
8. SHARED LIBRARIES

Introduction
Efficient use of disk storage space, memory, and computer power is becoming
increasingly important. A shared library can offer savings in all three areas. For
example, if constructed properly, a shared library can make a.out files (executable
object files) smaller on disk storage and processes (a.out files that are executing)
smaller in memory.

The first part of this chapter, "Using a Shared Library," is designed to help you
use the shared libraries. It describes what a shared library is and how to use one
to build a.out files. It also offers advice about when and when not to use a
shared library and how to determine whether an a.out uses a shared library.

The second part in this chapter, ''Building a Shared Library," describes how to
build a shared library. You do not need to read this part to use shared libraries.
It addresses library developers, advanced programmers who are expected to
build their own shared libraries. Specifically, this part describes how to use the
operating system tool mkshlib(l) (documented in the Programmer's Reference
Manual) and how to write C code for shared libraries. An example is included.
Read this part of the chapter only if you have to build a shared library.

NOTE

Shared libraries are a new feature of Release 3.
An executable object file that needs shared
libraries will not run on previous releases of the
operating system.

Using a Shared Library
If you are accustomed to using libraries to build your applications programs,
shared libraries should blend into your work easily. This part of the chapter
explains what shared libraries are and how and when to use them.

MU43815PG/D2 8-1 12/01/87

II

II

SHARED LIBRARIES

What is a Shared Library?
A shared library is a file containing object code that several a.out files may use
simultaneously while executing. A shared library, like a library that is not shared,
is an archive file. For simplicity, however, we refer to an archive file with shared
library members as a shared library and one without as an archive library.

When a program is compiled or link edited with a shared library, the library code
that defines the program's external references is not copied into the program's
object file. Instead, a special section called .lib that identifies the library code is
created in the object file. When the operating system executes the resulting a.out
file, it uses the information in this section to bring the required shared library
code into the address space of the process.

A shared library offers several benefits by not copying code into a.out files. It
can:

• save disk storage space

Because shared library code is not copied into all the a.out files that use the
code, these files are smaller and use less disk space.

• save memory

By sharing library code at run time, the dynamic memory needs of processes
are reduced.

• make executable files using library code easier to maintain

As mentioned above, shared library code is brought into a process' address
space at run time. Updating a shared library effectively updates all executable
files that use the library, because the operating system brings the updated
version into new processes. If an error in shared library code is fixed, all
processes automatically use the corrected code.

Archive libraries cannot, of course, offer this benefit: changes to archive
libraries do not affect executable files, because code from the libraries is copied
to the files during link editing, not during execution.

"Deciding Whether to Use a Shared Library" in this chapter describes shared
libraries in more detail.

MU43815PG/D2 8-2 12/01/87

SHARED LIBRARIES

Shared Libraries Provided with the Operating System
The C shared library is provided with Release 3 and later releases; the networking
library included with the Networking Support Utilities is also a shared library.

These libraries, like all shared libraries, are made up of two files called the host
library and the target library. The host library is the file that the link editor
searches when linking programs to create the .lib sections in a.out files; the target
library is the file that the operating system uses when running those files.
Naturally, the target library must be present for the a.out file to run.

Shared
Libra

C Libra

Networking Library

Host Library
Command Lina 0 tion

-lc_s

-lnsl_s

Target Library
Path Name

/shlib/libc_s

/shlib/libnsl_s

Notice the _s suffix on the library names; we use it to identify both host and
target shared libraries. For example, it distinguishes the standard relocatable C
library libc from the shared C library libc_s. The _s also indicates that the
libraries are statically linked.

The relocatable C library is still available on the operating system; this library is B
searched by default during the compilation or link editing of C programs. All
other archive libraries from previous releases of the system are also available.
Just as you use the archive libraries' names, you must use a shared library's name
when you want to use it to build your a.out files. You tell the link editor its name
with the -I option, as shown below.

Building an a.out File
You direct the link editor to search a shared library the same way you direct a
search of an archive library on the operating system:

cc file.c -o file -llibrary_file

To direct a search of the networking library, for example, you use the following
command line:

cc file.c -o file -lnsl_s ...

And to link all the files in your current directory together with the shared C.
library, you'd use the following command line:

cc •.c -lc_s

MU43815PG/D2 8-3 12/01/87

II

SHARED LlBRARIES

Normally, you should include the -lc_s argument after all other-I arguments on
a command line. The shared C library will then be treated like the relocatable C
library, which is searched by default after all other libraries specified on a
command line are searched.

Coding an Application

Application source code in C or assembly language is compatible with both
archive libraries and shared libraries. As a result, you should not have to change
the code in any applications you already have when you use a shared library with
them. When coding a new application for use with a shared library, you should
just observe your standard coding conventions.

However, do keep the following two points in mind, which apply when using
either an archive or a shared library:

• Don't define symbols in your application with the same names as those in a
library.

Although there are exceptions, you should avoid redefining standard library
routines, such as printf(3S) and strcmp(3C). Replacements that are
incompatibly defined can cause any library, shared or unshared, to behave
incorrectly.

•Don't use undocumented archive routines.

Use only the functions and data mentioned on the manual pages describing
the· routines in Section 3 of the Programmer's Reference Manual. For example,
don't try to outsmart the ctype design by manipulating the underlying
implementation.

Deciding Whether to Use a Shared Library

You should base your decision to use a shared library on whether it saves space
in disk storage and memory for your program. A well-designed shared library
almost always saves space. So, as a general rule, use a shared library when it is
available.

To determine what savings are gained from using a shared library, you might
build the same application with both an archive and a shared library, assuming
both kinds of library are available. Remember, that you may do this because
source code is compatible between shared libraries and archive libraries. {See the
above section "Coding an Application. '1 Then compare the two versions of the
application for size and performance.

MU43815PG/D2 8-4 12/01/87

SHARED LIBRARIES

The following example models this procedure:

$ cat hello.c
main()
{

}

$ cc -o un•hared hello.c
$ cc -o •hared hello.c -le_•
$ •i•e un•hared •hared
un•hared: 8680 + 1388 + 2248 = 12316
•hared: 300 + 680 + 2248 = 3228

If the application calls only a few library members, it is possible that using a
shared library could take more disk storage or memory. The following section
gives a more detailed discussion about when a shared library does and does not
save space.

When making your decision about using shared libraries, also remember that they
are not available on releases prior to Release 3. If your program must run on
previous releases, you will need to use archive libraries.

More About Saving Space
This section is designed to help you better understand why your programs will
usually benefit from using a shared library. It explains:

• how shared libraries save space that archive libraries cannot

• how shared libraries are implemented on the operating system

• how shared libraries might increase space usage

How Shared Libraries Save Space

To better understand how a shared library saves space, we need to compare it to
an archive library.

A host shared library resembles an archive library in three ways. First, as noted
earlier, both are archive files. Second, the object code in the library typically
defines commonly used text symbols and data symbols. The symbols defined
inside and made available outside the library are called exported symbols. Note
that the library may also have imported symbols, symbols that it uses but usually
does not define. Third, the link editor searches the library for these symbols
when linking a program to resolve its external references. Resolving the
references produces an executable version of the program, the a.out file.

MU43815PG/D2 8-5 12101/87

II

II

SHARED LIBRARIES

NOTE

Note that the link editor is a static linking tool;
static linking requires that all symbolic references
in a program be resolved before the program may
be executed. The link editor uses static linking
with both an archive library and a shared library.

Although these similarities exist, a shared library differs significantly from an
archive library. The major differences relate to how the libraries are handled to
resolve symbolic references, a topic already discussed briefly.

Consider how the operating system handles both types of libraries during link
editing. To produce an a.out file using an archive library, the link editor copies
the library code that defines a program's unresolved external reference from the
library into appropriate .text and .data sections in the program's object file. In
contrast, to produce an a.out file using a shared library, the link editor does not
copy any code from the library into the program's object file. Instead, it creates a
special section called .llb in the file that identifies the library code needed at run
time and resolves the external references to shared library symbols with their
correct values. ·when the operating system executes the resulting a.out file, it
uses the information in the .lib section to bring the required shared library code
into the address space of the process.

Figure 8-1 depicts the a.out files produced using a regular archive version and a
shared version of the standard C library to compile the following program:

mai:a.O
{

pri:a.tf(•How do 7ou like thi• ma:a.ual?\:a.•);

r••ult = •trcmp(•I do.•. a:a.•wer);

}

Notice that the shared version is smaller. Figure 8-2 depicts the process images in
memory of these two files when they are executed.

MU43815PG/D2 8-6 12/01/87

a.out Using
Archive Ll'brary

FILE HEADER

program .text

library .text
for prlnH(3S) and

atrcmp(3C)

program .data

library .data
for prlnH(3S) and

atrcmp(3C)

SYMBOL TABLE

STRING TABLE

Created by the linlc editor.
Refers to library code for
print and strcmp(3C)

~

Copied to file by
the linlc editor

SHARED LIBRARIES

a.out Using
Shared Library

FILE HEADER

program .text

program .data

.lib

SYMBOL TABLE

STRING TABLE

Figure 8-1. a.out Files Created Using an Archive Library and a Shared Library

Now consider what happens when several a.out files need the same code from a
library. When using an archive library, each file gets its own copy of the code.
This results in duplication of the same code on the disk and in memory when the
a.out files are rim as processes. In contrast, when a shared library is used, the
library code remains separate from the code in the a.out files, as shown in Figure
8-2. This separation enables all processes using the same shared library to
reference a single copy of the code.

MU43815PG/D2 8-7 12/01/87

II

II

SHARED LIBRARIES

Address
Space

Archive
Version

Shared
Version

A }
I
I
I

.. ··

May be brought
to other processes

simultaneously

4 . .?'
: .·· ~·

.... ...-1 Lt'brary I
_, • • · Brought into process'

address space

library code referred
to by .llb

Figure 8-2. Processes Using an Archive and a Shared Library

How Shared Libraries Are Implemented

Now that you have a better understanding of how shared libraries save space,
you need to consider their implementation to understand how they might increase
space usage (this seldom happens).

The Host Library and Target Library

As previously mentioned, every shared library has two parts: the host library
used for linking that resides on the host machine and the target library used for
execution that resides on the target machine. The host machine is the machine on
which you build an a.out file; the target machine is the machine on which you
run the file. Of course, the host and target may be the same machine, but they
don't have to be.

The host library is just like an archive library. Each of its members (typically a
complete object file) defines some text and data symbols in its symbol table. The
link editor searches this file when a shared library is used during the compilation
or link editing of a program.

The search is for definitions of symbols referenced in the program but not defined
there. However, as mentioned earlier, the link editor does not copy the library
code defining the symbols into the program's object file. Instead, it uses the
library members to locate the definitions and then places symbols in the file that
tell where the library code is. The result is the special section in the a.out file

MU43815PG/D2 8-8 12/01/87

SHARED LIBRARIES

mentioned earlier (see the section 'What is a Shared Library?'1 and shown in
Figure 8-1 as .lib.

The target library used for execution resembles an a.out file. The operating
system reads this file during execution if a process needs a shared library. The
special .lib section in the a.out file tells which shared libraries are needed. When
the operating system executes the a.out file, it uses this section to bring the
appropriate library code into the address space of the process. In this way, before
the process starts to run, all required library code has been made available.

Shared libraries enable the sharing of .text sections in the target library, where
text symbols are defined. Although processes that use the shared library have
their own virtual address spaces, they share a single physical copy of the library's
text among them. That is, the operating system uses the same physical code for
each process that attaches a shared library's text.

The target library cannot share its .data sections. Each process using data from
the library has its own private data region (contiguous area of virtual address
space that mirrors the .data section of the target library). So that they do not
interfere with one another, processes that share text do not share data and stack
area.

As suggested above, the target library is a lot like an a.out file, which can also
share its text, but not its data. Also, a process must have execute permission for II
a target library to execute an a.out file that uses the library. :

The Branch Table

When the link editor resolves an external reference in a program, it gets the
address of the referenced symbol from the host library. This is because a static
linking loader like Id binds symbols to addresses during link editing. In this way,
the a.out file for the program has an address for each referenced symbol.

What happens if library code is updated and the address of a symbol changes?
Nothing happens to an a.out file built with an archive library, because that file
already has a copy of the code defining the symbol. (Even though it isn't the
updated copy, the a.out file will still run.) However, the change can adversely
affect an a.out file built with a shared library. This file has only a symbol telling
where the required library code is. If the library code were updated, the location
of that code might change. Therefore, if the a.out file ran after the change took
place, the operating system could bring in the wrong code. To keep the a.out file
current, you might have to recompile a program that uses a shared library after
each library update.

To avoid the need to recompile, a shared library is implemented with a branch
table. A branch table associates text symbols with an absolute address that does

MU43815PG/D2 8-9 12/01/87

II

SHARED LIBRARIES

not change even when library code is changed. Each address labels a jump
instruction to the address of the code that defines a symbol. Instead of being
directly associated with the addresses of code, text symbols have addresses in the
branch table.

Figure 8-3 shows two a.out files executing that call printf(3S). The process on the
left was built using an archive library. It already has a copy of the library code·
defining the printf(3S) symbol. The process on the right was built using a shared
library. This file references an absolute address (10) in the branch table of the
shared library at run time; at this address, a jump instruction references the
needed code.

Shared
A shared library uses Library

a branch table.

<!!!:> jum~ to

4 prln

:

:
.. ·: ?" ..

Branch
Table 300 prn

An archive library does cose
not use a branch table.

call prlnH(3S

<lliO> prlnH

Figure 8-3. A Branch Table in a Shared Library

MU43815PG/D2 8-10 12/01/87

SHARED LIBRARIES

How Shared Libraries Might Increase Space Usage

A host library might add space to an a.out file. Recall that the link editor uses
static linking, which requires that all external references in a program be resolved
before it is executed. Also recall that a shared library may have imported
symbols, which are used but not defined by the library. These symbols might
introduce unresolved references during the linking process. To resolve these
references, the link editor has to add the .text and .data sections defining the
referenced imported symbols to the a.out file. These sections increase the size of
the a.out file.

A target library might also add space to a process. Again recall from 'How
Shared Libraries are Implemented" in this chapter that a shared library's target file
may have both text and data regions connected to a process. While the text
region is shared by all processes that use the library, the data region is not. Every
process that uses the library gets its own private copy of the entire library data
region. Naturally, this region adds to the process's memory requirements. As a
result, if an application uses only a small part of a shared library's text and data,
executing the application might require more memory with a shared library than
without one. For example, it would not be wise to use the shared C library to
access only strcmp(3q. Although sharing strcmp(3q saves disk storage and
memory, the memory cost for sharing all the shared C library's private data region
outweighs the savings. The archive version of the library would be more
appropriate.

Identifying a.out Files that Use Shared Libraries

Suppose you have an executable file and you want to know whether it uses a
shared library. You can use the dump(l) command (documented in the
Programmer's Reference Manual) to look at the section headers for the file:

dump -hv a.out

If the file has a .lib section, a shared library is needed. If the a.out does not have
a .lib section, it does not use shared libraries.

With a little more work, you can even tell what libraries a file uses by looking at
the .lib section contents:

dump -L a.out

MU43815PG/D2 8-11 12101/87

II

II

SHARED LIBRARIES

Debugging a.out Flies that Use Shared Libraries

Debugging support for shared libraries is currently limited. Shared library data
are not dumped to core files, and sdb(l) (documented in the Programmer's
Reference Manual) does not read shared libraries' symbol tables. If you encounter
an error that appears not to be in your application code, you may find debugging
easier if you rebuild the application with the archive version of the library used.

Building a Shared Library
This part of the chapter explains how to build a shared library. It covers the
major steps to the building process, the use of the mkshlib(l) tool to build the
host and target libraries, and some guidelines for writing shared library code.

This part assumes that you are an advanced C programmer faced with the task of
building a shared library. It also assumes you are familiar with the archive library
building process. You do not need to read this part of the chapter if you only
plan to use the standard distributed shared libraries or other shared libraries that
have already been built.

The Building Process

To build a shared library on the operating system, you have to complete six major
tasks:

• Choose region addresses.

• Choose the path name for the shared library target file.

• Select the library contents.

• Rewrite existing library code to be included in the shared library.

• Write the library specification file.

• Use the mkshlib tool to build the host and target libraries.

Each of these tasks is discussed here.

Step 1 : Choosing Region Addresses

The first thing you need to do is choose region addresses for your shared library.

Shared library regions correspond to memory management unit {MMU) segment
size, each of which is 128 KB. The following table gives a list of the segment
assignments (as of the copyright date for this guide) and shows what virtual
addresses are available for libraries you might build.

MU43815PG/D2 8-12 12/01/87

SHARED LIBRARIES

Start Target
Address Contents Path Name

Ox80000000 Reserved for Motorola

... SharedCLibrary /shlib/libc_s
Networking Library /shlib/libnsl_s

Ox803EOOOO
Ox80400000 Generic Database Library Unassigned
Ox80420000
Ox80440000 Generic Statistical Library Unassigned
Ox80460000
Ox80480000 Generic User Interface Library Unassigned
Ox804AOOOO
Ox804COOOO Generic Screen Handling Library Unassigned
Ox804EOOOO
Ox80500000 Generic Graphics Library Unassigned
Ox80520000
Ox80540000 Generic Networking Library Unassigned
Ox80560000
Ox80580000 Generic - to be defined Unassigned
...
Ox80660000
Ox80680000 For private use Unassigned
...
Ox807EOOOO

What does this table tell you? First, the shared C library and the networking
library reside at the path names given above and use addresses in the range
reserved for the operating system. If you build a shared library that uses reserved
addresses, you run the risk of conflicting with future Motorola products.

Second, a number of segments are allocated for shared libraries that provide
various services such as graphics, database access, and so on. These categories
are intended to reduce the chance of address conflicts among commercially
available libraries. Although two libraries of the same type may conflict, that
doesn't matter. A single process should not usually need to use two shared
libraries of the same type. If the need arises, a program can use one shared
library and one archive library.

MU43815PG/D2 8-13 12101/87

II

II

SHARED LIBRARIES

NOTE

Any number of libraries can use the same virtual
addresses, even on the same machine. Conflicts
occur only within a single process, not among
separate processes. Thus two shared libraries can
have the same region addresses without causing
problems, as long as a single a.out file doesn't
need to use both libraries.

Third, several segments are reserved for private use. If you are building a large
system with many a.out files and processes, shared libraries might improve its
performance. As long as you don't intend to release the shared libraries as
separate products, you should use the private region addresses. You can put
your shared libraries into these segments and avoid conflicting with commercial
shared libraries. You should also use the private areas when you will own all the
a.out files that access your shared library. Don't risk address conflicts.

NOTE

If you plan to build a commercial shared library,
you are strongly encouraged to provide a
compatible, relocatable archive as well. Some of
your customers might not find the shared library
appropriate for their applications. Others might
want their applications to run on versions of the
operating system without shared library support.

Step 2: Choosing the Target Library Path Name

After you choose the region addresses for your shared library, you should choose
the path name for the target library. We chose /shlib/libc_s for the shared C
library and /shlib/libnsl_s for the networking library. (As mentioned earlier, we
use the _s suffix in the path names of all statically linked shared libraries.) To
choose a path name for your shared library, consult the established list of names
for your computer or see your system administrator. Also keep in mind that
shared libraries needed to boot the operating system should normally be located
in /shlib; other application libraries normally reside in /usr/lib or in private
application directories. Of course, if your shared library is for personal use, you
can choose any convenient path name for the target library.

MU43815PG/D2 8-14 12/01/87

SHARED LIBRARIES

Step 3: Selecting Library Contents

Selecting the contents for your shared library is the most important task in the
building process. Some routines are prime candidates for sharing; others are not.
For example, it's a good idea to include large, frequently used routines in a shared
library but to exclude smaller routines that aren't used as much. What you
include will depend on the individual needs of the programmers and other users
for whom you are building the library. There are some general guidelines you
should follow, however. They are discussed in the section "Choosing Library
Members" in this chapter. Also see the guidelines in the "Importing Symbols" and
'Tuning the Shared Library Code" sections.

Step 4: Rewriting Existing Library Code

If you choose to include some existing code from an archive library in a shared
library, changing some of the code will make the shared code easier to maintain.
See the "Changing Existing Code for the Shared Library" section in this chapter.

Step 5: Writing the Library Specification File

After you select and edit all the code for your shared library, you have to build
the shared library specification file. The library specification file contains all the S
information that mkshlib needs to build both the host and target libraries. An
example specification file is shown in the next section, "An Example." The
contents and format of the specification file are given by the following directives
(see also the mkshlib(l) manual page):

#address sedname address
Specifies the start address, address, of section sectname for the
target file. This directive is typically used to specify the start
addresses of the .text and .data sections.

#target pathname

#branch

MU43815PG/D2

Specifies the path name, pathname, of the target shared library
on the target machine. This is the location where the
operating system looks for the shared library during
execution. Normally, pathname will be an absolute path name,
but it does not have to be.

This directive can be specified only once per shared library
specification file.

Starts the branch table specifications. The lines following this
directive are taken to be branch table specification lines.

8-15 12/01/87

II

SHARED UBRARIFS

#objects

#lnit object

MU43815PG/D2

Branch table specification lines have the following format:

funcname <white space> position

The funcname is the name of the symbol given a branch table
entry and position specifies the position of funcname' s branch
table entry. The position may be a single integer or a range of
integers of the form position1-position2. Each position must be
greater than or equal to one. The same position cannot be
specified more than once, and every position from one to the
highest given position must be accounted for.

If a symbol is given more than one branch table entry by
associating a range of positions with the symbol or by
specifying the same symbol on more than one branch table
specification line, then the symbol is defined to have the
address of the highest associated branch table entry. All other
branch table entries for the symbol can be thought of as empty
slots and can be replaced by new entries in future versions of
the shared library.

Finally, only functions should be given branch table entries,
and those functions must be external.

This directive can be specified only once per shared library
specification file.

Specifies the names of the object files constituting the target
shared library. The lines following this directive are taken to
be the list of input object files in the order they are to be
loaded into the target. The list simply consists of each
filename followed by white space. This list of objects will be
used to build the shared library.

This directive can be specified only once per shared library
specification file.

Specifies that the object file, object, requires initialization code.
The lines following this directive are taken to be initialization
specification lines.

Initialization specification lines have the following format:

pimport <white space> import

pimport is a pointer to the associated imported symbol, import,

8-16 12101/87

SHARED LIBRARIES

and must be defined in the current specified object file, object.
The initialization code generated for each line resembles the C
assignment statement:

pimport = &import;

The assignments set the pointers to default values. All
initializations for a particular object file must be given at once
and multiple specifications of the same object file are not
allowed.

#ident "string" Specifies a string, string, to be included in the .comment
section of the target shared library and the .comment sections
of every member of the host shared library. Only one #ident
directive is permitted per shared library specification file.

Specifies a comment. The rest of the line is ignored.

All directives that are followed by multi-line specifications are valid until the next
directive or the end of file.

Step 6: Using mkshlib to Build the Host and Target

The operating system command mkshlib(l) builds both the host and target
libraries. mkshlib invokes other tools such as the assembler, as(l), and link
editor, ld(l). Tools are invoked using execvp (see exec(2)) which searches
directories in a user's $PATH environment variable. Also, prefixes to mkshlib are
parsed in much the same way as prefixes to the cc(l) command and invoked tools
are given the prefix, where appropriate. For example, 3b2mkshlib invokes 3b21d.
These commands all are documented in the Programmer's Reference Manual.

The user input to mkshlib consists of the library specification file and command
line options. We just discussed the specification file; let's take a look at the
options now. The shared library build tool has the following syntax:

mkshlib -s spec/ii -t target [-h host] [-n] [-q] .DE

-s spec/ii Specifies the shared library specification file, specfil. This file
contains all the information necessary to build a shared library, as
described in Step 5. Its contents include the branch table
specifications for the target, the path name in which the target
should be installed, the start addresses of text and data for the
target, the initialization specifications for the host, and the list of
object files to be included in the shared library.

MU43815PG/D2 8-17 12101/87

II

II

SHARED LIBRARIFS

-t target Specifies the name, target, of the target shared library produced on
the host machine. When target is moved to the target machine, it
should be installed at the location given in the specification file
(see the #target directive in the section 'Writing the Library
Specification File''· H the -n option is given, then a new target
shared library will not be generated.

-h host Specifies the name of the host shared library, host. If this option
is not given, then the host shared library will not be produced.

-n Prevents a new target shared library from being generated. This
option is useful when producing only a new host shared library.
The -t option must still be supplied since a version of the target
shared library is needed to build the host shared library.

-q Suppresses the printing of certain warning messages.

An Example
Follow each of the steps in the library building process to build a small example
shared library. While building this library, appropriate guidelines will be
displayed amidst text. Note that the example code is contrived to show samples
of problem areas, not to do anything useful.

The name of our library will be libexam. Assume the original code was a single
source file, as shown below.

MU43815PG/D2 8-18 12/01/87

SHARED LIBRARIES

I• Original exam.c •/

#include <•tdio.h>

extern int
extern char

•trlen ();
•malloc(), ••trcpy();

int count = O;
char •Error;

char •
excopy(e)

char •e;
{

char •new;

++count;
if ((new= malloc(•trlen(e)+1)) 0)
{

Error= •no memory•;

}
return •trcpy(new, e);

}

excount()
{

fprintf(•tderr, •excount ld\n•, count);
return count;

}

return O;

To begin, let's choose the region address spaces for the library's .text and .data
sections from the segments reserved for private use on VME-based computers;
note that the region addresses must be on a segment boundary (128K):

.text Ox80680000

.data Ox806a0000

Also choose the path name for our target library:

/my/directory/libexam_s

Now you need to identify the imported symbols in the library code. (See the
guidelines in the section about ''Importing Symbols": malloc, strcpy, strlen,
fprintf, and _lob.) A header file defines C preprocessor macros for these symbols;
note that you don't use _iob directly except through the macro stderr from
<stdio.h>. Also notice the _libexam_ prefixes for the symbols. The pointers for
imported symbols are exported and, therefore, might conflict with other symbols.
Using the library name as a prefix reduces the chance of a conflict occurring.

MU43815PG/D2 8-19 12/01/87

II

II

SHARED LIBRARIES

I• New file import.h •I
#define
#define
#define
#define
#define

extern
extern
extern
extern

malloc (•_libexam......m.alloc)
atrcpy (•_libexam_atrcpy)
atrlen (•_libexam_atrlen)
fprintf (•_libexam_fprintf)
_iob (•_libexam_iob)

char •malloc ();
char •atrcpy();
int atrlen () ;
int fprintf () ;

NOTE

The file import.h does not declare _iob as extern;
it relies on the header file <stdio.h> for this
information.

You will also need a new source file to hold definitions of the imported symbol
pointers. Remember that all global data need to be initialized:

I• New file import.c •/

#include <atdio.h>

char
char
int
int
FILE

•(•_libexam_malloc) ()
•(•_libexam_atrcpy) ()
(•_libexam_atrlen) ()
(•_libexam_fprintf) ()
(•_libexam_iob) []

O;
O;
O;
O;
O;

Next, look at the library's global data to see what needs to be visible externally.
(See the guideline "Minimize Global Data.') The variable count does not need to
be external, because it is accessed through excountQ. Make it static. (This
should have been done for the relocatable version.)

Now the library's global data need to be moved into separate source files. (See
the guideline ''Define Text and Global Data in Separate Source Files.') The only
global datum left is Error, and it needs to be initialized. (See the guideline
'1nitialize Global Data.')

MU43815PG/D2 8-20 12/01/87

SHARED LIBRARIES

Error must remain global, because it passes information back to the calling
routine:

/• New fi1e g1oba1.c •/

char •Error = O;

Integrating these changes into the original source file, we get the following (notice
that the symbol names must be declared as externs):

/• Modified exam.c •/

#include •import.h•

#include <•tdio.h>

extern int •trlen();
extern char •malloc(), ••trcp7();

•tatic int count = O;
extern char •Error;

char •
excop7(e)

<

}

char ••;
char •new;

++count;
if ((new = malloc(•trlen(e)+1)) 0)

<

}

Error = •no memor7•;
return O;

return •trcp7(new, e);

excount()

<

}

MU43815PG/D2

fprintf(•tderr, •excount ld\n•, count);
return count;

8-21 12/01/87

II

II

SHARED LIBRARIES

NOTE

The new header file import.h must be included
before <stdio.h>.

Next, we must write the shared library specification file for mkshlib:

1
2
3

4
6
e

7
8
9

10

11
12
13
14
16
18

/• New file libexam.•l •/

#target /my/directory/libexam_•
#addr••• .text Ox80880000
#addre•• .data Ox808a0000

#branch
excopy 1
excount 2

#object•
import.o
global.o
ex-.o

#init import.o
_libexam_malloc
libexam•trcpy
libexam•trlen
_libexam_fprintf
_libexam__iob

malloc
•trcpy
•trlen
fprintf
_iob

Briefly, here is what the specification file does. Line 1 gives the path name of the
shared library on the target machine. The target shared library must be installed
there for a.out files that use it to work correctly. Lines 2 and 3 give the virtual
addresses for the shared library text and data regions, respectively. Line 4
through 6 specify the branch table. Lines 5 and 6 assign the functions excopy()
and excount() to branch table entries 1 and 2. Only external text symbols, such
as C functions, should be placed in the branch table.

Lines 7 through 10 give the list of object files that will be used to construct the
host and target shared libraries. When building the host shared library archive,
each file listed here will reside in its own archive member. When building the
target library, the order of object files will be preserved. The data files must be
first. Otherwise, a change in the size of static data in exam.o would move
external data symbols and break compatibility.

Lines 11 through 16 give imported symbol information for the object file import.o.
You can imagine assignments of the symbol values on the right to the symbols on
the left. Thus _libexam_malloc will hold a pointer to malloc, and so on.

MU43815PG/D2 8-22 12/01/87

SHARED LIBRARIES

Now, we have to compile the .o files as we would for any other library:

cc -c import.c global.c exam.c

Finally, we need to invoke mkshlib to build our host and target libraries:

mkshlib -s libexam.sl -t libexam_s -h libexam_s.a

Presuming all the source files have been compiled appropriately, the mkshlib
command line shown above will create both the host library, libexam_s.a, and
the target library, libexam_s.

Guidelines for Writing Shared Library Code

Because the main advantage of a shared library over an archive library is sharing
and the space it saves, these guidelines stress ways to increase sharing while
avoiding the disadvantages of a shared library. The guidelines also stress upward
compatibility. When appropriate, we describe our experience with building the
shared C library to illustrate how following a particular guideline helped us.

We recommend that you read these guidelines once from beginning to end to get
a perspective of the things you need to consider when building a shared library.
Then use it as a checklist to guide your planning and decision-making.

Before we consider these guidelines, let's consider the restrictions to building a 11·
shared library common to all the guidelines. These restrictions involve static
linking. Here's a summary of them, some of which are discussed in more detail
later. Keep them in mind when reading the guidelines in this section:

• Exported symbols have fixed addresses.

If an exported symbol moves, you have to re-link all a.out files that use the
library. This restriction applies both to text and data symbols.

• If the library's text changes for one process at run time, it changes for all
processes.

Therefore, any library changes that apply only to a single process must occur
in data, not in text, because only the data region is private. (Besides, the text
region is read-only.)

• If the library uses a symbol directly, that symbol's run time value (address)
must be known when the library is built.

• Imported symbols cannot be referenced directly.

Their addresses are not known when you build the library, and they can be
different for different processes. You can use imported symbols by adding an
indirection through a pointer in the library's data.

MU43815PG/D2 8-23 12/01/87

II

SHARED LIBRARIES

Choosing Library Members

Include Large, Frequently Used Routines

These routines are prime candidates for sharing. Placing them in a shared library
saves code space for individual a.out files and saves memory, too, when several
concurrent processes need the same code. printf(3S) and related C library
routines (which are documented in the Programmer's Reference Manual) are good
examples.

When we built the shared C library •••

The printf(3S) family of routines is used frequently. Consequently, we
included printf(3S) and related routines in the shared C library.

Exclude Infrequently Used Routines

Putting these routines in a shared library can degrade performance, particularly
on paging systems. Traditional a.out files contain all code they need at run time.
By definition, the code in an a.out file is (at least distantly) related to the process.
Therefore, if a process calls a function, it may already be in memory because of its
proximity to other text in the process.

If the function is in the shared library, a page fault may be more likely to occur,
because the surrounding library code may be unrelated to the calling process.
Only rarely will any single a.out file use everything in the shared C library. If a
shared library has unrelated functions, and unrelated processes make random
calls to those functions, the locality of reference may be decreased. The decreased
locality may cause more paging activity and, thereby, decrease performance. See
also "Organize to Improve Locality."

When we built the shared C library .•.

Our original shared C library had about 44 KB of text. After profiling the
code in the library, we removed small routines that were not often used.
The current library has under 29 KB of text. The point is that functions
used only by a few a.out files do not save much disk space by being in a
shared library, and their inclusion can cause more paging and decrease
performance.

MU43815PG/D2 8-24 12/01/87

SHARED LIBRARIES

Exclude Routines that Use Much Static Data

These modules increase the size of processes. As 'How Shared Libraries are
Implemented" and 'Deciding Whether to Use a Shared Library" explain, every
process that uses a shared library gets its own private copy of the library's data,
regardless of how much of the data is needed. Library data is static: it is not
shared and cannot be loaded selectively with the provision that unreferenced
pages may be removed from the working set.

For example, getgrent(3C), which is documented in the Programmer's Reference
Manual, is not used by many standard operating system commands. Some
versions of the module define over 1400 bytes of unshared, static data. It
probably should not be included in a shared library. You can import global data,
if necessary, but not local, static data.

Exclude Routines that Complicate Maintenance

All exported symbols must remain at constant addresses. The branch table makes
this easy for text symbols, but data symbols don't have an equivalent mechanism.
The more data a library has, the more likely some of them will have to change
size. Any change in the size of exported data may affect symbol addresses and
break compatibility.

Include Routines the Library Itself Needs

It usually pays to make the library self-contained. For example, printf(3S) requires
much of the standard 1/0 library. A shared library containing printf(3S) should
contain the rest of the standard 110 routines, too.

MU43815PG/D2

NOTE

This guideline should not take priority over the
others in this section. If you exclude some routine
that the library itself needs based on a previous
guideline, consider leaving the symbol out of the
library and importing it.

8-25 12/01/87

II

II

SHARED LIBRARIES

Changing Existing Code for the Shared Library

All C code that works in a shared library will also work in an archive library.
However, the reverse is not true because a shared library must explicitly handle
imported symbols. The following guidelines are meant to help you produce
shared library code that is still valid for archive libraries (although it may be
slightly bigger and slower). The guidelines mostly explain how to structure data
for ease of maintenance, since most compatibility problems involve restructuring
data from a shared library to an archive library.

Minimize Global Data

In the current shared library implementation, all external data symbols are global;
they are visible to applications. This can make maintenance difficult. You should
try to reduce global data, as described below.

First, try to use automatic (stack) variables. Don't use permanent storage if
automatic variables work. Using automatic variables saves static data space and
reduces the number of symbols visible to application processes.

Second, see whether variables really must be external. Static symbols are not
visible outside the library, so they may change addresses between library
versions. Only external variables must remain constant.

Third, allocate buffers at run time instead of defining them at compile time. This
does two important things. It reduces the size of the library's data region for all
processes and, therefore, saves memory; only the processes that actually need the
buffers get them. It also allows the size of the buffer to change from one release
to the next without affecting compatibility. Statically allocated buffers cannot
change size without affecting the addresses of other symbols and, perhaps,
breaking compatibility.

Define Text and Global Data in Separate Source Files

Separating text from global data makes it easier to prevent data symbols from
moving. If new exported variables are needed, they can be added at the end of
the old definitions to preserve the old symbols' addresses.

Archive libraries let the link editor extract individual members. This sometimes
encourages programmers to define related variables and text in the same source
file. This works fine for relocatable files, but shared libraries have a different set
of restrictions. Suppose exported variables were scattered throughout the library
modules. Then visible and hidden data would be intermixed. Changing hidden
data such as a string, like hello in the following example, moves subsequent data
symbols (even the exported symbols).

MU43815PG/D2 8-26 12/01/87

Before

int head = O;
funcO
{

p = "hello";

}

int tail = O;

SHARED LIBRARIES

Broken Successor

int head = O;
funcO
{

p = "hello. world";

}

int tail = O;

Assume the relative virtual address of head is 0 for both examples. The string
literals will have the same address too, but they have different lengths. The old
and new addresses of tail thus will be 12 and 20, respectively. If tail is supposed
to be visible outside the library, the two versions will not be compatible.

Adding new exported variables to a shared library may change the addresses of
static symbols, but this doesn't affect compatibility. An a.out file has no way to
reference static library symbols directly, so it cannot depend on their values.
Thus it pays to group all exported data symbols and place them at lower
addresses than the static (hidden) data. You can write the specification file to
control this. In the list of object files, make the global data files first.

#object.a
data1.o

laatdat.a.o
te:x:t.1.o
te:x:t.2.o

If the data modules are not first, a seemingly harmless change (such as a new
string literal) can break existing a.out files.

Shared library users get all library data at run time, regardless of the source file
organization. Consequently, you can put all exported variables' definitions in a
single source file without a penalty. You can also use several source files for data
definitions.

Initialize Global Data

Initialize exported variables, including the pointers for imported symbols.
Although this uses more disk space in the target shared library, the expansion is
limited to a single file. Using initialized variables is another way to prevent
address changes.

MU43815PG/D2 8-27 12/01/87

II

II

SHARED LIBRARIES

The C compilation system on the SYSTEM V/68 operating system puts
uninitialized variables in a common area, and the link editor assigns addresses to
them in an unpredictable way. In other words, the order of uninitialized symbols
may change from one link editor run to the next. So that library developers can
preserve compatibility, however, the link editor will not change the order of
initialized variables.

Preserve Branch Table Order

You should add new functions only at the end of the branch table. After you
have a specification file for the library, try to maintain compatibility with previous
versions. You may add new functions without breaking old a.out files as long as
previous assignments are not changed. This lets you distribute a new library
without having to relink all the a.out files that used a previous version of the
library.

Importing Symbols

Shared library code cannot directly use symbols defined outside a library, but an
escape hatch exists. You can define pointers in the data area and arrange for
those pointers to be initialized to the addresses of imported symbols. Library
code then accesses imported symbols indirectly, delaying symbol binding until
run time. Libraries can import both text and data symbols. Moreover, imported
symbols can come from the user's code, another library, or even the library itself.
In Figure 8-4, the symbols _libc.ptr1 and _libc.ptr2 are imported from user's code
and the symbol _libc_malloc from the library itself.

MU43815PG/D2 8-28 12/01187

SHARED LIBRARIES

Shared Library a.out File

Addresses

malloc()

ptr1

libc.ptr
Q@> ptr2

libc_ptr

@§:>

Figura 8-4. Imported Symbols in a Shared Library

The following guidelines describe when and how to use imported symbols.

Imported Symbols that the Library Does Not Define

Archive libraries typically contain relocatable files, which allow undefined
references. Although the host shared library is an archive, too, that archive is
constructed to mirror the target library, which more closely resembles an a.out
file. Neither target shared libraries nor a.out files can have unresolved symbols.

Consequently, shared libraries must import any symbols they use but do not
define. Some shared libraries will derive from existing archive libraries. For the
reasons stated above, it may not be appropriate to include all the archive's
modules in the target shared library. If you leave something out that the library
calls, you have to make an imported symbol pointer for it.

Imported Symbols that Users Must Be Able to Redefine

Optionally, shared libraries can import their own symbols. At first this might
appear to be an unnecessary complication, but consider the following. Two
standard libraries, libc and libmalloc, provide a malloc family. Even though
most operating system commands use the malloc from the C library, they can
choose either library or define their own.

MU43815PG/D2 8-29 12/01/87

II

II

SHARED LIBRARIES

When we built the shared C library ...

Three possible strategies existed for the shared C library.
First, we could have excluded malloc(3X).
Other library members would have needed it, and so it
would have been an imported symbol.
This would have worked, but it would have meant less savings.

Second, we could have included the malloc(3X) family and
not imported it.
This would have given us more savings for typical commands,
but it had a price.
Other library routines call malloc(3X) directly,
and those calls could not have been overridden.
If an application tried to redefine malloc(3X),
the library calls would not have used the alternate version.
Furthermore, the link editor would have found multiple
definitions of malloc(3X) while building the application.
To resolve this the library developer would have to change
source code to remove the custom malloc(3X), or the developer
would have to refrain from using the shared library.

Finally, we could have included malloc(3X) in the
shared library, treating it as an imported symbol.
This is what we did.
Even though malloc(3X) is in the library, nothing else
there refers to it directly.
If the application does not redefine malloc(3X), both
application and library calls are routed to the library version.
All calls are mapped to the alternate, if present.

You might want to permit redefinition of all library symbols in some libraries.
You can do this by importing all symbols the library defines, in addition to those
it uses but does not define. Although this adds a little space and time overhead
to the library, the technique allows a shared library to be one hundred percent
compatible with an existing archive at link time and run time.

MU43815PG/D2 8-30 12/01/87

SHARED LIBRARIES

Mechanics of Importing Symbols

Let's assume a shared library wants to import the symbol malloc. The original
archive code and the shared library code appear below.

Archive Code

extern char •malloc();

export()
{

p = malloc(n);

}

Shared Library Code

/• See point•r•.c on next page •/

extern char •(•_libc...malloc)();

export()
{

p = (•_libc...malloc) (n);

}

Making this transformation is straightforward, but two sets of source code would
be necessary to support both an archive and a shared library. Some simple macro
definitions can hide the transformations and allow source code compatibility. A
header file defines the macros, and a different version of this header file would
exist for each type of library. The -1 flag to cpp(l) would direct the C
preprocessor to look in the appropriate directory to find the desired file.

Ar chi v• lmport.h

I• empty •/

Shared lmport.h

I•
• Macro• for importing
• •ymbol•. One #define
• per •ymbol.
•I

#define malloc (•_libc...malloc)

extern char •malloc();

These header files allow one source both to serve the original archive source and
to serve a shared library, too, because they supply the indirections for imported
symbols. The declaration of malloc in import.h actually declares the pointer
_libc_malloc.

MU43815PG/D2 8-31 12/01/87

II

II

SHARED LIBRARIES

Common Source

#include "import.h"

extern char •malloc();

export()
{

p = malloc(n);

}

Alternatively, one can hide the #include with #if def:

Common Source

#if def SHLIB
include "import.h"
#endif

extern char •malloc();

export()
{

p = malloc(n);

}

0£ course the transformation is not complete. You must define the pointer
_libc_malloc:

File polnters.c

char •(•....libcJ11alloc)() = O;

Note that _libc_malloc is initialized to zero, because it is an exported data
symbol.

Special initialization code sets the pointers. Shared library code should not use
the pointer before it contains the correct value. In the example the address of
malloc must be assigned to _libc_malloc. Tools that build the shared library
generate the initialization code according to the library specification file.

MU43815PG/D2 8-32 12/01/87

SHARED LIBRARIES

Pointer Initialization Fragments

A host shared library archive member can define one or many imported symbol
pointers. Regardless of the number, every imported symbol pointer should have
initialization code.

This code goes into the a.out file and does two things. First, it creates an
unresolved reference to make sure the symbol being imported gets resolved.
Second, initialization fragments set the imported symbol pointers to their values
before the process reaches main. If the imported symbol pointer can be used at
run time, the imported symbol will be present, and the imported symbol pointer
will be set properly.

NOTE

Initialization fragments reside in the host, not the
target, shared library. The link editor copies
initialization code into a.out files to set imported
pointers to their correct values.

Library specification files describe how to initialize the imported symbol pointers.
For example, the following specification line would set _libc_malloc to the
address of malloc:

#init. pmalloc.o
_libc..,Jllalloc malloc

When mkshlib builds the host library, it modifies the file pmalloc.o, adding
relocatable code to perform the following assignment statement:

_libc_malloc = &malloc;

When the link editor extracts pmalloc.o from the host library, the relocatable code
goes into the a.out file. As the link editor builds the final a.out file, it resolves
the unresolved references and collects all initialization fragments. When the a.out
file is executed, the run time startup (crt1) executes the initialization fragments to
set the library pointers.

Selectively Loading Imported Symbols

Defining fewer pointers in each archive member increases the granularity of
symbol selection and can prevent unnecessary objects from being linked into the
a.out file. For example, if an archive member defines three pointers to imported
symbols, the link editor will resolve all three, even though only one might be
needed.

MU43815PG/D2 8-33 12/01/87

II

II

SHARED LIBRARIES

You can reduce unnecessary loading by writing C source files that define
imported symbol pointers singly or in related groups. If an imported symbol
must be individually selectable, put its pointer in its own source file (and archive
member). This will give the link editor a finer granularity to use when it resolves
the symbols.

Let's look at some examples. In the coarse method, a single source file might
define all pointers to imported symbols:

Old polnters.c

int (•.J.ibc....,ptr1)() = O;
char •(•.J.ibc.JD.alloc)() = O;
int (•....l.ibc....,ptr2)() = O;

Being able to use them individually requires multiple source files and archive
members. Each of the new files defines a single pointer or a small group of
related pointers:

File Contents
ptr1.c int (•.J.ibc....,ptr1)() = O;

pmalloc.c char * (•.J.ibc,JD.alloc) O = o;

ptr2.c int (•.J.ibc....,ptr2) 0 = O;

Originally, a single object file, polnters.o, defines all pointers. Extracting it
requires definitions for ptr1, malloc, and ptr2. The modified example lets one
extract each pointer individually, thus avoiding the unresolved reference for
unnecessary symbols.

Providing Archive Library Compatibility

Having compatible libraries makes it easy to substitute one for the other. In
almost all cases, this can be done without makefile or source file changes.
Perhaps the best way to explain this guideline is by example.

MU43815PG/D2 8-34 12/01187

SHARED LIBRARIES

When we bullt the shared C library ...

We had an existing archive library to use as the base.
This obviously gave us code for individual routines,
and the archive library
also gave us a model to use for the shared library itself.

We wanted the host library archive file to be compatible with
the relocatable archive C library. However, we did
not want the shared library target file
to include all routines from the archive:
including them all would have hurt performance.

Reaching these goals was, perhaps, easier than you might think.
We did it by building the host library in two steps. First,
we used the available shared library tools to create the host library to
match exactly the target. The resulting archive file was
not compatible with the archive C library at this point. Second,
we added to the host library the set of relocatable objects residing
in the archive C library that were missing from the host library.
Although this set is not in the shared library target, its inclusion
in the host library makes the relocatable and shared C
libraries compatible.

Tuning the Shared Library Code

Some suggestions for how to organize shared library code to improve performance
are presented here. They apply to paging systems, such as Release 3. The
suggestions come from the experience of building the shared C library.

The archive C library contains several diverse groups of functions. Many
processes use different combinations of these groups, making the paging behavior
of any shared C library difficult to predict. A shared library should offer greater
benefits for more homogeneous collections of code. For example, a data base
library probably could be organized to reduce system paging substantially, if its
static and dynamic calling dependencies were more predictable.

Profile the Code

To begin, profile the code that might go into the shared library.

MU43815PG/D2 8-35 12/01/87

II

SHARED LIBRARIES

Choose Library Contents

Based on profiling information, make some decisions about what to include in the
shared library. a.out file size is a static property, and paging is a dynamic
property. These static and dynamic characteristics may conflict, so you have to
decide whether the performance lost is worth the disk space gained. See
"Choosing Library Members" in this chapter for more information.

Organize to Improve Locality

When a function is in a.out files, it probably resides in a page with other code
that is used more often (see ''Exclude Infrequently Used Routines'~. Try to
improve locality of reference by grouping dynamically related functions. If every
call of funcA generates calls to funcB and funcC, try to put them in the same
page. cflow(l) (documented in the Programmer's Reference Manual) generates this
static dependency information. Combine it with profiling to see what things
actually are called, as opposed to what things might be called.

Align for Paging

The key is to arrange the shared library target's object files so that frequently used
functions do not unnecessarily cross page boundaries. When arranging object
files within the target library, be sure to keep the text and data files separate. You
can reorder text object files without breaking compatibility; the same is not true
for object files that define global data. Once again, an example might best explain
this guideline.

MU43815PG/D2 8-36 12/01/87

SHARED LIBRARIES

When we built the shared C library ...

We used a VME-based computer to build the library; the architecture of
the computer uses 1-KByte pages. Using name lists and disassemblies of
the shared library target file, we determined where the page boundaries
fell.

After grouping related functions, we broke them into page-sized chunks.
Although some object files and functions are larger than a single page,
most of them are smaller. Then we used the infrequently called functions
as glue between the chunks. Because the glue between pages is
referenced less frequently than the page contents, the probability of a
page fault decreased.

After determining the branch table, we rearranged the library's object files
without breaking compatibility. We put frequently used, unrelated
functions together, because we figured they would be called randomly
enough to keep the pages in memory. System calls went into another
page as a group, and so on. The following example shows how to change
the order of the library's object files:

Before

#objects

print:f.o
:fopen.o
malloc.o
strcmp.o

Avoid Hardware Thrashing

After

#objects

strcmp.o
malloc.o
print:f.o
:fopen.o

Finally, you may have to consider the hardware you're using to obtain better
performance. You need to consider its memory management. Part of the
memory management hardware is an 8-entry cache for translating virtual to
physical addresses. Each segment (128 KB) is mapped to one of the eight entries.
Consequently, segments 0, 8, 16, ... use entry 0; segments 1, 9, 17, ... use entry l;
and so on.

MU43815PG/D2 8-37 12/01/87

II

II

SHARED UBRARIFS

You get better performance by arranging the typical process to avoid cache entry
conflicts. If a heavily used library had both its text and its data segment mapped
to the same cache entry, the performance penalty would be particularly severe.
Every library instruction would bring the text segment information into the cache.
Instructions that referenced data would flush the entry to load the data segment.
Of course, the next instruction would reference text and flush the cache entry
again.

When we built the shared C library •••

We avoided the cache entry conflicts. A library's text and data segment
numbers (at least with the VME-based computer architecture) should
differ by something other than eight.

Making A Shared Library Upward Compatible

The following guidelines explain how to build upward-compatible shared
libraries. Note, however, that upward compatibility may not always be an issue.
Consider the case in which a shared library is one piece of a larger system and is
not delivered as a separate product. In this restricted case, you can identify all
a.out files that use a particular library. As long as you rebuild all the a.out files
every time the library changes, versions of the library may be incompatible with
each other. This may complicate development, but it is possible.

Comparing Previous Versions of the Library

Shared library developers normally want newer versions of a library to be
compatible with previous ones. As mentioned before, a.out files will not execute
properly otherwise.

The following procedures let you check libraries for compatibility. In these tests,
two libraries are said to be compatible if their exported symbols have the same
addresses. Although this criterion usually works, it is not foolproof. For
example, if a library developer changes the number of arguments a function
requires, the new function may not be compatible with the old. This kind of
change may not alter symbol addresses, but it will break old a.out files.

Lers assume we want to compare two target shared libraries: naw.libx_s and
old.libx_s. We use the nm(l) command to look at their symbols and sed(l) to
delete everything except external symbols. A small sed program simplifies the
job.

MU43815PG/D2 8-38 12/01/87

New file cmplib.sed

aed •/lexternl .•/!d
a///
;·.bt/d
/•etext /d
/•edata /d
/•end /d•

SHARED LIBRARIES

The first line of the sed script deletes all lines except those for external symbols.
The second line leaves only symbol names and values in the output. The last four
lines delete special symbols that have no bearing on library compatibility; they are
not visible to application programs. You will have to create your own file to hold
the sed script.

Now we are ready to create lists of symbol names and values for the new and old
libraries:

nm old.libx_s I sed -f cmplib.sed >old.nm
nm new.libx_s I sed -f cmplib.sed >new.nm

Next, we compare the symbol values to identify differences:

diff old.nm new.nm

If all symbols in the two libraries have the same values, the diff(l) command will
produce no output, and the libraries are compatible. Otherwise, some symbols
are different and the two libraries may be incompatible. diff(l), nm(l), and sed(l)
are documented in the User's Reference Manual.

Dealing with Incompatible Libraries

When you determine that two libraries are incompatible, you have to deal with
the incompatibility. You can deal with it in one of two ways. First, you can
rebuild all the a.out files that use your library. If feasible, this is probably the
best choice. Unfortunately, you might not be able to find those a.out files, let
alone force their owners to rebuild them with your new library.

So your second choice is to give a different target path name to the new version of
the library. The host and target path names are independent; so you don't have
to change the host library path name. New a.out files will use your new target
library, but old a.out files will continue to access the old library . .
As the library developer, it is your responsibility to check for compatibility and,
probably, to provide a new target library path name for a new version of a library
that is incompatible with older versions. If you fail to resolve compatibility
problems, a.out files that use your library will not work properly.

MU43815PG/02 8-39 12101/87

II

II

SHARED LIBRARIES

Summary

NOTE

You should try to avoid multiple library versions.
If too many copies of the same shared library
exist, they might actually use more disk space and
more memory than the equivalent relocatable
version would have.

This chapter described shared libraries and explained how to use them. It also
explained how to build your own shared libraries. Using any shared library
almost always saves disk storage space, memory, and computer power; and
running the operating system on smaller machines makes the efficient use of
these resources increasingly important. Therefore, you should normally use a
shared library whenever it's available.

MU43815PG/D2 8-40 12/01/87

