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Abstract 

The problem considered is that oC recovering digital inCormation stored on a magnetic disc after the disc 

has been erased. Even after erasure, the signal that represents the information is present on the disc, 

though at a very reduced level. Communication theory techniques are applied to detect the erased signal 

in the presence oC noise. For this purpose, the signal and noise in the readback channel are characterized. 

The signal dependent and nonstationary nature oC particulate recording media is investigated. The 

average power spectral density description is studied in detail, and its inadequacy in characterizing 

media noise is discussed. It is indicated that media noise is completely characterized stochastically by its 

autocorrelation function. A time-domain model for the noise is then proposed which makes it possible to 

determine the autocorrelation function oC the noise, for any general signal written on the disc, from a 

simple set of spectrum analyzer measurements. The models for signal and noise are used to design 

optimal and suboptimal detection bit detection schemes. The probabilities oC bit error that result when 

these schemes are employed are calculated numerically Cor Cour representative case studies. Conservative 

estimates Cor the probability o( detecting digital information (rom erased magnetic discs are obtained. 
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Chapter 1 

Introduction 

Recovering digital information stored on a magnetic disc after the disc has been subjected to erasure is a 

problem of interest in magnetic recording. A specific instance of this problem, which is the motivation 

for the work discussed in this thesis, is the quantification of the security of information stored in the 

discs, in terms of the probability of retrieving the information after they have been erased. Even after 

the erasure, the signal that represents the information stored on the disc is present on the disc, though 

at a very reduced level. Noise, which comes from various 80urCes in the recording system, hinders the 

accurate retrieval of the stored information, and more 80 when the disc has been erased. Based on the 

statistics of the noise, detection schemes can be designed to recover the stored information. The goal of 

this project is to predict the probability of recovering the erased data at various levels of erasure when 

these schemes are used for detection. For the specific problem of interest we need to obtain conservative 

estimates of ( or upper bounds on ) the probability of information retrieval. We have applied 

communication theory techniques to the problem of detecting the erased signal in presence of noise. For 

this purpose we consider the readback system as a communication channel over which the information 

stored in the disc, is transmitted. The rmt part of this project concentrates on characterizing the 

readback channel to the best possible extent. This characterization involves modeling the signal and 

DOise in the readback channel. The second part applies these models to estimate the probability of 

accurate information retrieval. 

1.1. Modeling the Signal 

In digital magnetic recording, a ·1· is represented by a transition in the direction of magnetization on 

the disc, and a ·0· is represented by the absence of such a transition. We consider that an inductive 

head is used in the readback channel. Consequently, when a string of bits is stored on the disc, the 

readback voltage at the output of the read head is a sequence of positive and negative going pulses 

which we shall refer to as the .ignal. The presence of such a pulse within a clock period indicates a ·1·, 
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and its absence indicates a ·0·. The shape 01 an individual pulse, to a very good approximation, is a 

Lorentzian [20J. We shall be using this Lorentzian pulse model in our analysis. 

1.2. Noise Models 

The sequence 01 pulses described in the last paragraph is not the only contribution to the read back 

voltage. There is also an undesirable noi,e component. As a broad classification, we can consider that 

the noise comes Irom two sources, the readback electronics and recording medium itself. The noise from 

the readback electronics can be very accurately modeled as white noise, and is not difficult to 

characterize. The noise from the recording medium, which we shall reler to as media noise, is more 

interesting. We shall be concentrating only on particulate recording media in this thesis. The media 

noise in this case arises due to the randomness in the locations and orientations of the magnetic particles 

that constitute the medium. 

Previous theoretical and experimental work 118, 1, 16} has shown that the noise Irom particulate 

recording media consists 01 a signal independent background noise term and a signal dependent 

modulation noise term. This signal dependence causes the media noise to be .tatistically non.ttationary. 

This nonstationarity nature is what makes the noise in magnetic recording systems diflerent Irom the 

noise in conventional communication channels. One 01 the ways to partially characterize the noise in the 

.tochastic sense is through the use of an average power spectral density description. In the past, models, 

based on the physics 01 the recording process, have been developed [12, 18, 1] for the average power 

spectrum of the noise when periodic signals are recorded on the disc. The emphasis in these models has 

been to evolve an exact formulation for the average power spectrum in terms of the various parameters 

ueoeiated with the recording system. Very little attempt has been made to characterize the noise lor the 

purposes of designing bit detection schemes based on the statistics of the noise. Since this is our goal we 

have taken a different approach to characterize the noise. 

With the assumption that the noise is zero-mean Gaussian, it can be completely characterized by its 

two-dimensional autocorrelation function. We have proposed a model for the nonstationary media noise 

in terms of two stationary .tochastic processes and one deterministic function 01 time. The deterministic 

function of time depends on the signal and it renects the signal dependent nature of the media noise. 

The autocorrelation functions of each of the component stationary stochastic processes are determined 

from a set of spectrum analyzer measurements. These are then used to determine the two-dimensional 

autocorrelation function of the non-stationary media noise when a general deterministic signal is written 

on the medium. 



1.3. Bit Detection 

The existing schemes for bit detection, i.e., deciding whether a particular bit in a bit string is a -1- or a 

·0-, include level detection and peak detection. In level detection, if the readback voltage at the center 

of the bit period is greater than a prespecified threshold we decide -I - is present, and otherwise we 

decide a ·0· is present. This scheme is simplistic and results in very high error rates. Peak detection is 

an improvement over level detection; in this scheme the readback voltage is first differentiated, and then 

the presence or absence of a pulse is established by detecting a zero crossing in the given bit period. 

Both these schemes are ad hoc, in the sense that their design does not directly make use of the statistics 

of the noise. 

The detection schemes that we shall discuss in this thesis are more sophisticated; their design is based on 

the stochastic: characterization of the noise in terms of its autocorrelation function. We formulate the 

detection problem as a hypothesis testing problem and evolve a decision strategy for the optimal 

detector, i.e., the detector which yields the minimum probability of error. We also analyze the 

performance of lOme suboptimal detectors which are easier to implement than the optimal detector. As 

one would aaturally expect the probability of error increases with the reduction in signal level that is 

caused by erasure. We have computed the probability of error for all these detection schemes at various 

levels of erasure. For the present problem of estimating the probability of erased signal retrieval, we ( if 

at all ) must err on the conservative side. Thus, we must consider the optimal bit detection schemes 

yielding the highest bit detection probabilities even if it is impractical to implement these schemes. 

These can, in turn, be used to predict the probability of correctly retrieving a long sequence of bits. 

1.4. Prologue 

The organization of this thesis is as follows. Chapter 2 provides an introduction to the read back 

channel. A model for the signal pulse is derived in this chapter, and response of the channel to the 

magnetization of a single particle in the medium is analyzed. Starting with this single particle response, 

a model for the average power spectrum of the noise is developed in Chapter 3. Chapter 4 concerns the 

time-domain model for particulate media noise, which allows us to obtain the two-dimensional 

autocorrelation function or the media noise from simple spectrum analyzer measurements. The design 

and performance evaluation or bit detection schemes which are based on the noise statistics is discussed 

in Chapter 5. This chapter contains a major portion or the work done in this thesis. Conclusions and 

suggestions for continuing work in this area are presented in Chapll.:f 6. 
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Chapter 2 

The Readback Channel 

2.1. Introduction 

The use oC magnetic recording has become widespread in the last two decades for numerous reasons. A 

discussion of these reasons and an excellent introduction to the various aspects oC magnetic recording 

can be found in [12}. In all types of magnetic recorders, the information to be stored is applied as a 

time-varying eurrent in the coil of a gapped-write head; the time-varying fringing magnetic field, 

emerging from the gap, magnetises the magnetic medium which is moving past the head. The magnetic 

materials used in magnetic recording have properties similar to those oC permanent magnets, such as 

high values of remanent magnetization and eoercive force. Also the elementary particles that constitute 

the medium must be physically small enough and magnetically sufficiently independent of one another 

to permit short wavelength recording, and to give a high signal-to-noise ratio ( SNR ). There are two 

types oC magnetic media which satisCy these requirements; particulate dispersions and thin metallic 

rums. We shall be concentrating mainly on particulate recording media in this thesis. 

In the specific application or interest to us, namely, longitudinal digital magnetic recording, the 

magnetic medium is completely saturated parallel or antiparallel to the track direction. The most 

popular scheme for storing binary digits on the medium is the NRZI ( non-return-to-sero-interleaved ) 

code in which a binary -1- is represented by a transition in the direction of magnetization of the 

medium in a prespecified bit period, and a -0· is represented by the absence of such a transition . Fig. 

2-1 shows a typical magnetization waveform that is obtained by using this code. The details of the 

writing process, i.e. process of writing transitions on the medium, are not directly relevant to us in the 

analysis oC the readback channel, and hence not discussed in this report. A reasonably detailed analysis 

oC the writing process is available elsewhere [20}. It is shown that the written transition can be 

approximated by an arctangent function. We shall use this arctangent transition model as the starting 

point for our analysis. 
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Fiaure 1-1: MagnetiJation waveform obtained by employing the NRZI coding scheme 

2.2. Frequency Response of a Karlqvlst Head 

Fig. 2-2 uowa the head-medium configuration or a typical digital magnetic recording system in which 

an inductive head with gap thickneaa I. is used for readback. The medium UOWD is a particulate 

• recording medium with thickneaa 6 and width w. A particulate recording medium is a dispersion of 

magnetic particles in a binder. Each of these particles can be considered as a tiny bar magnet oriented in 

approximately the aame direction as t.he track. The head moves with respect to the medium at a 

constant velocity in the X..cfirection; and hence, in any analysis, we consider t.wo coordinate systems. one 

fIXed to the medium and the other fIXed to the head. If ( :rm, ,Im' ofm ) are the coordinates or any point 

in the medium with respect to the medium coordinate system, then the corresponding coordinates. 

( :r., "., of. ), with respect to the head coordinate system are given by 

(2.1) 

where :r - "'i tI being the velocity or the head with respect to the medium. 

To fmd the nux that links the read head when a certain magnetization pattern is written on the 

medium, we make use of a powerful result which comes from an application of the Reciprocity Theorem 

7 
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FIpn 1-21 Head-medium Configuration 

[20]. Let 3(:.:", ••. ',) be the frinsmg field produced by the read head when it is excited by a CUlTent 

which results in a deep lap nux of unit,. Then, the by Reciprocity Theorem, the nux linking the the 

read head due to the mapetiJation M(:.: ... " ... , .... ) or the media is civen by!, 

(2.2) 

where· denotea the dot. product. operation. 

In ceneral, M haa all three components M., M, and M •. On the other hand, if we ipore end effects in 

the z.direct,ion, the head field B n. in the XY-plane, and it does not depad on .,. Hence, we can 

expand the dot product in Eq. (2.2) to let 
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The readback voltage! , V(z) at the output or the read head is given in terms or .(z) as 

elt/>(z) 
V(z) - Fa" -;;;- • 

where Fa is the number or turns in the reaclhead, and " is its efficiency. 

Recognizing the integration over z" in Eq. (2.3) as a convolution, we can rewrite it as 

where - denotes convolution. 

(2.4) 

(2.5) 

From the above equation it is evident that the response or the readhead can be considered as the output 

or a linear system to which the magnetization, M(zm"m,zm)' is an input. Taking the Fourier transrorm 

or t/>(z) with respect to the space variable z, we get 

+ "'''' 10'" ltl+l }tA.,(k,,I,,,.,,) N, -(k,,I,,) eI,I" elz" • 

where superscript - denotes complex conjugation, and 

(2.6) 

2we ahall be writin, ~he readback yolLlle aDd nux u a function or eit.her ~he .pace .. riable " or the time yariable e. depeDdiq 
on which II more CODYement.. keepiq in mind th" ~be " aDd e are related u " - .c. 
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(2.7) 

From Eq. (2.4), we c:an see that the Fourier transform of V(~) is given by 

V (k) -= i k n " 4>{k) . (2.8) 

Using the Karlqvist approximation [9], the fringing field produced by the head, when the deep gap field 

is H" has c:omponents, I( and~, given by 
, 

(2.9) 

We mentioned earlier, when we applied the Reciprocity Theorem, that the field B(~h'lIh) is the field 

produced by the read head when the deep gap nux is unity ,i.e., when H 9 == 1. Hence, by substituting , 
l/g for H, in Eq. (2.10), we get 

1 z'" + ,/2 z'" - ,/2 
H.(Z""II,,) -= - [tan-I ( ) - tan-ie )] , 

~g '''' '''' 

1 (z", + ,/2)2 + '1.2 
H (~ ,) -= - - In[ ] 

r "" '" 21f, (z", _ ,/2)2 + ,,,,2 ' 
(2.10) 

It can be shown (20] that the Fourier transforms ( with respect to zA ) of the field functions in Eq. (2.10) 

are given by, 

sin (kg/2) -Ikl. 
= (kg/2) e "', 

(2.11) 
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Using Eqs. (2.11) and (2.6), we can can calculate V (k) for any known M(xm,ym,zm) written on the 

medium. For particulate recording media, the magnetization is not a continuous function of x , y and 
m m 

S"m' because the magnetic partic:les are discrete. The average response of the head to the magnetization 

of all the partic:les that it ec:ans at any instant is the same as its response to the average or bulk 

magnetization of the medium as a function of x, because of the linearity property of the convolution in 

Eq. (2.5). This average response shall be referred to as the eignal in (orthcoming discussions. Random 

variations o( the response about the signal can be characterized if we know the response of the head due 

to the magnetization o( the individual partic:les. We shall analyze these two cases in the ensuing sections. 

2.3. Bulk Magnetization Response 

The bulk magnetization of the medium is in the direction of the track, i.e., in the X-direction, for 

longitudinal recording. Therefore, M (x ,y ,Z ) and M (x ,y ,% ) are zero. For a single positive going rmmm 6mmm , 

arctangent transition written at xm == 0, the bulk magnetization is given by 

(2.12) 

where M, is the saturation value of the magnetization in the medium, and a is the transition width 

parameter. 

Computing the Fourier tranform or the arctangent magnetization is not straightforward since the 

integral o( Itan-1(xm/a)1 over the interval (-00,00) is not convergent. If we write 

(2.13) 

then it, can be argued that [20} the Fourier transform of M% with respect to xm is given by 

2M 
oM (k) -= 2 M ,,6(k) + i-:!- e-1t14 • 

~ , ,. (2.14) 

The delta (unction in the above equation is misleading because it attributes a d.c. value to the 

magnetization which, as dermed in Eq. (2.12), does not have any d.c. value. We shall consider the delta 

function as representing the divergence of the arctangent (unction. Since the voltage is proportional to 

the derivative of the nux, this introduces a (actor of k, which eliminates the delta (unction completely as 

we shall see shortly. 

Substituting Eqs. (2.11) and Eq. (2.14) in Eq. (2.6), we get 
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I>(k) = 

sin (kg/2) l_e-1kI6 
- 411'W (kg/2) e-1k1d Ikl 

Finally, using Eq. (2.8), 

sin (kg/2) .-Ikld l_e-1kI6 -Iklll 
11 (k) === 8,.. n '1 w (kg/2)" Ikl e M, 

The following terms can be identified in the above equations; 

Writing Process Loss 

Gap Loss 

Spacing Loss 

Thickness Loss 

ain (kg/2) 

(kg/2) 

e-1k1d 

1_,-lt I6 

It I 

(2.15) 

(2.16) 

All the loss terms tend to suppress the high frequency content of the magnetization waveform 80 that 

the nux waveform, for a transition written at %m .... 0, is also a transition at % .... 0 but with a larger 

transition width. In fact, if we assume that the transition in the nux is also approximately arctangent in 

shape, i.e., 

(2.17) 

where ~ m is the saturation value of the nux, then it can be shown [20] that ~ and a are related by 

(2.18) 

Note that, as expected, ~ - a for d - 60l0I: g - 0, i.e., when the recording is distortion-lree. 
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2.4. Signal Model 

We can rewrite Eq. (2.17) in terms of the time variable t, by replacing % in the equation by vt. We shall 

also include terms n " in the nux expression, 80 that the readback voltage would be simply the time

derivative of the nux written in this way. Hence, 

(2.19) 

where (I == r/v, and "'m == n " "' .. 

The readback voltage as a function of time for a single positive going arctangent transition can now be 

written as 

(2.20) 

The above model, which can be identified as a Lorentzian pulse with width parameter (I, will be used as 

the model for the eignal ""lae in ensuing discussions. Note that in digital magnetic recording, we can 

have both positive and negative going transitions. Both these represent a digital -I -. Hence, the signal 

pulse for digital -1- could be either positive going or negative going. 

2.5. Response Due to a Single Particle 

Let us now consider the response of the head due to a single particle ( ith ) which is represented by a 

bar magnet m of finite length I and infinitesimal croas-aection, located at coordinates ( %i' fli' %i) in the 

medium with orientation ( " '" ) as shown in Fig. 2-2. 

The particle makes an angle' with the X-axis. The angle' can take on values in the range [O,7I"j.The 

projection of the particle on the yz..plane makes an angle of '" with the Y-axis. The angle'" can take on 

values in the range (0,271"]. If the magnitude of the dipole moment of the particle is mo' then the 

components of m in the three directions are given by 

m ~ mo coa', z 

m, == mo sin , cos '" , 

m == mo ain , sin '" . • 
(2.21) 

The magnetization of the medium represents the dipole moment per unit volume of the medium. If we 
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consider the medium to be made up of only the ith particle, then we can write an expression for 

M(zm'Ym'%m} as 

m 
M(zm'Ym'%m) == T 6{ym - "j - (zm -Zj) tan' cos tP} (2.22) 

X 6{zm - Zj - ("m -"j) tan tP} [ U{Zm -Z.} - u{zm-(l cos, + Zin] , 

where uO denotes the unit step function. 

The above expression ror the magnetization is only a mathematical way of representing the fact that any 

volume integral of M(zm'''m,l:m) containing the ith particle can be reduced to a line integral along the 

direction of orientation of the particle. If II denotes the distance parameter along the particle direction, 

then the rollowing constraints hold ror the line integral. 

% -= #I COS, + zi' m 

JIm == #I sin, costP + ". ' 
Z == #lsin'sintP + I:i ' m 

0 < II < I. (2.23) 

From Eq. (2.2) we get that the flux linking the read head due to magnetization of the i-th particle is 

given by 

1'" 111+6100 -= 4,.. M(z ,,, ,I: ). H(z -:1:,,, ,I: ) G:I: GYm GZm . 011 -00 mmm m mm m 
(2.24) 

Again, using the Karlqvist head fields 

4,.. f.l == - { mocos' H ( , cos '+:1: .-:1:, II ain 'cos tP+". ) 
I._oz' I 

14 



+ mosin 9cos t/J H ( , cos 9+% .-%, , sin 9cos t/J+1I. )} d" (2.25) ,. . 
where HII and H, are given by Eq. (2.10). 

Using the shifting property of the Fourier transform we get 

where Nil and N, are given by Eq. (2.11). Hence, 

[ cos, - ; sgn(k) sin 'cos t/J ] 
X -Iklsin 'cos t/J + J1ccos , 

';'11. -Itl,. Iin(kg/2) [e-ltIIaiD'coa.~'_l] 1 
-= 471: mo r · e • kg/2 I ik . (2.27) 

Hence, the Fourier transform of the read back voltage due to the magnetization of the i-th particle is 

pven by, 

(2.28) 

This is the response due to a single particle. However, during readback, the readhead is influenced by 

the magnetization of a very large number of individual particles, which could have arbitrary 

orientations, positions and mes. The response of the read head can hence be considered as a random 

process whose mean value is the bulk response which we derived earlier . Variations of the response 

about this mean value can be modeled as an additive noise. In the next chapter, we shall see how the 

above expression for V.~k) can be used to calculate the average power spectrum of this noise. 
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2.6. Summary 

In this chapter we provided a rairly detailed analysis of the read back process with the objective of 

lItudying the rrequency response of the channel. We first considered the response or the channel to the 

bulk magnetization or the channel and showed that the channel behaves .. a cascade of loss factors, 

namely, gap loss, spacing loss and distance loss. We then considered the response of the channel due to 

a single particle in the medium. This will be used in the next chapter to calculate the average power 

spectrum of media noise. 
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Chapter 3 

Average Power Spectrum of Media Noise 

3.1. Introduction 

In Chapter 2, we mentioned that the fact that particulate recording media are made up of discrete 

magnetic particles causes random deviations about the bulk or average response of the read back 

channel. In order to quantify these deviations, which we shall refer to as media noise, we need to 

characterize the noise stochastically. One of the ways to characterize the noise partially is through the 

use of an average power spectral density description. We emphasize the word partially, because, as we 

shall show in the next chapter. average power spectral densities yield a complete characterization only 

when the noise has the special property of stationarity, Le., the statistics of the noise are insensitive to 

time shifts. It has been well established that particulate media noise is signal dependent and hence does 

not possess the property of stationarity. The advantage of using a power spectrum description, however, 

is that the power spectrum or the noise can be easily measured using a spectrum analyzer. Comparison 

of experimentally observed average power spectra with those obtained from theoretical modeling can 

yield a good insight into the nature or the noise. 

Most of the existing models for the average power spectrum or the noise use the frequency response of 

the head due to an individual particle as a starting point, and compute statistical averages of this 

response to obtain the desired average power spectrum. One of the rlJ'St papers that discusses such an 

approach is by Mallinson [13]. He assumes that all particles are identical and have their orientations 

perfectly aligned with track direction, so that the only randomness is in the sign or their magnetic 

moments. Thurlings (18] has done a similar analysis without the assumption or perrect alignment or 

particles and with clustering of the particles taken into account. Anzaloni and Barbosa [I] have extended 

Thurlings' analysis in an attempt to explain the dependence of the noise power spectrum on signal 

frequency. Tarumi and Noro [17] have identified another contribution to media noise, namely, surface 

asperities which cause random nuctuations in the head-to-medium distance. In this chapter we shall use 
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ideas rrom all these papers to arrive at a model ror the average power spectrum or particulate media 

DOise. 

8.2. A Simple Model for Particle Interactions 

A particulate magnetic medium is a dispersion or elementary magnetic particles in a binder; the 

position, mape, and orientation or the particles are random variables whoee ..... tiatiea are governed by 

the manufacturing process. In the dispersion process, the partides do Dot distribute themselves 

UDitormly and independently; being magnetic, they interact with each other to rorm agglomerataona. 

The magnetic interaction or the particles in the medium is a complicated matter, requiring the 

.multaneoua consideration or all the particles in the medium. 

head 

I l 
clusters 

subclusters 

--- equivalent particles 

at high writing frequencies. 

Flcure 1-1, A simple model ror particle interactions in terms or clusters and aubcluaters 

In order to arrive at a simple model, we usume that the interactions are either tJe'1l .trong or weak. 

Fig . ... 1 is an attempt at representing these two types or interactions pictorially. Very strong 

interactions cause the rormatioD or .ubclu.ter., which are seUs or particles strongly interacting witl1 each 
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other and weakly interacting with all other particles not belonging to the same subcluster. Since the sign 

or the magnetic moment or the particles also depends on the applied external field, the final state of 

magnetization of the particle depends on the applied field and on the attributes of other members of its 

subcluster. For a slowly varying applied field, the magnetic moments of all the particles or a subcluster 

are rorced to have the same sign. However, when the signal frequency is bigh, strongly interacting 

particles in a subcluster may end up with opposite polarization, canceling each other and thus reducing 

the equivalent size and magnetic moment of the subcluster. Under these conditions we can consider the 

subcluster t.o be an elementary particle whose size decreases as the signal frequency increases. 

Weak interactions between subclusters, during the manufacturing process, cause them to form clu8ter8. 

The horizontal position or a subcluster within a cluster depends on other sub clusters within its cluster, 

but is independent or the .ubclusters not belonging to its cluster. We model the cth cluster by picking an 

integer Nt; rrom .& :given distribution and putting together Nc .ubclusters. We shall assume that th~ 

horisontal positions u or the centers or the clusters are uniformly distributed along the track. The 

horisontal position w of the .ubclusters with respect to their respective cluster centers is drawn from a 

diatribu\ion with probability density function p(w). Hence, the horizontal position % of the sub clusters in 

the medium is given by 

s-=u+w. (3.1) 

The ~'robability density function or % can be .hown to be 1141 the convolution of the density function of 

v and the density runction or w. The density function or u is unirorm over the entire length of the tape 

whereas the density runction of w, p(w), is limited to the region of the cluster. The convolution of the 

density function of u with that of w is hence also approximately uniform if we ignore the distortions at 

the medium boundaries. Hence, the distribution of the horizontal positions % is approximately uniform. 

Similarly, the distribution of the vertical positions II of the particles is also uniform. 

3.3. A Model for the Average Power Spectrum or the Readback Voltage 

The readback voltage can be considered as a random process r(t) whose mean value is the desired signal 

-<,). The noise in the readback voltage net) is defined to be any random deviation from the signal 80 

that, by dermition, net) is zero-mean. Hence, if we model the average power spectrum of r(t), we can 

obtain a model for the average power spectrum of the noise from this by subtracting the average power 

spectrum of .(t). The average power spectrum of r(t) is defined by [14] 
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1 iT . ~r(W) -= lim -2T E{ 1 r(t) e-j.Je dt 12 } . 
T-oo -T 

(3.2) 

Eq. (3.2) is called the time aw,.age definition of the average power spectrum of a random process. In the 

next chapter we shall be derIDing the average power spectrum in a different way in terms of the Fourier 

transform of an average autocorrelation function. The reader may be familiar with either of these 

definitions. We shall show in the next chapter that the two definitions are equivalent. We can rewrite 

Eq. (3.2) in terms of space variables, using z==vt and w==kv, as 

1 lwT :Sr(k) == lim -2 T E{ 1 r(z) e-jb dz 12 } 
T-oo v -wT (3.3) 

In the limit as T - 00, we can replace the integral in Eq. (3.3) by the Fourier transform or r(z} to get 

~r(k} - lim -21TE{ 1 p(k} 12 } , 
T-oo v 

(3.4) 

where p(k) is the Fourier transform or a sample realization or the random process r(z). 

It NT is the total number of particles ( subclusten) in the volume or the medium from -vT to vT, then 

NT 

p(k) - L V,~k), (3.5) 
i-I 

where V~k) is the Fourier transform or the voltage contribution due to one subcluster as given in Eq. 

(2.28). 

We can rewrite Eq. (2.28) as 

(3.6) 

where e, is the sign of the magnetic moment of the particle, , is now restricted to 0 S , <ft/2 and Hi 

is given by 

(3.7) 

Therefore 
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Let the NT subclusters be distributed among clusters with Nc subclusters in cluster c. With the exception 

oC ~i and 'i' we assume that all the random variables associated with a single subcluster are statistically 

independent. Furthermore, it we uaume that the subclusters are statistically identical, then we can 

write the above equation as 

where 

Bofk) ..... E{ 1 Hi 12 } , 

B1(k} lID 1 E{ .Hi } 12 , 

(3.9) 

(3.10) 

The sign oC the magnetic moment oC a subcluster will ·Collow· the magnetization written on the disc. In 

other words, the probability oC the sign being positive is larger at places where the written signal is 

positive and vice versa. One oC the ways or describing this dependence is through the use oC the Collowing 

joint probability density runction ror the random variables. and ~. 

1 [M(~) M(~}] 
J{.,~) ..... --;r. {I + -M } 6{.-1} + {I - AT} 6{.+1} . 

4v~. • 
(3.11) 

Using the above joint density runction, we compute A(/t:) ror the rollowing two eases. 

Ouel: 

The subcluaters i and I are located in different clusters; i.e., the random variables ~i and ~, are 

independent. Then we can write 
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(3.12) 

where 

1 l~T ~x) 
- {1--}~Zdx 
4vT -~T M, 

1 1~ ~x) == - 2-~zdx 
4vT -~T M , 

(in the limit as T - 00 ) • (3.13) 

Thererore 

(3.14) 

The total number or such contributions to the double summation in Eq. (3.9) is given by 

Next, we consider the case when the subclusters i and I are located in the same cluster. 

Case 2: 

The subclusters i and I are located in the same cluster; i.e., 

Now, the random variables xi and x, are not statistically independent but u, wi and w, are independent. 

Hence we can write the joint probability density runction or.i , '" u, wi and w, in the rollowing way. 

I ('j""u,w"w,) == I (",w/u) I ('l'w,lu) I (u) 

1 p(w,) M(u+w,) ~u+w,) 
-= iTT [ {I + M } 6(',-1) + {I - M } 6(",+1)] 

v , , 
p( w,) M( u+w,) M( u+w,) 

X - [ { 1 + M } 6(',-1) + {I - M } 6(,,+1)] . (3.15) 
2, , 

Thererore 
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1 1 M(u+w,+z) M(u+w,) 
-= -T (1 p(w,+z) p(w,) M M,jkZ dz dw, du . 

2v "JtIJ, Z " 

(3.16) 

Now, in the limit as T- 00 

(3.17) 

and 

1 M(u+w,+z) M(u+w,) du == M(z).M(-z} == RJz) , (3.18) 

where R,(z) and RJz) represent the autocorrelation functions of the deterministic functions p(z) and 

M( z) respectively. 

Hence, 

A(k) == 1 1 R (z) RJz) Jiz dz 
2vT M 2 z ' , 

1 • == 2 [1'{ R (z) }.1'{ RJz)}] . 
2vT M, , 

(3.19) 

But from Eqs. (3.17) and (3.18) we get 

l' {R,(z)} -= 11{P(w)} 12 == S,(k). 

l' {RJz)} -= 11{M(z)} 12 == 1 M(k) 12 • (3.20) 

Therefore 

A(k) == 2... S (k) • I M (k) 12 
2vT , M2 , 

(3.21) 
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The total number or such contributions to the double summation or Eq. (3.9) is 

(3.22) 

The total average power spectrum or r(t) is obtained by summing all the contributions or the type given 

in (3.14) and or the type given in Eq. (3.21). and substituting in Eq. (3.4). We get 

(3.23) 

Now we shall try and quantiry the statistics or the clustering process. We shall assume that the 

probability or having exactly N clusters in length L ( - 2t1T ) or the medium is Poisson distributed with 

Poisson parameter a. i.e .• 

and 

(aL)N 
p(N,L) - - e-oL 

Nt 

E{N} -Var{N} -= a L . 

Hence we get the Collowing. 

, INN N(N-l) 2 
E{ ---; E E Ne N,} -= E{ 2 Ne } -= a 2 Ne2 • 

(2t17') 0-1 '-1,'" e L 

1 N N---
E{ ;;T E Ne(Ne-l)} -= E{ L Ne (Ne-1)} -= a Ne (Ne-I ) • 

0-1 

where the overbars indicate average values or the quantities below. 

The term 

(3.24) 

(3.25) 

(3.26) 

(3.27) 
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represents the average power spectrum of the magnetization written on the medium, which we shall 

denote by "S Jk). 

Substituting Eq. (3.27) and Eq. (3.26) in Eq. (3.23), we get 

"S Jk) . "S Jk) 
"S,(k) === a 1iJPo{k) + a Bl{k) Ne (Ne-1) [ M 2 • S,(k)] + 0'2 Bl(k) 1iJe2 M 2 (3.28) 

, , 
The third term in the RHS of Eq. (3.28) is the average power spectrum of the aignal. The relationship 

between this and the bulk magnetization response derived in Chapter 2 is not immediately obvious, but 

will become more apparent when the expression for Bl(k) is written out. The first term in the RHS of 

Eq. (3.28) is the signal independent background noise. The second term, which arises due the 

phenomenon of clustering, is the signal dependent modulation noise. We can analyze these terms in 

more detail if we rmd Bo(k) and Bl(k) in terms of the statistics of the random variables associated with 

the particle. 

Since we have assumed a uniform distribution for the vertical position Sf. of a subcluster, we get • 

Also, we can simplify the expression ror Hi in the following way. 

.. e -lkllaiD leo." Jl"coe, - 1 
I 12 === 

1 

( e-lkllaiD 'co." cos {klcos 8} _ 1 )2 

,2 
( e -lkllaiD 'co." sin {klcos 9} )2 

+ 
12 

e -2lkllaiD 'co." _ 2e -lkllaiD 'eo." COS {"lcos 8} + 1 
=== 12 

(3.29) 

(3.30) 

With the assumption that Ikl <: 1/1; i.e., ror rrequencies much less than the particulate limit, we get 

2e-lkllaiD 'co." fIW 2( 1 - Ikll sin 8 cos t/J ) 



(3.31) 

Therefore 

(3.32) 

Using the above approximation and Eq. (3.29), we can now write expressions for Bo(k) and Bl(k) from 

Eqs. (3.10) and (3.7) as 

(3.33) 

where 

(3.34) 

We observe that B1(k) has all the loss terms that we derived in Chapter 2 when we analyzed the signal. 

The term Bo(k} has nearly the same functional dependence on k indicating that the background noise 

has a power spectrum which is very nearly equal to the channel response. This means that the 

background noise can be modeled as a white noise BOurce which is added to the magnetization M(x} and 

it geta modified by the readback channel in the same way as M(x). 

We also observe that Bo(k) and B1(k) depend on the value of the magnetic moment mo of the subcluster. 

~ we mentioned earlier, mo decreases with increasing writing frequency, and, hence, Bo(k) and BI(k} 

are ac:aled down by the same amount with increasing writing frequency. This means that all the three 

terms in the average power spectrum of the readback voltage get ac:aled down by the same amount with 

increasing writing frequenCYj but the signal-to-noise ratio remains unaffected. We shall make use of this 

fact when we model the noise in the time domain in the next chapter. 
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3.4. Noise Average Power Spectrum 

From Eq. (3.28) we can get the average power spectrum of media noise S ,p:) by subtracting the signal 

power spectrum, i.e., 

SJk) 
S,,(k) = Q Npo(k) + Q BI(k) Ne (Ne-I) [ M 2 • Sp(k) ] . (3.35) 

, 

As mentioned earlier there are two components in the noise power spectrum, background noise and 

modulation noise. We shall now discuss both these terms in more detail. 

a.of.l. Back&J'Ound Noiee 

The background noise as the name suggests is present even when there is no recorded signal. This noise 

can be best described as the output of the read head when the medium has been a.c. erased to ensure 

that the bulk remanence in the medium is zero. Background noise arises purely from the fact that the 

medium is made up of discrete particles, and would be present even if there was no clustering. AB 

mentioned earlier, this noise term can be considered as white noise which is -colored- by the readback 

channel. This is the type of noise that is encountered in most communication channels and a host of 

communication theory results have been developed for signal detection and estimation in the presence of 

such noise. 

a.of.l. Modulation Noiee 

This noise term arises as a consequence of the clustering phenomenon. In fact, the term that 

-modulates- the magnetization in Eq. (3.35) is directly related to the probability density function of the 

position of a subcluster within a cluster. The simplest way to measure modulation noise is to record a 

periodic magnetization pattern on the disc and to observe the average power spectrum of the readback 

voltage around the fundamental frequency and harmonics of the periodic pattern. The modulation noise 

appears as -shoulders- around these frequencies. 

It should be mentioned here that particle clustering is not the only reason for a modulation noise term. 

Tarumi and Noro [17] have shown that asperities on the surface of the medium also cause a modulation 

noise which has much smaller bandwidth than the modulation noise produced by clustering. In the next 

chapter we abal1 attempt to obtain a general time-domain model which could be made to include both 

these modulation noise terms. 
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3.5. Summary 

In this chapter we derived an expression ror the average power spectrum or the readback voltage based 

on a simple model ror particle interactions within the particulate recording medium. This simple model 

ror particle interactions classified the interactions to be either very strong or weak. Weak interactions 

cause the formation of clusters, and very strong interactions produce aubcluters. We showed that 

clustering or particles causes a modulation noise term which is signal dependent. Subclustering causes 

the two noise terms and the signal to depend on the writing frequency. We noted that even though both 

signal and noise depend on the writing frequency, the signal-to-noise ratio is independent or the writing 

frequency. 
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Chapter 4 

Time-domain Model for Media Noise 

4.1. Introduction 

In Chapter 8 we established that the noise from particulate recording media consists of a signal 

independent kckground noise term and a signal dependent modulation noise term. We made an attempt 

at obtaining an exact formulation for the average power spectrum of the noise in terms of the varioU1l 

parameters, both random and deterministic, uaociated with the recording system UDder consideration. 

In the past such a characterilation of the noise has been mainly used to calculate, in a very restricted 

eense, the eipal-to-noise ratios in these systems [13]; very little attempt has been made to characterile 

the noise for the purposes of designing bit detection schemes in the presence or this noise. Our goal is to 

evolve criteria ror designing bit detection schemes based on the statistics or the noise. Hence, we need to 

characterile the noise completely in the stochastic sense. 

Media noise, obse"ed as a rUDction or time t at the output or the read head, can be considered as a 

sample realisation or a governing stochastic process. Typical media have about 1014 particles per cms so 

that the read head scans lOme 108 particles every instant [12]. Since the noise is the combined effect or 

the randomness in the location and orientation or nch a large number or similar particles, by the 

Central Limit Theorem [14], it is reasonable to usume that the governing process is Gaussian. This ract 

has been further corroborated by experimental work done by Filar and Wright [8]. Recent work by 

Barbosa and Anlaloni [2] demonstrates that we do not need to make the Gaussian usumption .ince the 

N-th order probability density fUDction of particulate media noise can be obtained from some simple 

particle interaction models. However, the Gaussian usumption makes stochastic analysis tractable 

because Gaussian random variables have very useful properties [14]. A host or communication theory 

results have been derived using this usumption, and applied in many practical cues for which the 

statistics is far from Gaussian. Since in our case we have .trong reasons to support the ract that the 

noise is Gaussian, we are more than justified in making this usumption. 
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A Gauasian noise process n(t) is completely characterized stochastically by its mean function '1(t) and its 

autocorrelation function R,,(t,t+r), defined by , 

mt) == E{ net) } , (4.1) 

and 

R,,(t,t+r) == E{ [ net) - '1(t)] [n(t+r) - '1(t+r) ] } , (4.2) 

where E{.} denotes expected value. 

The noise process is said to be wide sense stationary if '1(t) is constant for all t, and R,,(t,t+r) does not 

depend on I, i.e. , '1(t) == '1 , and R,,(t,t+r) == R,,(r). It should be noted that for a Gaussian process, 

wide sense stationarity implies stationarity in a strict sense [14], i.e., the N-th order statistics of the 

process depends only on time differences. Hence, we shall be using the terms ·stationarity· and ·wide 

sense stationarity· equivalently. The Fourier transform of R (r), denoted by S (w), is called the power 
" " 

spectral density of the stationary stochastic process. 

For a non-stationary Gauasian process with constant mean, an example of which is media noise which 

has zero mean, the autocorrelation function R,,(t,t+r) is not independent of t. In this case, we define the 

ave,.age autocorrelation Cunction of the non-stationary process as (14] 

1 IT'2 1l,,(r) == lim -T R,,(t,t+r) dt • 
T-oo -T/2 

(4.3) 

The Fourier t.ransform of 1l,,(r), denoted by ~ ,,(w), is called the ave,.age power spectral density of the 

process8 • We can obtain 1l,,(r) (rom measurements oC ~,,(w) using the inverse Fourier transform. 

However, in general, measurements oC ~,,(w) cannot be used to obtain the autocorrelation Cunction 

R,,(t,t+r) which is needed to completely characterize a non-stationary Gaussian stochastic process. 

Hence, the adequacy oC the average power spectrum derived in Chapter 3 in characterizing media noise 

is questionable. 

Here, a time-domain model (or the noise, which expresses the non-stationary noise process in terms of 

two stationary stochastic processes and a deterministic (unction of time, is presented. The deterministic 

(unction of time depends on the signal and it reflects the signal dependent nature of the media noise. 

3See t.be AppeDdix leMD at. tobe ead or t.hi1 ebpt.er tor det.a.ila 
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The autocorrelation functions or each or the component stationary stochastic processes are determined 

from a set of spectrum analyzer measurements. These are then used to determine the autocorrelation 

function or the non-stationary media noise when a general deterministic signal is written on the medium. 

4.2. Time-domain model for media noise 

We model the non-stationary media noise net), as seen at the output or a readback channel in which an 

inductive head is used, as rollows : 

d 
net) = di { n1(t) ~(t)} + no(t) , (4.4) 

where ~(t) is related to the readback signal ,,(t) as 

.(t) -= d :;') • (4.5) 

The function ~t) is directly proportional to the net nux linking the read head, unless equalization is 

used in the readback channel. The terms "l(t) and "oCt) are assumed to be .l'ero-mea" stationary 

Gaussian stochastic processes. We also assume that "l(t) and "oCt) are independent, so that expected 

values of the Cl'Ol!lS products of "l(t) and "oCt) are zero. With these assumptions, if R (1') and R (1') are 
"1 "0 

respectively the autocorrelation functions of "l(t) and no(t), we can express the autocorrelation function 

R,,(t,H1') of "(t) in terms of these as follows. 

R,,(t,H1') -= E{ "(H1') "(t) } 

d d 
-= E{ [ "l(H1') dt(H1') + ~(H1') dt"l(H1') + "o(Hr)] 

d d 
[ "l(t) dt(t) + ~(t) dt"l(t) + "o(t)]} 

d d d d 
=== E{ "l(Hr) "l(t) } dt(Hr) dt(t) + E{ "l(t) dt"l(Hr) }~(H1') dt(t) 

d d d d 
+ E{ "l(H1') dt"l(t) } ~(t) dt(H1') + E{ dt"l(H1') dt"l(t) } ~(H1') ~(t) 

+ E{ "o(H1') "oCt) } . (4.6) 

Now, since "l(t) and "oCt) are stationary processes 
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Also from results given in [14] for derivates of stationary processes, we have the following. 

d d 
E{ n1(Hr) -ndt l(t)} = R ~r) == - - R (r), 

"1"1 dr "1 

d d d 
E{ -Tldt l(Hr) nl(t)} == R ~-r) == - - R (-r) = - R (r), 

"1 "1 dr "1 dr "1 

d d d d2 

E{ -TId l(t) -TId l(Hr)} == -d R I ~r) == - -;R (r). 
t t T "1 "1 dr "1 

(4.8) 

Substituting Eqs. (4.7) and (4.8) in Eq. (4.6), and using Eq. (4.5) we get 

d d d d 
R (t,Hr) == ~d (Hr) ~d (t) R (r) + ,,(Hr) ~d (t) -d R (r) 

" t t "1 t r "1 

d d d2 
- ,,(t) ~d (t+r) -d R (r) - ,,(Hr) ,,(t) -R (r) + R (r) 

t r "1 d? "1 "0 

== e(Hr) e(t) R (r) + ,,(Hr) e(t) R '(r) 
"1 "1 

- ,,(t) e(t+r) R '(r) - "(H,.) ,,(t) R Iter) + R" (r) , 
~ ~ 0 

(4.9) 

where superscript' stands for differentiation with respect to r. 

The average autocorrelation of net) can be obtained from R,,(t,Hr) as follows. 

I1T/2 
It,,(r) == lim -T R,,{t,Hr) dt 

T-oo -T/2 

I1T/2 
== R" (,.) lim -T e(t) e(Hr) dt 

1 T- 00 -T/2 

d I1T/2 + -d R", (r) lim -T ,,(Hr) e(t) dt 
r 1 T-oo -T/2 

d I1T/2 
- -d R" (r) lim -T ,,(t) e(Hr) dt 

r 1 T-oo -T/2 

(4.10) 

If "'§ I(w) denotes the average power spectrum of ,,(t), then we get the following equations in the limit as 
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If ~ .(w) denotes the average power spectrum of ~(t), then we get the following equations in the limit as 

T tends to infinity. Here l' {} denotes the Fourier transform with respect to l' or the quantity within the 

brackets. 

IJT/2 1 1 
l' { lim -T ~(t) ~(t+1') dt } == lim -T~w) ~·(w) = lim -T I ~w) 12 == ~ ;(w) , 

T- 00 -T/2 T .... 00 T .... 00 

IJT/2 1 
l' { lim -T ~(t) 8(H1') dt} == lim -T ()W ~w)] ~·(w) 

T- 00 -T/2 T- 00 

1 
== lim -Tjw I ~w) 12 == jw ~ J,(w) , 

T-oo .,. 

IJT/2 1 
l' { lim -T ~(H1') 8(t) dt} == lim -T~w) ()W ~w)]· 

T-oo -T/2 T-oo 
1 . 

== lim -T(- jw) I ~w) 12 == - jw "§ J,(w) , 
T-oo .,. 

IJT/2 1 
l' { lim -T ,(t) '(H1') dt} == lim - ()W ~w)] ()W ~w)]· 

T-oo -T/2 T-oo T 
(4.11) 

1 
== lim -Tw21 ~w) 12 == w2 "§;(w) , 

T-oo 

Let S"I(w) and S"o(w) denote respectively the power spectral densities of n1(t) and no(t). Then we get 

the rollowing set of results rrom well known properties or Fourier transrorms of derivatives. 

d 
l' { -d R (1')} == jw S (w), 

r "I "I 

(4.12) 

From Eqs. (4.10), (4.11) and (4.12), and by malcing use or the ract that the Fourier transform of a 

product of functions is the convolution of the Fourier transforms of the (unctions, we get an expression 

tor the average power spectral density "§,,(w) or net) as rollows. 

-= S (w). [ w2 ~ J,(w)] + 2 [ w S (w)]. [ w ~ J,(w) ] 
"I .,. "I .,. 
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+ [W2 S (W)]. S ..(W) + S" (W) 
"1 • 0 

== W2 [S (W). S ... {W») + S (W). 
"1 • "0 

(4.13) 

The transition from the second line to the third line in the above equation may not be obvious to the 

reader. We have provided the details of this transition in the Appendix section at the end of this 

chapter. 

We shall show in the next section that the average power spectral density of Eq. (4.13) is consistent with 

spectrum analyzer measurements of the noise power spectrum for specific signals. The agreement of Eq. 

(4.13) with experimentally observed power spectra coupled with a close look at the physics of the 

readback process provides a theoretical basis ror the model in Eq. (4.4). 

If we compare the average power spectral density or Eq. (4.13) with the average power spectral density 

of the noise derived in Chapter S (Eq. (3.35» we rmd that they are very similar. For the purposes of 

making a comparison we shall rewrite Eq. (3.35). 

SAlk) 
S raCk) - aN PoCk) + a Bl(k) Ne (Ne-1) [ M 2 • S,(k) ] . (4.14) 

, 
Comparing Eqs. (4.13) and (4.14), we see that the rust term on the RHS or Eq. (4.13) represents 

modulation noise and the second term represents background noise. We note that the modulation noise 

term, i.e., the convolution of S (w) with S ..l(w), arises due to the multiplication in the time-domain of a 
"I .,.. 

stationary noise process "l(t) with the nux I/>(t). In the ensuing discussion we shall show that the choice 

of this multiplicative noise model ror modulation noise was not made arbitrarily. 

In Chapter 3 we saw that the phenomenon or clustering was one of the ways or explaining the 

modulation noise term in the noise average power spectrum. If we follow the steps taken to go from Eq. 

(4.4) to Eq. (4.13), it is easily seen that a time-domain ( or space-domain) model ror the noise which 

produces the convolution term SAlk) • S,(k) or Eq. (4.14) would involve the mUltiplication of the 

magnetization waverorm with a stationary noise process which represents clustering. This multiplicative 

noise term then paases through the readback channel, represented by B1(k), and gets affected by the loss 

terms and the differentiation of the read head just as the signal does. 

Now, the model Cor modulation noise described in the above paragraph is more reasonable than the 
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model of Eq. (4.4), but obtaining the parameters of the model is going to be very difficult because we 

would need to calculate Bl(k) which requires a characterization of the various random and deterministic 

variables that are associated with the recording system. Also, when bit detection is done, what is 

available at the input of the detector is the readback voltage and not the magnetization. A model which 

expresses the signal dependent noise in terms or easily available quantities is hence more useful in 

designing optimal bit detection schemes. 

The approximation that we have made in the model of Eq. (4.4) is that the signal dependent noise 

multiplies the nux and not the magnetization. The approximation is much better ir equalization is used 

in the readbad.: channel, because the flux waveform would then have approximately the same shape as 

the magnetintion written on the medium [20]. The flux as dermed in Eq. (4.5) is easily obtained from 

the readback signal by integration. The process of integration does not, however, yield the d.c. value of 

the flux. But this should not pose much of a problem because, as we shall see in the next chapter, th~ 

d.c. nine c4 t.be flux is uually known beforehand. 

4.3. Experimentation 

The functions 5 (w) and 5 (w) were obtained with an HP8568B spectrum analyzer on a recording 
·1 "0 

system using a 750 Oe, 0.75 pm thick particulate disk and a MnZn-ferrite recording head with a 0.375 

pm gap length. 5 (w) was measured by amplifying the readback voltage from an AC erased disk. It is 
·0 

Doted that this background noise also includes noise from disk imperfections, and non-media noise such 

as head noise and instrumentation noise. The resulting 5 (w) is shown in Fig. 4-1. 
"0 

The aignal dependent modulation noise term shows up as a convolution of the average power spectrum 

of the nux "'S#(w) with 5"I(w) in Eq. (4.13). When a periodic signal is written on the disc, "'S;(w) consists 

of delta runctions at the rundamental frequency and the harmonics of the signal. The convolution of 

5 (w) with theae delta functions results in shifted versions of 5 (w) around these delta functions scaled 
"I "1 

by the average power in ~(t) at the corresponding frequencies. Hence, to measure 5" (w), square wave 
1 

signals were written on the disc at frequencies greater than the bandwidth of 5 (w). Saturation 
"1 

recording was used 10 that the flux ~(t) in all these cases had the same amplitude. Fig. 4-2(a) shows a 

string of pulses measured at the output of the read head when a square wave is written on the disc at a 

frequency of 1 MHz. Fig. 4-2(b) shows the corresponding ~(t) obtained after integration and d.c. 

correction. The saturation value of the flux can be obtained from this plot. 

Curves (aHe) in Fig. 4-3 show plots of these modulation noise power spectra measured in a bandwidth 
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of 1.0 MHz around the fundamental frequencies of three square waves, written at 500 kHz, 1.0 MHz, and 

1.5 MHz. Since the power contained in the fundamental frequency of 4>(t) in all these cases is the same, 

the difference in the modulation noise term w2 ( S ..L(w) * S (w)} around the three center frequencies .,. n1 

should be due to the multiplication by w2• In order to verify this, we performed a division by w2 in all 

the plots. The resulting plots of S ..L(w) * S (w), which are simply scaled versions of S (w), are shown in .,. n1 n1 

Fig. 4-4, curves (aHc). As expected there is considerable similarity in these plots. 

It is well known that d.c. erased noise is larger than a.c. erased noise in particulate media 118]. This 

increase can be explained by our noise model as a modulation noise around w = O. To verify this, we 

saturated the disc using a large d.c. erase field and measured the modulation noise power spectrum up to 

a frequency of 500 KHz ( see Fig. 4-3, curve (d) ). Fig. 4-4, curve (d) is a plot of the power spectrum 

after division by w2• The 3 dB difference between Fig. 4-4, curve (d) and Fig. 4-4, curves (a)-(c) can be 

explained by the Cact that the d.c. modulation noise shoulder is one-sided. 

It should be noted that measurement of modulation noise cannot be performed independently of the 

background noise. Hence, to obtain the average power spectrum of the modulation noise alone, the 

background noise power spectrum has to be subtracted Crom the total measured power spectrum. Also, 

the aignalspikes and the very narrow band modulation around them, which is due to nuctuations in disc 

velocity , muat be suppressed. This subtraction was done to obtain all the modulation noise power 

spectra. 

We computed S (w) from the data that is plotted in Fig. 4-4. The autocorrelation Cunctions R (1') and n1 n1 

R (r) are computed from S (w) and S (w) uaing the inverse Fourier transform. Plots of R (1') and 
~ ~ ~ ~ 

R (r) are shown in Figs. 4-5(a) and 4-5(b) , respectively. We observe that both R (1') and R (1') look 
no tal nO 

very much like sinc functions, indicating the band limited nature of these noise terms. We can see that 

R (r) has a very small width in the time domain 
no 

( IIiI:I 0.1 ,,-sec ), indicating that it has a large bandwidth. The modulation noise term, however, has a 

much larger width in the time domain ( .. 0.05 m-sec ), which indicates its small bandwidth in the 

frequency domain. 

From R (r) and R (r), we can obtain the desired autocorrelation function R (t,t+r) for any general 
n1 no n 

magnetization pattern written on the disc. In the next chapter we shall see how we can make use of this 

autocorrelation funct.ion in designing optimal bit detection schemes. 
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4.4. Discussion and Conclusions 

Most of the existing theoretical and experimental work regarding particulate media noise has dealt only 

with its average power spectrum. The emphasis in the past has been to come up with an exact 

formulation of the average power spectrum of the noise in terms of the various parameters associated 

with the recording system. The model that we have presented in this chapter has parameters which can 

be obtained from simple set of experiments, and it is general in the sense that it can be made to include 

any noise terms which a.re similar in nature to the background noise and modulation noise of the media 

noise. For example, the modulation noise due to clustering and that due to surface asperities can now be 

treated on the same footing. 

Since average power spectrum measurements cannot be used directly to obtain the autocorrelation 

function of pa.rticulate media noise, Tang [16] suggested the use of time-domain measurements to obtain 

the desired autocorrelation function. These time-domain measurements a.re far more complicated than 

the spectrum analyzer measurements and a.re prone to timing errors. The main point made in this 

chapter is that we can in fact use spectrum analyzer measurements to obtain the autocorrelation 

function of media noise. Also, unlike Tangts time-domain method which can only be used to determine 

the noise autocorrelation function for a specific signal, R (r) and R (r) as presented in our model can 
n1 no 

be used to deduce the noise autocorrelation function for any general signal written on the disc. 

It should be noted that this simple noise model does not explain some of the observed features such as 

the decrease in total noise power with increase in writing frequency in case of particulate recording 

media. But as we mentioned in Chapter 3, both the signal as well as noise terms are affected in the same 

way when the writing frequency increases, maintaining the same signal-to-noise ratio. We shall see in the 

next chapter that in the design of optimal bit detection schemes, it is not the absolute values of the 

signal power and the noise power that are important but rather the ratio of these two. Hence, we are 

justified in using the model as a useful tool in designing optimal detection schemes for recorded digital 

signals in the presence of media noise. 
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4.i. Appendix 

4.5.1. Details of the derivation of Eq. (4.13) 

Consider the following example. 

The function z(t) is obtained from two other functions x(t) and y(t) by taking .the second derivative of 

the product or x(t) and y(t). We can express z(t) as 

d2 
z(t) = - { x(t) y(t) } 

dt2 

By expanding the second derivative in the above equation, we get 

(4.15) 

(4.16) 

Using well known properties of Fourier transrorms, we can express the Fourier transform or z(t) in two 

ways. 

From Eq. (4.15), we get 

Z(w} == - w2 { X(w) • Y{w) } , (4.17) 

where Z(w}, X(w) and Y{w) denote, respectively, the Fourier transforms of z(t), x(t) and y(t). 

From Eq. (4.16), we get 

Z(w} -= - { w2 X(w) • Y{w)} - 2 { w X(w} } • { w Y{w}} - X(w}. { w2 Y{w) } . (4.18) 

Equating the RHS of Eqs. (4.17) and {4.18} gives us the rollowing equation which should explain the 

transition from line two to line three in Eq. (4.13). 

w' {X(w} • Y{w)} == {w2 X(w) • Y{w)} + 2 {w X(w)} • {w Y{w)} + X(w). {w2 Y{w)} .(4.19) 
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4.6.1. The ATeI'aae Power Spectrum Definition 

CoDSider a random process ~t) with autocorrelation function R.(t,Hr). Aa in Eq. (4.3), we define the 

a"f'erace autocorrelation function of ~t) as 

1 12" W.(r) -= lim -2T R.(t,Hr) dt . 2"- co -2" (4.20) 

The Fourier vansform of W.(,,), denoted by ~.(w). is called the average power spectral density or z(t). 

We aball DOW abow that '"8.(w) does represent the average power contained in ~t) as a function or 

&equency. 

Proof: 

II .ee) is pUled through a linear I)"8tem with transfer function H(j.I). then the averace power spectru~ 

or or the output s,(1) is related to the averace power spectrum of ~t) as [14] 

(4.21) 

We chooee the linear I)"8tem to be a "f'er)' IWTOW band rllter around a particular frequency "'0. In 

particular, we choose H(j.I) such that 

11/Aw 
~)12 - \0 

lw-wol < Aw/2 . 

otherwise 

Now, the t.otal a"f'erace power in s,( I) is siven by 

1 12" 1 12" Iim:;r. E{,'(I)} de - lim -2T R,(I,t) dt 
r- co i6~ -2" 2"- co -2" 

- W (0) - !. reo ~ (w) dw 
, 2w J-co ' 

(4.22) 

(4.23) 

We can make the Darrow band rllter .. narrow .. we wish, and by doing 10 we can extract the averase 

power or .ee) at. "'0. This impli. that '"8(w) is indeed the average power spectral c1eDSity of the random 
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process :r(t). This definition or the average power spectral density as the Fourier transrorm or ~(T) is the 

10 called eneem61e average definition. When measurements are made in practical systems what is 

Dormally available to us is only one sample realisation or the random process :r(t). In this case we obtain 

an estimate or the average power spectrum or :r(t) as 

(4.24) 

We shall show that the above estimate ror the average power spectrum is unbiased in the limit as 

T - 00, i.e., that 

lim E{ ~~w)} - ~ (1.01) T-oo • (4.25) 

We proceed as rollows 

lIT . IT . E{ ~~w)} - E{ -T :r(u) e-~ du :r(t) t!'" dt } 
2 -T -T 

I IT IT - - R(t,u)e-M"-t) du dt 
2T -T -T 

(4.26) 

Thererore, 

lim E{ ~~w)} - lim -2ITIT IT R(t,u)e-Ma-t) du dt T-oo T-oo -T-T (4.27) 

Also rrom the euemble average defmition or~.(w), we set 

100 lIT . 
- lim -T R(t,'+t') dt e-I-" d., _-00 T-oo 2 -T 
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= lim - R(t,u) e-~("-t) du dt . liT 100 
• 

T- 00 2T t==-T ""'-00 
(4.28) 

Comparing Eq. (4.26) and Eq. (4.28), we see that in the limit as T - 00 they are equal, i.e., 

(4.29) 

The above equation is the dermition Cor the average power spectral density that we used in Eq. (3.2) of 

Chapter 3. Now, even though the time average estimate for the average power spectrum in unbiased, it 

is not con.i.tent, i.e., the variance of the estimate does not tend to zero in the limit as T - 00. In fact 

we can easily show that 

(4.30) 

Most spectrum analyzers estimate the average power spectrum of a random process by computing S:z{w). 

For stationary processes we could reduce the variance of this estimate by splitting the time interval into 

Donoverlapping intervals and averaging over the estimates obtained in each interval. For a 

Donstationary process, however, we cannot do this, because in this case the nonoverlapping intervals can 

have entirely diCferent statistics. Hence, in order to reduce the variance of the estimate we need to 

artificially introduce cflClo.tationarity or periodicity into the random process. This is essentially the 

reason Cor considering periodic written bit sequences when we measure the average power spectral 

density of media noise. 
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Chapter 5 

Bit Detection Schemes For 
Erased Signals in Noise 

0.1. Introduction 

In Chapter 2 we developed an approximate model for the signal pulse that represents a digital -1-; the 

approximation made was that the corresponding nux waveform has an arctangent shape. In this chapter~ 

we shall extend the signal model and nux model to include the case of d.c. and a.c. erased signals. Also, 

in Chapter 4 we developed a general time-domain model for particulate media noise which allowed us to 

express ita two-dimensional autocorrelation function in terms of the one-dimensional autocorrelation 

functions of two stationary processes. We shall approximate the one-dimensional autocorrelation 

functions by reasonable analytic functions in this chapter. 

Uaing these models for signal and noise, we can analyze the performance of various bit detection 

schemes, both optimal and sub-optimal, which can be used to detect the signal pulse in the presence of 

noise. The criterion that will be used to compare these detection schemes is the probability of bit error ( 

or the bit error rate ) that results when these schemes are employed. The bit error rate for a given 

detection scheme increases with the level of erasure. This dependence will be studied for both a.c. and 

d.c. erasure. 

In order to lacilitate the calculation of the error probability we use a discrete-time version of the 

readback voltage lor analysis. The readback voltage in a given bit period is diseretized into N samples 

which form a vector r. The Lorentzian pulse which represents a digital -1- is discretized into N samples 

that form a vector •. This pulse could be either a positive-going pulse or a negative going pulse as we 

saw in Chapter 2. We shall be assuming that we know the sign of the pulse beforehand. This assumption 

has certain implications, when we consider estimation of a sequence of bits using a bit-by-bit detection, 

which we shall discuss in the next chapter. The two-dimensional autocorrelation lunction of the noise is 

discretized to form an NX N matrix called the COtJClNOnCe matrix. 
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We shall consider four bit detection schemes in this chapter. The first of these is the optimal bit 

detection scheme, i.e., the scheme which yields the lowest bit error rate. We shall show that this 

detection scheme is quadratic, and hence difficult to implement. Next, we shall 88Sume that the detector 

is linear and find the best linear detection scheme. Then we shall consider a very simple linear detection 

scheme called the Correlator. All of the above detection schemes 88Sume a knowledge of the exact nature 

of the signal and statistics of the noise, and are hence referred to as parametric detection schemes. 

Nonparamdric detection schemes, on the other hand. require only a partial knowledge of the signal 

shape and noise statistics. We shall consider one such nonparametric scheme called the Sign Detector. 

For the three parametric detection schemes. we shall obtain analytical expressions ror the error 

probability which can be evaluated numerically on a computer for specific test eases. This will serve to 

compare the performance of these detection schemes. For the sign detector, however. it is very difficult 

to obtain aD analytical 801ution for the error probability. and we have not attempted to obtain on~. 

Hence. only the detection strategy has been presented in this case. 

6.2. Analytical Models for Signal and Noise 

&.2.1. A Model for the Erased Signal 

We shall assume that erasing the medium causes only the amplitude of the signal to decrease, while 

maintaining the shape ( equivalently the frequency content ) or the signal. This is an approximation 

because in most practical systems erasure causes some distortion in the signal shape. Also, in deriving 

the arctangent model for the nux in Chapter 2, Eq. (2.19), we assumed that the recording was done at 

saturation so that the d.c. value of the nux was zero. This condition or zero d.c. value is not valid 

under conditions of d.c. erasure. Hence, we generalize Eq. (2.19) as follows. 

2q4Jm t 
I/>(t) - - tan-I (-) + I/>J~ , 

'" pT .... 
(5.1) 

where I/> is the saturation value of the nux, q is a dimensionless quantity representing the level of 
m 

erasure, T is the bit period, pT is the transition width parameter, and I/>dc is the d.c. value of the nux. 
The quantity " is dimensionless and it represents the normalized transition width parameter, the 

normalization being done with respect to T. The quantity q can take on values in the range [O,lJ; q == 1 

represents no erasure, and q == 0 represents complete erasure. 

Under conditions of a.c. erasure, the nux does not have a d.c. component. This condition is described in 

Fig 5-1. In this case, we can write the nux as 
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T T 
--<t<-. 

2 - 2 
(5.2) 

Under conditions or d.c. erasure, 4>(t) is saturated at either +4>m or -4>m' The d.c. value of 4>(t) in this 

case is determined by both 4>m and the level of erasure q as is shown in Figs. 5-2(a) and 5-2(b). Hence, 

we get 

T T 
--<t<-. 

2 - 2 
(5.3) 

The readback signal in both cases is given by the ramiliar Lorentzian pulse shape, shown in Fig. 5-3, 

which can be written as 

d 2q4>m [ 1 ] 
.(t) == - 4>(t) == -

dt trpT 1 + t2/p¥ 
T T 

< t <-. 
2 - 2 

(5.4) 

II we normalize the nux with respect to 4> and the time variable t with respect to T, then we can m 

rewrite Eq. (5.1) in terms or only dimensionless variables4 as 

2q t 
4>(t) == _tan-1 (-) + 4> .. _ , 

7r P '"" 
(5.5) 

We also get the following equations as a result or this normalization. 

1 1 -- < t <- . 
2 2 

(5.6) 

1 1 -- < t <-. 
2 2 

2q t 
4> .. Jt) == -tan-1 (-) + 1 - q, 

..., 7r P + 
(5.7) 

1 1 
< t <-

2 2 . (5.8) 

Eqs. (5.6) to (5.8), which are expressed in terms of only normalized variables, will be used in the 

numerical computations of bit error rates. 

4Striet11 ,puking all the Dormalized quantities which we ,hall be introducing in this Itction ,hould be repreaented bl different 
I)'mbols from tboee we ban used Cor tbe unnormalised quantities. The ract that we han Dot doDe 10 abould Dot tODrllle the 

reader. 
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&.2.2. Nolee Model 

To characterize the noise we use the time-domain model that we proposed in Chapter ., i.e., 

d 
net) == dt { n1(t) 9'>(t)} + no(t). (5.9) 

Jus discussed in Chapter 4, the autocorrelation function of net) can be obtained rrom the autocorrelation 

runctions of the background noise, no(t), and the modulation noise, nl(t), as 

(5.10) 

where superscript' stands ror differentiation with respect to r. 

In order to simplify the analysis we shall assume that both the modulation noise as well as th~ 

background noise terlDS are 6and-limited white. If Bl and Bo are, respectively, the bandwidths of the 

modulation noise and background noise (Bo :> B1 ), then their power spectral densities can be written 

as 

Nl 

{ - -271-B1 ~ w < 271-Bl 
S (w) == 2 

n1 0 otherwise 

No - -271'Bo ~ w < 271'Bo 
S (w) == { 2 (5.11) 

nO 0 otherwise 

From Eq. (5.11), we can compute the autocorrelation runctions R (r) and R (r) by using the inverse 
n1 no 

Fourier transform to get 

Nl 
== ;;; sin (271'Bl r) , 

No 
== ;;; sin (271'Bor) . (5.12) 

If we set 

and (5.13) 

where 11 and 10 represent normalized bandwidths, then 

53 



where the function sinc(·) is defined by 

ain (7I'x) 
sinc(x) == -;.....;. 

7I'X 

(5.14) 

(5.15) 

By dermition, R (,.) is dimensionless, and R (,.) has the units of aquar.volts. Hence, in order to 
"1 "0 

normalize all the variables in Eq. (5.14), we normalize,. to T and R to. 2/7'. This procedure for 
"0 m 

normalizing t.he autocorrelation funct.ions is consistent with the normalization of Eq. (5.5). Arter 

normalization we obtain 

Nll 
R"I(") == T sinc(2/1,.) == "I sinc(2/1,.) , 

N%T 
Ro(,.) -= --;- sinc(2/0,.) == "0 sinc(2/0,.) , 

·m 
(5.16) 

where" 0 and "1 are dimensionless variables representing, in some sense, the raoi.e-to .... gnal ratios or the 

background and modulation noise respectively compared with the peak power in the uneraaed signal. 

In order to compute R.(t,,.) using Eq. (5.10), we need the first. and second derivatives of R (,.). We 
"1 

compute these as follows. 

d sin (271'/1") 
R '(,.) - -{" } 
. ft d,. 1 271'1 ,. 

1 1 

(5.17) 

(5.18) 

We ment.ioned earlier that we would be using a diaere ... time version of the readbaek voltage for the 

detection problem, which would require the use a matrix called the covariance matrix to describe the 
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two-dimensional autocorrelation function of the noise. Let us choose the N elements or the vector r 

representing the read back voltage as 

1 ~ ·i < N. (5.19) 

where 

(5.20) 

The above definition for the elements of the read back voltage vector implies that the signal pulse 

representing a digital -1- should be discretized to form a vector 8 whose N elements are given by 

1 < i ~ N. (5.21) 

The corresponding noise covariance matrix is obtained from Eq. (5.10) by choosing the (a,1)th element of 

the covariance matrix E as 

lS:i~N,l~j<N. (5.22) 

It is important to note here that the noise covariance matrix as defined above is going to be different for 

a recorded -1- and a recorded -0·. In fact if we denote these two matrices by El and Eo respectively, 

then the (i,J)th elements of these matrices are given by 

EOi)' == R (t. - t.), 
"0) • 

for a.c. erasure, 

EO;)' == R (t.- t.) - fJ 2 R "(t.- t.), 
"0 J' m "1 J • 

for d.c. erasure, 

R"l'(tj - til fJ(t.} .(t) 

+ R (t.- t.), 
"0 J • 

R"I"<tj - til fJ(t j ) fJ(t) 

l~iS:N,lS:j<N. (5.23) 

From the above equations it rollows that Eo and El are symmetric matrices. Furthermore, Eo is a 

Toeplits matrix, i.e., a matrix which has equal values on each of its diagonals. The eovariance matrix El 

depends on the signal and hence ehanges with level of erasure. It can be seen that if we reduce the signal 

level to sero both matrices will be equal, as expected. 
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5.S. Bit Detection as a Hypothesis Testing Problem 

The problem of detecting the signal pulse that represents a-l-, in a given bit period, in the presence of 

noise can be viewed as a hypothesis testing problem. The two hypotheses under consideration are ).{1 ( 

signal present ) and ).{O ( signal absent). Since we are dealing with a discrete-time version of the 

problem, the readback: voltage in a given bit period is discretized into N samples which form the vector 

r. If there was no noise, r would equal. under hypothesis ).{1' and equal 0 under hypothesis ).{o. In this 

cue we would not have any problem deciding whether a -1- or a -0- is written in a given bit period. 

Now, if we add noise to the readback voltage, there is a possibility that a -1- might be interpreted as . 
-0- or vice-versa. This constitutes an error in detection. Intuition would have it that increasing the 

power in the noise with respect to the signal power would increase the probability of error. The goal of 

hypothesis testing is to evolve a scheme based on the statistics of the noise which would minimize this 

error. 

We mentioned in Chapter " that a Gaussian random process is completely characterized in the 

atoehastic sense by its mean function and its autocorrelation function. The discrete time equivalent of 

this statement is that a Gaussian random vector is completely characterized by its mean vector and its 

covariance matrix. The random vector r has different statistics under each of the hypotheses. If Po and 

"1 represent the mean vectors of r under the two hypotheses, and Eo and E1 are the corresponding 

covariance matrices, t.hen we can write the following equations which derme them. 

"0 == E{r!Jlo} , 

"1 -= E{r!Jl1} , 

Eo = E{(r-po) (r-po)T!Jlo} , 

1:1 == E{(r-p1)(r-p1)T!Jl1} , (5.24) 

where, superscript T denotes the transpose operation. 

For our detection problem, a -1- is represented by the signal pulse vector. and a -0- is represented by 

no pulse or an all-zero vector. Hence, 

Po -= 0, 

(5.25) 
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With the above dermitions, we can write the following equations for the joint density functions of the N 

components of r under the two hypotheses as given below [14J. These joint density functions completely 

specify the statistics of r. 

(5.26) 

where H denotes the determinant or the matrix within the vertical bars. 

Now we are in a position to write an expression ror optimal detection scheme. Using Bayes criterion, 

the optimal detector, i.e., the detection scheme with smallest probability or error, can be written as [6] 

(6.27) 

where, P(No) and P(Nl ) are the G priori probabilities or hypotheses No and NI respectively. In the 

absence or any information about the hypotheses, both these a priori probabilities are taken to be equal, 

in which case the RHS or the above inequality would equal 1. 

m words, what the above inequality says is that when the LHS of the inequality is greater than the 

RHS, we decide that r came rrom NI , i.e. we detect a-l-. Similarly, when the LHS is less than the RHS 

we detect a -0-. It can be easily shown that this scheme does indeed yield the lowest probability or error 

(5]. The term l(r) is called the likelihood ratio and is the basic quantity in hypothesis testing. 

Sometimes it is convenient to use the logarithm of the likelihood ratio instead or the likehood ratio 

itseIr. Then the decision rule becomes 

P(No) {Nl 
her) -= In {l(r)} ~ In [P(N d -= H - r e . 

1 No 
(5.28) 

The RHS or Eq. (5.28), represented by H, is called the threshold or the detector. Ir the her) is greater 

than H, we detect a-l-; and vice-versa. Using Eq. (5.26) we can write the log-likelihood ratio as 

1 T 1 i (r-s) };1- (r-s). (5.29) 
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For a given detection problem, Eo' El and • are known. Hence, if we are given a particular readback 

voltage vector r, we can decide whether it is a -1- or a -0· by first computing h{r) using Eq. (5.29), 

and then using the decision strategy of Eq. (5.28). 

The probability of error that results when the above decision strategy is used obviously depends on Eo' 

El and a. We analyze the following two cases in an attempt to find an analytical expression for this 

error probability. 

&.8.1. The Equal Covariance Matrix Cue 

We fil"5t consider the simple ca.se when the covariance matrices under the two hypotheses are equal, i.e., 

Eo = El = E. This is true when modulation noise is absent. Even though it is not a realistic ca.se 

.tudy when we have modulation noise, the results we derive here will be used for later comparison 

studies. In this case the log-likelihood ratio ratio reduces to 

(5.30) 

Since her) is produced by a linear transformation on r in Eq. (5.30), it is also a Gaussian random 

variable. Let '10 and '11 denote the mean values of her) under the two hypotheses, and 0'02 and 0'12 denote 

the corresponding variances of h(r). Then, we can write the following equations for these quantities. 

'10 ".", E{h{r)/No} 
1 == _ _ .T E -1 a == -'1, 
2 

1 
"1 == E{h(r)/N1} == i aT E -1. == '1, 

0'02 == E{[h(r) - '1J2/ No} == .T E -1. == 2 '1 , 

0'12 == EHh(r) - '1l/N1} -= .T E-1 • == 2 '1. (5.31) 

Now, since h is Gaussian, we can write the probability density functions of h under the two hypotheses 

in terms of only means and variances a.s 

1 (h-'10)2 
1 «h+'1)\ 

P(h/Nol == exp(- 2) == -exp-
,f2; 0'0 20'0 .j 41rf1 4'1 

1 (h-'11)2 
1 «h-'1)\ 

P(h/N1) == exp(- 2) == -exp-
,f2; 0'1 20'1 .j 41rf1 4'7 

(5.32) 
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If we now consider the detection strategy specified by Eq.(5.28), there are two ways in which we can 

make an error. The first is when r actually belongs to )/0 and the log-likelihood ratio h is greater than 

H. The probability of this type of error is represented by EO' The second type of error is when I' belongs 

to Jll and h is less H. The probability of this type of error is represented by Er Hence, we can write the 

following equations for EO and Er 

(5.33) 

These error probabilities can be written more explicitly as 

1 " - exp(- - ) dll 
.;;; 2 

(5.34) 

where erf{.} is defined by 

1 IoZ 
" erC{z) -= - exp(- -) dll 

..;2; 0 2 
and erf(-%) -= - erf(z), % e [-00,00] . (5.35) 

Similarly 
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-J:-1J)/J'i; 
1 ,; 

= 1 - exp(--)dy 
~ 2 

1 erf{ ('I-H) } . == - + (5.36) 
2 v2ri 

The total probability of error, (, can be obtained from (1 and to as 

(5.37) 

We aee that in the equal covariance matrix case the calculation of error probabilities is a fairly simple 

task. The optimal detection scheme in this case consists of computing a linear transformation of the 

readback voltage, as given by Eq. (5.30) and comparing the resulting quantity with a threshold. The 

continuous time equivalent of this strategy would involve passing the readback voltage through a linear 

system and comparing the output of the linear system at a specific time instant with a prespecified 

threshold. This linear system is called a matched filter and is discussed in great detail in communication 
. 

theory literature [19]. We now consider the more interesting case when the covariance matrices are not 

equal. 

6.8.2. The Unequal Covariance Matrix Case 

In the detection problem of interest, when the noise is signal dependent, the covariance matrices of r 

under the two hypotheses are unequal. In this case the log-likelihood ratio cannot be reduced to a linear 

transformation of I" as we did in the equal covariance matrix case. Hence, h(l") is no longer Gaussian, 

and rmding the probability density function of h under the two hypotheses is a much more difficult 

problem. We first simplify the detection problem a little in the following way. 

Since I" has a normal distribution, we can always rmd a linear transformation which diagonalizes both 

covariance matrices, Eo and E l , simultaneously. Such a transformation matrix, A, is one which contains 

the eigen-veetore of Eo- 1 El as its rows [5]. If we pass the random vector I" through this transformation, 

the random vector that we obtain at the output, 7. has components which are independent random 

variables under both hypotheses. 

7 == AI". (5.38) 

The mean vectors and covariance matrices of 7 under the two hypotheses can be shown to be [5] 
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E{y/No}-= A 0 -= 0, 

E{y/N1} - A. - d, 

Cov{y/No} - A L'o AT == I, 

Cov{y/NIl -= A L'l AT == A, (5.39) 

where A is an NXN diagonal matrix containing the eigen-value" >'1""').,N' or L'O-l L'I along its 

diagonal. 

The log-likelihood ratio, in this case, has the rorm 

1 1 
hey) -= - i In {lAI} + i { yT Y - (y_d)T A-I (y-d) 1 . (5.40) 

It is easily ahown6 that the expressions ror t.he log-likelihood rat.io in Eq. (5.29) and Eq. (5.40) ar~ 

equivalent. This means t.hat the transrormation, A, preserves t.he optimality or t.he detection seheme or 

Eq. (5.27). 

By diagonalizing both the covariance mat.rices or y, we ensure that the N random variables, '11, ••• ,1IN' 

which constitute y, are independent. Hence, 

N 

p(y/N;) - IT p(,1,1N;), i == 0,1 . 
1-1 

IC we dame t.he log-likelihood or the l-t.h component or y as 

t.hen 

N 

hey) == E h(lI,). 
'-I 

(5.41) 

(5.42) 

(5.43) 

Our goal is to r1l'lt. calculate P(h/Nol and P(h/N1), rrom the densit.y runct.ions or the h(,1,) Ij and then, 

use these to calculate the total probability or error, E. There are two approaches to this problem. The 

rU'lt. involves a rigorous, exact calculation or Ej and the second is an approximate calculation or E which 

is valid ror large N. 

'Ste Ute Appeaclix Het.ioa ~ tile tad or tbia chapter 
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6.4. Exact Calculation of Error Probability 

Here we use a characteristic function approach to rmd the desired density functions of h. The 

characteristic function of a random variable8 , :r, is defined by 

~~(w) = E{ exp("w:r)} . (5.44) 

For '7 e Ni ' i-O,l, the characteristic functions of h(y). ~.~w) are defined by 

(5.45) 

Similarly, the characteristic functions of h(II,) for '7 e Ni ' are given by 

(5.46) 

From Eqs. (5.43), (5.45) and (5.46), we get 

N 

~I~W) == n ~itw). (5.47) _I 
From Eq. (5.47) we get the following two equations for the absolute value and argument of ~.~w) 

N 

1~.~w)1 == n l~itw)1 , 
'-I 

N 

L~,~w) -I: L~itw) . (5.48) _I 
Hence, if we can rmd the absolute values and arguments or ~itw), we can use these to obtain the 

characteristic runctions or h under the two hypotheses. 

From Eq. (&.39), we see that each or the components, "" or '7 is a Gaussian random variable with, mean 

o and variance 1, under No; and with, mean d, and variance )." under N1' Hence, 

(5.49) 

Owe han uaed tbe 11mbol ~ to rep .... nt nux .... U.r on in tbll ebapter. 
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Substituting the above density function in Eq. (5.42), we get 

(5.50) 

Proceeding from Eq. (5.50), we can show that? the absolute value and argument or ~j~w), i = 1,2, are 

given by 

" 2 2 
1 [ Ginl W ] - -w h. + . 
2 tl 1+ 2 2 wail 

(5.51) 

where 

1 
GOI == 1 r' I 

d, 
601 == r' I 

hOI == 
60,2 

I-GOI 
+ In),,. (5.52) 

and 

Gu == )" - 1. 

6u -= ), 1/2 d , , . 
hu -

6112 

-- + In),,. 
I+G1I 

(5.53) 

Hence. using Eqs. (5.51) and (5.48), we can compute the characteristic functions or h under both the 

hypotheses. Our goal is to make use or these characteristic functions to determine the total probability 

oC error, f. The procedure is as follows. 

7 See tbe AppeDdix aectioD at. the eDd or this cbapter ror detaila. 
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From the characteristic functions, ~I~W), we can compute the density functions P{h/'N;) as 

1 100 P{h/'N.) == -2 ~~w) exp(-';"'h) dw . 
I 1T -00 I 

(5.54) 

Also, (rom Eq. (5.33) we know that 

(5.55) 

where 

(5.56) 

Using a ramiliar rule or the Fourier transformS we get, 

1H ~I~O) 1 100 ~I~W) 
P{h/'Ni ) dh == - - - -:- exp(-';"'H) dw • 

-00 2 21T -00 JW 
(5.57) 

Now, ~I~W) has an even real part and an odd imaginary part. Hence, the integrand on the R.H.s of Eq. 

(5.57) has a real even part and an odd imaginary part. Therefore 

100 ~I{W) 1000 ~I{W) 
--:- exp(-';"'H) dw == 2 Re [-:- exp(-';"'H)] dw 

-00 JW 0 JW 

1000 1~.{w)1 
== 2 - ain { L~ ~w) - wH} dw . 

OWl 
(5.58) 

Also, rromEq. (5.45), we get that ~.{O) == 1 . Hence, Eq. (5.57) reduces to 

(5.59) 

'See the Appendix "mon at. t.he end or t.hia chapter tor a derivation or this result. 
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Substituting Eq. (5.59) in the two equations of Eq. (5.69), we get the following analytical expressions for 

(0 and (I" 

I I 100 l~o(w)1 
(0 -= - + - - sin { L~o(w) - wH } dw . 

2 7r 0 W 
(5.60) 

I I 100 l~l(w)1 
(1 == - - - - sin { L~ (W) - wH} dw . 

2 7r 0 w 1 
(5.61) 

In any practical case the above indefinite integrals have to carried out numerically. Fortunately, the 

integrals are I-dimensional and hence the integration is manageable. Because the integrals are indefinite 

there are two (actors which determine the accuracy o( the result; the sampling interval and the total 

length or integration. For small error probabilities, the accuracy required in the computation of the 

integrals may be so high that it is not practical to go through the process. In such cases we may have tQ 

depend on an approximate calculation which is less tedious. 

5.5. Approximate Calculation or Error Probability 

In Eq. (5.43) we saw that the log-likelihood ratio or hey) can be written in terms or the log-likelihood 

ratios h(y,) or the components of y as 

N 

hey) == L h(y,). (5.62) 
1-1 

In this method we make the (ollowing approximation. Using the Central Limit Theorem, we claim that, 

for sufficiently large ft, hey) is approximately Normally distributed, i.e. P{h/No) and p(h/N1) are 

Gaussian density (unctions. To recall, we dermed the log-likelihood ratio as 

I ITT 1 
hey) -= - i In {1A1} + i {)" )" - (y-d) ,A- (),,-d)}. (5.63) 

In order to compute the error probabilities we need to know the means and variances of h under the two 

hypotheses. U "0 and "1 denote the means of h under the two hypotheses, and (102 and (112 denote the 

corresponding variances, then we can show that' these are given by 

'See .. he Appendix lection at .. he end or t.hiI chapt.er for det.&ila. 
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1 1 1 
"0 == - ;mU,i1l + i tr{I - A-I} - i dT A-I d . 

1 1 1 
"1 -= - iln{1A1l + i tr{A - I} + i dT d . 

tT 2 o 

tT 2 
1 

_ ~ tr{(I - A-I)2} + dT .,1-2 d 
2 

1 == i tr{(A - I)2} + dT Ad, 

where tr{.} denotes the trace of a matrix. 

(5.64) 

(5.65) 

(5.66) 

(5.67) 

With the Gaussian Ulumption, we can write the probability density functions of h under the two 

hypotheses in tenns of the means and variances defined above as 

(5.68) 

The probabilities of error under the two hypotheses, fl and fO can hence be calculated in the same lines 

as we did in the equal covariance matrix ease. 

1 - --2 

H 1 H-" 1 ...Jh/" ) dh _-I{ ---! } . fl -= 1'\ ""I - - + t:l"1 
. -00 2 tTl 

(5.69) 

The Gaussian approximation that we made in the beginning of this section requires two conditions to be 

correct. The rU'St is that the component random variables in Eq. (5.62) must closely resemble each other 

and the second is that N must be fairly large. The rmt condition is not met when the covariance 

matrices are very different from Toeplitz. If the contribution of the modulation noise is significant, ];1 is 

going to be very different from Toeplitz as Eq. (5.23) indicates. Hence, we might get misleading error 

probabilities using this method even when N is large. In the next section we discuss one way of 

obtaining an upper bound on the error probability which may prove to be a better method of estimating 

error probabilities when the modulation noise is large. 
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5.8. Upper Bounds on Error Probability : The Chernoff Bound 

It is evident from the discussion in the last two sections that calculating error probabilities in the 

unequal covariance matrix case is, in general, a difficult task. Even when the observation vectors have a 

Gaussian distribution, we must resort to numerical integration or lOme form. The approximate 

calculation described above is one way to get around the problem. Another way is to seek an easily 

computable expression for an upper bound on the error probability, because in many practical cases the 

upper bound is all the information we need. 

One such set of upper bounds on the error probabilities fO' fl and f are the Chernorr Bounds (51 which 

can be represented by the inequalities 

[ P(Nl) ]1/2 1 
fO S P(No) exp[ -pC i)] , 

[ P (No) ]1/2 1 
fl S P(Nl ) exp[ -pC i)] , 

f S [P(Nl) P(Nal ]1/2 exp[ -pC i)] , (5.70) 

where p( i ) is the Bhattaehaf1l4 [3] distance between the two hypotheses, defined by 

(5.71) 

It. can be shown that [5] the Chernoff bound is very close to t.he exact error probability when the error 

probabilities are .. ery small, but could be .. ery different from t.he exact value when the error 

probabilities are large. This fact is very useful because, as we shall see in the last section or this chapter, 

Dumerical computations of the exact probabilities are much simpler and more accurate ror large error 

probabilities, and 'We 'Would not have to use the bound anyway. 

&.7. Linear Detection Schemes 

From Eq. (5.29) 'We can see that the log-likelihood ratio her) for the optimal detection scheme is 

obtained from r by a quadratic transformation of r. This means that ir we implement the optimal 

detection scheme by passing the readback voltage through a mter to obtain the log-likelihood ratio, the 

filter that 'Would have to be used would be a quadratic, i.e., non-linear, filter. Implementing a non-linear 

falter is, ill general, Dot an easy task. In this aeetion 'We shall approximate the log-likelihood ratio by a 
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linear function of r, and find the coefficients of the linear transformation vector which minimize the 

error probability when this detection scheme is used. We write her} as 

her} -= yT r + tlo' (5.72) 

where Y is column vector of size N, and Vo is a constant. 

The decision strategy that we use now is 

(5.73) 

Since r is normally distributed, her) as defined above is also normally distributed. Hence, in order to 

obtain the probability density functions of h under the two hypotheses, we need to calculate only the 

means and variances of h under the two hypotheses. These are given by 

"0 -= E{ h(r)/Mo } -= yT E{ r/Mo } +- tlo == tlo ' 

"1 - E{ h(r)/M1 } -= yT E{ r/Ml } + tlo -= yT. + tlo' 

~2 
0 

-= yT E{ r rT } y == yT Eo y , 

~2 
1 

== yT E{ (r-.) (r_.)T } y == yT El Y . (5.74) 

It is easily shown that the total probability of error that results, when the decision strategy or Eq. (5.73) 

is used, is given by 

(5.75) 

Our goal is to fmd the coefficients or the linear transformation that minimize the above probability of 

error. Hence, we difrerentiate E with respect to Y and tlo and set the resulting quantities to zero. 
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(5.76) 

and 

(5.77) 

UIing Eq. (5.77) in Eq. (5.76), we get 

'10 ['11] --E V - .--E V 
2 0 2 1 cro cr1 

- 0, 

i.e., (5.78) 

Also, rewriting Eq. (5.77) we get 

(5.79) 

Solving Eqs. (5.78) and (5.79) yields V and tlo which minimise the probability or errorE. Unf'ortunately, 

an explicit 101ution to the above equations is very difficult to obt.ain, and hence we need to use an 

iterative procedure to rmd the 101ution. 

A simple iterative 101ution to this set or equations was rll'St suggested by Pet.ereon [15]. Instead or 

101ving Eqs. (5.78) and (5.79) directly, the minimum or E is lOught. under the conditions or Eq. (5.78) as 

follows. 
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(5.80) 

where 

- (5.81) 
a tT " 1 

and 

0'= (5.82) 

Now, since "0 == "0 and "1 - VT a + "0' and a tTo" "1 + (I-a) tTl" "0 -== 0 from Eq. (5.82), "0 can be 

calculated as 

(5.83) 

From Eq. (5.83) we can see that it' V is multiplied by a, "0 is also scaled by the same factor a. The 

decision made by VTr + "0 ~ 0 is the same as the decision made by a VTr + a "0 ~ O. Hence, E is 

invariant under the scale change. Therefore, by ignoring the Kale factor of a, we can plot E as a function 

or on~'Parameter a as follows. 

• Oalculate V for a given a with a == 1. 

• Using this V, calculate tTo", tTl", VTa and "0' 

• Oalculate f using Eq. (5.75). 

• Ohange a from 0 to 1 continuously. 

From this plot, we can rmd a for which E is minimum. We then use this value or a to calculate V and 

"0 for the linear detection with minimum probability of error. 

6." .1. Correlation Detector 

A special class or the linear detection schemes is the Oorrelation detector. The correlation detector has 

V and "0 which are given by 

V == a, (5.84) 
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1 T 
"0 -= - i· • 

The detection 8trategy that results rrom the above choice is 

(5.85) 

(5.86) 

The LHS or the above inequality is the dot product, or the correlation, or the readback voltage vector 

with mgnal pulse vector. This is the reason ror calling this detector a correlation detector. The 

correlation detector is very easy to implement, and is very commonly used in scenarios when the noise is 

stationary and white because it can be shown to be optimal in this case [111. 

5.8. Non parametric Detection Schemes: The Sign Detector 

All the detectors that we have considered 10 far assume that we know probability density functions of r 

under the two hypotheses. Ir the actual probability density functions or r are the same as those assumed 

in determining the detection ec:heme, the perrormance of the detector in terms of error probability is 

sood. Jr, however, the actual probability density functions are considerably different rrom those 

UlSUmed, the performance of the parametric detector may be eeverely degraded. 

Nonparametrie det,....;i;ors do not usume that the input probability density functions are completely 

known, but only make general usumptions about the input such as symmetry of the probability density 

function and continiuity ot the cumulative distribution function. Since there are a large number of 

clenaity functions which eatisfy these usumptions, the density functions of the input may vary over a 

Yery wide range without altering the performance of the nonparametric detector. Of course, the 

perl'or~ce of the nonparametric methods will be interior to the parametric optimal detection ec:hemes 

when the statistics are completely characterised. 

We ahall consider one nch nonparametric detection ec:heme in this chapter, namely, the ,ign detector 

16]. The mgn detector utilizes only the polarity of the data to make its decision. We assume that the 

menal takes on positive values, i.e., all the components of • are positive. We have seen earlier that in 

cligital magnetic recording the signal pulse is either a positive going pulse or a negative going pulse. 

Since we usume that the mgn of the pulse is known berore hand, the analysis that we do for positive 

pulses can be easily repeated with minor modifications for negative going pulses as well. We also make 
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t.be assumption that the input data vector I' has components which are statistically independent. With 

t.bis assumption we can write the probability density functions or I' under the two hypotheses 88 

N 

P(I'/No) -= TI p(r,/No)' 
1-1 

N 

P(1'/N1) -=TI p(r,/N1)· 

'-1 
(5.87) 

Since we are only interested in the signs or r" we do not need the entire density functions or r, under the 

two hypotheses. All we need are the probabilities that r, is positive ( or negative ) under the two 

hypotheses. 

Under hypothesis No, aince we have only noise which is zero mean, each of the r, s is equally likely to be 

positive or negative, i.e., 

P{ r, ~ 0 / No} - 1 - P{ r, < 0 / No } 
1 - -2 . 

Under hypothesis N1, each of the rf is more likely to be positive than negative, i.e., 

1 
", > i' 

(5.88) 

(5.89) 

To recall, the decision strategy that yields the minimum error probability can be written in terms or a 

likelihood ratio and a threshold as 

(5.90) 

Using Eq. (5.87) we can express the likelihood ratio 1(1') in term or the likelihood ratios or r" 1= 1, ... ,N, 

as 

(5.91) 

From Eqs. (5.88) and (5.89) we can write I(r,) as 

for r, ~ 0 
(5.92) 

for r, < 0 
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For a particular observation vector .. , let L+ denote the set or values or I ror which r, is positive and L. 

denote the set or values or I for which r, is negative. Then we can rewrite Eq. (5.91) as 

1(1") - IT 2 P, IT 2 (1 - p,) (5.93) 

L+ L_ 

Hence, the decision strategy to be adopted is 

(5.94) 

Even though the above decision strategy looks rairly simple, error analysis ror t.his detector is not easy. 

Gibson and Melsa (6) have obtained an analytical expression for t.he error probability when t.he 

components or r are identically distributed, i.e., all the P, s are equal. This condition is very rar rrom 

true in our detec:tion problem, since the signal has much larger values at the center or a bit period thaD 

at the extremities. Hence, we would have to either simulate the detec:tion problem on the computer or 

conduct an experiment on real data, to rmd the bit error rates when the sign detec:tor is used. 

Since our goal in this project is to obtain conservative estimates or the probability or detection of an 

erased digital signal, we will not pursue this sign detec:tor any more. Rather, we will concentrate on the 

perrormance or optimal detection schemes. 

&.9. Numerical Evaluation or Error Probabilities 

1.1.1. Cue Studies Couidered 

In order to evaluate the error probabilities ror the various detec:tion schemes that we discussed in this 

chapter numerically, we need to assign epec:ific values to the various dimensionless quantities that we 

dermed in the rmt sec:tion or this chapter. These are : the normalized transition width parameter p, the 

level or erasure " the normalised bandwidth 11 and noiae-to-aignal ratio r1 or the modulation noise, and 

the normalised bandwidth 10 and the noiae-to-signal ra~o r o. or t.he background noise. Another 

parameter that can be varied is the type of erasure, i.e., a.c. or d.c. In general, all the above parameters 

could be varied to rorm different combinations which could represent various recording systems. Here, 

we shall only consider a few case studies which we consider to be rairly representative. 

In all our case studies we shall assume that 
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p == 0.2, 

10 == 15.0. (5.95) 

These values have been chosen to correspond to the experimental data that we obtained in Chapter 4, 

for a bit period of 0.5 ",-sec as shown in Fig. 4-2(a). We can easily see that for T == 0.5 p-sec, the 

transition width parameter, pTwould be 0.1 ",-sec, the modulation noise bandwidth would be 200 kHz, 

and the background noise bandwidth would be 30 MHz, which is approximately what these values are 

for the data in Chapter 4. 

To study the dependence of the bit error rate on the level of erasure, we shall vary q from 1 to 10-4, i.e., 

vary the signal power from the unerased level down to -80 dB, in conveniently chosen steps. Note that 

when the signal level is reduced by erasure, the modulation noise is also reduced correspondingly, but 

the background noise remains unchanged. 

The four case studies we shall consider are : 

• a.c. erasure, low modulation noise ( ro == 10-2, r1 == 10-4 ) 

• a.c. erasure, high modulation noise ( ro = 10-2, r1 = 10-2 ) 

• d.c. erasure, low modulation noise ( ro == 10-2, r1 == 10'" ) 

• d.c. erasure, high modulation noise ( ro == 10-2, r1 == 10-2 ) 

The values of r 0 and r 1 in case studies 1 and 3 correspond closely to the values that we would have 

obtained for the autocorrelation functions described in Fig. 4-5. These values indicate that modulation 

noise level is about 20 dB below the background noise level, and hence cases 1 and 3 will be referred to 

as low modulation noise cases. For the sake of comparison, we also consider cases when the modulation 

and background noise are of the same level. These are represented in case studies 2 and 4, which we 

shall refer to as high modulation noise cases. 
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6.0.2. Software Developed for Numerical Computation 

Uaing the analytical expressions we developed in this chapter, we have written Fortran programs to 

numerically evaluate the error probabilities when the three detection schemes, namely, the optimal, the 

best linear and the correlator, are used for detection. For the optimal detection scheme, we calculated 

the error probability in the three ways diacU86ed. Of all these programs, the one that does an exact 

calculation of the error probability for the optimal detector is the most tedious since it involves the 

numerical integration of two indefinite integrals. We used Weddle's Rule [4] to compute these integrals. 

For most of the matrix operations, we used IMSL ( International Mathematical and Statistical Library ) 

routines. Except for the program which calculates the exact error probability for the optimal detection 

.cheme which took about 40 minutes of CPU time, all the other programs took about 1.5 to 2.0 minutes 

of CPU time to generate one value of the error probability on a VAX-ll!750 processor. The resulting 

error probabilities for these detection schemes, for all four case studies, have been listed as a function of 

the level of erasure in Tables 5-1 to 5-8. 

AI. we mentioned earlier, an exact calculation of the error probability for the optimal detector involves 

the evaluation of two indermite integrals ( see Eqs. (5.60) and (5.61». For small error probabilities, 

each of these integrals is loing to differ from 0.5 by only a small amount. Hence, if the error 

probability is of the order of 10·", we need to have at least n° decimal places of accuracy in the integral 

to let a reasonable result. We have used double precision arithmetic which provides 16 decimal places of 

accuracy in the computation of the integral. Hence, however rme a sampling interval we use for the 

integration and however long we choose our integration length, we cannot calculate error probabilities 

which are smaller than 10·us• 

6.0.1. RauIU of Numerical EvaluatloD of Error Probabll1tl_ 

Tables 5-1 to 5-4 show values of the the error probability for the optimal detection scheme in three 

different ways. The Chernoff bound is in the form of an exponential and hence the exponent can be 

calculated even when the error probabilities are very small ( 10.147, as Table 5-1 shows ). The smallest 

value that the approximate calculation can yield is determined by the smallest value that is allowed by 

the double precision arithmetic, which is liliiii 10·as• When the modulation noise level is high, as in Tables 

5-2 and 5-4, the approximate calculation can be 10 inaccurate that it yields an error probability which is 

II'cater than the upper bound. In such cases we have marked the value of error probability obtained by 

an asterisk. 
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Tables 5-5 to 5-8 list values of the error probability for the two linear detection schemes that we have 

considered, namely, the best linear detector and the correlator. We can see that the best linear detection 

scheme yields smaller values of error probability than the Chernoff bound in most cases. Since the 

optimal detector will perform better than even the best linear detector, when an exact calculation of 

error probability for the optimal detector is not possible, the linear detector results can be used as a 

better upper bound than the Chernoff bound. 

Tables 5-9 to 5-12 have been listed to compare the performance of the three detection schemes at erasure 

levels for which an exact calculation of error probabilities of the optimal detector is possible. We can 

observe the following trends : 

1. In all tables the probability of error increases with increasing levels of erasure. Since we have assumed 

that the two hypotheses are equally likely, the largest value that the error probability can take is 0.5, 

and this happens when the signal information is not used in making the decision, i.e., whether a bit is a 
-1- or a -0· is decided completely randomly. We see that this indeed is the case, i.e., the error 

probability in all tables approaches 0.5 at high levels of erasure. 

2. At a pven level of erasure, the error probabilities for all three detection schemes are, in general, 

larger under conditions of d.c. erasure than under conditions of a.c. erasure. This is to be expected since 

d.c erasure introduces an additional modulation noise term around lero frequency. 

8. The optimal detector performs better than the best linear detector, which in twn performs better 

than the correlator, in terms of minimum probability of error at low levels of erasure, but all of them 

perform equally well at high levels of erasure. AI. we mentioned earlier ( See Eq. (5.23) ), high levels of 

erasure cause the covariance matrices under the two hypotheses to be equal to each other. The optimal 

detector for the equal covariance matrix case is a linear detector. Hence, the best linear detector 

performs just as well as the quadratic optimal detector at high levels of erasure. Also, since we have 

uaumed that the background noise is band-limited white noise in our analysis, the correlator, which is 

optimal for white noise, performs almost as well as the linear detector at high levels of erasure. 

4. For a rlXed r 0 ( 10.2 ), chansing r 1 from 10.4 to 10.2 does not increase the error probability very 

significantly at erasure levels greater than 20 dB. This is again because of the fact that the modulation 

noise is suppressed when the signal is erased whereas the background noise is unaffected. 
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6.8.4. Probability of Retrieving Sequencee of Bite 

So rar we have considered only bit error rates. Let us denote the probability or bit error by Pt' From Pe, 

we can find the probability or correctly retrieving a bit Pd, as 

(5.96) 

Now, inrormation is stored on the disc as a sequence or bits. This sequence could be encoded by RLL 

( run length limited ) encoding and by error correcting coding. Hence, in general, the probability or 

correctly detecting a sequence or bits depends not only on Pd, but also on the specific encoding schemes 

used. AI. an illustrative example or how one can obtain probabilities or estimating sequences correctly, 

let us consider the probability or detecting a -byte- ( ... 8 bits ) or inrormation when no encoding is 

used. In order to correctly detect a byte, we need to correctly detect each or the 8 bits. Hence, 

Probability or correctly detecting a byte -= [ Pd ]8 (5.97) 

For example, at the highest level or erasure ( 80 dB ), the bit error rate is approximately 0.498 ror all 

case studies, i.e., 

p. ... 0.498 and thererore Pd ... 0.502. 

Probability or correctly detecting a byte - (0.502)8 -= 4.03 X 10·S• 

We note that the probability or correctly detecting a byte is two orders or magnitude smaller than Pd in 

this case. Ir we go to longer sequences the probability or correct detection will be even smaller, though 

this value can be increased by the use or error correcting codes. 

i.l0. Appendix 

6.10.1. Proof of the equivalence of Eq. (&.20) and Eq. (6.40) 

Starting with Eq. (5.40) we get, 

1 1 
hey) - - i in {1A1l + i { -? y - (y_d)T A-I (y-d) } . (5.98) 

Now, since A is a diagonal matrix that contains the eigenvalues or EO- 1 El as its diagonal elements, we 

let 
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(5.99) 

Also. from Eq. (5.38) and Eq. (5.39). we get 

(5.100) 

and 

Substituting Eqs. (5.99). (5.100) and (5.101) in Eq. (5.98). yields (5.29). 

6.10.2. Derlvation of Eq. (6.61) 

Starting from Eq. (5.50). we derive Eq. (5.51) as follows: 

1 1 (JI,-dl 
h(JI,) - - i In >., + i { JI,2 - >. } • , (5.102) 

Now, Eq. (5.46) can be written as 

(5.103) 

From Eq. (5.102) and Eq. (5.1OS), we get 

(5.104) 

where 
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1 
°01 = 1 - r' , 

d, 
bOI = r' , 

bo,2 

hOI -= - + In)',. 
1-°01 

The absolute value and argument of tPotw) can then be calculated as 

Similarly, 

l eo 1 [1 == - exp - - { 11,2 ( 1 - j..J)., + j..J) - 211f,(I+j..J) } -
-eo J2'1r)., 2)" 

where 

all -= >., - 1. 

"11 == >. 1/2 d 
, I • 

hll -= 
6112 

--+ 
1+°11 

In)', . 

The absolute value and argument or tP1tw) can be calculated as 

j..J In )., 

2 

(5.105) 

(5.106) 

(5.107) 

(5.108) 

79 



We can combine Eq. (5.106) and Eq. (5.109), to get Eq. (5.51). 

6.10.8. Derivation of Eq. (6.67) 

Starting rrom Eq. (5.54), we get 

[ Hoo P(h/'N;) dh ... IH dh !.1°° .~w) exp(-,wh) dw. -00 271" -00 ' 

1 100 IH ... -2 .,~w) exp(-,wh) dh dw • 
71" -00 -00 

From a table or Fourier transforms, we get 

L: exp(-,wh) dh ... exp(-,wH) [ 71" 6(w) + ~] . 

Substit.ut.ing Eq. (5.111) in Eq. (5.110) we get. 

IH .,~O) j 100 .~w) 
P(h/Ni ) dh - - + - - exp(-,wH) dw 

-00 2 271" -00 W 

• ,~O) 1 100 • ,~w) 
... - - - -:- exp(-,wH) dw • 

2 271" -00 JW 

6.10.4. Derivation of Eqa. (6.84) to (6.87) 

We begin by rll'8t est.ablishing lOme simple equalit.ies shown below. 

N 

EfyT yJNo} ... E EhI,' / No} 
1-1 

N 

... E 1 ... tr{I}. 
1-1 

(5.109) 

(5.110) 

(5.111) 

(5.112) 

(5.113) 
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N N 
E{(y-d)T (y-d)/NI) -= L E{(y,-d//NI } == L ).., == tr{A} . (5.114) 

'-I '=1 
N N 

E{yT A-I Y / NO} == L E{y,2)..,-I/ No} == L )..,-1 = tr{A-1} . (5.115) 
1-=1 I-I 

N N 
E{(y-d)T A-I (y-d)/N1) == L E{(y,-d,)2 )..,-I/N1} == L ).., )..,-1 -= tr{I}. (5.116) 

1=1 1=1 

N N N 

E{(yT y)2/NO} == L E{Y,·/NO} + L L Eb,2 Ym2/ No} 
'-=1 m=l, m'" I 

N N N 
== 3 L 1 + L L 12 == 2 tr{I} + [tr{I}]2. 

N N N 
E{(yT A-I y)2/No} == L E{Y,·)..,-2/No } + L L E{y2y 2).. -1).. -I/N} 

, m' m 0 

N N N 
-= 3 L )..,-2 + L L ).. -1).. -1 

, m 
1-1 '-1 m-I, m'" , 

N N N 

E{(yT y) (yT A-I Y)/NO) == L E{Y/·)..,-I/NO} + L L Ebm2YI2)..m-I/No} 
1-=1 1-1 m=l, m'" I 

N N N 
== 32: )..,-1 + 2: 2: ).. -1 

m 
'-1 1-1 ",-1, m'" I 

-= 2 tr{A} + tr{I} tr{A-1} • 

(5.117) 

(5.118) 

(5.119) 

Also, we know that because Il, a are GaW!Sian random variables, all third moments are zero. Therefore 

E{(yT y) y/No} -= 0, 

E{(yT y) yTINo} _ OT. 

Similarly 

E{[ (y_d)T (y-d) ]2/NI) -= 2 tr{A2} + [tr{A}]2, 

E{[ (y_d)T A-I (y-d) ]2/N1) == 2 tr{I} + [tr{I}]2. 

(5.120) 

(5.121) 

(5.122) 

(5.123) 
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E{[ (y_d)T (y-d)] [ (y_d)T A-I (y-d) ]INl } == 2 tr{A} + tr{A} tr{l} , (5.124) 

E{{y-d)T (y-d) (y-d)/N l } == 0, (5.125) 

E{(y-d)T (y-d) (y-d)TIN1} == OT. (5.126) 

Using Eqs. (5.113) to (5.126) we can compute E{hINo}' E{hINl }, Var{hINo} and Var{hIN1} as rollows. 

111 
E{hINo} == -; In{lAI} + ; E{yT y/No} - ; E{yT A-I y/No} 

+ E{yT A-I d/No} - i d A-1d 

1 1 1 1 
- - -In {1A1} + - tr{I} - - tr{A-1} - - dT A-I d 

2 2 2 2 

-= -~ln {IAI} + ~tr{I-A-I} - ~dT A-I d. 
2 2 2 

1 1 + E{yT d/N1} - ; E{(y-d)T A-I (y-d)/Nl } - ; dT d 

== - i In{1A1} + i tr{A} - i tr{I} + i dT d 

- - ~ In{1A1l + ~ tr{A - J} + ~ dT d . 
2 2 2 

111 
Var{hINo} == E{[;yTy - i rA-1y + rA-1d - ;tr{I-A-1}]2/No} 

- ~E{(yT y)2/No} + ~E{(r A-1 y)2/No} 

1 + E{dT A-1 y yT A-1 d/No} + 4 [tr{I _ A-I} ]2 

- i E{yT 7 yT A-1 71 No} + E{r y yT A-1 dJ No} 

_ E{yT A-1 Y yT A-1 d/No} 

, 

(5.127) 

(5.128) 
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1 1 
== - [ 2 tr{l} + tr{I}2) + - [ 2 tr{A-2} + tr{A-I}2 ) 

4 4 

1 
+ dT A-2 d - 2 [ 2 tr{A} + tr{l} tr{A-1} ) 

1 1 + - [tr{I - A-I})2 _ tr{l- A-I} [- tr{l- A-I} ] 
4 2 

(5.129) 

1 1 + - E{[ (y_d)T A-I (y-d) ]2/ JlI} + _ [ tr{A _ 1}]2 
4 4 

+ E{{y-d)T (y-d) (y_d)T d/JlI} 

- E{(y_d)T,A-l (y-d) (y_d)T d/NI} 

1 1 
- tr{A-I} [ E{ ~y-d)T(y-d) + (y-d)Td - - (y-d)TA-I(y-d)/N1} ] 

2 2 

1 1 
== - [2 tr{A2} + (tr{A})2] + - [2 tr{I} + (tr{I})2] 

4 4 

1 
+ dT A d - 2 [ 2 tr{A} + tr{A} tr{I} ] 

111 
- tr{A - I} [ - tr{A} - - tr{I}] + - [ tr{A - I} ]2 

2 2 4 

(5.130) 

It we denote E{h/Jlo}, E{h/Jl1}, Var{h/No} and Var{h/JlI} by '10' '11' (102, and (112 respectively we can 

rewrite Eqs. (5.127) to (5.130) as 

1 1 lIT 1 
'10 == - -In{IAI} + - tr{I - A- } - - d ,A- d. 
222 

(5.131) 
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(5.132) 

1 
tT02 = i tr{(I - A-l)2} + dT A-2 d (5.133) 

1 
tT12 = itr{(A-I)2} + dTAd. (5.134) 

These results are used in Chapter 5 to analyze the various bit detection schemes. 
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Level of Probability of bit error 

erasure (dB) Chernoff Approximate Exact 
bound calculation calculation 

0 10-347 < 10-38 

-2.5 10-227 < 10-38 

-6.0 10-114 < 10-38 

-12.0 7.0661 X 10-32 1.7235 X 10-32 

-20.0 4.4066 X 10-7 7.0203 X 10-7 6.9444 X 10-7 

-22.5 7.0777 X 10-4 1.4607 X 10-4 1.4601 X 10-4 

-26.0 2.6970 X 10-2 7.8343 X 10-3 7.8342 X 10-3 

-32.0 0.24081 0.11338 0.11334 

-40.0 0.44483 0.31441 0.31440 

-60.0 0.49943 0.48205 0.48205 

-80.0 0.499994 0.49828 0.49828 

Table 6-1: Optimal detection, a.c. erasure, Low modulation level (ro = 10-2, r1 == 10-4 ) 
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Level of Probability or bit error 

. erasure (dB) Chernorf Approximate Exact 
bound calculation calculation 

0 2.5414 X lO-12 1.1359 X lO-7 * 

-2.5 5.2029 X lO-12 1.2765 X lO-7 * 

-6.0 2.1059 X 10-11 1.7533 X 10-7 * 

-12.0 2.6865 X 10-g 7.5309 X 10-7 * 7.8964 X lO-12 

-20.0 1.6278 X 10-4 1.1919 X lO-4 2.4194 X lO-s 

-22.5 2.6665 X 10-3 8.7449 X lO-4 5.7445 X lO-4 

-26.0 3.6262 X 10-2 1.1185 X 10-2 1.0191 X 10-2 

-32.0 0.24569 0.11657 0.11659 

-40.0 0.44506 0.31472 0.31472 

-60.0 0.49947 0.48072 0.48071 

-80.0 0.49994 0.49820 0.49820 

Table 6-2: Optimal detection, a.c. erasure, High modulation level (ro === 10-2, r1 == 10-2 ) 
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Level of Probability of bit error 

erasure (dB) Chernoff Approximate Exact 
bound calculation calculation 

0 10-343 < 10-38 

·2.5 10-223 < 10-38 

-6.0 10-112 < 10-38 

-12.0 4.0379 X 10-31 3.9188 X 10-32 

·20.0 6.1710 X 10-6 9.2907 X 10-7 8.2775 X 10-7 

-22.5 8.5996 X 10-4 1.8227 X 10-4 1.1185 X 10-4 

-26.0 2.9479 X 10-2 9.6126 X 10-3 8.6484 X 10-3 

-32.0 0.24636 0.12386 0.11689 

-40.0 0.44648 0.31944 0.31702 

-60.0 0.49943 0.48122 0.48100 

-80.0 0.499994 0.49821 0.49810 

Table 5-3: Optimal detection, d.c. erasure, Low modulation lever(ro =~1O-2, ;'1 = 10-4 ) 
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Level of 

erasure (dB) Chernoff 
bound 

o 9.8698 X 10,12 

-2.5 2.9405 X 10,11 

-6.0 3.9133 X 10,10 

-12.0 1.0858 X 10,6 

-20.0 1.5532 X 10,2 

-22.5 6.4021 X 10-2 

-26.0 0.19418 

-32.0 0.39316 

-40.0 0.48112 

-60.0 0.49981 

-80.0 0.499998 

Probability of bit error 

Approximate 
calculation 

1.1514 X 10'7 • 

2.6323 X 10,7 • 

5.1615 X 10'7 • 

6.9187 X 10,6 • 

3.7953 X 10,3 

1.5229 X 10-2 

5.2118 X 10-2 

0.21586 

0.37728 

0.48781 

0.49878 

Exact 
calculation 

3.8334 -x ~O.8 
2.5685 X ~O'3 

1.47280 X 10-2 

5.2480 X fO-2 

0.2158~ 

0.3772~ 

0.48780( 

0.49878 

--------------------------~--- ~~-,.---

Table 6-4: Optimal detection, d.c. erasure, High modulation level (ro == 10,2, r1 == 10,2) 
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Level of Probability of bit error 

erasure (dB) Best Linear Correlator 

0 < 10-38 < 10-38 

-2.5 < 10-38 < 10-38 

-6.0 < 10-38 < 10-38 

-12.0 6.5450 X 10-33 1.7589 X 10-32 

-20.0 7.0279 X 10-7 1.0476 X 10-7 

-22.5 1.4610 X 10-4 1.4635 X 10-4 

-26.0 7.8342 X 10-3 1.8407 X 10-3 

-32.0 0.11337 0.11340 

-40.0 0.31434 0.31436 

-60.0 0.48071 0.48072 

-SO.O 0.49807 0.49807 

Table 6-6: Linear detection, a.c. erasure, Low modulation level (ro == 10-2, r1 == 10-4 ) 
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Level or Probability or bit error 

erasure (dB) Best Linear Correlator 

0 4.0671 X 10.20 •. 3657 X 10.7 

-2.5 6.4937 X 10.19 1.5210 X 10.7 

-6.0 1.3445 X 10.18 2.0498 X 10.7 

-12.0 8.9862 X 10.12 8.3364 X 10.7 

-20.0 2.5211 X 10.5 1.2197 X 10'" 

-22.5 5.7613 X 10.4 8.8454 X 10'" 

-26.0 1.0917 X 10.2 1.1228 X 10.2 

-32.0 0.11661 0.11664 

-40.0 0.31473 0.31475 

-60.0 0.48071 0.48071 

-80.0 0.49807 0.49807 

Table 6-8: Linear detection, a.c. erasure, High modulation level (ro - 10.2, r1 - 10.2 ) 
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Level or Probability of bit error 

erasure (dB) Best Linear Correlator 

0 < 10-38 < 10-38 

-2.5 < 10,38 < 10-38 

-6.0 < 10,38 < 10,38 

-12.0 5.6489 X 10,32 6.1655 X 10-32 

-20.0 9.9620 X 10'7 1.0033 X 10,6 

-22.5 1.7986 X 10'4 1.8063 X 10-4 

-26.0 8.6687 X 10,3 8.6867 X 10,3 

-32.0 0.11707 0.11714 

-40.0 0.31709 0.31714 

-60.0 0.48102 0.48103 

-80.0 0.49810 0.49810 

Table 6-'1: Linear detection, d.c. erasure, Low modulation level (r 0 == 10-2, r 1 == 10-4 ) 
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Level or Probability or bit error 

erasure (dB) Best Linear Correlator 

0 1.8388 X 10-17 1.4656 X 10-7 

-2.5 8.1583 X 10-16 1.6005 X 10-7 

-6.0 5.1764 X 10-13 3.1346 X 10-7 

-12.0 8.3227 X 10-8 9.8230 X 10-6 

-20.0 4.2084 X 10-3 1.1268 X 10-2 

-22.5 2.1392 X 10-2 4.1303 X 10-2 

-26.0 8.4699 X 10-2 0.12181 

-32.0 0.24421 0.27981 

-40.0 0.39080 0.40801 

-60.0 0.48896 0.49074 

-80.0 0.49889 0.49907 

Table 6-8: Linear detection, d.c. erasure, High modulation level (ro = 10-2, r1 = 10-2 ) 
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Level of Probability of bit error 

erasure (dB) Optimal (exact) Best Linear Correlator 

-20.0 6.9444 X 10-7 7.0279 X 10-7 7.0476 X 10-7 

-22.5 1.4601 X 10-4 1.4610 X 10-4 1.4635 X 10-4 

-26.0 7.8342 X 10-3 7.8342 X 10-3 7.8407 X 10-3 

-32.0 0.11334 0.11337 0.11340 

-40.0 0.31440 0.31434 0.31436 

-60.0 0.48205 0.48071 0.48072 

-80.0 0.49828 0.49807 0.49807 

Table 6-1: Low modulation level ( ro = 10-2, r1 == 10-4 ), a.c. erasure 

Level of Probability of bit error 

erasure (dB) Optimal (exact) Best Linear Correlator 

-12.0 7.8964 X 10-12 8.9862 X 10.12 8.3364 X 10-7 

-20.0 2.4194 X 10.6 2.5211 X 10-5 1.2197 X 10'" 

-22.5 6.7-445 X 10-4 5.7613 X 10-4 8.8454 X 10.4 

-26.0 1.0191 X 10-2 1.0917 X 10.2 1.1228 X 10-2 

-32.0 0.11659 0.11661 0.11664 

-40.0 0.31472 0.31473 0.31475 

-60.0 0.48071 0.48071 0.48071 

-80.0 0.49820 0.49807 0.49807 

Table 6-10: High modulation level ( ro == 10-2, r 1 == 10-2 ), a.c. erasure 
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Level of Probability of bit error 

erasure (dB) Optimal (exact) Best Linear Correlator 

-20.0 8.2775 X 10-7 9.9620 X 10-7 1.0033 X 10-6 

-22.5 1.7785 X 10-4 1.7986 X 10-4 1.8063 X 10-4 

-26.0 8.6484 X 10-3 8.6687 X 10-3 8.6867X 10-3 

-32.0 0.11689 0.11707 0.11714 

-40.0 0.31702 0.31709 0.31714 

-60.0 0.48100 0.48102 0.48103 

-80.0 0.49810 0.49810 ,0.49810 

Table 6-11: Low modulation level ( rO == 10-2, r 1 -= 10-4 ). d.c. erasure 

Level of Probability of bit error 

erasure (dB) Optimal (exact) Best Linear Correlator 

-12.0 3.8334 X 10-S 8.3227 X lO-s 9.8230X 10-6 

-20.0 2.5685 X 10-3 4.2084 X 10-3 1.1268 X 10-2 

-22.S 1.47280 X 10-2 2.1392 X 10-2 4.1303 X 10-2 

-26.0 5.2480 X 10-2 8.4699 X 10-2 0.12181 

-32.0 0.21584 0.24421 0.27981 

-40.0 0.37726 0.39080 0.40801 

-60.0 0.48780 0.48896 0.49074 

-80.0 0.49878 0.49889 0.49907 

Table 6-12: High modulation level ( ro == 10-2,r1 == 10-2 ), d.c. erasure 
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Chapter 6 

Conclusions and Discussion 

6.1. Summary and Conclusions 

In Chapter 2, we showed that the Lorentzian pulse model for the signal was a reasonable approximation. 

Then, in Chapter 3, we derived an expression for the average power spectrum of the noise from 

particulate recording media. We showed that the average power spectrum of the noise essentiallr 

exhibits a background noise term which is independent of the signal, and a modulation noise term which 

dependa on the signal. Most importantly, we showed that even though the noise power depends on the 

writing frequency, the signal-to-noise ratio is independent of the signal frequency. 

In terms of modeling, the most significant contribution made in the thesis was the time-domain model 

for particulate media noise. This model allows us to obtain the two-dimensional autocorrelation function 

of media noise from' simple spectrum analyzer measurements. This method for obtaining the 

autocorrelation function of the media noise is better than the method of time averages suggested by 

Tang [16] in two ways. Firstly, time averages are much more complicated than spectrum analyzer 

measurements and are prone to timing errors. Secondly, using the autocorrelation functions R (r) and 
"0 

R (1') dermed in Chapter ., we can determine the two-dimensional noise autocorrelation function for 
"1 

any general signal written on the disc. 

From the results of the numerical evaluation of error probabilities for the detection 8chemes in Chapter 

6, we observed that bit error rates for d.c. erased signals are marginally higher than those for a.c. 

erased signals. This might lead one to suppose that d.c. erasure is a more effective way to ensure the 

security of information written on the disc. But it has been shown that d.c. fielda induce significantly 

smaller erasure than a.c. fielda of the same amplitude [10]. Hence, in most practical cases using a.c. 

fielda for erasure would be a better choice than d.c. fielda. 

In Chapter 5, we also saw that modulation noise does not play a significant role at high levels of 
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erasure. This means that ror the specific problem of interest, namely, recovering information from 

erased discs, we could have used a simple band-limited white background noise model to represent the 

noise. But this ract should not diminish the utility of the noise model that we developed in Chapter 4 

because in most other applications the signals are not erased. 

6.2. Some Comments About Simplifying Assumptions Made in This Thesis 

In Chapter 2, we approximated the nux waveform corresponding to an arctangent transition in 

magnetization by an arctangent of larger width. This approximation yields the Lorentzian signal pulse 

shape. We could perrorm a more detailed analysis to obtain an exact rormulation for the pulse shape. 

But we see in Chapter 5 that in designing bit detection schemes the pulse shape was not as critical as 

total energy in the pulse. So as long as the Lorentzian model has the correct total energy we do not need 

a more sophisticated model. 

In Chapter ., we made the assumption that media noise is Gaussian. This simplified all the ensuing 

analysis in Chapters. and 5. Even though this assumption has a strong basis, we could pursue all the 

analysis that we did in these chapters without making the Gaussian assumption because it is possible to 

obtain the N-th order statistics or the noise rrom simple particle interaction models [2]. We do not 

expect that the resulting error probability estimates will be significantly d1Cferent. 

In designing the detection schemes discussed in Chapter 5, we made the implicit assumption that the 

sign or the pulse is known to the det,illctorj otherwise, under hypothesis J.i1 the expected value of the 

readback voltage vector I' would be two valued. The justification ror making this assumption is that 

positive and negative pulses occur alternately in a readback signal; and, hence, the choice of the sign of 

the pulse in the bit period or detection would be based on sign or the previous pulse. This procedure 

would result in propagation or errors when a sequence or bits is being detected. There are two ways or 

getting around this problem. One is to rmd a suitable encoding scheme ror writing the bits on the disc 

which will limit the extent to which errors are allowed to propagate. The second is to redesign the 

detection scheme to accommodate the two-valued nature or E{r/J.i1}· 

In Chapter 5, we modeled the background noise by a bandlimited white noise term with a narrow 

bandwidth compared to the background noise. We could improve this model by considering the 

modulation noise to be the sum or a tie". narrow band noise term which represents noise due to surface 

asperities, and a narrow band noise term which represents the noise due to particle clustering. 
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6.3. Suggestions for Future Work 

We did not compare the performance of the conventional peale detection scheme with the schemes 

discussed in this report. Since the peale detection scheme is ad hoc, the only way to compare its 

performance with these schemes is by computer simulation or experimentation on real data. These 

simulations and experimentation can also be used to validate the results that we obtained by numerical 

evalua.tion. 

Another issue that we have not addressed in this thesis is the eCfect of RLL ( run length limited ) coding 

and error correcting coding on the bit error rates and sequence error rates. These are important when we 

consider high density recording. 

One simple way to estimate the sequence oC bits that is stored on the disc is to put together the 

individual bit estimates tha.t we obtain from bit detection schemes. Unfortunately this is not optimum 

when we have intersymbol interference. High density magnetic recording channels suCCer from very high 

levels of intersymbol interference 112J. Hence, we need to consider other more sophisticated sequence 

estimation techniques. 

A recent paper by Duel-Hallen and Heegard [7J discusses the application of a new signal processing 

algorithm for sequence estimation in the presence oC high intersymbol interference, called Delayed 

Decision Feedback Sequence Estimation ( DDFSE ), in digital magnetic recording channels. The noise 

model that is used in the analysis of this paper is the standard additive white Gaussian noise (AWGN ) 

model. This analysis could be made much more accurate by using the nonstationary noise model that we 

proposed in this thesis, and it opens an area for prospective future work in this field. 
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