6M-3938

Division 6 - Lincoln Laboratory
Massachusetts Institute of Technology
Lexington 73, Massachusetts

SUBJECT: THE LOGICAL STRUCTURE OF DIGITAL COMPUTERS
The Turing Machine

To: Class Registrants
Abstracts to: All Lincoln Division Heads and Group Leaders
From: W. A. Clark

Approved: 4:{ ﬁgJ
W. A, Clark

Date: 5 October 1955

ABSTRACT: The logic of the Turing machine as a symbol manipulator
is described and examples of counting and sorting are
explained. A set of problems is included.

This document is issued for internal distribution and use only by and for Lin- The research reported in this document was supported
coln Laboratory personnel. It should not be given or shown to any other in- jointly by the Department of the Army, the Depart-
dividuals or groups without express authorization. It may not be reproduced ment of the Navy, and the Department of the Air Force
in whole or in part without permission in writing from Lincoln Laboratory. under Air Force Contract No. AF 19(122)-458.

6M-3938 - e page 1

INTRODUCITON

The subject of this course is the Logical Structure of Digital Com-
puters. By "compier logic" one means the set of rules which the
computer follows in carrying out its operations. Logical structure
is to be distinguished from physical structure. The electronic |
components, wires, motors, and other hardware, comprising the
physical structure of the computer, do no more than mechanize the
operating rules defining the logical structure of the computer. It
is completely irrelevant to the logic that the computer is built of
vacuum tubes, or relays, or paper, as long as the rules are properly
represented and followed. '

The digital computer is essentially a symbol-manipulating machine.
It accepts a set of symbols defining a problem to be solved and the
data on which to operate. It then performs various operations on
these symbols according to the rules defining its logical structure,
and thereby produces a new set of symbols which comprise the solu-
tion to the problem. The rules thus take the form of a set of
statements describing the manner in which certain symbols are to be
replaced with new symbols. (Consider, for example, a particular
sequence of five symbols. One useful rule in a computer dealing
with this seguence would be: "If the first symbol is a f1%, the
second '+', the third '1', the fourth '=', and the fifth *x', then
replace the symbol 'x' with the symbol '2°.")

THE TURING MACHINE

A simple abstract model of the general symbol-manipulation process
(and, therefore, of digital computer logical structure) was formu-
lated by the British mathematician, Turingl as a conceptual aid in
proving certain results in mathematical logic. He defined a class
of symbol processing mechanisms which he called simply "automatic

machines,"” but which are now generally known as "Turing machines."

The elements of the Turing machine are illustrated below:

P L T Tseis)sy, U1 T 1 T %

M

1a. M. Turing: On Computable Numbers, with an Application to the
Entscheidungs Problem, Proc. Lond. Math. Soc., series 2, Vak,
pp. 230-265, 1936.

6M-3938 o page 2

A machine, M, having a finite number of internal configurations or
states operates on an infinitely long tape, T, which is divided
into cells. Each cell is capable of bearing one symbol from a
specified, finite set of symbols, Sp, Sy, 52 * * * Sy, e.g., the
alphabet, the digits, etc. The machine deals with one cell at a
time (called the scanned cell) and can read the symbol in this cell
and write a new symbol in its place, or move to the next cell to
the right or to the left.

An operation is carried out concurrently with g Jump from one mach-
ine state to another. This action is completely determined by the
current state of the machine and the currently scanned symbol. Each
move results in a new configuration of machine and tape in which the
scanned symbol and machine state determine the next move, and so on.

A notation will now be described and some examples of Turing machines
presented. This materiasl will differ from that in Turing's original
presentation, but the essential features are retained.

The operations to be discussed are:

1) Replace the scamned symbol, Sj, with the symbol Sj,
abbreviated:
Sj_:Sj

where i and j may have any particular values O, 1,
2, * * ° n. The symbol Sp will represent blank tape
to complete the description.

2) If the scanned symbol is Si, move to the next cell
on the right: :
S; ¢+ R
3) If the scanned symbol is Si, move to the next cell
on the left:
Si : L

These operations can be abbreviated:

Ty = print Sy "k =0,1, °* * *n
8; :+ Tx Ty =move "R k=n+1
Tk = move "L" k =n + 2

The rules by which the machine operates are then formulated in terms
of these operations and the internal states of the machine. Each
rule will be of the form:

TS ‘.}

6M-3938 . o par

(———

If the machine is in state p (p=21,2, « + « M)
and the scanned symbol is 83 (i =0, 1, * » « N)

‘then carry out operation T (k =0, 1, * « « N + 2)

; and jump to state a (q=1,2, * * * M)
i

which will be abbreviated to the guadruple:
(P: Si ¢ Tk, Q)

For example, the guadruple (3, x : R, 1) means "If the machine is
in state 3 and the scanned symbol is x, move to the next cell on the
right and jump to state 1k4."

The logical structure of the machine is thus specified by a finite
set of juwdruples of the above form.

The ordered pair of symbols p, Si will be called a determinant,
since it determines the subseguent move of the machine according to
the remaining terms in the guudruple. To be consistent, the require-
ment is imposed that no two guadruples describing a given machine
can have the same determinant.

The logical structure of a Turing machine way be represented conven-
iently as a network in which each node correspcnds to a state of
the machine and each directed branch between ncdes corresponds to

a Jump between states. The branch is labeled with the operation
which occurs during the jump. For example, the network

aﬁ&w’

corresponds to the set of three guadruples

(1, x : R, 2)
2, Xt ¥, 2)
{2, ¥y + R, 1)

A drawing of the network for a given machine is variocusly called a
state diagram or transition. diagram. Two conventions which simplify

6M-3938 . page L
the drawing of transition diagrams for processes involving a large
number of symbols Sg, S;, S, * * * Sp are the following:

a) If all branches from a given state, p, lead to state g,
and involve the same operation, Ty

So? T

OR-S

then the diagram may be abbreviated to

O——@

b) If all branches except the one for a particular scanned
symbol, 5i, lead from state p to state ¢, and involve
the same operation, Ty

then the diagram may be abbreviated to
Si: T

where 8; is read "not S;."

A few examples of Turing machines will now be given to illustrate
the preceding definitions and concepts.

6m_3938 ; R R . pege S

Example 1

Given a tape on which the symbols Sg, Sy, S2, ° ° ° S, appear
in any order and number. The machine starts in state 1 scan-
ning any cell to the left of a cell holding the symbol, S3

SQ So S3 57 Sh S3 Sz Sl SQ Sl S
The machine is to "hunt" for the first cell to the right.

which holds S; and jump to state 2 when it is scanning this
cell. The transition diagram is

The machine remains in state 1 and scans the next cell on
the right until Sy is found, whereupon it Jjumps to state s
with no change of symbol on the scanned cell.

Examgle 2

Consider a process of simple cryptographic encoding. Letters
of the alphabet are to be scrambled according to the code

a—»0
b ~>—1
Cm—tp— T
°
o

°

7~

e.g., the word "cab" becomes "por", etc. The message to be
encoded is printed on the tape with an arbitrary number of
spaces between words.

6M-3938 | page 6

The machine starts in state 1, scanning the indicated cell.
Its diagram is

The symbol Spy represents blank tape. The machine continues
indefinitely, changing letters of the message to their equiva-
lent code value.

Example 3
A block of five cells, each holding the digit O, is separated
from the rest of the tape by the symbol E on the left and C
on the right.

The machine starts in state 1, scanning a cell to the right
of C. It is to print in succession the 5-digit decimal
numbers from O to 99,999 on the marked block of cells, reset
them to 0, and then jump to state 5. Its diagram is

6M-3938 page 7

The machine finds the first digit following symbol C and
Jjumps to state 2. If this digit is not 9, it is replaced
with the next larger digit and the machine jumps to state 3.
In state 3, the machine moves right until it finds C and
backs up one cell, jumping back to state 2. When the digit
is 9, it is replaced with O and the machine jumps to state
4 and moves left one cell (corresponding to a “"carry" from
one digit position to the next), returning to state 2 again.
Clearly, this process results in the printing of the required
sequence of numbers up to 99,999. At this point, the re-
peated sequence of transitions (2, 9 : 0, 4) (4, 0 : L, 2)
resets the five cells to O and the process terminates with

(2: E:E 5)-

Example k4

Consider a tape marked with A, 1, O, and x in the following
manner:

Alx| 1lx|lolx | x| 1|x et¢.

The 1's and Ofs are intermixed with x's to the right of A

in an arbitrary way. The machine starts in state 1, scanning
a cell to the left of Aj,and is to compact the sequence of 1l's
and O's into a block following A. The order of the 1l's and
O's is to be retained. The diagram is

In state 1, the machine finds the first symbol to the right
of A and jumps to 2. In state 2, the machine skips over
cells holding x's and finds the nearest O or 1, replaces it
with an x and jumps to state 6 or 3, respectively. In the

6M-3938 , page 8

case illustrated, the nearest non-x symbol is a 1, and the
machine will go to state 3. In state 3, the machine finds
the leftmost x, jumps to 4, prints a 1, and moves to the
right, returning to state 2 via 5. Note that in taking
either the upper or lower branch, (2, 1 : x, 3) or

(2, 0 ¢ x, 6) , the machine in effect "remembers" that
the last symbol scanned was a 1 or O, respectively. The
reader should verify that the tape illustrated becomes:

| IAIlIOIlIxIxIx]XIxI*I |

It is possible to restrict the Turing mschine to two symbols, O
and 1, without loss of generality.

Conslder a problem which is expressed in terms of four symbols:
Sos» S5y, 82, 83. These can be encoded into groups of 1l's and O's

in meny ways. For example:

Sp = 000 Sp = 00
81 = 001 S =01
S2 = 010 Sz = 10
83 = 100 83 =11
(1) (2)

Case (2) will be discussed in more detail. The tape is divided
into groups of two cells each:
¥

[Tolofolalafofala] T

50 51 S2 3

Then consider a section of the transition diagram of a machine
dealing with £o, 53, Sz, S3 which is of the form

6M=3935 page 9

This is equivalent to the following in which only O and 1 are used:

as:

Note that the interpretation of the sequence of 1's and O's depends
on the direction of travel. This dependence could be eliminated
by using a symmetrical code:

Sp = 000
S1 = 010
S2 = 101
S3 = 111

We have now shown that the operations of any Turing machine can be
reduced to the set

print O

print 1

move right one cell
move left one cell

This can be reduced still further. The only possible symbol-printing
situations are:

EMz3938 .- page 10

O:l}
1:0
0:0
1:1

The first two cases involve a change of information on the tape;
the second two do not. We can define an operation "complement,"
abbreviated "C", to replace the two print operations. The cases
involving no change of symbol are replaced with two complement
operations done in sequence:

0:0 becomes . o:C . j:C .

Thus, the set of Turing machine operations reduces to:
c
L
R

This can be reduced again to any of the three sets:

(1) (cL complement and move left
R move right

2L move left
CR complement and move right

(3) fcL complement and move left
CR complement and move right

The proofs for (1) and (2) reduce to showing that "CL" can be
broken into "C" and "L":

. 0:CL . R .

is the equivalent of
0:C

and

@o:u @ R$@. I!CL@

is the equivalent of

OO:L @

6M-3938 page 11

The other possible actions on O and 1 for cases (1) and (2) are
proved in a similar manner.

Case (3) requires a different arrangement of symbols on the tape.
Alternate cells are used to hold the symbols of the problem. The
cells in between aid in "phasing" the complementing, but hold no
significant information:

. —— [s
OEH 11 E0 1 BE=

1

The equivalent forms are:

O2=H@a® = O

.

c

m cL l=c CR = @0:‘5"®

The other forms can be obtained directly from these.

EM=3936 page 12

PROBLEMS

1.1) A Turing machine tape is marked in the following manner:

Pldj] d3|dk | d1] dm

Symbol "P" marks the beginning of a block of 5 different
decimal digits, di, dj, dx, d1, dnm. (e.g., TOO9 3 L),

Describe (draw a state-and-transition diagram of) a machine
which will rearrange the digits in descending order on the

5 cells following "P" and move on to the right when finished.
Any additional symbols and cells may be used in the process
providing they are erased upon completion. The machine is
to start on any cell to the left of "P".

1.2) Restate problem 1.1 in terms of a tape on which only the
symbols "So" and "S;" appear. (Invent a suitable code for
the symbols "P", blank, O, 1, « « « 9, etc., and describe
the initial tape configuration). Redraw the state-and-
transition diagram accordingly, using only the operations
"complement" (change Sg to S; or Sy to Sg), "move right",
and "move left", abbreviated "C","R", and "L", respectively.

1.3) Non-erasable tape can be defined as tape on which it is
possible to write a symbol in a given cell only if the cell
ts blank. Show that it is possible for any Turing machine
to use non-erasable tape.

6M-3938, Supplement 1

Divieion 6 - Lincoln Laboratory
Massachusetts Institute of Technology
Lexington T3, Massachusetts

SUBJECT: THE LOGICAL STRUCTURE OF DIGITAL COMPUTERS
The Universal Turing Machine

To: '~ Class Registrants
Abstract to: J. C. Proctor, C. W. Farr
From: W. A. Clark

Date: 20 October 1955

Abstract: The complexity of a Turing machine can be measured by
the number of quadruples defining its logical structure.
At a certain level of complexity, it becomes possible
to design a Turing machine which is universal in the
sense that it can perform any calculation which any
other Turing machine can perform. The Universal Turing
Machine achieves this generality by having the ability
to simulate other Turing machines, even those which are
more complex. This simulation process is described in
terms of the manipulation of the gquadruples themselves.
An example of a Universal Turing Machine is presented
in detail, and a set of related problems is included.

T St

W. A. Clark ™~

This d tis i d for i 1 distrib and use only by and for Lin- The research reported in this document was supported
coln Laboratory personnel. It should not be given or shown to any other in- Jjointly by the Department of the Army, the Depart-
dividuals or groups without express authorization. It may not be reproduced ment of the Navy, and the Department of the Air Force

in whole or in part without permission in writing from Lincoln Laboratory. under Air Force Contract No. AF 19(122)-458.

6M-3938, Supplement 1 Page 13

THE UNIVERSAL TURING MACHINE

Preliminary Remarks

We have seen that a very general class of Turing machines can be
defined which use a single tape on which only the symbols "O" or
"1" appear in any cell ("O" corresponding to blank tape) and which
perform only the operations “print O," "print 1," "move right one
cell," and "move left one cell." For convenience in subsequent
reference, we will call these machines "Class A Turing machines”
to distinguish them from other machines which use more symbols,
different operations, more tapes, etc. Within a given class one
might measure the complexity o a particular machine by the number
of its internal states or, perhaps better, by the number of gquad-
ruples required to describe its logical structure. Thus, a 100-
quadruple Class A Turing machine would be more complicated than a
10-quadruple Class A Turing machine.

It seems reasonable to attempt to relate a machine's complexity to
its capability. For example, it is possible to combine a machine,
My, which is capable of counting, with a machine, M;, which is
capable of ordering a set of numbers, and thereby obtain a more
complicated machine, M3, which is capable of both ordering and
counting. It might be supposed that it is always possible to in-
crease the generalily of a machine by increasing its complexity in
this way. The fact is, however, that there is a critical complexity
beyond which no further increase in generality can be guaranteed!
That is, at a certain level of complexity it becomes possible to de-
sign a Turing machine which is universal in the sense that it can
perform any calculation which any other Turing machine can perform,
even if the other machine is more complicated than the universal
machine. The universal Turing machine achieves this generality by
having the ability to simulate any machine whose calculstion it is
required to duplicate. The tape of the simulated machine appears

as a designated sequence of cells on the tape of the universal
machine. We will consider these points in more detail later.

Quadruple Manipulation

The simulation is itself a symbol manipulation process in which the
symbols represent the set of quadruples describing the simulated
machine. As an example of the manipulation of quadruples, consider
the following simple Class A machine and the set of guadruples de-
scribing its logical structure:

6M-3938 , Supplement 1 : Page 14

y 4

M
0;! lo
I'R (1, 0:1, 1)
(1, 1 : R, 2)
(2, 1:2 0, 2)
O:R (2, 0 : R, 1)

This machine, starting in state 1, will printvthe sequence 10101010.,
sooeo Its operation will now be described in terms of the quadruples

and scanned symbols:

Define active quadruple to be that guadruple which describes
the action of the machine at any given point in the process.
The active determinant is then the determinant found in.:
the active quadruple (see page 3). The first term of the
active quadruple will be called the initial state, and the
lagt term, the final state. The second term of the active
quadruple is, of course, the scanned symbol, and the third
term is the specified operation.

In the illustration, if the machine is in state 1, the ac-
tive quadruple is the second one in the list, namely:

(1L, 1 : R, 2)
The machine will move one cell to the right and jump to the
final state 2. State 2 thus becomes the initial state of

the next machine action and the new scanned symbol is a "1".
Therefore, the next active determinant will beg

2, 1

The next active quadruple can be found by again examining
the list of quadruples and finding the quadruple which
starts with the determinant 2, 1. In this case, it is the
third determinant:

(2, 1 : 0, 2)

The machine will print a "O" and jump to the final state 2.
The scanned symbol is now "O" and the next initial state is 2;

6M-3938, Supplement 1 Page 15
thus, the next active determinant will be
2, 0
and the next active quadruple is found to be
(2, 0 : R, 1)
etc.

This example illustrates the use of the set of guadruples in
describing a sequence of machine actions.

General Description of the Universal Turing Machine

The basic simulation process can be represented in the following
way:
Y

A. Given the active determinant,
find the active guadruple.

Y

B. Carry out the gpecified
operation.

C. Form the next active deter-
minant from the new scanned
symbol and the new initial
state (the previous final
state.). |

It is, of course, necessary to start this sequence with the first
active determinant at A.

The Universal Turing Machine, UM, will be designed to carry out the
above steps A, By, and C for any list of quadruples describing a
given simulated machine, SM, which will be encoded in a suitable
manner and printed on the universal machine tape, UMI. As we men-
tioned earlier, this tape will also hold a sequence of cells

which correspond to the cells of the simulated machine tape, SMT.
It will also require cells on which to print the active determin-
ant symbols, and cells to mark significant points on the tape,
e.g., the SMI' scanned cell.

6M-3938, Supplement 1 Page 16

- == T
FTTTT IR
| sMT |

[UMT

LEM_

Universal Machine

Before UM begins its calculation, the quadruples defining SM are
printed on UMT, the cells on UMT corresponding to SMT are marked
to match the initial configuration of SMI'; and the first active
determinant is printed on UMT. UM is started in & specified
initial state scanning a specified cell on UMI'. It then carries
out steps A, B, and C without end and prints the results of SM's
calculation on the designated UMT cells corresponding to SMT.

It is assumed that the set of symbols used by SM is included
within the set of symbols used by UM.

Detailed Description of a Class A Universal Turing Machine

The general description of the previous section will now be
related to a particular Class A Universal Turing Machine. It is
seen that the first problem is that of finding a suitable code
using the symbols O and 1 to represent gquadruples, determinants,
etc. The coding scheme presented here is the work of E. F. Moore
who employed it in a description of a 3-tape universal machine?.
The second problem is that of finding a suitable arrangement of
the symbols on the universal machine tape. Finally, a descrip-
tion of the universal machine itself must be developed.

Consider first the coding of a Class A machine guadruple
(r, 84 : Txys). Each determinant must be one of the two forms:

2E. F. Moore: A Simplified Universal Turing Machine, Bell Tele-
phone System Monograph 2098, presented at the Meeting of the
Association for. Computing Machinery, Toronto, Canada, Sept. 8,
1952,

6M-3938, Supplement 1 , Page 17

r, O
or
r, 1

where r takes on any. integral value 1, 2, - - ¢ M (for an M-state
machine). The specified operation, Ty, is any one of the four
forms:

0

1

R

L

and finally, the final state, s, is an integer from 1 to M.
The scheme proposed by Moore is the following:

Determinant; i

Code r, O as a block of 3r + 1 successive 1l's

” r 5 l " " 1” 31,, + 2 n l [8
Operation:
Code O as O | immediately following determinant.
i1 l as OO 1] " n
3] R as 000 " n n
" L as 0000 " " "

Final State:

Code s as a block of 38 successive 1's immediately following
the operation.

For example, the quadruple (1, O : 1, 1) would become:
111100111
and the quadruple (1, 1 : R, 2) would become:
11111000111111
A list of quadruples is coded by stringing together in any order the

codes of member quadruples, separating one quadruple from the next by
at least one 0. For example, the machine described on page 1h4

(1, 0:1, 1)
(1, 1 : R, 2)
(2, 0 : R, 1)
(2, 1 : 0, 2)

6M-3938, Supplement 1 ‘ Page 18
is. completeLy (although not uniquely) coded by the seqpcnce.
°‘°0000111100lllOllllllllOllllllOOO1111111000111001111lOOOllllllOO---

Notice that any block of ones in this sequence has a unique interpre-
tation, e.g., a block of N ones represents a final state only if N is
divisible by 3, etc. A block of zeros following a determinant repre-
sents an operation; a block of zeros following a final state is simply

a separation.

We now proceed to describe the arrangement of symbols on the universal
machine tape, UMI. UMT will need to be endless only on the right.

The class of machines which the universal machine will simulate will
also use tapes which are endless only on the right. This causes no
restriction in the generality of these machines over that of doubly
endless tape machines (see problem 2.1).

UMT will be divided into groups of 7 cells each. The gquadruple list,
active determinant, SMT cells, and various marking cells will be
interleaved on UMT in the following manner:

Ep a & Ep 9 Q Eq a3 Q3 ol

! ki

dy Dy t1 Ty dz Do Ty TZ d3 D3 1§3 T3

UMT

The E cells are used to mark the end of the tape (only E; holds a
"1"; all other E cells hold "o". These are not changed.

The D cells hold the active determinant.
The Q cells hold the list of quadruples.
The T cells correspond to the cells of the simulated machine tape.

The cells labeled d; g, and t are used to mark the following D, Q, and
T cells, respectively. Only one cell of each will hold a "1" at any
given point in the calculation. For example, a "1" in t, indicates
that T2 would be the scanned cell on SMT. The use of thése marker
cells will become clear later.

To go from cell Qi to Qj41 for example, it is necessary to slip over
the intervening 6 cells. This process is diagrammed:

il R Il R [: R ;{:} R >>:: R C] R (:> R 5 (:)

and will be abbreviated:

Rr7

6M-3938, Supplement 1 | Page 19

The process of locating the end of the tape will now be described.
Suppose that UM is scanning some Q cell and is to find the cell E;
if the scanned symbol is "1". The diagram is:

The letters Q and E below the state node in this diagram indicate
vhich "phase" of the 7 tape phases the machine will end in after the
transition to that state. The machine starts in state "a" scanning
a Q cell, (i.e., in Q-phase). If the scanned symbol is a "1", the
machine moves 3 cells to the right (to the nearest E cell) and jumps
to state "b". Now in E phase, the machine scans successive E cells
to the left until a "1" is found, which occurs on E; at the end of

the tape.

UM will start in state 1 scanning Ej. The quadruple list for SM is
printed on the Q cells beginning with Q1 and g; holds a "1" (q; marks
Q). The first active determinant is printed on D1, D2, D3, etc.,
and dy holds a "1" {(d; marks Dj). Finally, the T cells are marked
according to SMT and the initial simulated scanned cell T, will be
marked (tg holds a "1").

It. will be noted that UM must move to the end of UMT before search-
ing for a "1" on any marker cell in order %0 guarantee that the
marked cell will not be missed.

Parts A, B, and C of the operation of one particular Class A Univer-
sal Turing Machine will be described separately on the following
pages .

6M-3938, Supplement 1 » , Page 20

A. Given the active determinant, find the active quadruple.

From state 67

Mark next D cell Start

o: R’ 0!

(e b0 S
o7 o 114 e 0:R, o 1sL6 ‘0 150 otR? osl o
‘ MarknextQ,cell . ' . s '

Compare D and Q blocks .= .- (blfcck‘g #) ¥

Mark next
I o2

X ,,,3 .
@ 20 oR 'L
0
Mark next Q cell \ (blocks =)
to state 26

The next D cell is marked (a "1" is printed in the associated d cell)

in states 2 to 4 and the previously marked D cell is examined (state 5).
If it holds a "1", UM checks the currently marked Q cell (and marks the
next Q cell) in state 10 anc if it holds a "1", prepares to compare the -
next D and Q cells by returning to state 1. If the D and Q blocks are
of unequal length, UM marks the next Q block of 1l's, marks the beginning
of the active determinant again, and starts the comparison with the new °
Q bloek by returning to state 1. When both D and Q cells hold O's con-
currently, the active quadruple has been found and UM Jumps to state 26
to begin part B.

6M-3938, Supplement 1 Page 21

B. Carry out the specified operation.

Iz R?

to state 43

Return to Eq

2:R% i\

The active quadruple has been located and UM determines which SM
operation is specified by counting the number of successive O°'s in
the operation code. If one O, UM finds the scanned cell on SMT and
prints a "0"; if two O's, a "1"; if three O's, UM marks the T cell

on the right of the currently marked T cell; if four O's, UM marks the
T cell on the left of the currently marked T cell. UM then returns

to the end of the tape and moves on to mart C.

6M-3938, Supplement 1 Page 22

C. Form the next active determinant from the new scanned symbol
and the new initial state (the previous final state).

Erase old determinant Examine scanned

symbol on SMT

"Add" 1's to new
active determinant

1
Extend D block one cell Mark final-state block

Copy final state onto D
cells

o:L7

.

Q £ d, 9, to state 1
Examine next Q cell Mark Dy and Q;

The old active determinant is erased (states 43 to 46) and the current
scanned symbol on SMT is examined. If it is a "O", a "1" is printed
on D to start the next active determinant; if the scanned cell on SMT
holds a "1", then a "1" is printed on both D1 and Dy. UM then combines
the block of "1's" which code the final state of the active quadruple
with the one or two 1°s now on the initial D cells;, thus forming the
new active determinant. D; and Q) are marked (1l's printed on d; and

ql) and UM returns to state 1 to repeat A, B, and C for the next simu-
lated transition.

6M-3938, Supplement 1 Page 23
PROBLEMS

2.1 Show that any problem which can be solved by a Turing machine
using doubly infinite tape (infinitely long in both directions) -
can also be solved by a Turing machine using singly infinite
tape.

2.2 Consider the class of Turing machines which use only the
symbols "O" and "1" and which perform only the operations
"print O", "print 1", "move right one", "move left one",
abbreviated O, 1, R, L, respectively.

How many one-state machines of this class are there? Two-state?
N-state?

2.3 A Turing machine calculation which never uses more than a
finite length of tape might be called limited; otherwise non-
limited. (For example, the machine (1,0:0,1) (1,1:R,1) per-
forms a limited calculation if the tape holds a "O" to the
right of the scanned cell.)

Write the set of quadruples for each one-state machine of the
class defined in 2.2 which is non-limited for all possible
arrangements of symbols on the tape.

2.4 Design a Universal Turing Machine using as few internal states
as possible. The design may use any finite number of symbols
to aid in reducing the number of states required. Make a count
of the number of states and the number of quadruples.

6M-3938, Supplement 2

Division 6 - Lincoln Laboratory
Massachusetts Institute of Technology
Lexington T3, Massachusetts

SUBJECT: THE LOGICAL STRUCTURE OF DIGITAL COMPUTERS
Boolean Algebra
To: Clags Registrants

Abstracts to: J. C. Proctor, C. W. Farr
From: W. A. Clark

Tate: 2 November 1955

Abstract: The symbol-printing opermtions in a Class A Turing
machine can be described in terms of the tape cells
themselves. For example; a machine which performs
the sequence "If cell A holds "1" or if cell B holds
0", print "1” on cell C" is described by the
statement:

(At or B9):c?

The manipulative aspects of this notation can be

exploited in demonstrating that the rules for
printing symbols define a Boolean Algebra.

W. A. Clark 5

This document is issued for internal distribution and use only by and for Lin- The researchreported in this document was supported
coln Laboratory personnel. It should not be given or shown to any other in- jointly by the Department of the Army, the Depart-
dividuals or groups without express authorization. It may not be reproduced ment of the Navy, and the Department of the Air Force

in whole or in part without permission in writing from Lincoln Laboratory. under Air Force Contract No. AF 19(122)-458.

6M-3938, Supplement 2 ‘ Page 24

The Class A Universal Turing Machine described on the preceding
pages provides us with one value for the critical complexity dis-
cussed earlier. A count of transitions shows that about 800
quadruples are required to describe this machine. Other universal
machines using more symbols and fewer internal states have been
desggned (see also problem 2.4); Shannon has shown3 that it is pos-
sible to design a two-state universal machine (and impossible to
design a one-state universal machine) by using a large enough
number of symbols.

Variationg o the Turing Machine Theme

There are many possible variations to the Turing machine concept.
In the example presented earlier, the machine operated on a linear
array of symbols printed on an infinttely long tape. Another class
of mechine might be defined which operates on a two-dimensional
array of symbols printed on an infinite plane.

+

4
HE]
4 2

(4

The operations of this machine would include "move right," "move
left,” "move up,” and "move down.” Extemnsion of these ideas to
n-dimens{onal arrays readily follows.

ﬁ_plnﬁlo
plain| [S|olo

UMY
di~+ I8 10

Il A

A three-tape Turing machine was mentioned.earlier“a In this case,
the machine deals with three separate linear arrays scanning three
cells simultanecusly but operating on only one tape at a time. The
transitions are described as sets of sextuples rather than guad-
ruples, each determinant consisting of the initial state and the
three scenned symbols. Again, extension to machines using more
tapes or several n-dimensional arrays is possible.

Von Neumann has suggested a parts-manipulating machine analogous

3c. E. Shannon and others: "Automate Studies,” Princeton Univer-
sity Press (to be published shortly.)

4En F. Moore: Op. eit.

6M-3938; Supplement 2 Page 25

to the Turing symbol-manipulating machine. This machine would op-
erate in an envirmment containing hardware of various kinds such as
nuts, bolts, wire, vacuum tubes, etc., and would construct another
machine from these parts. Again, it is possible to design a uni-
versal constructing machine capable of comnstructing anything that
any other constructing machine can construct. A case of particular
interest is that of a machine which constructs a copy of itself.
With the current trend toward automation, some of these ideas are
being applied in practical situations.

Summary Remarks

Before moving on to further discussion of the Turing machine and
its relation to cther topiecs, let us list some of the items which
have been introduced in the preceding pages:

1. Logical structure 6. Coding N
2. Operating rules 7. Machine complexity
3. Stable states 8. Simulation

4y, Transitions 9. Universality

5. Symbol manipulation

These are all items will will be discussed in more detail during
the remainder of the course. It is interesting that the concep-
tually simple Turing machine serves to introduce so many of the
basic ideas in the subject of digital computers.

BOOLEAN ALGEBRA

We now proceed to develop a manipulative notation which enables
us to describe the action of two-symbol machines in terms of the
cells themselves. This will lead to a kind of symbol-printing
algebra which will be shown to have the properties of Boolean
algebra.

Consider the following simple Class A Turing machine which operates
on cells labeled A, B, and C.

A B C
010

1 ToTs

6M=3938, Supplement 2

for which the transition diagram is

Page 26

The machine prints "1" on C if A and B hold the same symbol and

prints a "©" on C if A and B hold different symbols.

The symbol

finally appearing in cell C depends on the symbols in A and B.
There are, of course, several kinds of dependence relations pos-
sible; and the machine illustrated mechanizes only one of these

relations.

A word description of the illustrated process in terms

of basic Turing machine operations would consist of the following

pair of statements:

1. If cell A holds "1" and cell B holds "1%,

or if cell A holds "0O" and cell B holds "O",

then print "1" on cell C.

2. If cell A holds "1" and cell B holds "O",

or if cell A holds "O" and cell B holds "1",

then print "O" on cell C.

A notation which simplifies this description is one which employs
superscripts to denote the symbol held in a given cell:

A° will mean

1

and A will mean

Then we might agree that

A°: will mean "if there is a 'O’ in cell A"

and zC1

“there is a '0' in cell A"

"there is a '1' in cell A"

will mean "print a °1°' in cell C"

With these abbreviated forms, the statements describing the action
of the illustrated machine become:

6M-3938, Supplement 2 ' Page 27

(& and B: or A° and B%):C! }
(A° and B' or A' and BO):CO

The remaining simplification involves replacing "and" and "or"

with shorter symbols. We will choose "-" to replace "and" and
"4+" to replace "or."” With these changes the statements become:

(a' - B+ A9 - Bo):c!
(a°© - B! + A' - BO)sCO

and the transition diagram can be redrawn in the form:

which is considerably simpler and more compact than the original
diagram.

It is interesting to note that in this new description the opera-
tions "R" and "L" do not appear. It is no longer a requirement
that the cells A; B, and C be adjacent cells in a linear array.
In fact, the new transition diagram equally well describes the
action of a discrete-state machine which deals with several inde-
- pendent cells simultaneously:

\ 7 .

M L

{

We will return to this idea later.

Table of Combinstions

The possible outcomes and the corresponding conditions of A and B
can be represented conveniently in a teble. On the left are listed
all combinations of symbols found in A and B, and on the right the
resulting symbol in C:

6M-3938, Supplement 1 Page 28

HHOO|>P
HORFRO|W
HOOMHIQ

Thus, the first line of the table corresponds to AP'B°:Ci, ete,
The number of lines; k, in such a table is given by k=20, where
n is the number of cells determining the symbol to be printed.
The number of different tables is 2K, %.e.,-

22% - pumber of functionally different machines
which print "1" or “O" depending on the
symbols held in n cells.
It should be noted that directions for printing only the 1l's are
sufficient to determine the complete table. Thus, it is sufficient
to describe the illustrated machine by:
(a*-B*+40-80):c?

from which the table is written:

O's appearing in all unfilled positions. Similarly, directions
for the printing of O's are also sufficient and may result in
simpler deseriptions in some cases. For example;

A%-B%;c° and (Ad -BO+AC Bt H) :ct
both describe the same machine. |
We will say that two cells, C and D, are eguifalent if C holde a

"1" whenever D holds a "1" and C holds "O" whenever D holds "O".
Thus, from & table, e.g., ' _

OO |»
HFOrHO |
oo |

HOOR O
= OO+ ju

6M~-3938, Supplement 1 Page 29

it is seen that C is equivalent to D and E is equivalent to A.
These will be written C=D and E=A, respectively.

Thus, given

xizf1 X £
oo
1 1

it is seen from the table that x=f. This could have been obtained
from the statement xf:f! by dropping superscripts and replacing
"." with "=", and the converse is of course also true. Using this
rule, we would also obtain x©=fC from x©:f°.

From x°:f! we would obtain f=x°. The table is:

X f
ol
110

Inspection of the table shows that the symbol in cell f is the
complement of the symbol in cell x, i.e., f=complément of x.
Thus, x© will be read "x complement” or "complement of x", the
superscript "o" indicating the complementation.

From " X £ g
02! o
e 1flo |1

we conclude that x = (xo)o, the double-complement rule.

Now we define two cells 1 and O in the following way: Cell 1
always holds the symbol "1" (see, for example, cell E; of the UM
described earlier) and cell O always holds the symbol "O". Evi-
dently:

1°=0 and 0° =1

Consider the following printing statements for cells f; through fg:

(1 422): £
(¥ +o!):gt
(ot +0%):£]
S 1tertipd
110155
0* <0 xQ

The table of combinations is then

6M-3935, Supplement 1 Page 30

L 06| £ | £f5] £, f5| £
1 O 1 1 0 1 0 0
1 0 1 1 0 1 0 0
1 O 1 1 0 1 0 6]
1 0 1 1 0 1 (6] O
from which we conclude that

14+1=1 1-1=1

140=1 1-0=0

O+0= Q0=0

These results illustrate properties of an arithmetic which is like
ordinary arithmetic for the "dot"” cperation (multiplication) but
unlike ordinary arithmetic for the "plus" operation (addition). We
have described the fundamental operations of Boolean Algebra.

Evidently these cperations are commutative, i.e., "x or y" is the
same as "y or x" and "x and y" is the same as "y and x". Symbolically

YAy =y +X and Xey = Y°*X

The "and" and "or" operations are also associative. Using the
parenthesis Lo denote grouping, the following statements hold:

x+(y+2)=(x+3+ 2 and xo(yez) = (x°y)-z

Consequently, the order and grouping of symbols in any Boolean ex-
pres&lon is arbitrary. The distributive properties of the "and"
and "or" operations can be established by comstructing the table
of combinations for the forms:

(yioy1+4io"1):f1 (x*ayd)olxbezd) gy
Polytant)it (%t iyt o2t)l
x y zl]f ol fal £y
o o oflofol]lolo
C 0 1 O 0] 0 0
0 L 0 O Q 0 Q
0 1 10 QO 1 1
1 0 0O 0 0 1 1
1 0 1 1 1 1 1
1 1 0O {1 1 1 1
1 1 1 1 1 1 1

- Comparison of columms in the table shows that =f, and fy=f, , i.e,,"
XoYyHXoy = x»(y+z) and (x+y)e(x+z) = x+y.z

As in ordinary algebra, then, one can "multiply” through a "sum"
(recall the process of "factoring'). Unlike ordinary algebray
Boolean algebra permits one to ”ddd” through a “product”. These
forms will occur guite often in subsequent work. ’

Memorandum OM-3938, Supplement 3

Division 6 — Lincoln Laboratory
Massachusetts Institute of Technology
Lexington 73, Massachusetts

SUBJECT: THE LOGICAL STRUCTURE OF DIGITAL COMPUTERS
Booclean Algebra (continued)

To: Class Registrants
From; W. A. Clark
Date: 22 November 1955

Abstract to: J. C. Proctor, C. W. Farr

Abstract: Theorems i1 Boolean algebra can be proved by
constructing a table of combinations for given
expressions and finding equivalent entries in the
table. The manipulative character of the algebra
makes possible the proof of additional theorems
without recourse to a table of combinations.
Certain expressions are dual in form to one another.

Examples:
x+1=1 x+y2 = (x +y)x +2)
x0 = 0 x(y +2) = xy + xa)

Boolean algebra is also related to statements

about paths in networks. A path between two nodes
in the network can be associated with the symbol '1!
and the absence of a path with the symbol 'O*. A
typical Boolean expression and its network repre-
sentation follows: ‘

¥y —
L — X—[T—-—o x.(y + z)
. A—
W. A. Clark E

WAC/jnk

This document is issued for internal distribution and use only by and for Lin- The researchreported in this document was supported
coln Laboratory personnel. It should not be given or shown to any other in- jointly by the Department of the Army, the Depart-
dividuals or groups without express authorization. It may not be reproduced mentof the Navy, and the Department of the Air Force

in whole or in part without permission in writing from Lincoln Laboratory. under Air Force Contract No. AF 19(122)-458.

6M-39383, Supplement 3

By using the general process of writing out the table of combina-
tions for various expressions and then comparing columns to find
equivalent forms, the theorems of Boolean algebra can be developed.
As further examples, consider the following expressions:

(x:1 +x})e f: X fi | £2
1 4 i O 0 0]
X *x": £, 1 1 1

Examination of the table shows that f; = £, = x, i.e.,

X + X X
XeX X

and hence, by continuation

Similarly, the expressions

(xt+1):gf 0 1 x| f1|£2|f3|f‘
bt o1o0of1]o oo
L4 o1 1811 f1]o
(x"+0"):f3

1.4
&0 £y

lead to the conclusion that

xX+1 1 x+0
X1l X

x-0 -

nou
o

o

Notice that with the except;on‘of the first one, these forms are
like those of ordinary algebra. '

Finally, from the expressions
(xt4x0): £

xlox0: 9

we conclude that
x+x° = 1
x-x% =0

Additional theorems can also be obtained from the ones already es-
tablished without recourse to a table of combinations. For example,

6M-3938, Supplement 3 32

it can be shown that
X + Xy =X

by using the first of the distributive properties already proved:
x-(1 +y)

x-(1)

X + Xy

nun

Similarly, it can be shown that
x+x% =x +y
by using the second distributive propertys .

X + x%

(x + x0)e(x + y)
(1)(x + ¥)
X+y

wonou

The advantages of the manipulative character of the algebra in the
above examples are apparent.

The theorem of DeMorgan relates an expression and its complement.
Consideration of the forms:)

x v [|a|f
i 1y.00
(x"+ y7):£9 o o 1|1
1 o 100 | o
00 °
x0-y©:fy 1 oo |o
1 1 oo

leads to the conclusion that since f, = (fffjand £, = £f,,
(x + y)° = x0.y0

This can be extended to expressions involving more variables by using
the associative property in the following way:

{x+y+z}° {x+(y+z)}°
xO«(y + z)°
XOoYOnZo

A more general form of DeMorgan's theorem is the following:
fO(X1, XZ, e oo Xn’ o, +) = f(xg’ Xg, 2 8 0 xxol, +’ °)
that is, the complement of an expression involving certain variables

and the "dot" and "plus" is obtained by replacing each variable by
its complement and interchanging the "dot" and "plus". For example:

(x + y-2)° = x°:(y° + 2°)

6M-3938, Supplement 3

PROBLEMS

3.1 Show that the complement of any Boolean function may be ob-
tained by complementing all of the function variables and
replacing "+" with ﬂf? and “+f with "T"‘, That is, show that

fo(x1, X2, e ‘Xn, .‘, +)
= £(xQ, x§, ... x§, +,)

3.2 Find the complements of the following functions:

L 4

f =ab + cd
f=(a+D)(c+a)p®+a)
f = (ab%% + be€d)° + a®

Check the results by showing that £+fC = 0 and £ + £f© = 1
for each function.
3.3 Prove the following:
xy +x% = (x +2)(x° +y)

Xy + x% + yz = Xy + x%z

33

6M-3938, Supplement 3 34

Duality

Using DeMorgan's theorem one can obtain new theorems from those
already proved. For example, consider

x(y +2) =xy +xz2

the first distributive property theorem. Complement both sides of
the identitys v

{xy + xz}o)

(x% + y°)(x° + 2°)

{X(y + z)}°

x° . y92°

1]

which is recognized as the second distributive property theorem -
applied to complemented variables. Consequently, the two distri-
butive theorems are related to each other; we say that they are
dual in form to one another. For any Boolean expression, a dual
expression can be obtained by complementation of the expression
followed by complementation of all variables. For example:

X+X =X

Complementation of each side gives

(x + x)o x©

xC.x0 o

. x
and final complementation of all variables yields
XX =X

as the dual expression. Other expressions and their duals follow:

x+1=1] x +'x9 =1
x°0 =0 xx° =0
X + Xy = x} X+x07 =x+y
x(x +y) =x x(x° +y) = xy

Venn Diagram‘

Another way of visualizing the expressions of Boolean algebra is to
relate the states of cells to abstract areas. The area inside the
following closed figure represents the state in which cell x holds
’1°' and the remaining area represents the state in which cell x
holds °'0Of:

xO

6M-3938, Supplement 3 B 35

By overlapping figures of this kind we obtain a Venn‘diagram(5)”of
Boolean expressions of the cells involved. For two variables. the
Venn diagram is the following:

By relating the four distinct areas one can establish the theorems

of Boolean algebra for two variables. TFor example, by joining the

region x-y° to the region x-y, one obtains the region x. Symbolically:
x°y0 + Xy = x

Extension of the technique to more variables is, of course, possible.

Network Representation

The relationships of Boolean algebra can also be applie? So state-
ments about paths in a network of interconnected nodes.’6‘LzThe
following definitions are used:

1

Po—x —oQ

will mean "there is a path from P to Q if x holds 'l' and there is
no path from P to Q if x holds 'O'. Similarly

Po— x0 ——Q
will mean "there is a path from P to Q if x holds 'O' and no path

if x holds '1'." Then the following correspondeénces hold :

Po 14 e Q & P om0 Q)

P ot eQ&Pe— —oQ

so that a path is associated with the symbol '1' and the absence of
a path is associated with the symbol 'O’.

OH. Venn, Symbolic Logic, 1881
6C. E. Shannon, A Symbolic Analysis of Relay and Switching Circuits,
Transactions of A.I.E.E., Vol. 57, 1938.

6M-3938, Supplement 3 » _ - 36

The relations "and" and "or" can be represented as follows:

P xt - yi Q
Xy
xi
1
y
X+ Yy

In the first case, there is a path from P to Q only if x holds '1‘
and y holds '1'. In the second case, there is a path from P to Q
if x holds 'l' or if y holds ‘1’ (or both).

The theorems of Boolean algebra can then be represented as equiva-
lence relations between suitable networks. Some of the theorems
and their network representation follow (1's superscripts and node
labels will be dropped):

o X X ——0 = o X ©
XX = X
—X
(6 aman— l—o = [» X -0
— X
X +X =X
Qe] - = O O
X
x+1=1
o- b'd X0 0 = - S S
x°x%= 0

6M-3938, Supplement 3 , 37

X —Y .
- L
b4 z Z ‘

Xy +x°z2 =x(y +2)

X x R ¥ J—
T
| y—z_1 y Lz

(x + y)(x + 2)

X + y°2

X—y
y— z—

Xy + x%2 + yz

]

e

xy + x%z

1]

i
]
&

—{, H, H. H.

(v + y)(x'+ y)(v + 2)(x + z)

=]
+
N
il

For a more complete description of the application of Boolean
algebra to the synthesis and simplification of networks of this
kind, the reader is referred to the text:

Keister, Ritchie, Washburn, The Design
of Switching Circuits, Van Nostrand, 1951.

Memorandum 6M-3938, Sk

SUBJECT:
To:
From:

Date:

Division 6 — Lincoln Laboratory
Massachusetts Institute of Technology
Lexington 73, Massachusetts

THE JZO0GICAL STRUCTURE OF DIGITAL COMPUTERS
Synthesis of Boolean Machines

Class Begistrants

W. A. Clark

13 December 1955

Abstracts to: = J. C. Proctor, C. W. Farr

Abstract:

It is pdsSible to synthesize any of the two-cell
Boolean machines using connective elements which
implement the Sheffer stroke functions

pOqu or pO + qO

A convenient symbol is based orn the natrix form
of the table of combinations:

P (— p°-q°

q

= O
oK} O
O O} +

. A. Clark

WAC/ jhk

This document is issued for ilnternal distribution and use only by and for Lin- The research reported in this document was supported

14

coln Lab ry per

not be given or shown to any other in- jointly by the Department of the Army, the Depart-

dividuals or groups without express authorization. It may not be reproduced mentof the Navy, and the Department of the Air Force
in whole or in part without permission in writing from Lincoln Laboratory. under Air Force Contract No. AF 19(122)-458.

6M-3938, sh

The four Boolean functions of one variable are defined by the
following table:

x o | x)°| x| 1

1 0 1
0 1 1

0 0
1 0

Any Boolean expression involving only one variable must reduce
to one of these four forms regardless of its apparent complexity.
Examples:

(x +(x)9)° + xO-(x°%xox + x) =0
(((((x)°)0)0)0)° = (x)°

Design a Turing machine which, when supplied a tape bearing any
Boolean expression involving one variable, will print the correct
reduced form of the expression. The symbols appearing initially
on the tape are:

X, O) + 5 (,), = 0
Parentheses will always be written explicitly with any complement:

(x)° instead of x°
and "*" will always be written explicitly between factors

x-(x + x°(x)°)
The expression is written one symbol to a cell and terminates with

the symbol "="; all other cells are blank (symbol "b%). For example,
the last expression appears as &

blblx| | (Ix|+x|-](ix|)]°])=|b]D
The machine starts in state 1 scanning the cell which holds "=" and
is to print the correct reduced form on the cells immedistely
following the "=" gymbol. Any additional symbols may be used but

must be erased upén completion.

6M-3938, sk 39

SYNTHESIS OF BOOLEAN MACHINES

The Boolean algebra description applies quite generally to two-symbol
machines which manipulate information in several cells simultaneously
accord%n§ to fixed rules.* We will call these machines Boolean ma-

chlnes and will now consider their synthesis and logical structure.

The simplest significant Boolean machine is a one-state, one-cell
structure. In the more interesting cases, it is a complex machine

with many internal states and many peripheral cells. What is desired

in synthesizing these more complicated machines is a graphic descrip-
tion which emphasizes the logical relationships between the cells of

a given machine and which thus augments the state and transition diagram
describing the action of the machine. We will now proceed to make more
explicit the possible forms of these logical relastionships.

Two-Cell Machines

Consider first the one-state machine in which the printed symbol de-
pends on the symbols initially held in two cells, p and q:

-

q'

Sixteen different machines are possible; they are described by the
16 Boolean expressions, fo, £, <o fi5 , enumerated in the following
table of combinations:

P q“ To | T0 [T |fa |[fy |T5 [T T |Ta|Ta|Tio|fu|fie|fia|fw|Ts
- 00 o1J]1 |0 (2 |0 (2 O |1 |O |1 |O |1 [O |1 |O 1
01 0 (6 |1 jx jo jo |+ |1 0 {0 1 |1 {0 |0 1 1
10 o]0 |0 (O (1 2 (2 1 (O JjO (O |O |1 |1 {1 (1
11 0 10 [0 10 10 JO {0 {0 12 (2 (1 12 11 11 1 {1

It is noted that £y = 0 and f;s = 1. The Boolean expressions can be
obtained by writing out the terms involving p and q which give rise to
"1's" in the table:

*Refer page 27.
TI. S. Reed: "Some Mathematical Remarks on the Boolean Machine, "
Project Lincoln Technical Report #2, Dec. 1951

6M-3938, Sh

£, =0 ' 'fa = pq

£, = p°-q° fg =p°+q° + peq

£, =p°q £, =p°q+0pq

f5 = p°.q0 + pOeq f, = p°:q° + p°+q + p-q
f, =p-q° T2 =pq® +pgq

f5 = 0@ + peg® . f3 =p°-q® +pa® + pg
f¢ =p°q+pq° Ty =p%q +p-q° +peq
f, = p%-q° + p®.q + p-q° ‘f|s =1

Many of these expressions can be simplified. For example:

f3 = panO + PO-q

]

p°(q° + q)
=po

and

H
~
[}

p°°q° + p°-q + p-q®

p°(q® + q) + p-q°

(p° + p)(p° + @°)

If these reductions are carried out for all such cases, the following
list of minimum forms is obtained:

fo =0 ¢ =pa® + p° fy=0°+q
£, =1p%° f7=PO"“1O fo=p

f, =p% fg =pq fi3 =p+q°
fg =0p° fq =100 + pg fiy =D +4g

f4=PQO fio =49 fis =1

L]
(7]
fl

qO

6M-3938, Sk | L1

The transition diagram for any of the one-state, two-cell machines
can be obtained directly from this list. For example, the machine
described by f, , M, has the diagram:

and
(p° + q°)° = p-q
for M, in terms of the cells p-and g in a graphic construction, we

will introduce a symbolism based on the table of combinations. Note
that the table for f, can be drawn in either the form:

P g f,
___ a
£, 1 0 1
O O 1
0 1 1 or. the matrix form: D 0 1 1
1 O 1 : 1 1 O
1 1 0]

The four positions in the matrix form can be related to the quedrants
of a circle. Thus, the expression f, m%ght be represented by a
connective element of the following sort):

P ;(tﬁ‘ St
Q—————:i]

the marks in the lst, 2nd, and 3rd quadrants correéponding to the
position of 1's in the matrix form for f, . A few other examples
will help to illustrate the use of this symbol:

: q
f,

= D
P .

L]
!

g
6]

'QO

Ol

0
0 1
1 0 q

8J. D. Goodell: "The Foundations of Computing Machinery," Journal
of Computing Systems, Vol. I, No. 1, June 1952.

6M-3938, sk L2

fg = p°°q + p-g°

)

5

b

b Lo

O

HE| O

e
1]

Using this symbol we can now construct any one-state, two-cell, binary
machine in terms of the cells themselves and describe the action of
the machine by means of the associated transition diagram. For
example, the machine described by £, is:

P % — ‘

and the machine described earlier (page 27), which corresponds to fg ,
is represented by:

'C°

v
e | A
' A-B +A%B'):¢°

The remaining 14 machines of this class can be constructed in a similar
manner using the appropriate connective elements.

Universal Connective Elements

It is possible to put each of the expressions fo, £, , . . . |5 into
a standard form which corresponds to that of f,, namely the form:

6M-3938, Sh . 43
(co00e)9 (0000a)®

or its equivalent £
L0

(,oopo)‘+-(,eooo)

where the empty parenthesis groups contain only combinations of the
letters p and q¢ which are also in the standard form. For example,
fig = p + g can be written

- (o0 ¢ [er0d)°

Similarly, each of the sixteen expressions can be written in a form
which corresponds to that of f,

(cocao)o +'(ooo‘o.o)o

or its equivalent ': A ‘ 7
(cooee)oloenes) ©
p + g would be written

[(°+ @°0°+ [@°+ @°]°

These expressions, f& and f5 , are known as the SHeffer stroke
functions9, and are sometimes written fi = p*’q and f9 =p]| q.

The existence of these standard or universal forms means that any
of the Boolean machines, Mg; M1, - . . Mq§ can be synthesized using
only the connective element for fj L

)
T

or the connective element for f,

N v,
q_ﬁj

Accordingly, these elements might be called universal connective ele-~
ments. To demonstrate this universality of these elements, we will
now proceed to show how the sjixteen machines My, M, . . . M are con-

Again as an example, fj4

f14

£y = (p + @)° = p°:q°

i

£, = (p°q)®=1p°+q°

9H- M. Sheffer: "A Set of Five Independent Postuiétes for Boolean
Algebra," Trans. Am. Math. Soc. XIV 1913 e :

6M-3938, sk Ly
structed using only the element f;, , and then we will show that any
structure involving only f| can be replaced by another structure
involving only f, . This demonstration is essentially the same as

that presented by GoodelllO,

First, the sixteen forms are synthesized as follows:

(o]
P@'—fo = PTQP () (p° +p)° =0
q e

fo = 0

fi = pooq_o
pg}_ﬂ = p mjv, p°-q® = (p + a)°
q q
f2 = poeq
pﬁ_fz = (p +a%)° = p%q
a—
fa = po ’ . '
Q - |
£, = pq°
4 - o
I
q 4 _

lOJ. D. Goodell: "The Foundations of Computing Machinery, Part II,"

The Journal of Computing Systems, Vol. 1, No. 2, January 1953.

6M-3938, Sh 45

q
_ ‘ (p + é)o N\ .

P — f = P .
gé ° AN (p+a)%+(99°)]°
q = (p+q) (p%+q°) |

o
/(\P‘ 1 X_\ pa® + pOq
- q A

f, = p° + ¢° ,

D £ - P pO X N\erdX

? 504q
q , l:T
O
q

fg = p'aq

o™
1
Le]
Q
+
Le]
[o)
D

=pq+pq°

D . f = P po 2(\(9"-#(])?('\ — 010
9 [(F2a+(prd]
q - q = (p% (p+q°)
| I

(p+q%)’

10

3
T ; ©
) .
s
S
©
Ne

6M-3938, sk ’] L6

£, =p°+gq
o PR,
Q ' q
fio =P
q
fro =2+
. .
fiy =P +a

1
: ' p° @)’
P Ty = P pO+p
RCa S CaCeiCat
q . - N

The corresponding 16 two-cell Boolean machines can be drawn directly -
using this list of f, -synthetic forms. For example, the machine M,
is: .

tM-3938, sk L7
Finally, any structure involying f can be replaced by a structure
involving f7 according to the following synthesis:
fq = p©.q°
5 = p X o0 X X@a) X O q0
q

Hence, f, and I, connective elements are both universal for two-cell
Booleanvmachines.

Although we will not make use of the universal properties of either
element in subsequent work, it is of interest to note that the
physical realizebility of any Boolean machine can be established by
showing that it is possible to construct a device which 1mplements
either £, or £ .

Boolean Machines Involving N Cells

In discussing the synthesis of machines involving an arbitrary number
of cells, it is convenient to define generalized connective elements
for the "and" and "or" ‘'expressions. The circular symbol for the two-
cell expressions can be generalized to more than two cells, but the
drawing of matrices of more than two dimensions is difficult. By
grouping two terms together at a time, the expressions for "and" and
"or" involving N cells can, of course, be constructed u51ng only the
connective elements f, and f,, , respectively: '

6M-3938, Sk ' 48

-- Xy + Xp + Xz + c00 + Xy

However, the connective elements we shall use in subsequent discussions
of Boolean machines, regardless of how many cells are involved, are the
following: . ' '

X‘——’
XZ';—')‘ . x. °Xp oo °XN
e f————
X'.f__.-)‘
 ——————

and, to complete the set of éonnective elements, a complementation
element will be drawn in the following manner:

X > o » x©

A composite example will illustrate the symbolism:

» + s A°B°C + A9-BO.CO

A
B
C

(ABC + A°BOCC)® = (AC+BO+C°)(A+B+C)

-4 : F———».‘
y

6M-3936, sk ite}

Extension of this symbolism to any Boolean expression follows from the
definitions and from the fact that '.', '+' and '©' form a complete
set of connective elements.

The Time Element '

It is necessary to make the distinction between printing a symbol and
holding a symbol more precise. Printing occurs at definite times,

nemely those times at which transitions from state to state occur. On
the other hand, symbol holding is a situation which persists in time
until a new symbol is printed. For example, suppose cell A holds the
symbol 'O' and that during a machine transition occurring at time tj

the symbol f1' is printed on A. We might represent the history of cell A
in the following way:

14+ | . »—— -
A l A

£y time

To make the idea of transition timing more precise, we will introduce
a new component cell into the machine. This new cell, which will be
labeled P, will act as a clock for the rest of the machine. It will
have the property of holding the symbol 'l' when transitions are to
occur and the symbol 'O' otherwise:

SO

0
t t2 Jts €y ts
time

It is assumed that transitions and printing require a finite length
of time and, conseguently, P will hold ‘'1' for a finite interval,
although one which is not large compared to the interval between
transitions. We will say that P acts as a source of pulses, and
that a cell such as A is a source of symbol levels.

Printing can then be specified by forms of the following sort:
~ ph.al:p!
PL-(al + Bl):ct

so that the act of printing is confined in time and coincides with
the pulses occurring at t;, tp, etc. For example:

6M-3938, sk

S

P:A
0
1 S
B
0
time

pl.al:pl

In the case illustrated on the left, A holds 'O' and no change of
symbol occurs on B. In the case on the right, A holds ‘l' and a 'l

is printed on B during the transition event.

A refinement of the cell symbol will simplify drawing and emphasize
the distinction between printing and holding functions. The cell
label is written within the element representing the cell, and one
half of the element is associated with the symbol 'l' and the other

with '0'.

(o)

A

Then printing can be represented by one of the two forms:

0O

1

)

B

1

A connective element will be associated with the appropriate sides
of the participating cells. For example, the machine Pl.al.po:cl

is drawn:

50

6M-3938, sk ‘ : 51

A B , Alg°: ¢!

The arrowhead will be-used to denote symbol pulses and the diamond
to denote symbol levels. One more example will illustrate these
forms. The machine used to introduce Boolean algebra (page 27) is
represented by the following drawing:

0] 1
C
A A
_—O
S s
| +— -
>
O b —<> A
o .
S . 'ﬂ
i + o~
-
~ —>
0 1 o 1 .
A B (Al-BL + 2°-B9):ct

(Al.B® + A°.Bl):cO

Complementation

A case of special interest is that in which a cell participates in a
symbol-printing operstion on itself, e.g., the complementation operation:

pteal:a® .
¢ 1 1 A
P-AC;At

6M-3938, Sk 52

To avoid a logical indetérminacy it is necessary to redefine the
printing operation so as to include a delay between the time at
which the printing pulse occurs and the time at.which the cell holds

the printed symbol:

1 » e,
A
0
P . “ H H
o : \
time
tAS

—stdelayle— <EES>

Complementation structures can then be simplified according to the
following scheme: ‘ '

H

TA

where the pulse line drawn to the center of the cell element will
indicate the complementation directly. As an example, the machine

Al:BC is

Memorandum gy 3938 , 85

Division 6 — Lincoln Laboratory
Massachusetts Institute of Technology
Lexington 73, Massachusetts

SUBJECT: THE LOGICAL STRUCTURE COF DIGITAL COMPUTERS
Synthesis of Boolean Machines (continued)

To: Class Registrants
From: W. A. Clark
Date: 9 January 1956

Abstracts to: J. C. Proctor, C. W. Farr

Abstract: Machines involving several states and cells can be
synthesized according to a general procedure.

Complete configurations of the required machines,
rather than internal states alone, are used in syn-
thesizing the required structures. Examples of the
synthesis of various counting structures are included.

JaZl

W. A. Clark “—

WAC/ jhk

This document is issued for ipternal distribution and use only by and for Lin- The researchreported in this document‘was supported
coln Laboratory personnel. It should not be given or shown to any other in- jointly by the Department of the Army, the Depart-
dividuals or groups without express authorization. It may not be reproduced ment of the Navy, and the Department of the Air Force

in whole or in part without permission in writing from Lincoln Laboratory. under Air Force Contract No. AF 19(122)-458.

6M-3938, S5 53

The existence of the printing delay also permits the construction:of
machines in which the symbols held in a set of cells are simultaneously
interchanged. For two cells, A and B, an exchange of symbols is ac-
complished by the following structure:

&

Interchange structures involving more cells may take many forms.

A shifting structure is obtained if cell A's symbol is printed on
cell B; B's on C; C's on D, ete. If the symbol in the last cell
in this set of cells is printed on the first cell, a cyclic inter-
change is obtained and the set of cells takes the form of a closed

ring.

6M-3938, S5 54

Machines Involving Serial States

The Boolean machines discussed heretofore have all been one-state
machines. We will now extend the synthesis procedure to machines
involving more than one state.

Consider the following two-state machine, M:

M starts in state 1 and prints a '0O' on B in the tramsition to state 2.
From state 2, a 'l' is printed on B if A holds 'l' and M returns to
state 1; no change in symbol occurs on B if A holds 'O'. The net A
effect is that the symbol finally appearing in cell B is the same as
the symbol in A; in other words, the symbol in A is transferred to B.

Evidently the printing requirements would be met if M supplied addi-
tional levels according to its state:

state i)[;

| statez | .

6M-3938, S5 56

Complete Configurations

In one sense, cell K of the preceding section controls the action of
the machine, M, in dealing with cells A and B. In another sense,
cells K, A, and B are simply undifferentjated cells of a three-cell
structure which is capable of assuming = 8 stable configurations
and which jumps from one configuration to another in a manner which
depends only on the current configuration itself. Thus, if the eight
possible arrangements of symbols in K, A, and B are assigned config-
uration numbers according to the table:

g

FHEFRFOOOOIR
FHHFOORFRKFOO

HFOHHOKFORK O |W
- O\ Fw O R

then the action of the three-cell structure is described by the
following transition diagram in which the nodes represent not states
of K, but complete configurations:

Note that the transitions in this kind of diagram are unconditional
and that the final configuration depends only on the initial config-
uration. From the fact that M starts in state 1 (K®), it follows
that the complete structure starts in one of the four configurations,
0, 1, 2, or 3, depending on the initial arrangement of symbols on A
- and B. Consequently, the structure can never assume configurations
5 or 73 this can be seen from the configuration transition diagram.

It is worth mentioning at this point that in any physically realizable
machine there always exists the chance that spurious transitions will
occur. It might be said that one of the principal problems in engin-
eering such a machine is that of making the probabilities of these
spurious transitions suitably small.

6M-3936, S5 57

A G2neral Synthesis Procedure

Given the transition requirements for any structure in terms of complete
configurations, it is possible to synthesize a suitable machine having
the required transition diagram. As an example, suppose that it is
desired to synthesize a machine which has the diagram:

DO—O—O—O

The minimum number of two-symbol cells required is logp h = 2; these
may be designated K, and Ky . Next, the state numbers l, 2, 3, and 4
are coded in terms of the symbols in K, and K,. The choice of code
is completely arbitrary. The code we will choose for this example

is the following:

Ky, Ko | #
0 6] 1
0 1 2
11 3
1 0 L

We next write the Boolean expressions which will produce the required
transitions. Consider first the situations which result in the print-
ing of the symbol ‘l' on K,. This occurs in the transition l——s=2

and again in the transition 2—=—3. The configurations which lead to

the printing of a 'l on Ko are thus 1 and 2, and we may write:

1
PL(KQ-KS + K9-Kg):K}

In a similar manner, the remaining printing expressions can be obtained.
They are:

Ph(xd ki + ki k9):x9
PL(k9k} + k] -k}):x}
Ph(K9 K3 + K} -KQ):KS

These may be further reduced by factoring:

P! k9. (kg + k3):k} phox9:x
Pkl (k9 + k%):x8 P ktixg
Ldo(rp + xi)ixd pt.xd .k}

P k3 (k§ + K}):K Pi»K8:K§"

6M"3938’ SS 58

The required structure is thus:

The device, by definition, "counts" up to the number 4 and then starts
over at 1. . :

A second example of the general synthesis procedure again deals with’
cyclic counting and with a coding scheme of special interest. First,
a machine which counts cyclically through the numbers O through 7 will
be synthesized, and then the results of the synthesis will be genersal-
ized to larger rings.

The eight configurations require three cells: Kp, Kj, and Ko. The
particular code chosen will be a binary numerical code in which the
configuration number is a sum of powers of 2, 2% being the contribution
to the sum of Kj holds a 'l':

6M-3938, S5 29

=
[\V]

Ll
|._|

gl
o]

HFFFHFFFOOOO
HRPOOFHFHFOO
H OO OKO
~N oV LN O =H

Again, any consistent, complete coding scheme could have been
chosen. The particular advantage of a binary numerical code is
that it will yield a simple, iterative structure for the synthe-
sized machine.

Instead of proceding as before, we wil ngte instead the configura-
tions which lead to changes of symbolstll).

We note first that K, is complemented during all transitions. We
have immediately:

i

. wC
Pr: KS

Ky is complemented during transitions from the configurations 1, 3,
5, and T: '

0,,0..1 i c
Pt (kOKPKS + kO KD + KkPKY + kikiK)):kS

which factors to

P' kS (KOS + KOK} + KEKD + KiK}):K§

llJeffrey, R. C., Reed, I. S.: "The Use of Boolean Algebra in Computer

Design." MIT Digital Computer Lab, Engineering Note E-458-2,
15 April 1952.

6M-3938, S5

and, since the expression within the parenthesis is the same as 1,

1 c
oK : K
b, 4
e { e ()
0 1 0 1

Finally, K, is complemented during transitions from configurations
3 and T:

A
pl. (kOkiKS + KIK{KS):KS

or
1.4 1 1
P"°K{ "Ko(K32 + K3):K$

1
ptoxfxd xS

1 iy A 1.1 p
(P -Ko)Xy }<; (P)Ks - @

~—=O—(D—

101 110 111

6M-3938, S5

The generalization to structures involving more stages follows im-
mediately:

The 1th stage is:

<} .

1 1 c
P (K}_-lexi_z- ceeo -Ké):Ki

Iterated structures of this kind are desirable from the standpoint
of simplicity of physical construction.

61

6M-3938, 85

5.1

502

5.3

62

PROBLEMS

Design a one-state machine which will accomplish
a cyclic interchange of symbols on the three cells,
A, B, and C

al:pl BL:ct cl:at

A%:B° B°:c° c%: A0
using only the complement printing operation.
Design a machine to perform a cyclic interchange
on A, B, and C as in 5.1, but with cells which do

not include a printing delay. How many state are
required?

Construct a two-cell, four-state machine which has
the following transition diagram:

	01-00
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	02-00
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	03-00
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	04-00
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	05-00
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	05-47
	05-48
	05-49
	05-50
	05-51
	05-52
	06-00
	06-53
	06-54
	06-56
	06-57
	06-58
	06-59
	06-60
	06-61
	06-62

