. The
transitions #re described as sets of sextuples rather than quad-
ruples, each determinant consisting of the initial state and the
three scanned. symbols. Again, extension to machines using more
tapes or several n-dimensional arrays is possible.

Von Neumann has suggested a parts-manipulsting machine analogous o

3. E. Shannon and others: "Automata Studies,” Princeton Univer-
sity Press (to be published shortly.)

)'"Eo F. Moore: Op. ecit.
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to the Turing symbol-manipulating machine. This machine would op-
erate in an envirmment containing hardware of various kinds such as
nuts, bolts, wire, vacuum tubes, etc., and would construct another
machine -from these parts. Again, it is possible to design a uni-
versal constructing machine capable of constructing anything that
any other constructing machine can construct. A case of particular
interest is that of a machine which constructs a copy of itself.
With the current trend toward automation, some of these ideas are
being applied in practical situations.

Summary Remarks

Before moving on to further discussion of the Turing machine and
its relation to other topics, let us list some of the items which
have been introduced in the preceding pages:

1. Logiecal structure 6. Coding N
2. Operating rules T. Machine complexity
3. Stable states 8. Simulation

., Transitions 9. Universality

5. 'Symbol manipulation

These are all.items will will be discussed in more detail during
the remainder of the course. It is interesting that the concep-~
tually simple Turing machine serves to introduce so many of the
basic ideas in the subject of digital computers.

BOOLEAN ALGEBRA

We now proceed to develop & manipulative notation which enables
us to describe the action of two-symbol machines in terms of the.
cells themselves. This will lead to a kind of symbol-printing
algebra which will be shown to have the properties of Boolean
algebra.

Consider the following simple Class A Turing machine which operates
on cells labeled A, B, and C.

HI
(@]
B2 2]
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for which the transition diagram is

The machine prints “1" on C if A and B hold the same symbol and
prints a "0" on C if A and B hold different symbols. The symbol
finally appearing in cell C depends on the symbols in A and B.
There are, of course, several kinds of dependence relations pos-
.8ible, and the machine illustrated mechanizes only one of these
relations. A word description of the illustrated process in terms
of basic Turing machine operations would consist of the following
pair of statements:

1. If cell A holds "1" and cell B holds "1%,
or if'cell A holds "O" and cell B holds "O"
then print "1" on cell C.

2, If cell A holds "1" and cell B holds "O",
or if cell A holds "O" and cell B holds "l"
then print "O" on cell C.

A notation which simplifies this description is one which employs
superscripts to denote the symbol held in a given cell:

A°  will mean "there is a '0* in cell A"

1

and A will mean "there is a '1!' in cell A"

Then we might agree that

A®%: will mean "if there is a '0' in cell A"

and :C1

will mean "print a *1' in cell C"
With these abbreviated forms, the statements describing the action
of the illustrated machine become:

(Y
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(& ana B: or A° and BO):C! } '
(A° and B' or A' and B9):CO

The remaining simplification involves replacing "and" and "or"

with shorter symbols. We will choose "-" to replace "and" and
"+" to replace "or." With these changes the statements become:

(&' - B+ A2 - Bo):c! |
(a° - B* + A' . BO):sCO

and the transition diagram can be redrawn in the form:

which is considerably simpler and moré compact than the original
diagram.

It is interesting to note that in this new description the opera-
tions "R" and "L" do not appear. It is no longer a requirement
that the cells A, B, and C be adjacent cells in a linear array.
In fact, the new transition diagram equally well describes the
action of a discrete-state machine which deals with several inde-
- pendent cells simultaneously:

\ 7

M" -

{
We will return to this idea later.

Table of Combinations

The possible Qutcomes and the corresponding conditions of A and B
can be represented conveniently in s table. On the left are listed
all combinations of symbols found in A and B, and on the right the
resulting symbol in C:
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c
1
0
0
1

HHOO|P
HOorO|W

Thus, the first line of the table corresponds to AP'B°:01, ete,

The number of lines, Xk, in such a table is given by k=28, where
n is the number of cells determining the symbol to be printed.
The number of different tables is 2K, 2.e.,

Zzn = number of functionally different machines
vhich print "1" or "O" depending on the
symbols held in n cells.
It should be noted that directions for printing only the 1l's are
sufficient to determine the complete table. Thus, it is sufficient
to describe the illustrated machine by
(a*-B*+A0-80):c?

from which the table is written:

O's appearing in all unfilled positions. Similarly, directions
for the printing of O's are also sufficient and may result in
simpler deseriptions in some cases. For example,

A®-BO;° and (A% -BO+AC-FrA~H): Ct
both describe the same machine.
We will say that two cells, C and D, are equivalent if C holds a
"1" whenever D holds a "1" and C holds "O" whenever D holds "O".
Thus, from a table, e.g.,

B |l C |

HE OO |
HOKO
HOOR
H OO |u
HH OO |H
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i% is seen that C is equivalent to D and E is equivalent to A.
These will be written C=D and E=A, respectively.

Thus, given .
xlse x || £
Olo
1 1

it is seen from the table that x=f. This could have been obteined
from the statement xI:f1 by dropping superscribts and replacing
"e" with "=", and the converse is of course also true. Using this
rule, we would also obtain xC=f° from x°:£C,

From x©:f* we would obtain f=x©., The table is:

x || £
Ol
1 o

Inspection of the table shows that the symbol in eell £ is the
complement of the symbol in cell x, i.e., f=complément of x.
Thus, x° will be read "x complement” or "complement of x%, the
superscript "o" indicating the complementation.

From A s X £ g
Xgﬁfi 0 1 0
g 1o |1

o
we conclude that x = (x©) , the double-complement rule.

Now we define two cells 1 and O in the following way: Cell 1
always holds the symbol "1" (see, for example, cell E; of the UM
described earlier) and cell O always holds the symbol "O". Evi-
dently:

1°=0 and 0° =1

Consider the following printing statements for cells f; through fg:

(1 412 )£
(1*+0" ).}
(0t 408 ):£f
Popt.pd
1‘oo‘§f}
1.0 .01
ot -0* ;£

The table of combinstions is then
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L O)5| fa| fa] Tu| f5| %
1 v 1 1 0 1 0 0]
1 0 1 1 0 1 0 0
1 O 1 1 0 1 0 (0]
1 0 1 1 0 1 0] 0]
from which we concludse that
1+1=1 1:1=1
1+0=L 1:-0=0
0+0=0 0:0=0 -

These results illustrate properties of an arithmetic which is like
ordinary arithmetic for the "dot" operation (multiplication) but
unlike ordinary srithmetic for the "plus" operation (addition). We
have described the fundamental operations of Boolean Algebra.

Evidently these operations are commutative, i. e., "x or y" is the
same as "y or x" and "x and y" is the same as "y and x". Symbolically

X+ Yy =y +X and Xey = yX

The "and" and "or" operations ars also associative. Using the
parenthesis %o denote grouping, the following statements hold:

x+(y+2)=(x+y)+2 and  x-(yz) = (x°y)-z

Consequently, the ovder and grouping of symbols in any Boolean ex-
pression is arbitrary. The distributive properties of the "and"
and "or" operations can be established by constructing the table
of combinations for the forms: ‘

(xteytaxtozt)opt (xtaytyelxbezt )y

xte(yteat yuf) (xtayt ozt ) fl
x ¥y oz ||fy | ff T Ty
¢] 0 o] 9] 0 0 0
O 0 110 Q 0 0
Q 1 (0] 9] Q 0] Q
0 1 1 0 0 1 1
1 Q (0] 0 0 1 1
1 V] 1 1 1 1 1
1 1 0 1 1 1 1
1 1 L 1 1 1 1

Comparison of columns in the table shows that [, =1, and.fé:fq s leey,
Xoy#xey = xo{y+z) and  (x+y)o(x+2) = xtyez

As in ordinary algsbra, then, ous can "multiply” through a '"sum"
(recall the process of "factoring®). Unlike ordinary algebra,
Boolean algebra permits one to "add" through a “product”. These
forms will occur guite often in subsequent work.



