
GENERAL REFERENCE
VOLUME 2

Object- Oriented Software

NemTEP""
GENERAl REFERENCE
Volume 2

NeXTSTEP Developer's Library
NeXT Computer, Inc.

Addison-Wesley Publishing Company
Reading, Massachusetts' Menlo Park, California' New York' Don Mills, Ontario
Wokingham, England' Amsterdam' Bonn' Sydney' Singapore' Tokyo' Madrid
San Juan' Paris' Seoul' Milan' Mexico City' Taipei

Release 3

NeXT and the publishers have tried to make the information contained in this manual as accurate and
reliable as possible, but assume no responsibility for errors or omissions. They disclaim any warranty
of any kind, whether express or implied, as to any matter whatsoever relating to this manual, including
without limitation the merchantability or fitness for any particular purpose. In no event shall NeXT or
the publishers be liable for any indirect, special, incidental, or consequential damages arising out of
purchase or use of this manual or the information contained herein. NeXT will from time to time revise
the software described in this manual and reserves the right to make such changes without obligation to
notify the purchaser.

NeXTSTEP General Reference Copyright © 1990-1992 by NeXT Computer, Inc.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher or copyright owner. Printed in the United States of
America. Published simultaneously in Canada.

NeXTSTEP 3.0 Copyright © 1988-1992 by NeXT Computer, Inc. All rights reserved. Certain portions of the
software are copyrighted by third parties. U.S. Pat. Nos. 5,146,556; 4,982,343. Other Patents Pending.

NeXT. the NeXT logo, NeXTSTEp, Application Kit, Database Kit, Digital Webster, Indexing Kit, Interface
Builder, Mach Kit, Netlnfo, Netlnfo Kit, Phone Kit, 3D Graphics Kit, and Workspace Manager are
trademarks of NeXT Computer, Inc. PostScript and Display PostScript are registered trademarks of Adobe
Systems, Incorporated. Novell and NetWare are registered trademarks of Novell, Inc. ORACLE is a
registered trademark of Oracle Corp. PANTONE is a registered trademark of Pantone, Inc. SYBASE is a
registered trademark of Sybase, Inc. UNIX is a registered trademark of UNIX Systems Laboratories, Inc.
All other trademarks mentioned belong to their respective owners.

Restricted Rights Legend: Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 [or, if applicable, similar clauses at FAR 52.227-19 or NASA FAR Supp. 52.227-86].

PANTONE@* Computer Video simulations used in this product may not match PANTONE-identified solid
color standards. Use current PANTONE Color Reference Manuals for accurate color.

*Pantone, Inc.'s check-standard trademark for color.

This manual describes NeXTSTEP Release 3.

Written by NeXT Publications.

This manual was designed, written, and produced on NeXT computers. Proofs were printed on a NeXT
400 dpi Laser Printer and NeXT Color Printer. Final pages were transferred directly from a NeXT optical
disk to film using NeXT computers and an electronic imagesetter.

34 5 6 78 9 lO-CRS-96959493
Third printing, November 1993

ISBN 0-201-62221-1

Contents

Volume 1:

Introduction

Chapter 1: Root Class
Chapter 2: Application Kit
Chapter 3: Common Classes and Functions

Volume 2:

4-1
4-3
4-19
4-175
4-211

5-1
5-3
5-5
5-57
5-69
5-91

Chapter 4: Database Kit
Introduction
Classes
Protocols
Types and Constants

Chapter 5: Display PostScript
Introduction
PostScript Operators
Single-Operator Functions
Client Library Functions
Types and Constants

6-1
6-3
6-19
6-41
6-49

7-1
7-3
7-11
7-111
7-167
7-177
7-183

8-1
8-3
8-11
8-25
8-53

9-1
9-3
9-5
9-31
9-37

10-1
10-3
10-7
10-19

11-1
11-3
11-5
11-33
11-35

12-1
12-3

Chapter 6: Distributed Objects
Introduction
Classes
Protocols
Types and Constants

Chapter 7: Indexing Kit
Introduction
Classes
Protocols
Functions
Types and Constants
Other Features

Chapter 8: Interface Builder
Introduction
Classes
Protocols
Types and Constants

Chapter 9: Mach Kit
Introduction
Classes
Protocols
Types and Constants

Chapter 10: MIDI Driver API
Introduction
Functions
Types and Constants

Chapter 11: Netlnfo Kit
Introduction
Classes
Functions
Types and Constants

Chapter 12: Networks: Novell NetWare
Introduction

13-1 Chapter 13: Phone Kit
13-3 Introduction
13-15 Classes
13-37 Functions
13-39 Types and Constants

14-1 Chapter 14: Preferences
14-3 Introduction
14-7 Classes

15-1 Chapter 15: Run-lime System
15-3 Introduction
15-5 Classes
15-13 Functions
15-33 Types and Constants

16-1 Chapter 16: Sound
16-3 Introduction
16-5 Classes
16-93 Sound Functions
16-123 Sound Driver Functions
16-157 Types and Constants

17-1 Chapter 17: 3D Graphics Kit
17-3 Introduction
17-7 Classes
17-121 Functions
17-129 Types and Constants

18-1 Chapter 18: Video
18-3 Introduction
18-5 Classes
18-23 Types and Constants

19-1 Chapter 19: Workspace Manager
19-3 Introduction
19-11 Classes

Appendices

A-1 Appendix A: Data Formats

B-1 Appendix B: Default Parameters

C-1 Appendix C: Keyboard Event Information

D-1 Appendix D: System Bitmaps

E-1 Appendix E: Details of the DSP

Suggested Reading

Glossary

Index

Database Kit

4-3 Introduction
4-4 Tools for Building a Database Application
4-4 Adaptors
4-4 Linking the Adaptor
4-5 Models
4-6 Relationships
4-7 Database Palette for Interface Builder
4-8 Levels of Detail in a Database Application
4-8 High Level: Interface Builder Palette Objects Only
4-9 Mid Level: The DBModule's Fetch Groups
4-9 Qualifiers and Custom Associations
4-10 Low Level: The Data Access Layer
4-10 DBDatabase
4-11 DB Properties
4-11 DB Expression
4-12 DB Value
4-12 Transferring Information Between Application and Database
4-13 DBRecordList
4-13 DBRecordStream
4-14 DBBinder
4-14 The Database's Query Language
4-15 Formatting and Editing
4-15 Classes and Protocols
4-16 Inheritance Hierarchy

4-1

4-19 Classes
4-20 DBAssociation
4-24 DBBinder
4-51 DBDatabase
4-66 DB EditableFormatter
4-70 DBExpression
4-75 DB FetchGroup
4-87 DB Formatter
4-90 DBImageFormatter
4-93 DB ImageView
4-96 DB Module
4-105 DB Qualifier
4-111 DBRecordList
4-122 DBRecordStream
4-136 DB TableVector
4-139 DB Table View
4-165 DB TextFormatter
4-168 DBValue

4-175 Protocols
4-176 DB Containers
4-179 D BCursorPositioning
4-181 DBCustomAssociation
4-183 DBEntities
4-186 DBExpression Values
4-187 DBFormatConversion
4-189 DB FormatInitialization
4-190 DB FormatterValidation
4-193 DBFormatterViewEditing
4-194 D BProperties
4-197 DBTableDataSources
4-200 DB Table Vectors
4-206 DB Transactions
4-208 DBTypes

4-211 Types and Constants
4-212 Defined Types
4-216 Symbolic Constants

4-2

4 Database Kit

Library:

Header File Directory: IN extDeveloperlHeaders/dbkit

Import: dbkitldbkit.h

Introduction

The Database Kit provides a comprehensive set of tools, classes, and protocols for building
applications that use a high-level entity-relationship model to manipulate database servers
such as those provided by Oracle or Sybase. The kit provides services that include:

• Communication with client-server databases.
• Modeling properties (attributes and relationships) of each database.
• Record management and buffering.
• Data flow between record managers and the application user interface.
• User interface objects for display and editing.

Database Kit 4-3

Tools for Building a Database Application

To build a database application in NeXTSTEP, in addition to Project Builder and Interface
Builder, you must have:

• An adaptor for each type of database you will use.

• A model (built with DB Modeler) for each database you will use, specifying the entities
available to your application and their properties (attributes and relationships).

• A palette of database accessories to supplement Interface Builder's standard palettes.

Adaptors

The Database Kit includes adaptors for ORACLE® and for SYBASE®. The supplied
adaptors are installed in the directory lNextLibrary/Adaptors. Each is a bundle having a
name that ends in the extension" . adaptor" . Adaptors may also be installed in the
application's own bundle, or in directories on a standard search path, searched in the
following sequence:

• The application bundle
• -!Libraryl Adaptors
• !LocalLibraryl Adaptors
• lNextLibrary/Adaptors
• lusrllocal/libl Adaptors

Additional adaptors may be supplied by NeXT or by third parties; it's possible to build your
own, but directions for doing so are outside the scope of this manual (see NeXTSTEP
Development Tools and Techniques, Chapter 7, "DBModeler").

The adaptor is necessary not only for communicating with the database when your
application runs, but also for building the data model and testing its user interface during
development with Interface Builder.

Linking the Adaptor

When your application uses one of the separately-provided adapters, you must include a
directive that will require the compiler to link symbols required by the adaptor as well as
those from your own application. This can be done by including the following in the file
Makefile.preamble:

(The effect of this statement is to undefine the symbols lib NeXT _s and libsys_s. The
undefined references force the loading of the corresponding object files.)

4-4 Chapter 4: Database Kit

Models

Before you can start building the application, you must have a model of the entities you will
use and their properties (attributes and relationships).

To create a model, you need access to the database you will model. When you have the
authorization (which may require an account name and password), launch the DB Modeler
application (it's in the /NextDeveloper/Apps directory). To create a new model, select
"Model" and then "New." DBModeler first asks you to select an adaptor from among those
currently installed; the list should include the OracleAdaptor and SybaseAdaptor, plus any
others that have been installed in your home directories or on the host you are using. Then
it asks you to identify the database you want and to supply login information. DBModeler
connects to the database by way of the adaptor you chose. (If the connection failed, you
may need to set up your database server. In general, if you can connect with Sybase's isql
or Oracle's sqlplus, then you should be able to connect from DBModeler.)

When connected, DBModeler automatically reads from the data dictionary a list of the
database's entities and their attributes. This is called the default model.

In the display, each entity is represented by a card-tray icon in the upper scrollable window.
For the selected entity, the name you assign, the internal name, and the list of its properties
appear below. DBModeler allows you to extend and edit the default model. To begin with,
you can replace the database's internal names for entities with names by which they'll be
known in your application.

Database Kit 4-5

Relationships

Note: If your application is going to use relationships formed by joining entities in the
database, this is where you define them: in the model, rather than in the application itself.

To create a new relationship, from the Property submenu select New Relationship. Select
the Inspector menu item and, in the Inspector, name the relationship. You now need to
specify which entity the relationship maps to (that is, which table to join to). To do this,
select a second entity and drag its icon to the empty framed area in the Inspector.

The Inspector's browser should now be populated with attributes of that entity you dragged
in. Select an attribute in the left browser and one in the right browser to indicate which
columns of each table should be joined. Set the radio buttons to indicate whether the
relationship is "to one" or "to many."

A saved model resides in a bundle whose name ends in the" .dbmodel" extension. To be
found by Interface Builder when you're building the application, or by the application itself
when it's running, the model file must be located in a standard place. Directories are
searched in the following order:

• The application bundle
• !Library lDatabases
• !LocalLibrarylDatabases
• lNextLibrarylDatabases
• lusrllocallliblDatabases

4-6 Chapter 4: Database Kit

Database Palette for Interface Builder

The first time you use Interface Builder to build a database application, you'll need to load
the database palette. Choose Load Palette from the Tools menu; in the file browser, select
lNextDeveloperlPalettes/DatabaseKit.palette. (Thereafter, Interface Builder remembers
that you want it and loads it automatically.)

The DatabaseKit palette includes three new objects for work with databases:

DBModule

DBTabie View

DBImage View

The file-cabinet icon represents your application's access to a
database. Double-clicking opens a browser that displays its
contents.

A scrollable view for the display of textual (character or numeric)
data from the database.

A view for TIFF or EPS data from the database.

While you're building a database application with Interface Builder, you drag into the
application's file window the icon that represents a DBModule. When you double-click
that icon, Interface Builder opens a browser that shows the entities defined in the model and
their attributes. You select one of those entities. (If you need to make use of several
entitites, drag a new DB Module icon for each.)

When you save the application's nib file, your DBModule object is included in what's
saved. At run time, the DBModule and relevant portions of the model file are loaded into
the application. Because the DBModule continues to refer back to the model file, the
finished application will continue to require access to the model. If you subsequently edit
the model file to which the application refers (for example, to use the same model with a
different database), the application's behavior will change accordingly.

You could construct a simple application using instances from the three classes DB Module,
DB Table View and DBImage View, creating the need instances just by dragging them from
the database palette. A DBModule provides target/action methods. Since the methods
include requests to fetch data, when you test the interface with Interface Builder's Test
Interface command, it can actually connect to the database and fill the views with real data.

Since your application probably won't be limited to connecting to the database and
scrolling through its data, the rest of the kit provides methods that allow you to customize
and control the exact behavior.

Databqse Kit 4-7

Levels of Detail in a Database Application

The Database Kit's classes can be roughly grouped into levels by the amount of detail they
conceal and automate, or (conversely) the amount of control they give to the application.
If you work at the higher levels, you will never need to make explicit use of many of the
kit's classes, protocols, or methods.

High Level: Interface Builder Palette Objects Only

At the highest level (that is, least visible detail), it's possible to construct an application
solely by connecting objects dragged from the Interface Builder palettes. The application
has no source other than its nib file; its objects are generated at run time when the
application loads the interface file. Because it depends only on its nib file, it can be run in
Interface Builder's test mode even without compiling it. In addition to a model and an
adaptor (essential to every database application), such an application needs:

• One or more DBModule objects, dragged from Interface Builder palette. Each module
represents one entity in the database.

• One or more View objects (for example, instances of Browser, TextField, DB Table View,
or DB Image View.

• One or more controls (for example, instances of Button).

The outlets of the controls are connected to the DBModule's target/action methods in the
usual way (by Control-dragging between them, and selecting action methods in the
Connections Inspector). For example, to connect to a TextField, a Form, or a Matrix of
FormCells or TextField cells, drag the database field to the user interface object you with
to connect. The DBModule object contains several action methods, such as
fetchAIlRecords:, nextRecord:, previousRecord:, saveChanges:, and deleteRecord:.
In a large application, these methods are often called programmatically, but to get started,
it's convenient to invoke them from a Button or a Menu.

If you want the DB Module to pick up any editing the user does, you'll need to connect the
textDelegate outlet of the text-editing user interface object to the DBModule. (Otherwise
the DB Module will have no way of finding out when the user edits a text value.)

To connect to a Rich Text editor, simply make a database connection as usual. In order to
store actual rich text (RTF) in the database, however, the database field must be of type
"object," class "NXData," and format "RTF."

4-8 Chapter 4: Database Kit

To connect a display object (for example, an NXBrowser), open the DBModule's browser
by double clicking the DB Module icon. Within the browser, navigate to select the database,
entity, and attribute you want. (Note that there's a distinct icon for each of these levels.)
Drag an attribute icon from the DBModule browser to the NXBrowser object. If you want
the action of selecting a row in the NXBrowser to move the DBRecordList cursor to that
row, then connect the target of the NXBrowser to takeValueFrom: of the DBModule.

To connect a DBTableView, drag off a DBTableView from the Database Kit palette and
drag database field objects from the DBModule editor to the column you wish to connect.
To add extra columns, deposit the field icon on any part of the DBTabie View other than a
column (the scroll bars, for example).

Mid Level: The DBModule's Fetch Groups

For each DB Module that you drag from the palette to the application, at run time the
Database Kit creates one or more DBFetchGroups. The role of the fetch groups is to
synchronize the fetching of data when one part of the display is dependent on another, and
in particular when you have included a one-to-many relationship. For example, you might
have in one DB Table View a display of the firm's departments, and in another DB Table View
beside it, the employees within a department. Each time the user selects a record in the
higher level display (that is, selects a particular department), you want the display of
employees to show that department's employees. The fetch group for the subordinate level
(employees) is notified each time there's a change in selection, and issues a fetch command
to get the appropriate new data. Thus the set of DBFetchGroups corresponds to the nodes
of the tree of data dependencies for the module. There's always at least one fetch group,
called the root fetch group, and as many others as necessary for all the dependent displays
that use the same DBModule.

Qualifiers and Custom Associations

Most database applications will need a way to select a subset of records by sending a query
to the database server. Since most NeXTSTEP database applications are built using
DBModules dragged from the Interface Builder palette, you need a way to ask the
DBModule to fetch a subset of records. To constrain the records retrieved, you create a
custom object, and in it define a method that creates a DB Qualifier object and uses it as an
argument of the method fetchContentsOf:usingQualifier:. In most cases, this method's
first argument is nil, meaning that the source is the database entity corresponding to the
DBModule. (The first argument can also be a DBValue object containing a record-key or
relationship value from some other DBRecordList.). The second argument is the qualifier
for the fetch.

Database Kit 4-9

In addition to connecting DBModules to the standard NeXTSTEP interface objects, you
can also connect DBModules to objects of your own. The process is the same: drag a
database field off the DBModule editor and deposit it one of your objects. You will have
to compile the application in order for the code for your objects to be linked in. When you
run the application, a DBAssociation will be made between your object and one of the
module's DBFetchGroups. When the application is running, the DBFetchGroup will call
any of the following methods that your object implements:

- associationContentsDidChange:
- associationSelectionDidChange:
- associationCurrentRecordDidDelete:
- association:setValue:
- association:getValue:

Of these, the most important is association:setValue:. It will be called any time the
database field value changes (for example, when the data is first fetched, when the user
selects a different record, or when the user changes that value in the user interface).

Custom associations are most useful for implementing your own user interface objects
(such as Custom Views) or passing information through the nib file owner or some Custom
Object of your own.

Low Level: The Data Access Layer

The Database Kit Access Layer is a collection of Objective C objects and protocols
designed to work with the Interface Builder to allow relatively painless access to a variety
of "external" sources of data. There are seven basic classes in this group:

• DBDatabase
• DB Value
• DBRecordStream
• DBRecordList
• DB Qualifier
• DBExpression
• DBBinder

DBDatabase

A DBDatabase object represents two important aspects of an external source of data: the
structure that the information takes, and the nature of the application's connection to that
database. Each application typically has a single instance of the DBDatabase class
communicating with any given database. An application can have many DBDatabase

4-10 Chapter 4: Database Kit

objects, communicating with multiple "backed" databases; in special situations, there can
also be several DBDatabase objects communicating with the same database (but
embodying different views of it).

A DBDatabase object represents the view onto a given database from the perspective of the
Database Kit. This view, or data model, represents the various components of information
available from the database in the form of Objective C objects. For instance, a database
containing employee information might contain attributes such as an employee's name or
address. Within the DBDatabase object that corresponds to the employee database,
information about these pieces of data is assigned to objects; the objects contain such things
as the Objective C type or the string "employeeName" for the employee's name. The actual
classes of objects used to represent a data model are not specified by the Database Kit; the
only requirement placed on them is that they obey the DB Properties protocol.

OBProperties

DB Properties represent what is commonly called the "schema" of a database. This schema
can come from one of two places: a representation that has been stored in the file system as
a "bundle file," or from the DBDatabase object itself (a representation of that database's
"data dictionary"). Although the default data model that is provided by a DBDatabase
object is often sufficient to build applications, there are several advantages to storing a
reusable representation of a database's schema. Once stored in this way, the database
representation can be easily accessed by name. In addition, special components such as
complicated queries or relationships between particular pieces of data can be designated as
a part of the data model and reused. Finally, multiple data models can be supported for a
given database; these models can be tailored to the needs of the design perspective or
permissions of the application programmer. DB Properties can be obtained directly from a
DBDatabase object by name.

OBExpression

A DBExpression encapsulates a database expression as an object. A database expression
specifies the attributes of data to be returned from an entity in the database. The simplest
expression contains just the name of an existing attribute (just as the simplest expression in
algebra is simply the name of a variable). A slightly more complex expression provides the
name of a database attribute, but specifies a type for the data to be delivered (perhaps
requiring a type conversion). A more complex expression (called a derived expression)
defines a new property by some operations on one or more of the entity's existing attributes.
For example, the expression "((salary / manager. salary) * 100.0)" might define a new
property, the employee's salary stated as a percentage of the manager's salary. Data
resulting from such an expression is derived from data in the database, but doesn't exist as
a separate item anywhere in the database. Because a DBExpression may be simple, typed,

Database Kit 4-11

or derived, the fields of a DBRecordList can be described by a list of DBExpressions, one
DBExpression for each static field. In databases that support the notion, an expression can
represent aggregate or composite types of information, such as "the average age of
customers."

DBValue

Once you've procured or created an object that conforms to the DBProperties protocol, you
can use this object in conjunction with a DBValue object to extract actual values from the
"data-bearing" objects of the kit. The information represented by and contained in
Database Kit objects can never be accessed directly; this makes sense, since the "real" data
resides externally. Instead, DBValue objects are used as proxies for extracting, inserting,
circulating, or modifying the external information.

The DBValue is a simple, generic container for many different kinds of data. It provides
an easy and universal way for objects in the Database Kit to refer to many different kinds
of raw data. DB Values can be set and read using familiar methods such as setStringValue:
and intValue. Additionally, they can perform basic type conversions automatically, such
as converting integer-valued contents into their string representation, much as some
Application Kit objects do. DBValues can be used to hold both Objective C objects and
arbitrary ranges of opaque bytes; because of this, the Database Kit is able to archive and
unarchive Objective C objects and complex structured data (such as TIFF images) to and
from remote data sources.

Transferring Information Between Application and Database

How is information actually retrieved from or sent back to the database? There are three
important objects for this purpose:

• DBRecordStream
• DB RecordList
• DBBinder

All of these objects link "external" pieces of data to "internal" Objective C variables or
objects; of the three, the DBRecordList and the DBRecordStream are more commonly
used, since they provide a much higher level of abstraction than the DBBinder. The
DBBinder is useful in certain more advanced situations, notably when passing data directly
into Objective C object classes or when doing very sophisticated operations with the
underlying query language for a given database.

4-12 Chapter 4: Database Kit

If your application relies on objects dragged from the Database palette, you need only
create one or more DB Table Views. At run time, when your nib file is loaded, to support
the DB Table Views, supporting DBRecordLists are created for you, along with a
DBFetchGroup for each node of the data you've requested, and DBAssociations to map the
link from fetch group to a vector (static column or row) of the display. In this situation, the
principal intermediate storage for the data being transferred is the DBRecordList. Your
application may also create and manage DBRecordLists explicitly.

For an application characterized by systematic sequential processing of an entire set of
records (without a browsing display, perhaps with no display at all), it is more efficient to
create a DBRecordStream instance. You can manipulate its fields in the same way as those
of a DBRecordList, but you can look at only one record (the current record), and the only
way to change the cursor is to move ahead by one, to the next record.

DBRecordList

The DBRecordList is an object that is organized into repeating rows of data. The layout is
specified by a list of DB Properties, and is identical for each row. The rows of data in a
DBRecordList can be created from scratch by an Objective C program and inserted into a
DBDatabase, or, conversely, they can be created when a DBRecordList receives their
contents from a database. The rows in a DBRecordList can be manipulated, modified,
deleted, and eventually resubmitted to the database; the DBRecordList takes care of the
housekeeping necessary to identify where the individual pieces belong.

The value for any individual DB Property can be retrieved from a given row into a DBValue,
and directly manipulated or modified by an application. DBValues can even be used as
"sources" for other DBRecordLists. For example, in an orders database, the DBValue
representing an "order" might be used as the sourcefor a DBRecordList full of "line items."

DBRecordStream

DBRecordStream is the superclass of DBRecordList, and is a simpler and more efficient
object. Again, it is organized into repeating rows of identical records; in the
DBRecordStream these rows are abstracted as a continuous, unidirectional stream. There
is no random access to the records, as there is in the DBRecordList. Instead, the
DBRecordStream has a "cursor" through which only the current record may be accessed
and modified. This object is especially useful in situations where there is an
indeterminately large number of records to be accessed in order, such as batch filtering or
updates to a database.

Database Kit 4-13

DBBinder

The third data-bearing component of the Database Kit is the DBBinder. This object
represents specific Objective C objects or variables that have been directly "pinned" to
corresponding DB Properties for the database. The objects and variables in question can
have their values placed into the database, or filled in from the database. Both
DBRecordList and DBRecordStream are implemented by using DBBinder objects, but in
a way that is transparent to the application. Explicit use of a DBBinder is appropriate only
for applications that for some reason cannot make effective use of DBRecordList or
DBRecordStream.

When data is fetched to a DBBinder, it is stored in a container: an object (usually a List
object) that conforms to the DB Containers protocol. The container serves as an
unstructured repository. To make the data available as Objective C objects, the DBBinder
offers two alternate strategies:

• To return each record as a generic record, with self-describing components that
incorporate the properties

• To return each record as an instance of an application-supplied prototype class

If you provide a prototype class, you can specify that attributes of the data are mapped to
instance variables declared in the class (by associateRecordIvar:withProperty:) or are
made available by "set" and "return" methods declared in the class (by the method
associateRecordSelectors::withProperty:).

The Database's Query Language

In many cases, programs built using the Database Kit in conjunction with Interface Builder
will never have to involve themselves with the underlying query language for a database,
since both the DBRecordList and the DBBinder cooperate with their DBDatabases'
adaptors to generate query expressions automatically. These queries are available to the
programmer; you can choose to override them. When you need access to the query
language, however, there are two objects that support it in a simple way: DBExpression
and DB Qualifier.

DBRecordList, DBRecordStream, and DB Binder can restrict the set of data that they are
manipulating through the use of DB Qualifier objects. A qualifier has (associated with it)
an expression in some query language, for example, "lastname = 'Smith'" or "age> 72
AND hatsize < 6.5." Typically, a given database has its own unique query language; the
DB Qualifier object is a way to pass the complete expressivity of any ASCII-based query
language through to the programmer of the Database Kit. A wide range of expressions can

4-14 Chapter 4: Database Kit

be built using a DB Qualifier, from simple strings to complex trees of Objective C objects.
Furthermore, the values contained in a DB Qualifier can be obtained "lazily" from other
Objective C objects; this allows very dynamic database applications to be easily built
and configured.

In order to be meaningful in the context of a given data-bearing object, the "owners" of
every DBExpression or DB Qualifier that are used within a query must match. It would
make very little sense, for example, to ask for the DB Property "employee. age" (the age of
an employee) in a DBRecordList that was qualified with the DB Qualifier "department is
accounting," unless the department being specified was that of the employee in question.
Because of this, DBExpressions and DB Qualifiers are always created "relative to" some
entity in the DBDatabase.

The four types of components that have been described make up a generalized framework
for communicating with and manipulating data that exists "outside" of a program. There
is an object to represent the external database (DBDatabase), several objects that can be
used together to identify specific items in that database (DBProperties, DBExpressions, and
DB Qualifiers) , objects that stand in for the specified set of items (DBRecordStream,
DBRecordList, and DBBinder), and finally, an object that represents the concrete value for
a specific item (DB Value).

Formatting and Editing

The DBTable View class displays data using the DB Formatter class, whose subclasses are
DBImageFormatter, DBTextFormatter (for read-only applications) and
DBEditableFormatter (for applications in which the user may edit the display). Details of
the appearance of a data field are governed by the DB Table Vectors protocol. For a
DBTableView, each "cell" (the field at the intersection of a particular row and column) is
formatted by calling the formatter appropriate to its row and its column.

Classes and Protocols

The Database Kit comprises sixteen public classes, ten protocols, and an additional five
informal protocols. (To review, in the Objective C language, a class may have instances
that contain data; each instance is able to perform all the instance methods defined for its
class. Like a class, a protocol defines a set of methods; however, a protocol can't be
instantiated,. When a class conforms to a protocol, it thereby gains the ability to perform
any of the protocol's methods. An informal protocol is a set of related methods-usually
defined as a category of Object-but without a formal procedure for conforming to them
as a whole.)

Database Kit 4-15

Inheritance Hierarchy

Most of the Database Kit's classes inherit only from Object. The two database view classes
inherit from Control, View, and Responder, and from ScrollView, View, and Responder
respectively. The three formatter classes inherit from the abstract superclass DB Formatter.

Object

DBModule

DBDatabase

DBRecordStream - DBRecordList

DBExpression

DBQualifier

DBFetchGroup

DBAssociation

Responder - View -[
Control --DBlmageView

ScroHView- DBTableView
DBTableVector

-E
DBTextFormatter

DBFormatter DBEditableTextFormatter

DBlmageFormatter
DBValue

DBBinder

The Database Kit's public classes and protocols may be roughly grouped by function
as follows:

High level

User interface

4-16 Chapter 4: Database Kit

DB Module
DB Value

DBTransactions (protocol)

DB ImageView
DB Table View

DB Table Vector
DB Table Vectors (protocol)

DB Formatter
DB ImageFormatter
DB TextFormatter

DB EditableFormatter
DBFormatterViewEditing (protocol)
DBFormatterValidation (informal protocol)

Objectifying database access DBDatabase
DB Entities (protocol)
DB Properties (protocol)

DB Qualifier
DBExpression

DBExpression Values (protocol)
DB Types (protocol)

Record buffering DBRecordStream
DB RecordList

DBTableDataSources (informal protocol)

View/fetch coordination DBAssociation
D BCustomAssociation (informal protocol)

DB FetchGroup

Explicit control of data transfer DBBinder
DB Containers (protocol)
DBCursorPositioning (protocol)

Conversion to database formats' DBFormatConversion (protocol)
DBFormatInitialization (protocol)

Database Kit 4-17

4-18

Classes

DBAssociation

Inherits From: Object

Declared In: dbkitID BAssociation.h

Class Description

A DBAssociation object is the link between a property in a DBRecordList and a user
interface object-called the destination-that displays and lets the user manipulate values
for that property. DBAssociation objects are created and owned by DBFetchGroup objects;
a DBFetchGroup automatically creates and configures a DBAssociation for each interface
object that it (the DBFetchGroup) manages, so that you never need to create DB Association
objects directly. In addition, you should rarely need to create a subclass of DBAssociation.
(However, if you create your own user interface class to display database values, that class
will need to implement some of the DBCustomAssociation category methods.)

You retrieve DBAssociationobjects through DBModule's associationForObject: method
(DBModules manage DBFetchGroups), as explained in the specification for the
DBModule class. Once you've gotten a DBAssociation, you should only send it querying
messages; you never alter a DB Association directly.

Instance Variables

None declared in this class.

Method Types

Initializing

Querying the object

4-20 Chapter 4: Database Kit

- initFetchGroup:expression:destination:

- destination
- fetch Group
~ expression

Manipulating the object

Instance Methods

contentsDidChange

- contentsDidChange

- contentsDidChange
- setDestination:
- currentRecordDidDelete
- endEditing
- selectedRow After:
- selectionDidChange
- validateEditing
- getValue:
- setValue:

Notifies the DBAssociation that the destination's contents have changed. You never invoke
this method directly; it's invoked automatically by an internal mechanism.

currentRecordDidDelete

- currentRecordDidDelete

Notifies the DBAssociation that the current record (in the associated DBRecordList) has
been deleted. You never invoke this method directly; it's invoked automatically by an
internal mechanism.

destination

- destination

Returns the user interface object that's associated with this DBAssociation.

endEditing

- endEditing

Tells the DBAssociation to disallow further editing in the user interface object. You never
invoke this method directly; it's invoked automatically by an internal mechanism.

Classes: DBAssociation 4-21

expression

- expression

Returns the DBExpression that represents the property associated with this DBAssociation.

fetchGroup

- fetchGroup

Returns the DBFetchGroup that owns this DB Association.

getValue:

- getValue:value

Instructs the DB Association to copy the value from its destination into value. You never
invoke this method directly; it's invoked automatically by an internal mechanism.

initFetchGroup:expression:destination:

- initFetchGroup:aFetchGroup expression:anExpr destination:aDest

Initializes an instance of DBAssociation such that anExpr, a DBExpression object that
represents a property in a DBRecordList, is associated with the destination aDest. The
DBAssociation will be owned by aFetchGroup. You never invoke this method directly; it's
invoked automatically by the owning DBFetchGroup object.

setDestination:

- setDestination:new Destination

Sets the DBAssociation's destination. You should rarely need to invoke this method
directly. Returns self.

selectedRow After:

- (unsigned int)selectedRowAfter:(unsigned int)previousRow

Returns the index of a row in the DBAssociation's destination to which this association
is linked. You never invoke this method directly; it's invoked automatically by an
internal mechanism.

4-22 Chap'ter 4: Database Kit

selectionDidChange

- selectionDidChange

Notifies the DB Association that there has been some sort of change in the current row of
the DBFetchGroup. You never invoke this method directly; it's invoked automatically by
an internal mechanism.

setValue:

- setValue:value

Sets a value in the DBAssociation's DBRecordList. You never invoke this method directly;
it's invoked automatically by an internal mechanism.

validateEditing

- validateEditing

Invokes validation for the DBAssociation's destination after editing. You never invoke this
method directly; it's invoked automatically by an internal mechanism.

Classes: DBAssociation 4-23

DBBinder

Inherits From: Object

Conforms To: D BCursorPositioning

Declared In: dbkitIDBBinder.h

Class Description

The DBBinder class provides a mechanism for connecting individual data items in a
database to particular objects, variables, and methods in your application. Most
applications benefit by avoiding DBBinders and working instead with higher-level classes
such as DBRecordList or DB RecordStream. You should create and use DBBinder objects
only if your application needs to augment or modify the functionality provided by
DBRecordStream or DBRecordList.

Preparing a DBBinder

To access a database, a DBBinder must be initialized and associated with a database model
through a DBDatabase object, as shown below:

/* Initialize the DBBinder through the init method. */

DBBinder *myBinder = [[DBBinder alloc] init] i

/* Associate it with a DBDatabase through the setDatabase: method. */
[myBinder setDatabase:myDB] i

Furthermore, the DBBinder must be informed of which properties in which tables in the
database it should accommodate. There are two ways to do this:

• If you can determine the list of properties that you're interested in, you should inform
the DBBinder through the setProperties: method. As a convenience, the
initForDatabase:withProperties:andQualifier: method lets you initialize the
DBBinder and set its DBDatabase and property list (and an optional property qualifier)
in a single breath. An example of this method is given in the next section.

4-24 Chapter 4: The Database Kit

• Alternatively, you can describe the properties that you want as an expression in the
database's query language, passing the expression (a string) as the argument to the
evaluateString: method, as shown below:

/* Select all the properties in the "Weight" table. */

[myBinder evaluateString:"select * in Weight"];

The optional qualifier described as part of the initForDatabase:... method can be set
separately, through the setQualifier: method. The qualifier, of which there can be but one
at a time per DBBinder, is used to filter properties when the DBBinder is told to select data
from the database. (See the "Qualification" section, below for more on the qualifier.)

Records and Containers

The pith of a DBBinder is a collection of objects that hold records from a database table.
Each object, called a record, holds one record from the database. The collection of a
DBBinder's record-holding objects is stored in a container object. Record and container
objects, however, aren't built into the DBBinder class-you have to specify what sorts of
objects you want to assume these two roles.

Specifying a container is easy, you invoke the setContainer: method, passing an object that
conforms to the DB Containers protocol. That object will be used by the DBBinder to store
record objects when the DBBinder fetches from the database. Barring any specialized
requirements, a DBBinder is well served using a List object as its container (DBBinder
defines a List category that allows a List to pose as a DB Containers-conforming object).
You can also use a DBBinder without setting its container. For a container-less DBBinder,
fetching data is done one record at a time and can only step forward through the database.

Setting a record object takes a bit more thought. There are two general approaches: You
can specify an object yourself that will be copied for each record, or you can let the
DBBinder create and assemble a class dynamically, instances of which it will then create
to store records.

The first approach centers around the setRecordPrototype: method. To this method you
pass an object that will be copied as records are fetched from the table, one copy per record.
But you're not done yet. To actually get a record's property values into a copy of the
prototype record object, you must create an association between each property and one of
the record object's instance variables, or between a property and a pair of methods, one to
set and the other to retrieve the property's value. These associations are created through
the associateRecordlvar:withProperty: and associateRecordSelectors: :withProperty:
methods. You can mix and match associations within a record object such that some
properties are associated with instance variables and others are associated with method
pairs, but a single property can only be associated with one variable or one pair of methods.

Classes: DBBinder 4-25

For example, let's say you want to access a table that contains information about convicted
felons. Furthermore, you're only interested in a felon's name and the length of his or her
sentence. To accommodate the records in the table you create a class called FelonRecord,
for which the interface file might look like this:

@interface FelonRecord : Object

char *name;
float sentence;

@end

Having connected to the database and the table (as described in the DBDatabase class and
DB Entities protocol descriptions), you would create a DBBinder object, set the record
prototype, and associate the appropriate properties with the designated instance variables:

DBDatabase myDB;

id felonTable;
id name Prop , sentenceProp;

List *propList = [[List alloc] initCount:2];
DBBinder *aBinder;

/* Get the database, entity, and properties. */

myDB = [DBDatabase findDatabaseNamed:"Crime Data" connect:YES];
felonTable = [myDB entityNamed:"Convicts"];

nameProp = [felonTable propertyNamed:"Name"];
sentenceProp = [felonTable propertyNamed:"Sentence Length"];

[propList addObject:nameProp];
[propList addObject:sentenceProp];

/* Initialize the binder. */
aBinder = [[DBBinder alloc] initForDatabase:myDB

withProperties:propList
andQualifier:nil] ;

/* Set the container, record prototype, and associations. */
[aBinder setContainer: [[List alloc] init]];

[aBinder setRecordPrototype: [[FelonRecord alloc] init];
[aBinder associateRecordIvar:"name" withProperty:nameProp];
[aBinder associateRecordIvar:"sentence" withProperty:sentenceProp];

The DBBinder is now ready to fetch records from the table (as described in the
following section).

4-26 Chapter 4: The Database Kit

The other approach to creating a record object prototype requires less work and is
more adaptable, but it's also less controllable. It centers around the method
createRecordPrototype. When a DBBinder receives a createRecordPrototype message,
it creates and assembles, while you wait, a class (by default, a subclass of Object) that will
be used to create record objects. This new class defines a set of instance variables that
match, in number, name, and type, the properties that the DBBinder knows about (as set
through the methods described in the previous section, and possibly modified by
addProperty: and removePropertyAt:). When a record is fetched, an instance of the
class is created and its instance variables are bound to the record's properties. Fetching
(through the fetch method) automatically invokes createRecordPrototype, thus you
needn't invoke it yourself.

You can prepare the dynamic record class through two DBBinder class methods:

• setDynamicRecordClassName: takes a string argument that's used to name the class
that DBBinder will create; by default, DB Binder gives the class an arbitrary, but unique,
name. The argument that you pass must itself be a unique class name-it mustn't name
an existing class.

• setDynamicRecordSuperclassName: also takes a string argument that names a class,
but for this method the named class must exist. It's used as the superclass for the class
that DBBinder will create (which, as mentioned above, is Object by default). This is of
particular use if you've created a class whose set of instance variables are known to
match, to some extent, the properties in the table that you're binding to. If the set isn't
complete, the subclass (the class that DBBinder will create) will be given a sufficient
number of additional instance variables.

Warning: Since these are class methods, invoking either of them will affect all subsequent
invocations of createRecordPrototype for all DBBinder instances. Classes that were
previously created are unaffected.

Of the two approaches, the setRecordPrototype: method takes priority. Reinforcing this,
you shouldn't send createRecordPrototype to a DBBinder that has previously received a
setRecordPrototype: message.

Using a DBBinder

The point of all this, of course, is to gain access to the data in the actual database.
Having set up your DBBinder, you can command it to retrieve data through the select,
selectWithoutFetching, and fetch methods (select performs a select and a fetch;
selectWithoutFetchingjust selects). The insert, update, and delete methods write data
back to the database. In addition, the evaluateString: method can be used to command the
adaptor associated with the DBBinder's DBDatabase to evaluate the given string, and
thereby produce data or modify data.

Classes: DBBinder 4-27

After fetching data into a DBBinder's record objects, you can point to a particular record by
positioning the "cursor" in the container. This is done through the DBCursorPositioning
protocol methods such as setNext and setTo:. (If the DBBinder doesn't have a container, then
only the setNext method can be used; in this case, setNext causes a fetch to be performed.)

Having positioned the cursor, you can retrieve a DBValue object from the pointed-to record
for a particular property through the valueForProperty: method. You can then examine
and modify the DBValue; any changes you make will be imprinted on the record in the
DBBinder and will be written back to the database when the DBBinder receives an
update message.

The DBBinder class also provides an asynchronous fetch mechanism, provoked by the
fetchlnThread method. When the DBBinder receives a fetchlnThread message, it
creates a separate thread in which the fetch is performed. (Note that asynchronous fetching
requires containers.) To check on the progress of a threaded fetch, use the method
checkThreadedFetchCompletion: .

Qualification

You can give a DBBinder a DB Qualifier object through the setQualifier: or
initForDatabase:withProperties:andQualifier: method. The DB Qualifier is applied to
data that's obtained through DBBinder's fetch and select methods; note, however, that it
isn't used by evaluateString:.

Instance Variables

id database;
id recordPrototype;
id container;
id delegate;

database

recordPrototype

container

delegate

4-28 Chapter 4: The Database Kit

The DBDatabase object with which this DBBinder is
associated.

A template for the DBBinder's record objects.

The repository for record objects.

The receiver of notification messages.

Adopted Protocols

DBCursorPositioning - setFirst
- setNext
- setPrevious
- setLast
- setTo:
- currentPosition

Method Types

Initializing - init
- initForDatabase:withProperties: andQualifier:
-free

Connecting to a database - database
- setDatabase:

Managing properties - getProperties:
- setProperties:
- addProperty:
- rernoveProperty At:

Managing the qualifier - qualifier
- setQualifier:

Managing the container - container
- setContainer:
- setFlushEnabled:
- isFlushEnabled
- setFreeObjectsOnFlush:
- areObjectsFreedOnFlush

Managing the record prototype + setDynarnicRecordSuperclassN arne:
+ setDynarnicRecordClassN arne:
- setRecordPrototype:
- createRecordPrototype
- ownsRecordPrototype
- recordPrototype
- associateRecordI var:withProperty:
- associateRecordSelectors: :withProperty:
- valueForProperty:

Classes: DBBinder 4-29

Ordering and ignoring records - addRetrieveOrder:for:
- removeRetrieveOrderFor:
- retrieveOrderFor:
- positionlnOrderingsFor:
- ignoresDuplicateResults
- setlgnoresDuplicateResults:

Accessing the database - fetch
- select
- selectWithoutFetching
- insert
- update
- delete
- evaluateString:
- adaptorWillEvaluateString:

Fetching in a thread - fetchln Thread
- cancelFetch
- checkThreadedFetchCompletion

Limiting a fetch - setMaximumRecordsPerFetch:
- maximumRecordsPerFetch
- recordLimitReached

U sing the shared cursor for several binders
- setS hares Context:
- sharesContext

Managing general resources - reset
- flush
- scratchZone

Appointing a delegate - delegate
- setDelegate:

Archiving - read:
- write:

Class Methods

setDynamicRecordClassName:

+ setDynamicRecordClassName:(const char *)aName

Sets the name of the record class that's dynamically created and assembled by the
createRecordPrototype method. The argument must not name an existing class; if it does,

4-30 Chapter 4: The Database Kit

invocations of createRecordPrototype will fail. An argument of NULL erases the
previously established class name. Lacking the instruction provided by this method, the
DBBinder class creates a class name that's arbitrary and unique. The dynamic record class
mechanism only applies to DBBinder objects that have no prototype record objects; in
other words, it applies only to DBBinders that haven't received a setRecordPrototype:
message. See the class description above for a detailed description of the dynamic record
class mechanism. Returns self, regardless of the viability of the argument.

See also: + setDynamicRecordSuperciassName:, - setRecordPrototype:

setDynamicRecordSuperclassName:

+ setDynamicRecordSuperciassName:(const char *)aName

Identifies, by name, the class that's used as the superc1ass of the record classes that are
created by createRecordPrototype. The argument must name an existing class; if it
doesn't, invocations of createRecordPrototype will fail. By default, dynamic record
classes are subclasses of Object; an argument of NULL to this method will return the
superclass to the default. The dynamic record class mechanism only applies to DBBinder
objects that have no prototype record objects; in other words, it applies only to DBBinders
that haven't received a setRecordPrototype: message. See the class description above for
a detailed description of the dynamic record class mechanism. Returns self, regardless of
the viability of the argument.

See also: + setDynamicRecordClassName:, - setRecordPrototype:

Instance Methods

acceptValues:forProperty:

- acceptValues:(BOOL) flag forProperty:(id <DB Properties>)aProperty

Establishes whether the given property will accept values from the database. By default,
all properties are set to accept values. This method is typically invoked by the adaptor
that's associated with the DBBinder's DBDatabase to proclaim that certain properties don't
correspond to actual categories in the database-for example, a property that represents a
relationship (as created by a database model file) would be set to not accept values.

See also: - propertyAcceptsValues:, - provideValues:forProperty:,
- qualifyValues:forProperty:

Classes: DBBinder 4-31

adaptorWillEvaluateString:

- (BOOL)adaptorWillEvaluateString:(const unsigned char *)aString

Returns YES if the adaptor associated with the DBBinder's DBDatabase object will accept
the given string for evaluation, otherwise returns NO. (This is determined by sending a
binder:willEvaluateString: message to the DBDatabase.)

See also: - binder:willEvaluateString: (DBDatabase)

addProperty:

- addProperty:anObject

Adds the given object (which should conform to the DB Properties protocol) to the
DBBinder's list of properties that it's interested in. The list can't contain duplicates; if
the property is already present, the addition isn't performed. The return value should
be ignored.

Typically, you only use this method if you're building the DBBinder's property list
incrementally, and so will rely on the DBBinder to create a record class dynamically. If
you're setting your own prototype record object (through setRecordPrototype:), you
should, rather than use this method, inform the DBBinder of its properties all at once,
through initForDatabase:withProperties:andQualifier: or setProperties:.

See also: - setProperties:, - getProperties:, - removePropertyAt:

addRetrieveOrder:for:

- addRetrieveOrder:(DBRetrieveOrder)anOrder for:(id <DBProperties>)aProperty

Establishes the order in which records are retrieved from the database (and stored in the
DBBinder's container). Using the value of the aProperty property as a retrieval "key,"
records are retrieved in least-to-greatest or greatest-to-Ieast order, as anOrder is
DB_AscendingOrder or DB_DescendingOrder. If anOrder is DB_NoOrder, the default,
the property is removed from the retrieval order scheme. Returns self.

You can invoke this method for as many properties as you choose, but the order in which
the invocations are performed is important: The first invocation establishes the primary
retrieval order property, the second establishes the secondary such property, and so on. If
two or more records have the same value for their primary properties, their order is
determined according to the values of their secondary properties. If they still can't be
distinguished, the decision falls to the tertiary properties, and so on.

4-32 Chapter 4: The Database Kit

Note well that it's the adaptor-not the DBBinder-that retrieves records. If the adaptor
that you're using doesn't support the notion of an ordered retrieval, then this method is
for naught.

See also: - retrieveOrderFor:, - removeRetrieveOrderFor:,
- positionlnOrderingsFor:

areObjectsFreedOnFlush

- (BOOL)areObjectsFreedOnFlush

Returns YES if the objects in the DBBinder's container are freed when the DBBinder is
flushed, otherwise returns NO. Flushing is explained in the description of the flush method.
By default, the objects are freed.

See also: - setFreeObjectsOnFlush:, - setFlushEnabled:

associateRecordlvar:with Property:

- associateRecordlvar:(const char *)variableName
withProperty:(id <DB Properties>)aProperty

Associates the record object instance variable named variableName with the given property
such that when a record is fetched from the database, the value of the named instance
variable (in the record object that's created to hold the record) is set to the value at the
property. The property's value is coerced, if possible, to match the data type of the instance
variable. If aProperty isn't in the DBBinder's list of properties, the association isn't made
and nil is returned, otherwise non-nil is returned.

You should only invoke this method if you're setting your own prototype record object
(through the setRecordPrototype: method). Furthermore, the prototype record must
already be set when you invoke this method, and it must contain an instance variable with
the given name. Failing these, the association isn't made (although the return value will
still be non-nil).

Rather than associate a property with an instance variable, you can associate it with a pair
of instance methods, through the associateRecordSelectors:withProperty: method.
However, a single property can be associated with only one instance variable or one
method pair; invoking this method with a particular property undoes the effect of a
previous invocation of this or of the associateRecordSelectors:withProperty: method
for that property.

See also: - associateRecordSelectors: :withProperty:

Classes: DBBinder 4-33

associateRecordSelectors: :with Property:

- associateRecordSelectors:(SEL)set
:(SEL)get

withProperty:(id <DB Properties>)aProperty

Associates the record object instance methods set and get with the given property such that
when a record is fetched from the database, the value at the property is set through the set
method, and when the record is written back to the database, the value is retrieved through
the get method. Either or both of the selector arguments may be NULL. If non-NULL, the
set method must take exactly one argument, the value that's being set; the get method must
take no arguments. The data type of the value returned by the get method should match that
of the set method's argument.

You should only invoke this method if you're setting your own prototype record object
(through the setRecordPrototype: method). Furthermore, the prototype record must have
already been set, and the object must respond to the set and get methods (if they're
non-NULL). If it doesn't respond, or if aProperty isn't in the DBBinder's list of properties,
the association isn't made and nil is returned. Otherwise, the method returns non-nil.

Rather than associate a property with a pair of methods, you can associate it with an
,instance variable, through the associateRecordlvar:withProperty: method. However, a
single property can be associated with only one instance variable or one method pair;
invoking this method with a particular property undoes the effect of a previous invocation
of this or of the associateRecordlvar:withProperty: method for that property.

See also: - associateRecordlvar:withProperty:

cancelFetch

- cancelFetch

Interrupts an asynchronous fetch. You can also use this method after a successful
synchronous fetch to ensure that idle resources are reclaimed.

See also: - fetchlnThread, - fetch, - fetchDone: (DBDatabase)

checkThreadedFetchCompletion:

- checkThreadedFetchCompletion: (double)timeout

If you're not using the Application Kit's event loop, you should invoke this message after
an asynchronous fetch to ensure that the delegate message binderDidFetch: is sent. The
argument is the maximum amount of time, in seconds, to wait before returning. Returns

4-34 Chapter 4: The Database Kit

nil (and the message isn't sent) if the time limit expires before the fetch completes,
otherwise returns self.

See also: - fetchlnThread

container

- (id <DB Containers>)container

Returns the DBBinder's container object, as set through setContainer:. The container,
which must conform to the DB Containers protocol, holds the record objects that are created
when the DBBinder fetches data. A DBBinder has no default container and can operate
without one, although this impedes some of the object's functionality. Lacking a container,
a DBBinder can't perform an asynchronous fetch, and its cursor can only be positioned
through the setNext method.

See also: - setContainer:

createRecordPrototype

- createRecordPrototype

Creates and assembles a class that's used to create record objects. The class is given
sufficient instance variables to hold the DBBinder's properties (one instance variable per
property). By default, the name of the class that's created is arbitrary and unique and its
superclass is Object. You can change these settings through the setDynamicRecordClass:
and setDynamicRecordSuperciass: class methods. This method has no effect and returns
nil under the following conditions:

• If the DBBinder's current prototype record object isn't nil.
• If the DBBinder has no properties.
• If the name set through setDynamicRecordClass: names an existing class.
• If the class named by setDynamicRecordSuperciass: doesn't exist.

Upon success, this method returns the class that it created.

This method is automatically invoked when the DBBinder fetches data, thus you needn't
invoke it directly. In general, it's a good idea to never invoke this method; however, if you
do-for example, to examine the return value-you should send a setRecordPrototype:nil
message to the DBBinder before the next fetch to ensure that the correct class will
be assembled.

See also: + setDynamicRecordClass:, + setDynamicRecordSuperciass:

Classes: DBBinder 4-35

database
- (DBDatabase *)database

Returns the DBDatabase object that's associated with the DBBinder.

See also: - initForDatabase:withProperties:andQualifier:, - setDatabase:

delegate
- delegate

Returns the object that will receive notification messages for the DBBinder.

See also: - setDelegate:

delete

- delete

Deletes from the database each of the DBBinder's record objects.

Before the operation begins, a binderWillDelete: message is sent to the DBBinder's
delegate (with the DBBinder as the argument); if the delegate message returns NO, then the
deletion isn't performed and this method returns nil. After all the records have been
processed, the DBBinder is flushed. If the records were successfully deleted, a
binderDidDelete: message is sent to the delegate and self is returned, otherwise the
delegate message isn't sent and nil is returned.

As each record is deleted, one of two messages is sent to the container's delegate (if the
DBBinder has a container, if the container has a delegate, and if the delegate. implements
the method):

• binder:didAcceptObject: if the record was deleted.
• binder:didRejectObject: is sent if the record couldn't be deleted.

For both methods, the first argument is the DBBinder and the second is the record object.
The values returned by these methods are ignored.

See also: - deleteData: (DBDatabase)

evaluateString:
- (BOOL)evaluateString:(const unsigned char *)aString

Tells the adaptor to evaluate and execute the commands that are encoded in aString. The
DBBinder's qualifier isn't applied to the evaluation.

4-36 Chapter 4: The Database Kit

Before the evaluation is performed, a binder:willEvaluateString: message is sent to the
DBBinder's delegate. If the delegate message returns NO, then the evaluation isn't
performed and this method immediately returns NO.

The evaluation itself is performed by sending an evaluateString:using: message to the
DBDatabase, passing aString and self as the arguments. Before the message is sent, the
DBBinder is flushed. If the DBDatabase message returns NO, then this method returns
NO, otherwise a binder:didEvaluateString: message is sent to the delegate and YES
is returned.

See also: - evaluateString:using: (DB Database)

fetch
- fetch

Fetches data from the database and places it in the DBBinder's record objects. If the
DBBinder has a container, the container is filled with record objects until it contains the
number of records set by setMaximumRecordsPerFetch: or there's no more data to fetch.
If the binder has no container, a single record is fetched from the database (however, in that
case you should use the setNext method, rather than this one, to fetch data).

Before the fetch begins, the DBBinder's delegate is sent a binderWillFetch: message;
after, it's sent binderDidFetch:. If binderWillFetch: returns NO, the fetch isn't
performed and this method immediately returns nil.

The DBDatabase method fetchData: is invoked-iteratively if there's a container-to
perform the fetch. As each record of data is fetched, a copy of the DBBinder's prototype
record object is created to hold the data. If the DBBinder's prototype record hasn't been
set, a class is dynamically assembled to fill the need, as explained in the description of
createRecordPrototype.

The fetch continues until there's no more data to retrieve, or until the previously set record
limit (as set through the setMaximumRecordsPerFetch: method) has been reached. If the
fetch ended because the record limit was reached, the next fetch will continue where the
previous one ended.

After the fetch has ended, the DBBinder's cursor is set to the first record in the container
(or to the single fetched record if there is no container) and self is returned. If there was no
data to fetch, or if there's a fetch in progress (and the D BBinder has a container), the cursor
isn't set, fetchDone: is sent to the DBDatabase, and nil is returned.

If the fetch ended by exhausting the source data-in other words, it didn't end because the
record limit was reached-you should then invoke cancelFetch to reclaim resources that
were used during the fetch. Use the recordLimitReached method to test whether the fetch
ended because it reached the limit while there was more data to fetch.

Classes: DBBinder 4-37

fetchlnThread

- fetchlnThread

Fetches data asynchronously from the database by performing the fetch in a separate
thread. The general mechanism and conditions are as described in the fetch method, but
with these differences:

• An asynchronous fetch only works if the DBBinder has a container.

• You shouldn't invoke cancelFetch after invoking this method unless you actually want
to abort the fetch.

• The record limit set through setMaximumRecordsPerFetch:has no effect on an
asynchronous fetch.

If there is no container, or if the binderWillFetch: delegate message returns NO, then the
fetch isn't performed and this method returns nil. Otherwise, this method returns self while
the fetch proceeds in the background. When the fetch is complete, the binderDidFetch:
method is sent to the delegate.

If you're not using the Application Kit's main·event loop, you should follow this method
with an invocation of checkThreadedFetchCompletion: to synchronize the fetch thread
with the main thread and to ensure that the binderDidFetch: message is sent.

To be used in an asynchronous fetch, the DBBinder's container must be thread-safe (it must
be re-entrant). Alternatively, if you limit yourself to DBCursorPositioning methods, such
as setTo: and setNext:, you can access the container regardless of the type of fetch
employed.

See also: - fetch, - cancelFetch, - checkThreadedFetchCompletion:

flush

- (BOOL)flush

If flushing is enabled, this empties the DBBinder's container. Furthermore, if the
DBBinder has been told to free-on-flush, the records that were in the. container are freed
and the prototype record object is set to nil. By default, both flushing and free-on-flush are
enabled. Returns YES if flushing is enabled, NO if not.

This method always interrupts a fetch, if one is in progress, whether or not flushing
is enabled.

4-38 Chapter 4: The Database Kit

The following DBBinder methods may cause flush to be invoked:

- evaluateString:
- selectWithoutFetching
- insert
- update
- delete
- setProperties:
- reset
-free

See also: - setFlushEnabled:, - setFreeOnFlush:

free

-free

Frees the DBBinder and its records. If the DBBinder owns the prototype record object, it
too is freed.

getProperties:

- (List *)getProperties:(List *)aList

Fills aList with the DBBinder's properties, then returns the List directly and by reference.
The order of the properties in the List is that by which they were added to the DBBinder.
You mustn't free the contents of aList, although you may free the List itself.

See also: - initForDatabase:withProperties:andQualifier:, - setProperties:,
- addProperty

ignoresDuplicateResults

- (BaaL)ignoresDuplicateResults

Returns YES if the DBBinder is set to ignore duplicate records during a select. The default
is YES. The instruction to ignore duplicate results is implemented by including a
SELECTDISTINCT in the SQL expression sent to the adaptor. It's up to the adaptor to
support this (the Oracle and Sybase adapters supplied with the Database Kit do).

See also: - setlgnoresDuplicateResults:

Classes: DBBinder 4-39

init

-init

The designated initializer for the DBBinder class, init initializes and returns the DBBinder.
All the objects that the DBBinder owns or knows of, such as its container, properties,
DBDatabase, and DB Qualifier are set to nil. Its boolean attributes are set as follows:

Attribute

flushing enabled?
frees properties on flush?
ignores duplicates?
shares context?

Value

YES
YES
YES
NO

See also: - initForDatabase:withProperties:andQualifier

initForDatabase:withProperties:andQualifier:

- initForDatabase:aDBDatabase
withProperties:(List *)propertyList
andQualifier:(DBQualifier *)aDBQualifier

Invokes init and then sets the DBBinder's DBDatabase, properties, and DB Qualifier as
given by the arguments. The properties in propertyList are added to the DBBinder's own
List, thus the argument may be freed.

See also: - init

insert

- insert

Inserts into the database each of the DBBinder's record objects.

Before the operation begins, a binderWilllnsert: message is sent to the DBBinder's
delegate (with the DBBinder as the argument); if the delegate message returns NO then the
insertion isn't performed and nil is immediately returned by this method. After all the
records have been processed, the DBBinder is flushed. If the records were successfully
inserted, a binderDidlnsert: message is sent to the delegate and self is returned, otherwise
the delegate message isn't sent and nil is returned.

4-40 Chapter 4: The Database Kit

As each record is inserted, one of two messages is sent to the container's delegate (if the
DBBinder has a container, if the container has a delegate, and if the delegate implements
the appropriate method):

• binder:didAcceptObject: if the record was inserted.
• binder:didRejectObject: is sent if the record couldn't be inserted.

For both methods, the first argument is the DBBinder and the second is the record object.
The values returned by these methods are ignored.

See also: - insertData: (DBDatabase)

isFlushEnabled

- (BOOL)isFlushEnabled

Returns YES if the DBBinder has flushing enabled, otherwise return NO. The default is
YES. See the description of the flush method for more information. (Note that sharing a
cursor is incompatible with flushing, so setSharesContext: has the side effect of
disabling flushing.)

See also: - flush, - setFlushEnabled:, - setSharesContext:

maximumRecordsPerFetch

- (unsigned int)maximumRecordsPerFetch

Returns the maximum number of records that will be retrieved during a synchronous fetch,
as set through the setMaximumRecordsPerFetch: method. By default, this limit is set to
DB_Nolndex, which imposes no limit.

See also: - setMaximumRecordsPerFetch:, - recordLimitReached, - fetch

ownsRecordPrototype

- (BOOL)ownsRecordPrototype

Returns YES if the DBBinder owns its prototype record object-in other words, if it will
create a record class for you (when createRecordPrototype is invoked). If you've set the
prototype record object yourself, through setRecordPrototype:, then this returns NO.

Classes: DBBinder 4-41

positionlnOrderingsFor:

- (unsigned int)positionlnOrderingsFor:(id <DBProperties>)aProperty

Returns an integer that indicates the level (primary, secondary, tertiary, and so on) at which
the given property is used to order the records that are retrieved from the database. The
ordering position of a particular property is the order in which it was added to the
ordering mechanism (amongst the currently "active" ordering properties) through the
addRetrieveOrder:for: method. A return of DB_No Index means that the property isn't
used in the ordering mechanism.

See also: - addRetrieveOrder:For:

qualifier

- (DB Qualifier *)qualifier

Returns the DB Qualifier object that was set through setQualifier: or initForDatabase:
withProperties:andQualifier:. The qualifier is used to qualify values during a select.

See also: - setQualifier:, - initForDatabase:withProperties:andQualifier:

read:

- read:(NXTypedStream *)stream

Reads the DB Binder from the typed stream stream. Returns self.

recordLimitReached

- (BOOL)recordLimitReached

If the previous fetch was stopped because the DBBinder's record limit (as set through the
setMaximumRecordsPerFetch: method) was reached, then this returns YES. By default,
this returns NO; the flush method will also set this to return NO, whether or not flushing is
enabled. See the description of the fetch method for an example of the use this method.

See also: - setMaximumRecordsPerFetch:, - maximumRecordsPerFetch, - fetch

4-42 Chapter 4: The Database Kit

recordPrototype
- recordPrototype

Returns the DBBinder's prototype record object. If you've set the object yourself, through
setRecordPrototype:, then that object is returned. Otherwise, this returns nil unless
you've previously invoked createRecordPrototype directly, or unless this is called from
within a subclass implementation of fetch.

See also: - setRecordPrototype, - createRecordPrototype

removePropertyAt:

- removePropertyAt:(unsigned int)index

Removes the property at the given index. To find the index of a particular property, get the
DBBinder's List of properties through the getProperties: method, and then ask for the
index by sending indexOf: to the List, passing the property as the argument. Returns the
property (or nil if there was none).

See also: - setProperties:, - addProperty:

removeRetrieveOrderFor:

- removeRetrieveOrderFor:(id <DB Properties>)aProperty

Removes the given property from the list of properties that are used to sort records as
they're being fetched. The property's retrieve order constant is set to DB_NoOrder.
Returns nil if the property hadn't previously been added to the record-sorting list (if it
hadn't previously received an addRetrieveOrderFor: message), otherwise self is
returned.

See also: - addRetrieveOrderFor:, - positionlnOrderingsFor:

reset

- reset

Restores the DBBinder to a virgin state. The DBBinder is first flushed (which cancels a
fetch, if one is in progress), then the objects that it has allocated, and any that you've
allocated in the scratch zone, are freed. The setProperties: and free methods automatically
cause a reset.

See also: - flush, - scratchZone

Classes: DBBinder 4-43

retrieveOrderFor:

- (DBRetrieveOrder)retrieveOrderFor:(id <DB Properties>) aProperty

Returns a constant that indicates the order in which records are retrieved when aProperty
is used as a retrieval key (see the addRetrieveOrder:for: method for a further
explanation). The retrieval order constants are:

Constant

DB_NoOrder
DB _Ascending Order
DB _DescendingOrder

Meaning

The property isn't part of the ordering scheme
Least to greatest
Greatest to least

See also: - addRetrieveOrder:for:, - positionlnOrderingsFor:

scratchZone

- (NXZone *)scratchZone

Returns the zone in which the DBBinder allocates the objects that it owns. The objects in
the zone are freed during a reset; the zone is made public so you can use it to allocate your
own supporting objects and have them freed during a reset as well. Note that the zone may
be different after each reset.

See also: - reset

select

- select

Selects and fetches data from the database. First, selectWithoutFetching is invoked; if
that returns nil, then this returns nil. If the method was successful, then fetch is invoked;
the value returned by fetch is returned by this method.

See also: - selectWithoutFetching, - fetch

selectWithoutFetching

- selectWithoutFetching

Selects records from the database, using the DBBinder's qualifier (as set through
setQualifier: or initForDatabase:withProperties:andQualifier:) to qualify the records
that are selected.

4-44 Chapter 4: The Database Kit

Before the operation begins, a binderWillSelect: message is sent to the DBBinder's
delegate (with the DBBinder as the argument); if the delegate message returns NO, then the
select isn't performed and nil is immediately returned by this method. Otherwise, the
DBBinder is flushed, and a selectData: message is sent to the DBDatabase. If selectData:
returns NO, then this method returns nil. If the select was successful, a binderDidSelect:
message is sent to the delegate and self is returned, otherwise the delegate message isn't
sent and nil is returned.

If the DBBinder is set to ignore duplicate results and the adaptor supports this feature
(both the Oracle and the Sybase adaptors do), then only the first of duplicate records will
be selected.

See also: - select, - setlgnoreDuplicateResults, - selectData: (DBDatabase)

setContainer:
- setContainer:(id <DB Containers>)anObject

Sets the container that's used to store record objects. The argument must either adopt the
DB Containers protocol, or it can be a List object-DBBinder defines a category of List that
allows its instances, and those of its subclasses, to pose as DB Containers-conforming
objects. Most DBBinders are well served using a List as a container. For more on the
theory and practice of containment, see the class description, above.

Returns the previous container.

setDatabase:
- setDatabase:(DBDatabase *)aDatabase

Sets the DBBinder's database. Returns the previous DBDatabase object.

setDelegate:
- setDelegate:anObject

Sets the object that receives notification messages for the DBBinder.

Classes: DBBinder 4-45

setFlushEnabled:

- setFlushEnabled:(BOOL)jlag

Establishes whether the DBBinder is capable of being flushed, as explained in the
description of the flush method. The default is YES.

See also: - flush, - setFreeObjectOnFlush:

setFreeObjectsOnFlush:

- setFreeObjectsOnFlush:(BOOL)jlag

Establishes whether the DBBinder will free its records when it's flushed. Setting this to
YES is effective only if the DBBinder is capable of being flushed, as established by the
setFlushEnabled: method. The default is YES (the default flush-enablement is also YES).

See also: - flush, - setFlushEnabled:

setlgnoresDuplicateResults:

- setIgnoresDuplicateResults:(BOOL)jlag

Establishes whether duplicate records are ignored during a select. The default is YES.

The instruction to ignore duplicate results is implemented by including a
SELECTDISTINCT in the SQL expression sent to the adaptor. It's up the adaptor to
support this; the Oracle and Sybase adapters supplied with the Database Kit do.

See also: - ignoresDuplicateRecords, - selectWithoutFetching

setMaximumRecordsPerFetch:

- setMaximumRecordsPerFetch:(unsigned int)limit

Sets, to limit, the maximum number of records that will be retrieved during a synchronous
fetch. When the limit is reached, the fetch is stopped but the "pointer" into the selected data
isn't reset, thus the next fetch will start where the previous oneended. The limit only
applies to synchronous fetches; the asynchronous fetch method fetchlnThread ignores the
record limit.

See also: - maximumRecordsPerFetch, - recordLimitReached, - fetch

4-46 Chapter 4: The Database Kit.

setProperties:

- (List *)setProperties:(List *)aList

Resets the DBBinder and then adds to it the properties in aList. Returns the argument.

See also: - getProperties:, - addProperty:, - removePropertyAt:

setQual ifier:

- setQualifier:(DBQualifier *)aQualifier

Sets the qualifier that's used during a select. Returns self.

See also: - qualifier

setRecordPrototype:

- setRecordPrototype:anObject

Sets the object that's copied to store the results of a fetch. See the class description for a
full explanation of the record prototype object.

See also: - recordPrototype, - createRecordPrototype

setSharesContext:

- setSharesContext:(BOOL)jlag

Determines whether the DBBinder shares its cursor with other DBBinders that have done
so. The default is NO. Making a DBBinder share its cursor disables flushing. Returns self.

Shared cursor behavior depends on the implementation of the adaptor rather than the
database; it's provided in both the Oracle and the Sybase adaptors as a way of achieving
atomic updates. Sharing the cursor also provides a slightly more efficient use of memory.

See also: - shares Context

sharesContext

- (BOOL)sharesContext

Returns YES if the DBBinder shares its cursor with other DBBinders, otherwise
returns NO.

See also: - setSharesContext:

Classes: DBBinder 4-47

update

-update

Updates the records in the database by sending an updateData:self message to the
DBDatabase for each of the DBBinder's record objects.

Before the operation begins, a binderWillUpdate: message is sent to the DBBinder's
delegate (with the DBBinder as the argument); if the delegate message returns NO, then the
update isn't performed and nil is immediately returned by this method. After all the records
have been processed, the DBBinder is flushed. If the records were successfully updated, a
binderDidUpdate: message is sent to the delegate and self is returned, otherwise the
delegate message isn't sent and nil is returned.

As each record is updated, one of two messages is sent to the container's delegate (if the
DBBinder has a container, if the container has a delegate, and if the delegate implements
the appropriate method):

• binder:didAcceptObject: if the record was updated.
• binder:didRejectObject: is sent if the record couldn't be updated.

For both methods, the first argument is the DBBinder and the second is the record object.
The values returned by these methods are ignored.

See also: - updateData: (DBDatabase)

valueForProperty:

- (DBValue *)valueForProperty:(id <DB Properties>)aProperty

Returns a DBValue object for the given property of the currently pointed-to record. Use
the DBCursorPositioning methods, such as setNext and setTo:, to set the cursor to point to
a particular record. The object that's returned is owned by the DBBinder and shouldn't
be freed.

write:

- write:(NXTypedStream *)stream

Writes the DBBinder to the typed stream stream. Returns self.

4-48 Chapter 4: The Database Kit

Methods Implemented by the Delegate

binder:didEvaluateString:

- binder:aBinder didEvaluateString:(const unsigned char *)aString

Invoked after the given string has been successfully evaluated by DBBinder's
evaluateString: method. The return value is ignored.

binder:wiIiEvaluateString:
- (BOOL)binder:aBinder willEvaluateString:(const unsigned char *)aString

Invoked before the given string is evaluated by DBBinder's evaluateString: method. A
return of NO will thwart the evaluation.

binderDidDelete:
- binderDidDelete:aBinder

Invoked after the DBBinder has successfully deleted records through the delete method.
The return value is ignored.

binderDidFetch:

- binderDidFetch:aBinder

Invoked after the DBBinder has successfully fetched records through the fetch or
fetchlnThread method. The return value is ignored.

binderDidlnsert:

- binderDidlnsert:aBinder

Invoked after the DBBinder has successfully inserted records through the insert method.
The return value is ignored.

binderDidSelect:
- binderDidSelect:aBinder

Invoked after the DBBinder has successfully selected data through the
selectWithoutFetching method. The return value is ignored.

Classes: DBBinder 4-49

binderDidUpdate:

- binderDidUpdate:aBinder

Invoked after the DBBinder has successfully updated the database through the update
method. The return value is ignored. '

binderWillDelete:

- (BOOL)binderWillDelete:aBinder

Invoked before the DBBinder attempts to delete records from the database through the
delete method. A return of NO will thwart the attempt.

binderWiliFetch:

- (BOOL)binderWillFetch:aBinder

Invoked before the DBBinder attempts to fetch data through the fetch or fetchlnThread
method. A return of NO will thwart the attempt.

binderWililnsert:

- (BOOL)binderWilllnsert:aBinder

Invoked before the DBBinder attempts to insert records into the database through the insert
method. A return of NO will thwart the attempt.

binderWiliSelect:

- (BOOL)binderWillSelect:aBinder

Invoked before the DBBinder attempts to select data from the database through the
selectWithoutFetching method. A return of NO will thwart the attempt.

binderWiliUpdate:

- (BOOL)binderWillUpdate:aBinder

Invoked before the DBBinder attempts to update the database through the update method.
A return of NO will thwart the attempt.

4-50 Chapter 4: The Database Kit

DBDatabase

Inherits From: Object

Declared In: dbkitIDBDatabase.h

Class Description

A DBDatabase object acts as a representation of an external database. Your application
sends messages to the DBDatabase object as if it were the database; the DBDatabase object
then forwards them to an adaptor that knows how to translate and format the messages
appropriately for the type of database the application is using. In a high level application­
that is, one built by dragging one or more DB Modules from Interface Builder's database
palette-the DBModules will in fact make use of a DBDatabase as their intermediary for
communication with the database, but your application will not need to create or address
DBDatabase objects directly.

A DBDatabase object maintains:

• A connection to the database
• A model of the database's entities
• The use of transactions to treat a sequence of operations as an indivisible "atom"

Only if your application needs more specific control of any of those areas should it make
explicit use of a DBDatabase object. For example, you might want to regulate the database
connection directly, to discover the database's entities independently of their description in
the model file, or to establish your own transaction boundaries.

Class methods in DB Database can supply the names of databases that are available in your
computing environment. The class gets this information by scanning standard directory
paths for database models and database adaptors, residing in bundles identified by the
extensions ".dbmodel" and ".adaptor".

To use a database, your application (either explicitly, or through its DB Module) creates a
DBDatabase object. The application opens a connection to the database and reads or writes
data by sending messages to the DBDatabase object. If your application uses several
different databases, or several models of the same database, it will need a separate
DBDatabase object for each model of each database.

Classes: DBDatabase 4-51

The DBDatabase's Adaptor and its Model

To gain access to data in the database, each DBDatabase object must have:

• An adaptor that manages communication with the database
• A model of the data that the database contains

An adaptor is specific to a type of database or DBMS product. It acts as a sort of delegate
for your DBDatabase object (or objects). The adaptor contains the DBMS-specific code
for accessing a particular vendor's client library. You communicate with the database
primarily by sending messages to a DBDatabase object, which passes them to the adaptor
you have designated, which in t~m translates them and relays them to the database server.

A model contains data dictionary information, as well as other information used to map the
Database Kit's high-level model to the lower-level database structure. The model defines
what you can talk about in framing requests to the database. It lists the entities in a
particular database, and their attributes and relationships. The model doesn't have to
describe everything in the database; it's only required to cover the entities, attributes, and
relationships your application may use.

When first instantiated, a DBDatabase has no data model and no adaptor. There are two
main ways the DBDatabase object can obtain its model:

• By loading a previously prepared model from a model file
• By asking the database to supply a model (called the default model)

In addition to the list of entities and attributes, a model file may contain other useful
information about the database and its use. This typically includes the name of the adaptor
that the database requires, a default login string for connecting to it, and perhaps specific
login strings for individual users of the application.

The DBDatabase's Records

To access data in the database, the usual procedure is to create an instance of
DBRecordStream (for sequential access) or its subclass DBRecordList (for random
access). The sections on those two classes describe their methods to fetch, save, or update
data. Those methods makes use of an intermediate class called DBBinder. Many
applications will require never need to make any explicit mention of a DBBinder.
However, to support applications that choose to deal directly with their DBBinders, the
DBDatabase class provides certain methods that typically are invoked from a DBBinder
and therefore identify the sending DBBinder in their argument.

4-52 Chapter 4: Database Kit

Delegate

Before executing certain database operations, the DBDatabase object notifies its delegate;
if you implement the corresponding methods in the delegate, the delegate can insert a check
on those operations before they're passed to the database. It can also receive notification
of commands to commit or roll back a transaction. The delegate may also implement a
logging system. When logging is enabled, the delegate writes a record of each command
sent to the database.

Instance Variables

id delegate;

delegate

Method Types

Initializing the class

Reporting what's available

Initializing an instance

Describing the model source

Describing the database model

Revising the data dictionary

The object that receives notification messages

+ initialize

+ adaptorNames
+ databaseN amesForAdaptor:

- initFromFile:

- directory
-name
- setName:
- currentAdaptorN arne
- defaultAdaptorN arne
- defaultLoginString
- currentLoginString
- 10ginStringForU ser:

- entityNamed:
- getEntities:

- empty DataDictionary
- 10adDefaultDataDictionary

Classes: DBDatabase 4-53

Connecting to the database

Managing transactions

+ findDatabaseNamed:connect:
- connect
- connectU singString:
- connectU singAdaptor:andString:
- disconnect
- disconnectU sing String:
- isConnected
- connectionN arne

- beginTransaction
- rollbackTransaction
- commitTransaction
- isTransactionInProgress
- areTransactionsEnabled
- enableTransactions:

U sing a delegate - delegate
- setDelegate:

Evaluating an arbitrary string - evaluateString:

Controlling the user interface - arePanelsEnabled
- setPanelsEnabled:

Archiving - read:
- write:

Class Methods

adaptorNames
+ (const char **)adaptorNames

Returns a list of the names of adaptors available to the DBDatabase class.

The DBDatabase class maintains a list of adaptor names. It initially constructs the list by
searching the application's bundle and then the directories !Library/ Adaptors,
/usr/local/lib/Adaptors, !LocaILibrary/Adaptors, and finally /NextLibrary/Adaptors.
It searches for bundles whose names have the extension ".adaptor". The list returned
contains the set of distinct adaptor names, without the extension or the path. (Thus a local
adaptor shadows another adaptor of the same name.)

4-54 Chapter 4: Database Kit

databaseNamesForAdaptor:

+ (const char **)databaseNamesForAdaptor:(const char *)anAdaptorName

Returns a list of the names of databases that the named adaptor serves. Typically, an
adaptor class serves a single type of database, but might be used with any of several
databases of the same type. An adaptor instance connects to a single database.

A DBDatabase object can be identified either by its id or by an arbitrary name. Assigning
a name to a DBDatabase object (through the setName: method) adds that name to a table
maintained by the DBDatabase class. Each name in the table identifies exactly one
DBDatabase. The class initially constructs the list by searching the application's bundle
and then the directories lLibrarylDatabases, lusrllocallIiblDatabases,
lLocalLibrarylDatabases, and finally lNextLibrarylDatabases. It searches for bundles
whose names have the extension ".dbmodel".

If the argument is NULL, the method returns the names of databases for all available
model files.

findDatabaseNamed:connect:

+ findDatabaseNamed:(const char *)aName
connect: (BOOL)jiag

Returns the already instantiated DBDatabase having the specified name, if one exists. If no
DBDatabase of that name has been instantiated, the method searches the table maintained
by the DBDatabase class, and then (if it finds no match there) through a standard sequence
of directory paths for a file named aName.dbmodel. The path sequence is
.... lLibrarylDatabases, lLocalLibrarylDatabases, and finally lNextLibrarylDatabases.

If the method finds aName for which no DBDatabase object has yet been instantiated, it
creates a new DBDatabase object, initializes it and then loads into it the database
description it finds in the model file.

Whenjiag is YES and there is not yet a connection to the database, the method makes the
connection, using the default login string and the adaptor identified in the database
description just loaded.

Returns the DBDatabase object (whether previously existing or just created). However,
returns nil if aName wasn't found, or ifjiag was YES but the method wasn't able to connect
to the database. When the method attempts to connect but is unsuccessful, the method also
frees the DBDatabase object, so that subsequent use of the same method with the same
database bundle will require a new DBDatabase object (and a fresh loading of the database
description). A DB Database object returned by findDatabaseNamed:connect: should
never be freed.

Classes: DBDatabase 4-55

initialize

+ initialize

Initializes the class object. The initialize message is sent for you before the class object
receives any other message; you never send an initialize message directly. Returns self.

Instance Methods

arePanelsEnabled

- (BOOL)arePanelsEnabled

Reports whether (when connecting to a remote database) the DBDatabase object will
prompt the user for required items that it didn't find in the database bundle. Items for
which the DBDatabase may prompt the user include login string, user name, password and
alert panels.

An application designed for interactive use will usually run with panels enabled, whereas
one that is run as a batch or background job without a user interface must run with
panels disabled.

Returns YES if panels are enabled, NO otherwise. The default at initialization is YES.

are TransactionsEnabled

- (BOOL)areTransactionsEnabled

Reports whether the transaction facility is enabled in the adaptor through which the database
is connected. Returns YES if the database is connected and transactions are enabled.

begin Transaction

- (BOOL)beginTransaction

Signals the adaptor that a transaction is about to begin. The database then takes whatever
action it provides for safeguarding a transaction; typically, it groups all changes that follow
so that they can be combined in a single operation. If it subsequently must roll back the
changes, the original data remains intact.

Returns YES if there is a connection to the database, the adaptor has the transactions
facility enabled, and no transaction is already in progress.

See also: - commitTransaction, - rollbackTransaction

4-56 Chapter 4: Database Kit

commitTransaction

- (BOOL)commitTransaction

Causes a transaction started with begin Transaction to be committed. Any changes to the
data that have been queued up since the previous begin Transaction will be irreversibly
made in the database. Returns YES if the transaction was committed: that is, if a
transaction was in progress and the database was able to commit it successfully. If the
database server supports referential integrity and these integrity checks fail, this method
returns NO.

Important: A return of NO does not mean that the transaction has been closed. It remains
open. That way, the application retains the option to take remedial action before trying
again to commit. The transaction will remain open until rollbackTransaction is called.

If the delegate implements db:log: (to maintain a log file), each use of commitTransaction
generates a log entry containing the name of the method and text indicating whether the
cancellation succeeded or failed.

See also: - rollbackTransaction

connect

- (BOOL)connect

Opens a connection to the database, using the default login string. If no adaptor has been
specified, the connection is established through the default adaptor. Returns YES if the
connection was successfully established or already existed. Invoking this method is
equivalent to invoking connectUsingString: with aString set to NULL.

If the delegate implements db:log: (to maintain a log file), each use of connect generates
a log entry containing the name of the method and language-specific text indicating success
or failure.

See also: connectUsingString:

connectionName

- (const unsigned char *)connectionName

Returns the name of the adaptor's current connection to a database, or NULL if there is no
adaptor or the adopter is not connected to a database. When an adaptor establishes a
connection to a database, it retains the name of the database to which it is connected.

Classes: DBDatabase 4-57

connectUsingAdaptor:andString:

- (BOOL)connectUsingAdaptor:(const char *)aClassname
andString:(const unsigned char *)aString

Opens a connection to the database by way of the adaptor identified by aClassname, using
the login string aString. When the connection is established (or already exists), the method
asks the database for its default data dictionary and loads it into the DB Database object.

If aClassName is the same as the name of the adaptor that the DBDatabase is already using,
this method simply continues to use it. But if aClassName differs from the name of the
current adaptor, or there is no current adaptor, the method instantiates one from the
adaptor bundle named aClassName, replacing the former instance, if any. (The
DBDatabase class maintains a list of known adaptor bundles and database bundles; see
the discussion of adaptorNames.) If the login string aString is NULL, the method uses
the default login string.

Returns YES if the connection is made (or already existed). If the delegate implements
db:log: (to maintain a log file), each use of connectUsingAdaptorNamed:andLoginString:
generates a log entry containing the name of the method and language-specific text
indicating success or failure.

See also: connectUsingString:

connectUsingString:

- (BOOL)connectUsingString:(const unsigned char *)aString

Instructs the adaptor to connect to the database, using the login string aString. If aString is
NULL, uses the default login string.

Returns YES when the method makes a new connection to the database, and NO if the
database is already connected (or no connection can be made). If the delegate implements
db:log: (to maintain a log file), each use of connectUsingString: generates a log entry
containing the name of the method and language-specific text indicating success or failure.

See also: connectUsingAdaptorNamed:andLoginString:

currentAdaptorName

- (const char *)cnrrentAdaptorName

Returns the name of the current adaptor, or NULL if none has been set.

(The name of an adaptor to be used by default is among the items stored in the bundle
from which the DBDatabase object was initialized; however, the method
connectUsingAdaptorNamed:andString: can specify a different adaptor.)

4-58 Chapter 4: Database Kit

currentLoginStri ng

- (const unsigned char *)currentLoginString

Returns the text of the current login string, or NULL if none has been set.

defaultAdaptorName

- (const char *)defauItAdaptorName

Returns the name of the adaptor that will be used by default. (The name of the default
adaptor is among the items stored in the bundle from which the DBDatabase object was
initialized.)

defau ItLogi nStri ng

- (const unsigned char *)defaultLoginString

Returns the text of the login string that will be used by default when the adaptor connects
to the database. (The default login string is among the items stored in the bundle from
which the DBDatabase object was initialized.)

delegate

- delegate

Returns the DBDatabase object's delegate.

directory

- (const char *)directory

Returns the path to the directory containing the bundle from which the DBDatabase object
was initialized.

disconnect

- (BOOL)disconnect

Closes the connection to the database. The DBDatabase object then loads the default data
dictionary. Returns YES if the connection was successfully closed. Invoking the disconnect
method is equivalent to invoking disconnectUsingString: with aString set to NULL.

See also: disconnectUsingString:

Classes: DBDatabase 4-59

disconnectUsingString:

- (BOOL)disconnectUsingString:(const unsigned char *)aString

Closes the connection to the database by sending it the command aString. The DBDatabase
object then loads the default data dictionary. Returns YES if the connection was
successfully closed.

See also: disconnect

emptyDataDictionary

- emptyDataDictionary

Frees the DBDatabase object's currently loaded data dictionary. The entity names, adaptor
name, and login string are zeroed. Returns self.

enableTransactions:

- (BOOL)enableTransactions:(BOOL)flag

Controls the right to use transactions-that is, permits use of the methods
begin Transaction, commitTransaction, and rollbackTransaction-according to the
value of flag. If the database supports transactions, transactions are enabled by default.
Returns YES if the adaptor is able to comply, NO otherwise.

If the delegate implements db:log: (to maintain a log file), each use of enable Transactions
generates a log entry containing the name of the method, the argument (YES or NO) and
language-specific text indicating whether the adaptor was able to comply.

entityNamed:

- (id <DB Entities>)entityNamed:(const char *)aName

Returns the entity named aName from the DBDatabase object's list of entities, or nil if
aName is invalid. The length and spelling of aName must exactly match the name of an
entity; entities are supposed to have unique names.

4-60 Chapter 4: Database Kit

evaluateString:

- (BOOL)evaluateString:(const unsigned char *)aString

Passes the adaptor a request to evaluate the string aString. This method is most useful to
an application that sets up its own DBBinders to transfer data to and from the database. The
method makes it possible to pass SQL directly to the database, for example to call stored
procedures or to pass SQL data definition statements.

Warning: If the evaluation fetches data, note that this method bypasses the Databse Kit's standard
procedures for describing the data to be fetched. As a consequence, fetched data won't be
automatically accessible by its properties. This method can be used to fetch data only in an
application that sets up its own DBBinders to receive the fetch, and its own mappings from
the binder's container to objects that encapsulate the data.

Returns YES if the string is successfully evaluated. If the delegate implements the method
db:willEvaluateString:usingBinder:, the evaluation is permitted only if the delegate
returns YES to that notification.

If the delegate implements db:log: (to maintain a log file), each use of evaluateString:
generates a log entry containing the name of the method, the return value, and the string
proposed for evaluation.

getEntities:

- (List *)getEntities:(List *)aList

Fills aList with references to all of the entities in the database's model. This is the only way
to get a complete list of entities from the DBDatabase object. Returns aList.

initFromFile:

- initFromFile:(const char *)aPath

Initializes the DBDatabase object from the database model information in the bundle
identified by the path aPath. Model information (database name, login string, adaptor
name, and entities) are read from the file. Returns self.

isConnected

- (BOOL)isConnected

Returns YES if the database connection is currently open (ready to fetch or store data).

Classes: DBDatabase 4-61

isTransactionlnProgress

- (BOOL)isTransactionlnProgress

Returns YES if a transaction has been started (by beginTransaction) and has not yet been
committed or rolled back.

loadDefaultDataDictionary

- loadDefaultDataDictionary

Reads the data dictionary of the database ands fills the list of entities with the information
thus obtained. This method has no effect if the DBDatabase object is not connected to a
database or if it already has a non-empty list of entities or attributes.

Returns self.

loginStringForUser:

- (const unsigned char *)loginStringForUser:(const char *)aUser

Returns the login string for the user identified by aUser, as recorded in the database bundle
from which the DBDatabase object was initialized. However, if a User does not exactly
match the name of a user as recorded in the bundle's string table, the method returns the
default login string.

name

- (const char *)name

Returns the name assigned to the DBDatabase object in the table maintained by the
DBDatabase class.

See also: - setName:, - findDatabseNamed:

read:

- read:(NXTypedStream *)stream

Standard archiving method for retrieving a DBDatabase object from a typed stre.am.

Returns self.

4-62 Chapter 4: Database Kit

rolibackTransaction
- (BOOL)rollbackTransaction

Causes the database to roll back all changes since a preceding startTransaction. Returns
YES if the rollback was successful. Returns NO is the database could not roll back the
transaction or there was no transaction in progress.

If the delegate implements db:log: (to maintain a log file), each use of rollback Transaction
generates a log entry containing the name of the method and text indicating whether the
cancellation succeeded or failed.

See also: db WillRollbackTransaction

setDelegate:

- setDelegate:anObject

Makes anObject the delegate of the DBDatabase. Returns self.

setName:

- (BOOL)setName:(const char *)aString

Sets the name of the database to aString. Returns YES.

setPanelsEnabled:
- setPanelsEnabled:(BOOL)jlag

Causes panels to be enabled or disabled. Panels are used to inform the user of unusual
conditions or prompt the user to supply parameters that have not been stored (for example,
a password). If the application is to run unattended or as a program without an Application
object, it's essential to suppress panels. By default, a new DBDatabase is initialized to
show panels. Returns self.

Note that when panels are enabled, a request for an attention panels (but not for a login or
password panel) is forwarded to the delegate if the delegate implements
notificationFrom:message:code: .

See also: arePanelsEnabled, notificationFrom:message:code:

Classes: DBDatabase 4-63

write:

- write:(NXTypedStream *)stream

Archives the DBDatabase object to the stream identified by stream. Returns self.

Methods Implemented by the Delegate

db:log:

- db:aDatabase log:(const char *)fmt, ...

Logs the notifications of database commands. The method receives a format string and a
variable number of arguments, to be used with vsprintfO. The following fragment
illustrates a possible implementation:

@implementation Control (DatabaseDelegate)

- db:aDatabase log: (const char*) format, ...

va_list args;
static char buf[1024];
va_start (args, format);

vsprintf(buf, format, args);

if ([self respondsTo:@selector(setStringValue:)])
[self setStringValue:buf] i

else
syslog(LOG_NOTICE, buf);

return self;

@end

db:notificationFrom:message:code:

- (BOOL)db:aDatabase
notificationFrom:anObject

message:(const unsigned char *)msg
code: (int)n

Invoked when the database encounters an exceptional situation. If your application
appoints a delegate and it responds to this method, the method replaces a call to the generic
attention panel.

This message originates from an object (often the adaptor) that wishes to notify the user of
some unusual condition. The argument msg is a string supplied by the object that sent the
message (and should have been selected from the strings for the appropriate language). The

4-64 Chapter 4: Database Kit

argument code is a numeric indication of the type of problem (usually, as supplied by the
database vendor). The delegate method may choose to interpret the value of code.
However, if the delegate doesn't implement this method, the message is handled by the
default attention panel, which ignores code. (The ability to put up panels is by default
enabled; you can explicitly enable it with setPanelsEnabled:.) The panel's only message
is the text specified by msg, and its only button is labeled "OK." Returns YES if the panel
was successfully displayed and acknowledged by the user.

db:wiIIEvaluateString:usingBinder:

- (BOOL)db:aDb
willEvaluateString:(const unsigned char *)aString
usingBinder:aBinder

Invoked before database control string (for example, in SQL) is sent to the database.
Returning YES permits the string to be sent.

dbDidRollbackTransaction:

- dbDidRollbackTransaction:aDatabase

Invoked when the database has rolled back the current transaction.

dbDidCommitTransaction:

- dbDidCommitTransaction:aDatabase

Invoked when the database has committed the current transaction.

dbWiliRollbackTransaction:

- db WillRollbackTransaction:aDatabase

Invoked when the database is about to roll back a transaction.

dbWillCommitTransaction:

- db WillCommitTransaction:aDatabase

Invoked when the database is about to commit a transaction.

Classes: DBDatabase 4-65

DBEditableForl11atter

Inherits From: DB Formatter : Object

Declared In: dbkitIDBEditableFormatter.h

Class Description

DBEditableFormatter is one of three subclasses of DB Formatter that support the display
and editing of data in DBTableView. The others are DBTextFormatter and
DB ImageFormatter. DBEditableFormatter supports user revisions of the displayed data.
Although DBTextFormatter is capable of faster character-based display, it's limited to
read-only use. See the description of the superclass, DB Formatter.

Instance Variables

id font;

id editView;
id drawCell;

font The current font

editView

drawCell

Method Types

Initializing

Manipulating the font

4-66 Chapter 4: Database Kit

The view now being edited

The TextField cell that's being edited

- init
-free

-font
- setFont:

Displaying and editing - draw FieldAt: :inside:in View:withAttributes::
usePositions: :

- editFieldAt: :inside:in View:withAttributes::
usePositions:: onEvent:

- abortEditing
- endEditing

Archiving - write:
- read:
- finish U narchi ving

Instance Methods

abortEditing

- abortEditing

Forces an end to the current editing (if any), discarding any changes the user may have
made. Returns self.

drawFieldAt::inside:inView:withAttributes::usePosition5::
- drawFieldAt:(unsigned int) row

:(unsigned int)column
inside:(NXRect *)frame
in View:a View
withAttributes:(id <DB Table Vectors» rowAttrs
:(id <DB Table Vectors» columnAttrs
usePositions:useRowPos
: (BOOL)useColumnPos

Draws one field of data. You never invoke this method directly; it's invoked automatically
by the DBTableView that's using this DBEditableFormatter when a field needs to be
displayed.

Classes: DBEditableFormatter 4-67

editFieldAt::inside:inView:withAttributes::usePositions::onEvent:

- (BOOL)editFieldAt:(unsigned int)row
:column
inside:(NXRect *)frame
in View:view
withAttributes:(<DB Table Vectors>)rowAttrs
:(<DB Table Vectors>)columnAttrs
usePositions:(BOOL)useRowPos
: (BOOL)useColumnPos
onEvent:theEvent

Prepares the DBEditableFormatter for editing. You never invoke this method directly; it's
invoked when the user acts on the DB Table View.

endEditing

- (BOOL)endEditing

Invoked to terminate editing in the current field, usually when the user clicks in a differe~t
field (thereby indicating that editing in this one is complete). Returns YES if successful
(this, if the method is able to make the window that sent the message the first responder).

finishUnarchiving

- finish Unarchiving

Invoked after a DBEditableFormatter's instance variables have been unarchived (using
read:) as a final step in initialization. Your application should not need to invoke this
method explicitly. Returns self.

font

-font

Returns the DBEditableFormatter's Font object.

free

-free

Frees the DBEditableFormatter instance ..

4-68 Chapter 4: Database Kit

init
- init

Initializes the DBTextFormatter instance. In the course of initializing, the display font is
set to the user's default font at 12.0 point. Returns self.

read:
- read:(NXTypedStream *) stream

Restores the values of the object's instance variables from the archive stream, including its
font and delegate. Returns self.

setFont:
- setFont:aF ont

Sets the current font to the Font object aFont. Returns self.

write:
- write:(NXTypedStream *) stream

Writes the DBTextFormatter's instance variables to stream, including its font and its
delegate.

Closes the connection to the database by sending it the command aString. The DBDatabase
object then loads the default data dictionary. Returns YES if the connection was
successfully closed.

See also: disconnect

Classes: DBEditableFormatter 4-69

DBExpression

Inherits From:

Conforms To:

Declared In:

Class Description

Object

D BProperties
DBExpression Values

dbkitIDBExpression.h

A DBExpression encapusulates a database expression as an object. A database expression
specifies a property of data to be returned from an entity in the database. A fetch is
governed by a list of DB Expressions, one for each of the properties to be returned (and also
by a DB Qualifier that specifies which records are to be included.)

The DBExpression class provides methods that let you refer to existing properties, specify
the type of data to be returned for a property, and combine existing properties to create a
new one.

Every DBExpression is relative to an entity; the entity is specified in the initForEntity: ...
methods:

• initForEntity:fromDescription:
• initForEntity:fromName:usingType:

You can change the entity or description of an existing DBExpression by sending it a
setEntity:andDescription: message.

Format of a DBExpression's Description

The text of a DBExpression is called its description. The description is constructed in
much the same way as a printf statement. That is, it consists of a quoted string containing
the symbols needed to construct the expression with placeholders for the various values,
followed by the names of the objects to be substituted for the placeholders. The following
substitution symbols may occur within the quoted string:

4-70 Chapter 4: Database Kit

Symbol

%s

Expected value

A constant string (const char *).

%p

%d

%f

%@

A (constchar *) that names one of the entity's properties.

An int.

A double or float.

An object that conforms to the DBExpression Values protocol, or a
property object created by the Database Kit. (The former includes
DBExpression, allowing you to created a nested expression.)

%% No value-this passes a single '%' literally.

The rest of the format string should comprise query-language operators and symbols, the
names of properties, and whitespace. For example, suppose you have a boxes entity that
has properties named "height", "width", and "depth." To create a DBExpression that
calculates the volume of a box, you would do the following:

id h [boxes propertyNamed:"height"];
id w [boxes propertyNamed:"width"];
id d [boxes propertyNamed:"depth"];

DBExpression *volume = [[DBExpression alloe] initForEntity:boxes
fromDeseription: "%@ * %@ * %@", h, w, d] ;

/* Setting the name isn't essential, but it's a good idea. */
[volume setName:"volume"];

To evaluate a DBExpression, you send it an expression Value message. The return is a
string in the query language used by the adaptor, representing the expression.

Using a DBExpression

A DB Expression object adopts the DBProperties protocol, and so can be used in any
situation that requires a property. To retrieve data for a DBExpression, before executing a
fetch, you add the DB Expression to the list of expressions maintained by the object that
you're using to fetch data (a DBRecordList, DBRecordStream, or DBBinder). You can use
a DBExpression to get the value for a property from a record by passing it to methods such
as DBBinder's valueForProperty: or DBRecordList's getValue:forProperty:.

The two most important differences between a DBExpression that you've created and a
property that you've retrieved from an entity are these:

• You can't write the value for a self-created DB Expression back to the source.
• You createit, you free it.

Classes: DBExpression 4-71

Instance Variables

None declared in this class.

Adopted Protocols

DBExpression Values - expression Value
- isDeferredExpression

DB Properties -name
- setName:
- entity
- matchesProperty:
- propertyType
- isSingular
- isReadOnly
- isKey

Method Types

Creating and freeing a DBExpression
- initForEntity:fromDescription:
- initForEntity:fromN ame:usingType:
- copyFromZone:
-free

Setting the entity and description
- setEntity:andDescription:

Archiving - read:
- write:

Instance Methods

copyFromZone:

- copyFromZone:(NXZone *)zone

Creates and returns a copy of the receiving DBExpression. The new object is created in the
given zone.

4-72 Chapter 4: Database Kit

free

-free

Frees the DBExpression.

initForEntity:fromDescription:

- initForEntity:(id <DBEntities>)anEntity
fromDescription:(const unsigned char *)descriptionFormat, ...

A designated initializer for the DBExpression class, this initializes a freshly allocated
DBExpression by setting its entity to anEntity and setting its description as specified by the
other arguments. The description is in the style of a printf statement: descriptionFormat
is a quoted string that establishes the format of the description, the following arguments
supply the description with values. The arguments are separated by commas. See the class
description above for the rules governing the format of the description string.

If the description refers to a single, unmanipulated property, then the DBExpression will be
"simple"-the property that the DBExpression represents will be the property referred to
in the description. If the description manipulates one or more existing properties, then the
object is "derived," and a new property object is created to describe the manipulation. The
data type of a derived DBExpression is a string, and it's given a unique name.

Returns self, or nil if either of the arguments is nil.

See also: - initForEntity:fromName:usingType:

initForEntity:fromName:usingType:

- initForEntity:(id <DB Entities>) anEntity
fromName:(const char *)aPropertyName
usingType:(const char *)aType

A designated initializer for the DBExpression class, this initializes a freshly allocated
DBExpression by setting its entity to anEntity, and creating a property object (owned by
the DBExpression) that points to the property named by aPropertyName. The data type of
the new property is set to aType, so that data retieved by this expression will be coerced to
the indicated type.

Returns self, or nil if anEntity is nil or if the named property doesn't exist in the entity.

See also: - initForEntity:fromDescription:

Classes: DBExpression 4-73

read:

- read:(NXTypedStream *)stream

Reads the DBExpression from the typed stre~m stream. Returns self.

setEntity:andDescription:

- setEntity:(id <DB Entities>)anEntity
andDescription:(const unsigned char *)descriptionFormat, ...

Replaces the DBExpression's entity and description with those provided by the arguments.
See the class description for more information on the format of the description string.

See also: - initForEntity:fromDescription:

write:

- write:(NXTypedStream *)stream

Writes the DBExpression to the typed stream stream. Returns self.

4-74 Chapter 4: Database Kit

DBFetchGroup

Inherits From: Object

Declared In: dbkitIDBFetchGroup.h

Class Description

A DBFetchGroup routes information from a DBRecordList to the various user interface
objects that display its contents. It also routes flow in the reverse direction, when the user
edits the displays. A DBFetchGroup belongs to a DBModule; each DB Module has at least
one DBFetchGroup. A DBFetchGroup contains a set of DB Associations; each maps one
database property to be fetched (a DBExpression) to an element of the application program,
usually an element of the user interface, such as a TextField, a DBImage View, or a row or
column within a DB Table View.

If your application relies on the Database Kit's standard facilities, you will not need to make
explicit use of DBFetchGroup. In Interface Builder, you need only drag an instance of
DB Module off the palette and make connections between it and elements of your user
interface. At run time, the necessary DBFetchGroups and their various DBAssociations will
be created for you automatically when the nib module is loaded into the running application.

In a DB Module, its prime (and perhaps only) fetch group is called its rootfetch group. The
module may also require one or more subordinate fetch groups. Whenever the expression
being fetched traverses a one-to-many relationship, the DB Module requires separate
DBRecordLists, each with its own DBFetchGroup. The fetch groups are in a hierarchy that
corresponds to the data being fetched. For example, suppose your application has a
scrollable display of customers; for each customer there is a list of orders; for each order
there's a list of items in the order. As the user selects a customer, the order display must be
updated to show that customer's orders. As the user selects an order, the item display must
be updated t<;> show that order's line items. The synchronization is managed by a set of
three DBFetchGroups, each with its own DBRecordList. The root DBFetchGroup
manages data for the customer display. Subordinate to it, a second DBFetchGroup keeps
the order display in step with the currently selected customer. And subordinate to that, a
third DBFetchGroup keeps the line-item display in step with the currently selected order.

Whenever there's a fetch, the DBFetchGroup takes care of updating the display toreflect
the data newly arrived in the record list. Similarly, when the user edits a control, the
DBFetchGroup updates the record list, and then notifies any other elements that may
be displaying the same property. The first fetch of a DBFetchGroup causes a
setProperties:ofSource: message to be sent to its DBRecordList.

Classes: DBFetchGroup 4-75

The DBFetchGroup also manages a second kind of user-interface state: the current record
and the current selection (which may be one record or several). The notion of "current
record" exists because controls can display one value at a time, although a record list can
contain many records. The current record is the one displayed in a TextField or a
DBImage View. The fetch group remembers which record in the record list is the current
record. The designation of a current record can be changed by the user or under
program control.

Note: The DBFetchGroup's current record and selected record list are independent of the
cursor of a DBRecordSteam or DBRecordList.

Multiple Selection

In an object that can display a list of values, such as an NXBrowser or a DB Table View, the
user can make a multiple selection. Shift-click selects additional records without
deselecting those already selected. They don't have to be contiguous. But when there is a
multiple selection, no record is the current record, and subordinate displays keyed to the
current record are cleared.

The DBFetchGroup relies on objects in the user interface (such as the DBTableView)
to represent multiple selection to the user. The DBFetchGroup will make use of
multiple-selection information (as in deieteCurrentSeiection), but does not manage it.
If your application needs to set a multiple selection, it should send the appropriate
DB Table View one of its selection-setting messages. Then, to keep the DB Fetch Group
synchronized with change in selection at the DB Table View, it must send the
following messages:

[[theTableView dataSource] tableViewDidChangeSelection:theTableView] i

Instance Variables

None declared in this class.

Method Types

Initializing - initEntity:
- setName:

4-76 Chapter 4: Database Kit

Reporting current context -name
-module
- entity
- recordList
- currentRecord
- recordCount

Controlling current selection - setAutoSelect:
- doesAutoSelect
- setCurrentRecord:
- clearCurrentRecord
- selectedRow After:
- redisplayEverything

Manipulating contents - deleteCurrentSelection
- insertN ew RecordAt:
- fetchContentsOf:usingQualifier:

Dealing with changes - hasUnsavedChanges
- validateCurrentRecord
- saveChanges
- discardChanges

U sing associations - addExpression:
- makeAssociationFrom:to:
- take ValueFromAssociation:
- addAssociation:
- removeAssociation:

U sing a delegate - delegate
- setDelegate:

Instance Methods

addAssociation:

- addAssociation:newAssociation

Adds an association to the list of associations that govern the DBFetchGroup's selection of
rows. The argument newAssociation is a DBAssociation object. Returns self.

Classes: DBFetchGroup 4-77

addExpression:

- addExpression:new Expression

Adds the DBExpression anExpression to the list of expressions that the DBFetchGroup will
fetch from the database. These expressions are passed to the DBRecordList that the fetch
group uses to get data into and out of the database. Returns self.

clearCurrentRecord

- clearCurrentRecord

Deselects the currently selected record (or records), so that there is no selected record.
DBAssociations that may have been involved in the formerly selected records are notified
of the change. Returns self. However, if there is no permission to change the rows of the
DBFetchGroup's DBRecordList, the method has no effect and returns nil.

currentRecord

- (unsigned int)currentRecord

Returns the position (index number) of the current record in the DBFetchGroup's
DBRecordList.

delegate

- delegate

Returns the DBFetchGroup's delegate.

See also: - setDelegate

deleteCurrentSelection

- delete CurrentS election

Deletes the currently selected row (or rows) from the DBFetchGroup's DBRecordList.
Following the deletion, no rows are selected. All DBAssociations are notified of the change.

Returns self. However, if no rows were selected, or there is no permission to change the
rows of the DBFetchGroup's DBRecordList, the method has no effect and returns nil.

4-78 Chapter 4: Database Kit

discardChanges

- discard Changes

Terminates any editing changes currently in progress for this DBFetchGroup and
recursively for any of its subordinate DBFetchGroups. All the DBAssociations involved
are notified so that they can update the display accordingly. Returns self.

doesAutoSelect

- (BOOL)doesAutoSelect

Returns YES if autoselection is in effect.. When this flag has been set to YES, following
each fetch through the DBFetchGroup, the first retrieved record is selected; following a
delete, the first remaining record after the first deleted record is selected. When the flag is
NO, following fetch or delete, no record is selected.

entity

- entity

Returns the DB Entity to which the DBFetchGroup belongs.

fetchContentsOf:usingQualifier:

- fetchContentsOf:aSource usingQualifier:aQualijier

Replaces the content of the current DBRecordList by records fetched from the database.
Any editing in progress for this fetch group is terminated and changes are lost. The
argument aSource may be nil, in which case all records in the DBFetchGroup's entity are
fetched. If aSource is a DBValue containing NULL, the effect is to clear the DBRecordList
without fetching any new records.

Alternatively, aSource may be a DBValue that specifies a relationship. For example,
suppose the relationship joins the entity called Department to the entity called Employees,
containing the employees belonging to each department. The DBValue may contain a
specific value for the property "Department Number" and also the entity to which it is
joined (Employees). Records will be fetched for all employees in the indicated department,
using the key value of Department Number as a foreign key that qualifies the selection of
records from Employees.

The argument aQualijier is a DB Qualifier that further restricts the records that will be fetched.

Classes: DBFetchGroup 4-79

If the parent DBModule's delegate responds to fetchGroupWillFetch:, it is notified.
Similarly" after the fetch, if the DBModule's delegate responds to fetchGroupDidFetch:,
it is a notified. Provided the fetch is successful, the various DB Associations are notified
that the contents of their views has changed, so they can redraw themselves. The current
record index is set to 0 (the index of the first record). Returns self.

hasUnsavedChanges

- (BOOL)hasUnsavedChanges

Returns YES if there are unsaved changes in this DBFetchGroups's DBRecordList, or in
any of its subordinate DBRecordLists, and NO otherwise.

initEntity:

- initEntity:anEntity

Initializes an instance of DBFetchGroup. The fetch group thus initialized will coordinate
fetches for the owning DBModule from the DB Entity named anEntity. Returns self.

insertNewRecordAt:

- (BOOL)insertNewRecordAt:(unsigned int)index

Instructs the DBFetchGroup's DBRecordList to insert a new record at the position
indicated by index. When index is negative, the method appends the new record (that is,
inserts it at the end of the DBRecordList instance.

Returns YES if the DBRecordList is able to comply, and NO otherwise. A NO return may
arise if the application has no authorization to modify rows, if no records have been fetched,
or if for any reason the DBRecordList returns NO.

If the DBFetchGroup has appointed a delegate and the delegate implements the method
fetchGroup:didlnsertRecordAt:, the method insertNewRecordAt: notifies the delegate.
The delegate may then fill in default values in the new record.

makeAssociationFrom:to:

- makeAssociationFrom:anExpr to:a View

Creates a new instance of DBAssociation for the destination DBFetchGroup. The new
association will link the DBExpression anExpr (an expression to be fetched) with the user
interface object a View where the data is displayed. Returns the new DBAssociation.

4-80 Chapter 4: Database Kit

module

-module

Returns the DBModule instance to which the receiving DBFetchGroup belongs.

name

- (const char *)name

Returns the name of the DBFetchGroup. Fetch groups that are created automatically are
given names that match the names assigned in the model. Fetch groups that were created
by the application and initialized (for example, by initEntity:) remain unnamed until
explicitly named by setName:.

See also: - setName:

recordCount

- (unsigned int)recordCount

Returns the number of records in the DBFetchGroup's DBRecordList.

recordList

- recordList

Returns the DBRecordList instance that the receiving DBFetchGroup serves.

redisplayEveryth ing

- redisplayEverything

Causes redisplay of all the fields governed by the DBFetchGroup's DBAssociations. (The
redisplay is prompted by sending all the DBAssociations a notification that the contents
changed, and they respond in the same way as for any other change to their contents.) As
a side effect, this method checks the value of the current record index, and, if it is out of
range, sets it to the index of the last record. Returns self.

Classes: DBFetchGroup 4-81

removeAssociation:

- removeAssociation:anAssociation

Removes the indicated association from the DBFetchGroup's list of associations.
Returns self.

saveChanges

- save Changes

Saves changes made to any of the records governed by the receiving DBFetchGroup and
any subordinate DBFetchGroups. Before saving, the method terminates any editing that
may have been in progress in the affected DBFetchGroups. After saving, notifies the
DBModule's delegate that the save took place. Returns self.

selectedRow After:

- (unsigned int)selectedRow After: (unsigned int)previousRow

Returns the index of the first selected row that is located after the row specified by
previousRow. (Ordinarily, there is one selected row, also known as the current row. But
under some conditions the user may select multiple rows. In that case, the return is the
index of the first of them.)

If no row is selected, or the only selected rows occur earlier than previousRow, returns
DB_NoIndex (which other methods interpret to mean "after the last record").

setAutoSelect:

- setAutoSelect:flag

Enables or disables autoselection, according to whether flag is YES or NO. When
autoselection is enabled, following each fetch through the DBFetchGroup, the first
retrieved record is selected; following a delete, the first remaining record after the first
deleted record is selected. When flag is NO, following fetch or delete, no record is selected.

setCurrentRecord:

- setCurrentRecord: (unsigned int)new Index

Sets the index of the current record to newIndex. However, if the proposed value is less
than the index of the first record, sets it to the first record; if the proposed value is greater
than the last record, sets it the last record. If executing this method changes the current

4-82 Chapter 4: Database Kit

record index, the DBFetchGroup's DBAssociations are notified that the selection changed
(and can update the display accordingly). Returns self.

setDelegate:

- setDelegate:anObject

Makes anObject the DBFetchGroup's delegate. Returns self.

See also: - delegate

setName:

- setName:(const char *)aName

Sets the name of the DBFetchGroup. This method is invoked automatically when the fetch
group is created, and your application will need to call it explicitly only if you explicitly
create a new fetch group. Returns self.

See also: - name

takeValueFromAssociation:

- take ValueFromAssociation:anAssociation

Takes a value from the part of the display governed by anAssociation, and inserts it in the
corresponding position in the DBFetchGroup's DBRecordList. The method then updates
the display of other displayed fields that are governed by other DBAssociations belonging
to the same DBFetchGroup. Returns self.

validateCurrentRecord

- (BOOL)validateCurrentRecord

Returns YES if changes that have been proposed for the current record are valid (or if there
is no current record).

The validation is done in two stages. If there is a TextField editor for the field that changed,
it reviews the changes first. If the TextField editor ~ays NO, that's the return. If there is no
text field editor, or the editor raises no objection to the change, the task of validation is
passed to the DBModule's delegate. (Each DBFetchGroup is owned by a DBModule.)
Whatever'the delegate returns becomes the return for this method.

Classes: DBFetchGroup 4-83

Methods Implemented by the Delegate

fetchGroup:didlnsertRecordAt:

- fetchGroup:JetchGroup didlnsertRecordAt:(int)index

Notification that the DB FetchGroup JetchGroup has inserted a record in its DBRecordList
at the position indicated by index.

fetchGroup:wiIIDeleteRecordAt:

- fetchGroup:JetchGroup willDeleteRecordAt:(int)index

Invoked when the DB FetchGroup JetchGroup is about to delete the record at index from the
DBRecordList. The notification is sent by the DBFetchGroup method
delete CurrentS election. The notification gives the delegate a chance to note the fact (for
example, to adjust its count of records, or to record information about the deleted record).
It doesn't matter what this method returns, since the calling method ignores the result. The
behavior of fetchGroup:willDeleteRecordAt: is simply a notification, without an
opportunity to intercede. But it's sent in advance of the actual deletion so that the delegate
method can-if desired-take a look at the record before it's gone.

fetchGroup:wiIIFaiIForReason:

- (DBFailureResponse)fetchGroup:JetchGroup
willFailFor Reason: (DBFailureCode)code

Invoked when a failure is reported from the DBRecordList owned by JetchGroup. The
reason for failure is encoded as one of the following DBFailureCodes:

DB_ReasonUnknown = 0
DB_RecordBusy
DB _RecordStreamNotReady
DB _RecordHasChanged
DB _RecordLimitReached
DB _NoRecordKey
DB _RecordKey NotUnique
DB_NoAdaptor
DB _AdaptorError
DB _ TransactionError

4-84 Chapter 4: Database Kit

The failure response that is returned must be one of the following constants, declared as
type DBFailureResponse in the header file dbkitlenums.h:

DB _N otHandled Displays a default attention panel but takes no other action

Terminates the operation that encountered the error in its
present state, and displays an attention panel

Ignores the problem; permits the action to continue if
possible.

If the delegate does not implement this method, the effect is the same as returning
DB_NotHandled.

fetchGroup:wiIIValidateRecordAt:

- (BOOL)fetchGroup:JetchGroup wiIlValidateRecordAt:(int)index

Notification that the DBFetchGroupJetchGroup, while preparing to save its DBRecordList,
has reached the point at which it would be appropriate to insert a validity check on the
record indicated by index. If you implement this method in the DBModule's delegate, you
can insert any checks you like. These might include checks for internal consistency
between fields, or even checks that require a separate query to the database (for example,
"Is this person already in the database?" or "Is data for 'Salary' consistent with 'Salary
Range' for this person's job title?")

Notice that validation for a single field ("Is this a valid phone number?" or "Is this in a valid
format for a telephone number?") should be handled when a field editor notices that the user
has changed a field's display. See the DB Module delegate method textWillChange.

If your implementation of fetchGroup:wiIlValidateRecordAt: returns YES (or if your
delegate doesn't respond to that method), the record is treated as valid. If it returns NO, the
record is treated as invalid, the attempt to save records fails, and the user is notified by an
attention panel.

fetchGroupDidFetch:

- fetchGroupDidFetch:JetchGroup

Invoked when Jetch Gro up has completed a fetch from the database.

Classes: DBFetchGroup 4-85

fetchGroupDidSave:

- fetchGroupDidSave:fetchGroup

Invoked whenfetchGroup has completed a save to the database.

fetchGroupWillChange:

- fetch Group WillChange:fetchGroup

Invoked whenfetchGroup is about to record change based on input from the user interface.

fetchGroupWillFetch:

- fetchGroup WillFetch:fetchGroup

Invoked whenfetchGroup is about to fetch data from the database.

fetchGroupWiliSave:

- (BOOL)fetchGroup WillSave:fetchGroup

Invoked whenfetchGroup is about to save the contents of the fetch group to the database.

4-86 Chapter 4: Database Kit

DBForl11atter

Inherits From:

Declared In:

Class Description

Object

dbkitIDBFormatter.h

DB Formatter is an abstract superclass; each of its subclasses provides a mechanism that
formats and displays data in a DB Table View. The Database Kit provides three
DB Formatter subclasses:

• DBImageFormatter scales, aligns, and displays images.
• DBTextFormatter displays uneditable text.
• DBEditableFormatter displays editable text.

The central method in a DB Formatter is
drawFieldAt: :inside:in View:withAttributes: :usePositions::. This method defines the
way in which a DB Formatter formats and displays data. It's invoked automatically by the
DB Table View when it wants to display a value. The default implementation of this method
does nothing; each subclass must implement it in a meaningful way.

Instance Variables

id value;

value The value to be formatted

Method Types

Getting and displaying a value - getValueAt::withAttributes::usePositions::

Batching format requests

- drawFieldAt: :inside:in View:withAttributes::
usePositions: :

- beginBatching:
- resetBatching:
- endBatching

Classes: DBFormatter 4-87

Instance Methods

beginBatching:

- beginBatching:(id <DB Table Vectors>)attrs

Tells the DB Formatter that a formatting session is about to begin. You never invoke this
method directly; it's invoked automatically by the DBTableView just before it sends the
first in a series of drawFieldAt:: ••• messages. The end of the formatting session is
signalled by the endBatching message and it's restarted through resetBatching:.

The default implementation of beginBatching: does nothing. You can reimplement this
method in a subclass to perform pre-formatting initialization. The return value is ignored.
The argument to this method (and to resetBatching:) is currently unused (it's always nil).

drawFieldAt::inside:inView:withAttributes::usePositions::
- drawFieldAt:(unsigned int)row

:(unsigned int)column
inside:(NXRect *)frame
in View:view
withAttributes:(id <DB Table Vectors>)rowAttrs
:(id <DB Table Vectors>)columnAttrs
usePositions:(BOOL)useRow
:(BOOL)useColumn

Retrieves a value from the data source, formats it, and displays it. The DB Formatter
implementation of this actually does nothing and returns self; it's up to the subclasses to
implement this method in meaningful ways.

Typically, an implementation follows these steps:

5. The value is retrieved. This is done by forwarding the method's arguments to
getValueAt:: .•. , thus:

[self getValueAt:row :column
withAttributes:rowAttrs :columnAttrs
usePositions:useRow:useColumn];

6. The value that's set by getValueAt:: ••• (keep in mind that the method sets the value
instance variable) is formatted for display.

7. The formatted value is displayed inside frame, which is given in view's coordinate
system. Note well that the focus will be locked on view before this message is sent­
you don't have to lock focus yourself.

4-88 Chapter 4: Database Kit

endBatching

- endBatching

Notifies the DB Formatter that a formatting-session is over. See the beginBatching:
method for more information.

See also: - beginBatching:, - resetBatching:

getValueAt::withAttributes::usePositions::

- getValueAt:(unsigned int) row
:(unsigned int) column
withAttributes:(id <DB Table Vectors» rowAttrs
:(id <DB Table Vectors» columnAttrs
usePositions:(BOOL) useRowPos
:(BOOL) useColumnPos

Retrieves a value from the data source, places it in the DBFormatter's value instance
variable, and then returns the variable. You never invoke this method from your
application; however, if you create a subclass of DB Formatter, you'll need to invoke it from
the implementation of drawFieldAt:: •.. , as explained in the description of that method.
You shouldn't need to reimplement this method in a subclass.

resetBatching:

- resetBatching:(id <DB Table Vectors>)attrs

Tells the DB Formatter to restart a formatting session. See the beginBatching: method for
more information.

See also: - beginBatching:, - endBatching

Classes: DBFormatter 4-89

DBlrnageForrnatter

Inherits From: DB Formatter : Object

Declared In: dbkitIDBlmageFormatter.h

Class Description

DBlmageFormatter is one of three subclasses of DB Formatter; the others are
DBTextFormatter and DBEditableFormatter (which deal with text rather than images). See
the description of the superclass, DB Formatter.

Instance Variables

id defaultlmage;

defaultImage U sed when the source to be formatted contains no image

Method Types

Initializing - init
- free

Default - setDefaultlmage:anlmage
- defaultlmage

Drawing - drawFieldAt: :inside: in View:withAttributes::
usePositions: :

Archiving - write:
- read:

4-90 Chapter 4: Database Kit

Instance Methods

defaultlmage

- defaultlmage

Returns the default image. This is the image that drawFieldAt: •.. will substitute if asked
to draw a field that does not contain an image.

drawFieldAt::inside:inView:withAttributes::usePositions::

- drawFieldAt:(unsigned int) row
:(unsigned int) column
inside:(NXRect *)frame
in View:view
withAttributes:(id <DB Table Vectors» rowAttrs
:(id <DB Table Vectors» columnAttrs
usePositions:useRow Pos
:(BOOL)useColumnPos

Displays an image in one field of data. You never invoke this method directly; it's invoked
automatically by the DB Table View that's using this DBEditableFormatter when a field
needs to be displayed.

The displayed image is centered vertically; its horizontal alignment is controlled by
rowAttrs or columnAttrs; it may be centered, left aligned, or right aligned. The image is
clipped to the frame.

Returns self.

See also: - getValueAt::withAttributes::usePositions:: (DB Formatter) ,
- setAlignment (DBVectors protocol)

free

-free

Frees the DBImageFormatter instance.

Classes: DBlmageFormatter 4-91

init
- init

Initializes the DBImageFormatter instance. In the course of initializing, an initial value is
set for the default image (to be displayed when a field where an image was expected in fact
has none). Returns self.

read:
- read:(NXTypedStream *) stream

Restores the values of the object's instance variables from the archive stream, including its
font and delegate. Returns self.

setDefaultlmage:

- setDefaultlmage:an/mage

Makes an/mage the image that drawFieldAt: ... will substitute when asked to draw a field
that doesn't contain an image. If you haven't explicitly set a default image, the default
established when the DBImageFormatter is initialized is a gray rectangle. Returns self.

write:

- write:(NXTypedStream *) stream

Writes the DBTextFormatter's instance variables to stream, including its font and its delegate.

4-92 Chapter 4: Database Kit

DBll11age VielN

Inherits From: Control: View : Responder: Object

Declared In: dbkitIDBImage View.h

Class Description

A DB Image View displays a single NXImage object bordered by one of four types of frame.
Providing editing is enabled, the user can drag a new image into a DBImageView's frame
(using the Application Kit's image-dragging mechanism).

The Database Kit permits a DB Image View object to be connected to any database field
whose data is of type object and class NXImage.

Instance Variables

None declared in this class.

Method Types

Internals - initFrame:
- drawS elf: :

Accessing the image - image
- setImage:

Accessing the border - setStyle:
- style

Editing - isEditable
- setEditable:

Classes: DBlmageView 4-93

Instance Methods

drawSelf::

- drawSelf:(const NXRect *)rects :(int)rectCount

Draws the DBImageView. You never invoke this method yourself, it's invoked
automatically by the Application Kit's display mechanism. Returns self.

See also: - drawSelf:: (View; Application Kit)

image

-image

Returns the image view's NXImage object.

initFrame:

- initFrame:(const NXRect *)frameRect

Initializes the image view with the given frame. Returns self.

isEditable

- (BOOL)isEditable

Returns YES if the image can be replaced or deleted.

See also: - setEditable:

setEditable:

- setEditable:(BOOL)jlag

Makes the DBImageView editable or not, asjlagis YES or NO. When an image view is
editable, it still must be deleted or replaced as a whole; "editable" doesn't involve fiddling
with bits.

See also: - isEditable

4-94 Chapter 4: Database Kit

setlmage:
- setImage:new/mage

Sets the image view's NXImage to new/mage. Returns self.

setStyle:

- setStyle:(int)newStyle

Sets the style in which the image's border is drawn. The argument newStyle must be one
of the following:

DB_ImageNoFrame = 0
DB _ImagePhoto
DB_ImageGray Bezel
DB_ImageGroove

See also: - style:

style

- (int)style

Returns the current border style, as one of the possible styles listed as arguments of
setStyle:.

Classes: DBlmageView 4-95

DBModule.

Inherits From: Object

Declared In: dbkitIDBModule.h

Class Description

The DBModule class provides the connection between the Database Kit's user interface
layer and its access layer. It does this by letting you associate a set of interface objects with
a set of DBRecordLists. The methods defined by DB Module control the flow of data
between the interface objects and the DBRecordLists. The class also defines a handful of
convenience methods that control transactions between a DBModule's "main"
DBRecordList (the DBRecordList association with the root fetch group, as explained
below) and the external database.

It's strongly recommended that you use Interface Builder to create and instantiate
DB Module objects. (For this, you need the Database Kit palette, described in the section
"Database Palette for Interface Builder" in this chapter's introduction.) Through Interface
Builder you can denote the record lists that a DBModule will represent and specify the
connections between these record lists and the objects in your application's interface.

Because of Interface Builder's intercession, you don't need to know much about the
DBModule class. However, you may want to use DB Modules to inspect or modify data as
it's shuffled between a database and your application's user interface. For this, you need to
know a little bit about how DB Modules are built.

Record Lists, Fetch Groups, and Associations

When it's initialized (through initDatabase:entity: method), a DBModule automatically
creates two objects: a DBRecordList, as described by the arguments of the initialization
method, and an instance of DBFetchGroup, called the root fetch group. An instance of
DBFetchGroup represents a single DBRecordList and associates it with one or more
interface objects; the root fetch group is the object that corresponds to the DBModule's
(initial) DBRecordList. If the DBRecordList contains only one-to-one relationships, then
the root fetch group is sufficient for the DBModule. However, if there are one-to-many
relationships in the DBRecordList, additional DBFetchGroups must be created and added
to the DBModule, one for each such relationship. (If you use Interface Builder, the
additional DBFetchGroups, if needed, are created and added automatically.)

4-96 Chapter 4: Database Kit

DBFetchGroups are important not only for the utility that they bring to DBModule, but also
because it's through the DBFetchGroup that you can get to a DBModule's DBRecordList
objects (which opens the door to the classes in the Database Kit's acces layer). You can
retrieve a DBModule's list of DBFetchGroups through its getFetchGroups: method.

As stated above, a DBFetchGroup contains only one DBRecordList, but can associate that
DBRecordList with any number of user interface objects. Each such association (in other
words, each association between an interface object and a DBRecordList) is represented by
a DBAssociation object. It's the DBAssociation's task to take data from the DBRecordList,
permute it (if necessary), and send it to the interface object for display. It must also perform
the opposite function, updating the data in the DBRecordList as the user manipulates the
data in the interface. If you're using the standard interface objects supplied by the Database
Kit and the Application Kit to display data, then you never need to be aware of the
DBAssociations in your application. However, if you want to use a custom interface
object-an instance of a class of your own design-then that object must implement the
DBCustomAssociation informal protocol. You can retrieve the DB Association for a
particular interface object through DBModule's associationForObject: method.

Instance Variables

id database;
id delegate;

database

delegate

Method Types

Initializing a DB Module

Querying the DB Module

The DBDatabase object through which the module is
connected to the database

The object that receives notification messages

- initDatabase:entity:

- database
- entity

Classes: DBModule 4-97

Accessing fetch groups and associations
- getFetchGroups:
- rootFetchGroup
- fetchGroupN amed:
- addFetchGroup:
- associationForObject:
- editingAssociation

Performing transactions - fetchContentsOf:usingQualifier:
- fetchAllRecords:

Browsing the record list

Interface methods

Accessing the delegate

Instance Methods

addFetchGroup:

- saveChanges:
- discardChanges:
- deleteRecord:
- appendN ew Record:
- insertNewRecord:

- nextRecord:
- previousRecord:

- take ValueFrom:
- textDidEnd:endChar:
- textWillChange:
- textWillEnd:

- setDelegate
- delegate:

- addFetchGroup:aF etchGroup

Adds the given DBFetchGroup object to the list of fetch groups that the DBModule
manages. Returns self.

appendNewRecord:

- appendNewRecord:sender

Creates a new record and adds it to the end of the root fetch group's DBRecordList. This
is a convenience method that's implemented by sending an insertNewRecordAt: message
to the root fetch group. Returns self if the record was successfully appended; otherwise
returns nil.

See also: - insertNewRecordAt: (DB FetchGroup)

4-98 Chapter 4: Database Kit

associationForObject:

- associationForObject:anObject

Returns the DBAssociation object that's associated with the given user interface object.

database

- database

Returns the DBDatabase object for which the DB Module was created.

See also: - initDatabase:entity:

delegate

- delegate

Returns the DBModule's delegate.

See also: - setDelegate:

deleteRecord:

- deleteRecord:sender

Deletes the currently selected records by sending deleteCurrentSelection to the root fetch
group and returns self.

See also: - deleteCurrentSelection (DBFetchGroup)

discardChanges:

- discardChanges:sender

Terminates any editing changes currently in progress for the DBModule's fetch groups.
The user interface object and the corresponding instance of DBRecordList are cleared in
response to this message. All the DBAssociations involved are notified so that they can
update the display accordingly. The method is implemented by sending a discard Changes
message to the DBModule's root fetch group. Returns self.

Classes: DBModule 4-99

editingAssociation

- editingAssociation

Returns the DBAssociation that is currently involved in editing (the one that contains the text
insertion cursor). If none of the DBAssociation objects is involved in editing, returns nil.

entity

- entity

Returns the DB Entity corresponding to this DBModule.

See also: - initDatabase:entity:

fetchAIiRecords:

- fetchAlIRecords:sender

Fetches records into the root fetch group. This method is implemented by invoking
fetchContentsOf:usingQualifier: with aSource and aQualijier both nil. Returns self,
unless the fetch fails. The fetch will fail if the connection to the database is closed and
cannot be reopened, or if any of the fetch groups has unsaved changes that may not
be discarded.

fetchContentsOf:usingQualifier:

- fetchContentsOf:aSource usingQualifier:aQualijier

Replaces the records in the current DBRecordList with records fetched from the database.
Any editing in progress for this fetch group is terminated.

The argument aSource may be a DBEntity; it may also be a DBValue that specifies a
relationship. When it specifies a relationship, the DBValue object contains both the key
value of a source entity and the target entity to which it is joined; such an object responds
YES to an isEntity message. For example, if the DB Value is the value" 1 0" for the attribute
"Department," the effect is to use "Department = 1 0" as a key that defines the set of records
to be fetched. If aSource is nil, the DBModule's DB Entity is assumed.

The argument aQualijier is a DB Qualifier that further restricts the records that will be
fetched. If aQualijier is nil, there is no further qualification and all records are returned.

If the parent DBModule's delegate responds to fetchGroupWillFetch:, it is notified.
Similarly, after the fetch, if the DBModule's delegate responds to fetchGroupDidFetch:,
it is a notified, giving it a change to set up null values for the DBRecordList. The various

4·100 Chapter 4: Database Kit

DBAssQciations are notified that the contents of their views has changed, so they can
redraw themselves. The current record index is set to 0 (the index of the first record).

Returns self when the fetch is successful, and nil otherwise. A nil return may arise if the
root fetch group has unsaved changes that may not be discarded.

See also: - fetchContentsOf:usingQualifier: (DB FetchGroup),
- isEntity (DB Types protocol)

fetchGroupNamed:

- fetchGroupNamed:(const char *)aName

Returns the DBFetchGroup whose name matches aName (as declared in the model file or
set through the DBFetchGroup method setName:). If aName is nil, the method returns the
root fetch group. Returns nil if the name isn't found.

getFetchGroups:

- getFetchGroups:(List *)aList

Fills aList with the DBModule's DBFetchGroup objects. Returns aList.

initDatabase:entity:

- initDatabase:aDatabase entity:anEntity

Initializes an instance of DB Module for the given database and entity, and creates and adds
the object's root fetch group. Returns self.

insertNewRecord:

- insertNewRecord:sender

Creates a new record and inserts it into the root fetch group's DBRecordList. This is done
by sending an insertNewRecordAt: message to the root fetch group, passing the index of
the current record as the argument. Returns self if the record was successfully inserted;
otherwise returns nil.

See also: - insertNewRecordAt: (DBFetchGroup)

Classes: DBModule 4-101

nextRecord:

- nextRecord:sender

Advances the currently selected record in the root fetch group to the next record in the list.
If there is no currently selected record, does nothing. Returns self.

previousRecord:

- previousRecord:sender

Moves the current selection back to the previous record. However, if there is no currently
selected record, does nothing. Returns self.

rootFetchGroup

- rootFetchGroup

Returns the module's one required DBFetchGroup (the first in the list of fetch groups).

saveChanges:

- saveChanges:sender

Causes all changes made within the module to be saved to the database, by saving all the
module's fetch groups. Returns self, but nil if any error occurred.

Instructs the root DBFetchGroup to save the changes that the user has introduced by editing
the module's data display. Returns self if the changes were successfully saved (or if there
were no changes to save).

If the database supports transactions and no other transaction is in progress, the
saveChanges: method signals the start of a new transaction before starting the save, and
commits the transaction if the save is completed successfully. Thus all changes within the
module are saved as a single transaction (see the DB Database methods beginTransaction
and commitTransaction).

If for any reason the save could not be carried out, save Changes: returns nil, and leaves
the database unchanged. There are several reasons a save might be unsuccessful. Before
starting the save, the fetch groups may run a validation check. The method also notifies the
DBModule's delegate by sending it a moduleWillSave message, giving the delegate a
chance to interpose its own checks. When the save has been carried out, the method again
notifies the delegate, this time by sending it a moduleDidSave message. The delegate may
still object at this point; if it does, the save is rolled back.

4·102 Chapter 4: Database Kit

setDelegate:

- setDelegate: anObject

Makes anObject the delegate of the DB Module instance. Returns self.

takeValueFrom:

- take ValueFrom:sender

Notifies the DBModule that the user modified one of the displays (DB Image View,
NXBrowser). The DBModule finds the corresponding DBAssociations and through them
their DBFetchGroups and causes the object's new value to be read into the appropriate part
of the DBRecordList. Returns self; however, if sender has no association linking it to the
module's DBRecordList, returns nil.

textDidEnd:endChar:

- textDidEnd:textObject endChar:(unsigned short)whyEnd

Called by a DBEditableTextFormatter object when it has relinquished first responder
status. The argument whyEnd identifies the character (Tab, Shift-Tab, or Return) that
caused the sender to cease being first responder. A return of YES permits the change to
proceed; a return of NO prevents the change and selects the entire text field. Your
application will not normally need to use this method explicitly.

textWiliChange:

- (BOOL)textWillChange:textObject

Called by a DBEditableTextFormatter object when the user first makes a change to an
editable field in the display. A return of YES permits editing to proceed. Your application
will not normally need to use this method explicitly.

textWiliEnd:

- (BOOL)textWillEnd:textObject

Called by a DBEditableTextFormatter object when it is about to relinquish first responder
status. A return of YES permits the change to proceed; a return of NO prevents the change
and selects the entire text field. Your application will not normally need to use this
method explicitly.

Classes: DBModule 4-103

Methods Implemented by the Delegate

moduleDidSave:

- moduleDidSave:module

Called when module has completed a save to the database.

moduleWillLoseChanges:

- (BOOL)module WillLoseChanges:module

Called when module is about to discard changes received from the user interface.

moduleWiliSave:

- (BOOL)module WillSave:module

Caned when module is about to save its data to the database.

4-104 Chapter 4: Database Kit

DBQualifier

Inherits From: Object

Conforms To: DBExpression Values

Declared In: dbkitID BQualifier.h

Class Description

A DB Qualifier object creates a predicate statement, expressed in the database's query
language, that's applied as records are fetched from the database. Records that don't pass
the predicate, or description, aren't selected for the fetch. The predicate that's created by
a description is usually one or more expressions in which the value for a property is
compared to a constant value, or to the value for another property.

Creating a Description

A DBQualifier's description is created through the initForEntity:fromDescription: or
setEntity:andDescription: methods. You can add to an existing description through the
addDescription: method. Each of these methods takes a printf-style format-and-values
list as its final argument: The first element (the format) is a quoted string that establishes
the format of the description, the following elements supply the description with values.
Neighboring elements are separated by a comma.

Strings, numbers, and objects can be represented in the format string through the following
substitution symbols:

Classes: DBQualijier 4-105

Format symbol

%s

%p

%d

%f

%@

%%

Expected value

A constant string (const char *).

A (const char *) that names a property of the object's
entity.

An into

A double or float.

An object that conforms to the DBExpression Values
protocol, or a property object created by the Database Kit.
(The former includes DB Qualifier, allowing you to
created a nested qualification.)

No value-this passes a single '%' literally.

The rest of the format string should comprise valid query-language operators and symbols,
the names of properties, and whitespace. The adaptor applies the description as a
predicate, so you needn't define it as such yourself-for example, if you're creating a
DB Qualifier description in SQL, a "WHERE" is automatically appended to your
description by the adaptor.

Applying a DBQualifier

Once you've created a DB Qualifier, there are two ways to apply it:

• If you're using a DBRecordStream or DBRecordList, you can qualify a fetch by
passing a DB Qualifier object as the argument to the fetchUsingQualifier: method.

• If you're using a DBBinder, you can set the qualifier that's used in subsequent
selects through setQualifier: or initForDatabase:withProperties:andQualifier:.
(DBBinder separates the select and fetch operations; the qualification is actually
placed on the select.)

As an example, let's say you want to retrieve records from the "grocers" database, but you
only want those grocers that have a hat size greater than 12 and an IQ less than 95. You
could create a DB Qualifier and apply it thus:

/* The grocers entity is assumed to exist. */

id hatProp = [grocers propertyNamed:"hatsize"];

id iqProp = [grocers propertyNamed:"iq"];

float minHat = 12.0;

int maxIQ = 95;

4-106 Chapter 4: Database Kit

/* Create the qualifier. */
DBQualifier *bigButEmpty =

[[DBQualifier alloe] initForEntity:"groeers"
fromDeseription:"%@ > %d AND %@ < 95",
hatProp, minHat, iqProp, maxIQ];

/* Apply it to a feteh (assume that the DBReeordList exists). */
[aReeList fetehUsingQualfier:bigButEmpty];

U sing the convenience of the "%p" substitution, the same description could have been
created without the use of property objects:

fromDeseription:"%p> %d AND %p < %d",
"groeers.hatsize", minHat, "groeers.iq", maxIQ];

Instance Variables

None declared in this class.

Adopted Protocols

DBExpression Values - expression Value
- isDeferredExpression

Method Types

Initializing and freeing + initialize
- initForEntity:
- initForEntity:fromDescription:
- copyFrornZone:
-free

Modifying - addDescription:
- setEntity: andDescription:
- setName:
-empty

Querying -name
- entity
- isEmpty

Archiving - read:
- write:

Classes: DB Qualifier 4-107

Class Methods

initialize

+ initialize

Initializes the DB Qualifier class. This is invoked automatically; you should never invoke
it directly.

Instance Methods

addDescription:

- addDescription:(const unsigned char *)descriptionFormat, ...

Appends the string that's created by the arguments to the DBQualifier's current description.
The arguments are in the style of a printf statement; see the class description above for the
rules governing the format of the description string. Returns self.

See also: - initForEntity:fromDescription:, - setEntity:andDescription:

copyFromZone:

- copyFromZone:(NXZone*)z

Creates a copy of the DB Qualifier, allocating space for it from zone z. Returns the copy.

empty
- (BOOL)empty

Deletes the DBQualifier's description. Returns YES.

See also: - isEmpty

entity

- (id <DB Entities>) entity

Returns the entity object to which this DB Qualifier can be applied, as set through
setEntity:andDescription: or one of the initForEntity: methods.

See also: - initForEntity:fromDescription:, - setEntity:andDescription:

4-108 Chapter 4: Database Kit

free

- free

Frees the DB Qualifier.

initForEntity:

- initForEntity:(id <DB Entities>)anEntity

The designated initializer for the DB Qualifier class, this initializes a freshly allocated
DB Qualifier by setting its entity to the argument, but leaving its description empty.
Returns self.

See also: - initForEntity:fromDescription:, - setEntity:andDescription:

initForEntity:fromDescription:

- initForEntity:(id <DB Entities>)anEntity
fromDescription:(const unsigned char *)descriptionFormat, ...

Initializes a freshly allocated DB Qualifier by setting its entity to anEntity and setting its
description as specified by the other arguments, in the style of a printf statement:
descriptionF ormat is a quoted string that establishes the format of the description, the
following arguments supply the description with values. Neighboring arguments are
separated by a comma. See the class description above for the rules governing the format
of the description string.

See also: - initForEntity:, - setEntity:andDescription:

isEmpty

- (BOOL)isEmpty

Returns YES if the DBQualifier's description is empty (if it hasn't been set or if the object
has received an empty message). If the DB Qualifier has a description, this returns NO.

See also: - empty

Classes: DBQualijier 4-109

name

- (const char *)name

Returns the name of the DB Qualifier, as set through setName:. The ability to name a
DB Qualifier is provided as a convenience, and to support interface objects. The name isn't
used by the mechanism that accesses the database-in other words, a name isn't as
important for a DBQualifier's as it is for a property or entity.

See also: - setName:

read:

- read:(NXTypedStream *)stream

Reads the DB Qualifier from the typed stream stream. Returns self.

setEntity:andDescription:

- setEntity:(id <DB Entities>)anEntity
andDescription:(const unsigned char *)descriptionFormat, ...

Sets the DBQualifier's entity and description as given by the arguments. See the
addDescription: method and the class description, above, for more information on the
description format. Returns self.

See also: - addDescription:, - initForEntity:fromDescription:

setName:

- (BOOL)setName:(const char *)aName

Sets the name of the DB Qualifier to aName. The name isn't essential, as discussed in the
name method description. Returns YES.

See also: - name

write:

- write:(NXTypedStream *)stream

Writes the DB Qualifier to the typed stream stream. Returns self.

4-110 Chapter 4: Database Kit

DBRecordList

Inherits From: DBRecordStream : Object

Conforms To: DB Containers
D BCursorPositioning

Declared In: dbkitIDBRecordList.h

Class Description

The DBRecordList class supports buffered access to records in a database. A DBRecordList
object fetches groups of records from a database and presents them as an array that can be
accessed using the methods declared in the DBCursorPositioning protocol. A DBRecordList
object permits modifications, deletions, and insertions to the individual records which can
then be saved to the database as a group. This batch approach to record operations
distinguishes DBRecordList from its superclass, DBRecordStream. Note, however, that
this increased functionality comes at the cost of increased memory usage.

Setting Up a DBRecordList

You prepare a DBRecordList to fetch records in the same way you would a
DBRecordStream. (See the DBRecordStream class specification for details.)
Additionally, using the setRetrieveMode: method, you can specify whether the fetch will
be done synchronously or asynchronously. By default, a DBRecordList retrieves records
synchronously, meaning that it won't respond to further messages until it retrieves all records
selected by a given query. If you specify the asynchronous mode, the DBRecordList creates
a separate Mach thread to fetch the records. The DBRecordList itself is immediately ready
to respond to further messages. As the separate thread fetches records, it passes them back
to the DBRecordList, which adds them to its list.

There are actually two asynchronous modes, identified by the constants
DB_BackgroundStrategy and DB_BackgroundNoBlockingStrategy. These modes
differ only in the way the DBRecordList behaves when asked to access a record that
hasn't yet returned from the database. For example, if a DBRecordList using the
DB_BackgroundStrategy receives a setLast message before all records have been retrieved,
the setLast method will block until it can access the last record. If the DBRecordList were
using the DB_BackgroundNoBlockingStrategy, the setLast method would return nil
immediately, indicating a failure to access the last record.

Classes: DBRecordList 4·111

Accessing and Modifying Data

All of DB Record Stream's methods for accessing and modifying records (for example,
deleteRecord, isModified, and get Value:forProperty:) work with DBRecordList objects.
However, since a DBRecordList can contain multiple records, it also declares methods that
take an additional argument, a record index (deleteRecordAt:, isModifiedAt:, and
get Value:forProperty: at:).

Methods that access records but don't specify an index act on the record at the present
position of the cursor. The cursor can be reported or set by methods declared in the
DBCursorPositioning protocol.

Note: The internal cursor maintained by a DBRecordList is independent of the
DBFetchGroup's current row or current selection (which depend on actions in the
user interface).

Saving Changes

As with a DBRecordStream object, a DBRecordList object attempts to save additions,
changes, and deletions when it receives a saveModifications message. If an error
occurs during the save operation, the DBRecordList sends its delegate a
recordStream:willFailForReason: message (see the DBRec'ordStream class description
for more information). At the same time, the DBRecordList's cursor is set to point to the
row that is failing. Any rows that fail will be "dirty" after the saveModifications has
completed. This combination of events lets you go back and fix failures, and then resubmit.

Instance Variables

N one declared in this class.

Adopted Protocols

DB Containers - addObject:forBinder:
- count
- empty
- freeObjects
- objectAtforBinder:
- prepareForBinder:

4-112 Chapter 4: Database Kit

D BCursorPositioning - currentPosition
- setFirst
- setLast
- setNext
- setPrevious
- setTo:

Method Types

Initializing and freeing - init
-free
- clear

Setting the retrieval mode - setRetrieveMode:
- currentRetrieveMode

Fetching data from the database - fetchUsingQualifier:
- fetchUsingQualifier:empty:
- fetchRecordForRecordKey:
- recordLimit
- setRecordLimit:

Accessing data - getValue:forProperty:
- getValue:forProperty:at:
- getRecordKeyValue:
- getRecordKeyValue:at:

Modifying data - setValue:forProperty:
- set Value:forProperty: at:
- insertRecordAt:
- appendRecord
-newRecord
- isNewRecord
- isNew RecordAt:
- delete Record
- deleteRecordAt:
- isModified
- isModifiedAt:
- isModifiedForProperty:at:

U sing record indexes - positionForRecordKey:
- moveRecordAt:to:
- swapRecordAt:withRecordAt:

Saving data - saveModifications

Classes: DBRecordList 4-113

Instance Methods

appendRecord

- appendRecord

Adds an empty record at the end of the record list by invoking DBRecordList's
insertRecordAt: method. Returns the value returned by insertRecordAt:.

See also: - insertRecordAt:, - newRecord, - deleteRecord, - deleteRecordAt:

clear

- clear

Resets the DBRecordList. The DBRecordList's record data, list of properties, and list of
key properties are emptied. Its database instance variable is set to nil, but its delegate
remains unchanged. Its status is set to DB_NotReady. Returns self.

See also: - empty (DBRecordStream)

currentRetrieveMode

- (DBRecordListRetrieveMode)currentRetrieveMode

Returns the DBRecordList's retrieve mode, which can be DB_SynchronousStrategy,
DB_BackgroundStrategy, or DB_BackgroundNoBlockingStrategy. See the class
description above for more information.

See also: - setRetrieveMode:

deleteRecord

- deleteRecord

Deletes the current record. Returns nil if there's no current record; otherwise, returns self.

See also: - deleteRecordAt:

4-114 Chapter 4: Database Kit

deleteRecordAt:

- deleteRecordAt:(unsigned)index

Deletes the record at position index. Returns nil if there's no record at index; otherwise,
returns self.

See also: - deleteRecord, - currentPosition (DBCursorPositioning)

fetchRecordForRecordKey:

- fetchRecordForRecordKey:(DBValue *)aValue

Fetches the record identified by the record key stored in aValue. Typically, this method is
used to find data in DBRecordLists containing related information. For example, suppose
one DBRecordList contains employee data and another contains department data. The
department data for a specific employee can be found by first getting the value of the
department number from the employee record (see getRecordKeyValue:at:) and then
using it as the argument to fetchRecordForRecordKey: in a message to the DBRecordList
containing department information.

Returns nil if no record has the supplied key value or if an error occurs; otherwise,
returns self.

See also: - fetchUsingQualifier:, - fetchUsingQualifier:empty:

fetchUsingQualifier:

- fetchUsingQualifier:(DBQualifier *)aQualifier

Invoking this method is equivalent to invoking - fetchUsingQualifier:empty: with YES
as the argument to empty:. See - fetchUsingQualifier:empty:, below.

fetchUsingQualifier:empty:

- fetchUsingQualifier:(DBQualifier *)aQualifier empty:emptyFirst

Loads the DBRecordList with records from the database. Before invoking this method, use
setProperties:ofSource: to specify.the source and properties of the data to be retrieved.
The scope of the retrieved records is controlled by aQualifier. For example, assuming the
data source is an SQL database, aQualifier could be an object that represents the expression
"where name = 'Holbein"'. If aQualifier is nil, all records are retrieved.

Classes: DBRecordList 4-115

If emptyFirst is YES, before loading new data, the method first empties the DBRecordList
and its list of properties. Setting empty First to NO leaves records already fetched in the
DBRecordList, and append to them the unique records retrieved by the current fetch. In
that case, the effect of successive invocations with different qualifiers builds in the
DBRecordList the union of the sets returned by the various qualifiers.

Each fetch can be done synchronously or asynchronously, depending on the fetch mode
in effect at the time the fetch is begun (see the class description above for details). If
you specify an invalid fetch mode, fetchUsingQualifier:empty: raises a
DB _UNIMPLEMENTED _ERROR exception.

A synchronous fetch is subject to a limit on the total number of records in the
DBRecordList, set by setRecordLimit:. If the number of qualifying records would
exceed that limit, the DBRecordList receives that number, and the delegate is sent a
recordStream:willFailForReason: message with the argument DB_RecordLimitReached.

Returns nil if the data can't be selected (for example, if the DBDatabase isn't connected to
the database) or if the qualifier and DBRecordList refer to different entities in the database;
otherwise, returns self. After fetchUsingQualifier:empty: returns, the DBRecordList's
current record is set to the first record in the list.

See also: - cancelFetch, - fetchUsingQualifier:, - setProperties:ofSource:

free

-free

Releases the storage for the DBRecordList.

getRecordKeyValue:

- getRecordKeyValue:(DBValue *)aValue

Places the value of the current record's key property (or properties) into a Value.

Returns nil if the DBRecordList has status DB_NotReady or if there is no current record;
otherwise, returns a Value.

See also: - getRecordKeyValue:at:

getRecordKeyValue:at:

- getRecordKeyValue:(DBValue *)aValue at:(unsigned)index

Places the value of the key property (or properties) for the record at index into a Value.

4-116 Chapter 4: Database Kit

This method is especially useful when data must be exchanged between DBRecordLists.
For example, suppose one DBRecordList supplies employee information and another
supplies department information to the user interface of an application. A user can change
an employee's department by selecting from a list of department names. After a department
name is selected, you can use getRecordKeyValue: to determine the corresponding record's
key value so that you can set the department identification in the employee's record.

Returns nil if the DBRecordList has status DB_NotReady or if there is no record at index;
otherwise, returns a Value.

See also: - getRecordKeyValue:

getValue:forProperty:

- getValue:(DBValue *)aValue forProperty:aProperty

Places the value for the property aProperty of the current record into the DB Value object
a Value and returns a Value.

See also: - setValue:forProperty:at:, - setValue:forProperty,
- getValue:forProperty:at:

getValue:forProperty:at:

- getValue:(DBValue *)a Value
forProperty:aProperty
at: (unsigned) index

Places the value for the property aProperty of the record at position index into a Value and
returns aValue. aProperty is an object that conforms to the DB Properties protocol. Such
an object is returned by DBDatabase's propertyNamed: method. The argument index
identifies the record within the DBRecordList and has the range from 0 to the value
returned by the count method.

See also: - setValue:forProperty:at:, - setValue:forProperty,
- getValue:forProperty:

init

- init

Initializes a newly allocated DBRecordList. The DBRecordList's delegate instance
variable is set to nil, its retrieve mode is set to DB_SynchronousStrategy, and its cursor (its
current record) is set to DB_NoIndex. Returns self.

This method is the designated initializer for DBRecordList.

Classes: DBRecordList 4-117

insertRecordAt:

- insertRecordAt:(unsigned)index

Adds a new, empty record to the record list at index. The newly inserted record becomes
the current record.

Returns nil if the DBRecordList has a DB_NotReady status or if an error prevents the
insertion of the record. Otherwise, returns self.

See also: - appendRecord, - deleteRecord, - deleteRecordAt:

isModified

- (BOOL)isModified

Returns YES if any record in the DBrecordList has been modified, added, or deleted;
NO otherwise.

See also: - isModifiedAt:, - isModifiedForProperty:at:

isModifiedAt:

- (BOOL)isModifiedAt:(unsigned int)index

Returns YES if the record at index is new or has been modified; NO otherwise.

See also: - isModified, - isModifiedAt:for:

isModifiedForProperty:at:

- (BOOL)isModifiedForProperty:aProperty at:(unsigned int)index

Returns YES if aProperty in the record at index has been modified since the record was
added to the DBRecordList or fetched from the database; NO otherwise.

See also: - isModified, - isModifiedAt:

isNewRecord

- (BOOL)isNewRecord

Returns YES if the current record is new; that is, it the result of the DBRecordList receiving
an appendRecord, insertRecordAt:, or newRecord message.

See also: - isNewRecordAt:, - isModified

4-118 Chapter 4: Database Kit

isNewRecordAt:

- (BOOL)isNewRecordAt:(unsigned int)index

Returns YES if the record at index is new; that is, if it was produced by the DBRecordList's
receiving an appendRecord, insertRecordAt:, or newRecord message.

See also: - isNewRecord, - isModified

moveRecordAt:to:

- moveRecordAt:(unsigned int)sourcelndex to:(unsigned int)destinationlndex

Moves the record at sourcelndex to destinationlndex. Returns nil if there is no record at
sourcelndex or if an error prevents the insertion of the record are destinationlndex;
otherwise, returns self.

newRecord

-newRecord

Creates a new, empty record by invoking DBRecordList's insertRecordAt: method and
passing the index of the current row as the argument. Before this operation can take place,
the DBRecordList attempts to save modifications of the current record to the database. If
these changes can't be saved, newRecord returns nil, and no new record is created.
Otherwise, newRecord returns self, and the new record becomes the current record.

See also: - saveModifications

positionForRecordKey:

- (unsigned int)positionForRecordKey:(DBValue *)a Value

Searches the records in the DBRecordList for the first record whose key value matches
aValue. Returns DB_Nolndex if no such record is found; otherwise, returns the index of
the matching record.

recordLimit

- (unsigned int)recordLimit

Returns the maximum number of records that a fetch can deliver to a DBRecordList (as set
by setRecordLimit:). If no limit has been set, returns DB_Nolndex.

Classes: DBRecordList 4-119

saveModifications

- (unsigned int)saveModifications

Saves to the database any changes (additions, deletions, or modifications) that have been
made to the list of records. If the database supports transactions and there's no transaction
in progress, this save operation is nested within a new transaction, called a local
transaction. If there is already a transaction in progress for the RecordList's database, the
modification is attempted within that transaction context, without generating a new
transaction.

The possible return values from saveModifications are as follows:

Value

o
1

Reason

The save operation was successful.

The save completed but not all records were saved. This
happens if errors are encountered but the delegate
requests that the save proceed anyway.

Either the DBRecordList isn't ready (its status is
DB_NotReady or DB_NoRecordKey), or one or more
records in the database have changed since they were
fetched and the delegate hasn't forced the modifications to
be saved. (See recordStream:willFailForReason:
(DBRecordStream))

If a local transaction can't be committed due to errors, a DB_TRANSACTION_ERROR
exception is raised.

If the attempt to save modifications fails, the DBRecordList's delegate is notified by
sending it a recordStream:willFailForReason: message, and the DBRecordStream's
internal cursor is set to the first of the first of the records that should have been saved
but weren't.

See also: - areTransactionsEnabled (DBDatabase), - beginTransaction (DBDatabase)

setRecordLimit:

- setRecordLimit:(unsigned int)count

Makes count the maximum number of records that can be retrieved during a fetch. If a fetch
is attempted with a qualifier that would fetch more than this number of records, the method
returns the maximum number permitted but sends a recordStream:willFailForReason:
message to the delegate with the argument DB_RecordLimitReached. Returns self.

4-120 Chapter 4: Database Kit

setRetrieveMode:

- setRetrieveMode:(DBRecordListRetrieveMode)aMode

Sets the DBRecordList's retrieve mode, which can be DB_Synchronous Strategy,
DB_BackgroundStrategy, or DB_BackgroundNoBlockingStrategy. See the class
description above for more information.

See also: - currentRetrieveMode:

setValue:forProperty:

- setValue:(DBValue *)aValue forProperty:aProperty

Sets the value for aProperty in the current record to that contained in a Value. Returns a
nonzero value if successful; otherwise, returns nil.

See also: - getValue:forProperty:, - setValue:forProperty:at:

setVa lue:forProperty:at:

- setValue:(DBValue *)a Value
forProperty:aProperty
at:(unsigned int)index

Sets the value for aProperty in the record at index to that contained in a Value. Returns a
nonzero value if successful; otherwise, returns nil.

See also: - getValue:forProperty:, - setValue:forProperty

swapRecordAt:withRecordAt:

- swapRecordAt:(unsigned int)anlndex withRecordAt:(unsigned int)anotherlndex

Transposes the locations of two records. Both arguments must be valid positions in the
DBRecordList's sequence of records. Returns self, but if an argument is invalid, returns
nil.

Classes: DBRecordList 4-121

DBRecordStreal11

Inherits From:

Declared In:

Class Description

Object

dbkitIDBRecordStream.h

The DBRecordStream class defines an object that gives stream-based access to records in a
database. Once a fetch has been made, a DBRecordStream allows sequential access to the
returned records, from first to last. The position in the stream is referred to as the cursor or
current record (but note that this cursor is unrelated to the current record or current selection
in the user interface or the DBFetchGroup). The position in the stream can only be changed
by advancing it by I (by the setNext method), and can't be set back. You can't access the
records in random order. (To get random access, use DBRecordList, a subclass of
DBRecordStream.) A DBRecordStream allows the addition of records, also one at a time.

Setting Up a DBRecordStream

You create a new DBRecordStream object in the usual way, by sending alloc and init
messages. Before you can use a DBRecordStream to access records in a database, you must
specify the source of the data (say, the "authors" table of an SQL database) and the
properties (for example, name, address, and telephone number) that are to be fetched from
that source. The setProperties:ofSource: method lets you do both.

id database, authors, recordStream, propertyList;

database = [DBDatabase findDatabaseNamed:"pubs" connect:YESJ;
authors = [database entityNamed:"authors"Ji
recordStream [[DBRecordList allocJ initJi

propertyList = [[List allocJ initJ i

[authors getProperties:propertyListJi
[recordStream setProperties:propertyList ofSource:authorsJ;

To allow modification of records in the database, a DBRecordStream must know the key
property (or properties) for the source. A key property uniquely identifies individual
records within the source. For example, within a table of employee data, the employee's
identification number uniquely identifies the records. Typically, the model created by

4-122 Chapter 4: Database Kit

DB Modeler identifies the key properties of the data sources, but you can set them directly
using setKey Properties:.

Optionally, you can specify that the records be returned in sorted order. Sending an
addRetrieveOrder:for: message to the DBRecordStream associates a sorting order with
a property. These messages are additive; for example:

id lastName, firstName;

firstName = [authors propertyNamed:"au_fname"];
lastName = [authors propertyNamed:"au_lname"];
[recordStream addRetrieveOrder:DB_AscendingOrder for:lastName];

[recordStream addRetrieveOrder:DB_AscendingOrder for:firstName];

The records will be retrieved in alphabetical order according to the authors' last names. For
authors having identical last names, the retrieval order will be determined by first names.

Fetching Data

A DBRecordStream accesses data in the database when it is sent a fetchUsingQualifier:
message.

[recordStream fetchUsingQualifier:nil];

If the qualifier argument is nil, all records within the source will be made available through
the DBRecordStream. If you supply a qualifier, only the set of records meeting its
restrictions (for example, "au_Iname = 'Smith''') will be made available.

Accessing Data in the DBRecordStream

After receiving a fetchUsingQualifier: message, the DBRecordStream can be queried
for record data. The first record returned by the fetch operation is available immediately;
the second and subsequent records can be accessed by sending the DBRecordStream
setNext messages.

You access the data within a record indirectly, through DBValue objects. The
getValue:forProperty: method causes the DBRecordStream to set a DBValue object's
value equal to a specified property in the current record:

id authors, state, recordStream, value;

state

value

[authors propertyNamed:"state"];
[[DBValue alloc] init];

[recordStream getValue:value forProperty:state];
printf ("state: %s\n", [value stringValue]);

Classes: DBRecordStream 4-123·

Modifying Records

The data in the DBRecordStream's current record can be modified using the
setValue:forProperty: method. The current record can be deleted by invoking
deleteRecord.

To add a new record to the DBRecordStream, you first create an empty record by sending
a newRecord message. The DBRecordStream responds by using its current set of
properties (as returned by getProperties:) to create an empty record. Once the empty
record has been created, you can set the values for its properties as you would any record.

These modifications, deletions, and additions only affect the current record in the
DBRecordStream. To reflect these changes in the database itself, you must send the
DBRecordStream a saveModifications message. If the database being accessed supports
transactions, they should always be enabled before saving modifications. In general, it's
both safer for the integrity of the data involved and much more efficient to do this.

Emptying, initing, or fetching records into the DBRecordStream (or DBRecordList) resets
it to an "unmodified" state. After that, modifications are tracked until the DBRecordList is
refilled or it receives a saveModifications message.

Responding to Notification that a Modification Will Fail

A DBRecordStream (or its subclass DBRecordList) notifies its delegate of the impending
failure of an operation that would modify, delete, or add records to the database. The
delegate receives a recordStream:willFailForReason: message. It can then take action to
review the condition that caused the failure. In some circumstances, it can refuse to accept
the failure.

Saving a record (or a set of records) happens in two stages. First the records are verified.
Then they are written out to the database. If a failure occurs during the verification stage,
the application can choose to abort the transaction. Having the delegate return YES to the
notification recordStream:willFailForReason: means that the delegate assents to the
failure, and permits the entire save to fail. (This failure doesn't, of itself, abort the
transaction of which the save is part.) Alternatively, the application can pretend that the
verification succeeded and let the save proceed.

If a failure occurs during the writing stage, here again the delegate can either return YES
(thereby assenting to the failure and aborting the operation), or it can return NO (thereby
skipping the particular record for which writing failed but going ahead with writing the
others). If you choose to have the delegate return NO, you may be left with a situation in
which the record's "modified" flag is set and so is the "modified" flag for its
DBRecordStream or DBRecordList, but the offending record is nevertheless unsaved, and
the transaction will nevertheless continue, commit, and return success.

4-124 Chapter 4: Database Kit

Warning: Before having the delegate return NO to recordStream:willFailForReason:, you should
be very sure this is what you want it to do! Returning NO permits what looks like
successful completion of a save, despite the fact that some of the application's data still
differs from the data in the database.

For failures denoted by the failure codes DB_NoRecordKey or
DB_RecordStreamNotReady, there isn't much you can do to keep going. In those
situations, the method fails regardless of what the delegate returns.

Instance Variables

id delegate;
id source;
id properties;
id database;

delegate

source

properties

database

Method Types

Initializing and freeing

The object that responds to notification messages

The database entity from which records are to be retrieved

The list of properties of records to be retrieved

The DBDatabase object that owns the record stream

- init
- free

Setting up a DBRecordStream - addRetrieveOrder:for:
- setProperties:ofSource:
- getProperties:
- setKeyProperties:
- getKeyProperties:

Fetching data - fetch U singQualifier:
- cancelFetch
- currentRetrieveStatus

Accessing data - getValue:forProperty:
- getRecordKeyValue:
- setNext

Classes: DBRecordStream 4-125

Modifying data - setValue:forProperty:
- newRecord
- isNewRecord
- deleteRecord
- isModified
- isReadOnly

Saving modifications - saveModifications

Resetting a DBRecordStream - clear

Assigning Delegates - delegate
- setDelegate:
- binderDelegate
- setBinderDelegate:

Instance Methods

addRetrieveOrder:for:

- addRetrieveOrder:(DBRetrieveOrder)anOrder for:(id <DB Properties>) aProperty

Associates a retrieval order with the property aProperty. The permissible values of
anOrder are:

Constant

DB_NoOrder
DB _AscendingOrder
DB _Descending Order

Meaning

Remove ordering associated with aProperty
Sort records in ascending order of the values in aProperty
Sort records in descending order of values in aProperty

You can specify sort orders for multiple properties by sending multiple
addRetrieveOrder:for: messages; the sorts will be nested. For example, assume you
specify an ascending order for a property associated with employee names and a
descending order for a property associated with employee salaries. Records will be
retrieved in alphabetical order based on the employee's last name and, for employees
having the same last name, will be ordered in descending numerical order based on salaries.

If an addRetrieveOrder:for: message hasn't been sent to a DBRecordStream object, it
retrieves records in ascending order of the first property in its property list.

Returns a nil if an error occurs; otherwise, returns self.

See also: - getProperties:

4-126 Chapter 4: Database Kit

binderDelegate

- binderDelegate

Returns the delegate used by the DBRecordStream's DBBinder objects.

See also: - setBinderDelegate:

cancel Fetch

- cancelFetch

Terminates the current fetch operation and causes a fetchDone: message to be sent to the
DBRecordStream's DBDatabase object. Returns self.

See also: - fetchUsingQualifier:, - fetchDone: (DBDatabase)

clear

- clear

Resets the DBRecordStream. The DBRecordStream's record data, list of properties, and
list of key properties are emptied. Its database instance variable is set to nil, but its
delegate remains unchanged. Its status is set to DB_NotReady. Returns self.

See also: - currentRetrieveStatus, - free

currentRetrieveStatus

- (D BRecordRetrieveStatus)currentRetrieveStatus

Returns the DBRecordStream's status, which can be:

Constant

DB_NotReady
DB_Ready
DB_FetchInProgress
DB _FetchCompleted

delegate

- delegate

Meaning

Not ready to fetch or insert data
Ready to fetch or insert data
Fetch in progress; more records are available
Fetch finished; no more records remain

Returns the DBRecordStream's delegate or nil if no delegate has be set.

See also: - setDelegate:, - recordStream:wiIlFailForReason: (delegate method)

Classes: DBRecordStream 4-127

deleteRecord

- deleteRecord

Deletes the current record in the DBRecordStream and causes the DBRecordStream to
access the next record in sequence, if any.

Returns nil if the deletion can't be accomplished; otherwise, returns self. If the deletion
fails, the DBRecordStream will attempt to notify its delegate of the reason, and the cursor
remains unchanged (pointing to the record that should have been deleted but wasn't).

See also: - recordStream:willFailForReason: (delegate method)

fetchUsingQualifier:

- fetchUsingQualifier:(DBQualifier *)aQualifier

Selects data from the database and makes it available to the DBRecordStream. The scope
of records retrieved from the database is controlled by aQualifier. For example, assuming
the data source is an SQL database, aQualifier could be an object that represents the
expression "where name = 'Holbein"'. If aQualifier is nil, all records in aSource are
selected. The argument aQualifier and the current property list must refer to the same
entity; otherwise an error occurs.

In case of error, this method makes the DBRecordStream's list of properties empty, and
returns nil. Otherwise, returns self.

See also: - cancelFetch, - setProperties:ofSource:

free

-free

Releases the storage for the DBRecordStream.

getKeyProperties:

- (List *)getKeyProperties:(List *)keyList

Fills keyList with objects that represent the key properties of the DBRecordStream. Each of
these objects conforms to the DB Properties protocol. Returns the newly filled List object.

See also: - setKeyProperties:

4-128 Chapter 4: Database Kit

getProperties:

- (List *)getProperties:(List *)propertyList

Places the DBRecordStream's property list in propertyList and returns propertyList.

See also: - setProperties:ofSource:

getRecordKeyValue:

- getRecordKeyValue:(DBValue *)a Value

Places the value of the current record's key property (or properties) in aValue.

This method is especially useful when data must be exchanged between
DBRecordStreams. For example, suppose one DBRecordStream supplies employee
information and another supplies department information to the user interface of an
application. A user can change an employee's department by selecting from a list of
department names. After a department name is selected, you can use getRecordKeyValue:
to determine the corresponding record's key value so that you can set the department
identification in the employee's record.

Returns nil if the DBRecordStream has status DB_NotReady; otherwise, returns aValue.

getValue:forProperty:

- getValue:(DBValue *)a Value forProperty:aProperty

Places the value for aProperty into aValue. This method is the only means of retrieving
record data stored in the DBRecordStream.

When aProperty is a relationship, the method sets a Value so that it includes the key value
of the relationship's source property and the entity that is the relationship's target. (In that
case, sending aValue the DBValues message isEntity would get the response YES.) The
fact that the value object identifies the target entity is exploited by the method
setProperties:ofSource: .

If the status of the DBRecordStream is DB_NotReady, this method return nil. Otherwise,
it returns the DB Value object.

See also: - setValueFor:from:, - propertyNamed: (DBDatabase),
- isEntity (DBValues protocol), - setProperties:ofSource:

Classes: DBRecordStream 4-129

init

- init

Initializes and returns a newly allocated DBRecordStream. The DBRecordStream's
delegate instance variable is set to nil and its retrieve status is set to DB_NotReady.

This method is the designated initializer for DBRecordStream.

isModified

- (BOOL)isModified

Returns YES if the current record has been modified since it was added to the
DBRecordStream or fetched from the database; NO otherwise.

See also: - isNewRecord

isNewRecord

- (BOOL)isNewRecord

Returns YES if the current record is new; that is, it the result of the DBRecordStream
receiving a newRecord message.

See also: - newRecord, - isModified

isReadOnly

- (BOOL)isReadOnly

Returns YES if the records in the DBRecordStream can only be read, not modified. If a
DBRecordStream's key properties haven't been set, isReadOnly will return YES.

See also: - setKeyProperties:, - getKeyProperties:

newRecord

-newRecord

Creates a new, empty record. Before this operation can take place, the DBRecordStream
attempts to save modifications of the current record to the database. If these changes can't

4-130 Chapter 4: Database Kit

be saved, newRecord returns nil, no new record is created, and the cursor is not advanced.
Otherwise, newRecord returns self, and the cursor is advanced to make the new record the
current record.

See also: - saveModifications

saveModifications

- (unsigned int)saveModifications

Saves the new or modified record to the database. If the database supports transactions and
there's no transaction in progress, this save operation is nested within a new transaction.

If there is no transaction in progress, a new transaction is created for this operation. If the
modifications can be made to the database, this transaction is committed. An error during
this commit process raises a DB_TRANSACTION_ERROR exception.

Returns these values:

Value

1

o
DB_NoIndex

Reason

The save operation was successful.

There were no modifications to save.

Either the DBRecordStream isn't ready (its status is
DB_NotReady or DB_NoRecordKey), or the record in
the database has changed since it was fetched and the
delegate hasn't forced the modification to be saved. (See
recordStream:willFailForReason:)

If the attempt to save modifications fails, the delegate is notified by sending it a
recordStream:willFailForReason: message, and the DBRecordStream's internal cursor
is not advanced to the next record.

See also: - areTransactionsEnabled (DBDatabase), - beginTransaction (DBDatabase)

setBinderDelegate:

- setBinderDelegate:newDelegate

Sets the delegate for the DBRecordStream's DBBinder objects. This delegate can intercede
in operations that would add or modify the database. See the DBBinder class specification
for more information.

See also: - binderDelegate

Classes: DBRecordStream 4-131

setDelegate:

- setDelegate:anObject

Sets the DBRecordStream's delegate. Returns self.

See also: - delegate, - recordStream:wiIlFailForReason: (delegate method)

setKeyProperties:

- (List *)setKeyProperties:(List *)propertyList

Sets the DBRecordStream's list of key properties to propertyList. Each of the objects in
propertyList must conform to the DB Properties protocol. Typically, key properties are
identified in the database model using DB Modeler, so you rarely invoke this method.

Returns nil if any property in propertyList is not a property of the DBRecordStream's
source; otherwise, returns the property list.

See also: - getKeyProperties:

setNext

- setNext

Advances the DBRecordStream's internal cursor by 1, so that it points to the next record in
the group of records made available by a fetch operation.

Returns self if successful and nil if not. A nil return can mean that there are no further
records to return or that the DBRecordStream was unable to save modifications to the
current record.

See also: - saveModifications

setProperties:ofSource:

- (List *)setProperties:(List *)propertyList ofSource:aSource

Sets the properties that will be fetched or stored by a DBRecordStream, or its subclass, a
DBRecordList. The properties transferred will be those contained in propertyList. The
argument aSource specifies the entity that contains the properties. If aSource is nil, the
entity for the first property in propertyList is used.

The argument aSource can also be a DBValue object representing the value of a
relationship. In that case, it contains the key value of a source property and the entity of the
relationship's target. For example, suppose your application has two record lists, one

4·132 Chapter 4: Database Kit

containing orders (called orderRL) and another containing line items (called
IineItemRL). They are joined by a relationship in which a key value from orderRL serves
as a foreign key to IineItemRL.

The following code fragment prepares to fetch or insert records by using value to hold both
a value from orderRL and the "line item" entity to which the relationship joins it. When
value is suppied as the argument of ofSource:, the effect is to specify both the property to
be fetched and the qualifier that selects records from lineItemRL.

[orderRL getValue:value forProperty:lineItems];

[lineItemRL setProperties:propList ofSource:value];
/* Fetch or insert records here */

The application should send a setProperties:ofSource: message before doing anything
with a DBRecordStream or DBRecordList. Once the list of properties has been set, the
application can send fetchUsingQualifier: messages, based on the list of properties that
has been set. To a DBRecordList, the application can also send
fetchUsingQualifier:empty:, or can make multiple inserts or multiple deletes. (After
once calling setJ;>roperties:ofSource:, you shouldn't call it again until you really need to
establish a new property list, since each use discards any prior data without saving.)

Returns nil if the properties in propertyList don't share the same entity or if some other
error occurs; otherwise, returns self.

See also: - getProperties:, - getValue:forProperty:, - isEntity (DB Values protocol)

setValue:forProperty:

- setValue:(DBValue *)aValue forProperty:aProperty

Sets the value for aProperty in the current record to that contained in a Value. Returns a
nonzero value if successful; otherwise, returns nil.

See also: - getValue:forProperty:

Methods Implemented by the Delegate

recordStream :will Fail ForReason:

- (BOOL)recordStream:sender willFailForReason:(DBFailureCode) aeode

Responds to a message informing the delegate that a modification couldn't be saved to the
database. In general, returning YES to this message acknowledges the failure and permits
the operation to be aborted, thereby aborting the local transaction of which it is part.

Classes: DBRecordStream 4-133

Note: If the local transaction is nested within another transaction, it is the application's
responsibility to either rollback or commit the outer transaction.

Returning NO skips the specific record involved but permits the operation to continues the
processing of others records (if any).

The aeode argument identifies the reason for the failure and can have the following values:

Constant

DB _RecordHasChanged

DB _RecordKey N otU nique

Meaning

The record in the database has changed since it was
fetched by the DBRecordStream. Saving the
modification would overwrite someone else's changes.
Returning YES to this message acknowledges the
failure and permits the operation to be aborted.
Returning NO skips the record and continues with
the others.

More than one record in the database corresponds to the
record in the DBRecordStream that is being updated or
deleted. Returning YES to this message acknowledges
the failure and permits the operation to be aborted.
Returning NO permits a delete to proceed with the other
records, but can't help an update, since update is never
permitted with an ambiguous key.

DB_RecordStreamNotReady The DBRecordStream isn't ready for this operation (its
status is DB_NotReady). The boolean return value of
the message is ignored.

DB_NoRecordKey

DB _AdaptorError

The modification couldn't be saved because no property
(or combination of properties) within the record was
identified as the record key. The boolean return value of
the message is ignored.

The modification couldn't be saved because of some
sort of error reported by the adaptor. Returning YES to
this message acknowledges the failure and permits the
operation to be aborted. Returning NO skips the record
and continues with the others.

See also: - saveModifications, - setDelegate:, - delegate

4-134 Chapter 4: Database Kit

recordStreamPrepareCurrentRecordForModification:

- (BaaL)recordStreamPrepareCurrentRecordForModification:aRecordStream

Notifies the delegate of a proposed modification to the current record, verifies that the
record is unique, and P€rmits modification to proceed only if the return is YES.

If implemented, this delegate method provides an alternative t6 the standard check that a
DBRecordStream performs before deleting or modifying a record. (The DBRecordStream
or its subclass normally verifies that a record still exists, and that it is unique. It invokes a
"confirming select" on the DBDatabase using the key value, and then compares all
properties to see that none has changed. The select is usually a locking select.) This
delegate method replaces that mechanism, making the delegate responsible for verification
and locking. If the method returns YES, the record is considered to be verified, and
modification proceeds. If the method returns NO, the record is not modified, which may
cause the entire sequence containing saveModifications: to fail, depending on the
transaction model being used.

This method should not call any of the methods implemented by DBRecordStream or
DBRecordList other than getValue:forProperty:

Classes: DBRecordStream 4-135

DBTableVector

Inherits From: Object

Conforms To: DB Table Vectors

Declared In: dbkitIDBTable Vector.h

Class Description

There's a DB Table Vector to represent each of the fields (that is, each of the static rows or
columns) in a DBTableView. The DB Formatter for each row or column consults the
corresponding DB Table Vector for the value of various parameters that affect the display.

Instance Variables

id identifier
id forunatter
id titleFont;
NXCoord uninSize
NXCoord unaxSize
NXCoord currentSize
char *title;

identifier

formatter

titleFont

minSize

maxSize

currentSize

title

4-136 Chapter 4: Database Kit

The vector's identifying attribute

The vector's DB Formatter

The font for the vector's title

The vector's minimum height or width

The vector's maximum height or width

The vectors current height ot width

The vector's title

Adopted Protocols

DB Table Vectors - formatter
- setFormatter:
- identifier
- setldentifier:
- isEditable
- setEditable:
- isResizable
- setResizable:
- isAutosizable
- setAutosizable:
- size
- sizeTo:
- minSize
- setMinSize:
- maxSize
- setMaxSize:
- title·
- setTitle:
- titleFont
- setTitleFont:
- titleAlignment
- setTitleAlignment:
- contentAlignment
- setContentAlignment:

Method Types

Creating the object - initldentifier:
-free

Classes: DBTableVector 4-137

Instance Methods

free
-free

Frees the space that the DB Table Vector was allocated. Returns self.

initldentifier:
- initIdentifier:newldentijier

Initializes a new instance of DB Table Vector for the property identified by newldentifier.
Returns self.

4-138 Chapter 4: Database Kit

DBTabie Vie\N

Inherits From: ScrollView : View : Responder: Object

Declared In: dbkitIDBTable View.h

Class Description

DBTabie View is a class that displays data in a table. It's similar to the Matrix class, but
with two important differences: First, the data resides not in the DBTabie View instance but
in an external data source (usually a DBRecordList). Second, the table's rows and columns
can be individually resized and repositioned by the user.

A DB Table View object consists of up to three different views: A row title view, a column
title view, and a content view. The content view can be made scrollable, horizontally,
vertically, or both. The row and column title views display title information; the titles
automatically scroll with their contents. Either or both the title views may be hidden.

Rows and Columns

Although the appearance of the DB Table View is completely configurable, the usual
arrangement is to have a fixed number of properties (fields) arranged as columns. Columns
are therefore said to be the table's static axis. The rows, representing records, vary
dynamically with the data source or with the qualifier used to select records. In that case,
rows are said to be the table's dynamic axis. Usually such a DB Table View has column titles
but no row titles. (If you ask for titles on a dynamic axis, the display shows consecutive
integers, reporting the record's position in the data source.)

When a new DB Table View is initialized, it has no rows and no columris, and neither rows
nor columns are static. Sending it the first addColumn:withTitle: message both adds a
column and makes columns static rather than dynamic. Similarly, sending it an
addRow: ... message would do the same thing for rows. A few applications may want to
have both rows and columns static. In the common case (that is, static columns, dynamic
rows), you call addColumn: ... for each column, and then hook up a data source to provide
the data. The rows will then be determined lazily at display time through the data source's
getValueFor:at:into: method. Like a very lazy browser, the DBTableView doesn't
cache data.

Classes: DBTableView 4-139

There are two ways to refer to a static vector: by its row or column number, or by the
property that it represents. Most of the methods that manipulate specific rows or columns
refer to them by row number or column number. These numbers are like indexes to an
array: if the user or the application moves a vectors to a new position, or deletes or inserts
a vector, the row or column numbers change accordingly.

Formatting

To format the display of its content view, a DB Table View uses subclasses of the abstract
superclass DB Formatter (see the specifications of DB Formatter, DBTextFormatter,
DBEditableFormatter, and DBImageFormatter). A formatter is responsible for taking the
data from a particular row/column intersection within the DB Table View's grid and
displaying it in a particular rectangle on the screen. That row/column intersection is in
some ways like a Cell within a Matrix object, but there are important differences. Whereas
a Cell actually stores its data, a formatter does not; a DB Table View must always refer to its
data source to get the values it displays.

Although a formatter displays the field at a single row/column intersection, its formatting
rule applies to any of the fields having the same property. That is, in the usual case (with
static columns), it applies to all the fields in a particular column. When rows are static, it
applies to all the fields in a particular row. Since the formatter can apply either to a row or
to a column, it is said to apply to a vector-that is, to one axis of the table (be it row or
column). The DBVectors protocol provides methods for specifying the format of fields
within a vector.

Response to User Action

Although DB Table View is not a subclass of Control, it does implement the target/action
paradigm, so that the target to be notified and the action to be performed can be selected in
Interface Builder's Conection Inspector. Whenever the user double clicks, or selects a new
row or column, whether by mouse action or by pressing the arrow keys, notification is sent
to the delegate.

4-140 Chapter 4: Database Kit

Instance Variables

id delegate
id dataSource
id rowLayout
id columnLayout
id rowHeading
id columnHeading
id rows Clip .

id columns Clip

id gridView
id rowSel
id columnSel
id cornerView
id target
SEL action
SEL doubleAction

delegate

dataSource

rowLayout

columnLayout

rowHeading

columnHeading

rowsClip

columnsClip

gridView

rowSel

columnSel

comerView

target

action

doubleAction

The object notified of a double click or change of
selection

The DBAssociation linking this view to its data

Row layout information

Column layout information

Heading of the selected row

Heading of the selected column

Clip view for the row headings

Clip view for the column headings

The actual data view

The list of selected rows

The list of selected columns

View in the upper left comer of the DB Table View

The object that receives target/action messages

Selector of the action of a target/action message

Selector of the action of a double-click message

Classes: DB Table View 4·141

Method Types

Initializing and freeing - initFrame:
-free

Setting up the DB Table View - setDataSource:
- dataSource

Setting and reporting formatting
- formatterAt::
- dynamicRows
- dynamicColumns
- isRowHeadingVisible
- isColumnHeading Visible
- setIntercell:
- getIntercell:
- setGridVisible:
- isGridVisible
- acceptArrowKeys:
- doesAcceptArrow Keys
- allowVectorReordering:
- doesAllow VectorReordering
- allowVectorResizing:
- doesAllow VectorResizing

Notifying the DBTabie View of change
- reloadData:
- layoutChanged:
- rowsChangedFrom:to:
- columnsChangedFrom:to:

4-142 Chapter 4: Database Kit

Handling rows and columns - columnCount
-rowCount
- columnList
- rowList
- rowAt:
-columnAt:
- addColumn:at:
- addColumn:withTitle:
- addColumn:withFormatter:andTitle:at:
- removeColumnAt:
- moveColumnFrom:to:
- addRow:at:
- addRow:withTitle:
- addRow:withFormatter:andTitle:at:
- removeRow At:
- moveRowFrom:to:

Editing support - editFieldAt::
- setEditable:
- isEditable
- endEditing

Handling the selection - setMode:
-mode
- allowEmptySel:
- doesAllow EmptySel
- selectedRowCount
- selectedColumnCount
- selectedRow
- selectedColumn
- isRowSelected:
- isColumnSelected:
- deselectAll:
- selectAll:
- setRowSelectionOn: :to:
- setColumnSelectionOn::to:
- selectRow: by Extension:
- selectColumn:byExtension:
- deselectRow:
- deselectColumn:
- selectedRow After:
- selectedColumnAfter:
- sendAction:to:forSelectedRows:
- sendAction:to:forSelectedColumns:

Classes: DB TableView 4-143

Setting DBTabie View components
- rowHeading
- setRow Heading:
- setRowHeadingVisible:
- columnHeading
- setColumnHeading:
- setColumnHeading Visible:

Adjusting the view - drawSelf::
- scrollClip:to:
- isHorizScrollerVisible
- setHorizScrollerRequired:
- is VertScrollerVisible
- setVertScrollerRequired:
- tile
- sizeTo::
- scrollRowTo Visible:
- scrollColumnTo Visible:
- acceptsFirstResponder

Transmitting action - setAction:
- action
- setDoubleAction:
- doubleAction
- setTarget:
- target

Archiving - read:
- write:
- finishUnarchiving

Appointing a delegate - setDelegate:
- delegate

Instance Methods

acceptArrowKeys:

- acceptArrowKeys:(BOOL)jlag

Enables or disables the arrow keys for keystrokes the user makes within the DB Table View,
asjlag is YES or NO. The default when a DBTableView is initialized is YES. Returns self.

When at least one row is selected, l' moves the selection to the row below the highest selected
row, and -t to the row above it (if necessary, scrolling to make the newly selected row visible);
the horizontal arrows do nothing. Similarly, when at least one column is selected, ~ moves

4-144 Chapter 4: Database Kit

the selection to the column to the left of the leftmost selected column, and ~ to the column
to the right of it (if necessary, scrolling to make the newly selected column visible); the
vertical arrows do nothing. In either case, arrows don't wrap around; if the selection is the
first or last vector, pressing the arrow that points to the edge does nothing.

See also: - doesAcceptArrowKeys

acceptsFirstResponder

- (BOOL)acceptsFirstResponder

Returns YES if the DBTableView accepts the role of first responder for its Window.

action

- (SEL)action

Returns the selector for the action method that will be sent to the DBTableView's target
when a target/action event occurs in the DBTableView. Usually, this is the action you
selected in Interface Builder's Connections Inspector.

addColumn:at:

- addColumn:identifier at:(unsigned int)aPosition

Inserts a new static column into the DB Table View. The data for the new column will come
from the DBRecordList's attribute identified by identifier. The new column will be inserted
so that it precedes the column whose column-number (before the insertion) was aPosition.
No title is assigned to the new column; its formatting will be handled by a default formatter.
Return self.

addColumn:withFormatter:andlitle:at:

- addColumn:identifier
withFormatter:formatter
andTitle:(const char *)title
at:(unsigned int)aPosition

Inserts a new static column into the DB Table View. The data for the new column will come
from the DBRecordList's attribute identified by identifier. Text for the new column's title
will be taken from title. The column's formatting will be handled by formatter. The new
column will be inserted so that it precedes the column whose column-number (before the
insertion) was aPosition.

Classes: DB TableView 4-145

addColumn :with litle:
- addColumn:identifier withTitle:(const char *)title

Appends a new static column following the last existing column in the DB Table View. The
data for the new column will come from the DBRecordList's attribute identified by
identifier. Text for the new column's title will be taken from title. The new column has its
own default DBTextFormatter. Returns self.

addRow:at:
- addRow:identifier at:(unsigned int)aPosition

Inserts a new static row into the DBTable View. The data for the new row will come from
the DBRecordList's attribute identified by identifier. The new row will be inserted so that
it precedes the row whose row-number (before the insertion) was aPosition. No title is
assigned to the new row; its formatting will be handled by a default formatter. Returns self.

addRow:withFormatter:andlitle:at:
- addRow:identifier

withFormatter:formatter
andTitle:(const char *)title
at: (unsigned int)aP osition

Inserts a new static row into the DBTableView. The data for the new row will come from
the DBRecordList's attribute identified by identifier. Text for the new row's title will be
taken from title. The row's formatting will be handled by formatter. The new row will be
inserted so that it precedes the row whose row-number (before the insertion) was aPosition.
Returns self.

addRow:with litle:

- addRow:identifier withTitle:(const char *)title

Appends a new static row following the last existing row in the DBTableView. The data
for the new row will come from the DBRecordList's attribute identified by identifier. Text
for the new row's title will be taken from title. The new row gets it its own
DB TextFormatter. If the DB Table View previously had no rows, adding a row makes rows
static. Returns self.

4-146 Chapter 4: Database Kit

allowEmptySel:

- a1lowEmptySel:(BOOL)flag

Permits the user to deselect a vector (with shift-click) when that would leave nothing
selected (or prohibits it, when flag is NO). The default is NO. Returns self.

See also: - doesAIIowEmptySel

allowVectorReordering:

- aIlowVectorReordering:(BOOL)flag

Permits the user to drag a static vector to a new position within the DBTableView (or
prohibits it, when flag is NO). The default is YES. To drag a vector, the user must click in
the vector's title area (to select it) and then drag; it isn't possible to drag an untitled vector.
The new ordering of vectors depends on the ordering of their midpoints. That is, if column
B is to the right of column A, to reverse their positions the user must drag B until its
midpoint is to the left of A's midpoint. Returns self.

See also: - doesAIIowVectorReordering

allowVectorResizing:

- aIlowVectorResizing:(BOOL)flag

Permits the user to drag the edges of a static vector so as to change its height or width (or
prohibits it, whenflag is NO). To resize a vector, the user must start to drag from a position
over the title's edge. In that position, the cursor changes to a double arrow (like this ~ for
a column, or the corresponding vertical form for a row). It isn't possible to resize an
untitled vector. Returns self.

See also: - doesAIIowVectorResizing

columnAt:

- (id <DB Table Vectors>)columnAt:(unsigned int)aPosition

Returns the object that controls the formatting of the (static) column identified by
aPosition.

Classes: DBTableView 4-147

columnCount

- (unsigned int)columnCount

For a DB Table View with static columns, returns the number of columns. For a table view
whose columns are dynamic, returns the number of columns in the data source.

columnHeading

- columnHeading

Returns the view that contains the DBTable's column headings.

columnList

- columnList

Returns a list of the identifiers of successive columns in the order that they currently appear
in the DB Table View. (If columns aren't static, returns nil.)

columnsChangedFrom:to:

- columnsChangedFrom:(unsigned int)startColumn to:(unsigned int)endColumn

Notification that the data source has changed the values in a block of consecutive columns,
so their display should be redrawn. The first of the changed columns is identified by
startColumn, the last by endColumn. Returns self.

dataSource

- dataSource

Returns an object that identifies the source from which the DB Table View is getting the data
it's displaying. The returned object is a private subclass of DBAssociation; sending it a
fetch Group message will return the fetch group that is fetching the data.

4-148 Chapter 4: Database Kit

delegate

- delegate

Returns the DBTable View's delegate. The delegate receives notification of a double
click within the DB Table View, or any of the actions that cause a change in the row or
column selected.

deselectAII:

- deselectAll:sender

If empty selection is permitted, deselects all selected vectors and their row or column
headings. If empty selection is not permitted, deselects all but the first. Notifies the
deleegate by sending it a table ViewDidChangeSelection: message, and sends an action
message to the DBTableViews's target. Returns self.

See also: - allowEmptySel

deselectColumn:

- deselectColumn:(unsigned int)column

Deselects the indicated column. However, if this is the only selected column and an empty
selection is not allowed, does nothing. Returns self.

deselectRow:

- deselectRow:(unsigned int)row

Deselects the indicated row. However, if this is the only selected row and an empty
selection is not allowed, does nothing. Returns self.

doesAcceptArrowKeys

- (BOOL)doesAcceptArrowKeys

Returns YES if arrow keys are enabled while the DB Table View is first responder.

See also: - acceptArrowKeys

Classes: DBTableView 4-149

doesAllowEmptySel

- (BOOL)doesAllowEmptySel

Returns YES if the DB Table View permits the user to deselect a vector (with Shift-click)
when that would leave nothing selected. The default is NO.

See also: - allowEmptySel

doesAllowVectorReordering

- (BOOL)doesAllowVectorReordering

Returns YES if the DBTable View permits the user to drag a static vector (row or column)
to a new position. The default is YES.

See also: - allowVectorReordering

doesAllowVectorResizing

- (BOOL)doesAllowVectorResizing

Returns YES if the DB Table View permits the user to resize a static vector (row or column).
The default is YES.

See also: - allowVectorResizing

doubleAction

- (SEL)douhleAction

Returns the selector for the action to be taken when the user double clicks within the
DBTableView. (Usually, the action is interpreted as a request to edit a particular
row/column intersection within the table.)

drawSelf::

- drawSelf:(const NXRect *)rects :(int)count

Invoked by various methods during scrolling or dragging to redraw the DB Table View.
Your application shouldn't need to call this method directly. The argument rects is a list of
pointers to the coordinates of rectangles in which the DB Table View is visible, while count
is the number of such rectangles. Returns self.

4-150 Chapter 4: Database Kit

dynamicColumns

- (BOOL)dynamicColumns

Returns YES if the DB Table View's columns are dynamic: that is, if the number of available
columns is determined by the number of records available (in contrast to the static number
of attributes).

dynamicRows

- (BOOL)dynamicRows

Returns YES if the DB Table View's rows are dynamic: that is, if the number of available
rows is determined by the number of records available (in contrast to the static number of
attributes).

editFieldAt::
- editFieldAt:(unsigned int)row :(unsigned int)column .

Selects the entry at the indicated row and column, and invokes an editor. This achieves
programmatically the effect the user would produce by double-clicking a field within the
DBTableView's content view.

Editing a field permits the user to change the text displayed there. When the user signals
completion (by pressing Enter, or by clicking outside the field being edited), the editor may
invoke methods to validate the revised field, and, if it is acceptable, copy its value to the
table view's data source. Returns self.

endEditing

- endEditing

Invoked automatically to redraw the field that has been edited at the conclusion of editing.
Returns self.

finishUnarchiving

- finishUnarchiving

Invoked as the last step in reading a DB Table View from an archive, to position the table
view within its frame, layout its rows and columns and their headings (if appropriate), and
initialize the selection of rows and columns. You shouldn't need to invoke this explicitly,
since it is done automatically as part of the process of reading from an archive. Returns self.

Classes: DBTableView 4-151

formatterAt::

- formatterAt:(unsigned int)row :(unsigned int)column

Returns the formatter responsible for the field at the intersection of the indicatated row and
column of the display. In a typical display, one axis (usually columns) is static and the
other (usually rows) is dynamic. In that case, the same formatter applies throughout a given
static position, and the dynamic index is immaterial. If there is no formatter explicitly
assigned to the specified field, the method returns a default formatter for the type of data
(text or image).

You may want to override this method in order to apply different formatting rules.

free

-free

Frees the storage used by a DBTableView instance (by freeing the table view's various
internal components before invoking the superclass's free method). Returns nil.

getl ntercell:

- getIntercell:(NXSize *)theSize

Reports the number of pixels of spacing between adjacent cells, by setting theSize with the
two values, for horizontal and vertical separation. The default is 2, 2. Returns self.

initFrame:

- initFrame:(const NXRect *)newFrame

Initializes a DBTableView instance within the frame boundaries specified by newFrame.
The new view has no rows or columns, and both axes are considered dynamic. Initially,
there is no title; there are column headings but not row headings; vertical scrollbars but not
horizontal ones. Reordering and resizing are enabled (but this has no effect until rows or
columns become static). The arrow keys are enabled. Returns self.

isColumnHeadingVisible

- (BOOL)isColumnHeadingVisible

Returns YES if the column-heading view (containing the headings for all columns) is visible.

4-152 Chapter 4: Database Kit

isColumnSelected:

- (BOOL)isColumnSelected:(unsigned int)column

Returns YES if the indicated column is selected.

isEditable

- (BOOL)isEditable

Returns YES if the DBTable View is editable.

See also: - setEditable

isGridVisible

- (BOOL)isGridVisible

Returns YES if the DB Table View's grid lines are visible.

See also: - setGridVisible

isHorizScrollerVisible

- (BOOL)isHorizScrollerVisible

Returns YES if the horizontal scroller is visible. The default is NO.

See also: - setHorizScrollerRequired

isRowHeadingVisible

- (BOOL)isRowHeadingVisible

Returns YES if the row-heading view (containing the headings for all rows) is visible.

isRowSelected:

- (BOOL)isRowSelected:(unsigned int)row

Returns YES if the indicated row is selected.

Classes: DBTableView 4-153

is VertScrollerVisible

- (BOOL)isVertScrollerVisible

Returns YES if the vertical scroller is visible. The default is YES.

See also: - setVertScrollerRequired

layoutChanged:

- layoutChanged:sender

Invoked when there is any change in the number, position, width, height, titling, or format
of the DB Table View's content, to update all of these. Returns self.

mode

- (int)mode

Returns the selection mode.

See also: - setMode

moveColumnFrom:to:

- (BOOL)moveColumnFrom:(unsigned int)oldPos to:(unsigned int)newPos

Changes the position of one of the static columns. The column to move is identified by
oldPos, its position before the move. Its new position will be newPos. That is, in the new
sequence, it will precede the column that used to be at newPos. The method also makes the
corresponding change in the column headings. Returns YES if the move is permitted, NO
otherwise. It is never permissible to move a dynamic column.

See also: - allowVectorReordering:, - doesAllowVectorReordering

4-154 Chapter 4: Database Kit

moveRowFrom:to:
- (BOOL)moveRowFrom:(unsigned int)oldPos to:(unsigned int)newPos

Changes the position of one of the static rows. The row to move is identified by oldPos, its
position before the move. Its new position will be newPos. That is, in the new sequence,
it will precede the row that used to be at newPos. The method also makes the corresponding
change in the row headings. Returns YES if the move is permitted, NO otherwise. It is
never permissible to move a dynamic row.

See also: - allowVectorReordering:, - doesAllowVectorReordering

read:
- read:(NXTypedStream *)stream

Un archives a DBTable View object from the archive identified by stream.

reloadData:
- reloadData:sender

Rechecks the layout and redraws the display. Returns self.

removeColumnAt:
- removeColumnAt:(unsigned int)columnPosition

Deletes a static column (and its heading) from the display. Returns self.

removeRowAt:
- removeRowAt:(unsigned int)rowPosition

Deletes a static row (and its heading) from the display. Returns self.

rowAt:
- (id <DBTableVectors»rowAt:(unsigned int)aPosition

Returns the object that controls the formatting of the static row whose row number
is aPosition.

Classes: DB Table View 4-155

rowCount

- (unsigned int)rowCount

For a DBTable View with static rows, returns the number of rows. For a table view whose
rows are dynamic, returns the number of rows in the data source.

rowHeading

- rowHeading

Returns the view that contains the DBTableView's row headings.

rowList

- rowList

Returns a list of the identifiers of successive static rows in the order that they currently
appear in the DBTableView. (If rows aren't static, returns nil.)

rowsChangedFrom:to:

- rowsChangedFrom:(unsigned int)startRow to:(unsigned int)endRow

Notification that the data source has change the values in a block of rows, so their display
should be redrawn. The first of the changed rows is identified by startRow, and the last by
endRow. Returns self.

scroIiClip:to:

- scrollClip:aClip to:(const NXPoint *)newOrigin

Changes the portion of the content of the clip view aClip that is visible. The change makes
the position newOrigin (in the content view's coordinates) appear at the clip view's origin
(that is, its lower left comer). This message is usually sent automatically, in response to
scrolling in the view aClip. It is used to coordinate the scrolling of the content view and
the two heading views with a table view, or when the arrow keys make the selected portion
of the view outside the clip view. Returns self.

4-156 Chapter 4: Database Kit

scroliColu m n To Visible:

- scrollColumnTo Visible: (unsigned int)column

Scrolls the content view and column headings horizontally so that the requested column is
visible. Returns self.

scrollRowToVisible:

- scrollRowTo Visible: (unsigned int)row

Scrolls the content view and row headings vertically so that the requested row is visible.
Returns self.

selectAII:

- selectAll:sender

Provided the DB Table View is in list mode (permitting multiple selection), selects all rows
and columns and their headings. Notifies the delegate by sending it a
table ViewDidChangeSelection: message. Returns self.

selectColumn:byExtension:

- selectColumn:(unsigned int)column byExtension:(BOOL)flag

Selects the column (and its heading) identified by column. When flag is YES and the
DBTableView's mode permits multiple selection, includes column in the set of selected
columns. Otherwise, this method deselects other columns. Returns self.

selectedColumn

- (int)selectedColumn

Returns the column number of the selected column. Column numbers are successive
integers starting at 0, for the columns actually displayed, in their current left-to-right order
in the display. Returns -1 of no column is selected.

Classes: DBTableView 4-157

selectedColumnAfter:

- (unsigned int)selectedColumnAfter:(unsigned int)aColumn

Returns the column number of the first selected column that is further to the right than
aColumn. If aColumn is DB_Nolndex and there is at least one selected column, returns the
first selected column. If no column is selected, or there is no selected column to the right
of aColumn, returns DB_Nolndex.

selectedColumnCount

- (unsigned int)selectedColumnCount

Returns the number of selected columns.

selectedRow

- (int)selectedRow

Returns the row number of the selected row. Row numbers are successive integers starting
at 0, for the rows actually displayed, in their current top-to-bottom order in the display.
Returns -1 if no row is selected.

selectRow:byExtension:

- selectRow:(unsigned int)row byExtension:(BOOL)flag

Selects the row (and its heading) identified by row. When flag is YES and the
DBTabie View's mode permits multiple selection, includes row in the set of selected rows.
Otherwise, this method deselects other rows. Returns self.

selectedRow After:

- (unsigned int)selectedRow After: (unsigned int)aRow

Returns the row number of the first selected row that is further down than aRow. If aRow
is DB_Nolndex and there is at least one selected row, returns the first selected row. If no
row is selected, or there is no selected row lower than aColumn, returns DB_Nolndex.

4-158 Chapter 4: Database Kit

selectedRowCount
- (unsigned int)selectedRowCount

Returns the number of selected rows.

sendAction:to:forSelectedColumns:
- sendAction:(SEL)anAction

to:anObject
forSelectedColumns:(BOOL)jlag

Sends the message anAction to the object anObject once for each column (when flag is NO)
or once for each selected column (when flag is YES). Returns self.

sendAction:to:forSelectedRows:
- sendAction:(SEL)anAction

to:anObject
forSelectedRows:(BOOL)jlag

Sends the message anAction to the object anObject once for each row (when flag is NO) or
once for each selected row (when flag is YES). Returns self.

setAction:
- setAction:(SEL)aSelector

Sets the action method that will be sent to the DBTableView's target when a target/action
event occurs in the DBTableView.

See also: - action

setColumnHeading:
- setColumnHeading:newColumnHeading

Sets the view that contains the DBTable's column headings.

See also: - columnHeading

Classes: DBTableView 4-159

setColumnHeadingVisible:

- setColumnHeadingVisible:(BOOL)flag

Causes the DBTableView to include a heading view across the top of the columns (when
flag is YES), or to omit it (when flag is NO). This in turn causes the DBTableView to
recompute its layout and redisplay in response to the change,

setColumnSelectionOn::to:

- setColumnSelectionOn:(unsigned int)start
:(unsigned int)end
to: (BOOL)flag

Selects (when flag is YES) or deselects (when flag is NO) the block of columns from start
to end, inclusive. Returns self.

setDataSource:

- setDataSource:aSource

Makes aSource the data source from which the DBTabie View gets its values, and
redisplays the table. Returns self.

setDelegate:

- setDelegate:delegate

Makes delegate the DB Table View's delegate. Returns self.

See also: - delegate

setDoubleAction:

- setDoubleAction: (SEL)aSelector

Sets the action method that will be sent to the DBTableView's target when there's a
double-click in the DB Table View. Returns self.

4-160 Chapter 4: Database Kit

setEditable:

- setEditable:(BOOL)jlag

Permits or prohibits editing (asjlag is YES or NO). The default is YES. Returns self.

See also: - isEditable

setGridVisible:

- setGridVisible:(BOOL)jlag

Makes grid lines between adjacent rows and columns of the content view visible or not (as
jlag is YES or NO). The space the gridlines use is in addition to the intercell spacing. (Row
and column headings always have a separating line, regardless of whether there's a grid in
the content view.) Returns self.

See also: - isGridVisible, - setlntercell:

setHorizScrollerRequired:

- setHorizScrollerRequired:(BOOL)jlag

Includes or omits a horizontal scroller along the lower edge of the DB Table View, asjlag is
YES or NO. Including a scroller takes space away from the area otherwise available for
the content display. When a scroller is included, it contains a slider and scroll buttons when
the total width of the columns exceeds the width of the display; at other times it's blank.,
Returns self.

See also: - isHorizScrollerVisible

setlntercell:

- setlntercell:(const NXSize *)aSize

Sets the number of pixels that separate adjacent rows and columns. The argument aSize
specifies two values, for horizontal and vertical separation. When gridlines are used, the
space they use is in addition to the intercell spacing. Returns self.

Classes: DBTableView 4-161

setMode:

- setMode:(int)newMode

Sets the DB Table View's selection mode. The possible values are member of the
enumeration set DBSelectionType, to wit:

setRowHeading:

Shift-clicking a vector adds it to the current selection if it
is not already selected, or removes it if it is. (Deselecting
a vector may not be permitted if it is the only selected
vector and empty selection is not permitted.)

Selecting a vector automatically deselects the previous
selection.

Selecting a vector is not permitted.

- setRowHeading:newRowHeading

Sets the view that contains the DBTable's row headings.

See also: - rowHeading

setRowHeadingVisible:

- setRowHeadingVisible:(BOOL)jlag

Causes the DBTableView to include a heading view down the left side of the rows (when
jlag is YES), or to omit it (whenjlag is NO). Changing the row heading in tum causes the
DB Table View to recompute its layout and redisplay in response to the change.

setRowSelectionOn::to:

- setRowSelectionOn:(unsigned int)start
:(unsigned int)end
to: (BOOL)jlag

Selects (whenjlag is YES) or deselects (whenjlag is NO) the block of rows from start to
end, inclusive. Returns self.

4-162 Chapter 4: Database Kit

setTarget:

- setTarget:anObject

Makes anObject the target of a target/action message sent in response to an event within
the DB Table View. Returns self.

setVertScrollerRequired:

- set VertScrollerRequired:(BOOL)flag

Includes or omits a vertical scroller along the left edge of the DBTableView, asflag is YES
or NO. Including a scroller takes space away from the area otherwise available for the
content display. When a scroller is included, it contains a slider and scroll buttons while
when the total width of the columns exceeds the width of the display; at other times it's
blank. Returns self.

See also: - isVertScrollerVisible

sizeTo::

- sizeTo:(NXCoord)width :(NXCoord)height

Resets the overall size of the DB Table View, and then recomputes its layout and redisplays it.

target

- target

Returns the object that is the target for a target/action event in the DB Table View.

tile

- tile

Places the DBTableView's three component views (content, column heading, and row
heading-or as many of them as have been made visible) within the DB Table View's frame.
Returns self.

Classes: DB TableView 4-163

write:
- write:(NXTypedStream *)stream

Archives the DB Table View object by writing it to the NXTypedStream identified by
stream. Returns self.

Methods Implemented by the Delegate

tableView:movedColumnFrom:to:

- tableView:sender movedColumnFrom:(unsigned int)old to:(unsigned int)new

Invoked when the user changes the position of a static column. By implementing this
method, the delegate can take corresponding action of its own; for example, it might
recompute a sort of the displayed record reflecting the changed sequence of columns.
Returns self.

tableView:movedRowFrom:to:

- tableView:sender movedRowFrom:(unsigned int)old to:(unsigned int)new

Invoked when the user changes the position of a static rows. By implementing this method,
the delegate can take corresponding action of its own. Returns self.

tableViewDidChangeSelection:

- table ViewDidChangeSelection:aTable View

Invoked when the user has changed the selection. The delegate may wish to respond by
making corresponding changes to another display that is synchronized with the Table View
that sent the message. Returns self.

tableViewWillChangeSelection:

- (BOOL)tableViewWiIlChangeSelection:aTableView

Invoked when the user has taken action to change the selection. By implementing this
method, the delegate has a chance to interpose some test of its own. Returning YES permits
the change in selection to proceed.

4·164 Chapter 4: Database Kit

DBTextForl11atter

Inherits From: DB Formatter : Object

Declared In: dbkitIDBTextFormatter.h

Class Description

DBTextFormatter is one of three subclasses of DB Formatter; the others are
DBEditableFormatter and DBImageFormatter. For read-only character-based
display of numeric or character information, DBTextFormatter is faster than
DBEditableTextFormatter. See the description of the superclass, DB Formatter.

Instance Variables

id font;
BaaL batching;

font

batching

Method Types

Initializing

Manipulating font

Batching format requests

Archiving

The current font for displaying text

YES if the same formats apply to a batch of records

- init
-free

-font
- setFont:

- beginBatching:
- resetBatching:
- endBatching

- write:
- read:

Classes: DB TextFormatter 4-165

Instance Methods

beginBatching:

- beginBatching:(id <DB Table Vectors>)attrs

Notifies the DBTextFormatter that a formatting session is about to begin. You never invoke
this method directly; it's invoked by the DBTableView that's using this object as a
formatter. The end of a formatting session is signalled by endBatching.

See also: - endBatching, - resetBatching:

endBatching

- endBatching

Notifies the DBTextFormatter that a formatting session is over. You never invoke this
method directly; it's invoked by the DBTableView that's using this object as a formatter.
The beginning of a formatting session is signalled by beginBatching:.

See also: - beginBatching:, - resetBatching:

font

-font

Returns the DBTextFormatter's Font object.

free

-free

Frees the DBTextFormatter instance.

init

- init

Initializes the DBTextFormatter instance. In the course of initializing, the display font is
set to the system default font at 12 point and batching is turned off. Returns self.

4-166 Chapter 4: Database Kit

read:
- read:(NXTypedStream *)stream

Reads the DBTextFormatter from stream. Returns self.

resetBatching:

- resetBatching:(id <DBTableVectors» attrs

Same as beginBatching:, but has no effect if batching is already in effect. Returns self.

setFont:
- setFont:aFont

Sets the current font to the Font object aF onto Returns self.

write:

- write:(NXTypedStream *)stream

Archives the DBTextFormatter to stream. Returns self.

Classes: DB TextFormatter 4-167

DBValue

Inherits From: Object

Conforms To: DBExpression Values

Declared In: dbkitIDBValue.h

Class Description

The DBValue class provides objects that can embody different types of data. DBValue
objects are used throughout the Database Kit to retrieve and modify arbitrarily typed
values.

A DBValue object consists of two parts: a value and a type. The value and type are set at
the same time, through methods such as setIntValue: and setStringValue:; the value is
passed as the argument, the type is set as indicated by the method's name. Once this
information has been set, you can retrieve the DBValue's value through methods such as
intValue and string Value. The value is converted, if possible, to the requested return type.
You can retrieve a DBValue's type-the type that was named by the method that set the
value-as a DB Types-conforming object through the valueType method.

The type of a DBValue object can be one of the following:

• An object
• A string
• An integer
• A single-precision floating-point number
• A double-precision floating point number
• NULL

The type conversion mentioned above applies only to strings, numeric values, and NULL;
you can't convert an object to or from the other data types.

The primary use the Database Kit makes of DBValue objects is to store the values that are
contained in a record. The objects are necessary because you can't examine or set a
record's values directly: You have to get a record value (indexed by property) into a
DBValue object, examine and/or modify the DBValue, and set the DBValue back into the
record. Getting and setting record values is typically done through the DBRecordList (or
DBRecordStream) methods getValue:forProperty: and setValue:ForProperty:.

4-168 Chapter 4: Database Kit

The following example demonstrates how to use a DB RecordList and a DBValue to modify
the record that the DBRecordList is currently pointing to:

/* Create a DBValue to retrieve and modify a record value. */

DBValue *age = [[DBValue alloc] init] i

/* Retrieve the value of a property from a DBRecordList. */

/* (aRecordList and aProperty are assumed to exist. */

[aRecordList getValue:age forProperty:agePropertY]i

/* Modify the value and write it back to the record. */
[birthRight setFloatValue: [age intValue]+1.0] i

[aRecordList setValue:age forProperty:aPropertY]i

DBBinder also defines a method, valueForProperty:; that returns a DBValue that contains
the value of the current record for a particular property. However, unlike with a
DBRecordList, you can modify the DBValue returned by this method and so modify the
record directly.

DBValues are also used to store the values of a record's key properties, and to store the
value that's embodied in a DBAssociation.

Instance Variables

None declared in this class.

Adopted Protocols

DBExpression Values - expression Value
- isDeferredExpression

Classes: DBVolue 4-169

Method Types

Creating and Freeing

Setting values

Reporting values

Archiving

Class Methods

initialize

+ initialize

+ initialize
- init
-free

- setDouble Value:
- setFloatValue:
- setIntValue:
- setObjectValue:
- setObjectValueNoCopy:
- setStringValue:
- setStringValueNoCopy:
- set ValueFrom:
- setNull

- valueType
- isEqual:
- double Value
- floatValue
- intValue
- objectValue
- stringValue
- isNull

- read:
- write:

Prepares the class for use. You normally don't need to invoke this method; however, if
you're creating a subclass that implements an initialize method, you should certainly send
initialize to super as part of the implementation. Returns self.

4 .. 170 Chapter 4: Database Kit

Instance Methods

doubleValue

- (double)douhle Value

Returns the DBValue's value converted to a double-precision floating-point number. If the
conversion can't be performed, a DB_COERCION_ERROR exception is raised.

floatValue
- (float)f1oatValue

Returns the DBValue's value converted to a single-precision floating-point number. If the
conversion can't be performed, a DB_COERCION_ERROR exception is raised.

free
-free

Frees the DBValue.

init
-init

The designated initializer for the DBValue class, init initializes a newly allocated
DBValue object.

intValue
- (int)intValue

Returns the DBValue's value converted to an integer. If the conversion can't be performed,
a DB_COERCION_ERROR exception is raised.

Classes: DEValue 4-171

isEqual:

- (BOOL)isEqual:(DBValue *)anotherValue

Compares the DBValue with anotherValue and returns YES or NO as their values are or
aren't equivalent. The two objects' types needn't be the same; the method will convert
the argument's value to that of the receiving DBValue, if necessary, and then perform the
comparison. A DB_COERCION_ERROR exception is raised if the conversion
isn't supported.

isNull

- (BOOL)isNull

Returns YES if the DBValue's value hasn't been set, or if it's been set to the null value
appropriate for its type.

objectValue

- objectValue

Returns the DBValue's value. The value must be an object, otherwise a
DB_COERCION_ERROR exception is raised.

read:

- read:(NXTypedStream *)stream

Reads the DBValue from the typed stream stream. Returns self.

setDoubleValue:

- setDouble Value: (double)aDouble

Sets the DBValue's value to aDouble and declares its type to be a double. Returns self.

setFloatValue:

- setFloatValue:(float)aFloat

Sets the DBValue's value to aFloat and declares its type to be a float. Returns self.

4-172 Chapter 4: Database Kit

setlntValue:
- setIntValue:(int)anlnt

Sets the DBValue's value to anlnt and declares its type to be an integer. Returns self.

setNull

- setNull

Sets the DBValue's value and type to NULL. Returns self.

setObjectValue:
- setObjectValue:(id)anObject

Sets the DBValue's value to a copy of anObject and declares its type to be an object.
Returns self.

setObjectValueNoCopy:

- setObjectValueNoCopy:(id)anObject

Sets the DBValue's value to anObject and declares its type to be an object. Returns self.

setStringValue:
- setStringValue:(const char *)aString

Sets the DBValue's value to a copy of aString and declares its type to be a string.
Returns self.

setStringValueNoCopy:

- setStringValueNoCopy:(const char *)aString

Sets the DBValue's value to point to aString and declares its type to be a string.
Returns self.

Classes: DEValue 4-173

setValueFrom:

- setValueFrom:(DBValue *)a Value

Sets the DBValue's value and type to those of aValue. Returns self.

stringValue

- (const char *)stringValue

Returns the DBValue's value converted to a string. If the conversion can't be performed, a
DB_COERCION_ERROR exception is raised.

valueType

- (id <DBTypes»valueType

Returns a private, DB Types-conforming object that stores the DBValue's type. To get a
string that represents the Objective C data type from this object, you would send it an
objcType message. The following table gives DB Types string representations of the
DBValue types:

OBValue type

object
string
integer
float
double
NULL

write:

OBTypes representation

"@"
"*,,

"i"
"f'
"d"
NULL

- write:(NXTypedStream *)stream

Writes the DBValue object to the typed stream stream. Returns self.

4-174 Chapter 4: Database Kit

Protocols

DBContainers

Adopted By: DBRecordList

Declared In: dbkitlcontainers .h

Protocol Description

When a DBBinder fetches a record from a database, it creates a record object to store the
data and stores the record object in a container. The DB Containers protocol allows an
object to be used as just such a container. See the DBBinder class description for more
information on how containers are used.

The DB Containers protocol declares a set of mandatory methods as well as two optional
methods, binder:didAcceptObject: and binder:didRejectObject:. These two are
notification methods that are invoked by the DBBinder when objects from the container are
used in database-modification operations.

Note: The DBBinder class implements DB Containers as a category of List (declared in the
header file dbkitIDBBinder.h). This permits a DBBinder to use a List object as a
container.

Method Types

Mandatory methods - addObject:forBinder:
- count
- empty
- freeObjects
- objectAtforBinder:
- prepareForBinder:

Optional methods - binder:didAcceptObject:
- binder:didRejectObject

4-176 Chapter 4: Database Kit

Instance Methods

addObject:forBinder:

- addObject:anObject forBinder:(DBBinder *)aBinder

Adds the record object anObject to the container. If the addition is successful, this returns
self, otherwise it returns nil. This method is invoked automatically-once per record-by
the DBBinder that owns the container as it fetches records from the database.

binder:didAcceptObject:

- binder:(DBBinder *)aBinder didAcceptObject:anObject

This method is automatically invoked by aBinder (the DBBinder that owns the container)
after each successful insert, update, or delete operation; anObject is the record object that
was operated on. This is an optional method that a DB Containers-adopting class can
implement to create specialized behavior; if the method isn't implemented, then it isn't
invoked. The implementation mustn't change the contents of the container. The return
value is ignored.

binder:didRejectObject:

- binder:(DBBinder *)aBinder didRejectObject:anObject

This method is automatically invoked by aBinder (the DBBinder that owns the container)
after each unsuccessful insert, update, or delete operation; anObject is the record object that
was operated on. This is an optional method that a DB Containers-adopting class can
implement to create specialized behavior; if the method isn't impl~mented, then it isn't
invoked. The implementation mustn't change the contents of the container. The return
value is ignored.

count

- (unsigned int)count

Returns the number of objects in the container.

empty

-empty

Removes the container's contents, but doesn't free them.

Protocols: DBContainers 4-177

freeObjects

- freeObjects

Frees the container's contents.

objectAt:forBinder:

- objectAt:(unsigned)index forBinder:(DBBinder *)aBinder

Returns the object at the index'th place in the container. Returns nil if index is out of
bounds.

prepareForBinder:

- (unsigned int)prepareForBinder:(DBBinder *)aBinder

Prepares the container for a data operation. For example, if the container is lazy-if it
compacts, sorts, or otherwise keeps itself up-to-date only on demcmd-then this is the place
for it to dust itself off. Returns the number of objects in the container.

4-178 Chapter 4: Database Kit

DBCursorPositioning

Adopted By:

Declared In:

DBRecordList
DBBinder

dbkitlcursors.h

Protocol Description

The DBCursorPositioning protocol lets an object be used as a cursor (or pointer) into a list
of records, as contained by a DBRecordList or a DBBinder's container. You should need
to adopt this protocol in a custom class only if you're creating your own container for a
DBBinder (in the manner of DBRecordList). And in that case, you should only access
records through methods defined by your container. In other words, if you position the
cursor by sending your object one of the DBCursorPositioning messages, you shouldn't
then try to retrieve record values through DBBinder's valueForProperty: method.

Method Types

Setting the position - setFirst
- setLast
- setNext
- setPrevious
- setTo:

Querying the position - currentPosition

Instance Methods

currentPosition

- (long)currentPosition

Returns the index of the record to which the cursor is currently pointing.

Protocols: DBCursorPositioning 4-179

setFirst

- setFirst

Sets the cursor to point to the first record in the container and returns that record. Returns
nil if the container holds no records.

setLast

- setLast

Sets the cursor to point to the last record in the container and returns that record. Returns
nil if the container holds no records.

setNext

- setNext

Sets the cursor to point to the next record in the container and returns that record. Returns
nil and doesn't move the cursor if it's currently pointing to the last record.

setPrevious

- setPrevious

Sets the cursor to point to the previous record in the container and returns that record.
Returns nil and doesn't move the cursor if it's currently pointing to the first record.

setTo:

- setTo:(long int)index

Sets the cursor to point to the index'th record in the container and returns that record.
Returns nil and doesn't move the cursor if index is out of bounds.

4-180 Chapter 4: Database Kit

DBCustol11Association
(informal protocol)

Category Of: Object

Declared In: dbkitIDBAssociation.h

Category Description

Where an application uses a custom subclass of DB Association to record the link between
a data source (such as a DBRecordList or the contents of a DBBinder), the object in the user
interface that displays the associated data should implement methods from this informal
protocol. They correspond to instance methods in DBAssociation.

Method Types

Access to the associated value - association:setValue:
- association:getValue:

Notifications to the associated display
- associationContentsDidChange:
- associationSelectionDidChange:
- associationCurrentRecordDidDelete:

Instance Methods

association:getValue:

- association:association getValue:(DBValue *)value

Gets the value of the associated destination, and copies it to value. Returns self.

See also: - getValue: (DBAssociation class)

Protocols: DB'CustomAssociation 4-181

association:setValue:

- association:association setValue:(DBValue *)value

Causes the destination to display value. Returns self.

See also: - setValue: (DBAssociation class)

associationContentsDidChange:

- associationContentsDidChange:association

Notification that there has been a change to the data values in a portion of the
DBFetchGroup's DBRecordList, necessitating a corresponding change in the user
interface object.

associationCurrentRecordDidDelete:

- associationCurrentRecordDidDelete:association

Notification that the current record has been deleted from the DBFetchGroup's
DBRecordList, necessitating a corresponding change in the user interface object.

associationSelectionDidChange:

- associationSelectionDidChange:association

Notification that there has been some sort of change in the current record of the
DBFetchGroup. The change could be to change the selection to a different row, or to add a
selection, or to deselect an existing section so that no row is selected. Usually the change
is produced by something the user did.

4-182 Chapter 4: Database Kit

DBEntities

Adopted By: no N eXTSTEP classes

Incorporates: DBTypes

Declared In: dbkitlentities.h

Protocol Description

The DBEntities protocol lets an object represent a database entity. An entity comprises a
list of data categories, or properties. As data is read from a database for a particular entity,
an "instance" of the entity (a record) is created and filled with data, one datum per property.

It's tempting to speak of an entity as a database table. They're similar. You can think of a
table as the corporealization of an entity. Put another way, an entity describes how a table
organizes its data into columns (properties). However, you should keep in mind that an
entity doesn't contain data (nor do the properties within the entity). Furthermore, neither
entities nor properties are "placeholders" for data. Entities and properties neither store nor
make room for data, they simply provide a description of the type and location of data so
some other object (a record) can be created to adequately store this data.

Typically, an application doesn't create entity objects directly, but, instead, reads them from
a database model file. This is performed by creating a DBDatabase object and connecting
it to the file (through methods described in the DBDatabase class specification). You can
retrieve, in a List, the entity objects that the DBDatabase read from the model file by
sending the DBDatabase a getEntities: message. Alternatively, you can retrieve a single
entity object by name through entityNamed:. Both of these methods return private
DB Entities-conforming objects that are created and owned by the Database Kit.

Entity object are used as arguments in a handful of important methods. Most notable of
these, you typically use an entity as the source in an invocation of DBRecordList's
setProperties:ofSource:. In addition, an entity is required by the DB Qualifier and
DBExpression initialization methods.

Protocols: DBEntities 4-183

The DBEntities protocol incorporates the DBTypes protocol. It does this for one reason:
the type of Objective C data described by a property that represents a relationship is a
DBEntities object. Thus, if the isEntity message returns YES when sent to the value
returned by sending propertyType to a property, then that property is a relationship. This
is demonstrated in the following example:

/* Get the properties from an entity. Check for relationships. */

int counter;
List *propList = [[List alloc] init];
id prop;

[anEntity getProperties:propList];
for (counter = 0; counter < [aList count]; counter++)

prop=[aList objectAt:counter];
if ([[prop propertyType] isEntity])

printf("Property named %s is a relationship.\n", [prop name]);

Warning: You should never send the DB Types messages objcClassName or databaseType to the
private entity objects that are returned by the aforementioned DBDatabase methods. The
private entity class implements these DBTypes methods to raise
DB _UNIMPLEMENTED_ERROR exceptions.

It isn't anticipated that you should need to create your own class that adopts the DB Entities
protocol. The entity objects returned by getEntities: and entityNamed: should be
adequate for most applications.

Method Types

Querying the object -name
- database
- getProperties:
- property Named:

Comparing the object - matchesEntity:

4-184 Chapter 4: Database Kit

Instance Methods

database

- (DBDatabase *)database

Returns the DBDatabase object that created the entity.

getProperties:
- getProperties:(List *)aList

Returns, in aList, a list of the entity's properties. Each object in the list conforms to the
DB Properties protocol.

matchesEntity:

- (BOOL)matchesEntity:(id <DB Entities>)anEntity

Returns YES or NO if the receiving entity and anEntity were created from the same model
file entity.

name
- (const char *)name

Returns the entity's name. This is the same name as given to the entity in the model file
from which it was read.

propertyNamed:
- propertyNamed:(const char *)aName

Returns the property named aName. If the entity has no such property, nil is returned.

Protocols: DBEntities 4-185

DBExpressionValues

Adopted By:

Declared In:

DB Expression
DB Qualifier
DB Value

dbkitlexpression Values.h

Protocol Description

The DBExpressionValues protocol allows an object to be used in a query-language
statement. Its principal method, expression Value, returns a string that gives an object's
representation as it should appear in such a statement.

A second method, isDeferredExpression, returns a boolean that indicates whether the
invocation of expressionValue should be deferred until the "last possible moment." This
is useful for classes, such as DBExpression, that concatenate values stored in separate
objects. As the larger expression is being built, the DB Expression asks each of the
value-holding objects whether it is deferred. If the values aren't deferred, it can send an
expression Value message as soon as the value-holding object is added. But if any is
deferred, it should delay until all the objects are in place, and then send an expression Value
message to each of them.

Instance Methods

expressionValue

- (const char *)expression Value

Returns the value of an expression object as a string that represents the expression in the
query language.

isDeferredExpression

- (BOOL)isDeferredExpression

Returns YES if evaluation of the expression should be deferred (for example, until related
expressions are ready).

4-186 Chapter 4: Database Kit

DBForl11atConversion
(informal protocol)

Category Of:

Declared In:

Object

dbkiticustomType.h

Category Description

This category is the companion of the category DBFormatInitialization. The two provide
part of the mechanism the Database Kit uses to transfer Objective C objects between the
database and the application. DBFormatConversion provides a method that specifies the
format of the data contained in a buffer that the adaptor will use while transferring data
from the application to the database. You'll need explicit use of these methods only if your
application uses formats other than those already supported in the Database Kit. (The kit
supports any object in the archive format appropriate to its class, as well as NXData using
RTF format, or NXImage using TIFF or BPS format.)

Instance Methods

writeBuffer:ofLength:usingFormat:

- writeBuffer:(void **)bufferPtr
ofLength:(unsigned *)lengthPtr
usingFormat:(const char *)aFormatName;

If your application creates a custom class that's associated with a property and your class
implements this method, this method will be invoked automatically when the Database Kit
tries to store the object into the database.

The pointer *bufferPtr may point either to an existing buffer or to NULL. If it points to an
existing buffer, *lengthPtr points to the buffer's length. But if *bufferPtr points to NULL,
the method should allocate space for a new buffer as needed, and should write the length it
allocates into the location that *lengthPtr points to.

Protocols: DBFormatConversion 4-187

The argument aFormatName is a string containing the name of the format in which the data
is written. The Database Kit defines the following names for formats:

• "EPS"
• "RTF"
• "TIFF"

Alternatively, the string may be the name of any type your application recognizes, as
declared in DBModeler's Attribute Inspector for data of type Object.

4-188 Chapter 4: Database Kit

DBForl11atlnitialization
(informal protocol)

Category Of: Object

Declared In: dbkitltypes .h

Category Description

This category is the companion of the category DBFormatConversion. The two provide
part of the mechanism the Database Kit uses to transfer Objective C objects between the
database and the application. DBFormatInitialization provides a method that specifies the
format of the data contained in a buffer that the adaptor uses while reading data from the
database. You'll need explicit use of these methods only if your application uses formats
other than those already supported in the Database Kit. (The kit supports any object in the
archive format appropriate to its class, as well as NXData using RTF format, or NXImage
using TIFF or EPS format.)

Instance Methods

initFromBuffer:ofLength:withFormat:

- initFromBuffer:(void *)buffer
oiLength: (unsigned)length
withFormat:(const char *)aFormatName

If your application creates a custom class that's associated with a property and your class
implements this method, this method will be invoked automatically when the Database Kit
tries to read data from the database for delivery as an instance of your class.

The argument buffer is an already allocated buffer, and length describes the buffer's length.

The argument aFormatName is a string containing the name of the format in which the data
is written. The Database Kit defines the following names for formats:

• "EPS"
• "RTF"
• "TIFF"

Alternatively, the string may be the name of any type your application recognizes, as
declared in DBModeler's Attribute Inspector for data of type Object.

Protocols: DBFormatlnitialization 4-189

DBForl11atterValidation
(informal protocol)

Category Of:

Declared In:

Object

dbkititableProtocols.h

Category Description

This informal protocol is one of the mechanisms the Database Kit uses to place objects into
the database. If a class is associated with a property and it implements this method, this
method will be called when the kit tries to store the object into the database.

Method Types

Notifications by identifiers - formatterDidChange ValueFor: :to:sender:
- formatterWillChange ValueFor: : sender:
- formatterWillChange ValueFor: :to:sender:

Notification by position - formatterDidChange ValueFor: atto: sender:
- formatterWillChange ValueFor:atsender:
- formatterWillChange ValueFor:at:to:sender:

Instance Methods

formatterDidChangeValueFor::sender:

- formatterDidChange ValueFor:rowldentifier
:columnldentifer
sender:sender

Notification that may be sent when the formatter has changed the value in a field. The field
that changed is identified by its rowldentifier and its columnldentifier (for the situation in
which both rows and columns are static).

The argument sender is the sender of the message (usually a formatter). Returns self.

4-190 Chapter 4: Database Kit

formatterDidChangeValueFor::to:sender:

- formatterDidChangeValueFor:rowldentifier
:columnldentifer
to:aValue
sender: sender

Notification that may be sent when the formatter has changed the value in a field. The field
that changed is identified by its rowldentifier and its columnldentifier (for the situation in
which both rows and columns are static).

The argument a Value is the object that contains the new value. The argument sender is the
sender of the message (usually a formatter). Returns self.

formatterDidChangeValueFor:at:sender:

- formatterDidChangeValueFor:identifier
at: (unsigned int)position
sender:sender

Notification that may be sent when the formatter has changed the value in a field. The field
that changed is identified by its identifier (usually associated with a column, but could be
the identifier of a row if rows are static) and its position (usually a row number, but could
be a column number if columns are dynamic).

The argument sender is the sender of the message (usually a formatter). Returns self.

formatterDidChangeValueFor:at:to:sender:

- formatterDidChange ValueFor: identifier
at: (unsigned int)position
to:aValue
sender:sender

Notification that may be sent when the formatter has changed the value in a field. The field
that changed is identified by its identifier (usually associated with a column, but could be
the identifier of a row if rows are static) and its position (usually a row number, but could
be a column number if columns are dynamic).

The argument a Value is the object that contains the new value. The argument sender is the
sender of the message (usually a formatter). Returns self.

Protocols: DBFormatterValidation 4-191

formatterWiIIChangeValueFor::to:sender:

- (BOOL)formatterWilIChangeValueFor:rowldentifier
:columnldentifier
to:aValue
sender:sender

Notification that may be sent when the formatter is about to change the value in a field. The
field in which the proposed chaI}ge will take place is identified by its rowldentifier and its
columnldentifier (for the situation in which both rows and columns are static).

The argument aValue is the object that contains the proposed new value. The argument
sender is the sender of the message (usually a formatter). Returning YES permits the
change to be recorded in the record list (and thus ultimately in the database).

formatterWiIIChangeValueFor:at:to:sender:

- (BOOL)formatterWiIlChangeValueFor:identifier
at: (unsigned int)position
to:aValue
sender:sender

Notification that may be sent when the formatter is about to change the value in a field. The
field in which the proposed change will take place is identified by its identifier (usually
associated with a column, but could be the identifier of a row if rows are static) and its
position (usually a row number, but could be a column number if columns are dynamic).

The argument a Value is the object that contains the proposed new value. The argument
sender is the sender of the message (usually a formatter). Returning YES permits the
change to be recorded in the record list (and thus ultimately in the database).

4-192 Chapter 4: Database Kit

DBForl11atterVievvEditing

Adopted By: no NeXTSTEP classes

Declared In: dbkitIDBEditableFormatter.h

Protocol Description

The method in this protocol provides a means by which a view containing a field that is
being edited can receive a message from the object doing the editing (for example, an
instance of DBEditableFormatter).

Instance Methods

formatterDidEndEditing:endChar:

- (BOOL)formatterDidEndEditing:sender endthar:(unsigned short)whyEnd

Invoked by an editor when the user completes editing of an editable field by pressing one
of the keys that moves to another field (Return, Tab, or Shift-Tab). The field that was being
edited is redrawn, and the cursor is moved to the next field, depending on which character
was whyEnd: NX_RETURN, NX_TAB, or NX_BACKTAB. Returns YES, unless invoked
while no field was being edited.

Protocols: DBFormatterViewEditing 4-193

DBProperties

Adopted By: DBExpression

Declared In: dbkit/properties .h

Protocol Description

An object that conforms to the DB Properties protocol represents a named category of
information in an entity (an object that conforms to the DB Entities protocol). Put less
formally, a property represents a column in a database table. For example, a table that
contains information about a physician's patients might contain the columns "name",
"address", and "blood type". The "name" column would be represented as a single
property object; similarly, "address" would be a separate property.

While a property object represents a column, it doesn't contain the data that's in the
column-data is contained in a table's rows, or records. A records is said to have a value
for a property: A record from the physician's patients table would have a value for the
blood type property.

A property object describes a column, primarily, through three elements, an entity, a name,
and a data type:

• The entity is the object to which the property belongs-a property can only belong to
one entity at a time.

• Within an entity, a property has a unique name such that if two property objects belong
to the same entity and have the same name, then they're representing the same category.

• A property's data type establishes the type of data that's held by a record for that
property-all values for that property must be of the same type. The type is embodied
in a private object that conforms to the DBTypes protocol; the object can be retrieved
through the propertyType method.

To retrieve a list of properties contained in a particular entity object, you send the entity a
getProperties: message. You can find a particular property by name by sending the entity
a propertyNamed: message. The DB Properties that these methods return are created
privately by the Database Kit when the entity is read from a model file. You would typically
use these properties to initialize a DBBinder, DBRecordList, or DBRecordStream object.
Properties are also needed by methods defined by these classes as "value indices" into
records. For example, the DBBinder method valueForProperty: returns the DB Value

4-194 Chapter 4: Database Kit

object that's stored in the current record for the given property. Put more naturally, the
method returns the value in a particular column.

The DBExpression class adopts the DB Properties protocols. The DBExpression objects
that you create and the properties returned by the DBEntities methods described above
should suffice for most applications-you shouldn't need to create your own class that
adopts the DB Properties protocol.

Method Types

Identifying a property -name
- setName:
- entity

Querying a property - propertyType
- isSingular
- isReadOnly
- isKey
- matchesProperty:

Instance Methods

entity

- (id <DB Entities>) entity

Returns the entity to which the property belongs.

isKey

- (BOOL)isKey

Returns YES if the property can be used as a key property for its entity. A key property is
one that can distinguish the records in the entity; in other words, the value of each record
for the key property must be unique.

isReadOnly

- (BOOL)isReadOnly

Returns YES if the data categorized by the property is read-only; in other words, if it can't
be written back to the database.

Protocols: DBProperties 4-195

isSingular

- (BOOL)isSingular

Returns YES if the property represents an attribute or a one-to-one relationship.
Otherwise-to wit, if it's a one-to-many relationship-it returns NO.

matchesProperty:

- (BOOL)matchesProperty: (id <DB Properties>)aProperty

Returns YES if the receiving property and aProperty identify the same thing-if they're in
the same entity and have the same name. Otherwise returns NO.

name

- (const char *)name

Returns the property's name. For a property read from a model file, this is the name given
it by the DB Modeler application. To name a DBExpression object, use the setName:
method.

propertyType

- (id <DBTypes» propertyType

Returns a DB Types-conforming object that encapsulates the property's data type. All the
values that the property categorizes are of this type.

setName:

- (BOOL)setName:(const char *)aName

Sets the property's name to a copy of aName. This method is designed to be used to name
DB Properties objects that you create yourself (as explained in the class description, above,
such objects will almost certainly be DBExpressions). You shouldn't alter the name of a
property that was created for you from a model file. Returns YES if the name was set as
requested, otherwise return NO.

4-196 Chapter 4: Database Kit

DBTableDataSources
(informal protocol)

Category Of:

Declared In:

Object

dbkitltableProtocols.h

Category Description

The DBTableDataSource protocol provides methods used by the DB Table View and its
formatters to determine what should be displayed.to the user. The object designated as the
DBTableView's data source must be prepared to report how many rows of data are
available, to supply values for a given row and column, and to accept modified values for
a given row and column.

Method Types

Reporting table size - rowCount
- column Count

Getting/setting data - getValueFor:atinto:
- getValueFor: :into:
- setValueFor:atfrom:
- setValueFor: : from:

Instance Methods

columnCount

- (unsigned int)columnCount

Returns the number of columns in the data table from which values are being displayed.

Protocols: DB TableDataSources 4-197

getValueFor::into:

- getValueFor:rowldentifier
:columnldentifier
into:a Value

Copies the value of an attribute from the data source (for example, a DBRecordList) into
the object a Value. The arguments rowldentifier and columnldentifier are properties (so this
method of extracting a value does not depend on position either in the data source or in the
display). Returns self.

See also: - getValueFor:at:into:

getValueFor:at:into:

- getValueFor:identifier
at:(unsigned int)aPosition
into:a Value

Copies the value of an attribute from a position in the data source (for example, a
DBRecordList) into the object aValue. The argument identifier describes the desired
attributed in terms used by the source, rather than those used by the display, which may
differ. (See the discussion of identifier in the DBTableVectors protocol.) The argument
aPosition is an index in the source table. Returns self.

See also: - getValueFor::into:

rowCount

- (unsigned int)rowCount

Returns the number of rows in the data table from which values are being displayed.

4-198 Chapter 4: Database Kit

setValueFor::from:

- setValueFor:rowldentifier
:columnldentifier
from: a Value

Sets an attribute in the data source (for example, a DBRecordList) so that its value becomes
aValue. The arguments rowldentifier and columnldentifier are properties (so this method
of setting a value does not depend on position either in the data source or in the display).
Returns self.

See also: - setValueFor:at:from:

setValueFor:at:from:

- setValueFor:identifier
at: (unsigned int)aP osition
from: a Value

Sets an attribute at a position in the data source (for example, a DBRecordList) so that its
value becomes a Value. The argument identifier describes the target attributed in terms used
by the source, rather than those used by the display, which may differ. (See the discussion
of identifier in the DBTableVectors protocol.) Copies the value of the object aValue into
aPosition, an index in the source table. Returns self.

See also: - setValueFor::from:

Protocols: DB TableDataSources 4-199

DBTabie Vectors

Adopted By: DB Table Vector

Declared In: dbkitltableProtocols.h

Protocol Description

Methods in the DBTableVectors protocol are used to specify the formatting of cells within
a DBTableView. In general, a format applies throughout a vector (that is, one of the table's
rows or columns). When a DB Table View is structured so that attributes are shown as static
columns while records are dynamically arranged on successive rows, there is usually a
separate format for each static column, but a single row format that applies to all rows.

An identifier identifies an attribute (that is, a field) as it is known to the data source from
which data is being taken. (The data source is an association to a fetch group for
DBRecordList or DBRecordStream. Fields in the associated data source may be at
different positions or have different names from those used in the display.)

Aformatter is the DB Formatter object responsible for formatting the display.

Method Types

Controlling/reporting formatter - formatter
- setFormatter:

Controlling/reporting data link - identifier
- setIdentifier:

Controlling/reporting editing - isEditable
- setEditable:

4-200 Chapter 4: Database Kit

Controlling/reporting size - isResizable
- setResizable:
- isAutosizable
- setAutosizable:
- size
- sizeTo:
- minSize
- setMinSize:
- maxSize
- setMaxSize:

Controlling/reporting title - title
- setTitle:
- titleFont
- setTitleFont:
- title Alignment
- setTitleAlignment:

Controlling/reporting content alignment
- contentAlignment
- setContentAlignment:

Instance Methods

contentAlignment
- (int)contentAlignment

Returns the horizontal alignment of the row or column's content. The return value can be
one of three constants: NX_LEFTALIGNED, NX_CENTERED, or
NX_RIGHTALIGNED.

formatter

-formatter

Returns the formatter responsible for displaying items.

Protocols: DB TableVectors 4-201

identifier

- identifier

Returns the property of the data source from which the displayed data is taken.

isAutosizable

- (BOOL)isAutosizable

Returns YES if the row or column is autosizable (that is, it resizes itself in response to a
change in the DBTableView's content view).

isEditable

- (BOOL)isEditable

Returns YES if the displayed row or column is editable.

isResizable

- (BOOL)isResizable

Returns YES if the row or column is resizable (that is, it permits the user to change its width
in the display).

maxSize

- (NXCoord)maxSize

Returns a vector's greatest permissible size (the width or a column or the height of a row).

minSize

- (NXCoord)minSize

Returns a vector's least permissible size (the width or a column or the height of a row).

4-202 Chapter 4: Database Kit

setAutosizable:

- setAutosizable:(BOOL)jlag

Permits or prohibits autosizing of the row or column, as the value of jlag is YES or NO.

setContentAlignment:

- setContentAlignment: (int)align

Sets the horizontal alignment of the row or column's content. The argument align can be
one of three constants: NX_LEFTALIGNED, NX_CENTERED, or
NX_RIGHTALIGNED.

setEditable:

- setEditable:(BOOL)jlag

Permits or prohibits editing of the row or column, as the value ofjlag is YES or NO.

setFormatter:

- setFormatter:new Formatter

Makes newFormatter the object responsible for displaying an item in this vector (row or
column). Returns self.

setldentifier:

- setldentifier:aDataAttribute

Sets the attribute of the data source from which the displayed data is taken.

setMaxSize:
- setMaxSize:(NXCoord)newMaxSize

Sets a vector's greatest permissible size (the width or a column or the height of a row)

Protocols: DB TableVectors 4-203

setMinSize:

- setMinSize:(NXCoord)newMinSize

Sets a vector's least permissible size (the width or a column or the height of a row).

setResizable:

- setResizable:(BOOL)flag

Permits or prohibits resizing the row or column, as flag is YES or NO.

setTitle:

- setTitle:(const char *)title

Sets the title of the row or column to title.

setTitleAlignment:

- setTitleAlignment:(int)align

Sets the horizontal alignment of the row or column's title. The argument align can be one
of three constants: NX_LEFTALIGNED, NX_CENTERED, or NX_RIGHTALIGNED.

setTitleFont:

- setTitleFont:JontObj

Sets the font used to draw the row or column's title to JontObj.

size

- (NXCoord)size

Returns the width and height of the display cell.

sizeTo:

- (NXCoord)sizeTo: (NXCoord)newSize

Sets the width and height of the display cell to the values in newSize. Returns self.

4-204 Chapter 4: Database Kit

title
- (const char *)title

Returns the title of the row or column.

titleAlignment
- (int)titleAlignment

Returns the horizontal alignment of the row or column's title. The return value can be one
of three constants: NX_LEFTALIGNED, NX_CENTERED, or NX_RIGHTALIGNED.

titleFont
- titleFont

Returns (as a Font object) the font for the row or column's title.

Protocols: DBTableVectors 4-205

DBTransactions

Adopted By: no NeXTSTEP classes

Declared In: dbkitltransactions.h

Protocol Description

This protocol defines the three methods that are required of an adaptor that supports
transaction processing.

Me~hod Types

Basic transaction commands - beginTransaction
- commitTransaction
- rollbackTransaction

Instance Methods

beginTransaction

- (BOOL)beginTransaction

The adaptor tells the database to start a transaction. Returns YES to indicate success, NO
otherwise, based on the response from the database.

commitTransaction

- (BOOL)commitTransaction

The adaptor tells the database to commit the current transaction. Returns YES to indicate
success, NO otherwise, based on the response from the database.

4-206 Chapter 4: Database Kit

rolibackTransaction

- (BOOL)rollbackTransaction

The adaptor tells the database to roll back the current transaction. Returns YES to indicate
success, NO otherwise, based on the response from the database.

Protocols: DBTransactions 4·207

DBTypes

Adopted By: no N eXTSTEP classes

Declared In: dbkitltypes .h

Protocol Description

The methods in the DBTypes protocol return information about the type of data that's held
or described by the object upon which they are invoked (principally, DB Properties and
DBValue objects, as explained below). This information doesn't necessarily correspond to
an actual value-a DB Types object may not even embody a "real" value, and the protocol
makes no provision for storing values-it simply provides a means for abstractly
describing a data type.

The protocol's two primary methods are objcType and databaseType; they return strings
that-represent, respectively, an Objective C data type, and a data type as given in the actual
database. The Database Kit uses the following convention in representing Objective C data
types as strings:

Objective C type

id
char *
int
float
double

DBTypes representation

"@"
"*,,

"i"
"f'
"d"

The value returned by databaseType, on the other hand, is completely adaptor-dependent.
In addition, not all objects have a database type. For example, a relationship that's read
from a database model file isn't represented in the actual database, and so will have no
database type.

None of the public Database Kit classes implements the DB Types protocol. However, the
kit automatically creates private DB Types-conforming objects which it uses to store the
data types of properties and DBValues. The DBProperties method propertyType returns
such a private DBTypes object, as does DBValue's valueType method.

4-208 Chapter 4: Database Kit

Method Types

Querying for type

Comparing types

Instance Methods

database Type

- objcType
- databaseType
- objcClassName

- isEntity
- matchesType:

- (const char *)databaseType

Returns a string that represents the object's data type as it resides in the database from
which it was read (or to which it will be written).

isEntity

- (BOOL)isEntity

Returns YES if the object's data type is an id that conforms to the DB Entities protocol,
otherwise returns NO. This method is intended to be used to determine if a property is a
relationship. The data type of a relationship is an entity; thus if this method returns YES
when invoked upon a DB Properties object, that property is a relationship.

matchesType:

- (BOOL)matchesType:(id <DB Types>)anObject

Returns YES if the object's data type matches that of anObject, otherwise returns NO.

objcClassName

- (const char *)objcClassName

If the object's type is an id, this returns the name of the id's class. If the type isn't an id,
this returns nil.

Protocols: DBTypes 4-209

objcType

- (const char *)objcType

Returns a string that represents the object's Objective C data type. The strings that are used
by the Database Kit to represent the standard Objective C types are listed in the class
description, above.

4-210 Chapter 4: Database Kit

Types and Constants

Defined Types

DBExceptions

DECLARED IN dbkit/exceptions.h

SYNOPSIS typedef enum _DBAccessErrors {
DB_UnimplementedException = DB_ERROR_BASE,
DB _ CoercionException,
DB_FormatException,
DB_ CursorException,
DB_ CommitException

} DBExceptions;

DESCRIPTION Exceptions raised during a database access.

DBFailureCode

DECLARED IN dbkit/enums.h

SYNOPSIS typedef enum {
DB_ReasonUnknown,
DB_RecordBusy,
DB_RecordStreamNotReady,
DB_RecordHasChanged,
DB_RecordLimitReached,
DB_NoRecordKey,
DB_RecordKeyNotUnique,
DB_NoAdaptor,
DB_AdaptorError,
DB _ TransactionError

} DBFailureCode;

DESCRIPTION Error codes returned by an adaptor.

4-212 Chapter 4: Database Kit

DBFailureResponse

DECLARED IN dbkitlenums.h

SYNOPSIS typedef enum {
DB_NotHandled,
DB_Abort,
DB_Continue

} DBFailureResponse;

DESCRIPTION Possible returns from methods that respond to a failure notification.

DBlmageStyle

DECLARED IN dbkitIDBImage View.h

SYNOPSIS typedef enum {
DB_ImageNoFrame,
DB_ImagePhoto,
DB_ImageGrayBezel,
DB_ImageGroove

} DBlmageStyle;

DESCRIPTION Style of frame to surround an image.

Types and Constants: DBFailureResponse 4-213

DBRecordListRetrieveMode

DECLARED IN dbkitlenums.h

SYNOPSIS typedef enum _DBRecordListMode {
DB_Synchronous Strategy,
DB_BackgroundStrategy,
DB_BackgroundNoBlockingStrategy,

} DBRecordListRetrieveMode;

DESCRIPTION Access strategy used by a DBRecordList.

DBRecordRetrieveStatus

DECLARED IN dbkitlenums.h

SYNOPSIS typedef enum _DBRecordRetrievalStatus {
DB_NotReady,
DB_Ready,
DB_FetchLimitReached,
DB_FetchlnProgress,
DB_FetchCompleted

} DBRecordRetrieveStatus;

DESCRIPTION Status of a DBRecordStream or a DBRecordList.

4-214 Chapter 4: Database Kit

DBRetrieveOrder

DECLARED IN dbkitlenums.h

SYNOPSIS typedef enum {
DB_NoOrder,
DB_AscendingOrder,
DB_DescendingOrder

} DBRetrieveOrder;

DESCRIPTION Order in which retrieved records are sorted.

DBSelectionMode

DECLARED IN dbkitIDBTable View.h

SYNOPSIS typedef enum {
DB_RADIOMODE,
DB_LISTMODE,
DB_NOSELECT

} DBSelectionMode

DESCRIPTION Modes in which the user may select rows or columns in a DB Table View.

DB_RADIOMODE Selecting a row or column deselects those previously selected.

DB_LISTMODE Selecting a previously unselected row or column adds it to the
selection already made; selecting a previously selected row or
column deselects.

DB_NOSELECT No selection is permitted.

Types and Constants: DBRetrieveOrder 4-215

SYl11bolic Constants

Error Code Base Value

DECLARED IN dbkitlexceptions.h

DESCRIPTION Constant added to Database Kit error codes.

Format Types

DECLARED IN dbkiticustomType.h

SYNOPSIS Name Value

DB Format_EPS "EPS"
DB Format_RTF "RTF"
DB Format_TIFF "TIFF"

DESCRIPTION Type of the source image to be displayed or transferred.

No Index Indicator

DECLARED IN dbkitlenums.h

SYNOPSIS DB_Nolndex

DESCRIPTION No selected position in an indexed array (such as DBTableView).

4-216 Chapter 4: Database Kit

Null Values

DECLARED IN dbkitIDBValue.h

SYNOPSIS Name

DB_NullDouble
DB_NullFloat
DB_NullInt

DESCRIPTION Null returns of appropriate type.

Record Limit Default

DECLARED IN dbkitIDBFetchGroup.h

Value

(NAN)
(NAN)
«int)Ox7ffffffe)

DESCRIPTION Maximum number of records that a DBFetchGroup will fetch unless explicitly set by the
DBRecordList method setRecordLimit:.

Types and Constants: Null Values 4-217

4-218

5 Display PostScript

5-3 Introduction

5-5 PostScript Operators

5-57 Single-Operator Functions
5-58 Operands and Arguments
5-59 Argument Data Types
5-59 Return Values
5-60 PS and DPS Functions

5-69 Client Library Functions

5-91 Types and Constants
5-93 Defined Types
5-102 Symbolic Constants

5-1

5-2

Display PostScript

Library: lib NeXT _s.a

Header File Directory: IN extDeveloper/Headersl dpsc1ient

Import: dpsc1ientl dpsc1ient.h

Introduction

This chapter describes the NeXTSTEP implementation of the Display PostScript@ Client
Library, and NeXTSTEP's additions to the catalog of PostScript operators. The Client
Library and PostScript operators are mainly documented by Adobe Systems, Inc. (see
"Suggested Readings" at the end of Volume 2). Documented here are only those elements
that are unique to or different in the NeXTSTEP implementation.

The chapter is divided into four sections:

• "Operators" describes the PostScript operators that are unique to NeXTSTEP, or that
have different effects from the same operators as implemented by Adobe. You can use
these operators as you would any of the standard operators provided by Adobe.

• "Single Operator Functions" lists the C functions that correspond to the NeXTSTEP
operators. These functions fulfill the guarantee that for every operator there will be a
C-language function interface. The list of functions given in this section are offered
without description (for which you must refer to the similarly named operator in the
"Operators" section).

Display PostScript 5-3

• "Client Library Functions" describes the NeXTSTEP-specific functions that provide an
interface to the Display PostScript system.

• "Types and Constants" describes the defined types and symbolic constants used in
NeXTSTEP's implementation of the Display PostScript Client Library.

5-4 Chapter 5: Display PostScript

PostScript Operators

This section contains descriptions of the PostScript operators that are either unique to
NeXTSTEP or that have different or additional effects in the NeXTSTEP implementation
of the Display PostScript system. The standard PostScript operators are documented by
Adobe Systems Inc. (see "Suggested Reading" at the end of Volume 2).

The PostScript operators can be used only in PostScript language code. However, every
operator has a C function interface associated with it, allowing you to execute the operator
from a program or application written in C or Objective C. The functions that correspond
to the NeXTSTEP-unique operators described here are given in the "Single-Operator
Functions" section of this chapter.

Some operators shouldn't be used in applications that use the Application Kit. In addition,
some standard operators are unimplemented in NeXTSTEP. Both categories of operators
are marked with a warning in the descriptions in this section.

5-6 Chapter 5: Display PostScript

adjustcursor

dx dy adjustcursor -

Moves the cursor location by (dx, dy) from its current location. dx and dy are given in the
current coordinate system. If the current device isn't a window, the invalidid error is
executed.

ERRORS invalidid, stackunderflow, typecbeck

SEE ALSO currentmouse, setmouse

alphaimage

pixelswide pixelshigh bits/sample matrix datasrco £ .. . datasrcnl multiproc ncolors
alpbaimage -

Renders an image whose samples include an alpha component. (Most programmers should
use NXlmageBitmapO instead of alpbaimage.) This operator is similar to the standard
colorimage operator (as documented by Adobe Systems). However, note the following:

• When supplying the data components, alpha is always given last-either as the last data
source (datasrcn) If the data is given in separate vectors, or as the last element in a set
of interleaved data.

• The ncolors operand doesn't account for alpha-the value of ncolors is the number of
color components only.

ERRORS invalidid, Iimitcbeck, rangecbeck, stackunderflow, typecbeck, undefined,
undefinedresult

PostScript Operators: adjustcursor 5-7

basetocurrent

bx by basetocurrent ex ey

Converts (bx, by) from the current window's base coordinate system to its current
coordinate system. If the current device isn't a window, the invalidid error is executed.

ERRORS invalidid, stackunderftow, typecheck

SEE ALSO basetoscreen, currenttobase, currenttoscreen, screentobase, screentocurrent

basetoscreen

bx by basetoscreen sx sy

Converts (bx, by) from the current window's base coordinate system to the screen
coordinate system. If the current device isn't a window, the invalidid error is executed.

ERRORS invalidid, stackunderftow, typecheck

SEE ALSO basetocurrent, currenttobase, currenttoscreen, screentobase, screentocurrent

buttondown

- buttondown isdown

Returns true if the left or only mouse button is currently down; otherwise it returns false.

Note: To test whether the mouse button is still down from a mouse-down event, use
stilldown instead of buttondown; buttondown will return true even if the mouse button
has been released and pressed again since the original mouse-down event.

ERRORS none

SEE ALSO currentmouse, rightbuttondown, rightstilldown, stilldown

5·8 Chapter 5: Display PostScript

cleartrackingrect

trectnum gstate cleartrackingrect -

Clears the tracking rectangle identified by trectnum, as set by settrackingrect, in the device
referred to by gstate (or the current graphics state if gstate is null). If no such rectangle
exists, the invalidid error is executed.

ERRORS invalidid, stackunderftow, typecheck

SEE ALSO settrackingrect

composite

srcx srcy width height srcgstate destx desty op composite -

Performs the compositing operation specified by op between pairs of pixels in two images,
a source and a destination. The source pixels are in the window device referred to by the
srcgstate graphics state, and the destination pixels are in the current window. If srcgstate
is null, the current graphics state is assumed. If either graphics state doesn't refer to a
window device, the invalidid error is executed.

The rectangle specified by srcx' srcY' width, and height defines the source image. The
outline of the rectangle may cross pixel boundaries due to fractional coordinates, scaling,
or rotated axes. The pixels included in the source are all those that the outline of the
rectangle encloses or enters.

The destination image has the same size, shape, and orientation as the source; destx and
desty give destination's location image compared to the source. (Even if the two graphic
states have different orientations, the images will not; composite will not rotate images.)

Both images are clipped to the frame rectangles of their respective windows. The
destination image is further clipped to the clipping path of the current graphics state. The
result of a composite operation replaces the destination image.

op specifies the compo siting operation. The choices for op and the result of each operation
are given in the following illustration.

ERRORS invalidid, rangecheck, stackunderftow, typecheck

SEE ALSO compositerect, setalpha, setgray, sethsbcolor, setrgbcolor

PostScript Operators: cleartrackingrect 5-9

Source

opaque

transparent

Destination
before

~ opaque

transparent

Operation Destination after

Copy Source image.

Clear D Transparent.

PlusD

PlusL

Sover

Dover

Sin

Din

Sout

Dout

Satop

~

G1

Sum of source and destination images, with color values approaching 0 as a limit.

Sum of source and destination images, with color values approaching 1 as a limit.
(PlusL is not implemented for the MegaPixel Display.)

Source image wherever source image is opaque, and destination image elsewhere.

Destination image wherever destination image is opaque, and source image elsewhere.

Source image wherever both images are opaque, and transparent elsewhere.

Destination image wherever both images are opaque, and transparent elsewhere.

Source image wherever source image is opaque but destination image is transparent,
and transparent elsewhere.

Destination image wherever destination image is opaque but source image is transparent,
and transparent elsewhere.

Source image wherever both images are opaque, destination image wherever destination
image is opaque but source image is transparent, and transparent elsewhere.

Figure 5-1. Compositing Operations

5-10 Chapter 5: Display PostScript

compositerect

destx desty width height op compositerect -

In general, this operator is the same as the composite operator except that there's no real
source image. The destination is in the current graphics state; destx' destY' width, and height
describe the destination image in that graphics state's current coordinate system. The effect
on the destination is as if there were a source image filled with the color and coverage
specified by the graphics state's current color parameter. op has the same meaning as the
op operand of the composite operator; however, one additional operation, Highlight, is
allowed.

On the MegaPixel Display, Highlight turns every white pixel in the destination rectangle to
light gray and every light gray pixel to white, regardless of the pixel's coverage value.
Repeating the same operation reverses the effect. (Highlight may act differently on other
devices. For example, on displays that assign just one bit per pixel, it would invert every
pixel.)

Note: The Highlight operation doesn't change the value of a pixel's coverage component.
To ensure that the pixel's color and coverage combination remains valid, Highlight
operations should be temporary and should be reversed before any further compositing.

For compositerect, the pixels included in the destination are those that the outline of the
specified rectangle encloses or enters. The destination image is clipped to the frame
rectangle and clipping path of the window in the current graphics state.

If the current graphics state doesn't refer to a window device, the invalidid error is
executed.

ERRORS invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO composite, setalpha, setgray, sethsbcolor, setrgbcolor

copypage

Warning: This standard PostScript operator has no effect in the NeXTSTEP
implementation of the Display PostScript system.

PostScript Operators: compositerect 5-11

cou ntfra mebuffers

- countframebuffers count

Returns the number of frame buffers that the Window Server is actually using.

ERRORS stackoverflow

SEE ALSO framebuffer

countscreenlist

context countscreenlist count

Returns the number of windows in the screen list that were created by the PostScript context
specified by context. This is in contrast with countwindowlist, which returns the number
of windows created by the context without regard to their inclusion in the screen list.

If context is 0, all windows in the screen list are counted, without regard to the context that
created them.

ERRORS invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO countwindowlist, screenlist, windowlist

countwindowlist

context countwindowlist count

Returns the nvmber of windows that were created by the PostScript context specified by
context. This is in contrast with countscreenlist, which returns the number of windows in
the screen list that were created by the PostScript context specified by context.

If context is 0, all windows are counted, without regard to the context that created them.

ERRORS stackunderflow, typecheck

SEE ALSO countscreenlist, screenlist, windowlist

5-12 Chapter 5: Display PostScript

currentactiveapp

- currentactiveapp context

Warning: Don't use this operator if you're using the Application Kit.

Returns the active application's context. This operator is used by the window packages to
assist with wait cursor operation.

ERRORS stackoverflow

SEE ALSO setactiveapp

currentalpha

- currentalpha coverage

Returns the coverage parameter of the current graphics state.

ERRORS none

SEE ALSO composite, setalpha

currentdefaultdepthlimit

- currentdefaultdepthlimit depth

Warning: Don't use this operator if you're using the Application Kit. Use Window's
defaultDepthLimit class method instead.

Returns the current context's default depth limit. This value determines a new window's
depth limit.

ERRORS stackoverflow

SEE ALSO setdefaultdepthlimit, setwindowdepthlimit, currentwindowdepthlimit,
currentwindowdepth

PostScript Operators: currentactiveapp 5-13

cu rrentdeviceinfo

window currentdeviceinfo min max iscolor

Returns device-related information about the current state of window. min and max are the
smallest and largest number of bits per sample, respectively, and iscolor is a boolean value
indicating whether the device is a color device.

ERRORS invalidid, stackunderflow, typecbeck

currenteventmask

window currenteventmask mask

Warning: Don't use this operator if you're using the Application Kit. Use Window's
eventMask method instead.

Returns the current Window Server-level event mask for the specified window.

ERRORS invalidid, stackunderflow, typecbeck

SEE ALSO seteventmask

currentframebuffertransfer

fbnum currentframebuffertransfer redproc greenproc blueproc grayproc

Returns the current transfer functions in effect for the framebuffer indexed by fbnum.
fbnum ranges from 0 to (countframebuffers - 1).

ERRORS invalidid, stackunderflow, typecbeck

SEE ALSO setframebuffertransfer, countframebuffers, framebuffer

5-14 Chapter 5: Display PostScript

currentmouse

window currentmouse x y

Warning: Don't use this operator if you're using the Application Kit. Use Window's
getMouseLocation: instead.

Returns the current x and y coordinates of the mouse location in the base coordinate system
of the specified window. If the mouse isn't inside the specified window, these coordinates
may be outside the coordinate range defined for the window. If window is 0, the current
mouse position is returned relative to the screen coordinate system.

ERRORS invalidid, stackunderflow, typecheck

SEE ALSO basetocurrent, basetoscreen, buttondown, rightbuttondown, rightstilldown,
setmouse, stilldown

currentowner

window currentowner context

Returns a number identifying the PostScript context that currently owns the specified
window. By default, this is the PostScript context that created the window.

ERRORS invalidid, stackunderflow, typecheck

SEE ALSO setowner, termwindow, window

currentshowpageprocedure

window currentshowpageprocedure proc

Returns the PostScript procedure that's executed when the showpage operator is executed
while the specified window is the current device.

ERRORS invalidid, stackunderflow, typecheck

SEE ALSO setshowpageprocedure

PostScript Operators: currentmouse 5-15

currentrusage

- currentrusage ctime utime stime msgsend msgrcv nsignals nvcsw nivcsw

Returns information about the current time of day and about resource usage by the Window
Server, as provided by the UNIX system call getrusageO. The items returned, and their
types, are as follows:

Name Type Value

ctime float Current time in seconds, modulo 10000
utime float User time for the Server process in seconds
stime float System time for the Server process in seconds
msgsend int Messages sent by the Server to clients
msgrcv int Message received by the Server from clients
nsignals int Number of signals received by the Server process
nvcsw int Number of voluntary context switches
nivcsw int Number of involuntary context switches

cu rrenttobase

cx cy currenttobase bx by

Converts (cx,cy) from the current coordinate system of the current window to its base
coordinate system. If the current device isn't a window, the invalidid error is executed.

ERRORS invalidid, stackunderflow, typecbeck

SEE ALSO basetocurrent, basetoscreen, currenttoscreen, screentobase, screentocurrent

5-16 Chapter 5: Display PostScript

currenttoscreen

cx cy currenttoscreen sx sy

Converts (cx, cy) from the current coordinate system of the current window to the screen
coordinate system. If the current device isn't a window, the invalidid error is executed.

ERRORS invalidid, stackunderflow, typecbeck

SEE ALSO basetocurrent, basetoscreen, currenttobase, screentobase, screentocurrent

currentuser

- currentuser uid gid

Returns the user id (uid) and the group id (gid) of the user currently logged in on the console
of the machine that's running the Window Server.

ERRORS stackoverflow

currentwaitcursorenabled

context currentwaitcursorenabled isenabled

Returns the state of context's wait cursor flag. If context is 0, returns the state of the global
wait cursor flag.

ERRORS invalidid, stackunderflow, typecbeck

SEE ALSO setwaitcursorenabled

PostScript Operators: currenttoscreen 5-17

currentwindow

- currentwindow window

Returns the window number of the current window. Executes the invalidid error if the
current device isn't a window.

ERRORS invalidid

SEE ALSO windowdeviceround

currentwindowalpha

window currentwindowalpha alpha

Returns an integer indicating whether the Window Server is currently storing alpha values
for the specified window. Possible alpha values are:

-2 Window is opaque; alpha values are explicitly allocated.
a Alpha values are stored explicitly
2 Window is opaque; no explicit alpha

ERRORS invalidid, stackunderftow, typecheck

currentwindowbounds

window currentwindowbounds x y width height

Warning: Don't use this operator if you're using the Application Kit. Use Window's
getFrame: or Application's getScreenSize: method instead.

Returns the location and size of the window in screen coordinates. Pass a for window to
get the size of the entire workspace (the smallest rectangle that encloses all active screens).

x andy will be in the range [_215,215 -1]; width and height will be in the range.[O, 10000].

ERRORS invalidid, stackunderftow, typecheck

SEE ALSO movewindow, placewindow

5-18 Chapter 5: Display PostScript

currentwindowdepth

window currentwindowdepth depth

Warning: Don't use this operator if you're using the Application Kit.

Returns window's current depth. The invalidid error is executed if window doesn't exist.

ERRORS invalidid, stackunderflow, type check

SEE ALSO setwindowdepthlimit, currentwindowdepthlimit, setdefaultdepthlimit,
currentdefaultdepthlimit

currentwindowdepthlimit

window currentwindowdepthlimit depth

Warning: Don't use this operator if you're using the Application Kit. Use Window's
depthLimit method instead.

Returns the window's current depth limit, the maximum depth to which the window can
be promoted. Unless altered by the setwindowdepthlimit operator, a window's depth limit
is equal to its context's default depth limit. The invalidid error is executed if window
doesn't exist.

ERRORS invalidid, stackunderflow, typecheck

SEE ALSO setwindowdepthlimit, currentwindowdepth, setdefaultdepthlimit,
currentdefaultdepthlimit

PostScript Operators: currentwindowdepth 5-19

currentwindowdict

window currentwindowdict diet

Warning: Don't use this operator if you're using the Application Kit.

Returns the specified window's dictionary.

ERRORS invalidid, stackunderflow, typecbeck

SEE ALSO setwindowdict

currentwindowlevel

window currentwindowlevel level

Returns window's tier. Executes the invalidid error if window doesn't exist.

ERRORS invalidid, stackunderflow, typecbeck

SEE ALSO setwindowlevel

cu rrentwriteblock

- currentwriteblock doesbloek

Returns whether the Window Server delays sending data to a client application whenever
the Server's output buffer fills. currentwriteblock assumes the current context. If
doesbloek is true, the Server waits until the buffer can accept more data. If doesbloek is
false, the Server discards data that can't be accepted immediately.

ERRORS none

SEE ALSO setwriteblock

5-20 Chapter 5: Display PostScript

dissolve

srcx srcy width height srcgstate destx desty delta dissolve -

The effect of this operation is a blending of a source and a destination image. The first
seven arguments choose source and destination pixels as they do for composite. The exact
fraction of the blend is specified by delta, which is a floating-point number between 0.0 and
1.0; the resulting image is:

delta *source + (1- delta) * destination

If srcgstate is null, the current graphics state is assumed. If srcgstate or the current graphics
state does not refer to a window device, this operator executes the invalidid error.

ERRORS invalidid, stackunderflow, type check

SEE ALSO composite

dumpwindow

dump level window dump window -

Warning: Don't use this operator if you're using the Application Kit.

Prints information about window to the standard output file. Only dumplevel a is
implemented. The information printed is the position and number of bytes of backing

. storage for the window.

ERRORS invalidid, range check, stackunderflow, typecheck

SEE ALSO dump windows

PostScript Operators: dissolve 5-21

dumpwindows

dump level context dumpwindows

Warning: Don't use this operator if you're using the Application Kit.

Prints information about all windows owned by context to the standard output file. If
context is 0, it prints information about all windows. Only dumplevel ° is implemented.

ERRORS invalidid, rangecheck, stackunderftow, typecheck

SEE ALSO dumpwindow

erasepage

- erasepage -

Warning: This standard operator is different in the NeXTSTEP implementation.

Erases the entire window to opaque white.

ERRORS invalidid

SEE ALSO copypage, showpage

findwindow

x y place otherwindow findwindow Xl yl window found

findwindow starts from a given position in the screen list, as explained below, and searches
for the first window below that position that contains the point (x, y). The x and y values
are given in screen coordinates.

The starting position is determined by place and otherwindow. place can be Above or
Below, and otherwindow is the window number of a window in the screen list. If you
specify Above 0, findwindow checks all windows in the screen list.

5-22 Chapter 5: Display PostScript

If a window containing the point is found, findwindow returns true, along with the window
number and the corresponding location in the base coordinate system of the window.
Otherwise, it returns false, and the values of x', y', and window are undefined.

ERRORS rangecheck, stackunderflow, typecheck

flushgraphics

- flush graphics

Warning: Don't use this operator if you're using the Application Kit. Use Window's
flush Window method instead.

Flushes to the screen all drawing done in the current buffered window. If the current
window is retained or nonretained, flush graphics has no effect.

ERRORS invalidid, stackunderflow, typecheck

framebuffer

index string framebuffer name slot unit romid x y width height maxdepth

Provides information on the active frame buffer specified by index, where index ranges
from 0 to countframebuffers-l. string must be large enough to hold the resulting name
of the frame buffer. slot is the NeXTbus™ slot the frame buffer is physically occupying. If
a board supports multiple frame buffers, unit uniquely identifies the frame buffer within a
slot. The ROM product code is returned in romid. The bottom left comer of the frame
buffer is returned in x and y (relative to the screen coordinate system). The size of the frame
buffer in pixels is returned in widthand height. maxdepth is the maximum depth
displayable on this frame buffer (for example, NX_TwentyFourBitRGB).

The limitcheck error is executed if string isn't large enough to hold name. The range check
error is executed if index is out of bounds.

ERRORS limitcheck, rangecheck, stackunderflow, typecheck

SEE ALSO countframebuffers

PostScript Operators: flushgraphics 5-23

frontwindow

- frontwindow window

Warning: Don't use this operator if you're using the Application Kit.

Returns the window number of the frontmost window on the screen. If there aren't any
windows on the screen, frontwindow returns O.

ERRORS none

SEE ALSO orderwindow

hidecursor

- hidecursor -

Removes the cursor from the screen. It remains in effect until balanced by a call to
showcursor.

ERRORS none

SEE ALSO obscurecursor, showcursor

hideinstance

x y width height hideinstance

In the current window, hideinstance removes any instance drawing from the rectangle
specified by x, y, width, and height. x, y, width, and height are given in the window's current
coordinate system.

ERRORS invalidid, stackunderflow, typecbeck

SEE ALSO newinstance, setinstance

5-24 Chapter 5: Display PostScript

image

diet image -

Allows a window's graphics state object to be used as a source of sample data. diet must
be an image dictionary in which only those keys listed in the following table are significant:

Key

ImageType

XOrigin

YOrigin

Width

Height

ImageMatrix

DataSource

Type

integer

real

real

real

real

array

gstate

Value or Meaning

(Required) Must be 2.

(Required) X origin of the source rectangle in user
space coordinates as specified by the transformation in
the DataSource entry.

(Required) Y origin of the same.

(Required) Width of the same.

(Required) Height of the same.

(Required) The transformation matrix.

(Required) A graphics state object that contains the
device that will be used as the source of sample data.
This device will also be used to determine the pixel
representation for the source, and the color space to be
used by the image.

Interpolate boolean (Optional) Request for image interpolation.

UnpaintedPath (various) (Return value) If some of the pixels in the source
weren't available (because of clipping), then the
UnpaintedPath entry contains a userpath in the current
(destination) user space that encloses the area that
couldn't be filled.

PixelCopy boolean (Optional) If true, indicates that the source pixels
should be copied directly, without going through the
normal color conversion, transfer function, or
half toning. The bits per pixel of the source must match
the bits per pixel of the destination, otherwise a
typecheck error will occur. If false or not present, the
pixels will be imaged in the usual way.

PostScript Operators: image 5-25

ERRORS invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO alphaimage

initgraphics

- initgraphics -

Warning: This standard operator has additional effects in the N eXTSTEP implementation
of the Display PostScript system.

In addition to the effects documented by Adobe, this operator sets the coverage parameter
in the current window's graphics state to 1 (opaque) and turns off instance drawing

ERRORS none

SEE ALSO hideinstance, newinstance, setalpha, setinstance

machportdevice

width height bbox matrix hostname portname pixelencoding machportdevice -

Sets up a PostScript device that can provide a generic rendering service for device-control
programs requiring page bitmaps from PostScript documents. For each rendered page,
machportdevice sends a Mach message containing the page bitmap to a port that has been
registered with the name server on the network.

width and height are integers that determine the number of device pixels for the page.

bbox is an array of integers that defines the rectangle (by giving its lower left and upper
right comers) that encompasses the imageable area. The array takes the form

[lowerLeftX lowerLeftY upperRightX upperRightYJ

For the common case where the entire raster is imageable, bbox may be expressed as an
empty array. If bbox isn't in the correct form, or if any portion of the rectangle it expresses
falls outside [00 width height], a range check results. The bitmap data is stored in x-axis
major indexing order. The device coordinate of the lower left comer of the first pixel is

5-26 Chapter 5: Display PostScript

(0,0), the coordinate of the next pixel is (1,0) and so on for the entire scanline. Scanlines
are long-word aligned.

matrix is the default transformation matrix for the device.

hostname and portname are strings that together identify the port that will receive the Mach
messages. If hostname is empty, the local host is assumed. If it's "*", the port is searched
for on all available hosts. If (in any case) the port can't be found, a range check results.

pixelencoding is a dictionary describing the format for the image data rendered by the
Window Server. It should contain these entries:

Key

samplesPerPixel

bitsPerSample

colorSpace

isPlanar

defaultHalftone

initialTransfer

jobTag

Type

integer

integer

integer

boolean

dictionary

procedure .

integer

Value

Must be 1.

Must be 1 or 2.

Color space specification (see below).

true if sample values are stored in separate arrays
(currently must be false).

Passed to sethalftone during device creation to
set up device default halftone.

Passed to settransfer during device creation to
set up the initial transfer function for device.

Allows machportdevice to tag rendering jobs.
This value is included in the jobTag field of all
printpage messages generated by this device.

The value of colorS pace should be one of the following values, predefined in nextdict:

Name Value

NX_ OneIsBlackColorSpace °
NX_ OneIs WhiteColorSpace 1
NX_RgbColorSpace 2
NX_CmykColorSpace 5

Description

Monochromatic, high sample value is black.
Monochromatic, high sample value is white.
RGB, (1,1,1) is white.
CMYK, (0,0,0,0) is white.

Only the following combinations of colorS pace and bitsPerSample are supported:

colorSpace

NX_ OneIsBlackColorSpace
NX_ OneIs WhiteColorSpace

bitsPerSample

1
2

PostScript Operators: machportdevice 5-27

These read-only pixel-encoding dictionaries are predefined in nextdict:

Name Description

NeXTLaser-300
NeXTLaser-400
NeXTMegaPixelDisplay

NeXT Laser Printer at 300 dpi resolution
NeXT Laser Printer at 400 dpi resolution
MegaPixel Display's 2 bits-per-pixel gray

The pagebuffer data is passed out-of-line, appearing in the receiving application's address
space. (If the receiver is on the same host, the received pagebuffer references the same
physical memory as the Window Server's pagebuffer, and is mapped copy-on-write.) The
application should use vrn_deallocateO to release the pagebuffer memory when it's no
longer needed. The receiver must acknowledge receipt of the data by sending a simple
rnsg_header_t (with rns~id == NX_PRINTPAGEMSGID) back to the remote_port
passed in the print message. The Window Server will not continue executing the page
description until acknowledgement is received.

If more than one copy of the page is needed (through either the copypage or #copies
mechanism) each copy is sent as a separate message. In this case the same pagebuffer will
be sent in multiple messages. The letter, legal, and note page types are gracefully ignored.

Messaging errors cause the invalidaccess error to be executed.

EXAMPLES This example sets up a 400 dpi 8.5 by 11 inch page on a raster with upper left origin (as
with the NeXT 400 dpi Laser Printer) and sends its print page messages to the port named
"nlp-123" on the local host:

/dpi 400 def
/width dpi 8.5 mul cvi def
/height dpi 11 mul cvi def

width height
[]

% page bitmap dimensions in pixels
% use it all

[dpi 72 div 0 0 dpi -72 div 0 height] % device transform
() (nlp-123) % host (local) & port
NeXTLaser-400 % pixel-encoding description
machportdevice
This example sets up an 8 by 10 inch page on the same 8.5 by 11 inch
page. It specifies a 400 dpi raster with 1/4 inch horizontal margins
and 1/2 inch vertical margins:
/dpi 400 def
/width dpi 8.5 mul cvi def
/height dpi 11 mul cvi def
/topdots dpi .5 mul cvi def
/leftdots dpi .25 mul cvi def

5-28 Chapter 5: Display PostScript

width height
[

% page bitmap dimensions in pixels

leftdots
topdots
width leftdots sub
height topdots sub

% imageable area of bounding box

dpi 72 div
o
o
dpi -72 div
leftdots
height topdots sub

% device transform
% host (local) & port () (nlp-123)

NeXTLaser-400
machportdevice

% pixel-encoding description

Note that in this example, the user space origin is at the lower left comer of the imageable
area (leftdots, height-topdots) in the device raster coordinate system. Usually, the
imageable area is meant to correspond with the ultimate destination of the bits. For
example, a printer may have a constant-sized pagebuffer with a fixed orientation in the
paper path, but be able to accept various sizes of paper. In this case, the page bitmap size
will always be fixed, but the imageable area and default device transformation can be
adjusted to make the user space origin appear at the lower left comer of each printed page.

ERRORS invalidaccess, Iimitcheck, rangecheck, stackunderftow, typecheck

movewindow

x y window movewindow

Warning: Don't use this operator if you're using the Application Kit. Use Window's
moveTo:: method instead.

Moves the lower left comer of the specified window to the screen coordinates (x, y). No
portion of the repositioned window can have an x or y coordinate with an absolute value
greater than 16000. The operands can be integer, real, or radix numbers; however, they are
converted to integers in the Window Server by rounding toward O.

PostScript Operators: movewindow 5-29

The window need not be the frontmost window. This operator doesn't change window's
ordering in the screen list.

ERRORS invalidid, rangecheck, stackunderftow, typecheck

SEE ALSO currentwindowbounds, placewindow

newinstance

- newinstance -

Removes any instance drawing from the current window.

ERRORS invalidid

SEE ALSO hideinstance, setinstance

nextrelease

- nextrelease string

Returns version information about this release of NeXTSTEP.

ERRORS stackoverftow

SEE ALSO osname, ostype

NextStepEncoding

- NextStepEncoding array

Pushes the NextStepEncoding vector on the operand stack. T~is is a 256-element array,
indexed by character codes, whose values are the character names for those codes.

ERRORS stackoverftow

5-30 Chapter 5: Display PostScript

obscurecursor

- obscurecursor -

Removes the cursor image from the screen until the next time the mouse is moved.
It's usually called in response to typing by the user, so the cursor won't be in the way.
If the cursor has already been removed due to an obscurecursor call, obscurecursor
has no effect.

ERRORS none

SEE ALSO hidecursor, revealcursor

orderwindow

place otherwindow window orderwindow -

Warning: Don't use this operator if you're using the Application Kit. Use Window's
orderWindow:relativeTo: instead.

Orders window in the screen list as indicated by place and otherwindow. place can be
Above, Below, or Out:

• If place is Above or Below, the window is placed in the screen list immediately above
or below the window specified by otherwindow.

• If place is Above or Below and otherwindow is 0, the window is placed above or below
all windows in its tier.

• If place is Above or Below, otherwindow must be a window in the screen list; otherwise,
the invalidid error is executed.

• If place is Out, otherwindow is ignored, and the window is removed from the screen list,
so it won't appear anywhere on the screen. Windows that aren't in the screen list don't
receive user events.

Note: orderwindow doesn't change which window is the current window.

ERRORS invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO frontwindow

PostScript Operators: obscurecursor 5-31

osname

- osname string

Returns a string identifying the operating system of the Window Server's current operating
environment. osname is defined in the statusdict dictionary, a dictionary that defines
operators specific to a particular implementation of the PostScript language. osname can
be executed as follows:

statusdict /osname get exec

ERRORS none

SEE ALSO nextrelease, ostype

ostype

- ostype int

Returns a number identifying the operating system of the Window Server's current
operating environment. ostype is defined in the statusdict dictionary, a dictionary that
defines operators specific to a particular implementation of the PostScript language. ostype
can be executed as follows:

statusdict /ostype get exec

ERRORS none

SEE ALSO nextrelease, os name

5-32 Chapter 5: Display PostScript

placewindow

x y width height window placewindow -

Warning: Don't use this operator if you're using the Application Kit. Use Window's
place Window: method instead.

Repositions and resizes the specified window, effectively allowing it to be resized from any
comer or point. x, y, width, and height are given in the screen coordinate system. No
portion of the repositioned window can have an x or y coordinate with an absolute value
greater than 16000; width and height must be in the range from 0 to 10000. The four
operands can be integer or real numbers; however, they are converted to integers in the
Window Server by rounding toward O.

placewindow places the lower left comer of the window at (x, y) and resizes it to have a
width of width and a height of height. The pixels that are in the intersection of the old and
new positions of the window survive unchanged (see Figure 5-2). Any other areas of the
newly positioned window are filled with the window's exposure color (see
setexposurecolor) .

This is what the window
looks like before placewindow
is called. Notice which pixels
survive unchanged after the
call to placeWindow. This
allows a window to be resized
from any corner or point.

Before placewindow

Figure 5-2. placewindow

(x, y)

width

the window
~ fore placewindow
~ otice which pixels

hanged after the

After placewindow

After moving or resizing a window with placewindow, you must execute the initmatrix
and initclip operators to reestablish the window's default transformation matrix and default
clipping path.

ERRORS invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO currentwindowbounds, movewindow, setexposurecolor

PostScript Operators: placewindow 5-33

playsound

soundname priority playsound -

Plays the sound soundname. The Window Server searches for a standard soundfile of
the name

soundname.snd

The search progresses through the following directories in the order given, stopping when
the sound is located.

-!Library/Sounds
!LocalLibrary /Sounds
IN extLibrary /Sounds

No error occurs if the soundfile isn't found: The operator has no effect.

The soundfile's playback is assigned the priority level priority. The playback interrupts any
currently playing sound of the same or lower priority level.

ERRORS stackunderflow, typecheck

posteventbycontext

type x y time flags window subtype miscO misc} context posteventbycontext success

Posts an event to the specified context. The nine parameters preceding the context
parameter coincide with the NXEvent structure members (see "Types and Constants" for
the definition of the NXEvent structure). The x and y coordinate arguments are passed
directly to the receiving context without undergoing any transformations. window is the
Window Server's global window number. Returns true if the event was successfully posted
to context, and false otherwise.

You use this operator to post an application-defined event to your own application. Use
Mach messaging to communicate between applications.

ERRORS stackunderflow, typecheck

5-34 Chapter 5: Display PostScript

readimage

x y width height proco £ ... procn_l] string boo I readimage -

Reads the pixels that make up the rectangular image described by x, y, width, and height
in the current window. (Most programmers should use NXReadBitmapO instead of
this operator.)

Usually the image is the rectangle that has a lower lef-t corner of (x, y) in the current
coordinate system and a width and height of width and height. If the axes have been rotated
so that the sides of the rectangle are no longer aligned with the edges of the screen, the
image is the smallest screen-aligned rectangle enclosing the given rectangle.

You typically call sizeimage before readimage (sending it the same x, y, width, and height
values you'll use for readimage) to find out ncolors, the number of color components that
readimage must read. bool is a boolean value that determines whether readimage reads·
the alpha component in addition to the color component(s) for each pixel. The total number
of components to be read for each pixel, together with the multiproc value returned by
sizeimage, determine n, the number of procedures that readimage requires. If multiproc
is false, n equals 1. Otherwise, n equals the number of color components plus the alpha
component, if present.

readimage executes the procedures in order, 0 through n-i, as many times as needed. For
each execution, it pushes on the operand stack a substring of string containing the data from
as many scanlines as possible. The length of the substring is a multiple of

width * bits/sample * (samples/proc) / 8

rounded up to the nearest integer. (The width and bits/sample values are provided by the
sizeimage operator. samples is the number of color components plus 1 for the alpha
component, if present.)

The samples are ordered and packed as they are for the image, colorimage, or alphaimage
operator. For example, the alpha component is last and, if necessary, extra bits fill up the
last character of every scanline. Note that the contents of string are valid only for the
duration of one call to one procedure because the same string is reused on each procedure
call. The rangecheck error is executed if string isn't long enough for one scanline.

ERRORS rangecheck, stackunderflow, typecheck

SEE ALSO alphaimage, sizeimage

PostScript Operators: readimage 5-35

revealcursor

- revealcursor -

Redisplays the cursor that was hidden by a call to obscurecursor, assuming that the cursor
hasn't already been revealed by mouse movement. If the cursor hasn't been removed from
the screen by a call to obscurecursor, revealcursor has no effect.

ERRORS none

SEE ALSO obscurecursor

rightbuttondown

- rightbuttondown isdown

Returns true if the right mouse button is currently down; otherwise it returns false.

Note: To test whether the right mouse button is still down from a mouse-down event, use
rightstilldown instead of rightbuttondown; rightbuttondown will return true even if the
mouse button has been released and pressed again since the original mouse-down event.

ERRORS none

SEE ALSO buttondown, currentmouse, rightstilldown, stilldown

5-36 Chapter 5: Display PostScript

rightstilldown

eventnum rightstilldown stilldown

Returns true if the right mouse button is still down from the mouse-down event specified
by eventnum; otherwise it returns false. eventnum should be the number stored in the data
component of the event record for an event of type Rmousedown.

ERRORS stackunderflow, typecheck

SEE ALSO buttondown, currentmouse, rightbuttondown, stilldown

screenlist

array context screenlist subarray

Fills the array with the window numbers of all windows in the screen list that are owned by
the PostScript context specified by context. It returns the sub array containing those window
numbers, in order from front to back. If array isn't large enough to hold them all, this
operator will return the frontmost windows that fit in the array.

If context is 0, all windows in the screen list are returned.

EXAMPLE This example yields an array containing the window numbers of all windows in the screen
list that are owned by the current PostScript context:

currentcontext
countscreenlist % find out how many windows
array % create array to hold them
currentcontext screenlist % fill it in

ERRORS invalidaccess, invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO countscreenlist, countwindowlist, windowlist

PostScript Operators: rightstil/down 5-37

screen10base

sx sy screentobase bx by

Converts (sx, sy) from the screen coordinate system to the current window's base coordinate
system. If the current device isn't a window, the invalidid error is executed.

ERRORS invalidid, stackunderflow, typecbeck

SEE ALSO basetocurrent, basetoscreen, currenttobase, currenttoscreen, screentocurrent

screen10cu rrent

sx sy screentocurrent cx cy

Converts (sx,sy) from the screen coordinate system to the current coordinate system of the
current window. If the current device isn't a window, the invalidid error is executed.

ERRORS invalidid, stackunderflow, typecbeck

SEE ALSO basetocurrent, basetoscreen, currenttobase, currenttoscreen, screentobase

setactiveapp

context setactiveapp

Warning: Don't use this operator if you're using the Application Kit.

Records the active application's main (usually only) context. setactiveapp is used by the
window packages to assist with wait cursor operation.

ERRORS invalidid, stackunderflow, typecbeck

SEE ALSO currentactiveapp

5-38 Chapter 5: Display PostScript

setalpha

coverage setalpha -

Sets the coverage parameter in the current window's graphics state to coverage. coverage
must be a number between 0 and 1, with 0 corresponding to transparent, 1 corresponding
to opaque, and intermediate values corresponding to partial coverage. This establishes how
much background shows through for purposes of compositing.

ERRORS stackunderflow, typecheck, undefined

SEE ALSO composite, currentalpha, setgray, sethsbcolor, setrgbcolor

seta utofi II

flag window setautofill -

Applies only to nonretained windows; sets the auto fill property of window to the value of
flag. If true, newly exposed areas of the window or areas created by placewindow will
automatically be filled with the window's exposure color. Iffalse, these areas will not
change (typically they will continue to contain the image of the last window in that area).
If the current device is not a window, this operator executes the invalidid error.

ERRORS invalidid, stackunderflow, typecheck

SEE ALSO placewindow, setexposurecolor, setsendexposed

setcursor

x y mx my setcursor -

Sets the cursor image and hot spot. Rather than executing this operator directly, you'd
normally use a NXCursor object to define and manage cursors.

PostScript Operators: setalpha 5-39

A cursor image is derived from a 16-pixel-square image in a window that's generally placed
off-screen. The x andy operands specify the upper left comer of the image in the window's
current coordinate system. The mx and my operands specify the relative offset (in units of
the current coordinate system) from (x, y) to the hot spot, the point in the cursor that
coincides with the mouse location. Assuming the current coordinate system is the base
coordinate system, mx must be an integer from 0 to 16, and my must be an integer from 0
to -16. After setcursor is executed, the image in the window is no longer needed.

The cursor is placed on the screen using Sover compositing. The cursor's opaque areas
(alpha = 1) completely cover the background, while its transparent areas (alpha < 1) allow
the background to show through to a greater extent depending on the alpha values present
in the cursor image.

Note: To make the off-screen window transparent, you can use compositerect with Clear.

The rangecheck error is executed if the image doesn't lie entirely within the specified
window or if the point (mx, my) isn't inside the image. If the current device isn't a window,
the invalidid error is executed.

ERRORS invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO hidecursor, obscurecursor, setmouse

setdefaultdepthlimit

depth setdefaultdepthlimit -

Warning: Don't use this operator if you're using the Application Kit.

Sets the current context's default depth limit to depth. The Window Server assigns each
new context a default depth limit equal to the maximum depth supported by the system.
When a new window is created, its depth limit is set to its context's default depth limit.

These depths are defined in nextdict:

Depth

NX_ TwoBitGray
NX_EightBitGray
NX_TwelveBitRGB
NX_ TwentyFourBitRGB

5-40 Chapter 5: Display PostScript

Meaning

1 spp, 2bps, 2bpp, planar
1 spp, 8bps, 8bpp, planar
3 spp, 4bps, 16bpp, interleaved
3 spp, 8bps, 32bpp, interleaved

where spp is the number of samples per pixel; bps is the number of bits per sample; and bpp
is the number of bits per pixel, also known as the window's depth. (The samples-per-pixel
value excludes the alpha sample, if present.) planar and interleaved refer to how the
sample data is configured. If a separate data channel is used for each sample, the
configuration is planar. If data for all samples is stored in a single data channel, the
configuration is interleaved.

When an alpha sample is present, the number of bits per pixel doubles for planar
configurations (4 for NX_TwoBitGray and 16 for NX_EightBitGray). Interleaved
configurations already account for an alpha sample whether or not it's present; thus, the
number of bits per pixel for NX_TwelveBitRGB and NX_TwentyFourBitRGB depths
remains unchanged.

The constant NX_DefaultDepth is also available. If depth is NX_DefaultDepth, the
context's default depth limit is set to the Window Server's maximum visible depth, which
is determined by which screens are active.

The range check error is executed if depth is invalid.

ERRORS rangecheck, stackunderflow, typecheck

SEE ALSO currentdefaultdepthlimit, setwindowdepthlimit, currentwindowdepthlimit,
currentwindowdepth

seteventmask

mask window seteventmask -

Warning: Don't use this operator if you're using the Application Kit. Use Window's
setEventMask: method instead.

Sets the Server-level event mask for the specified window to mask. For windows created
by the window packages, this mask may allow additional event types beyond those
requested by the application. The following operand names are defined for mask:

PostScript Operators: seteventmask 5-41

Mask Operand

Lmousedownmask
Lmouseupmask
Rmousedownmask
Rmouseupmask
Mousemovedmask
Lmousedraggedmask
Rmousedraggedmask
Mouseenteredmask
Mouseexitedmask
Keydownmask
Keyupmask
Flagschangedmask
Kitdefinedmask
Sysdefinedmask
Appdefinedmask
Allevents

Event Type Allowed

Mouse-down, left or only mouse button
Mouse-up, left or only mouse button
Mouse-down, right mouse button
Mouse-up, right mouse button
Mouse-moved
Mouse-dragged, left or only mouse button
Mouse-dragged, right mouse button
Mouse-entered
Mouse-exited
Key-down
Key-up
Flags-changed
Kit-defined
System-defined
Application-defined
All event types

ERRORS invalidid, stackunderflow, typecbeck

SEE ALSO currenteventmask

setexposurecolor

- setexposurecolor -

Applies to nonretained windows only; sets the exposure color to the color specified by the
current color parameter in the current graphics state. The exposure color (white by default)
determines the color of newly exposed areas of the window and of new areas created by
placewindow. The alpha value of these areas is always 1 (opaque). If the current device
is not a window, this operator executes the invalidid error.

ERRORS invalidid, stackunderflow, typecbeck

SEE ALSO placewindow, setautofill, setsendexposed

5-42 Chapter 5: Display PostScript

setflushexposures

flag setflushexposures -

Warning: Don't use this operator if you're using the Application Kit.

Sets whether window-exposed and screen-changed subevents are flushed to clients. Ifflag
isfalse, no window-exposed or screen-changed events are flushed to the client until
setflushexposures is executed withflag equal to true. By default, window-exposed and
screen-changed events are flushed to clients.

ERRORS invalidid, stackunderflow, typecbeck

setframebuffertransfer

redproc greenproc blueproc grayproc fbnum setframebuffertransfer -

Warning: This operator should only be used for the development of screen-calibration
products.

Sets the framebuffer transfer functions in effect for the framebuffer indexed by fbnum.
fbnum ranges from 0 to countframebuffers-l. The framebuffer transfer describes the
relationship between the framebuffer values of the display, and the voltage produced to
drive the monitor.

The initial four operands define the transfer procedures: Monochrome devices use
grayproc (but see the Note below), color devices use the others. The procedures must be
allocated in shared virtual memory. In addition, the Window Server assumes that the
framebuffer values are directly proportional to screen brightness. This is important for the
accuracy of dithering, compositing, and similar calculations.

The default transfer for NeXT Color Displays is

{ 1 2.2 div exp } bind dup dup {}

Note: setframebuffertransfer is unsupported on the current generation of NeXT
monochrome displays.

PostScript Operators: setflushexposures 5-43

It's possible to make framebuffer transfer functions persist beyond the lifetime of the
Window Server by storing a property in the NetInfo screens database. In the local NetInfo
domain, /localconfig/screens holds the configuration information for the screens known to
the Window Server (MegaPixel, NeXTdimension, and so on). These specify the layout and
activation state of the screen. The N etInfo defaultTransfer property can contain a string
of PostScript code suitable for execution by the setframebuffertransfer operator (without
thefbnum parameter). For example, the following represents the NetInfo configuration for
a NeXTdimension screen with a default gamma of 2.0:

localhost:1# niutil -read . /localconfig/screens/NeXTdimension
name: NeXTdimension
slot: 2
unit: 0
defaultTransfer: {1 2.0 div exp } dup dup dup
bounds: 0 1120 0 832
active: 1
_writers: *

The defaultTransfer property is used to configure the screen each time the Window Server
starts up. This allows monitor calibration products to save their settings so the next time
the Window Server starts up, the new values will be used. Note that in some cases, the
NetInfo configuration state for a monitor will not have active equal to 1, although the
monitor is being used by the Window Server. If there are no active screens (screens that are
explicitly marked as being active), the Window Server uses a suitable default, however, the
other NetInfo properties for that screen are ignored. Thus, you must be sure that the screen
for which you are adding a defaultTransfer value has active set to 1.

ERRORS invalidid, stackunderflow, typecheck

SEE ALSO setframebuffertransfer, countframebuffers, framebuffer

setinstance

jlag setinstance -

Sets the instance-drawing mode in the current graphics state on (ifjlag is true) or off (ifjlag
is false).

ERRORS stackunderflow, typecheck

SEE ALSO hideinstance, newinstance

5-44 Chapter 5: Display PostScript

setmouse

x y setmouse -

Moves the mouse location (and, correspondingly, the cursor) to (x, y), given in the current
coordinate system. If the current device isn't a window, the invalidid error is executed.

ERRORS invalidid, stackunderflow, typecbeck

SEE ALSO adjustcursor, basetocurrent, currentmouse, screentocurrent

setowner

context window setowner -

Sets the owning PostScript context of window to context. The window is terminated
automatically when context is terminated.

ERRORS invalidid, stackunderflow, typecbeck

SEE ALSO currentowner, termwindow, window

setsendexposed

flag window setsendexposed -

Warning: Don't use this operator if you're using the Application Kit.

Controls whether the Window Server generates a window-exposed subevent (of the
kit-defined event) for window under the following circumstances:

• Nonretained window: When an area of the window is exposed, or a new area is created
by placewindow

• Retained or buffered window: When an area of the window that had instance drawing
in it is exposed

PostScript Operators: setmouse 5-45

By default, window-exposed subevents are generated under these circumstances. In any
case, the window-exposed subevent isn't flushed to the application until the Window Server
receives another event.

ERRORS invalidid, stackunderflow, typecheck

SEE ALSO setflushexposures, placewindow, setautofill, setexposurecolor

setshowpageproeedure

proc window setshowpageprocedure -

Warning: Don't use this operator if you're using the Application Kit.

Sets the PostScript procedure that's executed, for the specified window, when the
showpage procedure is executed. proc must be allocated in shared virtual memory.

ERRORS invalidid, stackunderflow, typecheck

SEE ALSO currentshowpageprocedure

settraeki ngreet

x y width height leftbool rightbool insidebool userdata trectnum gstate
settrackingrect -

or
x y width height optionarray trectnum gstate settrackingrect -

Important: The settrackingrect operator boasts two form, distinguished by the number
and contents of the operands that are passed. The operator itself looks at its operands to
determine how to proceed. The common portion of the two forms is described immediately
below. Attention is then paid to the features that set the forms apart.

5-46 Chapter 5: Display PostScript

Sets a tracking rectangle in the window referred to by gstate to the rectangle specified by
x, y, width, and height (in the coordinate system of that graphics state). If gstate is null, the
window referred to by the current graphics state is used. trectnum is an arbitrary integer
that can be any number except O. It's used to identify tracking rectangles; no two tracking
rectangles can share the same trectnum value. Any number of tracking rectangles may be
set in a single window.

The tracking rectangle will remain in effect until cieartrackingrect is called, or until
another tracking rectangle with the same trectnum is set.

Form 1

x y width height leftbool rightbool insidebool userdata trectnum gstate
settrackingrect -

In this form, the application receives mouse-exited and mouse-entered events as the cursor
leaves and reenters the visible portion of the tracking rectangle. In the event record for a
mouse-exited or mouse-entered event, the data component will contain trectnum along
with the event number of the last mouse-down event.

userdata is an arbitrary integer that you assign to the tracking rectangle. Since several
tracking rectangles can share the same userdata value, you can use userdata to identify an
object in your application that will be notified when a mouse-entered or mouse-exited event
occurs in any of the tracking rectangles.

You can specify that mouse-entered and mouse-exited events be generated only if certain
mouse buttons are down. If leftbool is true, the events will be generated only when the left
mouse button is down; likewise for rightbool and the right mouse button. If both leftbool
and rightbool are true, the events will be generated only if both mouse buttons are down.
If both leftbool and rightbool are false, the position of the mouse buttons isn't taken into
account in generating mouse-entered and mouse-exited events.

settrackingrect causes the Window Server to repeatedly compare the current cursor
position to the previous one to see whether the cursor has moved from inside the tracking
rectangle to outside it or vice versa. insidebool tells settrackingrect whether to consider
the initial cursor position to be inside or outside the tracking rectangle:

• If insidebool is true and the cursor is initially outside the tracking rectangle, a
mouse-exited event is generated.

• If insidebool is false and the cursor is initially inside the tracking rectangle, a
mouse-entered event is generated.

PostScript Operators: settrackingrect 5-47

Form 2

x y width height optionarray trectnum gstate settrackingrect -

In this form, settrackingrect sets special event-gathering attributes of a rectangle (events
are not generated when the boundary is crossed).

optionarray contains key-value pairs that define the attributes that you're interested in. An
empty option array is meaningless and will raise a rangecheck error. The following keys
are currently defined:

Key

Pressure
Coalesce

Type Meaning

bool Treat non-zero pressure values as a mouse-down (false by default)
bool Coalesce mouse motion events (true by default)

EXAMPLE This example turns pressure on and coalescing off (thereby switching the default values):

o 0 10 10 [/Pressure true /Coalesce false] 1 null settrackingrect

ERRORS invalidid, rangecheck, stackunderflow, type check

SEE ALSO cleartrackingrect

setwaitcursorenabled

boo I context setwaitcursorenabled -

Allows applications to enable and disable wait cursor operation in the specified context.
If context is 0, setwaitcursorenabled sets the global wait cursor flag, which overrides
all per-context settings. If the global flag is set to false, the wait cursor is disabled for
all contexts.

ERRORS invalidid, stackunderflow, typecheck

SEE ALSO currentwaitcursorenabled

5-48 Chapter 5: Display PostScript

setwindowdepthlimit

depth window setwindowdepthlimit -

Warning: Don't use this operator if you're using the Application Kit. Use Window's
setDepthLimit: method instead.

Sets the depth limit of window to depth. These depths are defined in nextdict:

Depth

NX_TwoBitGray
NX_EightBitGray
NX_ TwelveBitRGB
NX_ TwentyFourBitRGB

Meaning

1 spp, 2bps, 2bpp, planar
1 spp, 8bps, 8bpp, planar
3 spp, 4bps, 16bpp, interleaved
3 spp, 8bps, 32bpp, interleaved

where spp is the number of samples per pixel; bps is the number of bits per sample; and bpp
is the number of bits per pixel, also know as the window's depth. (The samples-per-pixel
value excludes the alpha sample, if present.) planar and interleaved refer to how the
sample data is configured. If a separate data channel is used for each sample, the
configuration is planar. If data for all samples is stored in a single data channel, the
configuration is interleaved.

When an alpha sample is present, the number of bits per pixel doubles for planar
configurations (4 for NX_TwoBitGray and 16 for NX_EightBitGray). Interleaved
configurations already account for an alpha sample whether or not it's present; thus, the
number of bits per pixel for NX_TwelveBitRGB and NX_TwentyFourBitRGB depths
remains unchanged.

Another constant, NX_DefaultDepth, is defined as the default depth limit in the Window
Server's current context. If depth is NX_DefaultDepth, then the window's depth limit is set
to the context's default depth limit. If the resulting depth is lower than the window's current
depth, the window's data is dithered down to this depth, which may result in the loss of
graphic information.

The rangecheck error is executed if depth is invalid. The invalidid error is executed if
window doesn't exist.

ERRORS invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO currentwindowdepthlimit, setdefaultdepthlimit, currentdefaultdepthlimit,
currentwindowdepth

PostScript Operators: setwindowdepthlimit 5-49

setwindowdict

diet window setwindowdict -

Warning: Don't use this operator if you're using the Application Kit.

Sets the dictionary for window to diet.

ERRORS invalidid, stackunderflow, type check

SEE ALSO currentwindowdict

setwindowlevel

level window setwindowlevel -

Sets the window's tier to that specified by level. Window tiers constrain the action of the
orderwindow operator; see orderwindow for more information.

You rarely use this operator. To make a panel float above other windows, use the Panel
class's setFloatingPanel: method.

Attempting to change the level of workspace Window executes the invalidaccess error.
(workspace Window is a PostScript name whose value is the window number of the
workspace window.)

ERRORS invalidaccess, invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO currentwindowlevel, orderwindow

5-50 Chapter 5: Display PostScript

setwindowtype

type window setwindowtype -

Warning: Don't use this operator if you're using the Application Kit. Use Window's
setBackingType: method instead.

Sets the window's buffering type to that specified. Currently, the only allowable type
conversions are from Buffered to Retained and from Retained to Buffered. All other
possibilities execute the Iimitcheck error.

ERRORS invalidaccess, invalidid, Iimitcheck, stackunderflow, typecheck

SEE ALSO window

setwriteblock

bool setwriteblock -

Sets how the Window Server responds when its output buffer to a client application fills. If
bool is true, the Server defers sending data (event records, error messages, and so on) to
that application until there's once again room in the output buffer. In this way, no output
data is lost-this is the Server's default behavior. If bool isfalse, the Server ignores the
state of the output buffer: If the buffer fills and there's more data to be sent, the new data
is lost. setwriteblock operates on the current context.

Most programmers won't need to use this operator. If you do use it, make sure that you
disable the Window Server's default behavior only during the execution of your own
PostScript code. If it's disabled while Application Kit code is being executed, errors will
result.

ERRORS stackoverflow, typecheck

SEE ALSO currentwriteblock

PostScript Operators: setwindowtype 5·51

showcursor

- showcursor

Restores the cursor to the screen if it's been hidden with hidecursor, unless an outer
nested hidecursor is still in effect (because it hasn't yet been balanced by a showcursor).
For example:

% cursor is showing initially

hidecursor % hides the cursor

hidecursor % cursor stays hidden

showcursor % cursor still hidden due to first hidecursor

showcursor % displays the cursor

ERRORS none

SEE ALSO hidecursor

showpage

- showpage

Warning: This standard operator is different in the NeXTSTEP implementation of the
Display PostScript system.

This has no effect if the current device is a window; otherwise, it functions as documented
by Adobe.

ERRORS none

SEE ALSO copypage, erasepage

5-52 Chapter 5: Display PostScript

ERRORS

SEE ALSO

sizeimage

x y width height matrix sizeimage pixelswide pixelshigh bits/sample matrix
multiproc ncolors

Returns various parameters required by the readimage operator when reading the image
contained in the rectangle given by x, y, width, and height in the current window. (See
readimage for more information.)

pixelswide and pixelshigh are the width and height of the image in pixels. The operand
matrix is filled with the transformation matrix from user space to the image coordinate
system and pushed back on the operand stack.

The other results of this operator describe the window device and are dependent on the
window's depth. Each pixel has ncolors color components plus one alpha component; the
value of each component is described by bits/sample bits. If multiproc is true, readimage
will need multiple procedures to read the values of the image's pixels. Here are the values
that sizeimage returns for windows of various depths:

Window Depth ncolors bits/sample multiproc

NX_ TwoBitGray 1 2 true
NX_EightBitGray 1 8 true
NX_TwelveBitRGB 3 4 false
NX_ TwentyFourBitRGB 3 8 false

stackunderflow, typecheck

alphaimage, readimage

stilldown

eventnum stilldown stilldown

Returns true if the left or only mouse button is still down from the mouse-down event
specified by eventnum; otherwise it returns false. eventnum should be the number stored in
the data component of the event record for an event of type Lmousedown.

ERRORS stackunderflow, typecheck

SEE ALSO buttondown, currentmouse, rightbuttondown, rightstilldown

PostScript Operators: sizeimage 5-53

termwindow

window termwindow -

Warning: Don't use this operator if you're using the Application Kit. Use Window's close
method instead.

Marks window for destruction. If the window is in the screen list, it's removed from the
screen list and the screen. The given window number will no longer be valid; any attempt
to use it will execute the invalidid error. The window will actually be destroyed and its
storage reclaimed only after the last reference to it from a graphics state is removed. This
can be done by resetting the device in the graphics state to another window or to the null
device.

Note: After you use the termwindow operator, if the terminated window had been the
current window, you should use the nulldevice operator to remove references to it.

ERRORS invalidid, stackunderflow, typecheck

SEE ALSO window, windowdevice, windowdeviceround

window

x y width height type window window

Warning: Don't use this operator if you're using the Application Kit. Create a Window
object instead.

Creates a window that has a lower left comer of (x, y) and the indicated width and height.
x, y, width, and height are given in the screen coordinate system. No portion of a window
can have an x or y coordinate with an absolute value greater than 16000; width and height
must be in the range from a to 10000. Exceeding these limits executes the rangecheck
error. The four operands can be integer or real numbers; however, they are converted to
integers in the Window Server by rounding toward O. This operator returns the new
window's window number, a nonzero integer that's used to refer to the window.

type specifies the window's buffering type as Buffered, Retained, or Nonretained.

The new window won't be in the screen list; you can put it there with the orderwindow
operator. Windows that aren't in the screen list don't appear on the screen and don't receive
user events.

5-54 Chapter 5: Display PostScript

The window operator also does the following:

• Sets the origin of the window's base coordinate system to the lower left comer of
the window

• Sets the window's clipping path to the outer edge of the window

• Fills the window with opaque white and sets the window's exposure color to white

Note: This operator does not make the new window the current window; to do that, use
windowdeviceround or windowdevice.

ERRORS invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO setexposurecolor, termwindow, windowdeviceround

windowdevice

window windowdevice -

Sets the current device of the current graphics state to the given window device. It also sets
the origin of the window's default matrix to the lower left comer of the window. One unit
in the user coordinate system is made equal to 1172 of an inch. The clipping path is reset
to a rectangle surrounding the window. Other elements of the graphics state remain
unchanged. This matrix becomes the default matrix for the window: initmatrix will
reestablish this matrix.

windowdevice is rarely used in NeXTSTEP since the coordinate system it establishes isn't
aligned with the pixels on the screen. Use the related operator windowdeviceround to
create a coordinate system that is aligned.

Don't use this operator lightly, as it creates a new matrix and clipping path. It's
significantly more expensive than a setgstate operator.

ERRORS invalidid, stackunderflow, typecheck

SEE ALSO windowdeviceround

PostScript Operators: windowdevice 5-55

windowdeviceround

window windowdeviceround

Sets the current device of the current graphics state to the given window device. It also sets
the origin of the window's default matrix to the lower left comer of the window. One unit
in the user coordinate system is made equal to the width of one pixel, approximately 1/92
inch. The clipping path is reset to a rectangle surrounding the window. Other elements of
the graphics state remain unchanged. This matrix becomes the default matrix for the
window: initmatrix will reestablish this matrix.

Don't use this operator lightly, as it creates a new matrix and clipping path. It's
significantly more expensive than a setgstate operator.

ERRORS invalidid, stackunderflow, typecheck

SEE ALSO windowdevice

windowlist

array context windowlist subarray

Fills the array with the window numbers of all windows that are owned by the PostScript
context specified by context. It returns the sub array containing those window numbers, in
order from front to back. If array isn't large enough to hold them all, this operator returns
the frontmost windows that fit in the array.

EXAMPLE This example yields an array containing the window numbers of all windows that are
owned by the current PostScript context:

currentcontext
countwindowlist

array
currentcontext windowlist

ERRORS stackunderflow, typecheck

% find out how many windows
% create array to hold them
% fill it in

SEE ALSO countscreenlist, countwindowlist, screenlist

5·56 Chapter 5: Display PostScript

Single-Operator Functions

The Display PostScript system provides a C function for each operator in the PostScript
language, allowing you to execute individual PostScript operators from your application.
Adobe Systems Inc. provides the primary documentation for these operators and for
pswrap, the utility that creates a C function for one or more PostScript operators.

NeXT has added several operators and their corresponding single-operator functions to the
basic Display PostScript system. The operators are described in the section "PostScript
Operators," and the functions are listed (without description) in this section.

Operands and Arguments

Some of the C functions listed in this section take arguments that match the operands of
their corresponding PostScript operators. Some functions also take pointers that return
values by reference, corresponding to results returned on the operand stack by the
PostScript operators. Where an argument corresponds to an operand, the argument takes
the operand's name as given in the "PostScript Operators" section. If an operator takes or
returns an array of values, the corresponding C function will take an extra argument that
gives the size of the array.

Other C functions have no arguments (or an insufficient number of arguments) where the
corresponding PostScript operators expect operands or leave results on the operand stack.
These functions assume that they'll be called with the appropriate objects already on the
operand stack, and they'll leave any PostScript objects they generate on the operand stack
instead of returning them.

To support the functions that use the operand stack rather than arguments, the Display
PostScript system has several additional functions for putting values on and getting values
off the stack:

5·58 Chapter 5: Display PostScript

Function

PSsendintO
PSsendfioatO
PSsendbooleanO
PSsendstringO

PSgetintO
PS getfioatO
PS getbooleanO
PS getstringO

PSsendintarrayO
PS sendfioatarrayO
PSsendchararrayO

PS getintarrayO
PS getfioatarrayO
PS getchararrayO

Effect

Puts one value of the specified type on the operand stack

Gets one value from the stack

Puts an array of values on the stack

Gets an array of values from the stack

Argument Data Types

In addition to the standard C types, the functions listed here use boolean and userobject
as argument data types. A boolean variable is an int having either a zero or a nonzero
value. The zero value is equivalent to the PostScript value false, and the nonzero value
is equivalent to the PostScript value true. The userobject type is an int that refers to
the value returned by DPSDefineUserObjectO. The appearance of these types in the
function listings is simply to assist in understanding-you can't use these types directly
in your code.

Functions that require a graphics state userobject argument can use the constant
NXNullObject to refer to the current graphics state.

Return Values

All the functions listed here return void-a single-operator function's return value is
never significant.

Single-Operator Functions 5-59

PS and DPS Functions

For each operator, there are actually two C functions: One that takes a context argument
and another that assumes the current PostScript context. The functions that take a context
argument have a "DPS" prefix; those that assume the current context have a "PS" prefix.
For example, the adjustcursor operator is represented by these functions:

DPSadjustcursor(DPSContext context, float x, float y)
PSadjustcursor(float dx, float dy)

Only the single-operator functions prefixed with "PS" are listed here.

5·60 Chapter 5: Display PostScript

PSadjustcursor(float dx, float dy)

PSalphaimage(void)

PSbasetocorrent(float bx, float by, float *cx, float *cy)

PSbasetoscreen(float bx, float by, float * sx, float * sy)

PSbuttondown(boolean * isdown)

PScleartrackingrect(int trectnum, userobject gstate)

PScomposite(float srcx' float srcY' float width, float height, userobject srcgstate, float destx'

float destY' int op)

The value passed as (jp should be one of the following:

NX_CLEAR
NX_COPY
NX_SOVER
NX_DOVER
NX_XOR

NX_SIN
NX_DIN
NX_SOUT
NX_DOUT

NX_SATOP
NX_DATOP
NX_PLUSD
NX_PLUSL

PScompositerect(float destx' float destY' float width, float height, int op)

The value passed as op should be one of the constants listed under PScompositeO, plus
NX_HIGHLIGHT.

PScountframebuffers(int *count)

PScountscreenlist(int context, int *count)

PScountwindowlist(int context, int *count)

PScurrentactiveapp(int *context)
Warning: Don't use this function if you're using the Application Kit.

PScurrentalpha(float *coverage)

Single-Operator Functions: PSadjustcursor 5-61

PScurrentdefaultdepthlimit(int * depth)
Warning: Don't use this function if you're using the Application Kit.

PScurrentdeviceinfo(userobject window,int *min, int *max, int *iseolor)

PScurrenteventmask(userobject window, int *mask)
Warning: Don't use this function if you're using the Application Kit.

PScurrentframebuffertransfer(void)

PScurrentmouse(userobject window, float *x, float *y)
Warning: Don't use this function if you're using the Application Kit.

PScurrentowner(userobject window, int *eontext)

PScurrentshowpageprocedure(void)

PScurrentrusage(float *etime, float *utime, float * stime, int *msgsend, int *msgrev, int
*nsignals, int *nvesw, int *nivesw)

PScurrenttobase(float ex, float ey, float *bx, float *by)

PScurrenttoscreen(float ex, float ex, float *sx, float *sy)

PScurrentuser(int *uild, int *gid)

PScurrentwaitcursorenabled(boolean * isenabled)

PScurrentwindow(userobject *window)

PScurrentwindowalpha(userobject window, int *alpha)

PScurrentwindowbounds(userobject window, float *x, float *y, float *width,
float *height)

Warning: Don't use this function if you're using the Application Kit.

5-62 Chapter 5: Display PostScript

PScurrentwindowdepth(userobject window, int *depth)
Warning: Don't use this function if you're using the Application Kit.

PScurrentwindowdepthlimit(userobject window, int *depth)
Warning: Don'Luse this function if you're using the Application Kit.

PScurrentwindowdict(userobject window)
Warning: Don't use this function if you're using the Application Kit.

PScurrentwindowlevel(userobject window, int *level)

PScurrentwriteblock(bool * doesblock)

PSdissolve(float srcx' float srcY' float source Width, float width, userobject srcgstate,
float destx' float destY' float delta)

PSdumpwindow(int dumplevel, userobject window)
Warning: Don't use this function if you're using the Application Kit.

PSdumpwindows(int dumplevel, userobject context)
Warning: Don't use this function if you're using the Application Kit.

PSfindwindow(float x, float y, int place, userobject otherwindow, float *x', float *y',
userobject *window, boolean *found)

The value passed as place should be one of the following:

NX_ABOVE
NX_BELOW

PSftushgraphics(void)
Warning: Don't use this function if you're using the Application Kit.

PSframebuffer(int index, int stringlen, char string[] , int *slot, int *unit, int *romid, int *x,
int *y, int *width, int *height, int *maxdepth)

PSfrontwindow(int *window)
Warning: Don't use this function if you're using the Application Kit.

Single-Operator Functions: PScurrentwindowdepth 5-63

PShidecursor(void)

PShideinstance(float x, float y, float width, float height)

PSmachportdevice(int width, int height, const int bbox[], int bboxSize,
const float matrix[], const char *hostname, const char *portname,
const char *pixelencoding)

PSmovewindow(float x, float y, userobject window)
Warning: Don't use this function if you're using the Application Kit.

PSnewinstance(void)

PSnextrelease(int size, char stringED

PSobscurecursor(void)

PSorderwindow(int place, userobject otherwindow, int window)
Warning: Don't use this function if you're using the Application Kit.

The value passed as place should be one of the following:

NX_ABOVE
NX_BELOW
NX_OUT

PSosname(int size, char stringED

PSostype(int *type)

PSplacewindow(float x, float y, float width, float height, userobject window) t
Warning: Don't use this function if you're using the Application Kit.

PSplaysound(const char * soundname, int priority)

PSposteventbycontext(int type, float x, float y, int time, intflags, int window, int subtype,
int miscO, int misc} , int context, boolean * success)

5-64 Chapter 5: Display PostScript

PSreadimage(void)

PSrevealcursor(void)

PSrightbuttondown(int *isdown)

PSrightstilldown(int eventnum, boolean *stilldown)

PSscreenlist(int context, int count, int arrayED

PSscreentobase(float sx, float sy, float *bx, float *by)

PSscreentocurrent(float sx, float sy, float *cx, float *cy)

PSsetactiveapp(int context)
Warning: Don't use this function if you're using the Application Kit.

PSsetalpha(float coverage)

PSsetautofill(boolean flag, userobject window)

PSsetcursor(float x, float y, float mx, float my)

PSsetdefaultdepthlimit(int depth)
Warning: Don't use this function if you're using the Application Kit.

PSseteventmask(int mask, userobject window)
Warning,: Don't use this function if you're using the Application Kit.

See the constants listed under "Event Type Masks" in the section "Types and Constants"
for a list of mask values.

PSsetexposurecolor(void)

PSsetflushexposures(boolean flag)
Warning: Don't use this function if you're using the Application Kit.

-Single-Operator Functions: PSreadimage 5-65

PSsetframebuffertransfer(void)

PSsetinstance(boolean flag)

PSsetmouse(float x, float y)

PSsetowner(userobject context, userobject window)

PSsetsendexposed(boolean flag, userobject window) t
Warning: Don't use this function if you're using the Application Kit.

PSsetshowpageprocedure(int window)
Warning: Don't use this function if you're using the Application Kit.

PSsettrackingrect(float x, float y, float width, float height, boolean le/thool,
boolean righthool, boolean insidehool, int userdata, int trectnum, userobject gstate)

Note: Only the Form 1 version of the settrackingrect operator is offered as a C function.

PSsetwaitcursorenabled(boolean flag)

PSsetwindowdepthlimit(int depth, userobject window)
Warning: Don't use this function if you're using the Application Kit.

PSsetwindowdict(userobject window)
Warning: Don't use this function if you're using the Application Kit.

PSsetwindowlevel(int level, userobject window)

PSsetwindowtype(int type, userobject window)
Warning: Don't use this function if you're using the Application Kit

PSsetwriteblock(intflag)

PSshowcursor(void)

5-66 Chapter 5: Display PostScript

PSsizeimage(float x, float y, float width, float height, int *pixelswide, int *pixelshigh,
int *bits/sample, float matrix[], boolean *multiproc, int *ncolors)

PSstilldown(int eventnum, boolean *stilldown)

PStermwindow(userobject window)
Warning: Don't use this function if you're using the Application Kit.

PSwindow(float x, float y, float width, float height, int type, int *window)
Warning: Don't use this function if you're using the Application Kit.

PSwindowdevice(userobject window)

PSwindowdeviceround(userobject window)

PSwindowlist(int context, int count, int subarray[])

Single-Operator Functions: PSsizeimage 5-67

5-68

Client Library Functions

The Display PostScript Client Library comprises functions (and function-like macros)
that gain access to the Display PostScript system. The library is system-dependent; the
functions described in this section comprise that part of NeXTSTEP's implementation
of the Client Library that varies from the specification provided by Adobe Systems Inc.,
as described in their Display PostScript System Reference Manual.

5-70 Chapter 5: Display PostScript

DPSAddFDO, DPSRemoveFDO

SUMMARY Monitor a file descriptor

DECLARED IN dpsclientldpsNeXT.h

SYNOPSIS void DPSAddFD(intfd, DPSFDProc handler, void *userData, int priority)
void DPSRemoveFD(int fd)

DESCRIPTION DPSAddFDO registers the function handler to be called each time your application
asks for an event or peeks at the event queue. The function is called provided the following
are true:

• The file descriptor fd must be valid and open; typically fd is generated through a call to
openO. There needn't be any data waiting to be read onfd.

• priority, an integer from 0 to 30, must be equal to or greater than the application's current
priority threshold. See DPSAddTimedEntryO for a further explanation.

DPSFDProc, handler's defined type, takes the form

void *handler(int fd, void *userData)

where fd is the file descriptor that prompted the function call and userData is the same
pointer that was passed as the third argument to DPSAddFDO. The userData pointer is
provided as a convenience, allowing you to pass arbitrary data to handler.

DPSRemoveFDO removes the specified file descriptor from the list of those that the
application will check.

Typically, DPSAddFDO is used to listen to a socket or pipe; it's rarely used to monitor a
common file.

SEE ALSO DPSAddPortO, DPSAddTimedEntryO

Client Library Functions: DPSAddFD() 5-71

DPSAddNotifyPortProc(), DPSRemoveNotifyPortProc()

SUMMARY Set the handler function for the notify port

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSAddNotifyPortProc(DPSPortProc handler, void *userData)
void DPSRemoveNotifyPortProc(DPSPortProc handler)

DESCRIPTION DPSAddNotifyPortProcO registers handler as the function that's called when a message
arrives on the notify port, the unique port, created through the task_notifyO Mach function,
on which notifications (such as port death) are sent. You don't need to create the notify port
yourself; DPSAddNotifyPortProcO creates it for you if it doesn't already exist.

DPSPortProc, handler's defined type, takes the form

void *handler(msg_header_t *msg, void *userData)

where msg is a pointer to the message that was received at the port and userData is the
same pointer that was passed as the second argument to DPSAddNotifyPortProcO.
The userData pointer is provided as a convenience, allowing you to pass arbitrary data
to handler.

The notify port can have only one handler at a time; adding a handler removes the current
one. You can remove the port's handler without specifying a new one with the
DPSRemoveNotifyPortProcO function. The function's argument must match the notify
port's current handler.

SEe ALSO DPSAddPortO, DPSAddTimedEntryO

5-72 Chapter 5: Display PostScript

DPSAddPortO, DPSRemovePortO

SUMMARY Monitor a Mach port

DECLARED IN dpsclientJdpsNeXT.h

SYNOPSIS void DPSAddPort(port_t port, DPSPortProc handler, int maxMsgSize, void *userData,
int priority)

void DPSRemovePort(port_t port)

DESCRIPTION DPSAddPortO registers the function handler to be called each time your application
asks for an event or peeks at the event queue. The function is called provided the following
are true:

• The Mach port port must be valid and it must hold a message waiting to be read.

• priority, an integer from 0 to 30, must be equal to or greater than the application's current
priority threshold. See DPSAddTimedEntryO for a further explanation.

DPSPortProc, handler's defined type, takes the form

void *handler(msg_header_t *msg, void *userData)

where msg is a pointer to the message that was received at the port and userData is the same
pointer that was passed as the fourth argument to DPSAddPortO. The userData pointer is
provided as a convenience, allowing you to pass arbitrary data to handler.

If, within handler, you want to call ms~receiveO to receive further messages at the port,
you must first call DPSRemovePortO to remove the port from the system's port set. (This
is because your application can't receive messages from a port that's in a port set.) After
your application is finished receiving messages directly from the port, it can call
DPSAddPortO to have the system continue to monitor the port.

The contents of the message buffer msg, as received by handler, are invalid after the
function returns. If you need to save any of the information that you find.

The maxMsgSize argument is an integer that gives the size, in bytes, of the largest message
you expect to receive.

DPSRemovePortO removes the specified Mach port from the list of those that the
application will check.

SEE ALSO DPSAddFDO, DPSAddTimedEntryO

Client Library Functions: DPSAddPort() 5-73

DPSAddlimedEntryO, DPSRemovelimedEntryO

SUMMARY Create a timed entry

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS DPSTimedEntry DPSAddTimedEntry(double period, DPSTimedEntryProc handler,
void *userData, int priority)

void DPSRemoveTimedEntry(DPSTimedEntry tag)

DESCRIPTION DPSAddTimedEntryO registers handler as a "timed entry," a function that's called
repeatedly at a given time interval. period determines the number of seconds between calls
to the timed entry. Whenever an application based on the Application Kit attempts to
retrieve events from the event queue, it also checks (depending on priority) to determine
whether any timed entries are due to be called. userData is a pointer that you can use to
pass some data to the timed entry.

The function registered as handler has the form:

void *handler(DPSTimedEntry tag, double now, char *userData)

where teNumber is the timed entry identifier returned by DPSAddTimedEntryO, now is
the number of seconds since some arbitrary point in the past, and userData is the pointer
DPSAddTimedEntryO received when this timed entry was installed.

An application's priority threshold can be set explicitly as an integer from 0 to 31 through
a call to DSPGetEventO or DPSPeekEventO. It's against this threshold that priority is
measured (note that priority can be no greater than 30-the additional threshold level, 31,
is provided to disallow all inter-event function calls). However, if you're using the
Application Kit, you should access the event queue through Application class methods such
as getNextEvent:. Although some of these methods let you set the priority threshold
explicity, you typically invoke the methods that set it automatically. Such methods use only
three priority levels:

Constant

NX_BASETHRESHOLD
NX_RUNMODALTHRESHOLD
NX_MODALRESPTHRESHOLD

5-74 Chapter 5: Display PostScript

Meaning

Normal execution
An attention panel is being run
A modal event loop is being run

When applicable, you should use these constants as the value for priority. For example, if
you want handler to be called during normal execution, but not if an attention panel or a
modal loop is running, then you would set priority to NX_BASETHRESHOLD.

DPSRemoveTimedEntryO removes a previously registered timed entry.

RETURN DPSAddTimedEntryO returns a number identifying the timed entry or -1 to indicate
an error.

DPSAsynchronousWaitContext()

SUMMARY Procede asynchronously while PostScript code is executed

DECLARED IN dpsclientldpsNeXT.h

SYNOPSIS void DPSAsynchronousWaitContext(DPSContext context, DPSPingProc handler,
void *userData)

DESCRIPTION This function is similar to the more familiar DPSWaitContextO functions, except that
rather than wait for all PostScript code to execute, it returns immediately, allowing your
application to procede while the PostScript code is executed in the background. The
DPSPingProc function handler is called (with context and userData as its two arguments)
when all the PostScript code has been executed. The DPSPingProc fUnction takes the form

void *handler(DPSContext context, void *userData);

Warning: Be careful when you use this function; you mustn't send more PostScript
code while waiting for the handler to be called. In general, it's best to not make any
demands on the Application Kit or the Client Library if you're waiting for an asynchronous
handler to return.

Client Library Functions: DPSAsynchronousWaitContext() 5-75

DPSCreateContextO, DPSCreateContextWithTImeoutFromZoneO,
DPSCreateNonsecureContext(), DPSCreateStreamContext()

SUMMARY Create a PostScript execution context

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS DPSContext DPSCreateContext(const char *hostName, const char *serverName,
DPSTextProc textProc, DPSErrorProc errorProc)

DPSContext DPSCreateContextWithTimeoutFromZone(const char * hostName,
const char * serverName, DPSTextProc textProc, DPSErrorProc errorProc, int timeout,
NXZone *zone)

DPSContext DPSCreateNonsecureContext(const char *hostName,
const char * serverName, DPSTextProc textProc, DPSErrorProc errorProc, int timeout,
NXZone *zone)

DPSContext DPSCreateStreamContext(NXStream * stream, int debugging,
DPSProgramEncoding progEnc, DPSNameEncoding nameEnc,
DPSErrorProc errorProc)

DESCRIPTION DPSCreateContextO establishes a connection with the Window Server and creates a
PostScript execution context in it. The new context becomes the current context. The first
argument, hostName, identifies the machine that's running the Window Server; the second
argument, serverName, identifies the Window Server that's running on that machine. With
these two arguments and the help of the Mach network server nmserver, the Mach port for
the Window Server can be identified. If hostName is NULL, the network server on the local
machine is queried for the Window Server's port. If serverName is NULL, a default name
for the Window Server is used.

The last two arguments, textProc and errorProc, refer to call-back functions (defined in the
Client Library specification) that handle text returned from the Window Server and errors
generated on either side of the connection.

For an application that's based on the Application Kit, you could create an additional
context by making this call:

DPSContext Ci

C = DPSCreateContext(NXGetDefaultValue([NXApp appName], INXHost"),
NXGetDefaultValue ([NXApp appName], II NXPSNameII) ,

NULL,

NULL) i

5-76 Chapter 5: Display PostScript

This example queries the application's default values for the indentity of the host machine
and the Window Server. By doing this, the new context is created in the correct Window
Server even if that Server is not on the same machine as the application process.

The context that DPSCreateContextO creates allocates memory from the default
allocation zone. Also, when there's difficulty creating the context, DPSCreateContextO
waits up to 60 seconds before raising an exception. If you want to change either of these
parameters, use DPSCreateContextWithTimeoutFromZoneO. Its two additional
arguments let you specify the zone for the context to use when allocating context-specific
data and a timeout value in milliseconds.

DPSCreateNonsecureContextO creates a "non secure" context in which you can use
PostScript operators that are normally disallowed. The most significant of these are
operators that let you write files.

DPSCreateStreamContextO is similar to DPSCreateContextO, except that the new
context is actually a connection from the client application to a stream. This connection
becomes the current context. PostScript code that the application generates is sent to the
stream rather than to the Window Server. The first argument, stream, is a pointer to an
NXStream structure, as created by NXOpenFileO or NXMapFileO. The debugging
argument is intended for debugging purposes but is not currently implemented. progEnc
and nameEnc specify the type of program and user-name encodings to be used for output
to the stream. The last argument, errorProc, identifies the procedure that's called when
errors are generated.

Few programmers will need to call either of these functions directly: The Application Kit
manages contexts for programs based on the Kit. For example, when an application is
launched, its Application object calls DPSCreateContextO to create a context in the
Window Server. Similarly, to print a View the Kit calls DPSCreateStreamContextO to
temporarily redirect PostScript code from the View to a stream.

RETURN Each of these functions returns the newly created DPSContext structure.

EXCEPTIONS DPSCreateContextO and DPSCreateContextWithTimeoutFromZoneO raise a
dps_err_outOtMemory exception if they encounter difficulty allocating ports or other
resources for the new context. They raise a dps_err_cantConnect exception if they can't
return a context within the timeout period.

Client Library Functions: DPSCreateContext() .5-77

DPSCreateContextWithlimeoutFromZoneO ~ See DPSCreateContext()

DPSCreateNonsecureContextO ~ See DPSCreateContextO

DPSCreateStreamContextO ~ See DPSCreateContextO

DPSDefineUserObjectO, DPSU ndefineUserObjectO

SUMMARY Create a user object

DECLARED IN dpsclientldpsNeXT.h

SYNOPSIS int DPSDefineUserObject(int index)
void DPSUndefineUserObject(int index)

DESCRIPTION DPSDefineUserObjectO associates index with the PostScript object that's on the top of
the operand stack, thereby creating a user object (as defined by the PostScript language).
If index is 0, the object is assigned the next available index number. The function returns
the new index, which can then be passed to a pswrap-generated function that takes a
user object.

Warning: To avoid coming into conflict with user objects defined by the Client Library or
Application Kit, use DPSDefineUserObjectO rather than the PostScript operator
defineuserobject or the single-operator functions DPSdefineuserobjectO and
PSdefineuserobjectO.

DPSUndefineUserObjectO removes the association between index and the PostScript
object it refers to, thus destroying the user object. By destroying a user object that's no
longer needed, you can let the garbage collector reclaim the previously associated
PostScript object.

RETURN DPSDefineUserObjectO, if successful in assigning an index, returns the index that the
object was assigned. If unsuccessful, it returns O.

DPSDiscardEventsO ~ See DPSGetEventO

5-78 Chapter 5: Display PostScript

DPSDoUserPath(), DPSDoUserPathWithMatrix()

SUMMARY Send an encoded PostScript path to the Window Server

DECLARED IN dpsclientldpsNeXT.h

SYNOPSIS void DPSDoUserPath(void *coords, int numCoords, DPSNumberFormat numType,
unsigned char *ops, int numOps, void *bbox, int action)

void DPSDoUserPathWithMatrix(void *coords, int numCoords,
DPSNumberFormat numType, unsigned char *ops, int numOps, void *bbox, int action,
float matrix [6])

DESCRIPTION DPSDoUserPathO and DPSDoUserPath WithMatrixO send an encoded user path to the
Window Server and then execute, upon that path, the operator specified by action. The use
of these functions, rather than the analogous step-by-step path construction, is encouraged;
rendering an encoded path is much more efficient than executing the individual PostScript
operators that would otherwise be needed.

An encoded user path consists of an array of coordinate values, a sequence of PostScript
operators, and a bounding box specification. The values in the coordinate array are used as
operands to the operators; the operands are distributed to the operators in the order that
they're given. The resulting path must fit within the bounding box.

The coordinates, operators, and bounding box are given by the functions' first five
arguments:

• The array of coordinate values is given by coords.

• numCoords is the number of elements in coords.

• numType specifies the data type of the coordinates, as described below. All the values
in coords must be of the same type.

• ops is the sequence of PostScript operators, represented by constants as listed below.

• The bounding box is defined by the four coordinate values that you pass as an array in
the bbox argument. These are passed as operands to the setbbox operator. (If you don't
supply a setbbox as part of the ops sequence, one is inserted for you.)

Client Library Functions: DPSDoUserPath() 5-79

The following integer constants represent the data types that you can pass as the
numType argument:

Constant

dps_float
dps_Iong
dps_short

Meaning

single-precision floating-point number
32-bit integer
8-bit integer

You can also specify 16- and 32-bit fixed-point real numbers. For 16-bit fixed-point
numbers, use dps_short plus the number of bits in the fractional portion. For 32-bit
fixed-point numbers, use dps_long plus the number of bits in the fractional portion.

These constants are provided for ops:

dps_setbbox
dps_illoveto
dps_filloveto
dps_Iineto
dps_rlineto
dps_curveto
dps_rcurveto
dps_arc
dps_arcn
dps_arct
dps_c1osepath
dp s_uc ache

Once the user path has been constructed, the operator specified by action is executed. The
value of action is an index into Display PostScript's encoded system names; the following
constants, provided as a convenience, represent the most commonly used actions:

dps_uappend
dps_ufill
dps_ueofill
dps_ustroke
dps_ustrokepath
dps_inufill
dps_inueofill
dps_inustroke
dps_def
dps_put

5-80 Chapter 5: Display PostScript

DPSDoUserPathWithMatrixO's matrix argument represents the transformation matrix
operand used by the ustroke, inustroke, and ustrokepath operators. If matrix is NULL,
the argument is ignored.

The following program fragment demonstrates the use of DPSDoUserPathO as it creates
and strokes a user path (an isosceles triangle) within a bounding rectangle whose lower left
comer is located at (0,0) and whose width and height are 200.

short coords[6] = {O, 0, 200, 0, 100, 200}i
char ops[4] = {dps_ffioveto, dps_lineto,dps_lineto,

dps_closepath} i
short bbox[4] = {O, 0, 200, 200}i

DPSDoUserPath(coords, 6, dps_short, ops, 4, bbox, dps_ustroke) i

DPSDoUserPathWithMatrix() ~ See DPSDoUserPath()

DPSFlush(),DPSSendEOF()

SUMMARY Send PostScript data to the Window Server

DECLARED IN dpsclientldpsNeXT.h

SYNOPSIS void DPSFlushO
void DPSSendEOF(DPSContext context)

DESCRIPTION DPSFlushO flushes the application's output buffer, forcing any buffered PostScript code or
data to the Window Server.

DPSSendEOFO sends a PostScript end-of-file marker to the given context. The
connection to the context isn't closed or disturbed in any way by this function.

Client Library Functions: DPSDoUserPathWithMatrix() 5-81

DPSGetEvent(), DPSPeekEvent(), DPSDiscardEvents()

SUMMARY Access events from the Window Server

DECLARED IN dpsclientldpsNeXT.h

SYNOPSIS int DPSGetEvent(DPSContext context, NXEvent *anEvent, int mask, double timeout,
int threshold)

int DPSPeekEvent(DPSContext context, NXEvent *anEvent, int mask, double timeout,
int threshold)

void DPSDiscardEvents(DPSContext context, int mask)

DESCRIPTION DPSGetEventO and DPSPeekEventO are macros that access event records in an
application's event queue. These routines are provided primarily for programs that don't
use the Application Kit. An application based on the Kit should use the corresponding
Application class methods (such as getNextEvent: and peekNextEvent:into:) or the
function NXGetOrPeekEventO so that it can be journaled. DPSDiscardEventsO
removes all event records of a specified type from the queue.

DPSGetEventO and DPSPeekEventO differ only in how they treat the accessed event
record. DPSGetEventO removes the record from the queue after making its data available
to the application; DPSPeekEventO leaves the record in the queue.

DPSGetEventO and DPSPeekEventO take the same parameters. The first, context,
represents a PostScript execution context within the Window Server. Virtually all
applications have only one execution context, which can be returned using
DPSGetCurrentContextO. Applications having more than one execution context can use
the constant DPS_ALLCONTEXTS to access events from all contexts belonging to them.

The second argument, anEvent, is a pointer to an event record. If DPSGetEventO or
DPSPeekEventO is successful in accessing an event record, the record's data is copied into
the storage referred to by anEvent.

mask determines the types of events sought. See the section "Types and Constants" for a
list of the constants that represent the event type masks. To check for more than one type
of event, you combine individual constants using the bitwise OR operator.

If an event matching the event mask isn't available in the queue, DPSGetEventO or
DPSPeekEventO waits until one arrives or until timeout seconds have elapsed, whichever
occurs first. The value of timeout can be in the range of 0.0 to NX_FOREVER. If timeout

5-82 Chapter 5: Display PostScript

is 0.0, the routine returns an event only if one is waiting in the queue when the routine asks
for it. If timeout is NX_ FOREVER, the routine waits until an appropriate event arrives
before returning.

The last argument, threshold, is an integer in the range a through 31 that determines which
other services may be provided during a call to DPSGetEventO or DPSPeekEventO.

Requests for services are registered by the functions DPSAddTimedEntryO,
DPSAddPortO, and DPSAddFDO. Each of these functions takes an argument specifying
a priority level. If this level is equal to or greater than threshold, the service is provided
before DPSGetEventO or DPSPeekEventO returns.

DPSDiscardEventsO's two parameters, context and mask, are the same as those for
DPSGetEventO and DPSPeekEventO. DPSDiscardEventsO removes from the
application's event queue those records whose event types match mask and whose context
matches context.

RETURN DPSGetEventO and DPSPeekEventO return 1 if they are successful in accessing an event
record and a if they aren't.

SEE ALSO DPSAddFDO, DPSAddPortO, DPSAddTimedEntryO, DPSPostEventO,
NXGetOrPeekEventO

DPSI nterruptContext()

Warning: This function is unimplemented in the NeXTSTEP version of the Client Library.

DPSNameFromTypeAndlndex()

SUMMARY Access the system and user name tables

DECLARED IN dpsc1ientldpsNeXT.h

SYNOPSIS const char *DPSNameFromTypeAndlndex(short type, int index)

Client Library Functions: DPSlnterruptContext() 5-83

DESCRIPTION DPSNameFromTypeAndlndexO returns the text associated with index from the
system or user name table. If type is -1, the text is returned from the system name table;
if type is 0, it's returned from the user name table.

The name tables are used primarily by the Client Library and pswrap; few programmers
will access them directly.

RETURN This function returns a read-only character string.

DPSPeekEvent() -7 See DPSGetEvent()

DPSPostEvent()

SUMMARY Create an event

DECLARED IN dpsc1ient/dpsNeXT.h

SYNOPSIS int DPSPostEvent(NXEvent *anEvent, int atStart)

DESCRIPTION DPSPostEventO lets you add an event record to your application's event queue without
involving the Window Server. anEvent is a pointer to the event record to be added. atStart
specifies where the new record will be placed in relation to any other records in the queue.
If atStart is TRUE, the event is posted in front of all others and so will be the next one your
application receives. If atStart is FALSE, the event is posted behind all others and so won't
be returned until events that precede it are processed.

You can free, reuse, or otherwise mangle anEvent after you've posted it without fear of
corrupting the posted record. DPSEventO copies the record it receives and posts the copy.

Note that event records you post using DPSPostEventO aren't filtered by an event filter
function set with DPSSetEventFuncO.

RETURN DPSPostEventO returns 0 if successful in posting the event record; it returns -1 if
unsuccessful in posting the record because the event queue is full.

SEE ALSO DPSSetEventFuncO

5-84 Chapter 5: Display PostScript

DPSPri ntErrorO, DPSPrintError ToStrea m ()

SUMMARY Print error messages

DECLARED IN dpsc1ient/dpsNeXT.h

SYNOPSIS void DPSPrintError(FILE *fp, const DPSBinObjSeq error)
void DPSPrintErrorToStream(NXStream *stream, const DPSBinObjSeq error)

DESCRIPTION DPSPrintErrorO and DPSPrintErrorToStreamO format and print error messages
received from a PostScript execution context in the Window Server. The error message is
extracted from the binary object sequence error. DPSPrintErrorO prints the error
message to the file identified by fp; DPSPrintErrorToStreamO prints the error message
to stream.

You rarely need to call these functions directly. However, if you reset the error handler for
a PostScript execution context, the new handler you install could use one of these functions
to process errors that it receives.

DPSPrintErrorToStreamO ~ See DPSPrintErrorO

DPSRemoveFDO ~ See DPSAddFDO

DPSRemovePortO ~ See DPSAddPortO

DPSRemoveTimedEntryO ~ See DPSAddTImedEntryO

DPSResetContext()

Warning: This function is unimplemented in the NeXTSTEP version of the Client Library.

DPSSendEOFO ~ See DPSFlush()

Client Library Functions: DPSPrintError() 5-85

DPSSetDeadKeysEnabled()

SUMMARY Allow dead key processing for a context's events

DECLARED IN dpsc1ient/dpsNeXT.h

SYNOPSIS void DPSSetDeadKeysEnabled(DPSContext context, intflag)

DESCRIPTION DPSSetDeadKeysEnabledO turns dead key processing on or off for context. If flag is 0,
dead key processing is turned off; otherwise, it's turned on (the default).

Dead key processing is a technique for extending the range of characters that can be entered
from the keyboard. In NeXTSTEP, it provides one way for users to enter accented
characters. For example, a user can type Alternate-e followed by the letter "e" to produce
the letter "6 ". The first keyboard input, Alternate-e, seems to have no efect-it's the "dead
key". However it signals Client Library routines that it and the following character should
be analyzed as a pair. If, within NeXTSTEP, the pair of characters has been associated with
a third character, a keyboard event record representing the third character is placed in the
application's event queue, and the first two event records are discarded. If there is no such
association between the two characters, the two event records are added to the event queue.

See the NeXT User's Reference manual for a listing of the keys that produce accent
characters.

DPSSetEventFuncO

SUMMARY Set the function that filters events

DECLARED IN dpsc1ient/dpsNeXT.h

SYNOPSIS DPSEventFilterFunc DPSSetEventFunc(DPSContext context, DPSEventFilterFunc fupc)

5·86 Chapter 5: Display PostScript

DESCRIPTION DPSSetEventFuncO establishes the functionfunc as the function to be called when an
event record is returned from the PostScript context context in the Window Server. The
registered function is called before the event record is put in the event queue. If the
registered function returns 0, the record is discarded. If the registered function returns 1,
the record is passed on for further processing.

Only event records coming from the Window Server are filtered by the registered function.
Records that you post to the event queue using DPSPostEventO aren't affected.

A DPSEventFilterFunc function takes the following form:

int *func(NXEvent *anEvent)

RETURN DPSSetEventFuncO returns a pointer to the previously registered event function. This lets
you chain together the current and previous event functions.

SEE ALSO DPSPostEventO

DPSSetTracking()

SUMMARY Coalesce mouse events

DECLARED IN dpsclientldpsNeXT.h

SYNOPSIS int DPSSetTracking(intfiag)

DESCRIPTION DPSSetTrackingO turns mouse event-coalescing on or off for the current context. Iffiag
is 0, coalescing is turned off; otherwise, it's turned on (the default).

Event coalescing is an optimization that's useful when tracking the mouse. When the
mouse is moved, numerous events flow into the event queue. To reduce the number of
events awaiting removal by the application, adjacent mouse-moved events are replaced by
the most recent event of the contiguous group. The same is done for left and right
mouse-dragged events, with the addition that a mouse-up event replaces mouse-dragged
events that come before it in the queue.

RETURN DPSSetTrackingO returns the previous state of the event-coalescing switch.

Client Library Functions: DPSSetTracking() 5-87

DPSStartWaitCursorTImer()

SUMMARY Initiate a count down for the wait cursor

DECLARED IN dpsc1ientldpsNeXT.h

SYNOPSIS void DPSStartWaitCursorTimerO

DESCRIPTION DPSStartWaitCursorTimerO triggers the mechanism that displays a wait cursor when an
application is busy and can't respond to user input. In most cases, wait cursor support is
automatic: You'll only need to call this function if your application starts a time-consuming
operation that's not initiated by a user-generated event.

Client Library routines and the Window Server cooperate to display the wait cursor
whenever more than a preset amount of time elapses between the time an application takes
an event record from the event queue and the time the application is again ready to consume
events. However, when an application starts an operation that isn't initiated by an event­
such as one caused by receiving a Mach message or by processing data from a file (see
DPSAddPortO and DPSAddFDO)-the wait cursor mechanism is bypassed. To ensure
proper wait cursor behavior in these cases, call DPSStartWaitCursorTimerO before
beginning the time-consuming operation.

SEE ALSO DPSAddFDO, DPSAddPortO, setwaitcursorenabled

DPSSynchronizeContext()

SUMMARY Synchronize a context with your application

DECLARED IN dpsc1ientldpsNeXT.h

SYNOPSIS int DPSSynchronizeContext(DPSContext context, intflag)

DESCRIPTION DPSSynchronizeContextO causes DPSWaitContextO to be called after each pswrap
function is called, thus synchronizing the PostScript context with your application.

5-88 Chapter 5: Display PostScript

DPSTraceContextO, DPSTraceEventsO

SUMMARY Trace data and events

DECLARED IN dpsclientldpsNeXT.h

SYNOPSIS int DPSTraceContext(DPSContext context, intflag)
void DPSTraceEvents(DPSContext context, intflag)

DESCRIPTION DPSTraceContextO and DPSTraceEventsO control the tracing of data and events
between a PostScript execution context (or contexts) in the Window Server and an
application process.

The first argument for both functions, context, specifies the context to be traced. An
application's single context can be returned with DPSGetCurrentContextO. Applications
having more than one execution context can use the constant DPS_ALLCONTEXTS to
trace all contexts belonging to them.

The second argument, flag, determines whether tracing is enabled.

When data tracing is enabled (DPSTraceContextO), a copy of the PostScript code
generated by an application and the values returned to it by the Window Server is
sent to UNIX standard error. Values returned to the application are marked by the
prepended string:

% value returned ==>

When event tracing is enabled (DPSTraceEventsO), information about each event that the
application receives is sent to UNIX standard error. For example, for a left mouse-down
event the listing might look like this:

Receiving: LMouseDown at: 343.0,69.0 time: 1271899
flags: OxO win: 6 ctxt: 76128 data: 1111,1

The listing displays the fields of the event record: type, location, time, flags, local window
number, PostScript execution context, and data. The contents of the data field listing
depends on the event type; for instance, in the preceding example the event number and the
click count were displayed.

Client Library Functions: DPSTraceContext() 5-89

For applications based on the Application Kit, there are two preferable methods for turning
on data tracing: You can use the NXShowPS command-line switch when you launch an
application from Terminal. Alternatively, when you run the application under GDB, you
can use the showps and shownops commands to control tracing output. Similarly, there
are more convenient ways to tum on event tracing: You can use the NXTraceEvents
command-line switch when you launch an application from Terminal. Alternatively, when
you run the application under GDB, you can use the traceevents and tracenoevents
commands to control event-tracing output.

Only one tracing context can be created for the supplied context. If you attempt to create
additional tracing contexts for a context that's already being traced, no new context is
created and DPSTraceContextO returns -1.

RETURN DPSTraceContextO returns 0 if successful in creating a tracing context, or -1 if not.

DPSTraceEventsO -7 See DPSTraceContextO

DPSUndefineUserObjectO -7 See DPSDefineUserObjectO

NX EVENTCODEMASKO

SUMMARY Generate an event mask for an event type

DECLARED IN dpsclientlevent.h

SYNOPSIS int NX_EVENTCODEMASK(int type)

DESCRIPTION This handy utility macro returns an event mask that corresponds to the given (single)
event type.

5-90 Chapter 5: Display PostScript

Types and Constants

The types and constants given in this section are used by the Display PostScript language.
The scope and significance of a particular item depends on the file in which it's declared:

• dpsclient.h defines types and constants that are common to all implementations of the
Display PostScript language.

• dpsfriends.h defines types and constants that may vary in different implementations of
the language. Documented here are only those elements that, as implemented in
NeXTSTEP, are different from the implementation supplied by Adobe.

• dpsNeXT.h defines types and constants that are unique to the NeXTSTEP
implementation of the Display PostScript language.

5-92 Chapter 5: Display PostScript

Defined Types

DPSContextRec

DECLARED IN dpsclient/dpsfriends.h

SYNOPSIS typedef struct _t_DPSContextRec {
char *priv;
DPSSpace space;
DPSProgramEncoding programEncoding;
DPSNameEncoding nameEncoding;
struct _t_DPSProcsRec const * procs;
void (*textProc)O;
void (*errorProc)O;
DPSResults resultTable;
unsigned int resultTableLength;
struct _t_DPSContextRec *chainParent, *chainChild;
DPSContextType type;

} DPSContextRec, *DPSContext;

DESCRIPTION The DPSContextRec structure represents a Display PostScript context.

DPSContextType

DECLARED IN dpsclient/dpsfriends.h

SYNOPSIS typedef enum {
dps_machServer,
dps_fdServer,
dps_stream

} DPSContextType;

DESCRIPTION These represent the context types supported by NeXT's version of Display PostScript, as
used in the type field of a DPSContextRec structure.

Types and Constants: DPSContextRec 5-93

DPSErrorCode

DECLARED IN dpsclientldpsclient.h

SYNOPSIS typedef enum _DPSErrorCode {
dps_err_ps = DPS_ERROR_BASE,
dps_err_nameTooLong,
dps_err _resultTagCbeck,
dps_err _resuItTypeCbeck,
dps_err _invalid Context,
dps_err_select = DPS_NEXT_ERROR_BASE,
dps_err _connection Closed,
dps_err _read,
dps_err_ write,
dps_err _invalidFD,
dps_err _invalidTE,
dps_err _invalidPort,
dps_err _outOfMemory,
dps_err_cantConnect

} DPSErrorCode;

DESCRIPTION Error codes passed to a DPSErrorProcO function.

DPSEventFilterFu nc

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS typedef int (*DPSEventFilterFunc)(NXEvent *ev);

DESCRIPTION Call-back function used to filter events.

5-94 Chapter 5: Display PostScript

DPSFDProc

DECLARED IN dpsclientldpsNeXT.h

SYNOPSIS typedef void (*DPSFDProc)(intfd, void *userData);

DESCRIPTION Call-back function used when a file descriptor is registered through DPSAddFDO.

DPSNumberFormat

DECLARED IN dpsclientldpsNeXT.h

SYNOPSIS typedef enum _DPSNumberFormat {
#ifdef __ BIG_ENDIAN __

dps_float = 48,
dps_Iong = 0,
dps_short = 32

#else
dps_float = 48+128,
dps_Iong = 0+128,
dps_short = 32+ 128

} DPSNumberFormat;

DESCRIPTION These constants are used by the DPSDoUserPathO function to describe the type of
numbers that are being passed.

Types and Constants: DPSFDProc 5-95

DPSPingProc

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS typedef void (*DPSPingProc)
(DPSContext ctxt,
void *userData);

DESCRIPTION Call-back function used by DPSAsynchronousWaitContextO.

DPSPortProc

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS typedef void (*DPSPortProc)
(msg_header_t *msg,
void *userData);

DESCRIPTION Call-back function used when a port is registered through DPSAddPortO.

DPSTImedEntry

DECLARED IN dpsclientldpsNeXT.h

SYNOPSIS typedef struct __ DPSTimedEntry *DPSTimedEntry;

DESCRIPTION The return type for DPSAddTimedEntryO.

5-96 Chapter 5: Display PostScript

DPSlimedEntryProc

DECLARED IN dpsclientldpsNeXT.h

SYNOPSIS typedef void (*DPSTimedEntryProc)
(DPSTimedEntry timedEntry,
double now,
void *userData);

DESCRIPTION Call-back function used when a timed entry is registered through DPSAddTimedEntryO.

DPSUserPathAction

DECLARED IN dpsclientldpsNeXT.h

SYNOPSIS typedef enum _DPSU serPathAction {
dps_uappend,
dps_ufill,
dps_ueofill,
dps_ustroke,
dps_ustrokepath,
dps_inufill,
dps_inueofill,
dps_inustroke,
dps_def,
dps_put

} DPSUserPathAction;

DESCRIPTION These constants are convenient representations of some of the PostScript operator indices,
suitable for enrollment in the action array passed to DPSDoUserPathO.

Types and Constants: DPSTimedEntryProc 5-97

DPSUserPathOp

DECLARED IN dpsclientldpsNeXT.h

SYNOPSIS typedef enum _DPSUserPathOp {
dps_setbbox,
dps_moveto,
dps_rmoveto,
dps_lineto,
dps_rlineto,
dps_ curveto,
dps_rcurveto,
dps_arc,
dps_arcn,
dps_arct,
dps_closepath,
dps_ucache

} DPSUserPathOp;

DESCRIPTION These constants represent the PostScript operators that can be passed in
DPSDoUserPathO's operator array.

NXCoord

DECLARED IN dpsclientlevent.h

SYNOPSIS typedef float NXCoord

DESCRIPTION U sed to represent a single coordinate in a Cartesian coordinate system.

5-98 Chapter 5: Display PostScript

NXEvent

DECLARED IN dpsc1ientlevent.h

SYNOPSIS typedef struct _NXEvent {
int type;
NXPoint location;
long time;
int flags;
unsigned int window;
NXEventData data;
DPSContext ctxt;

} NXEvent, *NXEventPtr;

DESCRIPTION Represents a single event; this structure is also known as the event record. The fields are:

type
location
time
flags
window
data
ctxt

The type of event (see "Event Types," below)
The event's location in the base coordinate system of its window
The time of the event (in hardware-dependent units) since system startup
Mouse-button and modifier-key flags (see "Event Flags," below)
The window number of the window associated with the event
Additional type-specific data (see "NXEventData," below)
The PostScript context of the event

Types and Constants: NXEvent 5-99

NXEventData

DECLARED IN dpsclientlevent.h

SYNOPSIS typedef union {
struct {

short eventNum;
int click;
unsigned char pressure;

} mouse;
struct {

short repeat;
unsigned short charSet;
unsigned short charCode;
unsigned short keyCode;
short keyData;

} key;
struct {

short eventNum;
int trackingNum;
int userData;

} tracking;
struct {

short subtype;
union {

float F[2];
long L[2];
short S[4];
char C[8];

} misc;
} compound;

} NXEventData;

DESCRIPTION This structure supplies type-specific information for an event. It's a union of four
structures, where the type of the event determines which structure is pertinent:

• mouse is used for mouse events.
• key is used for keyboard events.
• tracking is for tracking-rectangle events.
• compound is for system-, kit-, and application-defined events.

5-100 Chapter 5: Display PostScript

NXPoint

DECLARED IN dpsclientlevent.h

SYNOPSIS typedef struct _NXPoint {
NXCoordx;
NXCoordy;

} NXPoint;

DESCRIPTION Represents a point in a Cartesian coordinate system.

NXSize

DECLARED IN dpsclientlevent.h

SYNOPSIS typedef struct _NXSize {
NXCoord width;
NXCoord height;

} NXSize;

DESCRIPTION Represents a two-dimensional size.

Types and Constants: NXPoint 5-101

Symbolic Constants

All Contexts

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS DPS_ALLCONTEXTS

DESCRIPTION This constant represents all extant contexts.

Alpha Constants

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS NX_DATA
NX_ONES

DESCRIPTION These constants represent alpha values.

Character Set Values

DECLARED IN dpsclient/event.h

SYNOPSIS NX_ASCIISET
NX_SYMBOLSET
NX_DINGBATSSET

DESCRIPTION These constants represent the values that may occur in the data.key.charSet field of an
NXEvent structure.

5-102 Chapter 5: Display PostScript

Compositing Operations

DECLARED IN dpsclientldpsNeXT.h

SYNOPSIS NX_CLEAR
NX_COPY
NX_SOVER
NX_SIN
NX_SOUT
NX_SATOP
NX_DOVER
NX_DIN
NX_DOUT
NX_DATOP
NX_XOR
NX_PLUSD
NX_HIGHLIGHT
NX_PLUSL

DESCRIPTION These represent the compo siting operations used by PScompositeO and the
NXlmage class.

Error Code Bases

DECLARED IN dpsclientldpsclient.h

SYNOPSIS DPS_ERROR_BASE
DPS_NEXT_ERROR_BASE

DESCRIPTION These constants represent the lowest values for Display PostScript error codes.

Types and Constants: Compositing Operations 5-103

Event Types

DECLARED IN dpsclientlevent.h

SYNOPSIS Type

NX_NULLEVENT

NX_LMOUSEDOWN
NX_LMOUSEUP
NX_LMOUSEDRAGGED

NX_MOUSEDOWN
NX_MOUSEUP
NX_MOUSEDRAGGED

NX_RMOUSEDOWN
NX_RMOUSEUP
NX_RMOUSEDRAGGED

NX_MOUSEMOVED
NX_MOUSEENTERED
NX_MOUSEEXITED
NX_KEYDOWN
NX_KEYUP
NX_FLAGSCHANGED

NX_KITDEFINED
NX_SYSDEFINED
NX_APPDEFINED

NX_TIMER
NX_CURSORUPDATE
NX_JOURNALEVENT

NX_FIRSTEVENT
NX_LASTEVENT
NX_ALLEVENTS

Meaning

A non-event

Left mouse-down
Left mouse-up
left mouse-dragged

Same as NX_LMOUSEDOWN
Same as NX_LMOUSEUP
Same as NX_LMOUSEDRAGGED

Right mouse-down
Right mouse-up
Right mouse-dragged

Mouse-moved
Mouse-entered
Mouse-exited
Key-down
Key-up event
Flags-changed

Application Kit-defined
System-defined
Application-defined

Timer used for tracking
Cursor tracking
Event used by joumaling

The smallest-valued event constant
The greatest-valued event constant
A value that includes all event types

DESCRIPTION These constants represent event types. They're passed as the type field of the NXEvent
structure that's created when an event occurs.

5-104 Chapter 5: Display PostScript

Event Type Masks

DECLARED IN dpsclient/event.h

SYNOPSIS NX_NULLEVENTMASK
NX_LMOUSEDOWNMASK
NX_LMOUSEUPMASK
NX_RMOUSEDOWNMASK
NX_RMOUSEUPMASK
NX_MOUSEMOVEDMASK
NX_LMOUSEDRAGGEDMASK
NX_RMOUSEDRAGGEDMASK
NX_MOUSEENTEREDMASK
NX_MOUSEEXITEDMASK
NX_KEYDOWNMASK
NX_KEYUPMASK
NX_FLAGSCHANGEDMASK
NX_KITDEFINEDMASK
NX_APPDEFINEDMASK
NX_SYSDEFINEDMASK
NX_TIMERMASK
NX_CURSORUPDATEMASK
NX_MOUSEDOWNMASK
NX_MOUSEUPMASK
NX_MOUSEDRAGGEDMASK
NX_JOURNALEVENTMASK

DESCRIPTION These masks correspond to the event types defined immediately above. They let you query
the type field of an NXEvent structure for the existence of a particular event type.

Forever

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS NX_FOREVER

DESCRIPTION A long, long time. Typically used as the timeout argument to DPSGetEventO.

Types and Constants: Event Type Masks 5-105

Keyboard State Flags Masks

DECLARED IN dpsclientlevent.h

SYNOPSIS Type

NX_ALPHASHIFTMASK
NX_SHIFTMASK
NX_CONTROLMASK
NX_ALTERNATEMASK
NX_COMMANDMASK
NX_NUMERICPADMASK
NX_HELPMASK

NX_NEXTCTRLKEYMASK
NX_NEXTLSHIFTKEYMASK
NX_NEXTRSHIFTKEYMASK
NX_NEXTLCMDKEYMASK
NX_NEXTRCMDKEYMASK
NX_NEXTLALTKEYMASK
NX_NEXTRALTKEYMASK

Meaning

Shift lock
Shift key
Control key
Alt key
Command key
Number pad key
Help key

Control key
Left shift key
Right shift key
Left command key
Right command key
Left alt key
Right alt key

DESCRIPTION These masks correspond to keyboard states that might be included in an NXEvent
structure's flags mask. The masks are grouped as device-independent
(NX_ALPHASHIFTMASK through NX_HELPMASK) and device-dependent
(all others).

Miscellaneous Event Flags Masks

DECLARED IN dpsclientlevent.h

SYNOPSIS Type Meaning

NX_STYLUSPROXIMITYMASK Stylus is in proximity (for tablets)
NX_NONCOALSESCEDMASK Event coalescing disabled

DESCRIPTION These masks correspond to miscellaneous states that might be included in an NXEvent
structure's flags mask.

5-106 Chapter 5: Display PostScript

Window Backing Types

DECLARED IN dpsclientldpsNeXT.h

SYNOPSIS NX_RETAINED
NX_NONRETAINED
NX_BUFFERED

DESCRIPTION These represent the three backing types provided by window devices (and used by the
Application Kit's Window objects).

Window Screen List Placement

DECLARED IN dpsclientldpsNeXT.h

SYNOPSIS NX_ABOVE
NX_BELOW
NX_OUT

DESCRIPTION These represent the placement of a window device in the screen list.

Types and Constants: Window Backing Types 5-107

5-108

6 Distributed Objects

6-3 Introduction
6-4 Terminology
6-4 Making an Object Available
6-5 Establishing a Connection
6-5 Sending Data Between Applications
6-6 Structures
6-7 Pointers to Data
6-7 Memory Allocation
6-8 Types That Don't Work
6-8 Sharing Objects
6-9 Reference Counting
6-10 Object Copies vs. Proxies
6-12 Determining the Object to Encode
6-12 Moving an Object Between Applications
6-13 Asynchronous Messages
6-13 Robust Usage
6-14 Application Deaths
6-15 Exceptions
6-16 Memory Leaks
6-16 Using Protocols for Efficiency
6-17 Restricting Messages
6-17 Security
6-17 Multithreaded Applications
6-18 Relationship to SpeakerlListener

6-1

6-19 Classes
6-20 NXConnection
6-34 NXProxy
6-38 Object Additions

6-41 Protocols
6-42 NXDecoding
6-44 NXEncoding
6-46 NXTransport

6-49 Types and Constants
6-50 Defined Types
6-51 Symbolic Constants

6-2

Distributed Objects

Library:

Header File Directory: IN extDeveloperlHeaders/remote

Introduction

The Distributed Objects system provides a relatively simple way for applications to
communicate with one another by allowing them to share Objective C objects, even
amongst applications running on different machines across a network. They are useful for
implementing client-server and cooperative applications. The Distributed Objects system
subsumes the network aspects of typical remote procedure call (RPC) programming, and
allow an application to send messages to remote objects using ordinary Objective C syntax.

The Distributed Objects system takes the form of two classes, NXConnection and
NXProxy. NXConnection objects are primarily bookkeepers that manage resources passed
between applications. NXProxy objects are local objects that represent remote objects.
When a remote object is passed to your application, it is passed in the form of a proxy that
stands in for the remote object; messages to the proxy are forwarded to the remote object,
so for most intents and purposes the proxy can be treated as though it were the object itself.
Note that direct access to instance variables of the remote object isn't available through the
proxy.

Distributed Objects 6-3

Terminology

In this document, the terms "server" and "client" are used loosely. Whenever an object in
an application is returned to a remote application, the object effectively becomes a server,
capable of responding to remote messages. For this document, "client" refers to the object
originating a remote message, and "server" refers the remote object responding to the
message. For example, if a database server sends a remote message to a database client,
from the perspective of the Distributed Objects system the database server is the client of
the message.

Making an Object Available

The Distributed Objects system allows an application to send a message to an object that
exists in another application. The message may include most data types (including objects)
as arguments, and it may return most data types, again including objects. Clearly, no
messages can be sent to a remote application until the local application has gotten a proxy
to some object in the remote application. Therefore, in order to bootstrap the
communication process, one or more objects must be made available by name using the
Network Name Server. Such an object is known as a root object, and is available to any
application that knows the registered name of the object. While it is possible to have
multiple objects available by name, it is also common to have just one, and to get additional
proxies to remote objects in response to messages (to both the root object and objects
returned by the root object).

Here is a simple example that shows how to make an instance of the MyServer class
available to other applications:

id rnyServer = [[MyServer alloc] init];

id rnyConnection = [NXConnection registerRoot: rnyServer

withNarne:"exarnpleServer"];

[rnyConnection run];

The first line creates myServer, the object that is to be made available to other applications.
The next line registers myServer as a root object, available to any application that asks for
the object named "exampleServer". This method returns an NXConnection object that will
dispatch messages sent from remote objects and track resources (such as objects) vended
to connecting applications. The last line tells the connection object to begin its process of
waiting for messages and dispatching them to the proper receivers. The run method shown
doesn't return, but there are variations that run the connection concurrently in another
thread or pseudo-concurrently from the DPS client routines that dispatch events.

6-4 Chapter 6: Distributed Objects

Establishing a Connection

In the example above, an instance of MyServer is made available under the name
"exampleServer". Another application can get a proxy to the object like this:

id server = [NXConnection connectToName:"exampleServer"J;

When this message is sent, a connection to the application that registered the MyServer
object is established. The returned object, server, is a proxy to the remote MyServer object.
Because server forwards messages across the connection to the MyServer object, it can
generally be treated as though it were that object.

Connections may also be formed automatically when proxies are passed between
applications. For example, imagine that two client objects (call them client A and client B)
have connected to a server object. If client B sends its id to the server, the server gets a
proxy to client B. If client A then asks the server to return client B, the server does this
by returning client B, which is actually its proxy. However, client A doesn't receive a
proxy to the server's proxy. Instead, a new connection is established between client A and
client B, and client A receives its own direct proxy (over the new connection) to client B.

Sending Data Between Applications

The Distributed Objects system can use most data types as message arguments or return
values. Here are some examples:

[server aSimpleMessageJ;
[server useAnInteger: 12J;
[server useAnIntByReference: &iJ;

[server useAString:"hello"J;

[server useAnId: selfJ;
[server useAnotherId: serverJ;

II no parameters
II simple scalars

II sending a pointer
II sending a string

II send an arbitrary local object

II send back the shared object!

In both the useAnlntByReference: and useAString: methods, a pointer is automatically
dereferenced on the client side, and the resulting data is sent to the server. On the server
side, space for the data is allocated, and a pointer to the local data is received. The server's
allocated copy of the data is local in scope and will be freed by the system when the server's
method returns.

In the useAnld: method, the server is passed an id to a local object, and the server receives
a proxy to that object. In the useAnotherld: method, the server is passed the client's proxy
to the server. The Distributed Objects system makes sure that the correct object is returned;
in this case the server receives the local id for itself rather than a proxy.

Introduction 6-5

The Distributed Objects system allows callbacks in the midst of a method implementation.
For example, the server can send a message back to the client in the midst of its useAnld:
implementation. Such a callback doesn't deadlock, and can be useful, but its ramifications
must be carefully considered. Methods in the client can be invoked by the server before
the client's invocation of the useAnld: method returns.

Structures

The Distributed Objects system can utilize structures for both message arguments and as
return values, but there are some important limitations. The following example
demonstrates that complex structures can be passed as arguments in remote messages:

typedef struct {

char aChari

int anInti

unsigned int bitfield:3i
enum { red, green, blue} color;

id anObject;
char *aString;

int array[2];
exampleStruct;

exampleStruct e = {'a',9,5,green,nil,"Hello",{42,17}};

[server useStructByValue:e];

[server useStructByReference:&e];

In general, a structure to be used as a parameter for a remote message can't contain pointers.
Pointers are only valid in one address space, so the Distributed Objects system would have
to reconstruct the pointer's data on the remote end. The system can't know how deep to
recurse when dereferencing pointers, so it implements the simple case and doesn't
dereference pointers to most types, with two exceptions. Structures can contain pointers to
objects (ids) and pointers to character strings. At the time a remote message is sent, these
pointers must point to valid data or they must be null pointers, since the system may need
to send the pointer's data across the connection in order to yield a valid pointer on the
remote side.

Structures can be passed both by value and by reference. In the current implementation,
however, structures can only be returned by reference. In other words, a remote method
can't return a structure, but it can return a pointer to a structure. If a method returns a
structure by reference, memory for the structure is allocated on the caller's side, and the
caller is responsible for freeing this memory.

6-6 Chapter 6: Distributed Objects

Pointers to Data

The Distributed Objects system can send data by reference as well as by value. Pointers
used in remote messages must point to valid data or be null, since they may need to be
dereferenced. By default, when you send most data types by reference, the data is copied
across the connection so the server can receive a valid local pointer. The data then mayor
may not be modified, and is copied back across the connection so the client gets any
modifications to the data. Needless copying of data is not efficient, so the Distributed
Objects system adds three new Objective C keywords to determine how data passed by
reference should be copied. The keywords are in, out, and inout. In arguments are copied
from the client to the server, but not copied back. Out arguments are not sent the server,
but are copied back to the client, presumably because the server filled in a value. Inout
arguments are copied in both directions. By default, const pointer arguments are treated as
in parameters, and all other pointer arguments are treated as inout. Here are some example
definitions showing directionality of arguments:

- sendAnlnt: (in int *)p;

- receiveAnlnt: (out int *)p;

- sendAndReceiveAnlnt: (inout int *)p;

The system can't tell whether a pointer points to a single data item or to an array; it assumes
all char pointers point to null-terminated strings and that all other pointers point to single
data elements. If you have arrays that must be passed by reference, you might consider
encapsulating the data in a custom object or using a subclass of NXData.

Memory Allocation

When you send in or inout pointer parameters to the server, the system must allocate space
for the data on the server side (so that it can supply a pointer valid in the server's address
space). This memory is owned by the system and is local to the scope of the server's
method; it is freed automatically when the server's method returns.

The Distributed Objects system can allocate client memory for string and structure
parameters. To return strings or structures in this manner, you must pass a pointer to a char
pointer or a pointer to a structure, so that the system can allocate the memory and make the
pointer point to it. If the system allocates memory to return data to the client, the client is
responsible for freeing this memory. You must be careful about returning data in this
manner, because you receive a pointer to an allocated copy of the data if you send the
message to a remote object (through a proxy) but you receive a pointer to the data itself (as
with ordinary Objective C) if you send the message to a local object. Here is an example

Introduction 6-7

that gets a string by sending a char pointer by reference, and then frees the string only if it
sent the message to a remote object:

char *cp;
[anObject getString:&cp];

printf("The string is %s",cp);
if ([anObject iSProxy]) free(cp);

The Distributed Objects system also allocates memory in the client's address space in order
to return a pointer to a structure as a method return value. Again, the client is responsible
for freeing this memory.

Types That Don't Work

The Distributed Objects system can't send the following data types:

• Unions-The Distributed Objects system can't distinguish how to correctly encode the
data to send it to the server.

• void *-This is a generic pointer, and the system can't correctly dereference it and
encode the data.

• Pointers in structures, other than those of type char * and id.

In addition, remote methods can't return data of type double or struct (though pointers to
structures work). These limitations may be lifted in future implementations.

Sharing Objects

The most important data type that the Distributed Objects system can use in messages,
both as arguments and as return values, is id. Objects are usually passed around as
proxies, which forward messages to their corresponding real objects and thus appear to
be those objects.

Proxies (instances of the NXProxy class) are created automatically when an object is
returned to a remote application. To give a client access to a remote object, two proxies are
created, one on the server side and one on the client side. The proxy on the server side is
known as a local proxy because it tracks a local resource (an object in the proxy's
application). A local proxy is used for reference counting by the server's NXConnection
object, and to send incoming messages to its corresponding real object. Local proxies are
generally hidden from view in the Distributed Objects implementation, and most of their
functionings are uninteresting to application developers. More interesting to developers

6-8 Chapter 6: Distributed Objects

are remote proxies, the objects returned to the client that can generally be treated as though
they were the remote objects themselves. These objects receive messages from the client
directed to the real object and forward the messages across the connection.

Consider the following code in which a client needs to access a server's list of
Widget objects:

List *aList;
Widget *aWidget;

aList = [server widgetList] ;
aWidget = [aList objectAt:O];

In the third line, the server returns its list of widgets to the client. The List object exists in
the server application, and the client gets a proxy to that List object, which is assigned to
aList. In the fourth line, the client sends a message to aList, and the message is forwarded
by the proxy to the actual List object in the server. The List implementation in the server
returns the first Widget object in the list. Again, the Widget object is local to the server, so
the client receives a proxy to the Widget.

The example above demonstrates that it is very easy to have proxies created. This is an
important feature of the Distributed Objects system, but it has performance ramifications
that must be considered. Consider the common case where a method in the server returns
self. The system assumes that you actually intend to return a usable object to the client, so
it will return a proxy for the server to the client. If the client's connection doesn't already
have a proxy to the server, one will be created. This mayor may not be what you intend.
It makes most sense to return some non-object type (like iot) from methods that will be
called remotely, unless the object is really intended to be used. (Returning objects isn't
horribly expensive, however, and an object is represented by only one proxy on a given
connection, even if it is returned many times.)

Reference Counting

With the Distributed Objects system, it is possible for an object to be shared by several
applications. Since an object may be in use by many applications, a reference counting
'scheme may be necessary to insure that an object in use doesn't go away simply because a
single application is done with it and frees it. The NXReference protocol is declared to
allow objects to implement reference counting. Both the NXConnection and NXProxy
classes conform to this protocol in order to know to what extent references are being held.
You may wish to make your shared objects conform to this protocol; NXConnection will
check if your object conforms to the NXReference protocol before it gives away references
to it. If your object conforms to the protocol, a reference is added to the object the first time
the object is seen on a connection. Note that a reference is not added every time an object
is vended, only the first time it is seen on each connection. This works well if the object

Introduction 6-9

arrives only once per client application. In other cases, you can add a reference to an object
every additional time you receive it, and eliminate the reference (by sending it the free
message) every time you are finished with the object.

Object Copies vs. Proxies

While it is often desirable to share an object through the use of proxies, you may
occasionally want to pass a copy of an object rather than a proxy. For example, if you have
an object that doesn't change over time, it may be more efficient to pass the object by copy
rather than as a proxy; messages to the local copy will require much less overhead than
remote messages over a connection. As another example, if an object will be sent many
messages before it changes, it may be most efficient to send a copy of the object and send
the messages to the copy. This is because sending one large remote message is often more
efficient than sending many small remote messages; the overhead of the messaging process
is typically much higher than the cost of data transmission.

A new keyword, bycopy, has been added to the Objective C language to indicate that an
object passed as a method parameter ought to be copied rather than passed as a proxy. (The
default, without the bycopy keyword, is to pass the object as a proxy.)

In the following method declarations, the first method copies the widget across the
connection; messages to the copy of the widget will be fast, but changes to the original
object will not be reflected in the copy (and vice versa). In the second method, a proxy to
widget is given out. The message overhead for remote messages is higher than for
messages to a local object, but the widget is truly shared by the applications.

- useCopiedWidget: (bycopy in id) widget;
- useSharedWidget: widget;

To copy an object over a connection, the receiving application must have a copy of the
object's class implementation. This is necessary because the object must be instantiated on
the receiving side. Also, an object that is to be copied over a connection must conform to
the NXTransport protocol; this protocol defines how an object encodes and decodes itself
across a connection. The protocol is as follows:

@protocol NXTransport
- encodeUsing: (id <NXEncoding»portal;
- decodeUsing: (id <NXDecoding»portal;

- encodeRemotelyFor: (NXConnection *)connection
freeAfterEncoding: (BOOL *)flagp isBycopy: (BOOL)isBycopy;

@end

6-10 Chapter 6: Distributed Objects

When an object is to encode itself, it is sent an encodeUsing: message where the portal
argument is an object that conforms to the NXEncoding protocol and thus knows how to
encode various data types across a connection. To create the copy of the object on the
receiving side, the object is allocated and a decodeUsing: message is sent to it. The newly
allocated object is not initialized, so the decodeUsing: implementation generally should
invoke the object's designated initializer method. You may occasionally want to substitute
another object instead of using the instance that the Distributed Objects system allocated.
If you return the substitute object instead of self, the substitute object will be used and the
system will free the initially allocated memory.

As an example of copying objects, consider the List class, which implements the
NXTransport protocol to copy a List object across the connection. The objects in the list
are not copied, so the list copy will contain proxies to the objects the real list contains. This
behavior may be necessary, because the contents of the list might not conform to the
NXTransport protocol and therefore might not be able to be copied. However, if you know
the list will only contain objects that conform to the protocol, it may be reasonable to use a
list that can be copied, together with its contents, across a connection. The following
subclass of List demonstrates exactly this, and shows how a newly allocated object is
initialized in the decodeUsing: method:

@implementation FullCopyList

- encodeUsing: (id <NXEncoding»portal

int if n = [self count];
[portal encodeData:&n ofType:"i"];

for (i = 0; i < n; i++)

['portal encodeObj ectBycopy: [self obj ectAt: i]] ;

return self;

- decodeUsing: (id <NXDecoding»portal {

int if n;

@end

[portal decodeData:&n ofType:"i"];

[self initCount:n];

for (i = 0; i < n; i++)

[self addObject: [portal decodeObject]];

return self;

Introduction 6-11

Determining the Object to Encode

When an object is to be vended to a remote application, the
encodeRemotelyFor:freeAfterEncoding:isBycopy: method determines what object
gets encoded. The default behavior of this method, inherited from the Object class, is to
return a local proxy to the object; when the local proxy is encoded, it's received as a remote
proxy to the object. However, if this method returns self, the NXTransport methods for the
object are invoked to copy the object over the connection. The implementation of this
method should generally test the value of the isBycopy parameter to determine what object
to encode:

- encodeRemotelyFor: (NXConnection *)connection

freeAfterEncoding: (BOOL *)flagp

isBycopy: (BOOL)isBycopy

if (isBycopy) return self; II encode the object, copying it

II otherwise, super's behavior is to encode a proxy

return [super encodeRemotelyFor:connection

freeAfterEncoding:flagp

isBycopy:isBycopy] ;

Moving an Object Between Applications

It is occasionally useful to move an object from one application to another, and the
encodeRemotelyFor:freeAfterEncoding:isBycopy: method shown above allows you to
do this by setting a flag indicating that the original object is to be freed after encoding and
then specifying that the object is to be encoded by copying it across the connection. Note,
however, that when you move an object you must be very careful that other applications do
not have problems due to the original object getting freed. The following example
demonstrates an object that will move every time a reference is given to a remote
application.

- encodeRemotelyFor: (NXConnection *)connection

freeAfterEncoding: (BOOL *)flagp

isBycopy: (BOOL)isBycopy

*flagp = YES;

return self;

6-12 Chapter 6: Distributed Objects

Asynchronous Messages

By default, remote messages are performed synchronously; execution of the client code
doesn't continue until the method in the server returns and the Distributed Objects system
sends a reply back to the client (containing the return value if there is one). However, a new
keyword for method return values, oneway, has been added to the Objective C language to
specify asynchronous messages. When a client sends an asynchronous message to the
server, the method returns to the client immediately. Oneway messages implicitly return
void since the client doesn't wait for a return value from the server. If a method doesn't
need to return data and the client doesn't need to stay synchronized to the server, there can
be several advantages to oneway, asynchronous messages. Because the client continues
processing rather than waiting for the server, overall throughput may increase. Less
obviously, oneway messages can provide the client with a measure of control over when
the client is willing to receive messages back from the server. The server may send a
message (like a callback) back to the client anytime the client's connection is running or
the client awaits a reply from the server. Occasionally it's unacceptable to receive a
callback from the server in the middle of a method implementation (an example might be
where the callback is used to clean up and free objects in the client); in such a case you can
use one way messages to help insure that the connection is not running and the client won't
receive messages until it's ready to do so.

Robust Usage

Although the Distributed Objects system greatly simplifies the sharing of objects,
applications that communicate with other applications (distributed applications) are
inherently more complex than stand-alone applications. Issues regarding application
deaths, communication problems, security, exception handling, and resource allocation
must be considered. This section discusses some of the considerations for writing robust
distributed applications.

Introduction 6-13

Application Deaths

Distributed applications generally need to know when cooperating applications die. For
example, a server application should know when a client application dies (due to an
application crash, a system crash, a signal, or other reason) so it can deallocate resources
held on the client's behalf, and also avoid sending messages to a client that no longer exists.
The Mach operating system tracks all resources held by a process, including the Mach ports
used by the Distributed Objects system to send remote messages. The operating system
notifies the Distributed Objects system of port deaths when an application dies. The
Distributed Objects system, in tum, allows any number of objects to register for notification
of the invalidation of the NXConnection object that is used to communicate over its port.

An object must do two things to be notified of the death of a cooperating application:

• It must register for notification of invalidation of the connection to the application.

• It must conform to the NXSenderIsInvalid protocol and take appropriate action when
the connection is invalidated.

If the application has no Application object, it must spawn a separate thread to disburse port
death notifications. This can be done as follows:

[NXPort worryAboutPortInvalidation] ;

Note that in this case, senderIslnvalid: messages will be sent from the resultant separate
thread, so the receiving object should be thread-safe.

Typically, a new connection is created to vend the first object from one application to
another. When your application gets an object in this manner, it should use the returned
proxy to get the connection over which the object is accessed, and register for invalidation
notification to know when the object becomes inaccessible. The following code gets the
proxy for a remote server object and registers for notification of when the server goes away:

server:::: [NXConnection connectToName:REGISTERED_NAME onHost: I *"];

if (server)

NXConnection *myConnection :::: [server connectionForProxy];

[myConnection registerForInvalidationNotification:self];

[myConnection setDelegate:self];

In this example, the client also registered itself as the connection's delegate. In this way,
the client can be informed (using the connection:didConnect: delegate method) when new

6-14 Chapter 6: Distributed Objects

connections are automatically created that share myConnection's input port. New, direct
connections are formed when proxies are handed between applications. (This eliminates
the inefficiency of sending a message over a connection to a proxy that would then forward
the message over another connection to the real object.) When a new connection is formed
in this manner, the client then has a dependency on the application from which it received
the new object, so it should similarly register for invalidation notification on the new
connection and it should set the delegate of the new connection appropriately.

If an object registered for a connection's invalidation notification, it receives a
senderIslnvalid: message from the NXConnection object when the connection is broken
(when the connection receives a port death notification indicating an application death,
typically). Proper behavior in response to such a notification is nontrivial. The application
can examine the NXConnection's list of remote objects (by the remoteObjects method) to
determine what objects, presumably in use by the application, are no longer accessible.
There is no single solution to dealing with application deaths, but a robust architecture is
generally one that enables associating a resource to a connection and allows the application
to deal with the implications of a broken connection with a cooperating application.

Exceptions

The Distributed Objects system returns exceptions that are raised by method
implementations. In other words, if a client sends a message to an object in the server and
the implementation in the server raises an exception (see NX_RAISE), the exception is
forwarded to the client. Also, the Distributed Objects system can raise exceptions in
response to communication problems. For this reason, messages to remote objects should
generally be bracketed by NX_DURING ... NX_ENDHANDLER constructs. Keep in
mind that control isn't returned to a method that doesn't catch an exception that gets raised;
for programs using the Application Kit, unhandled exceptions are caught by the
Application object's run method, which simply continues the event loop.

Introduction 6-15

Memory Leaks

For local messages, returning a pointer to data involves no memory allocation. However,
for remote messages, the system must allocate memory to return data, which increases the
opportunity to "leak" memory (in other words, to have allocated memory that has no
pointer references, is essentially forgotten and will never be freed). Your application
architecture should avoid sending data that needs to be allocated on the client side, or
should make it as apparent as possible when data is coming from a remote source. There
may still be situations where it isn't immediately obvious whether the recipient of a
message is a remote object or not; in this case, if you receive a pointer to data you should
check whether the object was a proxy, and if so, take responsibility for freeing the data
when you are done. See "Memory Allocation" earlier in this chapter for an example.

Using Protocols for Efficiency

A message sent to a remote object through a proxy may require two round-trip messages.
The first round trip is a request to the real object for its method signature, which specifies
the types the method requires as arguments. This enables the proxy to encode the data that
it has been passed and forward it to the real object. Note that a method signature is not
cached; without the use of protocols, it will need to be fetched for every message. The
second message (also a round-trip, unless it's a oneway message) is used to send the actual
message including its encoded arguments, and to return the result.

You can eliminate the need for the first round-trip message by specifying to the proxy the
protocol that the corresponding real object conforms to. It's generally known in advance
what messages a client will send to a server; the protocol could be as small as a single
message a client uses to query the server or as large as every message the server responds
to. When a protocol is specified, the proxy knows the types of the arguments for every
message you anticipate sending to the server, and the initial (and somewhat expensive)
round-trip message is avoided. If the client sends a message to the server that isn't in the
protocol, nothing untoward happens, but an additional round-trip to retrieve the method
signature is required. Here is an example of setting the protocol that a client will use to
send messages to a server object:

@protocol serverMethods

- (int)addClient: (id <clientMethods»rernoteClienti

- getRecordForNarne: (char *)narne

@end

server = [NXConnection connectToNarne:REGISTERED_NAME onHost:"*"]i

if (server)

[server setProtocolForProxy:@protocol(serverMethods)]i

6-16 Chapter 6: Distributed Objects

Restricting Messages

A key feature of proxies is that they forward any message, including arguments, to the real,
remote object. If you return a server object to a remote client, the client can send any
message that the server responds to. In fact, the proxy returned to the client will forward
any message, whether the server responds to it or not. For security considerations, you
might limit the implementation of an object that is to be given out to only methods that the
object is willing to receive from remote clients. This is often not practical, however.

An alternative is to group the methods that an object is willing to receive from remote
clients into a protocol. You can then use an NXProtocolChecker object (from the Mach
Kit) to enforce the protocol. The NXProtocolChecker object forwards all messages in its
assigned protocol, but raises an exception for other messages. When an object returns itself
as a result of a message forwarded through a protocol checker, the checker substitutes its
own id for the real object to prevent the sender from receiving an id that can receive
unchecked messages.

Security

When you register an object with the Network Name Server, it is available to any
application that knows the object's name. Because an application must know the object's
name, a modicum of security is provided; however, if security is an issue you should not
make sensitive objects (or objects capable of providing sensitive objects) available through
the Network Name Server. One possible solution is to register only a security validation
object with the Network Name Server. This object could require clients to identify
themselves as known secure objects before vending sensitive objects.

Multithreaded Applications

The Distributed Objects system is thread-safe. This means that with the proper precautions,
the Distributed Objects system can be used to write a multithreaded server. Perhaps more
important to application writers is that you can write a server that runs in the main
application thread but responds to messages coming from clients running in different
threads. This is useful because many parts of the system are not thread-safe and therefore
cannot be invoked by clients outside the main thread, but non-thread-safe tasks can be
performed on the client's behalf by a server in the main thread. See the discussion of
C threads in NeXTSTEP Operating System Software for information about which parts of
the system are thread-safe.

Introduction 6-17

Relationship to Speaker/Listener

The Speaker and Listener classes in the Application Kit provide a subset of the
functionality of the Distributed Objects system. The Distributed Objects system provides
a more flexible and dynamic way of communicating between applications. Speaker and
Listener are still used by applications to communicate with the Workspace Manager, and
will continue to be provided in the near future for backwards compatibility. Nevertheless,
the Distributed Objects system is a superior system and should be regarded as a move
towards obsoleting the Speaker and Listener classes.

6-18 Chapter 6: Distributed Objects

Classes

NXConnection

Inherits From: NXInvalidationNotifier (Mach Kit) : Object

Conforms To: NXSenderIsInvalid
NXReference (NXInvalidationN otifier)

Declared In: remotelNXConnection.h

Class Description

The NXConnection class is used to establish a connection that allows objects in one process
to send messages to objects in another process, and it defines instances that manage the
local side of such a connection.

To establish a connection, some object must first be registered with the Network Name
Server using registerRoot:withName:. This creates an NXConnection and makes the
given root object available (through connectToName:) to any application that knows the
registered name.

NXConnection objects can also be automatically created by the system. When a proxy is
vended to an application, the application doesn't receive a proxy to the proxy. Instead, a
new connection is formed if necessary, and the application receives a proxy to the original
object. The delegate method connection:didConnect: is used to inform the application of
the automatic creation of new connections.

An NXConnection maintains a table containing an NXProxy object for every local object
that has been vended. It also maintains a table of remote NXProxy objects; these proxies
are used to send messages to real objects that exist in other applications. A local NXProxy
is created automatically by an NXConnection when a local object is vended to another
application. Similarly, a remote NXProxy is created automatically when a remote object is
vended to the NXConnection; this remote proxy forwards the messages it receives to its
corresponding real object, with the effect that it generally appears to be the real object to
the local application.

6-20 Chapter 6: Distributed Objects

Running a Connection

When a connection is created, it is able to originate messages, and it sends these messages
out to a port known as its out-port (available though the outPort method). Having sent a
message, the connection will generally need to receive a reply message, which comes in
over the connection's in-port. While it awaits this reply, the connection may dispatch
messages in response to other messages that appeared on its in-port. However, once the
desired reply is found, the connection will return its thread of control back to the caller, and
the connection won't be able to receive unsolicited messages. In order to wait on
unsolicited messages, a connection must be run, a process that involves waiting for
messages on its in-port. The connection's thread is unavailable for other tasks while it runs.
For this reason, there are a variety of run methods that allow a connection to run
concurrently from the event loop, in its own thread, or for a limited period of time. The run
methods are:

-run
- run WithTimeout:
- runInNewThread
- runFromAppKit
- runFromAppKitWithPriority:

A connection can receive remote messages from connections running in other threads or
processes, and it will queue up these messages and dispatch them locally from its own
thread. However, you cannot run a connection in one thread and send outgoing two-way
messages over that connection from another thread; the process of running the connection
has the connection's thread waiting on the in-port, so this port is not available for a return
message for the caller's thread.

Instance Variables

id delegate

delegate The connection's delegate

Adopted Protocols

NXSenderIsInvalid - senderIsInvalid:

Classes: NXConnection 6-21

Method Types

Establishing a connection

Ascertaining connections

Registering an object

Eliminating references

Invalidation

Statistics

Timeouts

Zone usage

Assigning a delegate

Returning port objects

+ connectToName:
+ connectToName:frornZone:
+ connectToName:onHost:
+ connectToN ame:onHost:frornZone:
+ connectToPort:
+ connectToPort:frornZone:
+ connectToPort:withInPort:
+ connectToPort:withInPort:frornZone:

+ connections:

+ registerRoot:
+ registerRoot:frornZone:
+ registerRoot:withName:
+ registerRoot:withN ame:fromZone:

+ removeObject:

+ unregisterForInvalidationN otification:

+ messagesReceived

+ setDefaultTimeout:
+ defaultTimeout
- setlnTimeout:
- setOutTimeout:
- inTimeout
- outTimeout

+ setDefaultZone:
- defaultZone

- setDelegate:
- delegate

- inPort
- outPort

Getting and setting the root object
- rootObject
- setRoot:

Imported and exported objects - remoteObjects
-localObjects

Returning a proxy - getLocal:
- newRemote:withProtocol:

6-22 Chapter 6: Distributed Objects

Running a connection -run
- run WithTimeout:
- runInNewThread
- runFromAppKit
- runFromAppKitWithPriority:

Freeing an NXConnection instance
-free

Class Methods

connections:

+ connections:(List *) aList

Adds all the application's NXConnections to the supplied list aList (but doesn't delete its
prior contents). A reference is added to every connection in the list. Returns aList.

connectToName:

+ (NXProxy *)connectToName:(const char *)rootName

Returns an NXProxy to the object registered with the Network Name Server as rootName.
This method is a cover for connectToName:onHost:fromZone: with a null host-name and
using the NXConnection class's default zone.

connectToName:fromZone:

+ (NXProxy *)connectToName:(const char *)rootName fromZone:(NXZone *)zone

Returns an NXProxy to the object registered with the Network Name Server as rootName.
This method is a cover for connectToName:onHost:fromZone: with a null host-name and
using the specified zone zone.

connectToName:onHost:

+ (NXProxy *)connectToName:(const char *)rootName
onHost:(const char *)hostName

Returns an NXProxy to the object registered with the Network Name Server as rootName.
This method is similar to connectToName:onHost:fromZone: using the NXConnection
class's default zone.

Classes: NXConnection 6-23

connectToName:onHost:fromZone:

+ (NXProxy *)connectToName:(const char *)rootName
onHost:(const char *)hostName
fromZone:(NXZone *)zone

Returns an NXProxy to the object registered with the Network Name Server as rootName,
or nil if no connection can be established. Functionally, this method can be thought to
return that root object. If hostName is explicitly specified, this method queries the Network
Name Server on hostName for the object registered under rootName. If hostName is
NULL, this method queries the Network Name Server on the local host. If hostName is
"*", this method will query the Network Name Server on each machine on the subnet until
it finds an object registered under rootName. Note that querying each machine on a subnet
can take a bit of time, so if the host is known, it should be specified.

In addition to creating and returning an NXProxy, this method creates an NXConnection.
If this connection will be used to receive remote messages (as is the common case), you
will need to run it by sending it a variation of the run message. A connection that isn't
run will dispatch incoming messages only while it awaits a callback in response to a locally
initiated message, so unsolicited remote messages will not be handled in a timely manner.
To get the connection of the returned proxy (in order to run it), use NXProxy's
connectionForProxy method.

If zone is specified, the objects associated with the new connection will be allocated
from that zone; if zone is NULL they will be allocated from the NXConnection class's
default zone.

See also: + registerRoot:withName:, - runFromAppKit,
- connectionForProxy (NXProxy)

connectToPort:

+ (NXProxy *)connectToPort:(NXPort *)aPort

Returns an NXProxy to the root object for the connection identified with the port
aPort, or nil if no connection can be established. This method is a cover for
connectToPort:fromZone: using the NXConnection class's default zone.

connectToPort:fromZone:

+ (NXProxy *)connectToPort:(NXPort *)aPort fromZone:(NXZone *) zone

Returns an NXProxy to the root object for the connection identified with the port aPort, or
nil if no connection can be established. You can use this method to establish a connection

6-24 Chapter 6: Distributed Objects

based on a port you are vended. In other words, you can use this method to establish a
connection based on another connection's out-port that is handed to your application.

If zone is specified, the objects associated with the new connection will be allocated from that
zone; if zone is NULL they will be allocated from the NXConnection class's default zone.

See also: + connectToName:onHost:, - outPort, + connectToPort:withlnPort:

connectToPort:withlnPort:

+ (NXProxy *)connectToPort:(NXPort *)aPort withlnPort:(NXPort *)inPort

Returns an NXProxy to the root object for the connection identified with the port aPort, or
nil if no connection can be established. This method is a cover for
connectToPort:withlnPort:fromZone: using the NXConnection class's default zone.

connectToPort:withlnPort:fromZone:

+ (NXProxy *)connectToPort:(NXPort *)aPort
withlnPort:(NXPort *)inPort
fromZone:(NXZone *)zone

Returns an NXProxy to the root object for the connection identified with the port aPort, or
nil if no connection can be established. The supplied port inPort will be used to receive
incoming messages.

If zone is specified, the objects associated with the new connection will be allocated from that
zone; if zone is NULL they will be allocated from the NXConnection class's default zone.

See also: + connectToName:onHost:, + connectToPort:

defaultTimeout

+ (int)defaultTimeout

Returns the default connection timeout interval in milliseconds. The interval is 15000
milliseconds unless set to some other value by setDefaultTimeout:. A connection will
initially use the default timeout interval for both its input and output ports; however, these
values can be changed for any port using the setInTimeout: or setOutTimeout: method.

Classes: NXConnection 6-25

defaultZone

+ (NXZone *)defauItZone

Returns the default zone for all connections. If a zone isn't specified when a connection is
created, memory (and objects) associated with the connection will be allocated from this
zone. The default zone is initially set to NXDefaultMallocZoneO, but can be set to another
zone using setDefauItZone:.

messagesReceived

+ (int)rnessagesReceived

Returns the number of messages received by all connections in the application. This value
can be helpful when you attempt to optimize an application's performance by minimizing
remote messages.

registerRoot:

+ registerRoot:anObject

Establishes anObject as a root object, creating a new NXConnection if necessary.
This method is a cover for registerRoot:frornZone: using the NXConnection class's
default zone.

registerRoot:fromZone:

+ registerRoot:anObject frornZone:(NXZone *)zone

Establishes anObject as a root object, creating a new NXConnection if necessary. anObject
isn't advertised by the Network Name Server, though you can allow other objects to access
it by vending its in-port to private clients, who can then connect to that port using
connectToPort:. Returns anObject's NXConnection, which must then receive a variant of
the run message to receive unsolicited remote messages and forward them to anObject.

If zone is specified, the objects associated with the new connection will be allocated
from that zone; if zone is NULL they will be allocated from the NXConnection class's
default zone.

See also: + registerRoot:withNarne:, - runFrornAppKit, - inPort

6-26 Chapter 6: Distributed Objects

registerRoot:withName:

+ registerRoot:anObject withName:(const char *)name

Establishes anObject as a root object, creating a new NXConnection if necessary. This
method is a cover for registerRoot:withName:fromZone: using the NXConnection
class's default zone.

registerRoot:withName:fromZone:

+ registerRoot:anObject
withName:(const char *)name
fromZone:(NXZone *)zone

Establishes anObject as a root object, creating a new NXConnection if necessary.
anObject is advertised by the Network Name Server with the name name. Returns
anObject's NXConnection, which must then receive a variant of the run message to
pass remote messages to anObject.

If zone is specified, the objects associated with anObject's connection will be allocated
from that zone; if zone is NULL they will be allocated from the NXConnection class's
default zone.

See also: - runFromAppKit

removeObject:

+ removeObject:anObject

Removes all proxies to anObject. If anObject has been vended to clients, the clients hold
proxies for it which ought to be removed before anObject is destroyed. You will therefore
probably need to invoke removeObject: in anObject's free method to avoid dangling
references and memory leaks. Returns self.

setDefaultlimeout:

+ setDefauItTimeout:(int)interval

Sets the default connection time interval to interval. A connection initially uses this
interval for both its input and output ports; however, these values can be changed for any
port using the setInTimeout: or setOutTimeout: method.

See also: + defaultTimeout

Classes: NXConnection 6-27

setDefaultZone:

+ setDefaultZone:(NXZone *)zone

Sets the default zone for all connections. If a zone isn't specified when a connection is
created, memory (and objects) associated with the connection will be allocated from this
zone. The default zone is initially set to NXDefaultMallocZoneO.

See also: + defaultZone

unregisterForlnvalidationNotification:

+ unregisterFor InvalidationN otification:anObject

Unregisters anObject so it won't be notified of the invalidation of any of its connections.

See also: - unregisterForInvalidationNotification: (NXInvalidationNotifier),
- register For InvalidationN otification: (NXInvalidationN otifier)

Instance Methods

delegate

- delegate

Returns the connection's delegate.

free

-free

Removes a reference to the connection. If outstanding references remain, the
NXConnection isn't actually freed and this method returns self. If no references remain,
this method frees the NXConnection and the proxies it maintains and returns nil.

getLocal:

- getLocal:anObject

Returns the local NXProxy for anObject, or nil if anObject isn't represented by a local
proxy on the receiving NXConnection. Vending anObject's local proxy is essentially the
same as vending anObject itself except that by vending the local proxy you determine the
connection over which anObject is referenced.

6-28 Chapter 6: Distributed Objects

inPort
- (NXPort *)inPort

Returns the connection's in-port, the NXPort used by the connection to receive
incoming messages.

inlimeout
- (int)inTimeout

Returns the timeout interval (in milliseconds) for incoming messages. A value of -1
means the connection will wait forever for incoming messages.

See also: - setlnTimeout:, - outTimeout

localObjects

- (List *)locaIObjects

Creates and returns a List of the proxies to local objects vended by the connection. The
proxies belong to the connection and should not be altered, but the returned List should be
freed by the sender of this message.

newRemote:withProtocol:
- newRemote:(unsigned int)anObject withProtocol:(Protocol *)proto

Creates and returns a remote proxy for the local object identified by anObject. This proxy
can then be given to other objects to vend anObject over the receiving connection.
anObject is the id of the local object, though you must cast it to an unsigned integer to
satisfy the implementation. proto, if non-NULL, is used to specify the protocol that
anObject responds to; performance is increased if the protocol is specified because a
round-trip message to fetch argument types (for encoding purposes) is obviated.

outPort
- (NXPort *)outPort

Returns the connection's out-port, the NXPort object used to identify the remote port (and
connection) that the receiving connection communicates with. This NXPort can be used to
create a new connection by connectToPort:.

Classes: NXConnection 6-29

outlimeout
- (int)outTimeout

Returns the timeout interval (in milliseconds) for outgoing messages. A value of -1 means
outgoing messages will never time out.

See also: - setOutTimeout:, - inTimeout

remoteObjects
- (List *)remoteObjects

Creates and returns a List of the proxies to remote objects maintained by the receiving
connection. The proxies belong to the connection and should not be altered, but the
returned List should be freed by the sender of this message. If the connection becomes
invalid, objects in the application will no longer be able to send remote messages to the
objects in this List.

See also: - localObjects

rootObject
- rootObject

Returns the connection's root object, which is the object returned (by way of a proxy) to
other applications when they connect to the NXConnection.

See also: + registerRoot:withName:, - setRoot

run
-run

Runs the connection by waiting for messages and dispatching them. This method runs in
the same thread that it was invoked from, and it doesn't return until the connection is
invalidated. If the connection becomes invalid, this method returns self. This method is a
cover for run With Timeout: with an argument of -1.

See also: - runFromAppKit, - runlnNewThread, - run WithTimeout:

6-30 Chapter 6: Distributed Objects

runFromAppKit
- runFromAppKit

Runs the connection by waiting for messages and dispatching them. This method adds the
connection's port to those that the DPS client library monitors for messages, at a priority of
NX_RUNMODALTHRESHOLD. When a message arrives over the connection, it will be
handled between events. The connection isn't really run concurrent to the application, but
the effect is close enough to concurrency for most uses.

This method is typically the best way to run a connection that will dispatch messages to
objects that use the Application Kit or Window Server, since these objects cannot be
messaged from multiple threads. (Note, however, that the connection run from the DPS
client library can communicate with connections running in separate threads.)

This method immediately returns self.

See also: - run, - runFromAppKitWithPriority:, - runInNewThread,
- run WithTimeout:

runFromAppKitWithPriority:

- runFromAppKitWithPriority:(int)priority

Runs the connection by waiting for messages and dispatching them. This method adds the
connection's port to those that the DPS client library monitors for messages, at a priority of
priority. Otherwise this method is identical to runFromAppKit.

runlnNewThread

- runInNewThread

Runs the connection by waiting for messages and dispatching them. This method forks a
new thread that invokes the run method; it then immediately returns self. All messages
sent to this connection are dispatched by the new thread. Because the Window Server and
Application Kit aren't thread-safe, you shouldn't send messages to a connection in a
separate thread that call upon them. If you need some concurrency in a connection that will
invoke the Window Server or Application Kit, you should use runFromAppKit.

See also: - runFromAppKit, - run, - run WithTimeout:

Classes: NXConnection 6-31

runWithTimeout:

- runWithTimeout:(int)timeout

Runs the connection by waiting for messages and dispatching them. This method runs for
timeout milliseconds or until the connection is invalidated before returning self. If timeout
is (-1) the connection will run forever or until it is invalidated, whichever occurs first.

See also: - runFromAppKit, - runlnNewThread, - run

senderlslnvalid:

- senderIslnvalid:sender

Responds to a message that the connection's port has died. This method invalidates the
connection, invalidates the proxies to remote objects (which can no longer be accessed),
and sends a free message to all the local objects vended by the connection that conform to
the NXReference protocol, thereby giving up the connection's references to these objects.
sender is an instance of a private port management class; your code shouldn't send
messages to it.

setDelegate:

- setDelegate:anObject

Sets the connection's delegate. Returns self.

setlnTimeout:

- setlnTimeout:(int)timeout

Sets the connection's timeout for incoming messages to timeout milliseconds. This is the
amount of time the connection will wait for return parameters, return values, callbacks, and
the like. If a message isn't received before the timeout, an exception will be raised. Setting
timeout to -1 results in an infinite timeout interval. Returns self.

See also: + setDefaultTimeout:, - setOutTimeout:

6-32 Chapter 6: Distributed Objects

setOutTimeout:

- setOutTimeout:(int)timeout

Sets the connection's timeout for outgoing messages to timeout milliseconds. This is the
amount of time the connection will wait for a message send to succeed. If an outgoing
message can't be sent before the timeout, an exception will be raised. Setting timeout to
-1 results in an infinite timeout interval, and setting it to 0 has the effect that a message will
be delivered only if the receiver's port has room. Returns self.

See also: + setDefaultTimeout, - setInTimeout

setRoot:

- setRoot:anObject

Sets the connection's root object to anObject. This method should be invoked only for a
connection that doesn't have a root object.

See also: - rootObject

Methods Implemented By The Delegate

connection:didConnect:

- connection:(NXConnection *)conn didConnect:(NXConnection *)newConn

Notifies conn's delegate that a new connection has been established using conn's input port.
new Conn is the NXConnection object that was just created. This method must return the
NXConnection object that should be used, which is typically newConn; if another
connection is returned, the application is responsible for freeing newConn.

Classes: NXConnection 6-33

NXProxy

Inherits From:

Conforms To:

Declared In:

Class Description

none (NXProxy is a root class.)

NXReference (Mach Kit)
NXTransport

remotelNXProxy.h

The NXProxy class defines objects that are used to stand in for real objects (descendants of
the Object class), where the real objects may exist within another process, even across a
network. To the application, the NXProxy appears to be the real object, though the real
object may not be directly accessible. The real object is known as the proxy's
correspondent, indicating both that the objects are counterparts and that the real object is
required to respond to messages sent to the proxy.

The NXProxy class defines very few methods, because proxies respond to very few
messages directly. Instead, when an NXProxy receives a message that it doesn't respond
to, it encodes the message, including the arguments, and forwards it to its remote
correspondent (the "real" object). The actual communication details involved in
forwarding the message are taken care of by an NXConnection object. The message is then
acted upon by the real object, and any return values and parameters are encoded and sent
back to the proxy.

An application never instantiates NXProxy objects directly; they are created for your
application when you are given a reference to an object that doesn't exist in your address
space. The proxies vended to your application are reference-counted, so only a single
NXProxy per connection is instantiated for any real object. When you're done with a
remote object, you should typically send it a free message to eliminate its remote proxy
locally and its local proxy remotely. This will decrement the reference-count on the proxy,
and free it if there are no outstanding references. The free message will also be forwarded
to the proxy's correspondent, which will free it (or dereference it if the object conforms to
the NXReference protocol). An application alternatively might free the proxy's
NXConnection, which will free all the connection's resources, including all its proxies.

The methods defined in this class are the ones that the NXProxy class directly responds to.
Unless otherwise noted, none of these methods are forwarded tothe proxy's correspondent.

6-34 Chapter 6: Distributed Objects

Instance Variables

None declared in this class.

Adopted Protocols

NXReference - addReference
- free
- references

NXTransport - encodeRemotelyFor: freeAfterEncoding:isBycopy:
- encodeUsing:
- decodeUsing:

Method Types

Returning the proxy's connection
- connectionForProxy

Freeing an NXProxy instance - freeProxy

Determining if an object is a proxy

Specifying a protocol

Instance Methods

connectionForProxy

- connectionForProxy

- isProxy

- setProtocolForProxy:

Returns the local NXConnection instance used by the receiving NXProxy. A client might
send messages to the returned NXConnection to be notified of invalidations (such as port
deaths), or to instruct it to begin receiving messages with a variant of the run message.

See also: - registerForlnvalidationNotification (NXInvalidationNotifier in Mach Kit),
- runFromAppKit (NXConnection)

Classes: NXProxy 6-35

free

-free

Decrements the reference count on the proxy. If there are remaining references to the proxy,
the free message isn't forwarded across the connection and this method returns self. If there
are no remaining references, the proxy forwards the free message to its corresponding object,
invokes the freeProxy method to free the proxy locally, and returns nil.

freeProxy

- freeProxy

Frees the receiving NXProxy instance. You generally shouldn't send this message; it isn't
forwarded across the connection, so remote NXConnection objects may still have
references to the freed NXProxy and it won't get removed from remote hashtables. If you
want to free the local proxy and eliminate outstanding references, the real object should
obey the NXReference protocol; then when you send the object a free message, the proper
dereferencing (and perhaps freeing) will occur both locally and remotely.

isProxy

- (BOOL)isProxy

Returns YES to indicate that the receiver is an NXProxy rather than a normal object. This
method is also implemented in a category of the Object class (where it returns NO), so you
can send this message to any object to determine whether it is a real object or a proxy.

setProtocol ForProxy:

- setProtocoIForProxy:(Protocol *)proto

Formally establishes the messages and arguments that the proxy will forward to its
corresponding object. It's a good idea to send this message to an NXProxy immediately
after it is vended to your application.

If you don't send this message to a proxy (and therefore a protocol isn't established), at
run-time the proxy doesn't know a message's argument types, and can't immediately
encode the arguments. It must then send a remote message to its corresponding object to
get the argument types. This round trip increases the cost of the message. You should
therefore send the setProtocolForProxy: message to the proxy to cache the argument
types, alleviating the need for the initial round trip.

6-36 Chapter 6: Distributed Objects

If you send a message that isn't in the established protocol, the round trip to establish the
argument types will still be performed. You must take care that the argument types in the
given protocol proto accurately reflect the argument types of the methods in the proxy's
corresponding object; otherwise the arguments will not be correctly encoded. Returns self.

Classes: NXProxy 6-37

Object Additions

Category Of: Object

Declared In: remote/transport.h

Category Description

The Distributed Objects system adds two methods, isProxy and encodeRemotelyFor:
freeAfterEncoding:isBycopy:, to the root Object class. These methods allow all normal
objects to be remotely accessed and allow objects to be differentiated from proxies acting
in their stead. Only these two method are described here. See Chapter 1, "Root Class," for
a general description of the Object class and the methods it defines.

Instance Methods

encodeRemotelyFor:freeAfterEncoding:isBycopy:

- encodeRemotelyFor:(NXConnection *)connection
freeAfterEncoding:(BOOL *)flagp
isBycopy:(BOOL)isBycopy

Encodes a proxy for the receiving object over the supplied connection to ensure that all
objects are capable of being remotely accessed.

This method is responsible for returning the object that must be encoded to send the receiver
over connection. The default implementation returns a local proxy to the receiver which,
when encoded, yields a remote proxy that forwards all messages to the original object.

You can override this method to change how an object is transported. If you return another
object (like self), that object will be encoded instead. The returned object must conform to
the NXTransport protocol. You may wish to test the isBycopy flag and return self only if the
object (rather than a proxy) is to be copied across the connection. If you want the receiving
object to be freed after it is encoded, you can set the boolean pointed to by flagp to YES.

6-38 Chapter 6: Distributed Objects

isProxy

- (BOOL)isProxy

Returns NO to indicate that the receiver is a normal object and not a proxy. This method is
also implemented by the NXProxy class (where it returns YES), so you can send this
message to any object to determine whether it is a real object or a proxy.

Classes: Object Additions 6-39

6-40

Protocols

NXDecoding

Adopted By: a private class

Declared In: remote/transport.h

Protocol Description

An object that implements the NXDecoding protocol is passed as the portal argument for
the decodeUsing: message of the NXTransport protocol. The object implementing the
decodeUsing: method should send the portal object messages from the NXDecoding
protocol to decode the data required to instantiate a local copy of the encoded object.

Every method in the NXDecoding protocol corresponds to a method in the NXEncoding
protocol, and is used to receive data encoded at the other end of a connection in order to
move objects that adopt the NXTransport protocol. See the Distributed Objects
introduction for more information.

Instance Methods

decodeBytes:count:
- decodeBytes:(void *)buffer count:(int)count

Decodes data (of size count bytes) into buffer.

decodeOata:ofType:
- decodeData:(void *)data oIType:(const char *)type

Decodes a data structure, whose fields are indicated by the character string type, into the
buffer indicated by data. type is specified with the following format characters:

6-42 Chapter 6: Distributed Objects

Format Character

c
s

f
d
@

*
%

{<type> }
[<count><type>]

decodeMachPort:

Data Type

char
short
int
float
double
id
char *
NXAtom
SEL
int; corresponding data won't be read or written
struct
array

- decodeMachPort:(port_t *)portPointer

Decodes a Mach port and returns it in the variable indicated by portPointer.

decodeObject

- decodeObject

Decodes and returns an object. The object could have been encoded with either
encodeObject: or encodeObjectBycopy:.

decodeVM:count:

- decodeVM:(void **)bufferPointer count:(int *)count

Decodes memory, returning the buffer in the variable indicated by bufferPointer and the
size in the variable pointed to by count.

Protocols: NXDecoding 6-43

NXEncoding

Adopted By: a private class

Declared In: remote/transport.h

Protocol Description

An object that implements the NXEncoding protocol is passed as the portal argument for
the encodeUsing: message to distribute an object that adopts the NXTransport protocol.
The object implementing the encodeUsing: method should send the portal object messages
from the NXEncoding protocol to encode the data required to instantiate a copy of the
object on the other end of the connection.

Every method in the NXEncoding protocol has a corresponding method in the
NXDecoding protocol that will be used to receive encoded data. See the Distributed
Objects introduction for more information.

Instance Methods

encodeBytes:count:

- encodeBytes:(const void *)buffer count: (int)count

Encodes the buffer (of size count bytes) indicated by buffer.

encodeData:ofType:

- encodeData:(void *)data oIType:(const char *)type

Encodes the data structure pointed to by data, whose fields are indicated by the character
string type, consisting of the following values:

6-44 Chapter 6: Distributed Objects

Format Character

c
s

f
d
@

*
%

Data Type

char
short
int
float
double
id
char *
NXAtom
SEL

{<type> }
int; corresponding data won't be read or written
struct

[<count><type>] array

encodeMachPort:

- encodeMachPort:(port_t)port

Encodes the Mach port port.

encodeObject:

- encodeObject:anObject

Usually encodes a proxy to anObject. The object to be encoded is determined by sending
anObject an encodeRemotelyFor:freeAfterEncoding:isBycopy: message, which will, by
default, return a proxy to anObject.

encodeObjectBycopy:

- encodeObjectBycopy:anObject

Usually encodes anObject, so that a copy will be instantiated on the other end of the
connection; the object to be encoded is determined by sending anObject an
encodeRemotelyFor:freeAfterEncoding:isBycopy: message. anObject must conform
to the NXTransport protocol.

encodeVM:count:

- encode VM:(const void *)bytes count:(int)count

Encodes memory (of count bytes) that was allocated with vm_aUocateO.

Protocols: NXEncoding 6-45

NXTransport .

Adopted By:

Declared In:

List (common classes)
NXData (Mach Kit)
NXPort (Mach Kit)
NXProxy class (Distributed Objects)

remote/transport.h

Protocol Description

The NXTransport protocol allows objects to be copied over a Distributed Objects
connection. This protocol consists of three methods:

- encodeRemotelyFor:freeAfterEncoding:isBycopy:
- encodeUsing:
- decodeUsing:

When an object must be vended over a connection, the
encodeRemotelyFor:freeAfterEncoding:isBycopy: method is invoked to determine
what object is sent. The Object class implements a version of this method that returns an
NXProxy; thus all objects may be sent over a connection in virtual form through the use of
a proxy. Classes can override this method to specify another object (that conforms to the
NXTransport protocol) to be sent over the connection. By sending a real object over the
connection rather than a proxy, some applications can save the overhead of remote
messaging (though if the object changes, keeping copies synchronized is an issue).

When an object is to be encoded, it is sent an encodeUsing: message. The portal argument
for this message is an object that implements the NXEncoding protocol and thus knows
how to encode various data types. The object to be encoded should send data to portal
that allows a copy of itself to be decoded.

In order to create the copy of the object on the receiving side, the object is allocated and
a decodeUsing: message is sent to it. The newly allocated object is not initialized, so
the decodeUsing: implementation generally should invoke the object's designated
initializer method.

6-46 Chapter 6: Distributed Objects

Instance Methods

decodeUsing:

- decodeUsing:(id <NXDecoding>)portal

A newly allocated instance is sent this message in order to initialize itself when an object
has been sent by copy over a connection. The instance is not initialized, so it should
generally invoke the object's designated initializer. You must send messages (from the
NXDecoding protocol) to the portal object to fetch any data that was encoded; these
messages may be sent before or after initializing the new instance.

This method generally returns self to indicate that self is the object that is to be used as the
local copy of the sent object. If it returns another object, that object is used as the local
copy, and the instance that received this message is freed.

See also: - encode Using:

encodeRemotelyFor:freeAfterEncoding:isBycopy:

- encodeRemotelyFor:(NXConnection *)connection
freeAfterEncoding:(BOOL *)flagp
isBycopy:(BOOL)isBycopy

This method is responsible for returning the object that must be encoded to send the
receiver over connection. The default implementation inherited from the Object class
returns a local proxy to the receiver which, when encoded, yields a remote proxy that
forwards all messages to the original object.

You can override this method to change how an object is transported. If you return another
object (like self), that object will be encoded instead. The returned object must conform to
the NXTransport protocol. You may wish to test the isBycopy flag and return self only if
the object (rather than a proxy) is to be copied across the connection. If you want the
receiving object to be freed after it is encoded, you can set the boolean pointed to by flagp
to YES.

A typical implementation of this method simply ensures that the object or a proxy gets
encoded, based on the value of isBycopy:

- encodeRemotelyFor: (NXConnection *)connection

freeAfterEncoding: (BOOL *)flagp isBycopy: (BOOL)isBycopy

if (isBycopy) return self;
return [super encodeRemotelyFor:connection

freeAfterEncoding:flagp isBycopy:isBycopy];

Protocols: NXTransport 6-47

encodeUsing:

- encodeUsing:(id <NXEncoding>)portaI

This method must send enough data to portal (an object that conforms to the NXEncoding
protocol) that a copy of the object can be created on the other side of a connection using the
decodeUsing: method. See the introduction to Distributed Objects for an example
implementation of this method.

6-48 Chapter 6: Distributed Objects

Types and Constants

Defined Types

NXRemoteException

DECLARED IN remotelNXProxy.h

SYNOPSIS typedef enum {
NX_REMOTE_EXCEPTION_BASE,
NX_couldntSendException,
NX_couldntReceiveException,
NX_couldntDecodeArgumentsException,
NX_unknownMethodException,
NX_objectInaccessibleException,
NX_objectNotAvailableException,
NX_remotelnternalException,
NX_multithreadedRecursionDeadlockException,
NX_destinationlnvalid,
NX_originatorlnvalid,
NX_sendTimedOut,
NX_receiveTimedOut,
NX_REMOTE_LAST_EXCEPTION

} NXRemoteException

DESCRIPTION These are the exceptions that the Distributed Objects system might raise as a result of a
remote message gone awry.

6-50 Chapter 6: Distributed Objects

SYl11bolic Constants

limeout Constants

DECLARED IN remotelNXConnection.h

SYNOPSIS NX_CONNECTION_DEFAULT_TIMEOUT

DESCRIPTION This is the default timeout for a connection (currently, 15 seconds).

Types and Constants: Timeout Constants 6-51

6-52

Indexing Kit

7-3 Introduction
7-5 Architecture of the Indexing Kit
7-6 Storage Management
7-6 Associati ve Access
7-8 Data Management
7-9 File System Searching
7-9 Text Parsing
7-10 Query Processing

7-11 Classes
7-12 IXAttributeParser
7-20 IXAttributeQuery
7-23 IXAttributeReader
7-29 IXBTree
7-34 IXBTreeCursor
7-41 IXFileFinder
7-48 IXFileRecord
7-53 IXLanguageReader
7-56 IXPostingCursor
7-58 IXPostingList
7-66 IXPostingSet
7-71 IXRecordManager
7-81 IXStore
7-93 IXStoreBlock
7-97 IXStoreDirectory
7-102 IXStoreFile
7-106 IXWeightingDomain

7-1

7-111 Protocols
7-112 IXAttributeReading
7-113 IXBlob Writing
7-115 IXBlockAndStoreAccess
7-119 IX ComparatorSetting
7-121 IXComparisonSetting
7-124 IX CursorPositioning
7-130 IXFileFinderConfiguration
7-135 IXFileFinderQuery AndUpdate
7-141 IXLexemeExtraction
7-143 IXN ameAndFileAccess
7-149 IXPostingExchange
7-150 IXPostingOperations
7-153 IXRecordDiscarding
7-155 IXRecordReading
7-156 IXRecordTranscription
7-158 IXRecordWriting
7-160 IXTransientAccess
7-163 IXTransientMessaging

7-167 Functions

7-177 Types and Constants
7-178 Defined Types
7-181 Symbolic Constants
7-182 Global Variables

7-183 Other Features
7-184 Attribute Reader Format
7-184 Attributes
7-185 Lexemes
7-185 References
7-186 The Indexing Kit Query Language
7-187 Symbols
7-188 Types
7-189 Operators
7-192 Evaluation
7-193 Predefined Attributes

7-2

Indexing Kit

Library: libIndexing_s.a

Header File Directories: INextDeveloper/Headerslbtree

Introduction

IN extDeveloper/Headers/indexing
IN extDeveloper/Headers/store

The Indexing Kit is a set of programmatic tools for managing data, especially the large
amounts of data characteristic of information-intensive applications. Much as the
Application Kit provides a framework for a graphical interface, the Indexing Kit provides
a framework for data management.

The Indexing Kit supplies facilities for building custom databases and for searching the
UNIX file system. Key benefits include guaranteed data integrity, excellent performance,
thread-safe operation, tight integration with the NeXTSTEP programming environment,
and the ability to efficiently store and retrieve Objective C objects and unstructured data
like text, sound, and images.

Indexing Kit 7-3

The Indexing Kit consists of:

• A transaction-oriented foundation for storing and retrieving persistent data, using virtual
memory mapping for efficient random access to parts of a file without reading or writing
the entire file. Transactions guarantee data integrity on persistent storage media, and are
also used to manage concurrent access to shared data.

• Fast sequential and associative access to stored data. Associative access is untyped, in
that the programmer defines the data types of keys and their ordering by means of a
comparison function or a format string.

• A simple data management capability based on the Objective C run-time system.
Records can be moved efficiently between working memory and the storage substrate in
the form of Objective C objects. Multiple indexes can be built over programmer-defined
attributes, so that records can be ordered and retrieved by the values of their indexed
attributes.

• A general query processing facility, including a declarative query language and its
interpreter. Queries can be applied to individual objects, to collections of objects, or to
the attribute/value lists produced by Indexing Kit's customizable text processing tools.

• High-level file system searching facilities based on the supporting layers described
above, including fast literal searching of file contents.

7-4 Chapter 7: Indexing Kit

Architecture of the Indexing Kit

The Indexing kit has four layers, corresponding to the areas of functionality described
above (the query and text processing tools are part of the data management layer, but are
described apart from it). Classes at each layer rely on the services provided by the lower
layers. There are a total of seventeen classes and eighteen protocols in the Indexing Kit.

IXStore ----- IXStoreFile
IXStoreBlock

IXStoreDirectory

IXBTree
IXBTreeCursor --- IXPostingCursor

IXRecordManager
IXPostingSet

List ------- IXPostingList

IXFileFinder
IXFileRecord

IXAttributeParser
IXAttributeReader -- IXLanguageReader
IXWeightingDomain

IXAttributeQuery

Figure 7-1. The Indexing Kit Inheritance Hierarchy

Introduction 7-5

Storage Management

The foundation of the Indexing Kit consists primarily of the IXStore and IXStoreFile
classes, along with IXStoreBlock. There are two protocols at this layer:
IXBlockAndStoreAccess and IXNameAndFileAccess.

IXStore is a fast, transaction-oriented, compacting storage allocator, providing efficient
storage management within a single address space. IXStoreFile is a file-based subclass of
IXStore. IXStoreBlock is a convenience class for creating objects that refer to individual
blocks of storage within an IXStore.

An IXStore is an array of resizable blocks of untyped storage. Each block is identified by
an integer handle. Classes in the layers above the storage management layer add data
typing and specialized identification and retrieval mechanisms to this basic model.

IXStore defines a transaction model that permits thread-safe, shared access to data and
allows changes to data to be reversed. These features guarantee data integrity in the context
of shared access or in the event of program or system interruption. They can be used to
build databases and other structured collections of data.

The IXBlockAndStoreAccess and IXN ameAndFileAccess protocols, along with the
IXStoreDirectory class from the associative access layer, are used to create store clients. A
store client is an object that manages data in an IXStore. A store client is a persistent
object; since its data resides in the store, its run-time representation can be freed and later
reconstituted from that same data. The primary classes at the higher layers of the Indexing
Kit are store clients.

For detailed information on the storage model and on transaction management, see the
IXStore class specification. For information on creating store clients, see the
IXBlockAndStoreAccess and IXNameAndFileAccess protocol specifications and the
IXStoreDirectory class specification.

Associative Access

The classes of the Indexing Kit's associative access layer are IXBTree, IXBTreeCursor;
IXStoreDirectory, IXPostingCursor, and IXPostingSet. Protocols defined at this layer are
IXCursorPositioning, IXComparatorSetting, IXComparisonSetting, IXPostingExchange,
and IXPostingOperations.

IXBTree and IXBTreeCursor add a flexible associative retrieval model to IXStore.
Untyped blocks of storage, called values, are identified by keys of an arbitrary type, and are

7-6 Chapter 7: Indexing Kit

logically arranged in an ordered key space. This allows the values to be identified by such
things as strings or floating-point numbers, or even complex structures. The programmer
using an IXBTree defines its key space with methods declared in the IXComparatorSetting
and IXComparisonSetting protocols, providing either a function that compares keys, or a
comparison format that describes the keys.

Access to an IXBTree's key space is provided by the IXBTreeCursor class. An
IXBTreeCursor is an object that can move within an IXBTree's key space and access the
value stored at its current position. Multiple IXBTreeCursors can be used concurrently in
the same IXBTree, providing for shared access to the data.

An IXStoreDirectory uses an IXBTree to provide a naming scheme for store clients within
a single IXStore. See the description of the storage management layer and the
IXStoreDirectory class specification for more information.

IXPostingCursor, a subclass of IXBTreeCursor, maintains attribute inversions, in which the
value of a specified attribute of a collection of data items is used as a key in a secondary
IXBTree. The value stored under each key in the secondary IXBTree is a set of postings,
which are weighted references to data items in the collection. The posting set for a
particular key contains references to all data items in the collection whose attribute is equal
to that key.

An IXPostingSet holds a set of postings in working storage. Its primary use is for
combining sets of postings: an IXPostingSet can perform a set union, intersection, or
difference with another IXPostingSet (or any object conforming to the IXPostingExchange
protocol, described below). This allows records to be selected from a collection according
to more than one criterion.

For example, an IXPostingSet might be initialized from an IXPostingCursor for the
"department" attribute of a collection of employees. The set would hold references to all
employee records in the collection that belonged to the department defined by the
IXPostingCursor's key position, for example, "accounting." To find all employees in that
department with a given income, the set could then be refined by intersection with an
IXPostingSet derived from an inversion on the income attribute.

The IXPostingExchange protocol declares methods for trading sets of postings, and the
IXPostingOperations protocol declares methods for retrieving information about postings
and for adding postings to or removing postings from a set.

For detailed information on key spaces and cursoring, see the IXKeyCursoring protocol
specification. For information on working with postings, see the IXPostingCursor and
IXPostingSet class specifications and the IXPostingOperations protocol specification.

Introduction 7-7

Data Management

The data management classes are IXRecordManager and IXPostingList. The data
management protocols are IXRecordReading, IXRecordWriting, IXRecordDiscarding,
IXBlob Writing, IXRecordTranscription, IXTransientAccess, and IXTransientMessaging.

IXRecordManager maintains a repository of Objective C objects that represent individual
records, and builds and maintains indexes on those records. Each index is based on one
attribute of the objects in the repository. An attribute is defined by a name and a selector;
the attribute's value for a given object is the value returned by the designated message for
that object. An attribute's scope is necessarily restricted to those objects that respond to the
designated message, and may optionally be restricted further to the instances of a
designated class or any of its subclasses. A text parser may be attached to a text valued
attribute to invert the component lexemes (words or phrases that are to be treated as
individual terms), rather than the entire piece of text. When objects are added to the
IXRecordManager, they are automatically added to any attribute indexes that apply.

As a structured storage facility, IXRecordManager provides a fast and space-efficient
serializing mechanism based on Objective C run-time information for objects conforming
to the appropriate Indexing Kit protocols (by default, however, it uses the standard read:
and write: archiving messages, so that it can store objects that don't conform to those
protocols). When referring to the serializing mechanism, objects are said to be passivated
and activated rather than archived and unarchived. Since objects may contain references
to data whose length can't be determined from the run-time information,
IXRecordManager sends a notification message to an object being passivated or activated,
allowing the object to store or retrieve any data that needs special handling.
IXRecordManager also provides direct access to the instance variables and method return
values of passivated objects, eliminating the need to explicitly activate objects in order to
query their content or state.

Records can be retrieved through an attribute index with an IXPostingCursor. The
IXPostingCursor is simply positioned at the desired key, and the postings for that key are
then used to activate the objects. IXPostingSets can be used to retrieve records based on
compound criteria.

IXPostingList, a subclass of List, performs lazy instantiation of retrieved objects. An
IXPostingList can be initialized with a set of postings retrieved from an index, and
thereafter behaves as a List, returning an object corresponding to the posting at a particular
position in the List on demand. This frees the programmer from having to explicitly
activate a set of retrieved objects one at a time.

7-8 Chapter 7: Indexing Kit

For more information on data management, see the IXRecordManager class specification.
For more information on object passivation and activation in the Indexing Kit, see the
IXRecordTranscription, IXRecordReading, IXRecordWriting, and IXRecordDiscarding
protocol specifications.

File System Searching

There are two classes and two protocols in the file system searching layer. The classes are
IXFileFinder and IXFileRecord, and the protocols are IXFileFinderConfiguration and
IXFileFinderQuery AndU pdate.

IXFileFinder extends the capabilities of IXRecordManager to the UNIX file system,
treating files in a subtree of the file system as records. The archive actually contains
IXFileRecord objects, which are used as proxies for the files.

An IXFileFinder can automatically update its indexes in a background thread, and supports
concurrent querying by multiple programmer-supplied threads, as well. It can be
configured to ignore specific files or types of files, and has options for ignoring file systems
mounted within its subtree of the file system and for traversing symbolic links.

IXFileFinder supports the Indexing Kit's query language, allowing for searches by whole
or partial word in specific attributes. Searches can be made using literal strings and regular
expressions. A full suite of arithmetic, relational, and other operators are also available.

For information on using IXFileFinder, see the IXFileFinderQuery AndUpdate protocol
specification and "The Indexing Kit Query Language" in the "Other Features" section.

Text Parsing

The Indexing Kit's text parsing system is made of four classes and two protocols. The
classes are named IXAttributeParser, IXAttributeReader, IXLanguageReader, and
IXWeightingDomain. The protocols are IXAttributeReading and IXLexemeGeneration.

The text parsing system builds attribute/value lists from unstructured text. An
IXAttributeParser uses a list of one or more IXAttributeReaders to break the text into
individuallexemes, which it can then count and classify. The lexemes are assigned weights
based on their frequency of occurrence for a given attribute. Lexemes can be weighted
absolutely, by frequency, or by peculiarity. Peculiarity weighting uses an
IXWeightingDomain, which holds lexeme counts and rankings for a reference domain,
usually a large collection of text, such as the collected works of William Shakespeare.
Lexemes that are common in the reference domain will have a lower peculiarity than
lexemes that are rare in the domain.

Introduction 7-9

The process of decomposing a text stream into its constituent lexemes can be customized
by creating a subclass of IXLanguageReader, itself a subclass of IXAttributeReader.
Language-specific readers are provided for all languages supported by NeXT. Custom
readers can be written to analyze specific languages or types of text, to reduce related terms
to a common form, and to recognize multi-word lexemes.

For more information on text parsing, see the IXAttributeParser class description and
"Attribute Reader Format" in the "Other Features" section.

Query Processing

The query processing system is made of one class, IXAttributeQuery, and the Indexing
Kit's query language. IXAttributeQueries accept query expressions formulated in the
query language. It evaluates these against an IXRecordManager or IXFileFinder to return
an IXPostingList containing those objects which match the query.

For more information on text parsing, see the IXAttributeQuery class description and "The
Indexing Kit Query Language" in the "Other Features" section.

7-10 Chapter 7: Indexing Kit

Classes

IXAttributeParser

Inherits From: Object

Declared In: indexinglIXAttributeParser.h

Class Description

An IXAttributeParser breaks text streams down into lists of lexemes occurring in the text.
A lexeme is a word or phrase that should be treated as a single term. Though not directly
accessible, the lists are used by other classes in the Indexing Kit to build indexes for the
text, or to resolve queries against the text.

An IXAttributeParser uses a number of IXAttributeReaders to divide a text stream into
individuallexemes, each associated with a specific attribute, like Title, Author, or Abstract,
and collects the lexemes into a histogram for each attribute. The parser can weight the
lexemes for a given attribute in several ways: by the number of occurrences within the
attribute, by the relative frequency of occurrence within the attribute, or by peculiarity
within the attribute relative to a reference domain. A lexeme's peculiarity is the square root
of the ratio of its frequency within the attribute to its frequency within the reference
domain; for example, the word "computer" has a much lower peculiarity with respect to the
domain of computer science literature than to that of archaeological literature because it
occurs much more frequently in the former.

An IXAttributeParser parses any of three text formats: Attribute Reader Format (ARF),
RTF, or ASCII text (it prefers them in that order). A parser determines a file's or stream's
format by examining the type argument to a parse ... or analyze ... method. If that type is
ARF, RTF, or ASCII, the parser can simply start processing the text. If not, the parser will
examine the first few bytes of the text to see if it is, indeed, in one of the parsable formats;
for example, if it finds" {\rtf' at the beginning of a stream, it assumes that the stream
contains RTF. Failing this, the parser will attempt to convert the text into one of the
pars able formats using the filtering services provided by the Application Kit. If the text
can't be converted into a parsable format using the filtering services, the parser simply
treats the file or stream as though it were ASCII, checking first for nonprintable characters;
if there is a significant number of them on the first page (more than 1 in 16), the file or
stream isn't parsed at all. For example, if told to parse a WordPerfect document, the parser
would attempt to convert the document from WordPerfect format to one of the three
parsable formats. If the document couldn't be converted, it would be parsed as ASCII,
control words, formatting commands, and all (unless the document contained enough
nonprintable characters that it would be regarded as unprintable by the parser).

7-12 Chapter 7: Indexing Kit

To attempt conversion of a file of type my type, the parser will call the Application Kit
function NXCreateTypedFileNameO to generate a typed file-name pasteboard type.
Thus, the filter must declare this as its input type in a services file in order to be visible to
the parser. If no filter is found by this approach, and the file is readable, then the parser will
attempt conversion a second time using the function NXCreateTypedFileContentsO to
generate a typed file contents pasteboard type.

When a parser isn't supplied for a class or method that needs one (for example, an
IXFileFinder), a default parser is created, along with a default reader for the current user's
preferred language, as set in the Preferences application. NeXT ships language-specific
IXLanguageReaders for all supported user languages in lNextLibrarylReaders. These
IXLanguageReaders are dynamically loaded into an application when needed. Your code
can get a reader for a specific language by sending the IXLanguageReader class object a
readerForLanguage: message. If the language is specified as "Default", the reader for
current user's preferred language is loaded. If a reader f~r the requested language can't be
found, the English reader is used by default.

Instance Variables

None declared in this class.

Method Types

Initializing an instance

Managing readers

Managing text stream types

Managing parse options

- init

- setAttributeReaders:
- getAttributeReaders:

- understandsType:
- addSourceType:
- removeSourceType:

- setMinimum Weight:
- minimum Weight
- setPercentPassed:
- percentPassed
- setWeightingDomain:
- weightingDomain
- setWeightingType:
- weightingType

Classes: IXAttributeParser 7-13

Parsing text

Instance Methods

addSourceType:

- parseFile:oIType:
- parseStream:oIType:
- analyzeFile:oIType:
- analyzeStream:oIType:
- reset

- addSourceType:(const char *)aType

Records the Pasteboard type or file extension aType as one of the types for which the
IXAttributeParser will respond YES when sent an understandsType: message, and which
the IXAttributeParser will attempt to parse. If an IXAttributeParser has had no source types
added, or has had all source types removed with removeSourceType:, it acts as though it
understands any type, and will parse any file or stream. Returns self.

See also: - removeSourceType:, - understandsType:, - analyzeFile:offype:,
- analyzeStream:offype:, - parseFile:ofType:, - parseStream:ofType:, Pasteboard
class of the Application Kit

analyzeFile:ofType:

- (NXStream *)analyzeFile:(const char *)filename ofType:(const char *)aType
\ ,

Parses the contents offilename, and returns the contents offilename in Attribute Reader \
Format as produced by the IXAttributeParser's IXAttributeReaders. If the
IXAttributeParser doesn't understand the type aType, this method returns NULL.
Otherwise, aType is used to determine whether the contents of filename are in a parsable
format (one of ARF, RTF, or ASCII), or if not, to locate a filter service that can convert the
contents offilename. Files that can't be converted into a parsable format are parsed as
though they contained ASCII text, unless they contain a significant amount of nonprintable
text (for example, control characters), in which case the file is assumed to be binary, and
not parsed.

See also: - analyzeStream:ofType:, - parseFile:ofType:, - parseStream:ofType':,
- understandsType:, - addSourceType:, Attribute Reader Format ("Other Features"
section), Pasteboard class of the Application Kit

7-14 Chapter 7: Indexing Kit

analyzeStream:ofType:

- (NXStream *)analyzeStream:(NXStream *)stream oIType:(const char *)aType

Parses stream, and returns the contents of stream in Attribute Reader Format as read by the
IXAttributeParser's IXAttributeReaders. If the IXAttributeParser doesn't understand the
pasteboard type aType, this method returns NULL. Otherwise, aType is used to determine
whether stream is in a parsable format (one of ARF, RTF, or ASCII), or if not, to locate a
filter service that can convert the contents of stream. Streams that can't be converted into
a parsable format are parsed as though they contained ASCII text, unless a significant
amount of the text is nonprintable, in which case the stream isn't parsed.

See also: - analyzeFile:oIType:, - parseStream:oIType:, - parseFile:oIType:,
- understandsType:, - addSourceType:, Attribute Reader Format (Other Features
section), Pasteboard class of the Application Kit

getAttributeReaders:

- getAttributeReaders:(List *)aList

Empties aList, fills it with the IXAttributeReaders used by the IXAttributeParser, and
returns it by reference. The sender of this message may free the List, but not its contents.
Returns self.

See also: - setAttributeReaders:

init

- init

Initializes a newly created IXAttributeParser, setting the percent passed to 100 and the
weighting type to IX_NoWeighting. Returns self.

See also: - setPercentPassed:, - setWeightingType:

minimumWeight

- (unsigned int)minimumWeight

Returns the minimum weight required for a lexeme to be included in the attribute/value list.

See also: - setMinimumWeight:, - percentPassed

Classes: IXAttributeParser 7-15

parseFile:ofType:

- parseFile:(const char *)jilename ofType:(const char *)aType

Parses the contents ofjilename, and returns self. If the IXAttributeParser doesn't
understand the type a Type , this method returns nil. Otherwise, aType is used to detennine
whether the contents of jilename are in a parsable fonnat (one of ARF, RTF, or ASCII), or
if not, to locate a filter service that can convert the contents ofjilename. Files that can't be
converted into a parsable fonnat are parsed as though they contained ASCII text, unless a
significant amount of the text is nonprintable, in which case the stream isn't parsed.

See also: - parseStream:ofType:, - analyzeFile:ofType:, - analyzeStream:ofType:,
- understandsType:, - addSourceType:, Pasteboard class of the Application Kit

parseStream :ofType:

- parseStream:(NXStream *)stream ofType:(const char *)aType

Parses stream, and returns self. If the IXAttributeParser doesn't understand the type aType,
this method returns nil. Otherwise, aType is used to determine whether stream is in a
parsable fonnat (one of ARF, RTF, or ASCII), or if not, to locate a filter service that can
convert the contents of stream. Streams that can't be converted into a pars able fonnat are
parsed as though they contained ASCII text, unless a significant amount of the text is
nonprintable, in which case the stream isn't parsed.

See also: - parseFile:ofType:, - analyzeStream:ofType:, - analyzeFile:oIType:,
- understandsType:, - addSourceType:, Pasteboard class of the Application Kit

percentPassed

- (unsigned int)percentPassed

Returns the percentage of the lexemes for each attribute that will be included in the result
of a parse. Any lexeme whose weight puts it at this percentile or higher will be included.

See also: - setPercentPassed:, - minimumWeight

removeSourceType:

- removeSourceType:(const char *)aType

Removes the pasteboard type or file extension aType from the IXAttributeParser's list of
understood types. The IXAttributeParser will respond NO to subsequent

7-16 Chapter 7: Indexing Kit

understandsType: messages with aType as the argument, and won't parse files or streams
of that type. Returns self.

See also: - addSourceType:, - understandsType:, Pasteboard class of the
Application Kit

reset

- reset

Clears the state built up by parsing a file or stream, preparing the IXAttributeParser to
analyze a different file or stream. It is possible to combine multiple streams or files by
parsing them in sequence without resetting the IXAttributeParser, in which case the results
accumulate in the attribute/value list. Returns self.

See also: - analyzeFile:ofType:, - analyzeStream:ofType:, - parseFile:ofType:,
- parseStream:ofType:

setAttributeReaders:

- setAttributeReaders:(List *)aList

Establishes the objects in aList as the IXAttributeReaders used by the IXAttributeParser,
and frees any of the previous set of IX Attribute Readers that the IXAttributeParser will no
longer use. The List must contain instances of IXAttributeReader or a subclass. Readers
will be used on a stream of text in the order they appear in the List. Returns self.

See also: - getAttributeReaders:

setMinimumWeight:

- setMinimumWeight:(unsigned int)anlnt

Sets the minimum weight required for inclusion in the parse result. For example, setting
the minimum weight to 10 causes alllexemes with weight less than 10 to be dropped from
the result of a parse. Returns self.

The IXAttributeParser uses only one of minimum weight or percent passed. If the
minimum weight is set, the percent passed is reset to 100; if the percent passed is set, the
minimum weight is reset to O.

See also: - minimum Weight, - setPercentPassed:

Classes: IXAttributeParser 7-17

setPercentPassed:

- setPercentPassed:(unsigned int)anlnt

Sets the percentage of lexemes for a given attribute that will be included in the result of a
parse. Any lexeme whose weight puts it at this percentile or higher will be included. For
example, setting this value to 25 would include the top quarter of the lexemes in the search
result; if there were 2000 lexemes, the 500 heaviest lexemes by weight would be included.

The IXAttributeParser uses only one of minimum weight or percent passed. If the
minimum weight is set, the percent passed is reset to 100; if the percent passed is set, the
minimum weight is reset to O.

Returns self.

See also: - percentPassed, - setMinimum Weight:

setWeightingDomain:

- setWeightingDomain: (lXWeightingDomain *)aDomain

Sets the weighting domain used by the IXAttributeParser to aDomain, and returns self. The
weighting domain is used to assign peculiarity weights to lexemes for a given attribute; the
frequency of the lexeme within the attribute is divided by the frequency of the lexeme in
the domain to give the lexeme's peculiarity, and the result is normalized by taking its square
root. This is only done when the IXAttributeParser's weighting type is
IX_PeculiarityWeighting.

See also: - weightingDomain, - setWeightingType:

setWeightingType:

- setWeightingType:(IXWeightingType)anlnt

Sets the weighting type used by the IXAttributeParser to anlnt and returns self. The
weighting type is used to determine how to calculate lexeme weights, and may be one of
the following values:

IX_No Weighting
IX_Absolute Weighting
IX_FrequencyWeighting
IX_PeculiarityWeighting

7-18 Chapter 7: Indexing Kit

IX_NoWeighting means that alllexemes are assigned a weight of O. With
IX_Absolute Weighting, each lexeme is assigned a weight equal to the number of times it
occurs within the attribute. IX_Frequency Weighting results in each lexeme being weighted
by relative frequency of occurrence: the number of times it occurs in the attribute divided
by the total number of lexemes in the attribute. IX_PeculiarityWeighting uses a weighting
domain to calculate a frequency relative to some large body of text; the final weight of a
lex erne is calculated by taking the square root of its frequency in the attribute divided by its
frequency in the domain. IX_PeculiarityWeighting is useful for lowering the significance
of lexemes that are common in a particular set of texts.

See also: - weightingType, - setWeightingDomain:

understandsType:

- (BOOL)understandsType:(const char *)aType

Returns YES if the IXAttributeParser will parse files of the pasteboard type or file extension
aType, NO if not. If no types have been added with addSourceType:, or if all types added
have been removed with removeSourceType:, this method always returns YES.

See also: - addSourceType:, - removeSourceType:, Pasteboard class of the Application
Kit

weightingDomain

- (IXWeightingDomain *)weightingDomain

Returns the weighting domain used by the IXAttributeParser, or nil if there is none.

See also: - setWeightingDomain:, - setWeightingType:

weightingType

- (IXWeightingType)weightingType

Returns the weighting type used by the IXAttributeParser. See setWeightingType: for a
list of the possible values and their meanings.

See also: - setWeightingType:, - setWeightingDomain:

Classes: IXAttributeParser 7-19

IXAttributeQuery

Inherits From: Object

Declared In: indexinglIXAttributeQuery .h

Class Description

IXAttributeQuery is an interpreter for the Indexing Kit's query language. An
IXAttributeQuery is initialized with a single query expression, which it can evaluate against
a "context" object: an IXRecordManager, an IXFileRecord, or an IXAttributeParser.
When it evaluates the query, it returns an IXPostingList containing the objects selected by
the query expression, or nil if no objects were selected. See "The Indexing Kit Query
Language" in the "Other Features" section of this chapter for more information on query
evaluation.

When a query is evaluated against a context that acts as a container (for example, an
IXRecordManager), the resulting IXPostingList contains the objects selected from the
container by the query expression. When a query is evaluated against an immediate context
(for example, an IXAttributeParser or IXFileRecord), the resulting IXPostingList contains
only the context. Evaluating a query against a single object is useful when a yes/no answer
is desired, especially with an IXAttributeParser loaded from a stream of text.

Instance Variables

unsigned char *queryString;
id attributeParser;
id queryContext;

query S tring

attributeParser

queryContext

7-20 Chapter 7: Indexing Kit

The query language expression to be evaluated.

The IXAttributeParser used to parse portions of the query.

The object against which the query expression is
evaluated.

Method Types

Initializing - initQueryString: andAttributeParser:

Accessing attributes - attributeN ames
- attributeParser

Retrieving the query expression - queryString

Evaluating the query - evaluateFor:

Instance Methods

attributeNames
- (char *)attributeNames

Returns a newline-separated list of the attribute names found in the query string. This can
be used to compare the attributes named in the query against those in an IXRecordManager,
for example. The sender of this message is responsible for freeing the string returned.

See also: - initQueryString:andAttributeParser:,
- attributeNames (IXRecordManager)

attributeParser
- (lXAttributeParser *)attributeParser

Returns the IXAttributeParser used for parseO operators in the query string.

See also: - initQueryString:andAttributeParser:

evaluateFor:
- (IXPostingList *)evaluateFor:anObject

Evaluates the query string against information in anObject. anObject must be an instance
of IXAttributeParser, IXFileRecord, or IXRecordManager. Returns the results of the query
in an IXPostingList, or nil if there is no match. The sender of this message is responsible
for freeing both the IXPostingList and the objects it contains.

If anObject is an IXAttributePaser or IXFileRecord and it matches the query, it will be the
only object in the IXPostingList; its handle and weight will be 0, and the IXPostingList's
source will be nil. If an Object is an IXRecordManager that contains records that match the
query, the IXPostingList will be contain postings for those records, and the IXPostingList's
source will be the IXRecordManager.

Classes: IXAttributeQuery 7-21

initQueryString:andAttributeParser:

- initQueryString:(const char *)aString
andAttributeParser:(IXAttributeParser *)aParser

Initializes the receiver, a newly allocated IXAttributeQuery, compiling aString as its query
and using aParser as the IXAttributeParser for any parseO operators in aString. aString
must be a legal expression in the Indexing Kit query language, as documented in "The
Indexing Kit Query Language." aParser may be nil; in this case a default instance of
IXAttributeParser will be created by the IXAttributeQuery when a parseO operator is
encountered. Returns self if aString is a well formed query, or nil if a compilation error
is encountered.

aParser and its IXAttributeReaders should be configured in the same manner as the
IXAttributeParser and IXAttributeReaders used to generate attribute values for the context.
For example, if an IXRecordManager contains a parsed attribute named Text, then any
IXAttributeQuery used to query the Text attribute of that IXRecordManager should be
initialized with a parsing configuration similar to the Text attribute's parsing configuration.
Once an IXAttributeQuery is initialized, its parser shouldn't be sent any messages until
after the IXAttributeQuery is freed; the parser may be safely freed or reused at that time.

See also: - queryString, - attributeParser, - evaluateFor:,
- setParser:forAttributeNamed: (IXRecordManager)

queryString

- (const char *)queryString

Returns the IXAttributeQuery's query string.

See also: - initQueryString:andAttributeParser:

7-22 Chapter 7: Indexing Kit

IXAttributeReader

Inherits From: Object

Conforms To: IXAttributeReading

Declared In: indexinglIXAttributeReader.h

Class Description

An IXAttributeReader breaks a stream of text into lexemes, emitting a format suitable for
consumption by ,an IXAttributeParser. Lexemes are the lexical components of the text, and
are usually words, though they may be phrases, numbers, formulas, or even binary encoded
graphics or sound bites.

An IXAttributeReader accepts text in one of three formats: Attribute Reader Format
(ARP), RTF, or ASCII. Processed lexemes and unrecognized text, if any, are both output
in ARF. This allows multiple attribute readers to process a single stream in series, so that
different parts of the stream are handled by different readers. For more information on
ARF, see "Attribute Reader Format" in the "Other Features" section of this chapter.

An IXAttributeReader can perform any of four predefined operations while analyzing a
stream of text. It can fold case, reducing uppercase characters to their lowercase
equivalents; it can unique the lexemes, emitting numerical backward references instead of
fully formed lexemes when duplicates are encountered; it can fold plurals, reducing plural
terms to their singular form; and it can perform stemming, reducing terms to their stems
(for example, "write," "writing," and "written" would all be reduced to "write"). The first
two of these operations are fully implemented by IXAttributeReader. The other two are
declared as abstract methods for language-specific subclasses.

Classes: IXAttributeReader 7-23

Instance Variables

NXHashTable *stop Words;
const char *punctuation;

unsigned char *charMapping;
struct {

unsigned caseFolding: 1;

unsigned pluralFolding: 1;

unsigned stemsReduced: 1;

unsigned lexemeUniquing: 1;

} booleanOptions;

stopWords

punctuation

charMapping

booleanOptions.caseFolding

booleanOptions. pluralF olding

Words removed from output.

Characters that delimit words.

Character mapping table.

YES if uppercase letters are converted to lowercase.

YES if plurals are converted to singular form.

booleanOptions.stemsReduced YES if derivative terms are reduced to their stems.

booleanOptions.lexemeUniquing
YES if lexemes are uniqued for more compact output.

Adopted Protocols

IXAttributeReading - analyzeStream:

Method Types

Altering lexemes - foldPlural:inLength:
- reduceStem:inLength:

7-24 Chapter 7: Indexing Kit

Setting reader options

Instance Methods

arePluralsFolded

- (BOOL)arePluralsFolded

- setCaseFolded:
- isCaseFolded
- setPluralsFolded:
- arePluralsFolded
- setStemsReduced:
- areStemsReduced
- setPunctuation:
- punctuation
- setStopWords:
- stopWords

Returns YES if the IXAttributeReader reduces plurals to their singular forms when reading
text, NO otherwise. For example, if plurals are folded, then "boxes" will be folded to "box"
and "children" to "child." The default is NO.

IXAttributeReader itself doesn't fold plurals; a subclass must override
foldPlural:inLength: to provide this functionality. This method simply reports the value
of a flag. To implement plural folding, simply override the foldPlural:inLength: method.

See also: - setPluralsFolded:, - foldPlural:inLength:

areStemsReduced

- (BOOL)areStemsReduced

Returns YES if the IXAttributeReader reduces derivatives to their stems, NO otherwise.
For example, if stems are reduced, "forest", "deforest", "reforest", "deforestation",
"forestry", and "unforested" will all be reduced to "forest." The default is NO.

IXAttributeReader itself doesn't reduce stems; a subclass must override
reduceStem:inLength: to provide this functionality. This method simply reports
the value of a flag.

See also: - setStemsReduced:, - reduceStem:inLength:

Classes: IXAttributeReader 7-25

foldPlural:inLength:

- (unsigned int)foldPlural:(char *)aString inLength:(unsigned int)aLength

Does nothing and returns the length of aString. Overridden by subclasses to perform
language-specific plural-to-singular form conversion.

Subclass implementations should convert aString from a plural to a singular form in a
language specific manner. aLength is the length of the string buffer, not the string itself. If
aString is altered, its new length should be the return value of this method.

See also: - setPluralsFolded:

isCaseFolded

- (BOOL)isCaseFolded

Returns YES if the IXAttributeReader converts text to lowercase when reading, NO
otherwise. The default is YES.

See also: - setCaseFolded:

punctuation

- (char *)punctuation

Returns a string containing the characters used by the IXAttributeReader to separate
lexemes. The sender of this message is responsible for freeing the string.

See also: - setPunctuation:

reduceStem:inLength:

- (unsigned int)reduceStem:(char *)aString inLength:(unsigned int)aLength

Does nothing and returns the length of aString. Overridden by subclasses to perform
language-specific stem reduction.

Subclass implementations should reduce aString to its stem in a language specific manner.
aLength is the length of the string buffer, not the string itself. If aString is altered, its new
length should be the return value of this method.

See also: - areStemsReduced, - setStemsReduced:

7-26 Chapter 7: Indexing Kit

setCaseFolded:

- setCaseFolded:(BOOL)flag

Ifflag is YES, the IXAttributeReader converts text to lowercase when reading. Ifflag is
NO, it doesn't affect the case of text. The default is YES. Returns self.

See also: - isCaseFolded

setPluralsFolded:

- setPluralsFolded:(BOOL)flag

Ifflag is YES, the IXAttributeReader reduces all plurals to singular form when it reads text.
Ifflag is NO, it doesn't alter plural forms. The default is YES. Returns self.

IXAttributeReader itself doesn't fold plurals; a subclass must override foldPlural:
inLength: to provide this functionality. This method simply sets the value of a flag.

See also: - arePluralsFolded, - foldPlural:inLength:

setPunctuation:

- setPunctuation:(const char *)aString

Sets the punctuation string to aString. The punctuation string defines the characters that
the IXAttributeReader uses to separate lexemes. Returns self.

The ASCII null character (0) is always a punctuation character. The default is the set of
characters for which NXIsAlNumO returns 0 (false), except underscore.

See also: - punctuation, NXIsAINumO (Common Classes and Functions)

setStemsReduced:

- setStemsReduced: (BOOL)flag

Ifflag is YES, the IXAttributeReader reduces words to common stems when it reads text.
Ifflag is NO, it doesn't reduce stems. The default is YES. Returns self.

The IXAttributeReader class itself doesn't reduce stems; a subclass must override
reduceStem:inLength: to provide this functionality. This method simply sets the value
of a flag.

See also: - areStemsReduced, - reduceStem:inLength:

Classes: IXAttributeReader 7-27

setStopWords:

- setStopWords:(const char *)stopWords

Sets the IXAttributeReader's stop word list using the newline-separated words in
stop Words. An IXAttributeReader deletes stop words from the stream of lexemes it
produces. The default is to use no stop words.

See also: - stop Words:

stopWords

- (char *)stopWords

Returns a string containing a newline-separated list of the stop words used by the
IXAttributeReader. An IXAttributeReader deletes stop words from the lexemes it emits.
The sender of this message is responsible for freeing the string.

See also: - setStopWords:

7-28 Chapter 7: Indexing Kit

IXBTree

Inherits From:

Conforms To:

Declared In:

Class Description

Object

IXBlockAndStoreAccess
IXN ameAndFileAccess
IXComparatorSetting
IXComparisonSetting

btreelIXBTree.h

An IXBTree provides ordered associative storage and retrieval of untyped data. It identifies
and orders data items, called values, by key using a comparator function or key format
description. A companion class, IXBTreeCursor, is used to actually manipulate the
contents of the IXBTree.

An IXBTree can be used with a memory-based IXStore, or with an IXStoreFile. File-based
IXBTrees can be used to build persistent dictionaries and databases. As examples, the
IXStoreDirectory class makes use of an IXBTree to provide names for other store clients,
and the IXRecordManager uses multiple IXBTrees to provide a data management facility
that uses Objective C objects as records.

Setting Up an IXBTree

An IXBTree can either be initialized as a new client of an IXStore or opened from existing
data in an IXStore. In either case, since IXBTree is a store client (as described in the
IXBlockAndStoreAccess protocol specification) the IXBTree must use an IXStore to hold
its contents. The protocol methods initInStore: and initWithName:inFile: can be used to
initialize a new IXBTree in an IXStore. To open an IXBTree from previously created data,
use the protocol methods initFromBlock:inStore: or initFromName:inFile:forWriting.

After the IXBTree has been initialized, it must have its comparator function or key format
description set with the setComparator:context: or setComparisonFormat: messages.
A comparator function takes as arguments two pieces of arbitrary data and their lengths,
and returns an integer indicating their ordering relative to one another. A key format
description is a character string in the Objective C standard type encoding that describes the
contents of the keys; the legal type codes are listed in the IXComparisonSetting protocol

Classes: IXBTree 7-29

specification. IXBTrees compare keys as strings by default. See the IXCompareBytesO
and IXFormatComparatorO function descriptions for examples and for more information
on key comparison.

Getting Data into and out of an IXBTree

As stated above, IXBTree simply provides the capacity for associative storage. An
IXBTreeCursor is needed to take advantage of that capacity. An IXBTreeCursor is like a
pointer into the IXBTree: it can move to specific positions within the key space and
perform operations on the values stored at those locations, independent of other cursors.
The IXCursorPositioning protocol specification describes basic cursoring techniques, and
the IXBTreeCursor class specification describes additional methods unique to
IXBTreeCursor.

Multiple IXBTreeCursors may independently access a single IXBTree. The actions of one
cursor don't affect any of the other cursors in the IXBTree, except to the extent that they
modify the contents of the IXBTree. It is both safe and meaningful to remove a record that
another IXBTreeCursor has just located, as long as the code using the other IXBTreeCursor
anticipates this possibility, as described below. IXBTree has a mutex lock which may be
used to prevent collisions between cursors operating from different threads.

In the case of one cursor removing a value that another cursor has just located, the second
cursor will have received an indication from a key-locating method (for example,
setKey:andLength:) that it has found a key. When it tries to access the value associated
with that key, however, the key may no longer exist. The cursor will detect the deletion and
slide forward to the next available key if asked to read the value (see the
IXCursorPositioning protocol specification), or will raise an exception if asked to remove
or write the value. If your code allows multiple cursors to be concurrently active on a single
IXBTree, it must anticipate this behavior by handling the exceptions that may be raised, and
by comparing the key against the expected value after invoking getKey:andLength:.
Alternatively, your code may group key location and value manipulation operations by
locking the IXBTree's mutex with IXLockBTreeMutexO and IXUnLockBTreeMutexO
around the pair, or by some alternative mechanism, like a condition, applied at a higher
point in the application.

Working with an IXBTree's Store

Since IXBTree is a store client, as defined in the IXBlockAndStoreAccess protocol
specification, the transaction model of IXStore applies to changes made to the contents of
an IXBTree. In particular, the IXBTree's store must be sent commitTransaction messages
to make changes to the IXBTree take effect (and be flushed to disk for a file-based store).
If an IXBTree is used on a strictly read-only basis, transaction management can be ignored.

7-30 Chapter 7: Indexing Kit

Instance Variables

struct mutex mutexLock;

mutexLock

Adopted Protocols

IXBlockAndStoreAccess

IXN ameAndFileAccess

IXComparatorSetting

IXComparisonSetting

Method Types

U sed to manage concurrent access in multithreaded
applications.

- initInStore:
- initFromBlock:inStore:
- freeFromStore
+ freeFromBlock:andStore:
- getBlock:andStore:

- initWithName:inFile:
- initFromN ame:inFile:forWriting:
- freeFromStore
+ freeFromName:andFile:
- getName:andFile:

- setComparator:andContext:
- getComparator:andContext:

- setComparisonFormat:
- comparisonFormat

Accessing IXBTree information - count
-keyLimit

Affecting IXBTree contents -empty
- compact

Optimizing performance - optimizeForTime
- optimizeForSpace

Classes: IXBTree 7-31

Instance Methods

compact
-compact

Compacts the contents of the IXBTree so that it consumes as little space as possible (the
average amount of reduction is about 25%). This method may move significant amounts
of data, so it can take some time to complete. Key insertion will become slower for a while
after this method is invoked, because data has to be moved around again to make room. Key
search may become substantially faster however, since less data is paged from disk when
searching. Compaction is useful when occasional updates to an IXBTree are followed by
lots of reading. Returns self.

Note: This method does nothing in NeXTSTEP Release 3, but should be fully
implemented in a later update of the Indexing Kit. Your code may invoke this method freely
in anticipation of its being implemented.

See also: - optimizeForTime, - optimizeForSpace

count
- (unsigned int)count

Returns the number of key/value pairs stored in the IXBTree.

empty
-empty

Removes all key/value pairs from the IXBTree, and reduces its storage allocation to the
smallest possible size (128 bytes). Returns self.

keyLimit

- (unsigned int)keyLimit

Returns the maximum allowable length of keys kept in the IXBTree. An IXBTreeCursor
positions itself with a key and the length of the key. That length should never be greater
than the key limit. If it is, the IX_ TooLargeError exception is raised.

7-32 Chapter 7: Indexing Kit

optimizeForSpace

- optimizeForSpace

Causes the IXBTree to move its contents around when inserting keys, so that the total
amount of storage allocated is kept as small as possible. This will resultin slower insertion
times, but faster seek times. Your code should send this message when the IXBTree will
be used mostly for reading.

Once optimization is enabled, it can't be disabled; however, the type of optimization may
be switched at any time between space (fast seek times) and time (fast insertions). Also, an
IXBTree doesn't record its optimization type in its IXStore, so optimization must be
re-enabled whenever an IXBTree is reconstituted.

See also: - optimizeForTime, - compact

optimizeForlime
- optimizeForTime

Causes the IXBTree to avoid moving its contents around when inserting keys, so that
insertions happen as fast as possible. This can result in more unused storage space and
slower seek times. Your code should send an IXBTree this message when it will be making
a lot of insertions.

Once optimization is enabled, it can't be disabled; however, the type of optimization may
be switched at any time between space (fast seek times) and time (fast insertions). Also, an
IXBTree doesn't record its optimization type in its IXStore, so optimization must be
re-enabled whenever an IXBTree is reconstituted.

See also: - optimizeForSpace, - compact

Classes: IXBTree 7-33

IXBTreeCursor

Inherits From: Object

Conforms To: IXCursorPositioning

Declared In: btree/IXB TreeCursor.h

Class Description

An IXBTreeCursor provides access to the keys and values stored in an IXBTree. It's
essentially a pointer into the IXBTree's key space, and may be positioned by key to perform
operations on the value stored at a given location. See the IXCursorPositioning protocol
specification for information on cursoring or on manipulating keys and values.

An IXBTreeCursor works with a single IXBTree, but several IXBTreeCursors may access
the same IXBTree and be positioned independently without conflict. See the IXBTree class
specification for more information on concurrent access with multiple IXBTreeCursors.

Using Hints to Speed Key Search

In addition to the basic cursoring methods described in the IXCursorPositioning protocol
specification, IXBTreeCursor supports hinting. Hints essentially allow the IXBTreeCursor
to find keys by absolute position. This can speed key search dramatically as long as the
IXBTree is relatively static. If a lot of insertions and removals are performed, however, the
use of hints will probably slow down key search; hints will frequently fail to identify the
physical locations of their keys because those keys will have moved, and key search will
incur the cost of hint failure in addition to the cost of searching.

7-34 Chapter 7: Indexing Kit

Instance Variables

struct BTree *btree;
void *keyBuffer;
unsigned int bufferSize;
unsigned int key Length;
unsigned int keyLimit;
unsigned int traceHint;
unsigned int cursorVersion;
unsigned int cursorDepth;
NXZone *cursorZone;
struct BTreeTraceRecord *cursorTrace;
struct { ... } cursorStatus;

btree

keyBuffer

bufferSize

keyLength

keyLimit

traceHint

cursor Version

cursorDepth

cursorZone

cursorTrace

cursorStatus

Adopted Protocols

IXCursorPositioning

The IXBTree accessed by the IXBTreeCursor.

The internal key buffer.

The size in bytes of the internal key buffer.

The length of the key in the internal key buffer.

The maximum length in bytes of a key.

The current hint value.

Used to synchronize the activity of multiple cursors.

The number of levels in the tree.

The memory allocation zone in which the cursor resides.

The cache of the trace path followed by last key search.

For internal use by the IXBTreeCursor.

- setFirst
- setLast
- setNext
- setPrevious
- setKey:andLength:
- getKey:andLength:
- isMatch

Classes: IXBTreeCursor 7-35

Method Types

Initializing an IXBTreeCursor - initWithBTree:

Accessing the IXBTree - btree

Positioning with hints

Accessing IXBTree data

Instance Methods

btree
- (IXBTree *)btree

- setKey:andLength:withHint:
- getKey:andLength:withHint:

- write Value:andLength:
- writeRange:andLength:atOffset:
- readValue:
- readRange:ofLength:atOffset:
- remove Value

Returns the IXBTree that the IXBTreeCursor accesses. This is useful if your code didn't
initialize the IXBTreeCursor, since it allows your code to reconfigure the IXBTree, or
empty or free it.

See also: - initWithBTree:

getKey:andLength:withHint:
- (BOOL)getKey:(void **)aKey

andLength:(unsigned int *)aLength
withHint:(unsigned int *)aHint

Returns by reference the key defining the IXBTreeCursor's position in its IXBTree, along
with the key's length, and a hint that your code can use to speed up a subsequent key search
for the same key using setKey:andLength:withHint:. The hint is guaranteed to remain
useful as long as no insertions or removals are performed; however, the more the IXBTree
changes, the less useful the hint becomes.

If the IXBTreeCursor is at a key, this method returns YES. If the IXBTreeClirsor is
between two keys or before the first one, this method advances it to the next key and returns
YES. If the IXBTreeCursor is beyond the last key, this method returns NO, and the contents
of aKey, aLength, and aHint are undefined.

7 ·36 Chapter 7: Indexing Kit

The contents of aKey aren't guaranteed to remain valid across subsequent messages to the
IXBTreeCursor, since it may relocate its key buffer. Your code should copy its contents if
it needs to save them. Your code should not write into the buffer pointed to by aKey; doing
so may corrupt your application's memory; causing errors or a crash.

See also: - getKey:andLength: (lXCursorPositioning protocol),
- setKey:andLength:withHint:

in itWith BTree:

- initWithBTree:(IXBTree *)aBTree

Initializes the IXBTreeCursor to work with aBTree. It will use that IXBTree's comparator
or comparison format to position itself at keys. This is the designated initializer for
IXBTreeCursors. Returns self.

See also: - btree

readRange:ofLength:atOffset:

- (unsigned int)readRange:(void **)aRange
ofLength: (unsigned int)aLength
atOffset:(unsigned int)anOffset

Copies a portion of the value in the IXBTree at the IXBTreeCursor's position, and returns
the length actually read (which may be less than the length requested). If there is no
key/value pair at the IXBTreeCursor's position, the IX_NotFoundError exception is raised.

If *aRange is NULL, then up to aLength bytes will be allocated from the IXBTreeCursor's
zone, and the data will be copied into that buffer. Your code is responsible for freeing the
memory allocated. If a non-NULL value is provided in *aRange, then it is assumed to be
the address of a valid buffer, and up to aLength bytes will be copied into it starting from
anOffset within the IXBTree's value.

Important: Using the address of an uninitialized pointer variable as aRange is incorrect,
and will result in data being copied into a random location in the application's address
space. Your code should always allocate memory for the pointer variable or set it to NULL
before passing its address to this method.

See also: - readValue:, - writeValue:andLength:, - writeRange:atOffset:forLength:,
- openRange:ofLength:atOffset:forWriting:, - removeValue

Classes: IXBTreeCursor 7-37

readValue:

- (unsigned int)readValue:(void **)aValue

Copies the value in the IXBTree at the IXBTreeCursor's position, and returns the length of
the value. If there is no key/value pair at the IXBTreeCursor's position, the IXBTreeCursor
moves to the next higher position if possible. If the IXBTreeCursor is at the end of the key
space, IX_NotFoundError is raised.

If *aValue is NULL, then a buffer will be allocated from the IXBTreeCursor's zone, and
the data will be copied into that buffer. Your code is responsible for freeing the memory
allocated. If a non-NULL value is provided in * a Value, then it is assumed to be the address
of a valid buffer, and the value stored in the IXBTree will be copied into it. Your code is
responsible for making sure the buffer is large enough to hold the value. This is useful for
fixed-length values, or values with a known maximum length.

Important: Using the address of an uninitialized pointer variable as aValue is incorrect,
and will result in data being copied into a random location in the application's address
space. Your code should always allocate memory for the pointer variable or set it to NULL
before passing its address to this method.

This method may be used to determine the size of the buffer needed: invoke it first with
NULL as a Value to get the buffer length without copying the data, then a second time with
the length to copy the data. This is an efficient usage pattern, unless multiple cursors are
active, in which case, it will be very inefficient if the tree is modified by another cursor
between the two invocations.

See also: - writeValue:, - removeValue, -readRange:atOffset:forLength:,
- writeRange:atOffset:forLength:

removeValue

- remove Value

Removes the key and the associated value at the IXBTreeCursor's position. This method
raises IX_NotFoundError if there is no key at the IXBTreeCursor's position. Returns self.

See also: - readValue:, - writeValue:, - readRange:atOffset:forLength:,
- writeRange:atOffset:forLength:

7-38 Chapter 7: Indexing Kit

setKey:andLength:withHint:

- (BOOL)setKey:(void *)aKey
andLength: (unsigned int)aLength
withHint:(unsigned int)aHint

Positions the IXBTreeCursor at aKey if aKey is stored in the IXBTree; otherwise, positions
the IXBTreeCursor where aKey would be (which may be between two keys, or off either
end of the key space). aLength is the length of aKey. Returns YES if aKey is in the IXB Tree
(that is, if the IXBTreeCursor finds the key), and NO if it's not.

This method uses a hint as returned by getKey:andLength:withHint: to find aKey quickly.
A hint is like a bookmark; it defines a physical position in the IXBTree, so the
IXBTreeCursor can just go there and check if aKey is still there. If the IXBTree has been
modified, aKey may no longer reside at the position indicated by aHint; in that case a key
search is performed. Using hints can actually slow down key search in highly dynamic
IXBTrees; use them for reading static or read-only IXBTrees.

See also: - getKey:andLength:withHint:,
- getKey:andLength: (lXCursorPositioning protocol),
- setKey:andLength: (IXCursorPositioning protocol)

writeRange:atOffset:forLength:

- writeRange:(void *)aRange
atOffset: (unsigned int)anOffset
forLength:(unsigned int)aLength

Writes aRange over a portion of the value in the IXBTree at the IXBTreeCursor's position.
Data starting at anOffset within the IXBTree's value is overwritten for aLength bytes. If
the range would extend past the end of the value, the value is enlarged to hold the new
amount. Returns self.

If there is no key/value pair at the IXBTreeCursor's position, this method raises
IX_N otFoundError.

See also: - readRange:atOffset:forLength:, - readValue:, - writeValue:andLength:,
- remove Value

Classes: IXBTreeCursor 7-39

writeValue:andLength:

- (BOOL)writeValue:(void *)aValue andLength:(unsigned int)aLength

Writes aLength bytes from aValue as the value in the IXBTree at the IXBTreeCursor's
position, possibly overwriting a previously stored value. Returns YES if the write resulted
in an insertion, and NO if the write overwrote a previously stored value.

Overwriting completely replaces a value; the previous value is removed and replaced with
a new one. If the IXBTreeCursor is not positioned at a key/value pair, a new pair will be
inserted with the key last used to position the IXBTreeCursor (with setKey:andLength:
or setKey:andLength:withHint:). For example, inserting a completely new value into the
IXBTree involves positioning the IXBTreeCursor, checking that the positioning method
returns NO (that is, that it didn't find an existing value), and simply using
write Value:andLength: to insert the new value with the key just set.

See also: - readValue:, - removeValue, - readRange:atOffset:forLength:,
- writeRange:atOffset:forLength:

7-40 Chapter 7: Indexing Kit

IXFileFinder

Inherits From:

Conforms To:

Declared In:

Class Description

Object

IXBlockAndStoreAccess
IXN ameAndFileAccess
IXFileFinderConfiguration
IXFileFinderQuery AndUpdate
NXReference (Mach Kit)

indexing/IXFileFinder .h

IXFileFinder answers queries against file attributes over a file system subtree, and can
maintain indexes to improve query performance. IXFileFinder manipulates instances of
the IXFileRecord class as proxies for the actual files; queries return IXPostingLists
containing IXFileRecords representing the selected files. When used with an IXStore or
IXStoreFile, IXFileFinder uses a private instance of the IXRecordManager class to store
and index the IXFileRecords; this permits the efficient resolution of many queries without
requiring the file system subtree to be scanned every time a query is performed.

IXFileFinder is completely thread-safe; it supports multiple asynchronous queries by
programmer-supplied threads without conflict, and also provides an asynchronous index
updating mechanism managed by a single, private background thread.

The functionality of IXFileFinder is primarily described in its two protocol specifications,
IXFileFinderConfiguration and IXFileFinderQuery AndUpdate, which anticipate its use
with NeXTSTEP's Distributed Object facility. This class specification documents only the
initialization methods.

Classes: IXFileFinder 7-41

Instance Variables

unsigned int references;

List *attributeParsers;

id recordManager;
NXHashTable *ignoredNames;

NXHashTable *ignoredTypes;

char *rootPath;

unsigned int commitDelay;
struct {

unsigned int crossesDeviceChanges: 1;
unsigned int followsSymbolicLinks: 1;
unsigned int generatesDescriptions: 1;
unsigned int updatesAutomatically: 1;
unsigned int scansForModifiedFiles: 1;
unsigned int removesAutomatically: 1;

} boolean Options;

references

attributeParsers

recordManager

ignoredNames

ignoredTypes

rootPath

commitDelay

The reference count.

A List of IXAttributeParsers used to parse files.

The object that manages the file records.

The names of files that are ignored by the IXFileFinder.

The types of files that are ignored by the IXFileFinder.

The root directory of the IXFileFinder. This is considered
the base of the subtree for which queries can be made.

The delay in seconds between consecutive transaction
commitments during index update.

booleanOptions.crossesDeviceChanges
YES if the IXFileFinder addresses files on physical
devices other than the one its primary directory is on. NO
by default.

booleanOptionsJollowsSymbolicLinks
YES if the IXFileFinder follows symbolic links. NO
by default.

booleanOptions.generatesDescriptions

7-42 Chapter 7: Indexing Kit

YES if the IXFileFinder automatically generates
descriptions for IXFileRecords from the file contents.
NO by default.

booleanOptions.updatesAutomatically
YES if the IXFileFinder automatically queues
out-of-date files for indexing when a query is performed.
YES by default.

booleanOptions.scansForModifiedFiles
YES if the IXFileFinder scans for modified files when a
query is performed. YES by default.

booleanOptions.removesAutomatically

Adopted Protocols

IXBlockAndStoreAccess

IXN ameAndFileAccess

IXFileFinderConfiguration

YES if the IXFileFinder scans for deleted files when
updating, removing their proxies from the index. YES
by default.

- initlnStore:
- initFromBlock:inStore:
+ freeFromBlock:inStore:
- freeFromStore
- getBlock:andStore:

- initWithName:inFile:
- initFromName:inFile:forWriting:
+ freeFromName:inFile:
- freeFromStore
- getName:andFile:

- setAttributeParsers:
- getAttributeParsers:
- setCrossesDeviceChanges:
- crossesDeviceChanges
- setFollowsSymbolicLinks:
- followsSymbolicLinks
- setGeneratesDescriptions:
- generatesDescriptions
- setIgnoredN ames:
- ignoredN ames
- setIgnoredTypes:
- ignoredTypes
- setScansForModifiedFiles:
- scansForModifiedFiles
- setUpdatesAutomatically:
- updatesAutomatically

Classes: IXFileFinder 7-43

IXFileFinderQuery AndUpdate - rootPath
- recordManager
- performQuery:atPath:forSender:
- stopQueryForSender:
- updateIndexAtPath:
- is Updating
- suspendUpdating
- resumeUpdating
- clean
- reset

NXReference - references
- addReference
-free

Method Types

Initializing an IXFileFinder - initInStore:atPath:
- initFromBlock:inStore:atPath:
- initWithName:inFile:atPath:
- initWithName:inFile:forWriting:atPath:

Instance Methods

initFromBlock:inStore:

- initFromBlock:(unsigned int)aHandle inStore:(lXStore *)aStore

Initializes a newly allocated IXFileFinder as initFromBlock:inStore:atPath: with a path
argument of NULL. This method is useful for opening an IXFileFinder whose root
directory hasn't changed, which is usually the case.

See also: - initFromBlock:inStore:atPath:

initFromBlock:inStore:atPath:

- initFromBlock:(unsigned int)aHandle
inStore:(IXStore *)aStore
atPath:(const char *)path

Initializes a newly allocated IXFileFinder by opening it from data stored in the block of
aStore identified by aHandle. This data should have been created by a previous instance

7-44 Chapter 7: Indexing Kit

of IXFileFinder. The IXFileFinder's root path is reset to path; it will search for files within
the subtree rooted at that directory. path may be an absolute or relative pathname. If path
is NULL, the root path remains unchanged from its previous value. The root path may not
be changed after initialization. Returns self.

This is the designated initializer for opening a pre-existing IXFileFinder with the
IXBlockAndStoreAccess protocol.

See also: - initInStore:atPath:, - initWithName:inFile:atPath:,
IXBlockAndStoreAccess protocol

initFromName:inFile:forWriting:

- initFromName:(const char *)aName
inFile:(const char *)filename
forWriting:(BOOL)flag

Initializes a newly allocated IXFileFinder as initFromName:inFile:forWriting:atPath:
with a path argument of NULL. This method is useful for opening an IXFileFinder whose
root directory hasn't changed, which is usually the case.

See also: - initFromName:inFile:forWriting:atPath:

initFromName:inFile:forWriting:atPath:

- initFromName:(const char *)aName
inFile:(const char *)filename
forWriting:(BOOL)flag
atPath:(const char *)path

Initializes a newly allocated IXFileFinder by opening it from data stored under aName in
filename by a previous instance. The IXFileFinder's root path is reset to path; it will search
for files within the subtree rooted at that directory. path can be an absolute or relative
pathname, or it can be NULL, in which case the IXFileFinder's root path remains
unchanged. The root path may not subsequently be changed unless the IXFileFinder is
freed and then reopened. Ifflag is YES,filename is opened for reading and writing, and the
IXFileFinder is initialized to build and update its index; if flag is NO, filename is opened
for reading only. Returns self if successful, or nil ifjlag is YES and filename can't be
written or created.

An IXFileFinder opened for reading only can be modified; however, the changes occur
only in memory, and are never written to disk. This can be useful for keeping an index
up-to-date until the application terminates, without affecting the original file.

Classes: IXFileFinder 7-45

This is the designated initializer for opening a pre-existing IXFileFinder with the
IXNameAndFileAccess protocol. Note that the underlying IXStoreFile is opened by the
IXFileFinder when this method is used, and that it will be closed when the IXFileFinder
is freed.

See also: - initWithName:inFile:atPath:, IXNameAndFileAccess protocol

initlnStore:

- initlnStore:(lXStore *)aStore

Initializes a newly allocated IXFileFinder as initlnStore:atPath: with a path argument
of NULL.

See also: - initlnStore:atPath:

in itl nStore:atPath:

- initlnStore:(IXStore *)aStore atPath:(const char *)path

Initializes a newly allocated IXFileFinder in aStore, to search for files in the subtree rooted
at the directory named path. path is considered the root path for the IXFileFinder, and can
be an absolute or relative pathname. If path is NULL, the program's working directory is
used. The root path may not be changed after initialization. If aStore is nil, then the
IXFileFinder won't attempt to maintain indexes on file attributes using IXRecordManager.
This doesn't affect query semantics in any way; an IXFileFinder initialized without an
IXStore will return the same query results as an IXFileFinder initialized with an IXStore.
The presence or absence of an IXStore merely affects query performance. Returns self.

This is the designated initializer for creating new IXFileFinders with the
IXBlockAndStoreAccess protocol.

See also: - initFromBlock:inStore:atPath:, - initWithName:inFile:atPath:,
- initWithName:inFile:forWriting:atPath:, IXBlockAndStoreAccess protocol

7-46 Chapter 7: Indexing Kit

initWithName:inFile:

- initWithName:(const char *)aName inFile:(const char *)filename

Initializes a newly allocated IXFileFinder as initWithName:inFile:atPath:, with a path
argument of NULL.

See also: - initWithName:inFile:atPath:

initWithName:inFile:atPath:

- initWithName:(const char *)aName
inFile:(const char *)filename
atPath:(const char *)path

Initializes the IXFileFinder as a store file client named aName in the store file filename. If
filename doesn't exist, it's created. The IXFileFinder will search for files in the subtree
rooted at the directory named path, which is considered the root path for the IXFileFinder.
path can be an absolute or relative pathname If path is NULL, the current working
directory will be used. The root path may not be changed after initialization. filename is
opened for writing and reading, so that indexes can be created, updated, and cleaned.
Returns self.

This is the designated initializer for creating new IXFileFinders with the
IXN ameAndFileAccess protocol.

See also: - initlnStore:atPath:, - initFromBlock:inStore:atPath:,
- initWithName:inFile:forWriting:atPath:, IXNameAndFileAccess protocol

Classes: IXFileFinder 7·47

IXFileRecord

Inherits From: Object

Conforms To: NXTransport

Declared In: indexing/IXFileRecord.h

Class Description

An IXFileRecord represents a single file in a file system, and is used primarily by instances
of IXFileFinder. Queries against an IXFileFinder return sets of IXFileRecords representing
the selected files; the IXFileFinder may also store IXFileRecords in an IXRecordManager
to improve query performance. An IXFileRecord records the file's name, type, and other
information which may be useful to display to a user after performing a query; the file's
name may also be used to access the file itself.

Instance Variables

unsigned int filedate;

IXFileFinder *fileFinder;

char *filename;

char *filetype;

char *description;

struct stat *statBuffer;

filedate

fileFinder

filename

filetype

description

statBuffer

7-48 Chapter 7: Indexing Kit

The date that the file was last modified.

The IXFileFinder using this IXFileRecord.

The name of the file.

The type of the file (for example, "ps" or "man"). This is
often the same as its extension, though it need not be.

A description of the file.

The UNIX stat buffer for the file.

Adopted Protocols

NXTransport - encodeRemotelyFor:freeAfterEncoding:isBycopy:
- encodeUsing:
- decodeUsing:

Method Types

Initializing a new instance - init WithFileFinder:

Getting the file finder - fileFinder

Accessing file attributes - setFilename:
- filename
- setFiletype:
- filetype
- setDescription:
- description
- setFiledate:
- filedate

Accessing UNIX file information
- statBuffer

Instance Methods

description
- (const char *)description

Returns the description of the file, or NULL if one hasn't been set.

See also: - setDescription:

filedate
- (unsigned int)flledate

Returns the time that the file was last modified as the number of seconds since January 1,
1970, or 0 if one hasn't been set.

See also: - setFiledate:

Classes: IXFileRecord 7-49

fileFinder
- (IXFileFinder *)fileFinder

Returns the IXFileFinder that created and stores the receiving IXFileRecord.

See also: - initWithFileFinder:

filename

- (const char *)filename

Returns the file's name relative to the root path of the IXFileRecord's IXFileFinder, or
NULL if one hasn't been set.

See 'also: - setFilename:

filetype

- (const char *)filetype

Returns the file's type, or NULL if one hasn't been set. A file's type is us«d by the
IXFileFinder to convert it to a parsable format, and is also a query able attribute of the file.
File types are such things as "rtf' for Rich Text Format, "eps" fo~ PostScript and
Encapsulated PostScript, or "man" for UNIX manual pages. A file's type string is often the
same as its extension, though it need not be (as is the case for "man").

See also: - setFiletype:

initWithFileFinder:

- initWithFileFinder:(IXFileFinder *)aFileFinder

Initializes the IXFileRecord to work with aFileFinder and returns self. This establishes a
root path for the IXFileRecord.

See also: - fileFinder

7-50 Chapter 7: Indexing Kit

setDescription:

- setDescription:(const char *)aDescription

Sets the description of the file to aDescription. This method is usually invoked from the
fileFinder:wiIlAddFile: delegate method, which is sent by IXFileFinder when the
IXFileRecord is created. Returns self.

See also: - description, - generatesDescriptions (IXFileFinderConfiguration protocol),
- fileFinder:wiIlAddFile: (lXFileFinderQuery AndUpdate protocol)

setFiledate:

- setFiledate:(unsigned int)aDate

Records the time the file was last modified as aDate, expressed in seconds since January 1,
1970. Returns self.

See also: - filedate

setFilename:

- setFilename:(const char *)aName

Records the file's name as aName. aName should be the path of the file relative to the
IXFileFinder's root path. Returns self.

See also: - filename

setFiletype:

- setFiletype:(const char *)aType

Records the file's type as aType. A file's type is used by the IXFileFinder to convert it to a
pars able format, and is a query able attribute. Returns self.

See also: - filetype

Classes: IXFileRecord 7-51

statBuffer

- (const struct stat *)statBuffer

Returns the file's UNIX status information: its creation date, permissions, whether it's a
directory or special file, and so on. Returns NULL if the status information isn't available.

Your code can use this information to determine whether to display specific information
about this file (for example, if the user doesn't have read permission, that file's name could
be listed in dimmed text, or perhaps not listed at all).

The stat buffer is generally available only in the fileFinder:willAddFile: method for the
sender of an update request. fileFinder:willAddFile: is invoked by IXFileFinder when the
IXFileRecord is created.

See also: stat(2) UNIX manual page,
- fileFinder:willAddFile: (IXFileFinderQuery AndUpdate protocol)

7-52 Chapter 7: Indexing Kit

IXLanguageReader

Inherits From: IXAttributeReader : Object

Conforms To: IXAttributeReading (IXAttributeReader)

Declared In: indexing/lXLanguageReader.h

Class Description

The IXLanguageReader class is used to locate and load language-specific
IXAttributeReaders supplied by NeXT. These readers are shipped in
lNextLibrarylReaders, and are named for their target languages; for example,
English.reader. If an Indexing Kit object needs a reader, it uses this class to get a reader
for the user's preferred language (as set in the Preferences application). Your code can use
this class to obtain a reader for a specific language.

IXLanguageReader is also used as an abstract superclass for language-specific readers.
Subclasses of IXLanguageReader that perform language-specific processing can be
dynamically loaded from a reader file. If you plan to create a loadable reader for a language
not supported by NeXT, it should be a subclass of IXLanguageReader; contact NeXT
Technical Support for further instructions on doing this. If you plan to create a reader for
something other than a natural language, create a subclass of IXAttributeReader.

Instance Variables

None declared in this class.

Classes: IXLanguageReader 7-53

Method Types

Getting language information + installedLanguages
+ classForLanguage:

Getting objects associated with languages
+ readerForLanguage:
+ domainForLanguage:

Getting the target language + targetLanguage
- targetLanguage

Disabling dynamic loading + disableLoading

Class Methods

classForLanguage:

+ (Class)classForLanguage:(const char *)aLanguage

Returns the subclass of IXLanguageReader whose instances read text in aLanguage. Only
those readers found in lNextLibrarylReaders are considered.

disableLoading

+ disableLoading

Disables dynamic loading of IXLanguageReader subclasses for the application.

domainForLanguage:

+ domainForLanguage:(const char *)aLanguage

Returns an IXWeightingDomain specific to aLanguage, or nil if one can't be found. Only
those readers found in lNextLibrarylReaders are considered. If aLanguage is "Default"
the user's default language (as chosen by the user with the Preferences application) is used.

7-54 Chapter 7: Indexing Kit

installed Languages

+ (char *)installedLanguages

Returns a string containing a newline-separated list of the languages for which readers are
available. The sender of this message is responsible for freeing the string. Only the
languages for readers found in lNextLibrarylReaders are returned.

readerForLanguage:

+ readerForLanguage:(const char *)aLanguage

Returns an IXLanguageReader which reads text in aLanguage. If a reader specific to
aLanguage can't be found, returns a reader for English, or a generic IXAttributeReader if
the English reader is unavailable. If aLanguage is "Default" the user's default language (as
chosen by the user with the Preferences application) is used.

targetLanguage

+ (NXAtom)targetLanguage

Returns the name of the language that the receiving IXLanguageReader subclass reads, or
NULL if the receiving class is IXLanguageReader.

See also: - targetLanguage

Instance Methods

targetLanguage

- (NXAtom)targetLanguage

Returns the name of the language that the IXLanguageReader reads.

See also: + targetLanguage

Classes: IXLanguageReader 7-55

IXPostingCursor

Inherits From:

Conforms To:

Declared In:

Class Description

IXBTreeCursor: Object

IXPostingExchange
IXPostingOperations
IXCursorPositioning (IXB TreeCursor)

btreelIXPostingCursor .h

IXPostingCursor is a subclass of IXBTreeCursor that treats the values in its IXBTree as sets
of postings, which are weighted references to data. This class is primarily intended for
maintaining inversions for databases. An IXPostingCursor can be positioned in an
IXBTree to find a set of postings, and from there the postings can be manipulated: each
posting in the set can be examined, postings can be added to or removed from the set of
postings, or the set can be completely emptied. An IXPostingCursor can exchange its
postings with any object that conforms to the IXPostingExchange protocol, including
instances of IXPostingList and IXPostingSet.

IXPostingCursor is very efficient in the storage of postings. Weights are stored only when
needed; if all of the postings for a given key have zero weight, then only the handles are
stored. An IXPostingCursor with unweighted postings consumes half the storage of an
IXPostingCursor with weighted postings. Similarly, until 32-bit quantities are needed for
handles or weights, they're stored as 16-bit quantities on a per-key basis, and promoted as
needed. In addition, IXPostingCursor uses the range-oriented methods of IXBTreeCursor
to read or write as little data as possible when manipulating posting sets.

For more information on basic cursoring techniques, see the IXCursorPositioning protocol
specification. For more information on manipulating postings, see the IXPostingExchange
and IXPostingOperations protocol specifications.

7-56 Chapter 7: Indexing Kit

Instance Variables

None declared in this class.

Adopted Protocols

IXPostingExchange - setCount:andPostings:
- getCount:andPostings:

IXPostingOperations - addHandle:with Weight:
- removeHandle:
- count
-empty
- setFirstHandle
- setN extHandle
- setHandle:
- getHandle:andWeight:

Instance Methods

None declared in this class.

Classes: IXPostingCursor 7-57

IXPostingList

Inherits From:

Conforms To:

Declared In:

Class Description

List : Object

IXPostingExchange
NXTransport

indexinglIXPostingList.h

IXPostingList is a subclass of List tailored for use with objects, or records, stored in an
archiving object, called the source. (Generally the source is an IXRecordManager, which
can use a different form of archiving from the standard read: and write: methods-the
processes of archiving and unarchiving are referred to as passivation and activation in this
case.) Records are activated on demand, and their persistent identifiers are accessible as
postings. IXPostingList can exchange postings with instances the IXPostingCursor and
IXPostingSet classes, or any other object that conforms to the IXPostingExchange protocol.

Initially, an IXPostingList stores persistent record identifiers in the form of postings (see
"Associative Access" in the chapter introduction). The records themselves reside in a store
managed by some other object, called the source. A source is any object that conforms to
the IXRecordReading protocol. When the IXPostingList is asked for an object, it has the
source activate the object, returns the objects's id, and caches the id in case it's needed
again. This cache of ids remains aligned with the postings: if the postings are replaced, or
moved around by insertion or deletion, the ids are replaced, or moved around with them.
Objects can also be added or replaced directly, as with a List; objects added or replaced
without postings are assigned null handles and weights.

Note: If your code needs to iterate over all of the objects in a large IXPostingList, be sure
to start with the last object in the list. An IXPostingList dynamically grows its cache of ids;
asking for the last object first will cause space to be immediately allocated for all of the ids.
This avoids cache resizing as the objects are requested.

A common use for an IXPostingList is iterating over the records described by a set of
postings; the simple function listed below prints out descriptions for records stored in an
IXRecordManager. It also shows how an IXPostingList can gets its postings directly from
another object, in this case an IXPostingCursor.

7-58 Chapter 7: Indexing Kit

int printRecords(IXRecordManager *aSource,
const char *anAttribute, void *aKey~ unsigned aLength)

IXPostingList *theListj

IXPostingCursor *aCursorj

int i, countj

count = OJ

II get a cursor on the attribute and position it

aCursor = [aSource cursorForAttributeNamed:anAttribute]j
if ([aCursor setKey:aKey andLength:aLength])

II load a posting list from the cursor
if (theList = [[IXPostingList alloc]

initWithSource:aSource andPostingsIn:aCursor])

II get space for all the object ids right away.

count = [theList count] j

[theList objectAt:count - l]j

II print out the description of each activated record.

for (i = OJ i < countj i++)
printf("%s\n", [[theList objectAt:i] description] j

[aCursor free] j

[[theList freeObjects] free]j
return countj

Instance Variables

unsigned int maxPointers;
id <IXRecordReading> recordSource;
struct IXPosting *postingList;

maxPointers

recordSource

postingList

The number of slots allocated for object ids.

The object which stores the records kept in the
IXPostingList.

The handle/weight pairs in the IXPostingList.

Classes: IXPostingList 7-59

Adopted Protocols

IXPostingExchange - setCount: andPostings:
- getCountandPostings:

NXTransport - encodeRemotelyFor:freeAfterEncoding:isBycopy:
- encodeUsing:
- decodeUsing:

Method Types

Initializing an IXPostingList - initWithSource:
- initWithSource:andPostingsIn:

Retrieving the source - source

Manipulating objects by handle - addHandle:with Weight
- insertHandle:with Weight at:
- replaceHandleAtwith:weight:

Manipulating objects by id - addObject:with Weight
- insertObject:with Weight at
- replaceObjectAtwith:weight

Manipulating objects by index - indexForHandle:

Sorting the contents

Instance Methods

addHandle:withWeight:

- handleOfObjectAt
- weightOfObjectAt

- sortByWeightAscending:
- sortBySelector:ascending:

- addHandle:(unsigned int)aHandle withWeight:(unsigned int)aWeight

Inserts aHandle with a Weight at the end of the IXPostingList. The object identified in the
IXPostingList's source by aHandle can be retrieved by id with objectAt:. Returns self.

See also: - insertHandle:at:with Weight:, - add~bject:with Weight:,
- insertObj ect: with Weight: at: , - handleOfObjectAt:, - weightOfObjectAt:

7-60 Chapter 7: Indexing Kit

addObject:withWeight:

- addObject:anO~ject with Weight: (unsigned int)a Weight

Inserts anObject with a Weight at the end of the IXPostingList, and returns self. anObject
is added to the IXPostingList with no handle; addHandle:with Weight: should be used
instead of this method whenever possible, in order to store a valid handle for every record.

Note: This method currently allows nil to be added to the list. This isn't recommended,
and may be disallowed in a future release.

See also: - insertHandle:at:withWeight:, - handleOfObjectAt:,
- weightOfObjectAt:

getCount:andPostings:

- getCount:(unsigned int *)count andPostings:(IXPosting **)thePostings

Returns by reference the number of postings, and a copy of the postings sorted by handle.
The sender of this message is responsible for freeing the postings when they are no longer
needed. Returns self.

Since objects can be added to an IXPostingList by id instead of by handle, or inserted in
any order, an IXPostingList' s set of postings may not conform to the requirements imposed
by the IXPostingExchange protocol (that is, sorted by handle and containing no null
handles). In a future release, IXPostingList may sort its postings by handle and remove null
handles when returning the postings with this method.

See also: - setCount:andPostings:

handleOfObjectAt:

- (unsigned int)handleOfObjectAt:(unsigned int)index

Returns the handle of the posting at index if there is a posting there and it has a valid handle.
If index is greater than or equal to the number of postings in the list, or if the object was
entered into the list by id instead of by handle, this method returns O.

See also: - weightOfObjectAt:, - objectAt: (List), - addHandle:withWeight:,
- addObj ect: with Weight:

Classes: IXPostingList 7-61

indexForHandle:

- (unsigned int)indexForHandle:(unsigned int)handle

Returns the position in the IXPostingList of the posting identified by handle, or
NX_NOT_IN_LIST if that posting isn't in the IXPostingList.

See also: - handleOfObjectAt:, - indexOf: (List)

initWithSource:

- initWithSource:(id <IXRecordReading>)aSource

Initializes the receiver, a newly allocated IXPostingList, with aSource providing record
activation. aSource should be an object that conforms to the IXRecordReading protocol,
for example, an IXRecordManager. The IXPostingList initially contains no postings.
Returns self.

See also: - initWithSource:andPostingsln:, - source

initWithSource:andPostingsln:

- initWithSource:(id <IXRecordReading>)aSource
andPostingsln:(id <IXPostingExchange>)anObject

Initializes the receiver, a newly allocated IXPostingList, with aSource providing record
activation, and anObject providing an initial set of po stings (this will usually be an
IXPostingCursor or IXPostingSet). anObject should have the same source as the
IXPostingList of this message. This is the designated initializer for the IXPostingList class.
Returns self.

See also: - initWithSource:, - source, - setCount:andPostings:, IXRecordReading
protocol

7-62 Chapter 7: Indexing Kit

insertHandle:withWeight:at:
- insertHandle: (unsigned int)aHandle

withWeight:(unsigned int)aWeight
at:(unsigned int)index

Inserts aHandle with a Weight at position index in the IXPostingList, moving existing
postings down one slot, if necessary. If index is equal to the number of postings in the
IXPostingList, aHandle is added at the end. The insertion fails, and this method returns nil,
if index is greater than the number of postings in the list or if aHandle is O.

If the insertion is successful, returns self; if not, returns nil.

See also: - insertObject:withWeight:at:, - addHandle:withWeight:,
- addObject:withWeight:, - handleOfObjectAt:, - weightOfObjectAt:

insertObject:withWeight:at:
- insertObject:anObject

withWeight:(unsigned int)aWeight
at:(unsigned int)index

Inserts anObject with a Weight at position index in the IXPostingList, moving existing
objects down one slot, if necessary. If index is equal to the number of postings in the
IXPostingList, anObject is added at the end. The insertion fails, and this method returns
nil, if index is greater than the number of postings in the IXPostingList. anObject is
inserted into the list with no handle; insertHandle:with Weight: at: should be used instead
of this method whenever possible, in order to store a valid handle for every record.

If the insertion is successful, returns self; if not, returns nil.

See also: - insertObject:withWeight:at:, - addHandle:withWeight:,
- addObject:withWeight:, - handleOfObjectAt:, - weightOfObjectAt:

Classes: IXPostingList 7-63

replaceHandleAt:with:weight:

- replaceHandleAt:(unsigned int)index
with:(unsigned int)aHandle
weight:(unsigned int)a Weight

Replaces the posting at index with a posting made from aHandle and a Weight. The
replacement fails, and this method returns nil, if index is greater than or equal to the number
of postings in the IXPostingList or if aHandle is O.

If the replacement is successful, returns self; if not, returns nil.

See also: - replaceObjectAt:with:weight:

replaceObjectAt:with:weight:

- replaceObjectAt:(unsigned int)index
with: an Object
weight:(unsigned int)aWeight

Replaces the object and its posting at index with anObject and a posting with a handle of 0
and weight of a Weight. The replacement fails, and this method returns nil, if index is
greater than or equal to the number of postings in the IXPostingList, or if anObject is nil.
anObject is inserted with no handle; your code should use replaceHandleAt:with:weight:
whenever possible, in order to store a valid handle for every posting.

If the replacement is successful, returns self; if not, returns nil.

See also: - replaceHandleAt:with:weight:

sortBySelector:ascending:

- sortBySelector:(SEL)aSelector ascending:(BOOL)jlag

Sorts the contents of the IXPostingList by constructing a key from the value each record
returns when aSelector is sent to it. Ifjlag is YES, the sort is ascending (ABeD ...), ifjlag
is NO, the sort is descending (ZXYW ...). Returns self.

The sort ordering used is determined by the return type of aSelector. The IXPostingList
determines which of the standard Indexing Kit comparator functions to use, and applies the
appropriate function to the result of each message send. However, unlike the keys of an
IXBTree, the data being compared doesn't have to be inline (serialized); the return value of
aSelector can be a pointer type, and the IXPostingList will construct a proper key for it.

7-64 Chapter 7: Indexing Kit

See the IXComparisonSetting protocol specification for more information on legal
comparison values.

See also: - sortByWeightAscending:, IXCompareBytesO (C Functions)

sortByWeightAscending:

- sortByWeightAscending:(BOOL)flag

Sorts the contents of the IXPostingList based on the weight of each record. Ifflag is YES,
the sort is from low weight to high, if flag is NO, the sort is from high weight to low.

See also: - sortBySelector:ascending:

source

- (id <IXRecordReading>)source

Returns the object which provides storage for the records referenced by the IXPostingList.

See also: - initWithSource:, - initWithSource:andPostings:, IXRecordReading
protocol

weightOfObjectAt:

- (unsigned int)weightOfObjectAt:(unsigned int)index

Returns the weight of the posting at index, or 0 if index is greater than or equal to the
number of postings in the IXPostingList.

See also: - handleOfObjectAt:, - addHandle:with Weight:

Classes: IXPostingList 7-65

IXPostingSet

Inherits From:

Conforms To:

Declared In:

Class Description

Object

IXPostingExchange
IXPostingOperations

btreelIXPostingSet.h

An IXPostingSet stores sets of postings in memory. An IXPostingSet can be loaded from
any object that conforms to the IXPostingExchange protocol such as IXPostingCursor,
IXPostingList, or another IXPostingSet; it can also forms set unions, intersections, and
differences with the postings stored in such an object. IXPostingSet is particularly well
suited to building up query results for databases.

The following example shows how an IXPostingSet might be used to find all of the records
in an IXRecordManager whose value for some string valued attribute matches some prefix:

IXPostingSet *matchPrefix(IXRecordManager *aSource,
const char *attributeName, const char *thePrefix)

IXPostingSet *theSet;
IXPostingCursor *aCursor;
char *theKey;
unsigned keyLength;
unsigned theLength;

II get a cursor for the attribute
aCursor = [aSource cursorForAttributeNamed:attributeName];
if (aCursor == nil) return nil;

II create an empty posting set
theSet = [[IXPostingSet alloc] initCount:O andPostings:NULL];

7-66 Chapter 7: Indexing Kit

II iterate over the keys while there's a match
theLength = strlen(thePrefix);
[aCursor setKey:thePrefix andLength:theLength];
while ([aCursor getKey: (void **)&theKey andLength:&keyLength])
{

II check for key out of bounds
if (keyLength < theLength I I bcmp(theKey, thePrefix,

theLength) break;

II add the postings for this key to the set and move cursor
[theSet formUnionWithPostingsln:aCursor];

[aCursor setNext];

[aCursor free];

II free set if empty
return [theSet count] ? theSet [theSet free];

Instance Variables

unsigned int thisElement;

unsigned int numElements;

unsigned int maxElements;

IXPosting *postings;

thisElement

numElements

maxElements

postings

The position of the selected posting.

The number of postings in the set.

The maximum allowable number of postings in the set.

The postings.

Classes: IXPostingSet 7-67

Adopted Protocols

IXPostingExchange - setCountandPostings:
- getCount andPostings:

IXPostingOperations - addHandle:with Weight
- removeHandle:
- count
-empty
- setFirstHandle
- setNextHandle
- setHandle:
- getHandle:andWeight:

Method Types

Initializing instances - initCountandPostings:
- initWithPostingsIn:

Setting the postings - setCountandPostings:byCopy:

Accessing postings by position - setPosition:

Performing set operations - formUnion WithPostingsIn:
- formIntersection WithPostingsIn:
- subtractPostingsIn:

Instance Methods

formlntersectionWithPostingsln:

- formlntersection WithPostingsln:(id <IXPostingExchange>)anObject

Combines the postings in the IXPostingSet with those in anObject, so that on return the
IXPostingSet will contain only those postings that were in both objects; that is, it performs
a logical AND on the two sets of postings. If each set has a posting with the same handle,
but different weights, the weights are averaged. anObject is unaffected by this method.
Returns self.

See also: - formUnionWithPostingsln:, - subtractPostingsln:

7-68 Chapter 7: Indexing Kit

formUnionWithPostingsln:

- form Union WithPostingsln:(id <IXPostingExchange>)anObject

Combines the postings in the IXPostingSet with those in anObject, so that on return the
IXPostingSet will contain all postings that were in either object (duplicates are reduced to
a single posting); that is, it performs a logical OR on the two sets of postings. If each set
has a posting with the same handle, the weights are averaged. anObject is unaffected by
this method. Returns self.

See also: - formlntersection WithPostingsln:, - subtractPostingsln:

initCount:andPostings:

- initCount:(unsigned int)count andPostings:(const IXPosting *)postings

Initializes the IXPostingSet with count postings, copied from postings. This is the
designated initializer for IXPostingSet objects.

See also: - initWithPostingsln:, - setCount:andPostings:byCopy:

initWithPostingsln:

- initWithPostingsln:(id <IXPostingExchange>)anObject

Initializes the IXPostingSet with the postings in anObject. anObject should conform to the
IXPostingExchange protocol. Returns self.

See also: - initCount:andPostings:

setCount:andPostings:byCopy:

- setCount:(unsigned int)count
andPostings:(const IXPosting *)postings
byCopy:(BOOL)jlag

Sets the count and postings in the IXPostingSet, replacing and deallocating any previous
contents. Ifjlag is YES, a copy of postings is made and set to be the IXPostingSet's
postings; ifjlag is NO, then the IXPostingSet assumes responsibility for the set of postings,
and will free them when they are replaced or when the IXPostingSet is freed. Returns self.

See also: - initCount:andPostings:

Classes: IXPostingSet 7-69

setPosition:

- (unsigned int)setPosition:(unsigned int)index

Selects a posting by position in the posting set, and returns that posting's handle. Your code
can use this method to quickly access a handle based on its position.

See also: - setHandle: (IXPostingSetOperations protocol)

subtractPostingsln:

- subtractPostingsIn:(id <IXPostingExchange>)anObject

Removes from the IXPostingSet those postings that are also in anObject; that is, it performs
a logical AND NOT between the two·sets of postings. anObject is unaffected by this
method. Returns self.

See also: - formUnion WithPostingsIn:, - formIntersection WithPostingsPostingsIn:

7-70 Chapter 7: Indexing Kit

IXRecordManager

Inherits From:

Conforms To:

Declared In:

Class Description

Object

IXBlockAndStoreAccess
IXN ameAndFileAccess
IXBlobWriting
IXRecordDiscarding
IXRecordWriting
IXTransientAccess
IXTransientMessaging

indexing/IXRecordManager.h

IXRecordManager is a record manager based on the Objective C run-time system; it stores
objects in an IXStore, and maintains indexes on programmer-defined attributes. Attributes
are defined in terms of the return values of messages sent to the stored objects. The stored
objects can be retrieved by persistent identifiers, by their attribute values, or by posing a
question with IXAttributeQuery, a class that defines a declarative query language for
IXRecordManager and other Indexing Kit classes.

Storing Records

IXRecordManager archives, or passivates, an object by writing its data into an IXBTree
record. Two archiving mechanisms are provided: Objective C archiving, as performed by
the standard read: and write: methods, and serialization, a very fast transcription
mechanism that writes or reads an object's instance variables directly into or out of storage.
An object will be serialized instead of archived if it conforms to the IXRecordTranscription
protocol. For the purpose of serialization, a data type can be serialized if its length can be
unambiguously determined from its type declaration and its physical representation; this
includes all scalar ANSI C data types, pointers to character strings (which are assumed to
be null-terminated), and fixed length arrays of the preceding kinds of data types.

Before serializing an object that conforms to the IXRecordTranscription protocol,
IXRecordManager sends it a source:willWriteRecord: message, giving the object an
opportunity to prepare itself for passivation, or to request the IXRecordManager to write

Classes: IXRecordManager 7-71

its unserializable data as blobs. The process of archiving blobs is described in the
IXBlob Writing protocol specification. When a record is deserialized, or activated, the
IXRecordManager sends source:didReadRecord: to it.

The IXRecordManager interface allows a record to be added, discarded, removed, or
replaced by another record. When a record is discarded, IXRecordManager treats it as
though it didn't exist until it's either reclaimed or removed. See the IXRecordDiscarding
protocol specification for more information on discarding and reclaiming records.

Indexing Records

IXRecordManager allows attributes to be defined by name and method, such as
"EmployeeName" with the method g'iven by @selector(empName). The value of an
attribute for a given record is the value returned when the attribute's message is sent to that
record. If a record doesn't respond to the message, then the attribute isn't defined for that
record. By default, an attribute is defined for every record that responds to its message; its
scope may be further restricted to those records which are instances of a specific class or
subclasses of that class.

Here's an example of setting up an attribute for employees by full name (with a method
empName that returns a character string), and restricting it to instances of
MyEmployeeRecord and its subclasses:

[recordManager addAttributeNamed:"EmployeeName"
forSelector:@selector(empName)];

[recordManager setTargetClass: [MyEmployeeRecord class]

forAttributeNamed:"EmployeeName"] ;

IXRecordManager maintains an index for each of its attributes; the index is an inversion of
the attribute's value over all of the records for which it's defined. An attribute index is an
IXBTree managed by an IXPostingCursor; IXRecordManager determines the comparator
for the IXBTree by examining the return type of the attribute's selector. The default
comparator can be overridden (as would be necessary for methods that returned
structures or unions) with the setComparator:andContext:for AttributeNamed: or
setComparisonFormat:andContext:forAttributeNamed: methods. In the example
given above, the default comparator would be IXCompareStrings, since empName is
defined as returning a string. For more information on comparators, see the
IXComparatorSetting and IXComparisonSetting protocol specifications.

The IXAttributeParser class can be used to index string-valued attributes under each of the
separate lexemes (words or other useful units of text) in a string, instead of using the entire
string as the value. The setParser:forAttributeNamed: message assigns a parser that will

7-72 Chapter 7: Indexing Kit

break the selector's return value into its constituent words. If the attribute in the example
above were based on a method that returns a text string containing unstructured,
miscellaneous notes, then assigning a parser might be appropriate. Using the default parser
configuration for English, an employee record with the note "Has three kids named Bobby,
Judy and Sam" would be recorded in the index under the values "Has," "three," "kid,"
"named," "Bobby," "Judy," and "Sam." Note that "and," being considered a noise word
in English, isn't included, and that the plural "kids" was reduced to "kid." See the
IXAttributeParser and IXAttributeReader class specifications for more information
on parsers.

Retrieving Records

References to records are stored as postings in the attribute indexes. A posting is a
reference identifier plus its weight (a measure of its frequency or importance in the
index). Any index can be examined through an IXPostingCursor returned by
cursorForAttributeNamed:. A new copy of the cursor is returned for each invocation of
this method, so the sender should free each copy when it's no longer needed. The basic
cursoring techniques described in the IXCursorPositioning protocol specification can be
used to locate references to all of the records having a given value for the attribute, or to
iterate over the set of existing values for the attribute. As described in the IXPostingSet
class specification, an IXPostingSet can be used to retrieve sets of postings directly from
the IXPostingCursor, and can combine those sets in various ways. References to records
for a range of attribute values can be collected using one IXPostingCursor and one
IXPostingSet. See the IXPostingSet class specification for an example.

IXPostingSets built against different attributes can be combined to resolve multi-attribute
queries. For example, all employees with a last name of "Draper" and a salary of at least
$60,000 could be found by collecting the appropriate postings from the EmployeeName
and Salary attributes into two separate IXPostingSets, and intersecting the results. Another
Indexing Kit class, IXAttributeQuery, resolves declarative queries expressed in a
functional language against instances of IXRecordManager and other classes using these
techniques.

Instance Variables

None declared in this class.

Classes: IXRecordManager 7-73

Adopted Protocols

IXBlob Writing

IXBlockAndStoreAccess

IXN ameAndFileAccess

IXRecordDiscarding

IXRecordWriting

IXTransientAccess

IXTransientMessaging

7-74 Chapter 7: Indexing Kit

- setValue:andLength:ofBlob:forRecord:
- getValue:andLength:ofBlob:forRecord:

- initWithStore:
- initFromBlock:andStore:
- freeFromStore
+ freeFromBlock:andStore:
- getBlock:andStore:

- initWithName:
- initFromName:inFile:
- freeFromStore
+ freeFromName:inFile:
- getName:andFile:

-discardRecord:
- reclaimRecord:
- clean

- addRecord:
- removeRecord:
- replaceRecord:with:
-empty
- count
- readRecord:fromZone:

- getOpaqueValue:oflvar:forRecord:
- getlntValue:oflvar:forRecord:
- getFloatValue:oflvar:forRecord:
- getDoubleValue:oflvar:forRecord:
- getStringValue:oflvar:forRecord:
- getString Value:inLength:ofl var:forRecord:
- getObjectValue:oflvar:forRecord:

- getOpaque Value:otMessage:forRecord:
- getlntValue:otMessage:forRecord:
- getFloatValue:otMessage:forRecord:
- getDouble Value: otMessage: forRecord:
- getString Value: otMessage: forRecord:
- getString Value:inMessage:ofl var:forRecord:
- getObjectValue:otMessage:forRecord:

Method Types

Adding and removing attributes - addAttributeN amed:forSelector:
- has AttributeN amed:
- removeAttributeN amed:

Key comparison - setComparisonFormat:forAttributeN amed:
- comparisonFormatForAttributeN amed:
- setComparator:andContextforAttributeN amed:
- getComparator:andContextforAttributeN amed:

Setting attribute targets - setTargetClass:forAttributeNamed:
- getTargetN ame:andVersion:forAttributeN amed:

Accessing attributes - cursorForAttributeNamed:

Getting attribute information - selectorForAttributeNamed:
- attributeN ames

Accessing classes - classN ames
- attributeNamesForClass:
- recordsForClass:

Retrieving discarded records - discards

Setting attribute descriptions - setDescription:forAttributeNamed:
- getDescription:forAttributeNamed:

Setting parsers - setParser:forAttributeNamed:
- parserForAttributeN amed:

Instance Methods

addAttributeNamed:forSelector:

- addAttributeNamed:(const char *)aName forSelector:(SEL)aSelector

Creates an attribute for records that respond to aSelector, associates it with name aName,
and builds an index for that attribute. Note that records already passivated by the
IXRecordManager that respond to aSelector are not added to the new index automatically.
This may change in a future release. If an attribute already exists with name aName, returns
nil; otherwise returns non-nil.

See also: - removeAttributeNamed:, - selectorForAttributeNamed:

Classes: IXRecordManager 7-75

attributeNames

- (char *)attributeNames

Returns a newline-separated list of the names of all attributes jn the IXRecordManager.
The sender of this message is responsible for freeing the string returned.

See also: - addAttributeNamed:forSelector:

attributeNamesForClass:
- (char *)attributeNamesForClass:aClass

Returns a newline-separated list of the names of all of the attributes maintained by the
IXRecordManager that are defined for instances of aClass. This includes all of the
attributes whose selectors are recognized by instances of aClass, and whose target class is
aClass or one of its superclasses. The sender of this message is responsible for freeing the
string returned.

See also: - setTargetClass:forAttributeNamed:

classNames

- (char *)c1assNames

Returns a newline-separated list of the names of all the classes which have instances stored
in the IXRecordManager. The sender of this message is responsible for freeing the
string returned.

comparisonFormatForAttributeNamed:

- (const char *)comparisonFormatForAttributeNamed:(const char *)aName

Returns a string defining the comparison format of keys in the index named aName, or
NULL if one hasn't been set. This is a string encoding the Objective C data types that
comprise the key; for example, "[3i]" describes an array of 3 integers. An IXBTree uses
this format to determine how to compare keys. For more information on comparison
formats, see the IXComparisonSetting protocol specification.

See also: - setComparisonFormat:forAttributeNamed:,
- getComparator:andContext:for AttributeNamed:

7-76 Chapter 7: Indexing Kit

cursorForAttributeNamed:

- (IXPostingCursor *)cursorForAttributeNamed:(const char *)aName

Returns an IXPostingCursor that addresses the index for the attribute named aName. This
cursor can be used to find references to records having a given value for the attribute. For
more information on using cursors, see the IXCursorPositioning protocol specification, and
the IXPostingCursor class specification.

This method returns a copy of a private cursor each time it's invoked, so your code should
free the copy when it's no longer needed.

discards

- (IXPostingList *)discards

Returns an IXPostingList containing all records that have been discarded (by sending
discardRecord: to the IXRecordManager). This IXPostingList can be used to reclaim
the discarded records with reciaimRecord:. See the IXRecordDiscarding protocol
specification for more information.

If the IXRecordManager is asked to read a discarded record (with the IXRecordReading
protocol's readRecord:FromZone: method), the result will be nil; for most purposes the
record no longer exists. However, discarded records will still have references in the
IXRecordManager's attribute indexes. If your code doesn't deal gracefully with nil
records, you can filter posting sets before using them by subtracting the discards from them.

getComparator:andContext:forAttributeNamed:

- getComparator:(IXComparator **)aComparator
andContext:(const void **)aContext
forAttributeNamed:(const char *)aName

Returns by reference the function used to compare attribute values, and the context
associated with that function, for the attribute named aName. If the attribute has a
comparison format set instead, the comparator and context will be NULL. A comparator
function takes two data items and returns an answer indicating whether the first is less than,
equal to, or greater than the second. The context is arbitrary data for use by that function.
Returns self.

For more information on comparators, see the IXComparatorSetting protocol specification
and the IXBTree class specification.

See also: - setComparator:andContext:forAttributeNamed:,
- comparisonFormat:for AttributeNamed:

Classes: IXRecordManager 7-77

getDescription:forAttributeNamed:

- getDescription:(char **)aDescription forAttributeNamed:(const char *)aName

Returns by reference the description for the attribute named aName. The description can
be used to record extra information pertaining to the attribute. Returns self.

See also: - setDescription:forAttributeNamed:, - addAttributeNamed:forSelector:

getTargetName:andVersion:forAttributeNamed:

- getTargetName:(const char **)aName
andVersion:(unsigned int *)targetVersion
forAttributeNamed:(const char *)aName

Returns by reference the name and version of the class that the attribute named aName is
defined for, or NULL and 0 if none has been set. If an attribute has a target class set, it will
be defined only for records of that class or a subclass. Returns self.

See also: - setTargetClass:forAttributeNamed:

hasAttributeNamed:

- (BOOL)hasAttributeNamed:(const char *)aName

Returns YES if the IXRecordManager has an attribute named aName, NO if it doesn't.

parserForAttributeNamed:

- (lXAttributeParser *)parserForAttributeNamed:(const char *)aName

Returns the parser, if any, assigned to the attribute named aName. The parser will break
the return value of the attribute's selector into separate words when the attribute is
evaluated.

See also: - setParser:for AttributeNamed:

recordsForClass:

- (lXPostingList *)recordsForClass:aClass

Returns an IXPostingList containing all of the records in the IXRecordManager which are
instances of aClass or a subclass of aClass.

7-78 Chapter 7: Indexing Kit

removeAttributeNamed:

- removeAttributeNamed:(const char *)aName

Removes the attribute named aName from the IXRecordManager. Records referenced by
the attribute's index aren't affected. Returns self.

See also: - addAttributeNamed:forSelector:

selectorForAttributeNamed:
- (SEL)selectorForAttributeNamed:(const char *)aName

Returns the selector for the message that defines the attribute named aName. Unless the
attribute is restricted to a specific class, this message is sent to any record that responds to
it in order to evaluate the attribute. Otherwise it's only sent to records of the attribute's
target class (or a subclass of the target class).

See also: - addAttributeNamed:forSelector:

setComparator:andContext:forAttributeNamed:

- setComparator:(IXComparator *)aComparator
andContext:(const void *)aContext
forAttributeNamed:(const char *)aName

Sets the function used to compare attribute values, and the context associated with that
function, for the attribute named aName. 'A comparator function should accept two data
items and return an answer indicating whether the first is less than, equal to, or greater than
the second. The context is arbitrary data for use by that function. Returns self.

For more information on comparators, see the IXComparatorSetting protocol specification
and the IXBTree class specification.

See also: - getComparator:andContext:forAttributeNamed:,
- setComparisonFormat:for AttributeNamed:

setComparisonFormat:forAttributeNamed:

- setComparisonFormat:(const char *)aFormat
forAttributeNamed:(const char *)aName

Installs a string defining the comparison format of keys in the index named aName. This
is a string encoding the Objective C data types that comprise the key; for example, "[3i]"
describes an array of 3 integers (although the length is currently ignored). An IXBTree uses

Classes: IXRecordManager 7-79

this format to determine how to compare keys. For more information on comparison
formats, see the IXComparisonSetting protocol specification.

See also: - comparisonFormat:forAttributeNamed:,
- setComparator:andContext:for AttributeNamed:

setDescription:forAttributeNamed:

- setDescription:(const char *)aDescription
forAttributeNamed:(const char *)aName

Sets the description for the attribute named aName to aDescription. The description can
be used to record extra information pertaining to the attribute. Returns self.

See also: - getDescription:forAttributeNamed:

setParser:forAttributeNamed:

- setParser:(IXAttributeParser *)aParser forAttributeNamed:(const char *)aName

Assigns the parser aParser to the attribute named aName. The parser will break the return
value of the attribute's selector into separate words when the attribute is evaluated.
Returns self.

See also: - parserForAttributeNamed:

setTargetClass:forAttributeNamed:

- setTargetClass:aClass forAttributeNamed:(const char *)aName

Sets the target class for the attribute named aName to aClass. The attribute will be defined
only for instances of class aClass or any of its subclasses. Your code should set the target
class before any records have been added to the IXRecordManager; otherwise, the index
for the named attribute may collect references to instances of other classes before the
restriction is imposed. This behavior may change in a future release, so that records that
aren't of aClass are removed from the index when the target class is set. Returns self.

See also: - getTargetName:andVersion:forAttributeNamed:

7-80 Chapter 7: Indexing Kit

IXStore

Inherits From: Object

Declared In: storelIXStore.h

Class Description

IXStore is a transaction based, compacting storage allocator designed for data-intensive
applications. Its main features include compaction and relocatability of storage, for
reducing and optimizing memory usage; transaction management, for making compound
operations atomic and for ensuring data integrity; and concurrency control, for ensuring
safe access to shared storage.

An IXStore manages a single memory-based heap. Blocks of storage managed by the
IXStore are addressed indirectly by the client, through unsigned integers called handles. To
gain access to the contents of a block, the client must open the block for reading or writing.
An IXStore opens a block by resolving the block's handle into a pointer. While a block is
open, client code is free to address its contents through the pointer, and can safely assume
that the block won't move. When a block is closed, however, the IXStore is free to move
it in order to compact storage; pointers cached by the client may therefore become invalid.

The contents of an IXStore are relocatable to and from other instances of IXStore and its
subclasses. Since block handles are indirect reference to data, it's possible to retrieve the
contents of an IXStore as a single unit and to store that unit in another IXStore without
invalidating handle-based referential data structures residing in the IXStore, like linked
lists or trees. This makes it easy to copy complex structures, or to quickly save them to a
file.

IXStore implements transactions, allowing several operations to be grouped together in
such a way that either all of them take effect, or none of them does. This helps to ensure
semantic integrity by making compound operations atomic, and provides a convenient way
to undo a series of changes. The use of transactions also ensures data integrity against
process and system crashes when used with a persistent storage medium; for example,
IXStoreFile, a subclass of IXStore, keeps its storage in a UNIX file. This means that if a
system loses power, the IXStoreFile's contents can be recovered intact on power up, in the
state they were in after the last transaction that actually finished. For more details on
persistence, see the IXStoreFile class specification.

Classes: IXStore 7-81

IXStore is thread-safe. All methods perform the locking needed to ensure the integrity of
shared data structures when the IXStore is addressed by different Mach threads. Clients of
an IXStore need only synchronize higher-level operations to ensure semantic integrity (see
the IXBTree class specification for an example of this).

It's possible for two or more instances of IXStore to share the same contents; these
instances are called store contexts. IXStore mediates access to the blocks among multiple
contexts through transactions. No block may be accessed by more than one context at a
time, and an open block becomes available again only when the transaction that opened it
aborts, or when the last outstanding transaction on the context that opened it is committed.
A block opened only for reading, however, becomes available as soon as it's closed. When
a context tries to open a block that's already been opened by another context, an exception
is raised. This supports the use of deadlock avoidance strategies by the client.

Using Transactions

To start a transaction, send startTransaction to the IXStore. This defines a checkpoint
your code can go back to if it has to undo changes. Transactions aren't enabled by default;
the first time one is started, the IXStore permanently enables transactions. Your code can
check whether transactions have been enabled with areTransactionsEnabled. You may
want to do this if your code is invoked by higher level methods that determine the
transaction management policy for the application. For example, IXBTree uses
areTransactionsEnabled to determine whether or not to invoke startTransaction before
responding to an empty message.

Using transactions makes updates slower, since blocks must be copied when they're
opened for writing. On the other hand, in the case of an IXStoreFile, it's nearly certain that
the storage will be unrecoverable following a crash if your code doesn't use transactions.
Always use IXStore without transactions, unless you need undo capability, since its
contents are always destroyed by a crash. Always use IXStoreFile with transactions, except
for data that can be easily reconstructed, such as an index.

Once you've started a transaction, your code can open blocks and make changes to them,
or even start another transaction inside the previous one. The nestingLevel method tells
how many transactions are pending on the context. This is important if a transaction has
already been started by a method that invokes yours, so that yours doesn't finish a
transaction that the invoking method is still working on. The nesting level also determines
when blocks are made available to other contexts. Modified blocks are made available
when the nesting level becomes O-that is, when the last transaction is committed, or when
the transaction that opened them is aborted. Unmodified blocks are made available when
they're closed.

7-82 Chapter 7: Indexing Kit

At any point in a transaction, your code can send abortTransaction to the IXStore. This
undoes everything you've done up to that point in the current transaction: created blocks
are destroyed, freed blocks are recovered, block resizes are undone, and any changes made
to b~ocks opened after the corresponding startTransaction message are undone and those
blocks are closed. Also, any blocks opened in that transaction are made available to
other contexts.

When your code is ready to commit its changes, it sends commitTransaction to the
IXStore. This closes all blocks opened since the last startTransaction, and makes sure all
changes are recorded. Changes aren't flushed immediately, however, if the transaction is
nested within another one. This means that changes committed by nested transactions can
be undone by their parents. If the commitTransaction results in a nesting level of 0, then
all pending changes are physically flushed, making them permanent, and all blocks that had
been opened by the committing context are made available to other contexts.

One restriction on transaction nesting is that changes to a block are associated with the
transaction that opened the block. That is, within a nested transaction, changes made to any
block opened by an outer transaction are associated with the outer transaction, not the
nested transaction. The changes aren't undone when the inner transaction is aborted; the
outer transaction must be aborted to undo the changes. Changes made to any block opened
by the nested transaction, however, are associated with the nested transaction, not the outer
transaction, and can be undone by aborting either transaction.

Note that if your code makes changes outside any transaction while transactions are enabled,
an enclosing transaction is started automatically. The next invocation of startTransaction,
if any, before an intervening abort or commit, simply picks up this enclosing transaction, and
reports a nesting level of 1. Thus, if nesting isn't needed, your code can simply enable
transactions initially with a pair of startTransactionlcommitTransaction messages, and
thereafter use only commitTransaction to mark transaction boundaries, leaving
transactions implicitly begin with the first modification following each commit.

When using an IXStoreFile without transactions, try to cluster your updates into small
windows of activity, and invoke commitTransaction at the close of each window to flush
them immediately, as this will minimize the probability of damage in the event of a system
crash or power loss. Also note that any modifications that haven't been committed are
aborted when an IXStore is freed.

Classes: IXStore 7-83

Instance Variables

unsigned int change Count;

unsigned int nestingLevel;
unsigned int queueForward;
unsigned int queueReverse;
struct StoreBroker *storeBroker;

changeCount

nestingLevel

queueForward

queueReverse

storeBroker

Method Types

The number of the changes made to the IXStore' s contents
since the IXStore was created.

The number of the current nested transaction.

For internal use by the IXStore.

For internal use by the IXStore.

For internal use by the IXStore.

Initializing, copying, and freeing instances
- init
-copy
-free

Creating, copying, and 'freeing blocks
- createBlock:ofSize:
- copyBlock:atOffset:forLength:
- freeBlock:

Opening and closing blocks - openBlock:atOffset:forLength:
- readBlock:atOffset:forLength:
- closeBlock:

Managing block sizes - resizeBlock:toSize:
- sizeOfBlock:

U sing transactions - startTransaction
- abortTransaction
- commitTransaction
- areTransactionsEnabled
- nestingLevel
- changeCount

7-84 Chapter 7: Indexing Kit

Accessing the contents - getContents:andLength:
- setContents:andLength:

Reducing memory consumption - compact

Instance Methods

abortTransaction

- abortTransaction

Reverts the IXStore to the state it was in before the last time it received a startTransaction
message, if transactions are enabled. Discards all changes made to blocks that were opened
by the current transaction (even if they've been closed), closes those blocks if necessary,
and makes them available to other contexts. Any blocks created by the current transaction
are destroyed, any blocks freed are reclaimed, and any blocks resized are restored to their
previous size. The current transaction is terminated, and the transaction in effect, if any,
when the current transaction was started is made the current transaction. If the nesting level
is 1 (that is, no transaction is pending), the state reverts to the last time a
commitTransaction was received. Returns self.

Blocks opened by an enclosing transaction are not affected, even if their contents have been
changed since the receipt of the last startTransaction message. If transactions aren't
enabled, only the block creations and freeings performed since the last
commitTransaction message are reverted; changes made to the contents of blocks aren't
undone. Even if your code never uses startTransaction, it should periodically send
commitTransaction to establish a checkpoint for abortTransaction.

This method increases the change count of the IXStore, indicating that a change in state has
occurred which may have closed blocks.

See also: - commitTransaction, - startTransactioD, - nestingLevel, - changeConnt,
- closeBlock:

areTransactionsEnabled

- (BOOL)areTransactionsEnabled

Returns YES if transactions are enabled for the IXStore (that is, if the IXStore was ever sent
a startTransaction message). Otherwise, it returns NO. You should use this method if
you're not sure whether or not to send startTransaction messages, or when invoked by
higher-level code that establishes the transaction management policy.

Classes: IXStore 7-85

The transaction management policy is a property of the contents of an IXStore. If your
code copies the contents of an IXStore that has transactions enabled into an IXStore that
doesn't, transactions will be enabled for the receiving IXStore.

See also: - startTransaction, - nestingLevel

changeCount

- (unsigned int)changeCount

Returns the number of commitTransaction and abortTransaction messages received by
the IXStore since it was created. That is, this number indicates the number of changes made
to the IXStore's contents since the run-time object was initialized.

This method is useful for determining if cached pointers to the contents of opened blocks
are still valid, so the overhead of the block opening methods can be avoided. For example,
if an object needs to repeatedly access the same block within a transaction, it can cache the
pointer to the block's contents when it opens the block, along with the change count. From
then on, whenever the object needs to access the block, it can check the IXStore's change
count; if the change count hasn't increased, then no commits or transactions have occurred
since the block was opened, which means that the cached pointer is still valid, and the
object can use the pointer safely without having to open the block again-unless, of course,
the object itself has since closed the block. (The use of this method by IXBTreeCursor
accounts for a 40% performance improvement on sequential key reads when all pages are
in memory.)

See also: - nestingLevel, - abortTransaction, - commitTransaction

closeBlock:

- closeBlock:(unsigned int)aHandle

Closes the block identified by aHandle. This allows the IXStore to relocate the block if
needed. Changes to the block don't take effect until the transaction that opened it is
committed; similarly, changes aren't undone until the transaction that opened the block is
aborted. Open blocks are automatically closed when the transaction that opened them is
either committed or aborted. Returns self.

Note: Closing a block that was opened for writing does not make it available to other
contexts; the transaction in which the block was opened must be aborted, or pending

7·86 Chapter 7: Indexing Kit

transactions committed until the nesting level is 0, for it to become available again. Blocks
opened for reading become available when closed, since there are no changes to protect.

See also: - openBlock:atOffset:forLength:, - readBlock:atOffset:forLength:,
- startTransaction, - commitTransaction, - abortTransaction

commitTransaction

- commitTransaction

Commits all changes made to blocks opened since the last startTransaction, closes the
blocks. If the nesting level becomes 0, makes the blocks available to other contexts. Any
creations, freeings or resizes performed since the startTransaction are also committed.
The current transaction is terminated, and the enclosing transaction, if any, becomes the
current transaction. Returns self.

Your code may use this message even if transactions aren't enabled; the reversal of
block-level operations (creating and freeing) is supported even in the absence of
transactions. commitTransaction commits all such changes made since the last
commitTransaction, and abortTransaction cancels all such changes made since the last
commitTransaction. If transactions aren't enabled, this method closes all open blocks,
making them available to other contexts, and commits all outstanding creates and frees.

This method increases the change count of the IXStore, indicating that a change in state has
occurred which may have closed blocks.

See also: - abortTransaction, - startTransaction, - changeCount, - closeBlock:

compact

-compact

Compacts the contents of the IXStore so that they consume as little storage as possible.
This method moves blocks around physically within the IXStore, and so may take some
time to complete. The amount of storage consumed may be reduced by as much as 50%.
Returns self.

If this method is invoked while transactions are pending, the actual compaction will be
postponed until there are no transactions outstanding. When used with IXStoreFile, this
method actually reduces the size of the file. Compaction also may occur automatically.
This won't occur unless the IXStore consumes at least 16 MB of storage, and may not occur
until much more storage is actually consumed.

Classes: IXStore 7-87

copy

-copy

Creates and returns a new store context, which addresses the same storage as the original.
Changes made by either context will affect the shared storage, and will be reflected in both
contexts.

If you want to create a completely independent duplicate of an IXStore, you can use
getContents:andLength: and setContents:andLength: as follows:

IXStore *aStore, *twinStore;
Vffi~address_t theStorage;
Vffi_size_t theLength;

[aStore compact]; II Makes the transfer more efficient.
[aStore getContents:&theStorage andLength:&theLength] i

twinStore = [[IXStore alloc] init];
[twinStore setContents:theStorage andLength:theLength];

This technique is also effective for saving the contents of an IXStore into an IXStoreFile.

See also: - getContents:andLength:, - setContents:andLength:

copyBlock:atOffset:forLength:

- (unsigned int)copyBlock:(unsigned int)aHandle
atOffset: (unsigned int)anOffset
for Length: (unsigned int)aLength

Returns a handle to a new block whose contents are identical to the region of the block
identified by aHandle specified by anOffset and aLength.

If there is no block identified by aHandle, IX_NotFoundError is raised. If the block has
been opened by another context, IX_LockedError is raised. See the class description for
more information on when a block becomes available to other contexts.

See also: - openBlock:atOffset:forLength:, - readBlock:atOffset:forLength:,
- abortTransaction, - commitTransaction, - closeBlock:

createBlock:ofSize:

- createBlock:(unsigned int *)aHandle ofSize:(unsigned int)size

Creates a new block of size bytes and returns its handle by reference in aHandle. The new
block is guaranteed to be zeroed. If you create a block of size vm~page_size or more, it's

7-88 Chapter 7: Indexing Kit

guaranteed to be page-aligned (vrn_page_size is declared in the header file
rnachlrnach_init.h). It isn't possible to create a block of size O. Returns self.

free

-free

Frees the IXStore. The storage substrate is also freed if there are no other store contexts
addressing it. Returns nil.

See also: - freeBlock:

freeBlock:

- freeBlock:(unsigned int)aHandle

Removes and frees the block identified by aHandle. Returns self.

If there is no block identified by aHandle, IX_NotFoundError is raised. If the block has
been opened by another context, IX_LockedError is raised. See the class description for
more information on when a block becomes available to other contexts.

See also: - free, - abortTransaction, - cornrnitTransaction, - cIoseBlock:

getContents:andLength:

- getContents:(vm_address_t *)theContents andLength:(vm_size_t *)aLength

Returns by reference the address and length of a copy of the IXStore's contents.
theContents is a copy-on-write image of the original (vrn_address_t is declared in the
header file rnachlrnach_types.h). Returns self.

Your code can use this method along with setContents:andLength: to create an
independent copy of an IXStore (see the copy method description for an example). Be sure
to compact the IXStore before invoking this method, so that the amount of memory copied
is as small as possible. These methods also provide an efficient means of saving the
contents of an IXStore into an IXStoreFile.

getContents:andLength: must not be invoked when transactions are pending; if it is,
IX_ArgumentError is raised. Your code should also not invoke this method while any .
blocks are open outside the scope of a transaction (since they may have been changed).

See also: - setContents:andLength:, - copy

Classes: IXStore 7·89

init

-init

Initializes a new IXStore with zero capacity and transactions not enabled. This is the
designated initializer for the IXStore class. Returns self.

nestingLevel

- (unsigned int)nestingLevel

Returns the number of the transactions pending against the IXStore. If transactions aren't
enabled, this method always returns O.

See also: - abortTransaction, - commitTransaction, - areTransactionsEnabled,
- startTransaction

openBlock:atOffset:forLength:

- (void *)openBlock:(unsigned int)aHandle
atOffset: (unsigned int)anOffset
for Length: (unsigned int)aLength

Returns a pointer to a region of the block identified by aHandle, beginning at anOffset and
of aLength bytes, after opening it for writing. If your code writes outside of the opened
area, your data may become corrupt, and neither abortTransaction nor
commitTransaction will restore data damaged in this manner.

If there is no block identified by aHandle, IX_NotFoundError is raised. If the block has
been opened by another context, IX_LockedError is raised. See the class description for
more information on when a block becomes available to other contexts.

See also: - readBlock:atOffset:forLength:, - freeBlock:, - abortTransaction,
- commitTransaction, - closeBlock:

readBlock:atOffset:forLength:

- (void *)readBlock:(unsigned int)aHandle
atOffset: (unsigned int)anOffset
forLength:(unsigned int)aLength

Returns a pointer to a region in the block identified by aHandle, beginning at anOffset and
of aLength bytes, after opening it for reading. It's assumed that your code won't alter the

7-90 Chapter 7: Indexing Kit

block. If your code does alter the block, your data may become corrupt, and neither
abortTransaction nor commitTransaction will restore data damaged in this manner.

If there is no block identified by aHandle, IX_NotFoundError is raised. If the block has
been opened by another context, IX_LockedError is raised. See the class description for
more information on when a block becomes available to other contexts.

See also: - openBlock:atOffset:forLength:, - freeBlock:, - abortTransaction,
- commitTransaction, - closeBlock:

resizeBlock:toSize:

- resizeBlock:(unsigned int)aHandle toSize:(unsigned int)aSize

Resizes the block identified by aHandle to aSize. Returns self.

If there is no block identified by aHandle, IX_NotFoundError is raised. If the block has
been opened by another context, IX_LockedError is raised. See the class description for
more information on when a block becomes available to other contexts.

See also: - sizeOmlock:, - openBlock:atOffset:forLength:,
- readBlock:atOffset:forLength, - abortTransaction, - commitTransaction,
- closeBlock:

setContents:andLength:

- setContents:(vm_address_t)someContents andLength:(vm_size_t)aLength

Replaces the contents of the IXStore with the contents specified by some Contents and
aLength. The original contents of the IXStore are lost. some Contents should be a virtual
memory image retrieved by getContents:andLength: (vm_address_t is declared in the
header file machlmach_types.h). The IXStore assumes responsibility for freeing the
virtual memory image, and may simply use it directly. Contents copied in this manner
between instances of IXStore are shared as copy-on-write data. Returns self.

Your code can use this method along with getContents:andLength: to create an
independent copy of an IXStore (seethe copy method description for an example). These
methods also provide an efficient means of saving the contents of an IXStore into an
IXStoreFile.

setContents:andLength: must not be invoked when transactions are pending; if it is,
IX_ArgumentError is raised.

See also: - getContents:andLength:

Classes: IXStore 7-91

sizeOfBlock:

- (unsigned int)sizeOmlock:(unsigned int)aHandle

Returns the size, in bytes, of the block identified by aHandle.

If there is no block identified by aHandle, IX_NotFoundError is raised. If the block has
been opened by another context, IX_LockedError is raised. See the class description for
more information on when a block becomes available to other contexts.

See also: - resizeBlock:toSize:, - openBlock:atOffset:forLength:,
- readBlock:atOffset:forLength, - abortTransaction, - commitTransaction,
- c1oseBlock:

startTransaction

- (unsigned int)startTransaction

Begins a new transaction, which will be aborted or committed before all other outstanding
transactions on the receiving context. If transactions aren't enabled for the IXStore, they're
permanently enabled. Returns a number identifying the new transaction, and indicating the
number of transactions outstanding, including the new one. This is the same value returned
by the nestingLevel method. For example, if the nesting level is 0 and the IXStore receives
startTransaction three times, the invocations of the method will return, in order, 1, 2, 3.

See also: - abortTransaction, - commitTransaction, - areTransactionsEnabled,
- nestingLevel

7-92 Chapter 7: Indexing Kit

IXStoreBlock

Inherits From:

Conforms To:

Declared In:

Class Description

Object

IXBlockAndStoreAccess
NXReference

storelIXStoreBlock.h

An IXStoreBlock manages a single block within an IXStore, supporting access methods
similar to those of IXStore and permitting multiple references to the same block. It also
implements methods for archiving and unarchiving an object in its block of storage. You
can use this class as a convenient means of manipulating blocks of storage without needing
to ~ow the id of the associated IXStore, and for storing NeXTSTEP objects in an IXStore.

This class is intended primarily as a means of associating a name with a block in an
IXStoreDirectory. To associate names with large numbers of nonobject values, use· an
IXBTree. To archive large numbers of objects, use IXRecordManager.

Instance Variables

IXStore *store;
unsigned int handle;
unsigned int blockSize;

store

handle

blockSize

The IXStore that the block resides in.

The block handle.

The size of the block.

Closses: IXStoreBlock 7-93

Adopted Protocols

IXBlockAndStoreAccess

NXReference

Method Types

- initlnStore:
- initFromBlock:inStore:
- freeFromStore
+ freeFromBlock:andStore:
- getBlock:andStore:

- addReference
-free
- references

Accessing the block's conte~ts - openAtOffsetforLength:
- readAtOffsetforLength:
- copy AtOffsetforLength:
- close

Managing the block size - resizeTo:
- size

Archiving an object in an IXStoreBlock
- readObject
- writeObject:

Instance Methods

close

- close

Closes the block of storage managed by the IXStoreBlock. To destroy the block of storage,
send a freeFromBlock:andStore: message to the IXStoreBlock (this will also free the
IXStoreBlock). Returns the IXStore containing the block.

This method doesn't affect transactions in any way. If you want to make the block available
to other contexts, you should send commitTransaction to the IXStore.

7-94 Chapter 7: Indexing Kit

copy AtOffset:forLength:

- (unsigned int)copyAtOffset:(unsigned int)anOffset
forLength:(unsigned int)aLength

Copies a portion of the IXStoreBlock's block, creating a new block. The copy is made from
the section of the block beginning at anOjfset within the block, of aLength bytes. Returns
the handle of the copy.

See also: - copyBlock:atOffset:forLength: (IXStore)

openAtOffset:forLength:

- (void *)openAtOffset:(unsigned int)anOjfset forLength:(unsigned int)aLength

Returns a pointer to the portion of the IXStoreBlock's block specfied by anOjfset, of
aLength bytes, after having the IXStore open it for writing. If your code writes outside of
the specified area, the IXStore's contents may be corrupted.

See also: - readAtOffset:forLength:, - openBlock:atOffset:forLength: (IXStore),
- readBlock:atOffset:forLength: (IXStore)

readAtOffset:forLength:

- (void *)readAtOffset:(unsigned int)anOjfset forLength:(unsigned int)aLength

Returns a pointer to the portion of the IXStoreBlock's block specfied by anOjfset, of
aLength bytes, after having the IXStore open it for reading. If you write to the block, the
IXStore's contents may be corrupted

See also: - openAtOffset:forLength:, - openBlock:atOffset:forLength: (IXS tore) ,
- readBlock:atOffset:forLength: (lXStore)

readObject

- readObject

Un archives and returns the object that was previously archived in the IXStoreBlock's
block. The archived object must implement the read: method in order to be unarchived.

See also: - writeObject:, - read: (Object), - write: (Object)

Classes: IXStoreBlock 7-95

resizeTo:

- resizeTo:(unsigned int)size

Resizes the IXStoreBlock's block to be size bytes long, and returns self. The block can only
be resized when it's not open.

See also: - size, - resizeBlock:ToSize: (IXStore), - sizeOmlock: (IX S tore)

size

- (unsigned int)size

Returns the size of the IXStoreBlock's block, in bytes.

See also: - resizeToSize:, - sizeOmlock: (IXStore), - resizeBlock:ToSize: (IXStore)

writeObject:

- writeObject:(unsigned int)anObject

Archives anObject into the IXStoreBlock's block. anObject must implement the write:
method in order to be archived. The block is resized to fit the archived object if necessary.
Returns self.

See also: - readObject, - write: (Object), - read: (Object)

7-96 Chapter 7: Indexing Kit

IXStoreDirectory

Inherits From:

Conforms To:

Declared In:

Class Description

Object

IXBlockAndStoreAccess
IXN ameAndFileAccess

btreelIXStoreDirectory.h

An IXStoreDirectory provides access to store clients by name instead of by block handle.
You can use this facility for more convenient access to objects within a single IXStore. It's
particularly useful in implementing the IXNameAndFileAccess protocol, which is used to
support a conventional store file organization. See the IXNameAndFileAccess protocol
specification for more information on the conventional store file organization. This class
specification also assumes that you know about store clients, which are described in the
IXBlockAndStoreAccess protocol specification.

Instance Variables

None declared in this class.

Adopted Prot~cols

IXBlockAndStoreAccess

IXN ameAndFileAccess

- initlnStore:
- initFromBlock:inStore:
- freeFromStore
+ freeFromBlock:andStore:
- getBlock:andStore:

- initWithN ame:inFile:
- initFromN ame:inFile:forWriting:
- freeFromStore
+ freeFromName:andFile:
- getName:andFile:

Classes: IXStoreDirectory 7-97

Method Types

Adding entries or objects - addEntryN amed:ofClass:
- addEntryNamed:ofClass:atBlock:
- addEntryNamed:forObject:

Removing entries - freeEntry Named:
- removeName:
- empty
- reset

Getting entries - hasEntry Named:
- getBlock:otEntryNamed:
- getClass:otEntryNamed:
- openEntryNamed:
- entries

Instance Methods

addEntryNamed:forObject:

- addEntryNamed:(const char *)aName forObject:anObject

Associates anObject with aName. anObject must conform to the IXBlockAndStoreAccess
protocol, and must be a client of the same IXStore as the IXStoreDirectory. Returns the
newly created instance, or nil if an entry already exists with the specified name.

Use this method to associate a name with an existing and instantiated store client. If you
want to associate a name with a store client that has already been created, but isn't currently
instantiated (that is, its data exists in the IXStore, but there's no run-time object accessing
it), use addEntryNamed:ofClass:atBlock:. If you want to immediately create a new store
client and associate a name with it, use addEntryNamed:ofClass:.

If aName is NULL or empty, anObject doesn't respond to getBlock:andStore:, or
anObject isn't a client of the same IXStore as the IXStoreDirectory, IX_ArgumentError
is raised.

See also: - addEntryNamed:ofClass:atBlock:, - openEntryNamed:

7·98 Chapter 7: Indexing Kit

addEntryNamed:ofClass:

- addEntryNamed:(const char *)aName ofClass:aClass

Creates an instance of class aClass, initializes it by sending initlnStore: (an
IXBlockAndStoreAccess protocol method), and associates it with aName. Returns the
newly created instance.

If an entry already exists for aName, IX_DuplicateError is raised. If aName is NULL or
empty, or if instances of a Class don't respond to initlnStore:, IX_ArgumentError is raised.

See also: - addEntryNamed:ofClass:atBlock:, - openEntryNamed:, - initlnStore:
(IXBlockAndStoreAccess protocol)

addEntryNamed:ofClass:atBlock:

- addEntryNamed:(const char *)aName
ofClass:aClass
atBlock:(IXBlockHandle)aHandle

Creates an instance of class aClass, reconstitutes it from the block at aHandle by sending
initFromBlock:inStore: (an IXBlockAndStoreAccess protocol method), and associates it
with aName. If aHandle is 0, this method is equivalent to addEntryNamed:ofClass:, and
creates a new instance of aClass. Returns the reconstituted or created instance.

Use this method to associate a name with the data for a previously created store client. The
stored data should have been created by a previous instance of a Class .

If an entry already exists for aName, IX_DuplicateError is raised. If aName is NULL or
empty, or if instances of aClass don't respond to initFromBlock:inStore:,
IX_ArgumentError is raised.

See also: - addEntryNamed:forObject:, - addEntryNamed:ofClass:,
- openEntryNamed:, - initFromBlock:inStore: (lXBlockAndStoreAccess protocol)

empty

-empty

Removes all entries from the directory, instantiating the store clients, and freeing them from
the store. Returns self.

See also: - freeEntryNamed:, - freeFromBlock:inStore: (IXBlockAndStoreAccess
protocol)

Classes: IXStoreDirectory 7-99

entries

- (const char **)entries

Creates and returns a NULL-terminated list of the names of all currently defined entries.
The sender of this message responsible for freeing the list, but not the strings in the list,
which are NXAtoms.

If space for the array of entries can't be allocated, IX_MemoryError is raised.

freeEntryNamed:

- freeEntryNamed:(const char *)aName

Removes the named entry from the directory by sending freeFromBlock:inStore to the
named entry's class object. Returns self.

See also: - empty, - freeFromBlock:inStore: (lXBlockAndStoreAccess protocol)

getClass:ofEntryNamed:

- getClass:(id *)aClass ofEntryNamed:(const char *)aName

Returns by reference the class object for the entry named aName, or nil if there is no such
entry. Returns self.

hasEntryNamed:

- (BOOL)hasEntryNamed:(const char *)aName

Returns YES if there is an entry named aName, NO otherwise.

7·100 Chapter 7: Indexing Kit

openEntryNamed:

- openEntryNamed:(const char *)aName

Creates and initializes (with initFromBlock:inStore:) an instance of the object previously
entered as aName, or nil if there is no such entry. It's possible to create multiple instances
from the same entry; your code should avoid doing this, as the separate objects may corrupt
the data they share in the IXStore if they try to change it.

See also: - addEntryNamed:ofClass:, - addEntryNamed:ofClass:atBlock:,
- initFromBlock:inStore: (IXBlockAndStoreAccess protocol)

removeName:

- removeName:(const char *)aName

Removes aName as an entry in the IXStoreDirectory, but doesn't remove the store client.
That is, the client can still be recovered by handle. Returns self.

See also: - reset, - initFromBlock:inStore: (IXBlockAndStoreAccess protocol)

reset

- reset

Removes all entries in the IXStoreDirectory, but doesn't remove the store clients. That is,
the clients can still be recovered by handle. Returns self.

See also: - removeName:, - initFromBlock:inStore: (IXBlockAndStoreAccess
protocol)

Classes: IXStoreDirectory 7-101

IXStoreFile

Inherits From: IXStore : Object

Declared In: storelIXStoreFile.h

Class Description

IXStoreFile is a subclass of IXStore that keeps its storage in a file. Since a file can outlive
processes, IXStoreFile can store persistent data. IXStoreFile also guarantees the integrity
of stored data against process and system crashes when protected by transactions, provided
that the physical media remains intact.

IXStoreFile can open files for reading and writing, or for reading only, and it locks them
with the flockO UNIX system call for exclusive or shared access, accordingly. This locking
is advisory only, but effectively prevents cache conflict between instances residing in
separate processes on the same host. Note, however, that the advisory locks aren't visible
over the network, due to limitations offiockO; responsibility for managing cache conflicts
when sharing files over the network falls to the program using the IXStoreFile. The
suggested approach is to build a server with NeXTSTEP Distributed Objects that mediates
access to files among client processes.

To support the use of preconfigured files, an IXStoreFile opened for reading only may be
modified ,freely by the process using it; all modified pages are reflected only in the address
space of that process. The modifications are never written to the file, and are discarded
when the IXStoreFile is freed.

IXStoreFile is extremely efficient with respect to paging. When pages would be forced
from memory by the virtual memory system, IXStoreFile writes them directly back to the
storage file instead of allowing them to go through the swap file. The transaction
management architecture takes advantage of this, ensuring the minimum number of page
faults per transaction.

7-102 Chapter 7: Indexing Kit

Instance Variables

int descriptor;

const char *filename;

struct {
unsigned int needs Close: 1 ;
unsigned int isCreating: 1 ;

} fileStatus;

descriptor

filename

fileStatus.needsClose

fileS tatus .isCreating

The file descriptor for the storage file.

The name of the storage file.

True if the storage file was opened by this IXStoreFile.

True if the storage file was created by this IXStoreFile.

Method Types

Initializing and freeing instances- init
- initWithFile:
- initFromFile:forWriting:
-free

Limiting the file mapping size - setSizeLimit:
- sizeLimit

Getting file information - descriptor
- filename

Instance Methods

descriptor

- (int)descriptor

Returns the file descriptor for the IXStoreFile's storage file.

See also: - filename

Classes: IXStoreFile 7-103

filename
- (const char *)filename

Returns the name of the IXStoreFile' s storage file.

See also: - descriptor

free
-free

Unlocks and closes the storage file and frees the IXStoreFile. The file isn't removed from
the file system, even if it was a temporary file created by the init method. Returns nil.

This method aborts any pending modifications. Your code should always send
commitTransaction until the transaction nesting level is 0 before closing an IXStoreFile
in order to save any outstanding changes.

See also: - init, - commitTransaction (lXStore), - abortTransaction (IXStore)

init

- init

Initializes the IXStoreFile with a temporary file (created in Itmp) that's opened for writing.
Returns self.

See also: - initWithFile:, - initFromFile:forWriting:

initFromFile:forWriting:

- initFromFile:(const char *)filename forWriting:(BOOL)flag

Initializes the IXStoreFile from the previously created filename. filename must have been
previously created by the initWithFile: method. Ifflag is YES, then filename is opened for
reading and writing, and locked for exclusive access. Ifflag is NO, then filename is opened
for reading only, and locked for shared access. If filename is opened for reading only, any
changes made to the IXStoreFile will be reflected only memory, and will never be flushed
to disk. This is the designated initializer for IXStoreFile objects that use an existing storage
file. Returns self.

See also: - initWithFile:

7-104 Chapter 7: Indexing Kit

initWithFile:

- initWithFile:(const char *)filename

Initializes the IXStoreFile with filename as its storage file. filename is created and opened
for reading and writing, and locked for exclusive access. This the designated initializer for
the IXStoreFile class. Returns self.

See also: - init, - initFromFile:forWriting:

setSizeLimit:

- setSizeLimit: (vm_size _t)aLimit

Limits the amount of virtual address space consumed by file mapping to aLimit. If aLimit
is zero, the size limit is removed. The size limit determines how much of the file the
IXStoreFile will try to cache in main memory. Given enough memory, the higher the size
limit, the better the performance. If your code will be operating on a machine with little
memory, you should set the limit to a relatively small number; for example, 128KB on an
8-megabyte machine. Returns self.

See also: - sizeLimit

sizeLimit
- (vm_size_t)sizeLimit

Returns the maximum amount of virtual address space consumed by file mapping. The size
limit determines how much of the file the IXStoreFile will try to cache in main memory.
Given enough memory, the higher the size limit, the better the performance.

See also: - setSizeLimit:

Classes: IXStoreFile 7-105

IXWeightingDol11ain

Inherits From: Object

Declared In: indexinglIXWeightingDomain.h

Class Description

An IXWeightingDomain represents word count, rank, and frequency information for a
body of text. It can be used to convert word counts between several different formats, and
to discover information about specific words, or tokens, in the body of text. An
IXWeightingDomain doesn't store the body of text whose statistics it represents, and
doesn't maintain any sort of record of what the body of text is. It is simply a summary of
the word frequency information, to be used as needed.

IXAttributeParser uses IXWeightingDomain to compute word peCUliarities when parsing
text. The peculiarity of a word in a text sample is its frequency in the sample divided by
its frequency in the IXWeightingDomain (in this case called the reference domain),
normalized by taking the square root. The result is a measure of the frequency of the word
in the sample relative to the reference domain. Words that are common in the reference
domain receive lesser significance than they would have had, and words that are rare in the
reference domain receive greater significance. The effect is to bias the weights with a filter
that reduces domain-specific "noise words."

Instance Variables

unsigned int beenRanked;
unsigned int totalTokens;
unsigned int uniqueTokens;
unsigned int indexCount;
unsigned int totalLength;
void *tokenArray;
unsigned int *tokenlndex;

7-106 Chapter 7: Indexing Kit

beenRanked

totalTokens

uniqueTokens

indexCount

totalLength

tokenArray

tokenIndex

Method Types

Initializing instances

Saving domain information

Counting tokens

YES if tokens have been ranked.

The number of tokens in the sample.

The number of unique tokens in the sample.

The number of entries in the token index.

The total of all the token lengths.

Array of tokens with rank and count.

Array of offsets into tokenArray.

- initFromDomain:
- initFromHistogram:
- initFrom WFTable:

- writeDomain:
- writeHistogram:
- writeWFTable:

- totalTokens
- unique Tokens

Retrieving information about tokens

Instance Methods

countForToken:ofLength:

- countForToken:ofLength:
- rankForToken:ofLength:
- frequencyOIToken:otLength:
- peculiarityOIToken:otLength:andFrequency:

- (unsigned int)countForToken:(void *)aToken ofLength:(unsigned int)aLength

Returns the number of times aToken occurs in the body of text represented by the
IXWeightingDomain. aLength must be the length, in bytes, of aToken.

See also: - rankForToken:ofLength:, - frequencyOIToken:ofLength:,
- peculiarityOIToken:ofLength:andFrequency:

Classes: IXWeightingDomain 7-107

frequencyOfToken:ofLength:

- (float)frequencyOIToken:(void *)aToken oiLength:(ullsigned int)aLength

Returns the frequency of occurrence for aToken in the body of text represented by the
IXWeightingDomain. aLength must be the length, in bytes, of aToken. The frequency is
equal to the number of times aToken occurs divided by the total number of tokens in the
IXWeightingDomain.

See also: - peculiarityOIToken:oiLength:andFrequency:,
- countForToken:oiLength:, - rankForToken:oiLength:

initFromDomain:

- initFromDomain:(NXStream *)stream

Initializes a newly allocated IXWeightingDomain from stream, which should contain data
in domain format as created by the writeDomain: method.

See also: - initFromHistogram:, - initFromWFTable:, - writeDomain:

initFromHistogram:

- initFromHistogram:(NXStream *)stream

Initializes the IXWeightingDomain from stream, which should contain data in histogram
format as created by the writeHistogram: method.

See also: - initFromDomain:, - initFromWFTable:, - writeHistogram:

initFromWFTable:

- initFrom WFTable:(NXStream *)stream

Initializes the IXWeightingDomain from stream, which should contain data in the
NeXTSTEP Release 2 WFTable format.

See also: - initFromDomain:, - initFromHistogram:, - writeWFTable:

7-108 Chapter 7: Indexing Kit

peculiarityOfToken:ofLength:andFrequency:

- (float)peculiarityOfToken:(void *)aToken
oiLength: (unsigned int)aLength
andFrequency:(float)aFrequency

Returns the peculiarity of aToken occurring in some domain with frequency aFrequency,
relative to the body of text represented by the reference domain. aLength must be the
length, in bytes, of aToken. The peculiarity is equal to the square root of aFrequency
divided by the frequency of the token within the reference domain.

See also: - frequencyOfToken:oiLength:, - countForToken:oiLength:,
- rankForToken:oiLength:

rankForToken:ofLength:

- (unsigned int)rankForToken:(void *)aToken oiLength:(unsigned int)aLength

Returns the rank of aToken in the IXWeightingDomain; the rank is the token's position in
an ordering of the set of unique tokens by count. aLength must be the length, in bytes, of
a Token. The token with the highest count has a rank of 1; the token with the lowest count
has a rank equal to the number of unique tokens.

See also: - countForToken:oiLength:, - frequencyOfToken:oiLength:,
- peculiarityOfToken:oiLength:andFrequency:

totalTokens

- (unsigned int)totalTokens

Returns the total number of tokens in the IXWeightingDomain; that is, the sum of the
number of occurrences each token, over the set of unique tokens.

See also: - unique Tokens

uniqueTokens

- (unsigned int)uniqueTokens

Returns the number of unique tokens in the IXWeightingDomain.

See also: - total Tokens

Classes: IXWeightingDomain 7-109

writeDomain:
- writeDomain:(NXStream *)stream

Writes the IXWeightingDomain to stream in domain format.

See also: - writeHistogram:, - writeWFTable:, ~ initFromDomain:

writeHistogram:
- writeHistogram:(NXStream *)stream

Writes the IXWeightingDomain to stream in histogram format.

See also: - writeDomain:, - writeWFTable:, - initFromHistogram:

writeWFTable:
- writeWFTable:(NXStream *)stream

Writes the IXWeightingDomain to stream in NeXTSTEP Release 2 WFTabie format.

See also: - writeDomain:, - writeHistogram:, - initFromWFTable:

7-110 Chapter 7: Indexing Kit

Protocols

IXAttributeReading

Adopted By: IXAttributeReader

Declared In: indexinglIXAttributeReader.h

Protocol Description

IXAttributeReading defines a single method that lexically analyzes a stream of text for
consumption by a parser, such as an IXAttributeParser. Objects that conform to this
protocol are called attribute readers, and are used to reduce source text into discrete
lexemes associated with textual attributes, which may be collected into histograms by
the parser.

An attribute reader must be able to read ASCII, RTF, and an extension of RTF called
Attribute Reader Format (ARF). The reader must return from its analyzeStream: method
'a stream of text in ARE Attribute Reader Format is described under "Attribute Reader
Format" in the "Other Features" section, later in this chapter.

Instance Methods

analyzeStream:

- (NXStream *)analyzeStream:(NXStream *)stream

Scans stream for lexemes, returning a stream which contains the results of the lexical
analysis in Attribute Reader Format. Several objects that implement this protocol may be
chained together, each one further analyzing the output of its predecessor.

7-112 Chapter 7: Indexing Kit

IXBlobWriting

Adopted By: IXRecordManager

Declared In: indexing/protocols.h

Protocol Description

The IXBlob Writing protocol defines a mechanism for storing and retrieving amorphous
data items, called blobs, that aren't susceptible to structural serialization due to unknown
length or complexity. Some examples of blobs are compressed sounds, serialized graph
structures, and relocatable code modules.

During the writing or reading of an object that conforms to the IXRecordTranscription
protocol, the transcriber sends the object a notification message defined by that protocol
(source:willWriteRecord: or source:didReadRecord:, respectively); if the transcriber
conforms to this protocol, the object may request that the transcriber write or read blobs.

The methods defined by this protocol identify blobs by name and record handle. This
provides a means of maintaining property lists on behalf of transcribed records. Since this
protocol provides no way of iterating over the property names or of getting a list of all blob
names for an object, users should store their own such lists in a well known blob if the list
membership can't be determined statically.

Instance Methods

getValue:andLength:ofBlob:forRecord:

- (BOOL)getValue:(void **)aValue
andLength:(unsigned int *)aLength
omlob:(const char *)blobName
forRecord:(unsigned int)aHandle

Returns by reference the value and length of blobName for the record identified by
aHandle. Returns YES if the blob is successfully retrieved, NO if it isn't.

Protocols: IXBlobWriting 7-113

setValue:andLength:ofBlob:forRecord:

- (BOOL)setValue:(const void *)aValue
andLength:(unsigned int)aLength
offilob:(const char *)blobName
forRecord:(unsigned int)aHandle

Stores the value and length of a blob for the record identified by aHandle, associating it
with the name blobName. Returns YES if the blob is successfully stored, NO if it wasn't.

If aLength is 0, the blob won't be stored, and this method will return NO.

7-114 Chapter 7: Indexing Kit

IXBlockAndStoreAccess

Adopted By:

Declared In:

IXBTree
IXFileFinder
IXRecordManager
IXStoreBlock
IXStoreDirectory

storeiprotocols.h

Protocol Description

The IXBlockAndStoreAccess protocol defines methods for initializing and freeing store
clients. A store client is any object that keeps data in an IXStore. You use this protocol
both to create new store client instances, and to initialize store client instances from data
previously stored in an IXStore. IXBlockAndStoreAccess defines methods based directly
on IXStore; that is, store clients are identified by the IXStore's integer block handles. A
related protocol, IXN ameAndFileAccess, defines methods for accessing store clients by
name instead of by handles.

A store client is different from most Objective C objects in that it uses data which can
, outlive it, but which is considered an integral part of the store client itself. Unlike objects

un archived from an Interface Builder nib file, which have no connection to that file, a store
client remains connected to its store, and can both read and write data in it. This gives store
clients a limited form of persistence.

A store client instance can be initialized from scratch in an IXStore, or it can be initialized
from previously created data in that same IXStore; the second type of initialization is called
reconstituting or opening a store client. When a store client instance is freed, only its
run-time data is destroyed; the data in the store remains intact, ready to be used by a later
store client instance. A store client can also completely destroy itself by removing its data
from the store and freeing itself.

When a new store client is initialized, it's given an IXStore in which to keep its persistent
data. One of the first things it does is create a block in that IXStore. This "boot block" can
contain the handles of other blocks, making it a single point of entry for reconstituting the
store client from that pre-existing data. The boot block is identified with the store client's
persistent image, in that a later instance can use that single block to retrieve all of the data
created by the original instance.

Protocols: IXBlockAndStoreAccess 7-115

Temporary Store Clients

'In addition to the methods in this protocol, you may find it convenient to implement a
simple init method that initializes a store client for temporary use by creating an IXStore
private to that instance, and which that instance will free when it receives a free message.
In such a case, of course, the store client will essentially be like most other objects; its
storage won't be persistent, but will be freed when it is.

Closing a Store

Before a store is closed (that is, before the IXStore object is sent a free message), all of the
store clients should be properly cleaned up and freed. This involves freeing the store
clients, sending either abortTransaction or commitTransaction if needed to the IXStore
until all transactions are completed, and finally, freeing the IXStore object.

It's important to complete all transactions before freeing the store, since a store client may
actually be working with an IXStoreFile. If the store is actually an IXStoreFile, changes
made since the store file was opened aren't flushed when the IXStoreFile is freed; pending
transactions have to be explicitly completed beforehand, or they're all effectively aborted.

Method Types

Initializing and freeing a client - initInStore:
- initFromBlock:inStore:
- freeFromStore
+ freeFromBlock:andStore:

Retrieving the block and store - getBlock:andStore:

Class Methods

freeFromBlock:andStore:

+ freeFromBlock:(unsigned int)aHandle andStore:(lXStore *)aStore

Removes from aStore the client whose boot block is identified by aHandle, along with all
storage that client had created. Normally, your code would have to instantiate a client for
the data in the block identified by aHandle and send it a freeFromStore message. This
method provides a convenient way to remove an object from an IXStore without your code
having to allocate and initialize it. Returns self.

7-116 Chapter 7: Indexing Kit

One way to implement this method is to create an instance of the client class, reconstitute
it from aHandle, and free it. Here's a simple example, without any error handling:

+ freeFromBlock: (unsigned int)aHandle andStore: (IXStore *)aStore

[[[self alloc] initFromBlock:aHandle inStore:aStore]

freeFromStore] ;

return self;

Classes whose instances normally perform a lot of time-consuming initialization should
implement a lightweight initialization method, which prepares the instance only to access
its storage for efficient removal from its IXStore.

If your store client class only creates a single block in its IXStore, you can implement this
method by simply freeing that block:

+ freeFromBlock: (unsigned int)aHandle andStore: (IXStore *)aStore

[aStore freeBlock:aHandle];

return self;

See also: - freeFromStore

Instance Methods

free From Store

- freeFromStore

Removes the receiver's storage from its IXStore and frees the run-time object. A store
client's free method simply frees the run-time object without affecting any data in the
IXStore. Returns nil.

See also: + freeFromBlock:andStore:, - free (Object)

getBlock:andStore:

- getBlock:(unsigned int *)aHandle andStore:(lXStore **)aStore

Returns by reference the handle of the receiver's boot block, and its IXStore. Also
returns self.

Since a store client needs to record its boot block handle and its IXStore to function
properly, implementing this method is simply a matter of putting those values into aHandle
and aStore.

Protocols: IXBlockAndStoreAccess 7-117

initFromBlock:inStore:

- initFromBlock:(unsigned int)aHandle inStore:(lXStore *)aStore

Initializes the receiver using existing data from the boot block identified by aHandle in
aStore. That block should have been created by a previous invocation of the initInStore:
method on the original instance of the store client. The receiver isn't required to be of the
same class as the original creator of the store data, but it must be able to make sense of that
data. Returns self if successful, or nil if the receiver can't be initialized (for example, if
aHandle doesn't exist in aStore).

To implement this method, simply access the data in aHandle to set up a usable state for
the client instance. This may involve opening other blocks whose handles are stored in the
boot block.

Note: While a store client instance exists, it's considered to own its data in the IXStore.
Your code should never use this method a second time with a specific boot block unless it's
known for certain that any previous instance using that data has been freed (or that both
instances will be using the storage for read-only access). If a second store client is
initialized from the same block as an active client, the data associated with it will probably
be corrupted, since there is no means provided in the Indexing Kit for synchronizing
changes made by the two instances.

See also: - initInStore:

initlnStore:

- initInStore:(IXStore *)aStore

Initializes the receiver, creating a new boot block in store. After initialization, the boot
block can be used to hold the receiver's data. That block's handle can be retrieved with
getBlock:andStore:. Returns self if successful, or nil if the receiver can't initialize itself.

To implement this method, simply create a block in aStore, record its handle as the boot
block, and store whatever initialization values your client may need there. If your client
needs to use several blocks within aStore, it can also create those, and store their handles
in its boot block. This allows a later instance to retrieve those blocks when it receives an
initFromBlock:andStore: message.

See also: - initFromBlock:inStore:

7-118 Chapter 7: Indexing Kit

IXCol11paratorSetting

Adopted By: IXBTree

Declared In: btreeiprotocols.h

Protocol Description

The IXComparatorSetting protocol is implemented by objects that compare data elements
of unknown type using a comparison function provided by the client. This gives the object
great flexibility in handling an open set of data types. A comparator function as used by
this protocol is of type (lXComparator *), which has the form:

typedef int IXComparator(const void *datal, unsigned short lengthl,
const void *data2, unsigned short length2, const void *context);

where datal is a pointer to any block of lengthl bytes, data2 is a pointer to a block of
length2 bytes, and context is a pointer to blind data which may be used by the comparator
function (for an example of this, see IXFormatComparatorO in the "Functions" section,
later in this chapter). The comparator function returns a number less than 0 if datal is
considered less then data2, greater than 0 if datal is considered greater than data2, and
equal to zero if datal and data2 are considered equal.

There are several standard comparator functions defined by the Indexing Kit. See the
"Functions" section for the full listing.

Comparator functions are intended to compare serial arrays of data, particularly keys in an
associative store (like an IXBTree or a hash table). A key is always serialized when placed
in a store; the resulting representation doesn't contain pointers. A comparator function like
IXCompareStringsO doesn't expect to receive arrays of character pointers; rather, it
expects datal and data2 to be serial arrays containing strings separated by embedded nulls.

Protocols: IXComparatorSetting 7-119

Instance Methods

getComparator:andContext:

- getComparator:(IXComparator **)aComparator
and Context: (const void **)aContext

Returns by reference the function used to compare data elements, and the context
associated with the function. aContext is blind data that the object passes to the
comparator function as the context argument. Returns self.

setComparator:andContext:

- setComparator:(lXComparator *)aComparator
andContext:(const void *)aContext

Sets the function used to compare data elements, and the context associated with the
function. aContext is blind data that the object passes to its comparator function as the
context argument whenever it calls that function. Returns self.

7-120 Chapter 7: Indexing Kit

IXCornparisonSetting

Adopted By: IXBTree

Declared In: btree/protocols.h

Protocol Description

The IXComparisonSetting protocol is implemented by objects that compare data elements
of unknown type using a comparison format that encodes the types of the data elements.
The comparison format is a string containing an Objective C type encoding.

An object implementing this protocol compares two arrays of Objective C scalar values:
signed and unsigned short and long integers, signed and unsigned bytes (characters), and
single- and double-precision floating-point numbers. Based on the comparison format, an
object implementing this protocol iteratively compares the elements of the two arrays until
it finds an element that isn't equal to its counterpart in the other array, or until it exhausts
the elements of one or both arrays. If the two arrays are otherwise equal, the shorter one is
considered the lesser of the two.

Comparison Format Interpretation

A comparison format is simply a string containing an Objective C type encoding for the
arrays to be compared. For example, to compare data items as arrays of long integers, the
comparison format would be "[51]" (the number specified in the array is currently ignored).

There are two classes and one function in the Indexing Kit that interpret comparison
formats: IXRecordManager, IXPostingList and IXFormatComparatorO. A given
comparison format may be interpreted differently by all three, due to differences in the
physical representation of the data. The following table summarizes the general
interpretation policy as implemented by IXFormatComparatorO:

Protocols: IXComparisonSetting 7-121

Code

c

s
I
C
I
S
L
f
d

*
@

"type
[
]

Meaning

A char
Anint
A short int
A long int
An unsigned char
An unsigned int
An unsigned short int
An unsigned long int
A float
A double
A character string (char *, null-terminated)
treated as an unsigned long int
treated as an unsigned long int
treated as an character string
A pointer to valid type
ignored (count is stripped)
ignored if balanced by start of array

IXFormatComparatorO doesn't follow pointers, since the data is assumed to be
serialized. Also, since IXFormatComparatorO uses the other comparator functions to
perform its comparisons, only the first valid component is used, except that the following
pairs are legal:

Format String

"1*"
"L *"
"*1" or "*L"

Comparator used

IXCompareUnsignedAndStringsO
IXCompareUnsignedAndStringsO
IXCompareStringAndUnsignedsO

IXRecordManager derives comparison formats automatically from the return types of its
attributes' selectors. Pointers are followed, and class references ("@") are treated as name
("*") followed by version ("I"), and IXCompareStringAndUnsignedsO is used.

IXPostingList also derives comparison formats from the return types of the selectors used
to sort its contents. Pointers are followed to arbitrary depth.

7-122 Chapter 7: Indexing Kit

Instance Methods

comparison Format

- (const char *)comparisonFormat

Returns a character string containing an Objective C type encoding describing data
elements compared by the receiver.

setComparisonFormat:

- setComparisonFormat:(const char *)format

Records a character string containing an Objective C type encoding describing data
elements compared by the receiver. Returns self.

Protocols: IXComparisonSetting 7-123

IXCursorPositioning

Adopted By: IXBTreeCursor

Declared In: btree/protocols.h

Protocol Description

The IXCursorPositioning protocol defines methods for locating an item in a key space. A
key space is an ordered set of all possible keys of a particular type. An example of an
integer key space is the natural ordering of integers; one key space of type char * is the
lexical ordering of all ASCII strings; another key space of type char * is the case
insensitive lexical ordering of all ASCII strings. The range of a key space may be restricted
by a maximum key length.

Key spaces are generally used to store values, each key being associated with exactly one
value. Consider a key space that associates string-valued keys with personnel records. Say
the key contains the last name of the employee, followed by a comma, followed by the first
name. Using an IXBTreeCursor, the record for an employee named Jane Draper could be
found as follows:

IXBTreeCursor *cursor;
BOOL

char
found;

*aKey = "Draper,Jane";

II the null terminator is included in the length by convention

found = [cursor setKey: (void *)aKey andLength:l+strlen(aKey)];

setKey:andLength: returns YES if the cursor successfully locates a value for the given
key. The cursor will remain positioned at that key following the operation, and subsequent
messages to the cursor may either access that value, or move the cursor to another position.
For example, telling the cursor to write a value in the example above would overwrite Jane
Draper's record, and telling the cursor to remove the value would remove her record from
the key space. Telling the cursor to move to the next key in the key space would cause it
to access a different employee's record. The cursor is therefore like an agent in the key
space; it can move about and operate on the values associated with keys.

If the setKey:andLength: in the preceding example returned NO, it would indicate that
there was no record associated with the key "Draper,J ane"; the cursor would nevertheless
be positioned at that key. This may be between two existing records, before the first record,
or after the last existing record. Subsequent messages to the cursor may cause it to slide
forward to the next key with an associated record.

7-124 Chapter 7: Indexing Kit

Sliding and Insertion

A cursor at a position with no key can't access a value there. If the cursor is asked to access
a value anyway, it has two options: try to find a value, or indicate that it can't access one.
Where it makes sense, a cursor should try to find a value by sliding forward in the key space
to the next actual key. When this isn't possible or desirable, the cursor should indicate that
it can't find or access a value, by raising the IX_NotFoundError exception.

Suppose the IXBTreeCursor above is asked to look for Anne Draper instead of Jane, and
that there is no record for Anne Draper; also, there are no records whose keys would fall
between Anne Draper and Jane Draper. The IXBTreeCursor will position itself before
Jane's key and return NO:

aKey = "Draper/Anne";

found = [cursor setKey: (void *)aKey andLength:l+strlen(aKey)];

In this case, found will be NO, indicating that there is no key with the value
"Draper,Anne". If the IXBTreeCursor is asked to read the value of either the key or the
personnel record, the key will slide forward to Jane's record and return that data. For
example, on determining that there is no record with the key "Draper,Anne", the program
could send getKey:andLength: to find out where the cursor actually landed. In this case,
the cursor will move forward to Jane Draper's record, and return the key "Draper,J ane" ,
along with its length. This lets the program know that the cursor landed before Jane's
record (and incidentally finds the record the program was actually interested in).

If the IXBTreeCursor is asked to write a value at a location where there is none, the value
and the key are added to the key space. Since the cursor is where it should be for the key
being added, it can simply create a key and store the record under the key. There will then
be an entry in the IXBTree for Anne Draper. This is exactly how an insertion is performed
with a cursor: set the key position with setKey:andLength:, and if the return value is NO,
a write message immediately following will insert the value provided under the key.

If the IXBTreeCursor is asked to write inside or to remove the record at a location where
there is no key, there's a problem. Since there is no record, and since writing into part of a
record or removing it would change data that the programmer probably doesn't want
altered (namely, the record for the next actual key), the IXBTreeCursor will indicate that
there is no value to write into by raising IX_NotFoundError.

Protocols: IXCursorPositioning 7-125

Iteration and Partial Lookup

A cursor can be explicitly told to slide forward with the setNext method, which returns
YES if there is a next key and the cursor has moved there, and NO if the cursor was already
at the last key and has moved past it. By sending a setFirst message to a cursor, which
positions it at the first key (if there is one), and then many setNext messages, it's possible
to iterate over the entire set of keys and values stored in the key space. The same can be
done in reverse order with setLast and setPrevious.

Cursor sliding and iteration can be used together to perform partial lookups, where the goal
is to find all records whose keys lie within a certain range; for example, finding all
employees whose last name is Draper. This can be done by positioning the cursor at the
lowest valued key, and moving it forward until the key becomes greater than the greatest
valued desired. For example, to find all employees whose last name is Draper:

BOOL found;
char *aKey, *lastName;
int aLength;

1*
* Tell the cursor to find the first record whose key starts with
* "Draper,". Notice the comma at the end; this is to make sure
* the last name is matched exactly.

*1
aKey = lastName = "Draper,";
found = [cursor setKey: (void *)aKey andLength:1+strlen(aKey)];

1*
* This forces the cursor to move to a real key if it didn't hit
* one, which is probably the case.

*1
[cursor getKey:&(void *)aKey andLength:&aLength];

1*
* While the key contains the last name we're looking for,
* keep processing. If the range were integers from 10-100,
* aKey would be an int *, *aKey would be set to 10 for
* the setKey:andLength: method above, and this test
* would be (*aKey <= 100).
*1

while (strncmp(aKey, lastName, strlen(lastName)) > 0) {
processRecordAtCursor(cursor); II process the record
found = [cursor setNext]; II go to the next one
if (found == NO) break; II at end of key space

7-126 Chapter 7: Indexing Kit

Method Types

Absolute positioning - setKey:andLength:
- getKey:andLength:

Relative positioning - setFirst
- setNext
- setLast
- setPrevious

Checking positioning success - isMatch

Instance Methods

getKey:andLength:

- (BOOL)getKey:(void **)aKey andLength:(unsigned int *)aLength

Returns by reference the key defining the cursor's position in its key space, along with the
key's length.

If the cursor is at a key which has a value associated with it, this method returns YES. If the
cursor is between two values or before the first one, this method advances the cursor to the
key for the next value, returns that key by reference, and returns YES. If the cursor is beyond
the last key, this method returns NO, and the contents of aKey and aLength aren't set.

aKey isn't guaranteed to remain the same after subsequent messages to the cursor, since the
cursor reallocate its buffer or may slide as a side effect of a message. Your code should
copy their contents if it needs to save them. Your code should not write into aKey; doing
so will corrupt the cursor.

See also: - setKey:andLength:, - isMatch

isMatch

- (BOOL)isMatch

Returns YES if the cursor is on a key with an associated value, NO if the cursor is between
two values or past either end of the set of values.

If the cursor isn't on a key with a value, then trying to get a key or read a value can cause
the cursor to move forward to the next key with a value before reading the key or value, or
raise IX_ArgumentError if the cursor can't move (because it's at the end of the key space).
Any attempt to write into or remove a nonexistent value will raise IX_ArgumentError.

See also: - setKey:andLength:, - getKey:andLength:

Protocols: IXCursorPositioning 7-127

setFirst

- (BOOL)setFirst

If there is at least one value associated with a key, this method positions the cursor at the
first element's key and returns YES. Otherwise it returns NO, and any attempt to remove
or read a value at the cursor's position will raise IX_ArgumentError.

See also: - setNext, - setLast, - setPrevious

setKey:andLength:

- (BOOL)setKey:(void *)aKey andLength:(unsigned int)aLength

Sets the current position of the cursor to that specified by aKey and aLength. If a value is
associated with aKey, returns YES. Otherwise returns NO. If there is no value with a key
before aKey, this method positions the cursor before the first value. If there is no value with
a key after aKey, this method positions the cursor beyond the last values.

If this method returns NO, then any attempt to write into or remove a value at the cursor's
position will raise IX_ArgumentError, and any attempt to read a key or value will cause the
cursor to move to the key for the next value before reading the key or value, or raise
IX_ArgumentError if the cursor can't move (because it's at the end of the key space).

See also: - getKey:andLength:, - isMatch

setLast

- (BOOL)setLast

If there is at least one value associated with a key, this method positions the cursor at the
last element's key and returns YES. Otherwise it returns NO, and any attempt to remove
or read a value at the cursor's position will raise IX_ArgumentError.

See also: - setPrevious, - setFirst, - setNext

setNext

- (BOOL)setNext

Sets the cursor's position to the next key with an associated value. Returns YES if there is
a next element, and NO if the cursor is already positioned at the end of the key space. If
this method returns NO, then any attempt to remove or read a value at the cursor's position
will raise IX_ArgumentError.

See also: - setFirst, - setLast, - setPrevious

7-128 Chapter 7: Indexing Kit

setPrevious

- (BOOL)setPrevious

Sets the cursor's position to the previous key with an associated value. Returns YES if
there is a previous element, and NO if the cursor was positioned at the beginning of the key
space and has moved to a position before the first key. If this method returns NO, then any
attempt to read a value will cause the cursor to move to the next key with a value, or raise
IX_ArgumentError if the cursor can't move (because it's at the end of the key space).

See also: - setLast, - setFirst, - setNext

Protocols: IXCursorPositioning 7-129

IXFileFinderConfiguration

Adopted By: IXFileFinder

Declared In: indexing/IXFileFinder.h

Protocol Description

The IXFileFinderConfiguration protocol defines methods for controlling how an
IXFileFinder builds and updates its index, and how it treats various files and properties of
the file system. This information is kept in the file finder's store, so your code doesn't have
to re-establish a configuration each time it uses the file finder.

Method Types

Managing attribute parsers - setAttributeParsers:
- getAttributeParsers:

Generating descriptions - setGeneratesDescriptions:
- generatesDescriptions

Enabling automatic updating - setUpdatesAutomatically:
- updatesAutomatically

Setting file system options - setCrossesDeviceChanges:
- crossesDeviceChanges
- setFollowsSymbolicLinks:
- followsSymbolicLinks
- setScansForModifiedFiles:
- scansForModifiedFiles

Ignoring files - setIgnoredTypes:
- ignoredTypes
- setIgnoredNames:
- ignoredN ames

7-130 Chapter 7: Indexing Kit

Instance Methods

crossesDeviceChanges

- (BOOL)crossesDeviceChanges

Returns YES if the file finder indexes files stored on physical devices other than the device
that the primary directory (the file finder's root path) is on, NO if it doesn't. For example,
if the user has a hard disk mounted in the file finder's primary directory, this method will
return YES if the file finder indexes and searches files on that disk. The default is NO.

See also: - setCrossesDeviceChanges:

foliowsSymbolicLinks

- (BOOL)followsSymbolicLinks

Returns YES if the file finder follows symbolic links when building or updating indexes,
NO if it ignores them. The default is NO.

See also: - setFollowsSymbolicLinks:

generatesDescriptions

- (BOOL)generatesDescriptions

Returns YES if the file finder generates descriptions for the files it indexes based on their
contents, NO if it doesn't.

See also: - setGeneratesDescriptions:

getAttributeParsers:

- getAttributeParsers:(List *)aList

Empties aList and fills it with the IXAttributeParsers used by the IXFileFinder. These are
the objects the file finder uses to parse files when building or updating indexes. The sender
of this message is responsible for creating and freeing the List, but shouldn't free the
objects put in the List. Returns self.

See also: - setAttributeParsers:

Protocols: IXFileFinderConjiguration 7-131

ignoredNames

- (char *)ignoredNames

Returns a string containing a newline-separated list of names of files that the file finder
ignores when building or updating indexes, or performing queries. The file names are
relative to the file finder's root path. The sender is responsible for freeing the string
returned by this method.

See also: - setIgnoredNames:, - ignoredTypes

ignoredTypes

- (char *)ignoredTypes

Returns a string containing a newline-separated list of extensions of files that the file finder
ignores when building or updating indexes, or performing queries. A file type is
determined by the file finder on the basis of its extension or a brief examination of its
contents. The sender is responsible for freeing the string returned by this method.

See also: - setIgnoredTypes:, - ignoredNames

scansForModifiedFiles:

- (BOOL)scansForModifiedFiles:

Returns YES if the file finder scans files in the background, checking their modification
times against those recorded in its index, and updating the index for files that have been
modified. Returns NO if the file finder doesn't perform this background scanning.

See also: - setScansForModifiedFiles:

setAttributeParsers:

- setAttributeParsers:(List *)aList

Replaces the IXAttributeParsers used by the file finder with those in aList and frees any of
the previous set of IXAttributeParsers that the file finder will no longer use. These are the
objects the file finder uses to parse files when building or updating indexes. Returns self.

See also: - getAttributeParsers:

7·132 Chapter 7: Indexing Kit

setCrossesDeviceChanges:

- setCrossesDeviceChanges:(BOOL)jlag

If jlag is YES, the file finder will index files on physical devices other than the one its
primary directory is on. Ifjlag is NO, it will ignore other devices. The default is NO.
Returns self.

See also: - crossesDeviceChanges

setFollowsSymbolicLinks:

- setFollowsSymbolicLinks:(BOOL)jlag

Ifjlag is YES, the file finder will follow symbolic links when building or updating indexes.
Ifjlag is NO, the file finder will ignore symbolic links. The default is NO. Returns self.

See also: - followsSymbolicLinks

setGeneratesDescriptions:

- setGeneratesDescriptions:(BOOL)jlag

Ifjlag is YES, the file finder will generate descriptions for the files it indexes based on their
contents. Ifjlag is NO, it won't generate descriptions.

See also: - generatesDescriptions

setlgnoredNames:

- setIgnoredNames:(const char *)names

Replaces the file finder's set of ignored file names with those in names. names should be a
string containing a newline-separated list of names of files to ignore. Returns self.

Each file name should be the name alone, with no path before it. Any files in the file finder's
subtree of the file system with that name will be ignored.

See also: - ignoredFilenames, - setIgnoredTypes:

Protocols: IXFileFinderConfiguration 7-133

setlgnoredTypes:

- setlgnoredTypes:(const char *)types

Replaces the file finder's set of ignored file types with those in types. types should be a
string containing a newline-separated list of file extensions for the types of files to ignore.
Returns self.

See also: - ignoredTypes, - setlgnoredNames:

setScansForModifiedFiles:

- setScansForModifiedFiles: (BOOL)flag

Ifflag is YES, the file finder will scan files in the background, checking their modification
times against those recorded in its index, and updating the index for files that have been
modified. Ifflag is NO, the file finder won't perform this background scanning.

See also: - scansForModifiedFiles

setU pdatesAutomatically:

- setUpdatesAutomatically:(BOOL)flag

Ifflag is YES, then the file finder records out of date index references whenever a query is
perfonned, and updates its index in the background based on that information. Ifflag is
NO, no index checking or background updating is done. The default is YES. Returns self.

See also: - updatesAutomatically, IXFileFinderQuery AndUpdate protocol

updatesAutomatically

- (BOOL)updatesAutomatically

Returns YES if the file finder checks its index whenever a query is performed, and updates
it in the background, NO otherwise. The default is YES.

See also: - setUpdatesAutomatically:, IXFileFinderQuery AndUpdate protocol

7-134 Chapter 7: Indexing Kit

IXFileFinderQuery AndUpdate

Adopted By: IXFileFinder

Declared In: indexing/IXFileFinder .h

Protocol Description

The IXFileFinderQuery AndUpdate protocol defines much of the real functionality of the
IXFileFinder class. All of the querying and index building methods are in this protocol.
There are also a few methods for getting miscellaneous information about the IXFileFinder.

Sending a Query or an Update Request

The methods for performing a query or updating the file finder's index­
performQuery:atPath:forSender:, and updatelndex:atPath:forSender:-specify an
object to be passed as the sender of the message. The file finder can then send messages
back to the sender while processing the query or update request.

When a file finder receives a performQuery:atPath:forSender: message, it immediately
returns a list of all the files in its index that match the supplied query. In addition, if the file
finder uses an index and the index is out of date, it checks all of its out of date files in the
background to see if they match the query. If the sender of a query responds to
fileFinder:didFindFile: or fileFinder:didFindFile:, then it will receive those messages
for out of date files found after the query message has returned. This guarantees that all
files in the file finder's directory get checked for every query. To stop receiving these
messages after a query has begun, send the file finder a stopQueryForSender: message.

When a file finder receives an updatelndex:atPath:forSender: message, it checks
whether the sender responds to fileFinder:wiUAddFile:. If so, then every time a new file
record would be added to the index or changed, it sends that message back to the sender of
the update message. The sender can then alter or replace the file record and return it to the
file finder. The record returned by the sender is added to the index instead of the original
file record.

The sender can be specified as nil, in which case no per-file messages will be sent. Passing
nil as the sender for a query will produce incomplete results if the index is at all out of date.

Protocols: IXFileFinderQueryAndUpdate 7-135

Method Types

Getting the target directory

Getting the record manager

Performing queries

Updating indexes

Instance Methods

clean

- clean

-rootPath

- recordManager

- performQuery:atPath:forSender:
- stopQueryForSender:

- updateIndexAtPath:forSender:
- isUpdating
- suspendU pdating
- resumeUpdating
- clean
- reset

Removes all inaccurate or out of date information from the file finder's index, leaving the
index in an incomplete, but otherwise accurate, state. Returns self.

See also: - reset

isUpdating

- (BOOL)isUpdating

Returns YES if the file finder is updating its index in the background. That is, if each time
it performs a query, it records those files that are out of date with respect to its index, and
updates them in the background.

See also: - suspendUpdating, - resumeUpdating, - updatelndexAtPath:forSender:,
- setUpdatesAutomatically: (IXFileFinderConfiguration)

7-136 Chapter 7: Indexing Kit

performQuery:atPath:forSender:

- (IXPostingList *)performQuery:(const char *)aQuery
atPath:(const char *)path
forSender:sender

Performs a query within the file finder's directory for all files within the subdirectory named
path relative to the file finder's root path. aQuery is a string defining a request in the file
finder's query language (described under "The Indexing Kit Query Language" in the
"Other Features" section of this chapter). If there's an index, it's checked first, and results
matching aQuery for all valid index entries are returned. If there is no index, or if there are
any files that are out of date with respect to the index, the file finder continues its search
directly on those files in the background, sending fileFinder:didFindFile: or
fileFinder:didFindList: messages to sender as it finds additional files that match aQuery.
If sender is nil or doesn't respond to fileFinder:didFindFile:, then no background
searching is done.

This method returns an IXPostingList containing the immediate results of the query (the
file records that were retrieved directly from the index). It contains a set of IXFileRecords
containing basic information about the files: their names, types, modification dates, and
so on.

See also: - stopQueryForSender:, - fileFinder:didFindFile: ("Methods Implemented
by the Sender of a Query or Update")

recordManager

- recordManager

Returns the record manager (usually of class IXRecordManager) used by the file finder to
maintain its index.

reset

- reset

Removes all information from the file finder's index, but doesn't remove the indexes
themselves. This is useful if for rebuilding a file finder's index from scratch: to do so, send
this message followed by an updatelndex:atPath:forSender: message. Returns self.

See also: - clean

Protocols: IXFileFinderQueryAndUpdate 7-137

resumeUpdating

- resumeUpdating

Resumes automatic background updating of the file finder's index after a
suspendUpdating message. If automatic updating hasn't been suspended, this method has
no effect. Returns self.

See also: - suspendUpdating, - updatelndexAtPath:forSender:, - isUpdating,
- setUpdatesAutomatically: (IXFileFinderConfiguration)

rootPath

- (const char *)rootPath

Returns the full pathname of file finder's primary directory-the top level directory that
the indexes are built over. This directory is set when the file finder is initialized, and can't
be changed.

stopQueryForSender:

- stopQueryForSender:sender

Stops background searching for the query last requested by sender. This is useful if sender
doesn't want to receive any more fileFinder:didFindFile: messages after performing a
query (for example, if it was looking for a specific file and found it). This message doesn't
need to be sent if the sender passed to performQuery:atPath:forSender: doesn't respond
to fileFinder:didFindFile:, or if the sender was passed as nil. Returns self.

See also: - performQuery:atPath:usinglndexes:,
- fileFinder:didFindFile: ("Methods Implemented by the Sender of a Query or Update")

suspendUpdating

- suspendUpdating

Suspends automatic background updating, if it's being done. Automatic updating may be
reestablished with resumeUpdating. Returns self.

See also: - resumeUpdating, - updatelndexAtPath:forSender:, - isUpdating,
- setUpdatesAutomatically: (lXFileFinderConfiguration),
- updatesAutomatically (IXFileFinderConfiguration)

7-138 Chapter 7: Indexing Kit

updatelndexAtPath :forSender:

- updatelndexAtPath:(const char *)path forSender:sender

Updates information in the file finder's index for all files in the subdirectory of the file
finder's primary directory named path relative to the file finder's root path. If sender
responds to fileFinder:willAddFile:, then during the update the file finder will send that
message for every file it discovers that isn't in its index. This operation may take some
time. Returns self.

See also: - suspendUpdating, - resumeUpdating, - is Updating,
- fileFinder:willAddFile: ("Methods Implemented by the Sender of a Query or Update")

Methods Implemented by the Sender of a Query or Update

fileFinder:didFindFile:

- fileFinder:(IXFileFinder *)aFinder didFindFile:(IXFileRecord *)aRecord

Sent during a background search by the file finder to the sender of a
performQuery:atPath:forSender: message when it finds a file matching the sender's
query. Returns self.

aRecord can be used to access information about the file that matched the query, which can
be displayed to the user or processed.

See also: - performQuery:atPath:forSender:, - fileFinder:didFindList:

fileFinder:didFindList:

- fileFinder:(IXFileFinder *)aFinder didFindList:(IXPostingList *)aList

Sent during a background search by the file finder to the sender of a
performQuery:atPath:forSender: message when it finds a set of files matching the
sender's query. Returns self.

aList contains IXFileRecord objects, which can be used to access information about the
files that matched the query, which can be displayed to the user or processed.

See also: - performQuery:atPath:forSender:, - fileFinder:didFindFile:

Protocols: IXFileFinderQueryAndUpdate 7-139

fileFinder:wiIIAddFile:

- fileFinder:(IXFileFinder *)aFinder willAddFile:(IXFileRecord *)aRecord

Sent by the file finder to the sender of an updatelndexAtPath:forSender: message before
it adds aRecord to its indexes. The file finder will add the record returned by this method
(which should be an IXFileRecord or subclass). The receiver may alter, replace, or even
free aRecord, and return the record as the receiver wants it added, or nil if the receiver
doesn't want it added. If it turns out that no changes need to be made, your implementation
of this method should simply return aRecord.

See also: - updatelndexAtPath:forSender:

7-140 Chapter 7: Indexing Kit

IXLexerneExtraction

Adopted By: no NeXTSTEP classes

Declared In: indexinglIXAttributeReader.h

Protocol Description

IXLexemeExtraction defines methods implemented by readers, which are objects that
lexically analyze a stream of text for consumption by a parser, such as an IXAttributeParser.
IXAttributeReader subclasses that conform to this protocol are called custom readers, as they
implement this protocol to customize certain aspects of lexical analysis.

Method Types

Lexing a stream - getLexeme:inLength:fromStream:

Manipulating a wordllexeme - foldCase:inLength:

Instance Methods

foldCase:inLength:

- (unsigned int)foldCase:(char *)aString inLength:(unsigned int)aLength

Changes all characters in aString to be lowercase, according to the rules of the language
being read. aLength is the length of the string buffer in which aString resides, not the length
of the string, which is null-terminated. Returns the length of the changed string.

Protocols: IXLexemeExtraction 7-141

getLexeme:inLength:fromStream:

- (unsigned int)getLexeme:(char *)aString
inLength:(unsigned int)aLength
fromStream:(NXStream *)stream

Extracts a lexeme from stream, putting it into aString. aLength is the length of the string
buffer into which the receiver may place the lexeme. This method should return the actual
length of the string put into the buffer.

This method may be implemented by subclasses of IXAttributeReader that need more
control over lexeme recognition than IXAttributeReader's simple delimiter map strategy
can provide. This includes readers that need to recognize phrases or idioms (like 'joie de
vivre") and readers that handle text in non-phonetic alphabets or in streams that contain
special escape sequences. For example, the IXJapaneseReader class developed by Canon
uses this method to override the default lexeme recognition, in order to detect embedded
escape sequences that denote shifts among the three different Kanji character encodings.

7-142 Chapter 7: Indexing Kit

IXNal11eAndFileAccess

Adopted By:

Incorporates:

Declared In:

IXBTree
IXFileFinder
IXRecordManager
IXStoreDirectory

IXBlockAndStoreAccess

store/protocols.h

Protocol Description

The IXN ameAndFileAccess protocol defines methods for initializing and freeing store file
clients by name instead of by block handle. A store file client is an object that keeps data
in a store file (see below). You use this protocol both to create new objects in a store file,
and to initialize objects from data previously stored in a store file. For general information
on store clients, see the IXBlockAndStoreAccess protocol specification.

Store Files

Files with a ".store" extension are assumed by convention to contain an IXStoreDirectory
at block handle 1. You can take advantage of this convention when implementing
IXN ameAndFileAccess for your class by accessing the contents of the store file through its
IXStoreDirectory.

Note: Although the term "store file" can refer to any file created by an IXStoreFile, the
term "storage file" is preferred. "Store file," in this protocol specification, refers
specifically to a storage file obeying the above convention; that is, a storage file having an
IXStoreDirectory at block handle 1 (the ".store" extension merely advertises this fact, and
is entirely optional).

A store file can be created by allocating an IXStoreDirectory and sending it
initWithName:inFile: (with the file name ending in ".store" if desired). This method will
create the file if needed, get a block handle for the IXStoreDirectory, and make sure that the
handle is 1 before proceeding. If the handle isn't 1, the initWithName:inFile: method will
free the IXStoreDirectory and return nil. Your code can also explicitly create an
IXStoreFile and immediately allocate an IXStoreDirectory and send it an initlnStore:
message. An IXStore guarantees that the first block ever allocated from it will have a
handle of 1, so you can safely use this technique to manually create a store file.

Protocols: IXNameAndFileAccess 7-143

To open a store file, initialize an IXStoreFile on it with the initFromFile:forWriting:
method, and then create an IXStoreDirectory and send it an initFromBlock:andStore:
message with 1 as the block handle and the id of the IXStoreFile as the store. You can then
use the IXStoreDirectory to access entries in the store file by name, either having it
reconstitute its entries, or getting the boot blocks for those entries and sending
initFromBlock:inStore: messages to instances of the store file clients.

The IXStoreDirectory at block 1 is intended as a root directory for implementing this
protocol. Your store file clients shouldn't use it to store named private clients, as this
clutters the name space of the root directory. Any clients belonging to a store file client
should be accessed only through that client's boot block, and referenced by handle. If your
client needs to store other clients by name, it should create a private IXStoreDirectory and
record the handle in its own boot block.

Temporary Store File Clients

In addition to the methods in this protocol, you may find it convenient to implement a
simple init method that initializes the store file client for temporary use by creating an
IXStoreFile or IXStore private to that instance. The temporary instance is then responsible
for freeing the run-time store and removing any storage file from the file system when it
receives a free message. In such a case, of course, the store file client will essentially be a
regular (nonpersistent) object.

Closing a Store File

Before a store file is closed (that is, before the IXStoreFile object is sent a free message),
all of the store file clients should be properly cleaned up and freed. This involves freeing
the store file clients, sending either abortTransaction or commitTransaction to the
IXStoreFile until all transactions are completed, and finally, freeing the IXStoreFile object
(which closes the file). Changes made since the store file was opened aren't flushed when
the IXStoreFile is freed; pending transactions have to be explicitly completed beforehand,
or they're all effectively aborted.

Method Types

Initializing and freeing a client - initWithName:inFile:
- initFromN ame:inFile:forWriting:
- freeFromStore
+ freeFromN ame:inFile:

Retrieving the block and store - getName:andFile:

7-144 Chapter 7: Indexing Kit

Class Methods

freeFromName:inFile:

+ freeFromName:(const char *)aName inFile:(const char *)jilename

Removes fromjilename the storage for the named client. Normally, your code would have
to instantiate a client for the data stored under aName injilename, and send that client a
freeFromStore message. This method provides a convenient way to remove an object
from a storage file without allocating and initializing it yourself. Returns self.

One way to implement this method is to create an IXStoreDirectory, and have it free the
entry with freeEntryNamed: (which in turn sends freeFromBlock:andStore: to the
client's class object). Here's a simple example, without any error handling:

+ freeFromName: (const char *)aName andFile: (const char *)filename

IXStoreFile *theStore;
IXStoreDirectory *theDirectory;

theStore = [[IXStoreFile alloc] initFromFile:filename]
forwriting:YES] ;

theDirectory = [[IXStoreDirectory alloc] initFromBlock:l

inStore:theStore] ;
[theDirectory freeEntryNamed:aName];

[theDirectory free];
[[theStore commitTransaction] free];
return self;

Notice that commitTransaction must be sent to the IXStoreFile before freeing it, or the
removal won't take effect.

See also: - freeFromStore, - freeEntryNamed: (IXStoreDirectory)

Instance Methods

freeFromStore

- freeFromStore

Removes the client's data from its IXStoreFile's store file and frees the run-time object. A
store file client's free method simply frees the run-time object without affecting any data
in the store file. Returns nil.

See also: + freeFromName:inFile:, - free (Object)

Protocols: IXN ameAndF ileAccess 7-145

getName:andFile:

- getName:(const char **)aName andFile:(const char **)filename

Returns by reference the name of the client and of the store file in which it keeps its data.
Also returns self.

A store file client must record at least its name (preferably in an instance variable). The file
name can be retrieved from the IXStoreFile by sending it a filename message. If this
is done, the implementation of this method can simply put those values into aName
and filename.

initFromName:inFile:forWriting:

- initFromName:(const char *)aName
inFile:(const char *)filename
forWriting:(BOOL)flag

Initializes the receiver from data previously stored in filename under entry aName. That
data should have been created by a previous invocation of the initWithName:inFile:
method on the original instance of the store file client. If flag is YES, filename is opened
for reading and writing. Ifflag is NO,filename is opened for reading only; changes can be
made to the store file's data, but they won't be flushed out to disk. The receiver isn't
required to be of the same class as the original creator of the store data, but it must be able
to make sense of it. Returns self if successful, or nil if the receiver can't be initialized (for
example, if aName doesn't exist in filename, or iffilename itself doesn't exist).

One way to implement this method is to create an IXStoreDirectory, have it get the block
for the entry named aName, and initialize from that block. Here's a simple example,
without any error handling:

- initFromNarne: (const char *)aNarne
inFile: (const char *)filenarne
forWriting: (BOOL) flag

IXStoreFile *theStore;
IXStoreDirectory *theDirectory;
unsigned int bootBlock;

theStore = [[IXStoreFile alloc] initFrornFile:filenarne
forWriting:flag] ;

theDirectory = [[IXStoreDirectory alloc] initFrornBlock:l
inStore:theStore];

[theDirectory getBlock:&bootBlock ofEntryNarned:aNarne];

7-146 Chapter 7: Indexing Kit

1*
* Take advantage of the IXBlockAndStoreAccess protocol.

*1
[self initFrornBlock:bootBlock andStore:theStore];

[theDirectory free];

1* Don't free theStore. *1
return self;

Notice that the IXStoreFile has to be created and retained separately from the
IXStoreDirectory, which is freed. This implementation also assumes that the client
conforms to the IXBlockAndStoreAccess protocol.

Note: While a store file client instance exists, it's considered to own its data in the store
file. Your code should never use this method a second time with a specific name unless it's
known for certain that any previous instance using that data has been freed (or that both
instances will be using the storage for read-only access). If a second store file client is
initialized from the same name as an active client, the data associated with it will probably
be corrupted, since there is no means provided for synchronizing changes made by the
two instances.

See also: - initWithName:inFile:

initWithName:inFile:

- initWithName:(const char *)aName inFile:(const char *)jilename

Initializes the receiver to create and keep its data injilename (creating the file if necessary)
under the name aName. Returns self, or nil if the receiver can't initialize itself (for example,
if a store file client named aName already exists, or ifjilename couldn't be created).

Here's a simple example implementation, without any error handling:

- initWithNarne: (const char *)narne inFile: (const char *)aFile

IXStoreFile *theStore;

IXStoreDirectory *theDirectory;

IXBTree *theEntry;

theStore [[IXStoreFile alloc] initFrornFile:aFile

forWriting:YES]; II Have to write to initialize

Protocols: IXNameAndFileAccess 7-147

/*

* If the file doesn't exist, create a new one.

*1
if (nil == theStore) {

theStore = [[IXStoreFile alloc] initWithFile:aFile];
if (nil == theStore) return [self free];

theDirectory = [IXStoreDirectory alloc];
[theDirectory initFromBlock:1 inStore:theStore]

/*

* If the file was created, there won't be anything in the store,
* so create a new one; it's guaranteed to have block 1.
* (This isn't the best way to check that the store file is new.)

*1
if (nil == theDirectory) {

/*

theDirectory = [[IXStoreDirectory alloc]
initInStore:theStore];

* Take advantage of the IXBlockAndStoreAccess protocol.

*1
[self initInStore:theStore];

/*

* entryName is an instance variable. All store file clients
* should cache their name and at least the id of the IXStoreFile.

*1
entryName = NX~opyStringBufferFromZone(name, NXZoneFromPtr(self));
[theDirectory addEntryNamed:aName forObject:self];
[theDirectoryfree];

[theStore co~itTransaction]; II Don't free the store file.
return self;

See also: - initFromName:inFile:forWriting:

7-148 Chapter 7: Indexing Kit

IXPostingExchange

Adopted By:

Declared In:

IXPostingCursor
IXPostingList
IXPostingSet

btreeiprotocols.h

Protocol Description

The IXPostingExchange protocol allows Indexing Kit classes to exchange their postings
with one another. A posting is an optionally weighted opaque reference. A posting set is
an array of postings ordered by handle, with no duplicates.

Instance Methods

getCount:andPostings:

- getCount:(unsigned int *)count andPostings:(IXPosting **)thePostings

Returns by reference the number of postings, and a ~opy of the postings sorted by handle.
The sender of this message is responsible for freeing the postings when they are no longer
needed. Returns self.

setCount:andPostings:

- setCount:(unsigned int)count andPostings:(IXPosting *)postings

Sets the number of postings to count, and installs a copy of the contents of postings into the
receiver. The sender of this message is responsible for freeing the postings when they are
no longer needed. (Note: IXPostingCursor frees its postings.) Returns self.

Protocols: IXPostingExchange 7-149

IXPostingOperations

Adopted By: IXPostingCursor
IXPostingSet

Declared In: btree/protocols.h

Protocol Description

The IXPostingOperations protocol defines methods for manipulating postings. See the
IXPostingExchange protocol specification for a description of the term "posting."

The IXPostingOperations protocol requires the implementor to logically order its postings
by handle, eliminating duplicates, and to maintain a cursor on this ordering which defines
a current selection. This protocol defines methods for the selection of postings by position
or by handle, and for iteration over the entire set of postings.

Method Types

Manipulating postings by handle
- addHandle:with Weight:
- removeHandle:

Getting the number of postings - count

Emptying a posting set

Traversing a posting set

7-150 Chapter 7: Indexing Kit

-empty

- setHandle:
- getHandle:andWeight:
- setFirstHandle
- setN extHandle

Instance Methods

addHandle:withWeight:

- addHandle:(unsigned int)aHandle with Weight: (unsigned int)a Weight

Adds a posting consisting of aHandle and a Weight to the set. If aHandle is already present,
assigns the posting a new weight by averaging aWeight and the existing weight. (Note: if
aHandle is already present, IXPostingCursor overwrites the existing weight with a Weight).
Returns self.

See also: - removeHandle:, - getHandle:andWeight:

count
- (unsigned int)count

Returns the number of postings in the set.

empty

-empty

Removes all postings from the set. Returns self.

See also: - removeHandle:

getHandle:andWeight:

- (unsigned int)getHandle:(unsigned int *)aHandle
andWeight:(unsigned int *)aWeight

Returns by reference the handle and weight of the selected posting. Explicitly returns the
handle, or 0 if the current selection is undefined.

See also: - setHandle:

removeHandle:

- removeHandle: (unsigned int)aHandle

If a posting with handle aHandle exists, removes that posting. Returns self.

See also: - addHandle:withWeight:, - getHandle:andWeight:

Protocols: IXPostingOperations 7-151

setFirstHandle

- (unsigned int)setFirstHandle

Selects the first posting, and returns that posting's handle, or 0 if the set is empty.

See also: - setNextHandle, - setHandle:

setHandle:

- (unsigned int)setHandle:(unsigned int)aHandle

Selects the posting with handle aHandle, and returns that posting's handle. If the value
returned isn't aHandle, that posting wasn't found, and the next higher-numbered posting
is selected.

Note: For both IXPostingSet and IXPostingCursor, this is an efficient operation, with a
cost on the order of Olog2(n), where n is the number of postings.

See also: - getHandle:andWeight:

setNextHandle

- (unsigned int)setNextHandle

Selects the next posting. Returns the handle for that posting, or 0 if there are no
more postings.

See also: - setFirstHandle, - setHandle:

7-152 Chapter 7: Indexing Kit

IXRecordDiscarding

Adopted By: IXRecordManager

Declared In: indexing/protocols.h

Protocol Description

The IXRecordDiscarding protocol defines methods for marking records for deletion, for
reclaiming deleted records and for cleaning their repository. Discarded records are treated
as though they don't exist-they can't be read, for example. They will either be physically
removed when the repository is cleaned, or explicitly reclaimed by the caller. This protocol
is designed to support lazy index maintenance; references to discarded records may safely
be allowed to remain in the inversions until the repository is cleaned. It also supports a
form of disaster recovery when add and discard operations are used instead of replacement.

Method Types

Discarding records - discardRecord:
- reclaimRecord:

Removing discarded records - clean

Instance Methods

clean

- clean

Removes all discarded records from the receiver. Those records will no longer be
reclaimable. Returns self.

See also: - discardRecord:, - reclaimRecord:, - empty (lXRecordWriting)

Protocols: IXRecordDiscarding 7-153

discardRecord:

- discardRecord:(unsigned int)aHandle

Discards the record identified by aHandle, so that the record can't be read, removed or
replaced. reciaimRecord: retrieves discarded records, and clean removes all discarded
records. Returns self.

See also: - reciaimRecord:, - clean, - removeRecord: (IXRecordWriting)

reclaimRecord:

- reciaimRecord:(unsigned int)aHandle

Reclaims a record previously discarded with discardRecord:. aHandle is the identifier of
the discarded record. A discarded record must be reclaimed in order to access it or remove
it completely from the archive (although clean removes all discarded records at once).
Returns self.

See also: - discardRecord:, - clean

7-154 Chapter 7: Indexing Kit

IXRecordReading

Adopted By: IXRecordManager

Declared In: indexing/protocols.h

Protocol Description

The IXRecordReading protocol defines methods for retrieving objects by an abstract
identifier, or handle. The implementor of this protocol is called an object repository.
The stored objects are called records. IXRecordManager uses this protocol, along with
IXRecordTranscription and IXBlob Writing, to retrieve stored objects.

Instance Methods

count

- (unsigned int)count

Returns the number of recprds in the receiver.

readRecord:fromZone:

- readRecord:(unsigned int)aHandle fromZone:(NXZone *)zone

Reads and returns the record identified by aHandle. The record is allocated from zone; its
class is instantiated if necessary. Returns nil if the record doesn't exist or can't be read.

If the record conforms to the IXRecordTrarrscription protocol, the implementor of this
message sends source:didReadRecord: and finishReading to the instantiated record.

Protocols: IXRecordReading 7-155

IXRecordTranscription

Adopted By: no NeXTSTEP classes

Declared In: indexing/protocols.h

Protocol Description

The IXRecordTranscription protocol is used by objects that archive other objects with
the IXRecordWriting and IXRecordReading protocols to notify objects that they've
been archived or unarchived by transcription. Transcription is an efficient means of
archiving in which an object's instance variables are written or read directly into or out of
an archive. Transcription avoids the overhead of the standard archiving mechanism (the
write: and read: methods), but removes control of the archiving process from the object
being archived.

Since transcription isn't done by the object being archived, that object can't choose what
data to archive and what data not to archive; the transcriber simply writes all of the instance
variables that it can. However, there may be data that the transcriber doesn't archive that
should be archived with the object. If an object conforms to this protocol, the transcriber
can notify it that it's being written or read, and the object can then ask the transcriber to
store or retrieve any data that the transcriber would not.

There are two kinds of data that can't be transcribed: data that aren't stored as instance
variables (for example, the contents of a file or an entry in the defaults database), which the
transcriber never knows about; and untyped data (anything referred to by a pointer to void),
whose length the transcriber can't determine. These data are called blobs, and if the
transcriber provides a way to store these for the object (such as by conforming to the
IXBlobWriting protocol), the object being transcribed can ask the transcriber to store or
retrieve its blobs by name.

7-156 Chapter 7: Indexing Kit

Instance Methods

finishReading

- finishReading

Informs the receiver that it has been fully read into memory by a transcriber. This allows
the receiver to replace the unarchived object with a new object if necessary. A
finishReading message is sent to every object after it has been un archived by a transcriber
and sent a source:didReadRecord: message. This method normally returns self.

Important: The method description for finishUnarchiving in the Object class
specification states that that method should return nil if no substitution is desired. This isn't
the case with this method. The return value must be self if no substitution is desired;
returning nil will cause nil to be substituted for the object.

The finishReading message gives the application an opportunity to test an un archived and
initialized object to see whether it's usable, and, if not, to replace it with another object that
is. This method should return nil if the unarchived instance (self) is OK; otherwise, it
should free the receiver and return another object to take its place.

See also: - finishUnarchiving (Object)

source:didReadRecord:
- source:aTranscriber didReadRecord:(unsigned int)aHandle

Informs the receiver that it has been read into memory by aTranscriber, so it can perform
any needed reinitialization. If aTranscriber provides a way to retrieve blobs, the receiver
can ask it to do so, for example with the getValue:andLength:omlob:forRecord: method
from the IXBlob Writing protocol. This method normally returns self, but the receiver may
return a substitute, in which case the receiver is freed.

See also: - getValue:andLength:omlob:forRecord: (IXBlob Writing)

source:wilIWriteRecord:
- source:aTranscriber willWriteRecord:(unsigned int)aHandle

Informs the receiver that it's about to be archived by aTranscriber. If aTranscriber
provides a way to store blobs, the receiver can ask it to do so, for example with the
setValue:andLength:omlob:forRecord: method from the IXBlobWriting protocol. This
method normally returns self, but the receiver may return a substitute to be archived in its
place, in which case the receiver is freed.

See also: - setValue:andLength:omlob:forRecord: (IXBlob Writing)

Protocols: IXRecordTranscription 7-157

IXRecordWriting

Adopted By: IXRecordManager

Incorporates: IXRecordReading

Declared In: indexing/protocols.h

Protocol Description

The IXRecordWriting protocol defines methods for storing Objective C objects in an object
acting as an repository. The stored objects are called records, and are identified by unsigned
integers called handles. IXRecordManager implements this protocol, along with
IXRecordTranscription and IXBlob Writing, in order to store objects.

Method Types

Manipulating records by handle - addRecord:
- replaceRecord:with:
- removeRecord:

Emptying a record repository - empty

Instance Methods

addRecord:

- (unsigned int)addRecord:anObject

Adds anObject as a record to the repository, and returns the handle assigned to that record.

See also: - removeRecord:, - replaceRecord:with:

7-158 Chapter 7: Indexing Kit

empty

-empty

Removes all records from the repository. Returns self.

See also: - removeRecord:, - clean (IXRecordDiscarding)

removeRecord:

- removeRecord:(unsigned int)aHandle

Removes the record identified by aHandle from the repository. The record is physically
destroyed; use discardRecord: from the IXRecordDiscarding protocol if your code may
need to retrieve the record again later. Returns self, or nil if the record doesn't exist.

See also: - discardRecord: (IXRecordDiscarding), - empty, - addRecord:

replaceRecord:with:

- replaceRecord:(unsigned int)aHandle with:anObject

Overwrites the record identified by aHandle by storing anObject at that handle. aHandle
will then refer to anObject; the original record is physically destroyed. Returns nil if the
record identified by aHandle doesn't exist, or if anObject is nil. Otherwise returns self.

See also: - addRecord:

Protocols: IXRecordWriting 7-159

IXTransientAccess

Adopted By: IXRecordManager

Declared In: indexing/protocols .h

Protocol Description

The IXTransientAccess protocol defines a set of methods for retrieving the values of the
instance variables of records stored in a repository. It's useful for getting these values
without explicitly instantiating the stored records. All of the methods perform type casting,
if necessary; for example, it's meaningful to request the ipteger value of a floating-point
instance variable.

Instance Methods

getDoubleValue:oflvar:forRecord:

- (BOOL)getDoubleValue:(double *)aValue
of1var:(const char *)ivarName
forRecord:(unsigned int)aHandle

Returns by reference the value of the instance variable ivarName from the record identified
byaHandle. The value of ivarName is returned as a double-precision floating-point
number. Returns YES if the value is successfully retrieved, NO otherwise.

getFloatValue:oflvar:forRecord:

- (BOOL)getFloatValue:(float *)aValue
of1var:(const char *)ivarName
forRecord:(unsigned int)aHandle

Returns by reference the value of the instance variable ivarName from the record identified
byaHandle. The value of ivarName is returned as a single-precision floating-point number.
Returns YES if the value is successfully retrieved, NO otherwise.

7-160 Chapter 7: Indexing Kit

getlntValue:oflvar:forRecord:

- (BOOL)getIntValue:(int *)aValue
ofIvar:(const char *)ivarName
forRecord:(unsigned int)aHandle

Returns by reference the value of the instance variable ivarName from the record identified
byaHandle. The value of ivarName is returned as an integer. Returns YES if the value is
successfully retrieved, NO otherwise.

getObjectValue:oflvar:forRecord:

- (BOOL)getObjectValue:(Object **)aValue
ofIvar:(const char *)ivarName
forRecord:(unsigned int)aHandle

Returns by reference the value of the instance variable ivarName from the record identified
byaHandle. The value of ivarName is returned as an Objective C object. Returns YES if
the value is successfully retrieved, NO otherwise.

getOpaqueValue:oflvar:forRecord:

- (BOOL)getOpaqueValue:(NXData **)aValue
ofIvar:(const char *)ivarName
forRecord:(unsigned int)aHandle

Returns by reference the value of the instance variable ivarName from the record identified
byaHandle. The value of ivarName is returned as an instance of class NXData. Returns
YES if the value is successfully retrieved, NO otherwise.

getStringValue:oflvar:forRecord:

- (BOOL)getStringValue:(char **)aValue
ofIvar:(const char *)ivarName
forRecord:(unsigned int)aHandle

Returns by reference the value of the instance variable ivarName from the record identified
byaHandle. The value of ivarName is returned as a string. Returns YES if the value is
successfully retrieved, NO otherwise. The sender is responsible for freeing the string.

Protocols: IXTransientAccess 7-161

getStringValue:inLength:oflvar:forRecord:

- (BOOL)getStringValue:(char **)aValue
inLength:(unsigned int)aLength
oflvar:(const char *)ivarName
forRecord:(unsigned int)aHandle

Returns by reference the value of the instance variable ivarName from the record identified
byaHandle. The value of ivarName is returned by copy as a string in the supplied buffer,
truncated if needed to fit within length bytes (including the terminating null character).
Returns YES if the value is successfully retrieved, NO otherwise.

7-162 Chapter 7: Indexing Kit

IXTransientMessaging

Adopted By: IXRecordManager

Declared In: indexing/protocols.h

Protocol Description

The IXTransientMessaging protocol defines a set of methods for retrieving the return
values of methods from records stored in a repository (the methods must take no
arguments). It's useful for getting these values without your code having to explicitly
instantiate the stored records. All of the methods perform type casting, if necessary; for
example, it's meaningful to request the string value of a floating point return value.

Since the records addressed by these methods are actually activated and messaged, you
should be wary of any side effects that may be triggered. The implementor of this protocol
frees the unarchived record without re-archiving it, so changes to the state of the unarchived
record won't be retained.

Instance Methods

getDoubleValue:ofMessage:forRecord:

- (BOOL)getDoubleValue:(double *)aValue
ofMessage:(SEL)aSelector
forRecord:(unsigned int)aHandle

Returns by reference the value that aSelector returns when sent to the record identified by
aHandle. The return value of aSelector is interpreted as a double-precision floating-point
number. Returns YES if the value is successfully retrieved, NO otherwise.

Protocols: IXTransientMessaging 7-163

getFloatValue:ofMessage:forRecord:

- (BOOL)getFloatValue:(float *)aValue
ofMessage:(SEL)aSelector
forRecord:(unsigned int)aHandle

Returns by reference the value that aSelector returns when sent to the record identified by
aHandle. The return value of aSelector is interpreted as a double precision floating point
number. Returns YES if the value is successfully retrieved, NO otherwise.

getlntValue:ofMessage:forRecord:

- (BOOL)getlntValue:(int *)aValue
ofMessage:(SEL)aSelector
for Record: (unsigned int)aHandle

Returns by reference the value that aSelector returns when sent to the record identified by
aHandle. The return value of aSelector is interpreted as an integer. Returns YES if the
value is successfully retrieved, NO otherwise.

getObjectValue:ofMessage:forRecord:

- (BOOL)getObjectValue:(Object **)aValue
ofMessage:(SEL)aSelector
forRecord:(unsigned int)aHandle

Returns by reference the value that aSelector returns when sent to the record identified by
aHandle. The return value of aSelector is interpreted as an Objective C object. Returns
YES if the value is successfully retrieved, NO otherwise.

7·164 Chapter 7:1ndexing Kit

getOpaqueValue:ofMessage:forRecord:

- (BOOL)getOpaqueValue:(NXData **)aValue
ofMessage:(SEL)aSelector
forRecord:(unsigned int)aHandle

Returns by reference the value that aSelector returns when sent to the record identified by
aHandle. The return value of aSelector is interpreted as an instance of class NXData.
Returns YES if the value is successfully retrieved, NO otherwise.

getStringValue:ofMessage:forRecord:

- (BOOL)getStringValue:(char **)aValue
ofMessage:(SEL)aSelector
forRecord:(unsigned int)aHandle

Returns by reference the value that aSelector returns when sent to the record identified by
aHandle. The return value of aSelector is interpreted as a string. Returns YES if the value
is successfully retrieved, NO otherwise. The sender is responsible for freeing the string.

getStringValue:inLength:ofMessage:forRecord:

- (BOOL)getStringValue:(char **)aValue
inLength:(unsigned int)aLength
ofMessage:(SEL)aSelector
forRecord:(unsigned int)aHandle

Returns by reference the value that aSelector returns when sent to the record identified
by aHandle. The return value of aSelector is returned by copy as a string in the supplied
buffer, of length up to aLength. Returns YES if the value is successfully retrieved,
NO otherwise.

Protocols: IXTransientMessaging 7-165

7-166

Functions

These functions and macros are for use with several Indexing Kit classes. Comparator
functions form the bulk of functions in the Indexing Kit. There are also functions for
archiving objects to IXStore blocks, and for locking IXBTree mutexes to perform
thread-safe operations with multiple IXBTreeCursors.

7-168 Chapter 7: Indexing Kit

IXCompareBytes(), IXCompareUnsignedBytes(),
IXCompareShorts(), IXCompareUnsignedShorts(),
IXCompareLongs(), IXCompareUnsignedLongs(),
IXCompareFloats(), IXCompareDoubles()

SUMMARY Compare two data items as arrays of numbers and return their ordering.

DECLARED IN btree/protocols.h

SYNOPSIS int IXCompareBytes(const void *datal, unsigned short lengthl, const void *data2,
unsigned short length2, const void *context)

int IXCompareUnsignedBytes(const void *datal, unsigned short lengthl,
const void *data2, unsigned short length2, const void *context)

int IXCompareShorts(const void *datal, unsigned short lengthl, const void *data2,
unsigned short length2, const void *context)

int IXCompareUnsignedShorts(const void *datal, unsigned short lengthl,
const void *data2, unsigned short length2, const void *context)

int IXCompareLongs(const void *datal, unsigned short lengthl, const void *data2,
unsigned short length2, const void *context)

int IXCompareUnsignedLongs(const void *datal, unsigned short lengthl,
const void *data2, unsigned short length2, const void *context)

int IXCompareFloats(const void *datal, unsigned short lengthl, const void *data2,
unsigned short length2, const void *context)

int IXCompareDoubles(const void *datal, unsigned short lengthl, const void *data2,
unsigned short length2, const void *context)

DESCRIPTION Each of these functions compares two arrays of arbitrary data, datal and data2 (of lengthl
and length2 bytes respectively), and returns an integer indicating their ordering. The arrays
are compared as though they contained elements of the type indicated by the function
name; for example, IXCompareUnsignedLongsO compares datal and data2 as arrays of
items of type unsigned long int. All of these functions return an integer less than, equal
to, or greater than 0, according to whether datal is less than, equal to, or greater than data2.

The data in the arrays is compared serially until one element isn't equal to the other, or until
either lengthl or length2 bytes have been exhausted in the corresponding array. If two
arrays are otherwise equal, the shorter is considered the lesser in value.

Functions: IXCompareBytes() 7-169

All of these functions match the IXComparator function type, which has the form:

typedef int IXComparator(const void *datal, unsigned short lengthl,
const void *data2, unsigned short length2, const void *context);

Where datal is an array of lengthl bytes, data2 is an array of length2 bytes; context is a
pointer to arbitrary data for use by the function. Only IXFormatComparatorO (see
below) makes use of a context argument (for that function it's calledformat). You are free
to write functions matching this type definition that use context in any way you choose.

RETURN These functions return an integer less than 0 if datal is considered less than data2, 0 if they
are considered equal, or an integer greater than 0 if datal is considered greater than data2.

SEE ALSO IXCompareBytesO, IXBTree class, IXComparatorSetting protocol

IXCompareShort(), IXCompareUnsignedShort(),
IXCompareLong(), IXCompareUnsignedLong(),
IXCompareFloat(), IXCompareDouble()

SUMMARY Compare two data items as numbers and return their ordering.

DECLARED IN btree/protocols.h

SYNOPSIS int IXCompareShort(const void *datal, unsigned short lengthl, const void *data2,
unsigned short length2, const void *context)

int IXCompareUnsignedShort(const void *datal, unsigned short lengthl,
const void *data2, unsigned short length2, const void *context)

int IXCompareLong(const void *datal, unsigned short lengthl, const void *data2,
unsigned short length2, const void *context)

int IXCompareUnsignedLong(const void * datal , unsigned short lengthl,
const void *data2, unsigned short length2, const void *context)

int IXCompareFloat(const void *datal, unsigned short lengthl, const void *data2,
unsigned short length2, const void *context)

int IXCompareDouble(const void *datal, unsigned short lengthl, const void *data2,
unsigned short length2, const void *context)

7-170 Chapter 7: Indexing Kit

DESCRIPTION Each of these functions compares two data items, pointed to by datal and data2, as
elements of the type indicated by the function name, and returns an integer indicating their
ordering (lengthl, length2 and context are ignored). The items are compared by pointer
dereference; for example, IXCompareFloatO compares the values pointed to by datal
and data2 as type float. All of these functions return an integer less than, equal to, or
greater than 0, depending on whether datal is less than, equal to, or greater than data2.

For more information on comparator functions, see the IXCompareBytesO function
description.

RETURN These functions return an integer less than 0 if datal is considered less than data2, 0 if they
are considered equal, or an integer greater than 0 if datal is considered greater than data2.

SEE ALSO IXCompareBytesO, IXBTree class, IXComparatorSetting protocol

IXCompareStringAndUnsigneds(), IXCompareUnsignedAndStrings()

SUMMARY Compare two data items as a combinations of strings and numbers and return their ordering.

DECLARED IN btree/protocols.h

SYNOPSIS int IXCompareStringAndUnsigneds(const void *datal, unsigned short lengthl,
const void *data2, unsigned short length2, const void *context)

int IXCompareUnsignedAndStrings(const void *datal, unsigned short lengthl,
const void *data2, unsigned short length2, const void *context)

DESCRIPTION These functions combine the comparisons of IXCompareStringsO and
IXCompareUnsignedLongsO.

IXCompareStringAndUnsignedO compares datal and data2 as strings until the first null
character is encountered. If the strings are equal up to and including the null character, the
remainders are compared in the manner of IXCompareUnsignedLongsO. Each length
argument must be the length in bytes of the string, plus 1 for the terminating null character,
plus the length in bytes of the array of unsigned integers following the string.

Functions: IXCompareStringAndUnsigneds() 7-171

IXCompareUnsignedAndStringsO compares the first part of datal and data2 as a single
unsigned long integer. If those are equal, the remainders are compared in the manner of
IXCompareStringsO. Each length argument must be the length in bytes of an unsigned
long integer, plus the length in bytes of the string, plus 1 for the terminating null character.

For more information on comparator functions, see the IX CompareBytesO function
description.

RETURN These functions return an integer less than 0 if datal is considered less than data2, 0 if they
are considered equal, or an integer greater than 0 if datal is considered greater than data2.

SEE ALSO IXCompareBytesO, IXBTree class, IXComparatorSetting protocol

IXCompareStrings(), IXCompareMonocaseStrings()

SUMMARY Compare two sets of data as strings and return their ordering.

DECLARED IN btree/protocols.h

SYNOPSIS int IXCompareStrings(const void *datal, unsigned short lengthl, const void *data2,
unsigned short length2, const void *context)

int IXCompareMonocaseStrings(const void *datal, unsigned short lengthl,
const void *data2, unsigned short length2, const void *context)

DESCRIPTION These functions compare serial arrays of strings in the NeXTSTEP character encoding.
They accept either single null-terminated strings along with their lengths, or arrays of
characters forming consecutive null-terminated strings (for example, "This is a string\OAnd
this is another\O") along with the total length. Only the length argument is used to
determine the length of a string; a null character is treated as any other character for
comparison purposes. Both of these functions return an integer less than, equal to, or
greater than 0, depending on whether datal is less than, equal to, or greater than data2.

The data in the arrays is compared serially until one element isn't equal to the other, or until
either lengthl or length2 bytes have been exhausted in the corresponding array. If two
arrays are otherwise equal, the shorter is considered the lesser in value.

7-172 Chapter 7: Indexing Kit

IXCompareStringsO distinguishes between uppercase and lowercase when comparing
strings. IXCompareMonocaseStringsO disregards case distinctions in its comparison.

For more information on comparator functions, see the IX CompareBytesO function
description.

RETURN These functions return an integer less than 0 if datal is considered less than data2, 0 if they
are considered equal, or an integer greater than 0 if datal is considered greater than data2.

SEE ALSO IXCompareBytesO, IXBTree class, IXComparatorSetting protocol

IXFormatComparator()

SUMMARY Compare two arrays of data based on a type encoding and return their ordering.

DECLARED IN btree/protocols.h

SYNOPSIS int IXFormatComparator(const void *datal, unsigned short lengthl, const void *data2,
unsigned short length2, void *format)

DESCRIPTION IXFormatComparatorO compares two arrays of data, determining the data type from an
Objective C type encoding supplied informat. For example, supplying "1" as the format
indicates that datal and data2 are arrays of long integers. IXFormatComparatorO uses
the other standard comparison functions as needed on the data arrays until their ordering is
decided.

IXFormatComparatorO currently uses only the first type declared in the format string,
except for the compound formats corresponding to IXCompareStringAndUnsignedsO
and IXCompareUnsignedAndStringsO, which it recognizes. Any array lengths in the
format string are ignored; the actual lengths are determined from the lengthl and length2
arguments passed to the function. If a comparison function can't be determined from the
format string, IXCompareStringsO is used. NeXT reserves the right to interpret more
than the first type declaration in future releases, as well as structure declarations, bit fields
and unions.

For more information on comparator functions, see the IXCompareBytesO function
description. For more information on comparison formats, see the IXComparisonSetting
protocol specification.

Functions: IXF ormatComparator() 7 -173

RETURN IXFormatComparatorO returns an integer less than 0 if datal is considered less than
data2, 0 if they are considered equal, or an integer greater than 0 if datal is considered
greater than data2.

SEE ALSO IXCompareBytesO, IXBTree class, IXComparisonSetting protocol

IXLockBTreeMutex(), IXUnlockBTreeMutexO

SUMMARY Lock and unlock an IXBTree for thread-safe access

DECLARED IN btreelIXBTree.h

SYNOPSIS void IXLockBTreeMutex(IXBTree *aBTree)
void IXUnlockBTreeMutex(IXBTree *aBTree)

DESCRIPTION These macros expand to calls to mutex_lockO or mutex_unlockO on the mutex lock
instance variable of their IXB Tree. They should be used to guarantee that the IXB Tree isn't
accessed simultaneously by two Mach threads.

SEE ALSO mutex_lockO (NeXTSTEP Operating System Software), mutex_unlockO (NeXTSTEP
Operating System Software), IXBTree class

IXWriteRootObjectToStore(), IXReadObjectFromStore()

SUMMARY Archive or unarchive an object to or from an IXStore

DECLARED IN storelIXStoreBlock.h

SYNOPSIS unsigned int IXWriteRootObjectToStore(IXStore *aStore, unsigned int aHandle,
id anObject)

id IXReadObjectFromStore(IXStore *aStore, unsigned int aHandle, NXZone *aZone)

7-174 Chapter 7: Indexing Kit

DESCRIPTION IXWriteRootObjectToStoreO archives anObject into the IXStore block identified by
aStore and aHandle. This involves creating a memory stream, archiving the object into that
stream, resizing the block to accommodate the resulting stream length, and then copying
the contents of the stream into the block. Any object that implements the write: method
using the standard archiving functions (including NXWriteObjectReferenceO) can be
archived in this way. IXReadObjectFromStoreO unarchives an object from the IXStore
block identified by aStore and aHandle, allocating the un archived object from aZone. For
further information on object archiving, see the description for the NXReadObjectO
function in the Application Kit documentation.

RETURN IXWriteRootObjectToStoreO returns aHandle. IXReadObjectFromStoreO returns the
id of the unarchived object.

SEE ALSO NXWriteRootObjectO (Application Kit Function), NXReadObjectO (Application Kit
Function), IXStoreBlock class.

Functions: IXWriteRootObjectToStore() 7-175

7-176

Types and Constants

Defined Types

IXComparator

DECLARED IN btree/protocols.h

SYNOPSIS typedef int IXComparator
(const void *datal,
unsigned short lengthl,
const void *data2,
unsigned short length2,
const void *context);

DESCRIPTION The standard comparator function type. Used by IXBTree and other classes to check the
functions they use to perform key comparisons.

IXPosting

DECLARED IN btree/protocols.h

SYNOPSIS typedef struct IXPosting {
unsigned handle;
unsigned weight;

} IXPosting;

DESCRIPTION U sed by classes such as IXPostingCursor to store a weighted reference. handle is the
identifier, and weight is a value associated with the posting; though it's usually a rank of
weight or importance, it can also be used to store other information, such as a hint.

7-178 Chapter 7: Indexing Kit

IXStoreErrorType

SYNOPSIS typedef enum IXStoreErrorType {
IX_NoError = IX_STOREUSERERRORBASE,
IX_InternaIError,
IX_ArgumentError,
IX_ QueryEvalError,
IX_ QueryTypeError,
IX_Query AttrError,
IX_ QuerylmplError,
IX_ QueryYaccError,
IX_MemoryError,
IX_LockedError,
IX_MachineError,
IX_ VersionError,
IX_DamagedError,
IX_DuplicateError,
IX_NotFoundError,
IX_TooLargeError,
IX_UnixErrorBase = IX_STOREUNIXERRBASE,
IX_MachErrorBase = IX_STOREMACHERRBASE,

} IXStoreErrorType;

DESCRIPTION U sed to specify exception codes in the Indexing Kit. Where an exception can occur in a
method, the method description details the meaning of the exception codes as they relate to
that method. Here are their general meanings:

IX_No Error
IX_IntemalError
IX_ArgumentError
IX_ QueryEvalError
IX_ QueryTypeError
IX_Query AttrError
IX_Query ImplError
IX_Query YaccError
IX_MemoryError
IX_LockedError
IX_MachineError
IX_ VersionError
IX_DamagedError
IX_DuplicateError

No error
An error in the Indexing Kit's implementation
An invalid argument was passed to a routine
A query was ill-formed or couldn't be evaluated
A query contained an invalid type binding
A query contained an invalid attribute reference
An error or missing feature in query evaluation
A query was grammatically incorrect
Insufficient memory available
The requested file or block handle is locked
The target store has an incompatible format
The target store is of an incompatible version
The target store is damaged
An entry with the same identifier already exists

Types and Constants: IXStoreErrorType 7-179

IX_N otFoundError
IX_ TooLargeError
IX_ UnixErrorBase
IX_MachErrorBase

IXWeightingType

DECLARED IN indexinglIXAttributeParser.h

SYNOPSIS typedef enum {
IX_NoWeighting = 0,
IX_Absolute Weighting,
IX_FrequencyWeighting,
IX_PeculiarityWeighting

} IXWeightingType;

The entry couldn't be found
A value was too large, usually an IXBTree key
Unix errno added to this base value
Mach kern_return added to this base value

DESCRIPTION Used to define weighting strategies for IXAttributeParser. IX_NoWeighting means all
tokens have a weight of 0. IX_AbsoluteWeighting means the weight of each token is its
count in the sample. IX_Frequency Weighting gives the weight of a token by dividing its
count in the sample by the total number of tokens in the sample. IX_PeculiarityWeighting
is frequency weighting with regard to some reference domain; a token's weight is the
square root of its frequency within its sample divided by its frequency within the larger
domain. IX_PeculiarityWeighting is used to filter out domain specific noise; for example,
the word "computer" in a set of documentation about computers isn't very relevant to a
search, because it's assumed to occur quite often, but the word "grill" would probably be
very unusual for such a topic.

7-180 Chapter 7: Indexing Kit

SYl11bolic Constants

IXStore Constants

DECLARED IN storeiprotocols.h

SYNOPSIS IX_ALLBLOCKS

DESCRIPTION Used as a convenience value for freeing or closing all blocks in an IXStore or IXStoreFile;
for example, sending closeBlock: with IX_ALLBLOCKS as the argument will result in all
blocks opened by the receiving IXStore being closed.

Note: This is currently unimplemented; using IX_ALLBLOCKS does nothing at this
time.

Indexing Kit Error Base Constants

SYNOPSIS IX_STOREUSERERRBASE
IX_STOREMACHERRBASE
IX_STOREUNIXERRBASE

DESCRIPTION U sed as base values for the defined type IXStoreErrorType.

Types and Constants: IXStore Constants 7-181

Global Variables

IXStore Pasteboard Type

DECLARED IN store/protocols.h

SYNOPSIS NXAtom IXStorePboardType;

DESCRIPTION IXStorePboardType is the Pasteboard type for the entire contents of an IXStore, as used by
IXStore's getContents:andLength: and setContents:andLength: methods.

Indexing Pasteboard Types

DECLARED IN indexinglIXAttributeParser.h

SYNOPSIS NXAtom IXAttributeReaderPboardType;
NXAtom IXFileDescriptionPboardType;

DESCRIPTION IXAttributeReaderPboardType indicates text in Attribute Reader Format.
IXFileDescriptionPboardType indicates a file's description as generated by an
IXFileFinder; a file description is usually generated by a filter service.

7-182 Chapter 7: Indexing Kit

Other Features

Attribute Reader Format

The Indexing Kit's Attribute Reader Format (ARF) is a simple extension of Microsoft's
Rich Text Format (RTF) designed to support content analysis. For more information on
how ARF is generated or used by the Indexing Kit, see the IXAttributeReader and
IXAttributeParser class specifications, and the IXAttributeReading protocol specification.

This document assumes that you are at least briefly familiar with the Rich Text Format
specification. Specifically, it assumes that you know what control groups and control words
are, and how they are delimited.

Attributes

The content of most texts can be analyzed in terms of various attributes, like author, title,
date of publication, bibliography list, and so on. ARF supports the declaration of arbitrary
attributes, and the association of those attributes with individuallexemes, for the purpose
of describing an analysis of textual content. For example, one might select all articles
arriving on a news wire that have the word "wilderness" in their titles.

An attribute is declared by an RTF control group starting with the control word \zd
followed by the name of the attribute. For example:

{\zd Title}

A type may be declared for the attribute by the control word \zt followed by an Objective C
type encoding. If no type is specified, "*,, (string) is assumed by default. The following
RTF control group declares an unsigned integer-valued attribute representing the year of
publication:

{\zd YearOfPublication\ztI}

Note: Currently, "*,, (string) is the only supported type for attributes.

As an attribute reader declares attributes, it numbers them sequentially, beginning with 1.
An attribute's sequence number may be used later to refer to that attribute in a lexeme
declaration (described below). For example, of the attributes declared so far, Title
would be number 1 and YearOfPublication would be number 2. A pre-defined attribute,
Default, is pre-assigned the number 0, and is associated with every lexeme that has no
explicit association.

7-184 Chapter 7: Indexing Kit

Lexemes

A lexeme is a unit of content extracted from a text, and associated with an attribute by a
lexical analyzer, such as an IXAttributeReader. Lexemes are declared by an RTF control
group starting with the control word \z; the value of the lexeme immediately follows. The
attribute association, if any, is indicated by the control word \za, which takes the attribute
number as a numeric parameter. If no attribute is specified, the Default attribute is
assumed. For example, the word "excursions" could be declared as a lexeme in the Title
attribute, and "summer" as a lexeme in the Default attribute, as follows:

{\z excursions\zal}
{\z summer}

A lexeme may contain multiple words to represent a phrase or an idiom. For example:

{\z joie de vivre}
{\z tongue in cheek}

A weight for the lexeme may also be specified by the \ZW control word. The weight is
interpreted as a count of the number of occurrences of the lexeme. Normally, this control
word is omitted, since weights are usually computed automatically by the parser. It may be
useful, however, on occasion, to explicitly specify the count of a particular lexeme in an
attribute. For example, this fragment gives this occurrence of the lexeme "camping" in the
Title attribute a count of 100:

{\z camping\zal\zwlOO}

Finally, a cookie, introduced by the \ZC control word, may accompany the lexeme. The
cookie is an ASCII string encoding a value opaque to the parser. This is typically used to
identify entities within a source, such as cells in a spreadsheet, or footnotes in a document.
Here's a sample lexeme declaration with a cookie whose value is "aeOOfc24":

{\z bike\zcaeOOfc24}

References

Lexemes can be numbered in the same manner as attributes, as they are encountered,
beginning with 1. The control word \zr, which takes a lexeme number as a numeric
parameter, may be substituted for the lexeme with that number. This provides great space
savings when processing large amounts of text. For example, if the "excursions" lexeme
declared earlier were the 37th lexeme, then the following fragment would indicate another
occurrence of that lexeme, resulting in a compression ratio of more than 3 to 1:

\zr37

Other Features: Attribute Reader Format 7-185

The Indexing Kit Query Language

The Indexing Kit defines a declarative query language for selecting objects from an
evaluation context (an object about which the query is made, or about whose contents the
query is made). A query language expression is an assertion; the objects selected by a
query are those objects in the evaluation context that satisfy the assertion. An assertion
consists of predicates combined by logical operators to form logical expressions.

The query language is attribute-based. Objects have attributes defined by the programmer;
an attribute has a name, a type, and a selector. The value of an attribute for a given object
is the value returned when the message for the attribute's selector is sent to that object. The
predicates in a query expression are formulated in terms of these attributes. For example,
in a set of students, one attribute might be the student's age, another might be his or her
home state, and another his or her grade point average. Some informal predicates based on
these attributes are:

• Age is greater than 20.
• Grade point average is 4.0.
• Home state is Michigan.

Combining these predicates with logical operators to form logical expressions gives:

• Age is greater than 20 and grade point average is 4.0.
• Age is over 20 or home state is Michigan.
• Home state is Michigan and grade point average is not 4.0.
• Age is greater than 20 and home state is Michigan, and grade point average is not 4.0.

A query expression is evaluated against an evaluation context, resulting in an object or a set
of objects from the evaluation context that satisfy the query expression. During query
evaluation, the attribute names in the expression are bound to the attributes of each object
in turn, and the truth of the assertion is checked. The object currently under consideration
is bound to the special symbol self, much like in an Objective C method.

Predicates can be built with boolean, arithmetic, and relational operators, as well as with
search operators that look for values within other values or within sets of values. The
elements of the query language that are used to build and combine predicates are described
in the following sections.

7-186 Chapter 7: Indexing Kit

Symbols

The Indexing Kit's query language defines four kinds of symbols: literals, operators,
attributes, and the special symbol self. Symbols are delimited by white space, as well as
by the parentheses associated with operators. A literal is a scalar value, like a number or a
string. The boolean literals are yes, true, no, and false. Numbers can simply be written in
integer or floating-point form: 0, -1,27.35. Strings are indicated by balanced pairs of
quotation marks (single or double), or with the quoteO operator (described below). To
include a closing delimiter in a string, precede it with a backslash. For example:

"This is a string with a \" quotation mark in it"
'This is \'too'
quote(This string contains an embedded \) parenthesis)

Other escape sequences allowed in strings are: '\n' (newline), '\r' (carriage return), '\t'
(tab), '\f' (form feed), '\b' (space), and '\\' (backslash itself).

Operators denote actions that are performed during the compilation or evaluation of a
query, like adding two numbers or parsing a string. Operators are formed with a name and
a pair of parentheses, much like functions in C. A fixed set of operators is defined by the
query language; there is no way to define a new operator or function.

Attributes are references to properties of objects in the evaluation context. An attribute has
a name and a type, and is bound to values during query evaluation, as the query is applied
in tum to each object in the evaluation context. Attribute names are any otherwise
non-reserved symbols; that is, any alphanumeric string that isn't an operator name or the
special symbol self. By convention, they usually begin with a capital letter. Content, Age,
and Publisher are examples of legal attribute names. Content is a special attribute,
described in the section "Predefined Attributes."

self is an unbound object reference; it's bound during query evaluation, as the query is
applied to each object in the evaluation context. Its presence is usually implicit in a
predicate, but caIfbe made explicit for special purposes, as described below.

Other Features: The Indexing Kit Query Language 7-187

Types

There are three scalar types in the query language: boolean, number, and string. There are
also three compound types: vector, object, and regular expression. Each of the symbols in
a query expression has a type, or produces a value of some type when evaluated. The types
of operands may determine the behavior of operators.

The scalar types are coercible; type coercion is implicit, and occurs automatically when
necessary. Numbers become strings, as generated by printfO, or become boolean values
in the manner of C: 0 is false, any other value is true. Strings are interpreted as numbers
by scanfO, or coerced to 0 if scanfO fails. When a string is coerced to a boolean value,
it first becomes a number; the number is then coerced to its boolean equivalent. Boolean
false is coerced to the number 0 or the string "no"; boolean true is coerced to the number
1 or the string "yes". Scalar values are referred to as atoms throughout the remainder of
this section.

A vector is a weighted collection of atoms. Vectors occur most frequently as attribute
values, since an attribute's value can be generated by an attribute parser from a text string.
A vector can be viewed as a position in a space whose axes comprise the set of all possible
values for the underlying scalar type. For example, if a vector holds strings representing
words in the English language, then the vector represents a position in the space of English
words; this type of vector is called a signature when used to describe a document's content.

The purpose of a query is to select objects from the evaluation context that satisfy the query
expression. The only objects directly accessible from within the query expression are self,
and the surrogate objects generated by the parseO operator (described below).

A regular expression is a pattern generated from a string. A comparison between a string
and a regular expression is more powerful than a comparison between a string and another
string. A regular expression isn't so much a type as a data structure compiled from a string
for purposes of comparison.

7-188 Chapter 7: Indexing Kit

Operators

Operators take one or more arguments and produce a single result of a specific type.
The operators of the Indexing Kit's query language fall into six categories: transform,
projection, boolean, relational, arithmetic, and search. Their behavior often depends on
the types of their arguments, which must be enclosed in parentheses and delimited by
white space.

The transform operators take a single argument and produce a single result derived from
the argument. quoteO, as mentioned above, forms a string from the text in its parentheses.
regexO and shellO both transform the text between their parentheses into regular
expressions. regexO builds 'regular expressions from Berkeley regular expression strings,
and shellO builds regular expressions from Bourne shell expansion notation. For example,
the following two expressions result in the same regular expression:

regex(term.*)

shell (term*)

The last transform operator is parseO; it parses the text between its parentheses to create a
a surrogate object with attribute values derived from the text. A surrogate is a vehicle for
attribute values supplied by the query expression; it isn't a member of the evaluation
context's set of objects, but since it returns attribute values to query language operators,
treats it as such. This operator uses an instance of IXAttributeParser to parse its argument.

There's only one projection operator, projectO. projectO takes two or more arguments.
The last is an object; the others are attributes, which the operator extracts from the object,
returning the projected attributes. The result is bound if the source,was bound, and
unbound otherwise. For example, in the query fragments below, the first projectO operator
produces the bound attributes Name and Age, since parseO always produces a surrogate
object; the second projectO produces the same attributes, but unbound, since self is an
unbound object reference.

project (Name Age parse (Jane Draper, 24, Boston, MA))

project (Name Age self)

The boolean operators perform logical operations on boolean atoms or on vectors, coercing
the second argument to a boolean value if it's a number or string. The orO and andO
operators, when given boolean arguments, perform logical OR and AND, respectively. For
example, or (true false) is true while and (true false) is false. The notO operator is a
shorthand for applying andO to the first argument and the logical negation of the second
argument. That is, not (a b) is equivalent to and (a not(b)), where a and b are any boolean
values. notO can be applied to a single boolean value; the result is the logical negation of
that value.

Other Features: The Indexing Kit Query Language 7-189

When boolean operators are applied to vectors, they perform set operations. The set
operation andO results in the set intersection of its two arguments-only those elements
that are in both vectors are included in the result. The set operation orO results in the set
union of its arguments-any element in either set is included in the result. Finally, set notO
performs a set subtraction-only those elements of the first argument that aren't in the
second are included in the result.

Unary forms of the set orO and set andO operators are also available. Their evaluation is
deferred, however, to the enclosing operator, which provides additional context. Thus,
andO with one argument effectively means, "all of these arguments," while orO with one
argument means "anyone or more of these arguments." They're essentially implicit
arguments to the enclosing operator, proscribing search semantics, and can be used in this
fashion only with the search operators, described below.

For example, in the following query fragments, the first expression selects objects whose
Employee attribute contains any of the words in the parsed text; the second selects objects
whose Employee attribute contains all of the words in the parsed text. (wholeO is one of
the search operators.)

whole(Employee or(parse(Jane Draper, 24, Boston, MA)))
whole(Employee and(parse(Jane Draper, 24, Boston, MA)))

The relational operators are gtO, geO, eqO, neO, ItO, and leO: greater than, greater than
or equal to, equal, not equal, less than, and less than or equal to, respectively. These
operators perform the expected comparisons with numbers and booleans, and lexical
comparisons on strings, so that, for example, "graze" is less than "style." addO, subO,
mulO, divO, and negO are the arithmetic operators: add, subtract, multiply, divide, and
negate, respectively. All of these, except for negO, require two arguments; negO allows
only one. All of these operators take atoms or vectors as their arguments, casting the
second argument to have the same type as the first; for example, adding a number and a
boolean will add the number with the boolean cast as a number.

The example predicates given earlier can be expressed in the query language using the
relational and set operators. Naming the attributes Age, GPA, and HomeState, we have:

gt (Age 20)

eq(GPA 4.0)
eq(HomeState "Michigan")

and(gt(Age 20), eq(GPA 4.0))
or(gt(Age 20), eq(HomeState "Michigan")
not(eq(HomeState "Michigan"), eq(GPA 4.0))
not (and(gt (Age 20), eq(HomeState "Michigan")), eq(GPA 4.0))

7-190 Chapter 7: Indexing Kit

The last group of operators, the search operators, provide a general and powerful way to
search for strings within a string-valued attribute for the current object. They can be used
with either one or two arguments. Used with two arguments, they require the first to be a
string, a surrogate object, or an attribute (specified by an attribute name, the projectO
operator, or self), and the second to be an atom or vector (either literal or produced by the
evaluation of a bound surrogate object or attribute), or a regular expression. Used with one
argument, a search operator implicitly uses self as a first argument, so that the single
argument is effectively the second. The three search operators are wholeO, prefixO, and
withinO. Each specifies a different way in which strings must match. wholeO indicates
that full-term matches are desired: the desired string will only match one in the attribute if
they match exactly from beginning to end. prefixO indicates that the requested value need
only match the beginning part of the attribute's value. withinO requests a substring search:
a value can match any portion of the attribute's value.

Here are some examples of search expressions:

prefix(HomeState "Mi")

whole(HomeState regex(Mi.*))

whole(HomeState shell(Mi*))

The expressions above all search for objects whose HomeState begins with "Mi" -this can
be used to find abbreviations of state names as well as full names. It will match values like
"Michigan" and "Mississippi," but it will also match any word beginning with "Mi," like
"Misery." For this particular example, a more careful search would be better:

or(eq(HomeState "Michigan") I eq(HomeState "Mi"))

or (whole (HomeState parse ("Michigan")) I whole (HomeState parse ("Mi"))

These two examples explicitly check for the full name of the state, or for its abbreviation.
The first example has the weakness of being case-sensitive; the abbreviation must be
exactly "Mi" to match. The second example, by using the parseO operator, takes
advantage of case folding (which is done by default, but can be turned oft), so that "Mi",
"MI", and "mi" will all match.

whole (parse (small dog))

whole(self and(parse(small dog)))

whole(Pets parse(small dog))

whole(project(Pets self) and(parse(small dog)))

The first two expressions above are equivalent. They search for objects containing the
words "small" and "dog" (both words must be present, but might be in any attribute). The
second pair are equivalent to the first, except that they match only the words in the Pets
attribute. Note that "project(Pets selt)" is equivalent to simply writing "Pets".

whole(or(parse(small dog)))

whole(Pets or (parse (small dog)))

Other Features: The Indexing Kit Query Language 7-191

The expressions above search for objects containing the words "small" or "dog" (only one
need be present). The second expression restricts its search to the Pets attribute.

prefix(parse(small dog))
prefix(or(parse(small dog)))
within(parse(small dog))
within(or(parse(small dog)))

The first two expressions above search for objects containing words beginning with "small"
and "dog"-for example, "smallpox" or "doggerel." The first example finds objects that
have at least one match for each word, while the second finds objects that have at least one
match for either word. The second pair of expressions search for objects containing the
sequences "small" or "dog" as substrings of words-words like "smallish," "dismally,"
"endogen," or "underdog." The first example of the pair finds objects that have at least one
match for each word, while the second finds objects that have at least one match for either.

whole("The beasts of the Mohave desert, the Russian steppes,
and the Serengeti plain" Location)

The example above illustrates a different kind of search, in which objects whose Location
attribute is a substring of the string on the left (such as "Russian steppes"). This is useful
for finding objects related to a particular fragment of text.

Evaluation

Formally, a query is a logical expression consisting of predicates combined with set
operators. Predicates consist of search, relational, or binary boolean expressions, with one
of the arguments usually being an unbound attribute or surrogate object. The arguments
can all be bound, but this results in an expression that is either always true or always false,
and will select either all of the objects in the evaluation context, or none of them. For
example, gt(5 3) is always true, so this query will simply select all objects in the context
against which the query is evaluated.

Attributes can be specified in a predicate wherever an atom or vector would be allowed; in
particular, they're allowed as arguments to boolean, relational, and arithmetic operators.
Attributes are required with the search operators if they're not to evaluate as always true or
always false.

7-192 Chapter?: Indexing Kit

Predefined Attributes

The query language implicitly defines one attribute, Default. Values of an object that can't
be bound to any other attribute are bound to Default. This generally applies only to parsed
text, for which Default indicates the body of the text. Parsing can generate many attributes
based on keywords, such as Title, Author, PublicationDate, and so on. None of these is
guaranteed to be generated for a body of text, so Default covers the general case.

If a query expression is evaluated by an IXFileFinder, the expression can also use the
Content attribute. Content is defined as the entire unparsed contents of a file, and can be
used for literal substring search with an IXFileFinder. Here are some examples of its use:

eq(Content "small dog")
whole(Content "small dog")

The expressions above are equivalent, and search for files whose contents are exactly
"small dog".

prefix(Content "small dog")
within(Content "small dog")

The expressions above search for the literal phrase "small dog" at the beginning of the file
and anywhere in the file, respectively.

The IXFileRecord class also defines a set of attributes, which can be specified in a query
against an IXFileFinder or against a single IXFileRecord. The Content attribute isn't
available in queries evaluated against an IXFileRecord, as that class doesn't have any way
of actually reading the file's contents. Here are the attributes defined for IXFileRecords:

Attribute Name

FileName
FileType
FileDevice
FileInode
FileMode
FileCount
FileOwner
FileGroup
FileSize
AccessTime
ModifyTime
ChangeTime
UnixType

Description

The file's relative pathname (string)
The file's type (string); for example, "rtf'
The file's logical device number (number)
The file's inode number (number)
The file's permissions (number)
The number of hard links to the file (number)
The file owner's user id (number)
The file group's group id (number)
The file's physical size, in bytes (number)
The time the file was last accessed (number)
The time the file's contents were last changed (number)
The time the file's status was last changed (number)
The UNIX type of the file (number)

Other Features: The Indexing Kit Query Language 7-193

Values for the UnixType attribute can be:

Value

o
1
2
3
4
5

7·194 Chapter 7: Indexing Kit

UNIX File Type

Normal UNIX file
A directory
A block device file
A character device file
A symbolic link
A socket

Interface Builder

8-3 Introduction
8-5 Interface Builder's Design
8-5 The Object Hierarchy
8-6 Class References
8-6 Connection Information
8-7 Interface Builder's Programming Interface
8-7 Classes
8-8 Protocols
8-9 Other Programming Interfaces
8-9 Creating a Custom Palette

8-11 Classes
8-12 IBInspector
8-15 IBPalette
8-19 Object Additions
8-22 View Additions

8-25 Protocols
8-26 IB
8-29 IBConnectors
8-32 IBDocumentControllers
8-33 IBDocuments
8-42 IBEditors
8-49 IBInspectors
8-51 IBSelectionOwners

8-1

8-53 Types and Constants
8-54 Symbolic Constants
8-55 Global Variables

8-2

Interface Builder

Library: None, this API is defined by the Interface Builder application

Header File Directory: IN extDeveloperlHeaders/ apps

Import: appslInterfaceB uilder.h

Introduction

This chapter describes the application programming interface that lets you build custom
palettes, inspectors, and editors for Interface Builder.

Interface Builder gives you direct access to the majority of the objects defined in
NeXTSTEP. Adding a Text object or a DBTableView object to your application-objects
that represent years of programming and testing effort-is as easy as dragging the object
from Interface Builder's Palette window into your application's window. By creating a
custom palette containing objects of your own design, you and other developers can
manipulate these objects as easily as you do the ones in Interface Builder's
standard palettes.

Interface Builder 8-3

U sing the facilities described in this chapter, you can easily create a palette that contains
one or more objects of your own design. These objects can be of various types:

Type

View objects

MenuCell objects

Window objects

Other non-View objects

Instantiation

Can be dragged into one of the application's standard
windows.

Can be dragged into one of the application's menus.

Can be dragged into the workspace.

Can be dragged into Interface Builder's File window.

The API described here also lets you provide inspectors for any custom object. There are
four kinds of inspectors: Attributes, Connections, Size, and Help. The most common
inspector to implement is the Attributes inspector, which lets the user set the custom
object's unique features. For example, if you define a custom button object that sends a
message repeatedly when it is pressed, the Attributes inspector could let the user set the
repeat rate. Objects with special connection requirements (like those in the Database Kit)
can provide their own Connection inspectors. The Size and Help inspectors are rarely
overridden since they are appropriate for most types of objects.

If you need to provide the user with a more sophisticated system for interacting with your
custom objects, you can implement an editor using the API described in this chapter.
Whereas an inspector borrows one of Interface Builder's windows for its display, an editor
provides its own window. The size of this window is not constrained as is the inspector
window. Since each object can have its own editor, there can be multiple editor windows
on the screen at once, making "copy and paste" and "drag and drop" interactions possible
between editor windows. If the edited object contains other objects, the editor can open
subeditors to let the user interact with the contained objects.

The DBModule object available from the Database Kit palette (in
lNextDeveioperlPaiettes/DatabaseKit.paiette) provides an example of the use of an
editor. If you drag a DB Module object into the File window and then double-click it, the
editor opens its window.

To provide a better context for the discussion of the programming interface that makes
custom palettes, inspectors, and editors possible, the next section gives a broad overview
of Interface Builder's design.

8-4 Chapter 8: Interface Builder

Interface Builder's Design

You use Interface Builder to assemble and interconnect your application's objects. You
start the process by creating a new document (or, more likely, by modifying the default
document provided by Project Builder). When you save the document, it's represented by
a file package having a name ending in ".nib". What's in this document or the nib file·that
represents it?

An Interface Builder document contains:

• An object hierarchy
• References to custom classes
• Connection information

Within Interface Builder, these components are managed by a document object. This object
is of a private class, but can be queried and updated through the methods declared in the
IBDocuments protocol.

The Object Hierarchy

A document object stores and maintains an object hierarchy. At the top of the hierarchy is
the File's owner object-the object that's represented in the top-left portion of the File
window. This is actually a proxy object, since the actual object that owns the interface will
exist outside of the nib file. When a user adds an object to the interface project, it becomes
part of the document by being attached to some other object-the parent object-in the
object hierarchy. (In this hierarchy, a parent object may have many children, but each child
can have only one parent object.) An object must be part of this hierarchy for it to be
archived in the nib file.

Interface Builder declares and implements several methods as a category of Object (see the
Object Additions specification) so that it can query any object in the hierarchy for crucial
information. For example, each object can identify its various inspectors and its editor
since it inherits these methods:

getInspectorClassN arne
getConnectInspectorClassN arne
getSizeInspectorClassN ame
getHelpInspectorClassN arne
getEditorClassN arne

When you define a class for a custom palette object, you can override any of these methods
to provide your own inspector or editor.

Introduction 8·5

Class References

Often, the object you want instantiated when your application runs is not available to
Interface Builder either from its own library of objects or from any palette that has been
dynamically loaded. For these cases, Interface Builder provides a proxy object such as the
Custom View object in the Basic Views palette. When you drag a Custom View into your
application, you are in fact adding this proxy object to the document's object hierarchy.
When the resulting nib file is loaded within a running application, the proxy object is
unarchived and queried to determine the identity of the class that the proxy represents.
Then, an instance of this custom class is created (through the facilities of the alloc and init
messages), and the proxy is freed.

Note that this distinction between objects that are un archived and objects that are
represented by proxies has important consequences. An objects that's unarchived
can receive can receive awake and finishUnarchiving messages, but won't receive
an init message. On the other hand, an object that's represented by a proxy object in
the nib file will only receive an init message-it won't receive an awake or
finishU narchiving message.

Connection Information

An Interface Builder document also contains information about how objects within the
object hierarchy are interconnected. This connection information is embodied in
objects that conform to the IBConnectors protocol. Each connector object stores
information about a connection between one source object and one destination object.
Interface Builder's Connections inspector is the interface to a document's connector
objects. Each time you connect a source object with a destination object, you are creating
another connection object.

When you save the document, connector objects are archived in the nib file along with the
objects they interconnect. When an application loads the nib file, the objects from the
object hierarchy are unarchived, proxy objects are replaced with the appropriate instances,
and connection objects are unarchived. Interface Builder then sends each connection object
an establishConnection message, giving it an opportunity to connect its source and
destination as it deems appropriate. For example, the standard connection object that
Interface Builder provides (again, of an unspecified class) stores the identity of the source
object's outlet variable and the destination object's action method, if any. So, when such a
connector object receives an establish Connection message, it sets the source object's
outlet to the destination object and-if the source object's outlet is named "target" -it sets
the source's action to the destination's action method.

8-6 Chapter 8: Interface Builder

In most cases, Interface Builder's standard connection objects will be sufficient for your
needs. However, you can create a Connection inspector and connection objects of your
own, and through the methods declared in the IBDocuments protocol, you can have these
connection objects archived in the nib file. Also, note that since connection objects are
archived in the nib file, and since they all receive an establish Connection message when
the nib file is loaded, they provide a convenient mechanism for storing any sort of
information, not just connection information.

Interface Builder's Programming Interface

The API that Interface Builder defines is organized as two class definitions, several
protocols, and several methods that are added, through the use of categories, to the
definitions of the Object and View classes. The function of these components is
summarized in the following tables.

Classes

Interface Builder uses these two class definitions as links to your custom palette and to
inspectors. It's through the methods defined in these classes that Interface Builder locates
and loads the user-interface objects that appear in the custom palette and in the inspector
for a custom object.

IBPalette

IBInspector

This class is provided as the owner of palette's interface.
If you custom palette includes only View objects, there's
no reason to subclass IBPalette. If the objects that appear
in the palette represent MenuCells, Windows, or other
non-View objects, you'll have to create a subclass of
IBPalette to associate the images in the Palette window
with the real objects you intend to have instantiated.

This is the abstract superclass for inspectors. Your
inspector provides Interface Builder with the controls to
be loaded into the Inspector panel when the user attempts
to inspect the custom object. The inspector also interprets
the user's actions on these controls as commands to
modify the custom object's state.

Introduction 8-7

Protocols

These protocols define the ways your dynamically loaded palette module can communicate
with Interface Builder (the IB and IBDocuments protocols) and the ways Interface Builder
can communicate with objects in your module (the remaining protocols).

IB

IBDocuments

IBInspectors

IBEditors

IBDocumentControllers

IBSelectionOwners

IBConnectors

8-8 Chapter 8: Interface Builder

This protocol gives you access to global information: the
object that represents the active document, whether
Interface Builder is in test mode, the source and
destination objects of a connection, and so on.

This protocol defines the programming interface to a
document object in Interface Builder. Through this
interface, you can add and remove objects from the
document's object hierarchy, add or remove a connector
object, and set the active editor.

This protocol declares the methods that all inspector
objects must have: ok:, revert:, and wantsButtons.

This protocol declares the methods through which
Interface Builder can interact with an editor object.
Interface Builder invokes these methods to make the
editor's selected object visible; to copy, paste or delete the
selection; and to open an close subeditors, among other
things.

This protocol declares the notification methods Interface
Builder can use to inform an object in your module about
the state of the document-that it has been loaded or that
it's about to be saved. You use the IB protocol to register
an object as a document controller.

Editor objects conform to this protocol, which declares
methods for counting the number of objects in the
selection and for filling a List object with the objects in the
selection.

This protocol declares the methods that connector objects
must implement. These include methods for identifying
the source and destination of a connection and for
establishing the connection between these objects.

Other Programming Interfaces

Through the use of categories, Interface Builder adds methods to the Object and
View classes.

Object Additions

View Additions

Interface Builder uses these methods to discover the
various inspectors for the selected object. Default
inspectors and editors are provided for all objects.

These methods let custom View objects control how they
are resized and redrawn.

Creating a Custom Palette

The process of creating a custom palette is most easily explained by example. See Chapter
18, "Creating a Custom Palette" in the NeXTSTEP Development Tools and Techniques
manual for such an example. (This information is also available on-line in
lNextLibrarylDocumentationINextDevlDevToolslPart2_Techniques118_CustomPalette.)

Introduction 8·9

8-10

Classes

IBlnspector

Inherits From:

Conforms To:

Declared In:

Class Description

Object

IBInspectors

apps/InterfaceBuitder .h

The IBInspector class defines the interface between an inspector for a loadable module and
the Interface Builder application. When you build a new inspector for Interface Builder,
you create a subclass of IBInspector.

The inspector you define must load its interface (that is, the nib file containing the interface),
and it must override the inherited ok:, revert:, and wantsButtons: methods. The nib file is
generally loaded as part of the inspector's init method. The wantsButtons: method controls
whether the inspector displays OK and Revert button. (As with Interface Builder's standard
inspectors, most custom inspectors won't need these buttons-instead, the user's actions in
the Inspector panel are registered immediately by the inspected object.) The ok: and revert:
methods control the synchronization of the Inspector panel's state with that of the inspected '
object. Interface Builder sends the inspector a revert: message to make the inspector reflect
the current state of the inspected object. The ok: message should cause the inspector to set
the state of the inspected object to that displayed in the Inspector panel.

An inspector should send itself a touch: message when the user begins modifying the data
it displays. This message displays a broken "X" in the panel's close box and enables the
inspector's OK and Revert buttons, if present. (See textDidChange: for alternate way to
achieve this result.)

Instance Variables

id object;
id window;
id driver;
id okButton;
id revertButton;

8-12 Chapter 8: Interface Builder

object

window

okButton

revertButton

Adopted Protocols

IBInspectors

Method Types

Accessing objects

Managing changes

Instance Methods

object

- object

The object that's being inspected.

The Panel that contains the inspector's user interface

The Inspector panel's OK button, if present.

The Inspector panel's Revert button, if present.

-ok:
- revert:
- wantsButtons

- object
-window

- touch:
- textDidChange:

Returns the object that's being inspected in Interface Builder.

textDidChange:

- textDidChange:sender

Sends the IBInspector a touch: message on behalf of some Text object in the Inspector panel.

By making your inspector object the delegate of any Text object in the Inspector panel, the
panel will be updated appropriately as the user alters the panel's contents.

See also: - touch:

Classes: IBlnspector 8-13

touch:

- touch:sender

Changes the image in the Inspector panel's close box to a broken "X" to indicate that the
contents have been edited. Also, enables the buttons that allow the user to commit or
abandon changes.

See also: - textDidChange:

window

-window

Returns the Window object that contains the user interface for the inspector.

8-14 Chapter 8: Interface Builder

IBPalette

Inherits From: Object

Declared In: apps/InterfaceBuilder .h

Class Description

The IBPalette class defines Interface Builder's link to a dynamically loaded palette.
Interface Builder uses the facilities of this class to load a custom palette's interface and
executable code.

Each loadable palette must contain a subclass of IBPalette, and this class must be identified
in the palette's palette.table file. Interface Builder creates an instance of this subclass
when it loads the palette. It then sends this object an originalWindow message to access
the window that contains the objects to be loaded into the Palettes window.

If a palette contains non-View objects (MenuCells, Windows, or objects that will be
deposited in the File window), the subclass must implement the finishlnstantiate method
to associate each View object that's displayed in the File window with the non-View object
that should be created when the user instantiates the object by dragging it from the palette.

For example, consider a custom palette that provides an AddressBook object that manages
people's names and addresses. This object, a subclass of Object, is to be dragged into the
File window. Further, image that the subclass of IBPalette for this custom palette,
AddressBookPalette, has two outlets: addressBookObject and addressBookView. When
the palette was created, these outlets were connected to the AddressBook object and to a
View object that will represent it in the Palette window. Within AddressBookPalette class
implementation file, the finishlnstantiate method would look like this:

- finishInstantiate

[self associateObject:addressBookObject
type:IBObjectPboardType with:addressBookView];

return self;

Classes: IBPalette 8-15

Notice that the subclass establishes an association by sending itself an
associateObject:type:with: message. IBPalette implements this method. The second
argument controls where the palette image may be deposited:

Type

IBObjectPboardType

IBMenuCellPboardType

IBMenuPboardType

IBWindowPboardType

Instance Variables

id paletteDocument;
id originalWindow;
id palette View;
id draggedView;

paletteDocument

originalWindow

palette View

draggedView

Method Types

Usage

For objects that the user must deposit in the File window

For MenuCells without submenus; must be deposited in a
menu

For MenuCells that have submenus; must be deposited in
a menu

For Windows and Panels; must be deposited in the
workspace

An object conforming to the IBDocuments protocol that
represents the dynamically loaded palette.

The window containing the interface objects that will be
loaded into Interface Builder's Palettes window.

private

private

Associating Views and Objects - associateObject:type:with:

Initializing the palette - finishInstantiate

Accessing related objects - paletteDocument
- originalWindow
- findImageN amed:

8-16 Chapter 8: Interface Builder

Instance Methods

associateObject:type:with:

- associateObject:anObject
type: (NXAtom) type
with:aView

Establishes an association between a View in a palette (aView) and the object that should
be instantiated when the user drags the View from the palette (anObject). The type
argument controls where the palette object may be deposited. (See the "Class Description"
above for more information.

If your custom palette provides non-View objects, override IBPalette's finish Instantiate
method with an implementation that sends associateObject:type:with: messages to
associate each View object in the palette with the non-View object that it represents.

findlmageNamed:

- findImageNamed:(const char *)name

Returns the NXImage instance associated with name. If no such image can be found, this
method returns nil.

Use this method to refer to images in your custom palette. This method first tries to find
the image by invoking NXImage's version offindImageNamed:. If that's unsuccessful, it
uses the facilities of the NXB undle class to check the". palette" directory for this resource.
See getPath:forResource:oIType: for a description of NXBundle's search path.

See also: - findImageNamed:(NXImage class of the Application Kit),
- getPath:forResource:oIType: (NXBundle common class)

finishlnstantiate

- finishInstantiate

Implement to complete the initialization of your IBPalette object. Interface Builder sends
a finishInstantiate message to the IBPalette object after it has been unarchived from the
palette file. A typical use of this method is to associate a View object within the custom
palette with a non-View object that is meant to represent it in the Palette window. See
"Class Description," above, for more information.

See also: - associateObject:type:with:

Classes: [BPalelle 8-17

originalWindow
- originalWindow

Returns the Window that contains the View objects to be loaded into Interface Builder's
Palette window. When it loads a custom palette, Interface Builder sends the IBPalette
subclass an originalWindow message. In your custom palette, you must connect the
originalWindow outlet of your subclass of IBPalette to the Window that contains the
Views that represent your palette objects.

paletteDocument

- paletteDocnment

Returns an object that represents the dynamically loaded palette. This object is of
unspecified class; however, it conforms to the IBDocuments protocol.

8-18 Chapter 8: Interface Builder

Object Additions

Category Of: Object

Declared In: appslInterfaceB uilder.h

Category Description

Interface Builder adds these methods to the definition of the Object class so that any palette
object can be queried for its various inspectors, for its editor, and for an image to represent
the object when it's instantiated in the File window.

The inspector methods below return the class name for the object that will own the
Inspector panel's display. Interface Builder caches this information so that when the user
attempts to inspect an object, Interface Builder knows what type of inspector to instantiate
(if it hasn't yet been instantiated). The inspector object provides the interface that Interface
Builder displays in the Inspector panel.

Interface Builder supplies default implementations of these methods; you only override
them if your custom palette object requires it. For example, if you create a TextField palette
object that validates its input, you would probably provide an Attributes inspector that lets
the user specify the acceptable input values. Thus, you would override the
getInspectorName method to return the class name for the Attributes inspector object.
However, you would probably not have to override the other inspector methods since the
standard inspectors would be satisfactory.

Override the getEditorClassName method to return the class name of the editor to use for
this object. The editor is invoked when the user double-clicks the object. View objects
inherit Interface Builder's standard View editor.

You only need to override the getIBImage method if you want a special image to represent
your custom palette object when it's dragged into the File window. If you don't supply such
an image, Interface Builder will use the standard sphere image.

Classes: Object Additions 8-19

Instance Methods

getConnectlnspectorClassName

- (const char *)getConnectlnspectorClassName

Returns the class name of the receiver's Connection inspector. Interface Builder uses this
information to instantiate the inspector object for the currently selected object. You should
rarely need to override the standard Connection inspector.

getEditorClassName

- (const char *)getEditorClassName

Returns the class name of the receiver's editor. Interface Builder uses this information to
instantiate the editor object for the currently selected object.

getHelplnspectorClassName

- (const char *)getHelplnspectorClassName

Returns the class name of the receiver's Help inspector. Interface Builder uses this
information to instantiate the help inspector object for the currently selected object. You
should rarely need to override the standard Help inspector.

getlBlmage

- (NXImage *)getlBlmage

Returns the image that's displayed in the File window when an instance of this class is
created. By default, Interface Builder provides an image of a sphere. If you want to provide
a different image, implement this method in your custom class.

getlnspectorClassName

- (const char *)getlnspectorClassName

Returns the class name of the receiver's Attributes inspector. Interface Builder uses this
information to instantiate the help inspector object for the currently selected object.

8-20 Chapter 8: Interface Builder

getSizelnspectorClassName

- (const char *)getSizelnspectorClassName

Returns the class name of the receiver's size inspector. Interface Builder uses this
information to instantiate the size inspector object for the currently selected object.

Classes: Object Additions 8-21

Vievv Additions

Category Of: View

Declared In: appslInterfaceB uilder.h

Category Description

Interface Builder adds these two methods to the definition of the View class so that a View
that's dragged from the Palette window can control its size and make other adjustments as
a consequence of resizing. As the user begins to drag one of the View's control points,
Interface Builder sends it a getMinSize:MaxSize:from: message. When the user releases
the mouse button, the View receives a placeView: message.

Instance Methods

getMinSize:maxSize:from:

- getMinSize:(NXSize *)minSize maxSize:(NXSize *)maxSize from:(int)where

Implement this method to control the minimum and maximum dimensions of your View.
Place the dimensions you choose in the structures referred to by minSize and maxSize.

The where argument specifies which control point the user is dragging to resize the object.
It can have these values:

IB_BOTTOMLEFT
IB _MIDDLELEFT
IB_TOPLEFT
IB_MIDDLETOP
IB_TOPRIGHT
IB_MIDDLERIGHT
IB_BOTTOMRIGHT
IB_MIDDLEBOTTOM

You can use the where argument to determine how the View will resize. For example, a
Box determines which control point it being dragged and then lets the user shrink its size
from that point only to the degree that no subview (Button, TextField) would be obscured.

8-22 Chapter 8: Interface Builder

placeView:
- place View: (NXRect *)frameRect

Notifies a View of a change in its frame size. Interface Builder's implementation of this
method is to send a setFrame: message to the receiver, using frameRect as the argument.

You can implement this method, for example, to resize the View's subviews. In your
implementation, you should also send a setFrame: message to self to set the View's
new size.

Classes: View Additions 8-23

8-24

Protocols

IB

Adopted By: no NeXTSTEP classes

Declared In: appslInterfaceBuilder .h

Protocol Description

Interface Builder's subclass of the Application class conforms to this protocol. Thus,
objects in your custom palette can interact with Interface Builder's main module by sending
messages (corresponding to the methods in this protocol) to NXApp. For example, if your
editor window wants to cause Interface Builder to remove the connection lines from the
screen, it would send this message:

[NXApp stopConnecting] i

Method Types

Accessing the document - activeDocument

Accessing the selection owner - selectionOwner

Managing connections

Querying the mode

Registering controllers

Instance Methods

activeDocument

- activeDocument

- connectSource
- connectDestination
- is Connecting
- stopConnecting
- displayConnectionBetween:and:

- isTestingInterface

- registerDocumentController:
- unregisterDocumentController:

Returns the active document, as represented by an object that conforms to the IBDocuments
protocol. (For the user, the active document is represented by the active File window.)

8-26 Chapter 8: Interface Builder

connectDestination

- connectDestination

Returns the object that's the destination of the connection; that is, the object to which the
user has dragged a connection line.

See also: - connectSource

connectSource

- connectSource

Returns the object that's the source of the connection; that is, the object from which the user
dragged a connection line.

See also: - connectDestination

displayConnectionBetween:and:

- displayConnectionBetween:source and:destination

Causes Interface Builder to draw connection lines between source and destination. For
example, when the user clicks an entry in the Connections list in the Connections inspector,
Interface Builder uses this method to display the corresponding connection.

The act of displaying a connection between these two objects doesn't require that a
connection really exist, and doesn't create a connection. It's the Connection inspector's
responsibility to establish the programmatic connection. This method simply draws lines
between two objects and attempts to make both objects visible.

See also: - stop Connecting

isConnecting

- (BOOL)isConnecting

Returns YES if connection lines are being displayed in Interface Builder. You can use this
information to control how your object is drawn during the connection process. For
example, when you drag a connection line from a button, the button's black border and text
are redrawn in gray.

See also: - stop Connecting

Protocols: IE 8-27

isTestinglnterface

- (BOOL)isTestinglnterface

Returns YES if Interface Builder is in Test mode.

registerDocumentController:

- registerDocumentController:aController

Adds aController to the list of objects to be notified when Interface Builder documents
are opened or saved. See the IBDocumentControllers protocol for a description of the
notification messages. Controllers should be registered as the palette is loaded, perhaps
as part of the IBPalette object's finishlnstantiate method.

See also: - unregisterDocumentController:

selectionOwner

- selectionOwner

Returns the editor of the currently selected object or nil if no object is selected.

stopConnecting

- stop Connecting

Causes Interface Builder to remove any connection lines from the screen. Interface Builder
uses this method to remove connection lines when the user drags a window.

See also: - isConnecting

unregisterDocumentController:

- unregisterDocumentController:aController

Removes aController from the list of objects to be notified when Interface Builder
documents are opened or saved.

See also: - registerDocumentController:

8-28 Chapter 8: Interface Builder

IBConnectors

Adopted By: no NeXTSTEP classes

Declared In: apps/InterfaceBuilder.h

Protocol Description

This protocol declares Interface Builder's link to a connector object. Connectors are
designed to store information about connections between objects in a nib document. For
example, the private class that Interface Builder uses to store information about outlet
connections conforms to this protocol and adds a method to store the name of the outlet.
Connector objects are archived in the nib file.

When an application begins executing and it loads a nib file, the connector objects in the
nib file are unarchived and are sent the establish Connection message. It is at this point
that the connector can establish its type of connection between the source and destination.
For example, Interface Builder's outlet connector sets the named outlet to point to the
destination object.

Since connector objects are guaranteed to be archived in the nib file and are guaranteed to
receive an establish Connection message at run time, they provide a mechanism for you to
store other application-specific information in a nib file.

Your Connection inspector must set the source and destination in each of its connectors (for
example, with setSource: and setDestination: methods). This protocol doesn't include
methods to set these outlets, only to query them.

Instance Methods

destination
- destination

Implement to return the object that is the destination of the connection.

See also: - source

Protocols: IBConnectors 8-29

establishConnection

- establish Connection

Implement to connect the source and destination objects. Interface Builder sends this
message to each connector object after all objects have been unarchived from the nib file.

free

-free

Implement to release the storage for the connector object.

niblnstantiate

- nib Instantiate

Implement to verify the identities of the connector's source and destination objects.

Interface Builder sends a nib Instantiate message to a connector object to give it an
opportunity to verify that its source and destination instance variables point to the
intended objects. For example, consider the case in which a user puts a Custom View in a
window and then reassigns the CustomView's class to MyView. The MyView class has a
textfield outlet that the user connects to a neighboring TextField object. This action causes
Interface Builder to create a connector object and set its destination to the TextField and its
source to the CustomView. (The source can't be set to the MyView object since that class
doesn't exist in InterfaceBuilder-that's why the CustomView was used in the first place.)

When the resulting nib file is loaded in the finished application, the connector object is
unarchived and sent a niblnstantiate message. It's at this point that the connector must
reset its source instance variable from the Custom View object to the MyView object.

The Application Kit, in a category of Object, provides a default implementation of this
method. This implementation returns self. (Please note that the method isn't public ally
declared, a problem that will be remedied in a later release.) Consequently, all objects can
respond to a nib Instantiate message. Your connector, therefore, should minimally
implement this method to send niblnstantiate messages to its source\and destination
objects. For example, assuming the outlets are named theSource and theDestination, the
implementation is:

8-30 Chapter 8: Interface Builder

- nibInstantiate

theSource = [theSource nibInstantiate];
theDestination = [theDestination nibInstantiate];
return self;

This will allow the source and destination objects to return the ids of the intended objects.

read:

- read:(NXTypedStream *)stream

Implement to unarchive the connector object from stream. The connector should read in
its instance variables and do any other initialization it requires.

See also: - write

renewObject:to:

- renewObject:old to:new

Implement to update a connector by replacing its old source or destination object (old) with
a new object (new). This is used by Interface Builder, for example, when a user drags a
Button object into a Matrix of ButtonCells. Assuming that the Button was connected, the
connection information must be updated to reflect that fact that the Button has been
replaced by a ButtonCell. Interface Builder updates this information by sending the
appropriate connector object a renewObject:to: message with the Button as old and the
ButtonCell as new.

source

- source

Implement to return the object that is the source of the connection.

See also: - destination

write:

- write:(NXTypedStream *)stream

Implement to archive the connector object to stream.

See also: - read

Protocols: IBConnectors 8-31

IBDocul11entControllers

Adopted By: no NeXTSTEP classes

Declared In: apps/lnterfaceBuilder .h

Protocol Description

This is the protocol that Interface Builder uses to communicate with objects that have been
registered as document controllers. (See registerDocumentController: in the IB protocol
specification.) A document controller could, for example, use these notification messages
to ensure that if a nib file containing an older version of a custom palette object is loaded,
it will be saved with the new version of the object.

Instance Methods

didOpenDocument:

- didOpenDocument:theDocument

Notifies the controller that theDocument has been opened.

didSaveDocument:

- didSaveDocument:theDocument

Notifies the controller that theDocument has been saved.

willSaveDocument:

- willSaveDocument:theDocument

Notifies the controller that the user is attempting to save theDocument.

8·32 Chapter 8: Interface Builder

IBDocul11ents

Adopted By: no NeXTSTEP classes

Declared In: appslInterfaceBuilder.h

Protocol Description

This is the protocol to use to communicate with Interface Builder's document object. The
document object is private to Interface Builder but may be accessed by sending Interface
Builder's subclass of Application an activeDocument message:

theActiveDoc = [NXApp activeDocument];

The document object maintains the components of a document:

• The object hierarchy
• The list of connectors
• The active editor

It also mediates in copy and paste operations and controls the redisplay of objects in
Interface Builder.

Through the document object, you keep Interface Builder informed of changes to the data
structure that you want archived in the nib file. For example, if your custom editor allows
the user to add an object by dragging it into the editor's window, you must inform Interface.
Builder of this addition by sending the document object an attachObject:to: message.
Interface Builder won't archive an object in the nib file unless it has been added to the
object hierarchy. (Note: A paste operation, which uses the
pasteType:fromPasteboard:parent: method, automatically updates the hierarchy.)

Protocols: IBDocuments 8-33

Method Types

Managing the document - touch
- getDocumentPathIn:

Managing the object hierarchy - attachObject:to:
- attachObjects:to:
- deleteObject:
- deleteObjects:
- copyObject:type:inPasteboard:
- copyObjects:type:inPasteboard:
- pasteType:fromPasteboard:parent:
- objectIsMember:
- getObjects:
- getParentForObject:

Setting object names - setN ame:for:
- getN ameIn:for:

Managing connectors - addConnector:
- removeConnector:
-listConnectors:forSource:
-listConnectors:forDestination:
- listConnectors:forSource:filterClass:
-listConnectors:forDestination:filterClass:

Managing editors - setSelectionFrom:
- editorDidClose:for:
- getEditor:for:
- openEditorFor:

Updating the display - redrawObject:

Instance Methods

addConnector:

- addConnector:aConnector

Adds a connector object to the list maintained by Interface Builder. (See the IBConnectors
protocol for more information.) This is the message a custom connection inspector sends
Interface Builder's document object to register a connection.

See also: - add Connector:

8-34 Chapter 8: Interface Builder

attachObject:to:

- attachObject:anObject to:parent

Adds anObject to the document's object hierarchy by attaching it to parent. This method
(and the related method attachObjects:to:) lets you keep the document's object hierarchy
informed of changes in the objects under the control of your custom editor.

See also: - attachObjects:to:

attachObjects:to:

- attachObjects:(List *)objectList to:parent

Adds the objects in objectList to the document's object hierarchy by attaching them to
parent. This method (and the related method attachObject:to:) lets you keep the
document's object hierarchy informed of changes in the objects under the control of your
custom editor.

See also: - ~ttachObject:to:

copyObject:type:inPasteboard:

- copyObject:anObject
type: (NXAtom) type
inPasteboard:(Pasteboard *)aPasteboard

Copies anObject to the specified pasteboard. The type argument can be one of the
following:

IBObjectPboardType
IBCellPboardType
IBMenuPboardType
IBMenuCellPboardType
IB View PboardType
IBWindow PboardType

An editor should send the document object a copyObject:type:inPasteboard: or
copyObjects:type:inPasteboard: message as part of its implementation of its
copySelection method.

See also: - copyObjects:type:inPasteboard:

Protocols: IBDocuments 8-35

copyObjects:type:inPasteboard:

- copyObjects:(List *)objectList
type: (NXAtom)type
inPasteboard: (Pasteboard *)aPasteboard

Copies the objects in objectList to the specified pasteboard. The type argument can be one
of the following:

IBObjectPboardType
IBCellPboardType
IBMenuPboardType
IBMenuCellPboardType
IBViewPboardType
IBWindowPboardType

An editor should send the document object a copyObject:type:inPasteboard: or
copyObjects:type:inPasteboard: message as part of its implementation of its
copySelection method.

See also: - copyObject:type:inPasteboard:

deleteObject:

- deleteObject:anObject

Removes anObject from the document's object hierarchy. An editor should send the
document object a deleteObject: or deleteObjects: message as part of its implementation
of the deleteS election method. This will keep the document's accounting of the objects in
the nib document in agreement with the actual state of the document.

See also: - deleteObjects:

deleteObjects:

- deleteObjects:(List *)objectList

Removes the objects in objectList from the document's object hierarchy. An editor should
send the document object a deleteObject: or deleteObjects: message as part of its
implementation of the deleteS election method. This will keep the document's accounting
of the objects in the nib document in agreement with the actual state of the document.

See also: - deleteObject:

8-36 Chapter 8: Interface Builder

editorDidClose:for:

- editorDidClose:anEditor for:anObject

Informs the document object that anEditor is no longer active. By sending this message to
the document object when you close an editor, you keep Interface Builder's record of the
active editor up to date. Interface Builder itself invokes this method whenever an editor is
closed because of a user action, such as the closing of a window.

getDocumentPathln:

- getDocnmentPathln:(char *)buffer

Places the document's path in buffer. This is the path displayed as the title of Interface
Builder's File window. Make sure that buffer is sufficiently larger to hold the path. Returns
the document object.

getEditor:for:

- getEditor:(BOOL)createlt for:anObject

Returns the editor object for anObject. If createlt is YES and the editor hasn't been
instantiated, it will be instantiated and returned. If createIt is NO, the editor is returned only
if it has already been instantiated. If createlt is NO and the editor hasn't been instantiated,
this method returns nil.

getNameln:for:

- getNameln:(char *)buffer for:anObject

Places the name associated with anObject in buffer. Make sure the buffer you pass in is
sufficiently large to accommodate the name. Returns the document object.

See also: - setName:for:

getObjects:

- getObjects:(List *)objectList

Places the objects from the document's object hierarchy into objectList. The object's are
not arranged in any particular order.

Protocols: IBDocuments 8-37

getParentForObject:

- getParentForObject:anObject

Returns the object above anObject in the document's object hierarchy. The top object is
the File's owner. Returns nil if anObject is the File's owner.

listConnectors:forDestination:

-listConnectors: (List *)aList forDestination:aDestination

Places in aList all connector objects whose destinations are aDestination. Returns aList.

Since a given object can be the destination of multiple connections, the connection
information is returned as a list of objects. Each object in the list conforms to the
IBConnectors protocol and contains the information for one connection.

aList is a List object that you provide. When you're done with aList, free it but don't free
the connection objects within it since they're managed by Interface Builder.

See also: -listConnectors:forDestination:filterClass:, -listConnectors:forSource:

listConnectors:forDestination:filterClass:

-listConnectors:(List *)aList
forDestination:aDestination
filterClass:aClass

Places in aList the connector objects of class aClass whose destinations are aDestination.
Returns aList.

Since a given object can be the destination of multiple connections, the connection
information is returned as a list of objects. Each object in the list conforms to the
IBConnectors protocol and contains the information for one connection.

aList is a List object that you provide. When you're done with aList, free it but don't free
the connection objects within it since they're managed by Interface Builder.

See also: -listConnectors:forDestination:, -listConnectors:forSource:

listConnectors:forSource:

-listConnectors:(List *)aList forSource:aSource

Places in aList all connector objects whose sources are aSource. Returns aList.

8-38 Chapter 8: Interface Builder

Since a given source can have multiple connections, the connection information is returned
as a list of objects. Each object in the list conforms to the IBConnectors protocol and
contains the connection information for one connection.

aList is a List object that you provide. When you're done with aList, free it but don't free
the connection objects within it since they're managed by Interface Builder.

See also: -listConnectors:forSource:filterClass:, -listConnectors:forDestination:

listConnectors:forSource:filterClass:

-listConnectors:(List *)aList
forSource:aSource
filterClass:aClass

Places in aList the connector objects of class aClass whose sources are aSource.
Returns aList.

Since a given source can have multiple connections, the connection information is returned
as a list of objects. Each object in the list conforms to the IBConnectors protocol and
contains the connection information for one connection.

aList is a List object that you provide. When you're done with aList, free it.but don't free
the connection objects within it since they're managed by Interface Builder.

See also: -listConnectors:forSource:, -listConnectors:forDestination:

objectlsMember:

- (BOOL)objectlsMember:anObject

Returns YES if anObject is a part of the document's object hierarchy; NO otherwise. You
might send an objectlsMember: message to the document object before attempting to
open a subeditor for anObject.

openEditorFor:

- (BOOL)openEditorFor:anObject

Opens the editor object for anObject. This method ensures that editors for all the objects
above anObject in the object hierarchy are open before opening anObject's editor.

Protocols: IBDocuments 8-39

pasteType:fromPasteboard:parent:

- (List *)pasteType:(NXAtom)type
fromPasteboard:(Pasteboard *)thePasteboard
parent:theParent

Alerts the document object that one or more objects were pasted. Returns a List containing
the ids of the objects that were pasted. The pasteboard and the type being pasted are
identified by thePasteboard and type.

An editor uses this method to keep Interface Builder's document object up to date. The
implementation of this method invokes attachObjects:to: and touch for you. The List
object that's returned lets you add the objects to your data structures. It is your
responsibility to free the returned List.

redrawObject:

- redrawObject:anObject

Redraws the selected object by opening its editor-and the editor for its parent object, and
so on up the object hierarchy-and sending each editor a resetObject: message.

removeConnector:

- removeConnector:aConnector

Removes aConnector from the list of connectors maintained by Interface Builder. (See the
IBConnectors protocol for more information on connectors.) This is the message a custom
connection inspector sends Interface Builder's document object to break a connection.

Interface Builder doesn't free aConnector; it's your responsibility to do so.

See also: - add Connector:

setName:for:

- (BOOL)setName:(const char *)name for:anObject

Sets the name associated with the anObject. For objects in the File window, this is the name
displayed below the object's image. Except for objects in the File window, setting an
object's name is generally not needed.

See also: - getNameln:for:

8-40 Chapter 8: Interface Builder

setSelectionFrom:

- setSelectionFrom:anEditor

Registers anEditor as the editor that owns the selection.

When you activate an editor or change the selection, make sure you send this message to
the document object. This keeps Interface Builder informed of the selection's owner. In
this way, when the user switches from one window to another, or from one document to
another, Interface Builder can inform the proper editor to display its selection. Also,
Interface Builder uses the selection information to determine which inspector to display in
its Inspector panel.

touch

- touch

Marks the document as edited by causing the File window's close box to display a broken
"X". Returns the document object.

Protocols: IBDocuments 8-41

IBEditors

Adopted By: no N eXTSTEP classes

Incorporates: IB SelectionOwners

Declared In: apps/InterfaceBuilder .h

Protocol Description

This protocol, and the IBSelectionOwners protocol that it incorporates, define the required
programmatic interface to an editor object in Interface Builder. When a user double-clicks
a custom object, Interface Builder instantiates the object's editor (using initWith:
inDocument:). (Interface Builder would have previously determined the editor's class by
sending the custom object a getEditorClassName message. See the Object Additions
specification for more information.) The editor presents its window, allowing the user to
make alterations to the displayed data.

For example, assume that a custom palette provides an AddressBook object. Once
instantiated in the File window, the AddressBook object can be double-clicked to activate
the editor. The editor presents the user with a window that permits the entry of names and
addresses. As data is entered, the editor can update the AddressBook object with the
new information.

Besides letting users edit an object's state, an editor intercedes in copy and paste operations.
When the user chooses the Cut or Copy command, Interface Builder sends a
deleteS election or copySelection message to the editor. The editor takes the appropriate
action and then alerts Interface Builder's document object that the cut or copy operation has
occurred. This keeps the document object up-to-date with the actual state of the document.

When a paste operation is attempted, Interface Builder sends the active editor an
acceptsTypeFrom: message to determine if it will accept any of the types on the
pasteboard. If the editor refuses the offered types, Interface Builder sends the same
message to the next higher editor in the object hierarchy, and so on until it reaches the top.
This explains why, if a paste operation is attempted when a Button object is on the
pasteboard and the Pop-up list editor is open, nothing is pasted in the selected PopUpList;
instead, the Button is pasted in the window that contains the PopUpList. The PopUpList
refused the pasteboard type, but the View editor accepted it.

8-42 Chapter 8: Interface Builder

If the editor accepts one of the offered types, the editor receives a pastelnSelection message.
The editor then replaces the selection with the pasted data and alerts Interface Builder of the
change by sending the document object a pasteType:fromPasteboard:parent: message.

Editors also control the opening and closing of subeditors. Imagine that an AddressBook
object can contain not only addresses, but other AddressBooks. For example, an
AddressBook for a university could contain AddressBooks for each department of the
university. When the AddressBook for the Spanish department is double-clicked, a
subeditor must be opened to allow the editing of this nested AddressBook.

Method Types

Initializing

Identifying objects

Displaying objects

Managing the selection

Copying and pasting objects

Opening and closing editors

Activating the editor

- initWith:inDocument:

- document
- editedObject
- window

- resetObject:

- wantsSelection
- selectObjects:
- makeS election Visible:

- copySelection
- deleteS election
- pasteInSelection
- acceptsTypeFrom:

- close
- openSubeditorFor:
- close Subeditors

- orderFront
- activate

Protocols: IBEditors 8-43

Instance Methods

acceptsTypeFrom:

- (NXAtom)acceptsTypeFrom:(const NXAtom *)typeList

Implement to return the pasteboard types your editor accepts. typeList is an array of
character pointers holding the type names, with the last pointer being NULL. Each of the
pointers is of the type NXAtom, meaning that the type name is a unique string. If your
editor doesn't accept any of the supplied types, it should return NULL.

For example, if an editor only accepts the type IBQbjectPboardType, it could implement
this method in this way:

- (NXAtom)acceptsTypeFrom: (const NXAtom *)typeList

int i = 0;
if (!typeList) return NULL;

while (typeList[i]) {

if (IBObjectPboardType == typeList[i])

return IBObjectPboardType;

i++;

return NULL;

activate

- (BOOL)activate

Implement to activate the editor. Typically, an editor activates itself by making its window
key, displaying its selection, and advising the document object that it owns the selection:

- (~OOL)activate

[window makeKeyAndOrderFront:self];

[self makeSelectionVisible:YES] ;

[document setSelectionFrom:self];

return YES;

Your implementation of this method should return YES if the editor activates itself and
NO otherwise.

When a user double-clicks an object controlled by an editor, the editor receives an
orderFront and then an activate message.

See also: - orderFront

8-44 Chapter 8: Interface Builder

close

- close

Implement to close the editor and free its resources. This method can be invoked for a
number of reasons. For example, Interface Builder invokes this method when the user
closes the document. Or, your editor might send itself a close message when the user closes
the editor's window.

As part of the implementation of this method, send an editorDidClose:for: message to the
active document to inform IB that this editor has closed:

[[NXApp activeDocument] editorDidClose:self for:editedObject];

See also: - editorDidClose:for: (IBDocuments protocol)

closeSubeditors

- close Subeditors

Implement to close all subeditors.

See also: - openSubeditorFor:

copySelection

- (BOOL)copySelection

Implement to copy the selected object(s) to the pasteboard. When the user chooses the Cut
or Copy commands in Interface Builder, the editor that owns the selection receives a
copySelection message.

In your implementation of this method, you should send the document object a copyObject:
type:inPasteboard: or a copyObjects:type:inPasteboard: message, as declared in the
IBDocuments protocol. Return YES if the selection was copied to the pasteboard;
NO otherwise.

See also: - deleteSelection

Protocols: IBEditors 8-45

deleteSelection
- (BOOL)deleteSelection

Implement to delete the selected object(s). This method is invoked when the user deletes
the selection by using the Delete key or as part of the Cut command (after the selection has
been copied using the copySelection method).

In your implementation of this method, you should send the document object a
deleteObject: or a deleteObjects: message, as declared in the IBDocuments protocol.
Return YES if the selection was deleted; NO otherwise.

See also: - copySelection

document

-document

Implement this method to return the currently active document, as would be returned by
sending an activeDocument message to NXApp.

editedObject

- editedObject

Implement to return the object that's being edited. This is generally the object that the user
double-clicked to open the editor.

initWith:inDocument:

- initWith:anObject inDocument:aDocument

Implement this method to initialize a newly allocated editor. anObject is the object that is
being edited (for example, the object that the user has double-clicked). aDocument is the
currently active document, as would be returned by sending an activeDocument message
to NXApp. Typically, an editor object caches the document object in one of its instance
variables, since editors must frequently communicate with the document object.

8-46 Chapter 8: Interface Builder

makeSelection Visible:

- makeSelectionVisible:(BOOL)jlag

Implement to add or remove the selection markings from the current selection. An editor
receives a makeS election Visible: message whenever Interface Builder wants to ensure
that the selection is properly marked. For example, when a window becomes key, the editor
that owns the selection in the window receives a makeS election Visible: YES message.
When the window loses its key window status, the editor that owns the selection receives
a makeS election Visible:NO message.

openSubeditorFor:

- openSubeditorFor:anObject

Implement to open the subeditor for anObject. An editor receives this message when the user
double-clicks within the editor's selection. For the return value of this method, the editor
should return nil if there is no subeditor; otherwise, it should return the id of the subeditor.

orderFront

- orderFront

Implement to bring the editor's window to the front. When a user double-clicks an object,
the controlling editor receives an orderFront and then an activate message.

See also: - activate

pastelnSelection

- (BOOL)pasteInSelection

Implement to paste the object(s) from the pasteboard into the current selection. When the
user chooses the Paste command in Interface Builder, the editor that owns the selection
receives a paste InS election message. The implementation of the corresponding method
should invoke the document object's pasteType:fromPasteboard:parent: method.

This method should return YES if the paste operation was successful; NO otherwise.

See also: - pasteType:fromPasteboard:parent: (IBDocuments protocol)

Protocols: IBEditors 8-47

resetObject:

- resetObject:anObject

This method should redraw anObject. When the document object receives a
redrawObject: message, it makes sure that the editor for that object-and for each of its
parent objects-is open. It then sends resetObject: messages to each of the editors in this
object hierarchy.

selectObjects:

- selectObjects:(List *)objectList

Implement to draw the objects in objectList in a way that indicates that they are selected ..

wantsSelection

- (BOOL)wantsSelection

Implement to ~etum YES if the editor is willing to become the selection owner; NO if not.

window

-window

Implement to return the editor window.

8-48 Chapter 8: Interface Builder

IBlnspectors

Adopted By: IBInspector

Declared In: apps!InterfaceB uilder.h

Protocol Description

The IBInspectors protocol declares the three methods that all inspectors in Interface
Builder must implement: ok:, revert:, and wantsButtons:. Since you invariably create an
inspector by creating a subclass of IBInspector-a class that adopts the IBInspectors
protocol-your inspector will inherit default implementations of these methods, which you
can override.

Instance Methods

ok:

- ok:sender

Implement in your subclass of IBInspector to commit the changes that the user makes in
the Inspector panel. The OK button in the Inspector panel-if present-sends an ok:
message when the user clicks it.

Your implementation of this method must send the same message to super:

ok:sender

/* your code to commit changes */

[super ok:sender];
return self;

The message to super replaces the broken "X" in the panel's close box with the standard
"X", indicating that the changes have been committed.

See also: - revert:, - touch: (IBInspector class)

Protocols: IBlnspectors 8-49

revert:
- revert: sender

Implement in your subclass of IBInspector to load data into the inspector's display.
Interface Builder sends this message to the inspector object whenever the inspector's
display might need to be updated, for example, when the user opens the Inspector panel and
the selected object in Interface Builder is of the type associated with this inspector object.
The Revert button in the Inspector panel-if present-also sends a revert: message when
the user clicks it.

Your subclass must implement this method, and it must send the same message to super as
part of its implementation:

revert:sender

/* your code to inspect selected object */

[super revert: sender] ;

return self;

This message to super replaces the broken "X" in the panel's close box with the standard
"X", indicating that the changes have been discarded.

See also: - ok:, - touch: (IBInspector class)

wantsButtons
- (BOOL)wantsButtons

Returns a boolean value indicating whether the inspector object requires Interface Builder
to display the OK and Revert buttons in the Inspector panel.

See also: - wantsButtons (IBInspector class)

8-50 Chapter 8: Interface Builder

IBSelectionOvvners

Adopted By: no N eXTSTEP classes

Declared In: appslInterfaceB uilder.h

Protocol Description

All editors must conform to this protocol. By implementing this protocol, an editor
advertises its selection to other objects in Interface Builder. (The selection is that object or
objects that would be copied if the user chose the Copy command.)

For example, Interface Builder invokes an editor's selection Count and getSelectionInto:
methods to determine how to update the Inspector panel. If the selection count is more than
one, the Inspector panel displays the message "Multiple Selection". If there is only one object
in the selection, Interface Builder invokes the editor's getSelectionInto: method to access the
object and then determines the appropriate inspector to display in the Inspector panel.

Instance Methods

getSelectionlnto:

- getSelectionInto:(List *)objectList

Implement this method to place the currently selected objects into objectList. If the editor
doesn't have a selection, it should simply make sure objectList is empty.

See also: - selection Count

redrawSelection

- redrawSelection

Implement this method to redraw the objects in the selection.

Protocols: IBSelectionOwners 8-51

selectionCount

- (unsigned int)selectionCount

Implement to return the number of objects in your editor's selection.

See also: - getSelectionlnto:

8-52 Chapter 8: Interface Builder

Types and Constants

SYl11bolic Constants

Control Point Constants

DECLARED IN appslInterfaceBuilder.h

SYNOPSIS IB_BOTTOMLEFT
IB_MIDDLELEFT
IB_TOPLEFT
IB_MIDDLETOP
IB_TOPRIGHT
IB_MIDDLERIGHT
IB_BOTTOMRIGHT
IB_MIDDLEBOTTOM

DESCRIPTION These constants identify the control points that appear around a selected View object in a
application that's under construction. See the description of the
getMinSize:MaxSize:from: method in the View Additions specification for more
information.

8-54 Chapter 8: Interface Builder

Global Variables

Pasteboard Types

DECLARED IN apps/lnterfaceBuilder.h

SYNOPSIS NXAtom IBObjectPboardType;
NXAtom IBCellPboardType;
NXAtom IBMenuPboardType;
NXAtom IBMenuCellPboardType;
NXAtom IBViewPboardType;
NXAtom IBWindowPboardType;

DESCRIPTION These global variables identify some additional pasteboard types used by Interface Builder.
See the IBPalette class specification for information on the use of these types.

Types and Constants: Pasteboard Types 8-55

8-56

9 Mach Kit

9-3 Introduction
9-4 Mach Kit Classes
9-4 Mach Kit Protocols

9-5 Classes
9-6 NXConditionLock
9-9 NXData
9-12 NXInvalidationN otifier
9-16 NXLock
9-18 NXNetNameServer
9-20 NXPort
9-23 NXProtocolChecker
9-26 NXRecursiveLock
9-28 NXSpinLock

9-31 Protocols
9-32 NXLock
9-34 NXReference
9-36 NXSenderIsInvalid

9-37 Types and Constants
9-38 Defined Types

9-1

9-2

Mach Kit

Library:

Header File Directory: IN extDeveloper/Headers/machkit

Introduction

The Mach Kit provides an object-oriented interface to some of the features of the Mach
operating system. At this time, it is most useful to applications that make use of the
Distributed Objects system, since these applications rely upon Mach's message sending
abilities to transport objects, ports, and data between processes. The Mach Kit may also be
useful for drivers and multithreaded applications. The Mach Kit provides several classes
and protocols, listed below.

Mach Kit 9-3

Mach Kit Classes

NXProtocolChecker

NXPort

NXNetNameServer

NXlnvalidationN otifier

NXData

Defines objects that restrict the messages that other
objects can receive.

Defines an object corresponding to a mach port ..

Provides an interface to the Network Name Server to
allow public access to ports.

Defines objects that notify others when they are no longer
fully functional.

Provides an object-oriented interface to data, allowing
data to be transferred between applications as an object.

NXSpinLock, NXConditionLock, NXLock, NXRecursiveLock

Mach Kit Protocols

NXLock

NXReference

NXSenderIslnvalid

9·4 Chapter 9: Mach Kit

Define various kinds of locks that can be useful for
protecting critical sections of code in drivers and
multithreaded applications

A protocol for objects that protect resources with locks.

A protocol to allow reference counting of shared objects.

A protocol for objects that need to be informed when
other objects become unusable.

Classes

NXConditionLock

Inherits From: Object

Conforms To: NXLock

Declared In: machkitINXLock.h

Class Description

NXConditionLock is a type of lock with which a state can be used. The user of the lock
can request that the lock be acquired when it enters a particular state, and can reset the state
when releasing the lock. The meaning of this state is defined by the user of the lock.
NXConditionLock is well suited to synchronizing different modules, such as a
producer-consumer problem where a producer and consumer must share data but the
consumer should sleep until a condition is met (such as, until data is available).

NXConditionLock class provides two ways of locking its objects (lock and lockUntil:) and
two ways of unlocking (unlock and unlockWith:). Any combination of locking method
and unlocking method is legal. Following is an example of how the producer-consumer
problem might be handled using condition locks. The producer need not wait for a
condition, but must wait for the lock to be made available so it can safely create shared data.
Example producer code follows:

id condLocki II uses currentState to guard access to data

1* create the lock only once, and set initial state *1
condLock = [[NXConditionLock alloc] initWith:NO_DATA]i

while (/*stuff to process*/)

[condLock lock] i

/* Manipulate global data, change state if needed. *1
[condLock unlockWith:DATA_AVAILABLE] i

A consumer can then lock until the producer has data available and the producer is out of
locked critical sections:

9·6 Chapter 9: Mach Kit

for (i i) {

[condLock lockWhen:DATA_AVAILABLE]i

/* Manipulate global data ... */

[condLock unlockWith:NO_DATA] i

An NXConditionLock doesn't busy-wait, so it can be used to lock time-consuming
operations without degrading system performance.

The NXConditionLock, NXLock, NXRecursiveLock, and NXSpinLock classes all
implement the NXLock protocol with various features and performance characteristics;
see the other class descriptions for more information.

Instance Variables

None declared in this class.

Method Types

Initializing an instance - init
- initWith:

Get the condition of the lock - condition

Acquire or release the lock - lock
-lockWhen:
- unlock
- unlockWith:

Instance Methods

condition

- (int)condition

Returns the lock's current condition. This condition can be set with the initWith:
or unlockWith: methods.

Classes: NXConditionLock 9-7

init

- init

Initializes a newly allocated NXConditionLock instance and sets its condition to O.

initWith:

- initWith:(int)condition

Initializes a newly allocated NXConditionLock instance and sets its condition to condition.
This message should not be sent to an instance that has already been initialized.

lock

-lock

Waits until the lock isn't in use, then grabs the lock. The lock can subsequently be released
with either unlock or unlockWith:.

lockWhen:

-lockWhen:(int)condition

Waits until the lock isn't in use and the lock's condition matches condition, then grabs
the lock. The lock's condition can be set by initWith: or unlockWith:. The lock can
subsequently be released with either unlock or unlockWith:.

unlock

-unlock

Releases the lock but doesn't change its condition.

See also: - unlockWith:

unlockWith:

- unlockWith:(int)condition

Sets the lock's condition to condition and releases the lock.

See also: - unlock

9-8 Chapter 9: Mach Kit

NXData

Inherits From: Object

Conforms To: NXTransport (Distributed Objects)

Declared In: machkitINXData.h

Class Description

NXData is an object-oriented wrapper for data. It's especially useful in Distributed Objects
applications because of its conformance to the NXTransport protocol, allowing NXData
objects to be copied or moved between applications. NXData can be used to wrap data of
any size; it allocates small amounts of memory from its own zone using a malloc-related
function, and allocates page-aligned data from the virtual memory system for requests of a
page or larger. NXData can also be used to wrap preexisting data, regardless of how the
data was allocated.

If data is to be moved between applications (rather than copied), you may find it necessary
to override the encodeRemotelyFor: ... method in a subclass of NXData to ensure that data
is properly deallocated after it is passed across a connection; see the Distributed Objects
introduction for more information on moving objects between applications.

Instance Variables

N one declared in this class.

Adopted Protocols

NXTransport - encodeRemotely For: freeAfterEncoding: isBycopy:
- encodeUsing:
- decodeUsing:

Classes: NXData 9-9

Method Types

Initializing and freeing instances

Getting the object's data

Getting the data's size

Copying the object

Instance Methods

copyFromZone:

- initWithSize:
- initWithData:size:dealloc:
-free

- data

- size

- copyFrornZone:

- copyFrornZone:(NXZone *)zone

Returns a newly allocated NXData instance containing a copy of the receiver's data.
The new object's data will be deallocated when the new object gets freed.

data

- (void *)data

Returns a pointer to the data contained in the object.

encodeRemotelyFor: freeAfterEncoding:isBycopy:

- encodeRernotelyFor: (NXConnection *)conn
freeAfterEncoding:(BOOL *)flagPointer
isBycopy:(BOOL)isBycopy

Returns self to indicate that a copy of the NXData object (and not a proxy to it) is to be
copied across a connection any time the object is vended to a remote object. The data for
the remote copy will be freed when the copy is freed. If you want the local NXData to be

. freed after being sent across the connection, you will need to override this method to set the
boolean indicated by flagPointer to YES.

9-10 Chapter 9: Mach Kit

free

-free

Deallocates the receiver's storage, including the data if it was initialized to do so, and
returns nil.

See also: - initWithData:size:dealloc:, - initWithSize:

initWithData:size:dealloc:

- initWithData:(void *)data
size:(unsigned int)size
dealloc: (BOOL)flag

Initializes the receiver, a new NXData object, with data, which must be at most size bytes
long. If flag is YES, then data will be deallocated when the NXData object is freed. data
could have been allocated with vm_allocateO or a mallocO variant. Returns self.

See also: - initWithSize:, - free

initWithSize:

- initWithSize:(unsigned int)size

Initializes the receiver, a new NXData object, so that it can contain at most size bytes of
data. The memory will be allocated directly from the virtual memory system if it is one
page or greater in size (though applications shouldn't care where the memory came from);
otherwise the data will be allocated from the object's zone. The data will be freed when the
NXData object is freed. Returns self.

See also: - initWithData:size:dealloc:, - free

size

- (unsigned int)size

Returns the size of the data that the object holds.

Classes: NXData 9-11

NXlnvalidationNotifier

Inherits From: Object

Conforms To: NXReference

Declared In: machkitINXInvalidationN otifier.h

Class Description

The NXInvalidationNotifier class is an abstract class that defines reference-counted objects
that notify other objects when they become invalid. An NXInvalidationNotifier becomes
invalid when no more references to it are held (all references have been given up by sending
the object a free message). An NXInvalidationNotifier could also become invalid for other
reasons; for example, an NXConnection object (which is a subclass of
NXInvalidationNotifier) becomes invalid when its connection is broken. An invalid object
usually exists for a short time after becoming invalid so it can clean up, but it shouldn't be
treated as though it were fully usable.

Examples of NXInvalidationNotifier subclasses include NXConnection and NXPort.

Instance Variables

unsigned int refcount;
BaaL isValid;
NXLock *listGate;
List *funeraIList;

refcount

isValid

listGate

funeralList

9-12 Chapter 9: Mach Kit

The object's reference count

YES if the object is valid

A lock to protect data structures

A list of objects to be notified upon invalidation

Adopted Protocols

NXReference

Method Types

Initializing a new object

Really freeing an object

Getting and setting validity

Registering for notification

Instance Methods

deallocate

- deallocate

- addReference
-free
- references

- init

- deallocate

- invalidate
- isValid

- registerForInvalidationN otification:
- unregisterF orInvalidationN otification:

Deallocates the object's storage, freeing the object regardless of its reference count. A
subclass of NXInvalidationNotifier should generally invoke this method from within its
implementation of free when no more references are held to ensure normal freeing behavior.

See also: - free

free
-free

Decrements the reference count of the object, marking the object invalid, sending
invalidation notifications, and returning nil if no more references to the object are held.
If references are still held, this method returns self. Unlike the free method for most classes,
this method never deallocates the object's storage. (In other words, it never actually frees the
object.) This means that the object still exists to receive messages after it becomes invalid
due to freeing, which can be useful for objects that need to do some final housekeeping when

Classes: NXlnvalidationNotijier 9-13

no more references are held. Generally a subclass of NXInvalidationNotifier should
implement a version of free that deallocates itself when no more references are held, with the
result that free will properly deallocate the object as expected at the appropriate time.
For example:

- free

id ret = [super free];
if (ret) return self;

II No more references held, do the required cleanup
return [super deallocate];

See also: - deallocate, - invalidate

init
- init

Initializes the receiver, a newly allocated NXInvalidationNotifier instance. Returns self.

invalidate
- invalidate

Marks the object as invalid, which means that though the object exists, it's not completely
functional and might not exist for long. Once an object becomes invalid, there is no way
provided to make the object valid again, and it would be difficult to implement in a subclass
in a thread-safe manner. This method sends a senderIslnvalid: message to every object
that registered for invalidation notification, frees the funeralList (but not the objects in it),
and returns self.

See also: - registerForlnvalidationNotification:

9-14 Chapter 9: Mach Kit

isValid

- (BOOL)isValid

Returns YES if the object is valid. Generally, invalid objects should be sent only messages
that allow other objects to clean up and eliminate their use of the object.

registerForlnvalidationNotification:

- registerForlnvalidationNotification:(id <NXSenderIsInvalid>)anObject

Registers anObject so that it will receive a senderIslnvalid: message when the receiver
becomes invalid. An object might become invalid because it is about to be freed, because
a Distributed Objects connection is broken, or for some other application-specific reason.
Returns self.

See also: - invalidate, - unregisterForlnvalidationNotification:

unregisterForlnvalidationNotification:

- unregisterForlnvalidationNotification:(id <NXSenderIsInvalid>)anObject

Removes anObject from the list of objects that are notified when the receiver becomes
invalid; thus anObject won't be notified. Returns self.

See also: - registerForlnvalidationNotification:

Classes: NXlnvalidationNotifier 9·15

NXLock

Inherits From: Object

Conforms To: NXLock

Declared In: machkitINXLock.h

Class Description

An NXLock is used to protect regions of code that can consume long periods of time, such
as disk I/O or heavy computations. A lock is created once and is subsequently used to
protect one or more regions of code. If a region of code is in use, an NXLock waits using
the condition_ waitO function, so the thread doesn't busy-wait. The following example
shows the use of an NXLock:

NXLock *theLock = [[NXLock alloc] init];

1* ... other code *1
[theLock lock];

II done once!

1* ... possibly a long time of fussing with global data ... *1
[theLock unlock] ;

The NXConditionLock, NXLock, NXRecursiveLock, and NXSpinLock classes all
implement the NXLock protocol with various features and performance characteristics; see
the other class descriptions for more information.

9-16 Chapter 9: Mach Kit

Instance Variables

None declared in this class.

Method Types

Acquire or release a lock

Instance Methods

lock

-lock

-lock
- unlock

Waits until the lock isn't in use, using condition_ waitO if necessary, then grabs the lock.

unlock

- unlock

Releases the lock, using condition_signalO to signal the next party that the lock is available.

Classes: NXLock 9-17

NXNetNal11eServer

Inherits From: Object

Declared In: machkitINXN etN ameServer.h

Class Description

This class' provides an object-oriented interface to the Network Name Server. It can be
useful for making NXPort objects (which correspond to Mach ports) available over the
network, and for accessing those ports from other applications.

Instance Variables

None declared in this class.

Method Types

Making a port available

Removing a port

Getting ports

9-18 Chapter 9: Mach Kit

+ checkInPort:withN arne:

+ checkOutPort:withName:

+ 100kUpPortWithName:
+ 100kUpPortWithName:onHost:

Class Methods

checklnPort:withName:

+ checklnPort:(NXPort *)port withName:(const char *)aName

Makes the NXPort object port available with the name aName. Returns self if the port is
successfully checked in, nil otherwise.

checkOutPortWithName:

+ checkOutPortWithName:(const char *)name

Removes the port identified by name from the Network Name Server; the port can be
removed only by the application that checked it in. Returns self if the port is successfully
removed, nil otherwise.

lookUpPortWithName:
+ (NXPort *)lookUpPortWithName:(canst char *)name

Returns an NXPort object for the port registered (via the Network Name Server) on the
local machine under the name name, or nil upon failure.

lookUpPortWithName:onHost:
+ (NXPort *)lookUpPortWithName:(canst char *)name

onHost:(const char *)hostName

Returns an NXPort object for the port registered (via the Network Name Server) on host
hostName under the name name, or nil upon failure. If hostName is "*,, the search will be
conducted for each host on the subnet, although this might take a bit of time.

Classes: NXNetNameServer 9-19

NXPort

Inherits From:

Conforms To:

Declared In:

Class Description

NXInvalidationNotifier : Object

NXReference (through NXInvalidationNotifier)
NXTransport (Distributed Objects)

machkitINXPort.h

The NXPort class provides an object-oriented interface to Mach ports. NXPort objects are
used by the Distributed Objects system whenever a Mach port is needed.

Instance Variables

port_t machPort;

machPort The Mach port managed by the NXPort

Adopted Protocols

NXReference - addReference
-free
- references

NXTransport - encodeRemotelyFor:freeAfterEncoding:isBycopy:
- encodeUsing:
- decodeUsing:

9-20 Chapter 9: Mach Kit

Method Types

Creating an NXPort + new
+ newFromMachPort:
+ newFromMachPort:dealloc:

Freeing an NXPort - free

Listening for port deaths + worry AboutPortInvalidation

Getting the Mach port - machPort

Hash-table value for the port - hash

Class Methods

new

+ new

Creates and returns a new NXPort instance. This method allocates a new Mach port that
will be deallocated when the instance is freed.

See also: + newFromMachPort:, + newFromMachPort:dealloc:

newFromMachPort:

+ newFromMachPort:(port_t)port

Creates and returns a new NXPort instance that wraps an existing port specified by port.
port will not be deallocated when the instance is freed.

See also: + new, + newFromMachPort:dealloc:

newFromMachPort:dealloc:

+ newFromMachPort:(port_t)port dealloc:(BOOL)flag

Creates and returns a new NXPort instance that wraps an existing port specified by port.
If flag is YES, port will be deallocated when the instance is freed; otherwise, it won't
be deallocated.

See also: + new, + newFromMachPort:

Classes: NXPort 9-21

worry AboutPortlnval idation

+ worry AboutPortlnvalidation

Forks a thread to listen for port deaths; this thread sleeps until a port dies. If a port death
occurs, any objects registered for invalidation notification receive a senderIslnvalid:
message. This is generally only useful in applications that don't use the Application Kit.

See also: - senderIslnvalid: (NXSenderIslnvalid protocol)

Instance Methods

free

-free

Decrements the receiver's reference count, returning self if the reference count remains
greater than 0. If the reference count becomes 0, this method deallocates the receiver's
storage and returns nil.

See also: NXReference protocol

hash

- (unsigned int)hash

Returns a hash-table index for the NXPort. This isn't generally useful.

machPort

- (port_t)machPort

Returns the NXPort's Mach port. This can be useful if you need to pass the port to routines
that deal with Mach ports rather than NXPorts.

9-22 Chapter 9: Mach Kit

NXProtocolChecker

Inherits From: Object

Declared In: machkitINXProtocolChecker.h

Class Description

The NXProtocolChecker class defines an object that restricts the messages that can be sent
to another object (referred to as the checker's delegate). This can be particularly useful
when an object with many methods, only a few of which ought to be remotely accessible,
is made available using the Distributed Objects system.

A protocol checker acts as a kind of proxy; when it receives a message that is in its
designated protocol, it forwards the message to its delegate, and consequently appears to
be the delegate itself. However, when it receives a message not in its protocol, it raises an
NX_restrictionEnforcedException exception to indicate that the message isn't allowed,
whether or not the delegate implements the method.

Typically, an object that is to be distributed (yet must restrict messages) creates an
NXProtocolChecker for itself and returns the checker rather than returning itself in
response to any messages. The object might also register the checker as the root object of
an NXConnection.

The object should be careful about vending references to self; the protocol checker will
convert a return value of self to indicate the checker rather than the object for any messages
that were forwarded by the checker, but direct references to the object (bypassing the
checker) could be passed around by other objects.

Instance Variables

id target;

Protocol *protocol;

target

protocol

The checker's delegate

Indicates the messages the checker will forward

Classes: NXProtocolChecker 9-23

Method Types

Initializing a checker - initWithObjectforProtocol:

Reimplemented Object methods
- forward::
- descriptionForMethod:
-free

Instance Methods

descriptionForMethod:

- (struct objc_method_description *)descriptionForMethod:(SEL)aSelector

Returns an Objective C description for a method in the checker's protocol, or NULL if
aSelector isn't declared as an instance method in the protocol.

See also: - descriptionForlnstanceMethod:(Protocol class)

forward::

- forward:(SEL)aSelector :(void *)args

Forwards any message to the delegate if the method is declared in the checker's protocol;
otherwise raises an NX_restrictionEnforcedException exception. If a delegate method
returns self, the checker substitutes its own id for the return value so that the sender doesn't
gain direct access (bypassing the checker) to the delegate.

free

-free

If the free method is not part of the protocol that the delegate responds to, this message
simply frees the checker. If the free method is part of the protocol that the delegate
responds to, the free message is forwarded to the delegate, and the checker is freed if the
delegate returns nil. This ensures that that the checker is closely coupled to the delegate
whether the delegate implements reference counting or not; see the NXReference protocol
for more information.

9-24 Chapter 9: Mach Kit

initWithObject:forProtocol:

- initWithObject:anObject forProtocol:(Protocol *)aProtocol

Initializes a newly allocated NXProtocolChecker instance that will forward any messages
in the aProtocol protocol to anObject, its delegate. Thus, the checker can be vended in lieu
of anObject to restrict the messages that can be sent to anObject. If anObject is allowed to
be freed or dereferenced by clients, the free method should be included in aProtocol.
Returns the new instance.

Classes: NXProtocolChecker 9-25

NXRecursiveLoc'k

Inherits From:

Conforms To:

Object

NXLock

Declared In: machkitINXLock.h

Class Description

An NXRecursiveLock locks a critical section of code such that a single thread can reaquire
the lock multiple times without deadlocking, while preventing access by other threads.
Note that this implies that a recursive lock will not protect a critical section from a signal
handler interrupting the thread holding the lock. Here is an example where a recursive lock
functions properly but other lock types would deadlock:

II create the lock only once!
NXRecursiveLock *theLock = [[NXRecursiveLock alloc] init];

1* ... other code *1
[theLock lock];
1* ... possibly a long time of fussing with global data ... *1

[theLock lock]; Ilpossibly invoked in a subroutine

[theLock unlock] ;
[theLock unlock] ;

The NXConditionLock, NXLock, NXRecursiveLock, and NXSpinLock classes all
implement the NXLock protocol with various features and performance characteristics; see
the other class descriptions for more information.

Instance Variables

None declared in this class.

Method Types

Acquire or release a lock -lock
- unlock

9·26 Chapter 9: Mach Kit

Instance Methods

lock

-lock

Waits until the lock isn't in use by another thread, then grabs the lock and increments an
internal counter indicating how many times the lock is held by the current thread.

unlock

- unlock

Decrements the internal count indicating how many times the lock is held by the current
thread. If the lock is no longer in use by the thread, it is released for use by the next
requestor.

Classes: NXRecursiveLock 9-27

NXSpinLock

Inherits From:

Conforms To:

Object

NXLock

Declared In: machkitINXLock.h

Class Description

An NXSpinLock is used to lock short sections of code that take very little time to execute.
A lock is created once and is subsequently used to protect one or more regions of code. If
a region of code is in use, an NXSpinLock will busy-wait until the lock is released. An
NXSpinLock can be acquired very quickly, but will consume CPU resources as long as the
lock is held by another party. The following example shows the use of an NXSpinLock:

NXSpinLock *theLock = [[NXSpinLock alloc] init];

II done once!
1* ... other code *1
[theLock lock];
1* ... short quick section of atomic code ... *1
[theLock unlock] ;

The NXConditionLock, NXLock, NXRecursiveLock, and NXSpinLock classes all
implement the NXLock protocol with various features and performance characteristics; see
the other class descriptions for more information.

Instance Variables

None declared in this class.

Method Types

Acquire or release a lock -lock
-unlock

9-28 Chapter 9: Mach Kit

Instance Methods

lock

-lock

Uses mutex_lockO to busy-wait until the lock isn't in use and grab the lock.

unlock

- unlock

Releases the lock with mutex_unlockO, allowing the next party to access the critical
section of code.

Classes: NXSpinLock 9-29

9-30

Protocols

NXLock

Adopted By:

Declared In:

NXConditionLock
NXLock
NXSpinLock
NXRecursiveLock

machkitINXLock.h

Protocol Description

This protocol is used by classes that provide lock objects. The lock objects provided by
NeXTSTEP are used only for protecting critical sections-they contain no useful data.

Although an object that isn't a lock could adopt the NXLock protocol, it may be more
desirable to design the object so that all locking is handled internally, through normal use
rather than requiring that the object be explicitly locked and unlocked.

Four classes conform to the NXLock protocol:

Class

NXLock

NXConditionLock

NXSpinLock

NXRecursiveLock

9-32 Chapter 9: Mach Kit

Usage

Use NXLock objects to protect regions of code that can
consume long periods of time, such as disk I/O or heavy
computation.

Protects critical sections of code, but can also be used to
postpone entry to a critical section until a condition is met.
This class is functionally a superset of the NXLock class,
though unlocking is slightly more expensive.

Use NXSpinLock objects t~ protect short regions of
critical code. Useful in the implementation of drivers or
more complex locks. A spin lock may be acquired more
quickly than the other locks, but isn't appropriate for long
sections of code since blocked spin locks busy-wait.

Protects critical sections from access by multiple threads,
but allows a single thread to acquire a lock several times
without deadlocking.

Of these classes, only NXSpinLock busy-waits while the lock is unavailable. The other
classes may all be efficiently used for long sections of atomic code. See the class
specifications for these classes for further information on their behavior and usage.

Instance Methods

lock

-lock

Acquires a lock. Applications generally do this when entering a critical section of their
code.

unlock

- unlock

Releases a lock. Applications generally do this when exiting a critical section of their code.

Protocols: NXLock 9-33

NXReference

Adopted By:

Declared In:

IXFileFinder
IXStoreBlock
NXConnection
NXInvalidationN otifier
NXProxy

machkit/reference.h

Protocol Description

The NXReference protocol defines a set of methods for implementing simple reference
counting of objects. This allows an object to be referenced multiple times without each
client needing to assume that the referenced object may be in use by others. A client of the
referenced object can simply send it a free message when finished; if the object still has
outstanding references, it doesn't free itself.

Method Types

Adding or deleting a reference - addReference
- free

Getting the number of references
- references

9-34 Chapter 9: Mach Kit

Instance Methods

addReference

- addReference

Increments the number of references to the receiver and returns self.

free

-free

Decrements the receiver's reference count, returning self if the reference count remains
greater than 0. If the reference count becomes 0, this method deallocates the receiver's
storage and returns nil.

A typical implementation for a reference counted object that is vended over a Distributed
Objects connection might look like this:

- free

refs--;
if (refs> 0) return self;

[NXConnection removeObject:self];
return [super free];

references

- (unsigned int)references

Returns the number of references to the receiver.

Protocols: NXReference 9-35

NXSenderlslnvalid

Adopted By:

Declared In:

NXConnection
NXDataLinkManager

machkit/senderIsInvalid.h

Protocol Description

This protocol should be implemented by objects that need to be informed of the
invalidation of other objects. To receive invalidation messages, the object must send a
registerForInvalidationNotification: message to an object that may become invalid. An
implementation of this method is provided in the NXInvalidationNotifier class, so objects
that inherit from NXInvalidationNotifier (such as NXConnection) have the ability to notify
other objects of their imminent demise.

Instance Methods

senderlslnvalid:

- senderIsInvalid:sender

This message is sent by an invalidation notifier (such as an NXConnection) whenever it
becomes unusable (for example, because its connection has been broken, or because the
invalidation notifier is about to be freed). This gives the receiver a chance to take proper
action regarding the new status of the invalidation notifier.

An object registers itself with an invalidation notifier by sending it a
registerForInvalidationNotification: message. It can later unregister itself with
unregisterForInvalidationNotification:.

9-36 Chapter 9: Mach Kit

Types and Constants

Defined Types

NXMachKitException

DECLARED IN machkitlexceptions.h

SYNOPSIS typedef enum {
NX_MACH_KIT_EXCEPTION_BASE,
NX_portlnvalidException,
NX_restrictionEnforcedException,
NX_referenceAlreadyFreeException,
NX_MACH_KIT_LAST_EXCEPTION

} NXMachKitException

DESCRIPTION These are the exceptions raised by various classes in the Mach Kit.

9-38 Chapter 9: Mach Kit

MIDI Driver API

10-3 Introduction
10-3 What Is MIDI?
10-4 Connecting MIDI Devices
10-4 The NeXT MIDI Device Driver
10-5 The MIDI Data Format
10-6 MIDI Driver Overview

10-7 Functions
10-8 Receiving MIDI Data
10-9 Sending MIDI Data
10-9 MIDI Time Base

10-19 Types and Constants
10-20 Defined Types
10-23 Symbolic Constants

10-1

10-2

10 MIDI Driver API

Library:

Header File Directory: IN extDeveloper/Headers/mididri ver

Introduction

This chapter describes the NeXT MIDI driver C functions and supporting header files for
MIDI applications. This introduction contains conceptual discussions of the MIDI
interface and its implementation on NeXT computers.

The sections "What Is MIDI?" and "Connecting MIDI Devices" provide general
information on MIDI on the NeXT. The section "MIDI Driver Overview" outlines how to
structure the MIDI support section of an application that uses the MIDI driver functions.

What Is MIDI?

MIDI, the Musical Instrument Digital Interface, defines a software format and a hardware
standard for exchanging information among electronic musical instruments (such as
synthesizers, samplers, digital pianos, and guitar or wind controllers) as well as other
devices (such as computers, sequencers, mixers, signal processors, and even stage lighting).
Originally designed to capture the performance gestures of a keyboard player, MIDI
normally transmits keyboard-oriented information, such as which key the performer
depressed and with what velocity, or which button or slider was adjusted on a synthesizer's
control panel. This sort of data is much more compact and more easily edited than the data
in a digital audio recording of the same performance. Unlike audio data, MIDI data can

MIDI Driver API 10-3

easily be used to control other instruments or to create a printed score (using a music
notation application).

Connecting MIDI Devices

You can connect MIDI instruments to either of a NeXT computer's serial ports, using an
external device known as a MIDI interface. The instruments connect to the MIDI interface
(or to each other) with standard MIDI cables, available at most music stores. The MIDI
interface adapts these cables' unidirectional5-pin DIN connectors to the serial port's
bidirectional mini-DIN connector. Any number of instruments can be connected to a serial
port through the interface, and the two ports can be used simultaneously by a single
application. A single serial port can receive and transmit MIDI data at the same time.

The musical instrument must be set up correctly for MIDI communication to work as
expected. Because MIDI is a unidirectional protocol, there's no means for an application
to verify that the external device is receiving the MIDI data that the application sends. Thus
the user is responsible for ensuring that the configuration is correct. For instructions on
setting up the MIDI device, see the owner's manual for that device.

In particular, note that most MIDI commands are sent on specific "channels." Unlike the
left and right channels of analog audio signals, MIDI channels don't use separate cables,
but instead are encoded in the MIDI data itself. The sixteen MIDI channels are used for
sending separate streams of commands to different synthesizers on a single MIDI network,
or to the distinct sound-generating units within a single multi-timbral synthesizer. There's
no MIDI command that asks a device to start using a certain MIDI channel. Instead, the
user must manually set the MIDI device to transmit and receive on the channels expected
by the software. A typical default is to transmit and receive on channell.

The NeXT MIDI Device Driver

The MIDI driver is a loadable Mach device driver that controls the flow of MIDI data to and
from the serial ports. The MIDI device driver API contains C functions for direct control
of the MIDI driver, giving you control over the buffering and timing of MIDI data. The
functions also provide other features-for example, you can manage the size of the MIDI
data queue, manipulate the driver's timer, and filter out a few more kinds of MIDI
commands-but you'll rarely need these features.

The rest of this document contains information that's useful for programming with the
MIDI driver C functions. The sample C programs in
lNextDeveloperlExamples/SoundAndMusiclDriverslMidiDriver illustrate some of the

10-4 Chapter 10: MIDI Driver API

functions documented here. Information can also be gleaned from the header files in
N extDeveloperlHeaders/mididriver.

The MIDI Data Format

If you use the MIDI driver functions, you'll be examining MIDI data as hexadecimal
values, so you'll need to understand the MIDI data format. Read this section for a synopsis
of the data format, if you're not already familiar with the MIDI specification.

MIDI data consists of commands sent in an asynchronous serial stream at 31.25 kBaud.
The data is transmitted in ten-bit bytes, but the first and last bits of each byte are start
and stop bits, added by the transmitting device and stripped off by the receiving device.
Thus, MIDI commands are considered to consist of eight-bit bytes. A typical MIDI
command contains:

• One Status byte (whose most significant bit is set to 1). The Status byte defines a type
of command, such as Note On or Pitch Bend.

• Zero, one, or two Data bytes (each having its most significant bit set to 0). Data bytes
contain values applied by the command, such as "key number" and "velocity," or
"amount of pitch bend." The type of command, specified by the preceding Status byte,
determines how many Data bytes are expected.

There are two exceptions to the above pattern:

• The Status byte may be omitted, in which case the type of command is given by the most
recent Status byte. This condition is called Running Status.

• The Status byte FO (hexadecimal) is the special System Exclusive command, which is
followed by a Data byte identifying a particular manufacturer, and any number of
subsequent Data bytes whose meaning the manufacturer is free to determine. Only that
manufacturer's instruments are expected to respond to the System Exclusive command.

Status bytes with hexadecimal values from 80 to EF are "channel commands." These MIDI
commands are sent on specific MIDI channels, as determined by the rightmost four bits of
the Status byte. Most MIDI devices can be configured to respond only to certain channels,
making it possible for a single MIDI data stream to deliver different musical information to
different devices simultaneously.

Note that although MIDI bytes are classified as Status bytes or Data bytes, the term "MIDI
data" refers generically to everything in a stream of MIDI commands, both Status bytes and
Data bytes.

Introduction 10-5

The file mididriver/midi_spec.h includes a list of Status bytes and other standard MIDI
definitions. You can obtain the complete MIDI specification from the International MIDI
Association at 11857 Hartsook St., North Hollywood, CA 91607, U.S.A. For an
introduction to the MIDI specification, including a summary of commands, see Gareth
Loy's article "Musicians Make a Standard: The MIDI Phenomenon" in Computer Music
Journal Vol. 9, No.4 (Winter 1985).

MIDI Driver Overview

The MIDI driver is a loadable server residing within the Mach kernel. (For more on
loadable servers, see NeXTSTEP Operating System Software.) For each serial port, the
MIDI driver maintains an input queue (containing MIDI data received from external
instruments) and an output queue (for data received from an application). The MIDI driver
C functions let you retrieve data from the input queue, place data in the output queue, and
perform numerous other operations.

Instead of using a direct message-passing mechanism for forwarding received MIDI data,
the driver uses a request/reply interface. This means that data received from a serial port is
queued within the driver until the application requests the data. Then the driver
asynchronously sends Mach messages containing all the MIDI data that it's received since
the last time the application requested data. The application must supply functions that
perform the actual work of manipulating the incoming MIDI data in whatever manner is
desired. The reply handler acts as a dispatcher by examining each incoming Mach message
and routing it in a suitable format to the appropriate one of these application-supplied
functions. When the application is ready for the next set of MIDI data, it must make another
request for data from the driver.

Output is managed similarly. In addition to the asynchronous messages that contain
incoming MIDI data, the driver sends the application a message whenever the output queue
has space available for more outgoing data. The reply handler passes these notifications to
another application-supplied function, which typically responds by sending more data to
the driver.

A stream of MIDI bytes coming in real time from an external instrument doesn't
necessarily contain any information about when each MIDI command was received.
However, to make musical sense of recorded MIDI data, timing information is essential.
Thus the driver always timestamps MIDI commands on input. A timer service, included
with the driver, serves this purpose. It also schedules each outgoing MIDI command.
Additionally, an application can ask this timer service to notify it at a certain time, and the
application can stop and restart the timer-or even make it run backwards. The MIDI
library has a separate reply handler for messages from the timer service, analogous to the
reply handler that manages MIDI input and output.

10-6 Chapter 10: MIDI Driver API

Functions

The MIDI driver functions enable an application to communicate with the MIDI driver and
thus with other MIDI devices. This section documents the specific functions for interaction
with the MIDI driver. The discussion begins with an outline of MIDI driver function usage.

Receiving MIDI Data

Before it can begin communicating with the MIDI driver, an application invokes the
function MIDIBecomeOwnerO. Since the MIDI driver can have only one client
application at a time, this function returns an error if the driver has already been acquired
by another application. Once an application has acquired ownership of the driver, it uses
the function MIDIClaimUnitO to claim the serial port on which to transfer MIDI data.

The driver converts incoming MIDI data into the MIDIRawEvent format, defined in
mididriver/midi_driver.h. The raw format has a three-byte timestamp preceding each
received MIDI byte. By default, the timestamp measures the number of milliseconds since
the device was opened. To start the clock, use MIDIStartClockO.

After an application has initialized the driver, acquired a serial port, and started its timer,
the driver continually receives and enqueues incoming MIDI data. To retrieve the incoming
data, the application may repeatedly call either MIDIAwaitReplyO or
MIDIHandleReplyO. MIDIAwaitReplyO works by receiving data on the port, then
invoking MIDIHandleReplyO.

In an Application Kit-based application, you must make repeated calls to the
MIDIAwaitReplyO function in a separate Mach thread. Alternatively, you can register the
application's port set with DPSAddPortO, passing that function a handler that receives
messages by repeatedly invoking the Mach function msg_receiveO, and handling the
messages by invoking MIDIHandleReplyO. See DPSAddPortO in "Client Library
Functions," Chapter 5, "Display PostScript," for more on how to set up and receive
messages.

MIDIAwaitReplyO and MIDIHandleReplyO both take as an argument a pointer to a
MIDIReplyFunctions structure. Among other fields, the MIDIReplyFunctions structure
contains pointers to four application-supplied functions, one for each reply type. The
MIDIHandleReplyO routine distributes the data to the appropriate one of the four
functions, depending on the nature of the reply. These four application-supplied functions
are the focus of the MIDI driver input mechanism: They should use the incoming MIDI
data in whatever fashion is desired for the particular application.

See lNextDeveloperlExamples/SoundAndMusicl DriverslMidiDriver for sample code.

10-8 Chapter 10: MIDI Driver API

Some frequently sent MIDI system commands can clutter the incoming queue, such as
"active sensing," a command sent periodically to inform the recipient that the sender is still
active and the connection intact, or "timing clock," a synchronization command that the
driver currently doesn't use. You can have the driver filter out unwanted MIDI system
commands by using the MIDISetSystemIgnoresO function.

Sending MIDI Data

Sending MIDI data is somewhat similar to receiving it. The function MIDISendDataO
enqueues an array of MIDI data to be sent out the serial port, and returns an errorcode if the
queue is full. The capacity of the output queue can be retrieved with the function
MIDIGetAvaiiableQueueSizeO. The MIDIRequestQueueNotificationO function can
be used to request notification when the queue shrinks to a particular size. The
MIDIClearQueueO function empties the queue, the MIDIFlushQueueO causes all the
data to be sent immediately.

This notification message is handled by MIDIHandleReplyO, just as incoming MIDI data
messages are. The application should implement a function that responds to the
notification in whatever manner is desired-normally, by sending more MIDI data to the
driver. The MIDIReplyFunctions structure that the application passes to
MIDIHandieReplyO should contain a pointer to this function, along with the pointers to
the three functions that process incoming MIDI data (see "Receiving MIDI Data," above).

MIDI Time Base

The MIDI driver uses a timer to obtain timestamps for incoming MIDI data, as well as
to schedule MIDI output. As described under "Receiving MIDI Data," incoming MIDI
bytes are given timestamps that indicate the time at which the bytes arrived. Similarly,
outgoing MIDI bytes are sent at the times specified by their timestamps. Before outgoing
bytes are sent, their timestamps are removed, since the timestamp isn't part of the standard
MIDI data format.

A call to the MIDIStartClockO function starts up the default timer, using the internal
system clock as a time base. To synchronize the clock to a MIDI time signal received on
one of the serial ports, use the function MIDISetClockModeO. To set the starting time for
the clock, use the function MIDISetClockTimeO.

Functions 10-9

Time is maintained using seconds and microseconds, but the timer interface also provides
arbitrary units called "quanta." A quantum is an unsigned integer representing some
number of microseconds, specified by MIDISetClockQuantumO. The default is 1000
microseconds, or one millisecond. MIDI commands are time-tagged with quanta, so the
value of one quantum represents the resolution of a MIDI event in time.

The timer can be used directly by the process using the MIDI driver. By calling
MIDIRequestAlarmO, an application can ask to be notified when a certain time is
reached. The application handles the notification with the MIDIAwaitReplyO and
MIDIHandieReplyO functions. These functions accept a MIDIReplyFunctions structure
argument, which includes a MIDIAlarmReplyFunction to handle alarm notification. This
notification mechanism gives the application an effective way to stay synchronized with
MIDI events or with other applications, even across a network.

An application can control the operation of the timer. MIDI output can be paused by
stopping the timer with a call to the function MIDIStopClockO. Output is resumed by
restarting the timer with MIDIStartClockO.

10-10 Chapter 10: MIDI Driver API

M 10lAwa itReply(), M 101 HandleReply()

SUMMARY Handle replies from the MIDI driver to an application

DECLARED IN mididriver/midi_driver.h

SYNOPSIS kern_return_t MIDIAwaitReply(port_t repIY-JJort, MIDIReplyFunctions *handlers,
int timeout)

kern_return_t MIDIHandleReply(msg_header_t *msg, MIDIReplyFunctions *handlers)

DESCRIPTION MIDIAwaitReplyO receives and handles a message from the MIDI driver. reply -JJort is
the port set used to receive messages. handlers is a MIDIReplyFunctions structure
containing pointers to functions for handling replies (see "Types and Constants" for a
description of the MIDIReplyFunctions structure). timeout represents the amount of time,
in milliseconds, the MIDIAwaitReplyO function will wait before returning if no message
is in the MIDI driver's queue. After receiving the message from the MIDI driver as
specified, MIDIAwaitReplyO calls MIDIHandleReplyO.

MIDIHandieReplyO accepts a message received from the MIDI driver and passes it to the
appropriate handling function. msg is the Mach message received from the MIDI driver on
the application's port set. handlers is a MIDIReplyFunctions structure containing
pointers to functions for handling replies.

Before calling one of these functions, you register requests with the MIDI driver by calling
one or more of the functions MIDIRequestDataO, MIDIRequestAlarmO,
MIDIRequestExceptionsO, and MIDIRequestQueueNotificationO. The handlers
passed in the reply handling functions should include a function for handling each of the
responses requested; the reply -JJort set passed to MIDIAwaitReplyO should include a port
for handling each of the request types.

One common use of these functions is to receive MIDI data. The application calls
MIDIRequestDataO, then repeatedly calls one of these reply handling functions in a loop.
To do so in an Application Kit application, you must run MIDIAwaitReplyO in a separate
Mach thread. Alternatively, you may register the port set with the DPSAddPortO function,
use the Mach function ms~receiveO to receive the response from the MIDI driver, then
handle the message with MIDIHandleReplyO.

RETURN Both functions return KERN_SUCCESS if they successfully handle the reply. If
unsuccessful, they return an exception code indicating the reason they couldn't handle
the reply.

Functions: MIDIAwaitReply() 10-11

MIDIBecomeOwner(), MIDIReleaseOwnershipO

SUMMARY Acquire and release ownership of the MIDI driver

DECLARED IN mididriver/midi_driver.h

SYNOPSIS kern_return_t MIDIBecomeOwner(port_t driverPort, port_t ownerPort)
kern_return_t MIDIReleaseOwnership(port_t driverPort, port_t ownerPort)

DESCRIPTION MIDIBecomeOwnerO makes the sending process the owner of the MIDI driver.
Before becoming owner of the MIDI driver, an application must look up driverPort
with a call to the Mach netname_look_upO function. It must also allocate, using the
Mach port_allocateO function, an ownerPort to identify it to the MIDI driver in other
function calls.

MIDIReleaseOwnershipO releases the MIDI driver port from the control of the
sending application.

RETURN Both functions return KERN_SUCCESS if they complete successfully, and
MIDI_ERROR_BUSY if another process is using the driver.

MIDIClaimUnitO, MIDIReleaseUnitO

SUMMARY Claim and release ownership of serial ports for MIDI driver clients

DECLARED IN mididriver/midi_driver.h

SYNOPSIS kern_return_t MIDIClaimUnit(port_t driverPort, port_t o.wnerPort, short unit)
kern_return_t MIDIReleaseUnit(port_t driverPort, port_t ownerPort, short unit)

DESCRIPTION These functions control the access of a MIDI driver client application to the host
computer's serial ports.

MIDIClaimUnitO is used to acquire a serial port for MIDI communication. It is called
after the MIDI driver has been acquired by the application with the MIDIBecomeOwnerO
function. driverPort is the MIDI driver port. ownerPort is the port allocated by the process
to identify it to the MIDI driver in MIDI function calls, and first registered with the MIDI
driver in MIDIBecomeOwnerO. unit may be one of the symbolic constants

10-12 Chapter 10: MIDI Driver API

MIDI_PORT_A_UNIT and MIDI_PORT_B_UNIT, defined in the header file
mididriver/midi_driver.h.

MIDIReleaseUnitO is used to release the serial port used in MIDI communication.

RETURN MIDIClaimUnitO returns KERN_SUCCESS if it successfully acquires the serial port as
requested. MIDIReleaseUnitO returns KERN_SUCCESS if it successfully releases the
serial port as requested. Both return MIDI_ERROR_NOT_OWNER if the sending process
hasn't acquired the MIDI driver and MIDI_ERROR_UNIT_UNAVAILABLE if the
specified serial port is busy.

MIDIClearQueue(), MIDIFlushQueue(), MIDIGetAvaiiableQueueSize()

SUMMARY Manage the MIDI driver queue

DECLARED IN mididriver/midi_driver.h

SYNOPSIS kern_return_t MIDIClearQueue(port_t driverPort, port_t ownerPort, short unit)
kern_return_t MIDIFlushQueue(port_t device-port, port_name_t ownerPort-port,

short unit)
kern_return_t MIDIGetAvaiiableQueueSize(port_t driverPort, port_t ownerPort,

short unit, int *theSize)

DESCRIPTION These functions allow an application to manage the queue in the MIDI driver. driverPort
is the MIDI driver port. ownerPort is the port allocated by the process to identify it to the
MIDI driver in MIDI function calls, and first registered with the MIDI driver in
MIDIBecomeOwnerO.

MIDIClearQueueO empties the specified queue without sending any remaining data.

MIDIFlushQueueO returns after sending the data remaining in the queue immediately,
bypassing the normal time scheduling mechanism.

MIDIGetAvaiiableQueueSizeO returns, by reference in theSize, the amount of space
currently available in the queue.

RETURN Each of these functions returns KERN_SUCCESS if the specified operation is performed
successfully. Otherwise, they return an error code indicating why the operation wasn't
completed.

Functions: MIDIClearQueue() 10-13

MIDIFlushQueueO ~ See MIDIClearQueueO

MIDIGetAvaiiableQueueSizeO ~ See MIDIClearQueueO

MIDIGetClockTimeO ~ See MIDISetClockModeO

MIDIGetMTCTimeO ~ See MIDISetClockModeO

MIDIHandieReplyO ~ See MIDIAwaitReplyO

MIDIReleaseOwnershipO ~ See MIDIBecomeOwnerO

MIDIReleaseUnitO ~ See MIDIClaimUnitO

MIDIRequestAlarm(), MIDIRequestDataO, MIDIRequestExceptionsO,
MIDIRequestQueueNotification()

SUMMARY Request notification from the MIDI driver

DECLARED IN mididriver/midi_driver.h

SYNOPSIS kern_return_t MIDIRequestData(port_t driverPort, port_t ownerPort, short unit,
port_t replyPort)

kern_return_t MIDIRequestAlarm(port_t driverPort, port_t ownerPort, port_t replyPort,
int time)

kern_return_t MIDIRequestExceptions(port_t driverPort, port_t ownerPort,
port_t replyPort)

kern_return_t MIDIRequestQueueNotification(port_t driverPort, port_t ownerPort,
short unit, port_t replyPort, int size)

DESCRIPTION These functions allow an application to request notification by the MIDI driver in case of
specific events.

The reply returned in response to these requests should be handled by an application's
corresponding MIDIReplyFunction. For example, the MIDI driver's response to
MIDIRequestExceptionsO should be handled by an application's
MIDIExceptionReplyFunction. MIDIReplyFunction types are declared in the header

10-14 Chapter 10: MIDI Driver API

mididriver/midi_driver.h and described in the section "Types and Constants." After
calling one of these functions, call MIDIAwaitReplyO or MIDIHandieReplyO to handle
the response returned by the MIDI driver.

driverPort is the MIDI driver port. ownerPort is the port allocated by the process to identify
it to the MIDI driver in MIDI function calls, and first registered with the MIDI driver in
MIDIBecomeOwnerO. unit is the serial port associated with the request. replyPort is the
port on which the response to the request is expected to be sent. This port should be
included in the port set passed to MIDIAwaitReply() or in the message header passed to
MIDIHandleReplyO.

In MIDIRequestQueueNotificationO, size is the queue size below which notification will
be sent.

RETURN These functions return KERN_SUCCESS if the specified request is registered with
the MIDI driver. Otherwise, they return an error code indicating why the operation
wasn't completed.

SEE ALSO MIDIAwaitReplyO

MIDIRequestData() ---7 See MIDIRequestAlarm()

MIDIRequestExceptions() ---7 See MIDIRequestAlarm()

MIDIRequestQueueNotification() ---7 See MIDIRequestAlarm()

MIDISendData ()

SUMMARY Send data using the MIDI driver

DECLARED IN mididriver/midi_driver.h

SYNOPSIS kern_return_t MIDISendData(port_t driverPort, port_t ownerPort, short unit,
MIDIRawEvent *data, unsigned int count)

Functions: MIDIRequestData() 10-15

DESCRIPTION This function sends data, using the MIDI driver and specified serial port to other MIDI
devices. driverPort is the MIDI driver port. ownerPort is the port allocated by the process
to identify it to the MIDI driver in MIDI function calls, and first registered with the MIDI
driver in MIDIBecomeOwnerO. data is an array of MIDIRawEvent data. count is the
number of MIDIRawEvent structures in the array

RETURN This function returns KERN_SUCCESS if the data is successfully written to the serial port.
Otherwise, returns an error code indicating why the operation wasn't completed.

SEE ALSO MIDIRequestDataO

MIDISetClockModeO, MIDISetClockQuantumO, MIDISetClocklimeO,
MIDIGetClockTimeO, MIDIGetMTClimeO

SUMMARY Control the MIDI driver clock

DECLARED IN mididriver/midi_driver.h

SYNOPSIS kern_return_t MIDISetClockMode(port_t driverPort, port_t ownerPort, short synchUnit,
int mode)

kern_return_t MIDISetClockQuantum(port_t driverPort, port_t ownerPort, int interval)
kern_return_t MIDISetClockTime(port_t driverPort, port_t ownerPort, int time)
kern_return:..J MIDIGetClockTime(port_t driverPort, port_t ownerPort, int *time)
kern_return_t MIDIGetMTCTime(port_t driverPort, port_t ownerPort, short *format,

short *hours, short *minutes, short * seconds, short *frames)

DESCRIPTION These functions let you set and test parameters for the MIDI driver clock. driverPort is the
MIDI driver port. ownerPort is the port allocated by the process to identify it to the MIDI
driver in MIDI function calls, and first registered with the MIDI driver in
MIDIBecomeOwnerO·

MIDISetClockModeO sets the synchronization mode of the MIDI driver clock. synchUnit
represents the serial port on which the driver will listen for MIDI time code signals. mode
is one of the symbolic constants MIDI_CLOCK_MODE_INTERNAL or
MIDI_CLOCK:....MODE_MTC_SYNC. MIDI_CLOCK_MODE_INTERNAL causes the
clock to run on its own internal time, while MIDI_CLOCK_MODE_MTC_SYNC causes
the clock to synchronize with the MIDI time code present on synchUnit.

10-16 Chapter 10: MIDI Driver API

MIDISetClockQuantumO sets the interval between clock signals. interval represents this
quantum in microseconds. The default setting is 1000 (1 millisecond).

MIDISetClockTimeO sets the current clock time. time is an integer representing the time
to which you want to set the MIDI driver clock.

MIDIGetClockTimeO returns by reference in time the current clock time.

MIDIGetMTCTimeO returns the MIDI time code time. format represents the MIDI time
code format of the current time. hours, minutes, and seconds represent the chronological
value of the current time. frames represents the frame number of the current time.

RETURN These functions return KERN_SUCCESS if the operation is performed successfully.
Otherwise, they return an error code indicating why the operation wasn't completed.

MIDIGetClockTimeO returns, by reference in time, the current time.

SEE ALSO MIDIRequestAlarmO, MIDIStartClockO

MIDISetClockQuantum() ~ See MIDISetClockModeO

MIDISetClocklime() ~ See MIDISetClockMode()

MIDISetSystemlgnores()

SUMMARY Sets MIDI system codes the MIDI driver ignores

DECLARED IN mididriver/midi_driver.h

SYNOPSIS kern_return_t MIDISetSystemIgnores(l'ort_t driverPort, port_t ownerPort, short unit,
unsigned int ignoreBits)

DESCRIPTION MIDISetSystemIgnoresO sets MIDI system codes the MIDI driver ignores. driverPort is
the MIDI driver port. ownerPort is the port allocated by the process to identify it to the
MIDI driver in MIDI function calls, and first registered with the MIDI driver in
MIDIBecomeOwnerO. unit may be one of the symbolic constants
MIDI_PORT_A_UNIT or MIDI_PORT_B_UNIT (defined in the header file

Functions: MIDISetClockQuantum() 10-17

mididriver/midi_driver.h), representing the port on which MIDI system codes should be
ignored. ignoreBits may be one of the symbolic constants MIDI_IGNORE_CLOCK,
MIDI_IGNORE_START, or MIDI_IGNORE_CONTINUE (defined in
mididriver/midi_driver.h); you may logically OR these constants for multiple settings.

RETURN This function returns KERN_SUCCESS if the operation is performed successfully.
Otherwise, it returns an error code indicating why the operation wasn't completed.

MIDIStartClock(), MIDIStopClock()

SUMMARY Start and stop the MIDI clock

DECLARED IN mididriver/midi_driver.h

SYNOPSIS kern_return_t MIDIStartClock(port_t driverPort, port_t ownerPort)
kern_return_t MIDIStopClock(port_t driverPort, port_t ownerPort)

DESCRIPTION MIDIStartClockO starts the clock using the current settings. MIDIStopClockO stops the
clock. driverPort is the MIDI driver port. ownerPort is the port allocated by the process to
identify it to the MIDI driver in MIDI function calls, and first registered with the MIDI
driver in MIDIBecomeOwnerO.

RETURN These functions return KERN_SUCCESS if the operation is performed successfully.
Otherwise, they return an error code indicating why the operation wasn't completed.

SEE ALSO MIDIRequestAlarmO, MIDISetClockMode

MIDIStopClock() ~ See MIDIStartClock()

10-18 Chapter 10: MIDI Driver API

· Types and Constants

Defined Types

MIDIAlarmReplyFunction

DECLARED IN mididriver/midi_driver.h

SYNOPSIS typedef void (*MIDIAlarmReplyFunction)(port_t replyPort, int requestedTime,
int actual Time);

DESCRIPTION This function is used to handle requests for alarm registered by the MIDIRequestAlarmO
function. replyPort represents the port passed by the MIDIRequestAlarmO function.
requestedTime represents the time passed by the MIDIRequestAlarmO function.
actualTime represents the actual time at which the alarm is sent.

MIDIDataReplyFunction

DECLARED IN mididriver/midi_driver.h

SYNOPSIS typedef void (*MIDIDataReplyFunction)(port_t replyPort, short unit,
MIDIRawEvent *events, unsigned int count);

DESCRIPTION This function is used to handle requests for data registered by the MIDIRequestDataO
function. replyPort represents the port passed by the MIDIRequestDataO function.
events represents an array of MIDIRawEvent data. count represents the number of
elements in events.

10-20 Chapter 10: MIDI Driver API

MIDIExceptionReplyFunction

DECLARED IN mididriver/midi_driver.h

SYNOPSIS typedef void (*MIDIExceptionReplyFunction)(porCt replyPort, int exception);

DESCRIPTION This function is used to handle requests for exceptions registered by the
MIDIRequestExceptionsO function. replyPort represents the port passed by the
MIDIRequestExceptionsO function. exception represents the exception sent by
the driver.

MIDIQueueReplyFunction

DECLARED IN mididriver/midi_driver.h

SYNOPSIS typedef void (*MIDIQueueReplyFunction)(port_t replyPort, short unit);

DESCRIPTION This function is used to handle requests for queue information registered by the
MIDIRequestQueueNotificationO function. replyPort represents the port passed by the
MIDIRequestQueueNotificationO function. unit represents the serial port with which the
queue is associated.

MIDIRawEvent

DECLARED IN mididriver/midi_driver.h

SYNOPSIS typedef struct {
int time;
unsigned char byte;

} MIDIRawEvent;

DESCRIPTION time is the timestamp associated with the MIDI data.
byte is the actual MIDI data.

Types and Constants: MIDIExceptionReplyFunction 10-21

MIDIReplyFunctions

DECLARED IN mididriver/midi_driver.h

SYNOPSIS typedef struct _MIDIReplyFunctions {
MIDIDataReply Function dataReply;
MIDIAlarmReplyFunction alarmReply;
MIDIExceptionReply Function exceptionReply;
MIDIQueueReplyFunction queueReply;

} MIDIReplyFunctions;

DESCRIPTION This structure is used as an argument to the MIDIAwaitReplyO and MIDIHandleReplyO
functions to allow an application to handle replies to requests to the MIDI driver.

10-22 Chapter 10: MIDI Driver API

SYl11bolic Constants

Clock Modes

DECLARED IN mididriver/midi_driver.h

SYNOPSIS MIDI_CLOCK_MODE_INTERNAL
MIDI_CLOCK_MODE_MTC_SYNC

Controller Definitions

DECLARED IN mididriver/midi_spec.h

SYNOPSIS MIDI_EXTERNALEFFECTSDEPTH
MIDI_TREMELODEPTH
MIDI_CHORUS DEPTH
MIDI_DETUNEDEPTH
MIDI~PHASERDEPTH

(from original 1.0 MIDI spec)

MIDI_EFFECTS 1
MIDI_EFFECTS 2
MIDI_EFFECTS 3
MIDI_EFFECTS4
MIDI_EFFECTS 5
MIDI_DATAINCREMENT
MIDI_DATADECREMENT
(From June 1990 spec)

Types and Constants: Clock Modes 10-23

Error Codes

DECLARED IN mididriver/midi_driver.h

SYNOPSIS MIDI_ERROR_BUSY
MIDI_ERROR_NOT_OWNER
MIDI_ERROR_QUEUE_FULL
MIDI_ERROR_BAD_MODE
MIDI_ERROR_UNIT_UNAVAILABLE
MIDI_ERROR_ILLEGAL_OPERATION
MIDI_ERROR_UNKNOWN_ERROR

Event Count

DECLARED IN mididriver/midi_driver.h

SYNOPSIS MIDI_MAX_EVENT 100

Event Size

DECLARED IN mididriver/midi_driver.h

Exception Codes

DECLARED IN mididriver/midi_driver.h

SYNOPSIS MIDI_EXCEPTION_MTC_STOPPED
MIDI_EXCEPTION_MTC_STARTED_FORWARD
MIDI_EXCEPTION_MTC_STARTED_REVERSE

10-24 Chapter 10: MIDI Driver API

General MIDI Constants

DECLARED IN mididriver/midi_spec.h

SYNOPSIS MIDI_RESETCONTROLLERS
MIDI_LOCALCONTROL
MIDI_ALLNOTESOFF
MIDI_OMNIOFF
MIDI_OMNION
MIDI_MONO
MIDI_POLY
MIDI_NOTEOFF
MIDI_NOTEON
MIDI_POLYPRES
MIDI_CONTROL
MIDI_PROGRAM
MIDI_CHANPRES
MIDI-,-PITCH
MIDI_CHANMODE
MIDI_CONTROL
MIDI_SYSTEM
MIDI_SYSEXCL
MIDI_TIMECODEQUARTER
MIDI_SONGPOS
MIDI_SONGSEL
MIDI_TUNEREQ
MIDI_EOX
MIDI_CLOCK
MIDI_START
MIDI_CONTINUE
MIDI_STOP
MIDI_ACTIVE
MIDI_RESET
MIDI_MAXDATA
MIDI_MAXCHAN
MIDI_NUMCHANS
MIDI_NUMKEYS
MIDI_ZEROBEND
MIDI_DEFAULTVELOCITY

DESCRIPTION These constants represent various MIDI-specified messages.

Types and Constants: General MIDI Constants 10-25

Ignores

DECLARED IN mididriver/midi_driver.h

SYNOPSIS MIDI_IGNORE_CLOCK
MIDI_IGNORE_START
MIDI_IGNORE_CONTINUE
MIDI_IGNORE_STOP
MIDI_IGNORE_ACTIVE
MIDI_IGNORE_RESET
MIDI_IGNORE_REAL_TIME

DESCRIPTION Used with the MIDISetSystemIgnoresO function.

Least Significant Bit for Controller Numbers

DECLARED IN mididriver/midi_spec.h

SYNOPSIS MIDI_MODWHEELLSB
MIDI_BREATHLSB
MIDI_FOOTLSB
MIDI_PORTAMENTOTIMELSB
MIDI_DATAENTRYLSB
MIDI_MAINVOLUMELSB
MIDI_BALANCELSB
MIDI_PANLSB
MIDI_EXPRESSIONLSB

10-26 Chapter 10: MIDI Driver API

Masks for MIDI Status Bytes

DECLARED IN mididriver/midi_spec.h

SYNOPSIS MIDI_STATUSBIT
MIDI_STATUSMASK
MIDI_SYSRTBIT

M iscella neous

DECLARED IN mididriver/midi_driver.h

MIDI Controller Numbers

DECLARED IN mididriver/midi_spec.h

SYNOPSIS MIDI_MODWHEEL
MIDI_BREATH
MIDI_FOOT
MIDI_PORTAMENTOTIME
MIDI_DATAENTRY
MIDI_MAINVOLUME
MIDI_BALANCE
MIDI_PAN
MIDI_EXPRESSION
MIDI_EFFECTCONTROLI
MIDI_EFFECTCONTROL2
MIDI_DAMPER
MIDI_PORTAMENTO
MIDI_SOSTENUTO
MIDI_SOFTPEDAL
MIDI_HOLD2

Types and Constants: Masks for MIDI Status Bytes 10-27

Port Constants

DECLARED IN mididriver/midi_driver.h

SYNOPSIS MIDI_PORT_A_UNIT
MIDI_PORT_B_UNIT

DESCRIPTION U sed to identify the port claimed for the application.

10-28 Chapter 10: MIDI Driver API

NetInfo Kit

11-3 Introduction
11-3 NetInfo Kit Classes
11-3 Domain
11-4 Panels
11-4 NetInfo Kit Functions

11-5 Classes
11-6 NIDomain
11-13 NIDomainPanel
11-20 NILoginPanel
11-24 NIOpenPanel
11-29 NISavePanel

11-33 Functions

11-35 Types and Constants
11-36 Symbolic Constants
11-37 Structures

11-1

11-2

Netlnfo Kit

Library:

Header File Directory: IN extDeveloper/Headers/nikit

Introduction

The N etInfo Kit is a collection of classes and a single function used to provide a connection
to and interface with Netlnfo domains. The Netlnfo Kit provides classes for basic interface
with a domain as well as specialized panels.

Netlnfo Kit Classes

The NetInfo Kit provides five classes-one for connecting to a domain, and four
standard panels.

Domain

The NIDomain class is used to establish or terminate a connection to a N etlnfo domain.
The connection can be made by specifying a domain name or a host name and domain tag.
This class also provides a method for locating a list of specific subdirectories within a
domain. If your application will be accessing a Netlnfo domain, you'll use this class to
establish and maintain the connection.

Netl nfo Kit 11-3

Panels

The NILoginPanel class provides a mechanism for authenticating a user for access to a
Netlnfo domain. The panel includes text fields for the user account name and password
along with Login and Cancel buttons. This panel can be used to allow the user to
authenticate as a user with permission to run an application, as with U serManager and
HostManager, or to authenticate as a user with permission to modify a domain, as with
N etlnfoManager and NFSManager.

The NIDomainPanel class is used to provide the user with a means to select a specific
domain from a hierarchy of Netlnfo domains. The panel includes a browser for the domain
hierarchy, a text field, and OK and Cancel buttons. The Open Domain panel in
NetlnfoManager is an example of an NIDomainPanel.

The NIOpenPanel class is used to allow the user to open a specific directory (item) within
a specific domain. The panel contains an upper browser for selecting the domain and a
lower browser to select the item within the selected domain. The Open panels of
U serManager and HostManager are examples of NIOpenPanel.

The NISavePanel class is similar to NIOpenPanel, except that it's used to save information
to a specific directory within a Netlnfo domain. The Save panels of UserManager and
HostManager are examples of NISavePanel.

Netlnfo Kit Functions

The single Netlnfo Kit function is NIFillDomainHierarchyO, which fills a column of the
domain structure for display in one of the panels.

11-4 Chapter 11: NetInfo Kit

Classes

NIDol11ain

Inherits From: Object

Declared In: niki~Il)onaain.h

Class Description

NIl)onaain provides a connection to and interface with a N etInfo donaain.

Instance Variables

char *fuIlPath;
char *masterServer;
char *currentServer;
char *domainTag;
id parentDomain;
id delegate;
char *parentDomainName;
void *domainHandle;
ni_status whatHappened;
BOOL connected;
ni_id rootDirectory;
ni_fancyopenargs fancyStuff;
struct sockaddr_in hostSocket;
struct hostent *serverHostEnt;
NXZone *domainZone;

11-6 Chapter 11: NetInfo Kit

fullPath

masterServer

currentServer

domainTag

parentDomain

delegate

parentDomainN arne

domainHandle

whatHappened

connected

rootDirectory

fancyStuff

hostSocket

serverHostEnt

domainZone

Method Types

The fully qualified pathname of the domain.

The host name of the master server of the domain.

The host name of the current server with which the object
is communicating.

The domain tag.

The parent domain object, if it's been opened.

The delegate of the NIDomain object.

The fully qualified name of the parent domain.

The Netlnfo handle to the domain.

The last error condition from a Netlnfo call.

Indicates if a domain connection is open.

The N etlnfo directory ID for the root directory of the
domain.

Various parameter settings when a connection is set with
arguments.

The socket used when querying for a host name.

The hostent used when querying for a host name.

Memory allocation zone.

Allocating and initializing an NIDomain object
+ alloc

Freeing an NIDomain object

+ allocFromZone:
- init

-free

Connecting to or disconnecting from a domain
. - setConnection:

- setConnection:readTimeout:writeTimeout:canAbort:
mustWrite:

- setTaggedConnection:to:
- setTaggedConnection:to:readTimeout:writeTimeout:

canAbort:
- disconnectFromCurrent:

Classes: NIDomain 11-7

Getting data about or from the current domain
- getFullPath
- getMasterServer
- getCurrentServer
- getTag
- ge~erverIPAddress

- getDomainHandle
- findDirectory:withProperty:

Checking the error status -lastError

Assigning a delegate - setDelegate:

Class Methods

alloc

+ alloc

Returns a new NIDomain instance. You should initialize this object by sending it an
init message.

allocFromZone:

+ allocFromZone:(NXZone *)zone

Returns a new NIDomain instance. Memory for the new object is allocated from zone. You
should initialize this object by sending it an init message.

Instance Methods

disconnectFromCurrent

- disconnectFromCurrent

Terminates the connection to a domain but retains the NIDomain object. Resets all instance
variable values. Returns self.

11-8 Chapter 11: Net! nfo Kit

findDirectory:with Property:

- (ni_entrylist *)findDirectory:(const char *)parentDirectory
withProperty:(const char *)property

Returns a list containing the values associated with the indicated property in the named
NetInfo directory. The caller should free this list when it's no longer needed. This method
returns NULL if it couldn't read the requested information. You can find the reason for the
failure with lastError.

free

-free

Deallocates the NIDomain object. Returns nil.

getCu rrentServer

- (const char *)getCurrentServer

Returns the host name of the current server of the domain, or NULL if the object isn't
currently connected to a domain or the host name couldn't be resolved.

getDomainHandle

- (void *)getDomainHandle

Returns the NetInfo handle to the current domain, or NULL if no connection exists. If this
function returns NULL, you might be able to find out why with lastError.

getFuliPath

- (const char *)getFullPath

Returns the fully qualified pathname of the current domain, or NULL if the path couldn't
be resolved. If this function returns NULL, invoking lastError might help you find out
the cause.

Classes: NIDomain 11-9

getMasterServer

- (canst char *)getMasterServer

Returns the host name of the master server of the current domain, or NULL if the object
isn't currently connected to a domain or the host name couldn't be resolved.

getServerlPAddress

- (canst struct sockaddr_in *)getServerIPAddress

Returns the socket address of the current server of the current domain. If an error occurs,
NULL is returned. If the object is connected, invoking lastError should return the reason
for the failure.

getTag

- (canst char *)getTag

Returns the tag of the current domain, or NULL if there's no current connection or if it
couldn't read the master server property. If the object is connected, invoking lastError
should return the reason for the failure.

init

- init

Initializes a newly allocated NIDomain instance. The new instance isn't connected.
Returns self.

lastError

- (nLstatus)lastError

Returns the status code returned by the most recent NetInfo call. This value can be
translated to an English error message by the ni_errorO function, which is described in the
netinfo(3) UNIX manual page.

11-10 Chapter 11: Netl nfo Kit

setConnection:

- (ni_status)setConnection:(const char *)domain

Establishes a connection to the named domain. Returns a value indicating status,
corresponding to the constants defined in the header file netinfo/ni_prot.h. This value can
be translated to an English error message by the ni_errorO function, which is described in
the netinfo(3) UNIX manual page.

setConnection:readTImeout:writeTImeout:canAbort:mustWrite:

- (ni_status)setConnection:(const char *)domain
readTimeout:(int)rtime
writeTimeout: (int)wtime
canAbort: (BOOL)abortFlag
mustWrite:(BOOL)writeFlag

Establishes a connection to the named domain with arguments corresponding to the
ni_fancyopenargs structure described in the UNIX manual page for netinfo. Values for
rtime and wtime indicate the timeout, in seconds, for read and write attempts. If abortFlag
is TRUE, failure will occur after a timeout or other error. Otherwise, attempts will continue
forever. If writeFlag is TRUE, this method forces a connection to the master server of the
domain, since writes can only be made there. Returns a value indicating status,
corresponding to the constants defined in the header file netinfo/ni_prot.h. This value can
be translated to an English error message by the ni_errorO function, which is described in
the netinfo(3) UNIX manual page.

setDelegate:

- setDelegate:anObject

Sets the NIDomain object's delegate to anObject. Returns self.

setTaggedConnection:to:

- (ni_status)setTaggedConnection:(const char *)tag to:(char *)hostName

Establishes a connection to a domain by host name and tag rather than domain name.
Returns a value indicating status, corresponding to the constants defined in the header file
netinfo/ni_prot.h. This value can be translated to an English error message by the
ni_errorO function, which is described in the netinfo(3) UNIX manual page.

Classes: NIDomain 11-11

setTaggedConnection:to:readTimeout:writeTimeout:canAbort:

- (ni_status)setTaggedConnection:(const char *)tag
to:(char *)hostName
readTimeout:(int)rtime
writeTimeout: (int)wtime
canAbort:(BOOL)abortFlag

Establishes a connection to a domain by host name and tag with arguments. Same as
setConnection:readTimeout:writeTimeout:canAbort:mustWrite:, except that it
doesn't include the writeFlag argument. Since the connection is being made to a specific
server, the writeFlag argument is irrelevant. Returns a value indicating status,
corresponding to the constants defined in the header file netinfo/ni_prot.h. This value can
be translated to an English error message by the ni_errorO function, which is described in
the netinfo(3) UNIX manual page.

Methods Implemented by the Delegate

domain:wiIICloseBecause:

- domain:sender wiIlCloseBecause:(int)reason

Indicates that the connection to the current domain will terminate as a result of the
disconnectFromCurrent method. The value of reason is always 0, indicating that the
program requested closing.

11-12 Chapter 11: Netl nfo Kit

NIDol11ainPanel

Inherits From: Object

Declared In: nikitINIDomainPanel.h

Class Description

NIDomainPanel provides a mechanism for selecting a specific domain in the Netlnfo
domain hierarchy. The panel includes a browser for the domain hierarchy and a text field
at the bottom for entering the path to a domain. An example of this object is the Open
Domain panel used in N etlnfoManager.

Instance Variables

id domainBrowser;
id okButton;
id cancelButton;
id domainText;
id panel;
id groupForm;
id fieldEditor;
id sharedDomainPanel;
struct NIHierarchyOfDomains myDomains;
ni_status lastFailure;
int exitFlags;
char returnPath[1024];
void *currentDomain;
BaaL domainBrowserLoaded;
id panelButton;
NXZone *zone;

Classes: NIDomainPanel 11-13

domainBrowser

okButton

cancelButton

domainText

panel

groupForm

fieldEditor

sharedDomainPanel

myDomains

lastFailure

exitFlags

returnPath

currentDomain

domainBrowserLoaded

panelB utton

zone

Method Types

Object to browse Netlnfo domains.

The OK button.

The Cancel button.

Unused.

The panel object.

The text field.

The editing object for the text field.

Unused.

The domain hierarchy.

The last error condition from a Netlnfo call.

Indicates whether the user chose Cancel or OK.

Path of domain entered in the text field.

Unused.

Indicates if a domain has been loaded into the browser.

The icon at the top left of the panel.

A memory allocation zone.

Allocating and initializing an NIDomainPanel object
+ new

Displaying the panel

Getting data

11-14 Chapter 11: NetInfo Kit

+ alloc WithoutPanelFromZone:
- init

-runModal
- resizePanelBeforeShowing:
- panel
- windowDidResize:

- exitFlags
-domain
- panelSizeDefaultN arne

Filling the browser - loadDomainBrowser
- loadDomainBrowserFrom:
- browser:fillMatrix:inColumn:
- browser:loadCell:atRow:inColumn:
- freeLastColumn
- fillNextColumn

Text-related methods - completeDomain
-runOk:
- textisEmpty:
- textWillChange:
- textWillEnd:

Target and action methods - cellWasHitInBrowser:
- cancel:
-ok:

Class Methods

allocWithoutPanelFromZone:

+ alloc WithoutPanelFrornZone: (NXZone *)zone

Returns a new NIDomainPanel object without the panel. For use with a different panel
layout. Use with init.

initialize

+ initialize

Initializes the NetInfo Kit zone; sent by the run-time system. Don't invoke or override
this method.

new

+ new

Returns the single NIDomainPanel instance per application. If one doesn't exist, it is created.

Classes: NIDomainPanel 11-15

Instance Methods

browser:fiIIMatrix:inColumn:

- (int)browser:sender fillMatrix:matrix inColumn:(int)column

Sent automatically by the browser when a column needs updating, this NXBrowser
delegate method fills the indicated browser column with data.

browser:loadCell:atRow:inColumn:

- browser:sender loadCell:cell atRow:(int)row inColumn:(int)column

Sent automatically by the browser, this NXBrowser delegate method fills the indicated
cell with data.

cancel:

- cancel:sender

This method is invoked when the Cancel button is clicked. Returns self.

celiWasHitl n Browser:

- cellWasHitlnBrowser: (id)sende~

This method is invoked when the user clicks in the browser. Returns self.

completeDomain

- completeDomain

This method is invoked to complete the text field when the user presses the Esc key, when
the OK button is pressed, or when the current selection moves out of the text field. Returns
self if the path was successfully completed; otherwise, returns nil.

domain

- (const char *)domain

Returns the name of the domain selected in the panel, or a localized string that indicates
that the path was invalid.

11-16 Chapter 11: NetInfo Kit

exitFlags
- (int)exitFlags

Returns the exit flags from the panel, indicating whether the user chose OK or Cancel.

filiNextColumn
- fillNextColumn

Fills the next column of the domain hierarchy. Sent by browser:fillMatrix:inColumn:.
Returns self, or nil if an error occurred.

freeLastColumn
- freeLastColumn

Clears the data in the rightmost column of the browser. Returns self.

init
- init

Initializes the NIDomainPanel object. For use with allocWithoutPaneIFromZone:.
Returns self. _

loadDomainBrowser
- loadDomainBrowser

Loads the current domain information into the browser, filling to match the local domain.
Returns self, or nil if an error occurred.

See also: -loadDomainBrowserFrom:

loadDomainBrowserFrom:
-loadDomainBrowserFrom:(const char *)aDomainName

Loads the browser with information from theriamed domain rather than the local domain.
Returns self, or nil if an error occurred.

See also: - loadDomainBrowser

Classes: NIDomainPanel 11-17

ok:

- ok:sender

This method is sent when the OK button is clicked. Returns self.

panel

- panel

Returns the Panel displayed by the NIDomainPanel.

panelSizeDefaultName

- (COIist char *)paneISizeDefaultName

Returns the name of a constant indicating the panel's default size.

See also: - resizePanelBeforeShowing:

resizePanelBeforeShowing:

- resizePaneIBeforeShowing:(const char *)paneIDefaultName

Resizes the panel to the size indicated by the constant identified with panelDefaultName,
which can be obtained with the panelSizeDefaultName method. Resizes the panel to the
larger of the user's last selection or the indicated panel minimum. Useful when changing
languages, for example, because the minimum panel size may increase. Returns nil if
panelDefaultName is NULL; otherwise, returns self.

See also: - panelSizeDefaultName

runModal

- (int)runModal

Displays the panel and begins its event loop. Returns the exit flags from the panel,
indicating whether the user chose OK or Cancel.

11-18 Chapter 11.' Net! nfo Kit

runOk:

- runOk:sender

Sent automatically when Return is pressed or a browser item is double-clicked. Returns self.

text:isEmpty:

- text:textObject isEmpty:(BOOL)jlag

Sent automatically when the text field is exited. This Text delegate method enables the OK
button if any text is in the text field; otherwise, disables the OK button. Returns self.

textWiliChange:

- textWillChange:textObject

Sent automatically when text is entered into the text field. This Text delegate method sets
the filtering function to be used for the field. Returns zero.

textWiliEnd:

- (BOOL)textWillEnd: textObject

Sent automatically when user has finished editing the text field. This Text delegate method
completes the path in the text field, if possible. It then returns NO if the text field contains
a valid domain; otherwise, it returns YES.

windowDidResize:

- windowDidResize:sender

Sent automatically when the user finishes resizing the panel. This Window delegate
method saves the panel's new size into the defaults system.

Classes: NIDomainPanel 11-19

NILoginPanel

Inherits From: Panel: Window: Responder: Object

Declared In: nikitINILoginPanel.h

Class Description

NILoginPanel provides a means of authentication for accessing a Netlnfo domain. It can
be used to determine authorization to run an application, as with HostManager and
UserManager, or to determine if a user can modify a domain, as with NetlnfoManager and
NFSManager. The panel includes text fields for the user name and password, an icon, and
text for instructions to the user.

Instance Variables

id panel;
id userField;
id passwordField;
id instruction Text;

BOOL validLogin;
BOOL loginSuccess;
int bootMode;
char currentUser[16];
char currentPassword[16];

id iconButton;

panel

userField

passwordField

instructionText

validLogin

loginSuccess

11-20 Chapter 11: Netlnfo Kit

Panel object.

Text field for user account name.

Text field for password.

Text for instructions to the user.

Indicates if an authentication attempt was successful.

Currently means the same as validLogin.

bootMode

currentUser

currentPassword

iconButton

Method Types

Indicates whether the delegate should perform
authentication.

Name of current user.

Password of current user.

Icon to display in panel.

Creating an NILoginPanel object
+ new

Running the panel - runModal:inDomain:
- runModal:inDomain:withUser:withInstruction:

allowChange:
- runModalWith Validation:inDomain:

with U ser:withInstruction: allowChange:

Target and action methods -ok:
- cancel:

Getting data - is ValidLogin:
- getPassword:
- getUser:

Class Methods

new

+ new

Creates, if necessary, and returns the shared instance of NILoginPanel.

Instance Methods

cancel:

- cancel:sender

Sent automatically when the Cancel button is clicked. Returns self.

Classes: NILoginPanel 11-21

getPassword:

- (const char *)getPassword:sender

Returns the password entered into the password text field. The password is correct only
if this method is invoked from panel:authenticateUser:withPassword:inDomain:.
Otherwise, returns NULL.

getUser:

- (const char *)getUser:sender

Returns the account name entered into the user text field.

isValidLogin:

- (BOOL)is ValidLogin:sender

Returns TRUE if the account name and password represent a successful authentication for
the domain; otherwise, returns FALSE.

ok:

- ok:sender

Target method for the Login button. Zeroes the password value, for security reasons.
Returns self.

runModal:inDomain:

- (BOOL)runModal:sender inDomain:(void *)domainID

Begins a modal event loop for the panel. Runs the panel for the domain indicated by the
N etlnfo handle domainID. You can obtain the N etInfo handle with the domainHandle
method of the NIDomain class. The user root will be used as the default user. Returns
TRUE if the user logged in successfully; otherwise, returns FALSE.

See also: - runModal:inDomain:withUser:withlnstruction:allowChange:,
- runModalWith Validation:inDomain:withUser: withlnstruction: allow Change

11-22 Chapter 11: Netlnfo Kit

runModal:inDomain:withUser:withlnstruction:allowChange:

- (BOOL)runModal:sender
inDomain:(void *)domainID
withUser:(const char *)userName
withlnstruction:(const char *)warning
allowChange: (BOOL)Jlag

Begins a modal event loop for the panel for the specified domain and user. The string in
warning will be displayed in the panel as instructions to the user. IfJlag is TRUE, the user
won't be allowed to change the user name in the text field. Returns TRUE if the user logs
in successfully; otherwise, returns FALSE.

runModaIWithValidation:inDomain:withUser:withlnstruction:
aliowChange:

- (BOOL)runModaIWith Validation: sender
inDomain:(void *)domainID
withUser:(const char *)userName
withlnstruction:(const char *)warning
allowChange: (BOOL)enable User

Same as runModal:inDomain:withUser:withlnstruction:allowChange:, except that the
user will be authenticated by the delegate instead of by the ni_setuserO and
ni_setpasswordO functions. Returns TRUE if the user logged in successfully; otherwise,
returns FALSE.

See also: panel:authenticateUser:withPassword:inDomain: (delegate method)

Methods Implemented by the Delegate

panel:authenticateUser:withPassword:inDomain:

- (BOOL)panel:thePanel
authenticateUser:(const char *)userName
withPassword:(const char *)password
inDomain: (const void *)domain

Sent by runModalWith Validation:inDomain:withUser:withlnstruction:
allowChange:. Should determine whether the combination of userName, password, and
domain is valid. Returns TRUE if the user should be authenticated, FALSE otherwise.

Classes: NILoginPanel 11-23

NIOpenPanel

Inherits From: NIDomainPanel : Object

Declared In: nikitINIOpenPanel.h

Class Description

NIOpenPanel is used to allow a user to open an item in a NetInfo domain, such as a user
account or host entry. The panel's upper half contains a browser for selecting a Netlnfo
domain; its lower half contains a browser for selecting a specific item within the domain
(a NetInfo directory). Each half has a text field containing a title and an editable text field
representing the path of the domain in the upper half and the name of the item in the
lower half.

Instance Variables

id directoryObjectBrowser;
char *pathToUse;

ni_entrylist *filler;

id listTitleField;
id panelTitleField;
id selectedItemText;
id iconButton;

directoryObjectBrowser

pathToUse

filler

listTitleField

panelTitleField

selectedItemText

iconButton

11-24 Chapter 11: Netl nfo Kit

Browser object for lower half of the open panel.

Stores domain path to use when loading domain browser
in top half of panel.

Data for browser in lower half of panel.

Field displayed above browser in lower half of panel.

Field displayed at top of panel.

Text field at bottom of lower browser.

Icon to display in top left corner of panel.

Method Types

Initializing and running a panel + new
-runModal

Getting data from the panel - directory
- panelSizeDefaultName

Manipulating the panel - setDirectory Path:
- setListTitle:
- setPanelTitle:
- refreshLowerData:

Searching - searchltemList:
- searchTextField

Filling the browser - browser:fillMatrix:inColumn:
- browser:loadCell:atRow:inColumn:

Text-related methods - text:isEmpty:
- textWillChange:
- completeltemN arne
- completeDomain

Target and action methods - cellWasHitlnBrowser:
- cellWasHitlnltemList:

Class Methods

new

+ new

Creates, if necessary, and returns a new instance of NIOpenPanel. Each application shares
just one instance of NIOpenPanel; this method returns the shared instance if it exists.

Instance Methods

browser:fiIiMatrix:inColumn:
- (int)browser:sender fillMatrix:matrix inColumn:(int)column

Sent automatically when a column needs updating, this NXBrowser delegate method fills
the indicated browser column with data.

Classes: NIOpenPanel 11-25

browser:loadCell:atRow:inColumn:

- browser:sender loadCell:cell atRow:(int)row inColumn:(int)column

Sent automatically by the browser, this NXBrowser delegate method fills the indicated cell
with data.

cellWasHitlnBrowser:

- cellWasHitInBrowser: (id)sender

This method is invoked when the user clicks in the upper browser. Returns self.

cellWasHitlnltemList:

- cellWasHitInltemList:sender

This method is invoked when the user clicks in the lower browser. Returns self.

completeDomain

- completeDomain

This method is invoked to complete the upper text field (and browser) when the user presses
the Esc key, when the OK button is pressed, or when the current selection moves out of the
text field. Returns self if the path was successfully completed; otherwise, returns nil.

completeltemName

- completeltemName

Reserved for future use.

directory

- (const char *)directory

Returns the name of the directory that's selected in the lower browser, or NULL if no valid
directory is selected.

11-26 Chapter 11: Net! nfo Kit

panelSizeDefaultName

- (const char *)paneISizeDefauItName

Returns the name of a constant representing the size of the panel. Used in conjunction with
the inherited method resizePaneIBeforeShowing:.

refresh LowerData:

- refreshLowerData:sender

Reloads and redraws browser in lower half of panel. Returns self.

runModal

- (int)runModal

Displays the panel and begins its event loop. Returns the exit flags from the panel.

searchltemList:

- searchItemList: textThing

Sent automatically to keep the lower browser in sync with what a user types into the lower
text field. Don't invoke this method directly. Returns self.

searchTextField

- searchTextField

Sent automatically to update the lower browser after the user has finished entering text into
the lower text field. Don't invoke this method directly. Returns self.

setDirectoryPath:

- setDirectoryPath:(const char *)path

Use this method to set the initial directory path in the lower browser. The contents of the
indicated directory will be displayed when the browser is loaded. Returns self.

Classes: NJOpenPanel 11-27

setListlitle:

- setListTitle:(const char *)title

Use this method to set the title of the lower half of the panel. Returns self.

setPanellitle:

- setPaneITitle:(const char *)title

Use this method to set the title of the panel. Returns self.

text:isEmpty:

- text:textObj isEmpty:(BOOL)jlag

This Text delegate method is invoked when the user types in either text field. It disables the
OK button if the text field is empty; otherwise, it enables the OK button.

textWiliChange:

- (BOOL)textWillChange:textObject

This Text delegate method is invoked when exiting a text field after an edit has been made.

11-28 Chapter 11: Net! nfo Kit

NISavePanel

Inherits From: NIOpenPanel : NIDomainPanel : Object

Declared In: nikitINISavePanel.h

Class Description

NISavePanel is a subclass of NIOpenPanel used to allow a user to save information to a
NetInfo domain. The panel includes an upper domain browser, a lower browser for NetInfo
directories (items), a text field for each browser, and a title for each browser. Examples of
this panel are the Save panels in HostManager and U serManager.

Instance Variables

BOOL frozenBelow;

frozenBelow Indicates whether the lower text field can be edited.

Method Types

Creating a new NISavePanel object

Displaying the panel

Getting data from the panel

Target and action methods

Manipulating the panel

+ new

-runModal
- runModalWithString:
- runModalWithUneditableString:

- panelSizeDefaultName
- directory

- cellWasHitInItemList:

- setStartingDomainPath:
- refreshLowerData:

Classes: NISavePanel 11-29

Class Methods

new

+ new

Returns the single NISavePanel object per application. If one doesn't exist, it is created.

Instance Methods

celiWasHitlnltemList:

- cellWasHitlnItemList:sender

This method is invoked when the user clicks in the lower browser. Returns self.

directory

- (const char *)directory

Returns the value of the directory selected by the user in the lower browser .

. panelSizeDefaultName

- (const char *)paneISizeDefauItName

Returns the name of a constant representing the size of the panel. Used in conjunction with
the inherited method resizePaneIBeforeShowing:.

refreshLowerData:

- refreshLowerData:sender

Reloads and redraws the information in the lower browser of the panel. Returns self.

runModal

- (int)runModal

Begins a modal event loop for the panel. Returns the exit flags from the panel.

11-30 Chapter 11: NetInfo Kit

runModalWithString:
- (int)runModaIWithString:(char *)initiaIValue

Runs the panel, supplying a value to be placed in the text field of the lower half of the panel.
The value can be changed by the user. Returns the exit flags from the panel.

runModalWithUneditableString:

- (int)runModalWith UneditableString: (char *)initialValue

Same as runModaIWithString:, except that the supplied value can't be modified by the
user. Forces the user to save to a specific item and allows the user to cancel if a conflict
exists. Returns the exit flags from the panel.

setStartingDomainPath:
- setStartingDomainPath:(const char *)directory

Sets the path to the domain in the upper browser. This directory will be selected when the
browser is loaded. Returns self if the path can be resolved; otherwise, returns nil.

Classes: NISavePanel 11-31

11-32

Functions

NIFillDomainHierarchyO

SUMMARY Fill a column of a domain structure

DECLARED IN nikit/domain.h

SYNOPSIS ni_status NIFillDomainHierarchy(struct NIHierarchyOfDomains *domains, int level,
const char *toMatch, int selectedLevel)

DESCRIPTION Use this function to fill in the next column (to the right) of a browser in a NetInfo Kit panel,
in response to a selection by the user. The return value of this function can be converted to
an English error message using the ni_errorO function. The ni_errorO function is
documented in the netinfo(3) UNIX manual page

RETURN A value indicating status, corresponding to the constants defined in the header file
netinfo/ni_prot.h.

11-34 Chapter 11.' Netl nfo Kit

Types and Constants

SYl11bolic Constants

Connection Status

DECLARED IN nikit/domain.h

SYNOPSIS NI_ALREADYCONNECTED
NI_NOTCONNECTED

DESCRIPTION These constants are used as return values to indicate whether a connection to a NetInfo
domain already exists.

Test Modes

DECLARED IN nikitINILoginPanel.h

SYNOPSIS NI_USERTESTMODE 0
NI_NETINFOTESTMODE 1

DESCRIPTION These constants are used to set the value of the bootMode instance variable. You shouldn't
need to use them unless you're subclassing NILoginPanel and are overriding one of the
runModal methods or implementing a similar method. The method should set bootMode
to NI_USERTESTMODE if the delegate should validate the authentication. The
bootMode instance variable should be set to NI_NETINFOTESTMODE if the
authentication should be validated by the ni_setuserO and ni_setpasswordO functions,
which are documented in the netinfo(3) UNIX manual page.

11-36 Chapter 11: Net! nfo Kit

Structures

NIDomainCeliData

DECLARED IN nikitldomain.h

SYNOPSIS struct NIDomainCellData {
char *name;
BOOL isaLeaf;

DESCRIPTION Data for a cell of a domain browser.

NIHierarchyOfDomains

DECLARED IN nikitldomain.h

SYNOPSIS struct NIHierarchyOIDomains {
int numberOfLevels;
struct NIMultiDomainList *domainListAtLevel;

DESCRIPTION Hierarchy of NetInfo domains.

Types and Constants: NIDomainCellData 11-37

NIMultiDomainList

DECLARED IN nikitldomain.h

SYNOPSIS struct NIMultiDomainList {
int numberOfDomains;
int activeDomain;
id activeDomainObject;
struct NIDomainCellData *topDomain;

DESCRIPTION Data for a domain browser column.

11-38 Chapter 11: NetInfo Kit

12 Networks: Novell NetWare

12-3 Introduction

12-1

12-2

Networks: Novell NetWare

Library:

Header File Directory: IN extDeveloper/Headers/netware

Introduction

NeXTSTEP Release 3 provides programming support for Novell NetWare networking,
allowing your application to communicate with other applications on networked pes, and
to access printers on those networks. The NetWare programming interface is documented
by Novell.

Networks: Novell NetWare 12-3

12-4

13 Phone Kit

13 .. 3 Introduction
13-4 The Telephone Network
13-5 Representing Voice as Digital Data
13-6 Putting Computers on a Phone Line
13-6 The Phone Server and Phone Kit
13-7 Phone Kit Classes
13-8 Getting Set Up
13-8 Monitoring the Connection
13-9 Phone Server Messages
13-10 Making a Call
13-12 Getting a Call
13-13 Sending and Receiving Data

13-15 Classes
13-16 NXPhone
13-21 NXPhoneCall
13-32 NXPhoneChannel

13-37 Functions

13-39 Types and Constants
13-41 Defined Types

13-1

13-2

Phone Kit

Library:

Header File Directory: IN extDeveloper/Headers/phonekit

Introduction

The Phone Kit offers an easy way for you to connect the application you're developing to
a telephone line, to initiate and receive calls over the line, and to transmit and receive data
during a call. The phone line must be attached to the user's computer, or to a computer on
the user's network, through a Hayes ISDN Extender™ or an equivalent device. A modem
is not involved.

The phone line can be a POTS ("plain old telephone service") line or an ISDN (Integrated
Services Digital Network) line. An ISDN line is completely digitized end-to-end, from one
telephone device to the other. It can therefore be used for the transmission of any kind of
digital data. In contrast, the telephones on a POTS line send and receive analog signals,
although the information is typically digitized for part of its journey. Without a modem, a
POTS line can be used only for voice data.

A basic ISDN line has two bearer channels (B channels) that carry information at
64 kilobits per second and one control channel (D channel) that carries control signals at
16 kilobits per second. A channel is a physical partition of the line's information-carrying
capacity. The two B channels can handle calls simultaneously. By using them in
concert with each other, you can achieve data transfers at a rate approaching 128 kilobits
per second.

Phone Kit 13-3

A POTS line, on the other hand, has just one channel. It also carries information at
64 kilobits per second, but because of inaccuracies in the analog-to-digital and
digital-to-analog conversions that are required, it's suitable only for voice transmission. To
send digital data over a POTS line, a modem must specially package the data for analog
transmission.

The Telephone Network

The telephone network is a giant system of circuits and switches that can connect one
telephone device with any other telephone. Phone users rarely need to know about its many
components, but when you substitute a computer for a telephone set, some parts of the
network assume greater importance. The network can be diagrammed something like this:

Figure 13-1. Telephone Network

A group of telephones is connected to the first switching station, a "central office," which
in tum links those telephones into trunk lines, regional offices, and the rest of the phone
syste~'s switching network.

13-4 Chapter 13: Phone Kit

On a POTS telephone line, analog information is passed between the user's telephone and
the central office. Between central offices, the information is typically digitized:

JlJUl
Figure 13-2. POTS Transmission

On an ISDN line, information is also digital between the phone and the central office. So
the central office doesn't need to alter it:

JlJUl
Figure 13-3. ISDN Transmission

Representing Voice as Digital Data

The primary function of the telephone network is to transmit the voice of one phone user
to the ears of another. But, as noted above, both POTS and ISDN phone lines carry the
human voice as a digital signal, at least for part of the way. The conversion to a digital
signal happens at the telephone on an ISDN line and at the central office on a POTS line.

An ISDN phone encodes the speaker's voice using an S-bit mu-Iaw (nonlinear)
quantization at a data rate of S012.S samples per second (S kHz). This encoding favors
lower amplitudes-records more distinctions at low amplitudes than at higher ones-and
captures frequencies to about one-half the sampling rate (4 kHz).

Although it's not what you'd choose if you were recording music, this digitizing scheme is
fast and accurate enough to faithfully reproduce human speech, the purpose for which it
was designed.

A central office uses the same S-bit mu-Iaw encoding to convert an analog signal to a digital
one. When a phone call is made between an ISDN telephone at one end of the connection
and a POTS phone at the other end, the analog-to-digital and digital-to-analog conversions
made at the central office for the POTS line mirror those made by the ISDN phone.

Introduction 13-5

Putting Computers on a Phone Line

When a computer substitutes for a telephone on an ISDN line, there is no human voice, no
analog signal, and no need to convert from one form of information to another. The
telephone network becomes a kind of computer network, one that just happens to also have
some phones on it.

The Phone Kit lets you treat an ISDN line in just this way-as a doorway into a large
computer network on which corinections are established through normal telephone-call
protocols. Of course, if a microphone is attached to the computer, the right software might
turn the computer into a phone and send voice data over the ISDN line. This data would
be treated just like the digital voice data from any ISDN phone.

When a computer substitutes for a telephone on a POTS line, NeXTSTEP software
assumes that any data that's transmitted or received over the line is voice data encoded
according to the 8-bit mu-Iaw quantization described above. Data transmitted during a call
is converted to an analog signal for the POTS line, and analog data received during a call
is converted to digital data. The conversions are done exactly as a central office would do
them. The Phone Kit is not a substitute for a modem.

The Phone Server and Phone Kit

The Phone Kit is just one half of NeXTSTEP telephone-management software. The other
half is the Phone Server, which monitors the phone line and understands the POTS and
ISDN signaling protocols. The Server is an independent process that conveys information
to and from the phone line at the behest of client applications

The Phone Server controls input and output on a telephone line much as the Window Server
controls input from the keyboard and mouse and output to the screen. Just as the Window
Server is able to translate user actions into events and tum PostScript code into visible
images, the Phone Server is able to translate information received over the phone line into
a form that's useful for applications, and it can take information produced by applications
and send it over the line. Applications "talk to" the telephone network through the Phone
Server.

The Phone Kit is an object-oriented interface to the Phone Server, in much the same
way that the Application Kit is an object-oriented interface to the Window Server. The
Phone Kit provides a framework for delivering instructions to the Phone Server and for
receiving notifications from the Server of activity on the phone line. Communication
between the Kit and the Server is through the mechanism of distributed objects and remote
Objective C messages.

13-6 Chapter 13: Phone Kit

Phone Kit Classes

The Phone Kit consists of just three Objective C classes, all direct subclasses of the
Object class:

-f
NXPhoneCall

Object NXPhone

NXPhoneChannel

Figure 13-4. Phone Kit Inheritance Hierarchy

An application must have one NXPhone object, one NXPhoneChannel for each channel
that it uses, and a separate NXPhoneCall for each call:

• The NXPhone object sets up and maintains the application's connection to the Phone
Server. It's also responsible for keeping track of the channels that are used.

• An NXPhoneChannel corresponds to a particular channel on the line. It keeps track
of the calls that are associated with a channel and decides how to respond to an
incoming call.

• An NXPhoneCall object corresponds to a particular call on a channel. It's responsible
for making the call, or answering the phone when a call is received, and for transmitting
and receiving data over the line.

The bulk of the work is done by NXPhoneCall objects. Every application must customize
the NXPhoneCall class-define an NXPhoneCall subclass-to handle calls in an
application-specific manner. The subclass implements methods to respond to notifications
received from the Phone Server, much as View subclasses implement methods to respond
to event messages.

An application that receives incoming calls also needs to customize the NXPhoneChannel
class so that it can provide the appropriate kind of NXPhoneCall to answer incoming calls
and decide which calls to answer.

There should never be a need to define an NXPhone subclass.

Introduction 13-7

Getting Set Up

To begin using the Phone Kit, an application first creates an NXPhone instance and an
NXPhoneChannel for each channel that will be used. The NXPhone object must be
informed about the channels:

id thePhone = [[NXPhone alloc] initType:NX_ISDNDevice]i

id firstChannel = [[MyChannel alloc] initType:NX_B1Channel]i
id secondChannel = [[MyChannel alloc] initType:NX_B2Channel] i

[thePhone addChannel:firstChannel];
[thePhone addChannel:secondChannel] i

Before a channel can be used to make or receive a call, the application must "acquire" it­
lock it down for the application's exclusive use:

if ([thePhone acquireChannel:firstChannel]

The real work of setting up phone calls and carrying on a conversation falls to custom
NXPhoneCall objects (instances of an application-specific subclass of the NXPhoneCall
class). The application creates these objects and associates them with a channel as they're
needed. The manner in which this is done differs for outgoing calls and incoming calls.
See "Making a Call" and "Getting a Call" later in this introduction.

Monitoring the Connection

Phone calls involve the give and take of information. To get information from the Phone
Server (and over the phone line), an application must be listening for remote input from that
source. Applications that display a user interface and respond to events listen for phone
input just as they listen for other remote input-between events. Sending the NXPhone
object a runFromAppKit message adds a dedicated port for the Phone Server to the list of
sources that are checked whenever the application is finished with one event and ready to
get another one.

[thePhone runFromAppKit] i

As the name of this method indicates, it enables the Phone Kit to work with the Application
Kit. Every Application Kit program turns program control over to the user by sending a
run message to its Application object. This message initiates the main event loop.
Thereafter, the application responds only to user-generated events and, between events, to
timed entries and remote messages from other processes. runFromAppKit makes the
Phone Server one of those processes.

13-8 Chapter 13: Phone Kit

Service applications that have no user interface don't initiate a main event loop; they must
therefore monitor the Phone Server port on their own. Sending the NXPhone object, rather
than the Application object, a run message turns program control over to the Phone Server.
Thereafter, the application waits for messages from the Server:

[thePhone run] ;

Like the Application class's run method, this method enters an endless loop; it doesn't
return. The Server becomes the only source of input for the application (unless
additional sources are registered by sending addPort:receiver:method: messages to
the NXPhone object).

Phone Server Messages

All communication between an application and the Phone Server is asynchronous. When
a Kit method calls upon the Server to do something-for example to dial a number or
transmit some data over the phone line-it doesn't wait for the Server to finish; it returns
immediately. Similarly, when the Server sends a message to the application, it doesn't wait
for the application to respond.

An asynchronous message can have no valid return. As soon as the message is dispatched
to the receiving application, it returns in the sending application. The sender can't get the
results of any processing the receiver does, and nothing the receiver returns will ever get
back to the sender.

This fact is indicated in the method descriptions by a void return type. For example:

- (void)remotePickup

A void return is a fairly accurate indication of a method that communicates with the Phone
Server. In some cases, void marks methods that you must implement to respond to remote
messages from the Server. In other cases, void methods are ones you invoke to send a
remote message to the Server.

Introduction 13-9

Making a Call

To make an outgoing call, the application first allocates and initializes an instance of its
custom NXPhoneCall subclass, and adds it to the NXPhoneChannel object corresponding
to the physical channel that will be used to make the call:

id myCall = [[MyPhoneCall alloc] initType:NX_DataCall];

[firstChannel addCall:myCall];

Any number of calls can be associated with (added to) a channel, but only one can actively
use the channel at a time. The NXPhoneChannel can identify the NXPhoneCall that's
currently handling a call:

NXPhoneCall *currentCall = [firstChannel activeCall];

Once the NXPhone, NXPhoneChannel, and NXPhoneCall objects are in place, the
connection to the Phone Server is running, the NXPhoneChannel has been added to the
NXPhone and acquired, and the NXPhoneCall has been added to the NXPhoneChannel,
you're ready to initiate a call.

The procedure for making a call with the Phone Kit parallels the procedure used when
making calls from an ordinary telephone.

• The messages you send the NXPhoneCall object correspond to the actions you would
normally take when making a call-picking up the receiver, dialing, talking into the
phone, hanging up.

• The notifications the NXPhoneCall object receives from the Phone Server correspond
to the kinds of feedback you normally get over the phone line-a dial tone, a busy signal
or the sound of the phone ringing at the other end, the noise when the phone is answered
and the other party says "hello," and the click when it's hung up again.

This feedback is a necessary part of the process; it signals what it's appropriate to do next.
For example, people normally listen for a dial tone before dialing; they wait for someone
to answer the phone before starting to talk.

This same sort of interaction is simulated when using the Kit. In an NXPhoneCall subclass,
you implement methods that respond to Phone Server notifications in an appropriate
manner, normally by taking the next logical step in completing the call. For example, the
method that receives a dial tone notification responds by dialing a number.

13-10 Chapter 13: Phone Kit

Notification methods are also implemented to keep users informed of the current state of
the call so that they can be prompted for input as necessary.

To initiate a call, you send the NXPhoneCall object a pickUp message, telling it to take the
phone off-hook:

[myCall pickUp];

This is the only action you take without waiting for some feedback from the Phone Server.
(Note that this message must precede a run message to the NXPhone object, since run
doesn't return.)

After the phone is off-hook, the NXPhoneCall object receives a dialToneReceived
notification. This lets you know that the phone line and channel are working and that it's
OK to begin dialing:

- (void)dialToneReceived

[self dialDigits:"18008006398"];

Once the number is dialed, the NXPhoneCall is notified through a dialing Complete
message. It may then receive either a remoteBusy or a remoteRing notification. If the
number that you called is busy, you need to hang up and let the user know:

- (void)remoteBusy

[self hangUp];

If the other party answers the phone, the NXPhoneCall receives remotePickup and
call Connected notifications, in that order. Like remoteRing, a remotePickup method can
be used to inform the user of the current state of the call. The call Connected notification
is used to begin the transfer of data:

- (void)callConnected

[self transmitData:&theData length:numBytes];

Introduction 13-11

If the other party hangs up, the NXPhoneCall should clean up as necessary and also
hang up:

- (void)remoteHangup

[self hangUp];

The last notification, callReleased, announces that the call is over. It can be implemented
to free the NXPhoneCall:

- (void)callReleased

[firstChannel removeCall:self];
[self free];

Getting a Call

Incoming phone calls arrive on a particular channel and are first brought to the attention of
the NXPhoneChannel object. The NXPhoneChannel has two responsibilities:

• To create or designate an NXPhoneCall object to handle the call.
• To accept or reject the call.

The NXPhoneChannel is notified of the call by an allocatelncomingCallOfType:
message. A subclass should implement this method to return an application-specific
NXPhoneCall object to answer the phone and carry on a conversation with the caller.

- allocateIncomingCallOfType:callType

return [[MyPhoneCall alloc] initType:callType];

Next, the NXPhoneChannel receives an acceptCall: message asking it to return YES if it
wants the call and NO if it doesn't:

- (BOOL)acceptCall:theCall

if([theCall type]
return YES;

return NO;

13-12 Chapter 13: Phone Kit

If the answer is YES, the designated NXPhoneCall will receive a ring notification. The
appropriate response is to answer the phone:

- (void)ring

[sel f pickUp];

The pickUp method takes the phone off-hook and makes the connection. The
NXPhoneCall then receives a call Connected notification telling it that it's OK to begin
the conversation.

Sending and Receiving Data

Phone conversations are not always orderly affairs. People can talk at the same time, or
ignore and interrupt one another. There can be long silences.

The same is true when you're using the Phone Kit. Incoming information arrives as a
continuous bit stream, which the Kit slices up and reports to the NXPhoneCall object in
dataReceived:length: messages. Outgoing information is sent through
transmitData:length: messages. Like all other communications between the Phone
Server and the application, these messages are asynchronous. Neither the Server nor the
application waits for an acknowledgement. Both can be transmitting at once.

It's important, therefore, for both parties to a call to agree on protocols that will keep them
coordinated. The nature of the protocols will vary depending on the application and the
type of data it processes.

On an open phone line, information is continually being transmitted in both directions. So
it's also important to respond to dataReceived:length: notifications quickly, before a
backlog of unhandled messages builds up. Data will be discarded (messages lost) if your
application doesn't keep up.

Even when neither party is transmitting any data, there's constant feedback that the line is
open and the other party hasn't hung up. You can hear the silence. Digitally, the other
party's silence is received as a stream of uniform bits, each with a value of 1.. This filler
data is transmitted when no other information is being sent. Like other data, it's reported
to the application in dataReceived:length: messages.

Introduction 13-13

However, the NXPhoneCall will throwaway this filler data if you ask it to use HDLC
(High-Level Data Link Control) encoding.

[myCall useHDLC:YES];

HDLC marks the beginning and end of meaningful data with a byte equal to Ox7E:

01111 1 1 0

To ensure the uniqueness of this marker, a 0 is inserted after all sequences of five I 's within
the bracketed data:

1 1 1 1 1 1 1 1 1 1 0

In addition, the encoder does a cyclic redundancy check (CRC) and adds a two-byte
checksum at the end of the data.

HDLC encoding thus ensures the integrity of the data and makes it easy to distinguish filler
data from meaningful data.

When HDLC is used, the Phone Kit encodes the data you transmit and decodes the data you
receive. It packages each bracketed sequence of HDLC-encoded data into one
dataReceived:length: notification and ignores the filler.

When HDLC data is decoded, the marker bytes and inserted O's are thrown away, the
checksum is stripped from the end of the data, and a redundancy check is again made. If
the checksums don't match, the data is discarded and no dataReceived:length: message is
sent. The theory is that it's better not to deliver any data than to deliver bad data.

13-14 Chapter 13: Phone Kit

Classes

NXPhone

Inherits From: Object

Declared In: phonekitINXPhone.h

Class Description

An NXPhone object corresponds to a telephone line that's connected to the user's
computer. When first initialized, it establishes a connection to the Phone Server for
that line.

One NXPhone object handles communication over all the channels on the phone line. It
maintains a list of NXPhoneChannel objects, one for each channel being used.
NXPhoneChannel objects, in tum, manage NXPhoneCall objects, which corresp<;md to
actual or potential calls made over the line. An NXPhoneCall object handles the work of
making or receiving a call, and transmitting and receiving data during a call.

Communications with the Phone Server are sent and received as remote messages. To get
information from the Server, an application has to be listening for remote messages from
that source. This can be accomplished in two ways:

• By adding the Server to the list of sources for remote messages that can be received
along with events. A runFromAppKit message to the NXPhone object means that the
connection will be run from within Application Kit event loops.

• By running independently of the event loop. A run message to the NXPhone object
causes the application to wait for the remote messages that announce activity on the line,
and to respond only to that input.

Instance Variables

None declared in this class.

13·16 Chapter 13: Phone Kit

Method Types

Initializing an NXPhone object - init
- initType:

Running the connection to the Phone Server
-run
- runFromAppKit:
- addPort:recei ver:method:

Testing the phone line - isActive

Managing channels - addChannel:
- removeChannel:
- acquireChannel:
- releaseChannel:

Instance Methods

acquireChannel:

- (BOOL)acquireChannel:aChannel

Locks down aChannel for the exclusive use of the application. The channel must be one
that the receiving NXPhone object was previously informed about through an
addChannel: message. If the channel can be acquired, this method returns YES. If not, it
returns NO. A channel can't be acquired if another application is currently using it.

A channel must be acquired before it can be used to make or receive calls.

See also: - releaseChannel:, - addChannel:

addChannel:

- (void)addChannel:aChannel

Adds a new channel to the NXPhone object's list of channels. aChannel must be a kind of
NXPhoneChannel object. Its type must correspond to one the channels on the phone line.
Adding a channel makes it possible to acquire the channel so that it can be used to make
and receive calls.

See also: - removeChannel:, - acquireChannel:, - initType: (NXPhoneChannel)

Classes: NXPhone 13-17

addPort:receiver:method:

- addPort:(port_t)aPort
receiver: an Object
method: (SEL)aSelector

Registers aPort as a source of remote input in addition to the Phone Server. While the
Phone Server is being monitored as the result of a run message, aPort will also be checked.,
When a Mach message is received at aPort, the Phone Kit notifies anObject with an
aSelector message. aSelector should be a method that takes one argument, a pointer to the
remote message received at the port. For example:

- retrieveMessage: (msg_header_t *)machMessagei

Every Mach message begins with a ms~header_t structure. This structure is defined in
mach/message.h and is documented in NeXTSTEP Operating System Software.

addPort:receiver:method: works only if the Phone Server is monitored as a result of a
run message, not a runFromAppKit message.

See also: - run

init

- init

Invokes the initType: method to initialize the receiving NXPhone object to be type
NX_ISDNDevice, and returns the initialized object.

See also: - initType:

initType:

- initType:(NXPhoneDeviceType)deviceType

Establishes the application's connection to the phone server, initializes the receiving
NXPhone object's type to device Type , and returns the initialized object.

NXPhoneDeviceType is defined in phonekit/phoneTypes.h. Its permitted values are:

NX_ISDNDevice
NX_POTSDevice

for an ISDN phone line
for a POTS ("plain old telephone service") line

This method is the designated initializer for the class.

13-18 Chapter 13: Phone Kit

isActive

- (BOOL)isActive

Returns YES if the phone line is working, and NO if for some reason it's down.

releaseChannel:

- (void)releaseChannel:aChannel

Releases aChannel from the exclusive use of the application. aChannel should be an
channel that was previously acquired by an acquireChannel: message to the same receiver.

Releasing a channel while it has an active phone call will lead to errors.

See also: - acquireChannel:, - activeCall (NXPhoneChannel)

removeChannel:

- (void)removeChannel:aChannel

Removes aChannel from the list of channels associated with the NXPhone object.
aChannel must be a kind of NXPhoneChannel object, and one that was previously added
through an addChannel: message.

A channel should be released before it is removed.

See also: - addChannel:, - releaseChannel:

run

-run

Runs the connection to the Phone Server, causing the application to wait for notification
messages from the Server. This method doesn't return; it terminates only when the
application (or the thread that the NXPhone object operates in) does. As it runs, the
application (or thread) receives input only from the Phone Server.

Before an application can get remote input from the Phone Server, the NXPhone object
must receive either a run message or a runFromAppKit message. runFromAppKit runs
the connection from the main event loop.

A run message can be sent to the NXPhone object in a separate thread of execution. It's
safe to use the Phone Kit in its own thread.

See also: - runFromAppKit, - addPort:receiver:method:

Classes: NXPhone 13-19

runFromAppKit

- runFromAppKit

Adds the Phone Server's port, at a priority of NX_MODALRESPTHRESHOLD, to the list
of ports that will be monitored during the application's event loop. The application listens
for notification messages from the Phone Server in the same way that it listens for events
and other remote input. Returns self.

For this method to work, the application must enter the main event loop by sending a run
message to the Application object.

See also: - run, - run (Application class of the Application Kit)

13-20 Chapter 13: Phone Kit

NXPhoneCal1

Inherits From: Object

Declared In: phonekitINXPhoneCall.h

Class Description

An NXPhoneCall object corresponds to an actual or potential phone call on a channel. It's
the object that initiates an outgoing call or answers an incoming call. Once the connection
is made, it's responsible for transmitting and receiving data over the line. When the call is
terminated, it's the object that hangs up the phone. An NXPhoneCall object is created when
the call begins and is typically freed after the call is terminated.

For an outgoing call, a channel must first be selected and acquired. An NXPhoneCall
object is then created and added to the channel, as illustrated below. The call is initiated by
a message to take the phone off-hook:

myCall = [[MyNXPhoneCallSubclass alloc] initType:NX_VoiceCall];
[myChannel addCall:myCall];
[myCall pickUp] ;

For an incoming call, an NXPhoneCall object is created in response to an
allocatelncomingCallOIType: message sent to the NXPhoneChannel. If the channel
accepts the call (by returning YES to an acceptCall: message), the NXPhoneCall will
receive a ring message announcing that the phone is ringing. Its response should be to
answer the phone:

- (void)ring

[self pickUp] ;

As this last example illustrates, NXPhoneCall is an abstract class. To make it usable in an
application, you must define your own NXPhoneCall subclass and implement methods that
will respond to the various notification messages (like ring) that an NXPhoneCall receives.
It's not necessary to implement a method for each notification, but without some
application-specific methods in its repertoire, an NXPhoneCall won't be able to do any
useful work.

Classes: NXPhoneCall 13-21

Instance Variables

None declared in this class.

Method Types

Initializing an NXPhoneCall object
- init
- initType:
- setType:
-type

Initiating a call - pickUp

Getting a call

Sending and receiving data

Putting a call on hold

Detecting a touch-tone

Terminating a call

- dialToneReceived
- dialDigits:
- dialingComplete
- remoteBusy
- remoteRing
- remotePickup

-ring
-pickUp

- callConnected
- transmitData:length:
- dataReceived:length:
-useHDLC:

-hold
-resume

- toneReceived:

- hangUp
- remoteHangup
- callReleased

Finding the current state of the call
- state

Responding to errors - error:reason:

13-22 Chapter 13: Phone Kit

Instance Methods

caliConnected

- (void)callConnected

Implemented by subclasses to respond to a notification that a connection has been made.
For outgoing calls, a call Connected message is received immediately after a
remotePickup message. For incoming calls, it's the first notification received after
pickUp takes the phone off-hook to answer the call.

Typically, this notification is used to begin sending and receiving data over the line.

See also: - pickUp, - remotePickup

caliReleased

- (void)callReleased

Implemented by subclasses to respond to a notification that a call has been terminated. A
call Released message is received after the NXPhoneCall hangs up (hangUp) or the other
party does (remoteHangup).

This method can be used to free the NXPhoneCall object and do any other cleanup
necessary.

See also: - hangUp, - remoteHangup

dataReceived:length:

- (void)dataReceived:(void *)data length:(int)numBytes

Implemented by subclasses to accept data received over the phone line. If the data is being
transferred using HDLC encoding, each dataReceived:length: message transmits one
packet of information. The packet contains numBytes bytes of data. The Phone Kit
decodes the data (from HDLC) before notifying the NXPhoneCall of its arrival.

If HD LC is not used, each message reports an arbitrary amount of data, numBytes in length.
The data will be byte-aligned, but there's no guarantee that it will exactly correspond to the
packet of information sent in a transmitData:length: message. The Phone Kit may divide
the stream of data that's received differently and report it in different segments than those
used to transmit it.

Classes: NXPhoneCall 13-23

Received data may include filler (uniform data with all bits set to 1) that's inserted into the
bit stream as padding when nothing else is being transmitted. When HDLC is used, the
Phone Kit filters out this extraneous data.

During a phone call, data is transferred at up to 64 kilobits per second, so an NXPhoneCall
object can expect to receive a continuous stream of dataReceived:length: messages. A
dataReceived:length: method therefore should not initiate any time-consuming
processing. The Phone Kit will store incoming data that hasn't yet been read, but the
backlog may fairly quickly overwhelm existing resources. If that happens, data will be lost.

This method is responsible for freeing the data it receives using freeO or NXZoneFreeO.
Do not use vm_deallocateO.

See also: - transmitData:length:, - llseHDLC:, NXZoneFreeO (Common Functions)

dialDigits:

- (void)diaIDigits:(char *)digits

Initiates dialing of the null-terminated string contained in digits. The following dialing
characters are all acceptable:

123
456
789
* 0 #

This method returns before the dialing is done. A dialing Complete notification will be
received when all the characters in digits have been dialed.

On a POTS line, it may be necessary to break up the dialing sequence in order to insert
delays-for example, after the area code-to allow the switching mechanism time to react.
Delays are unnecessary on an ISDN line.

See also: - dialToneReceived, - dialing Complete

dialingComplete

- (void)dialingComplete

Implemented by subclasses to respond to a notification that the entire sequence of digits
passed in a previous dialDigits: message has been dialed successfully.

See also: - dialDigits:

13-24 Chapter 13: Phone Kit

dialToneReceived

- (void)diaIToneReceived

Implemented by subclasses to respond to a message notifying the NXPhoneCall that the
phone line is working and ready for an outgoing call. Typically, subclasses use this method
to initiate dialing with the dialDigits: method .

. A dialToneReceived message is the first notification that the NXPhoneCall receives after
the pickUp method initiates an outgoing call.

See also: - pickUp, - dialDigits:

error: reason:

- (void)error:(SEL)lastMessage reason:(NXPhoneError)cause

Implemented by subclasses to respond to an error. lastMessage is the selector for the last
Objective C message sent to the NXPhoneCall before the error occurred, and cause
indicates what type of error it is. Among the possible causes are:

NX_NotEndToEndISDN

NX_BufferOverflow

NX_ TransmitFailure

NX_HardwareFailure

NX_ Temporary N etworkFailure

NX_Facility N otSubscribed

Occurs when you try to set up a data call (type
NX_DataCall), which implies ISDN data
transfers of 64 kilobits per second, but some part
of the phone line won't support that rate of
transfer.

Indicates that data has been lost because the
application is trying to transmit it faster than the
phone line is able to accept it.

Indicates an internal error that prevents data from
being transmitted

Occurs when a cable has come loose or there's
some other disturbance to the hardware.

Indicates that the telephone network is not
responding.

Indicates that the telephone network doesn't
believe the user is an ISDN subscriber.

The NXPhoneError type and its values are defined in phonekitlphoneError.h and are
described in more detail in the "Types and Constants" section of this chapter.

See also: - channelError: (NXPhoneChannel)

Classes: NXPhoneCall 13-25

hangUp

- (void)hangUp

Hangs up the phone and terminates the call.

See also: - state, - callReleased

hold

- (void)hold

Puts the phone call on hold. The phone will still be off-hook, but the NXPhoneCall will no
longer be the active call for its channel.

Note: This method is not implemented for release 3.0

See also: - resume, - active Call (NXPhoneChannel)

init

- init

Invokes the initType: method to initialize the NXPhoneCall object to type NX_ VoiceCall,
and returns the initialized object.

See also: - initType:

initType:

- initType:(NXPhoneCallType)callType

Enables the receiving NXPhoneCall to get notification messages from the Phone Server,
sets its type to callType, and returns the initialized object. callType must be either
NX_DataCall, which implies ISDN data transfers at 64 kilobits per second, or
NX_ VoiceCall, for all other kinds of calls. The initial state of the NXPhoneCall is
NX_PhoneIdle.

If callType is NX_DataCall, the NXPhone object must be of type NX_ISDNDevice, and
the NXPhoneChannel must have an ISDN channel type-NX_B 1 Channel,
NX_B2Channel, or NX_AnyISDNChannei. If callType is NX_ VoiceCall, the NXPhone
object can be either NX_ISDNDevice or NX_POTSDevice.

This method is the designated initializer for the class.

13-26 Chapter 13: Phone Kit

NXPhoneCallType and its values are defined in phonekit/phoneTypes.h.

See also: - setType:, - type, - state

pickUp

- (void)pickUp

Takes the phone off-hook, making the NXPhoneCall object the active call for its channel.
This is the first step in initiating an outgoing call or answering an incoming call.

See also: - active Call (NXPhoneChannel)

remoteBusy

- (void)remoteBusy

Implemented by subclasses to respond to a notification that a connection can't be made for
an outgoing call because the phone being called is busy.

See also: - remoteRing

remoteHangup

- (void)remoteHangup

Implemented by subclasses to respond to a notification that the other party has hung up the
phone. This method can be implemented to give feedback to users that the call has been
terminated. It should not be used to free the NXPhoneCall object; that should wait until a
callReleased notification.

See also: - callReleased

remotePickup

- (void)remotePickup

Implemented by subclasses to respond to a notification that the party being called answered
the phone, taking it off-hook. This method can be implemented to let users know that the
call has gone through.

See also: - pickUp, - call Connected

Classes: NXPhoneCal1 13-27

remoteRing

- (void)remoteRing

Implemented by subclasses to respond to a notification that the phone being called is
ringing. There's only one remoteRingnotification, no matter how many times the phone
rings.

See also: - remoteBusy

resume

- (void)resume

Resumes a phone call that had been put on hold. The receiving NXPhoneCall is made the
active call for its channel again.

Note: This method is not implemented for release 3.0

See also: - hold, - active Call (NXPhoneChannel)

ring

- (void)ring

Implemented by subclasses to respond to a notification that the phone is ringing. When an
NXPhoneChannel accepts an incoming call, the NXPhoneCall object passed in the
acceptCall: message gets a ring notification. Typically, this method is implemented to
answer the phone, as illustrated under "Class Description" above.

Only one ring message is sent, no matter how many times the phone rings.

See also: - pickUp, - acceptCall: (NXPhoneChannel)

setType:

- (void)setType: (NXPhoneCallType)callType

Sets the type of the NXPhoneCall to callType, which must be either NX_DataCall or
NX_ VoiceCall. Typically, the type is set when the object is initialized immediately after
being allocated. See the initType: method for more on the possible types.

See also: - initType:, - type

13-28 Chapter 13: Phone Kit

state
- (NXPhoneCallState)state

Returns the current state of the NXPhoneCall. The return value will be one of the
following:

NX_PhoneNullState

NX_PhoneIdle

NX_PhoneOriginating

NX_PhoneAlerting

NX_PhoneConversation

NX_PhoneReleasing

The NXPhoneCall object is not in a meaningful state.

The NXPhoneCall is not handling a call. It doesn't have
the phone off-hook.

The NXPhoneCall has taken the phone off-hook and is
ready for a call to be made.

The NXPhoneCall has initiated a call. The number is
being dialed.

The NXPhoneCall is waiting for a connection to be made
after dialing.

The connection has been made.

Either the other party has hung up but the NXPhoneCall
hasn't yet, or the NXPhoneCall has hung up but hasn't
received confirmation from the phone system.

These values and the NXPhoneCallState type are defined in phonekitlphoneTypes.h.

toneReceived:
- (void)toneReceived:(int)key

Implemented by subclasses to respond to a notification that a DTMF (Dual-Tone
Modulation Frequency) was detected. The tone detected is the one produced by key on a
touch-tone telephone. key will be an integer from 1 through 12, where 10 represents the '*'

key, 11 the zero key, and 12 the '#' key.

The Phone Kit sends a separate message to report each DTMF signal that's detected from
the other party while the connection is maintained.

Note: This method is not currently implemented for a POTS line.

Classes: NXPhoneCall 13-29

transmitData:length:

- (void)transmitData:(void *)data length:(int)numBytes

Transmits data over the phone line. The length of the data in bytes should be reported in
the second parameter, numBytes.

If the connection is to a POTS line, it's assumed that data is mu-Iaw encoded voice data. It
will be converted to an analog signal when it's sent over the phone line.

If HDLC encoding is used, data is assumed to be one coherent packet of information. The
packet sent in a transmitData:length: message will match exactly the packet reported at
the other end by a dataReceived:length: message. If HDLC is not used, the data stream
may be segmented differently on the receiving end.

Data cannot be transmitted over a phone line any faster than 64 kilobits per second.

See also: - useHDLC:, - dataReceived:length:

type

- (NXPhoneCallType)type

Returns the call type, either NX_DataCall or NX_ VoiceCall

See also: - initType:, -setType:

useHDLC:

- (void)useHDLC:(BOOL)flag

Determines whether transmitted data will be HDLC encoded and whether received data is
assumed to be HDLC encoded. Errors will result if one party to a conversation uses HDLC
encoding but the other doesn't.

The HDLC encoding scheme signals the start and the end of valid data with a byte equal to
Ox7E-a sequence of six nonzero bits bounded by zeros:

o 111 1 1 1 0

Within the data, it inserts an empty bit after every sequence of five nonzero bits:

1 1 111 1 1 1 1 1 0

The Ox7E markers and extra zeros are removed when the data is decoded.

13-30 Chapter 13: Phone Kit

HDLC encoding enables data to be sent and received in identical packets. It also makes
it easy to distinguish meaningful data from the filler that's transmitted when nothing else
is being sent. When HDLC is used, the Phone Kit filters out all filler bytes from the
incoming data.

HDLC encoding includes a cyclic redundancy check before the data is sent and after it's
received. If the two checksums don't match, the data is discarded; it's not reported to the
receiving application.

See also: - dataReceived:length:, - transmitData:length:

Classes: NXPhoneCall 13-31

NXPhoneChannel

Inherits From:

Declared In:

Class Description

Object

phonekitINXPhoneChannel.h

An NXPhoneChannel corresponds to a particular call-carrying channel on a phone line. A
channel is a physical attribute of the line and the way information is transmitted on the line.

A basic-rate ISDN line has two data channels, Bland B2, and a control channel, D, that
can also be pressed into service for data. A POTS line has just one channel.

Phone calls, in the form of NXPhoneCall objects, are associated with a particular channel.
They must be added to the channel before they can handle a call. The NXPhoneChannel
keeps track of the calls on the channel, much as the NXPhone object keeps track of the
channels being used.

When an incoming call arrives, the NXPhoneChannel is responsible first for creating an
NXPhoneCall object that can handle the call and then for accepting or rejecting the call.
These actions are the responsibility of the allocatelncomingCallOfType: and acceptCall:
methods. Since each application must develop its own NXPhoneCall subclass to handle its
calls, and only the application can know whether to accept a particular call, the
implementation of these two methods is left to NXPhoneChannel subclasses.

Instance Variables

None declared in this class.

13-32 Chapter 13: Phone Kit

Method Types

Initializing an NXPhoneChannel object
- init
- initType:
- setType:
-type

Tracking calls - addCall:
- removeCall:
- activeCall

Setting up an incoming call - allocateIncomingCall OfType:

Responding to errors

Instance Methods

acceptCall:

- acceptCall:

- channelError:

- (BOOL)acceptCall:newCall

Implemented by subclasses to accept or refuse an incoming call. newCall is a kind of
NXPhoneCall. It's the same object that was previously returned by
allocatelncomingCallOfType:, but it has been further initialized and is now ready to
accept messages.

If this method returns YES, newCall is added to the channel and notified of the incoming
call by a ring message. If this method returns NO, it should first free the newCall object.

See also: - ring (NXPhoneCall), - allocatelncomingCallOfType:

activeCall

- active Call

Returns the NXPhoneCall that's currently using the channel, or nil if there is no active call.
An NXPhoneCall becomes active when it takes the phone off-hook.

See also: - pickUp (NXPhoneCall)

Classes: NXPhoneChannel 13-33

addCall:

- (void)addCall:aCall

Adds aCall, which must be a kind of NXPhoneCall, to the list of calls associated with the
channel. An NXPhoneCall cannot use the phone line or become active until it has been
added to the channel.

See also: - removeCall:

allocatelncomingCallOfType:

- allocatelncomingCallOfType:(NXPhoneCallType)ca II Type

Implemented by subclasses to return an NXPhoneCall object to handle an incoming call.
The object returned should be an instance of the NXPhoneCall subclass designed to handle
calls for the application. It should be initialized to callType.

This method is invoked by the Phone Kit when an incoming call is received on the channel.
It should return a valid object whether or not the application intends to accept the call. A
second notification, acceptCall:, will give the application a chance to reject the call.

See also: - acceptCall:

channelError:

- (void)channelError: (NXPhoneError) cause

Implemented by subclasses to respond to an error. The argument, cause, indicates what
kind of error it is. For an NXPhoneChannel, cause is apt to be NX_NoHardwareAttached,
which occurs when the user's computer is not hooked up to a phone line. See the "Types
and Constants" section of this chapter for a complete description of the NXPhoneError type
and all the possible error values.

See also: - error:reason: (NXPhoneCall)

init

-init

Invokes the initType: method to initialize the type of the receiving NXPhoneChannel to
NX_AnyISDNChannel, and returns the initialized object. NX_AnyISDNChannel means
that the object will correspond to one of the two ISDN bearer channels, B 1 or B2.

See also: - initType:

13-34 Chapter 13: Phone Kit

initType:

- initType:(NXPhoneChanneIType)channelType

Initializes the receiving NXPhoneChannel, sets its type to channelType, and returns the
initialized object. channelType must be one of the following constants:

NX_B 1 Channel
NX_B2Channel
NX_DChannel
NX_POTSChannel
NX_AnyISDNChannel

not validfor Release 3.0

NX_AnyISDNChannel allows the Phone Kit to decide which ISDN channel, either B 1
or B2, the NXPhoneChannel will correspond to. Once the correspondence is set, it will
not change.

NXPhoneChannelType and these constants are. defined in phonekit/phoneTypes.h.

This method is the designated initializer for this class.

See also: - type, - setType:

removeCall:

- (void)removeCall:aCall

Removes aCall from the list of calls associated with the NXPhoneChannel. aCall must be
a kind of NXPhoneCall object that was previously associated with the channel in an
addCall: message. It's an error to remove the currently active call.

See also: - addCall:, - active Call

setType:

- (void)setType:(NXPhoneChanneIType)channelType

Sets the type of the NXPhoneChannel to channelType. The type is usually set by
initType: immediately after the object is allocated. See that method for a description of
the possible types.

NXPhoneChannelType and its permitted values are defined in phonekit/phoneTypes.h.

See also: - initType:, - type

Classes: NXPhoneChannel 13-35

type
- (NXPhoneChannelType)type

Returns the channel type that was set by initType: or setType:. See the initType: method
for a list of the possible types.

See also: - initType:, - setType:

13-36 Chapter 13: Phone Kit

Functions

NXPhoneErrorString()

SUMMARY Get a string matching an error constant

DECLARED IN phonekitiphoneError.h

SYNOPSIS const char *NXPhoneErrorString(NXPhoneError errval)

DESCRIPTION This function returns a string that's equivalent to the NXPhoneError constant passed as an
argument. In each case, the characters in the string exactly match those in the constant:

String Returned

"NX_N otEndToEndISDN"
"NX_BufferOverflow"
"NX_ TransmitFailure"
"NX_N oHardwareAttached"
"NX_HardwareFailure"
"NX_TemporaryNetworkFailure"
"NX_Facility N otSubscribed"

NXPhoneError Constant

NX_NotEndToEndISDN
NX_BufferOverflow
NX_ TransmitFailure
NX_N oHardwareAttached
NX_HardwareFailure
NX_TemporaryNetworkFailure
NX_Facility N otSubscribed

These constants and the NXPhoneError type are documented in the "Types and Constants"
section of this chapter.

If errval doesn't match any of the NXPhoneError constants, the string "Invalid error"
is returned.

13-38 Chapter 13: Phone Kit

Types and Constants

The Phone Kit has two header files that support the NXPhone, NXPhoneChannel, and
NXPhoneCall classes:

phoneError.h

phoneTypes.h

Defines the error values reported by NXPhoneCall's error:cause:
method and NXPhoneChannel' s channelError: method.

Defines the types that are passed to the initType: methods for each
of the three Phone Kit classes, and the values returned by
NXPhoneCall's state method.

The contents of these header files are documented in this section.

13-40 Chapter 13: Phone Kit

Defined Types

NXPhoneCaliState

DECLARED IN phonekitiphoneTypes.h

SYNOPSIS typedef enum {
NX_PhoneNullState = -1,
NX_Phoneldle = 0,
NX_PhoneOriginating = 1,
NX_PhoneDialing = 2,
NX_PhoneConversation = 3,
NX_PhoneAlerting = 4,
NX_PhoneReleasing = 5

} NXPhoneCallState;

DESCRIPTION This type is used by just one method in the Phone Kit. NXPhoneCall's state method returns
NXPhoneCallState constants to report the current status of a call. See that method for a
description of what the constants mean.

NXPhoneCaliType

DECLARED IN phonekitiphoneTypes.h

SYNOPSIS typedef enum {
NX_DataCall = 4,
NX_ VoiceCall = 5

} NXPhoneCallType;

DESCRIPTION These constants are used as arguments to NXPhoneCall's initType: method to initialize the
type of call. NX_DataCall is for ISDN data transmissions at 64 kilobits per second;
NX_ VoiceCall is for all other calls, including both ISDN and POTS calls. ISDN channels
can support either type; POTS, channels support only voice calls.

Types and Constants: NXPhoneCallState 13-41

NXPhoneChannelType

DECLARED IN phonekitlphoneTypes.h

SYNOPSIS typedef enum {
NX_BIChannel,
NX_B2Channel,
NX_DChannel, not implementedfor Release 3.0
NX_POTSChannel,
NX_AnyISDNChannel

} NXPhoneChannelType;

DESCRIPTION These constants are used as arguments to NXPhoneChannel's initType: method to set the
type of channel. A channel for a POTS phone line must be initialized to
NX_POTSChannel. A channel on an ISDN line can be initialized to NX_B 1 Channel or
NX_B2Channel, for the two bearer channels, or to NX_AnyISDNChannel, which allows
the Phone Kit to pick one of the bearer channels.

NXPhoneDeviceType

DECLARED IN phonekitlphoneTypes.h

SYNOPSIS typedef enum {
NX_ISDNDevice,
NX_POTSDevice

} NXPhoneDeviceType;

DESCRIPTION The constants are used to arguments to NXPhone's initType: method to set the type
of telephone line. NX_ISDNDevice is for ISDN lines, NX_POTSDevice is for all other
phone lines.

13-42 Chapter 13: Phone Kit

NXPhoneError

DECLARED IN phonekitiphoneError.h

SYNOPSIS typedef enum {
NX_NotEndToEndISDN,
NX_BufferOverflow,
NX_ TransmitFailure,
NX_NoHardwareAttached,
NX_HardwareFailure,
NX_ TemporaryNetworkFailure,
NX_Facility NotSubscribed

} NXPhoneError;

DESCRIPTION The NXPhoneError type defines a set of constants that are used to report phone errors.
All the errors listed, except NX_NoHardwareAttached, occur during a phone call or when
a call is attempted. They're reported in a error:reason: message to the NXPhoneCall
object. NX_NoHardwareAttached errors are reported to the NXPhoneChannel in a
channelError: message.

The NX_NotEndToEndISDN error occurs when some part of the phone line between the
user's computer and the phone or computer the user is connected to at the other end of the
line doesn't support ISDN data transmission at 64 kilobits per second. When this is the
case, ISDN data transmission is not possible and the call type cannot be NX_DataCall.

NX_BufferOverflow is an error that occurs when you attempt to transmit too much data too
quickly. The phone line can accept no more than 64 kilo bits of data per second. If your
application sends data to the Phone Server at a faster rate, the excess will be buffered and
transmitted in due course. However, it's possible to overwhelm the buffers, in which case
they'll overflow and data will be lost.-

The NX_ TransmitFailure error indicates that, for some internal reason, data could not be
transmitted. This error should be encountered rarely, if ever. If you do see it, consider it a
NeXTSTEP bug.

NX_NoHardwareAttached means that the computer isn't attached to a phone line through
the Hayes ISDN Extender or an equivalent device.

NX_HardwareFailure indicates that, while a call is in progress, a cable has become
detached, power has been lost, or some other hardware disruption has occurred.

NX_TemporaryNetworkFailure indicates that the phone line is down or the phone network
is temporarily not responding.

Types and Constants: NXPhoneError 13-43

The NX_FacilityNotSubscribed error occurs when an application attempts a data call but
the phone network doesn't believe the user is an ISDN subscriber. This error should be
rare; it mainly occurs on Northern Telecom® phone lines when the user fails to enter the
required service profile identifier. Users can enter this identifier in the Phone Manager
application.

13-44 Chapter 13: Phone Kit

1 Preferences

14-3
14-4
14-5

14-7
14-8
14-10

Introduction
Building a Preferences Module
Some Requirements and Considerations

Classes
Application Additions
Layout

14-1

14-2

Preferences

Library: None, this API is defined by the Preferences application

Header File Directory: lNextDeveloperlHeaders/apps

Import: apps!Preferences.h

Introduction

The Preferences application lets the user customize system features to agree with personal
preferences. By clicking each button in tum at the top of the Preferences window, the user
can reveal groups of controls for setting mouse, keyboard, font, and other preferences:
Programmatically, these displays are provided by modules that Preferences loads into itself.
With the API described in this chapter, you can create additional modules that can be added
to the ones that are commonly displayed in Preferences.

A Preferences module contains three components: a TIFF image for the button that
represents the new display, a nib file containing the interface for the display, and a file
containing the code linking the interface to the Preferences application. When
Preferences begins running, it locates modules to be loaded by searching these locations
in the order listed:

~lLibrary !Preferences
1L0calLibrary!Preferences
IN extLibrary !Preferences
IN eXTApps!Preferences.app

Preferences 14-3

It looks for bundles with names of the form "MyModule. preferences". When it locates such
a bundle, it loads the executable code from the bundle and adds a new button to the scrolling
list at the top of the Preferences window. When a user clicks the button, the new module's
interface is displayed in the lower portion of the Preferences window. Notice that
Preferences checks its own file package for modules; this is in fact how it loads the
modules-Mouse Preferences, Keyboard Preferences, Localization Preferences, and so
on-that appear on all systems.

The Preferences application and loadable module communicate through the API found in
/NextDeveloperlHeaders/appslPreferences.h. This API consists of the declarations of
the Layout class and a category of Application. The Layout class is an abstract superclass
that defines the owner of the module's interface. The methods declared in the Application
category make it easier for your module to load its interface and to control Preferences'
menu commands.

Building a Preferences Module

Building a module is easy, especially since you're provided with a template (in
/NextApplPreferences.app/Template.bproj) to be modified. This template module
contains:

File

PB.project
Template.h
Template.m
Template. tiff
English. IprojlTemplate. nib
Makefile

Description

Project file for the loadable module
Class interface file
Class implementation file
TIFF image for button in Preferences window
Nib file contain user-interface for this module
Instructions used by the make utility

To build a Preferences module, make a copy of the template directory and rename the
components of the new directory to reflect the nature of the module. For example, for a
module that lets the user specify a mantra to be played continuously in the background, you
might use these names:

Mantra.bproj/

Mantra.h

Mantra.ill

Mantra.tiff

English.lproj

Mantra.nib

14-4 Chapter 14: Preferences

Add each of these files to the project in the appropriate place and remove the references to
the files having the root name "Template". Next, using Project Builder's Attributes display,
change the name of the project to "Mantra". Finally, open the class files and replace any
reference to "Template" with "Mantra".

At this point, you can build the project and test the template module. Using Project Builder,
build the project. When the process is complete, rename the resultant "Mantra.bundle" file
to "Mantra.preferences" and double-click it. Preferences will load the sample module.

Now that process is clear, you can begin adapting the Mantra module to its specific purpose
by modifying the project's nib, class, and TIFF files.

Some Requirements and Considerations

Preferences modules are bundle files and so must adhere to the naming requirements for
bundles. Specifically, the bundle file package and the executable file within the package
must have the same root name. For the Mantra example above, this implies that if the file
package is named "Mantra.preferences", the executable file within it is named "Mantra".
(See the description of the NXBundle class for more information.)

Preferences also uses this root name to identify the TIFF image for the button that's added
to the Perference window and to identify the principal class within the bundle's executable
file. (Thus, the example has "Mantra.tiff', and the class is named "Mantra".)

Since the code you write is loaded into the Preferences application, there's a potential for
name collisions. For example, if you create a Preferences module called
"Mouse.preferences" (which would of course define the Mouse class, Mouse.tiff, and
Mouse.nib), these components would conflict with those in the standard module
lNextAppslPreferences.applMouse.preferences. To be safe, the root name for your
module could have a distinctive prefix, for example.

Finally, the subclass of Layout within your module must be the principal class of the
bundle-that is, the object file containing the code for this class must be listed first on the
Id command line that created the bundle. The easiest way to specify this is within Project
Builder's Files display. Make sure the the class file (for example, Mantra.m) is the first
entry under "Classes". If it isn't, Control-drag the class file to the top of the list.

Introduction 14-5

14-6

Classes

Application Additions

Inherits From: Responder: Object

Declared In: appslPreferences.h

Category Description

Preferences.h declares a category that adds four methods to the Application class of the
Application Kit. These methods make it easier for your Preferences module to:

• Locate its interface when the module is loaded
• Enable and disable items in the Windows and Edit menus of the Preferences application
• Access the views contained in the Preferences window

Method Types

Loading the interface

Controlling menu items

- 10adNibForLayoutowner:

- enableEdit
- enable Window:

Accessing the Preferences window
-appWindow

Instance Methods

appWindow

-appWindow

Returns the id of the Preferences window, enabling you to alter its content view,
for example.

14-8 Chapter 14: Preferences

enableEdit:

- enableEdit:(int)aMask

Enables and disables menu items in Preferences' Edit menu. aMask specifies which items
are to be enabled. For example, this message enables the Cut and Copy commands:

[NXApp enableEdit: CUT_ITEMICOPY_ITEMJ;

The permitted values for aMask are:

CUT_ITEM
COPY_ITEM
PASTE_ITEM
SELECTALL_ITEM
EDIT_ALL_ITEMS

See also: - enableWindow:

enableWindow:

- enableWindow:(int)aMask

Enables and disables menu items in Preferences' Window menu. aMask specifies which
items are to be enabled. The permitted values for aMask are:

MINIATURIZE_ITEM
CLOSE_ITEM
WINDOW _ALL_ITEMS

See also: - enableEdit:

loadNibForLayout:owner:

-loadNibForLayout:(const char *)name owner:anOwner

Loads the nib file named "name.nib" and makes anOwner its owner.

This is a convenience method that searches for the nib file in the appropriate language
subproject of the bundle from which the class of anOwner was loaded.

See also: - bundleForClass: (NXBundle common clas.s)

Classes: Application Additions 14-9

Layout

Inherits From: Object

Declared In: apps/Preferences.h

Class Description

The Layout class defines the link between the Preferences application and a module that's
loaded into the application. The principal class of the loadable Preference bundle should
be a subclass of Layout. When Preferences loads the bundle, it identifies the View objects
to be loaded into the Preferences window by sending this object a view message. Once the
module is loaded, the object is kept apprised of the state of the Preferences application
through notification messages such as didHide: and willSelect:.

These notification messages allow the Layout object to prepare for the named change (for
example, willHide:). However, the value the Layout object returns in response to the
message is ignored: The Layout object can't prevent the change from occurring. (Also
note that being notifications, these methods have one argument, sender, which is a private
object within Preferences and should not be accessed.)

For your loadable module, create a subclass of Layout and override the inherited methods
as needed. For an example of such a subclass, see the Template class files in
IN extAppslPreferences.app/Template.bproj.

Instance Variables

id view;

view The view that's loaded into the Preferences window.

14-10 Chapter 14: Preferences

Method Types

Accessing the root View

Notification of state change

Instance Methods

didHide:

- didHide:sender

-view

- didHide:
- didUnhide:
- willSelect:
- didSelect:
- willUnselect:
- didUnselect:

Received from the Preferences application when the application hides itself. This gives the
Preferences module the opportunity to deallocate resources or do other clean up that might
be appropriate (such as removing a timed entry).

See also: - didUnhide:

didSelect:

- didSelect:sender

Recei ved from the Preferences application just after this module's interface is displayed in
the Preferences window. A willSelect: message precedes this message.

See also: - willSelect:, - willUnselect:, - didUnselect:

didUnhide:

- didUnhide:sender

Received from the Preferences application when the application is unhidden. This gives
the Preferences module the opportunity to initialize itself, if necessary.

See also: - didHide:

Classes: Layout 14-11

didUnselect:

- didUnselect:sender

Received from the Preferences application just after this module's interface ceases to be
displayed in the Preferences window. A willUnselect: message precedes this message.

See also: - willUnselect:, - willSelect:, - didSelect:

view

-view

Returns the View that's loaded into the Preferences window. Typically, this View is the root
of a view hierarchy containing the buttons and other controls of your Preferences display.

wiliSelect:

- willSelect:sender

Received from the Preferences application when this module's interface is about to be
displayed in the Preferences window. Immediately following a willSelect: message, the
module's top-level View (as returned by the view method) is made a subview of the
Preferences window, and then the Layout object receives a didSelect: message.

See also: - didSelect:, - willUnselect:, - didUnselect:

willUnselect:

- willUnselect:sender

Received from the Preferences application when the module's top-level View is about to be
removed from the view hierarchy in the Preferences window. Immediately following a
willUnselect: message, the module's interface is removed, and then the Layout object
receives a didUnselect: message.

See also: - didUnselect:, - willSelect:, - didSelect:

14-12 Chapter 14: Preferences

15 Run-Time System

15-3 Introduction

15-5 Classes
15-7 Protocol

15-13 Functions

15-33 Types and Constants
15-35 Defined Types
15-37 Symbolic Constants
15-38 Structures
15-45 Global Variables

15-1

15-2

Run-Time System

Library:

Header File Directory: IN extDeveloper/Headers/ objc

Introduction

The Objective C language pushes many decisions from compile time to run time. For
example, objects are dynamically allocated and initialized at run time, messages are
dynamically bound to method implementations, and objects assigned to id variables are
dynamically typed. To correctly and efficiently carry out these tasks as a program executes,
the language depends on a run-time system-a body of code to operate the object-oriented
machinery.

The run-time system consists mainly of:

• Data structures that the compiler develops from class and category definitions and from
protocol declarations, and

• The functions that operate on those structures and that are called by compiled
Objective C code to produce the desired results.

For example, the compiler translates an Objective C message into a call on a messaging
function, usually objc_msgSendO, which locates the method implementation that should
be invoked in response to the message. The messaging function is what makes dynamic
binding work. It and the data structures it requires are part of the run-time system.

Run-Time System 15-3

For the most part, the run-time system operates behind the scenes. It has a public interface
in part to declare common elements that every Objective C program uses-such as the id
data type. But mainly the interface exists to provide access to run-time code from outside
Objective C. Therefore, most of the elements documented here will rarely if ever appear
in Objective C programs.

Note: The principal interface to the run-time system is contained in the Object class.
Because this class is fundamental to all NeXTSTEP software kits, it's presented at the very
beginning of this manual, in Chapter 1, "Root Class."

15-4 Chapter 15: Run-Time System

Classes

Many of the data types that the run-time system defines could equally as well have been
implemented as classes. However, only one structure-the one corresponding to protocol
declarations-is in fact a class. It differs from other Objective C classes in that its instances
are created by the compiler, not by programs. Programs refer to Protocol instances by using
the @protocolO directive.

15-6 Chapter 15: Run-Time System

Protocol

Inherits From: Object

Declared In: objclProtocol.h

Class Description

A Protocol object corresponds to a protocol declaration in the Objective C language. It's
the data structure that the run-time system uses to keep track of the protocol. Just as the
compiler creates one class object for each class declaration it sees, it creates one Protocol
object for each protocol declaration it encounters, provided the protocol is used somewhere
within the program.

In Objective C, protocols are declared with the @protocol directive:

@protocol Cartwheels

- turn: (int)numWheels startingFrom: (int)side;

- setRotationSpeed: (float)velocity;

- (BOOL)canStartFromRight;

- (BOOL)canStartFromLeft;

@end

The same directive, but with a set of trailing parentheses, is used to refer to a Protocol
object in source code. In the following example, the Protocol object for the Cartwheels
protocol is assigned to the wheels variable:

Protocol *wheels = @protocol(Cartwheels);

The @protocolO directive is the only way to ask for a Protocol object. The Protocol class
doesn't define any methods that return or initialize instances of the class.

Because Protocol objects are built by the compiler, not by the application, and are part of
the run-time system for the Objective C language, they playa slightly different role within
an application that most other objects. In particular, you should not allocate and initialize
your own instances of the class. The only valid Protocol objects are those obtained through
@protocoIO.

Classes: Protocol 15-7

Incorporation and Adoption

A protocol declaration can incorporate other protocols by listing them within angle
brackets:

@protocol Tumbling <Cartwheels, WalkOvers, Flips, Aerials>

Class declarations use the same syntax to adopt protocols:

@interface' Gymnast : Object <Tumbling, FloorRoutines>

Protocols can also be adopted in categories:

@interface Gymnast (BalanceBeam) <Dismounting>

The adopting class (or category) must implement all the methods declared in the protocol,
including methods declared in any incorporated protocols. In the example above, the
Gymnast class is obligated to implement all the methods declared in the Tumbling,
Cartwheels, WalkOvers, Flips, Aerials, and FloorRoutines protocols; the BalanceBeam
category of Gymnast must implement the methods declared in the Dismounting protocol.
If any method is left undefined, the compiler will issue a warning.

You can ask a class if it adheres to a particular protocol by using the conformsTo: method
defined in the Object class. This method returns YES if the receiving class, or any class
above it in the inheritance hierarchy, directly or indirectly adopts the protocol. The same
method can also be used to ask an instance if its class conforms:

if ([myObject conformsTo:@protocol(Tumbling)])

[myObject turn:4 startingFrom:RIGHTSIDE];

Asking whether an object conforms to a protocol is very much like asking whether it
responds to a message-except that respondsTo: tests whether one particular method is
implemented and conformsTo: tests whether a group of methods has been adopted (and
presumably implemented).

When sent to a Protocol object, a conformsTo: message asks if the receiver incorporates
another protocol. The following message would return YES:

BaaL canFlip = [@protocol(Tumbling) conformsTo:@protocol(Flips)];

15-8 Chapter 15: Run-Time System

Type Checking

When a protocol name is included in a type specification, as in

id <Cartwheels, Flips> nadia;

orin

- setGymnast: (id <Tumbling»anObject;

the compiler will check to make sure that only objects that conform to the specified
protocols are used in those slots. Thus, protocols provide an added dimension of type
checking at compile time.

Protocol Objects

The compiler creates a Protocol object for every protocol declared in source code, provided
the protocol is also either:

• Adopted by a class, or
• Referred to by an @protocolO directive.

Simply using the protocol name in a type declaration isn't sufficient to cause a Protocol
object to be created.

Instance Variables

None declared in this class.

Method Types

Getting the protocol name -name

Testing for incorporated protocols
- conformsTo:

Getting method descriptions - descriptionForInstanceMethod:
- descriptionForClassMethod:

Classes: Protocol 15-9

Instance Methods

conformsTo:

- (BOOL)conformsTo:(Protocol *)aProtocol

Returns YES if the receiving Protocol object directly or indirectly incorporates the
aProtocol protocol, and NO if it doesn't. One protocol can incorporate another by
declaring it within angle brackets:

@protocol BalanceBeam <Cartwheels, HandStands>

In the following code,

[@protocol(BalanceBeam) conformsTo:@protocol(Cartwheels)]

conformsTo: would return YES:

See also: + conformsTo: (Object)

descriptionForClassMethod:

- (struct objc_method_description *)descriptionForClassMethod:(SEL)aSelector

Returns a pointer to a structure describing the aSelector class method, or NULL if aSelector
isn't declared as a class method in the receiving Protocol.

The structure has two fields, as illustrated below:

struct objc_method_description

SEL name;

char *types;
} ;

The first field contains the method selector (which should be identical to aSelector). The
second field contains encoded information about the method's return and argument types.
Type information is encoded according to the conventions of the @encodeO directive. For
example, type information for this method

- (float)returnFloatForInt: (int) number

andString: (char *)name

andStruct: (struct entry) data;

would be encoded as:

f28@8:12i16*20{entry=**@}24

15-10 Chapter 15: Run-Time System

This method returns a float ('f') and pushes 28 bytes onto the stack. Its first two arguments
are an object (' @') at an offset of 8 bytes from the stack pointer and a selector (':') at an
offset of 12 bytes. These two arguments correspond to self (the message receiver) and
_cmd (the method selector), which are present in every method implementation but are
normally hidden by the Objective C language. The three declared arguments are an int ('i')
at an offset of 16 bytes, a string (' *') at an offset of 20 bytes, and a structure (" { ... }") at an
offset of 24 bytes. The structure name is "entry" and it consists of two character pointers
and an object id ("**@").

See also: - descriptionForlnstanceMethod:, - descriptionForMethod: (Object)

descriptionForlnstanceMethod:

- (struct objc_method_description *)
descriptionForlnstanceMethod:(SEL)aSelector

Returns a pointer to a structure describing the aSelector instance method, or NULL if the
aSelector method isn't declared as an instance method in the receiving Protocol. The
structure is described under descriptionForClassMethod: above.

See also: - descriptionForClassMethod:, - descriptionForMethod: (Object)

name

- (const char *)name

Returns a null-terminated string containing the name of the protocol.

Classes: Protocol 15-11

15-12

Functions

This section describes functions and macros that are part of NeXT's run-time system for
the Objective C language. Some, such as sel~etUidO and objc_loadModulesO, might be
useful when called within an Objective C program. However, most are provided mainly to
make it possible to define interfaces to the run-time system other than Objective C. As long
as you're programming in Objective C, you shouldn't need to use them. The Objective C
language and the Object class are together a sufficient and complete interface to the
run-time system. The messages and class definitions in Objective C source files are
compiled to execute correctly at run time without the aid of additional function calls.

The functions described here are divided into five groups, each with its own prefix:

• The basic run-time functions have an "objc_" prefix.

• Functions that operate on class objects have a "class_" prefix and take as their first
argument a structure of type Class. Class is the defined type (in objc/objc.h) for class
objects. However, like all other objects, class objects can also be assigned to the more
inclusive type id.

• Functions that operate on instances have an "object_" prefix and take as their first
argument the id of the instance.

• Functions that give information about method selectors have a "sel_" prefix.

• Functions that describe method implementations have a "method_" prefix.

NeXT reserves these prefixes for functions in the run-time system.

In addition to these functions, there are also a few macros that operate on the values passed
in a message. They begin with a "marg_" prefix (for "message argument").

15-14 Chapter 15: Run-Time System

class_addMethodsO ~ See class_getlnstanceMethodO

class_createlnstance(), class_createlnstanceFromZone()

SUMMARY Create a new instance of a class

DECLARED IN objc/objc-class.h

SYNOPSIS id class_createlnstance(Class aClass, unsigned int indexedlvarBytes)
id class_createlnstanceFrornZone(Class aClass, unsigned int indexedlvarBytes,

NXZone * zone)

DESCRIPTION These functions provide an interface to the object allocators used by the run-time system.
The default allocators, which can be changed by reassigning the _alloc and _zoneAlloc
variables, create a new instance of aClass by dynamically allocating memory for it,
initializing its isa instance variable to point to the class, and returning the new instance. All
other instance variables are initialized to O.

The two functions are identical, except that class_createlnstanceFrornZoneO allocates
memory for the new object from the region specified by zone and class_createlnstanceO
allocates memory from the default zone returned by NXDefaultMallocZoneO.

Object's alloc and allocFrornZone: methods use class_createlnstanceFromZoneO to
allocate memory for a new object, with alloc taking the memory from the default zone. The
new method uses class_createlnstanceO.

The second argument to both functions, indexedlvarBytes, states the number of extra bytes
required for indexed instance variables. Normally, it's O.

Indexed instance variables are instance variables that are not declared or accounted
for in the usual way, generally because they don't have a fixed size. Usually they're
arrays whose length can't be computed at compile time. Since the components of a C
structure can't be of uncertain size, indexed instance variables can't be declared in the class
interface. The class must account for them outside the normal channels provided by the
Objective C language.

Functions: class_addMethods() 15-15

All of the storage required for indexed instance variables must be allocated through one of
these two functions. The following code shows how they might be used in an
instance-creating class method:

+ new: (unsigned int)numBytes

self = class_createlnstance((Class)self, numBytes);

length = numBytes;

- (char *)getArray

return(object_getlndexedlvars(self)) ;

Indexed instance variables should be avoided if at all possible. It's a much better practice
to store variable-length data outside the object and declare one real instance variable that
points to it and perhaps another that records its length. For example:

+ new: (unsigned int)numBytes

self = [super new];

data = malloc(numBytes);

length = numBytes;

- (char *)getArray

return data;

RETURN If successful, both class_createlnstanceO and class_createlnstanceFromZoneO
return the new instance of aClass. If not successful, they generate an error message
and call abortO.

class_createlnstanceFromZoneO ~ See class_createlnstanceO

class_getClassMethodO ~ See class_getlnstanceMethodO

15-16 Chapter 15: Run-Time System

class_getlnstanceMethod(), class_getClassMethodO,
class_addMethodsO, class_removeMethodsO

SUMMARY Get, add, and remove methods

DECLARED IN objc/objc-class.h

SYNOPSIS Method c1ass_getlnstanceMethod(Class aClass, SEL aSelector)
Method c1ass_getClassMethod(Class aClass, SEL aSelector)
void c1ass_addMethods(Class aClass, struct objc_method_list *methodList)
void c1ass_removeMethods(Class aClass, struct objc_method_list *methodList)

DESCRIPTION The first two functions, c1ass_getlnstanceMethodO and c1ass_getClassMethodO, return
a pointer to the class data structure that describes the aSelector method. For
c1ass_getlnstanceMethodO, aSelector must identify an instance method; for
c1ass_getClassMethodO, it must identify a class method. Both functions return a NULL
pointer if aSelector doesn't identify a method defined in or inherited by aClass.

The run-time system uses the next function, c1ass_addMethodsO, to implement
Objective C categories. Each function adds the methods in methodList to the dictionary of
methods defined for a Class . To add methods that can be used by instances of a class,
aClass should be the class object. To add methods that can be used by a class object, aClass
should be the metaclass object (the isa field of the Class structure). All the methods in
methodList must be mapped to valid SEL selectors before they're added to the class. The
sel_registerNameO function can be used to accomplish this.

The last function, c1ass_removeMethodsO, removes methods that were previously added
using c1ass_addMethodsO. The run-time system uses it to unload categories that were
dynamically loaded at an earlier point in time. Its second argument, methodList, must be
identical to a pointer previously passed to c1ass_addMethodsO. To remove instance
methods, aClass should be the class object. To remove class methods, aClass should be
the isa field of the Class structure.

RETURN c1ass_getlnstanceMethodO and c1ass_getClassMethodO return a pointer to the data
structure that describes the aSelector method as implemented for aClass. If aSelector isn't
defined for a Class , they return NULL.

Functions: class~etlnstanceMethod() 15-17

class_getlnstanceVariable()

SUMMARY Get the class template for an instance variable

DECLARED IN objc/objc-class.h

SYNOPSIS Ivar class_getInstanceVariable(Class a Class , const char *variableName)

RETURN This function returns a pointer to the class data structure that describes the variableName
instance variable. If aClass doesn't define or inherit the instance variable, a NULL pointer
is returned.

class_getVersionO ~ See class_setVersionO

class_poseAsO

SUMMARY Pose as the superclass

DECLARED IN objc/objc-class.h

SYNOPSIS Class class_poseAs(Class thelmposter, Class theSuperclass)

DESCRIPTION class_poseAsO causes one class, thelmposter, to take the place of its own superclass,
theSuperclass. Messages sent to theSuperclass will actually be received by thelmposter.
The posing class can't declare any new instance variables, but it can define new methods
and override methods defined in the superclass.

Posing is usually done through Object's poseAs: method, which calls this function.

RETURN Normally, class_poseAsO returns its first argument, thelmposter. However, if thelmposter
defines instance variables or is not a subclass of (or the same as) theSuperclass, it generates
an error message and aborts.

15-18 Chapter 15: Run-Time System

class_removeMethodsO ~ See class_getlnstanceMethodO

class_setVersion 0, class_getVersion ()

SUMMARY Set and get the class version

DECLARED IN objc!objc-class.h

SYNOPSIS void class_setVersion(Class aClass, int versionNumber)
int class_getVersion(Class aClass)

DESCRIPTION These functions set and return the class version number. This number is used when
archiving instances of the class.

Object's setVersion: and version methods do the same work as these functions.

RETURN class_getVersionO returns the version number for aClass last set by class_setVersionO, or
o if no version has been set.

marg_getRefO ~ See marg_getValueO

Functions: class_removeMethods() 15-19

marg_getValueO, marg_getRefO, marg_setValueO

SUMMARY Examine and alter method argument values

DECLARED IN objc/objc-class.h

SYNOPSIS type-name marg_getValue(marg_list argFrame, int offset, type-name)
type-name *marg_getRef(marg_list argFrame, int offset, type-name)
void marg_setValue(marg_list argFrame, int offset, type-name, type-name value)

DESCRIPTION These three macros get and set the values of arguments passed in a message. They're
designed to be used within implementations of the forward:: method, which is described
under the Object class in Chapter 1, "Root Class."

The first argument to each macro, argFrame, is a pointer to the list of arguments passed in
the message. The run-time system passes this pointer to the forward:: method, making it
available to be used in these macros. The next two arguments-an offset into the argument
list and the type of the argument at that offset-can be obtained by calling
method_getArgumentInfoO.

The first macro, marg_getValue, returns the argument at offset in argFrame. The return
value, like the argument, is of type type-name. The second macro, marg_getRef, returns
a reference to the argument at offset in arg Frame. The pointer returned is to an argument
of the type-name type. The third macro, marg_setValue, alters the argument at offset in
argFrame by assigning it value. The new value must be of the same type as the argument.

Because these are macros, the type-name must be written as types normally are in source
code; it can't be passed as a variable. Therefore, if the type is obtained from
method_getArgumentInfoO, a switch statement would be required to select the correct
macro call from a list of predetermined choices. method_getArgumentInfoO encodes the
argument type according to the conventions of the @encodeO compiler directive.

RETURN mar~getValue returns a type-name argument value. mar~getRef returns a pointer to a
type-name argument value.

marg_setValue() ~ See marg_getValueO

method_getArgumentlnfoO ~ See method_getNumberOfArgumentsO

15-20 Chapter 15: Run-Time System

method_getNumberOfArguments(), method_getSizeOfArguments(),
method_getArgumentlnfo()

SUMMARY Get information about a method

DECLARED IN objc/objc-class.h

SYNOPSIS unsigned int method_getNumberOfArguments(Method aMethod)
unsigned int method_getSizeOfArguments(Method aMethod)
unsigned int method_getArgumentInfo(Method aMethod, int index, const char **type,

int *offset)

DESCRIPTION The three functions described here all provide information about the argument structure of
a particular method. They take as their first argument the method's data structure, aM ethod,
which can be obtained by calling class_getInstanceMethodO or class_getClassMethodO.

The first function, method_getNumberOfArgumentsO, returns the number of arguments
that aMethod takes. This will be at least two, since it includes the "hidden" arguments, self
and _cmd, which are the first two arguments passed to every method implementation.

The second function, method_getSizeOfArgumentsO, returns the number of bytes that all
of aMethod's arguments, taken together, would occupy on the stack. This information is
required by objc_msgSendvO.

The third function, method_getArgumentInfoO, takes an index into aMethod's
argument list and returns, by reference, the type of the argument and the offset to the
location of that argument in the list. Indices begin with O. The "hidden" arguments self
and _cmd are indexed at 0 and 1; method-specific arguments begin at index 2. If index is
too large for the actual number of arguments, the type aand offset pointers are set to NULL.
Otherwise, the offset is measured in bytes; it depends entirely on the size of arguments
preceding the one at index. The type is encoded according to the conventions of the
@encodeO compiler directive.

The information obtained from method_getArgumentInfoO can be used in the
marg_getValue, marg_getRef, and mar~setValue macros to examine and alter the
values of an argument on the stack after aMethodhas been called. The offset can be passed
directly to these macros, but the type must first be decoded to a full type name.

RETURN method_getNumberOfArgumentsO returns how many arguments the implementation of
aMethod takes, and method_getSizeOfArgumentsO returns how many bytes the
arguments take up on the stack. method_getArgumentInfoO returns the index it is passed.

Functions: method-ftetNumberOfArguments() 15-21

method_getSizeOfArgumentsO ~
See method_getNumberOfArgumentsO

objc_addClassO ~ See objc_getClassO

objc_getClassO, objc_lookUpClassO, objc_getMetaClassO,
objc_getClassesO, objc_addClassO, objc_getModulesO

SUMMARY Manage run-time structures

DECLARED IN objc/objc-runtime.h

SYNOPSIS id objc_getClass(const char *aClassName)
id objc_lookUpClass(const char *aClassName)
id objc_getMetaClass(const char *aClassName)
NXHashTable *objc_getClasses(void)
void objc_addClass(Class aClass)
Module *objc_getModules(void)

DESCRIPTION These functions return and modify the principal data structures used by the run-time
system.

The first two functions, objc_getClassO and objc_lookUpClassO, both return the id of the
class object for the aClassName class. However, if the aClassName class isn't known to
the run-time system, objc_getClassO prints a message to the standard error stream and
causes the process to abort, while objc_lookUpClassO merely returns nil.

The third function, objc_getMetaClassO, returns the id of the metaclass object for the
aClassName class. The metaclass object holds information used by the class object, just as
the class object holds information used by instances of the class. Like objc_getClassO, it
prints a message to the standard error stream and causes the process to abort if aClassName
isn't a valid class.

15-22 Chapter 15: Run-Time System

objc_getClassesO returns a pointer to the hash table containing all the Objective C classes
that are currently known to the run-time system. You can examine the table using the
common hashing functions. In the following example, NXNextHashStateO gets each
class from the table in tum, and object_getClassNameO asks for their names:

NXHashTable *classes = objc_getClasses();
NXHashState state = NXInitHashState(classes);
Class thisClass;

while (NXNextHashState(classes, &state, (void **)&thisClass))
fprintf(stderr, "%s\n", object_getClassName((id)thisClass));

The NXHashTable type returned by objc_getClassesO is defined in the objc/hashtable.h
header file and is documented in Chapter 3, "Common Classes and Functions." This
data structure can be read, as illustrated in the example above, but it should not be modified
or freed.

objc_addClassO adds aClass to the list of classes known to the run-time system. (The
class is added to the hash table that objc~etClassesO returns.)

The compiler creates a Module data structure for each file it compiles. The
objc_getModulesO function returns a pointer to the run-time system's list of all current
modules, except those that were dynamically loaded. Module structures are described
under "Supporting Header Files" later in this chapter.

RETURN objc_lookUpClassO returns the class object for aClassName, or nil if there is no such
class. objc_getClassO and objc_getMetaClassO return the class and metaclass objects
for aClassName, if such a class exists, and abort otherwise. objc_getClassesO returns a
pointer to a hash table of all current classes, and objc_getModulesO returns a pointer to all
current modules.

objc_getClasses() ~ See objc_getClass()

objc_getMetaClass() ~ See objc_getClass()

objc_getModules() ~ See objc_getClass()

Functions: objc~etClasses() 15-23

objc_loadModulesO, objc_unloadModulesO

SUMMARY Dynamically load and unload classes

DECLARED IN objc/objc-Ioad.h

SYNOPSIS long objc_loadModules(char *files[], NXStream *stream,
void (*callback)(Class, Category), struct mach_header **header,
char *debugFilename)

long objc_unloadModules(NXStream *stream, void (*callback)(Class, Category))

DESCRIPTION objc_loadModulesO dynamically loads object files containing Objective C class and
category definitions into a running program. Its first argument,files, is a list of
null-terminated pathnames for the object files containing the classes and categories that are
to be loaded. They can be full paths or paths relative to the current working directory. The
second argument, stream, is a pointer to an NXStream where any error messages produced
by the loader will be written. It can be NULL, in which case no messages will be written.

The third argument, callback, allows you to specify a function that will be called
immediately after each class or category is loaded. When a category is loaded, the function
is passed both the Category structure and the Class structure for that category. When a
class is loaded, it's passed only the Class structure. Like stream, callback can be NULL.

The fourth argument, header, is used to get a pointer to the mach_header structure for
the loaded modules. It, too, can be NULL. All the modules infiles are grouped under the
same header.

The final argument, which also can be NULL, is the pathname for a file that the loader will
create and initialize with a copy of the loaded modules. This file can be passed to the
debugger and added to the list of files being debugged. For example:

(gdb) add-file debugFilename

obj_unloadModulesO unloads all the modules loaded by objc_loadModulesO, that is, all
the modules from the files list. Each time it's called, it unloads another set of modules,
working its way back from the modules loaded by the most recent call to
objc_loadModulesO to those loaded by the next most recent call, and so on.

The first argument to obj_unloadModulesO, stream, is a pointer to an NXStream where
error messages will be written. Its second argument, callback, allows you to specify a
function that will be called immediately before each class or category is unloaded. Both
arguments can be NULL.

15-24 Chapter 15: Run-Time System

Note: The NXBundle class, documented in Chapter 3, "Common Classes and Functions,"
provides a simpler and preferred way to dynamically load classes. NXBundle integrates
dynamic loading with localization (using language-specific resources such as strings,
images, and sounds).

RETURN Both functions return 0 if the modules are successfully loaded or unloaded and 1 if
they're not.

objc_lookUpClassO ~ See objc_getClass()

objc_msgSend(), objc_msgSendSuper(), objc_msgSendvO

SUMMARY Send messages at run time

DECLARED IN objc/objc-runtime.h

SYNOPSIS id objc_msgSend(id theReceiver, SEL theSelector, ...)
id objc_msgSendSuper(struct objc_super * superContext, SEL theSelector, ...)
id objc_msgSendv(id theReceiver, SEL theSelector, unsigned int argSize,

marg_Iist argFrame)

DESCRIPTION The compiler converts every message expression into a call on one of the first two of these
three functions. Messages to super are converted to calls on objc_msgSendSuperO; all
others are converted to calls on objc_msgSendO.

Both functions find the implementation of the theSe lector method that's appropriate for the
receiver of the message. For objc_msgSendO, theReceiver is passed explicitly as an
argument. For objc_msgSendSuperO, superContext defines the context in which the
message was sent, including who the receiver is.

Arguments that are included in the aSelector message are passed directly as additional
arguments to both functions.

Calls to objc_msgSendO and objc_msgSendSuperO should be generated only by the
compiler. You shouldn't call them directly in the Objective C code you write.

Functions: objcjookUpCloss() 15-25

The third function, objc_IDsgSendvO, is an alternative to objc_IDsgSendO that's designed
to be used within class-specific implementations of the forward:: method. Instead of being
passed each of the arguments to the aSelector message, it takes a pointer to the arguments
list, argFrame, and the size of the list in bytes, argSize. argSize can be obtained by calling
IDethod_getArguIDentSizeO; argFrame is passed as the second argument to the
forward:: method.

objc_IDsgSendvO parses the argument list based on information stored for aSelector and
the class of the receiver. Because of this additional work, it's more expensive than
objc_IDsgSendO.

RETURN Each method passes on the value returned by the aSelector method.

objc_msgSendSuperO ~ See objc_msgSendO

objc_msgSendvO ~ See objc_msgSendO

objc_setMultithreaded()

SUMMARY Make the run-time system thread safe

DECLARED IN objc/objc-runtime.h

SYNOPSIS void objc_setMultithreaded(BOOLjiag)

DESCRIPTION Whenjiag is YES, this function ensures that two or more threads of the same task can safely
use the run-time system for Objective C. To guarantee correct run-time behavior, it should
be called immediately before starting up a new thread.

Because of the additional checking required to ensure thread-safe behavior, messaging will
be slower than normal. Therefore,jiag should be reset to the default NO when there is only
one thread using Objective C.

15-26 Chapter 15: Run-Time System

This function cannot guarantee that all parts of the run-time system are absolutely
thread-safe. In particular, if one thread is in the middle of dynamically loading or unloading
a class (using objc_loadModulesO or objc_unloadModulesO) while another thread is
using the class, the second thread might find the class in an inconsistent state. Similarly, a
thread that gets the class hash table (using objc_getClassesO) cannot be sure that another
thread won't be modifying it at the same time.

objc_unloadModulesO ~ See objc_loadModulesO

object_copyO ~ See object_disposeO

object_copyFromZoneO ~ See object_disposeO

object_disposeO, object_copyO, object_copyFromZoneO,
object_realiocO, object_reallocFromZoneO

SUMMARY Manage object memory

DECLARED IN objc/Object.h

SYNOPSIS id object_dispose(Object *anObject)
id object_copy(Object *anObject, unsigned int indexedlvarBytes)
id object_copyFromZone(Object *anObject, unsigned int indexedlvarBytes,

NXZone *zone)
id object_realloc(Object *anObject, unsigned int numBytes)
id object_reallocFromZone(Object *anObject, unsigned int numBytes, NXZone *zone)

DESCRIPTION These five functions, along with class_createlnstanceO and
class_createlnstanceFromZoneO, manage the dynamic allocation of memory for objects.
Like those two functions, each of them is simply a "cover" for-a way of calling-another,
private function.

Functions: objcunloadModulesO 15-27

object_disposeO frees the memory occupied by anObject after setting its isa instance
variable to nil, and returns nil. The function it calls to do this work can be changed by
reassigning the _dealloc variable.

object_copyO and object_copyFrornZoneO create a new object that's an exact copy of
anObject and return the new object. object_copyO allocates memory for the copy from the
same zone as the original; object_copyFrornZoneO places the copy in zone. The second
argument to both functions, indexedlvarBytes, specifies the number of additional bytes that
should be allocated to accommodate indexed instance variables; it serves the same purpose
as the second argument to class_createlnstanceO.

The functions that object_copyO and object_copyFrornZoneO call to do their work can
be changed by reassigning the _copy and _zone Copy variables.

object_reallocO and object_reallocFrornZoneO reallocate storage for anObject, adding
numBytes if possible. The memory previously occupied by anObject is freed if it can't be
reused, and a pointer to the new location of anObject is returned. object_reallocO allocates
memory for the object from the same zone that it originally occupied;
object_reallocFrornZoneO locates the object in zone.

The functions that object_reallocO and object_reallocFrornZoneO call to do their work
can be changed by reassigning the _realloc and _zoneRealloc variables.

RETURN object_disposeO returns nil, object_copyO and object_copyFrornZoneO return the
copy, and object_reallocO and object_reallocFrornZoneO return the reallocated object.
If the attempt to copy or reallocate the object fails, an error message is generated and
abortO is called.

object_getClassName()

SUMMARY Return the class name

DECLARED IN objc!objc.h

SYNOPSIS const char *object_getClassNarne(id anObject)

DESCRIPTION This function returns the name of anObject's class, or the string "nil" if anObject is nil.
anObject can be either an instance or a class object.

15-28 Chapter 15: Run-Time System

object_getlndexedlvars()

SUMMARY Return a pointer to an object's extra memory

DECLARED IN objc/objc.h

SYNOPSIS void *object_getlndexedlvars(id anObject)

This function returns a pointer to the first indexed instance variable of anObject, if
anObject has indexed instance variables. If not, the pointer returned won't be valid and
should not be used.

SEE ALSO class_createlnstanceO

object_getlnstanceVariableO ~ See object_setlnstanceVariableO

object_realiocO ~ See object_disposeO

object_reallocFromZoneO ~ See object_disposeO

object_setlnstance Variable(), object_getl nstance Variable()

SUMMARY Set and get instance variables

DECLARED IN objc/Object.h

SYNOPSIS Ivar object_setlnstanceVariable(id anObject, const char *variableName, void *value)
Ivar object_getlnstanceVariable(id anObject, const char *variableName, void **value)

DESCRIPTION object_setlnstance VariableO assigns a new value to the variableName instance variable
belonging to anObject. The instance variable must be one that's declared as a pointer;
typically it's an id. The new value of the pointer is passed in the third argument, value.
(Note that the pointer value is passed directly, not by reference.)

Functions: object~etIndexedlvars() 15-29

object_getlnstanceVariableO gets the value of the pointer stored as anObject's
variableName instance variable. The pointer is returned by reference through the third
argument, value. For example:

int *ii

Ivar var = object_getlnstanceVariable(anObject, "num" , (void **)&i);

These functions provide a way of setting and getting instance variables that are declared as
pointers, without having to implement methods for that purpose. For example, Interface
Builder calls object_setlnstance VariableO to initialize programmer-defined "outlet"
instance variables.

These functions cannot reliably be used to set and get instance variables that are not
pointers.

RETURN Both functions return a pointer to the class template that describes the variableName
instance variable. A NULL pointer is returned if anObject has no instance variable with
that name.

The returned template has a field describing the data type of the instance variable. You can
check it to be sure that the value set is of the correct type.

sel_getNameO ~ See sel_getUidO

SUMMARY Match method names with method selectors

DECLARED IN objc/objc.h

SYNOPSIS SEL sel_getUid(const char *aName)
const char *sel_getName(SEL aSelector)

15-30 Chapter 15: Run-Time System

DESCRIPTION The first function, sel_getUidO, returns the unique identifier that represents the aName
method at run time. The identifier is a selector (type SEL) and is used in place of the
method name in compiled code; methods with the same name have the same selector.
Whenever possible, you should use the @selectorO directive to ask the compiler to provide
the selector for a method. This function asks the run-time system for the selector and
should be used only if the name isn't known at compile time.

The second function, sel_getNameO, is the inverse of the first. It returns the name that was
mapped to aSelector.

RETURN sel_getUidO returns the selector for the aName method, or 0 if there is no known method
with that name. sel_getNameO returns a character string with the name of the method
identified by the aSelector selector. If aSelector isn't a valid selector, a NULL pointer is
returned.

sel_isMappedO

SUMMARY Determine whether a selector is valid

DECLARED IN objc/objc.h

SYNOPSIS BOOL sel_isMapped(SEL aSelector)

RETURN sel_isMappedO returns YES if aSelector is a valid selector (is currently mapped to a
method implementation) or could possibly be one (because it lies within the same range as
valid selectors); otherwise it returns NO.

Because all of a program's selectors are guaranteed to be mapped at start-up, this function
has little real use. It's included here for reasons of backward compatibility only.

Functions: seCisMapped() 15-31

sel_registerName()

SUMMARY Register a method name

DECLARED IN objc/objc.h

SYNOPSIS SEL sel_registerName(const char *aName)

DESCRIPTION This function registers aName as a method name and causes it to be mapped to a SEL
selector, which it returns.

No check is made to see if aName is already a valid method name. If it is, the same name
will be mapped to more than one selector. When the run-time system needs to match a
selector to the name, it's indeterminant which one it will find.

RETURN sel_registerNameO returns the selector it maps to the aString method.

15-32 Chapter 15: Run-Time System

Types and Constants

This section documents the types, constants, and structures defined in three header files:
objc/objc-class.h, objc/objc-runtime.h, and objclProtocol.h. For the most part, these
definitions are internal to the run-time system and rarely find their way into Objective C
source code. More commonly used types and constants are declared in objc/objc.h and are
documented in Chapter 1, "Root Class."

15-34 Chapter 15: Run- Time System

Defined Types

Cache

DECLARED IN objc/objc-class.h

SYNOPSIS typedef struct objc_cache *Cache;

DESCRIPTION This is the defined type for a class's run-time cache of frequently used methods. Each class
has its own cache.

Category

DECLARED IN objc/objc-class.h

SYNOPSIS typedef struct objc_category *Category;

DESCRIPTION This is the type name for the structure that contains information about a category definition.

Ivar

DECLARED IN objc/objc-class.h

SYNOPSIS typedef struct objc_ivar *Ivar;

DESCRIPTION The Ivar type identifies a structure containing information about a single instance
variable-including the name of the variable, its type, and its location in the object
data structure.

Types and Constants: Cache 15-35

DECLARED IN objc/objc-class.h

SYNOPSIS typedef void *mar~list;

DESCRIPTION This type is a pointer to the arguments that were passed in a message. It's used by the
Object class's forward:: method.

Method

DECLARED IN objc/objc-class.h

SYNOPSIS typedef struct objc_method *Method;

DESCRIPTION The Method type designates a structure containing information about a single method­
including its return and argument types, the method selector, and the location of the method
implementation.

Module

DECLARED IN objc/objc-runtime.h

SYNOPSIS typedef struct objc_module *Module;

DESCRIPTION This data type refers to a file that contributes to an Objective C program. The compiler
produces a Module data structure for each file that it encounters.

15-36 Chapter 15: Run-Time System

SYl11bolic Constants

Type Constants

DECLARED IN objc/objc-c1ass.h

SYNOPSIS Constant Meaning Defined As

_C_ID id '@'

_C_CLASS Class '#'
_C_SEL SEL '.'
_C_VOID void 'v'
_C_CHR char 'c'
_C_UCHR unsigned char 'C'
_C_SHT short 's'
_C_USHT unsigned short 'S'
_C_INT int 'i'
_C_UINT unsigned int 'I'
_C_LNG long '1'
_C_ULNG unsigned long 'L'
_C_FLT float 'f'
_C_DBL double 'd'
_C_UNDEF an undefined type '?'
_C_PTR a pointer 'A'

_C_CHARPTR char * '*'
_C_BFLD a bitfield 'b'
_C_ARY_B begin an array '['
_C_ARY_E end an array ']'
_C_UNION_B begin a union 'C
_C_UNION_E end a union ')'
_C_STRUCT_B begin a structure '{ ,
_C_STRUCT_E end a structure '}'

DESCRIPTION These constants identify the character codes used to store method return and argument
types. They're the same codes returned by the @encodeO directive.

Types and Constants: Type Constants 15-37

Structures

objc_cache

DECLARED IN objc/objc-class.h

SYNOPSIS struct objc_cache {

} ;

unsigned int mask;
unsigned int occupied;
Method buckets [1];

DESCRIPTION This structure stores a class-specific cache of the methods most recently used by instances
of the class or by the class object. The Cache data type is defined as a pointer to an
objc_cache structure.

objc_ category

DECLARED IN objc/objc-class.h

SYNOPSIS struct objc_category {

};

char *category _name;
char *class_name;
struct objc_method_list *instance_methods;
struct objc_method_list *class_methods;
struct objc_protocol_list *protocols;

DESCRIPTION This structure stores the information contained in a category definition. Its fields are:

category_name
class_name
instance_methods
class_methods
protocols

15-38 Chapter 15: Run-Time System

The name assigned to the category in source code
The name of the class that the category belongs to
A list of instance methods defined in the category
A list of class methods defined in the category
A list of the protocols adopted in the category

The Category data type is defined as a pointer to an obj_category structure.

objc_class

DECLARED IN objc/objc-class.h

SYNOPSIS struct objc_c1ass {

};

struct objc_class *isa;
struct objc_class *super_c1ass;
const char *name;
long version;
long info;
long instance_size;
struct objc_ivar_list *ivars;
struct objc_method_list *methods;
struct objc_cache *cache;
struct objc_protocol_list *protocols;

DESCRIPTION This structure holds information about a class definition. Its fields are:

isa
super_class
name
version
info
instance_size
ivars
methods
cache
protocols

The metaclass of this class
The superclass of this class
The name of this class
The current version of the class (as set by setVersion:)
The current status of the class
The number of bytes to allocate for an instance of the class
The instance variables declared in the class interface
The instance methods defined in the class implementation
The cache of recently used methods
The protocols adopted by the class

This structure is also used to store metaclass information, in which case the methods field
lists class methods rather than instance methods.

The Class data type is defined (in objc.h) as a pointer to an objc_c1ass structure.

Types and Constants: objcJlass 15-39

DECLARED IN objc/objc-class.h

SYNOPSIS struct objc_ivar {

};

char *ivar _name;
char *ivar_type;
int ivar_offset;

DESCRIPTION This structure describes a single instance variable. It's fields are:

ivar_name
ivar_type
ivar_offset

The name of the instance variable
The data type declared for the instance variable
The position of the variable in the object (as an offset in bytes)

The Ivar data type is defined as a pointer to an objc_ivar structure.

DECLARED IN objc/objc-class.h

SYNOPSIS struct objc_ivar_list {

};

int ivar_count;
structobjc_ivar ivar_list[l];

DESCRIPTION This structure holds information about the instance variables declared in a class definition.
The first field, ivar_count, gives the number of variables declared and the second field,
ivar _list, is a variable-length array of all the variables.

15-40 Chapter 15: Run-Time System

DECLARED IN objc/objc-class.h

SYNOPSIS struct objc_method {

} ;

SEL method_name;
char *method_types;
IMP method_imp;

DESCRIPTION This structure describes a single method implemented by the class. The fields are:

method_name
method_types
method_imp

The method selector (not the full name)
A string encoding the method return and argument types
A pointer to the method implementation

The Method data type is defined as a pointer to an objc_method structure.

objc_method_description

DECLARED IN objclProtocol.h

SYNOPSIS struct objc_method_description {
SELname;
char *types;

};

DESCRIPTION This structure holds the method information returned by two methods defined in the
Protocol class, descriptionForClassMethod: and descriptionForlnstanceMethod:, and
by two Object methods, descriptionForMethod: and descriptionForlnstanceMethod:.

Types and Constants: objc_method 15-41

objc_method_description_list

DECLARED IN objclProtocol.h

SYNOPSIS struct objc_method_description_list {
int count;
struct objc_method_description list[l];

} ;

DESCRIPTION This structure points to a list of objc_method_description structures. Typically the list
describes all the methods declared in a particular protocol.

DECLARED IN objc/objc-class.h

SYNOPSIS struct objc_method_list {

} ;

struct objc_method_list *method_next;
int method_count;
struct objc_method method_list[l];

DESCRIPTION This structure lists all the class or all the instance methods defined within a class or category
(within one group bracketed by @implementation and @end). Its fields are:

method_next
method_count
method_list

A pointer to another group of methods for the same class
The number of methods listed in this group
A variable-length array of method descriptions

Class methods and instance methods are listed in separate structures.

15-42 Chapter 15: Run-Time System

DECLARED IN objclobjc-runtime.h

SYNOPSIS struct objc_module {
unsigned long version;
unsigned long size;
const char *name;
Symtab symtab;

};

DESCRIPTION This structure holds information about an object file compiled from Objective C source
code. Its fields are:

version
size
name
symtab

The version of run-time data structures
The size of the module in bytes
The name of the file
An obsolete field

The Module data type is defined as a pointer to this structure.

DECLARED IN . objc/objc-class.h

SYNOPSIS struct objc_protocol_list {

} ;

struct objc_protocol_list *next
int count;
Protocol *list[1];

DESCRIPTION This structure lists all the protocols adopted by a class in one place. Separate lists are kept
for the class interface and for each category that adopts protocols on the class's behalf. The
fields of the structure are:

next
count
list

A pointer to another list of protocols adopted by the class
The number of protocols listed here
A variable-length array of Protocol objects

Types and Constants: objc_module 15-43

DECLARED IN objc/objc-runtime.h

SYNOPSIS struct objc_super {
id receiver;
Class class;

};

DESCRIPTION This structure helps the messaging function find which method implementation to invoke
in response to a message sent to super. Its fields are:

receiver.
class

15-44 Chapter 15: Run-Time System

The receiver of the message (the object designated by super)
The class where the message is sent

Global Variables

Function Pointers

DECLARED IN objc/objc-runtime.h

SYNOPSIS id (* _alloc)(Class aClass, unsigned int indexedlvarBytes)
id (* _dealloc)(Object *anObject)
id (* _realloc)(Object *anObject, unsigned int numBytes)
id (* _copy)(Object *anObject, unsigned int indexedlvarBytes)
id (* _zoneAlloc)(Class a Class , unsigned int indexedlvarBytes, NXZone *zone)
id (* _zoneRealloc)(Object *anObject, unsigned int numBytes, NXZone *zone)
id (* _zoneCopy)(Object *anObject, unsigned int indexedlvarBytes, NXZone *zone)
void (* _error) (Obj ect *anObject, const char *format, va_list ap)

DESCRIPTION These variables point to the functions that the run-time system uses to manage memory and
handle errors. By reassigning a variable, a function can be replaced with another of the
same type. The example below shows a temporary reassignment of the _zoneAIloc
function:

id (*theFunction) ();
theFunction = _zoneAlloc;

zoneAlloc = someOtherFunction;
/*

* code that calls the class_createInstanceFromZone() function,
* or sends alloc and allocFromZone: messages, goes here
*/

_zoneAlloc = theFunction;

• _alloc points to the function, called through c1ass_createInstanceO, used to allocate
memory for new instances, and _zoneAlloc points to the function, called through
c1ass_createInstanceFrornZoneO, used to allocate the memory for a new instance
from a specified zone.

• _dealloc points to the function, called through object_disposeO, used to free instances.

• _realloc points to the function, called through object_reaIlocO, used to reallocate
memory for an object, and _zoneRealloc points to the function, called through
object_reallocFrornZoneO, used to reallocate memory from a specified zone.

Types and Constants: Function Pointers 15-45

• _copy points to the function, called through object_copyO, used to create an exact copy
of an object, and _zone Copy points to the function, called through
object_copyFromZoneO, used to create the copy from memory in the specified zone.

• _error points to the function that the run-time system calls in response to an error. By
default, it prints formatted error messages to the standard error.stream (or logs them to
the console if there is no standard error stream) and calls abortO to produce a core file.

15-46 Chapter 15: Run-Time System

16 Sound

16-3 Introduction

16-5 Classes
16-6 NXPlayStream
16-13 NXRecordStream
16-16 NXSoundDevice
16-30 NXSoundln
16-31 NXSoundOut
16-39 NXSoundStream
16-49 Sound
16-68 SoundMeter
16-75 SoundView

16-93 Sound Functions

16-123 Sound Driver Functions

16-157 Types and Constants
16-158 Defined Types
16-165 Symbolic Constants
16-172 Global Variables

16-1

16-2

Sound

Library:

Header File Directory:

Import:

Introduction

IN extDeveloper/Headers/sound
IN extDeveloperlHeadersl soundkit

sound! sound.h
soundkit/soundkit.h

This chapter describes the sound software provided by NeXTSTEP. There are three
"layers" of software: a sound driver, a set of sound functions, and a Sound Kit. The sound
driver is the device that communicates with the sound hardware (including the DSP),
allowing sound to be recorded, compressed, converted, and played. The sound functions
and Sound Kit provide high-level interfaces to the sound driver. In addition to playing and
recording sounds, the Sound Kit also provides classes that let you display sound data.

Sound 16-3

There are four sections in this chapter:

• "Classes" describes the Objective C classes defined by the Sound Kit.

• "Sound Functions" describes the sound C functions. In general, the operations provided
by the sound functions are subsumed by the Sound Kit. However, the sound functions
are useful for performing very simple tasks, such as playing a single soundfile.

• "Driver Functions" describes the C functions that give you the most direct access to the
sound driver. Although the driver functions have been largely obsolesced by the
SoundDevice and SoundStream classes, they're still needed if you want to control a
stream of sound into or out of the DSP.

• "Types and Constants" describes the defined types and symbolic constants used by the
sound software.

16-4 Chapter 16: Sound

Classes

NXPlayStreal11

Inherits From: NXSoundStream : Object

Declared In: soundkitINXPlayStream.h

Class Description

The NXPlayStream class defines methods that initiate and control sound playback. To play
sounds with an NXPlayStream object, you must first connect it to an NXSoundOut object
and then activate it; these tasks are done through the initOnDevice: and activate methods
(as described in NXSoundStream).

Once it's connected and activated, an NXPlayStream will accept and play buffers of sound
data. You supply it with these buffers through the playBuffer: ... methods. The enqueuing
of buffers must be timely and constant-a gap in playback occurs if the underlying sound
device isn't supplied with buffers quickly enough (it "underruns"). You can prevent this
sort of underrun by using larger buffers; if you're playing a determinate amount of existing
data, there's no loss in enqueuing the entire sound in one large buffer. Of course, this isn't
possible if you're creating or controlling sound data dynamically; in particular, if you've
set the size or number of DMA transfer buffers to yield a better response time (through
messages to the NXSoundOut object), then the size of the buffers that you feed to the
NXPlayStream should be no greater than DMA buffer size times the DMA buffer count.
In any case, you should note that you don't have to wait for a stream buffer to play before
enqueuing the next one.

The sound data in the buffers that you enqueue with an NXPlayStream can be one or two
channels of 16-bit linear sound samples at either the 44.1 kHz or 22.05 kHz sampling rate.
Sounds in other formats and sampling rates must be converted before they can be played
through an NXPlayStream.

Scaling and Peak Detection

One of the features of an NXPlayStream is that it allows stream-independent amplitude
scaling and peak detection. Amplitude-scaling, or gain, is a (stereo) factor that's applied
linearly to the left and right channels to increase or decrease the amplitude of a stream
before it's mixed with the other coincident playback streams. The setGainLeft:right:
method sets the left- and right-channel gain factors.

16-6 Chapter 16: Sound

In addition to the general stream-gain factor, each buffer can be given its own stereo gain,
set as the buffer is enqueued through the (full-blown) playBuffer: ... method. When the
buffer is played, its data is scaled by its own gain and then by the gain for its stream.

An NXPlayStream's peak detection facility is much like that provided by NXSoundDevice:
It holds the (normalized) maximum left- and right-channel amplitudes that it has detected
over a certain amount of sound data. For NXPlayStream, the number of samples (or sample
frames) that are looked at depends on the NXPlayStream's peak history value (as set
through setPeakHistory:), the size of a DMA transfer buffer, the sampling rate at which
the sound-out hardware is currently running, and the channel count and sampling rate of
the NXPlayStream's current buffer. The best way to think of this is to consider the peak
history as setting the frequency at which the NXPlayStream's data is examined: If you set
the peak history to 1 (the default), the stream is examined after every DMA transfer
performed by sound-out. Using the default settings, this means that a stereo 44.1 kHz
stream is examined 20 times a second and a stereo 22.05 kHz stream is examined 10 times
a second (given that the sound-out hardware is running at these same rates).

As with NXSoundDevice, the peak values aren't sent back to your application-you have
to request them by invoking the getPeakLeft:right: method. The peak values returned by
the method are normalized to fall within (0.0, 1.0), where 0.0 is no amplitude and 1.0 is the
maximum amplitude. If you want to continuously monitor the peaks in a stream, you would
set up a timed entry that invokes this method at a frequency that matches the rate at which
the peaks are detected.

Error Codes

Many of the methods described here access underlying sound devices. Such methods
return error codes that declare success or describe failure. A catalog of these error codes
can be found in the section "Types and Constants" under the heading
"NXSoundDeviceError. "

Instance Variables

None declared in this class.

Classes: NXPlayStream 16-7

Method Types

Initializing an NXPlayStream - initOnDevice:

Activating and playing - activate
- playBuffer:size:tag:channeICount:samplingRate:
- playBuffer:size:tag:channeICount:samplingRate:

bufferGainLeft:right:
low WaterMark: high WaterMark:

Gain and peak detection - setGainLeft:right:
- getGainLeft:right:
- getPeakLeft:right:
- setDetectPeaks:
- isDetectingPeaks
- setPeakHistory:
- peakHistory

Instance Methods

activate

- (NXSoundDeviceError)activate

Activates the NXPlayStream so it can be used to play sounds. This augments the superclass
implementation by setting playback-specific attributes. Returns an error code.

See also: - activate (NXSoundStream)

getGainLeft:right:

- getGainLeft:(fioat *)leftScale right:(fioat *)rightScale

Returns, by reference in the arguments, the general scaling factors that are applied to the
left and right channels of this NXPlayStream. By default, the gain in both channels is 1.0
(the sound is unmodified). Returns self.

See also: - setGainLeft:right:

16-8 Chapter 16: Sound

getPeakLeft:right:

- (NXSoundDeviceError)getPeakLeft:(float *)leftAmp right:(float *)rightAmp

Returns, by reference in the arguments, the most recently detected peak amplitudes for
this NXPlayStream. The peak values are normalized to fall within (0.0, 1.0), where 0.0
is no amplitude and 1.0 is maximum amplitude. You typically set up a timed entry to
invoke this method while sound is playing. See the class description, above, for more
on peak detection.

See also: - setPeakHistory:, - setDetectPeaks:, - isDetectingPeaks

initOnDevice:

- initOnDevice:anObject

The designated initializer for NXPlayStream, this method invokes the superc1ass version
of initOnDevice: and then sets the the gain in both channels to 1.0, and the peak history to
1.

isDetecti ngPeaks

- (BOOL)isDetectingPeaks

Returns YES if the NXPlayStream is detecting peak amplitudes; otherwise, returns NO
(the default).

See also: - setDetectPeaks:

peakHistory

- (unsigned int)peakHistory

Returns the frequency at which the NXPlayStream detects peaks, as explained in the
class description.

See also: - setPeakHistory:

Classes: NXPlayStream 16-9

playBuffer:size:tag:channeICount:samplingRate:

- (NXSoundDeviceError)playBuffer: (void *)data
size:(unsigned int)bytes

tag: (int)aTag

channel Count: (unsigned int)channels
samplingRate:(float)rate

Enqueues a buffer for playback by invoking the grander playBuffer: ... method (described
below) with the following defaults:

Argument

leftAmp
. right Amp
low WaterMark
high WaterMark

Returns an error code.

Default Value

1.0
1.0
512 kilobytes
768 kilobytes

See also: - playBuffer: size: tag: channeICount:samplingRate:bufferGai nLeft:right:
lowWaterMark:high WaterMark:

playBuffer:size:tag:channeICount:samplingRate:bufferGainLeft:right:
lowWaterMark:highWaterMark:

- (NXSoundDeviceError)playBuffer:(void *)data

size:(unsigned int)bytes
tag: (int)aTag
channelCount: (unsigned int)channels

samplingRate:(float)rate
bufferGainLeft: (float)leftAmp
right: (float)rightAmp
lowWaterMark:(unsigned int)lowWater
high WaterMark: (unsigned int)high Water

Enqueues a buffer for playback. The arguments are as follows:

16-10 Chapter 16: Sound

Argument

data

bytes

aTag

channels

rate

leftAmp

rightAmp

lowWater

highWater

Value

A pointer to the buffer that you're enqueuing.

The size of the buffer, in bytes

A non-negative integer that's used to identify the buffer in
subsequent delegate messages.

The number of channels; must be 1 or 2.

The sampling rate; must be SND _RATE_LOW (22050.0)
or SND_RATE_HIGH (44100.0).

An amplitude-scaling factor for the left channel.

An amplitude-scaling factor for the right channel.

The minimum number of bytes of data the sound driver
will attempt to keep resident in memory (or wired down)
while the NXPlayStream is playing.

The maximum number of bytes of data the sound driver
will wire down.

The left- and right-channel gain values (leftAmp and rightAmp) are specific to this buffer.
The general stream gain, set through setGainLeft:right:, is applied in addition to these.

See also: - playBuffer:size:tag:channeICount:samplingRate:

setDetectPeaks:

- (NXSoundDeviceError)setDetectPeaks: (BaaL)flag

Establishes whether the NXPlayStream detects peak amplitudes. The default is NO. See
the c1assdescription for more information on peak detection. An error code is returned.

See also: - isDetectingPeaks, - setPeakHistory:, - getPeakLeft:right:

setGainLeft:right:

- (NXSoundDeviceError)setGainLeft: (float)leftAmp right: (float)rightAmp

Set the NXPlayStream's general gain. These gains are multiplied by the individual buffer
gains (as set through playBuffer: ...) to get the final amplitude gain for a particular buffer
on this NXPlayStream.

See also: - getGainLeft:right:

Classes: NXPlayStream 16-11

setPeakHistory:

- (NXSoundDeviceError)setPeakHistory: (unsigned int)bufferCount

Sets the frequency at which the NXPlayStream detects peaks, as explained in the class
description. Returns an error code.

See also: - peakHistory, - setDetectPeaks:

Methods Implemented by the Delegate

soundStreamDidUnderrun:

- soundStreamDidUnderrun:sender

Invoked when the sound driver "underruns," or can't transfer data to the sound hardware
quickly enough. Underrun occurs if you're playing too many sounds at the same time, if
the DMA transfer buffers are too small or too few, or if the overall system load is too high.
It results in a gap in playback.

16-12 Chapter 16: Sound

NXRecordStreal11

Inherits From: NXSoundStream : Object

Declared In: soundkitINXRecordStream.h

Class Description

The NXRecordStream class defines methods that retrieve data recorded through the
microphone. To use an NXRecordStream object, you must first connect it to .an
NXSoundIn object and then activate it; these tasks are done through the initOnDevice: and
activate methods, both of which NXRecordStream inherits from its superclass,
NXSoundStream.

To record a sound, you must tell the NXRecordStream to enqueue a buffer in which the
sound data will be placed by invoking one of the recordSize: ••. methods. You don't have
to supply the buffer, just its size (and other specifications); the buffer itself is allocated by
the sound driver. If you're recording a determinate amount of data, there's no loss in
enqueuing one large buffer to hold the entire recording. In any case, you should note that
you don't have to wait for a buffer to be recorded before enqueuing the next one.

As each buffer is recorded, it's returned to the NXRecordStream's delegate through a
soundStream:didRecordData:size:forBuffer: message. You can force a buffer to return
early through the sendRecordedDataToDelegate method.

The sound data in the buffers that are returned to the delegate is a single channel of 8-bit
mu-Iaw samples at the CODEC sampling rate. You have to convert the format and
sampling rate before playing the sound through an NXPlayStream object (as explained in
NXPlayStream). If you're using a Sound object or the SNDStartPlayingO function to play
the sound, these conversions are performed for you.

The sound driver sends recorded data to all NXRecordStreams that are being used
simultaneously. This extends to all applications: Any number of applications may
recieve record at the same time (each application gets a separate copy of the recorded
data). You can reserve the sound-in facilities for your application through NXSoundIn's
setReserved: method.

Classes: NXRecordStream 16-13

Error Codes

Many of the methods described here access underlying sound devices. Such methods return
error codes that declare success or describe failure. A catalog of these error codes can be
found in the section "Types and Constants" under the heading "NXSoundDeviceError."

Instance Variables

N one declared in this class.

Method Types

Enqueueing buffers - recordSize:tag:
- recordSize:tag:lowWaterMark:high WaterMark:

Requesting data - sendRecordedDataToDelegate

Instance Methods

recordSize:tag:

- (NXSoundDeviceError)recordSize:(unsigned int)bytes tag:(int)anlnt

Enqueues a recording buffer by invoking
recordSize: tag: lowWaterMark:high WaterMark: with the default water mark values
(48 pages of virtual memory for the low mark, 64 pages for the high mark). Returns an
error code.

See also: - recordSize: tag: lowWaterMark: high WaterMark:

recordSize:tag:lowWaterMark:highWaterMark:

- (NXSoundDeviceError)recordSize: (unsigned int)bytes
tag: (int)aTag

. lowWaterMark:(unsigned int)lowWater

high WaterMark: (unsigned int)high Water

Enqueues a recording buffer with the given size in bytes. The buffer is identified, when it's
returned to the delegate, by a Tag , an integer that must be greater than or equal to O. The
low Water and high Water arguments set the minimum and maximum number of bytes that

16-14 Chapter 16: Sound

the sound driver will try to keep resident in memory (or wired-down) while the recording
is in progress. Note that this means the recording won't start until the driver has wired
down memory to the low water mark. When the buffer is filled, it's returned to the
NXRecordStream's delegate, through its soundStream:didRecordData:size:forBuffer:
method. You can force the buffer to be returned before it's filled by sending
sendRecordedDataToDelegate to the NXRecordStream. Returns an error code.

See also: - recordSize:tag:, - soundStream:didRecordData:size:forBuffer: (delegate)

sendRecordedDataToDelegate

- (NXSoundDeviceError)sendRecordedDataToDelegate

Forces the current buffer to be returned immediately in a
soundStream:didRecordData:size:forBuffer: message sent to the delegate. The
recording continues into the remaining portion of the buffer. An error code is returned.

See also: - soundStream:didRecordData:size:forBuffer: (delegate)

Methods Implemented by the Delegate

soundStreamDidOverrun:

- soundStreamDidOverrun:sender

Invoked when memory can't be wired down fast enough, thus causing the driver to drop
recorded data. Usually this means that the overall system load is too high. The return value
is ignored.

soundStream:didRecordData:size:forBuffer:

- soundStream:sender
didRecordData: (void *)data
size:(unsigned int)numBytes
forBuffer: (int) tag

Returns, in data, the most recently recorded buffer of sound data. The size of the data is
given by numBytes; the tag argument is the tag that was placed on the buffer by the
recordSize: ... message that enqueued it. Normally, this is invoked when the driver fills the
entire buffer with data. It's also invoked when the NXRecordStream is deactivated, and
when it receives a sendRecordedDataToDelegate message. When you're finished with
data, you must free it yourself, through the vm_deallocateO function.

Classes: NXRecordStream 16-15

NXSoundDevice

Inherits From: Object

Declared In: soundkitINXSoundDevice.h

Class Description

NXSoundDevice is an abstract superclass; each subclass represents a sound input or output
device. Currently, the Sound Kit provides two subclasses of NXSoundDevice:

• NXSoundIn represents sound input (the microphone jack).
• NXSoundOut represents sound output (the speaker, line-out jacks, and headphone jack).

The utility of NXSoundDevice is invested in these subclasses; the NXSoundDevice class
itself simply defines methods that are common to them. In addition, you can't create useful
subclasses of NXSoundDevice yourself (see "Sound Devices and the DSP," below, for
information on accessing the DSP as a sound device).

Many applications needn't bother with NXSoundDevice and its subclasses; in general, the
methods provided by the Sound class suffice for applications that record and playback
sounds. However, while Sound objects are easy to use, NXSoundDevices let you control
sound resources to a much greater degree. The primary advantages of NXSoundDevice
objects are that you can:

• Reserve sound devices for exclusive use by your application.
• Specify the host computer of the device that you want to use.
• Specify the size and number of the sound data buffers used by the device.

Initializing and Reserving a Sound Device

You initialize an NXSoundDevice by connecting it to a sound driver. The init method
connects it to the sound driver on the local host; initOnHost: lets you access the sound
driver on some other machine. A single NXSoundDevice can be connected to only one
sound driver (one host) at a time.

Underneath the two NXSoundDevice subclasses lie two specific sound driver devices:
NXSoundIn represents the sound driver's sound-in device, and NXSoundOut represents
the sound-out device. You can connect any number of NXSoundOut and NXSoundIn
instances to the same sound driver (in other words, you can initialize them on the same
host), however, some NXSoundDevice methods, notably setBufferSize: and

16-16 Chapter 16: Sound

setBufferCount:, set attributes for the underlying sound driver device, thus sending such
a message to one NXSoundOut or NXSoundIn will affect all other instances of its class on
that host.

You can reserve a sound driver device for exclusive use by an NXSoundDevice through the
setReserved: method. While reserved, no other application, nor any other
NXSoundDevice within your application, can play or record sounds through the sound
device. If it's unreserved, the sound device is shared: For sound-in, this means that more
than one application can get a copy of the same recording. For sound-out, more than one
application can play sounds at the same time (see the NXSoundOut class description for
more on mixing sounds during playback). Note that while you can reserve a sound device,
you can't reserve the reservation; setReserved:YES will work even if the device has
already been reserved by another application (and the previous owner will no longer have
access to the device).

Devices and Streams

By themselves, NXSoundDevice objects are of limited use. An NXSoundOut object, for
example, lets you manipulate the sound-out device, but it doesn't provide data to the
device, thus the object isn't capable of making any sound. For this, you need to connect an
NXPlayStream object to the NXSoundOut. This is done by passing the NXSoundOut as
the argument to NXPlayStream's initOnDevice: method. Similarly, to record sound you
must connect an NXRecordStream to an NXSoundln object, again through an
initOnDevice: message (sent to the NXRecordStream). NXPlayStream and
NXRecordStream inherit from NXSoundStream, an abstract superclass that defines
methods for its subclasses in much the same way that NXSoundDevice embodies the
common functionality of NXSoundIn and NXSoundOut. You can connect more than one
NXSoundStream to the same NXSoundDevice, but the NXRecordStreamINXSoundIn,
NXPlayStreamINXSoundOut pairings should be honored; you can't connect an
NXPlayStream to an NXSoundIn, for example.

An NXSoundDevice can pause, resume, and abort all the NXSoundStreams that are
connected to it. Each NXSoundDevice controls only its own NXSoundStreams; for
example, if you create two NXSoundOut objects and connect two NXPlayStreams to each
(for a total of four NXPlayStreams), sending a pauseStreams: message to one of the
NXSoundOuts will pause only the two streams that are connected to it-the other two
streams are unaffected, even though both NXSoundOut objects represent the same sound
driver device. This ability-to independently control groups of streams connected to the
same underlying sound driver device-is the only reason for creating multiple
NXSoundDevices for the same driver device. Barring this requirement, you should never
need to create more than one NXSoundOut and one NXSoundIn per host machine.

Classes: NXSoundDevice 16-17

Sound Buffers

The sound-in and sound-out devices transfer sound to or from the associated sound
hardware through DMA buffers. These transfer buffers can be no larger than a page of
virtual memory, as given by the global variable vID_page_size. However, you can make
them smaller with the setBufferSize: method, if desired. All sound streams connected to
the device (even those in other applications) will have their sound data broken into pieces
of this size for transfer. By default, sound-in DMA buffers are 256 bytes and sound-out
buffers are a page of virtual memory.

You can also specify the number of transfer buffers that are used by a device through the
setBufferCount: method. By default, both sound-in and sound-out use four buffers. DMA
buffers are sent as soon as they're filled; by maintaining more than one buffer, the sound
driver is able to "run ahead," filling the extra buffers while the first one is being played (or
emptied, in the case of recording). This provides a sort of cushion, allowing the
buffer-filling process (which is run in a background thread) to procede in jerks and starts
while sound is played back (or recorded) without interruption.

For applications that don't depend on user interaction or some other dynamic quality to
affect sound recording or playback, the transfer buffer defaults are adequate. However, you
may want to make the buffers smaller or fewer in number if you need a quick tum-around
between a sound's inception and its capture or realization-this is particularly true for
playback that's tightly controlled by the user's actions. If you do resize or renumber the
DMA transfer buffers for better response time, you should be aware that all may be for
nought unless you similarly adjust the size of the sound data buffers that you enqueue on
theNXSoundStream that you're using. In such a case, the NXSoundStream's buffers
should be no larger than the DMA buffer size times the DMA buffer count.

Since the changes that you make to the DMA transfer buffer size and count affect the sound
driver device, any application that's recording or playing sound will inherit the new
settings. However, the buffer attributes for a particular device are reset to their defaults
when the last active stream that's connected to that device is closed. Because of this, you
should always connect an NXSoundStream to your NXSoundDevice and open the stream
(through NXSoundStream's activate method) before sending setBufferCount: or
setBufferSize: to the NXSoundDevice.

Furthermore, just as your buffer settings affect other applications, so, too, do the other
ap'plication's settings affect yours. The only way you can be absolutely sure that your
buffer settings will stick is to reserve the sound device.

Peak Detection

You can set an NXSoundDevice to detect the peaks, or maximum absolute amplitudes,
witnessed over some number of transfer buffers. To enable this feature, you must send the
NXSoundDevice a detectPeaks: YES message. The setPeakHistory: method then lets

16-18 Chapter 16: Sound

you set the number of buffer that you wish to examine. The actual number of samples (or
sample frames) that are looked at depends on the sampling rate of the hardware device.

While sound is streaming through the device, you can retrieve the most recent peak
amplitudes (in stereo) through the getPeakLeft:right: method. The peak values returned
by the method are normalized to fall within (0.0, 1.0), where 0.0 is no amplitude and 1.0 is
the maximum amplitude supported by the data format. Old peak data is thrown away as
the most recent peaks are detected-if you want an on-going and thorough chart of the
peaks, you must query for this data promptly and consistently while sound is recording or
playing. Typically, you set up a timed entry to invoke getPeakLeft:right: at a frequency
that matches the rate at which the peaks are detected.

The NXSoundDevice itself doesn't perform the peak detection-it's done by the
underlying device. This has a particular significance for sound-out: The data that's
returned by getPeakLeft:right: is the peak amplitude of all sounds that are being played,
not just those NXPlayStreams that are connected to the queried NXSoundOut object.

Sound Driver Reply Messages

As it's processing a sound stream, the sound driver sends Mach messages to a reply port
that's managed by the NXSoundDevice class object. Each message contains either a status
report-whether a sound has started, completed, aborted, and so on-or, in the case of
sound-in, a buffer of recorded sound data.

The NXSoundDevice class object interprets each of these driver messages and sends a
corresponding Objective C message to the delegate of the appropriate NXSoundStream
instance (as described in the class specifications of NXSoundStream, NXPlayStream, and
NXRecordStream). For the delegate to be apprised as quickly as possible, you can create
a separate thread in which the NXSoundDevice class object will receive messages from the
driver. This is done by sending setUseSeparateThread: YES to the NXSoundDevice
class object.

Although a separate thread increases responsiveness to the sound driver, it may degrade the
synchronization between sound and graphics (for example). Also, if you're using a
separate thread, your implementation of the delegate methods can't invoke methods or call
functions that are non-reentrant or that cause code to be sent to the PostScript interpreter­
in other words, they mustn't draw.

If the reply thread isn't separate, you can set the threshold that the Application Kit uses to
determine whether to pay attention to driver messages. You specify this threshold with the
setThreadThreshold: class method. Again, this setting affects all NXSoundDevice objects.

To have an effect, setUseSeparateThread: or setThreadThreshold: must be invoked
before any NXSoundDevice objects are initialized.

Classes: NXSoundDevice 16-19

Sound Device Timeout

The NXSoundDevice and NXSoundStream methods that communicate with the underlying
driver do so by sending Mach messages to the driver. Such a method sends the Mach
message and then waits for a reply from the driver~the method doesn't return, and your
application hangs, until the driver responds. In general, if your application is running, then
the sound driver should be running and so should respond. However, if your application is
using the sound driver on a remote host, this assurance is less certain; for example, if the
remote host is powered off, then your application will hang when a driver-accessing
method is invoked.

You can specify the maximum amount of time to wait for the sound driver to respond
through NXSoundDevice's setTimeout: class method. The method sets, in milliseconds,
the time limit for all sound devices. If the sound driver doesn't respond to a Mach message
within the given amount of time, the method that caused the message to be sent is forced to
return with the error code NX_SoundDeviceErrorTimeout (the sound device error codes
are listed in the section "Types and Constants" under the heading
"NXSoundDeviceError").

Although you can set the time limit to an excruciatingly specific interval, it's perhaps better
thought of as acting as a boolean that determines whether your application can hang forever
or not: By default, the timeout is set to NX_SOUNDDEVICE_TIMEOUT_MAX, a
number so large that driver-accessing methods will, essentially, never time out and so your
application will hang if the sound driver is unresponsive. Setting it to a more reasonable
amount of time, say ten seconds or so, will ensure that your application won't hang forever,
while allowing enough time for even the sleepiest driver to wake up.

The Sound Kit methods that access the sound driver, and so are liable to the time limit, are
those that return an NXSoundDeviceError value (except for NXSoundDriver's lastError),
plus these additional methods:

Method Class

isReserved NXSoundDevice
bufferSize NXSoundDevice
bufferCount NXSoundDevice
pauseStreams: NXSoundDevice
resumeStreams: NXSoundDevice
abortStreams: NXSoundDevice
clipCount NXSoundOut
pause: NXSoundStream
resume: NXSoundStream
abort: NXSoundStream
bytesProcessed NXSoundStream

16-20 Chapter 16: Sound

Sound Devices and the DSP

As noted above, the Sound Kit currently provides NXSoundIn and NXSoundOut
subclasses of NXSoundDevice. Notable by its absence are classes that represent DSP input
and output. To use the DSP to process sound-to convert CODEC or compressed sound,
for example-you must use the sound driver functions, as described in the "SoundIDSP
Driver Functions" section of this chapter. Note that the DSP isn't used for converting
monophonic sounds to stereo, as long as the sound format is 16-bit linear and the sampling
rate is 22.05 or 44.1 kHz.

Instance Variables

None declared in this class.

Method Types

Initializing and freeing an NXSoundDevice
-init

U sing a separate thread

- initOnHost:
-free

+ replyThread
+ isUsingSeparateThread
+ setThreadThreshold:
+ setU seSeparateThread:
+ threadThreshold

Examining ports - devicePort
+ replyPort
- streamOwnerPort

Identifying the host computer - host

Configuring the object - bufferCount
- bufferSize
- isReserved
- setBufferCount:
- setBufferSize:
- setReserved:
+ setTimeout:
+ timeout

Classes: NXSoundDevice 16-21

Finding peak amplitudes - getPeakLeft:right:
- isDetectingPeaks
- peakHistory
- setDetectPeaks:
- setPeakHistory:

Controlling streams - abortStreams:
- pauseStreams:
- resumeStreams:

Handling errors -lastError
+ textForError:

Class Methods

isUsingSeparate Thread

+ (BOOL)isUsingSeparateThread

Returns YES if the NXSoundDevice is using a separate thread to process messages from
the driver to the reply port; otherwise, returns NO.

See also: + setUseSeparateThread:

replyPort

+ (port_t)replyPort

Returns the port to which the sound driver sends reply messages. You can't set this port
yourself, and you normally don't need to note its identity; this method is provided in case
you want to pass the reply port as an argument to a function such as port_statusO.

replyThread

+ (cthread_t)replyThread

Returns the thread in which messages from the sound driver are sent to the reply port. If
the NXSoundDriver isn't using a separate thread for these messages, this returns
NO_CTHREAD. The cthread_t type is defined in machlcthreads.h.

See also: + setUseSeparateThread:

16-22 Chapter 16: Sound

setThreadThreshold:

+ setThreadThreshold:(int)threshold

Sets the threshold against which the application's current threshold is compared as
messages arrive from the driver. If threshold is higher than the current threshold, the
message is delivered to the reply port (and so a message is sent to the delegate of the
appropriate NXSoundStream), otherwise the message is ignored. By default, threshold is
NX_MODALRESPTHRESHOLD, as defined in appkitlApplication.h. If the
NXSoundDevice is using a separate thread to receive driver messages, this method has no
effect (all messages are received in this case).

This method does nothing and returns nil if your application contains any initialized
NXSoundDevice objects. Otherwise it returns self.

See also: + threadThreshold, + isUsingSeparateThread:

setTimeout:

+ setTimeout: (unsigned int)milliseconds

Sets the length of time, in milliseconds, that all sound devices will wait for a method that
communicates with the sound driver to return, as explained in the class description, above.
Returns self.

See also: + timeout

setUseSeparate Thread:

+ setUseSeparateThread:(BOOL)flag

Ifflag is YES, the NXSoundDevice class object will use a separate thread for processing
messages from the sound driver. The NXSoundDevice class object interprets these Mach
messages and sends corresponding Objective-C messages to the delegate of the appropriate
NXSoundStream instance. If flag is NO, the sound driver messages are processed in the
application's main thread.

This method does nothing and returns nil if your application contains any initialized
NXSoundDevice objects. Otherwise it returns self.

See also: + isUsingSeparateThread

Classes: NXSoundDevice 16-23

textForError:

+ (const char *)textForError:(NXSoundDeviceError)errorCode

Returns a localized string that corresponds to errorCode. The sound device error codes are
listed in the "Constants and Types" section.

See also: -lastError

threadThreshold

+ (int)threadThreshold

Returns the threshold that's used to determine whether messages from the sound driver are
ignored. The default is NX_MODALRESPTHRESHOLD, as defined in
appkitl Application.h.

See also: + setThreadThreshold:

timeout

+ (unsigned int)timeout

Returns the amount of time, in milliseconds, that driver-accessing methods are allowed to
hang before being forced to return, as explained in the class description, above. The default
is NX_SOUNDDEVICE_TIMEOUT_MAX (essentially forever).

See also: + setTimeout:

Instance Methods

abortStreams:

- abortStreams:sender

Aborts all streams that are connected to the NXSoundDevice. You should check the return
value of lastError after invoking this method to see if an error occurred. Returns self.

See also: - abort: (NXSoundStream), - lastError

16-24 Chapter 16: Sound

bufferCount

- (unsigned int)bufferCount

Returns the number ofDMA transfer buffers for the sound device. The default is 4 for both
sound-in and sound-out. You should check the return value of last Error after invoking this
method to see if an error occurred while querying the sound driver.

See also: - setBufferCount:, -lastError

bufferSize

- (unsigned int)bufferSize

Returns the size in bytes of each DMA transfer buffer. The default for sound-in is 256
bytes; for sound-out it's a page of virtual memory, as given by the global variable
vID_page_size. You should check the return value of last Error after invoking this method
to see if an error occurred while querying the sound driver.

See also: - setBufferSize:, -lastError

devicePort

- (port_t)devicePort

Returns the port that the NXSoundDevice uses to communicate with the sound driver. You
can't set this port yourself, and you normally don't need to note its identity; this method is
provided in case you want to pass the port as an argument to a function such as
port_statusO·

Warning: This port isn't understood by the old SoundIDSP driver; it shouldn't be used as an argument
to the sound driver functions.

free

-free

Deallocates the NXSoundDevice's ports and frees the object. If the NXSoundDevice had
reserved the underlying sound device, it's made available again.

See also: - setReserved:

Classes: NXSoundDevice 16-25

getPeakLeft:right:

- (NXSoundDeviceError)getPeakLeft:(float *)leftAmp right:(float *)rightAmp

Returns the most recent peak amplitudes detected by the NXSoundDevice's underlying
sound device. For stereo sounds, peaks are detected independently for the two channels
and returned by reference in leftAmp and rightAmp. For monophonic sounds, the same
value is returned in both arguments. The peak values returned in the arguments are
normalized to fall within (0.0, 1.0), where 0.0 is no amplitude and 1.0 is the maximum
amplitude supported by the data format. See the class description for more information on
peak detection. An error code is returned.

See also: - setPeakHistory:, - setDetectPeaks:, - isDetectingPeaks,
- clip Count (NXSoundOut)

host

- (const char *)host

Returns the name of the computer on which the NXSoundDevice was initialized, or nil if
it's the local host.

See also: - initOnHost:

init

- init

Initializes the NXSoundDevice on the machine specified by the NXHost default (normally
the local host). Returns nil if the sound resources cannot be accessed; otherwise returns self.

See also: - initOnHost:

initOnHost:

- initOnHost:(const char *)hostName

Initializes the NXSoundDevice on the machine named hostName. Returns nil if the sound
resources cannot be accessed; otherwise returns self.

See also: - init

16-26 Chapter 16: Sound

isDetectingPeaks

- (BOOL)isDetectingPeaks

Returns YES if the device is detecting peak amplitudes; otherwise, returns NO (the
.default). See the class description for more information.

See also: - setDetectPeaks:

isReserved

- (BOOL)isReserved

Returns YES if the device is reserved for exclusive access by this NXSoundDevice;
otherwise, returns NO (the default).

See also: - setReserved:

lastError

- (NXSoundDeviceError)lastError

Returns the most recent sound device error associated with the NXSoundDevice. Many
methods don't explicitly return an NXSoundDeviceError, but set an internal variable,
which can be retrieved with this method. To retrieve localized text that describes the error,
pass the value returned by this method to the textForError: class method.

See also: + textForError:

pauseStreams:

- pauseStreams:sender

Pauses all streams that are connected to the NXSoundDevice. You should check the return
value of lastError after invoking this method to see if an error occurred. Returns self.

See also: - pause: (NXSoundStream), - lastError

Classes: NXSoundDevice 16-27

peakHistory

- (unsigned int)peakHistory

Returns the peak history-the number of DMA transfer buffers that the driver examines
when detecting peak amplitudes on the device. You should check the return value of
lastError after invoking this method to see if an error occurred. See the class description
for more information on peak detection.

See also: - setPeakHistory:, -lastError

resumeStreams:

- resumeStreams:sender

Resumes all streams that are connected to the NXSoundDevice. You should check the
return value of lastError after invoking this method to see if an error occurred.
Returns self.

See also: - resume: (NXSoundStream), - lastError

setBufferCou nt:

- (NXSoundDeviceError)setBufferCount: (unsigned int)count

Sets the number of DMA transfer buffers for the underlying device to count. The default,
for both sound-in and sound-out, is 4. Setting the buffer count affects all applications that
are currently using the sound driver. See the class description, above, for more on sound
buffers. An error code is returned.

See also: - bufferCount, - setBuffersize:

setBufferSize:

- (NXSoundDeviceError)setBufferSize:(unsigned int)bytes

Sets the size in bytes of each DMA transfer buffer to bytes. The maximum permissible
value is the size of a page of virtual memory as given by the global variable vm_page_size.
The default for sound-in is 256 bytes; for sound-out it's a page of virtual memory. Setting
the buffer count affects all applications that are currently using the sound driver. See the
class description, above, for more on sound buffers. An error code is returned.

See also: - bufferSize, - setBufferCount:

16-28 Chapter 16: Sound

setDetectPeaks:

- (NXSoundDeviceError)setDetectPeaks: (BOOL)flag

Establishes whether the driver detects peak amplitudes on the device. The default is NO.
See the class description for more information on peak detection.

See also: - isDetectingPeaks, - setPeakHistory:, - getPeakLeft:right:

setPeakHistory:

- (NXSoundDeviceError)setPeakHistory: (unsigned int)buffe rC aunt

Sets how many transfer buffers the driver examines when determining the peak amplitude.
An error code is returned. See the class description for more information on peak detection.

See also: - peakHistory, - setDetectPeaks:

setReserved:

- (NXSoundDeviceError)setReserved:(BOOL)flag

If flag is YES, reserves the underlying device for exclusive access by the NXSoundDevice
(even if it's currently reserved by another NXSoundDevice-the current owner is forced to
yield). No other application, nor any other NXSoundDevice within your application, will
be able access the device while it's reserved. Any currently active streams not connected
to this NXSoundDevice instance are aborted. If flag is NO the device is made available to
all NXSoundDevices. NXSoundDevices are unreserved by default. An error code is
returned.

See also: - isReserved,
- soundStreamDidAbort:deviceReserved: (NXSoundStream delegate)

streamOwnerPort

- (port_OstreamOwnerPort

Returns the port that the NXSoundDevice uses to connect to the sound driver. You can't
set this port yourself, and you normally don't need to note its identity; this method is
provided in case you want to pass the port as an argument to a function such as
port_statusO.

Warning: This port isn't understood by the old SoundIDSP driver; it shouldn't be used as an argument
to the sound driver functions.

Classes: NXSoundDevice 16-29

NXSoundln

Inherits From: NXSoundDevice : Object

Declared In: soundkitINXSoundIn.h

Class Description

NXSoundIn represents the sound-in device of a sound driver on a particular host. All its
functionality is provided by its superclass, NXSoundDevice; NXSoundIn's only method,
lookUpDevicePortOnHost:, is provided primarily to be invoked by NXSoundDevice's
init methods. See the NXSoundDevice class for a detailed description of classes that
represent sound driver devices.

The sound sent to an NXSoundIn object follows the usual rules of microphonology on a
NeXT computer: An external microphone plugged into the microphone jack takes
precedence over (turns off) the built-in microphone (found on the front of the MegaPixel
Display on monochrome systems and in the Sound Box on color systems).

Instance Variables

None declared in this class.

Class Methods

lookUpDevicePortOnHost:

+ (port_t)lookUpDevicePortOnHost:(const char *)hostName

Returns the sound driver device port for sound-in on the computer named hostName. You
can't set this port yourself, and you normally don't need to note its identity; this method is
provided primarily to satisfy a requirement set forth by the superclass. However, you can
use it to pass the device port as an argument to a function such as port_statusO.

16-30 Chapter 16: Sound

NXSoundOut

Inherits From: NXSoundDevice : Object

Declared In: soundkitINXSoundOut.h

Class Description

NXSoundOut represents the sound-out device of a sound driver on a particular host. Its
superclass, NXSoundDevice, provides most of its functionality; the methods added by
NXSoundOut allow you to retrieve and modify the settings specific to the sound-out
hardware, as described in the following sections. See the NXSoundDevice class for a
detailed description of classes that represent sound driver devices.

To use an NXSoundOut to play sound, you must connect an NXPlayStream object to it.
The NXPlayStream is responsible for supplying the NXSoundOut with buffers filled with
sound data, as explained in the NXPlayStream class description.

None of the sound-out attributes described below have default settings. An application
shouldn't expect any of them to be in a particular state when it plays a sound.

In addition, although the attribute-setting methods are instance methods, you shouldn't take
this to mean that they set the attributes independently for each NXSoundOut object.
There's only one setting for each attribute per sound-out device, thus it's possible for
another NXSoundOut-possibly in another application-to reset the sound-out attributes
that a particular NXSoundOut has set. The reason that these are instance methods is
because you can create NXSoundOut objects on different hosts, and each host will have its
own sound-out device. To guarantee that your settings will hold on a particular host, you
must reserve the sound-out device on that host.

Note: You don't need to create an NXSoundOut object to set these attributes; they can also
be set through Sound object methods and sound C functions.

Format Conversion

The digital-to-analog converter (DAC; the device that turns sound data into a sound signal
that can be broadcast on a speaker) assumes that all data that it receives is two channels of
16-bit linear stereo data sampled at 44.1 kHz. The data that you supply is automatically
converted from mono to stereo and 22.05 kHz to 44.1 kHz. Sounds that use quantization
formats other than 16-bit linear, or sampling rates other than 22.05 kHz or 44.1 kHz must
be converted programmatically before they're sent to an NXSoundOut object.

Classes: NXSoundOut 16-31

Mono to stereo conversion is straight-forward: The single channel of data is duplicated to
create two channels.

Sampling-rate conversion is more complicated; it admits three schemes:

• If streams of 22.05 kHz data (only) are being played, then the conversion takes place in
the sound hardware. The stream is "up-sampled" - a sample frame is inserted between
each existing sample frame. The inserted sample frame contains either zeros, or it's a
copy of the previous (in other words, the existing) sample frame. You can set your
preference through the setInsertsZeros: method.

• If you're playing a 44.1 kHz stream and then add a 22.05 kHz stream while the first
stream is still playing, the conversion of the added stream is performed by the sound
driver (in software); the manner in which the conversion is done is also controlled by
the setInsertsZeros: method.

• The situation to beware of, if you're concerned with absolute fidelity, is when you're
playing a 22.05 kHz stream and then add a 44.1 kHz stream. In this case, the conversion
is, once again, performed in hardware. However, the sound hardware accepts only a
single stream of data-this means that the 44.1 kHz must be converted to 22.05 kHz and
mixed with the first stream (as described below) so the whole thing can then be
up-sampled by the hardware. The 44.1 kHz stream is "drop-sampled" by the sound
driver: Every other sample is dropped to produce a 22.05 kHz streqm.

Stream Mixing

The sound driver mixes the data from all sound output streams that are being played
simultaneously. This extends to all applications: The sounds that you're playing may be
mixed with sounds from other applications. The number of sounds that can be mixed
varies; in general, four sounds at the 44.1 kHz and about twice that at the lower sampling
rate can be played simultaneously on a lightly loaded system. You can prevent other
applications from mixing in with your playback by reserving the sound-out device, through
NXSoundOut's setReserved: method (inherited from NXSoundDevice).

Note: Only one of the simultaneously playing sounds can be coming from the DSP.

The sound driver mixes sound streams by blithely adding a sample from each into a single
stream that's issued to the sound hardware in DMA transfer buffers (these buffers are
described in the NXSoundDevice class description). The driver doesn't try to prevent
clipping by, for example, scaling the samples as it adds them. You can scale an individual
sound stream (in other words, before it's mixed) through NXPlayStream's
setGainLeft:right: method.

16-32 Chapter 16: Sound

Ramping

Before passing to the DAC, an extra DMA buffer is attached to the beginning and end of
the mixed sound data, if you so request through the setRampsUp: and setRampsDown:
methods. The extra buffer at the beginning is filled with samples to create a linear ramp up
from zero amplitude to the value of the first sample in the stream; at the end it creates a
ramp down to zero from the last sample. This helps eliminate the clicks that often
accompany the beginnings and ends of sounds.

Ramping is performed on the single, mixed sound stream that's sent to the sound hardware;
it's not done to individual streams that contribute to the mix. For example, if you initiate
one long sound stream and then initiate a short one that ends before the first one is finished,
this second, shorter sound won't be ramped, but the beginning and end of the first one will
be (assuming that ramping is turned on).

The De-emphasis Filter

The converted, mixed, and ramped sound data is then sent to the DAC. After passing
through the DAC, sounds that were recorded with an emphasis filter should be passed
through the de-emphasis filter. The de-emphasis filter can be turned on and off through the
setDeemphasis: method. (The Sound object and sound playback functions automatically
tum this filter on when playing sound that have a format
SND_FORMAT_EMPHASIZED.) The filter state can also be changed by the user, by
pressing the upper volume key on the keyboard while holding down the Command key.

Attenuation and Muting

The (possibly) de-emphasized analog signal then travels to the line-out jacks and to an
internal stereo attenuation control. You can set the attenuation level through the
setAttenuationLeft:right: method. Attenuation is controlled by the user through the
familiar volume keys on the keyboard.

After attenuation, the signal is sent to the headphone jacks and to a mute switch that
controls the broadcast of the built-in speaker. You can toggle the speaker mute through the
setSpeakerMute: method.

Error Codes

Many of the methods described here return error codes that declare success or describe
failure. A catalog of these error codes can be found in the section "Types and Constants"
under the heading "NXSoundDeviceError."

Classes: NXSoundOut 16-33

Instance Variables

None declared in this class.

Method Types

Setting attributes for sound output
- setAttenuationLeft:right
- setDeemphasis:
- setInsertsZeros:
- setRampsDown:
- setRampsUp:
- setSpeakerMute:

Querying sound output settings - doesDeemphasize
- doesInsertZeros
- doesRampDown
- doesRampUp
- getAttenuationLeftright .
- isSpeakerMute
- clipCount

Looking up the device port + lookUpDevicePortOnHost:

Class Methods

lookUpDevicePortOnHost:

+ (port_t)JookUpDevicePortOnHost:(const char *)hostName

Returns the sound driver device port for sound-out on the computer named hostName. You
can't set this port yourself, and you normally don't need to note its identity; this method is
provided primarily to satisfy a requirement set forth by the superclass. However, you can
use it to pass the device port as an argument to a function such as port_statusO.

16-34 Chapter 16: Sound

Instance Methods

clipCount

- (unsigned int)c1ipCount

Returns the number of sample frames that were clipped since the activation of the oldest
connected stream (of all streams connected to sound-out, not just to this NXSoundOut
instance). Clipping occurs when the amplitude of a sample is too great to be represented
by a 16-bit signed integer. The clip count is reset to 0 when the last stream is deactivated.

See also: - getPeakLeft:right: (NXSoundDevice)

doesDeemphasize

- (BOOL)doesDeemphasize

Returns YES if the de-emphasis fil~er is turned on; otherwise, returns NO.

See also: - setDeemphasis:

doesl nsertZeros

- (BOOL)doeslnsertZeros

Returns YES if the sound driver or the sound hardware inserts zeros when it converts 22.05
kHz sound to 44.1 kHz, as explained in the class description, above. Otherwise, returns NO.

See also: - setlnsertsZeros:

doesRampDown

- (BOOL)doesRampDown

Returns YES if the end of a sound stream is ramped down to 0 amplitude, as explained in
the class description; otherwise, returns NO.

See also: - setRampsDown:

Classes: NXSoundOut 16-35

doesRampUp
- (BOOL)doesRampUp

Returns YES if the beginning of a sound stream is ramped up from 0 amplitude, as
explained in the class description, above; otherwise, returns NO.

See also: - setRampsDown:

getAttenuationLeft:right:

- (NXSoundDeviceError)getAttenuationLeft:(float *)leJtDB
right:(float *)rightDB

Returns, by reference in the arguments, the attenuation settings of the left and right
channels. The range is -84.0 decibels (inaudible) to 0.0 decibels (no attenuation). An
error code is returned.

See also: - setAttenuationLeft:right:

isSpeakerMute

- (BOOL)isSpeakerMute

Returns YES if the internal speaker is muted; otherwise, returns NO.

See also: - setSpeakerMute:

setAttenuationLeft:right:

- (NXSoundDeviceError)setAttenuationLeft:(float)leJtDB right:(float)rightDB

Sets the attenuation level for playback. Attenuation affects the internal speaker and the
headphone output, but not the line output. The two channels of the stereo signal are set
independent of each other, specified as the values of leJtDB and rightDB. The volume of
the internal speaker is the sum of these two values. The arguments should be between
-84.0 decibels (inaudible) and 0.0 decibels(no attenuation). The resolution of the
attenuation control is currently two decibels. (For finer resolution, adjust the gain of the
NXPlayStream, if appropriate.)

The playback attenuation is also adjustable by pressing the volume keys on the keyboard.
Each discrete tap on a volume key increments or decrements both the left and the right
volume settings by two decibels.

16-36 Chapter 16: Sound

An error code is returned.

See also: - getAttenuationLeft:right:, + setVolume:: (Sound),
- setGain:: (NXPlayStream)

setDeemphasis:

- (NXSoundDeviceError)setDeemphasis:(BOOL)fiag

Sets the state of the de-emphasis filter: YES turns the filter on and NO turns it off. The
de-emphasis filter is intended to be used on sounds that were subjected to an emphasis filter
during recording.

The filter state can also be changed by toggling the upper volume key on the keyboard while
holding down the Command key. The Sound class and sound functions tum the filter on
automatically while playing emphasized sounds (format SND_FORMAT_EMPHASIZED).
Returns an error code.

See also: - doesDeemphasize, SNDSetFilterO

setlnsertsZeros:

- (NXSoundDeviceError)setInsertsZeros:(BOOL)fiag

Sets the way in which the driver converts a 22.05-kHz sound stream to 44.1 kHz, as
explained in the class description, above. For most sounds, sample replication, attained by
sending setInsertsZeros:NO, is preferable. You should note that CODEC sounds are
converted to 22.05 kHz (by the DSP) before being passed to the sound driver and so are
affected by this method. Returns an error code.

See also: - doeslnsertZeros

setRampsDown:

- (NXSoundDeviceError)setRampsDown: (BOOL)fiag

Sets whether the end of sounds are ramped, as explained in the class description. Returns
an error code.

See also: - doesRampDown, - setRampsUp:

Classes: NXSoundOut 16-37

setRampsUp:

- (NXSoundDeviceError)setRampsUp:(BOOL)flag

Sets whether the beginning of sounds are ramped, as explained in the class description.
Returns an error code.

See also: - doesRampDown, - setRampsUp:

setSpeakerMute:

- (NXSoundDeviceError)setSpeakerMute:(BOOL)flag

Ifflag is YES, the internal speaker is turned off. This doesn't affect the signal to the
headphone jack or the line output jacks. Ifflag is NO, the speaker is turned backed on.
Returns an error code.

See also: - isSpeakerMute

16-38 Chapter 16: Sound

NXSoundStreal11

Inherits From: Object

Declared In: soundkitINXSoundStream.h

Class Description

NXSoundDevice is an abstract superclass; each subclass represents a single streanl of
sound samples. Currently, the Sound Kit provides two subclasses of NXSoundStream:

• NXRecordStream represents sound recorded through the microphone jack.
• NXPlayStreamrepresents sound that's sent to sound output (the speaker, line-out jacks,

and headphone jack).

The utility of NXSoundStream is invested in these subclasses; the NXSoundStream class
itself simply defines methods that are common to them. In addition, you can't create useful
subclasses of NXSoundStream yourself.

Many applications needn't bother with NXSoundStream and its subclasses; in general, the
methods provided by the Sound class suffice for applications that record and playback
sounds. However, while Sound objects are easy to use, you can only record or play one
sound at a time. The primary advantage of using NXSoundStream objects is that they let
you record and playback multiple simultaneous sounds.

Streams and Devices

To be of use, an NXSoundStream object must connect it to an instance of an NXSoundDevice
subclass: For recording you connect an NXRecordStream to an instance of NXSoundIn, and
for playback you connect NXPlayStreams to NXSoundOuts. The connection is formed as
the NXSoundStream is initialized, through the initOnDevice: method.

Any number of NXSoundStream objects can be connected to the same NXSoundDevice.
For recording, this creates mUltiple copies of the same data-one copy for each
NXRecordStream. These copies can even be spread across applications: All
NXRecordStreams that are actively listening to the NXSoundIn device will receive the data
that's being recorded, regardless of the application that they're in. Similarly, by connecting
more than one NXPlayStream to an NXSoundOut object, you can mix several sounds
during playback, possibly from different applications. See the NXSoundIn and
NXSoundOut classes for more on simultaneous recording and playback.

Classes: NXSoundStream 16-39

Using a Sound Stream

Having connected an NXSoundStream to an NXSoundDevice, you must tell the sound
driver that you want the NXSoundStream to be involved in a recording or playback. This
is done through the activate method. Activating an NXSoundStream uses valuable sound
driver resources, thus it's best to activate the object just before you want to record or play
a sound and deactivate it (through the deactivate method) soon after you've finished.

Activating an NXSoundStream doesn't cause it to instantly start recording or playing. For
this, you must enqueue sound buffers with the sound device: For recording you enqueue
empty buffers that are filled with data and delivered back to your application, for playback
you enqueue buffers filled with the data that you want to play. These tasks are performed
through methods defined by the respective subclasses. The thing to keep in mind is that
you must deliver these buffers constantly and steadily while the stream is running. This is
the essential programming difference between using a Sound object and a
NXSoundStream: A Sound object can be "turned on" and then ignored; an
NXSoundStream demands constant attention. You can ameliorate this by supplying the
NXSoundStream with large buffers, although this affords less dynamic control over the
data in the stream.

Important: An NXSoundStream's sound data buffers aren't the same as an
NXSoundDevice's DMA transfer buffers. The former can be arbitrarily large; the latter is
restricted to a page of virtual memory.

As an NXSoundStream delivers sound buffers to the sound driver, the sound driver sends
back Mach messages to the NXSoundDevice class, messages that report on a device's
status and, for recording, deliver freshly recorded data. The NXSoundDevice class
forwards this information to the delegate of the appropriate NXSoundStream. The delegate
methods defined by the NXSoundStream class mark general watershed moments in a
stream's career: when it starts, ends, pauses, and resumes. NXRecordStream and
NXPlayStream augment this collection with record- and playback-specific notification
methods.

Sound Stream Errors

Most of NXSoundStream's methods communicate with the sound driver; many of these
return NXSoundDeviceError error codes, which enumerate the situations that can thwart
this communication. The NXSoundDeviceError codes are listed in NXSoundDevice class
specification. NXSoundDevice's textForError: method translates these error codes into
localized strings that you can display in your application.

Other methods, such as pause: and resume:, also communicate with the sound driver, but
don't return NXSoundDeviceError codes. However, such methods are susceptible to

16-40 Chapter 16: Sound

driver-communication errors and maintain a private variable to note their occurences. You
should follow these methods (which are listed in NXSoundDevice and noted in the
descriptions below) with invocation of lastError, a method that returns the last
NXSoundDeviceError code that was provoked.

Instance Variables

id delegate;

delegate The receiver of notification messages.

Method Types

Initializing and freeing an NXSoundStream object
- init
- initOnDevice:
-free

Setting the device - setDevice:
- device

Activating and Deactivating - activate
- deactivate

Controlling the stream - abort:
- abortAtTime:
- pause:
- pauseAtTime:
-resume:
- resumeAtTime:

Querying the object - bytesProcessed
- isActive
- isPaused
- streamPort
-lastError

Assigning a delegate - setDelegate:
- delegate

Classes,' NXSoundStream 16-41

Instance Methods

abort:
- abort:sender

Stops the NXSoundStream's playback or recording (after the currentDMA transfer buffer
has been processed), removes its remaining enqueued buffers, and sends the object's
delegate a soundStreamDidAbort:deviceReserved: message. The argument is ignored­
it's included so the method can be used in Interface Builder as an action method. You
should follow this method with an invocation of lastError to see if an error occured. If
the NXSoundStream isn't currently active, this does nothing. Returns self.

See also: - abortAtTime:

abortAtTime:
- (NXSoundDeviceError)abortAtTime:(NXSoundStreamTime *)time

Schedules the NXSoundStream to be aborted (as described in the abort: method, above) at
the time specified in the structure time. The NXSoundStreamTime structure is a cover for
the familiar timeval structure:

struct timeval {
long tv_sec; /* seconds */

long tv_usec; /* microseconds */

} ;

The value given by time is absolute; to abort a stream after a given number of seconds have
elapsed, you need to know the present time. This can beretrieved through system calls such
as gettimeofdayO. For example:

/* Abort a stream in 2.5 seconds. */

NXSoundStreamTime time;
gettimeofday(&time, NULL);
time. tv_sec += 2;

time.tv_usec += 500~

[aStream abortAtTime:&time];

This method returns immediately-it doesn't wait for the stream to abort. A
soundStreamDidAbort:deviceReserved: message is sent to the NXSoundStream's
delegate when the abortion is performed.

You should follow this method with an invocation of lastError to see if an error occured.
If the NXSoundStream isn't active when this method is invoked or when the specified time

16-42 Chapter 16: Sound

is met, this does nothing. If the specified time is in the past, the object is aborted
immediately. Returns self.

See also: - abort:

activate
- (NXSoundDeviceError)activate

Adds the NXSoundStream to the sound driver's list of active streams. You must invoke this
method before you enqueue buffers on the stream. When you've finished recording or
playing, you should send the NXSoundStream a deactivate: message. The NXSoundStream
must be connected to an NXSoundDevice for this method to have an effect. An error code
is returned.

See also: - deactivate, - isActive

bytes Processed

- (unsigned int)bytesProcessed

Returns the number of bytes of sound that the NXSoundStream has recorded or played
since it was most recently activated. Returns 0 if the object is inactive, or if an error occurs.
You should follow this method with an invocation of lastError to see if an error occured.

deactivate
- (NXSoundDeviceError)deactivate

Aborts the NXSoundStream's current activity and removes the object from the sound
driver's list of active streams.

See also: - activate, - isActive

delegate
- delegate

Returns the NXSoundStream's delegate.

See also: - setDelegate:

Classes: NXSoundStream 16-43

device

- device

Returns the NXSoundDevice object that the NXSoundStream is connected to.

See also: - initOnDevice:, - setDevice:

free

-free

Deactivates and frees the NXSoundStream.

init

- init

Initializes the NXSoundStream without connecting it to an NXSoundDevice. Returns self.

See also: - initOnDevice:, - setDevice:

initOnDevice:

- initOnDevice:aDevice

Initializes the NXSoundStream and connects it to aDevice, which should be an instance of
an NXSoundDevice subclass. This is the designated initializer for the NXSoundStream
class. Returns self.

See also: - init

isActive

- (BOOL)isActive

Returns YES if the NXSoundStream is currently activate; otherwise, NO.

See also: - activate

16-44 Chapter 16: Sound

isPaused

- (BOOL)isPaused

Returns YES if the NXSoundStream is currently paused; otherwise, NO.

See also: - pause:, - isActive

lastError

- (NXSoundDeviceError)lastError

Returns the most recent sound device error associated with the NXSoundSound. Many
methods don't explicitly return an NXSoundDeviceError, but set an internal variable, which
can be retrieved with this method. To retrieve localized text that describes the error, pass the
value returned by this method to the textForError: NXSoundDevice class method.

See also: + textForError: (NXSoundDevice)

pause:

- pause:sender

Pauses the NXSoundStream's recording or playback (after the current DMA transfer buffer
has been processed) and sends a soundStreamDidPause: message to the object's delegate.
The argument is ignored-it's included so the method can be used in Interface Builder as
an action method. You should follow this method with an invocation of last Error to see if
an error occured. If the NXSoundStream isn't currently active or if it's already paused,
this does nothing. Returns self.

See also: - pauseAtTime:, - resume:

pauseAtlime:

- (NXSoundDeviceError)pauseAtTime:(NXSoundStreamTime *)time

Schedules the NXSoundStream to be paused (as described in the pause: method, above) at
the time specified in the structure time. See the abortAtTime: method for an explanation
of the NXSoundStreamTime type. This method returns immediately-it doesn't wait for
the stream to pause. A soundStreamDidPause: message is sent to the NXSoundStream's
delegate at the time that the stream is paused. This does nothing if the NXSoundStream
isn't currently active. An error code is returned.

See also: - pause:, - abortAtTime:

Classes: NXSoundStream 16-45

resume:
- resume:sender

Resumes the NXSoundStream's recording or playback (after the current DMA transfer
buffer has been processed) and sends a soundStreamDidResume: message to the object's
delegate. The argument is ignored-it's included so the method can be used in Interface
Builder as an action method. You should follow this method with an invocation of
lastError to see if an error occured. If the NXSoundStream isn't currently active or if it
isn't paused, this does nothing. Returns self.

See also: - resumeAtTime:, - pause:

resumeAtlime:
- (NXSoundDeviceError)resumeAtTime:(NXSoundStreamTime *)time

Schedules the NXSoundStream to be resumed (as described in the resume: method, above)
at the time specified in the structure time. See the abortAtTime: method for an explanation
of the NXSoundStreamTime type. This method returns immediately-it doesn't wait for
the stream to resume. A soundStreamDidResume: message is sent to the
NXSoundStream's delegate at the time that the stream is resumed. This does nothing if the
NXSoundStream isn't currently active. An error code is returned.

See also: - pause:, - abortAtTime:

setDelegate:
- setDelegate:anObject

Assigns anObject as the NXSoundStream's delegate.

See also: - delegate

setDevice:

- (NXSoundDeviceError)setDevice:aDevice

Connects the NXSoundStream to aDevice, which should be an instance of an
NXSoundDevice subclass. If the NXSoundStream is currently active, it immediately
starts transferring sound to or from the new device. An error code is returned.

See also: - initOnDevice:, - device

16-46 Chapter 16: Sound

streamPort
- (port_t)streamPort

Returns the port that the NXSoundStream uses to connect to the sound driver. You can't
set this port yourself, and you normally don't need to note its identity; this method is
provided in case you want to pass the port as an argument to a function such as
port_statusO. (Note that this device port isn't understood by the old SoundIDSP driver,
and thus shouldn't be used as an argument to the sound driver functions.)

Methods Implemented By The Delegate

soundStream:didCompleteBuffer:

- soundStream:sender didCompleteBuffer:(int)tag

Invoked when the driver finishes playing or recording the sound buffer identified by tag (as
assigned when the buffer was enqueued). The return value is ignored.

See also: - recordSize:tag: (NXRecordStream),
- playBuffer:size:tag:channeICount:samplingRate: (NXPlayStream)

soundStream:didStartBuffer:

- soundStream:sender didStartBuffer:(int)tag

Invoked when the driver starts playing or recording the sound buffer identified by tag (as
assigned when the buffer was enqueued).. The return value is ignored.

See also: - recordSize:tag: (NXRecordStream),
- playBuffer:size:tag:channeICount:samplingRate: (NXPlayStream)

soundStreamDidAbort:deviceReserved:

- soundStreamDidAbort:sender deviceReserved: (BOOL)jlag

Invoked when the driver aborts the stream. If the stream was aborted because the
NXSoundDevice was reserved,jlag will be YES, otherwise if will be NO. The return
value is ignored.

See also: - abort:, - abortAtTime:, - setReserved: (NXSoundDevice)

Classes: NXSoundStream 16-47

soundStreamDidPause:

- soundStreamDidPause:sender

Invoked when the NXSoundStream sender is paused. The return value is ignored.

See also: - pause:, - pauseAtTime:

soundStreamDidResume:

- soundStreamDidResume:sender

Invoked when the NXSoundStream sender is resumed. The return value is ignored.

See also: - resume:, - resumeAtTime:

16-48 Chapter 16: Sound

Sound

Inherits From: Object

Declared In: soundkitiSound.h

Class Description

Sound objects represent and manage sounds. A Sound object's sound can be recorded from
CODEC microphone input, read from a soundfile, NXBundle resource, retrieved from the
pasteboard or from the sound segment in the application's executable file, or created
algorithmically. The Sound class also provides an application-wide name table that lets
you identify and locate sounds by name.

Playback and recording are performed by background threads, allowing your application to
proceed in parallel. The latency between sending a play: or record: message and the start
of the playback or recording, while within the tolerance demanded by most applications,
can be further decreased by first reserving the sound facilities that you wish to use. This is
done by calling the SNDReserveO C function.

To minimize data movement (and thus save time), an edited Sound may become fragmented;
in other words, its sound data might become discontiguous in memory. While playback of
a fragmented Sound object is transparent, it does incur some additional overhead. If you
perform a number of edits you may want to return the Sound to its natural, contiguous state
by sending it the compactSamples message before you play it. However, a large Sound may
take a long time to compact, so a judicious and well-timed use of compactSamples is
advised. Note that a fragmented Sound is automatically compacted before it's copied to a
pasteboard (through the writeToPasteboard: method). Also, when you write a Sound to a
soundfile, the data in the file is compact regardless of the state of the object.

A Sound object contains a SNDSoundStruct, the structure that describes and contains
sound data and that's used as the soundfile format and the pasteboard sound type. Most of
the methods defined in the Sound class are implemented so that you needn't be aware of
this structure. However, if you wish to directly manipulate the sound data in a Sound
object, you need to be familiar with the SNDSoundStruct architecture, as described in the
SNDAllocO function

Classes: Sound 16-49

Instance Variables

SNDSoundStruct *soundStruct;
int soundStructSize;
int priority;
id delegate;
int status;
char *name;

soundStruct

soundStructSize

priority

delegate

status

name

Method Types

The object's sound data structure.

The length of soundStruct in bytes.

The object's recording and playback priority.

The target of notification messages.

What the object is currently doing.

The object's name.

Creating and freeing a Sound object
+ addN ame:fromBundle:
+ addN ame:fromSection:
+ addN ame:fromSoundfile:
- initFromSection:
- initFromPasteboard:
- initFromSoundfile:
-free

Accessing the Sound name table+ addName:sound:
+ findSoundFor:
+ removeSoundForN arne:

Accessing the Sound's name - setName:
-name

Reading and writing sound data - readSoundfile:
- readSoundFromStream:
- writeSoundfile:
- writeSoundToStream:
- writeToPasteboard:

16-50 Chapter 16: Sound

Modifying sound data - convertToFormat:samplingRate:channeICount:
- convertToFormat:
- setDataSize:dataFormat:samplingRate:

channeICount:infoSize:
- setSoundStructsoundStructSize:
- setName:
-name

Querying the object - soundStruct
- soundStructSize
-data
- dataFormat
- dataSize
- channelCount
- samplingRate
- sampleCount
- duration
-info
- infoSize
- isEmpty
- compatible With:
- processingError

Recording and playing - pause
- pause:
- isPlayable
-play
- play:
- record
- record:
-resume
-resume:
- stop
- stop:
- samplesProcessed
- status
- soundBeingProcessed
- soundStructBeingProcessed

Classes: Sound 16-51

Editing sound data - isEditable
- copySamples:atcount:
- copySound:
- deleteSamples
- deleteSamplesAtcount
- insertSamples:at:
- needsCompacting
- compactSamples

Archiving the object - finishUnarchiving
- read:
- write:

Accessing the delegate - setDelegate:
- delegate
- tellDelegate:

Accessing the sound hardware + getVolume::
+ setVolume::
+ isMuted
+ setMute:

Class Methods

addName:fromBundle:

+ addName:(const char *)name fromBundle:(NXBundle *)aBundle

Creates a Sound object from the sound resource named name in the NXBundle aBundle,
assigns the name name to the object, and places the name on the sound name table. If name
is already in use, or if the resource isn't found or can't be read, the Sound isn't created and
nil is returned. Otherwise, the new Sound is returned.

addName:fromSection:

+ addName:(const char *)name fromSection:(const char *)sectionName

Creates a Sound object from section sectionName in the sound segment of the application's
executable file, assigns the name name to the object, and places the name on the sound
name table. If name is already in use, or if the section isn't found or its data can't be copied,
the Sound isn't created and nil is returned. Otherwise, the new Sound is returned.

16-52 Chapter 16: Sound

addName:fromSoundfile:

+ addName:(const char *)name fromSoundfile:(const char *)jilename

Creates a Sound object from the soundfilejilename, assigns the name name to the object, and
adds it to the named Sound table. If name is already in use, or ifjilename isn't found or can't
be read, the Sound isn't created and nil is returned. Otherwise, the new Sound is returned.

addName:sound:

+ addName:(const char *)name sound:aSound

Assigns the name name to the Sound aSound and adds it to the named Sound table. Returns
aSound, or nil if name is already in use.

findSoundFor:

+ findSoundFor:(const char *)aName

Finds and returns the named Sound object. First the named Sound table is searched; if the
sound isn't found, then the method looks for "aName.snd" in the sound segment of the
application's executable file. Finally, the file is searched for in the following directories
(in order):

• -!Library/Sounds
• !LocaILibrary/Sounds
• /NextLibrary/Sounds

where - represents the user's home directory. If the Sound eludes the search, nil is
returned.

getVolume::

+ getVolume:(float *)left :(float *)right

Returns, by reference, the stereo output levels as floating-point numbers between 0.0 and 1.0.

isMuted

+ (BOOL)isMuted

Returns YES if the sound output level is currently muted.

Classes: Sound 16-53

removeSoundForName:

+ removeSoundForName:(const char *)name

Removes the named Sound from the named Sound table. If the Sound isn't found, returns
nil; otherwise returns the Sound.

setMute:

+ setMute:(BOOL)aFlag

Mutes and unmutes the sound output level as aFlag is YES or NO, respectively. If
successful, returns self; otherwise returns nil.

setVolume::

+ setVolume:(float)left :(float)right

Sets the stereo output levels. These affect the volume of the stereo signals sent to the
built-in speaker and headphone jacks. left and right must be floating-point numbers
between 0.0 (minimum) and 1.0 (maximum). If successful, returns self; otherwise
returns nil.

Instance Methods

channelCount

- (int)channelCount

Returns the number of channels in the Sound.

compactSamples

- (int)compactSamples

The Sound's sampled data is compacted into a contiguous block, undoing the fragmentation
that can occur during editing. If the Sound's data isn't fragmented (its format isn't
SND_FORMAT_INDIRECT), then this method does nothing. Compacting a large sound can
take a long time; keep in mind that when you copy a Sound to a pasteboard, the object is
automatically compacted before it's copied. Also, the soundfile representation of a Sound
contains contiguous data so there's no need to compact a Sound before writing it to a soundfile
simply to ensure that the file representation will be compact. An error code is returned.

16-54 Chapter 16: Sound

compatibleWith:

- (BOOL)compatible With:aSound

Returns YES if the format, sampling rate, and channel count of aSound's sound data is the
same as that of the Sound receiving this message. If one (or both) of the Sounds doesn't
contain a sound (its soundStruct is nil) then the objects are declared compatible and YES
is returned.

convertToFormat:

- (int)convertToFormat:(int)newFormat

This is the same as convertToFormat:samplingRate:channeICount:, except that only
the format is changed. An error code is returned.

convertToFormat:samplingRate:channeICount:

- (int)convertToFormat:(int)newFormat
samplingRate: (double)newRate
channeICount:(int)newChanneICount

Convert the Sound's data to the given format, sampling rate, and number of channels. The
following conversions are possible:

• Arbitrary sampling rate conversion.
• Compression and decompression.
• Floating-point formats (including double-precision) to and from linear formats.
• Mono to stereo.
• CODEC mu-Iaw to and from linear formats.

An error code is returned.

copySamples:at:count:

- (int)copySamples:aSound
at: (int)startSample
count: (int)sampleCount

Replaces the Sound's sampled data with a copy of a portion of aSound's data. The copied
portion starts at aSound's startSample'th sample (zero-based) and extends over
sampleCount samples. The Sound receiving this message must be editable and the two
Sounds must be compatible. If the specified portion of aSound is fragmented, the Sound
receiving this message will also be fragmented. An error code is returned.

Classes: Sound 16-55

copySound:
- (int)copySound:aSound

Replaces the Sound's data with a copy of aSound's data. The Sound receiving this message
needn't be editable, nor must the two Sounds be compatible. An error code is returned.

data
- (unsigned char *)data

Returns a pointer to the Sound's sampled data. You can use the pointer to examine, create,
and modify the sound data. To intelligently manipulate the data, you need to be aware of
its size, format, sampling rate, and the number of channels that it contains (a query method
for each of these attributes is provided by the Sound class). The size of the data, in
particular, mustbe respected; it's set when the Sound is created or given a new sound
(through readSoundfile:, for example) and can't be changed directly. To resize the data,
you should invoke one of the editing methods such as insertSamples:at: or
deleteSamplesAt:count:. To start with a new, unfragmented sound with a determinate
length, invoke the setDataSize:dataFormat:samplingRate:channeICount:infoSize:
method. Keep in mind that the sound data in a fragmented sound is a pointer to a
NULL-terminated list of pointers to SNDSoundStructs, one for each fragment. To
examine or manipulate the samples in a fragmented sound, you must understand the
SNDSoundStruct structure.

dataFormat
- (int)dataFormat

Returns the format of the Sound's data. If the data is fragmented, the format of the samples
is returned (in other words, SND _FORMAT _INDIRECT is never returned by this method).

dataSize
- (int)dataSize

Return the size (in bytes) of the Sound's data. If you modify the data (through the pointer
returned by the data method) you must be careful not to exceed its length. If the sound is
fragmented, the value returned by this method is the size of the Sound's soundStruct and
doesn't include the actual data itself.

16-56 Chapter 16: Sound

delegate
- delegate

Returns the Sound's delegate.

deleteSamples

- (int)deleteSamples

Deletes all the samples in the Sound's data. The Sound must be editable. An error code
is returned.

deleteSamplesAt:count:

- (int)deleteSamplesAt: (int)startSample count: (int)sampleCount

Deletes a range of samples from the Sound: sample Count samples are deleted starting with
the startSample'th sample (zero-based). The Sound must be editable and may become
fragmented. An error code is returned.

duration
- (double)duration

Returns the Sound's length in seconds.

finishUnarchiving

- finishUnarchiving

You never invoke this method. It's invoked automatically by the read: method to tie up
loose ends after unarchiving the Sound.

free

-free

Frees the Sound and deallocates its sound data. The Sound is removed from the named
Sound table and its name made eligible for reuse.

Classes: Sound 16-57

info

~ (char *)info

Returns a pointer to the Sound's info string.

infoSize

- (int)infoSize

Returns the size (in bytes) of the Sound's info string.

initFromPasteboard:

- initFromPasteboard: (Pasteboard *)thePboard

Initializes the Sound instance, which must be newly allocated, by copying the sound data
from the Pasteboard object thePboard. (A Pasteboard can have only one sound entry at a
time.) Returns self (an unnamed Sound) if thePboard currently contains a sound entry;
otherwise, frees the newly allocated Sound and returns nil.

See also: + alloc (Object), + allocFrornZone: (Object)

initFromSection:

- initFromSection:(const char *)sectionName

Initializes the Sound instance, which must be newly allocated, by copying the sound data
from section sectionName of the sound segment of the application's executable file. If the
section isn't found, the object looks for a soundfile named sectionName in the same
directory as the application's executable. Returns self (an unnamed Sound) if the sound
data was successfully copied; otherwise, frees the newly allocated Sound and returns nil.

See also: + alloc (Object), + allocFrornZone: (Object)

initFromSoundfile:

- initFromSoundfile:(const char *)jilename

Initializes the Sound instance, which must be newly allocated, from the soundfilejilename.
Returns self (an unnamed Sound) if the file was successfully read; otherwise, frees the
newly allocated Sound and returns nil.

See also: + alloc (Object), + allocFromZone: (Object)

16-58 Chapter 16: Sound

insertSamples:at:

- (int)insertSamples:aSound at:(int)startSample

Pastes the sound data in aSound into the Sound receiving this message, starting at the
receiving Sound's startSample'th sample (zero-based). The receiving Sound doesn't lose
any of its original sound data-the samples greater than or equal to startSample are moved
to accommodate the inserted sound data. The receiving Sound must be editable and the two
Sounds must be compatible (as determined by isCompatible:). If the method is successful,
the receiving Sound is fragmented. An error code is returned.

isEditable

- (BOOL)isEditable

Returns YES if the Sound's format indicates that it can be edited, otherwise returns NO.

isEmpty

- (BOOL)isEmpty

Returns YES if the Sound doesn't contain any sound data, otherwise returns NO. This
always returns NO if the Sound isn't editable (as determined by sending it the
isEditable message).

isPlayable

- (BOOL)isPlayable

Returns YES if the Sound can be played, otherwise returns NO. Some unplayable Sounds
just need to be converted to another format, sampling rate, or number of channels; others
are inherently unplayable, such as those whose format is SND~FORMAT_DISPLAY. To
playa Sound that's just been recorded from the DSP, you must change its format from
SND_FORMAT_DSP _DATA_16 to SND_FORMAT_LINEAR_16.

name

- (const char *)name

Returns the Sound's name.

Classes: Sound 16-59

needsCompacting

- (BOOL)needsCompacting

Returns YES if the Sound's data is fragmented. Otherwise returns NO.

pause

- (int)pause

Pauses the Sound during recording or playback. An error code is returned.

pause:

- pause:sender

Action method that pauses the Sound. Other than the argument and the return type, this is
the same as the pause method. Returns self.

play

- (int)play

Initiates playback of the Sound. The method returns immediately while the playback
continues asynchronously in the background. The playback ends when the Sound receives
the stop message, or when its data is exhausted.

When playback starts, willPlay: is sent to the Sound's delegate; when it stops, didPlay:
is sent. An error code is returned.

Warning: For this method to work properly, the main event loop must not be blocked.

play:

- play:sender

Action method that plays the Sound. Other than the argument and the return type, this is
the same as the play method. Returns self.

16-60 Chapter 16: Sound

processing Error

- (int)processingError

Returns a constant that represents the last error that was generated. The sound error codes
are listed in "Types and Constants."

read:

- read:(NXTypedStream *)stream

Reads archived sound data from stream into the Sound. Returns self.

readSoundfile:

- (int)readSoundfile:(const char *)jilename

Replaces the Sound's contents with those of the soundfilejilename. The Sound loses its
current name, if any. An error code is returned.

readSoundFromStream:

- readSoundFromStream:(NXStream *)stream

Replaces the Sound's contents with those of the sound in the NXStream stream. The Sound
is given the name of the sound in the NXStream. If the sound in the NXStream is named,
the Sound gets the new name. An error code is returned.

record

- (int)record

Initiate recording into the Sound. To record from the CODEC microphone, the Sound's
format, sampling rate, and channel count must be SND_FORMAT_MULAW _8,
SND_RATE_CODEC, and 1, respectively. If this information isn't set (if the Sound is a
newly created object, for example), it defaults to accommodate a CODEC recording. If the
Sound's format is SND_FORMAT_DSP _DATA.:_J6, the recording is from the DSP.

Classes: Sound 16-61

The method returns immediately while the recording continues asynchronously in the
background. The recording stops when the Sound receives the stop message or when the
recording has gone on for the duration of the original sound data. The default CODEC
recording lasts precisely ten minutes if not stopped. To record for a longer time, first
increase the size of the sound data with setSoundStruct:soundStructSize: or
setDataSize:dataFormat:samplingRate:channeICount:infoSize:.

When the recording begins, willRecord: is sent to the Sound's delegate; when the
recording stops, didRecord: is sent.

An error code is returned.

Warning: For this method to work properly, the main event loop must not be blocked.

record:

- record:sender

Action method that initiates a recording. Other than the argument and return type, this is
the same as the record method. Returns self.

resume
- (int)resume

Resumes the paused Sound's activity. An error code is returned.

resume:

- resume:sender

Action method that resumes the paused Sound. Returns self.

sampleCount

- (int)sampleCount

Returns the number of sample frames, or channel count-independent samples, in the Sound.

16-62 Chapter 16: Sound

samplesProcessed

- (int)samplesProcessed

If the Sound is currently playing or recording, this returns the number of sample frames that
have been played or recorded so far. Otherwise, the number of sample frames in the Sound
is returned. If the sample frame count can't be determined, -1 is returned.

samplingRate

- (double)samplingRate

Returns the Sound's sampling rate.

setDataSize:dataFormat:samplingRate:channeICount:infoSize:

- (int)setDataSize:(int)newDataSize
dataFormat:(int)newDataFormat
samplingRate:(double)newSamplingRate
channeICount:(int)newChannelCount
infoSize:(int)newlnJoSize

Allocates new, unfragmented sound data for the Sound, as described by the arguments. The
Sound's previous data is freed. This method is useful for setting a determinate data length
prior to a recording or for creating a scratch pad for algorithmic sound creation. An error
code is returned.

setDelegate:

- setDelegate:anObject

Sets the Sound's delegate to anObject. The delegate may implement the following
methods:

• willPlay:
• didPlay:
• willRecord:
• didRecord:
• hadError:

Returns self.

Classes: Sound 16-63

setName:

- setName:(const char *)aName

Sets the Sound's name to aName. If aName is already being used, then the Sound's name
isn't set and nil is returned; otherwise returns self.

setSoundStruct:soundStructSize:

- setSoundStruct:(SNDSoundStruct *)aStruet soundStructSize:(int)size

Sets the Sound's sound structure to aStruet. The size in bytes of the new structure,
including its sound data storage, must be specified by size. This method can be used to
set up a large buffer before recording into an existing Sound, by passing the existing
soundStruct in the first argument while making size larger than the current size. (The
default buffer holds ten minutes of CODEC sound.) The method is also useful in cases
where aStruet already has sound data but isn't encapsulated in a Sound object yet. The
Sound's status must be NX_SoundInitialized or NX_SoundStopped for this method to do
anything. Returns self.

soundBeingProcessed

- soundBeingProcessed

Returns the Sound object that's being performed. The default implementation always
returns self.

soundStruct

- (SNDSoundStruct *)soundStruct

Returns a pointer to the Sound's SNDSoundStruct structure that holds the object's
sound data.

soundStructBeingProcessed

- (SNDSoundStruct *)soundStructBeingProcessed

Returns a pointer to the SNDSoundStruct structure that's being performed. This may not
be the same structure as returned by the soundStruct method-Sound object's contain a
private sound structure that may be used for recording playing. If the Sound isn't currently
playing or recording, then this will return the public structure.

16-64 Chapter 16: Sound

soundStructSize

- (int)soundStructSize

Returns the size, in bytes, of the Sound's sound structure (pointed to by soundStruct). Use
of this value requires a knowledge of the SNDSoundStruct architecture.

status

- (int)status

Return the Sound's current status, one of the following integer constants:

• NX_SoundStopped
• NX_SoundRecording
• NX_SoundPlaying
• NX_Soundlnitialized
• NX_SoundRecordingPaused
• NX_SoundPlayingPaused
• NX_SoundRecordingPending
• NX_SoundPlayingPending
• NX_SoundFreed

stop

- (int)stop

Terminates the Sound's playback or recording. If the Sound was recording, the didRecord:
message is sent to the delegate; if playing, didPlay: is sent. An error code is returned.

stop:

- stop:sender

Action method that stops the Sound's playback or recording. Other than the argument and
the return type, this is the same as the stop method. Returns self.

Classes: Sound 16-65

tellDelegate:

- tellDelegate:(SEL)theMessage

Sends theMessage to the Sound's delegate (only sent if the delegate implements
theMessage). You never invoke this method directly; it's invoked automatically as the
result of activities such as recording and playing. However, you can use it in designing a
subclass of Sound. Returns self.

write:

- write:(NXTypedStream *)stream

Archives the Sound by writing its data to stream, which must be open for writing.
Returns self.

writeSoundfile:

- (int)writeSoundfile:(const char *)filename

Writes the Sound's contents (its SNDSoundStruct and sound data) to the soundfile
filename. An error code is returned.

writeSoundToStream:

- writeSoundToStream:(NXStream *)stream

Writes the Sound's name (if any), priority, SNDSoundStruct, and sound data (if any) to the
NXStream stream. Returns self.

write ToPasteboard:

- (int)writeToPasteboard:(Pasteboard *)thePboard

Puts a copy of the Sound's contents (its SNDSoundStruct and sound data) on the pasteboard
maintained by the Pasteboard object thePboard. If the Sound is fragmented, it's compacted
before the copy is created. An error code is returned.

16-66 Chapter 16: Sound

Methods Implemented by the Delegate

didPlay:

- didPlay:sender

Sent to the delegate when the Sound stops playing.

didRecord:

- didRecord:sender

Sent to the delegate when the Sound stops recording.

hadError:

- hadError:sender

Sent to the delegate if an error occurs during recording or playback.

wiliPlay:

- willPlay:sender

Sent to the delegate when the Sound begins to play.

wiliRecord:

- willRecord:sender

Sent to the delegate when the Sound begins to record.

Classes: Sound 16-67

SoundMeter

Inherits From: View : Responder: Object

Declared In: soundkitiSoundMeter.h

Class Description

A SoundMeter is a view that displays the amplitude level of a sound as it's being recorded
or played back. There are two working parts to the meter: A continuously-updated
"running bar" that lengthens ands shrinks to depict the current amplitude level, and a "peak
bubble" that displays and holds the greatest amplitude that was detected within the last few
samples. An optional bezeled border is drawn around the object's frame.

To use a SoundMeter, you must first associate it with a Sound object, through the setSound:
method, and then send the SoundMeter a run: message. To stop the meter's display, you
send the object a stop: message. Neither run: nor stop: affect the performance of the
meter's sound.

You can retrieve a SoundMeter's running and peak values through the floatValue and
peakValue methods. The values that these methods return are valid only while the
SoundMeter is running. A SoundMeter also keeps track of the minimum and maximum
amplitude over the duration of a run; these can be retrieved through min Value and
max Value. All SoundMeter amplitude levels are normalized to fit between 0.0 (inaudible)
and 1.0 (maximum amplitude).

Instance Variables

id sound;
int currentSample;

float currentValue;
float currentPeak;
float min Value;
float maxValue;
float holdTime;
float backgroundGray;

16-68 Chapter 16: Sound

float foregroundGray;

float peakGray;

struct {
unsigned int running: 1;
unsigned int bezeled: 1;
unsigned int shouldStop: 1;

} smFlags;

sound

currentS ample

currentValue

currentPeak

minValue

maxValue

holdTime

background Gray

foregroundGray

peakGray

smFlags.running

smFlags. bezeled

smFlags.shouldStop

Method Types

The object's Sound.

The Sound sample currently being displayed.

The value of the current sample.

The current value of the peak bubble.

The minimum sample value so far.

The maximum sample value so far.

The hold duration of the peak bubble.

The background color.

The foreground (average bar) color.

The peak bubble color.

True if the object is currently running.

True if the object draws a border.

True if the object has been sent a stop: message.

Initializing a SoundMeter instance
- initFrame:

Graphic attributes - setBezeled:
- isBezeled
- setBackgroundGray:
- backgroundGray
- setForegroundGray:
- foregroundGray
- setPeakGray:
-peakGray

Classes: Sound Meter 16-69

/

Metering attributes - setSound:
- sound
- setFloatValue:
- setHoldTime:
-holdTime

Retrieving meter values - fioatValue
-maxValue
-minValue
- peakValue

Operating the object -run:
- isRunning
- stop:

Drawing the object - drawCurrentValue
- drawS elf: :

Archiving - read:
- write:

Instance Methods

backgroundGray

- (fioat)backgroundGray

Returns the SoundMeter's background color. The default is dark gray (NX_DKGRAY).

drawCurrentValue

- drawCurrentValue

Draws the SoundMeter's running bar and peak bubble. You never invoke this method
directly; it's invoked automatically while the SoundMeter is running. You can override this
method to change the look of the running bar and peak bubble. Returns self.

drawSelf::

- drawSelf:(const NXRect *)rects :(int)rectCount

Draws all the components of the SoundMeter (frame, running bar, and peak bubble). You
never invoke this method directly; however, you can override it in a subclass to change the
way the components are displayed. Returns self.

16-70 Chapter 16: Sound

floatValue
- (float)floatValue

Returns the current running amplitude value as a floating-point number between 0.0 and
1.0. This is the amplitude level that's displayed by the running bar.

foregroundGray
- (float)foregroundGray

Returns the color of the running bar. The default is light gray (NX_LTGRAY).

holdlime
- (float)holdTime

Returns the SoundMeter's hold time-the amount of time during which a peak amplitude
is detected and displayed by the peak bubble-in seconds. The default is 0.7 seconds.

initFrame:
- initFrame:(const NXRect *)frameRect

Initializes the SoundMeter, fitting its graphic components withinframeRect. The object's
attributes are initialized as follows:

Attribute

Peak hold time
Background gray
Running bar gray
Peak bubble gray
Border

Returns self.

isBezeled
- (BOOL)isBezeled

Value

0.7 seconds
NX_DKGRAY
NX_LTGRAY
NX_WHITE
bezeled

Returns YES (the default) if the SoundMeter has a border; otherwise, returns NO. Note
that the SoundMeter class doesn't provide a method to change the type of border-it can
display a bezeled border or none at all.

Classes: Sound Meter 16-71

isRunning

- (BOOL)isRunning

Returns YES if the SoundMeter is currently running; otherwise, returns NO. The
SoundMeter's status doesn't depend on the activity of its Sound object.

maxValue

- (float)maxValue

Returns the maximum running value so far. You can invoke this method after you stop this
SoundMeter to retrieve the overall maximum value for the previous performance. The
maximum value is cleared when you restart the SoundMeter.

minValue

- (float)min Value

Returns the minimum running value so far. You can invoke this method after you stop this
SoundMeter to retrieve the overall minimum value for the previous performance. The
minimum value is cleared when you restart the SoundMeter.

peakGray

- (float)peakGray

Returns the SoundMeter's peak bubble gray. The default is white (NX_ WHITE).

peakValue

- (float)peakValue

Returns the most recently detected peak value as a floating-point number between 0.0 and
1.0. This is the amplitude level that's displayed by the peak bubble.

read:

- read:(NXTypedStream *)aStream

Unarchives the SoundMeter by reading it from aStream. Returns self.

16-72 Chapter 16: Sound

run:

- run:sender

Starts the SoundMeter running. The object SoundMeter must have a Sound object
associated with it for this method to have an effect. Note that this method only affects the
state of the SoundMeter-it doesn't trigger any activity in the Sound. Returns self.

setBackgroundGray:

- setBackgroundGray:(fioat)aValue

Sets the SoundMeter's background color. The default is dark gray (NX_DKGRAY).
Returns self.

setBezeled:

- setBezeled:(BOOL)aFlag

If aFlag is YES, a bezeled border is drawn around the SoundMeter. If aFlag is NO and the
SoundMeter has a frame, the frame is removed. Returns self.

setFloatValue:

- setFloatValue:(fioat)aValue

Sets the current running value to aValue. You never invoke this method directly; it's
invoked automatically when the SoundMeter is running. However, you can reimplement
this method in a subclass of SoundMeter. Returns self.

setForegroundGray:

- setForegroundGray:(fioat)a Value

Sets the SoundMeter's running bar color. The default is light gray (NX_LTGRAY).
Returns self.

Classes: Sound Meter 16-73

setHoldlime:

- setHoldTime:(float)seconds

Sets the SoundMeter's peak value hold time in seconds. This is the amount of time during
which peak amplitudes are detected and held by the peak bubble. Returns self.

setPeakGray:

- setPeakGray:(float)a Value

Sets the SoundMeter's peak bubble color. The default is white (NX_ WHITE).
Returns self.

setSound:

- setSound:aSound

Sets the SoundMeter's Sound object. Returns self.

sound

-sound

Returns the Sound object that the SoundMeter is metering.

stop:

- stop:sender

Stops the SoundMeter's metering activity. Note that this method only affects the state
of the SoundMeter-it doesn't trigger any activity in the Sound. Returns self.

write:

- write:(NXTypedStream *)aStream

Archives the SoundMeter by writing it to aStream. Returns self.

16-74 Chapter 16: Sound

SoundVievv

Inherits From: View : Responder: Object

Declared In: soundkitiSoundView.h

Class Description

A SoundView object provides a graphical representation of sound data. This data is taken
from an associated Sound object. In addition to displaying a Sound object's data, a
SoundView provides methods that let you play and record into the Sound object, and
peform simple cut, copy, and paste editing of its data. A cursor into the display is provided,
allowing the user to set the insertion point and to create a selection over the sound data.

Sound Display

Sounds are displayed on a two-dimensional graph. The amplitudes of individual samples
are measured vertically and plotted against time, which proceeds left to right along the
horizontal axis. A SoundView's coordinate system is scaled and translated (vertically) so
full amplitude fits within the bounds rectangle with 0.0 amplitude running through the
center of the view.

For many sounds, the length of the sound data in samples is greater than the horizontal
measure of the bounds rectangle. A SoundView employs a reduction factor to determine
the ratio of samples to display units and plots the minimum and maximum amplitude values
of the samples within that ratio. For example, a reduction factor of 10.0 means that the
minimum and maximum values among the first ten samples are plotted in the first display
unit, the minimum and maximum values of the next ten samples are displayed in the second
display unit and so on.

Lines are drawn between the chosen values to yield a continuous shape. Two drawing
modes are provided: .

• In NX_SOUNDVIEW _WAVE mode, the drawing is rendered in an oscilloscopic
fashion.

• In NX_SOUNDVIEW _MINMAX mode, two lines are drawn, one to connect the
maximum values, and one to connect the minimum values.

As you zoom in (as the reduction factor decreases), the two drawing modes become
indistinguishable.

Classes: SoundView 16-75

Autoscaling the Display

When a SoundView's sound data changes (due to editing or recording), the manner in which
the SoundView is redisplayed depends on its autoscale flag. With autoscaling disabled, the
SoundView's frame grows or shrinks (horizontally) to fit the new sound data and the
reduction factor is unchanged. If auto scaling is enabled, the reduction factor is automatically
recomputed to maintain a constant frame size. By default,autoscaling is disabled; this is to
accommodate the use of a SoundView object as the document of a ScrollView.

Instance Variables

id sound;

id reduction;

id delegate;

NXRect selectionRect;

int displayMode;

float backgroundGray;

float foreground Gray;

float reductionFactor;

struct {
unsigned int disabled: 1;
unsigned int continuous: 1;
unsigned int calcDrawlnfo: 1;
unsigned int selectionDirty: 1 ;
unsigned int autoscale: 1;
unsigned int bezeled: 1 ;
unsigned int notEditable: 1;
unsigned int notOptimizedForSpeed: 1;

} svFlags;

sound

reduction

delegate

selectionRect

16-76 Chapter 16: Sound

The object's Sound.

The data reduced version of the object's Sound.

The object's delegate.

The object's current selection.

displayMode

backgroundGray

foregroundGray

reductionFactor

svFlags.disabled

sv Flags.continuous

svFlags.calcDrawInfo

svFlags.selectionDirty

svFlags.autoscale

svFlags.bezeled

svFlags.notEditable

Display mode; NX_SOUNDVIEW _MINMAX by default.

Background color; NX_ WHITE by default.

Foreground color; NX_BLACK by default.

The ratio of sound samples to display units.

Does the object (not) respond to mouse events?

Does the object respond to mouse dragged events?

Does drawing info need to be recalculated?

Has the object changed (but not been played)?

Does it rescale the display when the sound data changes?

Does the object have a bezeled border?

Is the sound data not editable?

svFlags.notOptimizedForSpeed Is the object not optimized for fast loading?

Method Types

Initializing a SoundView object - initFrame:

Freeing a SoundView instance - free

Modifying the object - scaleToFit
- setBackgroundGray:
- setBezeled:
- setCoI1tinuous:
- setDelegate:
- setDisplayMode:
- setEnabled:
- setForegroundGray:
- setOptimizedForSpeed:
- setSound:
- sizeToFit

Classes: SoundView 16-77

Querying the object - backgroundGray
- delegate
- displayMode
- foregroundGray
- getSelection:size:
- isAutoScale
- isBezeled
- isContinuous
- isEnabled
- isOptimizedForSpeed
- reductionFactor
- sound

Selecting and editing the sound data-
- copy:
- cut:
- delete:
- mouseDown:
- paste:
- selectAll:
- setSelection:size:
- isEditable
- setEditable:

Pasteboard and Services support - pasteboard:provideData:
- readSelectionFromPasteboard:
- validRequestorForSendType:andRetumType:
-'- writeSelectionToPasteboard:types:

Modifying the display coordinates
- setAutoscale:
- setReductionFactor:

Drawing the object - drawSelf::
- drawSamplesFrom:to:
- hideCursor
- show Cursor
- sizeTo::

Responding to events - acceptsFirstResponder
- becomeFirstResponder
- resignFirstResponder

16-78 Chapter 16: Sound

Performing the sound data - pause:
- isPlayable
- play:
- record:
- resume:
- soundBeingProcessed
- stop:

Archiving the object - read:
- write:

Accessing the delegate - didPlay:
- didRecord:
- hadError:
- tellDelegate:
- willPlay:
- willRecord:

Instance Methods

acceptsFirstResponder

- (BOOL)acceptsFirstResponder

If the SoundView is enabled, this returns YES, allowing the SoundView to become the first
responder. Otherwise, it returns NO. This method is automatically invoked by objects
defined by the Application Kit; you should never need to invoke it directly.

backgroundGray

- (float)backgroundGray

Returns the SoundView's background gray value (NX_ WHITE by default).

becomeFirstResponder

- becomeFirstResponder

Promotes the SoundView to first responder. You never invoke this method directly.
Returns self.

Classes: SoundView 16-79

copy:

- copy:sender

Copies the current selection to the pasteboard. Returns self.

cut:

- cut:sender

Deletes the current selection from the SoundView, copies it to the pasteboard, and sends a
soundDidChange: message to the delegate. The insertion point is positioned to where the
selection used to start. Returns self.

delegate

- delegate

Returns the SoundView's delegate object.

delete:

- delete:sender

Deletes the current selection from the SoundView's Sound and sends the
soundDidChange: message to the delegate. The deletion isn't placed on the pasteboard.
Returns self.

did Play:

- didPlay:sender

Used to redirect delegate messages from the SoundView's Sound object; you never invoke
this method directly.

didRecord:

- didRecord:sender

Used to redirect delegate messages from the SoundView's Sound object; you never invoke
this method directly.

16-80 Chapter 16: Sound

displayMode

- (int)displayMode

Returns the SoundView's display mode, one of NX_SOUNDVIEW _ WAVE
(oscilloscopic display) or NX_SOUNDVIEW _MINMAX (minimum/maximum display;
this is the default).

drawSamplesFrom:to:

- drawSamplesFrom:(int)jirst to:(int)last

Redisplays the given range of samples. Return self.

drawSelf::

- drawSelf:(const NXRect *)rects :(int)rectCount

Displays the SoundView's sound data. The selection is highlighted and the cursor is drawn
(if it isn't currently hidden). Returns self.

You never send the drawSelf:: message directly to a SoundView object. To cause a
SoundView to draw itself, send it one of the display messages defined by the View class.

foregroundGray

- (float)foregroondGray

Returns the SoundView's foreground gray value (NX_BLACK by default).

free

-free

Frees the SoundView but not its Sound object nor its delegate. The willFree: message is
sent to the delegate.

Classes: SoundView 16-81

getSelection :size:

- getSelection:(int *)firstSample size:(int *)sampleCount

Returns the selection by reference. The index of the selection's first sample (counting from
0) is returned infirstSample. The size of the selection in samples is returned in
sample Count. The method itself returns self.

hadError:

- hadError:sender

Used to redirect delegate messages from the SoundView's Sound object; you never invoke
this method directly.

hideCursor

- hideCursor

Hides the SoundView's cursor. This is usually handled automatically. Returns self.

initFrame:

- initFrame:(const NXRect *)frameRect

Initializes the SoundView, fitting the object within the rectangle pointing to by frameRect.
The initialized SoundView doesn't contain any sound data. Returns self.

isAutoScale

- (BOOL)isAutoScale

Returns YES if the SoundView is in autoscaling mode, otherwise returns NO.

isBezeled

- (BOOL)isBezeled

Returns YES if the SoundView has a bezeled border, otherwise returns NO (the default).

16-82 Chapter 16: Sound

isContinuous

- (BOOL)isContinuous

Returns YES if the SoundView responds to mouse-dragged events (as set through
setContinuous:). The default is NO.

isEditable

- (BOOL)isEditable

Returns YES if the SoundView's sound data can be edited.

isEnabled

- (BOOL)isEnabled

Returns YES if the SoundView is enabled, otherwise returns NO. The mouse has no effect
in a disabled SoundView. By default, a SoundView is enabled.

isOptim izedForSpeed

- (BOOL)isOptimizedForSpeed

Returns YES if the SoundView is optimized for speedy display. SoundViews are optimized
by default.

isPlayable

- (BOOL)isPlayable

Returns YES if the SoundView's sound data can be played without first being converted.

mouseDown:

- mouseDown:(NXEvent *)theEvent

Allows a selection to be defined by clicking and dragging the mouse. This method takes
control until a mouse-up occurs. While dragging, the selected region is highlighted. On
mouse up, the delegate is sent the selection Changed: message. If is Continuous is YES,
selectionChanged: messages are also sent while the mouse is being dragged. You never
invoke this method; it's invoked automatically in response to the user's actions. Returns self.

Classes: SoundView 16-83

paste:

- paste:sender

Replaces the current selection with a copy of the sound data currently on the pasteboard. If
there is no selection the pasteboard data is inserted at the cursor position. The pasteboard
data must be compatible with the SoundView's data, as determined by the Sound method
compatibleWith:. If the paste is successful, the soundDidChange: messageis sent to the
delegate. Returns self.

pasteboard:provideData:

- pasteboard:thePasteboard provideData:(const char *)pboardType

Places the SoundView's entire sound on the given pasteboard. Currently, the pboardType
argument must be "NXSoundPboardType", the pasteboard type that represents sound data.
Returns self.

pause:

- pause:sender

Pauses the current playback or recording session by invoking Sound's pause: method. If
no sound is being processed, returns nil; otherwise, returns self.

play:

- play:sender

Play the current selection by invoking Sound's play: method. If there is no selection, the
SoundView's entire Sound is played. The willPlay: message is sent to the delegate before
the selection is played; didPlay: is sent when the selection is done playing. Returns self.

read:

- read:(void *)stream

Unarchives the SoundView by reading it from stream. Returns self.

16-84 Chapter 16: Sound

readSelectionFromPasteboard:

- readSelectionFromPasteboard:thePasteboard

Replaces the SoundView's current selection with the sound data on the given pasteboard.
The pasteboard data is converted to the format of the data in the SoundView (if possible).
If the SoundView has no selection, the pasteboard data is inserted at the cursor position.
Sets the current error code for the SoundView's Sound object (which you can retrieve by
sending processingError to the Sound) and returns self.

record:

- record:sender

Replaces the SoundView's current selection with newly recorded material. If there is no
selection, the recording is inserted at the cursor. The willRecord: message is sent to the
delegate before the recording is started; didRecord: is sent after the recording has
completed. Recorded data is always taken from the CODEC microphone input. Returns self.

reductionFactor

- (float)reductionFactor

Returns the SoundView's reduction factor, computed as

reductionFactor = sampleCount / displayUnits

resignFirstResponder

- resignFirstResponder

Resigns the position of first responder. Returns self.

resume:

- resume:sender

Resumes the current playback or recording session by invoking Sound's resume: method.
If no sound is being processed, returns nil; otherwise, returns self.

Classes: SoundView 16-85

scaleToFit

- scaleToFit

Recomputes the SoundView's reduction factor to fit the sound data (horizontally) within
the current frame. Invoked automatically when the SoundView's data changes and the
SoundView is in auto scale mode. If the SoundView isn't in autoscale mode, sizeToFit is
invoked when the data changes. You never invoke this method directly; a subclass can
reimplement this method to provide specialized behavior. Returns self.

selectAII:

- selectAll:sender

Creates a selection over the SoundView's entire Sound. Returns self.

setAutoscale:

- setAutoscale:(BOOL)aFlag

Sets the SoundView's automatic scaling mode, used to determine how the SoundView is
redisplayed when its data changes. With autoscaling enabled (aFlag is YES), the
SoundView's reduction factor is recomputed so the sound data fits within the view frame.
If it's disabled (aFlag is NO), the frame is resized and the reduction factor is unchanged.
If the SoundView is in a ScrollingView, autoScaling should be disabled (autoscaling is
disabled by default). Returns self.

setBackgroundGray:

- setBackgroundGray:(float)aGray

Sets the SoundView's background gray value to aGray; the default is NX_ WHITE.
Returns self.

setBezeled:

- setBezeled:(BOOL)aFlag

If aFlag is YES, the display is given a bezeled border. By default, the border of a
SoundView display isn't bezeled. If autodisplaying is enabled, the Sound is automatically
redisplayed. Returns self.

16-86 Chapter 16: Sound

setContinuous:

- setContinuous:(BOOL)aFlag

Sets the state of continuous action messages. If aFlag is YES, selectionChanged:
messages are sent to the delegate as the mouse is being dragged. If NO, the message is sent
only on mouse up. The default is NO. Returns self.

setDelegate:

- setDelegate:anObject

Sets the SoundView's delegate to anObject. The delegate is sent messages when the user
changes or acts on the selection. Returns self.

setDisplayMode:

- setDisplayMode:(int)aMode

Sets the SoundView's display mode, either NX_SOUNDVIEW _WAVE or
NX_SOUNDVIEW _MINMAX (the default). If autodisplaying is enabled, the Sound is
automatically redisplayed. Returns self.

setEditable:

- setEditable:(BOOL)aFlag

Enables or disables editing in the SoundView as aFlag is YES or NO. By default, a
SoundView is editable. Returns self.

setEnabled:

- setEnabled:(BOOL)aFlag

Enables or disables the SoundView as aFlag is YES or NO. The mouse has no effect in a
disabled SoundView. By default, a SoundView is enabled. Returns self.

Classes: SoundView 16-87

setForegroundGray:

- setForegroundGray:(float)aGray

Sets the SoundView's foreground gray value to aGray. The default is NX_BLACK.
Returns self.

setOptimizedForSpeed:

- setOptimizedForSpeed:(BOOL)jlag

Sets the SoundView to optimize its display mechanism. Optimization greatly increases the
speed with which data can be drawn, particularly for large sounds. It does so at the loss of
some precision in representing the sound data; however, these inaccuracies are corrected as
you zoom in on the data. All SoundView's are optimized by default. Returns self.

setReductionFactor:

- setReductionFactor: (float)reductionF actor

Recomputes the size of the SoundView's frame, if autoscaling is disabled. The frame's size
(in display units) is set according to the formula

displayUnits = sampleCount / reductionFactor

Increasing the reduction factor zooms out, decreasing zooms in on the data. If
autodisplaying is enabled, the Sound is automatically redisplayed.

If the SoundView is in autoscaling mode, or reductionFactor is less than 1.0, the method
avoids computing the frame size and returns nil. (In autoscaling mode, the reduction factor
is automatically recomputed when the sound data changes-see scaleToFit:.) Otherwise,
the method returns self. If reductionF actor is the same as the current reduction factor, the
method returns immediately without recomputing the frame size.

setSelection:size:

- setSelection:(int).firstSample size:(int)sampleCount

Sets the selection to be sampleCount samples wide, starting with sample jirstSample
(samples are counted from 0). Returns self.

16-88 Chapter 16: Sound

setSound:

- setSound:aSound

Sets the SoundView's Sound object to aSound. If auto scaling is enabled, the drawing
coordinate system is adjusted so aSound's data fits within the current frame. Otherwise,
the frame is resized to accommodate the length of the data. If autodisplaying is enabled,
the SoundView is automatically redisplayed. Returns self.

showCursor

- showCursor

Displays the SoundView's cursor. This is usually handled automatically. Returns self.

sizeTo::

- sizeTo:(NXCoord)width :(NXCoord)height

Sets the width and height of the SoundView's frame. If autodisplaying is enabled, the
SoundView is automatically redisplayed. Returns self.

sizeToFit

- sizeToFit

Resizes the SoundView's frame (horizontally) to maintain a constant reduction factor. This
method is invoked automatically when the SoundView's data changes and the SoundView
isn't in autoscale mode. If the SoundView is in autoscale mode, scaleToFit is invoked
when the data changes. You never invoke this method directly; a subclass can reimplement
this method to provide specialized behavior. Returns self.

sound

-sound

Returns a pointer to the SoundView's Sound object.

Classes: SoundView 16-89

soundBeingProcessed

- soundBeingProcessed

Returns the Sound object that's currently being played or recorded into. Note that the
actual Sound object that's being performed isn't necessarily the SoundView's sound (the
object returned by the sound method); for efficiency, SoundView creates a private
performance Sound object. While this is generally an implementation detail, this method
is supplied in case the SoundView's delegate needs to know exactly which object will be
(or was) performed.

stop:

- stop:sender

Stops the SoundView's current recording or playback. Returns self.

tell Delegate:
- teIlDelegate:(SEL)theMessage

Sends theMessage to the SoundView's delegate with the SoundView as the argument. If the
delegate doesn't respond to the message, then it isn't sent. You normally never invoke this
method; it's invoked automatically when an action, such as playing or editing, is performed.
However, you can invoke it in the design of a SoundView subclass. Returns self.

validRequestorForSendType:andReturnType:

- validRequestorForSendType:(NXAtom)sendType
andReturnType:(NXAtom)returnType

You never invoke this method; it's implemented to support services that act on sound data.

wiliPlay:

- willPlay:sender

Used to redirect delegate messages from the SoundView's Sound object; you never invoke
this method directly.

16-90 Chapter 16: Sound

wiliRecord:

- willRecord:sender

Used to redirect delegate messages from the SoundView's Sound object; you never invoke
this method directly.

write:

- write:(void *)stream

Archives the SoundView by writing it to stream. Returns self.

writeSelectionToPasteboard:types:

- writeSelectionToPasteboard:thePasteboard types:(NXAtom *)pboardTypes

Places a copy of the SoundView's current selection on the given pasteboard. The
pboardTypes argument is currently ignored. Returns self.

Methods Implemented by the Delegate

didPlay:

- didPlay:sender

Sent to the delegate just after the SoundView's sound is played.

didRecord:

- didRecord:sender

Sent to the delegate just after the SoundView's sound is recorded into.

hadError:

- hadError:sender

Sent to the delegate if an error is encountered during recording or playback of the
SoundView's sound.

Classes: SoundView 16-91

selectionChanged:

- selectionChanged:sender

Sent to the delegate when the SoundView's selection changes.

soundDidChange:

- soundDidChange:sender

Sent to the delegate when the SoundView's sound data is edited.

wiliFree:

- willFree:sender

Sent to the delegate when the SoundView is freed.

will Play:

- willPlay:sender

Sent to the delegate just before the SoundView's sound is played.

wiliRecord:

- willRecord:sender

Sent to the delegate just before the SoundView's sound is recorded into.

16-92 Chapter 16: Sound

Sound Functions

SNDAcquireO, SNDResetO, SNDReleaseO

SUMMARY Access sound resources

DECLARED IN sound/accesssound.h

SYNOPSIS int SNDAcquire(int soundResource, int priority, int preempt, int timeout,
SNDNegotiationFun negFun, void *arg, port_t *devicePort, port_t *ownerPort)

int SNDReset(int soundResource, port_t devicePort, port_t ownerPort)
int SNDRelease(int soundResource, port_t *devicePort, port_t *ownerPort)

DESCRIPTION SNDAcquireO attempts to gain ownership of the sound resources specified in
soundResource, a value that's created by (bitwise) or'ing a combination of the following
resource codes:

Code

SND_ACCESS_OUT
SND_ACCESS~IN

SND_ACCESS_DSP

Resource

sound-out
sound-in
the DSP

Alternatively, you can acquire the sound driver device port without gaining ownership of
. the device by passing 0 as the value of soundResource.

Device and ownership ports to a successfully acquired sound resource are returned in
devicePort and ownerPort, respectively. If you pass a previously created port as the value
of devicePort, that port is used; passing a value of PORT _NULL (0) causes SNDAcquireO
to create a port for you. The value you pass through ownerPort is ignored by the function;
a new owner port is always created for you.

Acquiring a resource makes it active, such that other acquisition requests may fail, even if
the requests are in the same process. You can grant a priority to the acquisition by setting
the value of the priority argument-in a subsequent call to SNDAcquireO, the acquisition
with the higher priority wins. The preempt flag is used as a tie-breaker.

The function's timeout, negFun, and arg arguments are currently unused.

SNDResetO and SNDReleaseO reset to a virgin state and release, respectively, the
specified resources. The resources must have been previously acquired through
SNDAcquireO; the device and owner port arguments are values returned by that function.
SNDReleaseO sets the owner port to PORT_NULL; the device port is unaffected.

16-94 Chapter 16: Sound

RETURN If no error occurs, SND _ERR_NONE is returned. Otherwise, an error code, as described
in SNDSoundErrorO, is returned.

ERRORS IfSNDAcquireO is unable to acquire anyone of the resources specified in soundResource,
none of the resources are acquired.

SNDAlloc(), SNDFree()

SUMMARY Create and free a sound structure

DECLARED IN soundlutilsound.h

SYNOPSIS int SNDAlloc(SNDSoundStruct **sound, int dataSize, int dataFormat, int samplingRate,
int channelCount, int infoSize)

int SNDFree(SNDSoundStruct * sound)

DESCRIPTION The SNDSoundStruct structure is the data format used by the sound software to encapsulate
a sound. It defines the soundfile format and the sound pasteboard type, and it lies at the
heart of every Sound object. SNDAllocO creates and returns, in sound, a new
SNDSoundStruct. The arguments to SNDAllocO correspond to the SNDSoundStruct fields
described below. SNDFreeO frees the SNDSoundStruct pointed to by sound. You should
always use SNDFreeO to free a sound structure created through SNDAllocO.

The fields of the SNDSoundStruct structure list the attributes of the sound that the structure
represents. The sound data itself isn't contained in the structure, but is located by a
structure field. Nonetheless, it's often convenient to think of a SNDSoundStruct as
containing the sound data that it represents. By convention, the structure is referred to as
the sound's "header." It's defined as:

typedef struct

int magic; /* SND_MAGIC ((int)Ox2e736e64) */

int dataLocation; /* Offset or pointer to the raw data */

int dataSizei /* Raw data size in bytes */

int dataFormati /* The data format code */

int samplingRate; /* The sampling rate */

int channelCounti /* The number of channels */

char info [4] i /* Textual information about the sound */

SNDSoundStruct;

Sound Functions: SNDAlloc() 16-95

The magic field is a magic number that identifies a SNDSoundStruct. It's automatically set
when you allocate the structure.

The dataLocation field indicates the location of the actual sound data. Usually, the data
immediately follows the header. In this case, dataLocation is the offset from the beginning
of the structure to the first byte of the sound data-in other words, it's the size of the sound's
header. However, if you edit the sound through functions such as SNDDeleteSamplesO or
SNDlnsertSamplesO, the sound can become fragmented such that the data no longer
follows the header. In this case, dataLocation is a pointer to a NULL-terminated block of
addresses, each of which points to a separate SNDSoundStruct. The collection of these
SNDSoundStructs make up the fragmented data.

data Size is the size, in bytes, of the memory allocated for the sound data. The memory is
initialized to zero.

dataFormat describes the sound data as one of the following codes:

Code

SND _FORMAT_MULAW_8
SND_FORMAT_LINEAR_8
SND _FORMAT _LINEAR_16
SND _FORMAT_EMPHASIZED
SND _FORMAT_COMPRESSED
SND_FORMAT_COMPRESSED _EMPHASIZED
SND _FORMAT_LINEAR_24
SND _FORMAT _LINEAR_32
SND_FORMAT_FLOAT
SND _FORMAT_DOUBLE
SND_FORMAT_DSP _DATA_8
SND_FORMAT_DSP _DATA_16
SND_FORMAT_DSP _DATA_24
SND_FORMAT_DSP _DATA_32
SND_FORMAT_DSP _CORE
SND_FORMAT_DISPLAY
SND _FORMAT_INDIRECT
SND _FORMAT_UNSPECIFIED

16-96 Chapter 16: Sound

Format

8-bit mu-Iaw samples
8-bit linear samples
16-bit linear samples
16-bit linear with emphasis
16-bit linear with compression
A combination of the two above
24-bit linear samples
32-bit linear samples
floating-point samples
double-precision float samples
8-bit fixed-point samples
16-bit fixed-point samples
24-bit fixed-point samples
32-bit fixed-point samples
DSPprogram
non-audio display data
fragmented sampled data
unspecified format

All but the last five formats identify different sizes and types of sampled data. The others
deserve special note:

• SND _FORMAT _DSP _CORE format contains data that represents a loadable DSP core
program. Sounds in this format are required by the SNDBootDSPO and
SNDRunDSPO functions. You create a SND_FORMAT_DSP _CORE sound by
reading a DSP load file (extension ".lod") with the SNDReadDSPfileO function.

• SND_FORMAT_DISPLAY format is used by the Sound Kit's SoundView class. Such
sounds can't be played.

• SND _FORMAT_INDIRECT indicates data that has become fragmented due to
editing. Only sampled data can become fragmented. You never allocate a sound with
this format.

• SND_FORMAT_UNSPECIFIED is used for unrecognized formats.

samplingRate is also given as a code and should be cast into an into The NeXT sound
hardware supports the following sampling rates for recording and playback:

Code

SND_RATE_CODEC
SND_RATE_LOW
SND_RATE_HIGH

Sampling Rate (Hz)

8012.8210513
22050
44100

channel Count is the number of channels of sound. Playback of one- and two-channel
sounds is supported; a sound with more than two channels is unplayable.

infoSize is the size of a variable-length string that can be used to textually describe the
sound. The size is extended to the next 4-byte boundary (the minimum size is 4 bytes). You
can't increase the length of the info string once its size has been set.

RETURN If no error occurs, SND_ERR_NONE is returned. Otherwise, an error code, as described
in SNDSoundErrorO, is returned.

Sound Functions: SNDAlloc() 16-97

SNDBootDSP()

SUMMARY Boot the DSP

DECLARED IN soundlaccesssound.h

SYNOPSIS int SNDBootDSP(port_t *devicePort, port_t *ownerPort, SNDSoundStruct *dspCore)

DESCRIPTION SNDBootDSPO boots the DSP using the DSP bootstrap image specified in dspCore. This
allows you to load all internal RAM and all but the top six words of external RAM on the
DSP. The owner and device ports must have been previously acquired through
SNDAcquireO. The format of dspCore must SND_FORMAT_DSP core image should be
in loadable (".lod") form, such as is created through the SNDReadDSPfileO function.

RETURN If no error occurs, SND_ERR_NONE is returned. Otherwise, an error code, as described
in SNDSoundErrorO, is returned.

SNDBytesToSamples() ~ See SNDSampleCount()

SNDGetCompressionOptions() ~ See SNDSetCompressionOptions()

SNDCompactSamples() ~ See SNDlnsertSamples()

16-98 Chapter 16: Sound

SNDCompressSoundO

SUMMARY Compress or decompress a sound

DECLARED IN soundlconvertsound.h

SYNOPSIS int SNDCompressSound(SNDSoundStruct *fromSound, SNDSoundStruct **toSound,
BOOL bitFaithful, int compressionAmount)

DESCRIPTION SNDCompressSoundO creates and returns, in toSound, a new SNDSoundStruct that
contains a compressed or decompressed version of the sound infromSound:

• IffromSound's format is SND_FORMAT_LINEAR_16 or
SND_FORMAT_EMPHASIZED, the sound returned in toSound is compressed.

• If its format is SND_FORMAT_COMPRESSED or
SND_FORMAT _COMPRESSED _EMPHASIZED, the sound is decompressed.

No other formats are allowed; in addition, the sound can't have more than two channels.

The function's bitFaithful and compressionAmount arguments are used only when
compressing:

• bitFaithful determines the fidelity with which a compressed sound can be restored to its
original state. If bitFaithful is YES, the sound returned in toSound can be decompressed
to exactly match the original sound data; if it's NO, some degradation can be expected.

• The compressionAmount argument controls the amount of compression. Its value
ranges from 4 to 8 with higher numbers giving more compression but less fidelity.
Depending on the signal, a compressionAmount of 4 will compress the sound to about
half its original size; a value of 8 compresses to about one-sixth the size. For bit-faithful
compression, you should set compressionAmount to 4.

RETURN If no error occurs, SND_ERR_NONE is returned. Otherwise an error code, as described
in SNDSoundErrorO, is returned.

Sound Functions: SNDCompressSound() 16-99

SNDConvertDecibelsToLinear(), SNDConvertLinearToDecibels()

SUMMARY Convert between logarithmic and linear units

DECLARED IN soundkitINXSoundDevice.h

SYNOPSIS float SNDConvertDecibelsToLinear(float dB)
float SNDConvertLinearToDecibels(float linear)

DESCRIPTION These convenience functions convert from units of decibels to a linear value, and vice
versa. Decibels express the difference between two quantities in logarithmic units, while
on a linear scale the same relationship is expressed as the ratio of the two quantities. For
example, a difference of zero decibels is equivalent to a ratio of 1.0. The functions are, in
their entirety:

float SNDConvertDecibelsToLinear(float dB)

return (float)pow(lO.O, (double)dB/20.0);

float SNDConvertLinearToDecibels(float linear)

return (float) (20.0 * loglO((double)linear));

SNDConvertLinearToDecibelsO ~ See SNDConvertDecibelsToLinearO

16-100 Chapter 16: Sound

SNDConvertSoundO, SNDMulawO, SNDiMulawO

SUMMARY Convert a sound's attributes

DECLARED IN soundlconvertsound.h

SYNOPSIS int SNDConvertSound(SNDSoundStruct *fromSound, SNDSoundStruct **toSound)
unsigned char SNDMulaw(short linearValue)
short SNDiMulaw(unsigned char mulaw Value)

DESCRIPTION SNDConvertSoundO copies the sampled data fromfromSound into toSound, converting
the copied data to the format, channel count, and sampling rate specified by toSound.
Memory for the converted data is automatically allocated. The following conversions are
possible:

• Arbitrary sampling rate conversion.
• Compression and decompression.
• Floating-point formats (including double-precision) to and from linear formats.
• Mono to stereo.
• CODEC mu-law to and from linear formats.

SNDMulawO converts a value from 16-bit linear to mu-law: It takes a single linear 16-bit
argument and returns the corresponding mu-law value. SNDiMulawO performs the
inverse operation: It takes a mu-law argument and returns the 16-bit linear value.

RETURN If no error occurs, SNDConvertSoundO returns SND _ERR_NONE. Otherwise an error
code, as described in SNDSoundErrorO, is returned.

SEE ALSO SNDAllocO, SNDSamplesToBytesO

Sound Functions: SNDConvertSound() 16-101

SNDCopySamplesO ~ See SNDCopySoundO

SNDCopySoundO, SNDCopySamplesO

SUMMARY Copy all or part of a sound

DECLARED IN soundleditsound.h

SYNOPSIS int SNDCopySound(SNDSoundStruct **toSound, SNDSoundStruct *fromSound)
int SNDCopySamples(SNDSoundStruct **toSound, SNDSoundStruct *fromSound,

int startSample, int sampleCount)

DESCRIPTION SNDCopySoundO creates and returns, in toSound, a new SNDSoundStruct that contains a
copy of the sound infromSound. This works for any type of sound, including DSP sounds.

SNDCopySamplesO also creates a new SNDSoundStruct pointed to by toSound,
but copies only the specified of fromSound, starting with the startSample sample
(counting from sample 0) and copying sampleCount samples. This function works
only for sampled sounds.

toSound should eventually be freed with SNDFreeO.

RETURN Both functions return an error code as described in SNDSoundErrorO.

ERRORS If an error occurs, the SNDSoundStruct isn't created.

SNDDeleteSamplesO ~ See SNDlnsertSamplesO

16-102 Chapter 16: Sound

SNDDropATCSamples(), SNDlnsertATCSamples()

SUMMARY Speed up or slow down playback of ATC sound

DECLARED IN soundlatcsound.h

SYNOPSIS int SNDDropATCSamples(int numSamples, int bySamples)
int SNDlnsertATCSamples(int numSamples, int bySamples)

DESCRIPTION SNDDropATCSamplesO and SNDlnsertATCSamplesO provide elementary support for
synchronizing sound playback to other events. By skipping or repeating selected samples
of an ATC sound while it's playing, you can slightly shrink or stretch its duration, as
necessary. This mechanism is intended for subtle timing adjustments, not for effects like
fast forward. Although dropping or inserting samples shouldn't cause any clicks in the
sound, it will cause some distortion. A sound in the ATC (Audio Transform Compression)
format must be playing for these functions to have any effect.

If bySamples is zero, one sample is chosen randomly out of the next 256 consecutive
samples and omitted (in the case of SNDDropATCSamplesO) or repeated (in the case of
SNDlnsertATCSamplesO). This process repeats until numSamples samples have been
dropped or inserted. If bySamples is greater than zero, an attempt is made to drop or add
numSamples samples before bySamples more samples of the original sound have played.
Too large a ratio of numSamples to bySamples may produce unwanted results.

To determine when to drop or insert samples, call SNDSamplesProcessedO to obtain an
estimate of how many samples have been played thus far. Divide this number by the
sampling rate to obtain the elapsed time in seconds, and compare the result to the notion of
time with which you want to synchronize.

SEE ALSO SNDSamplesProcessedO, SNDCompressSoundO, SNDSetATCGainO,
SNDGetNumberOfATCBandsO

SNDFreeO ~ See SNDAllocO

SNDGetCompressionOptionsO ~ See SNDCompressSoundO

Sound Functions: SNDDropATCSamples() 16-103

SNDGetDataPointer()

SUMMARY Gain access to sampled sound data

DECLARED IN sound!utilsound.h

SYNOPSIS int SNDGetDataPointer(SNDSoundStruct *sound, char **ptr, int *size, int *width)

DESCRIPTION The SNDGetDataPointerO provides access to sound's sound data. A pointer to the sound
data is returned by reference in sound, the size of the data is returned in samples, and the
width (in bytes) of a single sample is returned in width. Note that size is the total sample
count-it isn't a count of the sample frames. The data itself should be unfragmented,
sampled data.

RETURN If no error occurs, SND _ERR_NONE is returned. Otherwise, an error code, as described
in SNDSoundErrorO, is returned.

SNDGetFilter() ~ See SNDSetVolume()

SNDGetMute() ~ See SNDSetVolume()

SNDGetNumberOfATCBandsO, SNDGetATCBandFrequencies(),
SNDGetATCBandwidths()

SUMMARY Query for frequency bands used by Audio Transform Compression

DECLARED IN sound! atcsound.h

SYNOPSIS int SNDGetNumberOfATCBands(int *numBands)
int SNDGetATCBandFrequencies(int numBands, float *centerFreqs)
int SNDGetATCBandwidths(int numBands, float *bandwidths)

16-104 Chapter 16: Sound

DESCRIPTION SNDGetNumberOfATCBandsO returns, by reference in numBands, the number of
frequency bands that SNDCompressSoundO uses for compressing sounds with ATC
(Audio Transform Compression). Currently, this number is always 40.

SNDGetATCBandFrequenciesO fills the array centerFreqs with floating-point numbers
that specify the center frequency in Hertz of each band. Similarly, the array filled by
SNDGetATCBandwidthsO contains the width in Hertz of each band. The first argument
to each of these functions should be the value returned by
SNDGetNumberOfATCBandsO.

The ATC bands correspond roughly to the "critical bands" of hearing. Band zero is
centered at zero Hz, and the highest band is centered at half the sampling rate. The
bandwidths and spacing are uniform below a certain frequency, above which the bands are
progressively wider in Hertz and spaced further apart. For sounds having the standard
sampling rate of 44.1 kHz, bands below 1000 Hz have the same bandwidth, while bands
above 1000 Hz have bandwidths of approximately 20% of the band's center frequency. For
sounds with other sampling rates, the bands' frequencies are scaled so that the same number
of bands covers zero Hz to half the sampling rate, whatever the latter may be.
SNDGetATCBandFrequenciesO and SNDGetATCBandwidthsO assume a 44. I-kHz
sampling rate when filling the arrays centerFreqs and bandwidths, respectively. To obtain
the correct values for other sampling rates, multiply each element of the returned arrays by
the ratio of the sampling rate to 44.1 kHz.

RETURN 0 is returned unless the host isn't a NeXT computer, in which case ATC is unavailable.

SEE ALSO SNDCompressSoundO, SNDSetATCGainO, SNDDropATCSamplesO

SNDGetVolumeO --7 See SNDSetVolume()

SNDiMulawO --7 See SNDConvertSound()

Sound Functions: SNDGetVolume() 16-105

SNDlnsertSamples(), SNDDeleteSamples(), SNDCompactSamples()

SUMMARY Edit a sampled sound

DECLARED IN soundleditsound.h

SYNOPSIS int SNDlnsertSamples(SNDSoundStruct *toSound, SNDSoundStruct *fromSound,
int startSample)

int SNDDeleteSamples(SNDSoundStruct * sound, int startSample, int sample Count)
int SNDCompactSamples(SNDSoundStruct * * toSound, SNDSoundStruct *fromSound)

DESCRIPTION SNDInsertSamplesO inserts a copy offromSound into toSound at position startSample of
toSound (counting from sample 0). This operation may fragment toSound.

SNDDeleteSamplesO deletes sampleCount samples from sound, starting at sample
startSample. The memory occupied by the deleted segment is freed. The sound may
become fragmented.

SNDCompactSamplesO creates and returns, in toSound, a new SNDSoundStruct that
contains a compacted version offromSound. Compaction eliminates the fragmentation that
can be caused by inserting and deleting samples.

These functions work only on sounds that contain sampled data.

RETURN If no error occurs, SND _ERR_NONE is returned. Otherwise, an error code, as described
in SNDSoundErrorO, is returned.

SNDModifyPriority() ~ See SNDStartPlaying()

SNDMulawO ~ See SNDConvertS~und()

16-106 Chapter 16: Sound

SNDPlaySoundfile()

SUMMARY Playa soundfile

DECLARED IN soundlutilsound.h

SYNOPSIS int SNDPlaySoundfile(char *path, int priority)

DESCRIPTION SNDPlaySoundfileO plays the soundfile named path. The function returns immediately
while playback continues in a background thread. Playback interrupts a currently playing
sound of the same or lower priority.

RETURN If no error occurs, SND _ERR_NONE is returned. Otherwise, an error code, as described
in SNDSoundErrorO, is returned.

SNDReadO ~ See SNDReadSoundfileO

SNDReadDSPfile() ~ See SNDReadSoundfileO

SNDReadHeaderO ~ See SNDReadSoundfileO

Sound Functions: SNDPlaySoundjile() 16-107

SNDReadSoundfile(), SNDRead(), SNDReadHeaderO,
SNDReadDSPfile()

SUMMARY Read a sound from a file

DECLARED IN soundlfilesound.h

SYNOPSIS int SNDReadSoundfile(char *path, SNDSoundStruct **sound)

int SNDRead(intfd, SNDSoundStruct ** sound)
int SNDReadHeader(intfd, SNDSoundStruct ** sound)
int SNDReadDSPfile(char *path, SNDSoundStruct **sound, char *info)

DESCRIPTION Each of these functions creates and returns, by reference in the sound argument, a
SNDSoundStruct that contains the sound represented in a specified file.

SNDReadSoundfileO and SNDReadO read the entire contents of a soundfile. The path
argument to SNDReadSoundfileO is a pathname~ the function opens and closes the file
automatically. SNDReadO takes a file descriptor fd that must be open for reading.

SNDReadHeaderO reads only the header portion of the file descriptor fd. Storage for the
actual sound data isn't allocated. The dataLocation field of the new SNDSoundStruct can
be interpreted as the size of the header.

SNDReadDSPfileO creates a SNDSoundStruct for the given loadable DSP core file. The
file, which is opened and closed by the function, is specified as a pathname and must have
a ".lod" extension. The info argument is provided as a convenience, allowing you to
specify an information string that's written in sound's header. The DSP program is
executed by calling SNDBootDSPO or SNDRunDSPO.

For all three functions, sound should eventually be deallocated with SNDFreeO.

RETURN If no error occurs, SND _ERR_NONE is returned. Otherwise, an error code, as described
in SNDSoundErrorO, is returned.

ERRORS If an error occurs, the SNDSoundStruct isn't created.

SEE ALSO SNDFreeO

16-108 Chapter 16: Sound

SNDReleaseO ~ See SNDAcquire()

SNDReserveO, SNDUnreserve()

SUMMARY Reserve sound resources for recording or playback

DECLARED IN soundiaccesssound.h

SYNOPSIS int SNDReserve(int soundResource, int priority)
int SNDUnreserve(int soundResource)

DESCRIPTION SNDReserveO attempts to establish the exclusive use of the sound resources specified in
soundResource, a value that's created by (bitwise) or'ing a combination of the following
resource codes:

Code

SND_ACCESS_OUT
SND_ACCESS_IN
SND_ACCESS_DSP

Resource

sound out
sound in
the DSP

The priority argument sets the priority of the reservation (0 is the lowest priority). In
general, a process has exclusive access to the resources that it reserves. However, another
process can overrule a reservation by specifying a higher priority. Use of SNDReserveO
is optional; prioritized access to the appropriate resource is established when either the
SNDStartPlayingO or the SNDStartRecordingO function is called. The process should
eventually free its reserved resources by calling SNDUnreserveO. Sound resources are
automatically freed when the process terminates.

RETURN If no error occurs, SND_ERR_NONE is returned. Otherwise, an error code, as described
in SNDSoundErrorO, is returned.

ERRORS If SNDReserveO is unable to reserve anyone of the resources specified in soundResource,
it won't reserve any of them.

SNDReset() ~ See SNDAcquire()

Sound Functions: SNDRelease{} 16-109

SNDRunDSPO

SUMMARY Run the DSP

DECLARED IN soundlconvertsound.h

SYNOPSIS int SNDRunDSP(SNDSoundStruct *dspCore, char *toDSP, int to Count, int toWidth,
int toBufferSize, char **fromDSP, int *fromCount, intfrom Width,
int negotiationTimeout, intflushTimeout, int conversionTimeout)

DESCRIPTION SNDRunDSPO loads and runs the DSP program that you provide. The functions is
designed to be used with DSP programs that process sound data-you typically use this
function to provide your own sound conversion algorithms. The arguments are as follows:

• The DSP program is represented by dspCore; it must implement complex DMA mode
for its output, and must be in loadable (" .lod") form.

• toDSP is a pointer to the data that you wish to feed to the DSP.

• toCount is the number of samples to process.

• to Width is the size of a single unprocessed sample.

• toBufferSize is the total size, in bytes, of the toDSP data.

• fromDSP is a pointer to the address of the processed data. The memo~ to store the data
is allocated for you.

• fromCount is returned by the function to give the number of samples that it actually
processed.

• from Width is the size, in bytes, of a single processed sample.

• The timeout arguments, negotiation Timeout, flushTimeout, and conversionTimeout,
are ignored.

RETURN If no error occurs, SND _ERR_NONE is returned. Otherwise, an error code, as described
in SNDSoundErrorO, is returned.

16-110 Chapter 16: Sound

SNDSampleCountO, SNDBytesToSamplesO, SNDSamplesToBytesO

SUMMARY Measure samples in a sound

DECLARED IN soundlutilsound.h

SYNOPSIS int SNDSampleCount(SNDSoundStruct * sound)
int SNDBytesToSamples(int byteCount, int channelCount, int dataFormat)
int SNDSamplesToBytes(int sampleCount, int channelCount, int dataFormat)

DESCRIPTION SNDSampleCountO returns the number of sample frames, or channel-independent
samples, in sound. The sound must contain sampled data.

SNDBytesToSamplesO returns the number of samples contained in byteCount bytes of
sound data with the given channel count and data format. SNDSamplesToBytesO
performs the inverse operation, returning the number of bytes needed to store sample Count
samples. The value returned by SNDSamplesToBytesO is useful for computing the
dataSize argument to SNDAllocO.

RETURN If sound doesn't contain sampled data (or if for any other reason the sample count
can't be determined), SNDSampleCountO returns -1. SNDBytesToSamplesO and
SNDSamplesToBytesO return 0 if dataFormat isn't a sampled sound format and-l
if dataFormat isn't recognized.

SNDSamplesProcessedO ~ See SNDStartPlayingO

SNDSamplesToBytesO ~ See SNDSampleCountO

Sound Functions: SNDSampleCount() 16-111

SNDSetATCGainO, SNDGetATCGainO, SNDSetATCEqualizerGainsO,
SNDGetATCEqualizerGainsO, SNDScaleATCEqualizerGainsO

SUMMARY Modify volume or equalization for ATC playback

DECLARED IN soundlatcsound.h

SYNOPSIS int SNDSetATCGain(float level)
int SNDGetATCGain(float *level)
int SNDSetATCEqualizerGains(int numBands, float *gains)
int SNDGetATCEqualizerGains(int numBands, float *gains)
int SNDScaleATCEqualizerGains(int numBands, float *gainScalars)

DESCRIPTION Audio Transform Compression (ATC) can be used not only for compression, but also to
manipulate a sound's volume or frequency spectrum. These functions determine the
playback level of sounds in the ATC format-either their overall gain, or the gains of their
individual frequency bands.

SNDSetATCGainO sets the overall sound output level for ATC sound playback. The value
for level can range from 0.0 (which will silence any ATC sound) to 1.0 (which will play
sounds unchanged). The new level setting takes effect starting with the next ATC sound
played. SNDGetATCGainO returns, in its argument, a pointer to the current level. Note
that this volume setting-unlike that specified by SNDSetVolumeO...,..-affects not only the
speaker and headphone output, but also the line-out jacks. This is possible because
SNDSetATCGainO is implemented as a scaling of the ATC equalizer gains, and so it only
affects ATC sounds. For such sounds, the volume at the speaker and headphones is the
product of the ATC gain and the global setting returned by SNDGetVolumeO.

Because ATC manipulates the gain of individual frequency bands, it can be used to
implement a graphic equalizer for playback of ATe sounds. An array of "equalizer gains"
is provided for this purpose. SNDSetATCEqualizerGainsO sets the equalizer gains to the
values in the array gains, and SNDGetATCEqualizerGainsO returns the current equalizer
gains by reference. SNDScaleATCEqualizerGainsO multiplies each band's gain by the
corresponding scalar in the array gainScalars. For all three functions, numBands should be
the value returned by SNDGetNumberOfATCBandsO. Each element of the gains array
specifies a factor by which the sound amplitude in the corresponding frequency band will
be multiplied during sound playback. The gain should be a nonnegative number between
0.0 and 16.0 (inclusive). Gains greater than 1.0 may cause the output to be clipped. The
system default gain for each band is 1.0, meaning that the sound is played without
modification. Changes take effect starting with the next sound played; any currently
playing sound is unaffected.

16-112 Chapter 16: Sound

RETURN Zero is returned, with one exception: If SNDSetATCGainO,
SNDSetATCEqualizerGainsO, or SNDScaleATCEqualizerGainsO sets the gains of any
frequency bands to values less than zero or greater than the 16.0, those values are set to zero
or the maximum (respectively), and the function returns the number of bands that were
clipped in this way.

SEE ALSO SNDCompressSoundO, SNDGetNumberOfATCBandsO, SNDSetVolume,
SNDDropATCSamplesO

SNDSetATCSquelchThresholds(), SNDGetATCSquelchThresholds(),
SNDUseDefaultATCSquelchThresholds()

SUMMARY Set or get Audio Transform Compression parameters

DECLARED IN soundlatcsound.h

SYNOPSIS int SNDSetATCSquelchThresholds(int numBands, float *thresholds)
int SNDGetATCSquelchThresholds(int numBands, float *thresholds)
int SNDUseDefaultATCSquelchThresholds(void)

DESCRIPTION These functions set or retrieve parameters that control the amount of compression achieved
by SNDCompressSoundO when it uses Audio Transform Compression (ATC).

SNDSetATCSquelchThresholdsO and SNDGetATCSquelchThresholdsO respectively
fill and retrieve the array thresholds, which specifies the squelch thresholds for each
frequency band. The first argument to both functions, numBands, should be obtained from
SNDGetNumberOfATCBandsO. (If desired, the frequencies of the bands can be
determined by invoking SNDGetATCBandFrequenciesO.) The thresholds can range
from zero to one. A value of 0.0 ensures that frequencies in that band will never be
suppressed, while a value of 1.0 almost always squelches them. The default squelch
threshold for each band is the estimated threshold of audibility at a normal listening level.
The defaults can be restored by calling SNDUseDefaultATCSquelchThresholdsO.
Changes to the thresholds take effect starting with the next sound compressed; any
currently compressing sound is unaffected.

Sound Functions: SNDSetATCSquelchThresholds() 16-113

RETURN Zero is returned upon success, with one exception: If the thresholds array passed to
SNDSetATCSquelchThresholdsO contains any values less than zero or greater than one,
those values are set to zero or one (respectively), and the function returns the number of
bands that were clipped in this way.

SEE ALSO SNDCompressSoundO, SNDGetNumberOfATCBandsO,
SNDGetATCBandFrequenciesO, SNDSetATCGainO, SNDDropATCSamplesO

SNDSetCompressionOptions(), SNDGetCompressionOptions()

SUMMARY Set and get compression attributes used in recording

DECLARED IN soundlpreformsound.h

SYNOPSIS int SNDSetCompressionOptions(SNDSoundStruct * sound, int bitF a ithfu I,
int compressionAmount)

int SNDGetCompressionOptions(SNDSoundStruct *sound, int *bitFaithful,
int *compressionAmount)

DESCRIPTION SNDSetCompressionOptionsO sets the bit-faithfulness and the compression amount that
SNDStartRecordingO uses during subsequent recordings into the sound sound. These
values are effective only if sound's format specifies compression. By default, such a
recording is bit-faithful with a compression amount of 4.

SNDGetCompressionOptionsO returns, in its arguments, pointers to the currently
established compression options.

RETURN If no error occurs, SND_ERR_NONE is returned. Otherwise an error code, as described
in SNDSoundErrorO, is returned.

SNDSetFilterO ~ See SNDSetVolumeO

16-114 Chapter 16: Sound

SNDSetHost()

SUMMARY Set the host computer for subsequent playback or recording

DECLARED IN soundiaccesssound.h

SYNOPSIS int SNDSetHost(char *newHostname)

DESCRIPTION SNDSetHostO gives you access to the named host for subsequent playbacks or recordings.
If newHostname is NULL or a zero-length string, the default (the local host) is restored.

RETURN If no error occurs, SND _ERR_NONE is returned. Otherwise, an error code, as described
in SNDSoundErrorO, is returned.

SNDSetMute() ~ See SNDSetVolume()

SNDSetVolume(), SNDGetVolume(), SNDSetMuteO, SNDGetMute(),
SNDSetFilter(), SNDGetFilter()

SUMMARY Sound playback utilities

DECLARED IN soundlutilsound.h

SYNOPSIS int SNDSetVolume(int left, int right)
int SNDGetVolume(int *left, int *right)
int SNDSetMute(int speakerOn)
int SNDGetMute(int * speakerOn)
int SNDSetFilter(int fi lte rOn)
int SNDGetFilter(int *filterOn)

Sound Functions: SNDSetHost() 16-115

DESCRIPTION SNDSetVolumeO sets the sound playback level for the left and right channels, specified as
an integer between 1 and 43 (inclusive). This only affects the signal to the internal speaker
and the stereo headphone jack; the line-out level is undisturbed. SNDGetVolumeO returns,
in its arguments, pointers to the playback levels of either channel.

SNDSetMuteO mutes and unmutes the internal speaker and headphone level as speakerOn
is 0 and nonzero, respectively. SNDGetMuteO returns, in its argument, a pointer to the
mute status.

SNDSetFilterO turns the low-pass filter off or on asjilterOn is 0 or nonzero, respectively.
SNDGetFilterO returns, in its argument, a pointer to the state of the filter. The filter is
automatically turned on while sounds whose format is SND_FORMAT_EMPHASIZED or
SND _FORMAT_COMPRESSED _EMPHASIZED are being played.

RETURN If no error occurs, SND _ERR_NONE is returned. Otherwise, an error code, as described
in SNDSoundErrorO, is returned.

SNDSoundErrorO

SUMMARY Describe a sound error

DECLARED IN sound/sounderror.h

SYNOPSIS char *SNDSoundError(int err)

DESCRIPTION SNDSoundErrorO returns a pointer to a string that describes the given error code. The
following are defined as error codes:

16-116 Chapter 16: Sound

Code

SND_ERR_NONE
SND_ERR_NOT_SOUND
SND_ERR_BAD_FORMAT
SND_ERR_BAD_RATE
SND_ERR_BAD_CHANNEL
SND _ERR_BAD _SIZE
S ND_ERR_B AD_FILENAME
SND_ERR_CANNOT_OPEN
SND_ERR_CANNOT_ WRITE
SND_ERR_CANNOT_READ
SND_ERR_CANNOT_ALLOC
SND_ERR_CANNOT_FREE
SND_ERR_CANNOT_COPY
SND_ERR_CANNOT_RESERVE
SND_ERR_NOT_RESERVED
SND_ERR_CANNOT_RECORD
SND_ERR_ALREADY_RECORDING
SND_ERR_NOT_RECORDING
SND_ERR_CANNOT_PLAY
SND_ERR_ALREADY_PLAYING
SND_ERR_NOT_IMPLEMENTED
SND_ERR_NOT_PLAYING
SND_ERR_CANNOT_FIND
SND_ERR_CANNOT_EDIT
SND_ERR_BAD_SPACE

SND_ERR_KERNEL
SND_ERR_BAD_CONFIGURATION
SND_ERR_CANNOT_CONFIGURE
SND_ERR_UNDERRUN
SND_ERR_ABORTED
SND_ERR_BAD_TAG
SND_ERR_CANNOT_ACCESS
SND_ERR_TIMEOUT
SND_ERR_BUSY
SND_ERR_CANNOT_ABORT
SND _ERR_INFO_TOO _BIG
SND_ERR_UNKNOWN

String

""
"Not a sound"
"Bad data format"
"Bad sampling rate"
"bad channel count"
"bad size"
"Bad file name"
"Cannot open file"
"Cannot write file"
"Cannot read file"
"Cannot allocate memory"
"Cannot free memory"
"Cannot copy"
"Cannot reserve access"
"Access not reserved"
"Cannot record sound"
"Already recording sound"
"Not recording sound"
"Cannot play sound"
"Already playing sound"
"Not implemented"
"Not playing sound"
"Cannot find sound"
"Cannot edit sound"
"Bad memory space in DSP load
image"
"Mach kernel error"
"Bad configuration"
"Cannot configure"
"Data underrun"
"Aborted"
"Bad tag"
"Cannot access hardware resources"
"Timeout"
"Hardware resources already in use"
"Cannot abort operation"
"Information string too large"
"Unknown error"

Sound Functions: SNDSoundError() 16-117

SNDStartPlayingO, SNDVerifyPlayableO, SNDStartRecordingO,
SNDStartRecordingFileO, SNDWaitO, SNDStopO,
SNDSamplesProcessedO, SNDModifyPriorityO

SUMMARY Recording and playing a sound

DECLARED IN sound/performsound.h

SYNOPSIS int SNDStartPlaying(SNDSoundStruct * sound, int tag, int priority, int preempt,
SNDNotificationFun beginFun, SNDNotificationFun endFun)

int SNDVerifyPlayable(SNDSoundStruct * sound)
int SNDStartRecording(SNDSoundStruct * sound, int tag, int priority, int preempt,

SNDNotificationFun beginFun, SNDNotificationFun endFun)
int SNDStartRecordingFile(char *fileName, SNDSoundStruct *sound, int tag,

int priority, int preempt, SNDNotificationFun beginFun, SNDNotificationFun endFun)
int SNDStop(int tag)
int SNDWait(int tag)
int SNDSamplesProcessed(int tag)
int SNDModifyPriority(int tag, int newPriority)

DESCRIPTION SNDStartPlayingO initiates the playback of sound. The function returns immediately
while the playback continues in a background thread. During playback, the sound is played
on the internal speaker and sent to the stereo line-out jacks.

The tag argument is an arbitrary positive integer that the caller supplies to identify
the playback session in subsequent calls to SNDWaitO, SNDStopO,
SNDSamplesProcessedO, and SNDModifyPriorityO. You should never set a sound's
tag to 0.

The value of priority establishes the sound's right to use the playback resources. The
lowest priority is 0, larger numbers signify higher priorities. Negative priorities are
reserved. A call to SNDStartPlayingO will interrupt a currently playing sound if the
new sound has a higher priority. If the new sound has a lower priority, the old sound
continues and the new sound is put in a sound playback queue. Sounds in the queue are
sorted by priority.

A nonzero preempt flag is used for urgent sounds, such as system beeps. Preemption allows
a new sound to interrupt a sound that has the same (or lower) priority. However, if the new

16-118 Chapter 16: Sound

beginFun and endFun are user-defined notification functions that are automatically called
when the sound begins playing and when it ends, respectively. A notification function is
defined as an integer function with three arguments:

typedef int (*SNDNotificationFun)(SNDSoundStruct *sound, int tag, int err);

The sound and tag arguments are taken directly from the SNDStartPlayingO call. The err
argument is one of the error codes listed in SNDSoundErrorO and is generated
automatically to inform the notification function of the state of the playback. The return
value is ignored. The value SND _NULL_FUN should be used to specify no function as
either beginFun or endFun.

SNDVerifyPlayableO returns SND_ERR_NONE if sound can be played without first
being converted to another format, sampling rate, or number of channels. Otherwise, it
returns SND_ERR_CANNOT_PLAY.

The arguments to SNDStartRecordingO are like those to SNDStartPlayingO. The sound
resource used for recording is implied by information in sound's header; currently, two
configurations are allowed:

• If the sound is one channel of mulaw format (SND _FORMAT_MULA W) at the
CODEC sampling rate (SND_RATE_CODEC), then the recording is made from the
CODEC input (the microphone jack at the back of the monitor).

• If the format is one of the DSP data or compressed formats, the recording is made from
the DSP port. In the case of a compressed format, the sound is compressed according
to options set by SNDSetCompressionOptionsO.

Like playback, recording is performed in a background thread. The recording completes
when the storage allocated for the sound is filled with data.

SNDStartRecordingFileO is similar to SNDStartRecordingO, but the sound is written
directly to the filejileName. The sound argument is used for its size and format
information.

SNDStopO terminates the playback or recording session that has a tag of tag.

SNDWaitO returns only when the playback or recording with a tag of tag has completed.
If tag is 0, all sounds in the sound queue are awaited. Note that if you call this function
from the main thread of an application that has an asynchronous event-driven user
interface, the interface will be effectively frozen until this function returns.

SNDSamplesProcessedO returns the number of samples that have been played or recorded
so far in the playback or recording that has the given tag. If the tagged sound isn't currently
active, -1 is returned.

Sound Functions: SNDStartPlaying() 16-119

SNDModifyPriorityO resets the priority, as newPriority, of the playback or recording that
has a tag of tag.

RETURN If no error occurs, SND _ERR_NONE is returned. Otherwise, an error code, as described
in SNDSoundErrorO, is returned.

SNDStartRecording() ~ See SNDStartPlaying()

SNDStartRecordingFile() ~ See SNDStartPlaying()

SNDStop() ~ See SNDStartPlaying()

SNDUnreserve() ~ See SNDReserve()

SNDWait() ~ See SNDStartPlaying()

SNDWrite() ~ See SNDWriteSoundfileO

SNDWriteHeader() ~ See SNDWriteSoundfile()

SNDWriteSoundfile(), SNDWriteO, SNDWriteHeader()

SUMMARY Write a sound to a file

DECLARED IN soundlsoundfile.h

SYNOPSIS int SNDWriteSoundfile(char *path, SNDSoundStruct *sound)
int SNDWrite(intjd, SNDSoundStruct *sound)
int SNDWriteHeader(intjd, SNDSoundStruct *sound)

DESCRIPTION SNDWriteSoundfileO writes the specified sound structure as the soundfile. path is a full
pathname that should include the ".snd" extension (the convention for soundfiles). The
function automatically opens and closes the file.

SNDWriteO also writes a complete soundfile, but its argument is a file descriptor rather
than a pathname. The file must be open for writing.

16-120 Chapter 16: Sound

With both SNDWriteSoundfileO and SNDWriteO, the actual sound data is written as a
contiguous block, even if sound is fragmented. However, sound itself isn't affected-if it's
fragmented, it remains fragmented.

SNDWriteHeaderO is similar to SNDWriteO, but it only writes sound's header to the file.

RETURN If no error occurs, SND _ERR_NONE is returned. Otherwise, an error code, as described
in SNDSoundErrorO, is returned.

Sound Functions: SNDWriteSoundjile() 16-121

16-122

Sound Driver Functions

These functions access the soundIDSP driver. For simplicity, this driver is referred to as
"the sound driver" in the following function descriptions. For sound operations that don't
involve the DSP, most of these functions can be replaced by methods of the Sound Kit
classes NXSoundDevice, NXSoundStream, and their subclasses.

Warning: There are actually two sound drivers: The soundIDSP driver that was used before the
3.0 version of NeXTSTEP and a sound-inlsound-out only driver introduced in Release 3.0.
You should be able to ignore the distinction as long as you don't mix functions
described here, which use the old driver, with the Sound Kit methods or the non-dsp
"SND" sound functions, which use the new. In particular, ports that are obtained
through the new methods and sound functions can't be passed as arguments to the old
sound driver functions. .

16-124 Chapter 16: Sound

snddriver _ dsp _bootO, snddriver _ dsp_resetO

SUMMARY Start the DSP

DECLARED IN soundlsnddriver_client.h '

SYNOPSIS kern_return_t snddriver_dsp_boot(port_t commandPort, int *boot/mage, int imageSize,
int priority)

kern_return_t snddriver_dsp_reset(port_t commandPort, int priority)

DESCRIPTION snddriver_dsp_bootO enqueues a command to boot the DSP. The arguments are as
follows:

• commandPort is the DSP command port, as retrieved by
snddriver _get_dsp_cmd_portO.

• boot/mage is a pointer to a DSP program image that's downloaded to the DSP (program
memory location OxO) and immediately executed. The image is created by reading a
".lod" file that's assembled from DSP56001 assembly code.

• imageSize is the size of the DSP boot image, in bytes. The image must not exceed 512
words (24-bit DSP words right-justified within 32-bit integers).

• priority is one of the three priority constants SNDDRIVER_LOW _PRIORITY,
SNDDRIVER_MED_PRIORITY, or SNDDRIVER_HIGH_PRIORITY. The sound
driver sorts the commands in its DSP command queue according to priority.

Booting the DSP clears neither external memory nor on-chip data memory.

snddriver_dsp_resetO puts the DSP in its reset state. By this it's meant that the DSP's
execution is immediately halted and a bootstrap program is awaited. Booting the DSP
automatically resets it, thus you don't need to call this function before calling
snddriver _boot_dspO.

RETURN Returns an error code: 0 on success, nonzero on failure.

Sound Driver Functions: snddriver_dsp_boot() 16-125

SUMMARY Transfer data to and from the DSP via DMA

DECLARED IN soundlsnddriver_client.h

SYNOPSIS kem_retum_t snddriver _dsp_dma_ write(port_t commandPort, int elementCount,
int dataFormat, pointer_t data)

kern_retum_t snddriver_dsp_dma_read(port_t commandPort, int elementCount,
int dataFormat, pointer_t data)

DESCRIPTION These functions enqueue commands that perform application-initiated DMA transfers to
and from the DSP. You must include complex DMA protocol to use these functions. The
arguments to the two functions are similar:

• commandPort is the DSP command port, as retrieved by
snddriver _get_dsp_cmd_portO.

• elementCount is the number of data elements to send during each transfer.

• dataFormat is an integer constant that describes the size and packing of an individual
data element. These are

DSP_MODE8
DSP_MODEI6
DSP_MODE24
DSP_MODE32
DSP_MODE2416

1 byte per element
2 bytes per element
3 bytes per element
3 bytes per element, right-justified in 4
2 bytes per element, packed and right-justified in 4

• data is a pointer to the data that you're transferring.

There are three rules regarding the size and alignment of a DMA transfer buffer:

• The size in bytes of a single DMA transfer buffer, reckoned as
elementCount * bytes-per-element, must be a multiple of 16. Note that
bytes-per-element isn't given directly as an argument.

• The data must be "quad-aligned"; in other words, the starting address (data) must be a
multiple of 16.

• All the data in a transfer buffer must lie on the same page of virtual memory.

16-126 Chapter 16: Sound

If you're writing data, the snddriver_dsp_dma_writeO function enqueues a command to
send the data to the DSP and then immediately returns. snddriver_dsp_dma_readO, on
the other hand, waits until it has read the prescribed amount of data and returns with data
filled. DMA-transfer commands are always enqueued with high priority.

RETURN Returns an error code: 0 on success, nonzero on failure.

SEE ALSO snddriver _dsp_readO, snddriver _dsp_ writeO, snddriver _dsp_protocoIO

SUMMARY Enqueue a DSP command

DECLARED IN sound/snddriver_client.h

SYNOPSIS kern_return_t snddriver _dsp_host_cmd(port_t commandPort, u_int hostCommand,
u_int priority)

DESCRIPTION snddriver_dsp_host_cmdO enqueues a command on the sound driver's DSP command
queue that interrupts the DSP and causes it to execute one of 32 interrupt routines (or host
commands). Its arguments are as follows:

• commandPort is the DSP command port, as retrieved by
snddriver_get_dsp_cmd_portO.

• hostCommand is an integer that represents the host command you want to execute. The
first 22 host commands are already defined (or reserved). The host commands provided
by NeXT are represented by constants (prefix "DSP _hc_") that are defined in
lusr/include/nextdev/snd_dsp.h. Creating your own host command requires a
familiarity with DSP programming that lies beyond the scope of this description.

• priority is one of the three priority constants SNDDRIVER_LOW _PRIORITY,
SNDDRIVER_MED_PRIORITY, or SNDDRIVER_HIGH_PRIORITY. The sound
driver sorts the commands in its DSP command queue according to priority.

When the DSP receives a host command, it sets the HC flag in the Command Vector
Register. After executing the command, the DSP clears the flag. You should always

Sound Driver Functions: snddriver_dsp_hostJmd() 16-127

precede a call to snddriver_dsp_host_cmdO with a call to
snddriver _dspcmd_req_conditionO that waits for He to clear in order to avoid
overwriting a previously requested, but as yet unexecuted, host command:

/* CVR_HC is defined in <nextdev/snd_dspreg.h> */

err = snddriver_dspcmd_re~condition(commandPort, CVR_HC, 0, ...);
if (err != 0)

/* Now enqueue the host command request. */

err = snddriver_dsp_host_cmd(...);

if (err != 0)

RETURN Returns an error code: 0 on success, nonzero on failure.

SEE ALSO snddriver _dspcmd_req_conditionO

SUMMARY Set the sound driver's protocol vis-a-vis the DSP

DECLARED IN soundlsnddriver_client.h

SYNOPSIS kern_return_t snddriver_dsp_protocol(port_t devicePort, port_t ownerPort, int protocol)

DESCRIPTION snddriver_dsp_protocoIO lets you establish the manner in which the sound driver
communicates with the DSP; specifically, it determines whether to create 0, 1, or 2
DSP-reply buffers and whether DSP interrupts are enabled. The existence of the DSP-reply
buffers determines whether you can use streams to transfer data;

The function's first two arguments are the sound driver device port and the DSP owner port,
as acquired through SNDAcquireO.

protocol is the heart of the matter: It's a code that represents the protocol that you wish to
establish. There are two ways to create the appropriate protocol: If you're using streams
to access the DSP, then you should pass the protocol variable that's modified by calls to
snddriver _stream_setupO, as explained (with an example) in the description of that
function. Alternatively-or in addition to the foregoing-you can create a protocol code
by or'ing the following DSP protocol constants:

16-128 Chapter 16: Sound

• SNDDRIVER_DSP _PROTO_RAW represents the barest protocol. The sound driver
makes no assumptions about how the DSP is being used: No DSP-reply buffers are
created and the DSP can't interrupt the host. You can't use streams in raw protocol; to
transfer data, you use the snddriver _dsp_ writeO and snddriver _dsp_readO functions.

All the other protocols create at least one DSP-reply buffer and allow DSP interrupts, thus
allowing you to transfer data through a stream:

• SNDDRIVER_DSP _PROTO_DSPMSG ("DSP-message") creates a buffer that can
hold 512 DSP-reply messages. A message from the DSP (as it lies in the reply buffer)
is a 24-bit word right-justified in 32 bits. To receive the contents of this buffer, you
enqueue a request through snddriver_dspcmd_req_IDsgO.

• SNDDRIVER_DSP _PROTO_DSPERR ("DSP-error") creates an additional
512-message DSP-reply buffer that collects error messages sent from the DSP. An error

. message is identified as having its MSB (bit 23) set. You can request the contents of the
error buffer through snddriver_dspcmd_req_errO.

• SNDDRIVER_DSP _PROTO_C_DMA ("complex DMA") implies DSP message mode
(a single DSP-reply buffer is created) and allows DSP-initiated DMA transfers.

• SNDDRIVER_DSP _PROTO_HFABORT ("host flag abort") causes the driver to take
note if the DSP aborts. (The DSP indicates that it has aborted by setting HF2 and HF3.)

To get the documented behavior from these protocols, you must include
SNDDRIVER_DSP _PROTO_RAW.

Note: A protocol of 0 produces Release 1.0 behavior; this is roughly equivalent to a
combination of DSP message, DSP error, and host flag abort modes.

RETURN Returns an error code: 0 on success, nonzero on failure.

SEE ALSO snddriver _stream_setupO

snddriver_dsp_readO ~ See snddriver_dsp_writeO

snddriver_dsp_read_dataO ~ See snddriver_dsp_writeO

snddriver_dsp_read_messagesO ~ See snddriver_dsp_writeO

snddriver _dsp_resetO ~ See· snddriver _dsp_bootO

Sound Driver Functions: snddriver_dsp_read() 16-129

SUMMARY Set the DSP host flags

DECLARED IN soundlsnddriver_client.h

SYNOPSIS kem_retum_t snddriver_dsp_set_flags(port_t commandPort, u_intflagMask,
u_intflagValue, u_int priority)

DESCRIPTION snddriver_dsp_set_flagsO enqueues a command to modify one or both of the DSP host
interface flags HFO (host flag 0) and HF1 (host flag 1).

The flagMask argument defines which of the host flags you want to affect. The flags are
represented by the constants SNDDRIVER_ICR_HFO and SNDDRIVER_ICR_HFl. You
can set both flags at the same time by or'ing these two constants. (ICR stands for "Interrupt
Control Register"; this is the register to which the host flags belong.)

flag Value is the value to which you're setting the flag(s). A host flag can be either on or off,
states that are also referred to as "set" and "cleared". To set a flag, you pass its constant
identifier; to clear it, you pass O. The following examples illustrate this concept:

/* Set HFO (turn it on). */

snddriver_dsp_set_flags(... , SNDDRIVER_ICR_HFO,

SNDDRIVER_ICR_HFO, ...)

/* Clear HF1. */

snddriver_dsp_set_flags(... , SNDDRIVER_ICR_HF1, 0, ...)

/* Set both flags. */

snddriver_dsp_set_flags(... ,

SNDDRIVER_ICR_HFO I SNDDRIVER_ICR_HF1,
SNDDRIVER_ICR_HFO I SNDDRIVER_I CR_HF 1 , ...)

/* Set HFO and clear HF1. */

snddriver_dsp_set_flags(... ,

SNDDRIVER_ICR_HFO I SNDDRIVER_ICR_HF1,
SNDDRIVER_ICR_HFO, ...)

/* Clear both flags. */

snddriver_dsp_set_flags(... ,
SNDDRIVER_ICR_HFO I SNDDRIVER_ICR_HF1, 0, ...)

16-130 Chapter 16: Sound

The other two arguments, commandPort and priority, are the DSP command port and
command-queue priority, respectively. The DSP command port is retrieved through
snddriver_dsp_cmd_portO; you set the priority to one of
SNDDRIVER_HIGH_PRIORITY, SNDDRIVER_MED_PRIORITY, or
SNDDRIVER_LOW _PRIORITY.

RETURN Returns an error code: 0 on success, nonzero on failure.

SEE ALSO snddriver _dspcmd_req_condition0

snddriver _ dsp _ writeO, snddriver _ dsp_readO,
snddriver _dsp _read_data 0, snddriver _dsp _read_messagesO

SUMMARY Transfer data to and from the DSP

DECLARED IN soundlsnddriver_client.h

SYNOPSIS kern_return_t snddriver_dsp_ write(port_t commandPort, void *buffer, int elementCount,
int elementSize, int priority)

kern_return_t snddriver_dsp_read(port_t commandPort, void *buffer, int elementCount,
int elementSize, int priority)

kern_return_t snddriver_dsp_read_messages(port_t commandPort, void *buffer,
int elementCount, int elementSize, int priority)

kern_return_t snddriver_dsp_read_data(port_t commandPort, void **buffer,
int elementCount, int elementSize, int priority)

DESCRIPTION snddriver_dsp_writeO enqueues a command to perform a one-shot, application-initiated
data transfer to the DSP; snddriver_dsp_readO brings data back from the DSP in a like
manner. You generally use these functions if you have a small amount of data to transfer
or if the transfers are infrequent enough that the overhead of the obvious alternative­
setting up a DMA stream-would be exorbitant.

The other two functions, snddriver_dsp_read_messagesO and
snddriver_dsp_read_dataO are auxiliary to snddriver_dsp_readO. When you call
snddriver_dsp_readO, it, in tum, calls one of the auxiliary functions; which of the two
functions it calls depends on the current DSP protocol, as described below. You can call
these functions yourself by-passing snddriver_dsp_readO, although you should adhere to
the same protocol rules that snddriver_dsp_readO obeys.

Sound Driver Functions: snddriver_dsp_write() 16-131

The arguments to all four functions are similar:

• commandPort is the DSP command port, as retrieved through
snddriver_get_dsp_cmd_portO.

• buffer, as used by snddriver _dsp_ writeO, is a pointer to the data you want to send to
the DSP. For the snddriver_dsp_read ... O functions, it's a pointer to the location where
you want the retrieved data to be stored. Note that for snddriver_dsp_read_dataO,
buffer is the address of a pointer; this allows the function to allocate memory for the data
if you haven't allocated it yourself.

• elementCount and elementSize are the number of data elements to transfer and the size,
in bytes, of a single element, respectively.

• priority is an integer used to sort the command on the DSP command queue. The sound
driver defines three priorities represented by the constants
SNDDRIVER_LOW _PRIORITY, SNDDRIVER_MED_PRIORITY, and
SNDDRIVER_HIGH_PRIORITY. You normally set all application-initiated data
transfers to low priority, thus reserving medium and high priority for operations that
need to jump to the head of the DSP command queue.

Of these functions, snddriver_dsp_writeO is most straightforward: When it's called, a
transfer-data-to-the-DSP command is sorted (by priority) into the DSP command queue. If,
when its tum comes, the command can't be executed, the driver simply pushes it back on
the queue and tries again. No other commands of equal or lower priority can be executed
while a frustrated write command is sitting on top of the queue. Note, however, that higher
priority commands will get through.

As mentioned earlier, snddriver_dsp_readO calls one of its two auxiliary functions as
determined by the current DSP protocol:

• If your application is in raw protocol, then snddriver_dsp_read_dataO is used to read
data from the DSP transmit registers.

• IfDSP message protocol is included, snddriver_dsp_read_messagesO is used to read
data from the DSP-reply buffer.

The difference between the two mechanisms is generally transparent such that you can call
snddriver _read_dataO without regard for the current protocol. However, the manner in
which the underlying functions handles incomplete reads is significant: If the read can't be
completed (typically because the DSP hasn't generated enough data),
snddriver_dsp_read_dataO blocks the DSP command queue in the fashion of

16-132 Chapter 16: Sound

snddriver_dsp_writeO. In the same situation, snddriver_dsp_read_messagesO waits
for more data without blocking the command queue. Thus
snddriver_dsp_read_messagesO can safely be called from a separate thread at any time.
This isn't true of snddriver_dsp_read_dataO; you should be scrupulous about ensuring
that sufficient data has been processed by the DSP before you attempt to read it through this
function (or through snddriver_dsp_readO while in raw protocol).

RETURN Returns an error code: 0 on success, nonzero on failure.

SUMMARY Request a DSP host interface register condition

DECLARED IN soundlsnddriver_client.h

SYNOPSIS kern_return_t snddriver_dspcmd_req_condition(port_t commandPort,
u_int register Mask, u_int conditionFlags, int priority, port_t replyPort)

DESCRIPTION snddriver_dspcmd_req_conditionO does two things: It causes the DSP command queue
to block until the specified host interface register condition is true, and it registers a request
for an asynchronous message to be sent to replyPort when the condition is fulfilled. The
function returns immediately.

You specify a condition through a combination of the registerMask and conditionFlags
arguments:

• registerMask specifies the host interface registers (actually, the bits therein) that you're
interested in. It's created by or'ing the register-bit constants defined in
nextdev/snd_dspregs.h. A subset of these are also defined as sound driver constants in
soundlsnddriver _client.h.

• conditionFlags encodes the states of the register bits that define a satisfied condition. To
specify that you want a register bit set, you or the register-bit constant that represents it;
if you want it clear, you exclude the constant. If you want all the specified bits to be
clear, set conditionFlags to O.

Sound Driver Functions: snddriver_dspcmd_reqJondition() 16-133

In the following example, the command queue is blocked until HFO is set and HFI is clear
(both flags are in the Interrupt Control Register);

/* Block until HFO is set and HFl is clear. */

snddriver_dspcrnd_re~condition(... ,
SNDDRIVER_ICR_HFO I SNDDRIVER_ICR_HF1,
SNDDRIVER_ICR_HF2, ...)

The condition request is sorted into the DSP command queue according to priority, which
must be one of SNDDRIVER_LOW _PRIORITY, SNDDRIVER_MED_PRIORITY, or
SNDDRIVER_HIGH_PRIORITY.

The message that's sent to the reply port when the condition is fulfilled contains the value
of the host interface register. By setting the registerMask argument to 0, you can use the
snddriver_dspcmd_req_conditionO function to simply poll for this value.

RETURN Returns an error code: ° on success, nonzero on failure.

SUMMARY Request the contents of the DSP-reply buffers

DECLARED IN soundlsnddriver_client.h

SYNOPSIS kem_return_t snddriver_dspcmd_req_msg(port_t commandPort, port_t replyPort)
kem_return_t snddriver_dspcmd_req_err(port_t commandPort, port_t replyPort)

DESCRIPTION The snddriver_dspcmd_req_msgO and snddriver_dspcmd_req_errO functions are part
of the mechanism by which your application retrieves messages from the sound driver's
DSP-reply buffers. They request that the contents of the appropriate buffer (as described
below) be sent in a Mach message to replyPort, a valid port that must already be allocated.
Simply requesting a message is only half of the story: You then have to receive the message
that's been sent, usually by sitting in a msg_receiveO loop. You typically process the Mach

16-134 Chapter 16: Sound

messages that these functions induce by passing the messages to the
snddriver _reply _handlerO function.

The utility of these functions depends on your application's DSP protocol:

• You should never use these functions in raw protocol since the sound driver doesn't
create any DSP-reply buffers.

• By including DSP message protocol, a single DSP-reply buffer is created in which
both error and non-error messages are stored; thus ... req_msgO is of use, but
... req_errO isn't.

• DSP error protocol deems that two buffers be created, one for error messages and the
other for non-error messages. Both functions are useful in this protocol.

DSP protocol and how to set it is explained in the description of the
snddriver_set_dsp_protocoIO function. For both functions, the commandPort argument
is the DSP command port as retrieved by snddriver_get_dsp_cmd_portO.

RETURN Returns an error code: a on success, nonzero on failure.

SEE ALSO snddriver_set_dsp_protocoIO, snddriver_reply_handlerO

SUMMARY Get the DSP command port

DECLARED IN soundlsnddriver_client.h

SYNOPSIS kern_return_t snddriver_get_dsp_cmd_port(port_t devicePort, port_t ownerPort,
port_t *commandPort)

DESCRIPTION snddriver_get_dsp_cmd_portO attempts to get the DSP command port, the port through
which the sound driver issues commands to the DSP. If it's successful, the port is returned
in the commandPort argument, which needn't have been previously allocated.

Sound Driver Functions: snddriver ~e,-device-parms() 16-135

The first two arguments, devicePort and ownerPort, are the sound driver device port and
the nsp owner port, as acquired through SNDAcquireO.

The nsp command port is required as an argument by almost all sound driver functions
that communicate with the nsp. The one notable exception, for which you don't have to
get the command port as it's gotten implicitly when needed, is if you send and retrieve nsp
data via streams after having booted the nsp through the SNDBootDSPO sound library
function. But even in this case getting the command port as a reflex to getting the nsp
owner port won't serve you ill.

RETURN Returns an error code: 0 on success, nonzero on failure.

snddriver _get_ volumeO ~ See snddriver _set_device_parmsO

SUMMARY Reallocate the sound driver device port

DECLARED IN sound/snddriver_c1ient.h

SYNOPSIS kern_return_t snddriver_new _device_port(port_t devicePort, port_t superuserPort,
port_t *newDevicePort)

DESCRIPTION This function deallocates the sound driver device port devicePort, as previously acquired
through SNDAcquireO, then allocates a new port to the device which it returns as
newDevicePort. When the old device port is deallocated, so, too, are all its resource owner
ports and sound streams; thus any currently operating sound driver tasks, such as recording
and playing sounds, are aborted. Because of the ruthlessness of this act, you must be the
UNIX superuser to call this function, as verified by the superuserPort argument, for which
you should pass the return value of host_priv _selfO. The new device port's registration
with regard to the Network Name Server is the same as that of the old; in other words, if
the old port had been registered (through netname_check_inO), the new one will be
registered automatically.

RETURN Returns an error code: 0 on success, nonzero on failure.

16-136 Chapter 16: Sound

SUMMARY Respond to asynchronous sound driver messages

DECLARED IN soundlsnddriver_client.h

SYNOPSIS kem_retum_t snddriver _reply _handler(msg_header_t * reply,
snddriver_handlers_t * handlers)

DESCRIPTION snddriver_reply _handlerO helps your application respond to asynchronous sound driver
messages. The function is designed around the snddriver _handlers structure, which
provides a correspondence between the sound driver messages and a list of C functions that
you provide. When you receive a message from the sound driver, you pass the message and
a snddriver_handlers structure to snddriver_reply_handlerO which then executes the
handler function that corresponds to the message.

The definition of the snddriver _handlers structure (typedef' d, for convenience, as
snddriver_handlers_t) reveals the nature of the functions that you can register as
reply handlers:

typedef struct snddriver_handlers {
void
int
sndreply_tagged_t
sndreply_tagged_t
sndreply_tagged_t
sndreply_tagged_t
sndreply_tagged_t
sndreply_tagged_t
sndreply_recorded_data_t
sndreply_dsp_cond_true_t
sndreply_dsp_msg_t
sndreply_dsp_msg_t

} snddriver_handlers_t;

*arg;
timeout;
started;
completed;
aborted;
paused;
resumed;
overflow;
recorded_data;
condition_true;
dsp_message;
dsp_error;

The structure's arg field is a value that's passed to the reply handlers when they're called
by snddriver_reply_handlerO; you can set it to whatever value best suits your
application, but keep in mind that the value must fit within the size of a pointer (four bytes).
The timeout field is currently unused.

Sound Driver Functions: snddriver_reply_handler() 16-137

The final ten fields are the heart of the structure: Each corresponds to a particular sound
driver message. The first six of these correspond to messages that indicate a change in the
state of a stream ("stream-state" messages); in other words, the sound driver sends a
specific message when a stream starts processing data, when it completes its processing,
when it aborts, and so on. By setting a field to a particular function, you register that
function as the handler for the message to which the field corresponds. For example,
to establish a function named handleStreamStartO as the function that's executed
when your application receives a stream-started message from the sound driver, you would
do the following:

/* Create a snddriver_handlers_t and register the
* function handleStreamStart() (which we'll assume already
* exists) to process stream-started messages.
*/

snddriver_handlers_t replyHandlers;
replyHandlers.started = handleStreamStart;

While this registers handleStreamStartO as the handler for stream-started messages, you
must also tell the sound driver that you actually want such messages sent to your
application. To do this, you set the msgStarted boolean argument to true when you call
snddriver _stream_start_readingO or snddriver _stream_start_ writingO. Analogous
msg ... message flags exist for the other five stream-state messages.

When the sound driver sends a stream-state message to your application, it sends it to the
port that you specify as the last argument (replyPort) to
snddriver_stream_start_readingO or snddriver_stream_start_writingO. To receive
the message, you create a msg_header_t structure, set its local_port field to the stream's
reply port, and then wait for the message to arrive by sitting in a message receive
(msg_receiveO) loop. After so capturing the message, you then pass it, along with
your handler structure, to snddriver_reply_handlerO. This is demonstrated by the
example below.

Notice, from the definition of snddriver_handlers, that the six stream-state handlers are
all of type sndreply _tagged_t. This type represents a two-argument function protocol
that's defined as

typedef void (*sndreply_tagged_t) (void *arg, lnt tag);

16-138 Chapter 16: Sound

The functions that you register to handle the stream-state messages must adhere to this
protocol. The values of the arguments are set by snddriver_reply_handlerO:

• arg is given the value of the arg field of the snddriver_handlers structure in which the
function is registered. As mentioned earlier, you can set the structure's arg field to a
(four-byte) value that suits the needs of your application.

• tag is the region-identifying tag that you provide as an argument to
snddriver_stream_start_ writingO or snddriver_stream_start_readingO.

The seventh of the ten snddriver _handlers handler fields-recorded_data-also applies
to streams. However, unlike the fist six, which are optional, recorded_data is essential
when you're reading data from a stream. Its importance arises from the way that the sound
driver handles read data: It keeps the data in the kernel's virtual memory until you ask to
bring it into your application. The only way to bring this data back is to supply a
recorded_data handler that does so. The following program excerpt demonstrates a
typical way to achieve this effect. In the example, details such as acquiring the sound driver
and sound resource owner ports are omitted. The read stream shown here is anonymous­
the code can be used equally well for a stream that reads from sound-in or from the DSP:

/* The code shown in the example requires the following header
files */

#import <sound/snddriver_client.h>
#import <mach.h>

/* Define a read stream tag, a read pointer, and a byte count
variable. */

#define READ_TAG 1
static short *readData;
static int readCount;

/* Create a recorded_data handler; the function's protocol is
* explained following the example.
*/

static void read_completed(void *arg, int tag, void *kernelData,
int size)

/* Make sure this is the read stream. */
if (tag == READ_TAG)

readData = (short *)kernelData;
readCount = size;

Sound Driver Functions: snddriver _reply _handler() 16-139

main()
{

16-140 Chapter 16: Sound

/* Define a read port, a reply port, and a reply structure. */
port_t readPort, replyPort;
snddriver_handlers_t replyHandlers;

/* Allocate a Mach message header. msg_header_t and MSG_SIZE_MAX
* (and msg_receive, below) are defined in mach.h.
*/

msg_header_t *reply_msg = (msg_header_t *)malloc(MSG_SIZE_MAX);

/* Create an error-check variable. */
int err;

/* Allocate the reply port. */
err = port_allocate(task_self(), &replyPort);
if (err 1= 0)

/* Set the recorded_data handler. */
replyHandlers.recorded_data = read_completed;

/* Set the amount of data you want to read; for the purposes of
* this example, an arbitrary amount is specified.
*/

readCount = 1024;

/* Here, a number of activities -- such as acquiring the sound
* driver port and sound resource owner port, setting up a read
* stream through snddriver_stream_setup(), and (possibly)
* booting the DSP and sending it data -- are omitted.
*/

/* Enqueue a read request. The six 0 arguments are the message
* request flags.
*/

err = snddriver_stream_start_reading(readPort, 0, readCount,
READ_TAG, 0,0,0,0,0,0, replyPort);

if (err ! = 0)

/* Sit in a message-receive loop. */
while (1) {

/* Set up the reply message. This must be done inside the

* loop since msg_receive() may change the message header.
*/

replyMsg->msg_size = MSG_SIZE_MAXi
replyMsg->msg_local-port = replyPorti

err = msg_receive(replyMsg, MSG_OPTION_NONE, 0) i

if (err != 0)

/* Dispatch the message to the reply handlers.*/
err = snddriver_reply_handler(replyMsg, &replyHandlers) i

if (err != 0)

/* Provide a means to break out of the loop. */

As implied by the example, you don't need to tell the sound driver that you want a
data-recorded message to be sent to your application; the message is always sent
automatically. The example also illustrates the rule that the reply port used to receive
messages while in the msg_receiveO loop is that which is specified as the final argument
to the snddriver _stream_start_readingO function.

The data type of the recorded_data field dictates the protocol of the function that you
design to bring data back to the application. The type is sndreply _recorded_data_t:

typedef void (*sndreply_recorded_data_t) (void *arg, int tag,

void *kernelData, int size) i

The first two arguments, arg and tag, are the same as in the snddreply _tagged_t type.
kernelData is a pointer to the recorded data as it resides in the kernel; size is the size of the
recorded data in bytes.

Sound Driver Functions: snddriver_reply_handler() 16-141

The final three snddriver _handlers fields correspond to messages that are inspired by
the DSP:

• The condition_true handler is called when a requested DSP host interface register
condition comes true. (More accurately, the handler is called when the message that
indicates that the condition is true is passed to snddriver_reply_handlerO.)

• dsp_message handles general messages that the sound driver receives from the DSP.

• dsp_error does the same for DSP error messages.

For each of these three handlers, there is a corresponding sound driver function that
enqueues a request for a condition, a DSP message, or a DSP error message, respectively:

• snddrivet _dspcmd_req_conditionO blocks the DSP command queue until the state of
the DSP host interface registers satisfies a requested condition.

• snddriver_dspcmd_req_msgO requests that the messages in the DSP-reply buffer
be sent to your application. You must include DSP-message protocol for this to have
an effect. .

• snddriver_dspcmd_req_errO requests that the 512-byte DSP-reply error buffer be
sent in a message. You must include DSP-error protocol for this to have an effect.

As with the snddriver_stream_start ..• O functions, the three DSP request functions require
that you provide a reply port as an argument. It's to this reply port that the sound driver
sends the requested DSP-inspired messages. A single call to one of these functions causes
a single reply message to be sent to your application. Thus, for each call to
snddriver_dspcmd_req_msgO, for example, your application will receive one message
from the sound driver.

The condition_true handler is of type sndreply _dsp_cond~true_t:

typedef void (*sndreply_dsp_cond_true_t) (void *arg, u_int mask,

u_int flags, u_int registers);

arg is the value of the arg field. The next two arguments, mask andflags, are given the
values that were passed to snddriver_dspcmd_req_conditionO (which also has mask and
flags arguments). registers encodes the current status of the four DSP host interface
registers in a single 32-bit vector. See the description of
snddriver_dspcmd_req_conditionO for more information on how this works.

typedef void (*sndreply_dsp_msg_t) (void *arg, int *data, int size);

16-142 Chapter 16: Sound

arg is the value of the arg field. data is a pointer to the contents of the appropriate
DSP-message buffer (regular or error, as the handler is dsp_message or dsp_error). size
is the size of the buffer contents, in bytes.

snddriver_reply_handlerO ignores messages for which you haven't created and
registered a handler function.

RETURN Returns an error code: 0 on success, nonzero on failure.

SEE ALSO snddriver _stream_start_readingO, snddriver _stream_start_ writingO,
snddriver._dspcmd_req_conditionO, snddriver _dspcmd_req_msgO,
snddriver_dspcmd_req_errO

snddriver _set_device_parmsO, snddriver _get_device_parms(),
snddriver _set_ volumeO, snddriver _get_ volumeO, snddriver _set_rampO

SUMMARY Set and get sound playback attributes

DECLARED IN soundlsnddriver_client.h

SYNOPSIS kern_return_t snddriver_set_device_parms(port_t devicePort, boolean_t speakerOn,
boolean_tfilterOn, boolean_t zerofill)

kern_return_t snddriver_get_device_parms(port_t devicePort, boolean_t * speakerOn,
boolean_t *filterOn, boolean_t *zerofill)

kern_return_t snddriver_set_volume(port_t devicePort, int leftVolume, int rightVolume)
kern_return_t snddriver_get_ volume(port_t devicePort, int *leftVolume,

int *rightVolume)
kern_return_t snddriver_set_ramp(port_t devicePort, int rampOn)

DESCRIPTION These functions set and get attributes of the sound playback system. Each takes, as its first
argument, the sound driver device port as acquired through SNDAcquireO. You needn't
acquire ownership of sound-out to set the playback attributes.

The NXSoundOut class can be used in place of all these functions.

Sound Driver Functions: snddriver_set_device-parms() 16-143

snddriver_set_device_parmsO sets three attributes as specified by the values of its
boolean arguments:

• The internal speaker is turned on or off as speakerOn is true or false. Calling the
function with alternating true and false speakerOn values is equivalent to toggling the
Mute key (Command Mute) on the keyboard.

• Similarly, the value of filterOn turns the de-emphasis filter on or off. The filter can be
controlled from the keyboard by toggling the louder key while holding down the
Command key (this isn't marked on the keyboard). In addition, the de-emphasis filter
is automatically turned on when a de-emphasis format sound is played and returned to
its previous state when the sound is done playing.

• During playback, low sampling rate (22.05 kHz) sounds are converted to the high
sampling rate (44.1 kHz) as they are sent to the DAC (which converts data at 44.1 kHz
only). To do this, the sound driver emits an extra sample for every existing sample in
the sound data. The value of zerofill determines whether these extra samples are set to
o (true) or if they're copies of the existing samples (false). In almost all cases, copying
the samples is preferable, since zero filling results in a decrease in power. Note that you
can't toggle this attribute from the keyboard. Also, keep in mind that CODEC rate
sounds are converted to 22.05 kHz before being sent to the DAC and so are also affected
by the state of zerofill.

snddriver_get_device_parmsO returns, by reference in its final three arguments, the
values of the attributes described above.

snddriver _set_ volumeO sets the volume of the internal speaker and similarly adjusts the·
signal that's sent to the stereo headphone jack (the signal to the line-out jacks is unaffected).
The two channels of the stereo signal are set independent of each other, specified as the
values of leftVolume and rightVolume. The volume of the internal speaker is the sum of
these two values. Volume values are integers in the range 1 to 43, inclusive, where the unit
is equal to 2 decibels. A volume of 1 is inaudible and 43 is full blast. An argument value
outside this range will yield some unexpected volume within the range. You can also adjust
playback volume by pressing the volume keys on the keyboard. Each discrete tap on a
volume key increments or decrements both the left and the right volume settings by 1.

snddriver_get_ volumeO returns the left and right playback volumes by reference in
leftVolume and rightVolume, respectively.

By default, sounds are ramped during playback: The first few samples are ramped up from
zero and the last samples are ramped down. This helps prevent clicks at the beginnings and
ends of sounds. snddriver _set_rampO enables or disables this feature as its rampOn
argument is nonzero or zero. You almost always want ramping enabled; the one obvious
case in which it's undesirable is if you're chaining a series of separate sounds that are meant

16-144 Chapter 16: Sound

to be played seamlessly, one immediately after the other. In this case, ramping will cause
annoying amplitude dips at each seam.

RETURN Returns an error code: 0 on success, nonzero on failure.

SEE ALSO SNDSetVolumeO, + setVolume:: (Sound), - setAttenuationLeft:right: (NXSoundOut)

snddriver_set_dsp_owner_port(), snddriver_set_sndin_owner_port(),
snddriver _set_sndout_owner _portO

SUMMARY Acquire ownership of sound resources

DECLARED IN soundlsnddriver_client.h

SYNOPSIS kern_return_t snddriver_set_dsp_owner_port(port_t devicePort, port_t ownerPort,
port_t *negotiationPort)

kern_return_t snddriver_set_sndin_owner_port(port_t devicePort, port_t ownerPort,
port_t *negotiationPort)

kern_return_t snddriver_set_sndout_owner_port(port_t devicePort, port_t ownerPort,
port_t *negotiationPort)

DESCRIPTION These functions try to acquire ownership of the DSP, sound-in, or sound-out by setting the
resource's owner port to a port that you supply. They duplicate part of the functionality
provided by SNDAcquireO; the latter should, in most cases, be used to the exclusion
of these.

The arguments are the same for all three functions:

• devicePort is a valid port to the sound driver device, as acquired through
SNDAcquireO.

• ownerPort is the port that will become the owner port for the requested resource if
the function is successful. You must have already allocated ownerPort through the
function port_allocateO.

• If the function successfully acquires ownership of the resource, then the port pointed to
by negotiationPort is registered as the negotiation port for the resource. However, if the
function isn't successful-most likely because ownership of the resource has already
been claimed-then the currently registered negotiation port is returned in the

Sound Driver Functions: snddriverjet_dsp_owner -Port() 16-145

negotiationPort argument. By convention you point negotiationPort to ownerPort
before calling these functions, thereby making the owner port accessible to other tasks.
Similarly, if your bid for ownership fails and the current owner has followed this
convention, then you can use the port returned in negotiationPort as the owner port for
the resource. Note, however, that if the function call fails, there's no way to determine
if the port pointed to by negotiationPort is actually the owner port. If you want to
acquire sole ownership of a resource, set negotiationPort to something other than the
ownerPort before calling these functions. This will ensure that only the caller will have
access to the resource (assuming that the function is successful).

A single port can be used to claim ownership of more than one device. This is sometimes
necessary when setting up a multiple-device stream (as explained in
snddriver_stream_setupO). In the following example, the same port attempts to own
both the nsp and sound-out:

err port_allocate(task_self(), &ownerPort)

/* Acquire ownership of the DSP. */

err=snddriver_set_dsp_owner-port(devPort, ownerPort, &negPort);

/* Acquire ownership of sound-out. */

err=snddriver_set_sndout_owner-port(devPort,ownerPort,&negPort);

After you've claimed ownership of a resource, you should do something with it. With
sound-in you set up a stream port through which you read (record) data. This is done by
calling the snddriver _stream_setupO and snddriver _stream_start_readingO functions.
Analogously, with sound-out you set up a stream through which you write (playback) data
through the snddriver _stream_start_ writingO function.

If you claim ownership of the DSP you should also acquire the DSP command port by
calling snddriver _get_dsp_cmd_portO. Most of the functions that access the DSP
require the command port as an argument. You can also set up streams to the DSP as you
would to sound-in or sound-out. Successfully setting the DSP's owner port puts the DSP
in its reset state.

To relinquish ownership of a resource, you deallocate the owner port by calling
port_deaIlocateO:

err = port_deallocate(task_self(), ownerPort);

Deallocating a resource's owner unregisters the resource's negotiation port. All ports are
automatically deallocated when your application exits.

16-146 Chapter 16: Sound

RETURN Returns an error code: ° on success, nonzero on failure.

SEE ALSO snddriver_stream_setupO, snddriver_get_dsp_cmd_portO

snddriver _set_sndin_owner _portO ~ See
snddriver _set_dsp_owner _portO

snddriver _set_sndout_bufcount(), snddriver _set_sndout_bufsize(),
snddriver _stream_ndmaO

SUMMARY Configure stream transfer buffers

DECLARED IN soundlsnddriver_client.h

SYNOPSIS kern_return_t snddriver_set_sndout_bufcount(port_t devicePort, port_t sndoutPort,
int count)

kern_return_t snddriver_set_sndout_bufsize(port_t devicePort, port_t sndoutPort,
int size)

kern_return_t snddriver_stream_ndma(port_t streamPort, int regionTag, int count)

DESCRIPTION These functions let you control the number and size of the DMA buffers that are used to
transfer data in a stream.

snddriver _set_sndout_bufcountO sets the number of buffers that are used when playing
back sounds; the count argument, which must be greater than 0, establishes the buffer
count. Four buffers are used in the default configuration.

snddriver _set_sndout_bufsizeO sets the size of the sound-out buffers (in bytes) to the
value of the size argument. This function is needed only if you're using a linked stream to
sound-out (see the snddriver_stream_setupO function for more on linked streams). The
value of size must be no greater than vm_page_size, the size of a page of virtual memory;
the default is vm_page_size. If you're writing directly to the sound-out stream-in other

Sound Driver Functions: snddriver_set_ramp() 16-147

words if the stream to sound-out is configured as
SNDDRIVER_STREAM_TO_SNDOUT_22 or ... SNDOUT_ 44-the size of the
sound-out buffers is computed from the sampleCount argument to
snddriver _stream_setupO and the size set here is ignored.

For both of these functions, the devicePort and sndoutPort arguments are ports to the sound
driver device and to sound-out, as acquired through SNDAcquireO.

snddriver_stream_ndmaO sets, to count, the number of DMA transfer buffers that are
used to receive data from sound-in, and to transmit and receive data to and from the DSP.
The DMA buffer count can be set on a region-by-region basis; the stream and region to
which a particular setting applies are identified by the streamPort and regionTag
arguments, respectively. Note that in a linked stream to sound-out, the buffer count to and
from the DSP is automatically set to the sound-out buffer count (overruling the setting
made through this function).

RETURN Returns an error code: 0 on success, nonzero on failure.

SEE ALSO snddriver _stream_setup 0

snddriver _set_sndout_bufsizeO ~ See
snddriver _set_sndout_bufcou ntO

snddriver _set_sndout_owner _portO ~ See
snddriver _set_dsp_owner _portO

snddriver _set_ volumeO ~ See snddriver _set_device_parmsO

snddriver _stream_control 0, snddriver _stream_nsamplesO

SUMMARY Control and query a stream

DECLARED IN sound/snddriver_client.h

SYNOPSIS kern_return_t snddriver_stream_control(port_t streamPort, int regionTag, int control)
kern_return_t snddriver_stream_nsamples(port_t streamPort, int *byteCount)

16-148 Chapter 16: Sound

DESCRIPTION snddriver _stream_controIO provides control over an active stream by allowing you to
apply a controlling operation to one or more of the stream's enqueued regions. The stream
and the regions therein are identified by the function's first two arguments:

• streamPort is the stream's port, as created by snddriver_stream_setupO.

• regionTag is the integer identifier that you gave the region (or regions) in a previous call
to snddriver _stream_start_ writingO or snddriver _stream_start_readingO.

A tag value of 0 causes the controlling operation to be applied to all regions enqueued on
the stream.

You specify the controlling operation by passing one of the following constants as the
control argument:

• SNDDRIVER_PAUSE_STREAM causes the stream to pause. If data is currently being
read from or written to the specified region, the read or write is immediately suspended.
If the region isn't yet active, the pause takes effect when the region comes to the top of
the stream's queue (it's paused just before the first sample is read or written).

• SNDDRIVER_RESUME_STREAM resumes a previously paused stream.

• SNDDRIVER_ABORT_STREAM terminates the stream's activity when the specified
region comes to the top of the queue; the queue is then cleared. If the region is currently
being acted upon, the stream is terminated immediately.

• SNDDRIVER_AWAIT_STREAM is used to retrieve a partially recorded region from a
stream that's reading data-normally, you can't retrieve such data until the entire region
has been filled. If the specified region is currently active, a data-recorded message is
sent to the reply port that you registered in snddriver_stream_start_readingO. You
then pass the message to snddriver_reply_handlerO which calls the recorded_data
reply handler. The unrecorded portion of the region continues. If the specified region
isn't currently active, this has no effect.

While you can use any of these four at the same time by or'ing them in control, the only
combination that's of use is SNDDRIVER_AWAIT_STREAM or'd with one of the other
three. For example, by setting regionTag to 0 and control to

you immediately pause the stream and can then bring back data from the current region.

You can request that a stream-paused, stream-resumed, or stream-aborted message be sent
to the reply port when you pause, resume, or abort a stream, respectively, by setting the
appropriate msg ... flag to true in your call to snddriver_stream_start_ ... O.

Sound Driver Functions: snddriver_streamJontrol() 16-149

snddriver_stream_nsamplesO returns the number of bytes (not samples, despite the
name of the function) that have been read from or written to a particular stream. The
steam is specified by streamPort. The byte count is returned by reference in the
byteCount argument.

RETURN Returns an error code: 0 on success, nonzero on failure.

SEE ALSO snddriver _stream_setupO, snddriver _stream_start_ writingO,
snddriver _stream_start_ writingO, snddriver _reply _handlerO

snddriver_stream_nsamplesO ~ See snddriver_stream_controIO

snddriver _stream_setupO

SUMMARY Configure a sound stream

DECLARED IN soundlsnddriver_client.h

SYNOPSIS kern_return_t snddriver_stream_setup(port_t devicePort, port_t ownerPort,
int dataPath, int sample Count, int sampleSize, int lowWater, int highWater,
int *protocol, port_t * streamPort)

DESCRIPTION A stream, as it applies to the sound driver, is a path through which an indefinitely long
sequence of data passes. One end of a sound driver stream typically lies in your
application's memory, while at the other end is a sound device. For example, to record a
sound from the microphone you create a stream from sound-in to your application.
Analogously, a stream from your application to sound-out is required to play back sound
data. A single stream of data can pass through more than one sound device; for example,
you can send data from your application to the DSP from whence it issues directly to
sound-out. Thus you can DSP-process and play your sound data in one motion, without
incurring the overhead of bringing the processed data back into your application.

The snddriver _stream_setup 0 function creates a port to a sound stream. The
port, returned in the streamPort argument, is used as an identifier in subsequent calls
to functions that write to, read from, and otherwise control the stream (as listed at the
end of this description).

16-150 Chapter 16: Sound

The function's first two arguments are the usual capability ports: devicePort is a port to the
sound driver device, and ownerPort is the owner port for all resources that are touched by
the stream, as acquired through SNDAcquireO.

You establish the stream's course-the source and destination of its data-by
setting dataPath to one of constants listed below. There are two types of data paths:
"simple" and "linked." The simple data paths (listed below) connect your application
to a sound resource:

• SNDDRIVER_STREAM_FROM_SNDIN; read samples from the CODEC
microphone.

• SNDDRIVER_STREAM_TO_SNDOUT_ 44; write samples to the stereo DAC at the
high sampling rate (44.1 kHz).

• SNDDRIVER_STREAM_TO_SNDOUT_22; write samples to the stereo DAC at the
low sampling rate (22.05 kHz).

• SNDDRIVER_DMA_STREAM_TO_DSP; write data via DMA to the DSP.

• SNDDRIVER_DMA_STREAM_FROM_DSP; read data via DMA from the DSP.

Six linked data paths connect the DSP directly to sound-out:

• SNDDRIVER_STREAM_DSP _TO _SNDOUT _ 44 and ... SNDOUT _22;
DSP-processed samples are sent directly to sound-out at the low or high sampling rate.

• SNDDRIVER_STREAM_THROUGHJ)SP _TO_SNDOUT_ 44 and ... SNDOUT_22;
data flows from your application to the DSP and thence directly to sound-out at the high
or low sampling rate.

• SNDDRIVER_DMA_STREAM_THROUGH_DSP _TO_S ND OUT_ 44 and
... SNDOUT_22; data flows from your application to the DSP and thence directly to
sound-out using DMA.

Data is transferred through a stream in buffers. The sampleCount argument establishes the
length of a single transfer buffer in samples (or data elements); the size of a single sample
is set by the sampleSize argument. The maximum size for a transfer buffer (in bytes) is that
of a page of virtual memory, as given by the global read-only variable vID_page_size.
Typically, the transfer buffer size is set to this limit: If, for example, the samples that you're
sending through the stream are two bytes wide, then, to follow this convention, you would
set sampleCount to vID_page_size/2. If the stream uses DMA, then the size of a transfer
buffer (in bytes) must be a power of 2 greater than or equal to 16.

Sound Driver Functions: snddriverjtream_setup() 16-151

For some applications-particularly those in which latency is an issue-setting the number
of transfer buffers that are used can be as important as setting the size of the buffers. This
is done through the snddriver _set_sndout_bufcountO and snddriver _stream_ndmaO
functions.

The range of acceptable values for the sampleSize argument depends on the stream's
data path:

• If you're reading from sound-in into your application, then sampleSize must be set to 1
to accommodate the 8-bit mu-Iaw samples generated by the CODEC microphone input.

• If you're writing from your application to sound-out or from the DSP to sound-out, then
sampleSize must be 2 since the DAC expects 16-bit interleaved-stereo samples. Note
that while the DAC processes data only at the high sampling rate, the sound driver
performs the conversion from low to high for you. This isn't true for playback of
CODEC-rate sounds for which you typically download a sampling-rate conversion
program to the DSP, and then create a stream that goes through the DSP and then directly
to sound-out. This is what the SNDStartPlayingO function does, for example.

• In all the other paths, your application writes to or reads from the DSP. Here,
sampleSize can be 1, 2, or 4, according to the sample size expected by or produced
by your DSP program.

The low Water and high Water arguments are memory threshold values, measured in bytes,
that are inspected by the sound driver. During an operation such as recording or playback,
successive pages of sound data are locked into physical memory (or "wired down") during
which time they're read from or written to. As a page is completed, it's unwired. The
driver tries to maintain at least low Water bytes of wired-down memory; if the amount drops
below this threshold, the driver wires down pages until it reaches the high Water mark.

If your stream touches the DSP, then you need to set the DSP protocol by passing the
appropriate value to snddriver_dsp_protocoIO. The protocol argument found here helps
you create this value: The function or's the appropriate protocol constants, as determined
by the characteristics of the stream that you're setting up, into protocol and returns the new
value by reference. You then pass the variable to snddriver_dsp_protocoIO. You should
initialize your protocol variable to SNDDRIVER_DSP _PROTO_RAW before calling
snddriver _stream_setupO, as shown in the following example:

16-152 Chapter 16: Sound

/* Initialize the protocol variable. */

int protocol = SNDDRIVER_DSP_PROTO_RAW;
int err;

/* Set up a stream to the DSP. */

err = snddriver_stream_setup(... , SNDDRIVER_STREAM_TO_DSP,
.. , &protocol, ...);

if (err != 0)

/* Set up a stream from the DSP. */

err = snddriver_stream_setup(... , SNDDRIVER_STREAM_FROM_DSP,
... , &protocol, ...);

if (err != 0)

/* Pass the protocol to the sound driver. */

err = snddriver_dsp-protocol(... , protocol);

if (err != 0)

The protocol constants are described as part of the snddriver _dsp_protocoIO function.

Having created a stream, you can read from it, write to it, and control it by passing the port
returned in streamPort to the following functions:

• snddriver_stream_start_readingO and snddriver_stream_start_ writingO read from
and write to a stream, respectively. Streams from sound-in or from the DSP can only be
read; similarly, streams to sound-out or to the DSP can only be written.

• snddriver_stream_controIO pauses, resumes, and aborts an active stream.

• snddriver _stream_DsamplesO measures the amount of data that has passed through
the stream.

For sound-in and sound-out, streams are the only way to travel. This isn't true of the DSP;
the sound driver provides a one-shot, non-stream DSP read and write mechanism,
embodied in snddriver_dsp_readO, snddriver_dsp_dma_readO, and analogous
... writeO functions, that can be more efficient for short data transfers.

RETURN Returns an error code: 0 on success, nonzero on failure.

SEE ALSO snddriver _stream_start_readingO, snddriver _stream_start_ writingO,
snddriver_set_sndout_hufcountO, snddriver_stream_ndmaO

Sound Driver Functions: snddriver_stream_setup() 16~153

snddriver _stream_start_readingO ---7 See
snddriver _stream_start_writingO

snddriver _stream_start_ writingO, snddriver _stream_start_readingO

SUMMARY Send data to and retrieve data fom a stream

DECLARED IN soundlsnddriver_c1ient.h

SYNOPSIS kern_retum_t snddriver _stream_start_ writing(port_t streamPort, void *data,
int sample Count, int region Tag , boolean_t preempt, boolean_t deallocate WhenDone,
boolean_t msgStarted, boolean_t msgCompleted, boolean_t msgAborted,
boolean_t msgPaused, boolean_t msgResumed, boolean_t msgUnderrun,
port_t replyPort)

kem_retum_t snddriver_stream_start_reading(port_t streamPort, char *filename,
int sampleCount, int regionTag, boolean_t msgStarted, boolean_t msgCompleted,
boolean_t msgAborted, boolean_t msgPaused, boolean_t msgResumed,
boolean_t msgOverrun, port_t replyPort)

DESCRIPTION These two functions cause data to be written to or read from a sound stream identified
by streamPort, which must have been created by a previous call to
snddriver_stream_setupO. The two functions operate in much the same manner:
Each invocation enqueues a single region of data that's operated on (either read from
or written to) asynchronously by the sound driver. However, there's a fundamental
difference between the two functions in that ••• writingO enqueues a region that you pass as
the data argument, while ••. readingO stores the data it reads in a region that it allocates
itself. To bring the read data back into your application, you must create and register a
reply-handler function that transfers the data when the read is complete. The mechanism
for doing this is explained (and an example given) in the snddriver_reply_handlerO
function description.

Note: The ••• readingO argumentfilename-which would imply that the read data is written
to a file-is currently unused. Also note that the data buffer you pass to ••• writingO is
write-protected: Any changes you make to the data after it's been enqueued won't be seen
by the driver.

16-154 Chapter 16: Sound

sampleCount is the number of samples in the region that's being written or read. If you're
writing to the DSP, sampleCount must be a multiple of the sampleCount argument to
snddriver_stream_setupO. In all other cases, sampleCount can be any value.

regionTag is an integer that identifies the region. While you can give each region a distinct
tag, you usually create a single tag value for each stream that you set up. For example, if
you have a stream that reads data from sound-in and another that writes to sound-out, you
would create two tag values, one for either stream, and then tag each region with the value
associated with its stream.

If the preempt flag (••• writingO only) is true, the sound driver starts writing data
immediately after the current transfer buffer has been completely processed. When it's
finished with the preempting region, the driver returns to its region queue, disregarding the
rest of the partially-processed preempted region.

If deallocateWhenDone (.•. writingO only) is true, the region's data is deallocated after
it's written.

The six msg ... flags register requests for stream-state messages to be sent asynchronously
to the port replyPort. The first flags, msgStarted and msgCompleted, if true, cause
messages to be sent just as the driver begins its first and just after it finishes its last transfer
of data from the region, respectively. The conditions referred to by the next three
arguments, msgAborted, msgPaused, and msgResumed, occur as a result of calls to
snddriver_stream_controIO. The msgUnderrun (for ••• writingO) or msgOverrun (for
.•• readingO) argument, if true, causes a message to be sent if the driver can't transfer data
quickly enough to keep up with real time. In general this is only signficant if data is being
read from sound-in or written to sound-out: Underrun results in brief pauses in playback;
overrun causes incoming samples to be lost. You normally process the asynchronous
messages that you receive by passing them to the snddriver _reply _handlerO function.

RETURN Returns an error code: 0 on success, nonzero on failure.

SEE ALSO snddriver _reply_handler, snddriver _stream_setup

Sound Driver Functions: snddriver_stream_start_writing() 16-155

16-156

Types and Constants

Defined Types

NXSoundDeviceError

DECLARED IN soundkitINXSoundDevice.h

SYNOPSIS typedef enum _NXSoundDeviceError {
NX_SoundDeviceErrorNone,
NX_SoundDeviceErrorKernel,
NX_SoundDeviceErrorTimeout,
NX_SoundDeviceErrorLookUp,
NX_SoundDeviceErrorHost,
NX_SoundDeviceErrorNoDevice,
NX_SoundDeviceErrorNotActive,
NX_SoundDeviceErrorTag,
NX_SoundDeviceErrorMax

} NXSoundDeviceError

DESCRIPTION Error codes returned by Sound Kit methods that access the sound driver.

16-158 Chapter 16: Sound,

NXSoundStatus

DECLARED IN soundkitiSound.h

SYNOPSIS typedef enum {
NX_SoundStopped,
NX_SoundRecording,
NX_SoundPlaying,
NX_SoundInitialized,
NX_SoundRecordingPaused,
NX_SoundPlayingPaused,
NX_SoundRecordingPending,
NX_SoundPlayingPending,
NX_SoundFreed,

} NXSoundStatus;

DESCRIPTION These represent the activities of a Sound object, as returned by Sound's status method.

NXSoundStreamTime

DECLARED IN soundkitINXSoundStream.h

SYNOPSIS typedef struct timeval NXSoundStreamTime;

DESCRIPTION U sed by NXSoundStream objects as arguments to methods such as pauseAtTime: and
resumeAtTime:. The timeval structure is defined in sys/time.h.

Types and Constants: NXSoundStatus 16-159

SNDCompressionSubheader

DECLARED IN soundlsoundstruct.h

SYNOPSIS typedef struct {
int originalSize
intmethod;
int numDropped;
int encodeLength;

} SNDCompressionSubheader;

DESCRIPTION This structure describes the attributes of a compressed sound. It immediately follows the
general SNDSoundStruct header. If the sound data isn't compressed, this subheader is
absent. The structure's fields are

original Size
method
numDropped
encodeLength

The size of the uncompressed data, in bytes
The compression format (see "Compression Formats," below)
The number of dropped bits, if applicable
The number of samples represented by an encoded block

SNDError

DECLARED IN soundlsounderror.h

SYNOPSIS typedef enum {

16-160 Chapter 16: Sound

SND_ERR_NONE,
SND_ERR_NOT_SOUND,
SND_ERR_BAD_FORMAT,
SND_ERR_BAD_RATE,
SND_ERR_BAD_CHANNEL,
SND_ERR_BAD_SIZE,
SND_ERR_BAD_FILENAME,
SND_ERR_CANNOT _OPEN,
SND_ERR_CANNOT_ WRITE,
SND_ERR_CANNOT_READ,
SND_ERR_CANNOT_ALLOC,
SND_ERR_CANNOT _FREE,
SND_ERR_CANNOT_ COPY,
SND_ERR_CANNOT_RESERVE,

SND _ERR_NOT_RESERVED,
SND_ERR_CANNOT_RECORD,
SND_ERR_ALREADY_RECORDING,
SND_ERR_NOT_RECORDING,
SND_ERR_CANNOT_PLAY,
SND_ERR_ALREADY_PLAYING,
SND_ERR_NOT_IMPLEMENTED,
SND_ERR_NOT_PLAYING,
SND_ERR_CANNOT_FIND,
SND _ERR_CANNOT_EDIT,
SND_ERR_BAD_SPACE,
SND_ERR_KERNEL,
SND_ERR_BAD_CONFIGURATION,
SND _ERR_CANNOT_CONFIGURE,
SND _ERR_ UNDERRUN,
SND_ERR_ABORTED,
SND_ERR_BAD_TAG,
SND_ERR_CANNOT_ACCESS,
SND_ERR_TIMEOUT,
SND_ERR_BUSY,
SND_ERR_CANNOT_ABORT,
SND _ERR_INFO_TOO_BIG,
SND_ERR_UNKNOWN,

} SNDError;

DESCRIPTION These are the sound error codes returned by many sound functions. The
SNDSoundErrorO function returns a pointer to a string that describes the error given one
of these codes as an argument.

SNDNotificationFun

DECLARED IN soundlperformsound.h

SYNOPSIS typedef int (*SNDNotificationFun)
(SNDSoundStruct * s,
int tag,
int err);

DESCRIPTION This is the notification function required as an argument to methods such as
SNDStartPlayingO and SNDStartRecordingO.

Types and Constants: SNDNotijicationFun 16-161

SNDSoundStruct

DECLARED IN soundlperformsound.h

SYNOPSIS typedef struct {
int magic;
int dataLocation;
int dataSize;
int dataFormat;
int samplingRate;
int channelCount;
char info[4];

} SNDSoundStruct;

DESCRIPTION This structure defines the header for sound data. It's thoroughly explained in the
description of the SNDAllocO function.

snddriver _handlers

DECLARED IN soundlsounddriver.h

SYNOPSIS typedef struct snddriver_handlers {
void *arg;
int timeout;
sndreply _tagged_t started;
sndreply _tagged_t completed;
sndreply _tagged_t aborted;
sndreply _tagged_t paused;
sndreply _tagged_t resumed;
sndreply _tagged_t overflow;
sndreply _recorded_data_t recorded_data;
sndreply _dsp_cond_true_t condition_true;
sndreply _dSp_ffisg_t dsp_message;
sndreply _dSp_ffisg_t dsp_error;

} snddriver_handlers_t;

16-162 Chapter 16: Sound

DESCRIPTION This structure is required as an argument by the snddriver _reply _handlerO function. It
declares, primarily, a series of call-back functions that are used by the sound driver to
communicate with your program.

DECLARED IN soundlsounddriver.h

SYNOPSIS typedef void (*sndreply _dsp_cond_true_t)
(void *arg,
unsigned int mask,
unsigned intflags,
unsigned int regs);

DESCRIPTION Function type used by the sound driver's reply handler.

DECLARED IN soundlsounddriver.h

SYNOPSIS typedef void (*sndreply _dsp_ms~t)
(void *arg,
int data,
int size);

DESCRIPTION Function type used by the sound driver's reply handler.

DECLARED IN soundlsounddriver.h

SYNOPSIS typedef void (*sndreply _recorded_data_t)
(void *arg,
int tag,
void *data,
int size);

DESCRIPTION Function type used by the sound driver's reply handler.

DECLARED IN soundlsounddriver.h

SYNOPSIS typedef void (*sndreply _tagged_t)
(void *arg,
int tag);

DESCRIPTION Function type used by the sound driver's reply handler.

16-164 Chapter 16: Sound

Symbolic Constants

ATC Frame Size

DECLARED IN soundlsoundstruct.h

DESCRIPTION This constant represents the size of a single ATC (Audio Transform Compression) frame.

Compression Formats

DECLARED IN soundlsoundstruct.h

SYNOPSIS SND_CFORMAT_BITS_DROPPED
SND_CFORMAT_BIT_FAITHFUL
SND_CFORMAT_ATC

DESCRIPTION These constants represent the three types of sound data compression.

DSP Host Commands

DECLARED IN soundlsounddriver.h

SYNOPSIS SNDDRIVER_DSP _HC_HOST_RD
SNDDRIVER_DSP _HC_HOST_ WD
SNDDRIVER_DSP _HC_SYS_CALL

DESCRIPTION These constants represent the DSP host commands that can be passed as an argument to
snddriver _dsp _host_cmdO.

Types and Constants: ATC Frame Size 16-165

DSP Protocol Options

DECLARED IN soundlsounddriver.h

SYNOPSIS SNDDRIVER_DSP _PROTO_DSPERR
SNDDRIVER_DSP _PROTO_C_DMA
SNDDRIVER_DSP _PROTO_S_DMA
SNDDRIVER_DSP _PROTO_HFABORT
SNDDRIVER_DSP _PROTO_DSPMSG
SNDDRIVER_DSP _PROTO_RAW

DESCRIPTION These constants represent the DSP protocols that can be passed as an argument to
snddriver _dsp_protocoIO.

Executable File Segment Name

DECLARED IN soundkitlSound.h

DESCRIPTION This represents the segment of an executable file in which sounds are stored.

Null Notification Function

DECLARED IN soundlperformsound.h

SYNOPSIS SND_NULL_FUN

DESCRIPTION Used to pass a null SNDNotificationFunO function as an argument to functions such as
SNDStartPlayingO and SNDStartRecordingO.

16-166 Chapter 16: Sound

Sound Device Access Codes

DECLARED IN soundiaccesssound.h

SYNOPSIS Code

SND_ACCESS_IN
SND_ACCESS_DSP
SND_ACCESS_OUT

Device

Sound-in
DSP
Sound-out

DESCRIPTION Used by the sound device access methods, such as SNDAcquireO and SNDReserveO, to
represent specific devices.

Sampling Rates

DECLARED IN soundlsoundstruct.h

SYNOPSIS Code

SND_RATE_CODEC
SND_RATE_LOW
SND _RATE_HIGH

Rate

8012.8210513 Hz
22050.0 Hz
44100.0 Hz

DESCRIPTION These constants represent the three sampling rates that are directly supported by the sound
software and hardware.

Sound Device Timeout Limit

DECLARED IN soundkitINXSoundDevice.h

DESCRIPTION The default timeout limit for communication with the sound driver. The value is,
essentially, infinity. You can reset the timeout limit through NXSoundDriver's
setTimeout: method.

Types and Constants: Sound Device Access Codes 16-167

Sound Device Error Code Limits

DECLARED IN soundkitINXSoundDevice.h

SYNOPSIS NX_SOUNDDEVICE_ERROR_MIN
NX_SOUNDDEVICE_ERROR_MAX

DESCRIPTION The minimum and maximum NXSoundDeviceError values.

Sound Stream Control Codes

DECLARED IN soundlsounddriver.h

SYNOPSIS SNDDRIVER_AWAIT _STREAM
SNDDRIVER_ABORT_STREAM
SNDDRIVER_PAUSE_STREAM
SNDDRIVER_RESUME_STREAM

DESCRIPTION These constants represent the controlling operations that are specified as an argument to
snddriver _stream_controIO.

Sound Stream Null lime

DECLARED IN soundkitINXSoundStream.h

SYNOPSIS NXSOUNDSTREAM_TIME_NULL

DESCRIPTION Provides an NXSoundStreamTime value that indicates the present time.

16·168 Chapter 16: Sound

Sound Stream Path Codes

DECLARED IN soundlsounddriver.h

SYNOPSIS SNDDRIVER_STREAM_FROM_SNDIN
SNDDRIVER_STREAM_TO_SNDOUT_22
SNDDRIVER_STREAM_ TO_SNDOUT_ 44
SNDDRIVER_STREAM_FROM_DSP
SNDDRIVER_STREAM_TO_DSP
SNDDRIVER_STREAM_DSP _TO_SNDOUT_22
SNDDRIVER_STREAM_DSP _TO_SNDOUT_ 44
SNDDRIVER_STREAM_THROUGH_DSP _TO_SNDOUT_22
SNDDRIVER_STREAM_ THROUGH_DSP _ TO_SNDOUT_ 44
SNDDRIVER_DMA_STREAM_TO_DSP
SNDDRIVER_DMA_STREAM_FROM_DSP
SNDDRIVER_DMA_STREAM_THROUGH_DSP _TO_SNDOUT_22
SNDDRIVER_DMA_STREAM_THROUGH_DSP _TO_SNDOUT_ 44

DESCRIPTION These constants represent the sound stream paths that can be specified as an argument to
the snddriver _stream_setupO function.

Types and Constants: Sound Stream Path Codes 16-169

Sound Structure Formats

DECLARED IN soundlsoundstruct.h

SYNOPSIS SND _FORMAT_UNSPECIFIED
SND_FORMAT_MULAW _8
SND_FORMAT _LINEAR_8
SND _FORMAT _LINEAR_16
SND_FORMAT _LINEAR_24
SND _FORMAT _LINEAR_32
SND_FORMAT _FLOAT
SND_FORMAT _DOUBLE
SND_FORMAT_INDIRECT
SND_FORMAT _DSP _CORE
SND_FORMAT_DSP _DATA_8
SND_FORMAT_DSP _DATA_16
SND_FORMAT_DSP _DATA_24
SND_FORMAT_DSP _DATA_32
SND_FORMAT _DISPLAY
SND_FORMAT_MULAW _SQUELCH
SND_FORMAT_EMPHASIZED
SND_FORMAT_COMPRESSED
SND_FORMAT_COMPRESSED_EMPHASIZED
SND_FORMAT_DSP _COMMANDS

DESCRIPTION These constants represent the various sound formats in which sound data can be stored.
Note that not all formats are playable without conversion.

Sound Structure Magic Number

DECLARED IN soundlsoundstruct.h

SYNOPSIS SND_MAGIC

DESCRIPTION This constant is used to identify a sound structure. It's the value of the magic field of all
valid SNDSoundStruct structures.

16-170 Chapter 16: Sound

SoundView Display Modes

DECLARED IN soundkitiSoundView.h

SYNOPSIS NX_SOUNDVIEW _MINMAX
NX_SOUNDVIEW_WAVE

DESCRIPTION These constants represent the two display modes offered by the SoundView class. See the
SoundView class specification for details.

Types and Constants: SoundView Display Modes 16-171

Global Variables

NXSoundPboardType

DECLARED IN soundkitiSound.h

SYNOPSIS extern NXAtom NXSoundPboardType;

DESCRIPTION This is the sound pasteboard type.

16-172 Chapter 16: Sound

17 3D Graphics Kit

17-3 Introduction
17 -4 The RenderMan Interface and 3D Renderers
17 -4 The Interactive Renderer
17 -5 The Photorealistic Renderer

17-7 Classes
17-10 RenderMan Program Structure in the 3D Kit
17-12 N3DCamera
17 -42 N3DContextManager
17 -48 N3DLight
17 -60 N3DMovieCamera
17 -66 N3DRenderPanei
17 -70 N3DRIBImageRep
17 -77 N3DRotator
17 -83 N3DShader
17 -94 N3DShape

17-121 Functions

17-129 Types and Constants
17 -130 Defined Types
17-134 Symbolic Constants
17-135 Global Variables

17-1

17-2

3D Graphics Kit

Library:

Header File Directory: INextDeveloperIHeaders/3Dkit

Import: 3Dkitl3Dkit.h

Introduction

The 3D Graphics Kit enables NeXTSTEP applications to model and render 3-dimensional
scenes. Much as the Application Kit's 2D graphics capabilities are based on the Display
PostScript interpreter, the 3D Kit's capabilities are based on the Interactive RenderMan
renderer. There are both similarities and differences in the inner workings of the two
implementations.

One similarity is that both are implemented with a client-server model, in which client
applications send drawing code to the Window Server, which does the actual drawing.
Another similarity is that N3DCamera-the 3D Kit's View-generates all drawing code,
both 2D and 3D, when its drawS elf: method is invoked. This keeps the Application Kit's
display mechanism intact for both PostScript and RenderMan drawing.

One difference in the implementations is in the code generated for drawing. For 2D
drawing, a View sends PostScript code to the Window Server's Display PostScript
interpreter. For 3D drawing, a View sends RenderMan Interface Bytestream (RIB) code to
the Window Server's Interactive RenderMan renderer.

3D Graphics Kit 17-3

The PostScript language is frequently referred to as a page description language; The
RenderMan language can be thought of as a scene description language. It provides
graphics primitives, lighting specification, camera controls, and other features required for
3D scene description. This documentation assumes you are familiar with the RenderMan
language; for an introduction to the language, see The RenderMan Companion by Steve
Upstill, published by Addison-Wesley.

The RenderMan Interface and 3D Renderers

The RenderMan Interface is a standard API for 3D scene description. One of the main
features of the RenderMan Interface is that it separates modeling from rendering. A
modeling program stores data for the objects in a 3D scene and generates RIB code to
describe that scene to a renderer. The level of detail in the model is fixed in the data stored
by the modeler. The quality of rendering is determined by the renderer selected and the
rendering techniques selected for that renderer.

The 3D Kit uses two separate renderers: the interactive renderer for display and the
photorealistic renderer for printed output.

The Interactive Renderer

To draw 3D scenes on-screen, a 3D Kit application sends its RIB output to the
Interactive RenderMan renderer. For optimal drawing in response to user actions, the
interactive renderer doesn't implement some features of the full RenderMan language.
However, it does process all RIB code without error, ignoring attributes and options that it
doesn't implement. As one example, shaders written in the RenderMan Shading Language
aren't applied to surfaces by the interactive renderer (except for a limited group of
standard shaders).

So that multiple applications can render 3D scenes simultaneously, the interactive renderer
implements additions to the RenderMan language for creating, selecting, and destroying
contexts. Client applications create handles for their rendering contexts, select the
appropriate context before they begin generating drawing code, and destroy contexts when
they are finished with them. For the most part, interactive rendering contexts are managed
by the 3D Kit, so you rarely have to deal with them in your code.

A specification for the interactive renderer, including descriptions of new RenderMan
procedures it implements and standard RenderMan procedures it ignores, can be found in
the release note lNextLibrary/Documentation/NextDev/ReleaseNotes/QRMSpec.rtfd.

17-4 Chapter 17: 3D Graphics Kit

The Photorealistic Renderer

The Application Kit's printing mechanism is extended by the 3D Kit to enable RIB output
to be correctly incorporated into a print stream. When rendering a 3D image to be printed
on a page or saved in a file, 3D Kit applications send their RIB output to the PhotoRealistic
RenderMan renderer. The photorealistic renderer generates TIFF image data, which is then
incorporated into the PostScript print stream.

The photorealistic renderer supports the full RenderMan standard (with a few minor
exceptions), so the images it generates display the detail and features specified in the
original model. The photorealistic renderer operates as a separate process. It starts when
invoked by a 3D Kit client, and stops when the image based on that RIB has been rendered.
For speedier rendering, the 3D Kit supports photorealistic rendering in multiple processes
on multiple hosts.

Introduction 17-5

17-6

Classes

Object ---I

NXlmageRep --- N3DRIBImageRep

Ra''''''t"\,nrl<::.f' -----t[Window----- Panel ------ N3DRenderPanei

View------- N3DCamera ---- N3DMovieCamera

N3DShape ---- N3DLight

N3DShader
N3DRotator
N3DContextManaQer

Figure 17-1. The 3D Graphics Kit Inheritance Hierarchy

The classes in the 3D Kit are shown in the inheritance hierarchy above. As you can see,
several of these classes inherit from classes in the Application Kit. Here's a brief summary
of 3D Kit classes:

N3DCamera

N3DShape

17-8 Chapter 17: 3D Graphics Kit

This subclass of View provides a place in the View hierarchy
for 3D drawing and event handling. In 3D viewing terms, this
class defines camera space. An N3DCamera has a pointer to
a single N3DShape object, its world shape. As the name
suggests, the world shape defines the origin (0.0, 0.0, 0.0) and
base coordinates of the world viewed by the camera. The
camera defines its coordinate system in terms of this world
coordinate system. Since you can apply a transformation to
both the N3DCamera and the world shape, world coordinates
can be thought of as existing between the transformation
applied to an N3DCamera and that applied to its world shape.
Like other Views, N3DCamera provides mechanisms for both
displaying and printing a scene.

Objects of this class are used to represent surfaces and
transformations in a scene. The N3DShape class defines
instance variables for managing a hierarchy of shapes. To
represent complex 3D objects with N3DShapes, you define
hierarchical relationships among them. Subclasses of
N3DShape can be implemented to draw any of the primitive
surface types defined in the RenderMan interface.
N3DShapes can apply RenderMan Shading Language
functions through instances of the N3DShader class.

N3DLight

N3DMovieCamera

N3DRenderPanei

N3DRIBImageRep

N3DRotator

N3DShader

N3DLight provides light source management in the
N3DShape hierarchy. N3DLight is a subclass of
N3DShape--;-thus its instances can be placed in the world and
connected to other shapes. Independently of its location in the
shape hierarchy, you can set an N3DLight to illuminate the
entire scene or just the N3DShape object to which it is directly
connected.

This subclass of N3DCamera supports the rendering of
animated sequences of 3D images. Movies can be rendered
on-screen by the interactive renderer in the
N3DMovieCamera, or off-screen by the photorealistic
renderer as a set of TIFF or EPS streams.

Manages rendering tasks in the print process. Just as the
PrintPanellets users select output devices to receive the
PostScript code for a document, the N3DRenderPaneilets
users select the renderer to receive the RIB code for a scene.
The N3DRenderPanei is brought up automatically by the
Application Kit any time the 3D Kit uses the photorealistic
renderer.

A class for compositing images from RIB files, analogous to
the Application Kit's NXEPSImageRep class.

A class that helps you implement a "virtual sphere" user
interface for rotating objects in 3D coordinates.

Manages shader functions written in the RenderMan Shading
Language. Every N3DShape can have one each of the six
standard shader types (surface, displacement, lightsource,
imager, volume, and transformation). A number of standard
shaders are included with the 3D Kit in the directory
lNextLibrary/Shaders. The RenderMan Shading Language
(described in The RenderMan Companion) can be used to
write other shader functions. Interactive RenderMan can
represent shading for a limited number of the standard
RenderMan shaders. The PhotoRealistic RenderMan renderer
can apply any shading language function (except for volume
and transformation shaders).

Classes 17-9

N3DContextManager Creates and manages rendering contexts for the Interactive
RenderMan renderer. An application uses separate contexts
for interactive drawing with RIB on the screen and for writing
RIB to streams, either for printing or archiving. The
N3DContextManager is in a sense analogous to the
Application Kit's Application class. For most drawing and
printing, you don't use an N3DContextManager directly­
N3DCamera manages the context for you.

RenderMan Program Structure in the 3D Kit

The RenderMan Interface includes several functions that must be called in a specific order
to properly initialize the rendering environment. The 3D Kit sees to it that these functions
are called in the correct order. Because of this, most of the RenderMan code you write goes
into the renderS elf: methods for N3DCamera, N3DShape, and N3DLight.

However, knowing where the kit calls the RenderMan setup procedures can help if you
want to set certain rendering features explicitly. The illustration below shows which classes
call the RenderMan setup procedures. For more information on how each RenderMan
procedure call is used by the 3D Kit, see the documentation for the classes and methods
listed below.

17-10 Chapter 17: 3D Graphics Kit

*RiTransformO/RiConcatTransformO if usePreTM == TRUE

Figure 17-2. RenderMan function calls in the 3D Kit

Classes 17-11

N3DCal11era

Inherits From: View : Responder: Object

Declared In: 3DkitIN3DCamera.h

Class Description

N3DCamera is the 3D Graphics Kit's link to the Application Kit's event-handling and
display mechanisms.~ N3DCamera is a subclass of View that adds methods for managing
and performing both Interactive and PhotoRealistic RenderMan rendering.

PostScript and RenderMan Drawing

An N3DCamera draws both 2D and 3D images in response to a display message. The
lockFocus method focuses both the Display PostScript interpreter and the Interactive
RenderMan renderer on the camera. N3DCamera's drawSelf:: works by synchronizing
previous PostScript drawing in the view hierarchy, sending a render: message to the
camera's world shape (described in the next section), and finally sending itself a drawPS::
message to perform custom PostScript drawing over the RenderMan rendering.

In other View subclasses, you override the drawSelf:: method to perform PostScript
drawing. In N3DCamera, you override the drawPS:: method.

The World Shape

The N3DCamera has a pointer to a single N3DShape object-its world shape-that serves
as the origin of the coordinate system for the scene viewed by the camera. Since both the
camera and the world shape may be transformed (translated, scaled, rotated) independently,
the world origin can be thought of as existing between the transformation applied to the
N3DCamera and that applied to its world shape.

The world shape is at the top of the hierarchy of shapes potentially visible to the camera.
The N3DShape class description includes a discussion of the shape hierarchy, as well as a
diagram showing the relationships between camera, world shape, and shape hierarchy.

A camera can be connected to any N3DShape in a shape hierarchy. This allows you to view
just a part of a scene by setting the camera's world shape to the shape whose descendants
you wish to view. You can also have several cameras viewing the same shapes, from
different points of view, by setting each camera's world shape to the same N3DShape.

17-12 Chapter f7:3D Graphics Kit

The Camera Coordinate System

The camera's position is initially defined in terms of the world coordinate system. The
camera's view point defines a point in world coordinates at the center of the scene viewed
by the camera. The camera's eye point defines the camera's focal point in world
coordinates. The line segment connecting the eye point to the view point is referred to as
the eye-to-view-point vector.

camera coordinates

+
z-axis

~~------~--------~+
x-axis

world coordinates

Figure 17-1. World and camera coordinate systems

In the illustration above, the view point is at the origin of the world coordinate system (0.0,
0.0, 0.0) and the eye point is at a point (Ax, BY' Cz)' with Ax being 0.0, By being positive,
and Cz being negative. By default, the N3DCamera has its eye point positioned at the origin
of world space (0.0, 0.0, 0.0) and its view point at (0.0, 0.0, 1.0).

Also shown in the above illustration are the axes of the camera's coordinate system:
the s-axis, t-axis, and u-axis. The camera's axes are shown more clearly in the
following illustration:

Classes: N3DCamera 17-13

Figure 17-2. Camera coordinates

The origin of the camera coordinate system is always at the eye point. The u-axis is always
perpendicular to the camera's focal plane: it points along the eye-to-view-point vector. The
s-axis aligns horizontally with the camera, running through the eye point, and the t-axis
aligns vertically with the camera through the eye point. (Note that the camera's coordinate
system is a left-handed coordinate system.)

The s-basis, u-basis and t-basis are points that define vectors (directed line segments) related
to the camera coordinate system. These vectors define the units and orientation of the axes
of the camera's coordinate system. The basis points are initialized by N3DCamera with
s-basis at (1.0, 0.0, 0.0), t-basis at (0.0, 1.0,0.0), u-basis at (0.0, 0.0, 1.0). With these settings,
units in the camera coordinate system are equal to units in the world coordinate system.

u basis
{O.O, 0.0, 1.0}

Figure 17-3. Camera bases

17-14 Chapter 17: 3D Graphics Kit

The camera's roll defines its rotation about the u-basis. A positive roll angle produces
counterclockwise rotation about this axis (as viewed by the camera), negative rotation
produces clockwise rotation.

Global Lights

The camera's light list manages N3DLights that illuminate the whole scene viewed by the
camera: the world shape, its peers, and its descendants.

Since N3DLight is a subclass of N3DShape, an N3DLight object can be both a descendant
or peer of the world shape and a member of the list of global light. Since the light's position
is determined by its position in the shape hierarchy, you can place a light at a specific point
in the scene viewed by the camera. You can then make it a global light, causing it to
illuminate all shapes visible in the scene, even those above it in the shape hierarchy.

A global light need not belong to the shape hierarchy viewed by the camera. You could,
for example, create an instance of N3DLight and add it to the global light list. Such a light
would by default have a coordinate system that matched the world coordinate system. You
could then use a method such as getEyeAt:toward:roll: to get the coordinates needed to
position this light relative to the camera.

Determining Rendering Order

The camera's hider determines the order in which surfaces are rendered. Which hider is
appropriate depends on the type of surface being rendered and the drawing performance
desired. The 3D Kit defines three hider types (in the header file
lNextDeveloper/Headers/3Dkit/next3d.h) :

Hider Type

N3D _HiddenRendering
N3D _InOrderRendering
N3D_NoRendering

Surface Type

solids
wireframe, point cloud
any

Performance

slower
faster
fastest

N3D _HiddenRendering performs standard hidden-surface computations using a z-buffer.
N3D _InOrderRendering renders objects in the order in which they are defined in the
camera's RIB stream; this is the default setting. N3D_NoRendering produces no image.
The methods hider and setHider: manage the hider type used by the camera. The method
setSurfaceTypeForAll:chooseHider: can be used to select the appropriate hider for a
particular surface type.

Classes: N3DCamera 17-15

The Camera's Delegate

The camera's delegate implements a method to handle image streams rendered by the
PhotoRealistic RenderMan renderer. The methods render AsEPS and render AsTIFF
initiate photorealistic rendering, and the delegate receives the resulting image stream in a
message from the 3D Kit when rendering is complete.

Instance Variables

unsigned int giobaiWindowNum;

RtToken windowResource;

N3DProjectionType projectionType;

RtToken contextToken;

id woridShape;

List *lightList;

id delegate;

NXColor background Color;

N3DHider hider;

struct _cameraFlags {
unsigned int degenerate: 1;
unsigned int windowChanged: 1;
unsigned int needs Window: 1;
unsigned int basisChanged: 1;
unsigned int canRender: 1;
unsigned int usePreTM: 1;
unsigned int doFlush: 1 ;
unsigned int in WoridBlock: 1;
unsigned int drawBackground: 1;

cameraFlags;

struct _projectionRectangle {
float I, r, t, b;

} projectionRectangle;

RtPoint eyePoint;

RtPoint viewPoint;

float rollAngle;

float fov;

float pixelAspectRatio;

float nearPlane;

float farPlane;

17-16 Chapter 17: 3D Graphics Kit

RtPoint sBasis;

RtPoint tBasis;

RtPoint uBasis;

RtMatrix pre Transform;

RtMatrix transform;

globalWindowNum

window Resource

projectionType

contextToken

worldShape

lightList

delegate

backgroundColor

hider

cameraFlags.degenerate

Server global window number

Camera's RenderMan resource token

Camera's projection type

Camera's RenderMan context token

Top of the shape hierarchy viewed by the camera

Global N3DLight List

Camera's delegate

Color filled in bounds behind 3D imaging

The hider used for interactive rendering

YES if the N3DCamera is a width or height

cameraFlags. windowChanged YES if camera changed windows

cameraFlags.needs Window

cameraFlags. basis Changed

cameraFlags.canRender

cameraFlags.usePreTM

cameraFlags.doFlush

cameraFlags.in WorldBlock

YES if camera isn't in a window's view hierarchy

YES if camera's coordinates changed

YES if the camera has all resources for rendering

YES if transform is premultiplied by pre Transform
when rendering

YES if the render method sends a ftushRIB message

YES if inside WorldBeginO ... WoridEndO block

cameraFlags.drawBackground YES if backgroundColor is filled in before rendering

projectionRectangle.l Horizontal coordinate of left edge of projection rectangle

proj ectionRectangle.r

proj ectionRectangle. t

projectionRectangle. b

eyePoint, view Point

rollAngle

Horizontal coordinate of right edge of projection
rectangle

Vertical coordinate of top edge of projection rectangle

Vertical coordinate of bottom edge of projection rectangle

Endpoints of viewing vector

Angle of negative rotation about viewing vector

Classes: N3DCamera 17-17

fov

pixelAspectRatio

nearPlane

farPlane

sBasis

tBasis

uBasis

nrpTr!lnll+'n.MY\ r _ _.&..&u '-'.&.&. ...

transform

Method Types

Initializing and freeing

Rendering RIB

Drawing PostScript

Background color

Angle of viewing frustum

Widthlheight ratio of pixels

Distance from eye to near clipping plane

Distance from eye to far clipping plane

Vector defining camera's horizontal axis

Vector defining camera's vertical axis

Vector defining camera's longitudinal axis

~v1atrix for pre111ultiplicatiun

Matrix for world-to-camera transformation

- init
- initFrame:
- free

- render
- renderS elf:
- setFlushRIB:
- doesFlushRIB
- ftushRIB

-lockFocus
- unlockFocus
- drawPS::
- drawS elf: :

- setBackgroundColor:
- backgroundColor
- setDrawBackgroundColor:
- doesDrawBackgroundColor

Modifying the frame rectangle - moveBy::
-moveTo::
- rotateBy:
- rotateTo:
- setFrame:
- sizeBy::
- sizeTo::

17-18 Chapter 17: 3D Graphics Kit

Managing the shape hierarchy - setWorldShape:
- worldShape

Managing global lights - addLight
- removeLight
-lightList

Picking - selectShapesIn:

Projection rectangle - setProjectionRectangle::::
- getProjectionRectangle::::

Selecting projection type - setProjection:
- projectionType

Pretransform matrix - setPreTransformMatrix:
- getPreTransformMatrix:
- setU sePreTransformMatrix:
- usesPreTransformMatrix

Eye position manipulation - setEyeAttoward:roll:
- getEyeAttoward:roll:
- moveEyeBy:::
- rotateEyeBy::about:

Clipping planes - setClipPlanesNear:far:
- getClipPlanesNear:far:

Field of view - setFieldOfViewBy Angle:
- setFieldOfViewByFocalLength:
- fieldOfView

Pixel aspect ratio - setPixelAspectRatio:
- pixelAspectRatio

Converting coordinates - convertPoints:countfromSpace:
- convertPoints:counttoWorld:

Frame number - frame Number

Printing - canPrintRIB

Copying RIB - copy RIB Code:

Setting world attributes - worldBegin:
-worldEnd:

Setting and getting the delegate - setDelegate:
- delegate

Classes: N3DCamera 17-19

Setting the hider

Rendering photorealistic ally

Archiving

Instance Methods

addLight:

- addLight:aLight

- hider
- setHider:
- setSurfaceTypeForAll:chooseHider:

- renderAsEPS
- renderAsTIFF
- numCrop Windows
- cropInRects:nRects:

- awake
- read:

't:T7....:.c..
- VV.l.U.\;.

Adds aLight to the N3DCamera's light list and sets it to be a global light. Global lights are
rendered before all other N3DShapes in the scene viewed by the camera; thus, they
potentially illuminate the entire scene (depending on the type of the light). Returns self.

If aLight is in a shape hierarchy, it remains in that hierarchy, and its origin is determined by
any transformations applied by the hierarchy. If not, its origin is the origin of the world
coordinate system.

See also: -lightList, - removeLight:, - setGlobal: (N3DLight), - is Global (N3DLight)

awake

-awake

Invoked after unarchiving to allow the N3DCamera to perform additional initialization.
Returns self.

See also: - read:, - write:

17-20 Chapter f7:3D Graphics Kit

backgroundColor

- (NXColor)backgroundColor

Returns the background color-the color filled behind all drawing, both 2D and 3D,
performed by the camera. The default value is NX_COLORBLACK.

See also: - doesDrawBackgroundColor, - setBackgroundColor:,
- setDrawBackgroundColor:

canPrintRIB

- (BOOL)canPrintRIB

Returns YES. This method is invoked for each View in a View hierarchy when printing to
determine if any RIB needs to be rendered by the PhotoRealistic RenderMan renderer.

convertPoints:count:fromSpace:

- convertPoints:(RtPoint *)points
count: (int)n
fromSpace:aShape

Converts the elements in points, an array of RtPoints specified in the coordinate system of
aShape, to the two-dimensional (Display PostScript) coordinate system of the receiver. On
return, the first two elements of each RtPoint in points represents an x-y coordinate pair in
the receiver's coordinate system; the third element should be ignored. Returns self, and by
reference, the transformed points.

This method may be useful for hit detection, for direct manipulation of N3DShapes
displayed in the N3DCamera, and for positioning PostScript drawing relative to
N3DShapes displayed.

See also: - convertPoints:count:toWorld:

Classes: N3DCamera 17-21

convertPoints:count:toWorld:

- convertPoints:(NXPoint *)mcoords
count: (int)pointCount
toWorld:(RtPoint *)wcoords

Converts each 2D point in mcoords from the receiver's coordinate system to a pair of
3D points in world-coordinates. For each 3D point pair returned in wcoords, the first
point's z-value places it at the near clipping plane, and the second point's z-value places it
at the far clipping plane. wcoords should point to an array of RtPoints large enough to hold
twice pointCount.

Returns self and, by reference in wcoords, the 3D point pairs. A NULL pointer returned in
wcoords indicates that the N3DCamera has been unable to convert the points.

This method may be useful for hit detection, for direct manipulation of N3DShapes
displayed in the N3DCamera, and for positioning shapes relative to PostScript drawing.

See also: - convertPoints:count:fromSpace:

copyRIBCode:

- copyRIBCode:(NXStream *)stream

Copies the RIB code generated by the receiver to stream. Use this method to generate data
for a ".rib" file or an NX_RIBPasteboardType. The RIB code copied to stream includes
that generated by the receiver and by any visible shapes in its world shape's hierarchy.
Returns self.

croplnRects:nRects:

- cropInRects:(NXRect *)theRects nRects:(int)rectCount

Returns self and, by reference in theRects, an array of rectCount rectangles representing
horizontal strips of the camera's area. This method is used by the kit when rendering on
mUltiple rendering hosts. Override this method if you want an N3DCamera's image to be
divided in some other way for rendering on multiple hosts.

See also: - numCrop Windows

17-22 Chapter 17: 3D Graphics Kit

delegate

- delegate

Returns the receiver's delegate. An N3DCamera's delegate will be notified by a
camera:didRenderStream:tag:frameNumber: message when a frame generated by the
render AsEPS or render AsTIFF methods has been rendered.

See also: - render AsEPS, - render AsTIFF,
- camera:didRenderStream:tag:frameNumber: (delegate method)

doesDrawBackgroundColor

- (BOOL)doesDrawBackgroundColor

Returns YES if the background color will be drawn in the bounds rectangle by drawSelf::
before any other rendering or drawing is done in the N3DCamera; returns NO otherwise.
The default return value is YES.

See also: - backgroundColor, - setBackgroundColor:, - setDrawBackgroundColor:

doesFlushRIB

- (BOOL)doesFlushRIB

Returns YES if the N3DCamera's render method flushes the RIB pipeline, waiting to
return until all rendering is complete. RIB is flushed by sending a flushRIB message after
rendering the N3DCamera's global lights, world shape, and shape hierarchy. The default
return value is YES.

See also: - flushRIB, - setFlushRIB:, - render

drawPS::

- drawPS:(NXRect *)rects :(int)nReets

Abstract method for PostScript drawing in an N3DCamera. Override this method rather
than drawSelf:: to do PostScript drawing in an N3DCamera. This method is invoked by
N3DCamera's drawSelf:: method, which passes along its reets and nReets arguments; thus
you can structure the code in this method exactly as you would the code in a View's
drawSelf:: method. PostScript drawing is done "on the glass" in front of any RenderMan
drawing in the view. Returns self.

See also: - drawSelf::, - render, - renderSelf:

Classes: N3DCamera 17-23

drawSelf::

- drawSelf:(const NXRect *)reets :(int)nReets

Overridden by N3DCamera to perform both PostScript and RenderMan drawing each time
the camera is displayed. This method first draws the current background color if the
N3DCamera is set to do so. It then redraws all shapes in the N3DCamera's shape hierarchy,
clipping the rendering to the first rectangle in reets, if any. Finally, it invokes drawPS:: to
do PostScript drawing in the View. Returns self.

Unlike other View subclasses, you don't override this method to do custom drawing in a
su bclass of N3 DCamera. Instead, you override the abstract 111ethod ora w PS::. If you
override this method, be sure to invoke drawSelf:: on super.

See also: - drawPS::, - render, - renderSelf:, - background Color,
- doesDrawBackgroundColor:, - setBackgroundColor:,
- setDrawBackgroundColor:

fieldOfView

- (float)fieldOfView

Returns the field of view for the N3DCamera: the angle in degrees of the viewing frustum.
The default field of view is 40 degrees.

See also: - setFieldOfViewByAngle:, - setFieldOfViewByFocalLength:

flushRIB

- f1ushRIB

Assures that all rendering is completed before execution continues. This method is
comparable to the Application Kit function NXPingO. Returns self.

See also: - doesFlushRIB, - setFlushRIB:

frameNumber
- (int)frameNumber

Returns 1. This method is invoked when rendering to get the value to pass in the
RenderMan RiFrameO function. It's overridden by N3DMovieCamera for multiple frame
animation.

See also: - frameNumber (N3DMovieCamera)

17-24 Chapter 17: 3D Graphics Kit

free

-free

Frees the N3DCamera and its associated storage. Doesn't free the camera's world shape or
list of global lights. Invokes free on super and returns the value returned by that message.

See also: - initFrame:

getClipPlanesNear:far:

- getClipPlanesNear:(float *)aNearPlane far:(float *)aFarPlane

Returns self and, by reference, the distances from the eye point to the clipping planes for
the camera's viewing frustum. aNearPlane and aFarPlane should each be allocated to the
size of a single float. The values returned represent the distance in world coordinates along
a line extending through the eye-to-view-point vector, with the origin (0.0) at the eye point.
The default values are 0.01 (near) and 1000.0 (far). Returns self.

See also: - setClipPlanesNear:far:

getEyeAt:toward:roll:

- getEyeAt:(RtPoint *)eyePoint
toward:(RtPoint *)viewPoint
roll:(float *)rollAngle

Returns self and, by reference in eyePoint and viewPoint, the eye-to-view-point vector.
The values returned are in world coordinates. rollAngle indicates rotation about this vector,
with positive values representing counterclockwise rotation (looking through the camera)
and negative values representing clockwise rotation. The default eyePoint is
(0.0, 0.0, O.O)-the origin of the world coordinate system. The default viewPoint is
(0.0, 0.0, 1.0)-viewing along the z-axis. The default rollAngle is 0.0.

See also: - setEyeAt:toward:roll:

getPreTransformMatrix:

- getPreTransformMatrix:(RtMatrix)theMatrix

Returns self and, in theMatrix, the camera's pretransform matrix. By default, a camera has
no pretransform matrix.

See also: - setPreTransformMatrix:, - setUsePreTransformMatrix:,
- usesPreTransformMatrix

Classes: N3DCamera 17-25

getProjectionRectangle::: :

- getProjectionRectangle:(float *)left
:(float *)right
:(float *)top
:(float *)bottom

Returns self and, by reference in left, right, top, and bottom, the RenderMan screen window
extent. These are the values passed to the RenderMan RiScreen WindowO function when
the camera renders. The default values are -1.0 (left), 1.0 (right), 1.0 (top), and -1.0 (bottom).

See also: - sctProjectionRectangle;;;;

hider

- (N3DHider)hider

Returns the receiver's N3DHider. The returned value represents the technique used to
arrange objects in the N3DCamera's image. The 3D Kit defines three hider types (in the
header file 3Dkitlnext3d.h):

N3D _HiddenRendering
N3D _InOrderRendering
N3D _N oRendering

See "Determining Rendering Order" in the class description for a discussion of the
hider types.

See also: - setHider:

init

- init

Invokes initFrame: with NULL as the argument.

See also: - initFrame:

17-26 Chapter 17: 3D Graphics Kit

initFrame:

- initFrame:(const NXRect *)fRect

Initializes the N3DCamera by first invoking initFrame: on super, then setting instance
variables and starting the context for 3D rendering with Interactive RenderMan.

This method sets the N3DCamera's context token to that of the N3DContextManager's
main context. It allocates a default world shape, sets the background color to
NX_ COLORBLACK, sets the global window number to zero, and sets the projection type
to N3D_Perspective. It sets the eye point to (0.0, 0.0, 0.0) and sets the view point to
(0.0, 0.0, 1.0). This aims the camera directly along the z-axis from the origin of world
coordinates, the RenderMan default for camera position. It sets the near clipping plane to
0.01 and the far clipping plane to 1000.0.

This method is the designated initializer for N3DCamera. Returns self.

See also: - initFrame: (View)

IightList

-lightList

Returns the List object that manages the N3DCamera's global light sources-N3DLight
objects that illuminate the entire scene viewed by the camera. N3DCamera allocates this
list lazily, the first time you invoke addLight:. You may want to get at objects in this list
for certain lighting effects-like turning lights on or off. You shouldn't add objects to or
remove objects from this list using List methods; instead use N3DCamera's addLight: and
removeLight: methods.

See also: - addLight:, - removeLight:, - isGlobal (N3DLight),
- setGlobal: (N3DLight)

lockFocus

- (BOOL)lockFocus

Locks PostScript focus on the View, then invokes the RenderMan RiDisplayO function to
focus rendering on the window and frame buffer in which the camera is drawn. It also
recalculates the projection rectangle to assure that 3D rendering occurs within the correct
camera coordinate system. Returns the value returned by super's lockFocus.

See also: - unlockFocus

Classes: N3DCamera 17-27

moveBy::

- moveBy:(NXCoord)deltaX :(NXCoord)deltaY

Overridden to ensure that adjustments to the camera's two-dimensional (PostScript)
coordinate system are reflected in its three-dimensional (RenderMan) coordinate system.

This method repositions the view within its superview's coordinate system by invoking
super's moveBy:: method. It then recalculates the 3D coordinate system by invoking
RiDisplayO and adjusting the projection rectangle to match the new extent of the 2D
coordinate system. Returns self.

See aiso: - moveTo::

moveEyeBy:::

- moveEyeBy:(float)sDistance :(float)tDistance :(float)uDistance

Moves the camera along its own axes. sDistance determines the horizontal movement,
tDistance determines vertical movement, and uDistance determines movement along the
axis defined by the eye-to-view-point vector. See the class description for an illustration of
these camera axes. Returns self.

See also: - moveBy::, - moveTo::

moveTo::

- moveTo:(NXCoord)x :(NXCoord)y

Overridden to ensure that adjustments to the camera's two-dimensional (PostScript)
coordinate system are reflected in its three-dimensional (RenderMan) coordinate system.

This method repositions the view within its superview's coordinate system by invoking
super's moveTo:: method. It then recalculates the 3D coordinate system by invoking
RiDisplayO and adjusting the projection rectangle to match the new origin of the 2D
coordinate system. Returns self.

See also: - moveBy::

17-28 Chapter f7:3D Graphics Kit

numCropWindows

- (int)numCropWindows

Returns the number of horizontal rectangles that the camera image will be divided into for
PhotoRealistic RenderMan rendering on multiple hosts. This method is invoked by the 3D
Kit when printing; the return value is determined by the number of rendering hosts selected.

Override this method if you want the N3DCamera's image to be rendered in some other
number of rectangles. You might, for example, want the user to be able to select the number
and size of divisions of an image to be rendered.

See also: - croplnRects:nRects:, - numSelectedHosts (N3DRenderPanel)

pixelAspectRatio

- (float)pixeIAspectRatio

Returns the pixel aspect ratio for the N3DCamera. The default value is 1.0.

See also: - setPixelAspectRatio:

projection Type

- (N3DProjectionType)projectionType

Returns the projection type for the N3DCamera. The projection type may be either
N3D_Perspective (the default) or N3D_Orthographic, defined in the header file
3Dkitlnext3d.h.

See also: - setProjection:

read:

- read:(NXTypedStream *)stream

Reads an instance of N3DCamera from stream. Returns self.

See also: - awake, - write:

Classes: N3DCamera 17-29

removeLight:

- removeLight:aLight

Removes aLight from the N3DCamera's light list by invoking List's removeObject:
method and sending aLight a setGlobal: message with NO as the argument. Returns self.

See also: - addLight:, - IightList

render

- render

Renders the camera, its world shape, and any shapes in the world shape's hierarchy. This
method is invoked by N3DCamera's drawSelf:: method to perform 3D rendering
whenever the camera is displayed. Invoke this method directly if you want the camera to
perform only 3D drawing; be sure to lock focus on the camera before invoking render
directly from your code.

This method clips 3D rendering to the rectangle returned by getVisibleRect:. It calls
RiFrameBeginO, invoking the camera's frameNumber method for the argument to this
function. It sets up the projection type and applies the camera's transformations, then
invokes the woridBegin: method on self. It then does camera-specific rendering by
invoking the camera's renderSelf: method, and renders the world shape, its descendants,
and peers by invoking render: on the world shape. After rendering, it invokes worldEnd:,
calls RiFrameEndO, and returns self.

See also: - getPreTransformMatrix:, - setPreTransformMatrix:, - frameNumber,
- worldBegin:, - woridEnd:

renderAsEPS

- (int)renderAsEPS

Begins photorealistic rendering of the camera's image, and returns a unique integer tag by
which the N3DCamera's delegate can identify the rendering job. This method runs the
Render panel before rendering begins. The resulting image contains both PostScript and
RenderMan drawing.

17-30 Chapter 17: 3D Graphics Kit

A photorealistic image is rendered by a separate process and can take some time to complete.
The 3D Kit runs the PhotoRealistic RenderMan renderer asynchronously, and signals the
N3DCamera's delegate when EPS image data has been generated, using the delegate's
camera:didRenderStream:tag:frameNumber: method. The arguments to this method
include a tag corresponding to that returned by renderAsEPS when the rendering began, the
camera that initiated the rendering, and a stream containing the EPS image.

See also: - render AsTIFF, - camera:didRenderStream:tag:frameNumber:
(delegate method)

renderAsTIFF

- (int)render AsTIFF

Begins photorealistic rendering of the camera's image, and returns a unique integer tag
by which the N3DCamera's delegate can identify the rendering job. This method runs
the Render panel before rendering begins. The resulting image contains only
RenderMan drawing.

A photorealistic image is rendered by a separate process and can take some time to complete.
The 3D Kit runs the PhotoRealistic RenderMan renderer asynchronously, and signals the
N3DCamera's delegate when TIFF image data has been generated, using the delegate's
camera:didRenderStream:tag:frameNumber: method. The arguments to this method
include a tag corresponding to that returned by render AsTIFF when the rendering began,
the camera that initiated the rendering, and a stream containing the TIFF image.

See also: - renderAsEPS, - camera:didRenderStream:tag:frameNumber: (delegate
method)

renderSelf:

- renderSelf:(RtToken)context

Does nothing, returns self. Override this abstract method to do camera-specific rendering
in the N3DCamera. This method is invoked by N3DCamera's render method before the
shapes in the world shape's hierarchy are rendered.

See also: - drawPS::, - drawSelf::, - render

Classes: N3DCamera 17-31

rotate By:

- rotateBy:(NXCoord)deltaAngle

Overridden by N3DCamera to prevent the view's 2D (PostScript) coordinate system from
being rotated. Does nothing, returns self.

See also: - rotateTo:

rotateEyeBy: :about:

- rotateEyeBy:(float)dElev :(float)dAzim about:(RtPoint)pivotPtr

Rotates the camera horizontally and vertically about the pivot point. This method performs
this rotation by first performing an s-axis (horizontal) rotation by dElev, followed by a
t-axis (vertical) rotation by dAzim of the eye vector. Both rotations are about pivotPtr, an
RtPoint specified in world coordinates. See the class description for an illustration of the
camera axes. Returns self.

See also: - moveEyeBy:::

rotateTo:

- rotateTo:(NXCoord)angle

Overridden by N3DCamera to prevent the 2D (PostScript) coordinate system from being
rotated. Does nothing and returns self.

See also: - rotateBy:

selectShapesln:

- selectShapesln:(const NXRect *)selectionRect

Returns a List object containing N3DShapes visible in selectionRect. Only shapes that
return YES in response to isSel~ctable are included in the List. selectionRect is in the 2D
(PostScript) coordinate system of the receiving camera.

See also: - isS electable (N3DShape class), - setSelectable: (N3DShape class)

17-32 Chapter f7:3D Graphics Kit

setBackgroundColor:

- setBackgroundColor:(NXColor)color

Sets the background color of the N3DCamera. The background color is drawn behind all
other drawing-both RenderMan and PostScript-if the clearFrame flag is set. By
default, the background color is NX_COLORBLACK. Returns self.

See also: - background Color, - doesDrawBackgroundColor,
- setDrawBackgroundColor:

setClipPlanesNear:far:

- setClipPlanesNear:(float)aNearPlane far:(float)aFarPlane

Sets the distances from the eye point to the clipping planes for the camera's viewing
frustum. aNearPlane and aFarPlane represent distances from the eye point along a line
extending through the eye-to-view-point vector. RI_EPSILON (a constant defined in the
header file rilri.h) is the minimum value allowed for either argument; if either is smaller,
RI_EPSILON is substituted. RI_INFINITY (also defined in rilri.h) is the maximum value
allowed for either argument; if either is larger, RI_INFINITY is substituted. aNearPlane
should always be less than aFarPlane-no 3D drawing can appear in the camera otherwise.
Returns self.

See also: - getClipPlanesNear:far:

setDelegate:

- setDelegate:theDelegate

Sets the N3DCamera's delegate. theDelegate implements the method
camera:didRenderStream:tag:frameNumber:, the method for getting photorealistic
images rendered by render AsEPS and render AsTIFF methods. Returns self.

See also: - delegate

setDrawBackgroundColor:

- setDrawBackgroundColor:(BOOL)jlag

Ifjlag is YES, the background color will be drawn in the bounds rectangle before any other
drawing is done in the N3DCamera. Returns self.

See also: - background Color, - doesDrawBackgroundColor,
- setBackgroundColor:

Classes: N3DCamera 17-33

setEyeAt:toward:roll:

- setEyeAt:(RtPoint)fromPoint
toward: (RtPoint)toPoint
roll: (float)aRollAngle

Establishes the eye-to-view-point vector. toPoint is made the camera's view point, and
fromPoint is set as the eye point. The standard camera transformation is then applied to
rotate the camera by aRollAngle degrees around its eye-to-view-point vector. See the class
description for a discussion of the camera coordinates and the eye-to-view-point vector.
Returns self.

See also: - getEyeAt:toward:roll:

setFieldOfViewBy Angle:

- setFieldOfViewBy Angle: (float)viewAngle

Sets the field of view to viewAngle, the angle of the camera's viewing frustum in degrees.
viewAngle should be between ° and 180 degrees. Returns self.

See also: - fieldOfView, - setFieldOfViewByFocalLength:

setFieldOfViewByFocalLength:

- setFieldOfViewByFocaILength:(float)aFocaILength

Calculates and sets the field of view as a function of focal length: the distance between the
projection rectangle (the screen window in RenderMan terminology) and the eye point.
The RenderMan standard actually fixes a camera's focal length at 1.0. Thus, if
aFocalLength is greater than 1.0, this method zooms the camera's lens; ifless than 1.0, this
method widens the camera's lens. This method achieves the effect of setting focal length
by calculating the N3DCamera'sfield of view from aFocalLength. Returns self.

See also: - fieldOfView, - setFieldOfViewByAngle:

setFlushRIB:

- setFlushRIB:(BOOL)jlag

Ifjlag is YES, the camera's render method sends a flushRIB message to self after the
camera and world shape hierarchy have been rendered. Returns self.

See also: - doesFlushRIB, - flushRIB

17-34 Chapter 17: 3D Graphics Kit

setFrame:

- setFrame:(const NXRect *)fRect

Overridden to ensure that adjustments to the camera's two-dimensional (PostScript)
coordinate system are reflected in its three-dimensional (RenderMan) coordinate system.

This method repositions and resizes the view within its superview's coordinate system by
invoking super's setFrame: method. It then recalculates the 3D coordinate system by
invoking RiDisplayO and adjusting the projection rectangle to match the new extent of the
2D coordinate system. Returns self.

setHider:

- setHider:(N3DHider)theHider

Sets the receiver's N3DHider. theHiderrepresents the technique used to arrange objects in
the N3DCamera's image. The 3D Kit defines three N3DHider types in the header file
3Dkitlnext3d.h:

N3D _HiddenRendering
N3D _InOrderRendering
N3D _NoRendering

See "Determining Rendering Order" in the class description for a discussion of the
hider types.

See also: - hider

setPixelAspectRatio:

- setPixelAspectRatio: (float)theRatio

Sets the receiver's pixel aspect ratio to theRatio. The ratio for images rendered on most
displays and printers is l.O-the default setting. Use this method when rendering images
for output on devices with non-square pixels. Values less than 1.0 indicate horizontal
stretching of the pixel; values greater than 1.0 indicate vertical stretching. Returns self.

See also: - pixelAspectRatio

Classes: N3DCamera 17·35

setPre TransformMatrix:

- setPreTransformMatrix:(RtMatrix)theMatrix

Sets the N3DCamera's pretransform matrix. theMatrix represents a 3D transformation that
will be applied to the camera before its transform matrix is applied. Returns self. . .

See also: - getPreTransformMatrix:, - setUsePreTransformMatrix:,
- usesPreTransformMatrix

setProjection:

- setProjection:(N3DProjectionType)aProjection

Sets the projection type for the N3DCamera. aProjection may be N3D_Perspective or
N3D _Orthographic; these are defined in the header file 3Dkitlnext3d.h. Returns self.

See also: - projection Type

setProjectionRectangle::: :

- setProjectionRectangle: (float)left

: (float) right
: (float) top
: (float)bottom

Sets the camera's projection rectangle (the screen window in RenderMan terminology).
These values are used in calls to the RenderMan RiScreen WindowO function when
rendering and when converting points between the camera coordinate system and other
coordinate systems. Returns self.

See also: - getProjectionRectangle::::

17-36 Chapter 17: 3D Graphics Kit

setSurfaceTypeForAII:chooseHider:

- setSurfaceTypeForAIl:(N3DSurfaceType)surjace chooseHider:(BOOL)flag

Sets the surface type for all shapes in the world shape's hierarchy. surface may be one of
the N3DSurfaceTypes, defined in the header file 3Dkitlnext3d.h:

N3D _PointCloud
N3D _ WireFrame
N3D _ShadedWireFrame
N3D _FacetedSolids
N3D _SmoothSolids

Ifflag is YES, this method chooses the hider type most appropriate to surface:
N3D _In Order for N3D _PointCloud, N3D _ WireFrame, and N3D _ShadedWireFrame;
N3D _HiddenRendering for N3D _FacetedSolids and N3D _SmoothSolids.

setUsePreTransformMatrix:

- setUsePreTransformMatrix:(BOOL)flag

If flag is YES, sets the receiver to apply its pretransform matrix before applying its
transform matrix. When pretransformation is applied to the camera, it is transformed by
the pretransform matrix and then by the transform matrix. By default, a camera has no
pretransform matrix. Use the setPreTransformMatrix: method to set the pretransform
matrix, then use this method to apply that matrix.

, ,

See also: - getPreTransformMatrix:, - setPreTransformMatrix:,
- usesPreTransformMatrix

setWorldShape:

- setWoridShape:a3DShape

Sets the receiver's world shape to a3DShape. Returns the previous world shape. This
method doesn't apply the surface type set for the world shape and its hierarchy by a
previous call to setSurfaceTypeForAIl:chooseHider:-you must do so explicitly by again
invoking that method.

See also: - setSurfaceTypeForAIl:chooseHider:, - worldShape

Classes: N3DCamera 17-37

sizeBy::

- sizeBy:(NXCoord)deltaWidth :(NXCoord)deltaHeight

Overridden to ensure that adjustments to the camera's 2D (PostScript) coordinate system
are reflected in its 3D (RenderMan) coordinate system.

This method repositions and resizes the view within its superview's coordinate system by
invoking super's sizeBy:: method. It then recalculates the 3D coordinate system by
invoking RiDisplayO and adjusting the projection rectangle to match the new extent of the
2D coordinate system. Returns self.

See also: - sizeTo::

sizeTo::

- sizeTo:(NXCoord)width :(NXCoord)height

Overridden to ensure that adjustments to the camera's 2D (PostScript) coordinate system
are reflected in its 3D (RenderMan) coordinate system.

This method resizes the view within its superview's coordinate system by invoking super's
sizeBy:: method. It then recalculates the 3D coordinate system by invoking RiDisplayO
and adjusting the projection rectangle to match the new extent of the 2D coordinate system.
Returns self.

See also: - sizeBy::

unlockFocus

- unlockFocus

Disables 3D rendering in the camera, then sends an unlockFocus message to super,
returning the value returned by that message.

See also: -lockFocus, - drawPS:, - drawSelf::, - renderSelf:, - render

17-38 Chapter 17: 3D Graphics Kit

usesPreTransformMatrix

- (BOOL)usesPreTransformMatrix

Returns YES if the receiver applies its pretransform matrix before applying its transform
matrix. Returns NO if the receiver applies only its transform matrix. By default,
N3DCamera applies only the transform matrix.

See also: - getPreTransformMatrix:, - setPreTransformMatrix:,
- setUsePreTransformMatrix

world8egin:

- woridBegin:(RtToken)theContext

Calls the RenderMan function RiWoridBeginO. Override this method to place other
RenderMan function calls before RiWoridBeginO. Returns self.

You need to override this method to declare macros for use in photorealistic rendering.
Macros are declared between the RenderMan procedures RiMacroBeginO and
RiMacroEndO·

One simple use of macros in the 3D Kit is to have a world shape load a RIB file as a macro.
To do so, you could implement the following createRIBMacro method in your N3DShape
subclass, and invoke it when setting the camera's world shape:

char *ribFile; /* name of source file for RIB code */
RtToken ribFileResource, ribMacro; /* tokens for file and macro */

- createRIBMacro

ribFileResource = RiResource(ribFile, RI_ARCHIVE, RI_FILEPATH,
&ribFile, RI_NULL);

ribMacro = RiMacroBegin(ribFile, RI_NULL)i
RiReadArchive(ribFileResource, NULL, RI_NULL);
RiMacroEnd() ;
return self;

Your N3DShape's renderS elf: method would be implemented as follows:

- renderSelf:camera

RiMacroInstance(ribMacro, RI_NULL);
return self;

Classes: N3DCamera 17-39

However, the macro would be valid only in the Interactive Renderer context-that is, in the
display context. To apply the macro when printing, you'd write a worldBegin: method like
this:

- worldBegin: (RtToken) context

[super worldBegin:context];

if (NXDrawingStatus != NX_DRAWING)

[worldShape createRIBMacro];

return self;

You can also override worldBegin: to call RenderMan functions for setting camera
options-such as RiDepthOfFieldO, RiShutterO, RiExposureO, and so on. Options are
declared before the RiWorldBeginO call, so a worldBegin: method to set depth of field
would be coded as follows:

- worldBegin: (RtToken) context

RiDepthOfField(myFstop, myFocalLength, myFocalDistance);

[super worldBegin:context] ;

return self

See also: - worldEnd:

worldEnd:

- worldEnd:(RtToken)theContext

Calls the RenderMan procedure RiWorldEndO. You can override this method to clean up
after a camera has rendered.

See also: - worldBegin:

worldShape

- worldShape

Returns the N3DCamera's world shape. By default, the camera allocates an N3DShape as
its world shape.

See also: - setWorldShape:

17-40 Chapter 17: 3D Graphics Kit

write:

- write:(NXTypedStream *)stream

Writes the receiving N3DCamera to stream. Returns self.

See also: - read:

Methods Implemented by the Delegate

camera:didRenderStream:tag:frameNumber:

- camera:theCamera
didRenderStream:(NXStream *)imageStream
tag: (int)theJob
frameNumber:(int)currentFrame

Invoked by the 3D Kit when PhotoRealistic RenderMan rendering finishes. Your
application initiates photorealistic rendering by invoking N3DCamera's renderAsEPS
or renderAsTIFF method. Each time one of these methods is invoked, it returns a unique
integer. The delegate can compare this number with the integer tag theJob to identify a
rendering job.

Your delegate can handle the image returned by imageStream in a number of ways. It can,
for example, write imageStream to a file or use it to initialize an NXImage:

- camera:theCamera didRenderStream: (NXStream *)imageStream

tag: (int)theJob frameNumber: (int)currentFrame

myImage = [[NXImage alloc] initFromStream:imageStream];

return self;

currentFrame represents the number returned by the initiating camera's frameNumber
method. If the Camera is an N3DMovieCamera or subclass thereof, the rendering methods
will produce all the frames for the scene; thus currentFrame reflects the frame number of
the image being returned. If theCamera is an N3DCamera or subclass (other than
N3DMovieCamera), the rendering methods produce a single frame; thus, currentFrame is
usually 1.

Photoreal rendering can take some time. If an application exits before a rendering job is
finished, this method won't be called and the rendered image will be lost.

See also: - frameNumber, - renderAs~PS, - renderAsTIFF

Classes: N3DCamera 17-41

N3DContextManager

Inherits From: Object

Declared In: 3DkitIN3DContextManager.h

Class Description

N3DContextManager creates and manages the Interactive RenderMan contexts for all
applications using the 3D Graphics Kit. It establishes an application's main connection to
the Interactive RenderMan renderer in the Window Server, and releases it when done. It
also establishes and releases other interactive rendering contexts on request.

You will rarely need to use this class directly. The 3D Kit-through N3DCamera and
N3DImageRep-establishes contexts for interactive rendering as needed.

A context is the portion of a RenderMan program contained within the RiBeginO and
RiEndO calls. Thus, each time a new context is created, an RiBeginO function call is sent
to the Interactive RenderMan renderer. Each time a context is destroyed, an RiEndO
function call is sent.

An application has only one N3DContextManager object and only one main context. The
main context is the context by which the application usually interacts with the Interactive
RenderMan renderer. An application's context manager is instantiated and the main
context is created the first time an N3DCamera is instantiated. You can get the main context
at any time, whether or not it existed previously, with the message:

[[N3DContextManager new] mainContext]

You can create additional contexts for other purposes-for example, for printing or saving
RIB output from the program in a file. Each new context created this way is entered into a
HashTable of contexts used by the application. You refer to contexts using the token
returned by one of the create ... methods, or using the name passed to one of those methods.

Interactive RenderMan provides for switching between multiple execution contexts with
the RiContextO function. Each time the context is set with one of the
N3DContextManager methods, an RiContextO call is sent to the renderer.

17-42 Chapter 17: 3D Graphics Kit

Instance Variables

RtToken mainContext;
id contextTable;
RtToken currentContext;

mainContext

contextTable

currentContext

Method Types

Initializing and freeing

Getting the main context

Creating other contexts

Main context

Hash table of contexts

Currently selected context

+ new
- free

- mainContext

- createContext:
- createContext:withRenderer:
- createContext:toFile:

Managing the current context - currentContext
- setCurrentContext:
- setCurrentContextBy Name:

Destroying a context - destroyContext:
- destroyContextByName:

Archiving - awake
- read:
- write:

Class Methods

new

+ new

Creates, if necessary, and returns the N3DContextManager for an application. Each
application has one and only one N3DContextManager instance, which handles creating,
switching, and destroying all Interactive RenderMan contexts for an application.

Classes: N3DContextMonoger 17-43

Instance Methods

awake

-awake

Initializes the receiver, a newly unarchived instance of N3DContextManager.

createContext:

- (RtToken)createContext:(const char *)contextName

Creates and returns the token for a new Interactive RenderMan context with the name
contextName. The new context is entered into the Interactive RenderMan context
dictionary and made the current context. This method works by invoking
createContext:withRenderer: with RI_DRAFT as the renderer argument. If a new
context cannot be created for any reason, RI_NULL is returned and the current context
remains as before.

See also: - createContext:withRenderer:, - createContext:toFile:

createContext:toFile:

- (RtToken)createContext:(const char *)contextName
toFile:(const char *)ribFile

Creates and returns the token for an archiving context with the name contextName. The
new context is created and entered into the Interactive RenderMan context dictionary. If
you pass a null pointer as contextName, a unique string is created for the context name.

ribFile should be a full pathname, including a ".rib" extension. If ribFile doesn't exist, it
is created; if ribFile does exist, it is overwritten. If ribFile is NULL, the context will be
opened on a file ri.rib in the application's executable file directory.

When a context is created with this method, making it the current context causes the
Interactive RenderMan renderer to send subsequent RIB code from the application to
the file ribFile.

If a new context cannot be created for any reason, RI_NULL is returned.

See also: - createContext:, - createContext:withRenderer:

17-44 Chapter 17: 3D Graphics Kit

createContext:toStream:

Does nothing, returns NULL. This method is not implemented for NeXTSTEP Release 3.

See also: - createContext:, - createContext:withRenderer:, - createContext:toFile:

createContext:withRenderer:
- (RtToken)createContext:(const char *)contextName

withRenderer: (RtToken) renderer

Creates and returns the token for a new Interactive RenderMan context with the name
contextName. The new context is entered into the Interactive RenderMan contexts
dictionary and made the current context. If you pass a null pointer as contextName, a
unique string is created for the context name. If a new context cannot be created for any
reason, RI_NULL is returned and the current context remains as before.

renderer can be RI_DRAFT or RI_ARCHIVE. The RI_DRAFT renderer is used to
display interactive rendering; you can create an RI_DRAFT context using the
createContext: method. The RI_ARCHIVE renderer is used to archive RIB code; you
can create an RI_ARCHIVE context using the method createContext:toFile:.

See also: - createContext:, - createContext:toFile:

currentContext
- (RtToken)currentContext

Returns the token for the current Interactive RenderMan context.

destroyContext:
- (void)destroyContext:(RtToken)aContext

Destroys aContext by making it the current Interactive RenderMan context, sending an
RiEnd() function call to the Interactive RenderMan renderer, then removing a Context from
the N3DContextManager's context table. If aContext was the current context, the current
context is set to NULL. If another context was the current context, it's reset as the
current context.

See also: - createContext:, - createContest:toFile:, - createContext:withRenderer:

Classes: N3DContextManager 17-45

destroyContextByName:

- (void)destroyContextByName:(const char *)contextName

Destroys the Interactive RenderMan context referred to by contextName by making it the
current Interactive RenderMan context, sending an RiEndO function call to the Interactive
RenderMan renderer, then removing contextName from the N3DContextManager's
context table. If the destroyed context was the current context, current context is set to
NULL. If another context was the current context, it is reset as the current context.

See also: - createContext:, - createContest:toFile:, - createContext:withRenderer:

free

-free

Frees the receiving N3DContextManager after destroying all Interactive RenderMan
contexts the manager has created. Returns nil.

mainContext

- (RtToken)mainContext

Returns the token for the main Interactive RenderMan context. If the main context doesn't
exist yet, this method creates it and makes it the current context.

read:

- read:(NXTypedStream *)stream

Reads the receiver from the typed stream stream. Returns self.

See also: - awake, - write:

setCurrentContext:

- (RtToken)setCurrentContext:(RtToken)aContext

Sets the current Interactive RenderMan context to be aContext (if that context is valid).
Returns the token for the former current context.

17-46 Chapter 17: 3D Graphics Kit

setCurrentContextByName:
- (RtToken)setCurrentContextByName:(const char *)contextName

Sets the current Interactive RenderMan context to be the context named contextName (if it
is a valid context). Returns the token for the former current context.

write:
- write:(NXTypedStream *)stream

Writes the receiver to the typed stream stream. Returns self.

See also: - awake, - read:

Classes: N3DContextManager 17-47

N3DLight

Inherits From:

Declared In:

Ciass uescription

N3DShape : Object

3DkitIN3DLight.h

N3DLight is a subclass of N3DShape that acts as a cover for the RenderMan
RiLightSourceO function. Like other members of the N3DShape family, an N3DLight can
be positioned in a 3D coordinate system and managed as part of a shape hierarchy. When
called on to render itself, an N3DLight invokes the RiLightSourceO function. By this
means, an N3DLight applies its lighting effects to its descendants and their peers.

Setting the Light Type

A light's type can be set to one of four enumerated values (defined in the header file
3Dkit/next3d.h), illustrated in the following figures:

Figure 17-4. N3D_AmbientLight illuminates all surface evenly

17-48 Chapter 17: 3D Graphics Kit

Figure 17-5. N3D_DistantLight illuminates directionally with no falloff over distance

Figure 17-6. N3D_PointLight illuminates from a single point with falloff over distance

Figure 17-7. N3D _SpotLight illuminates from a single point with falloff over both
distance and angle

Classes: N3DLight 17-49

Each of these types corresponds to an RiLightSourceO type parameter:

N3D _AmbientLight
N3D _DistantLight
N3D _PointLight
N3D _SpotLight

"ambientlight"
"distantlight"
"pointlight"
"spotlight"

The other parameters used in the RiLightSourceO function call are set using N3DLight
methods. Not all parameters apply to all light types: see the method descriptions for
specifics on which settings apply to which light types. See The RenderMan Companion
for more on light types and other parameters used by the RiLightSourceO function.

Note: N3DLight parameters that specify angles are measured in degrees, not radians.

Lights in the Shape Hierarchy

Because N3DLight is a subclass of N3DShape, it inherits methods for positioning its
instances at any point in space. To do so, you add an N3DLight object to the appropriate
position in a shape hierarchy, then apply transformations to position it relative to other
N3DShapes. By doing so, you can associate the light source with particular surfaces in
a scene.

Global and Local Lights

By adding an N3DLight to a camera's global light list, a light source can be made to
illuminate all the shapes in a scene. A light that isn't in a camera's global light list remains
a local light, illuminating only its descendants and their peers. A light can be in both a
shape hierarchy-giving it a position in relation to other objects in a scene-and in a
camera's global light list. Alternatively, you can add an instance ofN3DLight to the global
light list without placing it in a shape hierarchy. A light managed in this way has its origin
at the origin of the world coordinate system; any transformations applied will position the
light relative to this coordinate system.

Use N3DCamera's addLight: method to place a light in a camera's global light list.

Instance Variables

RtToken lightHandle;
N3DLightType type;

RtPoint from;
RtPoint to;

17-50 Chapter 17: 3D Graphics Kit

NXCoior color;
RtFloat intensity;
RtFloat coneangle;
RtFloat conedelta;
RtFloat beamdistribution;
struct {

unsigned int global : 1;

unsigned int on : 1;

} lightFlags;

lightHandle

type

from

to

color

intensity

coneangle

conedelta

beamdistribution

lightFlags.global

lightFlags.on

Method Types

Initializing

Setting light type

RenderMan handle for the light

Type of light source

Position of the light relative to its origin

Direction of a directional light

Color of the light

Intensity of the light

Angle of distribution of a spotlight

Angle at which a spotlight begins to falloff

Smoothness of a spotlight's angular falloff

YES if the light is turned on by N3DCamera

YES if the light is on

- init

- setType:
-type
- makeAmbientWithIntensity:
- makePointFrom:intensity:
- makeDistantFrom:to:intensity:
- makeSpotFrom:to:coneAngle:coneDelta:

beamDistribution:intensity:

Classes: N3DLight 17-51

Setting light parameters

Rendering

Glohal

Switching on and off

Setting color

Archiving

Instance Methods

awake

-awake

- setFrom:
- setFrom:to:
- getFrom:to:
- setConeAngle:coneDelta:beamDistribution:
- getConeAngle:coneDelta: beamDistribution:
- setIntensity:
- intensity

- renderSelf:
- renderGlobal:

- setGlobal:
- isGlobal

- switchLight:

- setColor:
- color

- read:
- write:
- awake

Invoked after unarchiving to allow the N3DLight to perform additional initialization.
Returns self.

See also: - read:, - write:

color

- (NXColor)color

Returns the light's color. The default value is NX_COLORWHITE.

See also: - setColor:

17-52 Chapter 17: 3D Graphics Kit

getConeAngle:coneDelta:beamDistribution:

- getConeAngle:(RtFloat *)coneAngle coneDelta:(RtFloat *)deltaAngle
beamDistribution: (RtFloat *)distribution

Returns self and, by reference, the values for the unique parameters of a spotlight. See
makeSpotFrom:to:coneAngle:coneDelta: beamDistribution:intensity: for a description
and illustration of these parameters. By default, coneAngle is 30.0 degrees, deltaAngle is
5.0 degrees, and distribution is 2.0.

See also: - makeSpotFrom:to:coneAngle:coneDelta: beamDistribution:intensity:,
- setConeAngle:coneDelta: beamDistribution:

getFrom :to:

- getFrom:(RtPoint *)fromPoint to:(RtPoint *)toPoint

Returns self and, by reference, the values of the parameters defining the direction of a
distant light or spot light. fromPoint represents the RiLightSourceO from parameter and
toPoint represents the to parameter. If the receiver is a point light, fromPoint represents the
value of the from parameter, and toPoint may be disregarded. The default settings are
(0.0, 0.0, 0.0) for fromPoint and (0.0, 0.0, 1.0) for toPoint.

init

- init

Initializes and returns the receiver, a newly created instance ofN3DLight. Creates the light
handle used by the RenderMan renderer, and sets the new light's instance variables to the
RenderMan parameter default values. The default type is N3D_AmbientLight, while the
other settings are:

intensity
color
from
to
coneAngle
coneDeltaAngle
beamDistribution

1.0
NX_COLORWHITE
(0.0,0.0,0.0)
(0.0,0.0,1.0)
30 degrees
5 degrees
2.0

Since the default type is N3D _AmbientLight, the last 5 settings are stored but ignored when
the light is rendered.

Classes: N3DLight 17-53

intensity

- (RtFloat)intensity

Returns the intensity of the N3DLight. RenderMan light sources are usually set to values
between 0.0 and 1.0. By default, the intensity is set to 1.0.

See also: - setIntensity:

isGlobal

- (BOOL)isGlobal

Returns YES if the receiver is a global light. Global lights are kept in an N3DCamera's light
list; they can illuminate the entire scene viewed by the camera. Because N3DLight is a
subclass of N3DShape, global N3DLights can be positioned in a scene and associated with
specific N3DShapes by placement in the shape hierarchy. Returns NO if the receiver isn't
global; a nongloballight illuminates only its descendants and their peers. A light's global
status is set when N3DCamera's addLight: and removeLight: methods are invoked.

By default, an N3DLight isn't global.

See also: - addLight: (N3DCamera), - removeLight: (N3DCamera),
-lightList (N3DCamera), - renderGlobal:, - setGlobal:

makeAmbientWithlntensity:

- makeAmbient Withlntensity: (RtFloat) intensity

Changes the type of the receiver to ambient (N3D _AmbientLight) and sets its intensity to
intensity. Returns self.

See also: - intensity

makeDistantFrom:to:intensity:

- makeDistantFrom:(RtPoint)jromPoint
to: (RtPoint)toPoint
intensity: (RtFloat)intensity

Changes the type of the receiver to N3D_DistantLight, then sets the light's from point, to
point, and intensity. Returns self.

See also: - getFrom:to:, - intensity

17-54 Chapter 17: 3D Graphics Kit

makePointFrom:intensity:

- makePointFrom: (RtPoint)from intensity : (RtFloat)intensity

Changes the type of the receiver to N3D_PointLight, then sets the light's from point and
the intensity. Returns self.

makeSpotFrom:to:coneAngle:coneDelta:beamDistribution:intensity:

- makeSpotFrom:(RtPoint)fromPoint
to: (RtPoint)toPoint
coneAngle:(RtFloat)coneAng Ie
coneDelta:(RtFloat)deltaAngle
beamDistribution: (RtFloat)distribution
intensity: (RtFloat)intensity

Changes the type of the receiver to N3D_SpotLight, then sets the light's from point, to
point, cone angle, cone delta, beam distribution, and intensity. coneAngle is the angle of
distribution of the light in degrees: the angle between the center of the area covered by the
light and the edge of the light's coverage. deltaAngle is the angle (also in degrees) at
which the light's beam begins to fall off. distribution is a factor that determines the rate
of falloff. (These parameters are described in greater detail in The RenderMan
Companion.) Returns self.

cone angle

cone delta

Figure 17-8. N3D_SpotLight's cone angle and cone delta

See also: - getConeAngle:coneDelta: beamDistribution:

Classes: N3DLight 17-55

read:

- read:(NXTypedStream *)stream

Reads the receiver from the typed stream stream. Returns self.

See also: - awake, - write:

renderGlobal:

- renderGlobal:(N3DCamera *)theCamera

Renders the N3DLight as a global light. renderGlobal: is sent to all lights in an
N3DCamera's global light list before the world shape is sent a renderSelf: message.
Override this method to do unique rendering with a global light:

renderGlobal: (N3DCamera *)camera

/* rendering before the global light is rendered */

[super renderGlobal:camera];

/* rendering after the global light is rendered */

return self;

Returns self.

renderSelf:

- renderSelf:(N3DCamera *)theCamera

Renders an N3DLight at its position in the shape hierarchy. If the receiver is global, this
method does nothing; otherwise, it uses the parameters set for the light in a call to the
RenderMan RiLightSourceO function. Override this method to do unique rendering with
a local light. Returns self.

setColor:

- setColor:(NXColor)theColor

Sets the receiver's color. If the Color contains an alpha component, that component is
ignored. Returns self.

See also: - color

17 -56 Chapter 17: 3D Graphics Kit

setConeAngle:coneDelta:beamDistribution:

- setConeAngle:(RtFloat)coneAngle
coneDelta: (RtFloat)coneDelta
beamDistribution:(RtFloat)distribution

Sets the unique parameters for a spot light to the values supplied. See the method
makeSpotFrom:to:coneAngle:coneDelta: beamDistribution:intensity: for a description
and illustration of these parameters. If the receiver isn't a spot light, the arguments are
stored but have no effect when the light is rendered. Returns self.

See also: - getConeAngle:coneDelta: beamDistribution:,
- makeSpotFrom:to:coneAngle:coneDelta: beamDistribution:intensity:

setFrom:

- setFrom:(RtPoint)frornPoint

Sets the value of the light's from point to frornPoint. This method affects all light types
that have afrorn parameter: point lights, distant lights,and spot lights. If the receiver is
an ambient light, the argument is stored but has no effect when the light is rendered.
Returns self.

See also: makePointFrom:intensity:

setFrom:to:

- setFrom:(RtPoint)frornPoint to:(RtPoint)toPoint

Sets the value of the light's from and to points. This method affects light types
N3D_DistantLight, N3D_SpotLight, and N3D_PointLight (which has only afrorn
parameter). The arguments are stored even if they have no effect when the light is rendered.
Returns self.

Classes: N3DLight 17-57

setGlobal:

- setGlobal:(BOOL)flag

Invoked by N3DCamera to set the receiver's lightFlags.global instance variable toflag.
You should never invoke this method directly; instead, invoke N3DCamera's addLight:
method to add a global light and removeLight: to remove a light.

Override this method to adjust the light's parameters or other features when it is added to
or removed from the global light list. Returns self.

See also: - addLight: (N3DCamera), - removeLight: (N3DCamera),
-lightList (N3DCamera), - renderGlobal:, - setGlobal:

setl ntensity:

- setIntensity: (RtFloat) intensity

Sets the intensity of the N3DLight and returns self.

See also: - intensity

setType:

- setType:(N3DLightType)aType

Sets the type of the N3DLight object. aType can be one of the following enumerated values
(defined in the header file 3Dkit/next3d.h):

N3D _AmbientLight
N3D _PointLight
N3D _DistantLight
N3D _SpotLight

Returns self.

See also: - type

switchLight:

- switchLight:(BOOL)flag

Turns the light on or off. Ifflag is YES, this method turns the light on; if NO, turns the light
off. Returns self.

17-58 Chapter 17: 3D Graphics Kit

type
- (N3DLightType)type

Returns the receiver's light type. The return value can be one of the following enumerated
values (defined in the header file 3Dkitlnext3d.h):

N3D _AmbientLight
N3D _PointLight
N3D _DistantLight
N3D _SpotLight

The default type is N3D _AmbientLight.

See also: - setType: .

write:
- write:(NXTypedStream *)stream

Writes the receiving light to the typed stream stream. Returns self.

See also: - awake, - read:

Classes: N3DLight 17-59

N3DMovieCal1lera

Inherits From: N3DCamera : View: Responder: Object

Declared In: 3DkitIN3DCamera.h

Class Description

N3DMovieCamera is a subclass of N3DCamera for managing interactive and
photorealistic animation. N3DCamera provides methods for setting the first and last frame,
counting frames, and playing a movie on-screen.

In a 3D animation sequence, both the camera and the shapes can move. N3DShape objects
get the camera as the argument to their renderSelf: method. They can then invoke the
camera's frameNumber method to determine which frame is being rendered and position
themselves appropriately for that frame.

To playa movie on-screen using the interactive renderer, invoke the display Movie method.
This method plays the frames of the movie on-screen in sequence, beginning with the first
frame, and ending with the last frame. displayMovie will skip frames when playing the
movie if its frame increment is set greater than 1. Note that N3DMovieCamera doesn't
provide a way to set the rate at which frames are displayed, or to synchronize movie display
with other events.

To create the frames of a movie with the PhotoRealistic RenderMan renderer, invoke the
renderAsEPS or renderAsTIFF method. For photorealistic rendering, an
N3DMovieCamera must have a delegate that implements the
camera:didRenderStream:tag:frameCount: method. The delegate method should be
able to accept the returned images in any sequence and perform the appropriate action with
the images (for example, save each in an appropriately named file). See N3DCamera for
more description of these photorealistic rendering methods.

Instance Variables

int frameNumber;
int startFrame;
int endFrame;
int framelncrement;

17-60 Chapter 17: 3D Graphics Kit

frameNumber

startFrame

endFrame

frameIncrement

Method Types

Initializing

RenderMan drawing

Frame counters

Interactive display

Rendering photorealistic ally

Setting up pages

Reading and writing

Instance Methods

awake
-awake

Current frame of camera's movie

First frame in movie

Last frame in movie

Amount to increment frameNumber between frames

- initFrame:

- render

- setFrameNumber:
- frameNumber
- setStartFrame:endFrame:incrementFramesBy:
- startFrame
- endFrame
- frameIncrement

- displayMovie

- renderAsEPS (N3DCamera)
- renderAsTIFF (N3DCamera)
- cropInRects:nRects:
- getRect:forPage:

- knowspagesFirstlast
- numCrop Windows

- read:
- write:
- awake

Performs additional initialization of the receiver after unarchiving. Returns self.

See also: - read:, - write:

Classes: N3DMovieCamera 17-61

croplnRects:nRects:

- croplnRects:(NXRect *)theRects nRects:(int)rectCount

Returns self and, by reference in theRects, the bounds of the receiving N3DMovieCamera.
This method is overridden to prevent the kit from dividing the image into multiple
rectangles when rendering on multiple rendering hosts-instead, a movie is rendered one
frame per host.

See also: - numCrop Windows

displayMovie

- display Movie

Displays the frames in the movie beginning with the start frame and ending with the end
frame by repeatedly invoking display on self. If a frame increment was specified, skips
that number of frames between each displayed frame. See the class description for a more
complete discussion of playing a movie. Returns self.

See also: - render, - setStartFrame:endFrame:incrementFrameBy:

endFrame

- (int)endFrame

Returns the movie's last frame number. By default, the last frame is set to O.

See also: - framelncrement, - frameNumber, - startFrame, - setFrameNumber,
- setStartFrame:endFrame:incrementFrameBy:

framelncrement

- (int)framelncrement

Returns the amount by which the frame counter is incremented between frames when
playing a movie. By default, the frame increment is set to 1.

See also: - frameNumber, - startFrame, - setFrameNumber:,
- setStartFrame:endFrame:incrementFramesBy:

17-62 Chapter 17: 3D Graphics Kit

frameNumber

- (int)frameNumber

Returns the current frame number. By default, the frame number is set to O.

See also: - endFrame, - framelncrement, - startFrame, - setFrameNumber:,
- setStartFrame:endFrame:incrementFrameBy:

getRect:forPage:

- (BOOL)getRect:(NXRect *)theRect forPage:(int)thePage

Returns YES if thePage corresponds to one of the frames in the camera's movie. Also
returns, by reference in theRect, the camera's bounds. This method, which is defined in
View and invoked by the Application Kit when printing, is overridden by
N3DMovieCamera to ensure that movies print correctly.

See also: - knowsPagesFirst:last:

initFrame:

- initFrame:(const NXRect *)fRect

Initializes the receiver, a new instance of N3DMovieCamera. Sets the frame number, start
frame, and end frame to O. Sets the frame increment to 1. Returns self.

knowsPagesFirst:last:

- (BOOL)knowsPagesFirst:(int *).firstPage last:(int *)lastPage

Returns YES. Also returns, by reference infirstPage and lastPage, the beginning and
ending frame numbers for the movie. Overridden to assure that an N3DMovieCamera can
return a rectangle specifying the region that must be displayed to print a specific frame.

See also: - getRect:forPage:

Classes: N3DMovieCamera 17-63

numCropWindows

- (int)numCrop Windows

Returns 1. This method is overridden to prevent the 3D Graphics Kit from dividing the
movie camera's image into multiple rectangles when performing photorealistic rendering
on mUltiple hosts-instead, a movie is rendered one frame per host.

See also: - cropInRects:nRects:, - numSelectedHosts (N3DRenderPanel)

read:

- read:(NXTypedStream *)stream

Reads the receiver from stream. Returns self.

See also: - write:, - awake

render

- render

If the receiver is printing, sets the frame number to the page number supplied by the
Application's PrintInfo object and renders that frame. Otherwise, renders the current frame
number. Returns self.

See also: - render (N3DCamera class)

setFrameNumber:

- setFrameNumber:(int)aFrameNumber

Sets the frame number. Returns self.

See also: - endFrame, - frameIncrement, - frameNumber, - startFrame,
- setStartFrame:endFrame:incrementFramesBy:

17-64 Chapter 17: 3D Graphics Kit

setStartFrame:endFrame:incrementFramesBy:

- setStartFrame:(int)start
endFrame:(int)end
incrementFramesBy:(int)skip

Sets the first and last frames in the movie. Also sets the number of frames to skip between
frames when playing the movie. Returns self.

See also: - endFrame, - framelncrement, - frameNumber, - startFrame,
- setFrameNumber:

startFrame

- (int)startFrame

Returns the first frame of the movie.

See also: - endFrame, - framelncrement, - frameNumber, - setFrameNumber,
- setStartFrame:endFrame:incrementFrameBy:

write:

- write:(NXTypedStream *)stream

Writes the receiver to stream. Returns self.

See also: - read:, - awake

Classes: N3DMovieCamera 17-65

N3DRenderPanei

Inherits From: Panel: Window: Responder: Object

Declared In: 3DkitIN3DRenderPanel.h

Class Description

N3DRenderPanel provides a user interface for controlling rendering with the
PhotoRealistic RenderMan renderer. The Render panel lets the user select the host or hosts
on which to perform rendering and the resolution of that rendering. Each application has
at most one instance of N3DRenderPanel.

An N3DRenderPanel is presented anytime RIB is printed (either through an N3DCamera
or an N3DRIBImageRep). When an application prints RIB code, the PhotoRealistic
RenderMan renderer generates a TIFF image of the 3D scene, which is then merged into
the PostScript stream being spooled to the printer. The Render panel is also presented
anytime as image is generated using the N3DCamera methods renderAsTIFF and
renderAsEPS.

You generally won't need to use this class directly: The 3D Graphics Kit ensures that an
instance of N3DRenderPanel is created and presented to the user at the appropriate times.
However, you may want to send messages to that instance to add an accessory view or
perform other customization.

Instance Variables

id browser
id nametext
id notetext
id resolution
char * *hostnames
id accessoryView

browser

nametext

17-66 Chapter 17:3D Graphics Kit

NXBrowser instance that lists rendering host names

TextField instance that lists the selected host

notetext

resolution

hostnames

accessory View

Method Types

Initializing the class

Setting accessory view

Running modal

Setting resolution

Host management

Browser delegate method

Class Methods

initialize
+ initialize

TextField instance that displays notes about the host

TextField instance that displays rendering resolution

Pointer to array of names of selected hosts

Optional View added by the application

+ initialize
+ new

- accessoryView
- setAccessoryView:

- runModal

- resolution

- numSelectedHosts
- hostNames

- browser:fillMatrix:inColumn:

Initializes the N3DRenderPanei class by reading data from the defaults database. You
never invoke this method directly; it is invoked for you the first time an instance of
N3DRenderPanei is created by your application.

new

+ new

Creates, if necessary, and returns the application's sole instance ofN3DRenderPanel. Use
this method to get the id of this instance-for example, to add an accessory View to the
N3DRenderPanel. It is invoked automatically when an application starts printing a View
that generates RIB code, either directly or through a sub view.

Classes: N3DRenderPanel 17-67

Instance Methods

accessoryView

- accessory View

Returns the accessory View, an optional View added to the Render panel by the application.

See also: - setAccessoryView:

browser:filIMatrix:inColumn:

- (int)browser:hostBrowser
fillMatrix:matrix
inColumn:(int)col

This method fills the panel's browser with a list of available hosts. The Render panel is
hostBrowser's delegate, and NXBrowser objects send this message whenever a column
needs to be updated. This method fills matrix with the host names and returns the number
of names placed in the matrix.

hostNames

- (char **)hostNames

Returns an array of selected host names-the list of names in the Render panel's browser
that the user has highlighted. The number of entries in this array is returned by
numSelectedHosts.

See also: - numSelectedHosts

numSelectedHosts

- (int)numSelectedHosts

Returns the number of rendering hosts that the user has selected in the Render panel's
browser. The array of selected host names is returned by hostNames.

See also: - hostNames

17-68 Chapter 17: 3D Graphics Kit

resolution

- (int)resolution

Returns the rendering resolution specified by the user. This value represents the number of
pixels per inch for images to be rendered by the PhotoRealistic RenderMan renderer.

runModal

- (int)runModal

Presents the Render panel in a modal loop. Before displaying the panel, this method loads
the browser with host names and sets the selected host to that previously selected. Returns
1 if the modal loop was ended by the user choosing the Render button, 0 if the modal
session was ended by the user choosing Cancel.

setAccessoryView:

- setAccessoryView:a View

Sets the receiver's accessory View to aView. Use this method to add a View containing
custom user interface features to your application's instance of N3DRenderPanel.
Returns self.

See also: - accessoryView

Classes: N3DRenderPanel 17-69

N3DRIBIrnageRep

Inherits From: NXImageRep : Object

Declared In: 3DkitIN3DRIBImageRep.h

Class Description

An N3DRIBImageRep is an object that can render images from RenderMan Interface
Bytestream (RIB) files. The file loaded by an N3DRIBImageRep must be a structured RIB
file: That is, it must begin with the line:

##RenderMan RIB-Structure 1.0

The N3DRIBImageRep includes methods for specifying the hider and surface types and for
setting the background color. The size of the image is set to the size specified in the
RenderMan Format call in the RIB file. Other information about the image should be
supplied using inherited NXImageRep methods.

Like most other kinds ofNXImageReps, an N3DRIBImageRep is generally used indirectly,
through an NXImage object. N3DRIBImageRep overrides various NXImageRep methods
to ensure that it is automatically instantiated from files with the .rib extension, from
pasteboards containing NX_RIBPasteboardType data, and from streams containing
RIB code.

Two factors-surface and hider-determine the quality of the rendered image. When
displaying a RIB image representation, the interactive renderer uses the selected surface
and hider for the image. When printing a RIB image representation, the RenderMan
renderer uses shading attributes set in the RIB file; if no surface attributes are set explicitly
in the RIB file, the image representation surface and hider factors are applied. These factors
are set using the setSurfaceType: and setHider: methods.

For more information on the use of image representations, see the NXImage and
NXImageRep classes in the Application Kit.

17-70 Chapter 17: 3D Graphics Kit

Instance Variables

N3DHider hider;
N3DSurfaceType surface;
NXColor background Color;

hider

surface

backgroundColor

Method Types

Initializing and Freeing

Declaring data types

Drawing

Size

Background Color

The hider used when rendering on screen

The surface type used when rendering on screen

The color drawn behind the rendering

- initFromFile:
- initFromStream:
- free

+ image U nfilteredFileTypes
+ image U nfilteredPasteboardTypes
+ canLoadFromStream:

- drawAt:
- drawIn:
-draw

- getBoundingBox:
- getSize:

- setBackgroundColor:
- backgroundColor

Hidden Surface Removal Type - hider
- setHider:

Surface Type - setSurfaceType:
- surfaceType

Archiving - read:
- write:

Classes: N3DRIBlmageRep 17-71

Class Methods

canLoadFromStream:

+ (BOOL)canLoadFromStream:(NXStream *)ribStream

Tests ribStream for RIB data. Returns YES if the stream contains RIB data, NO if not. This
method is invoked by NXImage to test for the appropriate NXImageRep subclass to handle
a particular data stream.

i mageU nfilteredFile Types

+ (const char *const *)imageUnfilteredFileTypes

Returns a NULL terminated array of characters whose only member is "rib". Invoked by
NXImage's imageRepForFileType: method to find the NXImageRep subclass capable of
handling files with a particular extension.

imageUnfilteredPasteboardTypes

+ (const NXAtom *)imageUnfilteredPasteboardTypes

Returns N3DRIBPasteboardType. Invoked by NXIrilage's
imageRepForPasteboardType: method to find the NXImageRep subclass capable of
handling pasteboards containing RIB.

Instance Methods

backgroundColor

- (NXColor)backgroundColor

Returns the receiver's background color. By default, the background color is
NX_COLORBLACK.

See also: - setBackgroundColor:

17-72 Chapter 17: 3D Graphics Kit

draw

- (BOOL)draw

Draws the image at (0.0, 0.0) in the current coordinate system on the current device. This
method invokes drawIn: with its bounding rectangle as the rect argument. Returns YES
if successful in rendering the image, and NO if not.

See also: - drawAt:, - drawIn:

drawAt:

- (BOOL)drawAt:(const NXPoint *)point

Draws the image at point in the current coordinate system of the current device. This
method invokes draw In: with the origin of rect at point, and the size of reet set to the size
of the image representation. Returns YES if successful in rendering the image, and NO if
not.

See also: - drawIn:

drawln:

- (BOOL)drawIn:(const NXRect *)rect

Draws the image so that it fits inside the rectangle referred to by recto This method returns
YES if successful in rendering the image, and NO if not.

free

-free

Deallocates the N3DRIBImageRep. Returns nil.

getBoundingBox:

- getBoundingBox:(NXRect *)rectangle

Returns, by reference in rectangle, the rectangle that bounds the image. The origin of
rectangle is at (0.0, 0.0). The size is taken from the RenderMan Format call in the RIB
from which the N3DRIBImageRep is instantiated. If no Format call appears in the RIB,
an arbitrary width and height are set (256 wide, 192 high).

Classes: N3DRIBlmageRep 17-73

getSize:

- getSize:(NXSize *)theSize

Returns, by reference in theSize, the size of the N3DImageRep as described in the
getBoundingBox: method description.

See also: - getBoundingBox:

hider

- (N3DHider)hider

Returns the hider used by the N3DRIBImageRep. The 3D Graphics Kit's hider types are
listed with the setHider: method.

See also: - setHider:

init

Generates an error message. This method can't be used to initialize an N3DRIBImageRep.
Use one of the other init... methods instead.

See also: - initFromFile:, - initFromStream:

initFromFile:

- initFromFile:(const char *)ribFile

Initializes the receiver, a newly allocated N3DRIBImageRep object, with the RIB image
found in ribFile. Some information about the rendering environment is read from the RIB
file, but the RIB code won't be read until it's needed to render the image.

If the new object can't be initialized for any reason (for example, ribfile doesn't exist or
doesn't contain RIB code), this method frees it and returns nil. Otherwise, it returns self.

This method is the designated initializer for N3DRIBImageReps that read image data
from a file.

See also: - initFromStream:

17-74 Chapter 17:3D Graphics Kit

initFromStream:

- initFromStream:(NXStream *)ribStream

Initializes the receiver, a newly allocated N3DRIBImageRep object, with the RIB image
read from ribStream. If the new object can't be initialized for any reason (for example,
ribStream doesn't contain RIB code), this method frees it and returns nil. Otherwise, it
returns self.

This method is the designated initializer for N3DRIBlmageReps that read image data from
a stream.

See also: - initFromFile:

read:

- read:(NXTypedStream *)stream

Reads the N3DRIBImageRep from the typed stream stream.

See also: - write:

setBackgroundColor:

- setBackgroundColor:(NXColor)aColor

Sets the receiver's background color to aColor. Returns self.

See also: - background Color

setHider:

- setHider:(N3DHider)aHider

Sets the hider, returns self. The hider determines the hidden-surface algorithm used when
rendering the image. aHider may be:

N3D _HiddenRendering

N3D _InOrderRendering

N3D _NoRendering

Determines hidden surfaces and renders only visible
surfaces

Renders objects in the order in which they occur in the
RIB stream, regardless of position in the scene

Produces no output

Classes: N3DRIBlmageRep 17-75

See "Determining Rendering Order" in the N3DCamera class specification for more
on hiders.

See also: - hider

setSurfaceType:

- setSurfaceType:(N3DSurfaceType)suifaceType

Sets the surface type for rendering. suifaceType may be:

N3D _PointCloud

N3D _ WireFrame

N3D _ShadedWireFrame

N3D _FacetedSolids

N3D _SmoothSolids

See also: - surfaceType

surfaceType

Renders the points passed by the RenderMan geometry
calls in the RIB stream

Renders the edges connecting points in the scene, but
renders no surfaces

Renders edges with depth cueing

Renders a faceted surface on all geometric primitives

Renders a smooth surface on all geometric primitives

- (N3DSurfaceType)surfaceType

Returns the surface type set with setSurfaceType:.

See also: - setSurfaceType:

write:

- write:(NXTypedStream *)stream

Writes the N3DRIBImageRep to the typed stream stream.

See also: - read:

17-76 Chapter 17: 3D Graphics Kit

N3DRotator

Inherits From:

Declared In:

Class Description

Object

3DkitIN3DRotator.h

N3DRotator provides API for performing rotations on objects in a scene created with the
3D Graphics Kit. The user interface model implemented by the N3DRotator is called a
virtual sphere-a trackball-style control for 3D transformations. To the user, the rotator
provides direct manipulation of objects in a 3D application. To the programmer, the rotator
provides a reusable object for implementing this direct manipulation. Note, however, that
the N3DRotator class doesn't provide anyon-screen representation to the user: It simply
provides a way to convert the offset between two points in 2D coordinates into rotations on
3D matrices.

Figure 17-9. N3DRotator

Classes: N3DRotator 17-77

The N3DRotator's center point defines the point-in the 2D coordinates of the camera's
bounds-about which the effect of cursor movement is centered. With the center point, the
radius defines the rotator's control circle. Cursor movement within this circle controls x­
and y-axis rotation; cursor movement outside the circle controls z-axis rotation. The
default center point is the center of the rotator's camera's bounds rectangle. By default, the
radius is set at one-half the smaller of the width or height of the camera's bounds. Thus,
the default control circle fits entirely within the bounds of the rotator's camera. The default
center and radius' are set when the rotator is first initialized, and are not reset if the camera
is resized.

Note that the center point is the center of user manipulation in 2D coordinates, not of the
resulting rotation. The origin of the rotation produced by N3DRotator is the origin of the
space to which rotation is applied.

The heart of N3DRotator's operation is the trackMouseFrom:to:rotationMatrix:
andInverse: method. Invoked from within an N3DCamera's mouseDown: method, this
method accepts two points in the camera's coordinate system and returns two
three-dimensional matrices-one representing a rotation, the other an inverse of that
rotation. These matrices can be applied to the camera or to the shapes in the scene viewed
by the camera. The description for trackMouseFrom:to:rotationMatrix:andInverse:
includes a code example for rotating the camera and its world shape.

N3DRotator also has methods for setting the center and radius of the virtual sphere, for
attaching to a camera, and for setting the axes about which rotations are applied.

Instance Variables

id camera;
NXRect bounds;
NXPoint center;
float radius;
N3DAxis rotationAxis;

camera

bounds

center

radius

rotationAxis

17-78 Chapter 17: 3D Graphics Kit

The rotator's N3DCamera

Bounds of cursor movement effect

Center of the control circle

Radius of the control circle

Axes about which rotation is applied

Method Types

Initializing

Setting

Axes of rotation

Mouse tracking

Archiving

Instance Methods

init
- init

- init
- initWithCamera:

- setCamera:
- setCenter: andRadi us:

- setRotationAxis:
- rotationAxis

- trackMouseFrom:to:rotationMatrix:andInverse:

- read:
- write:

Initializes the receiver, a newly allocated N3DRotator instance with no camera.

initWithCamera:
- initWithCamera:aCamera

Initializes the receiver, a newly allocated N3DRotator instance. Uses the setCamera:
method to set aCamera as the receiver's camera. This method is the designated initializer
for N3DRotator. Returns self.

See also: - setCamera:

rotationAxis

- (N3DAxis)rotationAxis

Returns the current axes of rotation for the N3DRotator. The N3DAxis enumerated types
returned by this method are defined in the header file 3Dkitlnext3d.h and are listed with
the setRotationAxis: method.

See also: - setRotationAxis:

Classes: N3DRotator 17-79

read:

- read:(NXTypedStream *)stream

Reads the receiver from the typed stream stream.

See also: - write:

setCamera:

- setCamera:aCamera

Sets aCamera as the receiver's camera. The receiver's bounds is set to the bounds of
aCamera, its center point is placed at the center of the bounds, and its radius is set to half
the smaller of the width or height of the bounds.

See also: - setCenter:andRadius:

setCenter:andRadius:

- setCenter:(const NXPoint *)center andRadius:(float)radius

Sets the receiver's center point and radius. Together, these define the control circle of the
rotator, as described and illustrated in the class description.

setRotationAxis:

- setRotationAxis: (N3D Axis)axis

Sets the axes about which the receiver's rotations are applied. The N3DAxis enumerated
types returned by this method are defined in the header file 3Dkitlnext3d.h. They are:

N3D _AllAxes
N3D_XAxis
N3D_YAxis
N3D_ZAxis
N3D_XYAxes
N3D_XZAxes
N3D_YZAxes

The rotation axes set by this method affect the matrices returned by the
trackMouseFrom:to:rotationMatrix:andInverse: method. For example, when the
rotation axis is set to N3D _AllAxes, the matrices are transformed to represent rotations

17-80 Chapter 17: 3D Graphics Kit

about all three axes. When set to N3D _Xaxis, the matrices are transformed to represent
only rotation about the x axis; that is, the rotator's effect is restricted to the x axis.

See also: - rotationAxis, - trackMouseFrom:to:rotationMatrix:andlnverse:

trackMouseFrom:to:rotationMatrix:andlnverse:

- trackMouseFrom:(const NXPoint *)lastPoint
to:(const NXPoint *)thisPoint
rotationMatrix:(RtMatrix)theRotation
andlnverse: (RtMatrix) thelnverse

Accepts two points and uses the offset between them to calculate virtual sphere rotations
on two matrices. Your application typically invokes this method from within a
mouseDown: method in a subclass of N3DCamera. In addition to the rotations returned
by reference in theRotation and thelnverse, this method returns self.

The first two arguments represent cursor positions from NX_MOUSEDOWN or
NX_MOUSEDRAGGED events. lastPoint is the previous position of the cursor, thisPoint
is the most recent position of the cursor.

The rotations applied to theRotation and thelnverse may be about one, two, or three axes,
depending on the value set by setRotationAxis:. By default, rotations are applied to all
axes. The direction of mouse movement between lastPoint and thisPoint determines the
affected axes: Horizontal movement inside the control circle rotate about the y-axis,
vertical moves inside the circle rotate about the x-axis. Horizontal or vertical moves
outside the circle rotate about the z-axis. This behavior is described and illustrated in the
class description.

This method does not concatenate the new rotations on existing values in the matrices; any
data passed to this method in theRotation and thelnverse is simply ignored.

The way you apply the returned matrices theRotation and thelnverse depends on the effect
you want to produce in the space being rotated. For example, to rotate an N3DShape (and
its descendants) in its own space, you postmultiply theRotation. To rotate a shape (and
descendants) in its ancestor's space, you premultiply theRotation.

The following code fragment demonstrates the implementation of a mouseDown: method
within an N3DCamera subclass, using trackMouseFrom:to:rotationMatrix:
andlnverse: to rotate either the camera or its world shape.

id myRotator
BOOL shouldPreMultiply
int applyRotation

Classes: N3DRotator 17-81

mouseDown: (NXEvent *)theEvent

RtMatrix theRotation, thelnverse, thePreTransform

NXPoint lastPoint, thisPoint;

[self setUsePreTransformMatrix:YES];
while (/* modal loop tracks mouse-dragged events */) {

[myRotator trackMouseFrom:&lastPoint to:&thisPoint
rotationMatrix:theRotation andlnverse:thelnverse];

switch (applyRotation) {
case TO_CAMERA :

[self getPreTransformMatrix:thePreTransform];'
if (shouldPreMultiply)

N3DMultiplyMatrix(thePreTransform,

theRotation, thePreTransform);
else

N3DMultiplyMatrix(theRotation,
thePreTransform, thePreTransform);

[self setPreTransformMatrix:thePreTransform];

break;
case TO_WORLD

[worldShape concatTransformMatrix:theRotation
premultiply:shouldPreMultiply] ;

break;

[self display];

[self display];

return self;

write:
- write:(NXTypedStream *)stream

Writes the receiver to the typed stream stream.

See also: - read:

17-82 Chapter 17: 3D Graphics Kit

N3DShader

Inherits From: Object

Declared In: 3DkitIN3DShader.h

Class Description

N3DShader manages the application of shader functions to N3DShapes. A shader
function is written in the RenderMan Shading Language, compiled with the shading
language compiler (see the shader(l) UNIX manual page), and contained in a shading
language object file. The RenderMan Shading Language is described in detail in The
RenderMan Companion.

Shader Functions and Shading Language Object Files

Each N3DShader instance manages a single shading language function. A shader function
is contained in a shading language object file. The name of the shader function and shading
language object file are the same (the file name has the extension .slo).

When its shader function is set by the initWithShader: or setShader: methods, an
N3DShader searches for. the specified shader language object file in the current directory,
and in the directory paths /Library/Shaders, /LocaILibrary/Shaders, and
lNextLibrary/Shaders. If the specified shader is found, the N3DShader's type, along with
its arguments and their default values, is set.

The N3DShader class provides methods to determine these arguments for a particular
shader function and to assign values for these arguments. When rendering, the
argument/value pairs are passed to the shader function. You can reset any of an
N3DShader's arguments to their default values using the resetShaderArg: method.

Shader Function Arguments

Each shader function can have an open-ended list of arguments. The N3DShader class
provides a number of methods for accessing these arguments and setting or retrieving
their values.

The method shader ArgCount returns the number of arguments for the function. The
method shaderArgNameAt: returns the name of each argument by zero-based index. The
method shader ArgType: returns the type of a named argument.

Classes: N3DShader 17-83

The N3DShader class provides several methods to let you get and set the values for named
arguments to a shader function. These methods perform type conversion between the
C-Ianguage, NeXTSTEP, and RenderMan types used in your application and the
RenderMan Shading Language types used in the underlying shading function. The shading
language argument types are identified by members of an enumeration, SLO _TYPE,
declared in the header file rilslo.h. The following table lists the correspondences between
C-Ianguage types, shading language types, and methods:

C-Ianguage Type SLO _TYPE

RtPoint SLO _TYPE_POINT

NXCoior

float

const char *

Methods

getShader Arg:pointValue:
'-'!l>t~h~;U'II>r'A r'O'·nn.ntV<:II.lIl" •
..........., __ ... "-6&.1. e· .1:''' " ".

getShaderArg:colorValue:
setShader Arg:colorValue:
getShader Arg:floatValue:
setShader Arg:float Value:
getShaderArg:stringValue:
setShaderArg:stringValue:

In general, you should use the shaderArgType: method to check an argument's type, then
use the getShaderArg: ... and setShaderArg: ... method appropriate to the type of the
argument. While it's recommended that your application enforce these correspondences,
the type conversion provided with each of the getShaderArg: ... and setShaderArg: ...
methods is flexible enough to let you mix ostensibly incompatible data types. The
conversion schemes are somewhat complex but are documented with each of the
getShaderArg: .•. and setShaderArg: ... for the sake of completeness.

N3DShader and N3DShape

RenderMan Shading Language functions are applied to specific surfaces in a scene. In the
3D Graphics Kit, N3DShaders are applied by being associated with N3DShapes. As the
shapes in a shape hierarchy are rendered, the associated shader functions are called: The
shaders are thereby applied to that shape and its descendants. Each N3DShape can apply
six different shader types:

surface
displacement
light
imager
volume
transformation

See the description of the render: method in N3DShape for an illustration of the order in
which a shape's shader functions are invoked.

17-84 Chapter 17: 3D Graphics Kit

N3DShader and the Interactive Renderer

While the PhotoRealistic RenderMan renderer can use any shader written with the
RenderMan Shading Language, the Interactive RenderMan renderer uses only a limited set
of shaders. The surface type shaders that can be used by the interactive renderer are
constant, matte, metal, plastic, and none. The atmosphere shaders used by the interactive
renderer are depthcue and fog. Other than these, the interactive renderer ignores shading
functions for performance reasons.

Instance Variables

NXCoior color;

fioattransparency;

const char *shader;
SLO _TYPE shaderType;

int shader ArgCount;
SLOArgs *shader Args;

NXZone *zone;

color

transparency

shader

shaderType

shaderArgCount

shaderArgs

zone

Method Types

Initializing and freeing

Shader language object file

Shader color

Shader transparency

Name of the shader function

Type of shader

Size of the array of shader arguments

Array of shader arguments

The zone in which the object's data resides

- init
- initWithShader:
- free

- setShader:
- shader

Classes: N3DShader 17-85

Shader color - setColor:
- color
- setU seColor:
- does U seColor

Shader transparency - setTransparency:
- transparency

Shader function argument handling
- shaderArgCount
- shaderArgNameAt:
- shaderArgType:
- isShaderArg:
- setShaderArg:fioatValue:
- setShaderArg:stringValue:
- setShaderArg:pointValue:
- setShaderArg:colorValue:
- getShaderArg:fioatValue:
- getShaderArg:stringValue:
- getShaderArg:pointValue:
- getShaderArg:colorValue:
- resetShaderArg:

Shader type - shaderType

Invoking the shader function - set

Archiving - read:
- write:

Instance Methods

color

- (NXColor)color

Returns the color of the shader.

See also: - setColor:, - setUseColor:, - doesUseColor

doesUseColor

- (BOOL)doesUseColor

Returns YES if the shader uses colors; NO if not.

See also: - color, - setColor:, - setUseColor:

17 -86 Chapter 17: 3D Graphics Kit

free

-free

Frees the N3DShader and its data.

getShaderArg:colorValue:

- getShaderArg:(const char *)colorName colorValue:(NXColor *)colorValue

Returns by reference the colorValue of the shader argument colorName. This method
should be used for shader function arguments of SLO_TYPE_COLOR. Use the method
shaderArgType: to check colorName's type before invoking this method. See "Shader
Function Arguments" in the class description for a more complete discussion of how to get
the type of an argument.

If the argument colorName isn't a color type, this method converts the shading language
type to an NXColor. If the argument is a float, the argument's value is converted using the
NXConvertGrayToColorO function. If the argument is a string, the string value is
converted to a float and then converted to a color with NXConvertGrayToColorO. If the
argument is a point, its X-, y-, and z-coordinates are treated as r-, g-, and b-components and
converted by the function NXConvertRGBToColorO. Returns self.

See also: - shader ArgType:

getShaderArg:floatValue:

- getShaderArg:(const char *)floatName floatValue:(float *)floatValue

Returns by reference thefloatValue of the shader argumentfloatName. This method should
be used for shader function arguments of SLO _TYPE_SCALAR. Use the method
shaderArgType: to checkfloatName's type before invoking this method. See "Shader
Function Arguments" in the class description for a more complete discussion of how to get
the type of an argument.

If the argumentfloatName isn't a float, this method converts the shading language type to
a float. If the argument is a color, the value is converted using the
NXConvertColorToGrayO function. If the argument is a string, the string value is
converted to a float. If the argument is a point, its x-coordinate is returned. Returns self.

See also: - shader ArgType:

Classes: N3DShoder 17-87

getShaderArg:pointValue:

- getShaderArg:(const char *)pointName pointValue:(RtPoint *)pointValue

Returns by reference the pointValue of the shader argument pointName. This method
should be used for shader function arguments of SLO _TYPE_POINT. Use the method
shaderArgType: to check colorName's type before invoking this method. See "Shader
Function Arguments" in the class description for a more complete discussion of how to get
the type of an argument.

If the argument pointName isn't a point type, this method converts the shading language
type to an RtPoint. If the argument is a color, the the r-, g-, and b~componcnts of the color
are assigned to the X-, y-,and z-cooordinates of pointValue. If the argument is a float, all
three components of point Value return that value. If the argument is a string, the string
value is converted to and treated as a float. Returns self.

See also: - shaderArgType:

getShaderArg:stringValue:

- getShaderArg:(const char *)stringName stringValue:(const char **)stringValue

Returns by reference the string Value of the shader argument stringN ame. This method
should be used for shader function arguments of SLO_TYPE_STRING. Use the method
shaderArgType: to check stringName's type before invoking this method. See "Shader
Function Arguments" in the class description for a more complete discussion of how to get
the type of an argument.

If the argument stringName isn't a string type, this method converts the.shading language
type to a string. If the argument is a point, the string returned contains the X-, y-, and
z-coordinates in order. If the argument is a color, the string returned contains the r-, g-,
and b-components in order. If the argument is a float, the string returned contains the value.
Returns self.

See also: - shaderArgType:

init

- init

Initializes the receiver, a newly allocated instance of N3DShader. The shader name is set
to NULL. The receiver's color is set to white and its transparency set to opaque (1.0).

See also: - initWithShader:

17-88 Chapter 17: 3D Graphics Kit

initWithShader:

- initWithShader:(const char *)aShader

Initializes the receiver, a newly allocated instance of N3DShader. Invokes setShader:
to set the receiver's shader to aShader.

isShaderArg:

- (BOOL)isShaderArg:(const char *)argName

Returns YES if argName is the name of an argument for the shader owned by the N3DShader.

read:

- read:(NXTypedStream *)stream

Reads the receiver from the typed stream stream. Returns self.

See also: - write:

resetShaderArg:

- resetShaderArg:(const char *)argName

Restores the default value for the shader argument argName.

set

- set

Applies the receiver's shader function during rendering. This method calls the appropriate
RenderMan function-RiSurfaceO, RiAtmosphereO, and so on-with the N3DShader's
shader name and arguments. If the receiver is set to apply its color, this method calls
RiColorO before calling the shader function.

An N3DShape can have one each of six different N3DShader types. This method is
invoked by N3DShape's render: method on each of its N3DShader instances before the
shape renders itself. Returns self.

See also: - render: (N3DShape), - setColor:, - setUseColor:

Classes: N3DShader 17-89

setColor:

- setColor:(NXColor)aColor

Sets the color of the N3DShader to aColor. Note that the effect produced by this method
is distinct from that of setShaderArg:colorValue:, which is used to set an argument/value
pair for a shader function. Returns self.

See also: - color, - setUseColor:, - doesUseColor

setShader:

- setShader:(const char *)aShader

Sets the receiver's shader function to aShader. aShader must be the name of a shader
language object file in the default shader search path. Shader language object files are
created by the shader compiler; each contains a single shader function.

setShaderArg:colorValue:

- setShaderArg:(const char *)colorName colorValue:(NXColor)colorValue

Sets the value of the shader argument colorName. This method should be used for shader
function arguments of SLO_TYPE_COLOR. Use the method shaderArgType: to check
colorName's type before invoking this method. See "Shader Function Arguments" in the
class description for a more complete discussion of how to get the type of an argument.

If the argument colorName isn't a color, this method converts colorValue to the appropriate
shading language type. If the argument is a float, color Value is converted using the
NXConvertColorToGrayO function. If the argument is a string, color Value's r-, g-, and
b-components are placed in the string in order. If the argument is a point, the r-, g-, and
b-components of colorValue are set as the X-, y-, and z-components of the argument.
Returns self.

See also: - shaderArgType:

setShaderArg:floatValue:

- setShaderArg:(const char *)jloatName floatValue:(float)jloatValue

Sets the value of the shader argumentjloatName. This method should be used for shader
function arguments of SLO _TYPE_SCALAR. Use the method shader ArgType: to check
colorName's type before invoking this method. See "Shader Function Arguments" in the
class description for a more complete discussion of how to get the type of an argument.

17-90 Chapter 17: 3D Graphics Kit

If the argumentjloatName isn't a float, this method convertsjloatValue to the appropriate
shading language type. If the argument is a color, jloatValue is converted using the
NXConvertGrayToColorO function. If the argument is a string,jloatValue is converted to
a string. If the argument is a point, all three coordinates are set to jloatValue. Returns self.

See also: - sbaderArgType:

setShaderArg:pointValue:

- setSbaderArg:(const char *)pointName pointValue:(RtPoint)pointValue

Sets the value of the shader argument pointName. This method should be used for shader
function arguments of SLO_TYPE_POINT. Use the method sbaderArgType: to check
pointName's type before invoking this method. See "Shader Function Arguments" in the
class description for a more complete discussion of how to get the type of an argument.

If the argument pointName isn't a point, this method converts pointValue to the appropriate
shading language type. If the argument is a float, pointValue's x-coordinate is assigned to
the variable. If the argument is a string, the X-, y-, and z-coordinates of pointValue are
placed in order in the string. If the argument is a color, this method assigns the X-, y-, and
z-coordinates of pointValue to the r-, g-, and b-components of the argument. Returns self.

See also: - sbaderArgType:

setShaderArg:stringValue:

- setShaderArg:(const char *)stringName stringValue:(const char *)stringValue

Sets the value of the shader argument stringName. This method should be used for shader
function arguments of SLO_TYPE_STRING. Use the method sbaderArgType: to check
stringName's type before invoking this method. See "Shader Function Arguments" in the
class description for a more complete discussion of how to get the type of an argument.

If the argument stringName is a float, this method converts stringValue to a float. If the
argument is a point or color, no conversion is made and the argument's value isn't changed.
Returns self.

See also: - shaderArgType:

setTransparency:

- setTransparency:(float)alpha Value

Sets the transparency of the shader to alpha Value. Returns self.

Classes: N3DShader 17-91

setUseColor:

- setUseColor:(BOOL)flag

Ifflag is YES, sets the receiver to apply its color when rendering. The color is set with the
setColor: method, and is applied using the RiColorO RenderMan call. Normally, this
method is only invoked withflag YES for a surface type N3DShader. Note that the effect
produced by this method is distinct from that of setShaderArg:colorValue:, which is used
to set an argument/value pair for a shader function.

See also: - set, - setColor:

shader

- (const char *)shader

Returns the name of the shader function associated with the N3DShader.

shaderArgCount

- (int)sbaderArgCount

Returns the number of arguments for the shader function associated with the N3DShader.

shaderArgNameAt:

- (const char *)shaderArgNameAt:(int)arglndex

Returns the name of the argument at position arglndex in the list of shader function
argument names. To get all argument names, use this method to iterate through the list
beginning with an arglndex of 0 and ending with an arglndex of

[self shaderArgCount]-l

shaderArgType:

- (SLO_TYPE)shaderArgType:(const char *)argName

Returns the type of the argument argName from the list of shader function argument names.
The value returned is an enumerated type, defined in the header file rilslo.h. If argName
isn't found in the list, returns SLO_TYPE_UNKNOWN.

17-92 Chapter f7:3D Graphics Kit

shaderType

- (SLO_TYPE)shaderType

Returns the type of the shader function. The value returned is an enumerated type, defined
in the header file rilslo.h. If the receiving N3DShader doesn't have an associated shader
function, this method returns SLO _ TYPE_UNKNOWN.

transparency

- (float)transparency

Returns the transparency (alpha) value set for the receiving N3DShader.

write:

- write:(NXTypedStream *)stream

Writes the receiving N3DShader to the typed stream stream. Returns self.

See also: - read:

Classes: N3DShader 17-93

N3DShape

Inherits From: Object

Declared In: 3DkitIN3DShape.h

Class Description

N3DShape provides techniques for representing 3D transformations, for rendering the
standard RenderMan surface primitives, and for creating and managing hierarchically
organized structures. Using subclasses of N3DShape, your application can model
compound shapes made from hierarchically related N3DShape objects.

Creating an N3DShape Subclass

While N3DShape provides methods for representing 3D transformations and for creating
hierarchically organized structures, you need to create a subclass of N3DShape to perform
surface modeling. Your subclass must override the abstract method renderSelf:, calling
one or more of the following RenderMan geometric primitive functions:

Quadric Surfaces

RiSphereO
RiConeO
RiDiskO
RiCylinderO
RiHyperboloidO
RiParaboloidO
RiTorusO

Polygons

RiPolygonO
RiGeneralPolygonO
RiPointsPolygonO
RiPointsGeneralPolygonsO

Patches

RiPatchO
RiPatchMeshO
RiNuPatchO

17-94 Chapter 17: 3D Graphics Kit

A complete description of these RenderMan geometric primitive functions, including
parameter listings and illustrations, can be found in The RenderMan Companion.
Sample code using the RiSphereO function call is included in the description of the
renderSelf: method.

N3DShapes can be set to render either their surface geometry or their bounding boxes.
This ability to switch rendering modes is useful for faster interactive manipulation of
shapes. For your N3DShape subclasses to render their bounding boxes, you must provide
a way to set the boundingBox instance variable, both when the shape is initialized and
when its size changes (that is, when values passed to RenderMan geometric primitives in
the renderS elf: method change).

The Shape Hierarchy

A shape hierarchy is made up by linking shapes in two kinds of relationships:
descendant/ancestor and next peer/previous peer. A shape's descendant inherits its
graphics state attributes. A descendant and its peers share the same ancestor, and inherit
the same graphics state attributes from that ancestor. In this discussion, the term
descendant applies to a shape's direct descendant; the term descendants applies to the direct
descendant, its peers, and all descendants of the direct descendant or peers.

ancestor

nextPeer

previousPeer

Figure 17-10. A shape hierarchy

Peers share a common ancestor (their ancestor methods return the same N3DShape
object). However, that ancestor has but one descendant, which is the first peer. Each shape
sharing an ancestor can apply its own graphics state attributes, independent of its peers.
The two shapes at the bottom of the illustration aren't peers-they have different ancestors.

Classes: N3DShape 17-95

The graphics state attributes inherited by a shape's descendants include its coordinate
system and shaders. You override these inheritances by setting attributes of the descendant
explicitly using the appropriate methods. A shape's bounding box isn't explicitly inherited
by its descendants. Instead, the box returned by the getBoundingBox: method is the union
of the receiver's bounding box with those of all its descendants-thus representing the
smallest volume capable of containing the receiver and its descendants.

Be sure to use N3DShape methods to place a shape in the shape hierarchy. Methods for
shape hierarchy management include linkPeer:, linkDescendant:, linkAncestor:, unlink,
group:, and ungroup.

Your application may need to traverse the shape hierarchy to request that each shape apply
a setting or respond to a request. To do so, you can add a traversal method such as the
following to your subclass of N3DShape:

- preTraverse

/* do the work here */

if ([self descendant] != nil)
descendant preTraverse];

if ([self nextPeer] != nil)

[next Peer preTraverse] ;

return self;

Surface modeling is usually performed only at the leaf nodes of a shape hierarchy; that is,
by shapes without descendants.

Transforming Between Coordinate Systems

To transform points between the coordinate systems of two N3DShapes, use the methods
convertPoints:count:fromAncestor: and convertPoints:count:toAncestor:. To
transform points between the 3D coordinate system of a shape and the 2D (PostScript)
coordinate system of its camera, use the method convertObjectPoints:count:toCamera:.

You can also transform from one coordinate system to another by applying a matrix to a
shape or a camera. A matrix is a two-dimensional array that represents a transformation
from one coordinate system to another. The RenderMan standard defines a type, RtMatrix,
as a 4 x 4 array of floating point values that represents such a transformation between 3D
coordinate systems. Each N3DShape maintains three matrices: the transform, the
composite transform, and the inverse of the composite transform. While matrix
manipulation concepts are beyond the scope of this discussion, you should understand the
meanings of these matrices.

17-96 Chapter 17: 3D Graphics Kit

The transform matrix is the matrix the shape applies when its render: method is invoked.
It represents the transformation from the immediate ancestor's coordinate system to its
owner's coordinates. Use the methods getTransformMatrix: and setTransformMatrix:
to access a shape's transform matrix.

The composite transform matrix represents the combined transformations from a distant
ancestor-usually the shape at the top of the hierarchy. The composite transform matrix
can be used for transforming points from this ancestor's coordinate system to the shape's
coordinate system. Use the method getCompositeTransform:relativeToAncestor: to
access this matrix.

The inverse of the composite transform matrix represents the transformation from its
owner's coordinate system to an ancestor's coordinate system. Use the method
getlnverseCompositeTransform: relativeToAncestor: to access this matrix.

The identity matrix represents a normalized coordinate system: one to which no
transformations are applied. The global constant N3DldentityMatrix is defined in
3Dkitlnext3d.h. The values in the identity matrix are:

{ {1, 0, 0, a},
{O, 1, 0, a},
{O, 0, 1, A},
{O, 0, 0, 1}}

Shaders

Each N3DShape can have one each of the six shader types: surface, displacement, light,
imager, volume, and transformation. The shaders belonging to an N3DShape are instances
of the N3DShader class; each N3DShader object manages a shading language function.
The type of an N3DShader is determined by the shader function which it manages. See the
N3DShader class specification for more on shading language functions.

Light shader objects are different than light objects. N3DLight is a subclass of shape whose
objects are used to light one or more surfaces in a scene. In most cases, you will illuminate
the shapes in a scene using N3DLight objects rather than light shaders.

The Render Delegate

The render delegate is an N3DShape that renders a specific geometry. Render delegates are
an efficient way to render multiple versions of a single shape. Say, for example, you want
to render all four tires on an automobile. Each N3DShape representing a tire can have the
same render delegate. Each time one of the tire shapes gets a render: message, it invokes
the delegate's renderSelf: method. Thus only the render delegate needs to retain the
geometric data for the tire. The four shapes using the delegate need only represent the
transformation to the origin of the four tire positions.

Classes: N3DShape 17-97

Instance Variables

RtMatrix transform;
RtMatrix compositeTransform;
RtMatrix inverseCompositeTransform;
RtBound boundingBox;
N3DShapeName *shapeName;
N3DSurfaceType surfaceType;
id surfaceShader;
id displacementShader;
id lightShader;
id imagerShader;
id volumeShader;
id transformationShader;
struct _shapeFlags {
unsigned int selectable: 1 ;
unsigned int visible: 1 ;
unsigned int ancestorChanged: 1;
unsigned int compositeDirty:2;
unsigned int draw AsBox: 1;
unsigned int islnstance: 1;
unsigned int hasShader: 1 ;

}shapeFlags;
id nextPeer;
id previousPeer;
id descendant;
id ancestor;
id renderDelegate;

transform

compositeTransform

inverseCompositeTransform

boundingBox

shapeName

surfaceType

surfaceShader

displacementShader

17-98 Chapter 17: 3D Graphics Kit

Transformation from ancestor

Transformation from top of shape hierarchy

Transformation to top of shape hierarchy

Three-dimensional bounds of shape

N arne and id of shape

Surface type for interactive rendering

Surface shader for photorealistic rendering

Displacement shader for photorealistic rendering

lightShader

imagerShader

volume Shader

transformationShader

shapeFlags.selectable

shapeFlags. visible

shapeFlags.ancestorChanged

shapeFlags.compositeDirty

shapeFlags.draw AsBox

shapeFlags.isInstance

shapeFlags .hasShader

nextPeer

previousPeer

descendant

ancestor

renderDelegate

Method Types

Initializing and freeing

Rendering the N3DShape

Light shader for photorealistic rendering

Imager shader for photorealistic rendering

Volume shader for photorealistic rendering

Transformation shader for photorealistic rendering

YES if the shape can be selected

YES if the shape and its descendants are visible

YES if the shape's ancestor changed

YES if the composite and inverse transform matrices
need updating

YES if this shape renders by drawing its bounding box

YES if this shape has a delegate to perform its rendering

YES if this shape has any shaders associated with it

Next shape in the peer group

Previous shape in the peer group

Shape descended from this one

Shape from which this one descends

Delegate that performs rendering

- init
- free
- freeAll

- render:
- renderS elf:
- renderSelfAsBox:

Traversing the shape hierarchy - nextPeer
- previousPeer
- firstPeer.
-lastPeer
- descendant
- lastDescendant
- ancestor
- firstAncestor
- isWorld

Classes: N3DShape 17-99

Managing the shape hierarchy - linkPeer:
- linkDescendant
- linkAncestor:
- unlink
- group:
- ungroup

Shader - setShader:
~ shaderType:

Surface - surfaceType
- setSurfaceType:andDescendants:

Bounding box - getBoundingBox:
- setDraw AsBox:
- doesDraw AsBox
- getBounds:inCamera:

Converting points - convertObjectPoints:counttoCamera:
- convertPoints:countfromAncestor:
- convertPoints:count:toAncestor:

Selection - setSelectable:
- isS electable

Visibility - setVisible:
- isVisible

Naming shapes - setShapeN arne:
- shapeName

Delegate for rendering - setRenderDelegate:
- removeRenderDelegate
- renperDelegate

Transformation matrices - setTransformMatrix:
- getTransformMatrix:
- concatTransformMatrix:premuItiply:
- getCompositeTransformMatrix:relativeToAncestor:
- getInverseCompositeTransformMatrix:

relativeToAncestor:

17-100 Chapter 17: 3D Graphics Kit

Rotation, scaling, translation - rotateAngle:axis:
- preRotateAngle:axis:
- scale:::
- preScale:::
- scaleUniformly:
- preScaleUniformly:
- translate:::
- preTranslate:::

Archiving - read:
- write:
- awake

Instance Methods

ancestor

- ancestor

Returns the receiving object's ancestor-the N3DShape above it in the shape hierarchy. If
the receiving shape is at the top of its hierarchy, returns nil. The class description includes
an illustration and discussion of the shape hierarchy.

See also: - IinkAncestor:, - firstAncestor

awake

-awake

Invoked after unarchiving to reinitialize the N3DShape object. Do not invoke this method
directly. Returns self.

See also: - read:, - write:

Classes: N3DShape 17-101

concatTransformMatrix:premultiply:

- concatTransformMatrix:(RtMatrix)aTransform premultiply:(BOOL)jlag

Concatenates aTransform to the N3DShape's current transform matrix. Ifjlag is YES, this
method premultiplies the matrix by the aTransform; that is, it applies the effect of
aTransform to the receiving shape's coordinate system before applying the effect of its
transform matrix. Otherwise, it postmultiplies the transform matrix by a Transform ,
applying the effect of the transform matrix before applying the effect of aTransform. In
either case, it places the result in the receiver's transform instance variable. Returns self.

See also: - setTransformMatrix:, - getTransformMatrix,
- getCompositeTransformMatrix:relativeToAncestor:,
- getInverseCompositeTransformationMatrix:relativeToAncestor:

convertObjectPoints:count:toCamera:

- convertObjectPoints:(RtPoint *)points
count: (int)n
toCamera:camera

Converts points from the receiver's coordinate system to camera's 2D (PostScript)
coordinate system. Returns the converted values by reference in the first two (x and y)
coordinates of each RtPoint in points; you should ignore the z coordinates returned in
points. Returns self.

See also: - convertPoints:count:fromAncestor:, - convertPoints:count:toAncestor:

convertPoints:count:fromAncestor:

- convertPoints:(RtPoint *)points
count: (int)n
fromAncestor:(N3DShape *)theShape

Converts points from theShape's coordinate system to the coordinate system of the receiver
If theShape is nil or isn't above the receiver in its shape hierarchy, this method converts
from the shape at the top of the receiver's shape hierarchy (its first ancestor). Returns the
converted values by reference in points. Returns self. See the class description for a
discussion and diagram of the shape hierarchy.

See also: - convertObjectPoints:count:toCamera:,
- convertPoints:count:toAncestor:, - firstAncestor

17-102 Chapter 17: 3D Graphics Kit

convertPoints:count:toAncestor:

- convertPoints:(RtPoint *)points count:(int)n toAncestor:(N3DShape *)theShape

Converts points from the receiver's coordinate system to the coordinate system of
theShape. If theShape is nil or isn't above the receiver in its shape hierarchy, this method
converts to the world shape at the top of the receiver's shape hierarchy. Returns self. See
the class description for a discussion and diagram of the shape hierarchy.

See also: - convertShapePointsToWorld:count:,
- convertShapePoints:count:toCamera:

descendant

- descendant

Returns the receiver's descendant-the N3DShape below it in the object hierarchy. If the
receiving shape has no descendant, returns nil. See the class description for a discussion
and diagram of the shape hierarchy.

See also: - lastDescendant, - linkDescendant:

doesDraw AsBox

- (BOOL)doesDraw AsBox

Returns YES if the receiver is set to draw its bounding box when it renders. For an instance
of your subclass ofN3DShape to draw its bounding box, you must explicitly set the bounding
box when it is initialized and when it is resized (that is, when values passed to RenderMan
geometric primitives in the renderSelf: method change). By default, returns NO.

See also: - getBoundingBox:, - setDrawAsBox:

firstAncestor

- firstAncestor

Returns the shape at the top of the receiving N3DShape's hierarchy. See the class
description for a discussion and diagram of the shape hierarchy.

See also: - ancestor, - linkAncestor:

Classes: N3DShape 17-103

firstPeer

- firstPeer

Returns the left-most peer in the receiver's peer group. The first peer is the direct
descendant of the receiver's ancestor. See the class description for a discussion and
diagram of the shape hierarchy.

See also: -lastPeer, -linkPeer:, - nextPeer, - previousPeer

free

-free

Frees the receiving object, its descendants, and the descendants' peers. Unlinks the
receiving object from its peer group; if the receiver has a next peer and previous peer, they
are set to point to each other; if the receiver has no previous peer, its next peer is set as the
direct descendant of the ancestor. Frees the receiver's descendant and its descendants and
peers by sending a freeAII message to the descendant. See the class description for a
discussion and diagram of the shape hierarchy. Returns nil.

See also: - freeAII

freeAIi

- freeAII

Frees the receiver, its next peer (and all subsequent peers) and its descendants. This method
first sends a freeAII message to the next peer, then sends a free message to self. See the
class description for a discussion and diagram of the shape hierarchy. Returns nil.

See also: - free

17 -104 Chapter 17 : 3D Graphics Kit

getBoundingBox:

- getBoundingBox:(RtBound *)boundingBox

Returns, by reference in boundingBox, the union of the receiver's bounding box and its
descendant's bounding boxes; thus, the six coordinates in boundingBox represent the
volume of the receiver and all its descendants. The returned values are in the coordinates
of the receiving N3DShape.

Note that for your subclass ofN3DShape to return the correct value in boundingBox, your
code must set the boundingBox instance variable when an instance is initialized and
whenever it changes size (that is, when values passed to RenderMan geometric primitives
in the renderSelf: method change). Returns self.

See also: - renderSelf:, - renderSelfAsBox:, - doesDraw AsBox, - setDraw AsBox:

getBounds:inCamera:

- getBounds:(NXRect *)boundingRect inCamera:theCamera

Returns, by reference in boundingRect, the rectangle that bounds the receiver in
theCamera's 2D (PostScript) coordinate system. If the Camera isn't an N3DCamera object,
this method generates an exception. Returns self.

getCompositeTransformMatrix:relativeToAncestor:

- getCompositeTransformMatrix:(RtMatrix)theMatrix
relativeToAncestor: (N3DShape *)theAncestor

Returns, by reference in theMatrix, the matrix representing the transformation from
theAncestor's coordinate system to the receiver's coordinate system. If theAncestor is nil
or if the receiving N3DShape isn't a descendant of theAncestor, theMatrix represents the
transformation from world space to the receiver's coordinate system. See the class
description for discussions of the shape hierarchy and transformations. Returns self.

See also: - setTransformMatrix:, - getTransformMatrix:,
- concatTransformMatrix:premuitiply:,
- getlnverseCompositeTransformationMatrix:relativeToAncestor:

Classes: N3DShape 17-105

getlnverseCompositeTransformMatrix:relative ToAncestor:

- getlnverseCompositeTransformMatrix:(RtMatrix)theMatrix
relativeToAncestor:(N3DShape *)theAncestor

Returns, by reference in theMatrix, the matrix representing the transformation from the
receiver's coordinate system to theAncestor's coordinate system. If theAncestor is nil or if
the receiving N3DShape isn't a descendant of theAncestor, theMatrix represents the
transformation from the receiver's coordinate system to world space. See the class
description for discussions of the shape hierarchy and transformations. Returns self.

See also: - setTransformMatrix:, - getTransfQrmMatri:x:,
- concatTransformMatrix:premultiply:,
- getCompositeTransformMatrix:relativeToAncestor:

getTransformMatrix:

- getTransformMatrix:(RtMatrix)theMatrix

Returns, by reference in theMatrix, the receiver's transform matrix: the instance variable
representing the transformation from the ancestor's space to the receiver's space. This
method is invoked by N3DShape's render: method to get the transformation matrix for
the space in which the shape is rendered. Override this method to apply your own
manipulation on the transform matrix-and, thereby, on the receiver's space-when
rendering. Returns self.

See also: - concatTransformMatrix:premultiply:,
- getCompositeTransformMatrix:relativeToAncestor:,
- getInverseCompositeTransformMatrix:relativeToAncestor:,
- preRotateAngle:axis:, - preScale:::, - preScaleUniformly:, - preTranslate:::,
- rotateAngle:axis:, - scale:::, - scaleUniformly:, - setTransformMatrix:, -
translate:: :

group:

- group:toShape

Makes the receiver a descendant of toShape while maintaining its position in world space.
Invoking this method on a series ofN3DShapes, each with the same N3DShape as toShape,
causes the receivers to become peers-all descended from toShape. This method is useful,
for example, to group a set of N3DShapes after they've been selected by the user.

17-106 Chapter 17: 3D Graphics Kit

This method modifies the receiver's transform matrix to reflect the transformation from
toShape to the receiver's current position. If toShape has no descendant, the receiver is
made its direct descendant using the linkDescendant: method. Otherwise, the receiver is
linked by invoking linkPeer: on toShape's descendant. Returns self.

See also: -linkDescendant:, -linkPeer:, - ungroup, - setSelectable,
- selectShapesln: (N3DCamera)

init

- init

Initializes the receiver, a newly allocated instance of N3DShape. The transform,
compositeTransform, and inverseCompositeTransform matrices are normalized (see
the class description for a discussion of matrices and transformations between coordinate
systems). All shaders are set to nil, as are the peer, ancestor, and descendant pointers.
Returns self.

isSelectable

- (BOOL)isSelectable

Returns YES if the receiving N3DShape can be selected. Shapes are selected by the
N3DCamera method selectShapesln:. By default, N3DShapes aren't selectable.

See also: - setSelectable:, - selectShapesln: (N3DCamera)

isVisible

- (BOOL)isVisible

Returns YES if the receiving N3DShape has been set to render itself. N3DShapes are
visible by default.

See also: - setVisible:

isWorld

- (BOOL)isWorid

Returns YES if the receiving N3DShape is at the top of its shape hierarchy-that is, it has
no previous peer or ancestor. Returns NO otherwise. See the class description for a
discussion and diagram of the shape hierarchy.

Classes: N3DShape 17-107

lastDescendant

- lastDescendant

Returns the N3DShape at the end of the receiver's descendant chain. This method searches
directly below the receiver; it doesn't search peer branches for deeper descendants. Returns
self if the receiver has no descendant. See the class description for a discussion and
diagram of the shape hierarchy.

See also: - descendant, - linkDescendant:

lastPeer

-lastPeer

Returns the N3DShape at the far right of the receiver's peer group. Searches for the first
peer whose next peer is nil, beginning with the receiver. See the class description for a
discussion and diagram of the shape hierarchy.

See also: - firstPeer, -linkPeer:, - nextPeer, - previousPeer

IinkAncestor:

- linkAncestor:anAncestor

Sets anAncestor as the ancestor of the receiver and its peers. Doesn't reset anAncestor's
descendant. Returns the receiver's previous ancestor. See the class description for a
discussion and diagram of the shape hierarchy.

See also: - ancestor, - firstAncestor, - linkDescendant

linkDescendant:

- linkDescendant:aDescendant

Inserts aDescendant directly below the receiver. aDescendant is made the receiver's
descendant, and aDescendant and its peers set the receiver as their ancestor. The receiver's
previous descendant is moved to the bottom of aDescendant's sub-tree, that is, made the
descendant of its last descendant. See the class description for a discussion and diagram of
the shape hierarchy.

If aDescendant isn't an N3DShape (or subclass thereof), no change is made to the
receiver's hierarchy. Returns self.

See also: - descendant, - lastDescendant, -linkAncestor

17-108 Chapter 17: 3D Graphics Kit

IinkPeer:

- linkPeer:aPeer

Inserts aPeer as the receiver's next peer. aPeer brings with it any peers and descendants it
may have. The receiver's former next peer is moved to the extreme right of aPeer's peer
group, made the next peer of aPeer's last peer. If aPeer isn't an N3DShape (or subclass
thereof), no change is made to the receiver's hierarchy. See the class description for a
discussion and diagram of the shape hierarchy. Returns self. .

See also: - firstPeer, - lastPeer, - nextPeer, - previousPeer

nextPeer

- nextPeer

Returns the receiver's next peer-the N3DShape to the right of the receiving N3DShape.
If the receiver has no next peer, this method returns nil. See the class description for a
discussion and diagram of the shape hierarchy.

See also: - firstPeer, -lastPeer, -linkPeer:, - previollsPeer

preRotateAngle:axis:

- preRotateAngle:(float)angle axis:(RtPoint)referencePoint

Rotates the receiver about an axis defined by referencePoint and the origin of its coordinate
system. The receiving shape's transform matrix is premultiplied by the rotation matrix; that
means the rotation is applied to the N3DShape's own coordinate system rather than that of
its ancestor. The resulting transformation is stored in the receiver's transform matrix. Both
referencePoint and the origin are defined in the receiver's coordinate system. Returns self.

See also: - rotateAngle:axis:

Classes; N3DShape 17-109

preScale:::

- preScale:(float)xScaleFactor

: (float)yScaleFactor
: (float)zScaleFactor

Scales the receiver. A separate scale factor is applied to each of the receiving shape's
dimensions. The receiving shape's transform matrix is premultiplied by the scaling matrix;
that means the scaling is applied to the N3DShape's own coordinate system rather than that
of its ancestor. The resulting transformation is stored in the receiver's transform matrix.
Returns self.

See also: - preScaleUniformly:, - scale:::, - scaleUniformly:

preScaleUniformly:

- preScaleUniformly:(float)scaleFactor

Scales the receiver. This method works by invoking preScale::: with scaleFactor for all
three arguments. Returns self.

See also: - preScale:::, - scale:::, - scaleUniformly:

preTranslate:::

- preTranslate:(float)xTranslation

: (float)yTranslation

: (float)zTranslation

Translates the receiver. A separate translation is applied along each of the receiving shape's
axes. The receiving shape's transform matrix is premultiplied by the translation matrix;
that is, the translation is applied to the N3DShape's own coordinate system rather than that
of its ancestor. The resulting transformation is stored in the receiver's transform matrix.
Returns self.

See also: - translate:::

17-110 Chapter 17: 3D Graphics Kit

previousPeer
- previousPeer

Returns the receiver's previous peer, the N3DShape to the immediate left of the receiver.
If the receiver is the first peer in its peer group, returns nil.

See also: - firstPeer, -lastPeer, -linkPeer:, - nextPeer

read:
- read:(NXTypedStream *)stream

Reads the receiver from the typed stream stream. Returns self.

See also: -awake, - write:

removeRenderDelegate

- removeRenderDelegate

Removes and returns the render delegate for the receiver. See the class description for a
discussion of the render delegate.

See also: - renderDelegate, - setRenderDelegate:

render:

- render:(N3DCamera *)theCamera

This method renders the N3DShape, its descendants, and its peers. The diagram shows the
sequence of 3D Graphics Kit methods and RenderMan functions invoked by render:.

Classes: N3DShape17-111

Figure 17-11. Sequence of 3D Kit and RenderMan calls in render:

After invoking RiAttributeBegin(), this method invokes set on each of the N3DShape's
N3DShaders, which in turn invoke the appropriate RenderMan shader function. Next,
this method applies the shape's transformation by invoking getTransformMatrix: on self
and applying the matrix returned in RiConcatTransform(). It then invokes renderSelf:
(or renderS elf A sB ox:) to actually render the shape using the transformation and
shaders applied.

After rendering the shape, this method invokes render: on the N3DShape's descendant,
which thus inherits the shading and transformation of the ancestor. This method then
invokes RiTransformEndO and RiAttributeEndO to remove the effect of its
transformation and shaders, after which it invokes render: on the N3DShape's next peer.

You don't invoke this method directly. It is invoked by the N3DShape's ancestor, previous
peer, or N3DCamera when rendering. This method returns self.

See also: - renderSelf:, - renderSelfAsBox:, - getTransformMatrix:,
- set (N3DShader)

17-112 Chapter 17:3D Graphics Kit

renderDelegate

- renderDelegate

Returns the receiver's rendering delegate, the N3DShape whose renderS elf: method is
invoked each time the receiver's render: method is invoked.

See also: - removeRenderDelegate, - setRenderDelegate:

renderSelf:

- renderSelf:(N3DCamera *)theCamera

This abstract method does nothing, returns self. Override this method to do custom
rendering in a subclass of N3DShape. For example, to create a subclass of N3DShape that
draws a sphere, you'd implement this method as follows:

- renderSelf: (RtToken) context

/* attributes here apply to the receiver and descendants */

RiAttributeBegin();

/* attributes here apply only to the receiver */

RiSphere(myRadius, myZMax, myZMin, mySweepAngle, RI_NULL);

RiAttributeEnd() ;

return self;

A list of RenderMan geometric primitive functions is included in the class description at
the beginning of this discussion. See The RenderMan Companion for a complete
description of the RenderMan language and its various primitives.

It's recommended that you use N3DShape methods for setting RenderMan attributes rather
than placing function calls such as RiRotateO and RiScaleO in renderSelf:. Using
N3DShape API assures that you can query a shape for an accurate reflection of its state. If
you choose to apply attributes directly in renderSelf:, make judicious use of
RiAttributeBeginO and RiAttributeEndO. For example, note that in the above code
attributes before RiAttributeBeginO apply to the receiver and its descendants; those after
RiAttributeBeginO apply only to the receiver.

To draw complex shapes, the renderS elf: method can include calls to any number and
combination of RenderMan geometric primitive functions.

See also: - render:, - renderSelfAsBox:

Classes: N3DShape 17-113

renderSelfAsBox:

- renderSelfAsBox:(N3DCamera *)theCamera

Renders the receiver's bounding box. If the receiver uses a render delegate, renders the
delegate's bounding box. This method gets the points to use in drawing the box by
invoking getBoundingBox: on self-thus, the box drawn includes the volume of the
recei ver and all its descendants. If the N3DShape is set to render itself as a box, this method
is invoked instead of renderS elf: each time the shape's render: method is invoked.
Returns self.

See aiso: - getBoundingBox:, - render:, - renderSelf:, - doesDrawAsBox,
- setDrawAsBox:

rotateAngle:axis:

- rotateAngle:(float)ang axis:(RtPoint)referencePoint

Rotates the receiver about the axis defined by referencePoint and the origin of the receiver's
coordinate system. The rotation is postmultiplied on the receiving shape's transform
matrix; that means the rotation is applied to the ancestor's coordinate system before any
other transformations in the receiver's coordinate system. The resulting transformation is
stored in the receiver's transform matrix. Both referencePoint and the origin are defined in
the receiver's coordinate system. Returns self.

See also: - preRotateAngle:axis:

scale:::

- sc~le:(float)xScaleFactor

: (float)yScaleFactor
: (float)zScaleFactor

Scales the receiver. A separate scale factor is applied along each of the receiving shape's
axes. The receiving shape's transform matrix is postmultiplied by the scaling matrix; that
means the scaling is applied to the ancestor's coordinate system before any other
transformations in the receiver's coordinate system. The resulting transformation is stored
in the receiver's transform matrix. Returns self.

See also: - preScale:::, - scaIeUniformly, - preScaIeUniformly:

17-114 Chapter f7:3D Graphics Kit

scaleUniformly:

- scaleUniformly:(float)scaleFactor

Scales the receiver. This method works by invoking scale::: with scaleFactor used for all
three arguments. Returns self.

See also: - scale:::, - preScale:::, - preScaleUniformly:

setDraw AsBox:

- setDrawAsBox:(BOOL)jlag

Sets the receiver to render only its bounding box. If flag is YES, renderSelfAsBox: is
invoked instead of renderSelf: each time the N3DShape's render: method is invoked; if
NO, renderS elf: is called. Returns self.

For maximum efficiency and minimum screen clutter, you may want to have an N3DShape
render itself as a box, while its descendants and their peers remain invisible. This is useful
when a user is interactively manipulating the shapes in an N3DCamera. To use this
technique on a specific shape, invoke this method with flag YES, then send the message
[descendant setVisible:NO].

See also: - doesDraw AsBox, - getBoundingBox:, - renderSelfAsBox:

setRenderDelegate:

- setRenderDelegate:aShape

Sets the receiver's rendering delegate, the N3DShape whose renderSelf: method is
invoked each time the receiver's render: method is invoked. Returns the old render
delegate. If aShape isn't a subclass of N3DShape, does nothing and returns nil.

See also: - removeRenderDelegate, - renderDelegate

setSelectable:

- setSelectable:(BOOL)jlag

Enables the receiver to be selected. N3DShapes are selected by N3DCamera's
selectShapesln: method. Returns self.

See also: - isSelectable, - selectShapesln: (N3DCamera)

Classes: N3DShape 17-115

setShader:

- setShader:aShader

Sets aShader as the receiver's shader of aShader's type. An N3DShape can have shaders
of six types: surface, displacement, light, imager, volume, and transformation. aShader
must be an object of the N3DShader class (or subclass thereof).

If you want your N3DShape to have various shader types (for example, surface,
displacement, and light shaders), you allocate separate instances of N3DShader-each
associated with a shader function of the appropriate type. You then invoke this method
truce separate times, once for each of the N3DShaders.

This method returns the old shader of aShader's type.

See also: - shaderType:

setShapeName:

- setShapeName:(const char *)aName

Sets the receiver's name to aName. Returns self.

See also: - shapeName

setSurfaceType:andDescendants:

- setSurfaceType:(N3DSurfaceType)theSurface andDescendants:(BOOL)jlag

Sets the surface type used by the interactive renderer. theSurface can be one of five
enumerated values defined in the header file 3Dkitlnext3d.h:

N3D _PointCloud
N3D _ WireFrame
N3D _ShadedWireFrame
N3D_FacetedSolids
N3D _SmoothSolids

Four of these types are shown in the following illustration:

17-116 Chapter f7:3D Graphics Kit

Figure 17-12. N3D_PointCloud, N3D_ WireFrame, N3D_FacetedSolids, and
N3D _SmoothSolids surface types

N3D_ShadedWireFrame renders an N3D_ WireFrame surface with depth cueing.

The surface type set by this method applies to the receiver and, if flag is YES, to its
descendants and their peers. N3DCamera' s setSurfaceTypeFor AIl:chooseHider: method
invokes this method on the world shape. The photorealistic renderer uses the surface
shader set with the setShader: method. Returns self.

See also: - surfaceType, - setSurfaceTypeForAIl:chooseHider: (N3DCamera)

setTransformMatrix:
- setTransformMatrix:(RtMatrix)newTransjorm

Replaces the receiver's current transform matrix with newTransjorm. Returns self.

See also: - getTransformMatrix:,­
getCompositeTransformMatrix:relativeToAncestor:,
- concatTransformMatrix:premultiply:,
- getInverseCompositeTransformMatrix:relativeToAncestor:,
- preRotateAngle:axis:, - preScale:::, - preScaleUniformly:, - preTranslate:::,
- rotateAngle:axis:, - scale:::, - scaleUniformly:, - translate:::

Classes: N3DShape 17-117

setVisible:

- setVisible:(BOOL)jlag

If flag is YES, the receiver will be rendered each time its render: method is invoked. If
NO, the receiver won't be rendered. The N3DShape's descendants (and their peers) also
set their visibility to jlag. Returns self.

See also: - isVisible, - render:

shaderType:

- shaderType:(SLO_TYPE)type

Returns the id of the receiver's type N3DShader object. An N3DShape may have six
different shaders, one for each of the standard RenderMan shader types. type may be one
of the following six constan~s (defined in the header file rilslo.h):

SLO_TYPE_SURFACE
SLO_TYPE_LIGHT
SLO_TYPE_DISPLACEMENT
SLO_TYPE_ VOLUME
SLO_TYPE_TRANSFORMATION
SLO_TYPE_IMAGER

See also: - setShader:

shapeName

- (const char *)shapeName

Returns the receiver's name.

See also: - setShapeName:

17-118 Chapter 17: 3D Graphics Kit

surfaceType

- (N3DSurfaceType)surfaceType

Returns the receiver's surface type, which can be one of five enumerated values defined in
the header file 3Dkitlnext3d.h:

N3D _PointCloud
N3D _ WireFrame
N3D _ShadedWireFrame
N3D _FacetedSolids
N3D _SmoothSolids

The default surface type is N3D _ WireFrame.

See also: - setSurfaceType:andDescendants:

translate:::

- translate:(float)xTranslation
: (float)yTranslation
: (float)zTranslation

Translates the receiver. A separate translation is applied along each of the receiving shape's
axes. The receiving shape's transform matrix is postmultiplied by the translation matrix;
that means the translation is applied to the ancestor's coordinate system before any other
transformations in the receiver's coordinate system. The resulting transformation is stored
in the receiver's transform matrix. Returns self.

See also: - preTranslate:::

Classes: N3DShape 17·119

ungroup

-ungroup

Removes the receiver from its hierarchy, and promotes its descendant and the descendant's
peers to its place. Adjusts the descendant's transformations so that they remain in place
relative to the world coordinate system.

If the receiver has a previous peer and next peer, they are set to point to one another. The
descendant is then made a peer of the previous peer by the linkPeer: method. If the
receiver is at the far left of its peer group, the receiver's descendant is made its ancestor's
descendanL The receiver's transform matrix is applied to its descendant and the
descendants peers: thus, the descendants retain their orientation to the world coordinate
system. The receiver's next peer, previous peer, descendant and ancestor are all set to nil.
Returns self.

See also: - group:

unlink

- unlink

Removes the receiver, its descendants, and the descendants' peers from the shape hierarchy.
If the receiver is the direct descendant of its ancestor, its next peer is made the ancestor's
descendant. Returns self. '

See also: -linkPeer:, -linkDescendant:, -linkAncestor:

write:
- write:(NXTypedStream *)stream

Writes the receiving N3DShape to the typed stream stream. Returns self.

See also: - awake, - read:

17-120 Chapter 17: 3D Graphics Kit

Functions

These functions provide a C-Ianguage interface for manipulating 3D data types defined by
the RenderMan interface. These data types include RtPoint, representing points in 3D
coordinate systems, RtMatrix, representing transformations between 3D coordinate
systems, and RtBound, representing the edges of a 3D bounding box. They're declared in
the header file rilri.h.

17-122 Chapter 17: 3D Graphics Kit

N3DlntersectLinePlane()

SUMMARY Returns a point representing the intersection of a line segment and a plane

DECLARED IN 3Dkitlnext3d.h

SYNOPSIS void N3DlntersectLinePlane(RtPoint *endPoints, RtPoint planeNormal,
RtPoint planePoint, RtPoint *intersection)

DESCRIPTION This function accepts two points defining a line segment and two points defining a plane.
It calculates and returns by reference the point where the line and the plane intersect.

endPoints is an array of two points defining the line. planeNormal and planePoint are
two points that define a vector normal (perpendicular) to the plane. planePoint is on
the plane itself, planeNormal is a point in space. The line segment between planePoint
and planeNormal is perpendicular to (and thus defines) the plane whose intersection is
being tested.

This method treats endPo'ints as the two points defining a line and tests for the intersection
of that line with the plane. Thus intersection doesn't necessarily represent a point between
the points in endPoints.

RETURN N3DlntersectLinePIaneO returns in intersection the point where the line defined by
endPoints intersects the plane defined by planeNormal and planePoint. If the line and plane
are parallel, this function returns NaN for all three values of intersection.

Functions: N3DlntersectLinePlane() 17-123

N3DlnvertMatrixO, N3DMuitiplyMatrixO

SUMMARY Perform standard matrix manipulations

DECLARED IN 3Dkitlnext3d.h

SYNOPSIS void N3DMultiplyMatrix(RtMatrix pre Transform , RtMatrix postTransform,
RtMatrix resultTransform)

float N3DlnvertMatrix(RtMatrix theTransform, RtMatrix thelnverse)

DESCRIPTION N3DMultiplyMatrixO accepts a pre Transform matrix, a postTransform matrix, and a
resultTransform matrix. It multiplies preTransform by postTransform and returns the
resulting matrix.

N3DlnvertMatrixO accepts theTransform matrix and returns its inverse.

RETURN N3DMuitiplyMatrixO returns the product of pre Transform and postTransform in
resultTransform.

N3DlnvertMatrixO returns the determinant of the matrix and, by reference, the inverse of
theTransform in inverse Transform.

N3DMuitiplyMatrixO ~ See N3DlnvertMatrixO

17-124 Chapter 17: 3D Graphics Kit

N3DMult3DPoint(), N3DMult3DPoints()

SUMMARY Transform points between coordinate systems

DECLARED IN 3Dkitlnext3d.h

SYNOPSIS void N3DMult3DPoint(RtPoint thePoint, RtMatrix theTransform, RtPoint newPoint)
void N3DMult3DPoints(RtPoint *thePoints, int pointCount, RtMatrix the Transform ,

RtPoint *newPoints)

DESCRIPTION These functions transform a 3D point or array of 3D points to the coordinate system
represented by a 3D matrix.

N3DMult3DPointO accepts thePoint, a single point; theTransform, a matrix by which to
multiply this point; and newPoint, a point in which to place the result.

N3DMult3DPointsO accepts thePoints, an array of points; pointCount, the number of
points in the array; theTransform, a matrix by which to multiply thePoints; and newPoints,
an array of points in which to place the results.

RETURN N3DMult3DPointO returns by reference in newPoint the transformation of thePoint from
its coordinate system to the coordinate system represented by theTransform.

N3DMult3DPointsO returns by reference in newPoints the transformation of thePoint
from its coordinate system to the coordinate system represented by the Transfo rm.

Functions: N3DMult3DPoint() 17-125

N3D_ConvertBoundToPointsO, N3D_ConvertPointsToBoundO

SUMMARY Convert between bounding boxes and points

DECLARED IN 3Dkitlnext3d.h

SYNOPSIS void N3D_ConvertBoundToPoints(RtBound theBound, RtPoint *thePoints)
void N3D_ConvertPointsToBound(RtPoint *thePoints, RtBound theBound)

DESCRIPTION These macros convert between the RtBound and RtPoint data types. theBound is a
three-dimensional bounding box; thePoints is an array of two points.

RETURN N3D _ ConvertBoundToPointsO returns in thePoints[O] the origin of theBound and in
thePoints[1] the extent of theBound.

N3D _ ConvertPointsToBoundO returns in theBound a bounding box whose origin is at
thePoints[O] and whose extent is at thePoints[l].

N3D_ConvertPointsToBoundO ~ See N3D_ConvertBoundToPointsO

N3D_CopyBoundO, N3D_CopyMatrixO, N3D_CopyPointO

SUMMARY Copy data from one 3D data structure to another

DECLARED IN 3Dkitlnext3d.h

SYNOPSIS void N3D_CopyBound(RtBound sourceBounds, RtBound destBounds)
void N3D_CopyMatrix(RtMatrix sourceMatrix, RtMatrix destMatrix)
void N3D_CopyPoint(RtPoint sourcePoint, RtPoint destPoint)

DESCRIPTION These macros efficiently copy the contents of one 3D data structure to another.

17-126 Chapter 17: 3D Graphics Kit

RETURN N3D _ CopyBoundO returns, in destBound, a copy of the values in sourceBound.

N3D_CopyMatrixO returns, in destMatrix, a copy of the values in sourceMatrix.

N3D _ CopyPointO returns, in destPoint, a copy of the values in sourcePoint.

N3D_CopyMatrixO ~ See N3D_CopyBoundO

N3D_CopyPointO ~ See N3D_CopyBoundO

N3D_WCompO ~ See N3D_XCompO

SUMMARY Returns the components of a 3D data structure

DECLARED IN 3Dkltlnext3d.h

SYNOPSIS RtFloat N3D _XComp(RtFloat *the Vector)
RtFloat N3D_YComp(RtFloat *theVector)
RtFloat N3D _ZComp(RtFloat *the Vector)
RtFloat N3D_ WComp(RtFloat *theVector)

DESCRIPTION These macros return the components of a 3D point or submatrix.

If theVector is an RtPoint type, use the macros N3D_XCompO, N3D_YCompO, and
N3D _ZCompO to retrieve its elements.

If theVector is a row in an RtMatrix (for example, myMatrix[2]), use N3D_XCompO,
N3D_YCompO, N3D_ZCompO, and N3D_ WCompO to retrieve its elements.

RETURN N3D_XCompO returns the x-component of theVector.

N3D_YCompO returns the y-component of the Vector.

N3D _ZCompO returns the z-component of the Vector.

N3D_ WCompO returns the w-component of theVector.

Functions: N3D_CopyMatrix() 17-127

17-128

N3D_YComp() -7 See N3D_XComp()

N3D_ZComp() -7 N3D_XComp()

Types and Constants

Defined Types

N3DProjectionType

DECLARED IN 3Dkitlnext3d.h

SYNOPSIS typedef enum {
N3D _Perspective,
N3D _Orthographic

} N3DProjectionType

DESCRIPTION U sed to set and test the projection type of an N3DCamera.

N3DLightType

DECLARED IN 3Dkitlnext3d.h

SYNOPSIS typedef enum {
N3D _AmhientLight,
N3D _PointLight,
N3D _DistantLight,
N3D _SpotLight

} N3DLightType

DESCRIPTION Used to set and test the light type of an N3DLight.

17-130 Chapter f7:3D Graphics Kit

N3DAxis

DECLARED IN 3Dkitlnext3d.h

SYNOPSIS typedef enum {
N3D _AlIAxes,
N3D_XAxis,
N3D_YAxis,
N3D_ZAxis,
N3D_XYAxes,
N3D_XZAxes,
N3D_YZAxes

} N3DAxis

DESCRIPTION U sed to determine the combination of axes about which a matrix is rotated by
N3DRotator objects.

N3DHider

DECLARED IN 3Dkit/next3d.h

SYNOPSIS typedef enum {
N3D _HiddenRendering = 0,
N3D _InOrderRendering,
N3D _NoRendering

} N3DHider

DESCRIPTION Used to set the hider algorithm used by N3DCamera and N3DImageRep objects.

Types and Constants: N3DAxis 17-131

N3DShapeName

DECLARED IN 3DkitIN3DShape.h

SYNOPSIS typedef struct {
char id[6];
char name;

} N3DShapeName

DESCRIPTION The name and id of the shape as character strings (used for picking shapes).

N3DSurfaceType

DECLARED IN 3Dkitlnext3d.h

SYNOPSIS typedef enum {
N3D _Point Cloud = 0,
N3D _ WireFrame,
N3D _ShadedWireFrame,
N3D _FacetedSolids,
N3D _SmoothSolids

} N3DSurfaceType

DESCRIPTION U sed to set the surface type applied to N3DShape and N3DRIBlmageRep objects.

17-132 Chapter f7:3D Graphics Kit

SLOArgs

DECLARED IN 3DkitIN3DShader.h

SYNOPSIS typedef struct {
SLO_ VISSYMDEF symb;
union {

float fval;
RtPoint pval;
NXCoior eval;
char *sval;

} value;
} SLOArgs

DESCRIPTION The union that represents shader language function arguments.

Types and Constants: SLOArgs 17-133

SYl11bol icConstants

Matrix Constants

DECLARED IN 3DkitIN3DShape.h

SYNOPSIS N3D_BOTH_CLEAN
N3D_CTM_DIRTY
N3D _ CTM_INVERSE_DIRTY
N3D_CTM_BOTH_DIRTY.

DESCRIPTION These constants track the status of an N3DShape's composite transformation matrix and
its inverse.

17-134 Chapter 17: 3D Graphics Kit

Global Variables

N3DldentityMatrix

DECLARED IN 3Dkitlnext3d.h

SYNOPSIS const RtMatrix N3DldentityMatrix

DESCRIPTION Assigned the values representing a normalized matrix when 3D Kit applications
are initialized:

{{1, a, a, a},
{a, 1, a, a},
{a, a, 1, a},
{a, a, a, 1}}

N3DOrigin

DECLARED IN 3Dkitlnext3d.h

SYNOPSIS const RtPoint N3DOrigin

DESCRIPTION Assigned the value {O, 0, O} when 3D Kit applications are initialized.

N3DRIBPboardType

DECLARED IN 3Dkitlnext3d.h

SYNOPSIS NXAtom N3DRIBPboardType

DESCRIPTION Pasteboard for copying RIB data.

Types and Constants: N3DldentityMatrix 17-135

17·136

18 Video

18-3 Introduction

18-5 Classes
18-6 NXLiveVideoView

18-23 Types and Constants
18-24 Symbolic Constants

18-1

18-2

18 Video

Library:

Header File Directory: IN extDeveloperlHeaders/video

Import: videolNXLive Video View.h

Introduction

The NXLiveVideoView class provides API for interactive display of live video on the
screen of a NeXTdimension Computer. The NXLiveVideoView clas~ specification
provides a complete discussion of the NeXTdimension Computer's video capabilities and
the API provided by NXLive Video View.

Video 18-3

Classes

NXLiveVideoVielN

Inherits From: View : Responder: Object

Declared In: videolNXLive Video View.h

Class Description

An NXLive Video View is a View that can take video from the input ports of the
NeXTdimension board and display it on a MegaPixel Color Display. It can also send
drawing to the video output ports of the NeXTdimension board.

The video image is displayed in a video rectangle whose lower left corner coincides with
the lower left corner of the bounds rectangle of the NXLive Video View. The size of the
video rectangle is fixed to correspond to the video standard supported by the
NeXTdimension board. For NTSC-standard boards, the rectangle is 640 pixels wide by
480 pixels high; for PAL-standard boards, the rectangie is 768 pixels wide by 576 pixels
high. The sides of the video rectangle are aligned with the screen coordinate system, no
matter what the size or orientation of the NXLive Video View. Scaling, rotating, or flipping
the coordinate system of the NXLive Video View doesn't affect the video rectangle.
Translating the coordinate system of the NXLive Video View will change which portion of
the video rectangle is visible. An NXLive Video View can be resized, but the resizing
doesn't adjust the video rectangle. Resizing an NXLiveVideoView smaller than the video
rectangle effectively clips the video image. Resizing an NXLive Video View to be larger
than the video rectangle may leave a gap between the top and right of the View and the
video rectangle. An NXLive Video View can be placed in a Clip View to allow scrolling;
only the portion of the video rectangle that's contained within the visible rectangle for the
NXLive Video View can be seen on-screen.

Note: While the size of the video rectangle is fixed to the video standard, the actual
viewing area of the video image output by the NeXTdimension board may appear smaller
on a video monitor. This is due to the fact that most monitors "overscan" by about 10-15 %;
that is, they clip about 5 % of the image at the top, bottom, and both sides of the picture.
Thus, when producing video intended for output, it's best to keep the image within the area
that would be displayed on a video monitor. To compensate for overscan when producing
video intended for output, you may want to translate the NXLive Video View down and to
the left and make its bounds rectangle smaller than the video rectangle-thus representing
the output image more accurately.

18-6 Chapter 18: Video

To draw in an NXLiveVideoView, you can create a subclass and override the drawSelf::
method, or add one or more subviews to the NXLive Video View and draw in the subviews.
The effects of drawing in an NXLive Video View differ depending on the output mode
selected; they are described in the next section.

Video Output Modes

The setOutputMode: method determines the source of the image sent to the video output
ports of the NeXTdiniension board and the image displayed in the NXLiveVideoView (as
described below, the two images aren't always the same). There are two arguments for this
method: NX_FROMINPUT and NX_FROMVIEW.

In NX_FROMINPUT mode, both the video output ports of the NeXT dimension board and
the NXLive Video View present video from one of the three video input ports. The input
port is selected with the selectlnput: method. In this mode, the NXLive Video View can
also draw over the video; this is useful, for example, to place titles over video. Video
appears unobscured in the NXLive Video View wherever there is no drawing or the drawing
has no coverage (alpha value of 0.0). When drawing in the Video View has partial coverage
(alpha greater than 0.0 and less than 1.0) video is dithered with the drawing. The video
image in the View can't be manipulated using PostScript operations, since it's displayed by
accessing the video memory on the NeXTdimension board rather than by drawing with
PostScript code. You can, however, grab individual frames as NXImages and manipulate
these images. In NX_FROMINPUT mode, the video output of the NeXTdimension board
presents video from the input port, but no drawing from the NXLiveVideoView.

In NX_FROMVIEW mode, the video output of the NeXTdimension board presents
drawing from the NXLive Video View, but not video from the input port. In this mode, only
drawing in the video rectangle of the NXLive Video View is sent to the video output. The
video input ports of the NeXTdimension board are effectively disconnected from both the
NXLive Video View and the video outputs. The Window containing an NXLive Video View
in NX_FROMVIEWmode should be either buffered or retained. If the Window is
buffered, only the drawing done by the NXLive Video View or its subviews within the video
rectangle is sent to the video output ports; if the video rectangle is clipped, only drawing
done within the unclipped area of the video rectangle appears on the video output ports. If
the Window is retained, anything that overlaps the video rectangle (for example, the cursor,
another View, or a Window) will appear on the video output ports. An NXLiveVideoView
in a nonretained Window produces unpredictable results.

Classes: NXL ive Video View 18-7

Starting and Stopping Video

To begin displaying video in NX_FROMINPUT mode or sending drawing to the video
output ports in NX_FROMVIEW mode, use the start: method. To stop in either mode, use
the stop: method.

A single NeXTdimension board and MegaPixel Color Display can support any number of
NXLive Video Views, each of which maintains its own settings for input port, output mode,
hue, saturation, brightness, and so on. However, only one NXLive Video View can be
active-displaying video from the input ports or sending video to the output ports-at a
time. The others will be either stopped or suspended (not active and not stopped). There
is a simple contention system for ensuring that the NXLive Video View the user is
interacting with will always be active. When any NXLive Video View receives a start:
message, it becomes active; if another NXLive Video View was active, it is suspended. A
suspended NXLive Video View will become active if it receives a message which affects
video (for example, setHue:) or if it undergoes a change to its geometry (for example, by
scrolling or resizing). If grabOnStop: is set when an NXLive Video View is stopped or
suspended, the last frame of video is grabbed and composited into it.

If you're drawing dynamically over video, you need to be sure that the NXLiveVideoView
updates correctly whether video is active or suspended. To do so, you can use the
drawVideoBackground:: method in your dynamic drawing code. If, for example, you're
animating over active video, this method fills the update rectangle with transparent paint
(alpha value 0.0) to let video show through the area previously occupied the moving image.
When video is suspended, this method composites into the update rectangle from the image
grabbed on stop. You can respond in other ways to a.change in the NXLiveVideoView's
active state by creating a delegate that implements the methods videoDidSuspend: and
videoDidActivate: .

If a user has more than one screen attached to a NeXTdimension computer, the Window
containing an NXLive Video View can be dragged from screen to screen. Video is
suspended when the Window containing the View moves off of the screen where playing
started. If you drag the Window back onto its original screen, video remains suspended.
To enable the NXLive Video View to automatically resume playing video, assign the
Window a delegate that implements the windowDidChangeScreen: method; use this
method to send a start: message to the NXLive Video View, which will restart the video.
The screen-changed event causes this message to be sent to the Window's delegate.

18-8 Chapter 18: Video

Adjusting the Video Image

NXLive Video View provides methods for adjusting the quality of the video image
displayed. Among these are methods to set the hue, saturation, brightness, and sharpness
of the image in the NXLive Video View; these are analogous to the controls found on a
standard video monitor.

NXLive Video View also provides methods for setting the gamma correction for both the
input and the output; these settings affect the transfer linearity of the brightness component
of the video. Gamma correction is necessary because, when video is represented by a
device (for example, taken from a camera or displayed on a monitor), the brightness
component may be distorted due to the physical transfer characteristics of the device. Most
video sources are gamma corrected for the transfer characteristics of a video monitor. The
NeXTdimension board has different transfer characteristics, so the gamma correction
usually needs to be adjusted. The setInputGamma: method allows this adjustment. The
setOutputGamma: method allows you to offset the .effect of the setInputGamma:
method, to reinstate the appropriate gamma correction for the video output.

Instance Variables

id delegate

delegate

Method Types

The video view's delegate.

Initializing an NXLive Video View
- initFrame:

Freeing an NXLiveVideoView - free

Starting and stopping video display
- start:
- stop:

Determining the active state - is VideoActive

Classes: NXLiveVideoView 18-9

Capturing video as an NXlmage
- grab
- grabln:fromRect:toRect:
- doesGrabOnStop
- setGrabOnStop:

Finding the video resource + doesRectSupportVideo:standard:size:
+ doesScreenSupport Video: standard: size:
+ doesWindowSupportVideo:standard: size:
+ videoScreen

Getting the video standard - getVideoStandard:size:

Getting the video rectangle - getSource VideoRect:

Selecting the video input port - selectInput:
- numlnputs

Setting the output mode - setOutputMode:

Controlling input video quality - setlnputBrightness:
- inputBrightness
- setlnputGamma:
- inputGamma
- setInputHue:
-inputHue
- setInputSaturation:
- inputSaturation
- setInputSharpness:
- inputSharpness
- resetPictureDefaults

Controlling output video quality
- setOutputGamma:
- outputGamma

Setting output genlock - setOutputGenlocked:
- outputGenlocked

Drawing - drawSelf::
- draw VideoBackground::

Assigning a delegate - setDelegate:
- delegate

Archiving - read:
- write:

18-10 Chapter 18: Video

Class Methods

doesRectSupportVideo:standard:size:

+ (BOOL)doesRectSupportVideo:(NXRect *)theRect
standard:(int *)theStandard
size:(NXSize *)theSize

Returns YES if theRect is located entirely or partially on a screen that supports video, NO
otherwise. By reference, returns the video standard (NX_NTSCSIGNAL or
NX_PALSIGNAL) supported by the NeXTdimension board and the size of the video
rectangle for that standard. If the rectangle lies across two screens, both of which support
video, this method returns the main screen. If neither screen is the main screen, this method
traverses the list returned by Application's getScreen:count: method and returns the first
screen in the list that contains part of theRect and that supports video.

See also: + videoScreen:, - getVideoStandard:size:

doesScreenSupportVideo:standard:size:

+ (BOOL)doesScreenSupportVideo:(const NXScreen *)theScreen
standard:(int *)theStandard

size:(NXSize *)theSize

Returns YES if theScreen supports video, NO otherwise. By reference, returns the video
standard (NX_NTSCSIGNAL or NX_PALSIGNAL) supported by the NeXTdimension
board and the size of the video rectangle for that standard.

See also: + videoScreen:, - getVideoStandard:size:

doesWindowSupportVideo:standard:size:

+ (B OOL)doesWindowSupportVideo: the Window
standard:(int *)theStandard
size:(NXSize *)theSize

Returns YES if the Window is located entirely or partially on a screen that supports video,
NO otherwise. By reference, returns the video standard (NX_NTSCSIGNAL or
NX_PALSIGNAL) supported by the video hardware and the size of the video rectangle for
that standard. If the Window lies across two screens, both of which support video, this
method returns the standard for the main screen. If neither screen is the main screen, this
method traverses the list returned by Application's getScreen:count: method and returns
the first screen in the list that contains part of the Window and that supports video.

See also: + videoScreen:, - getVideoStandard:size:

Classes: NXLiveVideo View 18-11

videoScreen

+ (const NXScreen *)videoScreen

Returns the screen most suited to supporting video; returns NULL if no screen connected
to the system supports video. If the NeXTcube computer has two or more screens that
support video, this method traverses the list returned by Application's getScreen:count:
method and returns the first screen in the list that supports video.

See also: + doesScreenSupportVideo:standard:size:

Instance Methods

delegate

- delegate

Returns the NXLive Video View's delegate. See "Methods Implemented By The Delegate"
near the end of this specification.

See also: - setDelegate:

drawSelf::

- drawSelf:(const NXRect *)rects :(int)rectCount

Displays an image as specified by the current output mode and active state of the
NXLiveVideoView by invoking drawVideoBackground::. Returns self.

You never invoke drawSelf:: directly; it is implemented to ensure that the
NXLive Video View updates correctly whenever it is redisplayed. If you override this
method, your implementation should first send super a drawS elf: : message to ensure that
video display will be properly updated to reflect the current state of the NXLive Video View.

See also: - drawVideoBackground::, - setGrabOnStop:, - setOutputMode:, - start:,
- stop:

18-12 Chapter 18: Video

drawVideoBackground: :
- drawVideoBackground:(const NXRect *)rects :(int)rectCount

Displays an image as specified by the current output mode and active state of the
NXLive Video View. If the View is in NX_FROMINPUT mode and is active, this method
composites transparent paint (alpha value 0.0) into the update rectangles to allow video to
appear in them. If the view is in NX_FROMINPUT mode, is suspended or stopped, and is
set to grab the last frame on stop, this method composites the grabbed image into the update
rectangles. If the NXLive Video View has received a start: message and hasn't been set to
grab the last frame, this method doesn't draw when video is stopped or suspended. If the
NXLive Video View is in NX_FROMVIEW mode, this method does nothing. Returns self.

The drawS elf: : method invokes this method to ensure that video is updated correctly
anytime the NXLive Video View is displayed. If you do dynamic drawing over video, you
can invoke this method to be sure that the video that appears behind your drawing is
appropriate to the current state of the NXLive Video View; this method must appear in your
code between lockFocus and unlockFocus messages.

See also: - drawSelf::, - setGrabOnStop:, - setOutputMode:, - start:, - stop:

doesGrabOnStop

- (BOOL)doesGrabOnStop

Returns YES if the NXLive Video View grabs the last video frame as an NXImage and
composites the image in the video rectangle when it receives a stop: message after a start:
message. Returns NO if the NXLive Video View doesn't grab the last frame. The default
return value is NO.

See also: - grab, - setGrabOnStop:, - start:, - stop:

free

-free

Frees the NXLive Video View object and its support objects.

Classes: NXLiveVideoView 18-13

getSource VideoRect:

- getSource VideoRect:(NXRect *)sourceRect

Gets the visible portion of the video rectangle by copying it into the structure referred to by
sourceRect. This method can be used with the grabln:fromRect:toRect: method to
capture the exact rectangle in which video is being displayed. Returns self.

See also: - grabln:fromRect:toRect:

getVideoStandard:size:

- getVideoStandard:(int *)standard size: (NXSize *)vidRectSize

Returns self and, by reference, the video standard and the size of the video rectangle
supported by the underlying hardware. The value placed in the integer referred to by
standard may be either NX_NTSCSIGNAL for the NTSC standard or NX_PALSIGNAL
for the PAL standard. The values placed in the NXSize structure referred to by vidRectSize
are 640 pixels by 480 pixels for NTSC and 768 pixels by 576 pixels for PAL.

See also: + doesRectSupportVideo:standard:size:,
+ doesScreenSupportVideo:standard:size:,
+ doesWindowSupportVideo:standard:size:

grab

- (NXImage *)grab

Returns an NXImage object for the image displayed in the video rectangle. If the
NXLiveVideoView's output mode is currently NX_FROMINPUT and it has received a
start: message, this method returns an NXImage containing the current frame of video.
The frame returned will not be displayed, but video play will continue (the skipped frame
will hardly be noticeable). If the NXLive Video View has received both start: and stop:
messages and is set to grab the last video frame when it stops (see setGrabOnStop:), this
method returns the NXImage grabbed when stop: was invoked. In other cases, after a stop
message, the NXImage returned by this method will either be invalid, or contain an
outdated image. The NXImage returned is allocated by the NXLive Video View. It includes
the entire video rectangle, not just the visible portion of the View.

See also: -doesGrabOnStop:, - setOutputMode:, - setGrabOnStop:, - start:, - stop:

18-14 Chapter 18: Video

grabln:fromRect:toRect:

- grabln:(NXImage *)the/mage
fromRect:(NXRect *)sourceRect
toRect:(NXRect *)destRect

Grabs an NXImage from the area of the next video frame in the rectangle specified by
sourceRect and copies it to the coordinates specified by destRect. The NXImage is copied
by invoking the NXImage method composite:fromRect:toPoint: using NX_COPY as the
compo siting operation and the origin of destRect as the point. You must explicitly allocate
the/mage before invoking this method. Returns self.

See also: - grab, - getSource VideoRect:

initFrame:

- initFrame:(const NXRect *)frameRect

Initializes and returns the receiver, a newly allocated instance of NXLive Video View.
initFrame: is the designated initializer for the NXLive Video View class.

inputBrightness

- (float)inputBrightness

Returns the input brightness setting, a value between 0.0 and 1.0. The default setting is 0.5.

See also: - setlnputBrightness:

inputGamma

- (float)inputGamma

Returns the input gamma setting, usually a value in the range of 0.333 and 1.0. Input
gamma correction is used to adjust the linearity of the brightness component of the video
input to match the transfer characteristics of the NeXTdimension board. The default setting
is 0.588, the inverse of the default output gamma setting.

See also: - setlnputGamma:, - outputGamma

Classes: NXLiveVideoView 18-15

inputHue

- (float)inputHue

Returns the input hue setting, a value between -180.0 and 180.0. Hue defines the reference
orientation of the colors of the input video source. The default setting is 0.0.

See also: - setInputHue:

inputSaturation

- (float)inputSaturation

Returns the input saturation setting, a value between 0.0 and 1.0. The default setting is 0.5.

See also: - setInputSaturation:

inputSharpness

- (float)inputSharpness

Returns the input sharpness setting, a value between 0.0 and 1.0. The default setting is 0.5.

See also: - setInputSharpness:

isVideoActive

- (BOOL)isVideoActive

Returns YES if video is active in the NXLiveVideoView; NO if it's suspended or stopped.
The system for selecting the active NXLive Video View is described in the class description.

See also: - videoDidActivate:, - videoDidSuspend: (delegate method), - start:, - stop:

numlnputs

- (int)numlnputs

Returns the number of video input ports offered by the hardware driving the screen
displaying the NXLive Video View. Since the NeXTdimension board has three input ports,
this method returns 3.

See also: - selectInput:

18-16 Chapter 18: Video

outputGamma

- (float)outputGamma

Returns the output gamma setting, usually a value in the range of 1.0 and 3.0. Output
gamma correction is used to offset the effect of input gamma correction set with
setInputGamma: method. The default return value is 1.70, the inverse of the default input
gamma setting.

See also: - setOutputGamma:, - setInputGamma:

outputGenlocked

- (BOOL)outputGenlocked

Returns YES if output video is synchronized to the video signal present on the currently
selected input port. The value returned by this method is valid only when taking video
output from the NXLive Video View (NX_FROMVIEW mode). When taking output from
the input ports (NX_FROMINPUT mode), the output signal is always synched to the input.
The default return value is NO.

See also: - selectInput:, - setOutputGenlocked:, - setOutputMode:

read:

- read: (NXTypedStream *)stream

Reads the NXLiveVideoView from the typed stream stream. Returns self.

resetPictureDefa ults

- resetPictureDefaults

Resets input hue, saturation, brightness, sharpness, gamma, and output gamma to their
default settings. Returns self.

Classes: NXLiveVideoView 18-17

selectlnput:

- selectInput:(int)inputPortNumber

Selects the video input port from which the NXLive Video View will display when it is in
NX_FROMINPUT mode. The NeXTdimension board offers three video input ports
represented by the constants NX_ VIDEOINI (Composite-I), NX_ VIDEOIN2
(Composite-2), and NX_ VIDEOIN3 (SVHS-3). The default selection is NX_ VIDEOINI.

See also: - numlnputs, - setOutputMode:

setDelegate:

- setDelegate:anObject

Sets the NXLiveVideoView's delegate to anObject. See "Methods Implemented By The
Delegate" near the end of this specification. Returns self.

See also: - delegate

setGrabOnStop:

- setGrabOnStop:(BOOL)fiag

Determines whether the NXLive Video View grabs and displays the last video frame when
it receives a stop: message after a start: message. Iffiag is YES and the
NXLive Video View receives a stop: message, the NXLive Video View sends itself a grab
message to capture the last video frame, then composites the returned image in its video
rectangle; the grab method returns the displayed NXImage if it is invoked while video is
stopped. Iffiag is NO, NXLiveVideoView won't display the last frame when it receives a
stop: message, and grab returns an invalid image. The default setting is NO. Returns self.

See also: - grab, - doesGrabOnStop

setlnputBrightness:

- setInputBrightness:(float)brightness

Sets the input brightness value. The range of values is 0.0 to 1.0. The default setting is 0.5.
Returns self.

See also: - inputBrightness

18-18 Chapter 18: Video

setlnputGamma:

- setInputGamma:(float)inputGamma

Sets the input gamma value. Input gamma is used to compensate for gamma correction
applied to input video signals intended for display directly on a video monitor rather than
through a digital display system. inputGamma will typically be a value in the range of
0.333 to 1.0. The default setting is 0.588. Returns self.

See also: - inputGamma, - setOutputGamma:

setlnputHue:

- setInputHue:(float)hue

Sets the input hue value. Hue defines the reference orientation of the colors of the input
video source. Adjusting the hue by a given amount is similar to rotating all input colors in
the HSB (hue, saturation, and brightness) color space by a certain angle. The default value
of hue is 0.0; it can range from -180.0 to 180.0. Returns self.

See also: - inputHue

setlnputSaturation:

- setInputSaturation: (float)saturation

Sets the input saturation value. Saturation determines the color contribution of the input
picture. The range of values is 0.0 to 1.0. Adjusting saturation toward 0.0 causes colors to
appear washed out; adjusting toward 1.0 causes colors to be artificially emphasized. The
default setting is 0.5. Returns self.

See also: - inputSaturation

setlnputSharpness:

- setInputSharpness:(float)sharpness

Sets the input sharpness value. A higher value for sharpness exaggerates transitions
between different brightness levels in the video image; a lower value blurs transitions
between different brightness levels. The range of values is 0.0 to 1.0. The default setting
is 0.5. Returns self. .

See also: - inputS harp ness

Classes: NXLiveVideoView 18-19

setOutputGamma:
- setOutputGamma:(float)outputGamma

Sets the output gamma value to provide gamma correction for the video presented on the
NeXTdimension board's video output ports. You may set the output gamma to compensate
for the nonlinearity of the device that will display the output video. outputGamma will
typically be a value in the range 1.0 to 3.0. The default setting is 1.7, the inverse of the
default input gamma setting. Together, these defaults assure that the output video will
correctly reflect the gamma-correction originally applied to the input video. Returns self.

See also: - outputGamma, - setInputGamma:

setOutputGenlocked:
- setOutputGenlocked:(BOOL)locked

Locks the video output to the synchronization signal present on the currently selected input
port if locked is YES. When locked is NO, this method causes the NeXTdimension board
to generate its own synch signal for output video. This method has effect only when taking
video output from the View; when taking output from input, the output signal is always
synched to the input. The default setting is NO.

See also: - outputGenlocked, - selectlnput:, - setOutputMode:

setOutputMode:
- setOutputMode:(int)outputMode

Determines the source of the image sent to the video output ports on the NeXTdimension
board. outputMode can be either NX_FROMINPUT or NX_FROMVIEW. In
NX_FROMINPUT mode, both the NXLive Video View and the video output ports of the
NeXTdimension board present video from the selected video input port. In
NX_FROMVIEW mode, the NXLive Video View provides the image presented on the
NeXTdimension board's video output ports; in this mode, the NeXTdimension board's
input ports are effectively disconnected from both the NXLive Video View and the video
output ports. Returns self.

A more complete description of the effects. of this method is presented in the class
description.

See also: - selectlnput:

18-20 Chapter 18: Video

start:

- start:sender

Starts playing video in the NXLive Video View. If the output mode is currently
NX_FROMINPUT, this method begins displaying the video from the selected input port.
If the mode is currently NX_FROMVIEW, it begins sending images drawn in the video
rectangle of the NXLiveVideoView to the NeXTdimension's video output ports.

This method invokes the display method (and thus the drawS elf: :) method to draw the
receiving NXLive Video View and any of its subviews. Using a subview, you can draw over
video without creating a subclass of NXLive Video View.

Returns self.

See also: - display (View), - drawSelf::, - isVideoActive, - stop:, - setOutputMode:

stop:

- stop:sender

Stops video in the NXLive Video View. If the receiving NXLive Video View is in
NX_FROMINPUT mode, this method stops playing video from the NeXTdimension
board's video input ports. If the receiver is in NX_FROMVIEW mode, this method stops
sending any images drawn in the NXLiveVideoView's video rectangle to the video output
ports. If the receiver is set to grab an NXImage of the last frame, this method sends a grab
message to self and composites the returned NXImage into its video rectangle.

Returns self.

See also: - start:, - isVideoActive, - setGrabOnStop:

write:

- write:(NXTypedStream *)stream

Writes the NXLive Video View to the typed stream stream. Returns self.

Classes: NXLive Video View 18-21

Methods Implemented By The Delegate

videoDidActivate:

- videoDidActivate:sender

Notifies the delegate when video is activated in the NXLiveVideoView. This method is
included to enable your application to accomodate the acquisition of active video in the
View; your implementation shouldn't invoke any of NXLive Video View's methods. The
system for activating and suspending video in an NXLive Video View is described in the
class description above.

See aiso: - drawVideoHackground::, - isVideoActive, - start:, - stop:

videoDidSuspend:

- videoDidSuspend:sender

Notifies the delegate when video is suspended in the NXLiveVideoView. This method is
included to enable your application to accomodate the loss of video in the View; your
implementation shouldn't invoke any of NXLive Video View's methods. The system for
activating and suspending video in an NXLiveVideoView is described in the class
description above.

See also: - drawVideoBackground::, - isVideoActive, - start:, - stop:

18-22 Chapter 18: Video

Types and Constants

SYl11bolic Constants

Input Selection

DECLARED IN videolNXLive Video View.h

SYNOPSIS NX_ VIDEOINI
NX_ VIDEOIN2
NX_ VIDEOIN3

DESCRIPTION Used with the seJectInput: method to set the video input source for the NXLiveVideoView.

Output Source

DECLARED IN videolNXLive Video View.h

SYNOPSIS NX_FROMINPUT
NX_FROMVIEW

DESCRIPTION U sed with the setOutputMode: method to set the video output source for the
NXLive Video View.

Video Standard

DECLARED IN videolNXLive Video View.h

SYNOPSIS NX_NTSCSIGNAL
NX_PALSIGNAL

DESCRIPTION U sed with the get VideoStandard:size: method to identify the video signal standard for the
NXLive Video View.

18-24 Chapter 18: Video

Workspace Manager

19-3 Introduction
19-5 The Components of an Inspector Project
19-6 The bundle. registry -File
19-7 The Makefile.preamble File
19-7 Building an Inspector Module
19-9 Registering an Inspector
19-9 Debugging an Inspector
19-10 Working Within the Workspace Manager

19-11 Classes
19-12 WMlnspector

19-1

19-2

19 Workspace Manager

Library:

Header File Directory:

Import:

None, this API is defined by the Workspace Manager
application

IN extDeveloper/Headers/apps

appslWorkspace.h

Introduction

The Workspace Manager lets the user navigate the file system and manipulate the files and
directories therein. Workspace Manager's Inspector panel, with its four displays, gives
additional information about a selected item, for example, file ownership and size
(Attributes display), applications capable of opening the file (Tools display), and file
permissions (Access display). Finally, the Inspector panel's Contents display can give the
user information about the contents of certain types of files.

Since there is no limited to the number of file formats, it's impossible for the contents
inspector to display the contents of all file types. NeXT provides inspectors for many of
the most common formats-RTF, TIFF, EPS, to name a few-and provides a way for you
to install a contents inspector for any other file format. It's even possible to replace a
standard inspector with one of your own.

Contents inspectors are stored in bundle files that contain the code and interface objects that
are loaded into the Workspace Manager. (For more information on bundles, see the class
specification for NXBundle, a common class.)

Workspace Manager 19-3

When the Workspace Manager begins running, it locates contents inspector bundles by
scanning the application search path (in this order):

.... /Apps
1L0caiApps
lNextApps

Finally, it searches in its own application file package, where it finds the standard modules.

For each directory that it searches, the Workspace Manager looks for bundles both within
the directory and within application file packages (" .app" files) in the directory. When it
finds a bundle, it checks the executable within it for registry information, information that
the Workspace Manager uses to associate an inspector module with a specific file extension.
(If more than one module registers for the same file extension, the module later in the search
path is ignored.) When the user attempts to inspect the contents of a file, the Workspace
Manager consults its registry of file extensions and inspectors and loads the appropriate
inspector, if it hasn't been loaded already.

The Workspace Manager application and the contents inspector communicate through the
API found in /NextDeveloperlHeaders/appslWorkspace.h. This API consists of the
declaration of the WMInspector class, an abstract superclass that defines the owner of the
inspector module's interface. In creating your own contents inspector, you'll create a
subclass of WMInspector and an interface that will appear in the Inspector panel.

The principal messages that the Workspace Manager sends your inspector object are new
and revert:. It sends a new message whenever it needs to access the inspector object or,
through the object, the interface to the inspector. It sends a revert: message whenever the
inspector might need to be updated, such as when the selection in the File Viewer has
changed. Thus, all inspector objects must implement these methods.

The inspector object, in tum, can query the Workspace Manager for information about the
selection. The WMInspector class declares a method (selectionCount) for determining
whether the selection contains a single item or multiple items, and another
(selectionPathslnto:separator:) that returns the full path to each item in the selection.
Your inspector object, therefore, can access this information by sending itself
selectionCount and selectionPathslnto:separator: messages.

19-4 Chapter 19: Workspace Manager

The Components of an Inspector Project

Contents inspectors are created as bundle projects; the process is outlined below. Before
looking at the process, let's examine the components that are common to all inspector
projects. As an illustration, we'll take the example of an inspector that shows the contents
of files containing 3D graphics data in RIB format: ".rib" files. Even the simplest RIB
inspector would have these components:

File

* .lproj/RIBInspector.nib

Makefile

Makefile. preamble

PB.project

RIBInspector.h

RIBInspector.m

bundle. registry

Description

A nib file containing the user interface to the contents
inspector. (The nib file is stored in a language-specific
subdirectory, such as English.lproj.)

The standard makefile for a bundle project

Additional instructions to the make utility to load the
information in bundle. registry into the executable file.

The standard project file for a bundle project.

The class interface file for the subclass of WMInspector.

The class implementation file for the subclass of
WMInspector.

A specification file describing which file extension is
associated with this inspector, among other things.

Two files of special interest are bundle.registry and Makefile.preamble.

Introduction 19-5

The bundle.registry File

This file contains the instructions that the Workspace Manager usesto associate a contents
inspector with a specific type of file. U sing the example of a RIB file inspector, the
bundle.registry file would look like this:

{type=InspectorCommand; mode=contents; extension=rib;
selp=selectionOneOnly; class=RIBlnspector}

The registry information consists of a list of key words and their assigned values. Here are
the keys and their possible values. (The quotation marks below are for clarity: don't
include them in your registry file):

Key

type

mode

extension

class

selp

Description

The type of registration. For inspector commands, the value must be
"InspectorCommand" .

The mode of the Inspector panel. For Release 3.0, this must be
"contents" .

The file extension to be associated with this inspector. (Don't include
the "." in the extension.) You can only list one extension for each
inspector module; wildcard characters aren't permitted.

The name of the subclass of WMInspector. In general, an instance of
this class owns the nib file that contains the inspector's user interface.
Workspace Manager instantiates an object of this class when the
inspector is loaded.

The selection predicate; that is, the requirements concerning the
selection. The value can be either "selectionOneOnly" or
"selectionOneOrMore" .

The selp key controls whether your inspector is confined to operating on one file of the
given extension at a time (selectionOneOnly), or whether it can be displayed if the
selection consists of more than one file of the give extension (selectionOneOrMore). If
you specify selectionOneOnly (the usual case), the message "No Contents Inspector for
Multiple Selection" appears in the panel when the selection contains multiple files of the
given extension.

All six keys must be present in the registry file for your inspector to work properly. The
order of these key/value pairs in the registry file isn't important, although the case of the
key and value words is.

19-6 Chapter 19: Workspace Manager

The Makefile.preamble File

The registry information from bundle.registry must be copied into the __ ICON segment
of the module's Mach object file: This is where the Workspace Manager searches for the
information. To accomplish this, you have to create a Makefile.preamble file with the
proper instructions. These instructions are:

BUNDLELDFLAGS = -sectcreate __ ICON __ header bundle.registry

OTHER_PRODUCT_DEPENDS = bundle.registry

The first line instructs the linker to create an __ header section in the __ ICON segment of
the executable file and to copy the registry information into it. The second ensures that
make will rebuild the project whenever bundle.registry is altered.

Building an Inspector Module

The following steps show you the process for assembling an inspector, using the RIB
inspector as an example. (These steps won't show you how to do the actual imaging of RIB
files. For that, you'll have to look into the 3D Graphics Kit.)

To build the inspector, follow these steps:

1. Start Project Builder and create a new bundle project. In the New Project panel, make
sure that the Project Type pop-up list reads "Bundle". Save the project as
.... IRIBInspector.

2. Start Interface Builder and create a new empty module. (Choose New Empty from the
New Module menu). Save the module in
.... IRIBInspectorlEnglish.lprojIRIBInspector. When the attention panel appears,
confirm that you want to add the nib file to the RIB Inspector project.

3. Now, you have to inform Interface Builder of the WMInspector class, as declared in
/NextDeveloperlHeaders/appslWorkspace.h. The easiest way to do this is to drag the
file icon for Workspace.h from the File Viewer into Interface Builder's File window.
Interface Builder will parse the header file and insert the WMInspector class in the
Classes browser.

4. Declare a subclass of WMInspector by selecting WMInspector in the Classes browser
and dragging to Subclass in the Operations browser. Rename this subclass
"RIB Inspector" .

Introduction 19-7

5. Using the Class inspector, add any outlets and actions that you want to the RIB Inspector
class. For example, in most cases you would add outlets for the text fields that the
inspector uses to display information about the selected file. For this illustration, skip
this step.

6. Select the File's Owner object in the Objects display of the Files window. Using the
Inspector panel, specify that the File's Owner is of the RIB Inspector class.

7. Drag a Panel object from the Palettes window into the workspace. This panel will
contain the interface to your contents inspector. When the Workspace Manager displays
your contents inspector, it will take the Pap.e1's content vlew and installs it in the view
hierarchy of the Inspector panel. For the purposes of this example, drag a Button or two
into the panel. Finally, using Interface Builder's Panel inspector, make sure that the
panel is not deferred.

8. Connect the window outlet of the File's Owner to the Panel. This outlet must be set so
that the Workspace Manager can locate the content view to be displayed in the contents
inspector. If your File's Owner had other outlets or actions, you would connect them at
this point.

9. Switch to the Classes browser in the Files window and select the RIB Inspector class.
U sing the pull-down list, drag to U nparse and confirm that you want to add the class files
to the project.

10. Open the class files and implement the new method (see the class specification for
WMInspector for an example). You must also implement the revert: method for your
inspector to take any action based on the selection in the File Viewer. For this example,
you can omit the revert: method. (Note: You will also have to change the #import line
at the top of RIBlnspector.h from #import "WMInspector.h" to #import
<appslWorkspace.h>.)

11. Create bundle. registry and Makefile.preamble files (as described above) and add them
to the Supporting Files suitcase in Project Builder's Files display.

12. Save the project and build it. When done, copy the RIBlnspector.bundle file into your
Apps directory.

19-8 Chapter 19: Workspace Manager

Registering an Inspector

Workspace Manager must be made aware of this new inspector. If you use Workspace
Manager to copy the bundle into / Apps (or anywhere in the application search path, for
that matter), it will read the registry information the bundle contains. If you move the file
by other means, use Workspace Manager's Update Viewers command to make it recheck
for applications and inspectors in the application search path. After Workspace Manager
has registered the new inspector, whenever a file of the proper extension (".rib" in the
example) is selected and the Contents inspector panel is visible, the custom contents
inspector will be displayed.

Once an inspector has been loaded, it can't be unloaded without restarting the Workspace
Manager (that is, logging out and back in again). For this and other reasons, it's often better
to create a test application to debug a new inspector, as discussed in the next section.

Debugging an Inspector

Your inspector operates within the main thread of execution of the Workspace Manager
application, so errors occurring with the inspector can crash the Workspace Manager,
bringing down with it all applications launched from the Workspace. Given the severity of
the consequences, it's imperative that you ensure the reliability of your inspector's code.
Unfortunately, at this time there's no standard way to debug inspectors; you'll have to
devise your own test mechanisms.

The best strategy is to create a stand-alone debugging application, one that loads your
inspector module into its own window just as the Workspace Manager does. You'll have
to create a substitute WMlnspector class since the main class in your module must inherit
from WMlnspector. You could perhaps use an OpenPanel as a means of selecting specific
files· for your module to inspect.

A debugging application makes it easier, safer, and faster to debug your inspector; however,
at times you may find it necessary to debug the inspector after it's been loaded into the
Workspace Manager. To do this, you'll need to prevent the inspector's symbol table from
being stripped.

By default, when the Workspace Manager loads an inspector bundle, it strips the executable
code of its symbols. To prevent this, in a shell window enter:

dwrite Workspace StripAfterLoading NO

Introduction 19-9

Now, when an inspector is loaded, its symbol data will be preserved. You'll be able to
attach to the Workspace Manager process using GDB and trace execution through your
inspector's code.

Working Within the Workspace Manager

Some contents inspectors display the actual contents of a file while others show only a
synopsis. For example, the contents inspector for TIFF and RTF files shows the complete
contents; but the Sound inspector shovv's only summary infoullatiol1. The Sound inspecior,
however, does offer the user a button that, when clicked, plays the sound.

Since contents inspectors operate in the Workspace Manager's main thread, it's best to let
the user decide whether the panel should embark on time- or resource-intensive operations,
as illustrated by the Sound inspector panel. (The RIB inspector example outlined above
would no doubt include a Render button.)

19-10 Chapter 19: Workspace Manager

Classes

WMlnspector

Inherits From: Object

Declared In: appslW orkspace.h

Class Description

The WMlnspector class defines the link between the Workspace Manager application and
the module that's loaded into the application. When you build a new inspector for the
Workspace Manager, you must create a subclass ofWMlnspector. The inspector you define
must load its interface (that is, the nib file containing the interface) in its new method. It
must also override the inherited revert: method to load information about the selection into
its display.

Your inspector can query the Workspace Manager for information on the selection in the
File Viewer by sending itself selection Count and selectionPathInto:separator:
messages. It can send itself okButton, revertButton, and window messages to gain access
to those features of the Inspector panel.

Although the Contents inspector's principal role is to let the user view the contents of a
File Viewer entry, it can also let the user edit the displayed data. It's best not to overuse
this capability, however, since the Contents inspector wasn't designed to substitute for
normal applications.

An inspector that permits editing should send itself a touch: message when the user begins
modifying the data. This message enables the inspector's OK and Revert buttons and
displays a broken "X" in the panel's close box. (See textDidChange: for an alternate way
to achieve this result.) The inspector should implement the ok: method to commit the
modifications the user has made.

19-12 Chapter 19: Workspace Manager

Instance Variables

id window;
id okButton;
id revertButton;
id dirNameField;
id dirTitleField;
id fileNameField;
id filelconButton;

window

okButton

revertButton

dirN ameField

dirTitleField

fileN ameField

fileIconB utton

Method Types

The Inspector window.

The Inspector's OK button.

The Inspector's Revert button.

The TextField that holds the current directory.

The TextField that titles dirNameField.

The TextField that displays the file name.

The Button that displays the file's icon.

Accessing the inspector object + new

Accessing panel controls - okButton
- revertB utton
-window

Accessing Workspace selection
- selectionCount
- selectionPathsInto: separator:

Managing changes -ok:
- revert:
- textDidChange:
- touch:

Classes: WMlnspector 19-13

Class Methods

new

+ new

Creates a new WMInspector if none exists, or returns the existing one. When the object is
created, it must load the nib file that contains the inspector's display.

The Workspace Manager sends a new message whenever it needs to access the inspector
object. Thus, your subclass of WMInspector should ensure that no more than one instance
of its class is created:

static id ribInspector nil;

+ new

if (ribInspector == nil) {
char path [MAXPATHLEN+l] ;

NXBundle *bundle = [NXBundle bundleForClass:self];

self = ribInspector = [super new];
if ([bundle getPath:path

forResource:"RIBInspector"
of Type : "nib"]) {

[NXApp loadNibFile:path owner:ribInspector];
else {

fprintf (stderr, "Couldn't load RIBInspector.nib\n");

ribInspector = nil;

return ribInspector;

19-14 Chapter 19: Workspace Manager

Instance Methods

ok:

- ok:sender

Implement in your subclass to commit the changes that the user has made to the selected
item. The OK button in the Inspector panel sends an ok: message when the user clicks it.

This method is optional, but if you implement it, you must send the same message to super
as part of your implementation:

ok: sender

/* your code to commit changes */

[super ok: sender] ;

return self;

This message to super replaces the broken "X" in the panel's close box with the standard
"X", indicating that the changes have been saved.

See also: - revert:, - touch:

okButton
- okButton

Returns the id of the Inspector's OK button. This can be useful if you want to alter its title,
for example.

See also: - revertButton:

Classes: WMlnspector 19-15

revert:
- revert:sender

Implement in your subclass to load data into the inspector's display. The Workspace
Manager sends this message to the inspector object whenever the inspector's display might
need to be updated; for example, when the Inspector panel is opened or when the selection
changes in the File Viewer.

Your subclass must implement this method, and it must send the same message to super as
part of its implementation:

revert: sender

/* your code to show contents of selected item(s) */

[super revert: sender] ;
return self;

This message to super replaces the broken "X" in the panel's close box with the standard
"X", indicating that the changes have been discarded.

See also: - ok:, - touch:

revertButton
- revertButton

Returns the id of the Inspector's Revert button. This can be useful if you want to alter its
title, for example.

See also: - okButton:

19-16 Chapter 19: Workspace Manager

selectionCount

- (unsigned)seiectionCount

Returns the number of items selected in the File Viewer. You can use this information to
determine whether your inspector should be displayed. For example, most inspectors can
give information on only one file at a time, so within their revert: methods, they would
have this test:

if ([self selectionCount] != 1) {
return nil;

else
/* get the path and display the file's contents */

See also: - seiectionPathslnto:separator:

selectionPathslnto:separator:

- seiectionPathslnto:(char *)pathString separator:(char)character

Returns the paths of the files selected in the File Viewer. The paths are place in the string
pathString; each path is separated from the previous one by character. For example, if
character is ':', pathString could contain "/me/testl:/me/test2:/me/test3".

If your inspector acts on only one file at a time (see seiectionCount), the file's path can be
identified using this message:

char fullPath[MAXPATHLEN+1];

[self selectionPathsInto:fullPath separator: '\0'];

See also: - seiectionCount

Classes: WMlnspector 19-17

textDidChange:

- textDidChange:sender

Sends the WMInspector a touch: message on behalf of some Text object in the Inspector
panel.

By making your inspector object the delegate of any Text object in your inspector's display,
the Inspector panel will be updated appropriately as the user alters the panel's contents.

See also: - touch:

touch:
- touch:sender

Changes the image in the Inspector panel's close box to a broken "X" to indicate that the
contents has been edited. Also, enables the OK and Revert buttons.

See also: - textDidChange:

window

-window

Returns the id of the window that contains the user interface for the inspector.

19-18 Chapter 19: Workspace Manager

Appendices

A-1 Appendix A: Data Formats
A-2 NXAsciiPboardType
A-2 NXPostScriptPboardType
A-2 N3DRIBPboardType
A-2 NXTIFFPboardType
A-3 Unsupported Fields
A-3 Multiple Images
A-3 Compression
A-4 NXRTFPboardType
A-4 NXSoundPboardType
A-4 NXFilenamePboardType
A-4 NXTabularTextPboardType
A-5 NXFontPboardType
A-6 NXRulerPboardType

B-1 Appendix B: Default Parameters
B-2 Debugging Parameters
B-6 Localization Parameters
B-7 System Parameters
B-9 User Preferences
B-ll Parameters for Expert Programmers
B-13 Compatibility Parameters

C-1 Appendix C: Keyboard Event Information
C-l Encoding Vectors
C-5 Key Codes

0-1 Appendix 0: System Bitmaps

E-1 Appendix E: Details of the DSP
E-l Memory Map
E-2 DSP D-15 Connector Pinouts
E-4 DSP56001 Instruction Set Summary

Data Formats

To make it easier for applications to share information, the NeXTSTEP pasteboard supports
a number of standard data formats. Each format, or pasteboard type, is identified by a
global variable:

Variable Name

NXAsciiPboardType
NXPostScriptPboardType
N3DRIBPboardType
NXTIFFPboardType
NXRTFPboardType
NXSoundPboardType
NXFilenamePboardType
NXTabularTextPboardType
NXFontPboardType
NXRulerPboardType

Type Description

Plain ASCII text
Encapsulated PostScript code (EPS)
RenderMan Interface Bytestream code (RIB)
Tag Image File Format (TIFF)
Rich Text Format (RTF)
Sound data
ASCII text designating a file name
Tab-separated fields of ASCII text
Font and character information
Paragraph formatting information

Data in other formats can also be placed in the pasteboard. However, the sending and
receiving applications must both agree on the structure of the format, its name, and how to
interpret it. Other formats may be adopted as standards in the future.

Each of the standard formats is discussed below. In most cases, the discussion is short and
consists only of a reference to the primary source document for the format. In some cases,
more information is given on modifications to or interpretations of the format in the
NeXTSTEP environment.

Data Formats A-1

NXAsciiPboardType

Text in this format consists only of characters from the ASCII character set as extended by
NeXTSTEP encoding. None of the characters is given a special interpretation (in contrast
to NXTabularTextPboardType and NXFilenamePboardType, for example). Standard
ASCII is documented on-line in /usr/pub/ascii and the ascii(7) manual page. NeXTSTEP
encoding is documented in Appendix C, "Keyboard Event Information."

NXPostScriptPboardType

This type is defined as PostScript code in the Encapsulated PostScript Files format (EPS).
The PostScript language is documented by Adobe Systems Incorporated, principally in the
PostScript Language Reference Manual. EPS conventions are documented in
Encapsulated PostScript Files Specification, also by Adobe.

N3DRIBPboardType

This type is for RenderMan Interface Bytestream (RIB) code. The format of RIB code is
documented in The RenderMan Interface, by Pixar.

NXTIFFPboardType

This type is for image data in Tag Image File Format (TIFF). TIFF is documented in Tag
Image File Format Specification, by Aldus Corporation and Microsoft Corporation.

TIFF support in the current NeXTSTEP release follows version 6.0 of the TIFF standard
and is based on version 3.0 of Sam Leffler's freely distributed TIFF library. This library
provides a good set of routines for dealing with TIFF files that conform to the 6.0
specification.

NeXTSTEP TIFF support is embodied in the Application Kit's NXBitmapImageRep class
and the command-line program tiffutil. See the class specification for
NXBitmapImageRep in Chapter 2, "The Application Kit," and the tiffutil(l) manual page
for more information.

A-2 Appendix A: Data Formats

Unsupported Fields

In the current release, some fields-principally those having to do with response curves­
will be read correctly but ignored when imaging the data. Color palettes are not supported
except when the palette entries are 8 bits and the stored colors are 24 bits. These files will
be read correctly and converted to 24-bit images on the fly.

Multiple Images

Multiple forms of an image can now be stored in the same file-that is, under the same
TIFF header. "Multiple forms" might mean the same image at different resolutions (for
example, 72dpi and 400dpi) and at different bit depths or colors (for example, 2 bits per
sample on a gray scale and 4 bits per sample RGB).

This feature is useful when you want to create color icons for an application and its
documents. It's best to create both gray scale and color versions of the icons and store them
in the same section of the _ICON segment. Both versions of the icon would be created at
72 dpi and would be 48 pixels wide by 48 pixels high. The gray-scale version would have
two components (gray and alpha), with each component stored at 2 bits. The color version
would have four components (red, green, blue, and alpha) and each component would be 4
bits deep. (It's recommended that application and document icons be stored at 4 bits per
sample, not 8.)

Compression

NeXTSTEP software can both read and write compressed TIFF images. The Compression
field in a TIFF file can have any of the following values:

Value

1
3
4
5
6
32773

Type

No compression
CCITT Group 3 compression
CCITT Group 4 compression
LZW (Lempel-Ziv and Welch) compression
JPEG compression
PackBits compression

JPEG compression can be used only for images that have a depth of at least 4 bits per
sample; in all cases, the compressed images will be expanded to 8 bits per sample. CCITT
Group 3 and Group 4 images can be applied only to monochrome images that have 1 bit
per sample.

NXTIFFPboardType A-3

NXRTFPboardType

This is the pasteboard type for "rich text," text that follows the conventions of the Rich Text
Format®, as described in Rich Text Format Specification by Microsoft Corporation.

To this specification, NeXT has added a control word to indicate how the user selected the
text before copying it to the pasteboard. The control word is

\smartcopy<num>

where <num> can be 1 or O. A value of 1 indicates that the user made the selection by
double-clicking a word, or double-clicking and dragging over a group of words. The range
of text in the pasteboard will be delimited by a word boundary on either side. The pasting
application can use this information to correctly adjust the spacing around the word or
words that are pasted.

NXSoundPboardType

This format is defined by the SNDSoundStruct structure in the header file
soundlsoundstruct.h. The structure is discussed in detail in Chapter 16, "Sound."

NXFilenamePboardType

This format is a list of tab-separated file names (or pathnames), terminated by a null
character ('\0').

NXTabularTextPboardType

This format is ASCII text where tabs (ASCII Ox09) and returns or newlines (ASCII OxOD)
are interpreted as separators between text fields. In a matrix, tabs separate columns and
returns separate rows. The text is null-terminated.

A-4 Appendix A: Data Formats

NXFontPboardType

This format is used in the font pasteboard to record character properties that are copied and
pasted using the Copy Font and Paste Font commands. It consists of RTF control words
from the "Font Table" and "Character Formatting Properties" groups.

The following is an example of character data in this format:

{\rtfl\ansi{\fonttbl\fO\froman Times;}
\fO\bO\i\ulO\fs48}

The first two control words, \rtfl and \ansi, announce that the information enclosed within
the outer braces is RTF version 1 in ANSI character encoding. These two control words,
or their equivalent, are required by RTF conventions.

The group within the inner braces defines a font table, here with a single entry specifying
font 0 to be Times-Roman. The font is then specified as Times-Roman (font 0), not bold,
Oblique (italic), not underlined, and having a font size of 24 points (48 half points).

Among the fonts that can be specified in a font table are these:

\fmodern Courier;

\fswiss Helvetica;
\fmodern Ohlfs;

\ftech Symbol;
\froman Times;

Several synonyms are recognized for the Times-Roman font. Usually it's written as
"Times" or "Times-Roman".

If the font pasteboard contains RTF control words that don't belong to the "Font Table"
or "Character Formatting Properties" groups, they should be ignored. If control words
specify more than one value for a font characteristic, the last value specified should be used
when pasting.

lVJ.CFontPboardType A-5

NXRulerPboardType

This format is used in the ruler pasteboard to capture information about how a paragraph
is formatted. It consists of RTF control words from the "Paragraph Formatting Properties"
group.

The following is an example of this type:

{\rtfl\ansi

\pard\ql\tx1252\tx2716\tx4148\tx5592\tx7004\txl1520
\fi-540\li1260}

The first two control words are required by RTF conventions, as explained under
"NXFontPboardType" above. The next control word, \pard, resets the paragraph format to
the default. The paragraph is then specified to be left-aligned and a series of six tabs are
set. Next, the indentation of the first line is specified and, finally, the left indent. (The
example is for a paragraph with a hanging indent.)

If the ruler pasteboard contains RTF control words that aren't in the "Paragraph Formatting
Properties" group, they should be ignored. If it includes control words that first set then
reset a paragraph property, the final specification should be the one that's used.

A-6 Appendix A: Data Formats

B Default Parameters

Default parameters set and store values that affect the behavior of applications at run time.
Because their values are read each time an application runs, the parameters are the
appropriate vehicle for recording user preferences and for inducing an application to
exhibit alternate behavior that's useful during debugging.

Default parameters can be set in application code, on the command line that launches the
application, or from a database stored in each user's home directory. Parameter values are
read at run time and can be written to the user's database using functions described in
Chapter 3, "Common Classes and Functions." See NXRegisterDefaultsO in that chapter
for information on how to use default parameters within a program. Parameters can also
be written to the database, read, and removed using the dwrite, dread, and dremove
command-line utilities.

Both the names and the values of parameters are passed as character strings. Thus a
parameter that sets a numeric value will return a string of numeric characters rather than
an integer.

Every pairing of a value to a parameter has an "owner" that designates the domain in which
the value is valid. Typically, the owner is an application. For example, if you wanted to
set the NXPaperType parameter to "Legal" in the Lawyer application, you could use the
dwrite utility on the command line as follows:

localhost> dwrite Lawyer NXPaperSize Legal

If the owner is "GLOBAL" (or "-g" for dwrite), the value will apply to all applications
except those that specifically own another value for the parameter.

Default Parameters B-1

The default parameters documented in this appendix affect the behavior of NeXTSTEP
software. Some can be set to aid debugging. Some can be set to affect the way your
application works. Others should not be set, but can be read to get information about the
user's preferences or the state of the application.

The parameters documented here are useful only in very specific situations, mainly for
debugging. For the most part, an application should not use any of them to record user
preferences. You must invent your own parameters to store user preferences for the
applications you write.

At the beginning of each parameter description, there are two lines, one marked Value and
the other Scope. The Scope line reports the part of NeXTSTEP software that's affected by
the default parameter. The Value line reports the value the parameter has if it's not
otherwise set. Often the parameter will have another value when encountered in a running
application, because it will have been set on the command line, in program code, by the
Preferences application, by the system at startup, or by the Workspace Manager when it
launches the application. Don't rely heavily on the values stated.

Debugging Parameters

The following parameters come in handy when debugging an application. They're
typically set on the command line to affect the behavior of an application during a
debugging session. They should not be written into anyone's defaults database (except
perhaps your own for debugging purposes).

NXAllWindowsRetained

Value: NULL
Scope: Application Kit

If set to any value, forces all buffered windows to be retained windows. Since drawing is
done directly into an on-screen retained window, you'll be able to watch PostScript code
being rendered. (Drawing is rendered in the buffer of a buffered window and then flushed
to the screen.)

See also: NXShow AllWindows

8-2 Appendix B: Default Parameters

NXDebugLanguage

Value: NULL
Scope: Application Kit

If set to "YES", logs warnings when localized resources can't be found. Warnings are
issued when a resource file is missing or a requested string is absent from a string table.
The NXLogErrorO Application Kit function is used to record the error.

NXDefeatObjectLinklimeouts

Value: NULL
Scope: Application Kit

If set to any value, removes timeouts for interprocess communications that implement data
links. Defeating these timeouts prevents processes from timing out as you're tracking
down bugs in the debugger.

NXMallocDebug

Value: "0"
Scope: Application Kit

Sets a value that's passed to malloc_debugO to control the amount of error checking done
by mallocO. Valid values range from "0" through "31", with "31" being the highest level
of error checking and "0" being none. See the UNIX manual page for malloc_debugO for
specifics.

NXPSDebug

Value: NULL
Scope: Application Kit

If set to "YES", causes an alternate PostScript error-handling procedure to be installed.
This procedure produces more verbose debugging information than would otherwise be
available, including the contents of the operand stack.

See also: NXShowPS

Debugging Parameters B·3

NXShowAIiWindows

Value: NULL
Scope: Application Kit

If set to any value, forces all windows to always be on-screen. Windows that are normally
hidden, such as windows that store images that are compo sited to other windows, will be
visible as your program runs.

See also: NXAllWindowsRetained

NXShowPS

Value: NULL
Scope: Application Kit

If set to any value, causes all PostScript code sent to the Window Server to also be written
to the standard error stream.

See also: NXPSDebug and NXSyncPS

NXSyncPS

Value: NULL
Scope: Application Kit

If set to any value, makes the application wait for the Window Server. Whenever the
application sends PostScript code to the Window Server, it will wait for the code to be
executed before proceeding .. This results in error messages being more closely associated
with the code that produced them.

See also: NXShowPS and NXPSDebug

NXTraceEvents

Value: NULL
Scope: Application Kit

If set to any value, causes event-tracing information to be written to the standard
error stream.

8-4 Appendix B: Default Parameters

NXWindowDepthLimit

Value: NULL
Scope: Application Kit

Sets an upper limit on the depth of an application's windows. Windows are created with
a depth of two bits per pixel, but promote to a greater depth if it's required to display images
in the window. For example, color images would promote a window's depth, as would
gray-scale images that use any shade of gray other than the four that are represented in
two bits.

A window cannot be promoted to a depth greater than the limit. Normally, the limit is set
by what display screens are available. A window won't be promoted to a depth greater than
can be displayed on an available screen. This parameter lets you further constrain the limit.
Valid settings are:

"TwoBitGray"
"EightBitGray"
"TwelveBitRGB"
"TwentyFourBitRGB"

The depth limit is set to the lesser of this value and the limit imposed by an available screen.
If the value is prefixed with "Test", as in "TestTwentyFourBitRGB", the limit will be set to
the corresponding value even if it's greater than can be displayed on an available screen.

StripAfterLoadi ng

Value: "YES"
Scope: Workspace Manager

If set to "NO", prevents the Workspace Manager from stripping symbols from the modules
it loads. The symbols will therefore be available during debugging. The Workspace
Manager can load modules that implement Inspector panels for the contents of files. See
Chapter 19, "Workspace Manager," for details.

Debugging Parameters 8-5

Localization Parameters

These parameters are used in code that localizes an application (enables it to be used in
various languages and various parts of the world). Normally, the Preferences application
sets these parameters globally for all applications. You can modify them to affect the
behavior of your particular application.

NXDate

Value: "%a %b %d % Y"
Scope: Systemwide

Records the preferred format for presenting a date to the user. The parameter value is a
format string that can be passed to the ANSI C function strftimeO.

See also: NXDateAndTime

NXDateAndlime

Value: "%a %b %d %H:%M:%S %Z % Y"
Scope: Systemwide

Records the preferred format for presenting date and time information to the user. The
value of this parameter is a format string that can be passed to the ANSI C function
strftimeO, which translates date and time information recorded in a structure (of type
struct tm) into a form that humans can read. The format string tells strftimeO what
information is needed and how to present it.

Each formatting character refers to a particular type of information in a particular form. For
example, "%a" means a short form of a weekday name (such as "Mon" and "Tue" in
English or "Lun" and "Mar" in Spanish) and "% Y" means the last two digits of a year (for
example, "92" for 1992). See the specification for strftimeO for information on all the
formatting characters.

The current time can be obtained by timeO and transformed into the proper structure
by localtimeO.

See also: NXDate and NXTime

8·6 Appendix B: Default Parameters

NXLanguages

Value: NULL
Scope: Application Kit

Overrides the user's language preferences. The value set should list language names,
separated by semicolons, in the order of preference. Use the systemLanguages method
(defined in the Application class of the Application Kit), not this parameter, to discover the
language preferences currently in force.

NXlime

Value: "%H:%M:%S %Z"
Scope: Systemwide

Records the preferred format for presenting a time to the user. The parameter value is a
format string that can be passed to the ANSI C function strftimeO.

See also: NXDateAndTime

System Parameters

The following parameters pass information that is set by the system when an application is
launched. They shouldn't be modified by the application, but NXOpen and NXOpenTemp
can be used on the command line to pass a file to the application.

NXAutolaunch

Value: "NO"
Scope: Application Kit

If "YES", indicates that the Workspace Manager launched the application automatically
at startup.

System Parameters 8-7

NXOpen

Value: NULL
Scope: Application Kit

Passes the name of a file for the application to open on launch. When the user double-clicks
a file to launch an application, the Workspace Manager uses this parameter to pass the file
name to the application.

NXOpenTemp

Value: NULL
Scope: Application Kit

Passes the name of a temporary file for the application to open on launch. The application
should delete the file when it's through with it.

NXServiceLaunch

Value: NULL
Scope: Application Kit

If set to any value, indicates that the application wasn't launched directly by the user and
therefore should not display an untitled document. For example, the application might have
been launched from the Services menu of another application, or it could have been
launched to provide link data to another application.

8-8 Appendix B: Default Parameters

User Preferences

The parameters in this section record user preferences. Most are set by the Preferences
application. By reading the parameter and using the value that it contains, your application
can be made to conform to the user's wishes.

NXBoldSystem Fonts

Value: NULL
Scope: Application Kit

Records the user's preferred bold font for system uses. This is the font used in window title
bars. The value is a semicolon-separated list of bold font names such as "Helvetica-Bold".
The first font in the list is the user's preference. The other fonts in the list are alternatives
if for some reason the user's preference can't be used.

You should use the boldSystemFontOfSize:matrix: method (defined in the Font class of
the Application Kit) to get the user's preferred bold system font, rather than this parameter.

See also: NXSystemFonts

NXMeasurementUnit

Value: "Inches"
Scope: Application Kit

Records the user's preferred unit of measurement as set in the Preferences application.
Possible values are:

"Inches"
"Centimeters"
"Points"
"Picas"

User Preferences 8-9

NXPaperType

Value: "Letter"
Scope: Application Kit

Records the default paper size for a page layout. A new PrintInfo object (defined in the
Application Kit) will be set to this paper size. The choices are:

"Letter"
"Tabloid"
"T .oil'''' 1" .L..JVo'·u

"Ledger"
"Executi ve"

NXSystemFonts

Value: NULL
Scope: Application Kit

"A3"
"A4"
" A .t:!" .L-\.J

"B4"
"B5"

Records the user's preferred system fonts for such things as menu commands, button labels,
and the text that appears in text fields. This is normally set by the user in the Preferences
application. The value is a semicolon-separated list of font names-for example,
"Courier;Times-Roman;Helvetica". The first font in the list is the user's preference. The
other fonts in the list are alternatives to it, if for some reason it can't be used.

You should use the systemFontOfSize:matrix: method (defined in the Font class of the
Application Kit) to get the user's preferred system font, rather than this parameter.

See also: NXBoldSystemFonts

8-10 Appendix B: Default Parameters

Parameters for Expert Programmers

These parameters should be modified with care. No application should use any of them to
record user preferences.

NXFontsPaths

Value: "lNextLibrarylFonts/:-lLibrarylFonts/:/LocaILibrarylFontsl"
Scope: Application Kit

Records the search path for fonts. Applications can modify this path to include other
directories if need be. Pathnames should end in a slash ("/") and be separated by a colon.

NXHost

Value: NULL
Scope: Application Kit

If set to the name of a machine on the command line, causes the application to connect to
the Window Server running on that machine. The application's user interface will appear
on the display attached to the named host.

NXlsJournalable

Value: "NO"
Scope: Application Kit

If set to "YES", makes the applicationjournalable. Through the Application Kit's
journaling mechanism, other applications will be able to record the events the application
receives. This parameter sets the default value returned by the isJournalable method
defined in the Application class of the Application Kit. It can be overridden by the
setJournalable: method.

Parameters for Expert Programmers 8-11

NXNet1imeout

Value: "60"
Scope: Application Kit

Records how long, in seconds, the application will wait for its communications with other
. processes to succeed before giving up.

NXObjectLinkUpdateMode

Value: "2"
Scope: Application Kit

Records the default update mode for newly created data links. Permitted values range from
"1" through "4":

"1" The data link is updated continuously.
"2" The data link is updated when the source document for the link is saved.
"3" The data link is updated only when the user requests it in the Link Inspector.
"4" The data link is never updated,

NXUseTrueGrays

Value: NULL
Scope: Application Kit

If set to any value, causes the Application Kit to set a color value for intermediate grays
rather than use a pattern. The Kit sometimes uses patterns to keep windows from becoming
deeper than they need to be.

For example, when drawing standard user interface devices like scroll bars, the Application
Kit normally uses a pattern to represent a 50% gray value midway between black and white.
U sing the pattern prevents the window displaying the device from promoting from a
depth of two bits per pixel to a greater depth capable of showing the intermediate gray as
a true color.

When creating artwork from an on-screen display, using a true gray may avoid moire
patterns in the result.

8-12 Appendix B: Default Parameters

Compatibility Parameters

The following parameters are ones that users can set to make applications that were
developed with an earlier version of NeXTSTEP software work Release 3. They should
be set as individual preferences, not in application code. New applications and updated
versions of existing ones should be developed to work with the latest version of
NeXTSTEP software.

NXClickForHelpEnabled

Value: "YES"
Scope: Application Kit

If set to "NO", disables click-for-help. On keyboards that don't have a dedicated Help key,
the click-for-help feature is controlled by a combination of the Control and Alternate
modifier keys. Users of applications that use Control-Alternate combinations for
something else may wish to disable this feature.

This parameter sets the default value returned by the isClickForHelpEnabled method
defined in the NXHelpPanel class of the Application Kit.

NXColorCalibrateLevelOneOps

Value: "YES"
Scope: Application Kit

If set to "NO", turns off all forced calibration of device-dependent PostScript color
operators. Device-independent color is a feature of PostScript Level 2. NeXTSTEP
Release 3 incorporates PostScript Level 2 and uses a calibrated color space for drawing.
When printing, all device-dependent Level 1 operators used in applications based on
previous NeXTSTEP releases are reinterpreted to the calibrated color space. (Levell
operators used in applications based on the current release are not affected.) Setting this
parameter to "NO" defeats this feature.

The most likely compatibility problem to occur while this parameter is "YES" is that
imported EPS (encapsulated PostScript) files may print with the wrong colors.

Compatibility Parameters 8-13

NXSave2.0Compatibly

Value: "NO"
Scope: Application Kit

If set to "YES", has the Application Kit write data to a typed stream in a way that's
compatible with the previous NeXTSTEP release.

When writing data to a typed stream, the Application Kit is able to include information­
notably about PANTONE@ Colors-that wasn't available in previous versions of
NeXTSTEP suflware. This new information may not be understood when read by
applications that haven't yet been updated to the new release.

When this parameter is "YES", the new information won't be written to the stream and will
consequently be lost. For example, PANTONE Color names won't be saved.

NXUseCalibratedColor

Value: "YES"
Scope: Application Kit

If set to "NO", turns off all generation of calibrated colors when printing. If the colors an
application displays on the screen or produces from the printer seem wrong or substantially
different from what they were under the previous release, and setting the
NXColorCalibrateLevelOneOps parameter to "NO" for the application doesn't seem to
help, setting this parameter to "NO" should fix the problem.

8-14 Appendix B: Default Parameters

c Keyboard Event Information

Within NeXTSTEP, event records for keyboard-related events report the character set,
character code, and key code. This chapter provides the encoding vectors for the character
sets available in NeXTSTEP, and the key codes for some NeXT keyboards.

Encoding Vectors

The encoding vector for a character set maps character codes to particular characters. In
the tables below that show the encoding vectors, the digit along the side is the first digit,
and the one along the top is the second digit, of the character codes in hexadecimal. The
light gray cells in the table denote ASCII control characters, and the dark gray cells are
unassigned. The remaining cells are divided horizontally: The bottom portion displays the
character's name, and the top shows a representation of the character itself.

The NeXTSTEP encoding vector is a superset of the PostScript language standard
encoding vector. The characters that have code assignments in the standard encoding
vector have the same assignments in the NeXTSTEP encoding vector. The NeXTSTEP
encoding vector makes use of the code points that are unassigned in the standard vector to
add characters from the ISOLatinl character set.

Keyboard Event Information C-1

C')

N

~
~
~
~

~
~
~
~

~
~

~
......

<§..
~

~
~
~.
~
~

ASCII control character

not assigned

Figure C-1. NeXTSTEP Encoding Vector

~
~

~

~
()<:i

~
~
I::S

~

n
W

ASCII control character

not assigned

Figure C-2. Symbol Encoding Vector

The standard ASCII abbreviations are shown for the characters with codes 00 through IF
and 7F (such as CR for the Return character, OD). The characters from 00 through IF can
be generated by holding down the Control key while typing the character whose code is 40
greater; alphabetic characters may be typed in either upper or lower case. For example, 07
is generated by holding down the Control key while pressing the key labeled G, since the
character code for G is 47. The following table shows other ways of generating some of
these control characters (assuming the standard key mapping):

Code

00
03
08
09
OD
19
IB
7F

Abbreviation

NUL
ETX
BS
HT
CR
EM
ESC
DEL

Generated by

Control-space
Enter key (or Command-Return)
Shift-Delete (backspace)
Tab key
Return key
Shift-Tab (backward tab)
Esc key
Delete key

Note: Except for Retum, Tab, and Shift-Tab, the Application Kit's Text object remaps
character codes below 20 to 00.

The character with code 80 is a figure space, a nonbreaking space with the same width as a
numeral. A figure space is generated by holding down the Alternate key while pressing the
space bar. The figure space should always be a nonbreaking space; in applications (like
Edit) that break lines at normal spaces (code 20), lines don't break at nonbreaking spaces.
You can't display a figure space with the show operator.

The arrow keys generate the codes for the arrow symbols in the Symbol character set (codes
AC through AF). With the Shift key down, the arrow keys generate character codes for the
double arrows (codes DC through DF). For information on which characters are generated
by other character keys, see the User's Guide.

C-4 Appendix C: Keyboard Event Information

Key Codes

The following figures show the key codes of several types of keyboards that can be attached
to a NeXT computer.

Note: In the future, computers running NeXTSTEP will have keyboards that generate
different key codes.

Figure C-3. Key Codes of the U.S. Keyboard with One Command Key

Key Codes C-5

Figure C-4. Key Codes of the ISO Keyboard with One Command Key

e-G Appendix C: Keyboard Event Information

Figure C-S. Key Codes of the ISO Keyboard with Two Command Keys

Key Codes C-7

Figure C-S. Key Codes of the Original Keyboard

C-8 Appendix C: Keyboard Event Information

D System Bitmaps

This appendix shows the bitmaps provided with NeXTSTEP. These bitmaps can be used
by the NXImage, Cell, and Cursor classes. They are also available in Interface Builder by
typing their names into the "Icon:" field of the inspector. The name and size (in pixels) is
listed below each bitmap. For more information, see the class specifications.

The following bitmaps can be used by the NXImage and Cell classes:

NXsquare16
16x16

NXswitch
15x15

NXradio
16x15

NXsquare16H
16x16

NXswitchH
15x15

NXradioH
16x15

System Bitmaps 0-1

NXreturnSign
16x10

NXmenuArrow
12x9

NXscroliDown
16x16

NXscro II Left
16x16

NXscroliRight
16x16

NXscroliUp
16x16

0·2 Appendix D: System Bitmaps,

NXmenuArrowH
12x9

NXscroliDownH
16x16

NXscroliLeftH
16x16

NXscroli RightH
16x16

NXscroliUpH
16x16

NXLinkButton
12x12

NXscroliMenuDown
12x12

NXscroliMenuLeft
12x11

NXscroliMenuRight
12x11

NXscroliMenuUp
12x12

NXdefaultappicon
48x48

NXLinkButtonH
12x12

NXscroliMenuDownD
12x12

NXscroliMenuLeftD
12x11

NXscroliMenuRightD
12x11

NXscroliMenuUpD
12x12

NXdefaulticon
48x48

NXscroliMenuDownH
12x12

NXscroliMenuLeftH
12x12

NXscroll Menu RightH
12x12

NXscroliMenuUpH
12x12

System Bitmaps 0-3

The following bitmaps are the representations of predefined NXCursor objects:

NXarrow
16x16

D-4 Appendix D: System Bitmaps

NXibeam
16x16

E Details of the DSP

Memory Map

The following table describes the memory map for the DSP private RAM (8K words).

Start

p:O
p:$2000
p:$AOOO

x:O
x:$100
x:$2000
x:$AOOO

y:O
y:$100
y:$2000
y:$AOOO

End

p:$lFF
p:$3FFF
p:$BFFF

x:$FF
x:$lFF
x:$3FFF
x:$AFFF

y:$FF
y:$lFF
y:$3FFF
y:$AFFF

Name

On-chip program RAM ('$' denotes hex)
Off-chip program RAM, image 1
Off-chip program RAM, image 2

On-chip data RAM, x bank
On-chip data ROM, x bank (Mu-Law, A-law tables)
Off-chip data RAM, x bank, image 1
Off-chip data RAM, x bank, image 2

On-chip data RAM, y bank
On-chip data ROM, y bank (Sine wave cycle)
Off-chip data RAM, y bank, image 1
Off-chip data RAM, y bank, image 2

Off-chip memory exists in two "images" for each space. In image 1, all three memory
spaces occupy the same physical memory (in other words, the X/Y -, PS-, and DS- pins of
the DSP56001 are not connected when address line A15 is low). In image 2, x and yare
split into separate 4K banks, and p overlays them both with an 8K image (that is, XlY - is
used as address line A12 and PS- and DS- are not connected when A15 is high). External
memory starts at 8K ($2000) instead of 512 ($200) because address line A13 in the DSP
must be high to enable external DSP RAM. (Note that there is another enable for this RAM
in the System Control Register 2.)

Details of the DSP E-1

OSP 0-15 Connector Pinouts

The following describes the output pins of the DSP D-15 connector at the back of the
main unit. The left column is the connector pin number, and the right column is the
signal name as it appears in the Motorola DSP56000lDSP56001 Digital Signal Processor
User's Manual.

0-15 OSP

1 SCK
2 SRD
3 STD
4 SCLK
5 RXD
6 TXD
7 +12V,500mA
8 -12V,100mA
9 GND

10 GND
11 GND
12 SC2
13 SCI
14 SCO
15 GND

Figure E-l shows the circuit through which signals are sent from the DSP to the D-15
connector.

E-2 Appendix E: Details of the DSP

Vee

From DSP

Vee

Connector pins
1-6,12-14

'---------u, ... --------''OOO'~--->~ Connector pin 7

'---------u, ... --------''OOO'~--->~ Connector pin 8

There's a series RF choke on each connector signal that doesn't affect its steady-state level.

DSP D-15 Connector Pinouts E-3

DSP56001 Instruction Set Summary

The following notation is used in the summary:

Notation
'*'

[a,b]
<a,b>
<n>
#I<n>
A<n>
An
Xn
Rn
AnyEa
AnyXY
AnyIO
Creg
Dreg
Areg
AnyReg
cc

Denotes

Instructions that don't allow parallel data moves
One ofa orb
Either a,b or b,a
A nonnegative integer
n-bit immediate value
n-bit absolute address
AO, AI, or A2 (similarly for Bn)
XO or Xl (similarly for Yn)
RO, RI, R2, R3, R4, R5, R6, or R7 (similarly for Nn, Mn)
Addressing modes (Rn)[-[Nn]], (Rn+Nn), -(Rn) (similarly for An)
[x,y]:AnyEa
[x,y]:«pp (x or y peripheral address, 6 bits, l's extended)
Registers Mn, SR, OMR, SP, SSH, SSL, LA, LC
Registers Xn, Y n, An, Bn, A, B
Registers Rn, N n
Registers Dreg, Areg, Creg
CC(HS) CS(LO) EC EQ ES GE GT LC LE LS LT MI NE NR PL NN

left-justified moves: ~ [A,B,Xn,Yn]
right-justified moves: ~ [An,Bn,Rn,Nn]

E-4 Appendix E: Details of the DSP

Arithmetic Instructions

ABS [A,B]
ADC [X,Y],[A,B]
ADD [X,Xn,Y,Yn,B,A],[A,B]
ADDL [B,A],[A,B]
ADDR [B,A],[A,B]
ASL [A,B]
ASR [A,B]
CLR [A,B]
CMP [Xn,Yn,B,A],[A,B]
CMPM [Xn,Yn,B,A],[A,B]
*DIV [Xn,Yn],[A,B]
MAC ±[Xn,Yn],[Xn,Yn],[A,B]
MACR ±[Xn,Yn],[Xn,Yn],[A,B]
MPY ±[Xn,Yn],[Xn,Yn],[A,B]
MPYR ±[Xn,Yn], [Xn,Yn], [A,B]
NEG [A,B]
*NORM [A,B]
RND [A,B]
SBC [X,Y],[A,B]
SUB [X,Xn,Y,Yn,B,A],[A,B]
SUBL [B,A],[A,B]
SUBR [B,A],[A,B]
*Tcc [Xn,Yn,B,A],[A,B]
TFR [Xn,Yn,B,A],[A,B]
TST [A,B]

Logical Instructions

AND [Xn,Yn],[A,B]
*ANDI #18, [MR,CCR,OMR]
EOR [Xn,Yn],[A,B]
LSL [A,B]
LSR [A,B]
NOT [A,B]
OR [Xn,Yn],[A,B]
*ORI #18, [MR,CCR,OMR]
ROL [A,B]
ROR [A,B]

Absolute Value
Add Long with Carry
Add
Shift Left then Add (D=2*D+S)
Shift Right then Add (D=D/2+S)
Arithmetic Shift Left (DI=DI *2)
Arithmetic Shift Right (DI=D1I2)
Clear Accumulator
Compare (CCR=Sign(DI-S))
Compare magnitude (CCR=Sign(D-S))
Divide Iteration (DIS iteration)
Signed Multiply-Add (no Xl *XI, YI *Yl)
Signed Multiply, Accumulate, and Round
Signed Multiply (no Xl *XI, YI *YI)
Signed Multiply-Round (no Xl *XI, YI *YI)
Negate Accumulator
Normalize Accumulator Iteration
Round Accumulator
Subtract Long with Carry (D = D - S - C)
Subtract (D = D - S)
Shift Left then Subtract (D = 2*D - S)
Shift Right then Subtract (D = D/2 - S)
Transfer Conditionally
Transfer Data ALU Register
Test Accumulator

Logical AND (DI=DI&S)
AND Immediate with Control Register
Logical Exclusive OR (DI=DI XOR S)
Logical Shift Accumulator Left (DI=DI«l)
Logical Shift Accumulator Right (DI=DI»I)
Logical Complement on Accumulator (D I =-D I)
Logical Inclusive OR (DI=DIS)
OR Immediate with Control Register
Rotate Accumulator Left ([C,DI] ROL)
Rotate Accumulator Right ([DI,C] ROR)

DSP56001 Instruction Set Summary E-5

Bit Manipulation Instructions

*BCLR #B5,AnyXY
*BSET #B5,AnyXY
*BCHG #B5,AnyXY
*BTST #B5,AnyXY
*JCLR #B5,[AnyXY,AnyIO],xxxx
*JSET #B5,[AnyXY,AnyIO],xxxx
*JSCLR #B5,[AnyXY,AnyIO],xxxx
*JSSET #B5,[AnyXY,AnyIO],xxxx

loop Instructions

*DO [[x,y]:[AnxEa,A12],AnyReg],L
*ENDDO

Move Instructions

Bit Test and Clear (C = Selected bit)
Bit Test and Set (C = Selected bit)
Bit Test and Change (C = Selected bit)
Bit Test on Memory (C = Selected bit)
Jump if Bit Clear
Jump if Bit Set
Jump to Subroutine if Bit Clear
Jump to Subroutine if Bit Set

Start Hardware Loop (L=Label after end)
Exit from Hardware Loop

*LUA (Rn)[±[Nn]],[Rn,Nn] Load Updated Register
MOYE (NOP) Move Data
*MOYEC <AnyXY,Creg> Move Control Register
*MOYEC [#I16,#I8],Creg Move Control Register
*MOYEC <Creg,AnyReg> Move Control Register
*MOYEM <p:AnyEa,AnyReg> Move Program Memory
*MOYEP <[AnyReg,AnyXY],AnyIO> Move Peripheral Data
*MOYEP #I24,AnyIO Move Peripheral Data

Program Control Instructions

*Jcc [A12,AnyEa]
*JMP [A12,AnyEa]
*JScc [A12,AnyEa]
*JSR [A12,AnyEa]
*NOP
*REP [AnyXY,#I12,AnyReg]
*RESET
RTI
RTS
*STOP
*SWI
*WAIT

E-6 Appendix E: Details of the DSP

Jump Conditionally
Jump
Jump to Subroutine Conditionally
Jump to Subroutine
No Operation
Repeat Next Instruction
Reset Peripherals
Return from Interrupt
Return from Subroutine
Stop Processing
Software Interrupt
Wait for Interrupt

Suggested Reading

Some information you may need or find useful isn't covered in detail in this manual.
This section indicates where you can get additional information, whether in printed form
or on-line.

Other Books on NeXTSTEP Programming

NeXTSTEP Development Tools and Techniques: Release 3. NeXT Publications. Addison­
Wesley, 1992.

NeXTSTEP Programming Interface Summary: Release 3. NeXT Publications. Addison­
Wesley, 1992.

NeXTSTEP User Interface Guidelines: Release 3. NeXT Publications. Addison­
Wesley, 1992.

NeXTSTEP Operating System Software: Release 3. NeXT Publications. Addison­
Wesley, 1992.

See the back cover of this manual for more titles in the NeXTSTEP Developer's Library.

Reading-1

The C Language

American National Standard X3.159-1989, Programming Language C. American
National Standards Institute, 1989.

This document is the formal and official definition of the C language, its preprocessor,
and run-time library. It's available directly from the American National Standards
Institute. To order by telephone, call (212)642-4900.

C: A Reference Manual. Third edition. Samuel P. Harbison and Guy L. Steele, Jr.
Prentice-Hall, 1991.

Portability and the C Language. Rex Jaeschke. Hayden Books, 1988.

The C Programming Language. Second edition. Brian W. Kernighan and Dennis M.
Ritchie. Prentice-Hall, 1988.

C Traps and Pitfalls. Andrew Koenig. Addison-Wesley, 1989.

Programming in ANSI C. Stephen G. Kochan. Hayden Books, 1988.

Object-Oriented Programming

Reading-2

An Introduction to Object-Oriented Programming. Timothy Budd. Addison-Wesley,
1991.

This is a readable introduction that compares several current object-oriented languages,
including C++ and Objective C.

Object-Oriented Software Construction. Bertrand Meyer. Prentice-Hall, 1988.

Object Orientation: Concepts, Languages, Databases, User Inteifaces. Setrag Khoshafian
and Razmik Abnous. John Wiley and Sons, 1990.

Object-Oriented Design: With Applications. Grady Booch. Benjamin/Cummings, 1991.

Designing Object-Oriented Software. Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren
Wiener. Prentice-Hall, 1990.

The C++ Programming Language. Second edition. Bjarne Stroustrup. Addison­
Wesley, 1991.

c++ Primer. Second edition. Stanley B. Lippman. Addison-Wesley, 1991.

Objective-C: Object-Oriented Programming Techniques. Lewis J. Pinson and Richard S.
Wiener. Addison-Wesley, 1991.

Data Formats

Rich Text Format Specification. Microsoft Corporation. To obtain this document, write to
the following address:

Microsoft Corporation
One Microsoft Way
Redmond WA 98052-6399
Attention: RTF Program Manager

Tag Image File Format Specification. Aldus Corporation and Microsoft Corporation.
Available from Aldus Corporation; for more information, contact the Aldus Developers
Desk at (206)628-6593.

Blue Book, Vol. VII.3. CITT, 1988. Describes Group 3 and Group 4 compression.

See "PostScript Language," below, for documents describing PostScript data formats.

PostScript Language

Programming the Display PostScript System with NeXTstep. Adobe Systems Incorporated.
Addison-Wesley, 1992. Also known as the "purple book."

PostScript Language Reference Manual. Second edition. Adobe Systems Incorporated.
Addison-Wesley, 1990. Also known as th~ "red book."

PostScript Language Tutorial and Cookbook. Adobe Systems Incorporated. Addison­
Wesley, 1985. Also known as the "blue book."

PostScript Language Program Design. Adobe Systems Incorporated. Addison-We~ley,
1988. Also known as the "green book."

Adobe Type 1 Font Format, Version 1.1. Adobe Systems Incorporated. Addison-Wesley,
1990. Also known as the "black book."

Reading-3

Thinking In PostScript. Glenn Reid. Addison-Wesley, 1990.

Real World PostScript. Steven Roth ed. Addison-Wesley, 1988.

Learning PostScript-A Visual Approach. Ross Smith. Peachpit Press, 1990.

The following manuals can be obtained from Adobe's public access file server. For
information about using the file server, send an empty electronic mail message with the
subject "help" to ps-file-server@adobe.com.

Adobe Font Metric Files Specification, Version 2.0. Adobe Systems Incorporated.

Character Bitmap Distribution Format Specification, Version 2.1. Adobe Systems
Incorporated.

Display PostScript System: Client Library Reference Manual. Adobe Systems
Incorporated.

Display PostScript System: pswrap Reference Manual. Adobe Systems Incorporated.

Encapsulated PostScript Files Specification, Version 2.0. Adobe Systems Incorporated.

Database Query Languages

Reading-4

SQL Language Reference Manual, Version 6, PIN 778-V6.0; Version 7, PIN 778-7.0-0292.
Oracle Corporation, 1992. Available from Oracle Corporation, 500 Oracle Parkway, Mail
Stop 659308, Redwood Shores, CA, 94065.

CASE*Method™ Entity Relationship Modeling. Richard Barker. Addison-Wesley, 1990.

A Guide to Sybase and SQL-Server. David McGovern and C. J. Date. Addison­
Wesley, 1991.

Transact-SQDM User's Guide. Sybase Document 3230-4.0,1989. Available from Sybase
Inc., 6475 Christie Avenue, Emeryville, CA, 94608.

RenderMan Language

The RenderMan Companion: A Programmers Guide to Realistic Computer Graphics.
Steve Upstill. Addison-Wesley, 1990.

The RenderMan Interface. Pixar, 1989. To order by telephone, call (510)236-4000.

Computer Graphics

Computer Graphics: Principles and Practice. Second edition. James Foley, Andries van
Dam, Steven K. Feiner, John F. Hughes. Addison-Wesley, 1990.

This is the second edition of the standard text on computer graphics, providing thorough
coverage of general concepts in both 2D and 3D image representation.

Compositing

"Compo siting Digital Images." Thomas Porter and Tom Duff. Computer Graphics
(SIGGRAPH '84 Conference Proceedings), Vol. 18, No.3, July 1984, pp. 253-259.

"Two-Bit Graphics." David Salesin and Ronen Barzel. IEEE Computer Graphics and
Applications, Vol. 6, No.6, June 1986, pp. 36-42.

UNIX 4.38SD Operating System

The UNIX Programming Environment. Brian W. Kernighan and Rob Pike. Prentice­
Hall, 1984.

This book is one of many that describe how to use the UNIX operating system.

Standard UNIX manual pages contain information about UNIX commands and system
calls. These are stored on-line, and are accessible in Digital Librarian.

Reading-5

Reading-6

Glossary

abstract class
A class that's defined solely so that other classes can inherit from it. Programs don't use
instances of an abstract class, only of its subclasses.

abstract superclass
Same as abstract class.

action message
In the Application Kit, a message sent by an object (such as a Button or Slider) in response
to a user action (such as clicking the button or dragging the slider's knob). The message
translates the user's action into a specific instruction for the application. See also target.

activate
In the NeXTSTEP user interface, to cause an application to become active. In the Indexing
Kit, to unarchive an object by reading its instance variables directly from storage. See also
passivate and transcribe.

active application
The application currently associated with keyboard events. Menus are visible on-screen
only for the active application, and only the active application can have the current key
window and main window.

adaptor
In the Database Kit, the software that mediates between an application built from the kit
and the database server to which the application connects, handling data transfers and
translating from the generic query language of the kit to the specific language required by
the database.

Glossary-1

Glossary-2

ADC
Analog-to-digital converter; a device that samples an audio signal to produce a series of
discrete values.

adopt
In the Objective C language, a class is said to adopt a protocol if it declares that it
implements all the methods in the protocol. Protocols are adopted by listing their names
between angle brackets in a class or category declaration.

alpha value
The value that indicates the coverage uf a pixel in an image, ranging from 0.0 for a
transparent pixel (no coverage) to 1.0 for an opaque pixel (full coverage). Also, the value
set by the setalpha operator for the coverage parameter in the current graphics state. See
also color value.

ALU
Arithmetic-logical unit; the circuit in a microprocessor that performs numeric operations,
such as addition and multiplication, on data.

amplitude
The distance from a sound waveform's mean to its furthest displacement; subjectively
heard as loudness.

analog-to-digital converter
SeeADC.

ancestor
In the Application Kit, a View is said to be the ancestor of all the Views below it in the view
hierarchy, including its subviews. In the 3D Graphics Kit, an N3DShape's ancestor is the
shape from which it inherits both its local coordinate system and its rendering order. Each
N3DShape has a pointer to its ancestor; shapes that share the same ancestor are called peers.
See also descendant.

anchor point
When the user drags to define a range, the position of the cursor when the mouse button is
pressed. See also end point.

anonymous object
An object of unknown class. The interface to an anonymous object is published through a
protocol declaration.

API
Application programming interface; the classes, functions, operators, and other
programming elements that let programs make use of NeXTSTEP libraries and
applications.

application
A program with a graphical user interface that the user can run from the workspace, such
as Edit, FaxReader, or Preferences.

application-activate subevent
A subevent of the kit-defined event. It reports when a user activates an application by
clicking in one of its windows.

application-deactivate subevent
A subevent of the kit-defined event. It reports when a user deactivates an application by
clicking in another application's window.

application dock
The column holding application icons at the right of the screen.

Application Kit
The Objective C classes and C functions available for implementing the NeXTSTEP
window-based user interface in an application. The Application Kit provides a basic
program structure for applications that draw on the screen and respond to events.

archiving
The process of preserving a data structure, especially an object, for later use. An archived
data structure is usually stored in a file, but it can also be written to memory, copied to the
pasteboard, or sent to another application. Archiving involves writing data to a special kind
of data stream, called a typed stream. See also typed stream.

arithmetic operator
In the Indexing Kit query language, an operator that performs an arithmetic operation on
two numbers. See also operator.

array processing
A means of performing mathematical computations on large amounts of data extremely
quickly.

array processor
A special-purpose digital hardware device capable of performing array processing
operations; for example, the Motorola DSP56001 microprocessor.

Glossary-3

Glossary-4

arrow key
One of the four keys with arrows on them, to the left of the numeric keypad on the NeXT
keyboard. They move the insertion point in the indicated direction.

association
In the Database Kit, the mapping between a field in a record list and the object that
displays it.

asynchronous message
A remote message that returns immediately, without waiting for the application that
receives the message to respond. The sending application and the receiving application act
independently, and are therefore not "in sync." See also synchronous message.

atom
In the Indexing Kit query language, a scalar data item in an expression.

attach
To choose a menu command that controls a submenu, causing the submenu to appear
on-screen next to the supermenu (the menu with the controlling command). Moving or
closing a supermenu also moves or closes its attached submenu; choosing the controlling
cornmand a second time detaches and hides the submenu.

attention panel
A panel that demands the user's attention. Until the user acts to dismiss the panel from the
screen, no other action within the application is possible. Attention panels permit the user
to rescind a command (such as Close), ask the user to complete a command (such as Save
As), and give warnings that the user must acknowledge. See also panel.

attribute
In the Indexing Kit, a characteristic of an object, defined by a name and the return value of
a specific message (which takes no arguments). In the Database Kit, the description of one
of the properties of an entity; loosely, the name of a field in a table.

attribute parser
In the Indexing Kit, an instance of IXAttributeParser; generally, an object that breaks a
stream of text into attribute/value lists.

attribute reader
In the Indexing Kit, an instance of IXAttributeReader or of a subclass; generally, an object
that breaks a stream of text into lexemes.

background color
In the Application Kit, the color that fills the content area of a window and provides a
background for all the drawing done within the window, or the color that fills a View as a
background for any drawing the View or its subviews do.

bar
The part of a slider or a scroller that holds the moveable knob. See also knob.

base coordinate system
The reference coordinate system for a window. The origin is in the window's lower left
comer of the window, outside the border and resize bar if it has them. The positive x-axis
extends to the right and the positive y-axis extends upward; the length of a unit on either
axis is one screen pixel.

binder
In the Database Kit, a mechanism for mapping a record in the database to Objective C
objects in a container.

blob
In the Indexing Kit, a data item of indeterminate length or structure. A blob is a data item
that can't be transcribed. See also activate, passivate, and transcribe.

block
In the Indexing Kit, a unit of storage in an IXStore, identified by a handle.

boolean operator
In the Indexing Kit query language, an operator that performs a boolean or set operation.
See also operator.

boot block
In the Indexing Kit, the single block in an IXStore from which a store client must be opened
or reconstituted. See also store client, open, reconstitute.

bootstrap port
A port to which a new task can send a message that will return any other system service
ports that the task needs.

bounds rectangle
In the Application Kit, the smallest rectangle in a View's coordinate system that completely
encloses its frame rectangle. Unless the View's coordinate axes have been rotated, the
bounds rectangle (stated in the View's own coordinates) and its frame rectangle (stated in
its superview's coordinates) enclose exactly the same area on-screen.

Glossary-5

Glossary-6

buffered window
A window with an input buffer that also acts as a backup buffer for screen pixel values. All
images are first rendered in the buffer, then flushed from the buffer to the screen.

busy cursor
The cursor image (a spinning disk) that indicates that an application is busy.

camera coordinate system
In the 3D Graphics Kit, the coordinate system with its origin at the eyepoint of an
N3DCamera. The axes of the camera coordinate system are defined in terms of s, t, and u
(corresponding to x, y, and z in standard coordinate systems). The s-axis aligns
horizontally with the camera, running through the eyepoint, and the t-axis aligns vertically
with the camera through the eyepoint. The u-axis is always perpendicular to the camera's
focal plane: it points along the eye-to-viewpoint vector.

category
In the Objective C language, a set of method definitions that is segregated from the rest of
the class definition. Categories can be used to split a class definition into parts, or to add
methods to an existing class.

channel
On a telephone line, the physical capacity to carry a call. An ISDN line has more than one
channel, so it can simultaneously carry more than one call.

character code
The code that identifies a character in a given character set; an index into the character set's
encoding vector.

character keys
The keys that transmit characters to the computer. This includes not only the usual letters,
numbers, and symbols, but also Return, Enter, Delete, Tab,.Esc, and the arrow keys.

character set
The set of characters for a particular font or fonts; either the NeXTSTEP character set (an
extension of ASCII) or Symbol.

class
In the Objective C language, a prototype for a particular kind of object. A class definition
declares instance variables and defines methods for all members of the class. Objects that
have the same types of instance variables and have access to the same methods belong to
the same class. See also class object.

class method
In the Objective C language, a method that can be used by the class object rather than by
instances of the class.

class object
In the Objective C language, an object that represents a class and knows how to create new
instances of the class. Class objects are created by the compiler, lack instance variables,
and can't be statically typed, but otherwise behave like all other objects. As the receiver in
a message expression, a class object is represented by the class name.

click
To press and release a mouse button while the cursor is positioned over an object on-screen.
Clicking an object may select it or cause it to act in some way. Users can also click to select
a particular location (for the insertion point, for example).

clipping path
In the PostScript language, a path enclosing the area where drawing can take place. Areas
not within the clipping path aren't affected by PostScript painting operators such as stroke
and fill.

close button
The button that can appear at the far right in a window's title bar. Clicking the button closes
the window (removes it from the workspace).

CODEC
A type of analog-to-digital converter (CODEC stands for "coder-decoder"). The CODEC
on NeXT computers uses an 8-bit mu-Iaw encoded quantization and a sampling rate of
8012.8 Hz.

color component
One of the parameters that make up a color specification. On a gray scale, there's a single
component. A color that's specified by red, green, and blue (ROB) parameters has three
components.

color value
The value that indicates the color of a pixel; each color component is assigned a separate
value ranging from 0.0 to 1.0. Also, the current value of the color parameter of the graphics
state, as set by setgray, setrgbcolor, or another similar operator. See also alpha value.

commit
In the Database Kit, the action of accepting the sequence of modifications grouped in a
transaction, so that they take effect in the database and can no longer be rolled back.

Glossary-7

Glossary-8

compositing
A method of accumulating separately rendered images into a final image. It encompasses
simple copying as well as more sophisticated operations that take advantage of
transparency.

condition variable
A type of variable provided by the C-thread functions to help synchronize the threads in
a task.

conform
In the Objective C language, a class is said to conform to a protocol if it adopts the protocol
or inherits from a class that adopts it. An instance conforms to a protocol if its class does.
Thus, an instance that conforms to a protocol can perform any of the instance methods
declared in the protocol.

console
A special window that displays system log messages, as well as output written to tl)e
standard error and standard output streams by applications launched from the Workspace
Manager.

container
In the Database Kit, an object used to buffer data being transferred between the database
and the application, permitting temporary storage of multiple objects of diverse types.

content area
The area within a window that's available for the application to use. It excludes only the
window's border, title bar, and resize bar.

content rectangle
A rectangle surrounding a window's content area, expressed in the screen coordinate
system. See also frame rectangle.

content view
In the Window class, a View that's exactly the same size as a window's content area and
has all the Views that draw within the content area as its subviews and descendants; every
Window object has a content view. In the ScrollView class, the Clip View object that
encloses the visible portion of a document and provides basic scrolling behavior; see also
document view.

context number
An integer assigned by the Window Server to identify the PostScript execution context for
an application. In the Application Kit, the context number is used to distinguish among
running applications.

controls
Graphical objects-such as buttons, sliders, text fields, and scrollers-that the user can
operate to give instructions to an application.

coverage
In image representation, how much background shows through a pixel; passed to PostScript
operators as a value from 0.0 for no coverage (transparent) to 1.0 for full coverage
(opaque). See also alpha value.

current coordinate system
The coordinate system reflected in the current transformation matrix (CTM) of an
application's current graphics state. It's usually the coordinate system of the View object
that's about to draw.

current window
The window that's the current device of a particular PostScript context's current graphics
state. The current window receives all drawing directed to the window device of a context's
current graphics state. windowdeviceround and currentwindow set and return the current
graphics state's current window.

cursor
In the NeXTSTEP user interface, the small image (usually an arrow) that moves on the
screen correspondingly as you move the mouse. In the Database Kit, within a record stream
or a record list, the record of current interest.

cursor rectangle
A tracking rectangle that's associated with a particular image for the cursor.

DAC
Digital-to-analog converter; a device that converts a series of digital samples into an
audio signal.

database
An organized collection of data. In the Database Kit, often used informally to refer to a
database server or a database management system (DBMS), including not only the data but
also the server processes that allow access to it, or the language used to state commands or
queries, such as SQL.

delegate
In the NeXTSTEP software kits, an object that acts on behalf of another object.
Window, Application, Text, Listener, NXBrowser, NXImage, and other objects can be
assigned delegates.

Glossary-g

Glossary-10

demand paging
An operating system facility that causes pages of data to be brought from disk into physical
memory only as they're needed.

descendant
In the Application Kit, a View is said to be the descendant of all the Views above it in the
view hierarchy, including its superview. In the 3D Graphics Kit, the shape directly below
another shape in the shape hierarchy. An N3DShape's descendant-and the descendant's
peers-inherits the coordinate system of its ancestor. See also ancestor.

designated initiaiizer
The init .•• method that has primary responsibility for initializing new instances of a class.
Each class defines or inherits its own designated intializer. Through messages to self, other
init ••• methods in the same class directly or indirectly invoke the designated intializer, and
the designated initializer,. through a message to super, invokes the designated initializer of
its superclass.

destination image
One of the two images that are combined when compositing. The composite replaces the
destination image. See also source image.

digital signal processing
A branch of array processing concerned primarily with the real-time analysis and
processing of digitized analog signals representing physical artifacts such as sounds
and images.

digital-to-analog converter
SeeDAC.

directory
A term used in this manual in place of the wordfolder found in other NeXTSTEP
documentation. A directory is a collection of files and other directories, sometimes called
subdirectories. See also Netlnfo directory.

dispatch table
A table used to implement run-time messaging for Objective C programs. Each class has
a dispatch table that associates method selectors with the addresses of method
implementations.

dock
See application dock.

docked icon
An icon in the application dock.

document view
A View representing an entire document. A Clip View object contains a document view as
its subview. The Clip View translates and clips this subview to allow the user to view a
portion of a large document.

document window
A window that displays the contents of a user-created file.

domain
See NetInfo domain or weighting domain.

domain name notation
One way to identify a specific domain, using a format similar to file pathnames; for
example, /boston/earth specifies the domain earth, which is a child of the domain boston,
which is a child of the root domain. See also tagged domain notation.

double-click
To press and release a mouse button twice in succession while the cursor is positioned over
an object on-screen. To count as a double-click rather than as two separate clicks, the
mouse cannot move and the mouse button must be pressed the second time within a short
interval of the first.

drag
To move the mouse (and the cursor on screen) while a mouse button is held down.

DSP
Digital signal processor, a device that modifies digital signals; for example, the Motorola
DSP56001 microprocessor.

DSP system functions
The set of C functions that provide a software interface between the host processor and
the DSP.

dspwrap
A program that creates a C function corresponding to a DSP assembly language macro.
Functions created with dspwrap are normally used in array processing applications.

dynamic binding
Binding a method to a message-that is, finding the method implementation to invoke in
response to the message-at run time, rather than at compile time.

Glossary-11

GlossarY-12

dynamic drawing
The drawing that an application does to provide feedback during user actions-for
example, highlighting objects that are clicked or pressed, and moving objects that
are dragged.

dynamic typing
Discovering the class of an object at run time rather than at compile time. In
the Objective C language, all objects of type id are dynamically typed. See also
dynamic binding.

encoding vector
An array that maps character codes to the corresponding characters in a given character set.

endpoint
When the user drags to define a range, the position of the cursor when the mouse button is
released. See also anchor point.

entity
In the Database Kit, the description of one of the database's collections of data; loosely
speaking, the name and description of a table in the database.

Ethernet
A high-speed local area network technology. Ethernet is considered the industry standard
for networking UNIX-based machines because of its reliability and capacity to rapidly
transfer large amount of information. Ethernet connectors are built into NeXT computers.

evaluation context
In the Indexing Kit, an object against which a query expression is evaluated. It's usually a
container of other objects about which the query is posed.

event
The direct or indirect report of a user's action on the keyboard or mouse. See also event
record and event queue.

event dispatcher
The part of the Window Server that accepts user input such as keyboard and mouse actions
and decides which window to assign it to.

event mask
A long integer associated with a window. It controls which types of events will be
associated with the window and passed to the application that owns the window. A 1 in
the bit corresponding to a particular event type means the window will accept that type
of event.

event message
In the Application Kit, a message to perform a method named after an event or subevent.
Event messages are used to dispatch events to the objects that will respond to them. See
also action message.

event procedures
In the Window Server process, PostScript procedures that the Server calls to process events
in windows.

event queue
A ring buffer that temporarily stores event records that an application receives from the
Window Server.

event record
The structure in which information about an event is passed.

exposure color
The color that's shown in a new area of a window, before any drawing is done in the area.

expression
In the Database Kit, a description of data to be obtained from an entity in a database,
stated in terms of one or more of the data's attributes and, optionally, operations on them.
For example, "salary - average salary" might be an expression, while "salary" is a
minimal expression.

eye-to-viewpoint vector
In the 3D Graphics Kit, the directed line segment that defines the camera coordinate
system. This vector is defined by two points, the viewpoint and the eyepoint (both in world
coordinates). The viewpoint is the point at which the camera is aiming; the eyepoint is the
focal point of the camera.

factory
Same as class object.

factory method
Same as class method.

factory object
Same as class object.

fetch group
In the Database Kit, the set of fields of a single record list, together with a mapping that
associates each field with the object that displays it.

Glossary-13

Glossary-14

file
A collection of related information stored on a disk, such as a document, report, letter,
or application.

file package
A directory that the Workspace Manager presents as a file, allowing the user to manipulate
a group of files as if they were one file. A file package for an application executable should
have the same name as the executable file, plus a ".app" extension. File packages for
documents should bear the same extension as the one assigned to the application's
document files.

file system
The collection of all the files the user can access through the computer.

first responder
In the Application Kit, the object that will have the first chance to respond to keyboard
event messages, mouse-moved event messages, and action messages with user-selected
targets. Each Window has its own first responder, which it changes in response to
mouse-down events.

flags-changed event
An event that occurs when the user presses an Alternate, Shift, Control, or Command key,
or turns Alpha Lock on or off.

floating panel
A panel, such as a palette, that stays in front of standard windows and other panels. See
also tiers.

flush
To empty a buffer in which information has accumulated, and send the information on to
its destination.

foreign key
In the Database Kit, a property in one entity that identifies one or more records in a
related entity.

formal protocol
In the Objective C language, a protocol that's declared with the @protocol directive.
Classes can adopt formal protocols, objects can respond at run time when asked if they
conform to a formal protocol, and instances can be typed by the formal protocols they
conform to.

frame rectangle
In the Application Kit, the rectangle that defines the location and size of a graphical object,
particularly Windows, Views, and Cells. A Window's frame rectangle is stated in the
screen coordinate system, a View's frame rectangle is specified in its superview's
coordinate system, and a Cell's frame rectangle is specified in the containing View's
coordinate system.

frame view
In the Application Kit, the View that fills the Window's frame rectangle and draws its
border, title bar, and resize bar. This is a private View; it has the content view as its one
public subview. See also content view.

freestanding icon
An application icon standing alone in the workspace. Freestanding icons represent running
applications and can be dragged into the dock. See also docked icon.

frequency
The oscillation rate of a sound vibration. Frequencies are measured in hertz (Hz) or cycles
per second (cps), and kilohertz (kHz) or thousands of cycles per second.

gray level
See gray value.

gray value
A color value that represents a shade of gray, ranging from 0.0 for black to 1.0 for white.

halftone screen
A pixel pattern that the PostScript interpreter uses to approximate a specified color in an
area, if each of the pixels in the area can't be assigned that exact color.

handle
In the Indexing Kit, an identifier for a block of data or a record.

hider
In the 3D Graphics Kit, the algorithm determining the order in which geometry in a 3D
scene description is rendered. A hidden-surface removal algorithm causes objects to
appear in the natural front-to-back order, regardless of their order in the data describing the
scene. An in-order hider algorithm causes objects to be rendered first-in, first-out,
regardless of their natural front-to-back order in the scene.

host
The computer that's running (is host to) a particular program. The term is usually used to
refer to a computer on a network.

GlossarY-15

Glossary-16

host processor
The microprocessor on which an application program resides. When an application is
running, the host processor may call other, peripheral microprocessors, such as the
DSP56001, to perform specialized operations.

hot spot
The point in the cursor image whose location on the screen is reported as the cursor's
location. The cursor is said to be "over" the location at its hot spot.

id
In the Objective C language, the general type for any kind of object regardless of class. id
is defined as a pointer to an object data structure. It can be used for both class objects and
instances of a class.

informal protocol
In the Objective C language, a protocol declared as a category, usually as a category of
the Object class. The language gives explicit support to formal protocols, but not to
informal ones.

inheritance
In object-oriented programming, the ~bility of a superclass to pass its characteristics
(methods and instance variables) on to its subclasses. In Mach, the transfer of address
space access rights from a parent process to a child process.

inheritance attribute
In Mach, a value indicating the degree to which a parent process and its child process share
the parent process's address space. A memory page can be inherited copy-on-write, shared,
or not at all.

inheritance hierarchy
In object-oriented programming, the hierarchy of classes that's defined by the arrangement
of superclasses and subclasses. Every class (except Object, which is at the root of the
hierarchy) has a superclass, and any class may have an unlimited number of subclasses.
Through its superclass, each class inherits from those above it in the hierarchy.

in-line data
Data that's included directly in a Mach message, as opposed to referred to by a pointer. See
also out-oj-line data.

insertion point
The point where whatever you type or paste in an application will be inserted. In text, it's
typically marked by a blinking vertical bar.

instance
In the Objective C language, an object that belongs to (is a member of) a particular class.
Instances are created at run time according to the specification in the class definition.

instance drawing
In the Window Server, temporary drawing done within a window.

instance method
In the Objective C language, any method that can be used by an instance of a class rather
than by the class object.

instance variable
In the Objective C language, any variable that's part of the internal data structure of an
instance. Instance variables are declared in a class definition and become part of all objects
that are members of or inherit from the class.

interactive rendering
In the 3D Graphics Kit, a rendering process that draws directly to the display, enabling the
user to interact with the model represented by 3D data. To render images interactively, the
renderer may ignore some of geometric details in the model.

Interface Builder
A tool that lets you graphically specify your application's user interface. It sets up the
corresponding objects for you and makes it easy for you to establish connections between
these objects and your own code where needed.

intersection
When applied to two given rectangles, the area that both have in common. If the two
rectangles are expressed in the same coordinate system, their intersection will also be a
rectangle. See also union.

introspection
The ability of an object to reveal information about itself as an object-such as its class and
superclass, the messages it can respond to, and the protocols it conforms to.

I/O
Input/output; the sending and retrieving of information into the memory of a program,
usually to and from a file or a peripheral device through an 110 port.

IPC
Interprocess communication; the transfer of information between processes. In Mach, IPC
is performed through the use of messages.

Glossary-17

Glossary-18

ISDN
Integrated Services Digital Network, telephone service that carries information in digital
form from one end of the phone line to the other (from one telephone or computer to the
other). Because information is digitized for its entire journey over the line, computer data
can be sent and received without the intervention of a modem. Commonly contrasted to
POTS (plain old telephone service), which sends and receives information in analog form.

join
In relational databases, the action of retrieving data from more than one table by a
combination of cross-product and selection constraints. In the Database Kit, relationships
are converted into SQL joins by requiring that the foreign key of the main table match
primary key fields in a related table. See also relationship, inner join, outer join.

kernel port
A port used to represent a task or thread in Mach function calls. Also known as a task port
or thread port.

key
In the Indexing Kit, a data item serving as an identifier for another data item. In the
Database Kit, the property or combination of properties that uniquely identifies records in
the database. See also foreign key.

keyboard alternative
A way of using the keyboard, rather than the mouse, to choose a menu command, operate
a button in a panel, or pick an item from a pop-up or pull-down list. While holding a
Command key down, the user types a character associated with the command, button, or
item. See also key equivalent.

key code
A hardware-dependent code that indicates the position of a key on the keyboard.

key-down event
An event that occurs when the user generates a character by pressing a key. Holding the
key down generates subsequent key-down events at regular intervals.

key equivalent
In the Application Kit, the character that can be used as the keyboard alternative for a
given object.

key space
In the Indexing Kit, the set of possible keys of a specific type.

key-up event
An event that occurs when the user releases any key except Alternate, Shift, Control, Help,
or Command.

key window
The window in the active application that receives keyboard events. The title bar of the key
window is highlighted in black.

kit-defined event
An event that occurs when the user moves, resizes, or reorders a window or activates or
deactivates an application. It includes the window-moved, window-exposed,
window-resized, screen-changed, application-activate, and application-deactivate
subevents.

knob
The part of a slider or scroller that the user can drag. See also bar.

lazy evaluation
A programming philosophy stating that high-overhead operations should be deferred until
absolutely necessary. Even then, only the portion of the operation that's unavoidable
should be performed.

lexeme
The smallest meaningful unit of a text stream; usually a word, though it may be a phrase,
embedded graphic, or other such thing.

linked information
Copied information, such as a graphic image, that can be automatically updated when the
original information is modified.

literal
In the Indexing Kit query language, a symbol whose value is equal to its representation; for
example, a number or string.

local coordinate system
In the 3D Graphics Kit, the coordinate system belonging to a particular N3DShape.
A given N3DShape's local coordinate system is determined by the coordinate system
inherited from its ancestor and any transformations the shape applies to that
coordinate system.

Glossary-19

Glossary-20

localize
To adapt an application to work under various local conditions-especially to have it use a
local language selected by the user. This entails freeing application code from
language-specific and culture-specific references and making it able to import localized
resources (such as character strings, images, and sounds). For example, an application
localized in SpC}nish would display "Salir" as the last item in the main menu. In Italian it
would display "Esci", in German "Verlassen", and in English "Quit".

Mach
The multitasking operating system used by all NeXT computers. Mach is completely
compatible with UNIX 4.3BSD but adds faster interprocess communication, a larger virtual
memory space, memory-mapped files, and multiple threads of execution within a single
address space.

Mach factor
A measurement of how busy the system is. Unlike the UNIX load average, higher Mach
factors mean that the system is less busy.

Mach server
A task that provides services to clients, using a MiG-generated RPC interface.

main event loop
The principal control loop for applications that are driven by events. From the time it's
launched until the moment it's terminated, an application gets one event after another from
the Window Server and responds to them, waiting between events if the next event isn't
ready. In the Application Kit, the Application object runs the main event loop.

main menu
The principal menu in an application, usually identified by the name of the application in
its title bar. The main menu lacks a close button and cannot be made the submenu of
another menu.

main screen
The screen where the key window is located, or, if there is no key window, the screen where
the main menu is located, or, if there's neither a key window nor a main menu on-screen,
the screen that has the origin of the screen coordinate system at its lower left comer.

main window
The standard window that's affected by actions in a panel and certain menu commands. If
the main window isn't also the key window, its title bar is highlighted in dark gray.

makefile
A specification file used by the program make to build an executable version of an
application. A makefile details the files, dependencies, and rules by which the application
is built.

master NetInlo server
A computer that's the authoritative server of a NetInfo domain.

memory-mapped files
A Mach facility that maps virtual memory onto a physical file. Thereafter, any reference
to that part of virtual memory causes the corresponding page of the physical file to be
brought into memory.

menu
A small window that displays a list of commands. Only menus for the active application
are visible on-screen.

message
In object-oriented programming, the method selector (name) and accompanying arguments
that tell the receiving object in a message expression what to do. In Mach, a message
consists of a header and a variable-length body; operating system services are invoked
by passing a message from a thread to the port representing the task that provides the
desired service.

message expression
In object-oriented programming, an expression that sends a message to an object. In the
Objective C language, message expressions are enclosed within square brackets and
consist of a receiver followed by a message (method selector and arguments).

method
In object-oriented programming, a procedure that can be executed by an object.

MIDI
Musical Instrument Digital Interface; the industry standard used by modem keyboard
synthesizers for transmitting and storing musical performance information.

MiG
Mach's message interface generator. MiG provides a procedure call interface to Mach's
system of interprocess messaging.

miniaturize button
The button that can appear at the far left in a window's title bar. Clicking the button
removes the window from the screen and replaces it with its mini window counterpart.

Glossary-21

Glossary-22

miniwindow
A small, icon-sized window that stands in for a window that has been miniaturized.
Double-clicking the mini window reverses the miniaturization, returning the full window to
the screen.

modal event loop
A temporary event loop that's set up to get events directly from the event queue, bypassing
the main event loop. Typically, a mouse-down event initiates the modal loop and the
following mouse-up event ends it. The loop gets mouse-dragged events (or mouse-entered
and mouse-exited events) to track the cursor's movement while the user holds the mouse
button down.

mode
A period of time when the user's actions are interpreted in a special way.

model
In the Database Kit, a description of the data available from a database as it will be seen
and used by a database application. The model is produced by the DB Modeler application.
The model resides in a file having the extension" .dbmodel", in one of several designated
directories, so that Interface Builder's database palette is automatically aware of the models
available to it.

modifier keys
Keys that change the meaning of other keys or of the user's actions with the mouse; the
Shift, Alternate, Command, Control, and Help keys.

module
In the Database Kit, the object that represents a particular view of the database (that is, those
of the database's entities that the module makes available), with the names by which the
module refers to them, and the properties that the module defines for them.

mouse-down event
An event that occurs when the user presses a button on the mouse. There's one type of
mouse-down event for the left (or only) mouse button and one for the right button.

mouse-dragged event
An event that occurs when the user moves the mouse while holding down a mouse button.
There's one type of mouse-dragged event for when the mouse is moved with the left (or
only) mouse button down, or with both buttons down, and another type for when it's moved
with the right button down.

mouse-entered event
An event that occurs when the cursor enters a tracking rectangle. Depending on
instructions given when the rectangle was created, the event may be generated only while
one or both of the mouse buttons is being held down.

mouse-exited event
An event that occurs when the cursor leaves a tracking rectangle. Depending on
instructions given when the rectangle was created, the event may be generated only while
one or both of the mouse buttons is being held down.

mouse-moved event
An event that occurs when the user moves the mouse without holding down a mouse
button.

mouse scaling
The responsiveness of the cursor to movements of the mouse. Usually, the faster the mouse
is moved, the farther the cursor travels.

mouse-up event
An event that occurs when the user releases a mouse button. There's one type of mouse-up
event for the left (or only) mouse button and one for the right button.

multitasking
Describes an operating system that allows the concurrent execution of multiple programs.
Mach, the operating system of all NeXT computers, is multitasking.

mutex variable
Mutual exclusion variable; a type of variable provided by the C-thread functions to help
protect critical regions in a multiple-thread task.

NetInfo directory
An organizational structure within a NetInfo domain. A NetInfo directory stores properties
and sometimes other NetInfo directories.

NetInfo domain
A collection of administrative information including user accounts, host entries, and so on.
Information within a domain is organized into NetInfo directories. Domains are organized
into a hierarchy.

NetInfo server
A computer that provides storage for and access to a NetInfo domain.

Glossary-23

Glossary-24

network
A group of hosts that can directly communicate with each other.

network port
In Mach, a port by which local objects communicate with remote objects. A message sent
to a network port is received by the local network server, processed, and then sent across
the network to a remote network server.

network port identifier
A code by which a network server determines the identity of the recipient local task.

network server
A local operating system representative for tasks on a remote computer. Messages intended
for a remote task are processed and redirected by a local network server.

next responder
In the Application Kit, the object that will be sent event and action messages that the
intended receiver can't handle. See also responder chain.

NeXTSTEP
NeXT's application development and user environment, consisting of the Workspace
Manager, the Window Server, various software kits such as the Application Kit and the
Database Kit, various applications such as Project Builder and Interface Builder, and
other software.

NFS
Network File System. An NFS file server allows users on the network to share files as if
they were on their own local disk.

nib file
A file (actually a file package) that stores the specifications for all or part of an application's
interface. These files can contain archived objects, information about connections between
objects, and sound and image data. You use Interface Builder to create nib files.

nil
In the Objective C language, an object id with a value of O.

NMI
Non-maskable interrupt; the interrupt produced by a particular keyboard sequence.

nonretained window
A window without a backup buffer for screen pixel values.

nonsimple message
In Mach, a message that contains either a reference to a port or a pointer to data.

notify port
In Mach, a port on which a task receives messages from the kernel advising it of changes
in port access rights and of the status of messages it has sent.

object
A programming unit that groups together a data structure (instance variables) and the
operations (methods) that can use or affect that data. Objects are the principal building
blocks of object-oriented programs.

object repository
See repository.

open
In the Indexing Kit, to reconstitute a store client from its stored data.

operator
In the Indexing Kit query language, a symbol that performs an action on its arguments and
results in a value. See also arithmetic operator, boolean operator, projection operator,
relational operator, and search operator.

outer join
In the Database Kit, setting the outer-join property of a relationship means that all values
of the primary key are represented in the return, even when some of the related records have
no matching value for the foreign key. For example, if the relationship links "account
code" to "salesperson for account," the return will include those that have no assigned
salesperson.

outlet
An instance variable that points to another object. Outlet instance variables are a way for
an object to keep track of the other objects to which it may need to send messages.

out-oj-line data
Data that's passed by reference in a Mach message, as opposed to being included in the
message. See also in-line data.

package
In the Window Server process, a set of PostScript procedures, shared by all applications,
that the Window Server calls to perform various tasks for applications.

Glossary-25

Glossary-26

panel
A window that holds objects that control what happens in other windows (such as a Font
panel) or in the application generally (such as a Preferences panel), or a window that
presents information about the application to the user (such as an information panel). See
also attention panel.

parser
See attribute parser.

passivate
In the Indexing Kit, to archive an object by writing its instance variables directly into
storage. See also activate and transcribe.

password
A character string assigned to or chosen by a user that, along with the user name, uniquely
identifies that user and allows access to the system.

peer
In the 3D Graphics Kit, a relationship between N3DShapes in a shape hierarchy; an
N3DShape's peers all share a single direct ancestor, and thus share a common
coordinate system.

period
A single complete cycle of a sound waveform.

periodic waveform
A waveform with a clearly defined period occurring at regular intervals.

photorealistic rendering
In the 3D Graphics Kit, a rendering process that attempts to recreate life-like images from
3D data. Photorealistic rendering allows for such effects as lighting, surface texturing,
atmospheric interference, and other details that determine the appearance of true-to-life
images.

pixel
The smallest unit that can be assigned a color or coverage value for showing images on the
screen or printed page.

plain window
A window with no border, title bar, or resize bar.

policy
In Mach, a thread's scheduling policy determines how the thread's priority is set and under
what circumstances the thread runs. See also priority.

polymorphism
In object-oriented programming, the ability of different objects to respond, each in its own
way, to the same message.

pop-up list
A menu-like list of items that appears over (or next to) an on-screen button when the button
is pressed. The user can choose an item by dragging to it and releasing the mouse button.
When the mouse button is released, the pop-up list disappears.

port
In Mach, a protected communication channel by which messages are sent to, and received
from, operating system objects.

port access rights
In Mach, the ability to send to or receive from a port.

port set
In Mach, a set of zero or more ports. A thread can receive messages sent to any of the ports
contained in a port set by specifying the port set as a parameter to mSlLreceiveO.

posting
In the Indexing Kit, a reference to a data item. A posting consists of a handle and an
optional weight.

posting method
An indication to the Window Server of which window or windows an event should be
sent to.

power-off subevent
A subevent of the system-defined event. It occurs when the user requests a system
shutdown.

predicate
In the Indexing Kit, a single assertion to be tested in a query expression.

Glossary-27

Glossary-28

press
To press a mouse button and keep it down for a period of time while the cursor is positioned
over an object on-screen. Pressing an on-screen object (such as a scroll button) may cause
it to take repeated action, or may produce another object (such as a pop-up list) that the user
can drag into.

priority
In Mach scheduling, a number between 0 and 31 that indicates how likely a thread is to run.
The higher the thread's priority, the more likely the thread is to run. See also policy.

process
A program that is at some stage of execution. In Mach, a task containing a single thread of
execution is equivalent to a process.

process identifier, or process ID
In UNIX, a number that uniquely identifies a process.

program controller
The part of a microprocessor devoted to fetching instructions and updating the program
counter.

projection operator
In the Indexing Kit query language, an operator that results in attributes from a given
object. See also operator.

Project Builder
A tool that lets you create and maintain your application's project and source file hierarchy.
Project Builder provides a user interface for building your application from its source files,
as well as connections with other NeXT developer applications for interactive debugging.

property
In the Database Kit, a general term for any attribute, relationship, or expression of an entity.

protocol
In the Objective C language, the declaration of a group of methods not associated with any
particular class. See also formal protocol and informal protocol.

pswrap
A program that creates a C function corresponding to a sequence of PostScript code. When
this function is called, a binary-encoded version of the PostScript code is sent to the
Window Server.

pull-down list
A menu-like list that appears under an on-screen button when the button is pressed. The
user can drag into the list to choose an action from it. When the mouse button is released,
the pull-down list disappears.

qualifier
In the Database Kit, an expression that filters the records to be retrieved by testing the
truth of a proposition, retaining those for which the proposition is true and excluding
the rest. In SQL, a clause preceded by "where", as in "name, department, salary where
salary> 50000."

quantization
In sound, the rounding up or down of the sampled values of a waveform to fit into a
predetermined step size.

quantum
The fixed amount of time a thread can run before being preempted.

query expression
In the Indexing Kit query language, an expression formed of predicates and logical
operators, used to select objects from an evaluation context about which the expression is
true. In the Database Kit, a statement defining the properties of data to be fetched.

RAM
Random-access memory; memory that a microprocessor can either read or write to.

reader
See attribute reader.

real time
A concept of time when using a computer. If the user defines or initiates an event and the
event occurs instantaneously, the computer is said to be operating in real time.

receive rights
In Mach, the ability to receive messages on a port. Only one task at a time can have receive
rights for anyone port. See also send rights.

receiver
In object-oriented programming, the object that is sent a message.

reconstitute
In the Indexing Kit, to connect an object to data in an IXStore, essentially recreating the
object that stored the data.

Glossary-29

Glossary-30

record
In the Indexing Kit, an Objective C object used exclusively to store data; often stored in a
repository and identified by a handle. In the Database Kit, a set of property values retrieved
for an entity; loosely, one row in a table.

record list
In the Database Kit, an object for retrieving, holding, editing, and storing a set of records
in a database.

rectangle
In NeXTSTEP, an area that's defined by a point, (x, y), and an extent (width and height).

reference domain
In the Indexing Kit, a weighting domain against which a lexeme's frequency in another
domain is compared.

regular expression
In the Indexing Kit, a pattern generated from a string. Indexing Kit search operators look
for sequences of text matching the pattern.

relational operator
In the Indexing Kit query language, an operator that performs a value comparison on
numbers or strings. See also operator.

relationship
In the Database Kit, a property constructed by matching records having the same value for
an attribute in one entity with those having the same value for a corresponding attribute in
another entity.

remote message
A message sent from one application to an object in another application.

remote object
An object in another application, one that's a potential receiver for a remote message.

renderer
In the 3D Graphics Kit, a program that accepts a deSCription of a three-dimensional
scene and interprets it as an image. NeXTSTEP Release 3 includes two separate renderers.
The Interactive RenderMan renderer produces images for interactive manipulation
on the display. The PhotoRealistic Renderman renderer produces images for printing
and for high-resolution display. Both accept 3D data in RIB (RenderMan Interface
Bytestream) format. See also interactive rendering, photorealistic rendering.

reply port
A port associated with a thread that's used in Mach remote procedure calls.

repository
In the Indexing Kit, an object that conforms to the IXRecordReading protocol; usually, any
object that archives other objects within itself.

resize bar
The bar, located along the bottom of a window, that the user can grab and drag to resize
the window.

resolution
The number of pixels per unit distance along the vertical and horizontal coordinate axes.
The greater the resolution in each direction, the more precise an image can be.

responder chain
In the Application Kit, a linked list of Responder objects that's formed by initializing
each object's next responder with the id of another object. If a Responder can't handle an
event message or untargeted action message that it receives, the message is passed to its
next responder.

retained window
A window with a backup buffer for screen pixel values. Images are rendered into the buffer
for any portions of the window that aren't visible on-screen.

RIB
In the 3D Graphics Kit, the protocol for describing 3D scenes. RIB is short for RenderMan
Interface Bytestream, a byte stream representation of the RenderMan Interface. This
representation serves as both a network tranpsort protocol for modeling system clients to
communicate requests to a rendering server and a compact encoded format which
minimizes transmission time and file storage costs.

rollback
In the Database Kit, the action of aborting the sequence of changes in a transaction so that
the affected records in the database are restored as they were before the first of the changes
was started.

ROM
Read-only memory; memory that a microprocessor can read but not write to.

Glossary-31

GlossarY-32

rotation
A transfonnation that rotates the origin of the resulting coordinate system relative to the
original coordinates. In 2D graphics, the x and y axes can be rotated about their origin. In
3D graphics, any pair of axes can be rotated about the other axis-for example, the x and
y axes can be rotated about z, or y and z can be rotated about x.

RPC
Remote procedure call; in Mach, RPC is implemented using MiG-generated messages.

sample
J;... single digital measurement of the height (or instantaneous amplitude) of a sound
waveform.

sample frame
A collection of n sound samples where n is the number of channels in the sound. Sample
frames are ordered just like samples, so the first sample frame contains the first sample from
each channel, the second sample frame contains the second sample from each channel, and
so on.

sampling rate
The frequency at which a sound wavefonn is sampled (recorded) or played back; sampling
rates are defined in Hz.

screen-changed subevent
A sub event of the kit -defined event. It reports when the user drags a window from one
screen to another.

screen coordinate system
The coordinate system used to locate windows on the screen. The origin is in the lower left
comer of the screen, the positive x-axis extends to the right, and the positive y-axis extends
upward. The length of a unit on either axis is one screen pixel. When the Window Server
can display to more than one screen, all screens share the same screen coordinate system;
only one of the screens has the coordinate origin at its lower left comer.

screen list
A list maintained by the Window Server that orders windows from front to back, with the
frontmost window at the top of the list. If a window isn't on the list, it won't be displayed
on the screen.

scroll buttons
Any of the buttons that the user can press to scroll a display, such as the buttons in a
scroller. Each scroll button is labeled by a small triangular arrow indicating the direction
of scrolling.

search operator
In the Indexing Kit query language, an operator that searches a compound object for
specific values. See also operator.

selector
In the Objective C language, the name of a method when it's used in a source-code message
to an object, or the unique identifier that replaces the name when the source code is
compiled. Compiled selectors are of type SEL.

send rights
In Mach, the ability to send messages to a port. Many tasks can have send rights for the
same port. See also receive rights.

server
In general, a process that provides resources to other processes, or the computer that runs
the processes that provide resources.

shader
In the 3D Graphics Kit, a function that defines an effect applied to an element in a 3D scene.
The RenderMan Shading Language defines a set of procedures that can be used to write
shading functions to simulate various effects in a scene, including lighting, atmosphere,
surface textures and patterns, and other components of a realistic image. The N3DShader
class provides API for reading shader functions and applying them to N3DShapes.

shape hierarchy
In the 3D Graphics Kit, a directed acyclic graph organizing the N3DShapes belonging to a
single scene. A shape hierarchy is made up of two kinds of relationships:
descendant-ancestor and peer-to-peer. A descendant inherits the 3D graphics state of its
ancestor, including coordinate system, shaders, and other attributes. Peers are shapes that
share a common ancestor, and thus inherit a common graphics state; however, only the first
member of a peer group is considered to be the descendant of the ancestor.

signal
A continuously varying physical variable.

signal processing
See digital signal processing.

signature
In the Indexing Kit, a vector of lexemes, characterizing the word content of a specific body
of text.

Glossary-33

Glossary-34

simple message
In Mach, a message that contains neither references to ports nor pointers to data.

soundfile
A sampled-data storage file used by the Sound Kit.

Sound Kit
The Objective C classes and C functions available for creating sound effects, doing speech
analysis, and performing other sound manipulation.

source
In the Indexing Kit, an object acting as a repository with regard to object activation. See
also repository and activate.

source image
One of the two images that are combined when compositing. See also destination image.

standard windows
The principal windows of an application; the windows where its primary work is done. All
windows are standard windows, except those with specialized functions (menus, panels,
pop-up and pull-down lists, miniwindows, and docked and freestanding icons).

static typing
In the Objective C language, giving the compiler information about what kind of object an
instance is, by typing it as a pointer to a class.

storage file
In the Indexing Kit, the file that an IXStoreFile keeps its storage in. See also store file.

store client
In the Indexing Kit, an object that stores data in an IXStore. A store client is identified by
its boot block, and can also be identified by name. See also store file.

store context
In the Indexing Kit, an instance of IXStore accessing a particular group of storage; several
store contexts may share the same storage.

store file
In the Indexing Kit, a storage file containing an IXStoreDirectory at block 1; the
IXStoreDirectory allows store clients to be accessed by name instead of by boot block. See
also storage file and store client.

style
In the Application Kit, the appearance of a window's border, title bar, and resize bar.

subclass
In the Objective C language, any class that's one step below another class in the inheritance
hierarchy. Occasionally used more generally to mean any class that inherits from another
class, and sometimes also used as a verb to mean the process of defining a subclass of
another class.

submenu
Any menu that can be brought to the screen through a command in another menu. All
menus except the main menu are submenus of another menu. See also supermenu, main
menu, and attach.

subview
In the Application Kit, any View that's located within the coordinate system of another
View, its superview. See also view hierarchy.

superclass
In the Objective C language, a class that's one step above another class in the inheritance
hierarchy; the class through which a subclass inherits methods and instance variables.

supermenu
A menu containing a command that controls another menu, its submenu.

superview
In the Application Kit, any View that has subviews-other Views that are located within its
coordinate system. See also view hierarchy.

surrogate
In the Indexing Kit, an object created during the evaluation of a query. A surrogate is
usually compared against an object from the query's evaluation context.

synchronous message
A remote message that doesn't return until the receiving application finishes responding to
the message. Because the application that sends the message waits for an
acknowledgement or return information from the receiving application, the two
applications are kept "in sync." See also asynchronous message.

system control keys
The keys that control the computer's basic functions; the Power, brightness, and
volume keys.

Glossary-35

Glossary-36

system-defined event
An event that occurs when the user requests a system shutdown. A system-defined event
can have various sub event types; currently there's only one, the power-off subevent.

table view
In the Database Kit, a matrix-like display of data organized by rows and columns.

tag
A name that identifies a NetInfo database.

tagged domain notation
One of the ways to identify a specific NetInfo domain, where the host serving the domain
and the tag of the database are both specified; for example, rhino/network is the database
tagged network on host rhino. See also domain name notation.

target
In the NeXTSTEP user interface, what the user selects to be acted on by a menu command
or a control within a panel-for example, text that's to be deleted by the Cut command. In
the Application Kit, the object that receives action messages from a Control.

task
In Mach, a paged virtual address space along with protected access to ports, virtual
memory, and system processor(s). A task itself performs no computation; rather, it's a
framework for running threads. See also thread.

task port
In Mach, a port by which all threads within a task may be addressed. Also known as the
task's kernel port.

TCPI/P
Transmission Control ProtocollInternet Protocol. The protocols used to deliver messages
between computers over the network. TCPIIP support is included in NeXT computers.

tear off
To drag an attached submenu away from its supermenu. Tearing off a submenu detaches it
from its supermenu and gives it an independent life on-screen. Tom-off menus are the only
menus with close buttons.

thread
In Mach, the basic unit of program execution. A thread consists of a program counter, a set
of registers, and a stack pointer. See also task.

thread port
In Mach, a port that represents a single thread within a task. Also known as the thread's
kernel port.

thread-safe
Code that can be used safely by several threads simultaneously.

tiers
The sections of the screen list. Each tier is occupied by a different type of window,
with attention panels in the frontmost tier, menus in the next two tiers, docked icons in the
tier below menus, and floating panels below docked icons. All other windows are in the
bottom tier.

timed entry
A function that you specify to be called repeatedly at a given time interval.

title bar
The strip above the content area of a window that users can grab to drag the window to a
new location. The title bar holds the window's title, if it has one, and may contain buttons
to miniaturize and close the window.

title bar buttons
The miniaturize and close buttons that are located in a window's title bar.

titled window
A window with a border and title bar (and possibly a resize bar). The title bar can be empty.

tracking rectangle
A rectangle that an application can set to track the cursor. The application is notified when
the cursor enters or leaves the rectangle. Depending on instructions given when the
rectangle is created, the application may be notified only when the left or the right (or both)
mouse buttons are held down. See also mouse-entered event and mouse-exited event.

transaction
In the Database Kit, a sequence of changes to the database that are to be treated as a unit,
so that if the entire sequence is not completed successfully, the affected records in the
database are restored as they were before the first of the changes was started.

transcribe
In the Indexing Kit, to passivate or activate an object. A fast form of archiving.

Glossary-37

Glossary-3S

transfer function
A procedure that the PostScript interpreter uses to correct color values to compensate for
nonlinear response in an output device and the human eye.

transformation
An alteration to a coordinate system (2D or 3D) that defines a new coordinate system.
Standard transformations include rotation, scaling, and translation. A transformation is
represented by a matrix.

transform operator
In the Indexing Kit query language, an operator that turns its argument into a value of
another type. See also operator.

triple-click
To press and release a mouse button three times in succession while the cursor is positioned
over an object on-screen. The mouse button must be pressed the second time within a short
interval of the first, and the third time within a short interval of the second.

two's complement
A binary notation commonly used by computers for storing integers or fractional
fixed-point data. Numbers are negated by taking the binary complement (changing each
bit to its opposite) and adding 1 in the least-significant position.

type
In the Database Kit, the data type of a particular property or value. This type can be a C
data type, an Objective C class, or an entity.

typed stream
A specialized data stream used for archiving. When a typed stream is used, the type of the
data is archived along with the data and an object's class hierarchy and version are archived
with the object. See also archiving.

union
When applied to a set of rectangles, the smallest rectangle that completely encloses them
all. See also intersection.

user name
The name a user logs in with. Each name must be unique, contain no more than 8
characters, be all lowercase, and contain no spaces.

value
In the Indexing Kit, the data associated with a key; also, the result of sending an attribute's
defining message to an object

vector
In the Indexing Kit, a compound item in a query expression; essentially a set of atoms. In
the Database Kit, a general term meaning an axis of a data table, equally applicable to a row
or a column.

view hierarchy
In the Application Kit, the arrangement of View objects within a window. Each View has
a superview and may have any number of subviews. Subviews are located within the
coordinate systems of their superviews.

visible rectangle
In the Application Kit, the smallest rectangle in a View's coordinate system that completely
covers the visible part of the View-the part falling within all the View's ancestors in the
view hierarchy. If the entire area enclosed by a View's frame rectangle is also enclosed by
the frame rectangles of each of its ancestors, all of the View is visible and the visible
rectangle is identical to the bounds rectangle. If not, the visible rectangle is a portion of the
bounds rectangle, or null.

waveform
The motion described by an oscillation; usually associated with sound.

weight
In the Indexing Kit, an indication of the count, frequency, or importance of a lexeme in a
body of text. See also weighting domain.

weighting domain
In the Indexing Kit, a set of weight statistics for a body of text.

window-exposed subevent
A sub event of the kit-defined event. It occurs when part of a window that was covered
becomes exposed to reveal contents not backed by the window buffer. The application has
to redraw the contents within a rectangle specified by the event.

window-moved sub event
A sub event of the kit-defined event. It reports when the user moves a window.

window number
In the Window Server, an integer assigned to identify a window; it's never negative or O.
In the Application Kit, a user object that's mapped to the number assigned by the Window
Server. The window number used by the Application Kit is said to be "local" to the
application; the number assigned by the Window Server is "global."

Glossary-39

Glossary-40

window-resized subevent
A subevent of the kit-defined event. It reports when a user resizes a window.

Window Server
A process that dispatches user events to applications and renders PostScript code on behalf
of applications.

windows
Page-like rectangular areas where applications can draw on-screen. Windows can be
moved and reordered front to back.

workspace window
The window that fills the entire workspace on the screen and provides the dark gray
background for other windows.

world coordinate system
In the 3D Graphics Kit, the coordinate system from which all other coordinate systems in
a scene are derived. The N3DCamera viewing a scene defines its own transformation from
world coordinates to the camera coordinate system. The N3DShape being viewed by the
camera (its world shape) can define another transformation from world coordinates to its
local coordinate system.

zone
A particular region of dynamic memory. Zones are set up in program code and are passed
to allocation methods and functions to specify that the allocated memory should come from
a particular zone. Allocating related data structures from the same zone can improve
locality of reference and overall system performance. For example, all the Views that are
displayed in the same window might be clustered in the same zone.

Index

3D Graphics Kit 17-3

- abort: (NXSoundStream) 16-42
- abortAtTime: (NXSoundStream) 16-42
- abortEditing (Control) 2-166,

(DBEditableFormatter) 4-67
- abortModal (Application) 2-33
- abortStreams: (NXSoundDevice) 16-24
- abortTransaction (IXStore) 7-85
- acceptArrowKeys: (DBTableView) 4-144
- acceptArrowKeys:andSendActionMessages:

(NXBrowser) 2-319
- acceptCall: (NXPhoneChannel) 13-33
- acceptsBinary (NXPrinter) 2-497
- acceptsFirstMouse (Button) 2-85, (Matrix) 2-251,

(NXColorWell) 2-375, (NXSplitView) 2-524,
(Scroller) 2-609, (Slider) 2-632, (View) 2-761

- acceptsFirstResponder (DBTableView) 4-145,
(NXBrowser) 2-320, (Responder) 2-590,
(SoundView) 16-79, (Text) 2-681,
(TextField) 2-739

- acceptsTypeFrom: (IBEditors) 8-44
- acceptValues:forProperty: (DBBinder) 4-31
- accessoryView (FontPanel) 2-206,

(N3DRenderPanel) 17-68, (NXColorPanel) 2-364,
(NXDataLinkPanel) 2-416, (PageLayout) 2-537,
(PrintPanel) 2-586, (SavePanel) 2-601

- acquireChannel: (NXPhone) 13-17

- action (ActionCell) 2-20, (Cell) 2-125,
(Control) 2-166, (DBTableView) 4-145,
(FontManager) 2-194, (Matrix) 2-252,
(NXBrowser) 2-320, (NXColorWell) 2-375,
(PopUpList) 2-563, (Scroller) 2-610

ActionCell class, specification 2-18
- activate (IBEditors) 8-44, (NXPlayStream) 16-8,

(NXSoundStream) 16-43
- activate: (Application) 2-33, (NXColorWell) 2-375
- activateSelf: (Application) 2-34
- activeApp (Application) 2-34
- activeCall (NXPhoneChannel) 13-33
- activeDocument (IB) 8-26
+ activeWellsTakeColorFrom: (NXColorWell)

2-374
+ active WellsTakeColorFrom:continuous:

(NXColorWell) 2-375
+ adaptorNames (DBDatabase) 4-54
- adaptorWiIIEvaluateString: (DBBinder) 4-32
- addAssociation: (DBFetchGroup) 4-77
- addAttributeNamed:forSelector:

(IXRecordManager) 7-75
- addCall: (NXPhoneChannel) 13-34
- addChannel: (NXPhone) 13-17
- add Col (Matrix) 2-252
- addColumn (NXBrowser) 2-320
- addColumn:at: (DBTableView) 4-145
- addColumn:withFormatter:andTitle:at:

(DB Table View) 4-145

Index-1

- addColumn:withTitle: (DBTableView) 4-146
- addConnector: (IBDocuments) 8-34
- addCursorRect:cursor: (View) 2-761
- addCursorRect:cursor:forView: (Window) 2-812
- addDescription: (DB Qualifier) 4-108
- addElement: (Storage) 3-37
- addEntry: (Form) 2-211
- addEntry: tag: target: action: (Form) 2-211
- addEntryNamed:forObject: (IXStoreDirectory)

7-98
- addEntryNamed:ofClass: (IXStoreDirectory)

7-99
- addEntryNamed:ofClass:atBlock:

(IXStoreDirectory) 7-99
- addExpression: (DBFetchGroup) 4-78
- addFetchGroup: (DB Module) 4-98
- addFontTrait: (FontManager) 2-195
- addHandle:withWeight: (IXPostingList) 7-60,

(IXPostingOperations) 7-151
- addItem: (PopUpList) 2-563
- addItem:action:keyEquivalent: (Menu) 2-285
- addLight: (N3DCamera) 17-20
- addLink:at: (NXDataLinkManager) 2-402
- addLinkAsMarker:at: (NXDataLinkManager)

2-403
- addLinkPreviously At: fromPasteboard: at:

(NXDataLinkManager) 2-403
+ addName:fromBundle: (Sound) 16-52
+ addName:fromSection: (Sound) 16-52
+ addName:fromSoundfile: (Sound) 16-53
+ addName:sound: (Sound) 16-53
- addObject: (List) 3-17
- addObject:forBinder: (DB Containers) 4-177
- addObject:withWeight: (IXPostingList) 7-61
- addObjectIfAbsent: (List) 3-17
- addPort (Listener) 2-232
- addPort:receiver:method: (NXPhone) 13-18
- addProperty: (DB Binder) 4-32
- addRecord: (IXRecordWriting) 7-158
- addReference (NXReference) 9-35
- addRetrieveOrder:for: (DBBinder) 4-32,

(DBRecordStream) 4-126
- addRow (Matrix) 2-252

Index-2

- addRow:at: (DBTableView) 4-146
- addRow:withFormatter:andTitle:at:

(D:t;JTableView) 4-146
- addRow:withTitle: (DBTableView) 4-146
- addSourceType: (IXAttributeParset) 7-14
- addSubview: (Box) 2-76, (View) 2-761
- addSubview::relativeTo: (View) 2-762
- addSupplement:inPath: (NXHelpPanel) 2-436
- addToEventMask: (Window) 2-813
- addToPageSetup (View) 2-762
- addTypes:num:owner: (Pasteboard) 2-553
- addWindowsItem:title:fiIename: (Application)

2-34
adjustcursor operator 5-7
- adjustPageHeightNew:top:bottom:limit:

(Text) 2-682, (View) 2-762
- adjustPageWidthNew:left:right:limit: (View)

2-763
- adjustScroll: (View) 2-763
- adjustSubviews (NXSplitView) 2-524
- alignment (Cell) 2-125, (Control) 2-166,

(Text) 2-682
- alignSelCenter: (Text) 2-682
- alignSelLeft: (Text) 2-683
- alignSelRight: (Text) 2-683
+ alloc (NIDomain) 11-8, (Object) 1-10,

(SavePanel) 2-600
- allocateGState (View) 2-763
- allocatelncomingCallOfType: (NXPhoneChannel)

13-34
+ allocFromZone: (Font) 2-182, (NIDomain) 11-8,

(Object) 1-10, (SavePanel) 2-601
+ allocWithoutPanelFromZone: (NIDomainPanel)

11-15
- allowEmptySel: (DBTableView) 4-147
- allowMultipleFiles: (OpenPanel) 2-532
- allowVectorReordering: (DBTableView) 4-147
- allowVectorResizing: (DBTableView) 4-147
+ ailS election (NXSelection) 2-505
- alpha (NXColorPanel) 2-365
- alphaControlAddedOrRemoved:

(NXColorPicker) 2-370,
(NXColorPickingDefault) 2-871

alphaimage operator 5-7
- altIcon (Button) 2-86, (ButtonCell) 2-103
- altImage (Button) 2-86, (ButtonCell) 2-103
- altIncrementValue (SliderCell) 2-639
- altTitle (Button) 2-86, (ButtonCell) 2-103
- analyzeFile:ofType: (lXAttributeParser) 7-14
- analyzeStream: (IXAttributeReading) 7-112
- analyzeStream:ofType: (IXAttributeParser) 7-15
- ancestor (N3DShape) 17-101
API, documented vs. undocumented 2
- app:applicationDidLaunch: (Application) 2-67
- app:applicationDidTerminate: (Application) 2-67
- app:application WiIILaunch: (Application) 2-67
- app:fiIeOperationCompleted: (Application) 2-68
- app:mounted: (Application) 2-68
- app:openFile:type: (Application) 2-68
- app:openFileWithoutUI:type: (Application) 2-69
- app:openTempFile:type: (Application) 2-69
- app:powerOffln:andSave: (Application) 2-69
- app:unmounted: (Application) 2-70
- app:unmounting: (Application) 2-70
- app:willShowHelpPanel: (Application) 2-70
- appAcceptsAnotherFile: (Application) 2-70
- appDidBecomeActive: (Application) 2-71
- appDidHide: (Application) 2-71
- appDidlnit: (Application) 2-71
- appDidResignActive: (Application) 2-71
- appDidUnhide: (Application) 2-71
- appDidUpdate: (Application) 2-72
- appendList: (List) 3-17
- appendNewRecord: (DB Module) 4-98
- appendRecord (DBRecordList) 4-114
- applcon (Application) 2-35
Application Additions class, specification 14-8
Application class, specification 2-26
Application Kit 2-5
- applicationDefined:.(Application) 2-35,2-72
- applicationDidLaunch: (Application) 2-35
- applicationDidTerminate: (Application) 2-36
- applicationWillLaunch: (Application) 2-36
- appListener (Application) 2-36
- appListenerPortName (Application) 2-37
- appName (Application) 2-37

- appSpeaker (Application) 2-37
- appWiIIlnit: (Application) 2-72
- appWiIITerminate: (Application) 2-72
- appWiIIUpdate: (Application) 2-73
- appWindow (Application Additions) 14-8
- areHorizontalScrollButtonsEnabled

(NXBrowser) 2-321
- areLinkOutiines Visible (NXDataLinkManager)

2-403
- areLinks VerifiedByDelegate

(NXDataLinkManager) 2-404
- areObjectsFreedOnFlush (DBBinder) 4-33
- arePanelsEnabled (DB Database) 4-56
- arePluralsFolded (lXAttributeReader) 7-25
- areStemsReduced (lXAttributeReader) 7-25
- areTransactionsEnabled (DB Database) 4-56,

(IXStore) 7-85
ARF 7-184
- arrangelnFront: (Application) 2-37
- associateObject:type:with: (IBPalette) 8-17
- associateRecordlvar:withProperty: (DBBinder)

4-33
- associateRecordSelectors: :withProperty:

(DBBinder) 4-34
- association:getValue: (DBCustomAssociation)

4-181
- association:setValue: (DBCustomAssociation)

4-182
- associationContentsDidChange:

(DBCustomAssociation) 4-182
- associationCurrentRecordDidDelete:

(DBCustomAssociation) 4-182
- associationForObject: (DB Module) 4-99
- associationSelectionDidChange:

(DBCustomAssociation) 4-182
ATC_FRAME_SIZE constant 16-165
- attachColorList: (NXColorPanel) 2-365,

(NXColorPicker) 2-370,
(NXColorPickingDefault) 2-871

+ attachHelpFile:markerName:to: (NXHelpPanel)
2-434

- attachObject:to: (IBDocuments) 8-35
- attachObjects:to: (IBDocuments) 8-35

Index-3

- attemptOverwrite: (NXRTFDErrorHandler) 2-894
Attribute Reader Format (ARP) 7-184
- attributeNames (IXAttributeQuery) 7-21,

(IXRecordManager) 7-76
- attributeNamesForClass: (IXRecordManager)

7-76
- attributeParser (IXAttributeQuery) 7-21
- autoscroll: (Clip View) 2-152, (View) 2-764
- autosizing (View) 2-764
+ avaiiableColorLists (NXColorList) 2-355
- avaiiableFonts (FontManager) 2-195
- avoidsActivation (Window) 2-813
-awake (Box) 2-76, (Cell) 2-125, (ClipView) 2-152,

(Font) 2-186, (Menu) 2-285, (N3DCamera) 17-20,
(N3DContextManager) 17-44, (N3DLight) 17-52,
(N3DMovieCamera) 17-61, (N3DShape) 17-10 1,
(NXColorWell) 2-376, (Object) 1-18,
(Scroller) 2-610, (SelectionCell) 2-627,
(SliderCell) 2-639, (View) 2-764, (Window) 2-813

- awakeFromNib (NXNibNotification) 2-887

- backgroundColor (ClipView) 2-153,
(Matrix) 2-252, (N3DCamera) 17-21,
(N3DRIBlmageRep) 17-72, (NXlmage) 2-449,
(ScrollView) 2-619, (Text) 2-683,
(TextField) 2-739, (TextFieldCell) 2-749,
(Window) 2-813

- backgroundGray (ClipView) 2-153,
(Matrix) 2-253, (ScrollView) 2-619,
(SoundMeter) 16-70, (SoundView) 16-79,
(Text) 2-683, (TextField) 2-739,
(TextFieldCell) 2-750, (Window) 2-814

- backingType (Window) 2-814
basetocurrent operator 5-8
basetoscreen operator 5-8
- becomeActiveApp (Application) 2-38
- becomeFirstResponder (Responder) 2-591,

(SoundView) 16-79, (Text) 2-684
- becomeKeyWindow (Text) 2-684, (Window) 2-814
- becomeMain Window (Window) 2-814
- beginBatching: (DB Formatter) 4-88,

(DBTextFormatter) 4-166

Index-4

- beginListeningFor ApplicationStatusChanges
(NXWorkspaceRequestProtocol) 2-901

- beginListeningForDeviceStatusChanges
(NXWorkspaceRequestProtocol) 2-901

- beginModaISession:for: (Application) 2-38
- beginPage:label:bBox:fonts: (View) 2-764,

(Window) 2-815
- beginPageSetupRect:placement: (View) 2-765,

(Window) 2-815
- beginPrologueBBox:creationDate:createdBy:

fonts:forWhom:pages:title: (View) 2-765,
(Window) 2-815

- beginPSOutput (View) 2-766, (Window) 2-816
- beginSetup (View) 2-766, (Window) 2-816
- beginTrailer (View) 2-767, (Window) 2-816
- beginTransaction (DB Database) 4-56,

(DB Transactions) 4-206
- bestRepresentation (NXImage) 2-449
- bestScreen (Window) 2-816
- binder:didAcceptObject: (DB Containers) 4-177
- binder:didEvaluateString: (DBBinder) 4-49
- binder:didRejectObject: (DB Containers) 4-177
- binder:willEvaluateString: (DB Binder) 4-49
- binderDelegate (DBRecordStream) 4-127
-.: binderDidDelete: (DBBinder) 4-49
- binderDidFetch: (DB Binder) 4-49
- binderDidInsert: (DBBinder) 4-49
- binderDidSelect: (DB Binder) 4-49
- binderDidUpdate: (DBBinder) 4-50
- binderWiIlDelete: (DB Binder) 4-50
- binderWiIlFetch: (DBBinder) 4-50
- binderWiIlInsert: (DBBinder) 4-50
- binderWiIlSelect: (DB Binder) 4-50
- binderWiIlUpdate: (DBBinder) 4-50
- bitsPerPixel (NXBitmapImageRep) 2-302
- bitsPerSample (NXlmageRep) 2-477
+ boldSystemFontOfSize:matrix: (Font) 2-182
BaaL type 1-41
- booleanForKey:inTable: (NXPrinter) 2-497
- borderType (Box) 2-76, (ScrollView) 2-619
- boundsAngle (View) 2-767
Box class, specification 2-74
+ branchIcon (NXBrowserCell) 2-346

+ branchIconH (NXBrowserCell) 2-346
- break (NXDataLink) 2-392
- breakAllLinks (NXDataLinkManager) 2-404
- breakTable (Text) 2-684
- browser:columnIsValid: (NXBrowser) 2-342
- browser:fiIlMatrix:inColumn:

(N3DRenderPanel) 17-68,
(NIDomainPanel) 11-16, (NIOpenPanel) 11-25,
(NXBrowser) 2-342

- browser:getNumRowsInColumn: (NXBrowser)
2-343

- browser:loadCell:atRow:inColumn:
(NIDomainPanel) 11-16, (NIOpenPanel) 11-26,
(NXBrowser) 2-343

- browser:selectCell:inColumn: (NXBrowser)
2-343

- browser:titleOfColumn: (NXBrowser) 2-344
- browserDidScroll: (NXBrowser) 2-342
- browserWillScroll: (NXBrowser) 2-344
- btree (IXBTreeCursor) 7-36
- buffer Count (NXSoundDevice) 16-25
- bufferSize (NXSoundDevice) 16-25
+ bundleForClass: (NXBundle) 3-26
Button class, specification 2-83
ButtonCell class, specification 2-98
buttondown operator 5-8
- buttonMask (Window) 2-817
bycopy Objective C keyword 6-10
- byteLength (Text) 2-684
- bytesPerPlane (NXBitmaplmageRep) 2-302
- bytesPerRow (NXBitmaplmageRep) 2-302
- bytesProcessed (NXSoundStream) 16-43

Cache type 15-35
- calcCellSize: (Cell) 2-126, (Text) 2-734
- calcCeIlSize:inRect: (ButtonCell) 2-103,

(Cell) 2-126, (FormCell) 2-221,
(NXBrowserCell) 2-347, (SelectionCell) 2-627,
(SliderCell) 2-640

- calcDrawInfo: (Cell) 2-126
- calcLine (Text) 2-685
- calcParagraphStyle:: (Text) 2-685
- calcRect:forPart: (Scroller) 2-610

- calcSize (Control) 2-167, (Form) 2-212,
(Matrix) 2-253

- calcTargetForAction: (Application) 2-38
- caIcUpdateRects:::: (View) 2-767
- call Connected (NXPhoneCall) 13-23
- callReleased (NXPhoneCall) 13-23
- camera:didRenderStream:tag:frameNumber:

(N3DCamera) 17-41
- canBecomeKeyWindow (Window) 2-817
- canBecomeMainWindow (Window) 2-817
- canBeCompressedUsing: (NXBitmaplmageRep)

2-303
- cancel: (NIDomainPanel) 11-16,

(NILoginPanel) 11-21, (SavePanel) 2-602
- cancelFetch (DBBinder) 4-34,

(DBRecordStream) 4-127
- canDraw (View) 2-768
+ canInitFromPasteboard: (NXlmage) 2-444,

(NXlmageRep) 2-474
+ canLoadFromStream:

(N3DRIBImageRep) 17-72, (NXlmageRep) 2-475
-canPrintRIB (N3DCamera) 17-21, (View) 2-768
- canStoreColor (Window) 2-817
- capacity (List) 3-17
Category type 15-35
Cell class, specification 2-120
- cell (Box) 2-76, (Control) 2-167
- ceIlAt:: (Matrix) 2-253
- cellBackgroundColor (Matrix) 2-253
- cellBackgroundGray (Matrix) 2-253
- cellCount (Matrix) 2-254
- cellList (Matrix) 2-254
- cellPrototype (NXBrowser) 2-321
- cellWasHitInBrowser: (NIDomainPanel) 11-16,

(NIOpenPanel) 11-26
- cellWasHitInltemList: (NIOpenPanel) 11-26,

(NISavePanel) 11-30
- center (Window) 2-818
- centerScanRect: (View) 2-768
- changeButtonTitle: (PopUpList) 2-563
- changeCount (IX Store) 7-86, (Pasteboard) 2-553
- changeFont: (Text) 2-685
- changeSpelling: (NXChangeSpelling) 2-866

Index-5

- changeTabStopAt:to: (Text) 2-686
- change WindowsItem:title:filename: (Application)

2-39
- channel Count (Sound) 16-54
- channelError: (NXPhoneChannel) 13-34
chapters, organization of 6
- charCategoryTable (Text) 2-686
- charFilter (Text) 2-686
- charLength (Text) 2-686
- charWrap (Text) 2-687
- checklnAs: (Listener) 2-232
+ checklnPort:withName: (NXNetNameServer)

9-19
- checkOut (Listener) 2-232
+ checkOutPortWithName: (NXNetNameServer)

9-19
- checkSpaceForParts (Scroller) 2-610
- checkSpelling: (Text) 2-687
- checkSpelling:of: (NXSpellChecker) 2-511
- checkSpelling:of:wordCount: (NXSpellChecker)

2-512
- checkThreadedFetchCompletion: (DBBinder)

4-34
- chooseDirectories: (OpenPanel) 2-532
+ class (Object) 1-11
- class (Object) 1-19
class specifications, organization of 8
Class type 1-41
+ classForLanguage: (lXLanguageReader) 7-54
- classNamed: (NXBundle) 3-28
- classNames (lXRecordManager) 7-76
class_addMethodsO 15-17
class_createlnstanceO 15-15
class_createlnstanceFromZoneO 15-15
class_getClassMethodO 15-17
class_getlnstanceMethodO 15-17
class_getlnstance VariableO 15-18
class_getVersionO 15-19
class_poseAsO 15-18
class_removeMethodsO 15-17
class_setVersionO 15-19
- clean (lXFileFinderQueryAndUpdate) 7-136,

(IXRecordDiscarding) 7-153

Index-6

- clear (DBRecordList) 4-114,
(DBRecordStream) 4-127

- clear: (Text) 2-687
- clearCurrentRecord (DB Fetch Group) 4-78
- clearSelectedCell (Matrix) 2-254
- clearTitleInRect:ofColumn: (NXBrowser) 2-321
cleartrackingrect operator 5-9
- clickTable (Text) 2-687
- clipCount (NXSoundOut) 16-35
- clipToFrame: (View) 2-768
Clip View class, specification 2-150
- close (IBEditors) 8-45, (lXStoreBlock) 7-94,

(Menu) 2-285, (Window) 2-818
- closeBlock: (lXStore) 7-86
- closeSpellDocument: (NXSpell Checker) 2-513
- closeSubeditors (IBEditors) 8-45
- closeTextStream (NXReadOnlyTextStream) 2-892
- color (N3DLight) 17-52, (N3DShader) 17-86,

(NXColorPanel) 2-365, (NXColorWell) 2-376
- colorCount (NXColorList) 2-355
- colorListDidChange:colorName: (NXColorList)

2-359
- colorNamed: (NXColorList) 2-355
- colorScreen (Application) 2-39
- colorSpace (NXBitmapImageRep) 2-303
- columnAt: (DBTableView) 4-147
- column Count (DBTableDataSources) 4-197,

(DBTableView) 4-148
- columnHeading (DBTableView) 4-148
- columnList (DBTableView) 4-148
- columnOf: (NXBrowser) 2-321
- columnsAreSeparated (NXBrowser) 2-322
- columnsChangedFrom:to: (DBTableView) 4-148
- commandKey: (Panel) 2-543, (SavePanel) 2-602,

(Window) 2-818
- commitTransaction (DB Database) 4-57,

(DBTransactions) 4-206, (IXStore) 7-87
common classes and functions 3-3
- compact (lXBTree) 7-32, (IXStore) 7-87
- compactSamples (Sound) 16-54
- comparisonFormat (lXComparisonSetting) 7-123
- comparisonFormatFor AttributeNamed:

(lXRecordManager) 7-76

- compatibleWith: (Sound) 16-55
- completeDomain (NIDomainPanel) 11-16,

(NIOpenPanel) 11-26
- completeItemName (NIOpenPanel) 11-26
composite operator 5-9
- composite:fromRect:toPoint: (NXImage) 2-449
- composite:toPoint: (NXImage) 2-450
compositerect operator 5-11
- concatTransformMatrix:premultiply:

(N3DShape) 17-102
- conciudeDragOperation:

(NXDraggingDestination) 2-877
- condition (NXConditionLock) 9-7
+ conformsTo: (Object) 1-11
- conformsTo: (Object) 1-19, (Protocol) 15-10
- connect (DB Database) 4-57
- connectDestination (IB) 8-27
- connection:didConnect: (NXConnection) 6-33
- connectionForProxy (NXProxy) 6-35
- connectionName (DB Database) 4-57
+ connections: (NXConnection) 6-23
- connectSource (IB) 8-27
+ connectToName: (NXConnection) 6-23
+ connectToName:fromZone: (NXConnection)

6-23 .

+ connectToName:onHost: (NXConnection) 6-23
+ connectToName:onHost:fromZone:

(NXConnection) 6-24
+ connectToPort: (NXConnection) 6-24
+ connectToPort:fromZone: (NXConnection) 6-24
+ connectToPort:withlnPort: (NXConnection) 6-25
+ connectToPort:withlnPort:fromZone:

(NXConnection) 6-25
- connectUsingAdaptor:andString: (DBDatabase)

4-58
- connectUsingString: (DBDatabase) 4-58
- constrainFrameRect:toScreen: (Window) 2-819
- constrainScroll: (ClipView) 2-153
- container (DBBinder) 4-35
- contentAlignment (DBTableVectors) 4-201
- contentsDidChange (DBAssociation) 4-21
- contentView (Box) 2-77, (Window) 2-819
- context (Application) 2-39, (PrintInfo) 2-573

- continueTracking:at:inView: (Cell) 2-126,
(SliderCell) 2-640

Control class, specification 2-161
- controlView (ActionCell) 2-20, (Cell) 2-127
- convert:toFace: (FontManager) 2-195
- convert:toFamily: (FontManager) 2-196
- convert:toHaveTrait: (FontManager) 2-196
- convert:toNotHaveTrait: (FontManager) 2-196
- convert:toSize: (FontManager) 2-196
- convertBaseToScreen: (Window) 2-819
- convertFont: (FontManager) 2-197
- convertObjectPoints:count:toCamera:

(N3DShape) 17-102
- convertOldFactor:newFactor: (PageLayout)

2-537
- convertPoint:fromView: (View) 2-769
- convertPoint:toView: (View) 2-769
- convertPointFromSuperview: (View) 2-770
- convertPoints:count:fromAncestor: (N3DShape)

17-102
- convertPoints:count:fro~Space: (N3DCamera)

17-21
- convertPoints:count:toAncestor: (N3DShape)

17-103
- convertPoints: count: to World: (N3DCamera)

17-22
- convertPointToSuperview: (View) 2-770
- convertRect:from View: (View) 2-770
- convertRect:toView: (View) 2-770
- convertRectFromSuperview: (View) 2-770
- convertRectToSuperview: (View) 2-771
- convertScreenToBase: (Window) 2-820
- convertSize:from View: (View) 2-771
- convertSize:toView: (View) 2-771
- convertToFormat: (Sound) 16-55
- convertToFormat:samplingRate:channeICount:

(Sound) 16-55
- convertWeight:of: (FontManager) 2-197
- copies (PrintInfo) 2-573
- copy (IXStore) 7-88, (Object) 1-19
- copy: (SoundView) 16-80, (Text) 2-688
- copyAtOffset:forLength: (lXStoreBlock) 7-95
- copyBlock:atOffset:forLength: (IXStore) 7-88

Index-7

- copyFont: (Text) 2-688
- copyFromZone: (ButtonCell) 2-104, (Cell) 2-127,

(DB Expression) 4-72, (DB Qualifier) 4-108,
(FormCell) 2-221, (HashTable) 3-11, (List) 3-18,
(NXBitmaplmageRep) 2-303,
(NXCachedlmageRep) 2-351, (NXData) 9-10,
(NXDataLink) 2-393, (NXEPSlmageRep) 2-422,
(NXlmage) 2-451, (NXSelection) 2-505,
(Object) 1-20, (Storage) 3-38,
(TextFieldCell) 2-750

- copyObject:type:inPasteboard: (IBDocuments)
8-35

- copyObjects:type:inPasteboard: (IBDocuments)
8-36

- copyPSCodeInside:to: (View) 2-771,
(Window) 2-820

- copyRIBCode: (N3DCamera) 17-22
- copyRuler: (Text) 2-688
- copySamples:at:count: (Sound) 16-55
- copySelection (IBEditors) 8-45
- copySound: (Sound) 16-56
- count (DB Containers) 4-177, (HashTable) 3-11,

(IXBTree) 7-32, (IXPostingOperations) 7-151,
(IXRecordReading) 7-155, (List) 3-18,
(PopUpList) 2-564, (Storage) 3-38

- counterpart (Window) 2-820
- countForToken:ofLength: (IXWeightingDomain)

7-107
countframebuffers operator 5-12
countscreenlist operator 5-12
countwindowlist operator 5-12
- createBlock:ofSize: (IXStore) 7-88
- createContext: (N3DContextManager) 17-44
- createContext:toFile: (N3DContextManager)

17-44
- createContext:withRenderer:

(N3DContextManager) 17-45
- createRecordPrototype (DBBinder) 4-35
- createSelection (NXDataLinkManager) 2-410
- cropInRects:nRects: (N3DCamera) 17-22,

(N3DMovieCamera) 17-62
- crossesDeviceChanges

(IXFileFinderConfiguration) 7-131

Index-8

currentactiveapp operator 5-13
- currentAdaptorName (DB Database) 4-58
currentalpha operator 5-13
- currentCharacterOffset

(NXReadOnlyTextStream) 2-892
- currentContext (N3DContextManager) 17-45
+ currentCursor (NXCursor) 2-382
currentdefaultdepthlimit operator 5-13
currentdeviceinfo operator 5-14
- currentEditor (Control) 2-167
- currentEvent (Application) 2-39
currenteventmask operator 5-14
currentframebuffertransfer operator 5-14
- currentLoginString (DB Database) 4-59
- currentMode (NXColorPickingCustom) 2-868
currentmouse operator 5-15
currentowner operator 5-15
- currentPage (Printlnfo) 2-573
- currentPosition (DBCursorPositioning) 4-179
- currentRecord (DBFetchGroup) 4-78
- currentRecordDidDelete (DBAssociation) 4-21
- currentRetrieveMode (DBRecordList) 4-114
- currentRetrieveStatus (DBRecordStream) 4-127
currentrusage operator 5-16
+ currentS election (NXSelection) 2-505
currentshowpageprocedure operator 5-15
currenttobase operator 5-16
currenttoscreen operator 5-17
currentuser operator 5-17
currentwaitcursorenabled operator 5-17
currentwindow operator 5-18
currentwindowalpha operator 5-18
currentwindowbounds operator 5-18
currentwindowdepth operator 5-19
currentwindowdepthlimit operator 5-19
currentwindowdict operator 5-20
currentwindowleveloperator 5-20
currentwriteblock operator 5-20
- cursorForAttributeNamed: (IXRecordManager)

7-77
- cut: (SoundView) 16-80, (Text) 2-689

- data (NXBitmapImageRep) 2-304, (NXData) 9-10,
(Sound) 16-56

- database (DB Binder) 4-36, (DB Entities) 4-185,
(DB Module) 4-99

Database Kit 4-3
+ databaseNamesForAdaptor: (DB Database) 4-55
- databaseType (DBTypes) 4-209
- dataForKey:inTable:length: (NXPrinter) 2-497
- dataFormat (Sound) 16-56
- dataLinkManager:didBreakLink:

(NXDataLinkManager) 2-410
- dataLinkManager:isUpdateNeededForLink:

(NXDataLinkManager) 2-410
- dataLinkManager:startTrackingLink:

(NXDataLinkManager) 2-410
- dataLinkManager:stopTrackingLink:

(NXDataLinkManager) 2-411
- dataLinkManagerCloseDocument:

(NXDataLinkManager) 2-411
- dataLinkManagerDidEditLinks:

(NXDataLinkManager) 2-411
- dataLinkManagerRedrawLinkOutlines:

(NXDataLinkManager) 2-411
- dataLinkManagerTracksLinkslndividually:

(NXDataLinkManager) 2-412
- dataReceived:length: (NXPhoneCall) 13-23
- dataSize (Sound) 16-56
- dataSource (DBTableView) 4-148
- db:log: (DB Database) 4-64
- db:notificationFrom:message:code:

(DBDatabase) 4-64
- db:willEvaluateString:usingBinder:

(DBDatabase) 4-65
DBAssociation class, specification 4-20
DBBinder class, specification 4-24
DB Containers protocol, specification 4-176
DBCursorPositioning protocol, specification 4-179
DBCustomAssociation informal protocol,

specification 4-181
DBDatabase class, specification 4-51
- dbDidCommitTransaction: (DB Database) 4-65
- dbDidRollbackTransaction:(DBDatabase) 4-65
DBEditableFormatter class, specification 4-66

DB Entities protocol, specification 4-183
DBExceptions type 4-212
DBExpression class, specification 4-70
DBExpression Values protocol, specification 4-186
DBFailureCode type 4-212
DBFailureResponse type 4-213
DBFetchGroup class, specification 4-75
DB FormatConversion informal protocol, specification

4-187
DBFormatInitialization informal protocol,

specification 4-189
DB Formatter class, specification 4-87
DBFormatterValidation informal protocol,

specification 4-190
DBFormatterViewEditing protocol, specification

4-193
DBFormaCEPS constant 4-216
DBFormaCRTF constant 4-216
DBFormaCTIFF constant 4-216
DBImageFormatter class, specification 4-90
DBlmageStyle type 4-213
DB Image View class, specification 4-93
DB Module class, specification 4-96
DB Properties protocol, specification 4-194
DB Qualifier class, specification 4-105
DBRecordList class, specification 4-111
DBRecordListRetrieveMode type 4-214
DBRecordRetrieveStatus type 4-214
DBRecordStream class, specification 4-122
DBRetrieveOrder type 4-215
DBSelectionMode type 4-215
DBTableDataSources informal protocol, specification

4-197
DBTableVector class, specification 4-136
DBTableVectors protocol, specification 4-200
DBTableView class, specification 4-139
DBTextFormatter class, specification 4-165
DB Transactions protocol, specification 4-206
DBTypes protocol, specification 4-208
DBValue class, specification 4-168
- dbWillCommitTransaction: (DB Database) 4-65
- dbWillRollbackTransaction: (DB Database) 4-65
DB_Abort constant 4-213

Index-9

DB_AdaptorError constant 4-212
DB_AscendingOrder constant 4-215
DB_BackgroundNoBlockingStrategy constant 4-214
DB_BackgroundStrategy constant 4-214
DB _ CoercionException constant 4-212
DB _ CommitException constant 4-212
DB_Continue constant 4-213
DB_CursorException constant 4-212
DB_DEFAULT_RECORD_LIMIT constant 4-217
DB_DescendingOrder constant 4-215
DB_ERROR_BASE constant 4-216
DB_FetchCompleted constant 4-214
DB_FetchInProgress constant 4-214
DB_FetchLimitReached constant 4-214
DB_FormatException constant 4-212
DB_ImageGrayBezel constant 4-213
DB_ImageGroove constant 4-213
DB_ImageNoFrame constant 4-213
DB_ImagePhoto constant 4-213
DB_LISTMODE constant 4-215
DB_NoAdaptor constant 4-212
DB_NoIndex constant 4-216
DB_No Order constant 4-215
DB_NoRecordKey constant 4-212
DB_NOSELECT constant 4-215
DB_NotHandled constant 4-213
DB_NotReady constant 4-214
DB_NullDouble constant 4-217
DB_NullFloat constant 4-217
DB_NullInt constant 4-217
DB_RADIOMODE constant 4-215
DB_Ready constant 4-214
DB_ReasonUnknown constant 4-212
DB_RecordBusy constant 4-212
DB_RecordHasChanged constant 4-212
DB_RecordKeyNotUnique constant 4-212
DB_RecordLimitReached constant 4-212
DB_RecordStreamNotReady constant 4-212
DB_SynchronousStrategy constant 4-214
DB_TransactionError constant 4-212
DB_UnimplementedException constant 4-212
- deactivate (NXColorWell) 2-376,

(NXSoundStream) 16-43

Index-10

+ deactivateAllWells (NXColorWell) 2-375
- deactivateSelf (Application) 2-40
- deallocate (NXInvalidationN otifier) 9-13
- deallocatePasteboardData:length: (Pasteboard)

2-554
- declareTypes:num:owner: (Pasteboard) 2-554
- decodeBytes:count: (NXDecoding) 6-42
- decodeData:ofType: (NXDecoding) 6-42
- decodeMachPort: (NXDecoding) 6-43
- decodeObject (NXDecoding) 6-43
- decodeUsing: (NXTransport) 6-47
- decode VM:count: (NXDecoding) 6-43
default parameters B-1
- defaultAdaptorName (DBDatabase) 4-59
+ defaultDepthLimit (Window) 2-811
- defaultImage (DBImageFormatter) 4-91
- defaultLoginString (DBDatabase) 4-59
- defaultParaStyle (Text) 2-689
- defaultsChanged

(NXWorkspaceRequestProtocol) 2-901
+ defaultTimeout (NXConnection) 6-25
+ defaultZone (NXConnection) 6-26
- delayedFree: (Application) 2-40
- delegate (Application) 2-40, (DBBinder) 4-36,

(DB Database) 4-59, (DBFetchGroup) 4-78,
(DB Module) 4-99, (DBRecordStream) 4-127,
(DBTableView) 4-149, (FontManager) 2-197,
(Listener) 2-233, (N3DCamera) 17-23,
(NXBrowser) 2-322, (NXConnection) 6-28,
(NXDataLinkManager) 2-404, (NXImage) 2-451,
(NXJoumaler) 2-484, (NXLiveVideoView) 18-12,
(NXSoundStream) 16-43, (NXSplitView) 2-524,
(Sound) 16-57, (SoundView) 16-80,
(Speaker) 2-656, (Text) 2-689, (Window) 2-820

- delete (DB Binder) 4-36
- delete: (SoundView) 16-80, (Text) 2-690
- deleteCurrentSelection (DB FetchGroup) 4-78
- deleteObject: (lBDocuments) 8-36
- deleteObjects: (IBDocuments) 8-36
- deleteRecord (DBRecordList) 4-114,

(DBRecordStream) 4-128
- deleteRecord: (DB Module) 4-99
- deleteRecordAt: (DBRecordList) 4-115

- deleteSamples (Sound) 16-57
- deleteSamplesAt:count: (Sound) 16-57
- deleteSelection (lBEditors) 8-46
- deminiaturize: (Window) 2-821
- depthLimit (Window) 2-821
- descendant (N3DShape) 17-103
- descendantFlipped: (ClipView) 2-153,

(View) 2-772
- descendantFrameChanged: (ClipView) 2-154,

(View) 2-772
- descentLine (Text) 2-690
- description (lXFileRecord) 7-49, (Storage) 3-38
- descriptionForClassMethod: (Protocol) 15-10
+ descriptionForInstanceMethod: (Object) 1-12
- descriptionForInstanceMethod: (Protocol) 15-11
- descriptionForMethod:

(NXProtocoIChecker) 9-24, (Object) 1-20
- descriptionOtLength: (NXSelection) 2-505
- descriptor (lXStoreFile) 7-103
- deselectAII: (DBTableView) 4-149
- deselectColumn: (DBTableView) 4-149
- deselectRow: (DBTableView) 4-149
- destination (DB Association) 4-21,

(IBConnectors) 8-29
- destinationAppName (NXDataLink) 2-393
- destinationFilename (NXDataLink) 2-393
- destinationS election (NXDataLink) 2-393
- destroyContext: (N3DContextManager) 17-45
- destroyContextByName: (N3DContextManager)

17-46
- detachColorList: (NXColorPanel) 2-365,

(NXColorPicker) 2-370,
(NXColorPickingDefault) 2-872

+ detachHelpFrom: (NXHelpPanel) 2-435
- device (NXSoundStream) 16-44
- devicePort (NXSoundDevice) 16-25
- dialDigits: (NXPhoneCall) 13-24
- dialingComplete (NXPhoneCall) 13-24
- dialToneReceived (NXPhoneCall) 13-25
- didDefaultsChange

(NXWorkspaceRequestProtocol) 2-902
- didFileSystemChange

(NXWorkspaceRequestProtocol) 2-902

- didHide: (Layout) 14-11
- didOpenDocument: (lBDocumentControllers)

8-32
- didPlay: (Sound) 16-67, (SoundView) 16-80, 16-91
- didRecord: (Sound) 16-67,

(SoundView) 16-80, 16-91
- didSaveDocument: (lBDocumentControllers) 8-32
- didSelect: (Layout) 14-11
- didUnhide: (Layout) 14-11
- didUnselect: (Layout) 14-12
- directory (DB Database) 4-59,

(NIOpenPanel) 11-26, (NISavePanel) 11-30,
(NXBundle) 3-28, (SavePanel) 2-602

- disableCursorRects (Window) 2-821
- disableDisplay (Window) 2-822
- disableFlush Window (Window) 2-822
+ disableLoading (IXLanguageReader) 7-54
- discard Changes (DB Fetch Group) 4-79
- discard Changes: (DB Module) 4-99
- discardCursorRects (View) 2-772,

(Window) 2-822
- discardRecord: (IXRecordDiscarding) 7-154
- discards (IXRecordManager) 7-77
- discardTrackingRect: (Window) 2-823
- disconnect (DB Database) 4-59
- disconnectFromCurrent (NIDomain) 11-8
- disconnectUsingString: (DBDatabase) 4-60
- display (Button) 2-86, (Matrix) 2-254,

(Menu) 2-286, (View) 2-773, (Window) 2-823
Display PostScript 5-3
- display:: (View) 2-773
- display::: (View) 2-773
- displayAIIColumns (NXBrowser) 2-322
- displayBorder (Window) 2-823
- displayColumn: (NXBrowser) 2-322
- displayConnectionBetween:and: (IB) 8-27
- displayFromOpaqueAncestor::: (View) 2-774
- displaylfNeeded (View) 2-774, (Window) 2-823
- displayMode (SoundView) 16-81
- displayMovie (N3DMovieCamera) 17-62
- displayName (Font) 2-186
- disposition (NXDataLink) 2-394
dissolve operator 5-21

Index-11

- dissolve:fromRect:toPoint: (NXlinage) 2-451
- dissolve:toPoint: (NXlmage) 2-452
Distributed Objects 6-3
- dividerHeight (NXSplitView) 2-525
- doClick: (NXBrowser) 2-323
- document (IBEditors) 8-46
- document Closed (NXDataLinkManager) 2-404
- documentEdited (NXDataLinkManager) 2-404
- documentReverted (NXDataLinkManager) 2-405
- documentSaved (NXDataLinkManager) 2-405
- documentSavedAs: (NXDataLinkManager) 2-405
- documentSavedTo: (NXDataLinkManager) 2-405
- docView (ClipView) 2-154, (ScrollView) 2-619
- doDoubleClick: (NXBrowser) 2-323
- doesAcceptArrowKeys (DBTableView) 4-149
- doesAllowEmptySel (DBTableView) 4-150
- doesAllowVectorReordering (DBTableView)

4-150)
- doesAllowVectorResizing (DB Table View) 4-150
- doesAutoSelect (DB FetchGroup) 4-79
- doesAutosizeCells (Matrix) 2-255
- doesBecomeKeyOnlyIfNeeded (Panel) 2-544
- does Clip (View) 2-775
- doesDeemphasize (NXSoundOut) 16-35
- doesDrawAsBox (N3DShape) 17-103
- doesDrawBackgroundColor (N3DCamera) 17-23
- doesFlushRIB (N3DCamera) 17-23
- doesGrabOnStop (NXLiveVideoView) 18-13
- doesHideOnDeactivate (Window) 2-824
- doesImportAlpha (Application) 2-40
- doesInsertZeros (NXSoundOut) 16-35
- doesNotRecognize: (Object) 1-22
- doesRampDown (NXSoundOut) 16-35
- doesRampUp(NXSoundOut) 16-36
+ doesRectSupportVideo:standard:size:

(NXLiveVideoView) 18-11
+ doesScreenSupport Video:standard:size:

(NXLiveVideoView) 18-11
- doesShowAlpha (NXColorPanel) 2-366
- doesTreatFilePackagesAsDirectories (SavePanel)

2-602
- doesUseColor (N3DShader) 17-86

Index-12

+ does WindowSupport Video:standard:size:
(NXLiveVideoView) 18-11

- domain (NIDomainPanel) 11-16,
(NXPrinter) 2-497

- domain:wiIlCloseBecause: (NIDomain) 11-12
+ domainForLanguage: (IXLanguageReader) 7-54
- doubleAction (DBTableView) 4-150,

(Matrix) 2-255, (NXBrowser) 2-323
- doubleValue (ActionCell) 2-20,

(ButtonCell) 2-104, (Cell) 2-127, (Control) 2-167,
(DBValue) 4-171, (SliderCell) 2-640

- doubleValueAt: (Form) 2-212
DPSAddFDO 5-71
DPSAddNotifyPortProcO 5-72
DPSAddPortO 5-73
DPSAddTimedEntryO 5-74
DPSAsynchronousWaitContextO 5-75
DPSContextRec type 5-93
DPSContextType type 5-93
DPSCreateContextO 5-76
DPSCreateContextWithTimeoutFromZoneO 5-76
DPSCreateNonsecureContextO 5-76
DPSCreateStreamContextO 5-76
DPSDefineUserObjectO 5-78
DPSDiscardEventsO 5-82
DPSDoUserPathO 5-79
DPSDoUserPath WithMatrixO 5-79
DPSErrorCode type 5-94
DPSEventFilterFunc type 5-94
DPSFDProc type 5-95
DPSFlushO 5-81
DPSGetEventO 5-82
DPSlnterruptContextO 5-83
DPSNameFromTypeAndIndexO 5-83
DPSNumberFormat type 5-95
DPSPeekEventO 5-82
DPSPingProc type 5-96
DPSPortProc type 5-96
DPSPostEventO 5-84
DPSPrintErrorO 5-85
DPSPrintErrorToStreamO 5-85
DPSRemoveFDO 5-71
DPSRemoveNotifyPortProcO 5-72

DPSRemovePort() 5-73
DPSRemoveTimedEntry() 5-74
DPSResetContext() 5-85
DPSSendEOF() 5-81
DPSSetDeadKeysEnabledO 5-86
DPSSetEventFuncO 5-86
DPSSetTracking() 5-87
DPSStartWaitCursorTimerO 5-88
DPSSynchronizeContext() 5-88
DPSTimedEntry type 5-96
DPSTimedEntryProc type 5-97
DPSTraceContextO 5-89
DPSTraceEventsO 5-89
DPSUndefineUserObjectO 5-78
DPSUserPathAction type 5-97
DPSUserPathOp type 5-98
DPS_ALLCONTEXTS constant 5-102
dps_arc constant 5-98
dps_arcn constant 5-98
dps_arct constant 5-98
dps_closepath constant 5-98
dps_curveto constant 5-98
dps_def constant 5-97
dps_err_cantConnect constant 5-94
dps_err_connectionClosed constant 5-94
dps_err_invalidContext constant 5-94
dps_err_invalidFD constant 5-94
dps_err_invalidPort constant 5-94
dps_err_invalidTE constant 5-94
dps_err_nameTooLong constant 5-94
dps_err_outOtMemory constant 5-94
dps_err_ps constant 5-94
dps_err_read constant 5-94
dps_err _resultTagCheck constant 5-94
dps_err_resuItTypeCheck constant 5-94
dps_err _select constant 5-94
dps_err_ write constant 5-94
DPS_ERROR_BASE constant 5-103
dps_fdServer constant 5-93
dps_float constant 5-95
dps_inueofill constant 5-97
dps_inufill constant 5-97
dps_inustroke constant 5-97

dps_lineto constant 5-98
dps_long constant 5-95
dps_machServer constant 5,,:,93
dps_moveto constant 5-98
DPS_NEXT_ERROR_BASE constant 5-103
dps_put constant 5-97
dps_rcurveto constant 5-98
dps_rlineto constant 5-98
dps_rmoveto constant 5-98
dps_setbbox constant 5-98
dps_short constant 5-95
dps_stream constant 5-93
dps_uappend constant 5-97
dps_ucache constant 5-98
dps_ueofill constant 5-97
dps_ufill constant 5-97
dps_ustroke constant 5-97
dps_ustrokepath constant 5-97
+dragColor:withEvent:from View: (NXColorPanel)

2-363
- dragFile:fromRect:slideBack:event: (View)

2-775
- dragFrom::eventNum: (Window) 2-824
- draggedlmage (NXDragginglnfo) 2-880
- draggedlmage:beganAt: (NXDraggingSource)

2-883
- draggedlmage:endedAt:deposited:

(NXDraggingSource) 2-884
- draggedImageCopy (NXDragginglnfo) 2-880
- draggedlmageLocation (NXDraggingInfo) 2-880
- draggingDestination Window (NXDragginglnfo)

2-880
- draggingEntered: (NXDraggingDestination)

2-877
- draggingExited: (NXDraggingDestination) 2-878
- draggingLocation (NXDragginglnfo) 2-881
- draggingPasteboard (NXDragginglnfo) 2-881
- draggingSequenceNumber (NXDragginglnfo)

2-881
- draggingSource (NXDragginglnfo) 2-881
- draggingSourceOperationMask

(NXDragginglnfo) 2-881

Index-13

- draggingSourceOperationMaskForLocal:
(NXDraggingSource) 2-884

- draggingUpdated: (NXDraggingDestination)
2-878

- dragImage:at:offset:event:pasteboard:source:
slideBack: (View) 2-776, (Window) 2-825

- draw (N3DRIBlmageRep) 17-73,
(NXBitmaplmageRep) 2-304,
(NXCachedlmageRep) 2-351,
(NXCustomlmageRep) 2-388,
(NXEPSlmageRep) 2-422, (NXlmageRep) 2-477

- drawArrow:: (Scroller) 2-611
- drawAt: (N3DRIBlmageRep) 17-73,

(NXlmageRep) 2-477
- drawBarInside:flipped: (SliderCell) 2-641
- drawCell: (Control) 2-168, (Matrix) 2-255
- drawCellAt: (Form) 2-212
- drawCellAt:: (Matrix) 2-255
- drawCellInside: (Control) 2-168, (Matrix) 2-256
- drawCurrentValue (SoundMeter) 16-70
- drawDivider: (NXSplitView) 2-525
- drawFieldAt: :inside:in View:withAttributes::

usePositions:: (DBEditableFormatter) 4-67,
(DB Formatter) 4-88, (DBlmageFormatter) 4-91

- drawFunc (Text) 2-690
- drawIn: (N3DRIBlmageRep) 17-73,

(NXBitmaplmageRep) 2-304,
(NXEPSlmageRep) 2-423, (NXlmageRep) 2-478

- drawInside:inView: (ButtonCell) 2-104,
(Cell) 2-128, (FormCell) 2-221,
(NXBrowserCell) 2-347, (SelectionCell) 2-627,
(SliderCell) 2-641, (TextFieldCell) 2-750

- drawInSuperview (View) 2-777
- drawKnob (Scroller) 2-611, (SliderCell) 2-641
- drawKnob: (SliderCell) 2-641
- drawPageBorder:: (View) 2-777
- drawParts (Scroller) 2-611
- drawPS:: (N3DCamera) 17-23
- drawRepresentation:inRect: (NXlmage) 2-452
- drawSamplesFrom:to: (SoundView) 16-81

Index-14

- drawSelf:: (Box) 2-77, (ClipView) 2-154,
(Control) 2-168, (DBlmageView) 4-94,
(DBTableView) 4-150, (Matrix) 2-256,
(N3DCamera) 17-24, (NXBrowser) 2-324,
(NXColorWell) 2-376,
(NXLiveVideoView) 18-12,
(NXSplitView) 2-525, (Scroller) 2-611,
(ScrollView) 2-619, (SoundMeter) 16-70,
(SoundView) 16-81, (Text) 2-690, (View) 2-777

- drawSelf:inView: (ActionCell) 2-21,
(ButtonCell) 2-104, (Cell) 2-128,
(FormCell) 2-222, (NXBrowserCell) 2-347,
(SelectionCell) 2-627, (SliderCell) 2-642,
(Text) 2-734, (TextFieldCell) 2-750

- drawSheetBorder:: (View) 2-778
- drawTitle:inRect:ofColumn: (NXBrowser) 2-324
- drawVideoBackground:: (NXLiveVideoView)

18-13
- drawWellInside: (NXColorWell) 2-376
DSP specifications E-1
dumpwindowoperator 5-21
dumpwindows operator 5-22
- duration (Sound) 16-57
- dynamicColumns (DBTableView) 4-151
- dynamicRows (DBTableView) 4-151

- edit:inView:editor:delegate:event: (Cell) 2-129
- editedObject (IBEditors) 8-46
- editFieldAt:: (DBTableView) 4-151
- editFieldAt: :inside:in View:withAttributes::

usePositions: :onEvent: (DB EditableFormatter)
4-68

- editingAssociation (DB Module) 4-100
- editorDidClose:for: (IBDocuments) 8-37
- elementAt: (Storage) 3-38
-empty (DB Containers) 4-177, (DB Qualifier) 4-108,

(HashTable) 3-11, (IXBTree) 7-32,
(IXPostingOperations) 7-151,
(IXRecordWriting) 7-159,
(IXStoreDirectory) 7-99, (List) 3-18,
(Storage) 3-39

- emptyDataDictionary (DB Database) 4-60
+ emptySelection (NXSelection) 2-505

- enableCursorRects (Window) 2-825
- enableEdit: (Application Additions) 14-9
- enableTransactions: (DBDatabase) 4-60
- enableWindow: (Application Additions) 14-9
- encodeBytes:count: (NXEncoding) 6-44
- encodeData:ofType: (NXEncoding) 6-44
- encodeMachPort: (NXEncoding) 6-45
- encodeObject: (NXEncoding) 6-45
- encodeObjectBycopy: (NXEncoding) 6-45
- encodeRemotelyFor:freeAfterEncoding:

isBycopy: (NXData) 9-10, (NXTransport) 6-47,
(Object Additions) 6-38

- encodeUsing: (NXTransport) 6-48
- encode VM:count: (NXEncoding) 6-45
encoding vector C-l
- endBatching (DB Formatter) 4-89,

(DBTextFormatter) 4-166
- endEditing (DBAssociation) 4-21,

(DBEditableFormatter) 4-68,
(DBTableView) 4-151

- endEditing: (Cell) 2-129
- endEditingFor: (Window) 2-825
- endFrame (N3DMovieCamera) 17-62
- endHeaderComments (View) 2-778,

(Window) 2-826
- endListeningFor ApplicationStatusChanges

(NXWorkspaceRequestProtocol) 2-902
- endListeningForDeviceStatusChanges

(NXWorkspaceRequestProtocol) 2-902
- endModalSession: (Application) 2-40
- endPage (View) 2-778, (Window) 2-826
- endPageSetup (View) 2-778, (Window) 2-826
- endPrologue (View) 2-779, (Window) 2-827
- endPSOutput (View) 2-779, (Window) 2-827
- endSetup (View) 2-779, (Window) 2-827
- endTrailer (View) 2-779, (Window) 2-827
- entity (DBFetchGroup) 4-79, (DBModule) 4-100,

(DB Properties) 4-195, (DB Qualifier) 4-108
- entityNamed: (DB Database) 4-60
- entries (IXStoreDirectory) 7-100
- entryType (Cell) 2-129
erasepage operator 5-22
- error: (Object) 1-22

- error:reason: (NXPhoneCall) 13-25
- errorAction (Matrix) 2-256, (TextFie1d) 2-739
- establish Connection (IBConnectors) 8-30
- evaluateFor: (IXAttributeQuery) 7-21
- evaluateString: (DBBinder) 4-36,

(DBDatabase) 4-61
- eventMask (Window) 2-828
+ excludeFromServicesMenu: (Text) 2-679
- exitFlags (NIDomainPanel) 11-17
- expression (DBAssociation) 4-22
- expressionValue (DBExpressionValues) 4-186
- extendPowerOffBy:

(NXWorkspaceRequestProtocol) 2-903

FALSE constant 2-1015
- familyName (Font) 2-187
- faxPSCode: (View) 2-780, (Window) 2-828
- faxPSCode:toList:numberList:sendAt:

wantsCover:wantsN otify:wantsHires:
faxName: (View) 2-780

- fetch (DBBinder) 4-37
- fetchAllRecords: (DB Module) 4-100
- fetchContentsOf:usingQualifier:

(DBFetchGroup) 4-79, (DBModule) 4-100
- fetchGroup (DBAssociation) 4-22
- fetchGroup:didlnsertRecordAt: (DB FetchGroup)

4-84
- fetchGroup:willDeleteRecordAt:

(DB FetchGroup) 4-84
- fetchGroup:willFailForReason: (DBFetchGroup)

4-84
- fetchGroup:willValidateRecordAt:

(DBFetchGroup) 4-85
- fetchGroupDidFetch: (DBFetchGroup) 4-85
- fetchGroupDidSave: (DBFetchGroup) 4-86
- fetchGroupNamed: (DB Module) 4-101
- fetchGroup WillChange: (DB Fetch Group) 4-86
- fetchGroupWillFetch: (DBFetchGroup) 4-86
- fetchGroupWillSave: (DBFetchGroup) 4-86
- fetchlnThread (DBBinder) 4-38
- fetchRecordForRecordKey: (DBRecordList)

4-115

Index-15

- fetchUsingQualifier: (DBRecordList) 4-115,
(DBRecordStream) 4-128

- fetchUsingQualifier:empty: (DBRecordList)
4-115

- fieldOtView (N3DCamera) 17-24
- filed ate (IXFileRecord) 7-49
- fileFinder (lXFileRecord) 7-50
- fileFinder:didFindFile:

(lXFileFinderQuery AndUpdate) 7-139
- fileFinder:didFindList:

(lXFileFinderQuery AndUpdate) 7-139
- fileFinder:willAddFile:

(lXFileFinderQuery AndUpdate) 7-140
- filename (lXFileRecord) 7-50, (IXStoreFile) 7-104,

(NXDataLinkManager) 2-406, (SavePanel) 2-602
- filenames (OpenPanel) 2-532
- fileOperationCompleted: (Application) 2-41
- file System Changed

(NXWorkspaceRequestProtocol) 2-903
- filetype (lXFileRecord) 7-50
- fillN extColumn (NIDomainPanel) 11-17
- finalWritePrintlnfo (PrintPanel) 2-586
- findAncestorSharedWith: (View) 2-780
- findApplications (NXWorkspaceRequestProtocol)

2-903
- findAvaiiableTypeFrom:num: (Pasteboard) 2-555
- findCellWithTag: (Matrix) 2-256, (Menu) 2-286
+ findColorListNamed: (NXColorList) 2-355
+ findDatabaseNamed:connect: (DB Database) 4-55
- findDestinationLink WithSelection:

(NXDataLinkManager) 2-406
- findDirectory:withProperty: (NIDomain) 11-9
- findFont:traits:weight:size: (FontManager) 2-197
+ findlmageNamed: (NXImage) 2-445
- findlmageNamed: (IBPalette) 8-17
- findlndexWithTag: (Form) 2-212
+ findSoundFor: (Sound) 16-53
- findString:inFile: (NXWorkspaceRequestProtocol)

2-903
- findText:ignoreCase:backwards:wrap: (Text)

2-691
- findViewWithTag: (View) 2-781
findwindow operator 5-22

Index-16

- findWindow: (Application) 2-41
- finishInstantiate (IBPalette) 8-17
+ finishLoading: (Object) 1-12
- finishReading (IXRecordTranscription) 7-157
- finishReadingRichText (Text) 2-691
- finishUnarchiving (DBEditableFormatter) 4-68,

(DBTableView) 4-151, (Font) 2-187,
(FontManager) 2-198, (NXlmage) 2-453,
(Object) 1-23, (Sound) 16-57

- firstAncestor (N3DShape) 17-103
- firstPage (PrintInfo) 2-573
- firstPeer (N3DShape) 17-104
- firstResponder (Window) 2-828
- firstTextBlock (Text) 2-691
- firstVisibleColumn (NXBrowser) 2-324
- flagsChanged: (Responder) 2-591
- floatForKey:inTable: (NXPrinter) 2-498
- floatValue (ActionCell) 2-21, (ButtonCell) 2-105,

(Cell) 2-130, (Control) 2-168, (DB Value) 4-171,
(Scroller) 2-612, (SliderCell) 2-642,
(SoundMeter) 16-71

- floatValueAt: (Form) 2-213
- flush (DBBinder) 4-38
flushgraphics operator 5-23
- flushRIB (N3DCamera) 17-24
- flush Window (Window) 2-828
- flushWindowIfNeeded (Window) 2-829
- focusView (Application) 2-41
- foldCase:inLength: (lXLexemeExtraction) 7-141
- foldPlural:inLength: (lXAttributeReader) 7-26
- followsSymbolicLinks

(IXFileFinderConfiguration) 7 -131
Font class, specification 2-180
- font (Box) 2-77, 2-130, (Control) 2-169,

(DBEditableFormatter) 4-68,
(DBTextFormatter) 4-166, (Matrix) 2-256,
(PopUpList) 2-564, (Text) 2-692

FontManager class, specification 2-191
- fontManager:willInciudeFont: (FontManager)

2-202
- fontNum (Font) 2-187
FontPanel class, specification 2-203

- foregroundGray (SoundMeter) 16-71,
(SoundView) 16-81

Form class, specification 2-209
- formatter (DB Table Vectors) 4-201
- formatterAt:: (DB Table View) 4-152
- formatterDidChange ValueFor: :sender:

(DBFormatterValidation) 4-190
- formatterDidChange ValueFor: :to:sender:

(DBFormatterValidation) 4-191
- formatterDidChange ValueFor:at:sender:

(DBFormatterValidation) 4-191
- formatterDidChange ValueFor:at:to:sender:

(DBFormatterValidation) 4-191
- formatterDidEndEditing:endChar:

(DBFormatterViewEditing) 4-193
- formatterWillChange ValueFor: :to:sender:

(DBFormatterValidation) 4-192
- formatterWillChange ValueFor:at:to:sender:

(DBFormatterValidation) 4-192
FormCell class, specification 2-220
- formlntersectionWithPostingsln: (lXPostingSet)

7-68
- form Union WithPostingsln: (lXPostingSet) 7-69
- forward:: (NXProtocoIChecker) 9-24,

(Object) 1-23
- frameAngle (View) 2-781
- frameAutosaveName (Window) 2-829
framebuffer operator 5-23
- framelncrement (N3DMovieCamera) 17-62
- frameNumber (N3DCamera) 17-24,

(N3DMovieCamera) 17-63
+ free (Object) 1-13
- free (Application) 2-41, (Box) 2-77,

(ButtonCell) 2-105, (Cell) 2-130,
(ClipView) 2-154, (Control) 2-169,
(DB Binder) 4-39, (DBEditableFormatter) 4-68,
(DB Expression) 4-73, (DBlmageFormatter) 4-91,
(DB Qualifier) 4-109, (DBRecordList) 4-116,
(DBRecordStream) 4-128,
(DBTableVector) 4-138, (DBTableView) 4-152,
(DBTextFormatter) 4-166, (DB Value) 4-171,
(Font) 2-187, (FormCell) 2-222,
(HashTable) 3-11, (lBConnectors) 8-30,

(lXStore) 7-89, (lXStoreFile) 7-104, (List) 3-18,
(Listener) 2-233, (Matrix) 2-257,
(N3DCamera) 17-25,
(N3DContextManager) 17-46,
(N3DRIBlmageRep) 17-73, (N3DShader) 17-87,
(N3DShape) 17-104, (NIDomain) 11-9,
(NXBitmaplmageRep) 2-304,
(NXBrowser) 2-324, (NXBundle) 3-28,
(NXCachedlmageRep) 2-352,
(NXColorList) 2-356, (NXConnection) 6-28,
(NXData) 9-11, (NXDataLinkManager) 2-406,
(NXEPSlmageRep) 2-423, (NXHelpPanel) 2-436,
(NXlmage) 2-453, (NXlnvalidationNotifier) 9-13,
(NXJournaler) 2-484, (NXLiveVideoView) 18-13,
(NXPort) 9-22, (NXProtocoIChecker) 9-24,
(NXProxy) 6-36, (NXReference) 9-35,
(NXSoundDevice) 16-25,
(NXSoundStream) 16-44, (NXStringTable) 3-33,
(Object) 1-24, (OpenPanel) 2-533,
(PageLayout) 2-538, (Pasteboard) 2-555,
(PrintInfo) 2-574, (PrintPanel) 2-586,
(Responder) 2-591, (SavePanel) 2-602,
(Sound) 16-57, (SoundView) 16-81,
(Speaker) 2-656, (Storage) 3-39, (Text) 2-692,
(View) 2-781, (Window) 2-829

- freeAll (N3DShape) 17-104
- freeAndRemoveFile (NXColorList) 2-356
- freeBlock: (lXStore) 7-89
- freeEntryNamed: (IXStoreDirectory) 7-100
+ freeFromBlock:andStore:

(IXBlockAndStoreAccess) 7-116
+ freeFromName:inFile: (lXN ameAndFileAccess)

7-145
- freeFromStore (IXBlockAndStoreAccess) 7-117,

(lXN ameAndFileAccess) 7-145
- free Globally (Pasteboard) 2-555
- freeGState (View) 2-781
- freeKeys:values: (HashTable) 3-11
- freeLastColumn (NIDomainPanel) 11-17
- freeObjects (DB Containers) 4-178,

(HashTable) 3-11, (List) 3-18
- freeProxy (NXProxy) 6-36

- frequencyOIToken:otLength:
(IXWeightingDomain) 7-108

frontwindowoperator 5-24
function documentation, organization of 14

- generatesDescriptions
(IXFileFinderConfiguration) 7-131

- generatesNamedColors (NXColorList) 2-356
- getAttenuationLeft:right: (NXSoundOut) 16-36
- getAttributeParsers: (IXFileFinderConfiguration)

7-131
- getAttributeReaders: (IXAttributeParser) 7-15
- getBlock:andStore: (IXBlockAndStoreAccess)

7-117
- getBoundingBox: (N3DRIBlmageRep) 17-73,

(N3DShape) 17-105, (NXEPSlmageRep) 2-423
- getBounds: (View) 2-781
- getBounds:inCamera: (N3DShape) 17-105
- getButtonFrame: (PopUpList) 2-564
- getCeIlFrame:at:: (Matrix) 2-257
- getCellSize: (Matrix) 2-257
- getClass:ofEntryNamed: (IXStoreDirectory)

7-100
- getClipPlanesNear:far: (N3DCamera) 17-25
- getComparator:andContext:

(IXComparatorSetting) 7-120
-getComparator:andContext:for AttributeNamed:

(IXRecordManager) 7-77
- getCompositeTransformMatrix:

relativeToAncestor: (N3DShape) 17-105
- getCompression:andFactor:

(NXBitmaplmageRep) 2-305
- getConeAngle:coneDelta: beamDistribution:

(N3DLight) 17-53
- getConnectlnspectorClassName (Object

Additions) 8-20
+ getContentRect:forFrameRect:style: (Window)

2-811
- getContents:andLength: (IXStore) 7-89
- getContentSize: (ScrollView) 2-620
+ getContentSize:forFrameSize:horizScroller:

vertScroller: borderType: (ScrollView) 2-618

Index-18

- getCount:andPostings:
(IXPostingExchange) 7-149, (IXPostingList) 7-61

- getCurrentServer (NIDomain) 11-9
- getDataPlanes: (NXBitmaplmageRep) 2-305
+ getDefaultFont (Text) 2-680
+ getDefaultPrinter (Printlnfo) 2-572
- getDescription:forAttributeNamed:

(IXRecordManager) 7-78
- getDocRect: (ClipView) 2-155
- getDocumentPathln: (IBDocuments) 8-37
- getDocVisibleRect: (ClipView) 2-155,

(ScrollView) 2-620
- getDomainHandle (NIDomain) 11-9
- getDouble Value:ofIvar:forRecord:

(IXTransientAccess) 7-160
- getDouble Value: ofMessage: forRecord:
, (IXTransientMessaging) 7-163
- getDrawRect: (ButtonCell) 2-105, (Cell) 2-130
- getEditor:for: (IBDocuments) 8-37
- getEditorClassName (Object Additions) 8-20
- getEntities: (DB Database) 4-61
- getEPS:length: (NXEPSlmageRep) 2-423
- getEventStatus:soundStatus:eventStream:

soundfile: (NXJournaler) 2-484
- getEyeAt:toward:roll: (N3DCamera) 17-25
- getFamily:traits:weight:size:ofFont:

(FontManager) 2-198
- getFetchGroups: (DBModule) 4-101
- getFieldEditor:for: (Window) 2-829
- getFloatValue:ofIvar:forRecord:

(IXTransientAccess) 7-160
- getFloatValue:ofMessage:forRecord:

(IXTransientMessaging) 7-164
- getFontMenu: (FontManager) 2-198
- getFontPanel: (FontManager) 2-198
- getFrame: (View) 2-782, (Window) 2-830
- getFrame:andScreen: (Window) 2-830
- getFrame:ofColumn: (NXBrowser) 2-324
- getFrame:ofInsideOfColumn: (NXBrowser)

2-325
+ getFrameRect:forContentRect:style: (Window)

2-812

+ getFrameSize:forContentSize:horizScroller:
vertScroller:borderType: (ScrollView) 2-618

- getFrom:to: (N3DLight) 17-53
- getFullPath (NIDomain) 11-9
- getFullPathFor Application:

(NXWorkspaceRequestProtocol) 2-904
- getGainLeft:right: (NXPlayStream) 16-8
- getHandle:andWeight: (IXPostingOperations)

7-151
- getHelplnspectorClassName (IBObject) 8-20
- getIBlmage (Object Additions) 8-20
- getIco~ForFile: (NXWorkspaceRequestProtocol)

. 2-904

- getIconRect: (ButtonCell) 2-105, (Cell) 2-131
- getImage:rect: (NXlmage) 2-453
- getInfoForFile:application:type:

(NXWorkspaceRequestProtocol) 2-904
- getInfoForFileSystemAt:isRemovable:

isWritable:isUnmountable:description:type:
(NXWorkspaceRequestProtocol) 2-905

- getInspectorClassName (IBObject) 8-20
- getIntercell: (DBTableView) 4-152, (Matrix) 2-257
- getIntValue:ofIvar:forRecord:

(IXTransientAccess) 7-161
- getIntValue:ofMessage:forRecord:

(IXTransientMessaging) 7-164
- getInverseCompositeTransformMatrix:

relativeToAncestor: (N3DShape) 17-106
- getKey:andLength: (IXCursorPositioning) 7-127
- getKey:andLength:withHint: (IXBTreeCursor)

7-36
- getKeyProperties: (DBRecordStream) 4-128
- getKnobRect:fiipped: (SliderCell) 2-642
- getLexeme:inLength:fromStream:

(IXLexemeExtraction) 7-142
+ getLink: andManager:isMultiple:

(NXDataLinkPanel) 2-415
- getLink:andManager:isMultiple:

(NXDataLinkPanel) 2-417
- getLoadedCeIlAtRow:inColumn: (NXBrowser)

2-325
- getLocal: (NXConnection) 6-28
- getLocation:forSubmenu: (Menu) 2-286

- getLocation:ofCell: (Text) 2-692
- getMarginLeft:right:top: bottom:

(PrintInfo) 2-574, (Text) 2-692
- getMasterServer (NIDomain) 11-10
- getMaxSize: (Text) 2-693, (Window) 2-831
- getMinSize: (Text) 2-693, (Window) 2-831
- getMinSize:maxSize:from: (View Additions) 8-22
-getMin Width:minHeight:maxWidth:maxHeight:

(Text) 2-693
- getMouseLocation: (Window) 2-831
- getName:andFile: (IXNameAndFileAccess) 7-146
- getNameln:for: (IBDocuments) 8-37
- getNextEvent: (Application) 2-42
- getNextEvent:waitFor:threshold: (Application)

2-42
- getNumRows:numCols: (Matrix) 2-257
- getObjects: (IBDocuments) 8-37
- getObjectValue:ofIvar:forRecord:

(IXTransientAccess) 7-161
- getObjectValue:ofMessage:forRecord:

(IXTransientMessaging) 7-164
- getOffsets: (Box) 2-77
- getOpaque Value:ofI var:for Record:

(IXTransientAccess) 7-161
- getOpaque Value:ofMessage:for Record:

(IXTransientMessaging) 7-165
- getParagraph:start:end:rect: (Text) 2-694
- getParameter: (ButtonCell) 2-106, (Cell) 2-131
- getParentForObject: (IBDocuments) 8-38
- getPassword: (NILoginPanel) 11-22
- getPath:forResource:oIType: (NXBundle) 3-29
+ getPath:forResource:oIType:inDirectory:

withVersion: (NXBundle) 3-27
- getPath:toColumn: (NXBrowser) 2-325
- getPeakLeft:right: (NXPlayStream) 16-9,

(NXSoundDevice) 16-26
- getPeriodicDelay:andlnterval: (Button) 2-87,

(ButtonCell) 2-106, (Cell) 2-131
- getPreTransformMatrix: (N3DCamera) 17-25
- getProjectionRectangle:::: (N3DCamera) 17-26
- getProperties: (DBBinder) 4-39,

(DBEntities) 4-185, (DBRecordStream) 4-129

Index-19

- getRecordKeyValue: (pBRecordList) 4-116,
(DBRecordStream) 4-129

- getRecordKeyValue:at: (DBRecordList) 4-116
- getRect:forPage: (N3DMovieCamera) 17-63,

(View) 2-782, (Window) 2-831
- getRow:andCol:forPoint: (Matrix) 2-258
- getRow:andCol:ofCell: (Matrix) 2-258
- getScreens:count: (Application) 2-43
- getScreenSize: (Application) 2-43
- getSel:: (Text) 2-694
- getSelectedCells: (Matrix) 2-258,

(NXBrowser) 2-326
- getSelection:size: (SoundView) 16-82
- getSelectionInto: (IBSelectionOwners) 8-51
- getServerIPAddress (NIDomain) 11-10
- getShaderArg:colorValue: (N3DShader) 17-87
- getShaderArg:f1oatValue: (N3DShader) 17-87
- getShaderArg:pointValue: (N3DShader) 17-88
- getShaderArg:stringValue: (N3DShader) 17-88
- getSize: (N3DRIBlmageRep) 17-74,

(NXImage) 2-454, (NXlmageRep) 2-478
- getSizeInspectorClassName (IBObject) 8-21
- getSourceVideoRect: (NXLiveVideoView) 18-14
- getStringValue:inLength:ofI var:forRecord:

(IXTransientAccess) 7-162
- getString Value:inLength:ofMessage:for Record:

(IXTransientMessaging) 7-165
- getString Value:ofI var:forRecord:

(IXTransientAccess) 7-161
- getStringValue:ofMessage:forRecord:

(IXTransientMessaging) 7-165
- getSubstring:start:length: (Text) 2-694
- getTag (NIDomain) 11-10
- getTargetName:andVersion:for AttributeNamed:

(IXRecordManager) 7-78
+ getTIFFCompressionTypes:count:

(NXBitmaplmageRep) 2-298
- getTitleFrame:ofColumn: (NXBrowser) 2-326
- getTitleFromPreviousColumn: (NXBrowser)

2-326
- getTitleRect: (ButtonCell) 2-106, (Cell) 2-131
- getTransformMatrix: (N3DShape) 17-106
- getUser: (NILoginPanel) 11-22

Index-20

- getValue: (DB Association) 4-22
- getValue:andLength:omlob:forRecord:

(IXBlobWriting) 7-113
- getValue:forProperty: (DBRecordList) 4-117,

(DBRecordStream) 4-129
- getValue:forProperty:at: (DBRecordList) 4-117
- getValueAt: :withAttributes: :usePositions::

(DB Formatter) 4-89
- getValueFor::into: (DBTableDataSources) 4-198
- getValueFor:at:into: (DBTableDataSources)

4-198
- get VideoStandard:size: (NXLive Video View)

18-14
- getVisibleRect: (View) 2-782
+ getVolume:: (Sound) 16-53
- getWidthOf: (Font) 2-187
- getWindow:andRect: (NXCachedlmageRep)

2-352
- getWindowNumbers:count: (Application) 2-43
- grab (NXLiveVideoView) 18-14
- grabIn:fromRect:toRect: (NXLive Video View)

18-15
- group: (N3DShape) 17-106
- gState (View) 2-783, (Window) 2-832

- hadError: (Sound) 16-67,
(SoundView) 16-82, 16-91

- handleOfObjectAt: (IXPostingList) 7-61
- hangUp (NXPhoneCall) 13-26
- hasAlpha (NXImageRep) 2-478
- hasAttributeNamed: (IXRecordManager) 7-78
- hasDynamicDepthLimit (Window) 2-832
- hasEntryNamed: (IXStoreDirectory) 7-100
- hash (NXPort) 9-22, (Object) 1-25
HashTable class, specification 3-8
- hasMatrix (Font) 2-188
- has Submenu (MenuCell) 2-292
- hasUnsavedChanges (DBFetchGroup) 4-80
header files, precompiled 2
- heightAdjustLimit (View) 2-783, (Window) 2-832
- helpDirectory (NXHelpPanel) 2-436
- helpFile (NXHelpPanel) 2-437
- helpRequested: (Responder) 2-591

- hide: (Application) 2-43
- hideCaret (Text) 2-695
hidecursor operator 5-24
- hide Cursor (SoundView) 16-82
hideinstance operator 5-24
- hideOther Applications

(NXWorkspaceRequestProtocol) 2-905
- hider (N3DCamera) 17-26,

(N3DRIBImageRep) 17-74
- highlight: (Button) 2-87, (Scroller) 2-612
- highlight:in View:lit: (ButtonCell) 2-107,

(Cell) 2-132, (NXBrowserCell) 2-347,
(SelectionCell) 2-628, (Text) 2-734

- highlightCeIlAt::lit: (Matrix) 2-258
- highlightsBy (ButtonCell) 2-107
- hitPart (Scroller) 2-612
- hitTest: (View) 2-783
- hold (NXPhoneCall) 13-26
- holdTime (SoundMeter) 16-71
- horizPagination (Printlnfo) 2-574
- horizScroller (ScrollView) 2-620
- host (NXPrinter) 2-498, (NXSoundDevice) 16-26
- hostName (Application) 2-44
- hostNames (N3DRenderPanel) 17-68

IB protocol, specification 8-26
IBCellPboardType global 8-55
IBConnectors protocol, specification 8-29
IBDocumentControllers protocol, specification 8-32
IBDocuments protocol, specification 8-33
IBEditors protocol, specification 8-42
IBInspector class, specification 8-12
IBInspectors protocol, specification 8-49
IBMenuCellPboardType global 8-55
IBMenuPboardType global 8-55
IBObjectPboardType global 8-55
IBPalette class, specification 8-15
IBSelectionOwners protocol, specification 8-51
IBViewPboardType global 8-55
IBWindowPboardType global 8-55
IB_BOTTOMLEFT constant 8-54
IB_BOTTOMRIGHT constant 8-54
IB_MIDDLEBOTTOM constant 8-54

IB_MIDDLELEFT constant 8-54
IB_MIDDLERIGHT constant 8-54
IB_MIDDLETOP constant 8-54
IB_TOPLEFT constant 8-54
IB_TOPRIGHT constant 8-54
- icon (Button) 2-87, (ButtonCell) 2-107, (Cell) 2-132
- iconPosition (Button) 2-87, (ButtonCell) 2-107
id type 1-42
- identifier (DBTableVectors) 4-202
- ignoredNames (IXFileFinderConfiguration) 7-132
- ignoredTypes (IXFileFinderConfiguration) 7-132
- ignoredWordsForSpellDocument:

(NXSpellChecker) 2-513
- ignoreMultiClick: (Control) 2-169
- ignoresDuplicateResults (DBBinder) 4-39
image operator 5-25
- image (Button) 2-88, (ButtonCell) 2-108,

(DBImageView) 4-94, (NXCursor) 2-382,
(Slider) 2-632, (SliderCell) 2-643

- imageDidNotDraw:inRect: (NXImage) 2-472
+ imageFileTypes (NXImage) 2-446,

(NXImageRep) 2-475
+ imagePasteboardTypes (NXlmage) 2-446,

(NXImageRep) 2-475
- imageRectForPaper: (NXPrinter) 2-498
+ imageRepForFileType: (NXImage) 2-447
+ imageRepForPasteboardType: (NXImage) 2-447
+ imageRepForStream: (NXImage) 2-448
+ imageUnfilteredFileTypes

(N3DRIBImageRep) 17-72, (NXImageRep) 2-476
+ imageUnfilteredPasteboardTypes

(N3DRIBlmageRep) 17-72, (NXlmageRep) 2-476
IMP type 1-42
- importFile:at: (NXDataLinkManager) 2-412
in Objective C keyword 6-7
- incrementState (Cell) 2-132
- indexForHandle: (IXPostingList) 7-62
Indexing Kit 7-3

query language 7-186
- indexOf: (List) 3-19
- indexOtltem: (PopUpList) 2-564
- info (Sound) 16-58
- infoSize (Sound) 16-58

Index-21

-init (Button) 2-88, (ButtonCell) 2-108, (Cell) 2-133,
(DBBinder) 4-40, (DBEditableFormatter) 4-69,
(DBImageFormatter) 4-92,
(DBRecordList) 4-117, (DBRecordStream) 4-130,
(DBTextFormatter) 4-166, (DBValue) 4-171,
(FormCell) 2-222, (HashTable) 3-12,
(IXAttributeParser) 7-15, (IXStore) 7-90,
(IXStoreFile) 7-104, (List) 3-19, (Listener) 2-233,
(Menu) 2-286, (MenuCell) 2-292,
(N3DCamera) 17-26, (N3DLight) 17-53,
(N3DRotator) 17-79, (N3DShader) 17-88,
(N3DShape) 17-107, (NIDomain) 11-10,
(NIDomainPanel) 11-17, (NXBrowserCell) 2-348,
(NXColorList) 2-356, (NXConditionLock) 9-8,
(NXCursor) 2-382, (NXDataLinkManager) 2-406,
(NXImage) 2-454, (NXInvalidationN otifier) 9-14,
(NXJournaler) 2-484, (NXPhone) 13-18,
(NXPhoneCall) 13-26,
(NXPhoneChannel) 13-34,
(NXSoundDevice) 16-26,
(NXSoundStream) 16-44, (NXStringTable) 3-33,
(Object) 1-25, (Panel) 2-544, (PopUpList) 2-564,
(Printlnfo) 2-574, (SelectionCell) 2-628,
(SliderCell) 2-643, (Speaker) 2-656,
(Storage) 3 -39, (TextFieldCell) 2-750,
(View) 2-784, (Window) 2-832

- initContent:style: backing: buttonMask:defer:
(Panel) 2-544, (Window) 2-833

- initContent:style: backing: buttonMask:defer:
screen: (Window) 2-834

- initCount: (List) 3-19
- initCount:andPostings: (IXPostingSet) 7-69
- initCount:elementSize:description: (Storage)

3-39
- initData:fromRect: (NXBitmapImageRep) 2-305
- initData:pixels Wide:pixelsHigh: bitsPerSample:

samplesPerPixel:hasAlpha:isPlanar:
colorSpace: bytesPerRow: bitsPerPixel:
(NXBitmapImageRep) 2-306

- initDatabase:entity: (DB Module) 4-101

Index-22

- initDataPlanes:pixels Wide:pixelsHigh:
bitsPerSample:samplesPerPixel:hasAlpha:
isPlanar:colorSpace: bytesPerRow:
bitsPerPixel: (NXBitmapImageRep) 2-307

- initDrawMethod:inObject:
(NXCustomImageRep) 2-388

- initEntity: (DBFetchGroup) 4-80
- initFetchGroup:expression:destination:

(DBAssociation) 4-22
- initForDatabase:withProperties:andQualifier:

(DBBinder) 4-40
- initForDirectory: (NXBundle) 3-29
- initForEntity: (DB Qualifier) 4-109
- initForEntity:fromDescription:

(DB Expression) 4-73, (DB Qualifier) 4-109
- initForEntity:fromName:usingType:

(DBExpression) 4-73
- initFrame: (Box) 2-78, (Button) 2-88,

(ClipView) 2-155, (Control) 2-169,
(DBImageView) 4-94, (DBTableView) 4-152,
(Form) 2-213, (Matrix) 2-259,
(N3DCamera) 17-27, (N3DMovieCamera) 17-63,
(NXBrowser) 2-327, (NXColorWell) 2-377,
(NXLive Video View) 18-15,
(NXSplitView) 2-525, (Scroller) 2-612,
(ScrollView) 2-620, (Slider) 2-632,
(SoundMeter) 16-71, (SoundView) 16-82,
(Text) 2-695, (TextField) 2-739, (View) 2-784

- initFrame:icon:tag:target:action:key:enabled:
(Button) 2-89

- initFrame:mode:ceIlClass:numRows:numCols:
(Matrix) 2-259

- initFrame:mode:prototype:numRows:numCols:
(Matrix) 2-260

- initFrame:text:alignment: (Text) 2-695
- initFrame:title:tag:target:action:key:enabled:

(Button) 2-89
- initFromBlock:inStore:

(IXBlockAndStoreAccess) 7-118,
(IXFileFinder) 7-44

- initFromBlock:inStore:atPath: (IXFileFinder)
7-44

- initFromBuffer:oiLength:withFormat:
(DBFormatInitialization) 4-189

- initFromDomain: (IXWeightingDomain) 7-108
- initFromFile: (DB Database) 4-61,

(N3DRIBlmageRep) 17-74,
(NXBitmaplmageRep) 2-309,
(NXDataLink) 2-394, (NXEPSlmageRep) 2-424,
(NXlmage) 2-454

- initFromFile:forWriting: (IXStoreFile) 7-104
- initFromHistogram: (IXWeightingDomain) 7-108
- initFromlmage: (NXCursor) 2-383
- initFromlmage:rect: (NXlmage) 2-455
- initFromName:inFile:forWriting:

(IXFileFinder) 7-45,
(IXN ameAndFileAccess) 7-146

- initFromName:inFile:forWriting:atPath:
(IXFileFinder) 7-45

- initFromPasteboard: (NXDataLink) 2-394,
(NXlmage) 2-455, (NXlmageRep) 2-478,
(NXSelection) 2-506, (Sound) 16-58

- initFromPickerMask:withColorPanel:
(NXColorPicker) 2-371,
(NXColorPickingDefault) 2-872

- initFromSection: (NXBitmaplmageRep) 2-309,
(NXEPSlmageRep) 2-424, (NXlmage) 2-456,
(Sound) 16-58

- initFromSoundfile: (Sound) 16-58
- initFromStream: (N3DRIBlmageRep) 17-75,

(NXBitmaplmageRep) 2-310,
(NXEPSlmageRep) 2-424, (NXlmage) 2-457

- initFromWFTable: (IXWeightingDomain) 7-108
- initFrom Window:rect: (NXCachedlmageRep)

2-352
initgraphics operator 5-26
- initGState (View) 2-784
+ initialize (Application) 2-32, (DBDatabase) 4-56,

(DB Qualifier) 4-108, (DB Value) 4-170,
(Font) 2-183, (Listener) 2-231, (Matrix) 2-251,
(N3DRenderPanel) 17-67,
(NIDomainPanel) 11-15, (Object) 1-13,
(Text) 2-680

- initializeJobDefaults (PrintInfo) 2-575
- initlconCell: (ButtonCell) 2-108, (Cell) 2-133

- initIdentifier: (DBTableVector) 4-138
- initInStore: (IXBlockAndStoreAccess) 7-118,

(IXFileFinder) 7-46
- initInStore:atPath: (IXFileFinder) 7-46
- initKeyDesc: (HashTable) 3-12
- initKeyDesc:valueDesc: (HashTable) 3-12
- initKeyDesc:valueDesc:capacity: (HashTable)

3-12
- initLinkedToFile: (NXDataLink) 2-395
- initLinkedToSourceSelection:managedBy:

supportingTypes:count: (NXDataLink) 2-395
- initOnDevice: (NXPlayStream) 16-9,

(NXSoundStream) 16-44
- initOnHost: (NXSoundDevice) 16-26
- initQueryString:andAttributeParser:

(IXAttributeQuery) 7-22
- initSize: (NXlmage) 2-457
- initState (HashTable) 3-13
- initTextCell: (ButtonCell) 2-108, (Cell) 2-133,

(FormCell) 2-222, (MenuCell) 2-292,
(NXBrowserCell) 2-348, (SelectionCell) 2-628,
(TextFieldCell) 2-751

- initTitle: (Menu) 2-287
-initType: (NXPhone) 13-18, (NXPhoneCall) 13-26,

(NXPhoneChannel) 13-35
- initWith: (NXConditionLock) 9-8
- initWith:inDocument: (IBEditors) 8-46
- initWithBTree: (IXBTreeCursor) 7-37
- initWithCamera: (N3DRotator) 17-79
- initWithData:size:dealloc: (NXData) 9-11
- initWithDelegate: (NXDataLinkManager) 2-406
- initWithDelegate:fromFile:

(NXDataLinkManager) 2-407
- initWithDescription:length: (NXSelection) 2-506
- initWithDescriptionNoCopy:length:

(NXSelection) 2-506
- initWithFile: (IXStoreFile) 7-105
- initWithFileFinder: (IXFileRecord) 7-50
- initWithName: (NXColorList) 2-356
- initWithName:fromFile: (NXColorList) 2-357
- initWithName:inFile: (IXFileFinder) 7-47,

(IXN ameAndFileAccess) 7-147
- initWithName:inFile:atPath: (IXFileFinder) 7-47

Index-23

- initWithObject:forProtocol:
(NXProtoco1Checker) 9-25

- initWithPostingsln: (IXPostingSet) 7-69
- initWithShader: (N3DShader) 17-89
- initWithSize: (NXData) 9-11
- initWithSource: (IXPostingList) 7-62
- init WithSource:andPostingsln: (IXPostingList)

7-62
inout Objective C keyword 6-7
- inPort (NXConnection) 6-29
- inputBrightness (NXLiveVideoView) 18-15
- inputGamma (NXLiveVideoView) 18-15
- inputHue (NXLiveVideoView) 18-16
- inputSaturation (NXLive Video View) 18-16
- inputSharpness (NXLiveVideoView) 18-16
- insert (DB Binder) 4-40
- insertColAt: (Matrix) 2-260
- insertElement:at: (Storage) 3-40
- insertEntry:at: (Form) 2-213
- insertEntry:at:tag:target:action: (Form) 2-214
- insertHandle:with Weight:at: (IXPostingList)

7-63
- insertionOrder (NXColorPicker) 2-370,

(NXColorPickingDefau1t) 2-873
- insertItem:at: (PopUpList) 2-565
- insertKey:value: (HashTable) 3-13
- insertNewButtonlmage:in:

(NXCo1orPicker) 2-371,
(NXCo1orPickingDefault) 2-873

- insertNewRecord: (DB Module) 4-101
- insertNewRecordAt: (DBFetchGroup) 4-80
- insertObject:at: (List) 3-19
- insertObject:with Weight: at: (IXPostingList) 7-63
- insertRecordAt: (DBRecordList) 4-118
- insertRowAt: (Matrix) 2-261
- insertSamples:at: (Sound) 16-59
+ instaHedLanguages (IXLanguageReader) 7-55
+ instanceMethodFor: (Object) 1-14
+ instancesRespondTo: (Object) 1-15
- intensity (N3DLight) 17-54
- interactsWithUser (NXDataLinkManager) 2-407
Interface Builder, API for 8-3
- intForKey:inTable: (NXPrinter) 2-499

Index-24

- inTimeout (NXConnection) 6-29
- intValue (ActionCell) 2-21, (ButtonCell) 2-109,

(Cell) 2-133, (Control) 2-169, (DB Value) 4-171,
(SliderCell) 2-643

- intValueAt: (Form) 2-214
- invalidate (NXInvalidationNotifier) 9-14
- invalidate:: (View) 2-784
- invalidateCursorRectsForView: (Window) 2-834
- isActive (Application) 2-44, (NXColorWell) 2-377,

(NXPhone) 13-19, (NXSoundStream) 16-44
- isAlIPages (PrintInfo) 2-575
- isAtEOTS (NXReadOnlyTextStream) 2-892
- isAutodisplay (View) 2-785
- isAutoScale (SoundView) 16-82
- isAutosizable (DBTableVectors) 4-202
- isBackgroundTransparent (Matrix) 2-261,

(TextField) 2-740, (TextFieldCell) 2-751
-isBezeled (Cell) 2-134, (SoundMeter) 16-71,

(SoundView) 16-82, (TextField) 2-740
- isBordered (Button) 2-90, (ButtonCell) 2-109,

(Cell) 2-134, (NXColorWell) 2-377,
(TextField) 2-740

- isBranchSelectionEnabled (NXBrowser) 2-327
- isCacheDepthBounded (NXImage) 2-457
- isCaseFolded (IXAttributeReader) 7-26
- isCellBackgroundTransparent (Matrix) 2-261
+ isClickForHelpEnabled (NXHelpPanel) 2-435
- isColor (NXPrinter) 2-499
- isColorMatchPreferred (NXImage) 2-458
- isColumnHeadingVisible (DBTableView) 4-152
- isColumnSelected: (DBTableView) 4-153
- is Connected (DBDatabase) 4-61
- isConnecting (IB) 8-27
- is Continuous (Cell) 2-134, (Control) 2-170,

(NXColorPanel) 2-366, (NXColorWell) 2-377,
(SliderCell) 2-643, (SoundView) 16-83

- isDataRetained (NXImage) 2-458
- isDeferredExpression (DBExpression Values)

4-186
- isDescendantOf: (View) 2-785
- isDetectingPeaks (NXPlayStream) 16-9,

(NXSoundDevice) 16-27
- isDisplayEnabled (Window) 2-835

- isDocEdited (Window) 2-835
- isDraggingSourceLocal (NXDragginglnfo) 2-882
- isEditable (Cell) 2-134, (DBlmageView) 4-94,

(DBTableVectors) 4-202, (DBTableView) 4-153,
(NXColorList) 2-357, (Sound) 16-59,
(SoundView) 16-83, (Text) 2-696,
(TextField) 2-740

- isEdited (NXDataLinkManager) 2-407
- isEmpty (DB Qualifier) 4-109, (Sound) 16-59
- isEmptySelectionEnabled (Matrix) 2-261,

(NXBrowser) 2-327
-isEnabled (Cell) 2-135, (Control) 2-170,

(FontManager) 2-199, (FontPanel) 2-206,
(SoundView) 16-83

- isEntity (DBTypes) 4-209
- isEntryAcceptable: (Cell) 2-135
- isEPSUsedOnResolutionMismatch (NXlmage)

2-458
- isEqual: (DBValue) 4-172, (List) 3-20,

(NXSelection) 2-506, (Object) 1-28,
(Storage) 3-40

- isExcludedFromWindowsMenu (Window) 2-835
- isFlipped (NXlmage) 2-459, (View) 2-785
- isFloatingPanel (Panel) 2-545
- isFlushEnabled (DBBinder) 4-41
- isFlushWindowDisabled (Window) 2-835
- isFocusView (View) 2-786
- isFontAvailable: (NXPrinter) 2-499
- isFontPanelEnabled (Text) 2-696
- isGlobal (N3DLight) 17-54
- isGraphicslmportEnabled (Text) 2-697
- isGridVisible (DBTableView) 4-153
- isHidden (Application) 2-44
- isHighlighted (Cell) 2-135
- isHorizCentered (PrintInfo) 2-575
- isHorizontalScrollerEnabled (NXBrowser) 2-327
- isHorizResizable (Text) 2-697
- isHorizScrollerVisible (DBTableView) 4-153
- isJournalable (Application) 2-44
- isKey (DB Properties) 4-195
- isKey: (HashTable) 3-13
- isKey:inTable: (NXPrinter) 2-499
- isKeyWindow (Window) 2-835

- isKindOf: (Object) 1-28
- isKindOfClassNamed: (Object) 1-29
- isLeaf (NXBrowserCell) 2-348,

(Selection Cell) 2-628
- isLoaded (NXBrowser) 2-328,

(NXBrowserCell) 2-348
- isMainWindow (Window) 2-836
- isMatch (IXCursorPositioning) 7-127
- isMatchedOnMultipleResolution (NXlmage)

2-459
- isMemberOf: (Object) 1-29
- isMemberOfClassNamed: (Object) 1-29
- isModified (DBRecordList) 4-118,

(DBRecordStream) 4-130
- isModifiedAt: (DBRecordList) 4-118
- isModifiedForProperty:at: (DBRecordList) 4-118
- isMonoFont (Text) 2-697
- isMultiple (FontManager) 2-199
- isMultipleSelectionEnabled (NXBrowser) 2-328
+ isMuted (Sound) 16-53
- isNewRecord (DBRecordList) 4-118,

(DBRecordStream) 4-130
- isNewRecordAt: (DBRecordList) 4-119
- isNull (DB Value) 4-172
- isOneShot (Window) 2-836
- is Opaque (ButtonCell) 2-109, (Cell) 2-135,

(FormCell) 2-222, (NXBrowserCell) 2-349,
(NXlmageRep) 2-479, (SelectionCell) 2-629,
(SliderCell) 2-644, (TextFieldCell) 2-751,
(View). 2-786

- isOptimizedForSpeed (SoundView) 16-83
- isOutputStacklnReverseOrder (NXPrinter) 2-499
- isPaused (NXSoundStream) 16-45
- isPlanar (NXBitmaplmageRep) 2-310
- isPlayable (Sound) 16-59, (SoundView) 16-83
- isProxy (NXProxy) 6-36, (Object Additions) 6-39
- isReadOnly (DB Properties) 4-195,

(DBRecordStream) 4-130
- isReallyAPrinter (NXPrinter) 2-500
- isReserved (NXSoundDevice) 16-27
- isResizable (DB Table Vectors) 4-202
- isRetainedWhileDrawing (Text) 2-697
- isRotatedFromBase (View) 2-786

Index-25

- isRotatedOrScaledFromBase (View) 2-786
- isRowHeadingVisible (DBTableView) 4-153
- isRowSelected: (DBTableView) 4-153
- isRulerVisible (Text) 2-697
- isRunning (Application) 2-44, (SoundMeter) 16-72
- isScalable (NXImage) 2-459
- isScroIIable (Cell) 2-136
- isS electable (Cell) 2-136, (N3DShape) 17-107,

(Text) 2-698, (TextField) 2-741
- isSelectionByRect (Matrix) 2-262
- isShaderArg: (N3DShader) 17-89
- isSingular (DB Properties) 4-196
- isSpeakerMute (NXSoundOut) 16-36
- isTestingInterface (IB) 8-28
- isTitled (NXBrowser) 2-328
- isTransactionlnProgress (DBDatabase) 4-62
- isTransparent (Button) 2-90, (ButtonCell) 2-109
- isUnique (NXImage) 2-459
+ isUnpackedImageDataAcceptable

(NXBitmapImageRep) 2-298
- isUpdating (IXFileFinderQueryAndUpdate) 7-136
+ isUsingSeparateThread (NXSoundDevice) 16-22
- isVaIid (NXInvalidationNotifier) 9-15,

(NXPrinter) 2-500
- isVaIidLogin; (NILoginPanel) 11-22
- isVertCentered (PrintInfo) 2-575
- isVerticaI (Slider) 2-632, (SliderCell) 2-644
- isVertResizable (Text) 2-698
- isVertScroIIerVisible (DB Table View) 4-154
- isVideoActive (NXLiveVideoView) 18-16
- isVisible (N3DShape) 17-107, (Window) 2-836
- isWeIIKnownSelection (NXSelection) 2-507
- isWorld (N3DShape) 17-107
- itemList (Menu) 2-287
Ivar type 15-35
IXAttributeParser class, specification 7-12
IXAttributeQuery class, specification 7-20
IXAttributeReader class, specification 7-23
IXAttributeReaderPboardType global 7-182
IXAttributeReading protocol, specification 7-112
IXBlob Writing protocol, specification 7-113
IXBlockAndStoreAccess protocol, specification

7-115

Index-26

IXBTree class, specification 7-29
IXBTreeCursor class, specification 7-34
IXComparator type 7-178
IXComparatorSetting protocol, specification 7-119
IXCompareBytesO 7-169
IXCompareDoubleO 7-170
IXCompareDoublesO 7-169
IXCompareFloatO 7-170
IX CompareFloatsO 7-169
IXCompareLongO 7-170
IXCompareLongsO 7-169
IXCompareMonocaseStringsO 7-172
IXCompareShortO 7-170
IXCompareShortsO 7-169
IXCompareStringAndUnsignedsO 7-171
IXCompareStringsO 7-172
IXCompareUnsignedAndStringsO 7-171
IXCompareUnsignedBytesO 7-169
IXCompareUnsignedLongO 7-170
IXCompareUnsignedLongsO 7-169
IXCompareUnsignedShortO 7-170
IXCompareUnsignedShortsO 7-169
IXComparisonSetting protocol, specification 7-121
IXCursorPositioning protocol, specification 7-124
IXFileDescriptionPboardType global 7-182
IXFileFinder class, specification 7-41
IXFileFinderConfiguration protocol, specification

7-130
IXFileFinderQuery AndUpdate protocol,

specification 7-135
IXFileRecord class, specification 7-48
IXFormatCo~paratorO 7-173
IXLanguageReader class, specification 7-53
IXLexemeExtraction protocol, specification 7-141
IXLockBTreeMutexO macro 7-174
IXN ameAndFileAccess protocol, specification 7-143
IXPosting type 7-178
IXPostingCursor class, specification 7-56
IXPostingExchange protocol, specification 7-149
IXPostingList class, specification 7-58
IXPostingOperations protocol, specification 7-150
IXPostingSet class, specification 7-66
IXReadObjectFromStoreO 7-174

IXRecordDiscarding protocol, specification 7-153
IXRecordManager class, specification 7-71
IXRecordReading protocol, specification 7-155
IXRecordTranscription protocol, specification 7 -156
IXRecordWriting protocol, specification 7-158
IXStore class, specification 7-81
IXStoreBlock class, specification 7-93
IXStoreDirectory class, specification 7-97
IXStoreErrorType type 7-179
IXStoreFile class, specification 7-102
IXStorePboardType global 7-182
IXTransientAccess protocol, specification 7-160
IXTransientMessaging protocol, specification 7-163
IXUnlockBTreeMutexO macro 7-174
IXWeightingDomain class, specification 7-106
IXWeightingType type 7-180
IXWriteRootObjectToStore() 7-174
IX_Absolute Weighting constant 7-180
IX_ALLBLOCKS constant 7-181
IX_ArgumentError constant 7 -179
IX_DamagedError constant 7-179
IX_DuplicateError constant 7-179
IX_FrequencyWeighting constant 7-180
IX_InternalError constant 7-179
IX_LockedError constant 7-179
IX_MachErrorBase constant 7-179
IX_MachineError constant 7-179
IX_MemoryError constant 7-179
IX_NoError constant 7-179
IX_N otFoundError constant 7-179
IX_NoWeighting constant 7-180
IX_PeculiarityWeighting constant 7-180
IX_Query AttrError constant 7-179
IX_Query EvalError constant 7:-179
IX_Query ImplError constant 7-179
IX_ QueryTypeError constant 7-179
IX_Query YaccError constant 7-179
IX_STOREMACHERRBASE constant 7-181
IX_STOREUNIXERRBASE constant 7-181
IX_STOREUSERERRBASE constant 7-181
IX_ TooLargeError constant 7-179
IX_UnixErrorBase constant 7-179
IX_ VersionError constant 7-179

- jobFeatures (Printlnfo) 2-576
- journalerDidEnd: (NXJoumaler) 2-486
- journalerDidUserAbort: (NXJoumaler) 2-487

keyboard
encoding vector C-1
event information C-1
key codes C-5

- keyDown: (NXBrowser) 2-328, (Panel) 2-545,
(Responder) 2-592, (Text) 2-698

- keyEquivalent (Button) 2-90, (ButtonCell) 2-109,
(Cell) 2-136

- keyLimit (lXBTree) 7-32
- keyUp: (Responder) 2-592
- keyWindow (Application) 2-45
- knobThickness (Slider) 2-632, (SliderCell) 2-644
- knowsPagesFirst:last: (N3DMovieCamera) 17-63,

(View) 2-786, (Window) 2-836 .

-language (NXSpellChecker) 2-513
-languageLevel (NXPrinter) 2-500
-lastColumn (NXBrowser) 2-328
-lastDescendant (N3DShape) 17-108
-lastError (NIDomain) 11-10,

(NXSoundDevice) 16-27,
(NXSoundStream) 16-45

-lastObject (List) 3-20
-lastPage (Printlnfo) 2-576
-lastPeer (N3DShape) 17-108
- lastRepresentation (NXImage) 2-460
-lastUpdateTime (NXDataLink) 2-396
-lastVisibleColumn (NXBrowser) 2-329
-launchApplication:

(NXWorkspaceRequestProtocol) 2-905
-launchApplication:showTile:autolaunch:

(NXWorkspaceRequestProtocol) 2-906
Layout class, specification 14-10
-layoutChanged: (DBTableView) 4-154
-lightList (N3DCamera) 17-27
-lineFromPosition: (Text) 2-698
- lineHeight (Text) 2-699
-linkAncestor: (N3DShape) 17-108
-linkDescendant: (N3DShape) 17-108

Index-27

-linkNumber (NXDataLink) 2-396
-linkPeer: (N3DShape) 17-109
List class, specification 3-15
-listConnectors:forDestination: (lBDocuments)

8-38
- IistConnectors:forDestination:filterClass:

(IBDocuments) 8-38
-listConnectors:forSource: (lBDocuments) 8-38
- IistConnectors:forSource:filterClass:

(IBDocuments) 8-39
Listener class, specification 2-226
-listener (NXJoumaler) 2-485
-listenPort (Listener) 2-233
-loadColumnZero (NXBrowser) 2-329
-ioadDefaultDataDictionary (DBDatabase) 4-62
-loadDomainBrowser (NIDomainPanel) 11-17
-loadDomainBrowserFrom: (NIDomainPanel)

11-17
- loadFromFile: (NXImage) 2-460
-loadFromStream: (NXImage) 2-460
-loadNibFile:owner: (Application) 2-45
-loadNibFile:owner:withNames: (Application)

2-45
-loadNibFile:owner:withNames:fromZone:

(Application) 2-46
-loadNibForLayout:owner: (Application

Additions) 14-9
-loadNibSection:owner: (Application) 2-46
-loadNibSection:owner:withNames: (Application)

2-47
- loadNibSection:owner:withN ames:fromHeader:

(Application) 2-48
-loadNibSection:owner:withNames:fromHeader:

fromZone: (Application) 2-49
- loadNibSection:owner:withN ames:fromZone:

(Application) 2-49
-localizedNameForColorNamed: (NXColorList)

2-357
+ localizedNameForTIFFCompressionType:

(NXBitmapImageRep) 2-299
-localObjects (NXConnection) 6-29

Index-28

-lock (NXConditionLock) 9-8,
(NXLock) 9-17, 9-33, (NXRecursiveLock) 9-27,
(NXSpinLock) 9-29

-lockFocus (N3DCamera) 17-27, (NXImage) 2-461,
(View) 2-787

-lockFocusOn: (NXImage) 2-462
-lockWhen: (NXConditionLock) 9-8
-loginStringForUser: (DBDatabase) 4-62
+ lookUpDevicePortOnHost: (NXSoundIn) 16-30,

(NXSoundOut) 16-34
+ lookUpPortWithName: (NXNetNameServer)

9-19
+ lookUpPortWithName:onHost:

(NXNetNameServer) 9-19

Mach Kit 9-3
- machPort (NXPort) 9-22
machportdevice operator 5-26
+ mainBundle (NXBundle) 3-27
- mainContext (N3DContextManager) 17-46
- mainMenu (Application) 2-50
- mainScreen (Application) 2-50
- main Window (Application) 2-50
- makeAmbientWithIntensity: (N3DLight) 17-54
- makeAssociationFrom:to: (DB FetchGroup) 4-80
- makeCeIlAt:: (Matrix) 2-262
- makeDistantFrom:to:intensity: (N3DLight)

17-54
- makeFirstResponder: (Window) 2-837
- makeKeyAndOrderFront: (Window) 2-837
- makeKeyWindow (Window) 2-837
- makeObjectsPerform: (List) 3-20
- makeObjectsPerform:with: (List) 3-20
- makePointFrom:intensity: (N3DLight) 17-55
- makeSelection Visible (NXSelectText) 2-895
- makeSelectionVisible: (IBEditors) 8-47
- makeSpotFrom:to:coneAngle:coneDelta:

beamDistribution:intensity: (N3DLight) 17-55
- make WindowsPerform:inOrder: (Application)

2-51
- manager (NXDataLink) 2-396
marg_getRefO macro 15-20
mar~getValueO macro 15-:-20

mar~list type 15-36
mar~setValueO macro 15-20
- masterJournaler (Application) 2-51
- matchesEntity: (DB Entities) 4-185
- matchesProperty: (DB Properties) 4-196
- matchesType: (DBTypes) 4-209
Matrix class, specification 2-244
- matrix (Font) 2-188
- matrixlnColumn: (NXBrowser) 2-329
- maximumRecordsPerFetch (DB Binder) 4-41
- maxSize (DBTableVectors) 4-202
- maxValue (Slider) 2-633, (SliderCell) 2-644,

(SoundMeter) 16-72
- maxVisibleColumns (NXBrowser) 2-329
MAX_NXSTRINGTABLE_LENGTH constant

3-109
Menu class, specification 2-282
MenuCell class, specification 2-291
+ menuZone (Menu) 2-284
- messageReceived: (Listener) 2-234
+ messagesReceived (NXConnection) 6-26
Methodtype 15-36
- methodFor: (Object) 1-29
method_getArgumentlnfoO 15-21
method_getNumberOfArgumentsO 15-21
method_getSizeOfArgumentsO 15-21
- metrics (Font) 2-188
MIDI driver 10-3
MIDIAlarmReplyFunction type 10-20
MIDIAwaitReplyO 10-11
MIDIBecomeOwnerO 10-12
MIDIClaimUnitO 10-12
MIDIClearQueueO 10-13
MIDIDataReplyFunction type 10-20
MIDIExceptionReplyFunction type 10-21
MIDIFlushQueueO 10-13
MIDIGetAvailableQueueSizeO 10-13
MIDIGetClockTimeO 10-16
MIDIGetMTCTimeO 10-16
MIDIHandleReplyO 10-11
MIDIQueueReplyFunction type 10-21
MIDIRawEvent type 10-21
MIDIReleaseOwnershipO 10-12

MIDIReleaseUnitO 10-12
MIDIReplyFunctions type 10-22
MIDIRequestAlarmO 10-14
MIDIRequestDataO 10-14
MIDIRequestExceptionsO 10-14
MIDIRequestQueueNotificationO 10-14
MIDISendDataO 10-15
MIDISetClockModeO 10-16
MIDISetClockQuantumO 10-16
MIDISetClockTimeO 10-16
MIDISetSystemIgnoresO 10-17
MIDIStartClockO 10-18
MIDIStopClockO 10-18
MIDI_ACTIVE constant 10-25
MIDI_ALLNOTESOFF constant 10-25
MIDI_BALANCE constant 10-27
MIDI_BALANCELSB constant 10-26
MIDI_BREATH constant 10-27
MIDI_BREATHLSB constant 10-26
MIDI_CHANMODE constant 10-25
MIDI_CHANPRES constant 10-25
MIDI_CHORUS DEPTH constant 10-23
MIDI_CLOCK constant 10-25
MIDI_CLOCK_MODE_INTERNAL constant 10-23
MIDI_CLOCK_MODE_MTC_SYNC constant

10-23
MIDI_CONTINUE constant 10-25
MIDI_CONTROL constant 10-25
MIDCDAMPER constant 10-27
MIDI_DATADECREMENT constant 10-23
MIDI_DATAENTRY constant 10-27
MIDI_DATAENTRYLSB constant 10-26
MIDI_DATAINCREMENT constant 10-23
MIDI_DEFAULTVELOCITY constant 10-25
MIDI_DETUNEDEPTH constant 10-23
MIDCEFFECTCONTROL1 constant 10-27
MIDI_EFFECTCONTROL2 constant 10-27
MIDI_EFFECTS 1 constant 10-23
MIDCEFFECTS2 constant 10-23
MIDI_EFFECTS3 constant 10-23
MIDI_EFFECTS4 constant 10-23
MIDI_EFFECTS5 constant 10-23
MIDI_EOX constant 10-25

Index-29

MIDI_ERROR_BAD_MODE constant 10-24
MIDI_ERROR_BUSY constant 10-24
MIDI_ERROR_ILLEGAL_ OPERATION constant

10-24
MIDI_ERROR_NOT_OWNER constant 10-24
MIDI_ERROR_ QUEUE_FULL constant 10-24
MIDI_ERROR_ UNIT_UNAVAILABLE constant

10-24
MIDI_ERROR_ UNKNOWN_ERROR constant

10-24
MIDI_EXCEPTION_MTC_STARTED_FORWARD

constant 10-24
MIDI_EXCEPTION_MTC_STARTED_REVERSE

constant 10-24
MIDI_EXCEPTION_MTC_STOPPED constant

10-24
MIDI_EXPRESSION constant 10-27
MIDI_EXPRESSIONLSB constant 10-26
MIDI_EXTERNALEFFECTSDEPTH constant

10-23
MIDI_FOOT constant 10-27
MIDI_FOOTLSB constant 10-26
MIDI_HOLD2 constant 10-27
MIDI_IGNORE_ACTIVE constant 10-26
MIDI_IGNORE_CLOCK constant 10-26
MIDI_IGNORE_CONTINUE constant 10-26
MIDI_IGNORE_REAL_TIME constant 10-26
MIDI_IGNORE_RESET constant 10-26
MIDI_IGNORE_START constant 10-26
MIDI_IGNORE_STOP constant 10-26
MIDI_LOCALCONTROL constant 10-25
MIDI_MAINVOLUME constant 10-27
MIDI_MAINVOLUMELSB constant 10-26
MIDI_MAX_EVENT constant 10-24
MIDI_MAX_MSG_SIZE constant 10-24
MIDCMAXCHAN constant 10-25
MIDI_MAXDATA constant 10-25
MIDI_MODWHEEL constant 10-27
MIDI_MODWHEELLSB constant 10-26
MIDI_MONO constant 10-25
MIDCNO_TIMEOUT constant 10-27
MIDI_NOTEOFF constant 10-25
MIDI_NOTEON constant 10-25

Index-30

MIDI_NUMCHANS constant 10-25
MIDI_NUMKEYS constant 10-25
MIDI_OMNIOFF constant 10-25
MIDI_OMNION constant 10-25
MIDI_PAN constant 10-27
MIDI_PANLSB constant 10-26
MIDI_PHASERDEPTH constant 10-23
MIDI_PITCH constant 10-25
MIDI_POLY constant 10-25
MIDI_POLYPRES constant 10-25
MIDI_PORT_A_UNIT constant 10-28
MIDI_PORT_B_UNIT constant 10-28
MIDI_PORTAMENTO constant 10-27
MIDI_PORTAMENTOTIME constant 10-27
MIDI_PORTAMENTOTIMELSB constant 10-26
MIDI_PROGRAM constant 10-25
MIDI_RESET constant 10-25
MIDI_RESETCONTROLLERS constant 10-25
MIDI_SOFTPEDAL constant 10-27
MIDI_SONGPOS constant 10-25
MIDI_SONGSEL constant 10-25
MIDI_SOSTENUTO constant 10-27
MIDI_START constant 10-25
MIDI_STATUSBIT constant 10-27
MIDI_STATUSMASK constant 10-27
MIDI_STOP constant 10-25
MIDI_SYSEXCL constant 10-25'
MIDI_SYSRTBIT constant 10-27
MIDI_SYSTEM constant 10-25
MIDI_TIMECODEQUARTER constant 10-25
MIDI_TREMELODEPTH constant 10-23
MIDI_TUNEREQ constant 10-25
MIDI_ZEROBEND constant 10-25
- minColumnWidth (NXBrowser) 2-330
+ minFrameWidth:forStyle:buttonMask:

(Window) 2-812
- miniaturize: (Window) 2-837
- miniaturizeAII: (Application) 2-51
- minimumWeight (IXAttributeParser) 7-15
- miniwindowlcon (Window) 2-838
- miniwindowlmage (Window) 2-838
- miniwindowTitle (Window) 2-838
- minSize (DBTableVectors) 4-202

- min Value (Slider) 2-633, (SliderCell) 2-644,
(SoundMeter) 16-72

- mode (DBTableView) 4-154, (Matrix) 2-262,
(NXColorPanel) 2-366

- modifyFont: (FontManager) 2-199
- modifyFontViaPanel: (FontManager) 2-199
- module (DBFetchGroup) 4-81
Module type 15-36
- moduleDidSave: (DB Module) 4-104
- moduleWiIILoseChanges: (DB Module) 4-104
- moduleWiIISave: (DB Module) 4-104
- mounted: (Application) 2-51
- mouse:inRect: (View) 2-787
- mouseDown: (Control) 2-170, (Matrix) 2-262,

(Menu) 2-287, (NXBrowser) 2-330,
(NXColorWell) 2-377, (NXSplitView) 2-526,
(Responder) 2-592, (Scroller) 2-613,
(Slider) 2-633, (SoundView) 16-83, (Text) 2-699,
(TextField) 2-741

- mouseDownFlags (Cell) 2-136, (Control) 2-170,
(Matrix) 2-263

- mouseDragged: (Responder) 2-592
- mouseEntered: (NXCursor) 2-383,

(Responder) 2-592
- mouseExited: (NXCursor) 2-383,

(Responder) 2-592
- mouseMoved: (Responder) 2-592
- mouseUp: (Responder) 2-593
-moveBy:: (N3DCamera) 17-28, (View) 2-787
- moveCaret: (Text) 2-699
- moveColumnFrom:to: (DBTableView) 4-154
- moveEyeBy::: (N3DCamera) 17-28
- moveRecordAt:to: (DBRecordList) 4-119
- moveRowFrom:to: (DBTableView) 4-155
-moveTo:: (ClipView) 2-155, (N3DCamera) 17-28,

(Text) 2-699, (View) 2-788, (Window) 2-838
- moveTo::screen: (Window) 2-839
- moveTopLeftTo:: (Meriu) 2-287, (Window) 2-839
- moveTopLeftTo: : screen: . (Window) 2-839
movewindow operator 5-29
- msgCalc: (Listener) 2-234, (Speaker) 2-656
- msgCopyAsType:ok: (Listener) 2-234,

(Speaker) 2-657

- msgCutAsType:ok: (Listener) 2-234,
(Speaker) 2-657

- msgDirectory:ok: (Listener) 2-235,
(Speaker) 2-657

- msgFile:ok: (Listener) 2-235, (Speaker) 2-657
- msgPaste: (Listener) 2-235, (Speaker) 2-657
- msgPosition:posType:ok: (Listener) 2-235,

(Speaker) 2-658
- msgPrint:ok: (Listener) 2-236, (Speaker) 2-658
- msgQuit: (Listener) 2-236, (Speaker) 2-658
- msgSelection:length:asType:ok: (Listener) 2-236,

(Speaker) 2-658
- msgSetPosition:posType:andSelect:ok:

(Listener) 2-237, (Speaker) 2-659
- msgVersion:ok: (Listener) 2-238, (Speaker) 2-659

N3DAxis type 17-131
N3DCamera class, specification 17-12
N3DContextManager class, specification 17-42
N3DHider type 17-131
N3DldentityMatrix global 17-135
N3DlntersectLinePIaneO 17-123
N3DlnvertMatrixO 17-124
N3DLight class, specification 17-48
N3DLightType type 17-130
N3DMovieCamera class, specification 17-60
N3DMult3DPointO 17-125
N3DMult3DPointsO 17-125
N3DMuitiplyMatrixO 17-124
N3DOrigin global 17-135
N3DProjectionType type 17-130
N3DRenderPanel class, specification 17-66
N3DRIBlmageRep class, specification 17-70
N3DRIBPboardType global 17-135
N3DRotator class, specification 17-77
N3DShader class, specification 17-83
N3DShape class, specification 17-94
N3DShapeName type 17-132
N3DSurfaceType type 17-132
N3D_BOTH_CLEAN constant 17-134
N3D _ ConvertBoundToPointsO macro 17-126
N3D _ ConvertPointsToBoundO macro 17-126
N3D_CopyBoundO macro 17-126

Index-31

N3D_CopyMatrixO macro 17-126
N3D_CopyPointO macro 17-126
N3D_CTM_BOTH_DIRTY constant 17-134
N3D_CTM_DIRTY constant 17-134
N3D _ CTM_INVERSE_DIRTY constant 17-134
N3D_WCompO macro 17-127
N3D_XCompO macro 17-127
N3D _ YCompO macro 17-127
N3D_ZCompO macro 17-127
+ name (Object) 1-15
- name (DBDatabase) 4-62, (DB Entities) 4-185,

(DBFetchGroup) 4-81, (DBProperties) 4-196,
(DB Qualifier) 4-110, (Font) 2-188,
(NXColorList) 2-357, (NXlmage) 2-462,
(NXPrinter) 2-500, (Object) 1-31,
(Pasteboard) 2-555, (Protocol) 15-11,
(Sound) 16-59

- nameOfColorAt: (NXColorList) 2-358
NBITSCHAR constant 2-1015
NBITSINT constant 2-1015
- needsCompacting (Sound) 16-60
- needsDisplay (View) 2-788
- nestingLevel (IXStore) 7-90
NetInfo Kit 11-3
NetWare 12-3
+ new (Application) 2-32, (FontManager) 2-194,

(FontPanel) 2-205, (N3DContextManager) 17-43,
(N3DRenderPanel) 17-67,
(NIDomainPanel) 11-15, (NILoginPanel) 11-21,
(NIOpenPanel) 11-25, (NISavePanel) 11-30,
(NXDataLinkPanel) 2-416~ (NXHelpPanel) 2-435,
(NXPort) 9-21, (Object) 1-15, (OpenPanel) 2-531,
(PageLayout) 2-537, (Pasteboard) 2-551,
(PrintPanel) 2-586, (WMlnspector) 19-14

+ newByFilteringData:oIType: (Pasteboard) 2-551
+ newByFilteringFile: (Pasteboard) 2-552
+ newByFilteringTypeslnPasteboard: (Pasteboard)

2-552
+ newContent:style: backing: buttonMask:defer:

(FontPanel) 2-206, (NXDataLinkPanel) 2-416,
(OpenPanel) 2-531, (PageLayout) 2-537,
(PrintPanel) 2-586, (SavePanel) 2-601

+ newFont:size: (Font) 2-183

Index-32

+ newFont:size:matrix: (Font) 2-183
+ newFont:size:style:matrix: (Font) 2-183
+ newForDirectory: (NXHelpPanel) 2-435
+ newForName: (NXPrinter) 2-495
+ newForName:host: (NXPrinter) 2-495
+ newForName:host:domain:inciudeUnavaiiable:

(NXPrinter) 2-496
+ newForType: (NXPrinter) 2-496
+ newFromMachPort: (NXPort) 9-21
+ newFromMachPort:dealloc: (NXPort) 9-21
newinstance operator 5-30
+ newListFromFile: (NXBitmaplmageRep) 2-299,

(NXEPSlmageRep) 2-420
+ newListFromFile:zone:

(NXBitmaplmageRep) 2-299,
(NXEPSlmageRep) 2-420

+ newListFromSection:
(NXBitmaplmageRep) 2-300,
(NXEPSlmageRep) 2-421

+ newListFromSection:zone:
(NXBitmaplmageRep) 2-300,
(NXEPSlmageRep) 2-421

+ newListFromStream:
(NXBitmaplmageRep) 2-300,
(NXEPSlmageRep) 2-421

+ newListFromStream:zone:
(NXBitmaplmageRep) 2-301,
(NXEPSlmageRep) 2-422

+ newName: (Pasteboard) 2-552
- newRecord (DBRecordList) 4-119,

(DBRecordStream) 4-130
- newRemote:withProtocol: (NXConnection) 6-29
+ newUnique (Pasteboard) 2-553
- nextLinkUsing: (NXDataLinkManager) 2-407
- nextPeer (N3DShape) 17-109
- nextRecord: (DB Module) 4-102
nextrelease operator 5-30
- nextResponder (Responder) 2-593
- nextState:key:value: (HashTable) 3-14
NextStepEncoding operator 5-30
- nextText (TextField) 2-741
- niblnstantiate (IBConnectors) 8-30
NIDomain class, specification 11-6

NIDomainCellData structure 11-37
NIDomainPanel class, specification 11-13
NIFillDomainHierarchyO 11-34
NIHierarchyOfDomains structure 11-37
nil constant 1-44
NILoginPanel class, specification 11-20
NIMultiDomainList structure 11-38
NIOpenPanel class, specification 11-24
NISavePanel class, specification 11-29
NI_ALREADYCONNECTED constant 11-36
NI_NETINFOTESTMODE constant 11-36
NI_NOTCONNECTED constant 11-36
NI_USERTESTMODE constant 11-36
-:- noResponderFor: (Responder) 2-593
- note (NXPrinter) 2-500
- notify AncestorWhenFrameChanged: (View)

2-788
- notifyTolnitGState: (View) 2-788
- notifyWhenFlipped: (View) 2-789
- notlmplemented: (Object) 1-31
Novell NetWare 12-3
- numColors (NXlmageRep) 2-479
- numCropWindows (N3DCamera) 17-29,

(N3DMovieCamera) 17-64
- numlnputs (NXLiveVideoView) 18-16
-numPlanes (NXBitmaplmageRep) 2-310
- numSelectedHosts (N3DRenderPanel) 17-68
- numVisibleColumns (NXBrowser) 2-330
NXAcknowledge type 2-980
NXAllocErrorDataO 3-44
NXAllWindowsRetained default parameter B-2
NXAlphaComponentO 2-962
NXApp global 2-1043
NXAppkitErrorTokens type 2-980
NXApplicationFileType global 2-1044
NXArgc global 3-110
NXArgv global 3-110
NXarrow bitmap D-4
NXAsciiPboardType global 2-1046, A-2
NXAtEOSO macro 3-87
NXAtom type 3-104
NXAttachPop UpListO 2-912
NXAutolaunch default parameter B-7

NXBeepO 2-912
NXBeginTimerO 2-913
NXBitmaplmageRep class, specification 2-295
NXBlackComponentO 2-962
NXBlueComponentO 2-962
NXBoldSystemFonts default parameter B-9
NXBPSFromDepthO 2-919
NXBreakArray type 2-982
NXBrightnessComponentO 2-962
NXBrowser class, specification 2-314
NXBrowserCell class, specification 2-345
NXBundle class, specification 3-23
NXCachedlmageRep class, specification 2-350
NXCBreakTable global 2-1043
NXCBreakTableSize global 2-1043
NXCCharCatTable global 2-1043
NXCClickTable global 2-1044
NXCClickTableSize global 2-1044
NXChangeAlphaComponentO 2-914
NXChangeBlackComponentO 2-914
NXChangeBlueComponentO 2-914
NXChangeBrightnessComponentO 2-914
NXChangeBufferO 3-89
NXChangeCyanComponentO 2-914
NXChangeGrayComponentO 2-914
NXChangeGreenComponentO 2-914
NXChangeHueComponentO 2-914
NXChangeMagentaComponentO 2-914
NXChangeRedComponentO 2-914
NXChangeSaturationComponentO 2-914
NXChangeSpelling protocol, specification 2-866
NXChangeYellowComponentO 2-914
NXCharArray type 2-983
NXCharFilterFunc type 2-983
NXCharMetrics type 2-984
NXChunk type 2-984
NXChunkCopyO 2-916
NXChunkGrowO 2-916
NXChunkMallocO 2-916
NXChunkReallocO 2-916
NXChunkZoneCopyO 2-916
NXChunkZoneGrowO 2-916
NXChunkZoneMallocO 2-916

Index-33

NXChunkZoneReaIlocO 2-916
NXClickForHelpEnabled default parameter B-13
NXCloseO 3-45
NXCloseMemoryO 3-66
NXCloseTypedStreamO 3-68
NXColorCalibrateLevelOneOps default parameter

B-13
NXColorList class, specification 2-353
NXColorListNameO 2-918
NXColorNameO 2-918
NXColorPanel class, specification 2-360
NXColorPboardType global 2-1046
NXColorPicker class, specification 2-369
NXColorPickingCustom protocol, specification

2-867
NXColorPickingDefault protocol, specification 2-870
NXColorSpace type 2-985
NXColorSpaceFromDepthO 2-919
NXColorWell class, specification 2-373
NXCompareHashTablesO 3-46
NXCompleteFilenameO 2-921
NXCompositeChar type 2-985
NXCompositeCharPart type 2-986
NXConditionLock class, specification 9-6
NXConnection class, specification 6-20
NXContainsRectO 2-947
NXConvertCMYKAToCoiorO 2-924
NXConvertCMYKToCoiorO 2-924
NXConvertCoiorToCMYKO 2-922
NXConvertColorToCMYKAO 2-922
NXConvertColorToGrayO 2-922
NXConvertColorToGray AlphaO 2-922
NXConvertColorToHSBO 2-922
NXConvertCoiorToHSBAO 2-922
NXConvertColorToRGBO 2-922
NXConvertCoiorToRGBAO 2-922
NXConvertGlobalTo WinNumO 2-925
NXConvertGray AlphaToColorO 2-924
NXConvertGrayToColorO 2-924
NXConvertHSBAToCoiorO 2-924
NXConvertHSBToColorO 2-924
NXConvertRGBAToCoiorO 2-924
NXConvertRGBToColorO 2-924

Index-34

NXConvertWinNumToGlobalO 2-925
NXCoord type 5-98
NXCopyBitmapFromGstateO 2-926
NXCopyBitsO 2-926
NXCopyCurrentGStateO 2-968
NXCopyHashTableO 3-46
NXCopylnputDataO 2-926
NXCopyOutputDataO 2-926
NXCopyStringBufferO 3-96
NXCopyStringBufferFromZoneO 3-96
NXCountHashTableO 3-56
NXCountWindowsO 2-928
NXCreateChildZoneO 3-49
NXCreateFileContentsPboardTypeO 2-929
NXCreateFilenamePboardTypeO 2-929
NXCreateHashTableO 3-46
NXCreateHashTableFromZoneO 3-46
NXCreatePopUpListButtonO 2-912
NXCreateZoneO 3-49
NXCSmartLeftChars global 2-1048
NXCSmartRightChars global 2-1048
NXCursor class, specification 2-380
NXCustomlmageRep class, specification 2-387
NXCyanComponentO 2-962
NXData class, specification 9-9
NXDataLink class, specification 2-390
NXDataLinkDisposition type 2-986
NXDataLinkFilenameExtension global 2-1045
NXDataLinkManager class, specification 2-401
NXDataLinkNumber type 2-987
NXDataLinkPanel class, specification 2-414
NXDataLinkPboardType global 2-1046
NXDataLinkUpdateMode type 2-987
NXDate default parameter B-6
NXDateAndTime default parameter B-6
NXDebugLanguage default parameter B-3
NXDecoding protocol, specification 6-42
NXdefaultappicon bitmap D-3
NXDefaultExceptionRaiserO 3-51
NXdefaulticon bitmap D-3
NXDefaultMallocZoneO 3-49
NXDefaultReadO 3-89
NXDefaultStringOrderTableO 2-949

NXDefaults Vector type 3-104
NXDefaultTopLevelErrorHandlerO 2-930
NXDefaultWriteO 3-89
NXDefeatObjectLinkTimeouts default parameter B-3
NXDestroyZoneO macro 3-49
NXDirectoryFileType global 2-1044
NXDivideRectO 2-968
NXDraggingDestination protocol, specification 2-875
NXDragginglnfo protocol, specification 2-879
NXDraggingSource protocol, specification 2-883
NXDragOperation type 2-988
NXDragPboard global 2-1045
NXDraw ALineO 2-966
NXDrawBitmapO 2-931
NXDrawButtonO 2-936
NXDrawGrayBezelO 2-936
NXDrawGrooveO 2-936
NXDrawingStatus global 2-1048
NXDrawTiledRectsO 2-936
NXDrawWhiteBezelO 2-936
NXEditorFilterO 2-939
NXEmptyHashTableO 3-46
NXEmptyRectO 2-947
NXEncodedLigature type 2-989
NXEncoding protocol, specification 6-44
NXEndOITypedStreamO 3-52
NXEndTimerO 2-913
NXEnglishBreakTable global 2-1043
NXEnglishBreakTableSize global 2-1043
NXEnglishCharCatTable global 2-1043
NXEnglishClickTable global 2-1044
NXEnglishClickTableSize global 2-1044
NXEnglishNoBreakTable global 2-1043
NXEnglishN oBreakTableSize global 2-1043
NXEnglishSmartLeftChars global 2-1048
NXEnglishSmartRightChars global 2-1048
NXEPSlmageRep class, specification 2-419
NXEqualColorO 2-938
NXEqualRectO 2-947
NXEraseRectO 2-960
NXErrorReporter type 2-989
NXEvent type 5-99
NXEventData type 5-100

NXExceptionRaiser type 3-105
NXFacelnfo type 2-990
NXFieldFilterO 2-939
NXFileContentsPboardType global 2-1046
NXFilenamePboardType global 2-1046, A-4
NXFilePathSearchO 3-53
NXFilesystemFileType global 2-1044
NXFillO 3-89
NXFindColorNamedO 2-918
NXFindPaperSizeO 2-940
NXFindPboard global 2-1045
NXFlushO 3-53
NXFlushTypedStreamO 3-54
NXFontMetrics type 2-990
NXFontPboard global 2-1045
NXFontPboardType global 2-1046, A-5
NXFontsPaths default parameter B-ll
NXFontTraitMask type 2-993
NXFrameLinkRectO 2-941
NXFrameRectO 2-936
NXFrameRectWith WidthO 2-936
NXFreeAlertPanelO 2-965
NXFreeHashTableO 3-46
NXFreeObjectBufferO 3-76
NXFSM type 2-993
NXGeneralPboard global 2-1045
NXGetAlertPanelO 2-965
NXGetBestDepthO 2-919
NXGetcO macro 3-70
NXGetDefaultValueO 3-81
NXGetExceptionRaiserO 3-51
NXGetFileTypeO 2-929
NXGetFileTypesO 2-929
NXGetMemoryBufferO 3-66
NXGetNamedObjectO 2-942
NXGetObjectNameO 2-942
NXGetOrPeekEventO 2-943
NXGetTempFilenameO 3-55
NXGetTypedStreamZoneO 3-55
NXGetUncaughtExceptionHandlerO macro 3-88
NXGetWindowServerMemoryO 2-944
NXGrayComponentO 2-962
NXGreenComponentO 2-962

Index-35

NXHandler type 3 -1 05
NXHashGetO 3-56
NXHashlnsertO 3-56
NXHashlnsertIfAbsentO 3-56
NXHashMemberO 3-56
NXHashRemoveO 3-56
NXHashState type 3-106
NXHashTable type 3-106
NXHashTablePrototype type 3-107
NXHeightChange type 2-994
NXHeightInfo type 2-994
NXHelpPanel class, specification 2-426
NXHighlightRectO 2-960
NXHomeDirectoryO 2-945
NXHost default parameter B-ll
NXHueComponentO 2-962
NXibeam bitmap D-4
NXIgnoreMisspelledWords protocol, specification

2-885
NXImage class, specification 2-438
NXImageRep class, specification 2-473
NXlnitHashStateO 3-56
NXlnsetRectO 2-968
NXlntegralRectO 2-968
NXlntersectionRectO 2-972
NXlntersectsRectO 2-947
NXInvalidationNotifier class, specification 9-12
NXIsAINumO 3-59
NXIsAlphaO 3-59
NXIsAsciiO 3-59
NXIsCntrlO 3-59
NXIsDigitO 3-59
NXIsGraphO 3-59
NXIsJournalable default parameter B-ll
NXIsLowerO 3-59
NXIsPrintO 3-59
NXIsPunctO 3-59
NXIsServicesMenultemEnabledO 2-970
NXIsSpaceO 3-59
NXIsUpperO 3-59
NXIsXDigitO 3-59
NXJoumaler class, specification 2-482
NXJoumalHeader type 2-995

Index-36

NXJournalMouseO 2-946
NXKemPair type 2-995
NXKemXPair type 2-996
NXLanguages default parameter B-7
NXLay type 2-996
NXLay Array type 2-997
NXLayFlags type 2-997
NXLayInfo type 2-998
NXLigature type 2-999
NXLineDesc type 2-1000
NXLinkButton bitmap D-3
NXLinkButtonH bitmap D-3
NXLinkEnumerationState type 2-1000
NXLinkFrameThicknessO 2-941
NXLive Video View class, specification 18-6
NXLoadLocalizedStringFromTablelnBundleO

3-61
NXLocalizedStringO macro 3-61
NXLocalizedStringFromTableO macro 3-61
NXLocalizedStringFromTablelnBundleO macro

3-61
NXLock class, specification 9-16
NXLock protocol, specification 9-32
NXLogErrorO 2-947
NXMachKitException type 9-38
NXMagentaComponentO 2-962
NXMallocCheckO 3-64
NXMallocDebug default parameter B-3
NXMapFileO 3-66
NXMeasurementUnit default parameter B-9
NXMeasurementUnit type 2-1000
NXmenuArrow bitmap D-2
NXmenuArrowH bitmap D-2
NXMergeZoneO 3-49
NXMessage type 2-1001
NXModalSession type 2-1001
NXMouselnRectO 2-947
NXNameObjectO 2-942
NXNameZoneO 3-64
NXN etN ameServer class, specification 9-18
NXNetTimeout default parameter B-12
NXNextHashStateO 3-56
NXNibNotification protocol, specification 2-887

NXNoEffectFreeO 3-46
NXNullObject global 2-1045
NXNumberOfColorComponentsO 2-919
NXObjectLinkUpdateMode default parameter B-12
NXOffsetRectO 2-968
NXOpen default parameter B-8
NXOpenFileO 3-65
NXOpenMemoryO 3-66
NXOpenPortO 3-65
NXOpenTemp default parameter B-8
NXOpenTypedStreamO 3-68
NXOpenTypedStreamForFileO 3-68
NXOrderStringsO 2-949
NXPaperType default parameter B-I0
NXParagraphProp type 2-1002
NXParam Value type 2-1002
NXPerformServiceO 2-950
NXPhone class, specification 13-16
NXPhoneCall class, specification 13-21
NXPhoneCallState type 13-41
NXPhoneCallType type 13-41
NXPhoneChannel class, specification 13-32
NXPhoneChannelType type 13-42
NXPhoneDeviceType type 13-42
NXPhoneError type 13-43
NXPhoneErrorStringO 13-38
NXPingO 2-951
NXPlainFileType global 2-1044
NXPlayStream class, specification 16-6
NXPoint type 5-101
NXPointInRectO 2-947
NXPort class, specification 9-20
NXPortFromNameO 2-954
NXPortNameLookupO 2-954
NXPostScriptPboardType global 2-1046, A -2
NXPrinter class, specification 2-488
NXPrintfO 3-70
NXPrinting U serInterface protocol, specification

2-889
NXProcessID global 2-1047
NXProtocolChecker class, specification 9-23
NXProxy class, specification 6-34
NXPSDebug default parameter B-3

NXPtrHashO 3-46
NXPtrIsEqualO 3-46
NXPtrPrototype global 3-110
NXPtrStructKeyPrototype global 3-110
NXPutcO macro 3-70
NXradio bitmap D-l
NXradioH bitmap D-l
NXReadO macro 3-71
NXReadArrayO 3-72
NXReadBitmapO 2-931
NXReadColorO 2-956
NXReadColorFromPasteboardO 2-957
NXReadDefaultO 3-81
NXReadObjectO 3-73
NXReadObjectFromBufferO 3-76
NXReadObjectFromBufferWithZoneO 3-76
NXReadOnlyTextStream protocol, specification

2-891
NXReadPixelO 2-957
NXReadPointO 2-958
NXReadRectO 2-958
NXReadSizeO 2-958
NXReadTypeO 3-78
NXReadTypesO 3-78
NXReadWordTableO 2-959
NXReallyFreeO 3-46
NXRecordStream class, specification 16-13
NXRect type 2-1003
NXRectClipO 2-960
NXRectClipListO 2-960
NXRectFiIlO 2-960
NXRectFillListO 2-960
NXRectFiIlListWithGraysO 2-960
NXRecursiveLock class, specification 9-26
NXRedComponentO 2-962
NXReference protocol, specification 9-34
NXRegisterDefaultsO 3-81
NXRegisterErrorReporterO 2-963
NXRegisterPrintfProcO 3-86
NXRemoteException type 6-50
NXRemoteMethod type 2-1003
NXRemoteMethodFromSelO 2-964
NXRemoveDefaultO 3-81

Index-37

NXRemoveErrorReporterO 2-963
NXReportErrorO 2-963
NXResetErrorDataO 3-44
NXResetHashTableO 3-46
NXResetUserAbortO 2-973
NXResponse type 2-1003
NXResponsibleDelegateO 2-964
NXreturnSign bitmap D-2
NXRTFDError type 2-1004
NXRTFDErrorHandler protocol, specification 2-894
NXRTFPboardType gl~al 2-1046, A-4
NXRulerPboard global 2-1045
NXRulerPboardType global 2-1046, A-6
NXRun type 2-1005
NXRunAlertPanelO 2-965
NXRunArray type 2-1006
NXRunFlags type 2-1006
NXRunLocalizedAlertPanelO 2-965
NXSaturationComponentO 2-962
NXSave2.0Compatibly default parameter B-14
NXSaveToFileO 3-66
NXScanALineO 2-966
NXScanfO 3-70
NXScreen type 2-1007
NXScreenDump global 2-1047
NXscrollDown bitmap D-2
NXscrollDownH bitmap D-2
NXscrollLeft bitmap D-2
NXscrollLeftH bitmap D-2
NXscrollMenuDown bitmap D-3
NXscrollMenuDownD bitmap D-3
NXscrollMenuDownH bitmap D-3
NXscrollMenuLeft bitmap D-3
NXscrollMenuLeftD bitmap D-3
NXscrollMenuLeftH bitmap D-3
NXscrollMenuRight bitmap D-3
NXscrollMenuRightD bitmap D-3
NXscrollMenuRightH bitmap D-3
NXscrollMenuUpD bitmap D-3
NXscrollMenuUpH bitmap D-3
NXscrollRight bitmap D-2
NXscrollRightH bitmap D-2
NXscrollUp bitmap D-2

Index-3S

NXscrollUpH bitmap D-2
NXSeekO 3-87
NXSelection class, specification 2-503
NXSelectionPboardType global 2-1047
NXSelectText protocol, specification 2-895
NXSelPt type 2-1007
NXSenderIslnvalid protocol, specification 9-36
NXServiceLaunch default parameter B-8
NXServicesRequests protocol, specification 2-897
NXSetCoiorO 2-967
NXSetDefaultO 3-81
NXSetDefaultsUserO 3-81
NXSetExceptionRaiserO 3-51
NXSetGState() 2-968
NXSetRectO 2-968
NXSetServicesMenultemEnabledO 2-970
NXSetTopLevelErrorHandlerO 2-930
NXSetTypedStreamZoneO 3-55
NXSetUncaughtExceptionHandlerO macro 3-88
NXShellCommandFileType global 2-1044
NXShow AllWindows default parameter B-4
NXShowPS default parameter B-4
NXSize type 5-101
NXSizeBitmapO 2-931
NXSoundDevice class, specification 16-16
NXSoundDeviceError type 16-158
NXSoundln class, specification 16-30
NXSoundOut class, specification 16-31
NXSoundPboardType global 16-172, A-4
NXSoundStatus type 16-159
NXSoundStream class, specification 16-39
NXSoundStreamTime type 16-159
NXSOUNDSTREAM_TIME_NULL constant

16-168
NXSpellChecker class, specification 2-508
NXSpellCheckMode type 2-1008
NXSpellServer class, specification 2-516
NXSpinLock class, specification 9-28
NXSplitView class, specification 2-523
NXsquare16 bitmap D-l
NXsquare16H bitmap D-l
NXStreamCreateO 3-89
NXStreamCreateFromZoneO 3-89

NXStreamDestroyO 3-89
NXStreamSeekMode type 2-1008
NXStrHashO 3-46
NXStringOrderTable type 2-1009
NXStringTable class, specification 3-31
NXStrIsEqualO 3-46
NXStrPrototype global 3-110
NXStrStructKey Prototype global 3-110
NXswitch bitmap D-l
NXswitchH bitmap D-l
NXSyncPS default parameter B-4
NXSystemDomainName global 2-1044
NXSystemFonts default parameter B-I0
NXTabStop type 2-1009
NXTabularTextPboardType global 2-1046, A-4
NXTellO 3-87
NXTextBlock type 2-1010
NXTextCache type 2-1010
NXTextFilterFunc type 2-1011
NXTextFontlnfoO 2-971
NXTextFunc type 2-1011
NXTextStyle type 2-1012
NXTIFFPboardType global 2-1046, A-2
NXTime default parameter B-7
NXToAsciiO 3-91
NXToLowerO 3-91
NXTopLevelErrorHandler type 2-1012
NXTopLevelErrorHandlerO 2-930
NXToUpperO 3-91
NXTraceEvents default parameter B-4
NXTrackingTimer type 2-1013
NXTrackKern type 2-1013
NXTransport protocol, specification 6-46
NXTypedStreamClassVersionO 3-93
NXUncaughtExceptionHandler type 3-107
NXUngetcO 3-70
NXUnionRectO 2-972
NXUniqueStringO 3-96
NXUniqueStringNoCopyO 3-96
NXUniqueStringWithLengthO 3-96
NXUnnameObjectO 2-942
NXUpdateDefaultO 3-81
NXUpdateDefaultsO 3-81

NXUpdateDynamicServicesO 2-973
NXUseCalibratedColor default parameter B-14
NXUserAbortedO 2-973
NXUserNameO 2-945
NXUseTrueGrays default parameter B-12
NXVPrintfO 3-70
NXVScanfO 3-70
NXWidthArray type 2-1014
NXWindow Depth type 2-1014
NXWindowDepthLimit default parameter B-5
NXWindowListO 2-928
NXWorkspaceName global 2-1048
NXWorkspaceReplyName global 2-1048
NXWorkspaceRequestProtocol protocol, specification

2-899
NXWriteO macro 3-71
NXWriteArrayO 3-72
NXWriteColorO 2-956
NXWriteColorToPasteboardO 2-957
NXWriteDefaultO 3-81
NXWriteDefaultsO 3-81
NXWriteObjectO 3-73
NXWriteObjectReferenceO 3-73
NXWritePointO 2-958
NXWriteRectO 2-958
NXWriteRootObjectO 3-73
NXWriteRootObjectToBufferO 3-76
NXWriteSizeO 2-958
NXWriteTypeO 3-78
NXWriteTypesO 3-78
NXWriteWordTableO 2-959
NXYellowComponentO 2-962
NXZone type 3-108
NXZoneCallocO 3-98
NXZoneFreeO macro 3-98
NXZoneFromPtrO 3-49
NXZoneMallocO macro 3-98
NXZonePtrlnfoO 3-64
NXZoneReallocO macro 3-98
NX_abortModal constant 2-980
NX_abortPrinting constant 2-980
NX_ABOVE constant 5-107
NX_ABOVEBOTTOM constant 2;.1016

Index-39

NX_ABOVETOP constant 2-1016
NX_ACKNOWLEDGE constant 2-1029
NX,-ADDRESSO macro 3-99
NX_ADDTAB constant 2-1002
NX_ADDTRAIT constant 2-1023
NX_ALERTALTERNATE constant 2-1034
NX_ALERTDEFAULT constant 2-1034
NX_ALERTERROR constant 2-1034
NX_ALERTOTHER constant 2-1034
NX_ALLEVENTS constant 5-104
NX_ALLMODESMASK constant 2-1019
NX_ALPHASHIFTMASK constant 5-106
NX_ALTERNATEMASK constant 5-106
NX_AnyISDNChannel constant 13-42
NX_ANYTYPE constant 2-1018
NX_APP _ERROR_BASE constant 2-1020
NX_APPACT constant 2-1021
NX_APPDEACT constant 2-1021
NX_APPDEFINED constant 5-104
NX_APPDEFINEDMASK constant 5-105
NX_APPICONWINDOW constant 2-1028
NX_APPKIT _ERROR_BASE constant 2-1020
NX_appkitVMError constant 2-981
NX_APPPOSTYPE constant 2-1029
NX_ASCENDINGORDER constant 2-1032
NX_ASCIISET constant 5-102
NX_ASSERTO macro 2-974
NX_ATBOTTOM constant 2-1016
NX_ATTOP constant 2-1016
NX_AUTOPAGINATION constant 2-1033
NX_BIChannel constant 13-42
NX_B2Channel constant 13-42
NX_BACKSPACE constant 2-1038
NX_BACKTAB constant 2-1038
NX_badBitmapParams constant 2-981
NX_badRtfColorTable constant 2-981
NX_badRtfDirective constant 2-981
NX_badRttFontTable constant 2-981
NX_badRtfStyleSheet constant 2-981
NX_BASETHRESHOLD constant 2-1021
NX_BEGINMODE constant 2-1019
NX_BELOW constant 5-107
NX_BELOWBOTTOM constant 2-1016

Index-40

NX_BELOWTOP constant 2-1016
NX_BEZEL constant 2-1015
NX_BLACK constant 2-1025
NX_BOLD constant 2-1024
NX_BTAB constant 2-1038
NX_BUFFERED constant 5-107
NX_BufferOverfiow constant 13-43
NX_BUTTONINSET constant 2-1017
NX_CANCELTAG constant 2-1033
NX_CELLDISABLED constant 2-1017
NX_CELLEDITABLE constant 2-1017
NX_CELLHIGHLIGHTED constant 2-1017
NX_ CELLSTATE constant 2-1017
NX_CENTERALIGN constant 2-1002
NX_CENTERED constant 2-1037
NX_CHANGECONTENTS constant 2-1017
NX_CHARNUMPOSTYPE constant 2-1029
NX_ CheckSpelling constant 2-1008
NX_ CheckSpellingFromStart constant 2-1008
NX_ CheckSpellingInSelection constant 2-1008
NX_ CheckSpellingToEnd constant 2-1008
NX_CLEAR constant 5-103
NX_CLIPPAGINATION constant 2-1033
NX_CLOSEBUTTONMASK constant 2-1040
NX_ CMYKColorSpace constant 2-985
NX_CMYKMODE constant 2-1019
NX_CMYKMODEMASK constant 2-1019
NX_CODEC constant 2-1027
NX_colorBadIO constant 2-981
NX_colorNotEditable constant 2-981
NX_colorUnknown constant 2-981
NX_COMMANDMASK constant 5-106
NX_COMPRESSED constant 2-1024
NX_CONDENSED constant 2-1024
NX_CONNECTION_DEFAULT_TIMEOUT

constant 6-51
NX_CONTROLMASK constant 5-106
NX_COPY constant 5-103
NX_COPYING constant 2-1020
NX_couldntDecodeArgumentsException constant

6-50
NX_couldntReceiveException constant 6-50
NX_couldntSendException constant 6-50

NX_CountWords constant 2-1008
NX_CountWordslnSelection constant 2-1008
NX_CountWordsToEnd constant 2-1008
NX_CR constant 2-1038
NX_CURSORUPDATE constant 5-104
NX_CURSORUPDATEMASK constant 5-105
NX_CUSTOMCOLORMODE 2-1019
NX_CustomColorSpace constant 2-985
NX_CUSTOMPALETTE_INSERTION constant

2-1020
NX_CUSTOMPALETTEMODE constant 2-1019
NX_CUSTOMPALETTEMODEMASK constant

2-1019
NX_DATA constant 5-102
NX_DataCall constant 13-41
NX_DATOP constant 5-103
NX_DChannel constant 13-42
NX_DECLINE constant 2-1036
NX_DECPAGE constant 2-1036
NX_DefaultDepth constant 2-1014
NX_DELETE constant 2-1038
NX_DESCENDINGORDER constant 2-1032
NX_destinationlnvalid constant 6-50
NX_DIN constant 5-103
NX_DINGBATSSET constant 5-102
NX_DKGRAY constant 2-1025
NX_DOCKLEVEL constant 2-1041
NX_DOUBLETYPE constant 2-1018
NX~DOUT constant 5-103
NX_DOVER constant 5-103
NX_DOWN constant 2-1038
NX_draggingError constant 2-981
NX_DragOperationAll constant 2-988
NX_DragOperationCopy constant 2-988
NX_DragOperationGeneric constant 2.,.988
NX_DragOperationLink constant 2-988
NX_DragOperationNone constant 2-988
NX_DragOperationPrivate constant 2-988
NX_DRAWING constant 2-1020
NX_DSP constant 2-1027
NX_DURING macro 3-100
NX_EightBitGrayDepth constant 2-1014
NX_ENDHANDLER macro 3-100

NX_EPSSEGMENT constant 2-1030
NX_EVENTCODEMASKO macro 5-90
NX_EXPANDED constant 2-1024
NX_FacilityNotSubscribed constant 13-43
NX_FIGSPACE constant 2-1022
NX_FIRSTEVENT constant 5-104
NX_FIRSTINDENT constant 2-1002
NX_FIRSTWINSTYLE constant 2-1041
NX_FITPAGINATION constant 2-1033
NX_FLAGSCHANGED constant 5-104
NX_FLAGSCHANGEDMASK constant 5-105
NX_FLIPPEDMATRIX constant 2-1023
NX_FLOATINGLEVEL constant 2-1041
NX_FLOATTYPE constant 2-1018
NX_FONTCHARDATA constant 2-1022
NX_FONTCOMPOSITES constant 2-1022
NX_FONTHEADER constant 2-1022
NX_FONTKERNING constant 2-1022
NX_FONTMETRICS constant 2-1022
NX_FONTWIDTHS constant 2-1022
NX_FOREVER constant 5-105
NX_FPCURRENTFIELD constant 2-1024
NX_FPPREVIEWBUTTON constant 2-1024
NX_FPPREVIEWFIELD constant 2-1024
NX_FPREVERTBUTTON constant 2-1024
NX_FPSETBUTTON constant 2-1024
NX_FPSIZEFIELD constant 2-1024
NX_FPSIZETITLE constant 2-1024
NX_FREEO macro 2-975
NX_FROMINPUT constant 18-24
NX_FROMVIEW constant 18-24
NX_GRAYMODE constant 2-1019
NX_GRAYMODEMASK constant 2-1019
NX_GROOVE constant 2-1015
NX_HANDLER macro 3-100
NX_HardwareFailure constant 13-43
NX_HEAVIER constant 2-1023
NX_HEIGHTO macro 2-977
NX_HEIGHTSIZABLE constant 2-1040
NX_HELPMASK constant 5-106
NX_HIGHLIGHT constant 5-103
NX_HIGHLIGHTMODE constant 2-1031
NX_HSBMODE constant 2-1019

Index-41

NX_HSBMODEMASK constant 2-1019
NX_ICONABOVE constant 2-1017
NX_ICONBELOW constant 2-1017
NX_ICONCELL constant 2-1018
NX_ICONHEIGHT constant 2-1025
NX_ICONHORIZONTAL constant 2-1017
NX_ICONISKEYEQUIVALENT constant 2-1017
NX_ICONLEFT constant 2-1017
NX_ICONLEFTORBOTTOM constant 2-1017
NX_ICONONLY constant 2-1017
NX_ICONOVERLAPS constant 2-1017
NX_ICONRIGHTconstant 2-1017
NX_ICONSEGMENT constant 2-1030
NX_ICONWIDTH constant 2-1025
NX_IDENTITYMATRIX constant 2-1023
NX_ILLEGAL constant 2-1038
NX_illegalSelector constant 2-980
NX_INCLINE constant 2-1036
NX_INCORRECTMESSAGE constant 2-1030
NX_INCPAGE constant 2-1036
NX_INDENT constant 2-1002
NX_INTTYPE constant 2-1018
NX_ISDNDevice constant 13-42
NX_ITALIC constant 2-1024
NX.JournalAborted constant 2-981
NX_JOURNALEVENT constant 5-104
NX_JOURNALEVENTMASK constant 5-105
NX_JOURNALFLAG constant 2-1026
NX_JOURNALFLAGMASK constant 2-1026
NX_JOURNALREQUESTconstant 2-1026
NX_JUMP constant 2-1036
NX_JUSTALIGN constant 2-1002
NX_JUSTIFIED constant 2-1037
NX_KEYDOWN constant 5-104
NX_KEYDOWNMASK constant 5-105
NX_KEYUP constant 5-104
NX_KEYUPMASK constant 5-105
NX_KEYWINDOW constant 2-1028
NX_KITDEFINED constant 5-104
NX_KITDEFINEDMASK constant 5-105
NX_KNOB constant 2-1036
NX_KNOBSLOT constant 2-1036
NX_LANDSCAPE constant 2-1033

Index-42

NX_LASTEVENT constant 5-104
NX_LASTJRNEVENT constant 2-1027
NX_LASTWINSTYLE constant 2-1041
NX_LEFT constant 2-1038
NX_LEFTALIGN constant constant 2-1002
NX_LEFTALIGNED constant 2-1037
NX_LEFTMARGIN constant 2-1002
NX_LEFTTAB constant 2-1039
NX_LIGHTBYBACKGROUND constant 2-1017
NX_LIGHTBYCONTENTS constant 2-1017
NX_LIGHTBYGRAY constant 2-1017
NX_LIGHTER constant 2-1023
NX_LINE constant 2-1015
NX_LINENUMPOSTYPE constant 2-1029
NX_LinkBroken constant 2-986
NX_LinkInDestination constant 2-986
NX_LinkInSource constant 2-986
NX_LIST_INSERTION constant 2-1020
NX_LISTMODE constant 2-1031
NX_LISTMODEMASK constant 2-1019
NX_LMOUSEDOWN constant 5-104
NX_LMOUSEDOWNMASK constant 5-105
NX_LMOUSEDRAGGEDMASK constant 5-105
NX_LMOUSEUP constant 5-104
NX_LMOUSEUPMASK constant 5-105
NX_IongLine constant 2-980
NX_LTGRAY constant 2-1025
NX_MACH_KIT_EXCEPTION_BASE constant

9-38
NX_MACH_KIT _LAST_EXCEPTION constant

9-38
NX_MAINMENU constant 2-1028
NX_MAINMENULEVEL constant 2-1041
NX_MAINWINDOW constant 2-1028
NX_MALLOCO macro 2-975
NX_mallocError constant 2-980
NX_MATCHESDEVICE constant 2-1026
NX_MAXFRAMESTRINGLENGTH constant

2-1040
NX_MAXMESSAGE constant 2-1028
NX_MAXMSGPARAMS constant 2-1028
NX~MAXXO macro 2-977
NX_MAXXMARGINSIZABLE constant 2-1040

NX_MAXYO macro 2-977
NX_MAXYMARGINSIZABLE constant 2-1040
NX_MENUSTYLE constant 2-1041
NX_MIDXO macro 2-977
NX_MIDYO macro 2-977
NX_MINIATURIZEBUTTONMASK constant

2-1040
NX_MINIWINDOWSTYLE constant 2-1041
NX_MINIWORLDSTYLE constant 2-1041
NX_MINXMARGINSIZABLE constant 2-1040
NX_MINYMARGINSIZABLE constant 2-1040
NX_MODALRESPTHRESHOLD constant 2-1021
NX_MOMENTARYCHANGE constant 2-1016
NX_MOMENTARYPUSH constant 2-1016
NX_MOUSEDOWN constant 5-104
NX_MOUSEDOWNMASK constant 5-105
NX_MOUSEDOWNWINDOW constant 2-1028
NX_MOUSEDRAGGED constant 5-104
NX_MOUSEDRAGGEDMASK constant 5-105
NX_MOUSEENTERED constant 5-104
NX_MOUSEENTEREDMASK constant 5-105
NX_MOUSEEXITED constant 5-104
NX_MOUSEEXITEDMASK constant 5-105
NX_MOUSELOCATION constant 2-1027
NX_MOUSEMOVED constant 5-104
NX_MOUSEMOVEDMASK constant 5-105
NX_MOUSEUP constant 5-104
NX_MOUSEUPMASK constant 5-105
NX_multithreadedRecursionDeadlockException

constant 6-50
NX_NARROW constant 2-1024
NX_newerTypedStream constant 2-981
NX_NEXTCTRLKEYMASK constant 5-106
NX_NEXTLALTKEYMASK constant 5-106
NX_NEXTLCMDKEYMASK constant 5-106
NX_NEXTLSHIFTKEYMASK constant 5-106
NX_NEXTRALTKEYMASK constant 5-106
NX_NEXTRCMDKEYMASK constant 5-106
NX_NEXTRSHIFTKEYMASK constant 5-106
NX_NOBORDER constant 2-1015
NX_NOFONTCHANGE constant 2-1023
NX_N oHardwareAttached constant· 13-43
NX_NONABORTABLEFLAG constant 2-1027

NX_NONABORTABLEMASK constant 2-1027
NX_NONCOALSESCEDMASK constant 5-106
NX_NONRETAINED constant 5-107
NX_NONSTANDARDCHARSET constant 2-1024
NX_NOPART constant 2-1036
NX_NORMALLEVEL constant 2-1041
NX_NOT_IN_LIST constant 3-109
NX_NotEndToEndISDN constant 13-43
NX_NOTITLE constant 2-1016
NX_NOTSIZABLE constant 2-1040
NX_NOZONE constant 3-109
NX_NTSCSIGNAL constant 18-24
NX_NULLCELL constant 2-1018
NX_NULLEVENT constant 5-104
NX_NULLEVENTMASK constant 5-105
NX_nullSel constant 2-980
NX_NUMERICPADMASK constant 5-106
NX_NUMWINSTYLES constant 2-1041
NX_objectlnaccessibleException constant 6-50
NX_objectNotAvailableException constant 6-50
NX_OKTAG constant 2-1033
NX_ OnelsBlackColorSpace constant 2-985
NX_ Onels WhiteColorSpace constant 2-985
NX_ONES constant 5-102
NX_ONOFF constant 2-1016
NX_OPCANCELBUTTON constant 2-1031
NX_OPFORM constant 2-1031
NX_OPICONBUTTON constant 2-1031
NX_OPOKBUTTON constant 2-1031
NX_ OPTITLEFIELD constant 2-1031
NX_originatorInvalid constant 6-50
NX_ OUT constant 5-107
NX_OVERLAPPINGICON constant 2-1017
NX_PALSIGNAL constant 18-24
NX_pasteboardComm constant 2-980
NX_PERIODICMASK constant 2-1018
NX_PhoneAlerting constant 13-41
NX_PhoneConversation constant 13-41
NX_PhoneDialing constant 13-41
NX_Phoneldle constant 13-41
NX_PhoneNullState constant 13-41
NX_PhoneOriginating constant 13-41
NX_PhoneReleasing constant 13-41

Index-43

NX_PLAINSTYLE constant 2-1041
NX_PLAYING constant 2-1027
NX_PLCANCELBUTTON constant 2-1032
NX_PLHEIGHTFORM constant 2-.1032
NX_PLICONBUTTON constant 2-1032
NX_PLLAYOUTBUTTON constant 2-1032
NX_PLOKBUTTON constant 2-1032
NX_PLPAPERSIZEBUTTON constant 2-1032
NX_PLPORTLANDMATRIX constant 2-1032
NX_PLSCALEFIELD constant 2-1032
NX_PLTITLEFIELD constant 2-1032
NX_PLUNITSBUTTON constant 2-1032
NX_PLUSD constant 5-103
NX_PLUSL constant 5-103
NX_PLWIDTHFORM constant 2-1032
NX_portlnvalidException constant 9-38
NX_PORTRAIT constant 2-1033
NX_POSDOUBLETYPE constant 2-1018
NX_POSFLOATTYPE constant 2-1018
NX_POSINTTYPE constant 2-1018
NX_POSTER constant 2-1024
NX_POTSChannel constant 13-42
NX_POTSDevice constant 13-42
NX_POWEROFF constant 2-1021
NX_powerOff constant 2-980
NX_PPDlnc1udeNotFound constant 2-981
NX_PPDlnc1udeStackOverfiow constant 2-981
NX_PPDlnc1udeStackUnderfiow constant 2-981
NX_PPDParseError constant 2-981
NX_PRINTERTABLEERROR constant 2-1034
NX_PRINTERTABLENOTFOUND constant 2-1034
NX_PRINTERTABLEOK constant 2-1034
NX_PRINTING constant 2-1020
NX_printingComm constant 2-980
NX_PRINTKEYMAXLEN constant 2-1034
NX_printPackageError constant 2-981
NX_PSDEBUG macro 2-976
NX_PUSHONPUSHOFF constant 2-1016
NX_RADIOBUTTON constant 2-1016
NX_RADIOMODE constant 2-1031
NX_RAISEO macro 3-101
NX_RCVTIMEOUT constant 2-1030
NX_REALLOCO macro 2-975

Index-44

NX_receiveTimedOut constant 6-50
NX_RECORDING constant 2-1027
NX_referenceAlreadyFreeException constant 9-38
NX_REGEXPRPOSTYPE constant 2-1029
NX_REMOTE_EXCEPTION_BASE constant 6-50
NX_REMOTE_LAST_EXCEPTION constant 6-50
NX_remotelnternalException constant 6-50
NX_REMOVETAB constant 2-1002
NX_REMOVETRAITconstant 2-1023
NX_RERAISEO macro 3-101
NX_RESIZEBARSTYLE constant 2-1041
NX_RESPONSEMSG constant 2-1029
NX_restrictionEnforcedException constant 9-38
NX_RETAINED constant 5-107
NX_RETURN constant 2-1038
NX_RGBColorSpace constant 2-985
NX_RGBMODE constant 2-1019
NX_RGBMODEMASK constant 2-1019
NX_RIGHT constant 2-1038
NX_RIGHTALIGN constant 2-1002
NX_RIGHTALIGNED constant 2-1037
NX_RIGHTMARGIN constant 2-1002
NX_RMOUSEDOWN constant 5-104
NX_RMOUSEDOWNMASK constant 5-105
NX_RMOUSEDRAGGED constant .5-104
NX_RMOUSEDRAGGEDMASK constant 5-105
NX_RMOUSEUP constant 5-104
NX_RMOUSEUPMASK constant 5-105
NX_RTFDErrorFileDoesntExist constant 2-1004
NX_RTFDErrorInsufficientAccess constant 2-1004
NX_RTFDErrorMalformedRTFD constant 2-1004
NX_RTFDErrorNone constant 2-1004
NX_RTFDErrorSaveAborted constant 2-1004
NX_RTFDErrorUnableToCloseFile constant 2-1004
NX_RTFDErrorUnableToCreateBackup constant

2-1004
NX_RTFDErrorU nableToCreatePackage constant

2-1004
NX_RTFDErrorUnableToDeleteBackup constant

2-1004
NX_RTFDErrorUnableToDeleteOriginal constant

2-1004

NX_RTFDErrorUnableToDeleteTemp constant
2-1004

NX_RTFDErrorUnableToReadFile constant 2-1004
NX_RTFDErrorUnableToWriteFile constant 2-1004
NX_rtfPropOverftow constant 2-981
NX_RUNABORTED constant 2-1031
NX_RUNCONTINUES constant 2-1031
NX_RUNMODALTHRESHOLD constant 2-1021
NX_RUNSTOPPED constant 2-1031
NX_SATOP constant 5-103
NX_SCREENCHANGED constant 2-1021
NX_SCROLLARROWSMAXEND constant 2-1036
NX_SCROLLARROWSMINEND constant 2-1036
NX_SCROLLARROWSNONE constant 2-1036
NX_SCROLLERALLPARTS constant 2-1037
NX_SCROLLERNOPARTS constant 2-1037
NX_SCROLLERONLYARROWS constant 2-1037
NX_SCROLLERWIDTH constant 2-1037
NX_SELECTORFMSG constant 2-1029
NX_SELECTORPMSG constant 2-1029
NX_sendTimedOut constant 6-50
NX_SENDTIMEOUT constant 2-1030
NX_SHIFTMASK constant 5-106
NX_SIN constant 5-103
NX_SIZEDOWN constant 2-1023
NX_SIZEUP constant 2-1023
NX_SLIDERS_INSERTION constant 2-1020
NX_SMALLCAPS constant 2-1024
NX_SOUND_SEGMENT_NAME constant 16-166
NX_SOUNDDEVICE_ERROR_MAX constant

16-168
NX_SOUNDDEVICE_ERROR_MIN constant

16-168
NX_SOUNDDEVICE_ TIMEOUT_MAX constant

16-167
NX_SoundDeviceErrorHost constant 16-158
NX_SoundDeviceErrorKemel constant 16-158
NX_SoundDeviceErrorLookUp constant 16-158
NX_SoundDeviceErrorMax constant 16-158
NX_SoundDeviceErrorN oDevice constant 16-158
NX_SoundDeviceErrorNone constant 16-158
NX_SoundDeviceErrorNotActive constant 16-158
NX_SoundDeviceErrorTag constant 16-158

NX_SoundDeviceErrorTimeout constant 16-158
NX_SoundFreed constant 16-159
NX_SoundInitialized constant 16-159
NX_SoundPlaying constant 16-159
NX_SoundPlayingPaused constant 16-159
NX_SoundPlayingPending constant 16-159
NX_SoundRecording constant 16-159
NX_SoundRecordingPaused constant 16-159
NX_SoundRecordingPending constant 16-159
NX_SoundStopped constant 16-159
NX_SOUNDVIEW _MINMAX constant 16-171
NX_SOUNDVIEW _WAVE constant 16-171
NX_SOUT constant 5-103
NX_SOVER constant 5;103
NX_SPECIALORDER constant 2-1032
NX_STOPPED constant 2-1027
NX_StreamCurrent constant 2-1008
NX_StreamEnd constant 2-1008
NX_StreamStart constant 2-1008
NX_STYLUSPROXIMITYMASK constant 5-106
NX_SUBMENULEVEL constant 2-1041
NX_SWITCH constant 2-1016
NX_SYMBOLSET constant 5-102
NX_SYSDEFINED constant 5-104
NX_SYSDEFINEDMASK constant 5-105
NX_TAB constant 2-1038
NX_TemporaryNetworkFailure constant 13-43
NX_textBadRead constant 2-980
NX_textBadWrite constant 2-980
NX_ TEXTCELL constant 2-1018
NX_ TEXTPER constant 2-1038
NX_ TEXTPOSTYPE constant 2-1029
NX_TIFF _COMPRESSION_CCITTFAX3 constant

2-1039
NX_ TIFF _ COMPRESSION_ CCITTFAX4 constant

2-1039
NX_TIFF _COMPRESSION_JPEG constant 2-1039
NX_ TIFF _ COMPRESSION~ZW constant 2-1039
NX_ TIFF _COMPRESSION_NONE constant 2-1039
NX_TIFF _COMPRESSION_PACKBITS constant

2-1039
NX_tiffError constant 2-981
NX_ TIFFSEGMENT constant 2-1030

Index-45

NX_ TIMER constant 5-104
NX_TIMERMASK constant 5-105
NX_ TITLEDSTYLE constant 2-1041
NX_TITLEONLY constant 2-1017
NX_ TOGGLE constant 2-1016
NX_TOKENHEIGHT constant 2-1025
NX_TOKENSTYLE constant 2-1041
NX_TOKENWIDTH constant 2-1025
NX_TRACKMODE constant 2-1031
NX_TransmitFailure constant 13-43
NX_ TwelveBitRGBDepth constant 2-1014
NX_TwentyFourBitRGBDepth constant 2-1014
NX_TwoBitGrayDepth constant 2-1014
NX_unavailableFont constant 2-981
NX_UNBOLD constant 2-1024
NX_UnitCentimeter constant 2-1000
NX_Unitlnch constant 2-1000
NX_UnitPica constant 2-1000
NX_UnitPoint constant 2-1000
NX_unknownMethodException constant 6-50
NX_UNKNOWNORDER constant 2-1032
NX_UNKNOWNWINDOW constant 2-1028
NX_UP constant 2-1038
NX_UpdateContinuously constant 2-987
NX_UpdateManually constant 2-987
NX_UpdateNever constant 2-987
NX_ Update WhenSourceSaved constant 2-987
NX_ VALRETURNO macro 3-101
NX_ VIAPANEL constant 2-1023
NX_ VIDEOIN1 constant 18-24
NX_ VIDEOIN2 constant 18-24
NX_ VIDEOIN3 constant 18-24
NX_ VoiceCall constant 13-41
NX_ VOIDRETURN macro 3-101
NX_ WHEEL_INSERTION constant 2-1020
NX_ WHEELMODEMASK constant 2-1019
NX_ WHITE constant 2-1025
NX_ WIDTHO macro 2-977
NX_ WIDTHSIZABLE constant 2-1040
NX_ windowServerComm constant 2-981
NX_WINDRAGGED constant 2-1027
NX_ WINEXPOSED constant 2-1021
NX_ WINMOVED constant 2-1021

Index-46

NX_ wordTablesRead constant 2-980
NX_ wordTables Write constant 2-980
NX_ WORKSPACEREPLY constant 2-1042
NX_ WORKSPACEREQUEST constant 2-1042
NX_XO macro 2-977
NX_XMAX constant 2-1035
NX_XMIN constant 2-1035
NX_XOR constant 5-103
NX_YO macro 2-977
NX_ YMAX constant 2-1035
NX_ YMIN constant 2-1035
NX_ZONEMALLOCO macro 2-978
NX_ZONEREALLOCO macro 2-978

- objcClassName (DBTypes) 4-209
- objcType (DBTypes) 4-210
objc_addClassO 15-22
objc_cache structure 15-38
objc_category structure 15-38
objc_cIass structure 15-39
objc_getClassO 15-22
objc_getClassesO 15-22
objc~etMetaClassO 15-22
objc~etModulesO 15-22
objc_ivar structure 15-40
objc_ivar_list structure 15-40
objc_loadModulesO 15-24
objc_lookUpClassO 15-22
objc_method structure 15-41
objc_method_description structure 15-41
objc_method_description_list structure 15-42
objc_method_list structure 15-42
objc_module structure 15-43
objc_msgSendO 15-25
objc_msgSendSuperO 15-25
objc_msgSendvO 15-25
objc_protocoClist structure 15-43
objc_setMultithreadedO 15-26
objc_super structure 15-44
objc_unloadModulesO 15-24
Object Additions category, specification 6-38, 8-19
Object Additions class, specification 2-528
Object class, specification 1-6

- object (IBlnspector) 8-13
- objectAt: (List) 3-21
- objectAt:forBinder: (DB Containers) 4-178
- objectIsMember: (IBDocuments) 8-39
-objectValue (DB Value) 4-172
object_copy() 15-27
object_copyFromZoneO 15-27
objecCdisposeO 15-27
object_getClassNameO 15-28
object_getIndexedlvarsO 15-29
objecCgetInstanceVariableO 15-29
object_reallocO 15-27
object_reallocFromZoneO 15-27
object_setInstanceVariableO 15-29
obscurecursor operator 5-31
- offsetFromPosition: (Text) 2-699
- ok: (IBlnspectors) 8-49, (NIDomainPanel) 11-18,

(NILoginPanel) 11-22, (SavePanel) 2-603,
(WMlnspector) 19-15

- okButton (WMlnspector) 19-15
oneway Objective C keyword 6-13
- opaqueAncestor (View) 2-789
- openAtOffset:forLength: (IXStoreBlock) 7-95
- openBlock:atOffset:forLength: (IXStore) 7-90
- openEditorFor: (IBDocuments) 8-39

, - openEntryNamed: (IXStoreDirectory) 7-101
- openFile: (NXWorkspaceRequestProtocol) 2-906
- openFile:fromlmage:at:in View:

(NXWorkspaceRequestProtocol) 2-906
- openFile:ok: (Application) 2-52, (Speaker) 2-659
- openFile:withApplication:

(NXWorkspaceRequestProtocol) 2-907
- openFile:withApplication:andDeactivate:

(NXWorkspaceRequestProtocol) 2-907
OpenPanel class, specification 2-530
- openRTFDFrom: (Text) 2-700
- openSource (NXDataLink) 2-396
- openSpoolFile: (View) 2-789, (Window) 2-839
- openSubeditorFor: (IBEditors) 8-47
- openTempFile: (NXWorkspaceRequestProtocol)

2-907
- openTempFile:ok: (Application) 2-52,

(Speaker) 2-659

- openTextStream (NXReadOnlyTextStream) 2-892
- optimizeForSpace (IXBTree) 7-33
- optimizeForTime (IXBTree) 7-33
- orderBack: (Window) 2-840
- orderFront (IBEditors) 8-47
- orderFront: (Window) 2-840
- orderFrontColorPanel: (Application) 2-52
- orderFrontFontPanel: (FontManager) 2-200
- orderFrontRegardless (Window) 2-840
- orderOut: (Window) 2-841
orderwindow operator 5-31
- orderWindow:relativeTo: (FontPanel) 2-206,

(Window) 2-841
organization of chapters 6
- orientation (PrintInfo) 2-576
- originalWindow (IBPalette) 8-18
os name operator 5-32
ostype operator 5 -3 2
out Objective C keyword 6-7
- outPort (NXConnection) 6-29
- outputFile (PrintInfo) 2-576
- outputGamma (NXLiveVideoView) 18-17
- outputGenlocked (NXLive Video View) 18-17
- outTimeout (NXConnection) 6-30
- ownsRecordPrototype (DBBinder) 4-41

PageLayout class, specification 2-534
- page Order (PrintInfo) 2-577
- pageSizeForPaper: (NXPrinter) 2-501
- pagesPerSheet (PrintInfo) 2-577
- paletteDocument (IBPalette) 8-18
Panel class, specification 2-542
- panel (NIDomainPanel) 11-18
- panel:authenticateUser:withPassword:

inDomain: (NILoginPanel) 11-23
- panel:compareFilenames: :checkCase:

(SavePanel) 2-605
- panel:filterFile:inDirectory: (SavePanel) 2-606
- panelConvertFont: (FontPanel) 2-207
- panelSizeDefaultName (NIDomainPanel) 11-18,

(NIOpenPanel) 11-27, (NISavePanel) 11-30
- panelValidateFilenames: (SavePanel) 2-606
- paperFeed (PrintInfo) 2-577

Index-47

- paperRect (PrintInfo) 2-577
- paperType (Printlnfo) 2-577
- parseFile:ofType: (lXAttributeParser) 7-16
- parserForAttributeNamed: (lXRecordManager)

7-78
- parseStream:oIType: (IXAttributeParser) 7-16
- paste: (SoundView) 16-84, (Text) 2-700
Pasteboard class, specification 2-547
pasteboard types A-1
- pasteboard:provideData: (Pasteboard) 2-559,

(SoundView) 16-84
- pasteboard Changed Owner: (Pasteboard) 2-559
- pasteFont: (Text) 2-700
- pasteFromPasteboard:at:

(NXDataLinkManager) 2-412
- pasteInSelection (lBEditors) 8-47
- pasteRuler: (Text) 2-701
- pasteType:fromPasteboard:parent:

(IBDocuments) 8-40
- pause (Sound) 16-60
- pause: (NXSoundStream) 16-45, (Sound) 16-60,

(SoundView) 16-84
- pauseAtTime: (NXSoundStream) 16-45
- pauseStreams: (NXSoundDevice) 16-27
- peakGray (SoundMeter) 16-72
- peakHistory (NXPlayStream) 16-9,

(NXSoundDevice) 16-28
- peakValue (SoundMeter) 16-72
- peculiarityOIToken:ofLength:andFrequency:

(IXWeightingDomain) 7-109
- peekAndGetNextEvent: (Application) 2-53
- peekNextEvent:into: (Application) 2-53
- peekNextEvent:into:waitFor:threshold:

(Application) 2-53
- percentPassed (IXAttributeParser) 7-16
- perform: (Object) 1-32
- perform:with: (Object) 1-33
- perform:with:afterDelay:canceIPrevious: (Object

Additions) 2-528
- perform:with:with: (Object) 1-33
- performClick: (Button) 2-90, (ButtonCell) 2-110
- performClose: (Window) 2-841

Index-48

- performDragOperation:
(NXDraggingDestination) 2-878

- performFileOperation:source:destination:files:
options: (NXWorkspaceRequestProtocol) 2-908

- performKeyEquivalent: (Button) 2-91,
(Matrix) 2-263, (Responder) 2-593, (View) 2-789

- performMiniaturize: (Window) 2-842
- performQuery:atPath:forSender:

(lXFileFinderQuery AndUpdate) 7-137
- performRemoteMethod: (Speaker) 2-660
- performRemoteMethod:paramList: (Listener)

2-238
- performRemoteMethod:with:length: (Speaker)

2-660
- performv:: (Object) 1-33
Phone Kit 13-3
- pickedAIIPages: (PrintPanel) 2-587
- pickedBreakAlILinks: (NXDataLinkPanel) 2-417
- pickedBreakLink: (NXDataLinkPanel) 2-417
- pickedButton: (PageLayout) 2-538,

(PrintPanel) 2-587
- pickedLayout: (PageLayout) 2-538
- pickedOpenSource: (NXDataLinkPanel) 2-417
- pickedOrientation: (PageLayout) 2-538
- pickedPaperSize: (PageLayout) 2-539
- pickedUnits: (PageLayout) 2-539
- pickedUpdateDestination: (NXDataLinkPanel)

2-418
- pickedUpdateMode: (NXDataLinkPanel) 2-418
- pickUp (NXPhoneCall) 13-27
- pixelAspectRatio (N3DCamera) 17-29
- pixelsHigh (NXlmageRep) 2-479
- pixelsWide (NXlmageRep) 2-479
- placePrintRect:offset: (View) 2-790,

(Window) 2-842
- placeView: (View Additions) 8-23
placewindowoperator 5-33
- placeWindow: (Window) 2-842
- place Window:screen: (Window) 2-843
- place Window AndDisplay: (Window) 2-843
- play (Sound) 16-60
- play: (Sound) 16-60, (SoundView) 16-84

- playBuffer:size:tag:channeICount:
sarnplingRate: (NXPlayStream) 16-10

- playBuffer:size:tag:channeICount:
sarnplingRate: bufferGainLeft:right:
lowWaterMark:high WaterMark:
(NXPlayStream) 16-10

playsound operator 5-34
- pointSize (Font) 2-188
+ pop (NXCursor) 2-382
- pop (NXCursor) 2-384
- popUp: (PopUpList) 2-565
PopUpList class, specification 2-560
- portN arne (Listener) 2-238
+ poseAs: (Object) 1-16
- positionForRecordKey: (DBRecordList) 4-119
- positionFrornLine: (Text) 2-701
- positionFrornOffset: (Text) 2-702
- positionlnOrderingsFor: (DBBinder) 4-42
posteventbycontext operator 5-34
PostScript 5-3

operators 5-7
- postSelSrnartTable (Text) 2-702
- powerOff: (Application) 2-53, 2-73
- powerOffIn:andSave: (Application) 2-54
precompiled header files 2
Preferences, API for 14-3
+ prefersTrackingUntilMouseUp (Cell) 2-125,

(SliderCell) 2-639
- prepareEnurnerationState:forLinksOIType:

(NXDataLinkManager) 2-408
- prepareForBinder: (DB Containers) 4-178
- prepareForDragOperation:

(NXDraggingDestination) 2-878
- prepareGState (NXEPSImageRep) 2-425
- preRotateAngle:axis: (N3DShape) 17-109
- preScale::: (N3DShape) 17-110
- preScaleUniforrnly: (N3DShape) 17-110
- preSelSrnartTable (Text) 2-702
- preTranslate::: (N3DShape) 17-110
- preventWindowOrdering (Application) 2-54
- previousPeer (N3DShape) 17-111
- previousRecord: (DBModule) 4-102
- previousText (TextField) 2-741

- principal Class (NXBundle) 3-30
- print: (NXHelpPanel) 2-437
- printer (PrintInfo) 2-577
+ printerTypes:custorn: (NXPrinter) 2-496
- printForDebugger: (Object) 1-34
- printInfo (Application) 2-54
Printlnfo class, specification 2-568
PrintPanel class, specification 2-583
- printPanel: (NXHelpPanel) 2-437
- printPSCode: (View) 2-790, (Window) 2-843
- priority (Listener) 2-238
- processingError (Sound) 16-61
- projectionType (N3DCamera) 17-29
- propertyNarned: (DB Entities) 4-185
- propertyType (DB Properties) 4-196
Protocol class, specification 15-7
protocol specifications, organization of 11
- prototype (Matrix) 2-263
-provideNewButtonlrnage (NXColorPicker) 2-371,

(NXColorPickingDefault) 2-873
- provideNewView: (NXColorPickingCustom)

2-868
PSadjustcursorO 5-61
PSalphairnageO 5-61
PSbasetocurrentO 5-61
PSbasetoscreenO 5-61
PSbuttondownO 5-61
PScleartrackingrectO 5-61
PScornpositeO 5-61
PScornpositerectO 5-61
PScountframebuffersO 5-61
PScountscreenlistO 5-61
PScountwindowlistO 5-61
PScurrentactiveappO 5-61
PScurrentalphaO 5-61
PScurrentdefaultdepthlirnitO 5-62
PScurrentdeviceinfoO 5-62
PScurrenteventrnaskO 5-62
PScurrentfrarnebuffertransferO 5-62
PScurrentmouseO 5-62
PScurrentownerO 5-62
PScurrentrusageO 5-62
PScurrentshowpageprocedureO 5-62

Index-49

PScurrenttobaseO 5-62
PScurrenttoscreenO 5-62
PScurrentuserO 5-62
PScurrentwaitcursorenabledO 5-62
PScurrentwindowO 5-62
PScurrentwindowalphaO 5-62
PScurrentwindowboundsO 5-62
PScurrentwindowdepthO 5-63
PScurrentwindowdepthlimitO 5-63
PScurrentwindowdictO 5-63
PScurrentwindowlevelO 5-63
PScurrentwriteblockO 5-63
PSdissolveO 5-63
PSdumpwindowO 5-63
PSdumpwindowsO 5-63
PSfindwindowO 5-63
PSflushgraphicsO 5-63
PSframebufferO 5-63
PSfrontwindowO 5-63
PShidecursorO 5-64
PShideinstanceO 5-64
PSmachportdeviceO 5-64
PSmovewindowO 5-64
PSnewinstanceO 5-64
PSnextreleaseO 5-64
PSobscurecursorO 5-64
PSorderwindowO 5-64
PSosnameO 5-64
PSostypeO 5-64
PSplacewindowO 5-64
PSplaysoundO 5-64
PSposteventbycontextO 5-64
PSreadimageO 5-65
PSrevealcursorO 5-65
PSrightbuttondownO 5-65
PSrightstilldownO 5-65
PSscreenlistO 5-65
PSscreentobaseO 5-65
PSscreentocurrentO 5-65
PSsetactiveappO 5-65
PSsetalphaO 5-65
PSsetautofillO 5-65
PSsetcursorO 5-65

Index-50

PSsetdefaultdepthlimitO 5-65
PSseteventmaskO 5-65
PSsetexposurecolorO 5-65
PSsetflushexposuresO 5-65
PSsetframebuffertransferO 5-66
PSsetinstanceO 5-66
PSsetmouseO 5-66
PSsetownerO 5-66
PSsetsendexposedO 5-66
PSsetshowpageprocedureO 5-66
PSsettrackingrectO 5 -66
PSsetwaitcursorenabledO 5-66
PSsetwindowdepthlimitO 5-66
PSsetwindowdictO 5-66
PSsetwindowlevelO 5-66
PSsetwindowtypeO 5-66
PSsetwriteblockO 5-66
PSshowcursorO 5-66
PSsizeimageO 5-67
PSstiIldownO 5-67
PStermwindowO 5-67
PSwindowO 5-67
PSwindowdeviceO 5-67
PSwindowdeviceroundO 5-67
PSwindm"/!istO 5-67

pswrap utility 5-58
- punctuation (IXAttributeReader) 7-26
- push (NXCursor) 2-384
- putCell:at:: (Matrix) 2-263

- qualifier (DBBinder) 4-42
- queryString (IXAttributeQuery) 7-22

- rankForToken:ofLength: (IXWeightingDomain)
7-109

- rawScroll: (ClipView) 2-156
- read: (ActionCell) 2-21, (Box) 2-78,

(ButtonCell) 2-110, (Cell) 2-136,
(Clip View) 2 .. 156, (Control) 2-171,
(DB Binder) 4-42, (DBDatabase) 4-62,
(DBEditableFormatter) 4-69,
(DB Expression) 4-74, (DBImageFormatter) 4-92,
(DB Qualifier) 4-110, (DBTableView) 4~155,

(DBTextFormatter) 4-167, (DB Value) 4-172,
(Font) 2-189, (FormCell) 2-223,
(HashTable) 3-14, (IBConnectors) 8-31,
(List) 3-21, (Listener) 2-239, (Matrix) 2-264,
(Menu) 2-288, (MenuCell) 2-293,
(N3DCamera) 17-29,
(N3DContextManager) 17-46, (N3DLight) 17-56,
(N3DMovieCamera) 17-64,
(N3DRIBlmageRep) 17-75, (N3DRotator) 17-80,
(N3DShader) 17-89, (N3DShape) 17-111,
(NXBitmaplmageRep) 2-311,
(NXCachedlmageRep) 2-352,
(NXColorList) 2-358, (NXColorPanel) 2-366,
(NXCursor) 2-384, (NXCustomlmageRep) 2-389,
(NXEPSlmageRep) 2-425, (NXlmage) 2-462,
(NXlmageRep) 2-480,
(NXLiveVideoView) 18-17, (Object) 1-34,
(Printlnfo) 2-578, (Responder) 2-593,
(Scroller) 2-613, (ScrollView) 2-621,
(SliderCell) 2-645, (Sound) 16-61,
(SoundMeter) 16-72, (SoundView) 16-84,
(Speaker) 2-660, (Storage) 3-40, (Text) 2-702,
(TextField) 2-742, (TextFieldCell) 2-751,
(View) 2-791, (Window) 2-843

- readAtOffset:forLength: (IXStoreBlock) 7-95
- readBlock:atOffset:forLength: (IXStore) 7-90
- read Characters: count: (NXReadOnlyTextStream)

2-893
- readCharactersFromSelection:count:

(NXSelectText) 2-895
+ readerForLanguage: (IXLanguageReader) 7-55
- readFileContentsType:toFile: (Pasteboard) 2-555
- readFromFile: (NXStringTable) 3-33
- readFromStream: (NXStringTable) 3-34
readimage operator 5-35
- readMetrics: (Font) 2-189
- readObject (IXStoreBlock) 7-95
- readPrintInfo (PageLayout) 2-540
- readRange:oiLength:atOffset: (IXBTreeCursor)

7-37
- readRecord:fromZone: (IXRecordReading) 7-155
- readRichText: (Text) 2-702
- readRichText:atPosition: (Text) 2-703

- readRichText:forView: (Text) 2-735
- readRTFDFrom: (Text) 2-703
- readSelectionFromPasteboard:

(NXServicesRequests) 2-897,
(SoundView) 16-85, (Text) 2-703

- readSoundfile: (Sound) 16-61
- readSoundFromStream: (Sound) 16-61
- readText: (Text) 2-703
- readType:data:length: (Pasteboard) 2-556
- readTypeToStream: (Pasteboard) 2-557
- readValue: (IXBTreeCursor) 7-38
- recache (NXlmage) 2-463
- reciaimRecord: (IXRecordDiscarding) 7-154
- record (Sound) 16-61
- record: (Sound) 16-62, (SoundView) 16-85
- record Count (DBFetchGroup) 4-81
- recordDevice (NXJoumaler) 2-485
- recordLimit (DBRecordList) 4-119
- recordLimitReached (DB Binder) 4-42
- recordList (DBFetchGroup) 4-81
- recordManager (IXFileFinderQueryAndUpdate)

7-137
- recordPrototype (DBBinder) 4-43
- recordsForClass: (IXRecordManager) 7-78
- recordSize:tag: (NXRecordStream) 16-14
- recordSize:tag:lowWaterMark:

highWaterMark: (NXRecordStream) 16-14
- recordStream:willFailForReason:

(DBRecordStream) 4-133
- recordStreamPrepareCurrentRecordFor

Modification: (DBRecordStream) 4-135
- rectForKey:inTable: (NXPrinter) 2-501
- redisplayEverything (DBFetchGroup) 4-81
- redrawObject: (IBDocuments) 8-40
- redrawSelection (IBSelectionOwners) 8-51
- reduceStem:inLength: (IXAttributeReader) 7:26
- reductionFactor (SoundView) 16-85
- reenableDisplay (Window) 2-844
- reenableFlush Window (Window) 2-844
- references (NXReference) 9-35
- refiectScroll: (ClipView) 2-160,

(NXBrowser) 2-330, (ScrollView) 2-621

Index-51

- refreshLowerData: (NIOpenPane1) 11-27,
(NISavePanel) 11-30

+ registerDirective:forClass: (Text) 2-680
- registerDocumentController: (lB) 8-28
- registerForDraggedTypes :count:

(View) 2-791 , (Window) 2-844
- registerForlnvalidationNotification:

(NXInvalidationNotifier) 9-15
+ registerImageRep: (NXlmage) 2-448
+ registerRoot: (NXConnection) 6-26
+ registerRoot:fromZone: (NXConnection) 6-26
+ registerRoot:withName: (NXConnection) 6-27
+ registerRoot:withName:fromZone:

(NXConnection) 6-27
- registerServicesMenuSendTypes:

andReturnTypes: (Application) 2-55
- release Channel: (NXPhone) 13-19
- reloadColumn: (NXBrowser) 2-331
- reloadData: (DBTab1eView) 4-155
- remoteBusy (NXPhoneCall) 13-27
- remoteHangup (NXPhoneCall) 13-27
- remoteMethodFor: (Listener) 2-239
- remoteObjects (NXConnection) 6-30
- remotePickup (NXPhoneCall) 13-27
- remoteRing (NXPhoneCall) 13-28
- removeAssociation: (DBFetchGroup) 4-82
- removeAttributeNamed: (lXRecordManager)

7-79
- removeCall: (NXPhoneChanne1) 13-35
- removeChannel: (NXPhone) 13-19
- removeColAt:andFree: (Matrix) 2-264
- removeColorNamed: (NXCo1orList) 2-358
- removeColumnAt: (DBTab1eView) 4-155
- removeConnector: (IBDocuments) 8-40
- removeCursorRect:cursor: (View) 2-791
- removeCursorRect:cursor:forView: (Window)

2-845
- removeEntryAt: (Form) 2-214
- removeFontTrait: (FontManager) 2-200
+ removeFrameUsingName: (Window) 2-812
- removeFromEventMask: (Window) 2-845
- removeFromSuperview (View) 2-792
- removeHandle: (lXPostingOperations) 7-151

Index-52

- removeltem: (PopUpList) 2-566
- removeltemAt: (PopUpList) 2-566
- removeJobFeature: (PrintInfo) 2-578
- removeKey: (HashTab1e) 3-14
- removeLastElement (Storage) 3-40
- removeLastObject (List) 3-21
- removeLight: (N3DCamera) 17-30
- removeName: (lXStoreDirectory) 7-101
+ removeObject: (NXConnection) 6-27
- removeObject: (List) 3-21
- removeObjectAt: (List) 3-21
- removePort (Listener) 2-239
- removePropertyAt: (DB Binder) 4-43
- removeRecord: (IXRecordWriting) 7-159
- remov~RenderDelegate (N3DShape) 17-111
- removeRepresentation: (NXlmage) 2-463
- removeRetrieveOrderFor: (DBBinder) 4-43
- removeRowAt: (DBTab1eView) 4-155
- removeRowAt:andFree: (Matrix) 2-264
+ removeSoundForName: (Sound) 16-54
- removeSourceType: (lXAttributeParser) 7-16
- removeValue (IXBTreeCursor) 7-38
- remove Windowsltem: (Application) 2-55
- render (N3DCamera) 17-30,

(N3DMovieCamera) 17-64
- render: (N3DShape) 17-111
- renderAsEPS (N3DCamera) 17-30
- renderAsTIFF (N3DCamera) 17-31
- renderDelegate (N3DShape) 17-113
- renderGlobal: (N3DLight) 17-56
RenderMan 17-3
- renderSelf: (N3DCamera) 17-31,

(N3DLiglit) 17-56, (N3DShape) 17-113
- renderSelfAsBox: (N3DShape) 17-114
- renewFont:size:style:text:frame:tag: (Text) 2-704
- renewFont:text:frame:tag: (Text) 2-704
- renewGState (View) 2-792
- renewObject:to: '(lBConnectors) 8-31
- renewRows:cols: (Matrix) 2-264
- renewRuns:text:frame:tag: (Text) 2-704
- replaceElementAt:with: (Storage) 3-41
- replaceHandleAt:with:weight: (lXPostingList)

7-64

- replaceObject:with: (List) 3-22
- replaceObjectAt:with: (List) 3-22
- replaceObjectAt:with:weight: (IXPostingList)

7-64
- replaceRecord:with: (IXRecordWriting) 7-159
- replaceSel: (Text) 2-705
- replaceSel:length: (Text) 2-705
- replaceSel:length:runs: (Text) 2-705
- replaceSelWithCell: (Text) 2-705
- replaceSelWithRichText: (Text) 2-706
- replaceSelWithRTFD: (Text) 2-706
- replaceSubview:with: (Box) 2-78, (View) 2-792
+ replyPort (NXSoundDevice) 16-22
- replyPort (Application) 2-55, (Speaker) 2-661
+ replyThread (NXSoundDevice) 16-22
- reply Timeout (Speaker) 2-661
- representationList (NXlmage) 2-46.3
- requiredFileType (SavePanel) 2-603
- reset (DBBinder) 4-43, (IXAttributeParser) 7-17,

(IXFileFinderQuery AndUpdate) 7-137,
(IXStoreDirectory) 7-101,
(NXBrowserCell) 2-349

- resetBatching: (DB Formatter) 4-89,
(DBTextFormatter) 4-167

- resetCursorRect:inView: (Cell) 2-137,
(FormCell) 2-223

- resetCursorRects (Clip View) 2-156,
(Control) 2-171, (Matrix) 2-265, (View) 2-792,
(Window) 2-845

- resetObject: (IBEditors) 8-48
- resetPictureDefaults (NXLive Video View) 18-17
- resetShaderArg: (N3DShader) 17-89
- resignActiveApp (Application) 2-56
- resignFirstResponder (Responder) 2-594,

(SoundView) 16-85, (Text) 2-706
- resignKeyWindow (Text) 2-707, (Window) 2-845
- resignMain Window (Window) 2-846
.:... resizeBlock:toSize: (IXStore) 7-91
- resizeFlags (Window) 2-846
- resizePanelBeforeShowing: (NIDomainPanel)

11-18
- resizeSubviews: (NXSplitView) 2-526,

(ScrollView) 2-621, (View) 2-793

- resizeText:: (Text) 2-707
- resizeTo: (IXStoreBlock) 7-96
- resolution (N3DRenderPanel) 17-69
Responder class, specification 2-589
- respondsTo: (Object) 1-34
- resume (NXPhoneCall) 13-28, (Sound) 16-62
- resume: (NXSoundStream) 16-46, (Sound) 16-62,

(SoundView) 16-85
- resumeAtTime: (NXSoundStream) 16-46
- resumeStreams: (NXSoundDevice) 16-28
- resumeUpdating (IXFileFinderQueryAndUpdate)

7-138
- retrieveOrderFor: (DBBinder) 4-44
- reuseColumns: (NXBrowser) 2-331
revealcursor operator 5-36
- reversePageOrder (Printlnfo) 2-578
- revert: (IBlnspectors) 8-50, (WMlnspector) 19-16
- revertButton (WMlnspector) 19-16
rightbuttondown operator 5-36
- rightMouseDown: (Application) 2-56,

(Menu) 2-288, (Responder) 2-594,
(Window) 2-846

- rightMouseDragged: (Responder) 2-594
- rightMouseUp: (Responder) 2-594
rightstilldown operator 5-37
- ring (NXPhoneCall) 13-28
- rollbackTransaction (DB Database) 4-63,

(DB Transactions) 4-207
- rootFetchGroup (DB Module) 4-102
- rootObject (NXConnection) 6-30
- rootPath (lXFileFinderQueryAndUpdate) 7-138
- rotate: (ClipView) 2-156, (View) 2-793
- rotateAngle:axis: (N3DShape) 17-114
- rotateBy: (N3DCamera) 17-32, (View) 2-794
- rotateEyeBy::about: (N3DCamera) 17-32
- rotateTo: (ClipView) 2-157, (N3DCamera) 17-32,

(View) 2-794
-rotationAxis (N3DRotator) 17-79
- rowAt: (DBTableView) 4-155
- rowCount (DBTableDataSources) 4-198,

(DBTableView) 4-156
- rowHeading (DBTableView) 4-156
- rowList (DBTableView) 4-156

Index-53

- rowsChangedFrom:to: (DB Table View) 4-156
-:I" run (Listener) 2-231
- run (Application) 2-56, (NXConnection) 6-30,

(NXPhone) 13-19
- run: (SoundMeter) 16-73
- runColor: (Text) 2-707
- runFromAppKit (NXConnection) 6-31,

(NXPhone) 13-20
- runFromAppKitWithPriority: (NXConnection)

6-31
- runGray: (Text) 2-707
- runInNewThread (NXConnection) 6-31
- runModal (N3DRenderPanel) 17-69,

(NIDomainPanel) 11-18, (NIOpenPanel) 11-27,
(NISavePanel) 11-30, (PageLayout) 2-540,
(PrintPanel) 2-587, (SavePanel) 2-603

- runModal:inDomain: (NILoginPanel) 11-22
- runModal:inDomain:withUser:withInstruction:

allowChange: (NILoginPanel) 11-23
- runModalFor: (Application) 2-56
- runModaIForDirectory:file:

(OpenPanel) 2-533, (SavePanel) 2-603
- runModaIForDirectory:file:types: (OpenPanel)

2-533
- runModalForTypes: (OpenPanel) 2-533
- runModalSession: (Application) 2-57
- runModalWithString: (NISavePanel) 11-31
- runModalWithUneditableString: (NISavePanel)

11-31
- runModalWith Validation:inDomain:withUser:

withInstruction :allowChange: (NILoginPanel)
11-23

- runOk: (NIDomainPanel) 11-19
- runPageLayout: (Application) 2-57
run-time system 15-3
- runWithTimeout: (NXConnection) 6-32

- sample Count (Sound) 16-62
- samplesPerPixel (NXBitmaplmageRep) 2-311
- samplesProcessed (Sound) 16-63
- samplingRate (Sound) 16-63
- save Changes (DBFetchGroup) 4-82
- saveChanges: (DB Module) 4-102

Index-54

- saveFrameToString: (Window) 2-846
- saveFrameUsingName: (Window) 2-847
- saveLinkIn: (NXDataLink) 2-397
- saveModifications (DBRecordList) 4-120,

(DBRecordStream) 4-131.
SavePanel class, specification 2-598
- saveRTFDTo:removeBackup:errorHandler:

(Text) 2-708
- saveTo: (NXColorList) 2-358
- scale:: (ClipView) 2-157, (View) 2-794
- scale::: (N3DShape) 17-114
- scaleToFit (SoundView) 16-86
- scaleUniformly: (N3DShape) 17-115
- scalingFactor (PrintInfo) 2-578
- scanFunc (Text) 2-709
- scansForModifiedFiles:

(IXFileFinderConfiguration) 7-132
- scratchZone (DBBinder) 4-44
- screen (Window) 2-847
- screenChanged: (Window) 2-847
- screenFont (Font) 2-189
screenlist operator 5-37
screentobase operator 5-38
screentocurrent operator 5-38
- scroHCellToVisihle:: (lVIatrix) 2-265
- scroIlClip:to: (ClipView) 2-160,

(DBTableView) 4-156
- scrollColumnsLeftBy: (NXBrowser) 2-331
- scrollColumnsRightBy: (NXBrowser) 2-331
- scrollColumnToVisible: (DBTableView) 4-157,

(NXBrowser) 2-332
Scroller class, specification 2-607
- scrollPoint: (View) 2-794
- scroIlRect:by: (View) 2-795
- scrollRectToVisible: (View) 2-795
- scrollRowToVisible: (DBTableView) 4-157
- scrollSelTo Visible (Text) 2-709
- scrollUpOrDown: (NXBrowser) 2-332
- scrollViaScroller: (NXBrowser) 2-332
ScrollView class, specification 2-616
- searchItemList: (NIOpenPanel) 11-27
- searchTextField (NIOpenPanel) 11-27

- seekToCharacter At:relativeTo:
(NXReadOnlyTextStream) 2-893

SEL type 1-42
- selColor (Text) 2-709
- select (DBBinder) 4-44
- select:in View:editor:delegate:start:length: (Cell)

2-137
- selectAII: (DBTableView) 4-157, (Matrix) 2-265,

(NXBrowser) 2-332, (SoundView) 16-86,
(Text) 2-709

- selectCell: (Control) 2-171, (Matrix) 2-265
- selectCeIlAt:: (Matrix) 2-266
- selectCellWithTag: (Matrix) 2-266
- selectCharactersFrom:to: (NXSelectText) 2-895
- selectColumn:byExtension: (DBTableView)

4-157
- selectedCell (Control) 2-171, (Matrix) 2··266,

(NXBrowser) 2-332
- selectedCol (Matrix) 2-266
- selectedColumn (DBTableView) 4-157,

(NXBrowser) 2-333
- selectedColumnAfter: (DBTableView) 4-158
- selectedColumnCount (DB Table View) 4-158
- selectedlndex (Form) 2-215
- selectedItem (PopUpList) 2-566
- selectedRow (DBTableView) 4-158, (Matrix) 2-267
- selectedRow After: (DB Association) 4-22,

(DBFetchGroup) 4-82, (DBTableView) 4-158
- selectedRowCount (DBTableView) 4-159
- selectedTag (Control) 2-171
- selectError (Text) 2-709
- selectFile:inFile ViewerRootedAt:

(NXWorkspaceRequestProtocol) ·2-909
- selectInput: (NXLiveVideoView) 18-18
SelectionCell class, specification 2-626
- selectionChanged: (SoundView) 16-92
- selectionCharacterCount (NXSelectText) 2-896
- selectionCount (IBSelectionOwners) 8-52,

(WMlnspector) 19-17
- selectionDidChange (DBAssociation) 4-23
- selectionOwner (IB) 8-28
- selectionPathslnto:separator: (WMlnspector)

19-17

- selectNull (Text) 2-710
- selectObjects: (IBEditors) 8-48
- selectorForAttributeNamed: (IXRecordManager)

7-79
- selectorRPC:paramTypes: (Speaker) 2-661
- selectRow:byExtension: (DBTableView) 4-158
- selectShapesln: (N3DCamera) 17-32
- selectText: (Matrix) 2-267, (SavePanel) 2-603,

(Text) 2-710, (TextField) 2-742
- selectTextAt: (Form) 2-214
- selectTextAt:: (Matrix) 2-267
- selectWithoutFetching (DBBinder) 4-44
- self (Object) 1-35
- selFont (FontManager) 2-200
- selGray (Text) 2-710
sel_getNameO 15-30
seCgetUidO 15-30
sel_isMappedO 15-31
seCregisterNameO 15-32
- sendAction (FontManager) 2-200, (Matrix) 2-267,

(NXBrowser) 2-333
- sendAction:to: (Control) 2-172, (Matrix) 2-268
- sendAction:to:forAIICells: (Matrix) 2-268
- sendAction:to:forSelectedColumns:

(DBTableView) 4-159
- sendAction:to:forSelectedRows: (DB Table View)

4-159
- sendAction:to:from: (Application) 2-58
- sendActionOn: (Cell) 2-137, (Control) 2-172
- sendDoubleAction (Matrix) 2-268
- senderIslnvalid: (NXConnection) 6-32,

(NXSenderIsInvalid) 9-36
- sendEvent: (Application) 2-58, (Window) 2-847
- sendOpenFileMsg:ok:andDeactivateSelf:

(Speaker) 2-662
- sendOpenTempFileMsg:ok:andDeactivateSelf:

(Speaker) 2-662
- sendPort (Speaker) 2-662
- sendRecordedDataToDelegate (NXRecordStream)

16-15
- sendTimeout (Speaker) 2-663
- separateColumns: (NXBrowser) 2-333
services 2-1050

Index-55

- servicesDelegate (Listener) 2-239
- servicesMenu (Application) 2-58
- set (Font) 2-189, (N3DShader) 17-89,

(NXBrowserCell) 2-349, (NXCursor) 2-384
- setAccessoryView: (FontPanel) 2-207,

(N3DRenderPanel) 17-69, (NXColorPanel) 2-366,
(NXDataLinkPanel) 2-418,
(NXSpellChecker) 2-514, (PageLayout) 2-540,
(PrintPanel) 2-588, (SavePanel) 2-604

- setAction: (ActionCell) 2-22, (Cell) 2-138,
(Control) 2-172, (DBTableView) 4-159,
(FontManager) 2-201, (Matrix) 2-269,
(NXBrowser) 2-333, (NXColorPanel) 2-367,
(NXColorWell) 2-378, (PopUpList) 2-566,
(Scroller) 2-613

- setAction:at: (Form) 2-215
- setAction:at:: (Matrix) 2-269
setactiveapp operator 5-38
- setAlignment: (ActionCell) 2-22, (Cell) 2-138,

(Control) 2-173, (Text) 2-710
-setAIIPages~ (Printlnfo) 2-578
setalpha operator 5-39
- setAlpha: (NXlmageRep) 2-480
- setAltIcon: (Button) 2-91, (ButtonCell) 2-110

. - setAltImage: (Button) 2-91, (ButtonCell) 2-110
- setAltlncrementValue: (SliderCell) 2-645
- setAItTitle: (Button) 2-92, (ButtonCell) 2-111
- setAppListener: (Application) 2-59
- setAppSpeaker: (Application) 2-59
- setArrowsPosition: (Scroller) 2-613
- setAttenuationLeft:right: (NXSoundOut) 16-36
- setAttributeParsers: (IXFileFinderConfiguration)

7-132
- setAttributeReaders: (IXAttributeParser) 7-17
- setAutodisplay: (View) 2-795
setautofill operator 5-39
- setAutoresizeSubviews: (NXSplitView) 2-526,

(View) 2-795
- setAutoscale: (SoundView) 16-86
- setAutoscroll: (Matrix) 2-269
- setAutoSelect: (DBFetchGroup) 4-82
- setAutosizable: (DBTableVectors) 4-203
- setAutosizeCells: (Matrix) 2-269

Index-56

- setAutosizing: (View) 2-796
- setAutoupdate: (Application) 2-59, (Menu) 2-288
- setAvaiiableCapacity: (List) 3-22, (Storage) 3-41
- setAvoidsActivation: (Window) 2-848
- setBackgroundColor: (Clip View) 2-157,

(Matrix) 2-270, (N3DCamera) 17-33,
(N3DRIBlmageRep) 17-75, (NXlmage) 2-463,
(ScrollView) 2-621, (Text) 2-711,
(TextField) 2-742, (TextFieldCell) 2-752,
(Window) 2-848

- setBackgroundGray: (ClipView) 2-157,
(Matrix) 2-270, (ScroIlView) 2-622,
(SoundMeter) 16-73, (SoundView) 16-86,
(Text) 2-711, (TextField) 2-742,
(TextFieldCeIl) 2-752, (Window) 2-848

- setBackgroundTransparent: (Matrix) 2-270,
(TextField) 2-742, (TextFieldCell) 2-752

- setBackingType: (Window) 2-848
- setBecomeKeyOnlylfNeeded: (Panel) 2-545
- setBezeled: (ActionCeIl) 2-22, (Cell) 2-138,

(Form) 2-215, (SoundMeter) 16-73,
(SoundView) 16-86, (TextField) 2-743,
(TextFieldCell) 2-752

- setBinderDelegate: (DBRecordStream) 4-131
- setBitsPerSample: (NXTmageRep) 2-480
- setBordered: (ActionCell) 2-22, (Button) 2-92,

(ButtonCell) 2-111, (Cell) 2-138, (Form) 2-215,
(NXColorWell) 2-378, (TextField) 2-743

- setBorderType: (Box) 2-79, (ScrollView) 2-622
- setBranchSelectionEnabled: (NXBrowser) 2-334
- setBreakTable: (Text) 2-711
- setBufferCount: (NXSoundDevice) 16-28
- setBufferSize: (NXSoundDevice) 16-28
- setCacheDepthBounded: (NXlmage) 2-464
- setCamera: (N3DRotator) 17-80
- setCaseFolded: (IXAttributeReader) 7-27
- setCell: (Control) 2-173
- setCellBackgroundColor: (Matrix) 2-271
- setCeUBackgroundGray: (Matrix) 2-271
- setCellBackgroundTransparent: (Matrix) 2-271
+ setCellClass: (Button) 2-85, (Control) 2-166,

(Form) 2-211, (Matrix) 2-251, (Slider) 2-631,
(TextField) 2.:738

- setCellClass: (Matrix) 2-271, (NXBrowser) 2-334
- setCellPrototype: (NXBrowser) 2-334
- setCellSize: (Matrix) 2-272
- setCenter:andRadius: (N3DRotator) 17-80
- setCharCategoryTable: (Text) 2-712
- setCharFilter: (Text) 2-712
- setCharWrap: (Text) 2-712
+ setClickForHelpEnabled: (NXHelpPanel) 2-436
- setClickTable: (Text) 2-712
- setClipping: (View) 2-796
- setClipPlanesNear:far: (N3DCamera) 17-33
- setColor: (N3DLight) 17-56, (N3DShader) 17-90,

(NXColorPanel) 2-367,
(NXColorPickingCustom) 2-868,
(NXColorWell) 2-378

- setColorMatchPreferred: (NXlmage) 2-464
- setColorNamed:color: (NXColorList) 2-358
- setColumnHeading: (DBTableView) 4-159
- setColumnHeadingVisible: (DBTableView) 4-160
- setColumnSelectionOn::to: (DBTableView) 4-160
- setComparator:andContext:

(IXComparatorSetting) 7-120
- setComparator:andContext:

for AttributeNamed: (IXRecordManager) 7-79
- setComparisonFormat: (IXComparisonSetting)

7-123
- setComparisonFormat:for AttributeNamed:

(IXRecordManager) 7-79
- setCompression:andFactor:

(NXBitmaplmageRep) 2-311
- setConeAngle:coneDelta: beamDistribution:

(N3DLight) 17-57
- setConnection: (NIDomain) 11-11
- setConnection:readTimeout:writeTimeout:

canAbort:mustWrite: (NIDomain) 11-11
- setContainer: (DBBinder) 4-45
- setContentAlignment: (DBTableVectors) 4-203
- setContents:andLength: (lXStore) 7-91
- setContentView: (Box) 2-79, (Window) 2-849
- setContext: (PrintInfo) 2-578
- setContinuous: (Cell) 2-139, (Control) 2-173,

(NXColorPanel) 2-367, (NXColorWell) 2-378,
(SliderCell) 2-645, (SoundView) 16-87

- setCopies: (PrintInfo) 2-579
- setCopyOnScroll: (ClipView) 2-158,

(ScrollView) 2-622
- setCount:andPostings: (IXPostingExchange)

7-149
- setCount:andPostings:byCopy: (IXPostingSet)

7-69
- setCrossesDeviceChanges:

(IXFileFinderConfiguration) 7-133
- setCurrentContext: (N3DContextManager) 17-46
- setCurrentContextByName:

(N3DContextManager) 17-47
- setCurrentRecord: (DBFetchGroup) 4-82
setcursor operator 5-39
- setDatabase: (DBBinder) 4-45
- setDataRetained: (NXlmage) 2-464
- setDataSize:dataFormat:samplingRate:

channeICount:infoSize: (Sound) 16-63
- setDataSource: (DBTableView) 4-160
- setDeemphasis: (NXSoundOut) 16-37
setdefaultdepthlimit operator 5-40
+ setDefaultFont: (Text) 2-681
- setDefaultImage: (DBlmageFormatter) 4-92
+ setDefaultPrinter: (PrintInfo) 2-573
+ setDefaultTimeout: (NXConnection) 6-27
+ setDefaultZone: (NXConnection) 6-28
- setDelegate: (Application) 2-59, (DBBinder) 4-45,

(DBDatabase) 4-63, (DBFetchGroup) 4-83,
(DBModule) 4-103, (DBRecordStream) 4-132,
(DBTableView) 4-160, (FontManager) 2-201,
(Listener) 2-240, (N3DCamera) 17-33,
(NIDomain) 11-11, (NXBrowser) 2-335,
(NXConnection) 6-32, (NXlmage) 2-465,
(NXJournaler) 2-485, (NXLiveVideoView) 18-18,
(NXSoundStream) 16-46, (NXSplitView) 2-526,
(SavePanel) 2-604, (Sound) 16-63,
(SoundView) 16-87, (Speaker) 2-663,
(Text) 2-713, (Window) 2-849

- setDepthLimit: (Window) 2-849
- setDescentLine: (Text) 2-713
- setDescription: (IXFileRecord) 7-51
- setDescription:for AttributeNamed:

(IXRecordManager) 7-80

Index-57

- setDestination: (DBAssociation) 4-22
- setDetectPeaks: (NXPlayStream) 16-11,

(NXSoundDevice) 16-29
- setDevice: (NXSoundStream) 16-46
- setDirectory: (SavePanel) 2-604
- setDirectoryPath: (NIOpenPanel) 11-27
- setDisplayMode: (SoundView) 16-87
- setDisplayOnScroll: (ClipView) 2-158,

(ScrollView) 2-622
- setDocCursor: (ClipView) 2-158,

(ScrollView) 2-623
- setDocEdited: (Window) 2-849
- setDocView: (ClipView) 2-158, (ScrollView) 2-623
- setDoubleAction: (DBTableView) 4-160,

(Matrix) 2-272, (NXBrowser) 2-335
- setDoubleValue: (ButtonCell) 2-111, (Cell) 2-139,

(Control) 2-173, (DB Value) 4-172,
(SliderCell) 2-645

- setDoubleValue:at: (Form) 2-216
- setDrawAsBox: (N3DShape) 17-115
- setDrawBackgroundColor: (N3DCamera) 17-33
- setDrawFunc: (Text) 2-713
- setDrawOrigin:: (ClipView) 2-159, (View) 2-796
- setDrawRotation: (ClipView) 2-159, (View) 2-797
- setDrawSize:: (Clip View) 2-159, (View) 2-797
- setDynamicDepthLimit: (Windo'Y) 2-850
+ setDynamicRecordClassName: (DBBinder) 4-30
+ setDynamicRecordSuperciassName: (DBBinder)

4-31
- setDynamicScroIling: (ScrollView) 2-623
- setEditable: (Cell) 2-139, (DBImageView) 4-94,

(DBTableVectors) 4-203, (DBTableView) 4-161,
(SoundView) 16-87, (Text) 2-713,
(TextField) 2-743

- setEmptySelectionEnabled: (Matrix) 2-272,
(NXBrowser) 2-335

- setEnabled: (ActionCell) 2-23, (Cell) 2-139,
(Control) 2-174, (FontManager) 2-201,
(FontPanel) 2-207, (FormCell) 2-223,
(Matrix) 2-272, (NXBrowser) 2-335,
(NXColorWell) 2-379, (Slider) 2-633,
(SliderCell) 2-646, (SoundView) 16-87,
(TextField) 2-743

Index-58

- setEntity:andDescription: (DBExpression) 4-74,
(DB Qualifier) 4-110

- setEntryType: (Cell) 2-140
- setEntryWidth: (Form) 2-216
- setEPSUsedOnResolutionMismatch: (NXImage)

2-465
- setErrorAction: (Matrix) 2-273, (TextField) 2-744
seteventmask operator 5-41
- setEventMask: (Window) 2-850
- setEventStatus:soundStatus:eventStream:

soundfile: (NXJournaler) 2-485
- setExciudedFrom WindowsMenu: (Window)

2-851
setexposurecolor operator 5-42
- setEyeAt:toward:roll: (N3DCamera) 17-34
- setFieldOfViewByAngle: (N3DCamera) 17-34
- setFieldOfViewByFocalLength: (N3DCamera)

17-34
- setFiledate: (lXFileRecord) 7-51
- setFilename: (IXFileRecord) 7-51
- setFiletype: (lXFileRecord) 7-51
- setFirst (DBCursorPositioning) 4-180,

(lXCursorPositioning) 7-128
- setFirstHandle (lXPostingOperations) 7-152
- setFirstPage: (Printlnfo) 2-579
- setFlipped: (NXImage) 2-465, (View) 2-797
- setFloatingPanel: (Panel) 2-546
- setFloatingPointFormat:left:right:

(ActionCell) 2-23, (Cell) 2-140, (Control) 2-174
- setFloatValue: (ButtonCell) 2-111, (Cell) 2-141,

(Control) 2-174, (DB Value) 4-172,
(Scroller) 2-614, (SliderCell) 2-646,
(SoundMeter) 16-73

- setFloatValue:: (Scroller) 2-614
- setFloatValue:at: (Form) 2-216
- setFlushEnabled: (DBBinder) 4-46
setOushexposures operator 5-43
- setFlush~IB: (N3DCamera) 17-34
- setFollowsSymbolicLinks:

(lXFileFinderConfiguration) 7-133

- setFont: (ActionCell) 2-23, (Box) 2-79,
(ButtonCell) 2-112, (Cell) 2-141, (Control) 2-174,
(DBEditableFormatter) 4-69,
(DBTextFormatter) 4-167, (Form) 2-216,
(Matrix) 2-273, (PopUpList) 2-567, (Text) 2-714

- setFont:paraStyle: (Text) 2-714
+ setFontManagerFactory: (FontManager) 2-194
- setFontPanelEnabled: (Text) 2-714
+ setFontPanelFactory: (FontManager) 2-194
- setForegroundGray: (SoundMeter) 16-73,

(SoundView) 16-88
- setFormatter: (DBTableVectors) 4-203
- setFrame: (N3DCamera) 17-35, (View) 2-798
- setFrameAutosaveName: (Window) 2-851
setframebuffertransfer operator 5-43
- setFrameFromContentFrame: (Box) 2-79
- setFrameFromString: (Window) 2-851
- setFrameNumber: (N3DMovieCamera) 17-64
- setFrameUsingName: (Window) 2-852
- setFreeObjectsOnFlush: (DBBinder) 4-46
- setFreeWhenClosed: (Window) 2-852
- setFrom: (N3DLight) 17-57
- setFrom:to: (N3DLight) 17-57
- setGainLeft:right: (NXPlayStream) 16-11
- setGeneratesDescriptions:

(IXFileFinderConfiguration) 7-133
- setGlobal: (N3DLight) 17-58
- setGrabOnStop: (NXLiveVideoView) 18-18
- setGraphicslmportEnabled: (Text) 2-714
- setGridVisible: (DBTableView) 4-161
- setHandle: (IXPostingOperations) 7-152
- setHideOnDeactivate: (Window) 2-852
- setHider: (N3DCamera) 17-35,

(N3DRIBlmageRep) 17-75
- setHighlightsBy: (ButtonCell) 2-112
- setHoldTime: (SoundMeter) 16-74
- setHorizCentered: (PrintInfo) 2-579
- setHorizontalScrollButtonsEnabled:

(NXBrowser) 2-336
- setHorizontalScrollerEnabled: (NXBrowser)

2-336
- setHorizPagination: (PrintInfo) 2-579
- setHorizResizable: (Text) 2-715

- setHorizScroller: (ScrollView) 2-623
-setHorizScrollerRequired: (DBTableView) 4-161,

(ScrollView) 2-623
- setHotSpot: (NXCursor) 2-384
- setIcon: (ActionCell) 2-23, (Button) 2-92,

(ButtonCell) 2-113, (Cell) 2-141
- setIcon:at:: (Matrix) 2-273
- setIcon:position: (Button) 2-92
- setIconPosition: (Button) 2-93, (ButtonCell) 2-113
- setIdentifier: (DBTableVectors) 4-203
- setIgnoredNames: (IXFileFinderConfiguration)

7-133
- setIgnoredTypes: (IXFileFinderConfiguration)

7-134
- setIgnoredWords:forSpellDocument:

(NXSpellChecker) 2-514
- setIgnoresDuplicateResults: (DBBinder) 4-46
- setImage: (Button) 2-93, (ButtonCell) 2-113,

(DBlmageView) 4-95, (NXCursor) 2-385,
(Slider) 2-633, (SliderCell) 2-646

- setImportAlpha: (Application) 2-60
- setInputBrightness: (NXLiveVideoView) 18-18
- setInputGamma: (NXLiveVideoView) 18-19
- setInputHue: (NXLiveVideoView) 18-19
- setInputSaturation: (NXLive Video View) 18-19
- setInputSharpness: (NXLiveVideoView) 18-19
- setInsertsZeros: (NXSoundOut) 16-37
setinstance operator 5-44
- setIntensity: (N3DLight) 17-58
- setInteractsWithUser: (NXDataLinkManager)

2-408
- setIntercell: (DBTableView) 4-161, (Matrix) 2-273
- setInterline: (Form) 2-217
- setInTimeout: (NXConnection) 6-32
- setIntValue: (ButtonCell) 2-114, (Cell) 2-142,

(Control) 2-175, (DBValue) 4-173,
(SliderCell) 2-646

- setIntValue:at: (Form) 2-217
- setItemList: (Menu) 2-288
- setJobFeature:toValue: (PrintInfo) 2-579
- setJournalable: (Application) 2-60
- setKey:andLength: (IXCursorPositioning) 7-128

Index-59

- setKey:andLength:withHint: (lXBTreeCursor)
7-39

- setKeyEquivalent: (Button) 2-93,
(ButtonCell) 2-114

- setKeyEquivalentEont: (ButtonCell) 2-114
- setKeyEquivaientFont:size: (ButtonCell) 2-114
- setKeyProperties: (DBRecordStream) 4-132
- setKnobThickness: (Slider) 2-634,

(SliderCell) 2-646
- setLanguage: (NXSpellChecker) 2-514
- setLast (DBCursorPositioning) 4-180,

(IXCursorPositioning) 7-128
- setLastColumn: (NXBrowser) 2-336
- setLastPage: (Printlnfo) 2-579
- setLeaf: (NXBrowserCell) 2-349,

(SelectionCell) 2-629
- setLineHeight: (Text) 2-715
- setLineScroll: (ScrollView) 2-624
+ setLink:andManager:isMultiple:

(NXDataLinkPanel) 2-416
- setLink:andManager:isMultiple:

(NXDataLinkPanel) 2-418
- setLinkOutlines Visible: (NXDataLinkManager)

2-408
- setLinks VerifiedByDelegate:

(NXDataLinkManager) 2-408
- setListTitle: (NIOpenPanel) 11-28
- setLoaded: (NXBrowserCell) 2-349
- setLocation:ofCell: (Text) 2-715
- setMainMenu: (Application) 2-61
- setMarginLeft:right:top:bottom:

(Printlnfo) 2-580, (Text) 2-716
- setMatchedOnMultipleResolution: (NXImage)

2-465
- setMatrixClass: (NXBrowser) 2-337
- setMaximumRecordsPerFetch: (DBBinder) 4-46
-setMaxSize: (DBTableVectors) 4-203, (Text) 2-716,

(Window) 2-852
- setMaxValue: (Slider) 2-634, (SliderCell) 2-647
- setMaxVisibleColumns: (NXBrowser) 2-337
+ setMenuZone: (Menu) 2-284
- setMinColumnWidth: (NXBrowser) 2-337
- setMinimumWeight: (IXAttributeParser) 7-17

Index-60

- setMiniwindowIcon: (Window) 2-853
- setMiniwindowImage: (Window) 2-853
- setMiniwindowTitle: (Window) 2-853
-setMinSize: (DBTableVectors) 4-204, (Text) 2-716,

(Window) 2-853
- setMinValue: (Slider) 2-634, (SliderCell) 2-647
- setMode: (DBTableView) 4-162, (Matrix) 2-274,

(NXColorPanel) 2-367, (NXColorPicker) 2-371,
(NXColorPickingDefault) 2-874

- setMonoFont: (Text) 2-716
setmouse operator 5-45
- setMultipleSelectionEnabled: (NXBrowser)

2-338
+ setMute: (Sound) 16-54
- setName: (DBDatabase) 4-63,

(DB Fetch Group) 4-83, (DBProperties) 4-196,
(DB Qualifier) 4-110, (NXImage) 2-466,
(Sound) 16-64

- setName:for: (lBDocuments) 8-40
- setNeedsDisplay: (View) 2-798
- setNext (DBCursorPositioning) 4-180,

(DBRecordStream) 4-132,
(IXCursorPositioning) 7-128

- setNextHandle (lXPostingOperations) 7-152
- setNextResponder: (Responder) 2-594
- setNextText: (Matrix) 2-274, (TextField) 2-744
- setNoWrap (Text) 2-717
- setNull (DB Value) 4-173
- setNumColors: (NXImageRep) 2-480
- setNumSlots: (Storage) 3-41
- setObjectValue: (DB Value) 4-173
- setObjectValueNoCopy: (DBValue) 4-173
- setOffsets:: (Box) 2-80
- setOneShot: (Window) 2-854
- setOnMouseEntered: (NXCursor) 2-385
- setOnMouseExited: (NXCursor) 2-386
- setOpaque: (NXlmageRep) 2-481 , (View) 2-798
+ setOpenPanelFactory: (OpenPanel) 2-531
- setOptimizedForSpeed: (SoundView) 16-88
- setOrientation:andAdjust: (Printlnfo) 2-580
- setOutputFile: (PrintInfo) 2-580
- setOutputGamma: (NXLiveVideoView) 18-20
- setOutputGenlocked: (NXLiveVideoView) 18-20

- setQutputMode: (NXLiveVideoView) 18-20
- setOutTimeout: (NXConnection) 6-33
setowner operator 5-45
- setPageOrder: (PrintInfo) 2-580
- setPageScroll: (ScrollView) 2-624
- setPagesPerSheet: (Printlnfo) 2-580
- setPaneIFont:isMultiple: (FontPanel) 2-208
- setPanelsEnabled: (DB Database) 4-63
- setPanelTitle: (NIOpenPanel) 11-28
- setPaperFeed: (Printlnfo) 2-581
- setPaperRect:andAdjust: (Printlnfo) 2-581
- setPaperType:andAdjust: (PrintInfo) 2-581
- setParameter:to: (ButtonCell) 2-115, (Cell) 2-142
- setParaStyle: (Text) 2-717
- setParser:forAttributeNamed:

(IXRecordManager) 7-80
- setPath: (NXBrowser) 2-338
- setPathSeparator: (NXBrowser) 2-338
- setPeakGray: (SoundMeter) 16-74
- setPeakHistory: (NXPlayStream) 16-12
- setPeakHistory: (NXSoundDevice) 16-29
- setPercentPassed: (IXAttributeParser) 7-18
- setPeriodicDelay:andlnterval: (Button) 2-94,

(ButtonCell) 2-116
+ setPickerMask: (NXColorPanel) 2-363
+ setPickerMode: (NXColorPanel) 2-364
- setPixelAspectRatio: (N3DCamera) 17-35
- setPixelsHigh: (NXlmageRep) 2-481
- setPixels Wide: (NXlmageRep) 2-481
- setPluralsFolded: (IXAttributeReader) 7-27
- setPosition: (IXPostingSet) 7-70
- setPostSelSmartTable: (Text) 2-717
- setPreSelSmartTable: (Text) 2-717
- setPreTransformMatrix: (N3DCamera) 17-36
- setPrevious (DBCursorPositioning) 4-180,

(IXCursorPositioning) 7-129
- setPreviousText: (Matrix) 2~274, (TextField) 2-744
- setPrinter: (PrintInfo) 2-581
- setPrintlnfo: (Application) 2-61
- setPriority: (Listener) 2-240
- setProjection: (N3DCamera) 17-36
- setProjectionRectangle:::: (N3DCamera) 17-36
- setPrompt: (SavePanel) 2-604

- setProperties: (DBBinder) 4-47
- setProperties:ofSource: (DBRecordStream) 4-132
- setProtocolForProxy: (NXProxy) 6-36
- setPrototype: (Matrix) 2-275
- setPunctuation: (IXAttributeReader) 7-27
- setQualifier: (DB Binder) 4-47
- setRampsDown: (NXSoundOut) 16-37
- setRampsUp: (NXSoundOut) 16-38
- setReaction: (Matrix) 2-275
- setRecordDevice: (NXJoumaler) 2-486
- setRecordLimit: (DBRecordList) 4-120
- setRecordPrototype: (DBBinder) 4-47
- setReductionFactor: (SoundView) 16-88
- setRenderDelegate: (N3DShape) 17-115
- setReplyPort: (Speaker) 2-663
- setReplyTimeout: (Speaker) 2-664
- setRequiredFileType: (SavePanel) 2-604
- setReserved: (NXSoundDevice) 16-29
- setResizable: (DBTableVectors) 4-204
- setRetainedWhileDrawing: (Text) 2-718
- setRetrieveMode: (DBRecordList) 4-121
- setReversePageOrder: (PrintInfo) 2-581
- setRoot: (NXConnection) 6-33
- setRotationAxis: (N3DRotator) 17-80
- setRowHeading: (DBTableView) 4-162
- setRowHeadingVisible: (DBTableView) 4-162
- setRowSelectionOn::to: (DBTableView) 4-162
+ setSavePanelFactory: (SavePanel) 2-601
- setScalable: (NXlmage) 2-466
- setScalingFactor: (PrintInfo) 2-582
- setScanFunc: (Text) 2-718
- setScansFor ModifiedFiles:

(IXFileFinderConfiguration) 7-134
- setScrollable: (Cell) 2-142, (Matrix) 2-275
- setSel:: (Text) 2-718
- setSelColor: (Text) 2-719
- setSelectable: (Cell) 2-143, (N3DShape) 17-115,

(Text) 2-719, (TextField) 2-744
- setSelection: (NXDataLinkManager) 2-413
- setSelection:size: (SoundView) 16-88
- setSelectionByRect: (MatI;'ix) 2-276
- setSelectionFrom: (IBDocuments) 8-41
- setSelectionFrom:to:anchor:lit: (Matrix) 2-276

Index-61

- setSelFont: (Text) 2-719
- setSeIFont:isMultiple: (FontManager) 2-202
- setSeIFont:paraStyle: (Text) 2-719
- setSelFontFamily: (Text) 2-720
- setSelFontSize: (Text) 2-720
- setSelFontStyle: (Text) 2-720
- setSelGray: (Text) 2-720
- setSeIProp:to: (Text) 2-721
setsendexposed operator 5-45
- setSendPort: (Speaker) 2-664
- setSendTimeout: (Speaker) 2-664
- setServicesDelegate: (Listener) 2-241
- setServicesMenu: (Application) 2-61
- setShader: (N3DShader) 17-90,

(N3DShape) 17-116
- setShaderArg:colorValue: (N3DShader) 17-90
- setShaderArg:floatValue: (N3DShader) 17-90
- setShaderArg:pointValue: (N3DShader) 17-91
- setShaderArg:stringValue: (N3DShader) 17-91
- setShapeName: (N3DShape) 17-116
- setSharesContext: (DBBinder) 4-47
- setShowAlpha: (NXColorPanel) 2-368
setshowpageprocedure operator 5-46
- setShowsStateBy: (ButtonCell) 2-116
- setSize: (NXlmage) 2-466, (NXlmageRep) 2-481
- setSizeLimit: (IXStoreFile) 7-105
- setSound: (Button) 2-94, (ButtonCell) 2-117,

(SoundMeter) 16-74, (SoundView) 16-89
- setSoundStruct:soundStructSize: (Sound) 16-64
- setSpeakerMute: (NXSoundOut) 16-38
- setStartFrame:endFrame:incrementFramesBy:

(N3DMovieCamera) 17-65
- setStartingDomainPath: (NISavePanel) 11-31
- setState: (Button) 2-94, (Cell) 2-143
- setState:at:: (Matrix) 2-276
- setStemsReduced: (IXAttributeReader) 7-27
- setStopWords: (IXAttributeReader) 7-28
- setStringValue: (ActionCell) 2-24,

(ButtonCell) 2-117, (Cell) 2-143, (Control) 2-175,
(DB Value) 4-173, (SliderCell) 2-647

- setStringValue:at: (Form) 2-217
- setStringValueNoCopy: (ButtonCell) 2-117,

(Cell) 2-143, (Control) 2-175, (DB Value) 4-173

Index-62

- setStringValueNoCopy:shouldFree:
(ActionCell) 2-24, (Cell) 2-144, (Control) 2-175

- setStyle: (DBlmageView) 4-95, (Font) 2-190
- setSubmenu:forItem: (Menu) 2-289
- setSurfaceType: (N3DRIBlmageRep) 17-76
- setSurfaceType:andDescendants: (N3DShape)

17-116
- setSurfaceTypeFor AII:chooseHider:

(N3DCamera) 17-37
+ setSystemLanguages: (NXBundle) 3-27
- setTag: (ActionCell) 2-24, (Cell) 2-144,

(Control) 2-176, (Text) 2-722
- setTag:at: (Form) 2-217
- setTag:at:: (Matrix) 2-277
- setTag:target:action:at:: (Matrix) 2-277
- setTaggedConnection:to: (NIDomain) 11-11
- setTaggedConnection:to:readTimeout:

writeTimeout:canAbort: (NIDomain) 11-12
- setTarget: (ActionCell) 2-24, (Cell) 2-144,

(Control) 2-176, (DBTableView) 4-163,
(Matrix) 2-277, (NXBrowser) 2-339,
(NXColorPanel) 2-368, (NXColorWell) 2-379,
(PopUpList) 2-567, (Sctoller) 2-614

- setTarget:at: (Form) 2-217
- setTarget:at:: (Matrix) 2-277
- setTargetClass:for AttributeNamed:

(IXRecordManager) 7-80
- setText: (Text) 2-722
- setTextAIi~ment: (Form) 2-218
- setTextAttributes: (Cell) 2-145,

(TextFieldCell) 2-753
- setTextColor: (Text) 2-722, (TextField) 2-745,

(TextFieldCell) 2-753
- setTextDelegate: (Matrix) 2-278, (TextField) 2-745
- setTextFilter: (Text) 2-723
- setTextFont: (Form) 2-218
- setTextGray: (Text) 2-723, (TextField) 2-745,

(TextFieldCell) 2-753
+ setThreadThreshold: (NXSoundDevice) 16-23
+ setTimeout: (NXSoundDevice) 16-23
- setTimeout: (Listener) 2-242

- setTitle: (Box) 2-80, (Button) 2-95,
(ButtonCell) 2-117, (DBTableVectors) 4-204,
(FormCell) 2-223, (SavePanel) 2-605,
(Slider) 2-634, (SliderCell) 2-647,
(Window) 2-854

- setTitle:at: (Form) 2-218
- setTitle:at:: (Matrix) 2-278
- setTitle:ofColumn: (NXBrowser) 2-339
- setTitleAlignment: (DB Table Vectors) 4-204,

(Form) 2-218, (FormCell) 2-223
- setTitleAsFilename: (Window) 2.,.854
- setTitleCell: (Slider) 2.,.634, (SliderCell) 2-648
- setTitleColor: (Slider) 2-635, (SliderCell) 2-648
- setTitled: (NXBrowser) 2-339
- setTitieFont: (DBTableVectors) 4<[04,

(Form) 2-218, (FormCell) 2-224, (Slider) 2-635,
(SliderCell) 2-648

- setTitieGray: (Slider) 2-635, (SliderCell) 2-648
- setTitleNoCopy: (Button) 2-95,

(ButtonCell) 2-117, (Slider) 2-635,
(SliderCell) 2-648

- setTitlePosition: (Box) 2-80
- setTitleWidth: (FormCell) 2-224
- setTo: (DBCursorPositioning) 4-180
settrackingrect operator 5-46
- setTrackingRect:inside:owner:tag:left:right:

(Window) 2-855
- setTransformMatrix: (N3DShape) 17-117
- setTransparency: (N3DShader) 17-91
- setTransparent: (Button) 2-95, (ButtonCell) 2-118
- setTreatsFilePackagesAsDirectories: (SavePanel)

2-605
- setType: (Button) 2-95, (ButtonCell) 2-118,

(Cell) 2-145, (N3DLight) 17-58,
(NXPhoneCall) 13-28, (NXPhoneChannel) 13-35

- setUnique: (NXImage) 2-467
+ setUnpackedlmageDataAcceptable:

(NXBitmapImageRep) 2-301
- setUpdateAction:forMenu: (MenuCell) 2-293
- setUpdateMode: (NXDataLink) 2-397
- setUpdatesAutomatically:

(IXFileFinderConfiguration) 7-134
- setUseColor: (N3DShader) 17-92

- setUsePreTransformMatrix: (N3DCamera) 17-37
+ setUserFixedPitchFont: (Font) 2-184
+ setUserFont: (Font) 2-184
+ setUseSeparateThread: (NXSoundDevice) 16-23
- setValue: (DBAssociation) 4-23
- setValue:andLength:offilob:forRecord:

(IXBlobWriting) 7-114
- setValue:forProperty: (DBRecordList) 4-121,

(DBRecordStream) 4-133
- setValue:forProperty:at: (DBRecordList) 4-121
- setValueFor::from: (DBTableDataSources) 4-199
- setValueFor:at:from: (DBTableDataSources)

4-199
- setValueFrom: (DB Value) 4-174
+ setVersion: (Object) 1-17
- setVersion: (NXBundle) 3-30
- setVertCentered: (PrintInfo) 2-582
- setVertPagination: (Printlnfo) 2-582
- setVertResizable: (Text) 2-724
- setVertScroller: (ScrollView) 2-624
- setVertScrollerRequired: (DBTableView) 4-163,

(ScrollView) 2-625
- setVisible: (N3DShape) 17-118
+ setVolume:: (Sound) 16-54
setwaitcursorenabled operator 5-48
- setWeightingDomain: (lXAttributeParser) 7-18
- setWeightingType: (lXAttributeParser) 7-18
setwindowdepthlimit operator 5-49
setwindowdict operator 5-50
setwindowleveloperator 5-50
- setWindowsMenu: (Application) 2-61
setwindowtype operator 5-51
- setWorksWhenModal: (Panel) 2-546
- setWorldShape: (N3DCamera) 17-37
- setWrap: (Cell) 2-146
setwriteblock operator 5-51
- shader (N3DShader) 17-92
- shaderArgCount (N3DShader) 17-92
- shaderArgNameAt: (N3DShader) 17-92
- shaderArgType: (N3DShader) 17-92
- shaderType (N3DShader) 17-93
- shaderType: (N3DShape) 17-118
- shapeName (N3DShape) 17-118

Index-63

+ sharedlnstance (NXSpellChecker) 2-510
+ sharedlnstance: (NXColorPanel) 2-364,

(NXSpellChecker) 2-511
- shares Context (DBBinder) 4-47
- shouldDelayWindowOrderingForEvent: (View)

2-798
- shouldDrawColor (View) 2-799
- shouldRunPrintPanel:

(NXPrintingUserInterface) 2-889
- showCaret (Text) 2-724
showcursor operator 5-52
- showCursor (SoundView) 16-89
- showFile:atMarker: (NXHelpPanel) 2-437
- showGuessPanel: (Text) 2-724
- showHelpAttachedTo: (NXHelpPanel) 2-437
- showHelpPanel: (Application) 2-61
showpage operator 5-52
- showSelection: (NXDataLinkManager) 2-413
- showsStateBy (ButtonCell) 2-118
- signaturePort (Listener) 2-242
- size (DBTableVectors) 4-204, (IXStoreBlock) 7-96,

(NXData) 9-11
- sizeBy:: (N3DCamera) 17-38, (View) 2-799
- sizeForKey:inTable: (NXPrinter) 2-501
sizeimage operator 5-53
+ sizelmage: (NXBitmapImageRep) 2-301
+ sizelmage:pixelsWide:pixelsHigh:

bitsPerSample:samplesPerPixel:hasAlpha:
isPlanar:colorSpace: (NXBitmaplmageRep)
2-301

- sizeLimit (IXStoreFile) 7-105
- sizeOffilock: (IXStore) 7-92
- sizeTo: (DB Table Vectors) 4-204
- sizeTo:: (Box) 2-81, (Clip View) 2-159,

(Control) 2-176, (DBTableView) 4-163,
(Form) 2-219, (Matrix) 2-278,
(N3DCamera) 17-38, (NXBrowser) 2-339,
(Scroller) 2-614, (SoundView) 16-89,
(Text) 2-724, (TextField) 2-745, (View) 2-799

- sizeToCells (Matrix) 2-278

Index-64

- sizeToFit (Box) 2-81, (Control) 2-176,
(Form) 2-219, (Matrix) 2-279, (Menu) 2-289,
(NXBrowser) 2-339, (Slider) 2-635,
(SoundView) 16-89, (Text) 2-725

- sizeWindow:: (PopUpList) 2-567, (Window) 2-855
- slaveJournaler (Application) 2-62
- slideDraggedlmageTo: (NXDragginglnfo) 2-882
- slidelmage:from:to:

(NXWorkspaceRequestProtocol) 2-909
Slider class, specification 2-630
SliderCell class, specification 2-637
SLOArgs type 17-133
- smartFaxPSCode: (Window) 2-855
- smartPrintPSCode: (Window) 2-856
SNDAcquireO 16-94
SNDAllocO 16-95
SNDBootDSPO 16-98
SNDBytesToSamplesO 16-111
SNDCompactSamplesO 16-106
SNDCompressionSubheader type 16-160
SNDCompressSoundO 16-99
SNDConvertDecibelsToLinearO 16-100
SNDConvertLinearToDecibelsO 16-100
SNDConvertSoundO 16-101
SNDCopySamplesO 16-102
SNDCopySoundO 16-102
SNDDeleteSamplesO 16-106
SNDDRIVER_ABORT_STREAM constant 16-168
SNDDRIVER_AWAIT_STREAM constant 16-168
SNDDRIVER_DMA_STREAM_FROM_DSP

constant 16-169
SNDDRIVER_DMA_STREAM_ THROUGH_

DSP _TO_SNDOUT_22 constant 16-169
SNDDRIVER_DMA_STREAM_THROUGH_

DSP _TO_SNDOUT_ 44 constant 16-169
SNDDRIVER_DMA_STREAM_TO_DSP constant

16-169
snddriver_dsp_bootO 16-125
snddriver _dsp_dma_readO 16-126
snddriver _dsp_dma_ writeO 16-126
snddriver_dsp_host_cmdO 16-127
snddriver _dsp_protocoIO 16-128
snddriver _dsp_readO 16-131

snddriver_dsp_read_dataO 16-131
snddriver _dsp_read_messagesO 16-131
snddriver _dsp_resetO 16-125
snddriver_dsp_set_flagsO 16-130
snddriver _dsp_ writeO 16-131
snddriver_dspcmd_req_condition 16-133
snddriver_dspcmd_req_errO 16-134
snddriver _dspcmd_req_msgO 16-134
snddriver_get_device_parmsO 16-143
snddriver _get_dsp_cmd_portO 16-135
snddriver_get_volumeO 16-143
snddriver _handlers type 16-162
snddriver_new_device_portO 16-136
SNDDRIVER_PAUSE_STREAM constant 16-168
snddriver _reply _handlerO 16-137
SNDDRIVER_RESUME_STREAM constant 16-168
snddriver_set_device_parmsO 16-143
snddriver_set_dsp_owner_portO 16-145
snddriver _set_rampO 16-143
snddriver _set_sndin_owner _portO 16-145
snddriver _set_sndout_bufcountO 16-147
snddriver _set_sndout_bufsizeO 16-147
snddriver _seLsndouL owner_portO 16-145
snddriver_set_volumeO 16-143
snddriver_stream_controIO 16-148
SNDDRIVER_STREAM_DSP_TO_SNDOUT_22

constant 16-169
SNDDRIVER_STREAM_DSP _TO_SNDOUT_ 44

constant 16-169
SNDDRIVER_STREAM_FROM_DSP constant

16-169
SNDDRIVER_STREAM_FROM_SNDIN constant

16-169
snddriver _stream_ndmaO 16-147
snddriver _stream_nsamplesO 16-148
snddriver _stream_setupO 16-150
snddriver_stream_start_readingO 16-154
snddriver _stream_start_ writingO 16-154
SNDDRIVER_STREAM_THROUGH_DSP _TO_SN

DOUT_22 constant 16-169
SNDDRIVER_STREAM_THROUGH_DSP _TO_SN

DOUT _ 44 constant 16-169
SNDDRIVER_STREAM_ TO _DSP constant 16-169

SNDDRIVER_STREAM_TO_SNDOUT_22
constant 16-169

SNDDRIVER_STREAM_TO_SNDOUT_ 44
constant 16-169

SNDDropATCSamplesO 16-103
SNDError type 16-160
SNDFree() 16-95
SNDGetATCBandFrequenciesO 16-104
SNDGetATCBandwidthsO 16-104
SNDGetATCEqualizerGainsO 16-112
SNDGetATCGainO 16-112
SNDGetATCSquelchThresholdsO 16-113
SNDGetCompressionOptionsO 16-114
SNDGetDataPointerO 16-104
SNDGetFilterO 16-115
SNDGetMuteO 16-115
SNDGetNumberOfATCBandsO 16-104
SNDGetVolume() 16-115
SNDiMulawO 16-101
SNDlnsertATCSamplesO 16-103
SNDlnsertSamplesO 16-106
SNDModifyPriorityO 16-118
SNDMulawO 16-101
SNDNotificationFun type 16-161
SNDPlaySoundfileO 16-107
SNDReadO 16-108
SNDReadDSPfileO 16-108
SNDReadHeader() 16-108
SNDReadSoundfileO 16-108
SNDReleaseO 16-94
sndreply _dsp_cond_true_t type 16-163
sndreply_dsp_ms~ttype 16-163
sndreply_recorded_data_t type 16-164
sndreply_tagged_ttype 16-164
SNDReserveO 16-109
SNDReset() 16-94
SNDRunDSPO 16-110
SNDSampleCountO 16-111
SNDSamplesProcessedO 16-118
SNDSamplesToBytesO 16-111
SNDScaleATCEqualizerGainsO 16-112
SNDSetATCEqualizerGainsO 16-112
SNDSetATCGainO 16-112

Index-65

SNDSetATCSquelchThresholdsO 16-113
SNDSetCompressionOptionsO 16-114
SNDSetFilterO 16-115
SNDSetHostO 16-115
SNDSetMuteO 16-115
SNDSetVolumeO 16-115
SNDSoundErrorO 16-116
SNDSoundStruct type 16-162
SNDStartPlayingO 16-118
SNDStartRecordingO 16-118
SNDStartRecordingFileO 16-118
SNDStopO 16-118
SNDUnreserveO 16-109
SNDUseDefaultATCSquelchThresholdsO macro

16-113
SNDVerifyPlayableO 16-118
SNDWaitO 16-118
SNDWriteO 16-120
SNDWriteHeaderO 16-120
SNDWriteSoundfileO 16-120
SND_ACCESS_DSP constant 16-167
SND_ACCESS_IN constant 16-167
SND_ACCESS_OUT constant 16-167
SND_CFORMAT_ATC constant 16-165
SND_CFORMAT_BIT_FAITHFUL constant 16-165
SND_CFORMAT_BITS_DROPPED constant

16-165
SND_ERR_ABORTED constant 16-161
SND_ERR_ALREADY_PLAYING constant 16-161
SND_ERR_ALREADY _RECORDING constant

16-161
SND _ERR_BAD _CHANNEL constant 16-160
SND_ERR_BAD_CONFIGURATION constant

16-161
SND _ERR_BAD _FILENAME constant 16-160
SND _ERR_BAD _FORMAT constant 16-160
SND_ERR_BAD_RATE constant 16-160
SND_ERR_BAD_SIZE constant 16-160
SND_ERR_BAD_SPACE constant 16-161
SND_ERR_BAD_TAG constant 16-161
SND_ERR_BUSY constant 16-161
SND _ERR_CANNOT _ABORT constant 16-161
SND_ERR_CANNOT_ACCESS constant 16-161

Index-66

SND_ERR_CANNOT_ALLOC constant 16-160
SND_ERR_CANNOT_CONFIGURE constant

16-161
SND_ERR_CANNOT_COPY constant 16-160
SND_ERR_CANNOT_EDIT constant 16-161
SND_ERR_CANNOT_FIND constant 16-161
SND _ERR_CANNOT _FREE constant 16-160
SND_ERR_CANNOT_OPEN constant 16-160
SND_ERR_CANNOT_PLAY constant 16-161
SND_ERR_CANNOT_READ constant 16-160
SND _ERR_CANNOT _RECORD constant 16-161
SND_ERR_CANNOT_RESERVE constant 16-160
SND _ERR_CANNOT _ WRITE constant 16-160
SND_ERR_INFO_TOO_BIG constant 16-161
SND _ERR_KERNEL constant 16-161
SND_ERR_NONE constant 16-160
SND_ERR_NOT_IMPLEMENTED constant 16-161
SND _ERR_NOT _PLAYING constant 16-161
SND_ERR_NOT_RECORDING constant 16-161
SND _ERR_NOT _RESERVED constant 16-161
SND_ERR_NOT_SOUND constant 16-160
SND_ERR_TIMEOUT constant 16-161
SND_ERR_UNDERRUN constant 16-161
SND_ERR_UNKNOWN constant 16-161
SND_FOR1\1AT_CO:MPRESSED constanl 16-170
SND_FORMAT_COMPRESSED_EMPHASIZED

constant 16-170
SND_FORMAT_DISPLAY constant 16-170
SND_FORMAT_DOUBLE constant 16-170
SND _FORMAT_DSP _COMMANDS constant

16-170
SND_FORMAT_DSP _CORE constant 16-170
SND_FORMAT_DSP _DATA_16 constant 16-170
SND _FORMAT _DSP _DATA_24 constant 16-170
SND_FORMAT_DSP_DATA_32 constant 16-170
SND_FORMAT_DSP _DATA_8 constant 16-170
SND _FORMAT _EMPHASIZED constant 16-170
SND _FORMAT _FLOAT constant 16-170
SND _FORMAT _INDIRECT constant 16-170
SND_FORMAT_LINEAR_16 constant 16-170
SND _FORMAT _LINEAR_24 constant 16-170
SND _FORMAT _LINEAR_32 constant 16-170
SND_FORMAT_LINEAR_8 constant 16-170

SND _FORMAT _MULAW _8 constant 16-170
SND _FORMAT_MULAW _SQUELCH constant

16-170
SND _FORMAT_UNSPECIFIED constant 16-170
SND_MAGIC constant 16-170
SND_NULL_FUN constant 16-166
SND_RATE_CODEC constant 16-167
SND_RATE_HIGH constant 16-167
SND_RATE_LOW constant 16-167
- sortBySelector:ascending: (IXPostingList) 7-64
- sortByWeightAscending: (IXPostingList) 7-65
Sound class, specification 16-49
Sound Kit 16-3
sound, API for 16-3
- sound (Button) 2-96, (ButtonCell) 2-118,

(SoundMeter) 16-74, (SoundView) 16-89
- soundBeingProcessed (Sound) 16-64,

(SoundView) 16-90
- soundDidChange: (SoundView) 16-92
SoundMeter class, specification 16-68
- soundStream:didCompleteBuffer:

(NXSoundStream) 16-47
- soundStream:didRecordData:size:forBuffer:

(NXRecordStream) 16-15
- soundStream:didStartBuffer: (NXSoundStream)

16-47
- soundStreamDidAbort:deviceReserved:

(NXSoundStream) 16-47
- soundStreamDidOverrun: (NXRecordStream)

16-15
- soundStreamDidPause: (NXSoundStream) 16-48
- soundStreamDidResume: (NXSoundStream)

16-48
- soundStreamDidUnderrun: (NXPlayStream)

16-12
- soundStruct (Sound) 16-64
- soundStructBeingProcessed (Sound) 16-64
- soundStructSize (Sound) 16-65
SoundView class, specification 16-75
- source (IBConnectors) 8-31, (IXPostingList) 7-65
- source:didReadRecord: (IXRecordTranscription)

7-157

-source:willWriteRecord: (IXRecordTranscription)
7-157

- sourceAppName (NXDataLink) 2-397
- sourceEdited (NXDataLink) 2-398
- sourceFilename (NXDataLink) 2-398
- sourceSelection (NXDataLink) 2-398
Speaker class, specification 2-652
- speaker (NXJournaler) 2-486
- spellDocumentTag (NXIgnoreMisspelledWords)

2-886
- spellingPanel (NXSpellChecker) 2-515
- splitView:getMin Y:maxY:ofSubview At:

(NXSplitView) 2-527
- splitView:resizeSubviews: (NXSplitView) 2-527
- splitViewDidResizeSubviews: (NXSplitView)

2-527
- spoolFile: (View) 2-799, (Window) 2-856
- start: (NXLiveVideoView) 18-21
- startArchiving: (Object) 1-35
- startFrame (N3DMovieCamera) 17-65
- startReadingRichText (Text) 2-725
- startTrackingAt:inView: (Cell) 2-146,

(SliderCell) 2-649
- startTransaction (IXStore) 7-92
+ startUnloading (Object) 1-17
- statBuffer (IXFileRecord) 7-52
- state (Button) 2-97, (Cell) 2-146,

(NXPhoneCall) 13-29
- status (Sound) 16-65
- statusForTable: (NXPrinter) 2-501
stilldown operator 5-53
- stop (Sound) 16-65
- stop: (Application) 2-62,

(NXLiveVideoView) 18-21, (Sound) 16-65,
(SoundMeter) 16-74, (SoundView) 16-90

- stop Connecting (IB) 8-28
- stopModal (Application) 2-62
- stopModal: (Application) 2-62
- stopQueryForSender:

(IXFileFinderQuery AndUpdate) 7-138
- stopTracking:at:in View:mouseIsUp: (Cell) 2-146,

(SliderCell) 2-649
- stopWords (IXAttributeReader) 7-28

Index-67

Storage class, specification 3-35
STR type 1-43
- stream (Text) 2-725
- streamOwnerPort (NXSoundDevice) 16-29
- streamPort (NXSoundStream) 16-47
- stringForKey:inTable: (NXPrinter) 2-502
- stringListForKey:inTable: (NXPrinter) 2-502
- stringValue (ActionCell) 2-25, (ButtonCell) 2-119,

(Cell) 2-147, (Control) 2-177, (DB Value) 4-174,
(SliderCell) 2-649

- stringValueAt: (Form) 2-219
StripAfterLoading default parameter B-5
- style (DBImageView) 4-95, (Font) 2-190,

(Window) 2-856
- subclassResponsibility: (Object) 1-35
- submenuAction: (Menu) 2-289
- subscript: (Text) 2-725
- subtractPostingsln: (IXPostingSet) 7-70
- subviews (View) 2-800
+ supercIass (Object) 1-18
- supercIass (Object) 1-36
- superscript: (Text) 2-726
- superview (View) 2-800
- superviewSizeChanged: (View) 2-800
- supportsMode: '(NXColorPickingCustom) 2-869
- surface Type (N3DRIBImageRep) 17-76,

(N3DShape) 17-119
- suspendNotify AncestorWhenFrameChanged:

(View) 2-800
- suspendUpdating

(lXFileFinderQuery AndU pdate) 7-138
- swapRecordAt:withRecordAt: (DBRecordList)

4-121
- switchLight: (N3DLight) 17-58
+ systemFontOfSize:matrix: (Font) 2-184
- systemLanguages (Application) 2-63

- table View:movedColumnFrom:to:
(DB Table View) 4-164

- table View:movedRowFrom:to: (DB Table View)
4-164

- tableViewDidChangeSelection: (DBTableView)
4-164

Index-S8

- tableViewWiIIChangeSelection: (DBTableView)
4-164

-'- tag (ActionCell) 2-25, (Cell) 2-147,
(Control) 2-177, (Text) 2-726, (View) 2-801

- takeColorFrom: (NXColorWell) 2-379
- takeDoubleValueFrom: (Cell) 2-147,

(Control) 2-177
- takeFloatValueFrom: (Cell) 2-147,

(Control) 2-177
- takelntValueFrom: (Cell) 2-148, (Control) 2-178
- takeStringValueFrom: (Cell) 2-148,

(Control) 2-178
- takeValueFrom: (DB Module) 4-103
- take ValueFromAssociation: (DB FetchGroup)

4-83
- target (ActionCell) 2-25, (Cell) 2-148,

(Control) 2-178, (DBTableView) 4-163,
(Matrix) 2-279, (NXBrowser) 2-340,
(NXColorWell) 2-379, (PopUpList) 2-567,
(Scroller) 2-615

+ targetLanguage (IXLanguageReader) 7-55
- targetLanguage (lXLanguageReader) 7-55
- tellDelegate: (Sound) 16-66, (SoundView) 16-90
- terminate: (Application) 2-63
term~/indo,v operator 5-54
- testPart: (Scroller) 2-615
Text class, specification 2-665
- text:isEmpty: (NIDomainPanel) 11-19,

(NIOpenPanel) 11-28
- textColor (Text) 2-726, (TextField) 2-745,

(TextFieldCell) 2-754
- textDelegate (Matrix) 2-279, (TextField) 2-746
- textDidChange: (lBInspector) 8-13,

(Matrix) 2-279, (Text) 2-731, (TextField) 2-746,
(WMInspector) 19-18

- textDidEnd:endChar: (DB Module) 4-103,
(FontPanel) 2-208, (Matrix) 2-280,
(PageLayout) 2-541, (SavePanel) 2-605,
(Text) 2-731, (TextField) 2-746

- textDidGetKeys:isEmpty: (FontPanel) 2-208,
(Matrix) 2-280, (SavePanel) 2-605, (Text) 2-731,
(TextField) 2-746

- textDidRead:paperSize: (Text) 2-731

- textDidResize:oldBounds:invalid: (Text) 2-732
TextField class, specification 2-736
TextFieldCell class, specification 2-748
- textFilter (Text) 2-726
+ textForError: (NXSoundDevice) 16-24
- textGray (Text) 2-726, (TextField) 2-747,

(TextFieldCell) 2-754
- textLength (Text) 2-727
- textWillChange: (DBModule) 4-103,

(Matrix) 2-280, (NIDomainPanel) 11-19,
(NIOpenPanel) 11-28, (PageLayout) 2-541,
(PrintPanel) 2-588, (Text) 2-732,
(TextField) 2-747

- textWillConvert:fromFont:toFont: (Text) 2-732
- textWillEnd: (DBModule) 4-103, (Matrix) 2-281,

(NIDomainPanel) 11-19, (Text) 2-733,
(TextField) 2-747

- textWillFinishReadingRichText: (Text) 2-733
- textWillResize: (Text) 2-733
- textWillSetSel:toFont: (Text) 2-733
- textWillStartReadingRichText: (Text) 2-733
- textWillWrite:paperSize: (Text) 2-734
+ threadThreshold (NXSoundDevice) 16-24
- tile (DB Table View) 4-163, (NXBrowser) 2-340,

(ScrollView) 2-625
- timeout (Listener) 2-242
- title (Box) 2-81, (Button) 2-97, (ButtonCell) 2-119,

(DB Table Vectors) 4-205, (FormCell) 2-224,
(Slider) 2-636, (SliderCell) 2-649,
(Window) 2-857

- titleAlignment (DBTableVectors) 4-205,
(FormCell) 2-224

- titleAt: (Form) 2-219
- title Cell (Slider) 2-636, (SliderCell) 2-650
- titleColor (Slider) 2-636, (SliderCell) 2-650
- titleFont (DBTableVectors) 4-205,

(FormCell) 2-224, (Slider) 2-636,
(SliderCell) 2-650

- title Gray (Slider) 2-636, (SliderCell) 2-650
- titleHeight (NXBrowser) 2-340
- titleOfColumn: (NXBrowser) 2-340
- titlePosition (Box) 2-82
- titleWidth (FormCell) 2-225

- titleWidth: (FormCell) 2-225
- toggleRuler: (Text) 2-727
- toneReceived: (NXPhoneCall) l3-29
- total Tokens (IXWeightingDomain) 7-109
- touch (IBDocuments) 8-41
- touch: (lBInspector) 8-14, (WMInspector) 19-18
- trackKnob: (Scroller) 2-615
- trackMouse:inRect:ofView: (ButtonCell) 2-119,

(Cell) 2-148, (FormCell) 2-225,
(MenuCell) 2-293, (SliderCell) 2-651,
(Text) 2-735, (TextFieldCell) 2-754

- trackMouseFrom:to:rotationMatrix:andlnverse:
(N3DRotator) 17-81

- trackScrollButtons: (Scroller) 2-615
- translate:: (ClipView) 2-160, (View) 2-801
- translate::: (N3DShape) 17-119
- transmitData:length: (NXPhoneCall) 13-30
- transparency (N3DShader) 17-93
TRUE constant 2-1015
- tryToPerform:with: (Application) 2-63,

(Responder) 2-595, (Window) 2-857
- type (Cell) 2-149, (N3DLight) 17-59,

(NXPhoneCall) l3-30,
(NXPhoneChannel) 13-36, (NXPrinter) 2-502

types and constants documentation, organization of 14
- types (NXDataLink) 2-398, (Pasteboard) 2-557
+ typesFilterableTo: (Pasteboard) 2-553

- underline: (Text) 2-727
- understandsType: (lXAttributeParser) 7-19
- ungroup (N3DShape) 17-120
- unhide (Application) 2-64
- unhide: (Application) 2-64
- unhideWithoutActivation: (Application) 2-64
- unique Tokens (lXWeightingDomain) 7-109
- unlink (N3DShape) 17-120
- unlock (NXConditionLock) 9-8,

(NXLock) 9-17, 9-33, (NXRecursiveLock) 9-27,
(NXSpinLock) 9-29

- unlockFocus (N3DCamera) 17-38,
(NXImage) 2-467, (View) 2-801

- unlockWith: (NXConditionLock) 9-8

Index-69

- nmountAndEjectDeviceAt:
XWorkspaceRequestProtocol) 2-909

- un unted: (Application) 2-64
- unmo ting:ok: (Application) 2-65
- unregist rDocumentControIler: (IB) 8-28
- unregisterUraggedTypes (View) 2-801,

(Window) 2-857
+ unregisterForInvalidationNotification:

(NXConnection) 6-28
- unregisterForInvalidationNotification:

(NXInvalidationN otifier) 9-15
+ unregisterImageRep: (NXImage) 2-449
- unscript: (Text) 2-728
- update (Control) 2-178, (DBBinder) 4-48,

(Menu) 2-289, (View) 2-801, (Window) 2-857
-'- updateAction (MenuCell) 2-293
- updateCeIl: (Control) 2-179
- updateCeIllnside: (Control) 2-179
- updateColorList: (NXColorPicker) 2-371,

(NXColorPickingDefault) 2-874
- updateCustomColorList (NXColorPanel) 2-368
- updateDestination (NXDataLink) 2-399
- updateFromPrintInfo (PrintPanel) 2-588
- updatelndexAtPath:forSender:

(IXFileFinderQuery AndUpdate) 7-139
- updateMode (NXDataLink) 2-399
- updatesAutomaticaIly

(IXFileFinderConfiguration) 7-134
- updateScroller (NXBrowser) 2-340
- updateWindows (Application) 2-65
- updateWindowsltem: (Application) 2-65
- use Cache WithDepth: (NXImage) 2-468
- useDrawMethod:inObject: (NXImage) 2-468
+ useFont: (Eont) 2-185
- useFromFile: (NXImage)· 2-469
- useFromSection: (NXImage) 2-469
- useHDLC: (NXPhoneCall) 13-30
- useOptimizedDrawing: (Window) 2-858
- usePrivatePort (Listener) 2-243
- useRepresentation: (NXImage) 2-470
+ userFixedPitchFontOfSize:matrix: (Font) 2-185
+ userFontOfSize:matrix: (Font) 2-186
- userKeyEquivalent (MenuCell) 2-294

Index-70

- useScrolIBars: (NXBrowser) 2-341
- useScrolIButtons: (NXBrowser) 2-341
- usesPreTransformMatrix (N3DCamera) 17-39
+ useUserKeyEquivalents: (MenuCell) 2-292

- validateCurrentRecord (DBFetchGroup) 4-83
- validateEditing (Control) 2-179,

(DBAssociation) 4-23
- validateSize: (Matrix) 2-281
- validateVisibleColumns (NXBrowser) 2-341
- validRequestorForSendType:andReturnType:

(Application) 2-66, (Responder) 2-595,
(SoundView) 16-90, (Text) 2-728,
(Window) 2-858

- valueForJobFeature: (PrintInfo) 2-582
- valueForKey: (HashTable) 3-14
- valueForProperty: (DBBinder) 4-48
- valueForStringKey: (NXStringTable) 3-34
- valueType (DB Value) 4-174
+ version (Object) 1-18
- version (NXBundle) 3-30
- vertPagination (PrintInfo) 2-582
- vertScrolIer (ScrollView) 2-625
video, API for 18-3
- videoDidActivate: (NXLiveVideoView) 18-22
- videoDidSuspend:.(NXLiveVideoView) 18-22
+ videoScreen (NXLive Video View) 18-12
View Additions category, specification 8-22
View class, specification 2-755
- view (Layout) 14-12
- viewSizeChanged: (NXColorPicker) 2-372,

(NXColorPickingDefault) 2-874

- wantsButtons (IBInspectors) 8-50
- wantsSelection (IBEditors) 8-48
wchartype 2-1014
- weightingDomain (IXAttributeParser) 7-19
- weightingType (IXAttributeParser) 7-19
- weightOfObjectAt: (IXPostingList) 7-65
- widthAdjustLimit (View) 2-802, (Window) 2-858
- willFree: (SoundView) 16-92
- willPlay: (Sound) 16-67,

(SoundView) 16-90, 16-92

- willRecord: (Sound) 16-67,
(SoundView) 16-91, 16-92

- willSaveDocument: (lBDocumentControllers)
8-32

- willSelect: (Layout) 14-12
- willUnselect: (Layout) 14-12
Window class, specification 2-803
window operator 5-54
- window (lBEditors) 8-48, (IBInspector) 8-14,

(View) 2-802, (WMInspector) 19-18
- windowChanged: (Text) 2-729, (View) 2-802
windowdevice operator 5-55
windowdeviceround operator 5-56
- windowDidBecomeKey: (Window) 2-860
- windowDidBecomeMain: (Window) 2-860
- windowDidChangeScreen: (Window) 2-860
- windowDidDeminiaturize: (Window) 2-860
- windowDidExpose: (Window) 2-861
- windowDidMiniaturize: (Window) 2-861
- windowDidMove: (Window) 2-861
- windowDidResignKey: (Window) 2-861
- windowDidResignMain: (Window) 2-861
- windowDidResize: (NIDomainPanel) 11-19,

(Window) 2-862
- windowDidUpdate: (Window) 2-862
- windowExposed: (Window) 2-859
- windowForSelection: (NXDataLinkManager)

2-413
- windowList (Application) 2-66
windowlist operator 5-56
- windowMoved: (Menu) 2-290, (Window) 2-859
- windowNum (Window) 2-859
- windowsMenu (Application) 2-66
- windowWilIClose: (Window) 2-862
- windowWilIMiniaturize:toMiniwindow:

(Window) 2-862
- windowWillMove: (Window) 2-862
- windowWiIlResize:toSize: (FontPanel) 2-208,

(Window) 2-863
- windowWiIlReturnFieldEditor:toObject:

(Window) 2-863
WMInspector class, specification 19-12
+ workspace (Application) 2-33

Workspace Manager, API for 19-3
- worksWhenModal (FontPanel) 2-208,

(Panel) 2-546, (Window) 2-859
- worldBegin: (N3DCamera) 17-39
- worldEnd: (N3DCamera) 17-40
- woridShape (N3DCamera) 17-40
+ worryAboutPortInvalidation (NXPort) 9-22
- write: (ActionCell) 2-25, (Box) 2-82,

(ButtonCell) 2-119, (Cell) 2-149,
(ClipView) 2-160, (Control) 2-179,
(DBBinder) 4-48, (DB Database) 4-64,
(DBEditableFormatter) 4-69,
(DB Expression) 4-74, (DBImageFormatter) 4-92,
(DB Qualifier) 4-110, (DBTableView) 4-164,
(DBTextFormatter) 4-167, (DB Value) 4-174,
(Font) 2-190, (FormCell) 2-225,
(HashTable) 3-14, (IBConnectors) 8-31,
(List) 3-22, (Listener) 2-243, (Matrix) 2-281,
(Menu) 2-290, (MenuCell) 2-294,
(N3DCamera) 17-41,
(N3DContextManager) 17-47, (N3DLight) 17-59,
(N3DMovieCamera) 17-65,
(N3DRIBImageRep) 17-76, (N3DRotator) 17-82,
(N3DShader) 17-93, (N3DShape) 17-120,
(NXBitmapImageRep) 2-311,
(NXCachedImageRep) 2-352,
(NXColorList) 2-359, (NXCursor) 2-386,
(NXCustomImageRep) 2-389,
(NXEPSImageRep) 2-425, (NXImage) 2-471,
(NXImageRep) 2-481,
(NXLiveVideoView) 18-21, (Object) 1-36,
(PrintInfo) 2-582, (Responder) 2-597,
(Scroller) 2-615, (ScrollView) 2-625,
(SliderCell) 2-651, (Sound) 16-66,
(SoundMeter) 16-74, (SoundView) 16-91,
(Speaker) 2-664, (Storage) 3-41, (Text) 2-729,
(TextField) 2-747, (TextFieldCell) 2-754,
(View) 2-802, (Window) 2-860

- writeBuffer:ofLength:usingFormat:
(DBFormatConversion) 4-187

- writeDomain: (lXWeightingDomain) 7-110
- writeFileContents: (Pasteboard) 2-557
- writeHistogram: (IXWeightingDomain) 7-110

Index-71

- writeLinksToPasteboard: (NXDataLinkManager)
2-409

,- writeObject: (IXStoreBlock) 7-96
- writePrintlnfo (PageLayout) 2-541
- writePSCodeInside:to: (View) 2-802
- writeRange:atOffset:forLength: (lXBTreeCursor)

7-39
- writeRichText: (Text) 2-729
- writeRichText:forView: (Text) 2-735
- writeRichText:from:to: (Text) 2-729
- writeRTFDSelectionTo: (Text) 2-730
- writeRTFDTo: (Text) 2-730
- writeSelectionToPasteboard:types:

(NXServicesRequests) 2-897,
(SoundView) 16-91, (Text) 2-730

- writeSoundfile: (Sound) 16-66
- writeSoundToStream: (Sound) 16-66
- write Text: (Text) 2-730
- writeTIFF: (NXBitmapImageRep) 2-312,

(NXImage) 2-471
- writeTIFF:allRepresentations: (NXImage) 2-471
- writeTIFF:allRepresentations:

usingCompression:andFactor: (NXImage)
2-471

- writeTIFF:usingCompression:
(NXBitmapImageRep) 2-312

- writeTIFF:usingCompression:andFactor:
(NXBitmapImageRep) 2-312

- writeToFile: (NXDataLink) 2-399,
(NXStringTable) 3-34

- writeToPasteboard: (NXDataLink) 2-400,
(NXSelection) 2-507, (Sound) 16-66

- writeToStream: (NXStringTable) 3-34
- writeType:data:length: (Pasteboard) 2-558
- writeType:fromStream: (Pasteboard) 2-558
- writeValue:andLength: (IXBTreeCursor) 7-40
- writeWFTable: (IXWeightingDomain) 7-110
WSM_COMPRESS_OPERATION constant 2-1042
WSM_COPY_OPERATION constant 2-1042
WSM_DECOMPRESS_OPERATION constant

2-1042
WSM_DECRYPT_OPERATION constant 2-1042
WSM_DESTROY _OPERATION constant 2-1042

Index-72

WSM_DUPLICATE_OPERATION constant 2-1042
WSM_ENCRYPT_OPERATION constant 2-1042
WSM_LINK_OPERATION constant 2-1042
WSM_MOVE_ OPERATION constant 2-1042
WSM_RECYCLE_OPERATION constant 2-1042

- zone (Object) 1-37

_alloc global 15-45
_C_ARY_B constant 15-37
_C_ARY _E constant 15-37
_C_BFLD constant 15-37
_C_CHARPTR constant 15-37
_C_CHR constant 15-37
_C_CLASS constant 15-37
_C_DBL constant 15-37
_C_FLT constant 15-37
_C_ID constant 15-37
_C_INT constant 15-37
_C_LNG constant 15-37
_C_PTR constant 15-37
_C_SEL constant 15-37
_C_SHT constant 15-37
_C_STRUCT_B constant 15-37

_C_VCHR constant 15-37
_C_UINT constant 15-37
_C_ULNG constant 15-37
_C_UNDEF constant 15-37
_C_UNION_B constant 15-37
_C_UNION_E constant 15-37
_C_USHT constant 15-37
C VOID constant 15-37
_copy global 15-45
_dealloc global 15-45
_error global 15-45
_realloc global 15-45
_zoneAlloc global 15-45
_zoneCopy global 15-45
_zoneRealloc global 15-45

NeXTSTEP Programming

NEllSlEP GENERAl REFERENCE:
RELEASE 3, VOLUME 2

NeXTSTEP is the object-oriented programming environment that speeds the development of all kinds of software-from mission­

critical custom applications for business to advanced research projects for academia. NeXTSTEP offers building blocks that

implement essential behavior in a variety of application areas-including database management, telecommunications and

networking, and high-quality 2D and 3D graphics.

This second volume of the NeXTSTEP General Reference includes comprehensive descriptions of the applications programming

interface for several kits, including the Database, Indexing, and 3D Graphics Kits.

The first volume of the NeXTSTEP General Reference includes information on the Application Kit and common classes.

The NeXTSTEP Developer's library is essential reading for every NeXTSTEP enthusiast, providing authoritative, in-depth

descriptions of the NeXTSTEP programming environment. Other titles in the NeXTSTEP Developer's lib.rary include:

• NeXTSTEP Development Tools and Techniques: Release 3 • NeXTSTEP Operating System Software: Release 3

• NeXTSTEP User Interface Guidelines: Release 3 • NeXTSTEP Programming Interface Summary: Release 3

• NeXTSTEP Object-Oriented Programming and the

Objective C language: Release 3

• NeXTSTEP Network and System Administration: Release 3

NeXT develops and markets the industry-acclaimed NeXTSTEP object-oriented software for industry-standard computer architectures.

NEXTSTEP
Ob jec t Ori e llt e d Soft w ar e

9 780201 622218

ISBN 0-201-62221-1

Addison-Wesley Publishing Company
US $44.95
CANADA $57.95

