Technical Report
CMU/SEI-87-TR-032
ESD-TR-87-195

VAXELN Experimentation:
Programming a Real-Time

Periodic Task Dispatcher Using
VAXELN Ada 1.1

Mark W. Borger

November 1987



Technical Report

CMU/SEI-87-TR-32
ESD-TR-87-195
November 1987

VAXELN Experimentation:
Programming a Real-Time Periodic
Task Dispatcher Using VAXELN Ada
1.1

Mark Borger

Ada Embedded Systems Testbed Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213



This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler SIGNATURE ON FILE
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright 0 1987 by the Software Engineering Institute.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For information on
ordering, please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce,
Springfield, VA 22161.

Ada is a registered trademark of the U.S. Government, Ada Joint Program Office. SD-Ada and VMX are registered
trademarks of Systems Designers plc. MicroVAX, MicroVMS, VAX, VAXELN, and VMS are trademarks of Digital
Equipment Corporation. VME is a trademark of Motorola Microsystems (trademark pending).



VAXELN Experimentation: Programming a Real-Time
Periodic Task Dispatcher Using VAXELN Ada 1.1

Abstract. The purpose of this paper is to provide the reader with some technical
information and observations, Ada source code, and measurement results based on
experimentation with respect to developing a real-time periodic task dispatcher in Ada.
The results presented here are specific to a pVAX-II/VAXELN 2.3 target system, the
VAXELN 1.1 Ada compiler, and a KWV11-C programmable real-time clock. Specifi-
cally, these results provide answers to the question: How can one achieve the effect of
scheduling a set of periodicl Ada tasks when the runtime frequency of some of the
individual tasks is less than the clock cycle frequency supported by an Ada runtime
implementation?

Executive Summary

1. Background

The Ada Embedded Systems Testbed Project’s investigative approach promotes three typical
stages to developing real-time systems: benchmarking; experimentation and prototyping; and de-
signing, coding, and testing an application. To study the performance characteristics of Ada
cross-compilers, we are running several existing benchmark test suites to explore the time,
space, and capacity constraints associated with individual Ada features. To minimize program-
ming risks such as those inherent in developing low-level device interfaces, we are performing
evaluation experiments (i.e., prototyping) to explore programming alternatives available to an
application developer, implementation strategies employed by a compiler vendor, and real-time
ramifications with respect to using Ada in these high risk areas. We are also designing and
implementing an application that is characteristic of real-time embedded systems. This appli-
cation system provides a context for using the experiment and benchmark results and will be the
primary vehicle for investigating the portability of Ada code across several target processors.

The intent of this experimentation was to investigate various programming alternatives available
to an application developer for writing a real-time periodic task dispatcher in Ada. The approach
was to design and prototype alternative versions of a task dispatcher for the Inertial Navigation
System (INS) [INS Specification 87, INSP TLDD 87] simulator being developed by the project to
support a detailed schedulability analysis of the INS periodic task set.

1In this context, a periodically scheduled task set implies that each task in the set is executed at its own fixed
frequency. A periodic task dispatcher is a software component that schedules the individual tasks at their implied runtime
frequency.

CMU/SEI-87-TR-32 1



2. Scope

For this particular target configuration and cross-compiler (VAXELN 2.3/VAXELN Ada 1.1), a total
of four different (prototype) periodic task dispatchers were developed. Two different periodic task
dispatching approaches were used; for each of these, two different synchronization techniques
were used, namely, the Ada rendezvous and the VAXELN semaphore. This paper first discusses
the rationale for needing a real-time periodic task dispatcher and then presents the high-level
design from which the prototypes were developed. Next, the task dispatcher prototypes are
described in some detail, as is the experimentation approach used to test their feasibility. Finally,
the empirical results are presented and analyzed, and relevant technical observations are pro-
vided.

2 CMU/SEI-87-TR-32



1. Real-Time Periodic Task Dispatcher

The Ada tasking mechanism provides the real-time application programmer with a facility to do
multi-tasking. The decision to use Ada multi-tasking depends mainly on the scheduling require-
ments of the application. Real-time applications can be classified into three categories by their
inherent scheduling requirements [MacLaren 80]: (1) purely periodic scheduling with no aperiodic
events, (2) primarily cyclic with some aperiodic events and possible variations in computing loads,
and (3) event-driven (totally aperiodic) and no periodic scheduling. Common practice has been to
employ a cyclic executive for all three levels, but it has been shown that the benefits of Ada
multi-tasking (e.g., supports aperiodic events, monitors intertask dependencies, controls task in-
teraction, and supports cyclic processing at arbitrary frequencies) can be realized with applica-
tions having scheduling requirements falling the latter two categories [MacLaren 80]. With Ada
multi-tasking, the runtime is responsible for scheduling tasks, whereas with a cyclic executive the
application programmer controls the scheduling.

The Inertial Navigation System simulator must not only schedule? periodic tasks for execution,
but also must handle the scheduling of aperiodic tasks.3 Its scheduling requirements therefore
fall into the second category above. As such, we decided to use Ada tasking wherever possible
to meet the application’s scheduling requirements. This chapter first motivates the need for a
real-time periodic task dispatcher executing on top of the Ada runtime system. It then presents a
high-level description of the design of the INS executive subsystem that supports the scheduling
of the INS task set via the real-time task dispatcher.

1.1. Motivation and Rationale

One of the most important concerns for developing a real-time application is satisfying timing
requirements. The INS simulator has certain real-time requirements that it must meet:

1. scheduling periodic tasks at frequencies of 400, 25, 16, and 1 Hz;

2. providing a task time-out service that must notify waiting tasks after expiry of 10.24
ms; and

3. supporting a time stamp mechanism at a granularity of 2.56 ms.

The delay statement in Ada was designed to aid in satisfying timing deadlines. However, vali-
dated Ada compilers to date have implemented the semantics of this statement by only ensuring
that the task that executes it will be suspended from further execution for at least the duration
specified, rather than supporting a guaranteed upper bound on the duration of time a task’s
execution will be suspended. To further aggravate this problem, the validated Ada compilers
investigated to date have at best supported a 10 ms clock cycle (SYSTEM.TICK). These issues
in combination with the INS simulator’'s requirement for a fine-grained (2.56 ms) notion of time
serve as the rationale for using a programmable real-time clock and a real-time task dispatcher
on top of the Ada runtime system for supporting periodic task scheduling.

2We use the term "schedule" loosely in this report to mean that an Ada task has been marked ready to be scheduled
by the Ada runtime task scheduler.

3For example, the INS communication subsystem irregularly requests time-outs through an aperiodic task.

CMU/SEI-87-TR-32 3



1.2. Top-Level Design

This section provides an overview of the INS simulator's executive subsystem design, which
serves as a prototype of the INS simulator’s real-time task dispatcher. This subsystem consists
of three major components, namely a Real-Time Clock Manager, an Activation Queue Manager,
and a Task Manager, each of which is represented by one Ada package as shown in Figure 1-1.

INS Data
Types

Task
Manager

Activation
Queue
Manager

Real-Time
Clock
Manager

Motion Runtime Communication
Simulator BIT Handler

Figure 1-1: INS Executive Subsystem - Package Dependencies

The rounded, unshaded rectangles in the figure represent Ada package specifications, whereas
the shaded one represents package bodies; the arrows indicate the dependency relationships (an
arrow from A to B implies that A depends on B). The three packages at the bottom of the
diagram are a subset of the packages that the executive imports from other INS subsystems to
gain visibility of the periodic tasks that are part of the task set. The remaining packages con-
stitute the executive subsystem whose responsibilities include scheduling the periodic task set
and servicing time-out requests and cancellations. The following sections briefly describe each of
these packages.

1.2.1. INS Data Types

The INS Data Types package (see Appendix A.e) of the INS executive subsystem provides the
common data types used by the other packages. Specifically, it defines a data type for represent-
ing the executive’s notion of time (i.e., the number of ticks since program invocation).

1.2.2. Real-Time Clock Manager

The Real-Time Clock Manager component of the INS executive subsystem provides a set of Ada
interfaces to a KWV11-C programmable real-time clock [LSI-11 User’s 86]. This component con-
sists of one Ada package (see Appendix A.a — A.d) that provides the necessary data types,
procedures, functions, and exceptions for interfacing to multiple KWV11-C real-time clocks via
Ada application code [Clock TR 87]. These routines support all four modes of the clock’s opera-
tion (Single Interval Interrupt, Repeated Interval Interrupts, External Event Timing Zero Base, and
External Event Timing Cumulative) in addition to its five different internal clock rates (1 MHz, 100

4 CMU/SEI-87-TR-32



KHz, 10 KHz, 1 KHz, 100 Hz). In addition to providing a mechanism for establishing a link
between clock interrupts and an Interrupt Service Routine (ISR), the Real-Time Clock Manager
supports typical programmable clock operations such as setting the clock’s operation mode (e.qg.,
repeated interrupts), setting the clock frequency, enabling and disabling clock interrupts, and
programming the clock interrupt period.

1.2.3. Activation Queue Manager

The Activation Queue Manager component of the INS executive subsystem implements a single
time and priority ordered task activation queue. This component is represented in the design as
one package named Activation_Queue_Manager. The package specification (see Appendix
A.o, A.p ) exports the necessary data types, procedures, and exceptions for accessing the ele-
ments of the time-priority ordered task activation queue. Specifically, the package specification
defines a data type that represents a task activation record (AR) so that the users of this package
can build such data objects. An AR contains the task’s name, activation period, activation time,
execution priority, and its activation mode (e.g., periodic, aperiodic). The Activation Queue Man-
ager supports typical queue operations such as inserting, fetching, deleting, and re-inserting for
activation records via the exported procedural interfaces.

The implementation details of the task activation queue are hidden in the package body. The
prototyping described in Chapter 2 presents the details of two different implementations of the
activation queue and its corresponding operations.

1.2.4. Task Manager

The Task Manager component of the INS executive subsystem provides a centralized task name
service for the entire INS simulator program in addition to supporting the operations of enabling,
disabling, and querying the schedulability status (e.g., enabled for activation) of periodic INS
tasks. It is represented in the design as one package named Task_Manager (see Appendix A.q,
A.r). The Task Manager also provides a mechanism for registering and canceling time-out re-
guests from the communications subsystem. The package specification exports an enumeration
type that contains an enumeration literal for each task in the INS task set. The package exports
subprograms to support the aforementioned operations on any of these tasks. Furthermore, the
package specification exports a procedure for initializing the INS task activation queue and one
for initializing the real-time clock and activating the Dispatcher task. Initializing the activation
gueue involves inserting activation records for each of the pre-defined periodic tasks within the
INS. The process of programming the real-time clock involves setting up the mode, rate, and
Interrupt Service Routine. Finally, the Task Manager implements a real-time periodic task dis-
patcher on top of the task services provided by the Ada runtime using interrupts generated from a
real-time programmable clock.

To implement this task dispatcher, specific knowledge of the mapping between the task ID
enumeration literals and the actual Ada task names within the INS simulator program is located in
the package body. The Dispatcher task is a high priority Ada task within the INS simulator
program. Its body has a loop that attempts to dispatch a new task at every clock interrupt. Inside
the loop it first waits for the signal from the clock ISR indicating that an interrupt just occurred. It
then updates its notion of time, namely the current tick number, and then requests, from the
Activation_Queue_Manager, an AR of a task that should be scheduled at the current time.

CMU/SEI-87-TR-32 5



Finally, then, based on the activation mode of the task represented by the returned AR, it takes
appropriate action.

1.2.5. Data and Control Flow

A brief description of the data and control flow of the INS executive subsystem follows. This
discussion is relative to the data and control diagram appearing in Figure 1-2 and assumes a
VAXELN target system.

Step Description

1 Initialize the activation queue. Initializing the activation queue involves creating
new activation records for each of the pre-defined periodic tasks within the INS
and inserting those ARs into the activation queue. Depending on the activation
queue management approach, either an index for the just-inserted AR is returned
or the next tick number at which time a task needs to be scheduled is returned.

2 Program the real-time clock’s settings. The process of programming the real-time
clock involves setting up the mode, rate, and Interrupt Service Routine. The asso-
ciation between the hardware interrupt and the Ada ISR must be established
through a VAXELN service (CREATE_DEVICE); this kernel routine returns a de-
vice object tag back to the caller; as can be seen in the data/control diagram, this
information is passed back to the Activate Dispatcher subprogram.

3 Activate the task dispatcher and instruct the real-time clock to begin generating
interrupts. Prior to starting the real-time clock, the Dispatcher task is activated via
an Ada rendezvous from the Activate Dispatcher subprogram. The data passed
to the Dispatcher is precisely the device object returned from the
CREATE_DEVICE kernel service. The Dispatcher uses this data to properly syn-
chronize with the clock interrupts. Upon activation of the Dispatcher, the real-
time clock is started.

n A real-time clock interrupt occurs. The VAXELN kernel transfers control to the ISR
associated with the clock interrupt.

n+l The ISR signals the Dispatcher using the VAXELN Signal/Wait mechanism.
n+2 The Dispatcher fetches the next AR from the activation queue.

n+3 The Dispatcher, if necessary, activates the appropriate task for execution.
In Figure 1-2, rounded rectangles represent packages, rectangles correspond to individual sub-
programs in the body of the Task Manager, and parallelograms are Ada tasks. Note: The
Dispatcher task is in the body of the Task_Manager package.

A sample main program that initiates the executive subsystem is shown below.
wi th Task_Manager;

procedure INS is
begi n

Task_Manager.lnitialize Activation_Queue;
Task_Manager . Acti vat e_Di spat cher;

end I NS;

After this initiation sequence, the Dispatcher runs autonomously, being driven by the real-time
clock interrupts (step n) and continually performing steps n+1, n+2, and n+3.

6 CMU/SEI-87-TR-32



Interrupt

Service
Routine

Activation

Queue ol
@ Manager
‘ °© Activation
Queue
Real-Time —»/ @
Clock Dispatcher L
Manager Initialize_Activation_Queue
Legend
Periodic
Activate_Dispatcher Task Data Flow © >
Control Flow —»
Figure 1-2: INS Executive Subsystem - Data and Control Flow Diagram
CMU/SEI-87-TR-32 7



CMU/SEI-87-TR-32



2. Real-Time Task Dispatcher Prototyping

To lessen the risks of implementing the INS simulator using Ada tasks, alternative prototype
versions of the real-time periodic task dispatcher were developed to assess the schedulability of
the INS periodic task set based on estimates of task execution times. This chapter presents the
results of this system modeling and analysis.

2.1. Schedulability Analysis

To assess the schedulability of the INS periodic task set, the following four-step approach was
taken.

Step 1 - Make real-time measurements

Prior to embarking on the modeling of the INS simulator tasking structure, it was essential to
understand the internal operation of the underlying VAXELN [VAXELN Release 86, VAXELN
User’'s 85] runtime executive. Key real-time measurements shown in Table 2-1 were either em-
pirically obtained or taken from the VAXELN performance documentation.

Event Time
Interrupt latency (VAXELN manual) 33 psec
Context switch (VAXELN manual) 150 psec
VAXELN signal/wait (empirical result, no process contention) | 285 psec
Ada rendezvous (empirical result) 1780 psec
Attitude and Heading calculations (empirical result) 450 psec

Table 2-1: VAXELN Real-Time Measurements

Step 2 - Estimate CPU utilization for task set

As a second step in the schedulability analysis, runtime estimates for each INS periodic task were
made; execution time and CPU utilization estimates for the INS task set appear in Table 2-2. The
execution time of the Attitude Updater was empirically measured to be 0.45 ms, whereas the
runtime for the remaining periodic tasks was estimated. The overhead associated with each
periodic task represents the context-switching time for entering and leaving the task (2 context
switches = 0.30 ms); for the Attitude Updater the overhead represents the sum of interrupt
latency and a context switch to the Dispatcher (0.03 + 0.15 = 0.18 ms). The synchronization
times associated with each periodic task is 1.48 ms, which is the measured Ada rendezvous
times less 0.30 ms for context switches; the 0.29 ms of synchronization time for the Attitude
Updater corresponds to the VAXELN Signal/Wait time (see Table 2-1). If the analysis is correct,
the implication is that only 15% of CPU time is available for the task dispatcher and background
processing.

CMU/SEI-87-TR-32 9



Execution Overhead Synch Total

Task ID Frequency | Execution Overhead Synch Utilization | Utilization | Utilization | Utilization
(Hz) (ms) (ms) (ms) (%) (%) (%) (%)
Attitude Updater| 400 0.45 0.18 0.29 18.00 7.32 11.40 36.72
Velocity Updater 25 4 0.30 1.48 10.00 0.75 3.70 14.45
Attitude Sender 16 10 0.30 1.48 16.00 0.48 2.37 18.85
Navigation Sender 1 20 0.30 1.48 2.00 0.03 0.15 2.18
Status Display| 1 100 0.30 1.48 10.00 0.03 0.15 10.18
Runtime BIT 1 5 0.30 1.48 0.50 0.03 0.15 0.68
Position Updater 0.8 25 0.30 1.48 2.00 0.02 0.12 2.14
Subtotals 164.45 1.98 9.17 58.50 8.66 18.03 85.19

Table 2-2: INS Periodic Task Set - Execution Time and CPU Utilization Estimates

Step 3 - Build INS tasking model

The next step of the analysis was the development of a skeletal INS tasking model. The control
logic of each periodic task was virtually the same: an autonomous loop containing first a
synchronization point at the top followed by code to perform the task’'s computation. For the sake
of modeling, the computational load of each periodic task was represented using a busy wait
mechanism whose variability was between 5 and 10 percent. For instance, the Velocity Updater
task was instrumented with a 4 ms busy wait (see Table 2-2). This busy wait was implemented
using an external subprogram call, and its basic unit of time measure was 100 ps; the routine was
independently tested to be accurate to within 10%. To achieve the effect of varying the percent-
age of free CPU time, the duration of all of these busy waits was scalable using a global load
factor. For example, a global load factor of 0.75 is equivalent to the duration of each task’s busy
wait being 75% of its estimated value (0.75 * 4 ms = 3 ms for the Velocity Updater); a load factor
of 1.25 increases the duration of the waits to 125% of their estimated values.

Step 4 - Monitor missed deadlines

The final step of the analysis was to vary the global load factor and monitor the model behavior
with respect to missed deadlines. For each dispatching technique under investigation, the global
load factor was continually increased by 0.05 (its fixed point delta) until a task deadline was
missed. This critical load factor value, termed the schedulability threshold, was empirically
determined for each dispatching alternative implemented. These periodic task dispatching
prototypes are described in the next section.

2.2. Periodic Task Dispatching Alternatives

Given the high level design abstraction for the Activation Queue Manager, described in Section
1.2.3, two different queue management approaches were implemented, each associated with its
own periodic task dispatcher. For each of these two different task dispatching prototypes, two
different synchronization techniques were employed, namely the Ada rendezvous and the
VAXELN semaphore. This section describes the two dispatching approaches, hereafter referred
to as the general-purpose queue management (GPQM) and the static gueue management (SQM)
approaches.

10 CMU/SEI-87-TR-32



2.2.1. General Purpose Queue Management

In the general-purpose queue management approach, the ordered activation queue is imple-
mented as an array of indices into a table of existing activation records. Thus, the manipulation
(e.g., insertion, deletion) of the ARs in the queue essentially involves the proper maintenance of
these indices and the AR table entries. For instance, inserting a new AR into the queue involves
creating a new entry in the AR table, locating the proper queue position of this new AR based on
its activation time and priority, and finally inserting its AR table index at the proper queue position
while at the same time relocating any other queue elements affected by the insertion. Deletion of
a specific element is similar in logic to insertion; however, at present, no mechanism is in place
for reclaiming space in the AR table when ARs are deleted. Fetching an AR, of course, removes
the element from the head of the ordered queue.

In this implementation, the task Dispatcher calls the Activation Queue Manager (AQM) every
clock tick (2.56 ms), passing it the current time (i.e., tick number). The AQM compares this time
to the activation time of the AR at the head of the queue (in this implementation, the first array
element); if the values are equal, then the first AR is returned; otherwise, a null AR is returned.
When a non-null AR is returned (i.e., taken off the queue), its activation mode value is checked; if
it represents a periodic task, a new activation time is computed, and the AR gets updated within
the table and is re-inserted into the queue. It is possible that more than one AR meets the
activation time criteria specified in the Get_Activation_Record call; in such cases the first AR is
always returned since it is guaranteed to have the highest execution priority; the other qualifying
ARs have their activation times incremented by 1 tick and are re-inserted into the queue; how-
ever, the original schedule for the delayed tasks is maintained.

2.2.2. Static Queue Management

In the static queue management approach, the activation queue is implemented as a statically
sized array of activation records. The ARs are never moved from their initial position in the array,
and one special array element is reserved for the AR of the Communications Controller task,
which is called when a time-out has expired. In the purist sense, the data structure is not man-
aged as an ordered queue, but rather as an array of elements, of which one is always marked as
the next AR to be returned upon a fetch operation. In this scheme, the AQM maintains infor-
mation regarding the next task to be scheduled and when to schedule it by performing a linear
search of the array upon each insert and fetch operation. A benefit to this approach is that the
need for special processing to resolve scheduling conflicts is obviated by the linear searching
upon each fetch and insert operation, since the search implicitly resolves conflicts.

In this implementation, the task, Dispatcher calls the Activation Queue Manager only at the times
when tasks are scheduled to be activated. Upon each insert (e.g., time-out request) and fetch
(e.g., get next AR) operation, the AQM returns the next activation time. When an AR is returned
(i.e., taken off the queue) to the Dispatcher, its activation mode value is checked by the AQM,; if
it represents a periodic task, a new activation time is computed, and the AR gets re-inserted into
the queue. To handle scheduling conflicts easily, the Dispatcher fetches ARs from the AQM
when the current time is either equal to (no conflicts) or past (a conflict has occurred) that time
specified by the AQM as the next time to schedule.

CMU/SEI-87-TR-32 11



12

CMU/SEI-87-TR-32



3. Results

Empirical results produced from the schedulability analysis are presented in this chapter from two
different perspectives. First, a comparison of the two queue management approaches and their
associated task dispatching prototypes is made by analyzing their effects on total CPU utilization
when the synchronization mechanism is held fixed. Second, an analysis of the performance
ramifications of the two synchronization techniques, namely the Ada rendezvous and the
VAXELN semaphore, is done with respect to total CPU utilization. Finally, relevant technical
observations are provided.

3.1. Dispatching Techniques

Tables 3-1 and 3-2 show that the calculations performed by the Attitude Updater require 18%
CPU utilization and that the elapsed cycle time for the general-purpose queue management
(GPQM) task dispatcher is 0.10 ms (0.32 - 0.22 = 0.10 ms) slower than the looping time of the
static queue management (SQM) task dispatcher. These Dispatcher cycle times measure the
elapsed time (from when the Dispatcher is signaled by the ISR) of resetting the clock’s interrupt
flag, updating the Dispatcher’s notion of time, and fetching the next AR. However, this cycle-
time measurement does not include the elapsed time for activating the next periodic task to be
scheduled since this time has already been accounted for as the synchronization overhead asso-
ciated with each periodic task. Note: These cycle times were empirically measured using a
programmable real-time clock.

Given the minor difference (0.10 ms) between the GPQM and SQM elapsed dispatching loop
times, it is not surprising to find that their effective CPU utilization percentages differ by only 4%
(12.8 - 8.8 = 4.0 [Tables 3-1 and 3-2]) regardless of the synchronization mechanism employed to
schedule the periodic tasks. By adding in the corresponding context switching overhead (6%),
the total CPU utilization percentage for each dispatching technique can be obtained. Since only
one context switch, namely the one necessary to switch from the Dispatcher to another process
context, is recorded as dispatching overhead for either approach, the relative difference of their
total CPU utilization remains 4%. For instance, the difference in total CPU utilization percentage
between the GPQM and SQM techniques using VAXELN semaphores for synchronization is 4%
(97 - 93 = 4% [Table 3-2]). Comparing the Dispatcher segments of the two columns labeled
"Estimate (100%)" in either Figure 3-1 or Figure 3-2 illustrates this small difference in total CPU
utilization percentages attributable to the change in dispatching methods.

The imputation of the synchronization and context switching overhead for the individual periodic
tasks depends on the synchronization mechanism in use. In the case of Ada rendezvous, 1.78
ms (2 context switches + synchronization time = 2 * 0.15 + 1.48 = 1.78 ms) of total synchroniza-
tion overhead is charged to each periodic task; for VAXELN semaphores, only the signaling time
of 0.28 ms is associated with the individual tasks since a context switch out the dispatcher has
already been counted.

CMU/SEI-87-TR-32 13



Execution Overhead Synch Total
Task ID Frequency | Execution Overhead Synch Utilization | Utilization | Utilization | Utilization
(Hz) (ms) (ms) (ms) (%) (%) (%) (%)
Attitude Updater| 400 0.45 0.18 0.29 18.00 7.32 11.40 37
Velocity Updater 25 4 0.30 1.48 10.00 0.75 3.70 14
Attitude Sender| 16 10 0.30 1.48 16.00 0.48 2.37 19
Navigation Sender 1 20 0.30 1.48 2.00 0.03 0.15 2
Status Display| 1 100 0.30 1.48 10.00 0.03 0.15 10
Runtime BIT 1 5 0.30 1.48 0.50 0.03 0.15 1
Position Updater 0.8 25 0.30 1.48 2.00 0.02 0.12 2
Subtotals 164.45 1.98 9.17 58.50 8.66 18.03 85
Dispatcher Mode
General/Rendezvous 400 0.32 0.15 0.00 12.80 6.00 0.00 19
Totals| 2.13 9.17 71.30 14.66 18.03 104
Static/Rendezvous 400 0.22 0.15 0.00 8.80 6.00 0.00 15
Totals| 2.13 9.17 67.30 14.66 18.03 100

Table 3-1: General/Rendezvous and Static/Rendezvous Estimated CPU Utilization*

It is clear from inspecting Figure 3-1 that the estimated CPU utilization associated with both the
GPQM and SQM dispatching techniques, when using the Ada rendezvous for task synchroniza-
tion, is equal to or exceeds 100%; obviously in these cases, the INS task set would not be
schedulable without incurring missed deadlines. Nevertheless, empirically it is important to deter-
mine the critical point at which the task set becomes schedulable for each different dispatching
approach. The schedulability threshold represents this critical scheduling point and by its very
nature is expressed in terms of a percentage of the sum of the periodic tasks’ estimated CPU
utilizations. For example, a schedulability threshold of 82% for the INS task set implies that the
tasks are schedulable (i.e., will not miss deadlines) for only up to, but not including, a periodic
task set CPU utilization level that is 82% of the original estimate (see Tables 3-1 and 3-2).

Execution Overhead Synch Total
Task ID Frequency | Execution Overhead Synch Utilization | Utilization | Utilization | Utilization
(Hz) (ms) (ms) (ms) (%) (%) (%) (%)
Attitude Updater 400 0.45 0.18 0.29 18.00 7.32 11.40 37
Velocity Updater, 25 4 0.00 0.28 10.00 0.00 0.70 11
Attitude Sender| 16 10 0.00 0.28 16.00 0.00 0.45 16
Navigation Sender| 1 20 0.00 0.28 2.00 0.00 0.03 2
Status Display| 1 100 0.00 0.28 10.00 0.00 0.03 10
Runtime BIT 1 5 0.00 0.28 0.50 0.00 0.03 1
Position Updater 0.8 25 0.00 0.28 2.00 0.00 0.02 2
Subtotals 0.18 1.97 58.50 7.32 12.65 78
Dispatcher Mode
General/Semaphore 400 0.32 0.15 0.00 12.80 6.00 0.00 19
Totals| 0.33 1.97 71.30 13.32 12.65 97
Static/Semaphore 400 0.22 0.15 0.00 8.80 6.00 0.00 15
Totals| 0.33 1.97 67.30 13.32 12.65 93

Table 3-2: General/Semaphore and Static/Semaphore Estimated CPU Utilization

4Since tasks under VAXELN Ada are implemented as separate processes, the process switching times in the table
coincide with Ada task switches.

14 CMU/SEI-87-TR-32



120.00

100.00 A
B Periodic Tasks
80.00 A
] Dispatcher
Percent
CPU 60.00 A B synchronization
rat .
Utilization [ context Switch
40.00 A .
B Base Calculations
20.00 A
0.00 4

GPQM/R GPQM/R  SQM/R SQM/R
Estimate Scaled Estimate Scaled
(100%) (75%) (100%) (85%)

Figure 3-1: General/Rendezvous and Static/Rendezvous Scaled CPU Utilization

Since the amount of CPU utilization consumed by the periodic tasks varies directly with the value
of the global load factor, the corresponding "Periodic Tasks" segments of the "Estimate" columns
in Figures 3-1 and 3-2 must be adjusted so that the entire CPU utilization is below 100%, thus
making the task set theoretically schedulable.

100.00
90.00 A
80.00 A
70.00 A B Periodic Tasks
percent  60-00 [1 Dispatcher
CPU 50.00 - B synchronization
Utilization 44 ¢ | [0 context Switch
30.00 1 B Base Calculations
20.00 A
10.00 A
0.00 A

GPQM/S GPQM/S  SQM/S SQM/S
Estimate Scaled Estimate Scaled

(100%) (100%) (100%) (110%)
Figure 3-2: General/Semaphore and Static/Semaphore Scaled CPU Utilization

CMU/SEI-87-TR-32 15



For example, the schedulability threshold for the GPQM Dispatcher using Ada rendezvous for
task synchronization is 75%. One can observe from the first two columns of the bar chart in
Figure 3-1 that the "Periodic Task" segment shrinks to 75% of its original size to reach a total
CPU utilization level under 100%. The schedulability thresholds can be read from Figures 3-1
and 3-2 and are summarized in Table 3-3.

Base Context Dispatcher Periodic Total 5chedulabilit:
Calculations Switch Synch Execution Tasks Utilization | Threshold
(%) (%) (%) (%) (%) (%) (%)
GPQM/R Estimate 18.00 14.66 18.03 12.80 40.50 104 75
GPQM/S Estimate 18.00 13.16 12.65 12.80 40.50 97 100
SQM/R Estimate 18.00 14.66 18.03 8.80 40.50 100 85
SQM/S Estimate 18.00 13.16 12.65 8.80 40.50 93 110

Table 3-3: Estimated CPU Utilizations and Schedulability Thresholds

Interpretation of the schedulability threshold data in Table 3-3 indicates that, assuming the same
synchronization mechanism, changing from the GPQM Dispatcher to the SQM Dispatcher
yields a 10% (85 - 75 = 110 - 100 = 10%) increase in the schedulability threshold.

120.00
100.00 A
B Periodic Tasks
80.00 A
] Dispatcher
Percent
CPU 60.00 E synchronization
Utilization .
[ context Switch
40.00 - _
B Base Calculations
20.00 A
0.00

GPQM/R  GPQM/S SQM/R SQM/S
Estimate Estimate Estimate Estimate

Figure 3-3: Rendezvous Versus Semaphore Comparison

3.2. Synchronization Mechanisms

The difference in total CPU utilization (computed from the data in Tables 3-1 and 3-2) when
varying the synchronization mechanism used by the Dispatcher is 7%. Specifically, for the
GPQM Dispatcher, a change in its synchronization mechanism from the Ada rendezvous to a
VAXELN semaphore results in a 7% (104 - 97 = 7%) savings in CPU utilization; for the SQM
Dispatcher, this savings is equal to 7% (100 - 93 = 7%). This implies that using VAXELN
semaphores for task synchronization uses roughly 7% less CPU time than Ada rendezvous for
this real-time periodic task dispatcher application.

Since the (estimated) execution times of both the INS simulator’'s base calculations and periodic

16 CMU/SEI-87-TR-32



tasks are constant, Table 3-3 can be used to illustrate the implications of the synchronization
mechanism employed for scheduling the periodic tasks on total CPU. The bar chart (generated
from this data) in Figure 3-3 clearly illustrates the pervasive effect of the Ada rendezvous on the
percent of context switch, synchronization, and dispatching CPU utilization.

Finally, interpretation of the schedulability threshold data in Table 3-3 indicates that, assuming the
same dispatching approach is being used, a 25% (100 - 75 = 110 - 85 = 25%) increase in the
schedulability threshold results if the synchronization mechanism is changed from the Ada ren-
dezvous to a VAXELN semaphore. Furthermore, a 35% improvement in the schedulability
threshold is obtained when changing from the GPQM Dispatcher and the Ada rendezvous for
synchronization to the SQM and VAXELN semaphores.

3.3. Technical Observations

The total estimated CPU utilization for the Interrupt Service Routine and the periodic task, without
including the empirical results for the Dispatcher’s utilization, is quite high. In the case of using
Ada rendezvous for synchronization, it is 85%, and similarly for VAXELN semaphores, it totals
78%. Itis clear from the tables in Tables 3-1 and 3-2 that a savings of 11% CPU utilization would
be gained if the synchronization between the ISR and the Dispatcher could be eliminated. Quite
simply this could be done by moving Dispatcher responsibilities into the ISR. In practice, how-
ever, this was not possible since numerous VAXELN Ada ISR restrictions limited the number of
Dispatcher implementation alternatives. These ISR restrictions disallow tasking operations,
input/output operations, and accessing variables not in the immediate scope of the ISR, and
strongly recommend against making subprogram calls external to the ISR.

The empirical results illustrate the pervasive effect of the Ada rendezvous on the schedulability of
the INS task set. Using the Ada rendezvous for synchronizing between the Dispatcher and the
periodic tasks rather than VAXELN semaphores, regardless of the dispatching technique
employed, results in an increase in total CPU utilization of 7%. Furthermore, for both dispatching
methods implemented, given the original execution time estimates for the INS periodic tasks,
using the Ada rendezvous as the synchronization mechanism results in missed task deadlines.
Only when these estimates are scaled by 75% and 85% for the GPQM and SQM dispatching
approaches, respectively, does the task set become schedulable assuming Ada rendezvous for
task synchronization.

Interpretation of the schedulability threshold data in Table 3-3 further demonstrates the impact of
the Ada rendezvous on the task set schedulability. The empirical results show that, assuming the
same dispatching approach is being used, a 25% increase in the schedulability threshold results
if the synchronization mechanism is changed from the Ada rendezvous to a VAXELN semaphore;
moreover, a 35% improvement in the schedulability threshold is obtained when changing from the
GPQM Dispatcher and the Ada rendezvous for synchronization to the SQM and VAXELN
semaphores.

Based on real-time scheduling theory, the optimal rate-monotonic scheduling algorithm [Lui 73]
guarantees schedulability of the INS task set for a processor utilization below 70% since the
individual periodic tasks priorities are assigned in direct proportion to their execution frequencies.

CMU/SEI-87-TR-32 17



However, since the INS task set CPU utilization is greater than 70%, another schedulability test
based on the rate-monotonic algorithm, namely task-lumping [Sha 87], was necessary to cal-
culate the theoretically expected schedulability thresholds. The schedulability thresholds deter-
mined empirically were consistent with those computed theoretically. For example, given the
original execution time estimates for the INS periodic tasks, the SQM dispatching approach using
VAXELN semaphore for task synchronization yielded a total CPU utilization level of 93%. Fur-
thermore, it was found empirically that the task set was schedulable until the original time es-
timates of the periodic tasks were scaled by 1.1 or until the total CPU utilization level reached
97% (ISR + Scaled Periodic Tasks + Dispatcher = 37 + 1.1 * 41 + 15 = 97.1%). Similarly, solving
for the schedulability threshold using the task-lumping method results in an expected threshold
value of 1.12.

18 CMU/SEI-87-TR-32



References

[Clock TR 87] Borger, M.W.
VAXELN Experimentation: Programming a Real-Time Clock and Interrupt
Handling Using VAXELN Ada 1.1.
Technical Report CMU/SEI-87-TR-29, Software Engineering Institute, October,
1987.

[INS Specification 87]
Landherr, S.F., and Klein, M.H.
INS Behavioral Specification.
Technical Report CMU/SEI-87-TR-33, Software Engineering Institute, June,
1987.

[INSP TLDD 87] Klein, M.H., Landherr, S.F.
INS Simulator Program: Top-Level Design.
Technical Report CMU/SEI-87-TR-34, Software Engineering Institute, July,
1987.

[LSI-11 User’s 86] LSI-11 Analog System Users’ Guide
Digital Equipment Corporation, Maynard, MA, 1986.

[Lui 73] Liu, C.L., Layland, J.W.
Scheduling Algorithms for Multi-programming in a Hard-Real-Time.
JACM 20(1):46-61, January, 1973.

[MacLaren 80] MacLaren, Lee.
Evolving Toward Ada in Real-Time Systems.
In Proceedings of the ACM-Sigplan Symposium on the Ada Programmng
Language. November, 1980.

[Sha 87] Sha, L., Lehoczky, J.P., and Rajkumar, R.
A Schedulability Test for Rate-Monotonic Priority Assignment.
Computer Science Department ART Project, Carnegie Mellon University, July,
1987

[VAXELN Release 86]
VAXELN Ada 1.1 Release Notes
Digital Equipment Corporation, Maynard, MA, 1986.

[VAXELN User’s 85]
VAXELN User's Guide.
Digital Equipment Corporation, Maynard, MA, 1985.

CMU/SEI-87-TR-32 19



20

CMU/SEI-87-TR-32



Appendix A: INS Executive: Ada Source Code for
SQM/Rendezvous Dispatcher

A.a. KWV_Register_Definitions Package Specification

-------------- SEl

-- Unit nane

-- Experiment # :
-- Version

-- Aut hor

-- Date created :
-- Last update

-- Host Machine :
-- Target Machine:

Ada Enbedded Systems Project Prologue ---------------

KW/_Regi st er _Definitions package specification
PAO1

1.0

Mark W Bor ger

20 Feb 1987
12 Mar 1987

VAX/ VB 4.5
VAXELN 2.3

-- Date Ver si
-- 12 Mar 87 1.0

Thi s package specification provides the necessary
data types to access the Control Status and Buffer
Regi sters of a KW11-C real -ti ne programuabl e cl ock.

on

Aut hor
Mark W Bor ger Added prol ogue

Wi th SYSTEM

wi t h VAXELN_SERVI CES;

Revision HiStory -------cmemmmmmmama oo

Hi story

use SYSTEM

package KW/_Register_Definitions is

--  KwW11l-C Cont

rol

St atus Regi ster | ayout

type KW/_CSR RECORD i s record

go
node

rate

int_ovf
ovf_flag

mai nt_st1

mai nt_st2

mai nt _osc

dio
flag_overrun
st2_go_enabl e

st2_int_enable :

st2_flag
end record;

BOOLEAN; -- start the counter

UNSI GNED_2; -- npde of operation

UNSIGNED_3; -- clock rate

BOOLEAN, -- interrupt on overflow

BOOLEAN; -- counter overflow occurred

BOOLEAN, -- simulate firing of stl

BOOLEAN; -- simulate firing of st2

BOOLEAN, -- simulate one cy. of osc

BOOLEAN; -- disable internal oscillator

BOOLEAN, -- true if ovf occurs with ovf_flag still set
BOOLEAN; -- assertion of st2_flag sets go bit
BOOLEAN, -- assertion of st2_flag causes an interrupt
BOOLEAN; -- start interrupt request for st2

for KW/ _CSR RECORD use record at nod 2;

go
node

rate

int_ovf
ovf_flag

mai nt_st1
mai nt_st2
mai nt_osc
dio
flag_overrun

at
at
at
at
at
at
at
at
at
at

0

[eNeNeoNoNoNoNoNoNo}

range
range
range
range
range
range
range
range
range
range

0..0;
1..2;
3..5;
6..6;
7..7,
8..8;
9..9;
10..10;
11..11;
12..12;

CMU/SEI-87-TR-32

21



st2_go_enable at 0 range 13..13;
st2_int_enable at 0 range 14..14;

st2_flag

end record;

at 0 range 15..15;

for KW/_CSR RECORD S| ZE use 16;

-- Record

type containing the KW11-C s CSR and Buffer/Preset Register

type KW/_REQ STERS is record
CSR : KW/_CSR_RECORD; -- control/status register
BPR : KW/_BPR TYPE; -- buffer/preset register

end record;

pragma PACK(KW/_REG STERS);

procedure Put_CSR (CSR : in KW_CSR Record;
Regi ster _Address : in ADDRESS );

function Get_CSR (Register_Address : in ADDRESS) return KW_CSR Record;

end KW_Regi ster_Definitions;

A.b. KWV_Register_Definitions Package Body

-- Unit nane

- SEI Ada Enbedded Systens Project Prologue ---------------

KW/_Regi st er _Definitions package body

-- Experiment # : PAO1

-- Version
-- Aut hor

1.0
Mark W Bor ger

-- Date created : 23 Mar 1987
-- Last update

-- Host Machine : VAX/VMS 4.5

-- Target Machine: VAXELN 2.3

Thi s package body provides the necessary interface
---: for reading and witing the KW11-C s CSR

-------------- Revision History --------mmmmmmmmmmaaaan

Ver si on Aut hor Hi story

wi t h UNCHECKED_CONVERSI ON;

package body

KW/_Regi ster_Definitions is

function Convert It is new UNCHECKED CONVERSI ON( KW/_CSR _Record, UNSI GNED WORD) ;
function Convert_It is new UNCHECKED CONVERSI ON( UNSI GNED_WORD, KW/_CSR Record);

procedure Put_CSR (CSR : in KW_CSR Record;

22

CMU/SEI-87-TR-32



Regi ster _Address : in ADDRESS ) is

Current _CSR : UNSI GNED_WORD;
CSR _Unsi gned : UNSI GNED_WORD;
for CSR_Unsigned use at Regi ster_Address;

begi n

Current _CSR : = Convert_It(CSR);

WRI TE_REG STER( Current _CSR, CSR_Unsi gned);
end Put _CSR;

function Get_CSR (Register_Address : in ADDRESS)
return KW_CSR Record is

CSR : KW/_CSR _Record;
Current _CSR : UNSI GNED_WORD;
CSR_Unsi gned : UNSI GNED_WORD,
for CSR_Unsigned use at Regi ster_Address;

begi n
Current _CSR : = READ_REG STER( CSR_Unsi gned) ;
CSR : = Convert_lt(Current_CSR);

return CSR;
end Get_CSR;

end KW_Regi ster_Definitions;

A.c. Real-Time Clock Manager Package Specification

-------------- SEI Ada Enbedded Systens Project Prologue ---------------

-- Unit name : KW/11_d ock_Manager
-- Experinent # : PAOl

-- Version 1.0

-- Author : Mark W Borger

-- Date created : 17 Mar 1987
-- Last update : 18 Mar 1987

-- Host Machine : VAX/ VM5 4.5
-- Target Machine: VAXELN 2.3

-- Abstract : This package specification provides the necessary
................ : data types, procedures, functions, and exceptions
................ . for interfacing to nultiple KW11-C real -time cl ocks
................ : (Qbus device) via Ada application code. Al four nodes
................ . of the clock’s operation are supported in addition to
................ : its five different internal clock rates. To use these
................ : routines one nmust first invoke the Initialize procedure
................ : to create a clock device object and get a clock identifier.
................ : This device object can be used by the application to wait
................ : on a device signal froman Interrupt Service Routine; the
................ : clock id is used as a key for the renainder of the package's
................ : interfaces. The Initialization exception is raised if
................ :  the VAXELN kernel device object cannot be created for
................ :  whatever reason. The Cock_Not_lnitialized exception is
................ . if a specified clock id is invalid.

................ :  These routines only support counter overflow interrupts
................ : and not Schnmitt trigger interrupts. The counter routines
................ : (Start_Counting, Read_Counter, Stop_Counting) should only
................ :  be used in nodes Mbde_Two or Mode_Three; when used in any
................ : rmode, the Invalid_C ock_Mde exception will be raised.

CMU/SEI-87-TR-32



-- Date
-- 18 Mar 87
-- 22 Mar 87

——————————————— Revision History ---------------------------

Ver si on Aut hor
1.0 Mark W Bor ger
1.0 Mark W Bor ger

wi th VAXELN_SERVI CES;

with CONDI TI
with SYSTEM

package KW1

subt ype
subt ype

ON_HANDLI NG

1_d ock_Manager is

H story
Added Di spl ay_CSR procedure.

Added I nvalid_C ock_Mde exception.

DEVI CE_TYPE i's VAXELN_SERVI CES. DEVI CE_TYPE;
KW/_COUNTER TYPE  is VAXELN_SERVI CES. KW_COUNTER_TYPE;
subt ype VECTOR NUMBER TYPE is VAXELN_SERVI CES. VECTOR_NUMBER TYPE;

-- Local Data types

type do

type do

ck_IDis private;

ck_Mbde is (Mde_Zero, Mde_One, Mde_Two, Mde_Three);

for O ock_Mde use (Mde_Zero => 0, Mdde_One = 1,

type d o

for

procedur

procedure

procedure
procedure
procedure
procedure
procedure
procedure
procedure

procedure
procedure

Mde_Two => 2,

Mbde_Three => 3);

ck_Rate is (Stop, Rate_1MHZ, Rate_100KHZ,
Rate_10KHZ, Rate_ 1KHZ, Rate_ 100HZ);
Cl ock_Rate use (Stop => 0, Rate_1MHZ => 1,
Rate_100KHZ => 2, Rate_10KHZ => 3,
Rate_1KHZ => 4, Rate_100HZ => 5);
e Initialize (Cock_Name : in STRING
Clock_ldentifier : out dock_ID
Mbde : in C ock_Mde;
Rate : in Cock Rate;
Vect or _Nunber : in VECTOR_NUMBER_TYPE;
Service_Routine : in ADDRESS;
CSR_Address : out ADDRESS;
Devi ce_Cbj ect : out DEVICE_TYPE );
Re_Initialize (O ock_ldentifier in Cdock_ ID
Mbde : in O ock_Mde;
Rate : in Cock_Rate );
Di spl ay_CSR (Clock_ldentifier in Cock_ID);
Enabl e_I nterrupts (O ock_ldentifier in Cock_ID);
Di sable_Interrupts (Clock_ldentifier in Cock_ID);
Generate_lInterrupts (O ock_ldentifier in Cdock_ID);
Reset _Interrupt_Flag (Cock_ldentifier in Cock_ID);
Reset _Overrun_Fl ag (O ock_ldentifier in Cdock_ID);
Set _Interrupt_Period (Cock_ldentifier : in dock_ID
Period : in KW_COUNTER Type );

Start_Counting

(Cock_ldentifier : in Cock_ID;

Read_Count er (Clock_ldentifier : in Cock_ID

24

CMU/SEI-87-TR-32



Nunber _Of _Ticks : out
procedure Stop_Counting (Clock_ldentifier : in
Nunber _Of _Ticks : out

function Interrupts_Enabled (C ock_ldentifier
function Current_Mde (Cock_ldentifier
function Current_Rate (Clock_ldentifier

function Interrupt_Flag_On (dock_ldentifier
function Overrun_Fl ag_On (Cock_ldentifier

5 3 3 33 35

i
i

s

function Interrupt_Period (Cock_ldentifier : i
s

i

I nval i d_Cl ock_Mode ;. EXCEPTI ON,
Initialization_Error : EXCEPTION,
Clock_Not _Initialized : EXCEPTION,
private

subtype O ock_| D_Range is NATURAL range O..31;
type dock_IDis new O ock_| D Range;

end KW211_C ock_Manager;

KW/_COUNTER_Type) ;
C ock_I D;
KW/_COUNTER_Type) ;

Cl ock_I D) return BOOLEAN;

Clock_I D) return O ock_Mode;

Cl ock_ID) return O ock_Rate;
Clock_I D) return KW_COUNTER Type;
Cl ock_I D) return BOOLEAN;

Clock_I D) return BOOLEAN;

A.d. Real-Time Clock Manager Package Body

-------------- SEI Ada Enbedded Systens Project Prologue ---------------

-- Unit name : KW/11_d ock_Manager package body
-- Experinent # : PAOl

-- Version 1.0

-- Author : Mark W Borger

-- Date created : 17 Mar 1987
-- Last update

-- Host Machine : VAX/VMS 4.5
-- Target Machine: VAXELN 2.3

-- Abstract : This package body inplenments the subprogranms of its
---------------- : specification. It naintains a Oock_ID array containing
———————————————— : the corresponding clock’s CSR address to allow for the

................ : control of nultiple clocks.

--------------------------- Revision History ---------

-- Date Ver si on Aut hor Hi story
-- 22 Mar 87 1.0 Mark W Bor ger Added data structure to contain
-- Mbde and Rate for each C ock_ID.

-- Local Data types
type O ock_Information_Record is record
Rate : Cl ock_Rate;
Mde : C ock_Mode;
end record;

type Cock_Info_Array_Type is array(d ock_ID) of O ock_Information_Record;

Cock_Info : dock_Info_Array_Type := (others =>

(Stop, Mdde_Zero));

type O ock_Array_Type is array(d ock_I D) of ADDRESS;
Clock_Array : COock_Array_Type := (others => ADDRESS_ZERO);

Current _C ock_Nunmber : Cock_ID := dock_ID FIRST;

CMU/SEI-87-TR-32

25



procedure Initialize (Cock_Name : in STRING
Clock_ldentifier : out O ock_ID;
Mbde : in C ock_Mde;
Rate : in C ock_Rate;
Vect or _Nunber : in VECTOR_NUMBER_TYPE;
Service_Routine : in ADDRESS;
CSR_Address : out ADDRESS;
Devi ce_Cbj ect : out DEVICE_TYPE ) is separate;

procedure Re_lnitialize (Clock_ldentifier : in Cock_ID
Mbode : in O ock_Mde;
Rate : in Cock_Rate ) is separate;

procedure Display_CSR (G ock_ldentifier : in Clock_ID) is separate;
procedure Enable_lnterrupts (Cock_ldentifier : in Clock_ID) is separate;
procedure Disable_Interrupts (G ock_ldentifier : in Clock_ID) is separate;
procedure Set_Interrupt_Period (O ock_ldentifier : in dock_ID

Period : in KW_COUNTER TYPE ) is separate;

procedure Generate_lInterrupts (Cock_ldentifier : in Clock_ID) is separate;
procedure Reset_Interrupt_Flag (Cock_ldentifier : in Clock_ID) is separate;
procedure Reset_Overrun_Fl ag (Cock_ldentifier : in Cock_ID) is separate;
procedure Start_Counting (G ock_ldentifier : in Cock_ID) is separate;
procedure Read_Counter (G ock_ldentifier : in dock_ID

Nunber _OF _Ticks : out KW_COUNTER TYPE) is separate;
procedure Stop_Counting (Clock_ldentifier : in Cock_ID

Nunber _Of _Ticks : out KW_COUNTER TYPE) is separate;
function Interrupts_Enabled (Cock_ldentifier : in dock_|ID

return BOOLEAN is separate;

function Current_Mde (Cock_ldentifier : in dock_ID
return Clock_Mdde is separate;

function Current_Rate (Clock_ldentifier : in Cock_|ID)
return Cock_Rate is separate;

function Interrupt_Period (G ock_ldentifier : in dock_ID
return KW_COUNTER TYPE i s separate;

function Interrupt_Flag_ On (Cdock_ldentifier : in dock_ID
return BOOLEAN is separate;

function Overrun_Fl ag_On (G ock_ldentifier : in dock_ID
return BOOLEAN i s separate;

end KW11_d ock_Manager;

Initialize procedure

wi t h UNCHECKED_CONVERSI ON;
wi t h VAXELN_SERVI CES; use VAXELN_SERVI CES;
with KW_Regi ster_Definitions; use KW_Register_Definitions;

separate (KWZ11_C ock_Manager)
procedure Initialize (Cock_Name : in STRING

Cl ock_ldentifier : out dock_ID
Mde : in C ock_Mde;

26 CMU/SEI-87-TR-32



Rate : in C ock_Rate;
Vector _Nunber : in VECTOR _NUMBER TYPE;
Service_Routine : in ADDRESS;
CSR_Address : out ADDRESS;
Devi ce_Cbject : out DEVICE_TYPE ) is

Ret ur n_Code . COND_VALUE_TYPE;

KW/11_CSR Address : ADDRESS;

Current _CSR : KW/_CSR_Record;

Ti mer _Devi ce : DEVI CE_ARRAY_TYPE(O..0) := (others => 0);

function Convert_It is new UNCHECKED CONVERSI ON( O ock_Mbde, UNSI GNED 2);
function Convert_It is new UNCHECKED CONVERSI ON(C ock_Rate, UNSI GNED_3);

-- Create the KW11-C device object and associate with its interrupts the
-- Interrupt Service Routine.
Create_Device (Status => Ret ur n_Code,
Devi ce_Nane => O ock_Nane,
Vect or _Nunber => Vect or _Nunber,
Servi ce_Routine => Servi ce_Routine,

Regi sters => KW/11_CSR_Addr ess,
Devi ce_Array => Ti mer _Devi ce,
Devi ce_Count = 1);

if CONDI TI ON_HANDLI NG Success( Ret ur n_Code) then
Devi ce_Qbj ect Ti mer _Devi ce(0);
Cl ock_l dentifier Current _C ock_Nunber;
CSR . Addr ess KW/11_CSR_Addr ess;
Cl ock_Array(Current_| CI ock_Nunber) := KW211_CSR_Address;
Cl ock_I nfo(Current_Cl ock_Nunber) := C ock_|nformation_Record (Rate, Mbde);
Current _C ock_Nunber := Current_C ock_Nunber + Cock_ID(1);

Current _CSR : = KW_CSR Record’ (

go => FALSE,
node => Convert_It(Mde),
rate => Convert_It(Rate),

ot hers => FALSE );
Put _CSR(Current _CSR, KWZ11_CSR _Address);
el se
raise Initialization_Error;
end if;

end Initialize;

Re_Initialize procedure
wi t h UNCHECKED_CONVERSI ON;
wi t h VAXELN_SERVI CES; use VAXELN_SERVI CES;
with KW/_Regi ster_Definitions; use KW_Register_Definitions;

separate (KW11_d ock_Manager)

procedure Re_lnitialize (Clock_ldentifier : in Cock_ID
Mbde : in O ock_Mde;
Rate : in Cock _Rate ) is

Current _CSR : KW_CSR Record := Get_CSR(CO ock_Array(d ock_ldentifier));

function Convert_It is new UNCHECKED CONVERSI ON( G ock_Mbde, UNSI GNED_2);
function Convert_It is new UNCHECKED CONVERSI ON( O ock_Rat e, UNSI GNED_3);

-- If specified clock’s CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then re-initialize it by clearing the CSR
-- settings; otherw se raise an exception since the specified clock has

CMU/SEI-87-TR-32



-- not been initialized properly.

if dock_Array(d ock_ldentifier) /= ADDRESS ZERO t hen

Current _CSR : = KW_CSR Record’ (go => FALSE,
mode => Convert_|t (Mde),
rate => Convert_It(Rate),
others => FALSE );
Put _CSR(Current _CSR, O ock_Array(Cd ock_Identifier));

Cl ock_Info(d ock_ldentifier) := O ock_Informati on_Record’ (Rate, Mde);
el se

raise Clock_Not_Initialized;
end if;

end Re_lnitialize;

Display_CSR procedure

with TEXT_I O use TEXT_I O
with KW_Regi ster_Definitions; use KW_Register_Definitions;
wi t h UNCHECKED_CONVERSI ON;

separate (KW11_d ock_Manager)

procedure Display_CSR (Clock_ldentifier : in Cock_ID) is
Current _CSR : KW/_CSR Record : = Get_CSR(C ock_Array(C ock_ldentifier));

package Rate_| O i's new ENUVERATI ON_| O(Cl ock_Rate);
package Mode_| O is new ENUVERATI ON_| O( O ock_Mode) ;
package BOOLEAN | O i s new ENUVERATI ON_| O{ BOOLEAN) ;

function Convert_It is new UNCHECKED CONVERSI ON( UNSI GNED_2, d ock_Mbde);
function Convert_It is new UNCHECKED CONVERSI ON( UNSI GNED_3, C ock_Rate);

procedure Formatted_String_Put(Str : in STRING is

begi n
Put (Str);
Set _Col (20);
Put (" =>");

end Formatted_String_Put;

-- If specified clock’s CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then display contents of CSR
-- otherwi se raise an exception since the specified clock has
-- not been initialized properly.
if Clock_Array(C ock_ldentifier) /= ADDRESS_ZERO t hen
Formatted_String_Put ("CSR go");
BOOLEAN_| O. Put (Current _CSR. go); New_Li ne;

Formatt ed_Stri ng_Put (" CSR node");
Mode_| O. Put (Convert It (Current _CSR node)); New_ Line;

Formatted_String_Put ("CSR rate");
Rate_| O Put (Convert _It(Current_CSR rate)); New Line;

Formatted_String_Put ("CSR int_ovf");
BOOLEAN_| O Put (Current _CSR.int_ovf); New_Line;

Formatted_String_Put ("CSR ovf_flag");
BOOLEAN_| O. Put (Current _CSR. ovf_flag); New Line;

Formatted_String_Put ("CSR maint_st1");
BOOLEAN_I O Put (Current _CSR. mai nt _st1); New_Li ne;

Formatted_String_Put ("CSR nmai nt_st2");
BOOLEAN_| O. Put (Current _CSR. nai nt _st2); New_Li ne;

Formatted_String_Put ("CSR mai nt _osc");

28

CMU/SEI-87-TR-32



BOOLEAN_I O Put (Current _CSR mai nt _osc); New_Li ne;

Formatted_String_Put("CSR dio");
BOOLEAN_I O Put (Current _CSR. di0); New_Li ne;

Formatted_String_Put ("CSR flag_overrun");
BOOLEAN_I O Put (Current _CSR. flag_overrun); New_Line;

Formatted_String_Put("CSR st2_go_enable");
BOOLEAN_I O Put (Current _CSR. st2_go_enabl e); New_Line;

Formatted_String_Put ("CSR st2_int_enable");
BOOLEAN_| O Put (Current _CSR. st2_i nt_enabl e); New_Line;

Formatted_String_Put("CSR st2_flag");
BOOLEAN | O. Put (Current _CSR. st2_flag); New Line;

el se
raise Cock_Not_Initialized;
end if;

end Displ ay_CSR;

Enable_Interrupts procedure
with KW/_Regi ster_Definitions; use KW_Register_Definitions;

separate (KW11_d ock_Manager)
procedure Enable_Interrupts (Clock_ldentifier : in Cock_ID) is

Current _CSR : KW_CSR Record : = Get_CSR(C ock_Array(d ock_ldentifier));

-- If specified clock’s CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then enable interrupts on counter overflow
-- otherwi se raise an exception since the specified clock has
-- not been initialized properly.
if Cock_Array(C ock_ldentifier) /= ADDRESS_ZERO t hen
Current_CSR.int_ovf := TRUE
Put _CSR(Current _CSR, Cl ock_Array(Cl ock_ldentifier));
el se
raise Clock_Not_Initialized,
end if;

end Enabl e_Interrupts;

Disable_Interrupts procedure
with KW/_Regi ster_Definitions; use KW_Register_Definitions;

separate (KW211_C ock_Manager)
procedure Disable_Interrupts (Clock_ldentifier : in Cock_ID) is

Current _CSR : KW_CSR Record := Get_CSR(C ock_Array(d ock_ldentifier));

-- If specified clock’s CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then disable interrupts on counter overflow
-- otherw se raise an exception since the specified clock has
-- not been initialized properly.
if dock_Array(d ock_ldentifier) /= ADDRESS ZERO t hen
Current _CSR.int_ovf := FALSE;
Put _CSR(Current _CSR, O ock_Array(C ock_ldentifier));

CMU/SEI-87-TR-32



el se
raise Cock_Not_Initialized;
end if;

end Disable_lnterrupts;

Set_Interrupt_Period procedure

wi t h UNCHECKED_CONVERSI ON;
wi t h VAXELN_SERVI CES; use VAXELN_SERVI CES;
with KW_Regi ster_Definitions; use KW_Register_Definitions;

separate (KW11_d ock_Manager)

procedure Set_Interrupt_Period (Cock_ldentifier : in Cock_|ID
Period : in KW_COUNTER TYPE) is

Devi ce_Ti cks : KW/_COUNTER _TYPE;
for Device_Ticks use at (O ock_Array(d ock_ldentifier) + 2);
begi n

-- If specified clock’s CSR address is non-zero (i.e., the clock exists

-- and has been initialized) then set the current value of the clock

-- interrupt period using two’s conplenent notation; otherw se raise
-- an exception since the specified clock has not been initialized properly.
if Cock_Array(C ock_ldentifier) /= ADDRESS_ZERO t hen

WRI TE_REG STER( ( 16#FFFF# - Period + 1), Device_Ticks);
el se
raise Cock_Not_Initialized;
end if;

end Set_Interrupt_Period;

Generate_lnterrupts procedure
with KW_Regi ster_Definitions; use KW_Register_Definitions;

separate (KW11_d ock_Manager)

procedure Generate_lnterrupts (Clock_ldentifier : in Cock_ID is
Current _CSR : KW_CSR Record := Get_CSR(C ock_Array(Cd ock_ldentifier));

-- If specified clock’s CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then start internal counter that causes
-- interrupts; otherw se raise an exception since the specified clock has
-- not been initialized properly.
if dock_Array(d ock_ldentifier) /= ADDRESS ZERO t hen
Current_CSR go := TRUE
Put _CSR(Current _CSR, O ock_Array(Cd ock_ldentifier));
el se
raise Clock_Not_Initialized;
end if;

end Generate_lnterrupts;

Reset_Interrupt_Flag procedure
with KW/_Regi ster_Definitions; use KW_Register_Definitions;

separate (KW11_d ock_Manager)

30 CMU/SEI-87-TR-32



procedure Reset_Interrupt_Flag (O ock_ldentifier : in Cock_ID is
Current _CSR : KW/_CSR Record : = Get _CSR(C ock_Array(d ock_ldentifier));

-- If specified clock’s CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then clear counter overflow flag to allow
-- another interrupt to be generated; otherw se raise an exception since
-- the specified clock has not been initialized properly.
if dock_Array(d ock_ldentifier) /= ADDRESS ZERO t hen
Current _CSR. ovf_flag : = FALSE;
Put _CSR(Current _CSR, O ock_Array(Cd ock_Identifier));
el se
raise Cock_Not_Initialized;
end if;

end Reset_Interrupt_Fl ag;

Reset_Overrun_Flag procedure
with KW_Regi ster_Definitions; use KW_Register_Definitions;

separate (KWZ11_C ock_Manager)

procedure Reset_Overrun_Flag (Clock_ldentifier : in Cock_ID) is
Current _CSR : KW/_CSR Record : = Get_CSR(C ock_Array(C ock_ldentifier));

-- If specified clock’s CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then clear interrupt overrun flag;
-- otherwi se raise an exception since the specified clock has
-- not been initialized properly.
if Cock_Array(C ock_ldentifier) /= ADDRESS_ZERO t hen
Current _CSR. flag_overrun: = FALSE;
Put _CSR(Current _CSR, Cl ock_Array(Cl ock_ldentifier));
el se
raise Clock_Not_Initialized,
end if;

end Reset_Overrun_Fl ag;

Start_Counting procedure
with KW/_Regi ster_Definitions; use KW_Register_Definitions;

separate (KW211_C ock_Manager)

procedure Start_Counting (Clock_ldentifier : in Cock_ID) is
Current _CSR : KW/_CSR Record : = Get _CSR(C ock_Array(d ock_ldentifier));

-- If specified clock’s CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then start the clock’s internal counter;
-- otherwi se raise an exception since the specified clock has
-- not been initialized properly.
if Cock_Array(C ock_ldentifier) /= ADDRESS ZERO t hen
if (Aock_Info(d ock_|ldentifier).Mde = Mdde_Two or el se
C ock_I nfo(C ock_ldentifier).Mode = Myde_Three)
then
Current_CSR go := TRUE
Put _CSR(Current _CSR, C ock_Array(C ock_ldentifier));
el se
rai se |Invalid_C ock_Mde;

CMU/SEI-87-TR-32 31



end if;
el se
raise Cock_Not_Initialized;
end if;

end Start_Counting;

Read_Counter procedure
with KW_Regi ster_Definitions; use KW_Register_Definitions;

separate (KWZ11_C ock_Manager)

procedure Read_Counter (Cl ock_ldentifier : in Cock_ID
Nurmber _OF _Ticks : out KW_COUNTER_TYPE) is

Current _CSR : KW_CSR Record := Get_CSR(C ock_Array(d ock_ldentifier));

Devi ce_Ti cks : KW_COUNTER TYPE;
for Device_Ticks use at (O ock_Array(d ock_ldentifier) + 2);

-- If specified clock’s CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then simulate an external event to
-- get current value of the clock’s internal counter witten to the
-- BUFFER/ PRESET register and then read that value and return it while
-- the clock continues to run; otherw se raise an exception since the
-- specified clock has not been initialized properly.
if dock_Array(d ock_ldentifier) /= ADDRESS ZERO t hen
if (Aock_Info(C ock_ldentifier).Mde = Mode_Two or el se
Cl ock_I nfo(Cl ock_ldentifier).Mode = Mode_Three)
t hen
Current _CSR st2_int_enable : = FALSE;
Current _CSR maint_st2 : = TRUE;
Put _CSR(Current _CSR, C ock_Array(C ock_ldentifier));

| oop
Current _CSR : = Get_CSR(C ock_Array(C ock_ldentifier));
exit when Current_CSR st2_flag;

end | oop;

Nunber _OF _Ti cks : = READ_REQ STER(Devi ce_Ti cks);
Current _CSR. st2_flag : = FALSE;
Put _CSR(Current _CSR, C ock_Array(C ock_ldentifier));

el se
rai se Invalid_C ock_Mde;
end if;
el se
rai se Clock_Not_Initialized;
end if;

end Read_Counter;

Stop_Counting procedure
with KW/_Regi ster_Definitions; use KW_Register_Definitions;

separate (KW11_d ock_Manager)

procedure Stop_Counting (Cock_ldentifier : in dock_|ID
Nunmber _OF _Ticks : out KW/_COUNTER TYPE) is

Current _CSR : KW_CSR Record := Get_CSR(C ock_Array(C ock_ldentifier));

Devi ce _Ticks : KW _COUNTER TYPE;
for Device_Ticks use at (O ock_Array(C ock_Identifier) + 2);

32

CMU/SEI-87-TR-32



-- If specified clock’s CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then sinmulate an external event to

-- get current value of the clock’s internal counter witten to the

-- BUFFER/ PRESET register and then return that val ue;

-- otherwi se raise an exception since the specified clock has

-- not been initialized properly.

if dock_Array(d ock_ldentifier) /= ADDRESS ZERO t hen
if (Aock_Info(d ock_|ldentifier). Mde = Mode_Two or el se
C ock_Info(C ock_ldentifier).Mode = Mode_Three)

then

Current _CSR st2_int_enable : = FALSE;
Current _CSR maint_st2 : =
Put _CSR(Current _CSR, C ock_Array(C ock_ldentifier));

| oop

TRUE;

Current _CSR : = Get_CSR(C ock_Array(C ock_ldentifier));
exit when Current_CSR st2_flag;

end | oop;

Nurmber _Of _Ti cks : = READ_
Current CSR go := FALSE;
Current _CSR st2_flag : =

Put _CSR(Current _CSR, C ock_Array(C ock_ldentifier));

el se

REG STER( Devi ce_Ti cks);

FALSE;

rai se Invalid_C ock_Mde;

end if;
el se

raise Clock_Not_Initialized;

end if;

end Stop_Counting

Interrupts_Enabled function

wi th KW/_Regi st er

_Definitions;

separate (KW11_d ock_Manager)

use KW/_Regi ster_Definitions;

function Interrupts_Enabled (Cock_ldentifier : in Cock_ID return BOOLEAN is

Current _CSR

KW/_CSR_Record

:= CGet _CSR(C ock_Array(C ock_ldentifier));

-- If specified clock’s CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then return a BOOLEAN val ue indicating

-- whether or not the clock will generate an interrupt when its internal
lows; overflow flag; otherw se raise an exception since

-- the specified clock has not been initialized properly.

-- clock overf

if Cock_Array(C ock_ldentifier) /= ADDRESS_ZERO t hen
return Current _CSR int_ovf;

el se

raise Cock_Not_Initialized;

end if;

end I nterrupts_Enabl ed;

Current_Mode function
wi t h UNCHECKED_CONVERSI ON;

with KW/ _Regi ster

_Definitions;

separate (KW211_C ock_Manager)

use KW/_Regi ster_Definitions;

function Current_Mde (O ock_ldentifier : in Cdock_ID) return Cock_Mde is

Current _CSR

KW/_CSR _Record

:= Get _CSR(C ock_Array(C ock_ldentifier));

CMU/SEI-87-TR-32

33



function Convert_It is new UNCHECKED CONVERSI ON( UNSI GNED_2, d ock_Mbde);
begi n
-- If specified clock’s CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then return current clock node;
-- otherw se raise an exception since the specified clock has
-- not been initialized properly.
if dock_Array(d ock_ldentifier) /= ADDRESS ZERO t hen
return Convert_lt(Current_CSR node);
el se
raise Clock_Not_lInitialized;
end if;

end Current _Mode;

Current_Rate function

wi t h UNCHECKED_CONVERSI ON;
with KW_Regi ster_Definitions; use KW_Register_Definitions;

separate (KWZ11_C ock_Manager)

function Current_Rate (Cl ock_ldentifier : in Cock_ID) return Clock_Rate is
Current _CSR : KW_CSR Record := Get_CSR(C ock_Array(d ock_ldentifier));

function Convert_It is new UNCHECKED CONVERSI ON( UNSI GNED_3, d ock_Rate);
begi n
-- If specified clock’s CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then return current clock rate;
-- otherw se raise an exception since the specified clock has
-- not been initialized properly.
if dock_Array(d ock_ldentifier) /= ADDRESS ZERO t hen
return Convert_lt(Current_CSR rate);
el se
raise Clock_Not_Initialized,
end if;

end Current_Rate;

Interrupt_Period function

wi t h UNCHECKED_CONVERSI ON;
wi th VAXELN_SERVI CES; use VAXELN_SERVI CES;
with KW_Regi ster_Definitions; use KW_Register_Definitions;

separate (KWZ11_C ock_Manager)

function Interrupt_Period (Cock_ldentifier : in Cock_ID) return KW_COUNTER TYPE is
Device_Ticks : KW_COUNTER TYPE;
for Device_Ticks use at (O ock_Array(d ock_ldentifier) + 2);
begi n
-- If specified clock’s CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then return current value of the clock
-- interrupt period; otherw se raise an exception since the specified
-- clock has not been initialized properly.
if Cock_Array(C ock_ldentifier) /= ADDRESS_ZERO t hen
return READ REGQ STER( Devi ce_Ti cks);
el se
rai se Clock_Not_Initialized;
end if;

end Interrupt_Period;

34 CMU/SEI-87-TR-32



Interrupt_Flag_On function
with KW/_Regi ster_Definitions; use KW_Register_Definitions;

separate (KW11_d ock_Manager)

function Interrupt_Flag_On (O ock_ldentifier : in Cock_ID) return BOOLEAN is
Current _CSR : KW_CSR Record := Get_CSR(C ock_Array(d ock_ldentifier));

-- If specified clock’s CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then return current BOOLEAN val ue of counter
-- overflow flag; otherw se raise an exception since the specified clock
-- has not been initialized properly.
if dock_Array(d ock_ldentifier) /= ADDRESS ZERO t hen
return Current_CSR ovf_flag;
el se
raise Clock_Not_Initialized,
end if;

end Interrupt_Flag_On;

Overrun_Flag_On function
with KW/_Regi ster_Definitions; use KW_Register_Definitions;

separate (KW211_C ock_Manager)

function Overrun_Flag_On (O ock_ldentifier : in Cock_ID) return BOOLEAN is
Current _CSR : KW/_CSR Record : = Get _CSR(C ock_Array(d ock_ldentifier));

-- If specified clock’s CSR address is non-zero (i.e., the clock exists
-- and has been initialized) then return current BOOLEAN val ue of overrun
-- flag; otherwi se raise an exception since the specified clock
-- has not been initialized properly.
if Cock_Array(C ock_ldentifier) /= ADDRESS ZERO t hen
return Current _CSR flag_overrun;
el se
raise Clock_Not_Initialized;
end if;

end Overrun_Fl ag_On;

A.e. INS Data Types Package Specification

MODULE NAME: I NS_Dat a_Types
MODULE TYPE: Package Specification
MODULE PURPGCSE:

Export Executive global constants and types.

MODULE DESCRI PTI ON:
Thi s package defines the constants and gl obal data types
used t hroughout the executive subsystem

CMU/SEI-87-TR-32 35



--] REVI SION HI STORY: -- see end of listing

pragnma PAGE;

package I NS Data_Types is

Maxi mum Priority : constant NATURAL : = 15;

Maxi mum Ti ck_Val ue : constant NATURAL : = 34_560_000;

Maxi mum Period_Val ue : constant NATURAL := 511;

M croseconds_Per _Tick : constant NATURAL := 2_560;

subt ype Ti ck_Range is NATURAL range 0..Maxi mum Ti ck_Val ue;

subt ype Peri od_Range is NATURAL range 0..Maxi mum Peri od_Val ue;
subtype Priority_Range is NATURAL range O..MaximumPriority;

end | NS_Dat a_Types;

-- REVI SI ON HI STORY

A.f. Clock Interrupt Service Routine

wi t h VAXELN_SERVI CES;
with CONDI TI ON_HANDLI NG,
wi th | NS_Dat a_Types;

with SYSTEM use SYSTEM

procedure Timer_lnterrupt_Routine
(Devi ce_Regi sters : in ADDRESS;

Comm _Regi on : in out | NS_Data_Types. Executive_Comuni cati on_Regi on;
| SR_Cont ext : in VAXELN_SERVI CES. | SR_ CONTEXT_TYPE ) is
Return_Code : CONDI TI ON_HANDLI NG COND_VALUE_TYPE;
Tenp_I nt : INTEGER : = 0;
begi n

for Index2 in 1..110
| oop
Tenp_Int := Tenp_Int + Index2;
end | oop;
Conm Regi on. Current _Ti ck_Nunber := Comm Regi on. Current_Ti ck_Nunber + 1;
if Conm Region. Current_Ti ck_Nunber >= Comm Regi on. Next _Schedul e_Ti ne then
VAXELN_SERVI CES. S| GNAL_DEVI CE( St at us => Return_Code,
Devi ce_Nunmber => 0,
I SR_Cont ext => | SR _Context );
end if;
end Timer_I nterrupt_Routine;

pragma SUPPRESS ALL;
pragma EXPORT_PROCEDURE( Ti mer _| nt er r upt _Rout i ne);

A.g. Runtime BIT Package Specification

MODULE NAME: Runtime_BI T
MODULE TYPE: Package Specification

MODULE PURPGCSE:
Thi s package inplements the Runtime Built-In Tests

-1
-
-1
-
-1
-
-1
- for the AEST INS sinmulator program
-1

36 CMU/SEI-87-TR-32



MODULE DESCRI PTI ON:
Thi s package inplenments the Runtinme Built-In Tests
for the AEST INS sinulator program

pragma PAGE;
package Runtime_BIT is
task Runtine_BIT_Processor is
entry Activate; -- called every 1000 nsec by the dispatcher
pragma PRIORITY(2);
end Runtinme_BI T_Processor;

procedure Runtinme_Tests; -- inplenments the tests

end Runtinme_BIT;

-- REVI SI ON HI STORY

A.h. Runtime BIT Package Body

MODULE NAME: Runtime_BI T
MODULE TYPE: Package Body

MODULE PURPCSE:
Thi s package inplements the Runtime Built-In Tests
for the AEST INS sinmulator program

MODULE DESCRI PTI ON:
Thi s package inplenments the Runtinme Built-In Tests
for the AEST INS sinulator program

pragma PAGE;
with Load_Control;
package body Runtime_BIT is

task body Runtine_BIT_Processor is

begi n
| oop
accept Activate; -- called every 1000 nsec by the dispatcher
Load_Control . Busy_Wai t (50);
end | oop;

end Runtime_BI T_Processor;
procedure Runtime_Tests is
begi n

null; ~-- inplenments the tests
end Runtime_Tests;

end Runtime_BIT;

-- REVI SI ON HI STORY

CMU/SEI-87-TR-32

37



A.i. Motion Simulator Package Specification

MODULE NAME: Mot i on_Si mul at or

MODULE TYPE: Package Specification

I
I
I
I
I
--| MODULE PURPGCSE:
| Thi s package inplenments the various notion sinulation
| cal cul ations that are the core of the AEST INS
| si nul at or program
I
| MODULE DESCRI PTI ON:
| Thi s package inplements the various notion sinulation
- cal cul ations that are the core of the AEST INS
| si nul at or program
I

pragma PAGE;

package Mdtion_Sinmulator is

procedure Update_Attitude_and_Heading; -- called by the clock ISR every 2.56 nms

task Ship_Velocity_Updater is
entry Activate; -- called by the dispatcher every 40.96 nsec
pragma PRI ORI TY(8);

end Ship_Vel ocity_Updater;

task Ship_Position_Updater is
entry Activate; -- called by the dispatcher every 1300.0 nsec
pragma PRIORITY(1);

end Shi p_Position_Updater;

end Motion_Simul ator;

-- REVI SI ON HI STORY

A.j. Motion Simulator Package Body

MODULE NAMNE: Mot i on_Si mul at or

MODULE TYPE: Package Body

I
I
I
I
I
--| MODULE PURPOCSE:
| Thi s package inplenments the various notion sinulation
| calculations that are the core of the AEST INS
| si mul at or program
I
| MODULE DESCRI PTI ON:
| Thi s package inplenments the various notion sinulation
- calculations that are the core of the AEST INS
| si mul at or program
I

pragma PAGE;

38 CMU/SEI-87-TR-32



wi th Load_Control;
wi th Task_Manager;

package body Motion_Sinmulator is
procedure Update_Attitude_and_Heading is
begi n

nul | ;
end Update_Attitude_and_Headi ng;

task body Ship_Velocity_Updater is

begi n
| oop
accept Activate;
Load_Control . Busy_Wait(40); -- 4 mlliseconds
end | oop;

end Ship_Vel ocity_Updater;

task body Ship_Position_Updater is

begi n
| oop
accept Activate;
Load_Control . Busy_Wai t(250); ~-- 25 mlliseconds
end | oop;

end Shi p_Position_Updater;

end Motion_Simulator;

-- REVI SI ON HI STORY

A.k. Comms Handler Package Specification

package Comms_Handler is
procedure Tinme_Qut;

task Attitude_Periodi c_Message_Sender is
entry Activate;
pragma PRIORITY(7);

end Attitude_Periodi c_Message_Sender;

task Navi gation_Periodi c_Message_Sender is
entry Activate;
pragma PRI ORI TY(4);

end Navi gati on_Peri odi c_Message_Sender;

end Comrs_Handl er;

A.l. Comms Handler Package Body

with Load_Control;
wi th Task_Manager; use Task_Manager;

package body Comms_Handler is
procedure Tine_Qut is
begi n
nul | ;
end Tinme_Qut;

task body Attitude_Periodi c_Message_Sender is

begi n
| oop
accept Activate;
Load_Control . Busy_Wait(100); -- 10 milliseconds
end | oop;

end Attitude_Periodi c_Message_Sender;

CMU/SEI-87-TR-32

39



task body Navigation_Periodi c_Message_Sender is

begi n
| oop
accept Activate;
Load_Control . Busy_Wit(200); -- 20 milliseconds
end | oop;

end Navi gati on_Peri odi c_Message_Sender;

end Comms_Handl er;

A.m. Screen Area Handler Package Specification

package Screen_Area_Handler is

task Periodic_Status_Display_Processor is
entry Activate; -- called every 1000 nsec by the dispatcher

pragma PRI ORI TY(3);
end Periodic_Status_Display_Processor;

end Screen_Area_Handl er;

A.n. Screen Area Handler Package Specification

wi th Load_Control;
package body Screen_Area_Handler is

task body Periodic_Status_Display_Processor is

begi n
| oop
accept Activate; -- called every 1000 nsec by the dispatcher
Load_Control . Busy_Wait(1_000); -- 100 milliseconds
end | oop;

end Periodi c_Status_Display_Processor;

end Screen_Area_Handl er;

A.o. Activation Queue Manager Package Specification

MODULE NAME: Activati on_Queue_Manager (AQV
MODULE TYPE: Package Specification

MODULE PURPGCSE:
I npl enent task activation queue nanager.

| MODULE DESCRI PTI ON:
| Thi s package provi des the necessary data types,
| procedures, and exceptions for inplenenting a tine
- ordered activation queue. The package only supports
| one such queue whose inplenentation details are hidden
| wi thin the package body.
|

--] REVI SION HI STORY: -- see end of listing

pragnma PAGE;

wi th Task_Manager;
wi th | NS_Dat a_Types;

package Activation_Queue_Manager is

40

CMU/SEI-87-TR-32



subtype Priority_Range is INS_Data_Types. Priority_Range;

subt ype Activation_Ti ne_Range is INS_Data_Types. Ti ck_Range;

subtype Activation_Period_Range is I NS Data_Types. Peri od_Range;
subtype Task_I D Type is Task_Manager. Task_I D Type;

type Activation_Mde_Type is (Single_Shot, Periodic, Time_Qut, No_Op);

type Task_Activation_Record is record

Task_I D . Task_I D _Type;
Activation_Period : Activation_Period_Range;
Activation_Tine : Activation_Ti ne_Range;
Activation_Priority : Priority_Range;
Execution_Priority : Priority_Range;

Activati on_Mbde : Activation_Mde_Type;

end record;

procedure Insert_Activation_Record (Record_ID: in Task_Activation_Record;
Next _Schedul e_Ti me : out Activation_Ti me_Range);

procedure Get_Activation_Record (Record_I D : out Task_Activati on_Record;
Next _Schedul e_Ti ne : out Activation_Ti ne_Range);

procedure Del ete_Activati on_Record (Task_ID : in Task_ID Type);

end Activation_Queue_Manager;

-- REVI SI ON HI STORY

A.p. Activation Queue Manager Package Body

MODULE NAME: Acti vati on_Queue_Manager
MODULE TYPE: Package Body

MODULE PURPGCSE:
I mpl enent task activati on queue manager.

| MODULE DESCRI PTI ON:

| Thi s package supports the inplenmentation of a tine

| ordered task activation queue and its associated

| interfaces exported in the package specification.

| The activation queue is nmaintained as a static array of

| activation records (ARs) as defined in the package specification.

| The ARs are never noved fromtheir initial position in the array and

| one special array elenment is reserved for the AR of the

- Comuni cations Controller task, which is called when a time-out has
| expired. The AQM maintains information regarding the next task to be
| schedul ed and when to schedule it by performng a linear search of
| the array upon each insert and fetch operation. Wen an AR is
| returned (i.e., taken off the queue) to the Dispatcher, its activation
| node value is checked by the AQWM if it represents a periodic task, a
| new activation time is conputed, and the AR gets re-inserted into the
|

-- queue.
e
-- : -- see end of listing

REVI SI ON HI STORY: d of Iisti
e
pragma PAGE;

wi th Task_Manager; use Task_Manager;
package body Activation_Queue_Manager is
Next _Activation_Tine : Activation_Ti me_Range := Activation_Ti me_Range’ LAST;

Next _Task_To_Schedul e : Task_I D Type;
Activati on_Records : array(Task_I D Type) of Task_Activation_Record;

CMU/SEI-87-TR-32

41



procedure Insert_Activation_Record (Record_ID: in Task_Activation_Record;
Next _Schedul e_Time : out Activation_Tinme_Range) is
begi n
Activation_Records(Record_I D. Task_I D) := Record_ID;

if Record_ID. Activation_Time < Next_Activation_Tine and then
Record_I D. Acti vati on_Mdde /= No_Op then

Next _Activation_Tine := Record_|ID.Activation_Tine;
Next _Task_To_Schedul e : = Record_I D. Task_I D;
end if;

Next _Schedul e_Ti me := Next _Activation_Ti ne;
end Insert_Activati on_Record;

--  Get next AR fromthe Activation Queue. Re-schedule any tasks with
-- sanme activation time as the one taken off the queue.
procedure Get_Activation_Record (Record_I D : out Task_Activation_Record;
Next _Schedul e_Time : out Activation_Tinme_Range) is
begi n
Record_I D : = Activation_Records(Next_Task_To_Schedul e);

-- If current task is periodic, then reconpute next activation for
-- task and then re-insert it into the activation queue.
if Activation_Records(Next_Task_To_Schedul e). Acti vati on_Mdde = Periodic then
Acti vation_Records(Next _Task_To_Schedul €). Activation_Tine :=
Activati on_Records(Next_Task_To_Schedul e). Activation_Tinme +
Acti vation_Ti ne_Range(Acti vation_Records(Next _Task_To_Schedul e). Acti vati on_Period);
end if;

--  Find next task to be schedul ed.
Next _Activation_Time := Activation_Records(Task_|D Type' FIRST). Activation_Ti ne;
Next _Task_To_Schedul e : = Task_| D_Type’ FI RST;

for Index in Task_| D_Type' SUCC(Task_I D_Type' FI RST).. Task_| D Type’' LAST
| oop
if Activation_Records(lndex).Activation_Tine < Next_Activation_Time and then
Activation_Records(Index).Activation_Mde /= No_Op then

Next _Activation_Tine : = Activation_Records(lndex).Activation_Tine;
Next _Task_To_Schedul e : = | ndex;
end if;
end | oop;

Next _Schedul e_Ti me : = Next_Activation_Ti ne;
end Get_Activation_Record;

-- Mark AR associated with Task_ID as not available for scheduling.
-- Its slot will nost likely be used at a later date (e.g., timeouts).
procedure Del ete_Activati on_Record (Task_ID : in Task_ID Type) is
begi n

Activation_Records(Task_I D). Activation_Mde := No_Op;
end Del ete_Activation_Record;

end Activation_Queue_Manager;

REVI SI ON HI STORY

CMU/SEI-87-TR-32



A.q. Task Manager Package Specification

MODULE NAME: Task_Manager
MODULE TYPE: Package Specification

MODULE PURPCSE:
Thi s package provides an interface to initialize the task activation
queue and start the dispatcher of the AEST INS sinul ator program

| MODULE DESCRI PTI ON:
| Thi s package provi des the necessary procedures
| toinitialize the task activation queue, start the task dispatcher,
- enabl e/ di sabl e periodic tasks, and support tine-outs for base
| | evel tasks.
|

pragma PAGE;
with | NS_Dat a_Types;
package Task_Manager is

subt ype Activation_Ti ne_Range is INS_Data_Types. Ti ck_Range;
subtype Activation_Period_Range is |INS_Data_Types. Peri od_Range;

type Task_ID Type is

( Shi p_Vel oci ty_Updater,
Attitude_Periodi c_Message_Sender,
Navi gati on_Peri odi c_Message_Sender,
Periodi c_Status_Di spl ay_Processor,
Runti me_BI T_Processor,
Shi p_Posi ti on_Updater,
Comrs_Control | er

)

subtype Periodic_Task_I D Type is Task_I D _Type range
Shi p_Vel oci ty_Updater.. Shi p_Positi on_Updater;

subt ype Ti meout _Task_I D _Type is Task_I D _Type range
Comrs_Control |l er..Comrs_Controller;
procedure Initialize_Activation_Queue;

procedure Activate_Di spatcher;

function Task_Is_Enabled (Task_ID : in Periodic_Task_|ID Type) return BOOLEAN,

procedure Enabl e_Task (Task_ID : in Periodic_Task_|ID Type);
procedure Di sabl e_Task (Task_ID : in Periodic_Task_|ID Type);

procedure Request_Tinme_Qut (Task_ID : in Timeout_Task_| D Type;
Time_Period : in Activation_Period_Range);

procedure Cancel _Time_Qut (Task_ID : Timeout_Task_ID Type);

Di spat cher _Activation_Error : EXCEPTI ON;
end Task_Manager;

. REVI SI ON HI STORY

CMU/SEI-87-TR-32

43



A.r. Task Manager Package Body

MODULE NAME: Task_Manager
MODULE TYPE: Package Body

MODULE PURPCSE:
I mpl enent a periodic task dispatcher.

| MODULE DESCRI PTI ON:
| Thi s package body inplenents a task dispatcher
| that gets and re-inserts task activation records
- fromand onto the activation queue. The dispatcher
| waits for signals froma real-tine clock that is
| generating interrupts every 2.56 milliseconds.
I

pragma PAGE;

with Runtine_BIT;

with Comms_Handl er;

with Mtion_Sinul ator;

with KW11_d ock_Manager ;

with Screen_Area_Handl er;

with Activation_Queue_Manager;

with SYSTEM use SYSTEM
package body Task_Manager is

package RTB renanmes Runtinme_BI T,

package COM renanmes Comms_Handl er;

package MOS renanes Mdtion_Si mul ator;

package SAH renanmes Screen_Area_Handl er;
package AQM renanes Activation_Queue_Manager;

subtype O ock_I D is KW11_d ock_Manager. C ock_I D;

subt ype DEVI CE_TYPE is KW11_C ock_Manager . DEVI CE_TYPE;

subt ype KW/_COUNTER TYPE is KW11_d ock_Manager. KW_COUNTER_TYPE;
type Task_State_Type is (Disabled, Enabled);

Periodi c_Task_State : array (Periodic_Task_|D Type) of Task_State_Type :=

( Shi p_Vel oci ty_Updat er => Enabl ed,
-- Attitude_Periodi c_Message_Sender => Di sabl ed,
-- Navi gati on_Peri odi c_Message_Sender => Di sabl ed,
Attitude_Periodi c_Message_Sender => Enabl ed,
Navi gati on_Peri odi c_Message_Sender => Enabl ed,
Peri odi c_Status_Di spl ay_Processor => Enabl ed,
Runti me_BI T_Processor => Enabl ed,
Shi p_Posi ti on_Updat er => Enabl ed );
d ock_I PL : UNSI GNED_L ONGWORD,
Comm_Regi on_Addr ess . ADDRESS;

Schedul e_At _Ti ck_Number : Activation_Ti me_Range : =
Acti vati on_Ti me_Range’ LAST;

-- Local Subprograms and tasks

procedure Updat e_Next_Schedul e_Time is separate;

function Current _Ti ck_Nunber return Activation_Ti ne_Range i s separate;

44 CMU/SEI-87-TR-32



procedure Activate_Task (Task_ID : in Task_| D Type;
M ssed_Deadl i ne : out BOOLEAN);

procedure Tinme_Qut_Task (Task_ID : in Tinmeout_Task_I D Type);

task Dispatcher is
entry Activate (O ock_ldentifier : in O ock_ID
Cl ock_Device_ID : in DEVICE_TYPE);
pragma PRI ORI TY(9);
end Di spatcher;

task body Dispatcher is separate;

procedure Initialize_Activation_Queue is separate;

procedure Activate_Di spatcher is separate;

function Task_|s_Enabled (Task_ID : in Periodic_Task_I D Type)
return BOOLEAN is

begi n
return Periodic_Task_State(Task_I D) = Enabl ed;

end Task_I| s_Enabl ed;

procedure Enabl e_Task (Task_ID : in Periodic_Task_ID Type) is
begi n

Peri odi c_Task_St at e(Task_I D) : = Enabl ed;
end Enabl e_Task;

procedure Disable_Task (Task_ID : in Periodic_Task_ID Type) is
begi n

Periodi c_Task_State(Task_I D) := Disabled;
end Di sabl e_Task;

procedure Activate_Task (Task_ID : in Task_I D Type;
M ssed_Deadl i ne : out BOOLEAN) is
begi n
M ssed_Deadl i ne : = FALSE;
if Task_ls_Enabl ed(Task_I D) then

case Task_IDis
when Ship_Vel ocity_Updater =>

sel ect

MOS. Shi p_Vel oci ty_Updat er. Acti vate;
el se

M ssed_Deadl i ne : = TRUE;
end sel ect;

when Attitude_Periodi c_Message_Sender =>

sel ect

COM Attitude_Periodi c_Message_Sender. Acti vate;
el se

M ssed_Deadl i ne : = TRUE;
end sel ect;

when Navi gati on_Peri odi c_Message_Sender =>
sel ect

CMU/SEI-87-TR-32



COM Navi gat i on_Peri odi c_Message_Sender. Acti vat e;
el se

M ssed_Deadl i ne : = TRUE;
end sel ect;

when Periodi c_Status_Display_Processor =>

sel ect

SAH. Peri odi c_Status_Di spl ay_Processor. Acti vate;
el se

M ssed_Deadl i ne : = TRUE;
end sel ect;

when Runtine_BI T_Processor=>

sel ect

RTB. Runti me_BI T_Processor. Activate;
el se

M ssed_Deadl i ne : = TRUE;
end sel ect;

when Shi p_Position_Updater =>

sel ect

MOS. Shi p_Posi ti on_Updater. Acti vate;
el se

M ssed_Deadl i ne : = TRUE;
end sel ect;

when ot hers =>

nul | ;
end case;
el se
nul | ;
end if;

end Activate_Task;

procedure Time_Qut_Task (Task_ID : in Tinmeout_Task_|ID Type) is
begi n

COM Ti nme_Qut ;
end Ti me_Qut_Task;

procedure Request_Tinme_Qut (Task_ID : in Tineout_Task_| D Type;
Time_Period : in Activation_Period_Range) is
Next _Time : Activation_Ti me_Range : = NATURAL’ FI RST;
begi n

AQM I nsert _Activation_Record(
(Task_I D, Activation_Ti me_Range(Ti me_Peri od),
Acti vation_Ti me_Range(Ti me_Period) + Current_Ti ck_Nunber,
10, 10, AQM Tinme_Qut), Schedul e_At_Ti ck_Nunber);

end Request _Ti ne_Qut;
procedure Cancel _Time_Qut (Task_ID : Tinmeout_Task_|ID Type) is
begi n
AQM Del et e_Acti vati on_Record(Task_ID);
end Cancel _Tinme_Qut;

end Task_Manager;

-- REVI SI ON HI STORY
-1

Load Control Package Specification
with KW11_d ock_Manager;

46 CMU/SEI-87-TR-32



package Load_Control is
subtype O ock_IDis KWZ11_0C ock_Manager. d ock_I D;
procedure Initialize (G ock_ldentifier : in Cock_ID);
procedure Read_Load_Factor;
procedure Busy_Wait (Time_Period : in POSITIVE);

end Load_Control;

Load Control Package Body
with Text _I1Q

package body Load_Control is
type Load_Factor_Percentage is delta 0.05 range 0.0..10.0;

M/_Clock_ID: COock_ID

Load_Factor : Load_Factor_Percentage := 1.0;
Calibration : constant Load_Factor_Percentage : = 0.75;
Fact or : Load_Fact or _Per cent age;

Tenp . BOOLEAN;

package Load_Factor_|1 O is new Text_| O Fi xed_| O(Load_Fact or _Per cent age) ;

procedure Initialize (G ock_ldentifier : in Clock_ID) is
begi n

My_C ock_ID := Cock_ldentifier;
end Initialize;

-- Open external Factor file on host; read current value; close file
procedure Read_Load_Factor is
Factor_File_Name : constant STRING := "25::ps:[borger]load_factor.inp";
Factor_File : Text _| O FI LE_TYPE;

use Text_1G
begi n
Open(Factor_File, In_File, Factor_File_Nane);
Load_Factor _| O Get (Factor_File, Load_Factor);
Factor := Load_Factor_Percentage(Calibration * Load_Factor);
Cl ose(Factor_File);
end Read_Load_Factor;

procedure Busy_Wait (Time_Period : in PCSITIVE) is

begi n
for Index in 1..1NTEGER(Ti ne_Period * Factor)
| oop
Tenp := KW211_d ock_Manager.Interrupt_Flag_On(My_O ock_I D);
end | oop;

end Busy_Wit;

end Load_Control;

Activate Dispatcher procedure
with TEXT IO
with Load_Control;
with Tiner_Interrupt_Routine;
separ at e( Task_Manager)

procedure Activate_Dispatcher is

My_Q ock_Nane : constant STRING := "KW11";

M/_Cl ock_I D . Oock_ID

My_C ock_Devi ce : DEVI CE_TYPE;

CSR_Addr ess . ADDRESS;

Peri od : KW/_COUNTER_TYPE : = KW/_COUNTER _TYPE(2_560);

CMU/SEI-87-TR-32

47



use TEXT_I O | NS_Data_Types, KWZ11_Cl ock_Manager;

begi n
-- Initialize the clock to operate in npde one at a 1MiZ rate.
-- The Interrupt Service Routine is "Tinmer_lnterrupt_Routine".

Initialize(d ock_Name => My_Cl ock_Nane,

Clock_ldentifier => My_C ock_I D,
Mode => Mbde_One,
Rat e => Rate 1M1z,
Vect or _Nunber = 1,
Service_Routine => Tinmer_Interrupt_Routine’ ADDRESS,
CSR_Addr ess => CSR_Address,

Cock_Priority => O ock_I PL,

Communi cat i on_Regi on_Si ze => Executi ve_Conmuni cati on_Regi on’ Sl ZE,
Conmuni cat i on_Regi on_Addr ess => Conm Regi on_Addr ess,
Devi ce_Qbj ect => My_Cl ock_Device );

-- Update next schedule time in communication region.
-- Start current tick nunmber at O in communication region.
decl are
Comm Regi on : | NS_Data_Types. Executi ve_Communi cati on_Regi on;
for Conm Regi on use at Comm Regi on_Addr ess;
begi n
Conm _Regi on. Current _Ti ck_Nunber
Comm_Regi on. Next _Schedul e_Ti e
end;

0;
Schedul e_At _Ti ck_Nunber;

Load_Control.lnitialize(M_C ock_ID);
Load_Control . Read_Load_Fact or;

Generate_Interrupts(M/_C ock_ID);

exception
when Initialization_Error =>
Put _Line("Error during clock initialization.");
rai se Di spatcher_Activation_Error;

when C ock_Not Initialized =>
Put _Line("Invalid clock identifier.");
rai se Di spatcher_Activation_Error;

when ot hers =>
Put _Li ne(" Unexpected exception raised back to Dispatcher_Activate_Dispatcher.");
rai se Di spatcher_Activation_Error;

end Activate_Di spatcher;

Initialize Activation Queue procedure

48 CMU/SEI-87-TR-32



separ at e( Task_Manager)

procedure Initialize_Activation_Queue is
Next _Ti me : Activation_Ti me_Range := NATURAL’' FI RST;
Activation_Records : constant array(Task_| D Type)
of AQM Task_Activation_Record : =
( (Ship_Velocity_Updater, 16, 16, 8, 8, AQM Periodic),

(Attitude_Periodi c_Message_Sender, 24, 24, 7, 7, AQM Periodic),
(Navi gati on_Peri odi c_Message_Sender, 384, 384, 4, 4, AQM Periodic),
(Periodic_Status_Display_Processor, 390, 390, 3, 3, AQM Periodic),
(Runtime_BI T_Processor, 391, 391, 2, 2, AQM Periodic),
(Shi p_Posi tion_Updater, 508, 508, 1, 1, AQM Periodic),
(Comms_Control ler, 0, 0, 10, 10, AQM No_Op) );

begi n

for Index in Task_| D_Type
| oop
AQM I nsert_Acti vation_Record(Activation_Records(|ndex),
Schedul e_At _Ti ck_Nunber);
end | oop;

end Initialize_Activation_Queue;

Dispatcher task
with KW11_C ock_Manager; use KW11_C ock_Manager;
wi t h VAXELN_SERVI CES;
with Text _I1Q
separate (Task_Manager)

task body Dispatcher is

M/_Cl ock_I D : O ock_ID
M/_Cl ock_Device_ID : DEVICE_TYPE;
Current _AR : Task_Activation_Record;
Task_M ssed_Deadl i ne : BOOLEAN;
begi n

accept Activate (Clock_ID: in Cock_ID
Cl ock_Device_ID: in DEVICE_TYPE) do
M/_Clock_ID := Cock_ID;
M/_Cl ock_Device_I D : = C ock_Devi ce_| D;
end Activate;

-- Wit for a signal device (kernel service) call fromthe
-- Timer Interrupt Routine and reset interrupt flag to allow
-- nore interrupts to be generated.

VAXELN_SERVI CES. WAI T_ANY (Val uel => My_d ock_Device_I D);

Reset _I nterrupt _Fl ag(My_C ock_I D);

Ti ck_Number := Ti ck_Nunmber + 1;

if Tick_Number >= Schedul e_At_Ti ck_Nunber then
--  CGet next activation record (whose task is to be schedul ed) from
-- Activation Queue and take the appropriate action.

Get _Activation_Record(Current _AR, Schedul e_At_Ti ck_Nunber);
case Current_AR Activation_Mde is

when Periodic | Single_Shot =>
Activat e_Task(Current _AR Task_I D, Task_M ssed_Deadl i ne);
if Task_M ssed_Deadl i ne then
Text _I O Put (Task_I D_Type’ | MAGE( Current _AR Task_I D) &

CMU/SEI-87-TR-32 49



M ssed deadline.");
Text_| O Put_Line(" Tick #: " & INTEGER | MAGE(Ti ck_Number));
end if;

when Tinme_Qut =>
Ti me_Qut _Task(Current _AR Task_I D);

when ot hers =>

nul | ;
end case;
end if;
end | oop;

Re_lInitialize(M/_C ock_| D, Mde_Zero, Stop);

end Dispatcher;

A.s. Main Program

wi th Task_Manager;

procedure INS is

begi n
Task_Manager. | nitialize_Activation_Queue;
Task_Manager . Acti vat e_Di spat cher;

end INS;

50

CMU/SEI-87-TR-32



Table of Contents

Executive Summary
1. Background
2. Scope

1. Real-Time Periodic Task Dispatcher
1.1. Motivation and Rationale

1.2. Top-Level Design
1.2.1. INS Data Types
1.2.2. Real-Time Clock Manager
1.2.3. Activation Queue Manager
1.2.4. Task Manager
1.2.5. Data and Control Flow

2. Real-Time Task Dispatcher Prototyping
2.1. Schedulability Analysis

2.2. Periodic Task Dispatching Alternatives
2.2.1. General Purpose Queue Management
2.2.2. Static Queue Management

3. Results
3.1. Dispatching Techniques
3.2. Synchronization Mechanisms
3.3. Technical Observations

References

Appendix A. INS Executive: Ada Source Code for SQM/Rendezvous
Dispatcher

A.a. KWV _Register_Definitions Package Specification
A.b. KWV _Register_Definitions Package Body

A.c. Real-Time Clock Manager Package Specification
A.d. Real-Time Clock Manager Package Body

A.e. INS Data Types Package Specification

A.f. Clock Interrupt Service Routine

A.g. Runtime BIT Package Specification

A.h. Runtime BIT Package Body

A.i. Motion Simulator Package Specification

A.j. Motion Simulator Package Body

A.k. Comms Handler Package Specification

A.l. Comms Handler Package Body

A.m. Screen Area Handler Package Specification

A.n. Screen Area Handler Package Specification

A.o. Activation Queue Manager Package Specification
A.p. Activation Queue Manager Package Body

© OO, wWW N P -

21
22
23
25
35
36
36
37
38
38
39
39
40
40
40
41

CMU/SEI-87-TR-32



A.q. Task Manager Package Specification
A.r. Task Manager Package Body
A.s. Main Program

43
44
50

CMU/SEI-87-TR-32



List of Figures

Figure 1-1: INS Executive Subsystem - Package Dependencies
Figure 1-2: INS Executive Subsystem - Data and Control Flow Diagram

Figure 3-1: General/Rendezvous and Static/Rendezvous Scaled CPU
Utilization

Figure 3-2: General/Semaphore and Static/Semaphore Scaled CPU
Utilization

Figure 3-3: Rendezvous Versus Semaphore Comparison

15

15

16

CMU/SEI-87-TR-32



CMU/SEI-87-TR-32



List of Tables

Table 2-1: VAXELN Real-Time Measurements
Table 2-2: INS Periodic Task Set - Execution Time and CPU Utilization

Estimates

Table 3-1: General/Rendezvous and Static/Rendezvous Estimated CPU
Utilization

Table 3-2: General/Semaphore and Static/Semaphore Estimated CPU
Utilization

Table 3-3: Estimated CPU Utilizations and Schedulability Thresholds

10

14

16

CMU/SEI-87-TR-32



