XENIX" System V

Development System

C Language Guide

Information in this document is subject to change without notice and does not represent
a commitment on the part of The Santa Cruz Operation, Inc. nor Microsoft Corporation.
The software described in this document is furnished under a license agreement or
nondisclosure agreement. The software may be used or copied only in accordance with
the terms of the agreement. It is against the law to copy this software on magnetic tape,
disk, or any other medium for any purpose other than the purchaser’s personal use.

Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988 Microsoft
Corporation.

All rights reserved.

Portions © 1983, 1984, 1985, 1986, 1987, 1988 The Santa Cruz Operation, Inc.

All rights reserved.

ALL USE, DUPLICATION, OR DISCLOSURE WHATSOEVER BY THE
GOVERNMENT SHALL BE EXPRESSLY SUBJECT TO RESTRICTIONS AS SET
FORTH IN SUBDIVISION (b) (3) (ii) FOR RESTRICTED RIGHTS IN COMPUTER
SOFTWARE AND SUBDIVISION (b) (2) FOR LIMITED RIGHTS IN TECHNICAL
DATA, BOTH AS SET FORTH IN FAR 52.227-7013.

Microsoft, MS-DOS, and XENIX are registered trademarks of Microsoft Corporation.

SCO Document Number: XG-10-10-88-5.0/2.3

B B e B Sl e S R S S e v R S v e e
a1 W T N D S Y A O R Y G B U R N W T T W R U S5 W S Ty G U e W s W W e Y e a w e a
8 A B S A e S B 5 B s S 4B A e A A S AT A 5 T G B R G5 R S A B 45 G S A S 5 A L T B 5 S e o G A A R O R % B e S A o

th Tab Marked:

W1

Replace this Page

C User’s
Guide

XENIX" System V

Development System

C User’s Guide

Information in this document is subject to change without notice and does not represent
a commitment on the part of The Santa Cruz Operation, Inc. nor Microsoft Corporation.
The software described in this document is furnished under a license agreement or
nondisclosure agreement. The software may be used or copied only in accordance with
the terms of the agreement. It is against the law to copy this software on magnetic tape,
disk, or any other medium for any purpose other than the purchaser’s personal use.

Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988 Microsoft
Corporation.

All rights reserved.

Portions © 1983, 1984, 1985, 1986, 1987, 1988 The Santa Cruz Operation, Inc.

All rights reserved.

ALL USE, DUPLICATION, OR DISCLOSURE WHATSOEVER BY THE
GOVERNMENT SHALL BE EXPRESSLY SUBJECT TO RESTRICTIONS AS SET
FORTH IN SUBDIVISION (b) (3) (ii) FOR RESTRICTED RIGHTS IN COMPUTER
SOFTWARE AND SUBDIVISION (b) (2) FOR LIMITED RIGHTS IN TECHNICAL
DATA, BOTH AS SET FORTH IN FAR 52.227-7013.

Microsoft, MS-DOS, and XENIX are registered trademarks of Microsoft Corporation.

SCO Document Number: XG-10-10-88-5.0/2.3

Contents

p—

Introduction

Overview 1-1

About This Guide 1-1

New Features 1-3
Notational Conventions 1-5
BooksaboutC 1-7

P bk b
AW =

Compiling with the cc Command

Introduction 2-1
The Basics: Compiling and Linking C Programs ~ 2-2
Using cc Options 2-4

(SN

Linking with the cc Command

Introduction 3-1
The Default Linking Process 3-1
Passing Linker Information: The -link Option 3-1

LN =

Running C Programs on XENIX

Introduction 4-1
Passing Command-Line DatatoaProgram 4-1

DN —

Working with Memory Models

Introduction 5-1

Near, Far, and Huge Addressing 5-3

Using the Standard Memory Models 5-4
Using the near, far, and huge Keywords 5-12
Creating Customized Memory Models 5-22
Setting the Data Threshold 5-27

Naming Modules and Segments 5-28
Specifying Text and Data Segments 5-30

R B I YRR ST TSI

NN W

Improving Program Speed

Introduction 6-1

Using Register Variables 6-1

Optimization Options and Pragmas ~ 6-2
Choosing the Function-Calling Convention = 6-5
Efficiency in Large Data Models 6-6

Efficiency in Large Code Models 6-7

b io=

Object and Executable File Formats

Introduction 7-1

1APX 286,386 System Architecture 7-1
The Intel Object Module Format ~ 7-2
Definition of Terms 7-4

Module Identification and Attributes 7-6
Segment Definition 7-7

Segment Addressing 7-7

Symbol Definition 7-8

Indices 7-8

Conceptual Framework forFixups 7-8
Self-Relative Fixups 7-13
Segment-Relative Fixups 7-14

Record Order 7-15

Introduction to the Record Formats 7-16
Numeric List of Record Types 7-42

Type Representations for Communal Variables 7-43
The Segmented x.outFormat 7-45

NNNNN9N 9 000ans &
NN A W=

i e k — pm — \O O0

0 NNNNNNNNNN
NSOt who—= O

C Language Compatibility with Assembly Language

Introduction 8-1

C Calling Sequence for 8086/80286 §8-1
Entering an 8086/80286 Assembly Routine 8-2
8086/80286 Return Values 8-2

Exiting an 8086/80286 Routine 8-2
8086/80286 Program Example 8-3

80386 C Language Calling Sequence 8-4
Entering an 80386 Assembly-Language Routine 8-4
80386Return Values 8-5

Exiting 2 80386 Routine 8-7

80386 Program Example 8-7

90 90 00 00 00 00 00 90 00 00 00
= O 00NN NN

— O

11 -

I R e T IR SR 09 1O 1 b Lo

TUDUD T 00 0 IESEREWEWE ® »pp » 000000 0
BN —

B LW —

Error Processing

Introduction 9-1

Using the Standard ErrorFile 9-1
Using the errno Variable 9-2
Printing ErrorMessages 9-2
Using Error Signals 9-3
Encountering System Errors 9-4

Converting from Previous Versions ofthe Compiler

Introduction A-1
Differences between Versions 5.0and4.0 A-1
Differences between Versions4.0and 3.0 A-5

Writing Portable Programs

Introduction B-1

Program Portability B-2
Machine Hardware B-2
Compiler Differences B-9
Environment Differences B-13
Portability of Data B-14
Type-Size Summary B-14
Byte-Ordering Summary B-16

Writing Programs for Read-Only Memory

Introduction C-1
XENIX-Dependent Library Routines C-1

CError Messages and Exit Codes
Introduction D-1
Command-Line Error Messages D-1

Compiler ErrorMessages D-5
Compiler Exit Codes D-41

i -

Chapter 1

Introduction

1.1 Overview 1-1

1.2 About This Guide 1-1

1.3 New Features 1-3

1.4 Notational Conventions 1-5

1.5 BooksaboutC 1-7

Introduction

1.1 Overview

The C language is a powerful general-purpose programming language
that can generate efficient, compact, and portable code. The Microsoft® C
Compiler (cc) for the XENIX® operating system is a full implementation
of the C language as defined by its authors, Brian W. Kernighan and
Dennis M. Ritchie, in The C Programming Language.

XENIX C offers several important features to help you increase the
efficiency of your C programs. You can choose among five standard
memory models (small, medium, compact, large, and huge) to set up the
combination of data and code storage that best suits your program. For
flexibility and even greater efficiency, the XENIX C Compiler allows you
to “‘mix’’ memory models by using special declarations in your program.

The C language itself does not provide such standard features as input and
output capabilities and string-manipulation features. These capabilities
are provided as part of the run-time library of functions that accompanies
the XENIX C Compiler. Because the functions that require interaction
with the operating system (for example, input and output) are logically
separate from the language itself, the C language is especially suited for
producing portable code.

The portability of your XENIX C programs is increased by the use of a
common run-time library for XENIX and MS-DOS® installations. Using
the routines in this library, you can transport programs easily from a
XENIX development environment to an MS-DOS machine, or vice versa.
For more information on the common library for XENIX and MS-DOS, see
the XENIX C Library Guide.

Compared with other programming languages, C is extremely flexible
concerning data conversions and nonstandard constructions. The XENIX
C Compiler offers several levels of warnings to help you control this flexi-
bility; programs in an early stage of development can be processed using
the full warning capabilities of the compiler to catch mistakes and unin-
tentional data conversions. An experienced C programmer can use a
lower warning level for programs that contain intentionally nonstandard
constructions. For more information about this feature, see Chapter 2,
“‘Compiling with the cc Command.”’

1.2 About This Guide
This guide explains how to use the XENIX C Compiler to compile, link,
and run C programs on your XENIX system. The guide assumes that you

are familiar with the C language and with XENIX, and that you know how
to create and edit a C-language source file on your system. All examples

1-1

XENIX C User’s Guide

in this guide were generated with the 286 C compiler.

If you have questions about the C language, turn to the XENIX C
Language Reference included in this package. The XENIX C Library
Guide documents the run-time library routines you can use in your C pro-
grams.

The following describes the remaining chapters of the XENIX C User’s
Guide:

Chapter 2, *‘Compiling with the cc Command,”’ describes how to compile
a program using the cc compiler driver. This chapter describes the options
most commonly used to control preprocessing, compiling, and output of
files.

Chapter 3, ‘‘Linking with the cc Command,’’ describes how to link object
files using the cc command. This chapter explains how the linker searches
for libraries, shows how to specify libraries for linking, and describes the
linker options that can be used for C programs.

Chapter 4, ‘‘Running C Programs on XENIX,’’ explains how to run your
executable program file, and discusses features specific to the XENIX
implementation of C. The chapter tells how to pass data from XENIX to a
program at execution time, and how to return an exit code from your pro-
gram to XENIX.

Chapter 5, ‘“Working with Memory Models,”” describes methods of
managing memory models. These methods are useful for writing pro-
grams that use more than 64K (kilobytes) of code or data. This chapter
also discusses ‘‘mixed-model’’ programming (combining features from
the five standard memory models).

Chapter 6, ‘‘Improving Program Speed,”” gives suggestions and hints for
maximizing program speed.

Chapter 7, ‘‘Object and Executable File Formats,”” describes the system
architecture of the 80x86 microprocessor family, the object module for-
mat that the C compiler follows, and the format of the x.out file in a seg-
mented environment.

Chapter 8, “‘C Language Compatibility with Assembly Language,”’
describes how you can embed assembly language subroutines within C
language programs.

Chapter 9, “‘Error Processing,”” describes how to process errors detected

in calls to the C library routines and explains the functions and variables a
program may use to respond to these errors.

1-2

Introduction

Appendix A, ‘‘Converting from Previous Versions of the Compiler,”
summarizes the differences between Version 5.0 of the XENIX C Com-
piler and previous versions. This appendix gives instructions for convert-
ing programs written for versions prior to 5.0 to the format accepted by
Version 5.0.

Appendix B, ‘‘Writing Portable Programs,”’ lists some of the C language
features that are implementation-dependent, and offers suggestions for
increasing program portability.

Appendix C, ‘“Writing Programs for Read-Only Memory,”” gives informa-
tion about modifying start-up code and initializing floating-point support
for programs that will be put in read-only memory.

Appendix D, ‘“C Error Messages and Exit Codes,’” lists and describes the
error messages and exit codes generated by the XENIX C Compiler and by
the cc command. It also lists and explains run-time error messages pro-
duced by executable programs written in C.

1.3 New Features

Several useful features have been added to Version 5.0 of the XENIX C
Compiler. This section summarizes features added since Version 4.0. For
information about differences between Version 5.0 and versions prior to
4.0, see ‘‘Converting from Previous Versions of the Compiler.”’

New features include the following:

Feature Description
New cc options ~ Option Action
-0i Generates intrinsic forms for certain
library functions
-0l Enables loop optimizations
-Op Forces consistent precision in the
results of floating-point math opera-
tions
-Sp Specifies lines per page for source
listings

1-3

XENIX C User’s Guide

-Ss Specifies subtitles for source listings
-St Specifies titles for source listings
-Te Specifies C source files for files

without extensions

New pragmas Pragma Action

alloc_text Names the code segment used to
allocate specified functions

function Disables intrinsic-function genera-
tion for particular functions

intrinsic Specifies functions that will have
intrinsic forms generated

loop_opt Controls program loop optimization
on a local basis

pack Specifies byte boundaries for struc-
ture packing

same_seg Provides information about far data
allocation that the compiler uses to
perform optimizations

const keyword Declares that a value will not change during
program execution.

Language changes The C language syntax and semantics have
been modified in certain cases to correspond
with recent updates to the Draft Proposed
American National Standard—Programming
Language C (bereinafter referred to as the
““ANSI C standard’’). Consult ‘‘Converting
from Previous Versions of the Compiler,”” and
the XENIX C Language Reference for more
information.

New library functions All library functions defined in the ANSI C stan-
dard are supported, except the functions added
for international-language support. Some exist-
ing functions have been modified and
enhanced.

1-4

Introduction

1.4 Notational Conventions

The following notational conventions are used throughout this guide:

Example Description
of Convention of Convention
Examples The typeface shown in the left column is used

to simulate the appearance of information that
would be printed on the screen or by a printer.
For example, the following command line is
printed in this special typeface:

cc -Foout.o —-DTRUE=1 file.c

When this command line is discussed in text,
items appearing on the command line, such as
out.o, also appear in the special typeface.

Language elements Bold type indicates elements of the C language
that must appear in source programs as shown.
Text that is normally shown in bold type
includes operators, keywords, library functions,
commands, options, and preprocessor direc-
tives.

Examples are shown below:

+= #if defined() int
if -Fa fopen
main sizeof

ENVIRONMENT Bold capital letters are used for environment

VARIABLES, variables, symbolic constants, and macros.
and MACROS
placeholders Words in italics are placeholders that you must

supply in command-line and option
specifications and in the text for types of infor-
mation. Consider the following option:

-H number
Note that number is italicized to indicate that it

represents a general form for the -H option. In
an actual command, you would supply a partic-

1-5

XENIX C User’s Guide

Missing code

[optional items]

Repeating
elements...

1-6

ular number for the placeholder number.

Occasionally, italics are also used to emphasize
particular words in the text.

Vertical ellipses are used in program examples
to indicate that a portion of the program is
omitted. For instance, in the following excerpt,
the ellipses between the statements indicate
that intervening program lines occur but are not
shown:

count = 0;

*pct+;

Brackets enclose optional fields in command-
line and option specifications. Consider the fol-
lowing option specification:

-Didentifier[=[string]]

The placeholder identifier indicates that you
must supply an identifier when you use the -D
option. The outer brackets indicate that you are
not required to supply an equal sign (=) and a
string following the identifier. The inner brack-
ets indicate that you are not required to enter a
string following the equal sign, but if you do
supply a string, you must also supply the equal
sign.

Single brackets are used in C-language array
declarations and subscript expressions. For
instance, a[10] is an example of brackets ina C
subscript expression.

Horizontal ellipses are used in syntax examples
to indicate that more items having the same
form may be entered. For example, in the
Bourne shell, several paths can be specified in
the PATH command, as shown in the following
syntax:

PATH[=]path[;path]...

Introduction

{choicellchoice2 } Braces and a vertical bar indicate that you have
a choice of two or more items. Braces enclose
the choices, and vertical bars separate them.
You must choose one of them items unless all
of them are also enclosed in double square
brackets.

For example, the -W (warning-level) compiler
option has the following syntax:

W {0111213)

You can use -W1, -W2, or -W3 to display
different levels of warning messages or -W@ to
suppress all warning messages.

“Defined terms”’ Quotation marks set off terms defined in the
text. For example, the term ‘‘far’’ appears in
quotation marks the first time it is defined.

Some C constructs require quotation marks.
Quotation marks required by the language have
the form " " rather than ‘‘ *’. For example, a C
string used in an example would be shown in
the following form:

abe™

KEY+KEY Small capital letters are used for the names of
keys and key sequences, such as Enter and
Ctrl-C. Key sequences to be pressed simultane-
ously are indicated by the key names in small
caps separated by a plus sign (Ctrl-C).

1.5 Books about C

The manuvals in this documentation package provide a complete
programmer’s reference for XENIX C. They do not, however, teach you
how to program in C. If you are new to C or to programming, you may
want to familiarize yourself with the language by reading one or more of
the following books:

Hancock, Les, and Morris Krieger. The C Primer. New York:
McGraw-Hill Book Co., Inc., 1982.

1-7

XENIX C User’s Guide

Hansen, Augie. Proficient C. Bellevue, Washington: Microsoft
Press, 1986.

Harbison, Samuel P., and Greg L. Steele. C: A Reference
Manual. Englewood Cliffs, New Jersey: Prentice-Hall Software
Series, 1987.

Kernighan, Brian W., and Dennis M. Ritchie. The C Program-
ming Language. Englewood Cliffs, New Jersey: Prentice-Hall,
Inc., 1978.

Kochan, Stephen. Programming in C. Hasbrouck Heights, New
Jersey: Hayden Book Company, Inc., 1983.

Plum, Thomas. Learning to Program in C. Cardiff, New Jersey:
Plum Hall, Inc., 1983.

Schildt, Herbert. C Made Easy. Berkeley, California: Osborne
McGraw Hill, 1985.

Schustack, Steve. Variations in C. Bellevue, Washington: Micro-
soft Press, 1985.

These books are listed for your convenience only.

1-8

Chapter 2
Compiling with the

cc Command

2.1 Introduction 2-1

2.2 The Basics: Compiling and Linking C Programs 2-2
2.2.1 The cc Command 2-2

2.3 Using cc Options 2-4
2.3.1 Setting Processor and Memory Model (-M) 2-4
2.3.2 Specifying Help (-help) 2-6
2.3.3 Specifying Source Files (-Tc) 2-6
2.3.4 Compiling without Linking (-¢) 2-7
2.3.5 Naming the Object File (-Fo) 2-7
2.3.6 Naming the Executable File (-Fe) (-0) 2-8
2.3.7 Creating Listing Files 2-9
2.3.8 Controlling the Preprocessor 2-24
2.3.9 Checking for Program Errors 2-31
2.3.10 Preparing for Debugging (-Zi, -Od) 2-36
2.3.11 Optimizing 2-37
2.3.12 Enabling/Disabling Language Extensions (-Ze, -Za) 2-49
2.3.13 Packing Structure Members (-Zp) 2-50
2.3.14 Setting the Stack Size (-F) 2-52
2.3.15 Restricting the Length of External Names (-nl) 2-53
2.3.16 Labeling the Object File (-V) 2-53
2.3.17 Suppressing Default-Library Selection (-ZI) 2-54
2.3.18 Changing the Default char Type (-J) 2-55
2.3.19 Controlling the Calling Convention (-Gc) 2-55
2.3.20 Compiling Programs for DOS Environment (-dos, -FP) 2-
57
2.3.21 Displaying Compiler Passes (-d, -z) 2-58

Compiling with the cc Command

2.1 Introduction

This chapter explains how to compile and link using the cc command and
discusses commonly used cc options. The cc command is the only com-
mand you need to compile and link your C source files. The cc command
executes the three compiler passes, then automatically invokes ld, the
Linker, to link your files.

Using the cc options described in this chapter, you can control and modify
the tasks performed by the command. For example, you can direct c¢ to
create an object-listing file or a preprocessed listing. Options also let you
give information that applies to the compilation process; you can specify
the definitions for manifest (symbolic) constants and macros, and the
kinds of warning messages you want to see.

For a quick overview of the more commonly used options, enter:
cc -help

‘“The Basics: Compiling and Linking C Programs’’ explains the basic use
of the ¢c command to produce an executable program.

*“Using cc Options,”” describes the cc options.

The -help option is described in greater detail in the ‘“Using cc Options’’
section of this chapter.

The cc command automatically optimizes your program. You never have
to give an optimizing instruction unless you want to change the way cc
optimizes, request more sophisticated optimizations, or disable optimiza-
tion altogether. For more information on these choices, see the *‘Optimiz-
ing’’ subsection of the ‘“Using cc Options’’ section later in this chapter.

For information about linking object files and libraries using the cc com-
mand, see the ‘‘Linking with the cc Command’’ chapter of this guide.

For a discussion of the cc options that control memory models, see the
““Working with Memory Models’’ chapter in this guide.

For a summary of the cc command and its options, see the XENIX C
Language Reference.

2-1

XENIX C User’s Guide

2.2 The Basics: Compiling and Linking C Programs

This section explains how to use cc to compile and link C programs and
discusses the rules and conventions that apply to file names and options
used with ce.

2.2.1 The cc Command
The cc command has the following form:

cc [option]... file... [option... file...] [-link[link-libinfo]]

Each option is one of the command-line options described in the ‘‘Using
cc Options’ section of this chapter, in the ‘‘Working with Memory
Models’’ chapter, and in the ‘‘Improving Program Speed’” chapter of this
guide.

Each file names a source or object file to be processed or a library to be
searched at link time. See the section ‘‘Specifying Source and Object
Files’” for information about specifying source and object files.

The cc command automatically specifies the appropriate library to be
used during linking; however, you can use the -link option with the
optional link-libinfo argument to specify additional or different libraries,
library search paths, and options to be used during linking. You can also
specify linker options in the linkoptions argument. For information about
specifying different libraries and linker options, see the ‘‘Linking with the
cc Command’’ chapter of this guide.

You can give any number of options, file names, and library names on the
command line, provided that the command line does not exceed 128 char-
acters.

Specifying Source and Object Files

The ¢c command can process source files, object files, library files, or any
combination of these. It uses the file-name extension (the period plus any
letters that follow it) to determine what kind of processing the file needs,
as shown in the following list:

e Ifthe file has a .c extension, cc compiles the file.

e If the file has a .0 extension, cc processes the file by invoking the
linker.

2-2

Compiling with the cc Command

e If the file has a .a extension, cc passes the file to the linker to be
searched, unless the -c option is given to suppress linking. For a
description of the -¢ option, see the section on ‘‘Compiling without
Linking.”

e If the extension is omitted, cc assumes an extension of .o , If the
extension is anything other than .c, .0, or .a, cc assumes the file is
an object file unless the file name is specified in association with
the -Te option. If the file name is specified with the -Tc option, cc
assumes the file is a C source file. For a description of the -Tc
option, see the section on ‘‘Specifying Source Files.”

Examples

cc a.c b.c c.o d.o

This command line compiles the files a.c and b.c, creating object files
named a.0 and b.o. These object files are then linked with c.o and d.o to
form an executable file named a.out.

cc a.c b.c c.o -Tcd.src

This command performs the same operations as the preceding command
line, except that the -Tc option indicates that d.src is a source file, not an
object file. Thus, the files a.c, b.c, and d.src are compiled, creating object
files named a.0, b.o, and d.o. These object files are then linked with c.o to
form an executable file named a.out.

Creating Executable Files

When cc compiles source files, it creates object files. By default, these
object files have the same base names as the corresponding source files,
but with the extension .o instead of .c. (The base name of a file extension
is the portion of the name preceding the period, but excluding the path
specification, if any.) You can use the -Fo option to give a different name
to an object file.

Unless the -c¢ option is given, cc links these object files, along with any .o
files you give on the command line, to form an executable file. If only .0
files are given on the command line, cc skips the compilation stage and
simply links the files.

2-3

XENIX C User’s Guide

2.3 Using cc Options

The cc command offers a large number of command options to control
and modify the compiler’s operation. Options begin with a dash (-) and
contain one or more letters.

Options can appear anywhere on the cc command line. In general, an
option applies to all files that follow it on the command line, and it does
not affect files preceding it there. However, not all options follow this
rule; see the discussion of a particular option for information on its
behavior. Keep in mind that most cc options apply only to the compila-
tion process. Unless specifically noted, options do not affect any object
files given on the command line.

2.3.1 Setting Processor and Memory Model (-M)

The -M option sets the program configuration. This configuration defines
the program’s memory model, word order, and data threshold. It also
enables C language enhancements such as the use of the full 286 instruc-
tion set and special keywords.

cc -Mstring special.c
The string contains the argument that defines the configuration. It may be

any combination of the following (though s, m, ¢, I, h are mutually
exclusive):

s Create a small model program. This is the default.

m Create a middle model program.

C Create a compact model program.

1 Create a large model program.

h Create a huge model program.

e Enable the keywords: far, near, huge, pascal and for-

tran. Also enables certain non-ANSI extensions neces-
sary to ensure compatibility with existing versions of the
C compiler. (This applies only to compiler versions that
support features of ANSIC.)

0 Use only 8086 instructions for code generation. This is
the default on 8086/80186/80286 systems.

2-4

Compiling with the cc Command

1 Use the extended 80186 instruction set.
2 Use the extended 80286 instruction set.
3 Use the extended 80386 instruction set. This is the

default on 80386 systems.

b Reverse the word order for long types, putting the high
order word first. The default is the low order word first.

tnum Causes all static and global data items whose size is
greater than num bytes to be allocated to a new data seg-
ment. Num, the data ‘‘threshold’’ defaults to 32,767.
This option can only be used in large model programs
(-Ml). Its main use is to move data out of the near data
segment to allow room for the stack.

cc -M1 -Mtl2 recursive.c

d Do not assume (during compilation) that the registers SS
and DS will have the same contents at run-time. Warn-
ing: This option has no library or runtime support on
XENIX. It will not cause the stack to be put in a
separate segment. It may be of use for DOS cross-
development.

-M3 is the default on 80386 systems. Although it is usually advantageous
to enable the appropriate instruction set, you are not required to do so. If
you have an 80286 processor, for example, but you want your code to be
able to run on an 8086, you should not use the 80186/80188 or 80286
instruction set.

Note

The m, ¢, 1, h, b, t, and d arguments are compatible only with the
-M0, -M1, or -M2 option. The s and e arguments are compatible
with -M0, -M1, -M2, or -M3.

For a complete description of memory models and segment options, see
the ““Working with Memory Models’’ chapter in this guide.

3]
'
[9)]

XENIX C User’s Guide

The memory-model option you choose determines the name of the stan-
dard libraries that cc places in the object file it creates. These libraries are
then considered the default libraries, since the linker searches for them by
default.

Table 2.1 shows each memory-model option and the corresponding library
name that cc embeds in the object file.

Table 2.1
cc Options and Default Libraries

Memory-Model Default

Option Libraries
-Ms Slibc.a
Slibefp.a
-Mm Mlibc.a
Mlibcfp.a
-Mc Clibc.a
Clibcfp.a
-Ml or -Mh Llibc.a
Llibfp.a

2.3.2 Specifying Help (-help)
Option
-help

This option displays a list of the most commonly used compiler options.

2.3.3 Specifying Source Files (-Tc)
Option

-Te sourcefile

The -Tc option tells the cc command that the given file is a C source file.
Zero or more spaces can appear between -Tc and the source-file name.

If this option does not appear, cc assumes that files with the extension .c
are C source files, files with the extension .a are libraries, and files with

2-6

Compiling with the cc Command

any other extension or with no extension are object files. If you use the
-Tc option, cc treats the given file as a C source file, regardless of its
extension, if any. A separate -Tc option must appear for each source file
that has an extension other than .c .

Example

cc main.c -Tc test.prg -Tc collate.prg print.prg
In this example, the cc command compiles the three source files main.c,
test.prg, and collate prg. Since the file print.prg is given without a -Tc
option, cc treats it as an object file. Thus, after compiling the three source
files, cc links the object files main.o, test.o, collate.o, and print.prg.
2.3.4 Compiling without Linking (-c)
Option

-C
The -c (for ‘‘compile-only’”) option suppresses linking. Source files given
on the command line are compiled, but the resulting object files are not
linked, no executable file is created, and any object files specified on the
command line are ignored. This option is useful when you are compiling

individual source files that do not make up a complete program.

The -c¢ option applies to the entire ¢c command line, regardless of the
option’s position in the command line.

Example
cc —-¢c *.cC
This command line compiles, but does not link, all files with the exten-
sion .c in the current working directory.
2.3.5 Naming the Object File (-Fo)
Option
-Foobjfile
By default, cc gives each object file it creates the base name of the

corresponding source file plus the extension .0. The -Fo option lets you
give different names to object files or create them in a different directory.

2-7

XENIX C User’s Guide

If you are compiling more than one source file, you can give the -Fo
option for each source file to rename the corresponding object file.

Keep the following rules in mind when using this option:

e The objfile argument must appear immediately after the option,
with no intervening spaces.

e Each -Fo option applies to the next source file that appears on the
command line after the option.

You are free to supply any name and any extension you like for the
objfile. However, it is recommended that you use the conventional .o
extension because the linker uses .0 as the default extension when pro-
cessing object files.

If you do not give a complete object file name with the -Fo option (that is,
if you do not give an object file name with a base and an extension), cc
names the object files according to the following rule:

e If you give only a directory specification following the -Fo option,
cc creates the object file in the given directory and uses the default
file name (the base name of the source file plus .0).

When you give a directory specification, it must end with a forward slash
(/) so that cc can distinguish between a directory specification and a file
name.

Example

cc -Fo/objectl/this.c that.c -Fo/src/newthose.c those.c
In this example, the first -Fo option tells the compiler to create, in the
Jobject] directory, the object files this.o (created as a result of compiling
this.c) and that.o (created as a result of compiling that.c). The second -Fo

option tells the compiler to create the object file named newthose.o
(created as a result of compiling those.c) in the /src directory.

2.3.6 Naming the Executable File (-Fe) (-0)
Option

-Feexefile
-0 exefile

2-8

Compiling with the cc Command

By default, cc gives the name a.our to the executable file. In XENIX, -Fe
and -0 are the same, except that, syntactically, the file name must come
immediately after -Fe, whereas blanks can be between the -0 and the file
name. The -Fe option lets you give the executable file a different name or
create it in a different directory.

Since cc creates only one executable file, you can give the -Fe option
anywhere on the command line. If more than one -Fe option appears, cc
gives the executable file the name specified in the last -Fe option on the
command line.

The -Fe option applies only in the linking stage. If you specify the -c
option to suppress linking, -Fe has no effect.

Examples

cc -Fe/bin/process *.c
cc —o /bin/process *.c

These examples compile and link all source files with the extension .c in
the current working directory. The resulting executable file is named pro-
cess and is created in the directory /bin.

2.3.7 Creating Listing Files

A number of listing options are available with the cc command. You' can
create a source listing, a map listing, or one of several kinds of object list-
ings. You can also set title and subtitle of the source listing from the com-
mand line and control the length of source-listing lines and pages.

The options available for producing listings and controlling their appear-
ances are described in this section.

Note

Listings produced by the cc command may contain names that begin
with more than one underscore (for example, chkstk) or that end
with the suffix QQ. Names that use these conventions are reserved
for internal use by the compiler, and should not be used in your pro-
grams, except for those documented in the XENIX C Library Guide.
Moreover, you should avoid creating global names that begin with
an underscore. Since the compiler automatically adds another lead-
ing underscore, these names will have two leading underscores and
might conflict with the names reserved by the compiler.

2-9

XENIX C User’s Guide

Types of Listings (-Fs, -Fl, -Fa, -Fc, -Fm)

Options
-Fs[listfiles] Source listing
-Fl[listfile] Object listing
-Fa[listfile] Assembly listing
-Fc[listfile] Combined source and object listing
-Fm[mapfile] Map file that lists segments, in order

This section describes how to use command-line options to create list-
ings. For an example of each type of listing and a description of the infor-
mation it contains, see ‘‘Formats for Listings’’ later in this section.

When using an option described in this section, the listfile argument, if
given, must follow the option immediately, with no intervening spaces.
The listfile can be a file specification or a path specification. It can also be
omitted.

Note

When you give just a path specification as the /istfile argument, the
path specification must end with a forward slash (/) so that cc can
distinguish it from an ordinary file name.

When you give a path specification as the argument to a listing option, or
if you omit the argument altogether, cc uses the default file name for the
listing type. Table 2.2 gives the default names used for each type of list-
ing. The table also shows the default extensions, which are used when you
give a file-name argument that Jacks an extension.

Compiling with the cc Command

Table 2.2

Default File Names and Extensions

Default Default
Option Listing Type File Name! Extension
-Fs Source Base name of S

source file plus .S

-F1 Object Base name of .L
source file plus .L

-Fa Assembly Base name of K
source file plus .s

-Fe Combined Base name of .L
source-object source file plus .L
-Fm Map Base name of first .map

object file on the
command line
plus .map

Notes:

1 The default file name is used when the option is given with no argument or with a
path specification as the argument.

2 The default extension is used when a file name lacking an extension is given.

Since you can process more than one file at a time with the cc command,
the order in which you give listing options and the kind of argument you
give for each option (file specification or path specification) affect the
result. Table 2.3 summarizes the effects of each option with each type of
argument.

XENIX C User’s Guide

Table 2.3
Arguments to Listing Options

File-Name Path No
Option Argument Argument Argument
-Fa, -Fc, Creates a Creates listings Creates listings in
-F1, -Fs listing for in the given the current direc-
next source location for tory for every
file on com- every source source file listed
mand line; file listed after after the option on
uses default the option on the command line;
extension if the command uses default names
no extension line; uses
is supplied default names
-Fm Uses given Creates map Uses default name
file name for file in the given
the map file; directory; uses -
uses default default name
extension if
no extension
is supplied
Notes:

1 When you give just a path specification as the argument, the path specification must end
with a forward slash (/) so that cc can distinguish it from an ordinary file name.

Only one type of object or assembly listing can be produced for each
source file. The -Fc option overrides the -Fa and -Fl options; whenever
you use -Fe, a combined listing is produced. If you apply both the -Fa and
the -FI options to one source file, only the last listing specified on the
command line is produced. If you specify both the -Fa and the -Fs options
to one source file, a combined listing is produced.

Note

The cc command optimizes by default, so listing files reflect the
optimized code. Since optimization may involve rearrangement of
code, the correspondence between your source file and the machine
instructions may not be clear, especially when you use the -Fc
option to mingle the source and assembly codes. To produce a list-
ing without optimizing, use the -Od option (discussed in the
“‘Preparing for Debugging’’ section) with the listing option.

2-12

Compiling with the cc Command

The map file is produced during the linking stage. If linking is suppressed
with the -c option, the -Fm option has no effect.

Examples

cc -Fshello.src —~Fchello.cmb hello.c

In this example, cc creates a source listing called hello.src and a com-
bined source and assembly listing called hello.cmb. The object file has
the default name hello.o.

cc -Fshello.src -Fshello.lst -Fchello.cod hello.c

This command produces a source listing called hello.lst rather than
hello.src, since the last name provided has precedence. This example also
produces an object-listing file named hello.cod. The object file in this
example has the default name hello.o.

Setting Titles (-St) and Subtitles (-Ss)
Options

-St "title"
-Ss "subtitle"

The -St and -Ss options set the title and subtitle, respectively, for source
listings. The quotation marks (" ") around the title or subtitle argument
can be omitted if the title or subtitle does not contain space or tab charac-
ters. The space between -St or -Ss and its arguments is optional.

The title appears in the upper left corner of each page of the source list-
ing. The subtitle appears below the title.

The -St or -Ss option applies to the remainder of the command line or
until the next occurrence of -St or -Ss on the command line. These
options do not cause source listings to be created. They take effect only
when the -Fs option is also used to create a source listing.

Examples

cc —-St "Income Tax" -Ss 4-14 -Fs tax*.c

This command compiles and links all source files beginning with tax and
ending with the default extension (.c) in the current working directory.

2-13

XENIX C User’s Guide

Each page of the source listing contains the title /ncome Tax in the upper
left corner. The subtitle 4-/4 appears below the title on each page.

cc -c -Fs =St"Calc Prog" -Ss"count" ct.c —-Ss"sort" srt.c

In this command, cc compiles two source files and creates two source list-
ings. Each source listing has a unique subtitle, but both listings have the
title Calc Prog.

Formats for Listings

The following sections describe and show examples of the five types of
listings available with the ce command. For information on how to create
these listings, see ‘‘Types of Listings’” earlier in this chapter.

Source Listing

Source listings are helpful in debugging programs as they are being
developed. These listings are also useful for documenting the structure of
a finished program.

The source listing contains the numbered source-code lines of each pro-
cedure in the source file, along with any diagnostic messages that were
generated. If the source file compiles with no errors more serious than
warning errors, the source listing also includes tables of local symbols,
global symbols, and parameter symbols for each function. If the compiler
is unable to finish compilation, it does not generate symbol tables.

At the end of the source listing is a summary of the segment sizes in your
program. This summary is useful for analyzing the program’s memory
requirements.

Any error messages that occurred during compilation appear in the listing
after the line that caused the error, as shown in the following example:

Compiling with the cc Command

1 char hexvalue[10];
2

3 main()
4 {
5 long htoi();
6 printf ("Please enter the hex value you want to convert:\n");
7 scanf ("%s", hexvalue);
8 printf ("The integer value of the hex value is %1d\n", htoi(hexvalue));
9 1}
10

11 long htoi (hexvalue)
12 char *hexvalue;

13 {

14 register char *ptr=hexvalue;

15 int i=0;

16 long n=0;

17 long expl6();

18 while (*ptr != '\0’) {

19 if (*ptr >= 'a’ && *ptr <= 'f’)

20 *ptr —= 87;

21 else if (*ptr >= A && *ptr <= 'F’)
22 *ptr —= 55;

23 else

24 *ptr -= 48;

25 ptr+;

FrxEx*pomb.c (25) @ error 59: syntax error :
26 }

The line number given in the error message corresponds to the number of
the source line immediately above the message in the source listing.

The following example shows the source listing for a simple C program.
The command used to obtain the output would be:

cc ~St"Hex to ASCII™ -St"2/25/87" HextoASCII.c

2-15

XENIX C User’s Guide

Hex to ASCIT PAGE 1
2/25/87 02-25-87
10:44:23

Line# Source Line XENIX C Compiler Version 3.00.17
1 char hexvalue[10];

2

3 main()

4 {

5 long htoi();

6 printf ("Please enter the hex value you want to convert:0);

7 scanf ("$s", hexvalue);

8 printf("The integer value of the hex value is %1d0, htoi(hexvalue));
9 1}

10

11 long htoi (hexvalue)

12 char *hexvalue;

13 {

14 reglster char *ptr=hexvalue;

15 int 1=0;

16 long n=0;

17 long expl6();

18 while (*ptr !=' ") {

19 if (*ptr >= ’a’ && *ptr <= "f’)

20 *ptr —= 87;

21 else if (*ptr >= 'A’ && *ptr <= 'F’)

22 *ptr -= 55; 23

24 *ptr —-= 48;

25 ptr++;

26 }

27 ptr —= 1;

28 while (ptr>=hexvalue)

29 {

30 nt= (*ptr*expl6(i));

31 i++;

32 ptr——; 33 }

34 return(n) ;

35 1}

htoi Local Symbols CRName Class Type Size Offset Register i
i.. <+«auto -0008
ptr . -auo bkl si
n. . .+auto -0004
hexvalue. param 0004

36

37 long expl6 (exp)

38 int exp;

39 {

40 long result=l;

41 int 3;

42 for (J=1; J<=exp; J+t)

43 result *= 16;

44 return (result);

45 }

2-16

Compiling with the cc Command

Hex to A
2/25/87

expl6 Local Symbols

02-25-87
10:44:23

XENIX C Compiler Version 3.00.17

Name Class Type Size Offset Register
Jooo. . . auto -0006
result. . auto -0004

EXpP .+ -+ param 0004
Global Symbols

Name Class Type Size Offset
explé . . . global near function KA 0Cae
hexvalue. . common struct/array 10 el
htoi. . global near function Kk 0038
main. .. . global near function Lk 0000
printf. extern near function ke bl
scanf extern near function ThK KEX
Code size = 00e8 (232)

Data size = 005f (95)

Bss size = 0000 (0)

No errors detected

At the end of each function, a table of local symbols is given, as shown in
the following example for the function hroi:

htoi Local Symbols

Name Class
o000 s s auto
1 auto
Noe e v e e e e . auto
hexvalue. param

Type Size Offset Register
-0008
* KK si
~0004
0004

XENIX C User’s Guide

The following list shows the contents of each column in the symbol table:

Column Contents

Name

Class

Type
Size

Offset

Register

The name of each local symbol in the function.

Either auto if the symbol is a nonstatic local variable, or
param if the symbol is a formal parameter.

Not used for local symbols.
Not used for local symbols.
The symbol’s offset address relative to the frame pointer
(that is, the BP register). The Offset number is positive for
param symbols and negative for auto symbols with auto

storage class.

Blank unless the variable is stored in a register, in which
case, this column indicates the register (SI or DI).

At the end of the source code, a table of global symbols is given, as
shown in the following example:

Name

expl6 .
hexvalue.
htoi.
main.
printf.
scanf .

Class Type Size Offset
. global near function kK 00ae
. common struct/array 10 * ok
. global near function *kk 0038
. global near function xK 0000
. extern near function K K AK
. extern near function el KKK

The following list shows the contents of each column:

Column Contents

Name

Class

Type

Each global symbol, external symbol, and statically allo-
cated variable declared in the source file.

Either global, common, extern, or static, depending on how
the symbol was defined in the source file.

A simplified version of the symbol’s type as declared in
the source file.

Compiling with the cc Command

For functions, this entry is either near function or far func-
tion, depending on which memory model was used and
how the function was declared. For a pointer, this entry is
near pointer, far pointer, or huge pointer. For enumeration
variables, this entry is inf. For structures, unions, and
arrays, this entry is struct/array.

Size Used only for variables. Specifies the number of bytes of
storage allocated for the variable. Since the amount of
storage allocated for an external array may not be known,
its Size entry may be undefined.

Offset Used only for symbols with an entry of global or static in
the Class column.

For variables, this entry gives the relative offset of the
variable’s storage in the logical data segment for the pro-
gram file being compiled. Since the linker usually com-
bines several logical data segments into a physical seg-
ment, this number is useful only for determining the rela-
tive position of storage of variables. For functions, this
entry gives the relative offset of the start of the function in
the logical code segment. For small-model programs, the
linker combines logical code into a single physical seg-
ment, so this entry is useful for determining the relative
positions of different functions defined in the same source
file. However, for medium-, large-, and huge-model pro-
grams, each logical code segment becomes a unique physi-
cal segment. In these cases, this entry gives the actual
offset of the function in its run-time code segment.

The last table in the source listing shows the segments used and their size,
as in the following example:

Code size = 0103 (259)
Data size = 005f (95)
Bss size = 0000 (0)

The number of bytes in each segment is given first in hexadecimal, and
then in decimal (in parentheses).

Object Listing
The -FI option produces an object listing. The object listing contains the

instruction encoding and assembly code for your program. The line
numbers are shown in the listing as comments. The instruction-encoding

2-19

XENIX C User’s Guide

is on the left and the assembly code on the right, as shown in the follow-
ing 286 example:

; Line 4
PUBLIC main
_main PROC NEAR

**% 000000 55 push bp
**% 000001 8b ec mov bp, sp
**% 000003 33 ¢0 XOr ax,ax
*** 000005 e8 00 00 call _ chkstk
; Line 6
**% 000008 b8 00 00 mov ax,OFFSET DGROUP:$S G12
*** 00000b 50 push ax
*%% 00000c e8 00 00 call printf
**% 00000f 83 c4 02 add sp,2

Assembly Listing

The -Fa option produces an assembly listing. It contains the assembly
code corresponding to your C source file, as shown in the following 286
example:

; Line 4
PUBLIC _main
_main PROC NEAR
push bp
mov bp, sp
xor ax, ax
call _ chkstk
; Line 6
mov ax,OFFSET DGROUP:$SG12
push ax
call _printf
add sp, 2

Note that the example shows the same code as in the object listing exam-
ple, except that the instruction encoding is omitted.

The listing generated by the -Fa option in Versions 5.0 and later of the

XENIX C Compiler can be used as input to the XENIX Macro Assembler
(masm).

2-20

Compiling with the ¢c Command

Combined Source and Object Listing

The -Fc option produces a combined source and object listing. This shows
each line of your source program followed by the corresponding line (or
lines) of machine instructions, as in the following 286 example:

_TEXT SEGMENT
; | *** char hexvalue([10];
H l***
#1*** main ()
FlEx
; Line 4
PUBLIC _main
_main PROC NEAR

*%% 000000 55 push bp

***% 000001 8b ec mov bp, sp

*** 000003 33 0 Xor ax,ax

*** 000005 e8 00 00 call _ chkstk

;I*** long htoi();
;|*** printf ("Please enter the hex value you want to convert:0);
; Line 6

**% 000008 b8 00 00 mov ax,OFFSET DGROUP :$SG12
*%% 00000b 50 push ax

**% 00000c e8 00 00 call _printf

**% 00000f 83 c4 02 add sp,2

;| **%* scanf ("%s", hexvalue);

Note that this sample is like the object-listing sample, except that the
source-program line is provided in addition to the line number.

When you examine a listing file, you will notice that the names of glo-
bally visible functions and variables begin with an underscore, as shown
in the following example. (This part of the listing is the same for all three
kinds of listings.):

EXTRN _printf:NEAR
EXTRN _scanf:NEAR
EXTRN __ chkstk:NEAR
EXTRN __ aNlmul :NEAR
EXTRN _ aNNalshl:NEAR
EXTRN hexvalue:TBYTE

The XENIX C Compiler automatically prefixes an underscore to all global
names. If you write assembly-language routines to interface with your C
program, this naming convention is important; see the section on ‘‘Con-
trolling the Preprocessor’’ for more information.

2-21

XENIX C User’s Guide

The listing may also contain names that begin with more than one under-
score (for example, chkstk in the example). Identifiers with more than
one leading underscore are reserved for internal use by the compiler, and
should not be used in your programs, except for those documented in the
XENIX C Library Guide. Moreover, you should avoid creating global
names that begin with an underscore. Since the compiler automatically
adds another leading underscore, these names will have two, and might
conflict with the names reserved by the compiler.

Map File

The -Fm option produces a map file. The map file contains a list of seg-
ments in order of their appearance within the load module. As an exam-
ple, consider the following 386 example:

Start Length Name Class
003£:00000000 015CDH _TEXT CODE

003f:000015d0 00000H C_ETEXT ENDCODE

The information in the Start column shows the 20-bit address (in hexade-
cimal) of each segment, relative to the beginning of the load module. The
load module begins at location zero. The Length column gives the length
of the segment in bytes; the Name column gives the name of the segment,
and the Class column gives information about the segment type.

The starting address and name of each group appear after the list of seg-
ments. An example of a group listing follows:

Origin Group
01EA: O DGROUP

In this example, DGROUP is the name of the data group. DGROUP is
the only group used for data segments by programs compiled with the
XENIX C Compiler, Version 5.0.

The following map file contains two lists of global symbols: the first list
is sorted in ASCII-character order by symbol name and the second is by
symbol address. A maximum of 2048 symbols can be sorted in each list.
(To increase the number of sorted symbols, you must specify the -MAP
linker option with the number argument to create the map file; see the

2-22

Compiling with the cc Command

““Linking with the cc Command’’ chapter of this guide for details.) The
notation Abs appears next to the names of absolute symbols (symbols con-
taining 16-bit constant values that are not associated with program
addresses).

Many of the global symbols that appear in the map file are symbols used
internally by the XENIX C Compiler. These usually begin with one or
more leading underscores or end with QQ. The following 286 example
illustrates this:

Address Publics by Name
003F:0096 STKHQQ
0047:1D86 _brkectl
003F:04B0 _edata
0047:0910 _end

0047:00EC __abrkp
0047:009C __abrktb
0047:00EC __abrktbe

003F:9876 Abs acrtmsg

0000:9876 Abs acrtused

0047:0240 argc
0047:0242 argv

Address Publics by Value
003F:0010 _main

003F:0047 “hntoi

003F:00DA _expl6

003F:0113 __cChkstk
003F:0129 __astart
003F:01C5 __cintDIV

The addresses of the external symbols are in the ‘‘selector:offset’’ format,
showing the location of the symbol relative to zero (the beginning of the
load module).

2-23

XENIX C User’s Guide

Following the lists of symbols, the map file gives the program entry point,
as shown in the following example:

Program entry point at 003F:0129

2.3.8 Controlling the Preprocessor

The cc command provides several options that control the operation of
the C preprocessor. You can define macros and manifest (symbolic) con-
stants from the command line, change the search path for include files,
and stop compilation of a source file after the preprocessing stage to pro-
duce a preprocessed source-file listing.

The C preprocessor recognizes only preprocessor directives. It treats the
source file as a text file, processing substitutions and definitions as
directed. The preprocessor can be run on a file at any stage of develop-
ment, whether or not the file is a complete C source file. In fact, the
preprocessor is not restricted to processing C files; it can be run on any
kind of file. However, input files to the preprocessor must follow the
preprocessor rules; therefore, not all arbitrary text files may be suitable
for use with the preprocessor. See the XENIX C Language Reference for a
complete discussion of C preprocessor directives and the format expected
for preprocessor input.

Defining Constants and Macros (-D)

Option
-D identifier[=[string]]

The -D option lets you define a constant or macro used in your source file.
The identifier is the name of the constant or macro and string is its value
or meaning. Note that spaces are permitted (but not required) between -D
and the identifier.

If you leave out both the equal sign and string, the given constant or
macro is assumed to be defined, and its value is set to 1. For example,
-DSET is sufficient to define SET.

If you give the equal sign with an empty string, the given constant or
macro is considered defined; its definition is the empty string. This
definition effectively removes all occurrences of the identifier from the
source file. For example, to remove all occurrences of register, use the
following option:

-Dregister=

2-24

Compiling with the cc Command

Note that the identifier register is still considered to be defined.

The effect of using the -D option is the same as using a preprocessor
#define directive at the beginning of your source file: the identifier is
defined in the source file being compiled either until an #undef directive
removes the definition or until the end of the file is reached.

You can supply a command-line definition for an identifier that is also
defined within the source file. However, you must use #undef to remove
the source-file definition, unless the source-file definition is identical to
the command-line definition. The command-line definition remains in
effect until the identifier is removed with an #undef directive.

Normally, up to 17 definitions are allowed on the command line. Using
either the -Za option or the -J option on the command line reduces the
number of definitions allowed to 16; using both of these options reduces
the number to 15. If you need to define more than the maximum number
of identifiers, you can remove certain predefined definitions from the
command line. See the discussion of the -U and -u options in the section
on ‘‘Removing Definitions of Predefined Identifiers,”” for more informa-
tion.

The -D option is especially useful with the #if and #ifdef directives
because you can control conditional-compilation directives in the source
file from the command line.
Examples

cc -D NEED=2 main.c

This example defines the manifest constant NEED in the source file
main.c. This definition is equivalent to placing the directive at the top of
the source file as shown in the following example:

#define NEED 2

For the next example, suppose a source file named other.c contains the
following fragment:

#if defined (NEED)
#endif

Suppose further that other.c does not explicitly define NEED (that is, no
#define directive for NEED is present). Then all statements between the

2-25

XENIX C User’s Guide

#if and the #endif directives are compiled only if you supply a definition
of NEED by using -D. For instance, the following command is sufficient
to compile all statements following the #if directive:

cc -DNEED main.c

Note that NEED does not have to be set to a specific value to be con-
sidered defined. The following command, in contrast, causes the state-
ments in the #if block to be ignored (not compiled):

cc main.c

Predefined Identifiers (Manifest Defines)

The compiler defines several identifiers that are useful in writing portable
programs. These are known ‘‘manifest defines.”” You can use these
identifiers to compile code sections conditionally, depending on the pro-
cessor and operating system being used. They begin with ““M_"" for
“‘manifest.”” The predefined identifiers and their functions are as follows:

Identifier Function

M _I86 This is an Intel processor.
M_SYS3 This is Unix System III compatible.
M_SYS5 This is Unix System V compatible.
M_BITFIELDS This compiler supports bitfields.

2-26

M_WORDSWAP

M_XENIX

M _In86

M_186mM

_CHAR_UNSIGNED

M_SDATA,
or M_LDATA
M_STEXT

orM_LTEXT

Compiling with the cc Command

The word-within-a-longword order is
swapped with respect to the DEC
PDP11.

Always defined, this identifies target
operating system as XENIX.

Depending on -MO, -M1, -M2 or
-M3, M 1386 is defined with 386 W=

compiler unless -dos is used.

Always defined, this identifies
memory model, where m is either S
(small model), C (compact model), M
(medium model), L (large model), or
H (huge model). If huge model is
used, both M_I86LLM and M_I86HM
are defined. Small model is the
default. Memory models are dis-
cussed in ‘“Working with Memory
Models.””

This is defined only when the -J
option is given to make the char type
unsigned by default. For more infor-
mation, see the section on ‘‘Changing
the Default char Type.”’

Depending on -M9, -M1, or -M2.

Depending on -M0, -M1, or -M2.

Removing Definitions of Predefined Identifiers (-U, -u)

Options

-U identifier
-u

The -U (for “‘undefine’’) option turns off the definition of one of the
predefined identifiers discussed in the previous section; one or more

2-27

XENIX C User’s Guide

spaces may separate the -U and identifier. You can specify more than one
-U option on the same command line. The -u option turns off all
definitions.

These options are useful if you want to give more than the maximum
number of definitions (16, if the -Za or -J option is used; 15, if both
options are given; or 17, otherwise) on the command line, or if you have
other uses for the predefined identifiers. For each definition of a
predefined identifier you remove, you can substitute a definition of your
own on the command line. When the definitions of all predefined
identifiers are removed, you can specify up to 512 command-line
definitions.

Example
cc -UM XENIX -UM I86 work.c
This example removes the definitions of two predefined identifiers. Note

that the -U option must be given twice to do this.

Producing a Preprocessed Listing (-P, -E, -EP)

Options
-P Writes preprocessed output to a file
-E Writes preprocessed output to standard

output; includes #line directives
-EP Writes preprocessed output to standard output

The -P, -E, and -EP options produce listings of preprocessed files. These
options allow you to examine the output of the C preprocessor.

The preprocessed listing file is identical to the original source file except
that all preprocessor directives are carried out, macro expansions are per-
formed, and comments are removed. All three options suppress compila-
tion; no object file or listing is produced, even if you specify an -Fo
option or a listing-file option on the cc command line.

The -P option writes the preprocessed listing to a file with the same base
name as the source file, but with an .i extension.

The -E option copies the preprocessed listing to the standard output (usu-
ally your terminal). It places a #line directive in the output at the

2-28

Compiling with the cc Command

beginning and end of each included file and around lines removed by
preprocessor commands that specify conditional compilation.

The -E option is useful when you want to resubmit the preprocessed list-
ing for compilation. The #line directives renumber the lines of the prepro-
cessed file, so that errors generated in later stages of processing refer to
the original source file rather than to the preprocessed file.

The -EP option combines features of the -E and -P options; the file is
preprocessed and copied to the standard output, but no #line directives
are added.
Examples

cc ~P main.c

This example creates the preprocessed file main.i from the source file
main.c.

cc -E add.c > preadd.c

This command creates a preprocessed file with inserted #line directives
from the source file add.c. The output is redirected to the file preadd.c.

cc -EP add.c
The command shown here produces the same preprocessed output as the

second example, but without the #line directives. The output appears on
the screen.

Preserving Comments (-C)
Option

-C

Normally, comments are stripped from a source file in the preprocessing
stage, since they do not serve any purpose in later stages of compiling.
The -C (for “‘comment’’) option preserves comments during preprocess-
ing. The -C option is valid only when the -E, -P, or -EP option is also
used.

Example

cc -P -C sample.c

2-29

XENIX C User’s Guide

The example produces a listing named sample.i. The listing file contains
the original source file, including comments, with all preprocessor direc-
tives expanded or replaced.

Searching for Include Files (-1, -X)
Options

-1 directory
-X

The -I and -X options temporarily override the default search paths for
include files. (Default path is /usr/include.)

You can add to the list of directories searched by using the -I (for
“‘include’’) option. This option causes the compiler to search the direc-
tory or directories you specify before searching the default path
{usr/include. The space between -I and directory is optional. You can add
more than one include directory by giving the -I option more than once in
the cc command. The directories are searched in order of their appearance
in the command line.

The directories are searched only until the specified include file is found.
If the file is not found in the given directories or the standard places, the
compiler prints an error message and stops processing. When this occurs,
you must restart compilation with a corrected directory specification.

You can prevent the C compiler from searching the default paths for
include files by using the -X (for ‘‘exclude’’) option. When ce sees the -X
option, it considers the list of standard places to be empty. This option is
often used with the -I option to define the location of include files that
have the same names as include files found in other directories, but that
contain different definitions.

Examples

cc -I /include -I/alt/include main.c
In this example, cc looks for the include files requested by main.c in the
following order: first in the directory /include, then in the directory
lalt/include, and finally in the default directory /usr/include.

cc -X -I /alt/include main.c

2-30

Compiling with the cc Command

As shown in this example, the compiler looks for include files only in the
directory /alt/include. First the -X option tells cc to consider the list of
standard places empty; then the -I option specifies one directory to be
searched.

2.3.9 Checking for Program Errors

You may encounter several different kinds of error messages when you
compile, link, and run a XENIX C program.

Several cc options are available to control the types of warnings gen-
erated at compile time, help with syntax checking, and verify compatibil -
ity between the actual arguments and formal parameters of a function
during the early stages of program development. This section describes
these options.

Understanding Error Messages

Error messages can appear at different stages of program development:

e In the compiling stage, the compiler generates a broad range of
error and warning messages to help you locate errors and potential
problems in your source files.

e During the linking stage, the linker is responsible for generating
€ITOT Messages.

e During program execution, any error messages you see are run-
time error messages. This category includes messages about
floating-point exceptions, which are errors generated by an 8087 or
80287 coprocessor.

Other utilities included in this package, such as the XENIX Linker (1d)
and the make program-maintenance utility, generate their own error mes-
sages.

‘When you are compiling and linking using the cc command, you may see
both compiler and linker messages. Compiler messages have numbers
preceded by the letter C, and linker messages have numbers preceded by
the letter L.

You can also distinguish the type of a message by its format. See *‘C
Error Messages and Exit Codes’” in this guide for a description of com-
piler error-message formats, a list of actual compiler error messages, and
explanations of the circumstances that cause them.

Compiler error messages are sent to the standard output, which is usually
your terminal. If you are using the C shell, you can redirect the messages

2-31

XENIX C User’s Guide

to a file by using the standard redirection symbols at the end of your com-
mand line:

>&.
If you are using the Bourne shell, you can redirect the messages to a file
by using the standard redirection syntax:

cmd > outputfile 2>&1
Example

Assume the following source file named rm.c:

#include <stdio.h>

main (argc, argv)
int argc;
char argv(];

{
register int i;
char *name;

for (i = 1; 1 < arg; ++i)
if (unlink (name = argv[il)) {
printf ("couldn’t delete %s : ", name);
perxror ("");
}

The following C shell command line redirects error messages to a file
named rm.err:

cCc rm.c >& rm.err

In the previous command, only output that ordinarily goes to the console
screen is redirected. The error-message file rm.err contains the following
information:

m.c
rm.c(1ll) : error C2065: ’'arg’ : undefined
rm.c(12) : warning C4047: '=’ : different levels of indirection

2-32

Compiling with the cc Command

Based on the errors generated, you can correct rm.c as shown below:

#include <stdio.h>

main (argc, argv)
int argce;
char *argvl[]; /* corrects warning C4047 */

{
register int i;
char *name;

for (i = 1; i < argc; ++i) /* corrects error C2065 */
if (unlink (name = argv[i])) {
printf ("couldn’t delete %s : ", name);
perror ("");

}

Setting the Warning Level (-W, -w)
Option

-W{0i11213}
-W

You can suppress warning messages produced by the compiler by using
the -W (for ‘‘warning’’) option. Compiler warning messages are any mes-
sages beginning with C4; see ‘‘C Error Messages and Exit Codes,”” for a
full listing. Warnings indicate potential problems (rather than actual
errors) with statements that may not be compiled as you intend. The -W
options affect only source files given on the command line; they do not
apply to object files.

The -W0 option turns off warning messages. This option is useful when
you compile programs that deliberately include questionable statements.
The -W0 option applies to the remainder of the command line or until the
next occurrence of a -W option on the command line. The -w option has
the same effect as the -W0 option.

The -W1 option (the default) causes the compiler to display most warning
messages.

2-33

XENIX C User’s Guide

The -W2 option causes the compiler to display an intermediate level of
warning messages. Level-2 warnings may or may not indicate serious
problems; they include the following:

¢ Use of functions with no declared return type

e Failure to put return statements in functions with non-void return
types

e Data conversions that would cause loss of data or precision

The -W3 option displays the highest level of warning messages, including
warnings about the uses of non-ANSI features and extended keywords and
about function calls before the appearance of function prototypes in the
program.

Note that the warning messages in ‘‘Error Messages and Exit Codes’’
indicate the warning level that must be set (that is, the number for the
appropriate -W option) for the message to appear.

Example
cc —-W3 crunch.c print.c

This example enables all possible warning messages when the crunch.c
and print.c source files are compiled.

Checking Syntax (-Zs)
Option

-Ls

The -Zs option causes the compiler to perform only a syntax check on the
source files that follow the option on the command line. This option pro-
vides a quick way to find and correct syntax errors before you try to com-
pile and link a source file.

When you give the -Zs option, the compiler does not generate code or
produce object files, object listings, or executable files. However, the
compiler does display error messages if the source file has syntax errors.
You can specify the -Fs option on the same command line to generate a
source listing that shows these error messages. For more information
about the -Fs option, see the section on ‘‘Creating Listing Files.””

2-34

Compiling with the cc Command

Example
cc —-Zs test*.c

This command causes the compiler to perform a syntax check on all
source files in the current working directory that begin with fest and end
with the default extension (.c). The compiler displays messages for any
errors found.

Generating Function Declarations (-Zg)
Option
-Zg

The -Zg option generates a function declaration for each function defined
in the source file. The function declaration includes the function return
type and an argument-type list created from the types of the formal
parameters of the function. Any function declarations already present in
the source file are ignored.

The generated list of declarations is written to the standard output. It can
be saved in a file using shell redirection.

When the -Zg option is used, the source file is not compiled. As a result,
no object file or listing is produced.

The list of declarations is helpful for verifying that actual arguments and
formal parameters of a function are compatible. You can save the list and
include it in your source file to cause the compiler to perform type-
checking. The presence of a declared argument-type list for a function
“‘turns on’’ the compiler’s type-checking between actual arguments to a
function (given in the function call) and the formal parameters of a func-
tion.

This type-checking can be a helpful feature in writing and debugging C
programs, especially when working with older C programs. Argument
type checking is a recent addition to the C language, so many existing C
programs will not have argument-type lists. See the XENIX C Language
Reference for more information about function declarations and
argument-type lists.

You can use the -Zg option even if your source program already contains

some function declarations. The compiler accepts more than one
occurrence of a function declaration, as long as the declarations do not

2-35

XENIX C User’s Guide

conflict. No conflict occurs when one declaration has an argument-type
list and another declaration of the same function does not, as long as the
return types are identical.

Note

If you use the -Zg option and your program contains formal parame-
ters that have structure, enumeration, or union type (or pointers to
such types), then the declaration for each structure, enumeration, or
union type must have a tag. For example, use the following form:

struct tagA {

Example

cc -Zg file.c > filedecls.h

This command causes the compiler to generate argument-type lists for
functions defined in file.c. The list of declarations is redirected to
filedecls.h.

2.3.10 Preparing for Debugging (-Zi, -Od)
Options

-Zi Creates object file for use with the source-level debugger sdb
-Od Disables code optimization to help with debugging

The -Zi option produces an object file containing full symbolic-
debugging information for use with the source-level debugger. This
object file includes full symbol-table information and line numbers. If the
-Zi option is given with no explicit -O options, all optimizations involv-
ing code motion and rearrangement are suppressed, although simple
optimizations are still performed. If any explicit -O options are given, all
requested optimizations are performed.

The -Od option tells the compiler not to perform most optimizations.
Some peephole optimizations and other simple optimizations are still

2-36

Compiling with the cc Command

performed. (Without the -Od option, the default is to optimize.) You may
want to use this option when you plan to use a symbolic debugger with
your object file, since optimization can involve rearrangement of instruc-
tions that make it difficult for you to recognize and correct your code
when debugging. However, tuming off optimizations may increase the
size of the code generated to the point where it might not be possible to
link your program.

Other optimization options are discussed in the section on ‘‘Optimizing.”’
Example
cc —-zZi -0d test.c

This command produces an object file named test.o that contains line
numbers corresponding to the line numbers of fest.c. Limited optimiza-
tion is performed.

2.3.11 Optimizing

The optimizing capabilities available with the XENIX C Compiler can
reduce the storage space or execution time required for a program. This is
achieved by eliminating unnecessary instructions and rearranging code.
The compiler performs some optimizations by default. You can use the -O
options, the loop_opt pragma (described in the section on ‘‘Loop Optimi-
zation’’), and the intrinsic pragma (described in the section under ‘‘Gen-
erating Intrinsic Functions’’) to exercise greater control over the optimi-
zations performed. In addition, you can use the -Gs option or
check_stack pragma to reduce program size and speed up execution.

Controlling Optimization (-O Options)
Option

-Ostring

#pragma loop_opt([{on|off}])

#pragma intrinsic(functionl [function2]. ..)
#pragma function(functionl|function2}...)

2-37

XENIX C User’s Guide

Note

This option is valid only for 286 code (generated using the M2 com-
piler flag).

The -O options give you control over the optimization procedures that the
compiler performs. One or more of the letters in string following the -O
let you choose how the compiler performs optimization:

Letter Optimizing Procedure

a Relaxes alias checking

d Disables optimization

i Enables intrinsic functions

1 Enables loop optimization

p Improves consistency of floating-point results

S Favors code size during optimization

t Favors execution speed during optimization (the default)
X Maximizes optimization

The letters can appear in any order; for example, -Oat and -Ota have the
same effect. More than one -O option can be given; the compiler uses the
last -O option given if any conflict arises. Each option applies to all
source files following that option on the command line.

The following sections discuss the various optimization options and their
effects.

Relaxing Alias Checking (-Oa)

The a option letter can be used with the 1, s, or t option letter to relax the
assumptions the compiler makes about the use of ‘‘aliases’” in the pro-
gram. Aliases are multiple names (that is, symbolic references) for the
same memory location in a program. Most commonly, aliases occur as a
result of code similar to that shown in the following example:

2-38

Compiling with the cc Command

func ()
{

int x, *p;

P = &x; /* now "x" and "*p" refer to the same */
/* memory location */

Use of the -Oa option can reduce the size of executable files and speed
program execution. Its use is especially recommended when you also
specify the -Ol option, since the compiler can detect a number of loop
optimizations when the -Oa option is in effect that it cannot detect when
-Oa is not in effect. However, before you specify -Oa, you must make
sure that your program does not use aliases either directly or indirectly.

The use of aliases is important only if both names are actually used to
reference the memory location. The following example illustrates the use
of aliases:

/* ...expressions involving only *p */

Since all access to the memory location labeled x is through the pointer p,
x has no significance in the function. To illustrate, func could be rewritten
as the following pair of functions:

2-39

XENIX C User’s Guide

funcl ()
{

int x;

func2 (&x) ;
}

func2 (p)

int *p;
{

/* ...expressions involving *p */

In this equivalent form, the alias created in funcl is insignificant, since
the memory location is not referenced at all and func2 does not use
aliases since x is not even in the scope of the function. The -Oa option
can be safely specified in compiling either of these equivalent forms.

In addition to the obvious cases discussed above, aliases can be created
through the use of pointers in other, more subtle ways. Two such cases
involving the use of pointers as function arguments are illustrated in the
following example:

int x;

func (p)

int *p;

{

/* ...expressions involving *p and x */

In this example, x is a communal variable, so the function can be calied
with func(&x). The -Oa option can be used safely only if it is known that

2-40

Compiling with the cc Command

func is never invoked with the address of x as an argument.

func (pl, p2)

int *pl, *p2;
{

/* ...expressions involving *pl and *p2 */

In this example, the function may be invoked with the same value for
both arguments (that is, func(p,p) or func(&x,&x)). Thus, the -Oa option
can be safely specified only if it is known that the function is always
called with distinct values for the two arguments.

One use of aliases occurs so frequently that a special provision has been
made for it. When the compiler encounters a call to a function with
address-type arguments, it always assumes that all variables whose
addresses are passed to the function are modified. If such function calls
appear in a program, the -Oa option can be specified safely even though
the function call results in an alias for each variable whose address is
passed. The following example illustrates how the compiler handles this
case:

funcl ()

int x, y, a, b;

As shown, when the compiler encounters the function call func2(&a), it
assumes that the function modifies g, even if the -Oa option has been
specified. The compiler generates code to evaluate €ach instance of the
expression a + b, rather than eliminating a common subexpression
incorrectly.

2-41

XENIX C User’s Guide

Although you should convert programs that use aliases if you plan to
compile them with the -Oa option, it is helpful to know the units of a pro-
gram where the optimizations affected by the use of -Oa are applied. This
information indicates where the uses of aliases are most likely to cause
incorrect optimizations if -Oa is specified. The following list describes
the program units where such optimizations are performed:

¢ All of the C optimizations, except for loop optimizations, that may
be affected by the incorrect use of -Oa are applied at the level of
basic blocks. In the XENIX C Compiler, the -Oa option can gen-
erally be used even if aliases are employed, provided no memory
location is referenced by more than one name within any basic
block. (A ‘‘basic block™ is a contiguous sequence of statements,
with a unique entry point and exit point and no branching in
between. In C programs, basic blocks most often appear as the
clauses of if statements, switch statements, loop bodies, or func-
tion bodies, although they may also occur as sequences of state-
ments delimited by user labels.)

¢ Loop optimizations are applied at the level of whole loop bodies.
Thus, if loop optimization is enabled, -Oa can generally be used
even if aliases are employed, provided that no memory location is
referenced by more than one name within any basic block or loop
body.

Disabling Optimization (-Od)

The -Od option turns off most optimizations. This is useful in the early
stages of program development to avoid optimizing code that will later be
changed. Because optimization may involve rearrangement of instruc-
tions, you may also want to specify the -Od option when you use a
debugger with your program or when you want to examine an object-file
listing. If you optimize before debugging, it can be difficult to recognize
and correct your code. However, note that turning off or restricting optim-
ization of a program usually increases the size of the generated code. If
your program contains a module that is close to the 64K limit on com-
piled code, turning off optimization may cause the module to exceed the
limit.

Generating Intrinsic Functions (-Oi)
The -Oi option tells the compiler to generate intrinsic functions instead of
function calls for certain functions. Intrinsic functions may be in-line

functions, may use special argument-passing conventions, or (in some
cases) may do nothing. Programs that use intrinsic functions are faster

2-42

Compiling with the cc Command

because they do not include the overhead associated with function calls.
However, they may be larger because of the additional code that is gen-
erated.

Note

This option is only supported for the 286 compiler.

The following functions have intrinsic forms:
e memset, memcpy, and memcmp
e strset, strcpy, stremp, and streat
¢ inp and outp
e rotl, rotr, Irotl, and Irotr

e min, max, and abs

Note

Intrinsic versions of the memset, memcpy, and memcmp functions
in compact- and large-model programs cannot handle huge arrays or
huge pointers. To use huge arrays or huge pointers with these func-
tions, you must compile your program with the huge memory model
(that is, using the -Mh option on the command line).

You can use the intrinsic pragma to generate intrinsic functions only for
selected functions. This pragma has the following format:

#pragma intrinsic (functionl [function2]...)

2-43

XENIX C User’s Guide

The intrinsic pragma affects the specified functions from the point where
the pragma appears until either the end of the source file or the next func-
tion pragma specifying any of the same functions. The function pragma
has the following format:

#pragma function (function! [function2]...)
Note that you can also use the function pragma sclectively to generate

function calls instead of intrinsic functions when you compile a program
with the -Oi option.

Note

The only pragma applicable to 386 code is the pack pragma; all oth-
ers are not valid.

Loop Optimization (-OI)

The -Ol option tells the compiler to perform loop optimizations. For best
performance, the -Ol option should be specified along with the a option
letter (-Oal), since the compiler can detect more loop optimizations when
it relaxes its assumptions about the use of aliases.

You can use the loop_opt pragma to turn loop optimization on or off for
selected functions. When you want to turn off loop optimization, put the
following line before the code on which you don’t want to perform loop
optimization:

#pragma loop opt (off)
Note that the preceding line disables loop optimization for all code that
follows it in the source file, not just the routines on the same line. To rein-
state loop optimization, insert the following line:

#pragma loop_opt (on)
If no argument is given to the loop_opt pragma, loop optimization reverts

to the behavior specified on the command line: enabled if the -Ox or -Ol
option is in effect, and disabled otherwise. The interaction of the loop_opt

2-44

Compiling with the cc Command

pragma with the -Ol and -Ox options is explained in greater detail in
Table 2.4.

Table 2.4
Using the loop_opt Pragma

Compiled with
Syntax 20x or 201? Action

#pragma loop_opt() no Turns off optimiza-
tion for loops that
follow

#pragma loop_opt() yes Turns on optimiza-
tion for loops that
follow

#pragma loop_opt (on) yes or no Turns on optimiza-
tion for loops that
follow

#pragma loop_opt (off) yes or no Turns off optimiza-
tion for loops that
follow

Achieving Consistent Floating-Point Results (-Op)

The -Op option is useful when floating-point results must be consistent
within a program. This option changes the way in which the program han-
dles floating-point values by default.

Ordinarily the compiler stores each floating-point value in an 80-bit regis-
ter. In subsequent references to that value, the compiler reads the value
from the register. When the final value is written to memory, it is trun-
cated, since floating-point types are allocated fewer than 80 bits of
storage (32 bits for the float type and 64 bits for the double type). Thus,
the value stored in the register may actually be more precise than the
same value stored in a floating-point variable. Since the value is truncated
each time it is written to memory, over the course of the program the
value stored in the machine register may become quite different from the
value that is written to memory.

If you use the -Op option, when floating-point values are referenced, the
compiler reloads them from floating-point variables rather than from
registers. Using -Op gives less precise results than using registers, and it
may increase the size of the generated code. However, it gives you more

2-45

XENIX C User’s Guide

control over the truncation (and hence the consistency) of floating-point
values.

Optimizing for Speed and Code Size (-Ot, -Os)

When you do not give a -O option to the cc command, it automatically
uses -Ot, meaning that program-execution speed is favored in the optimi-
zation. Wherever the compiler has a choice between producing smaller
(but perhaps slower) and larger (but perhaps faster) code, the compiler
generates faster code. For example, when the -Ot option is in effect, the
compiler generates intrinsic functions to perform shift operations on long
operands.

To cause the compiler to favor smaller code size instead, use the -Os
option. For example, when the -Os option is in effect, the compiler uses
function calls to perform shift operations on long operands.

Producing Maximum Optimization (-Ox)

The -Ox option is a shorthand way to combine optimizing options to pro-
duce the fastest possible program. Its effect is the same as using the fol-
lowing options on the same command line:

-Cailt -Gs

That is, the -Ox option relaxes alias checking, generates all intrinsics for
the functions listed in the section ‘‘Generating Intrinsic Functions,”” per-
forms loop optimizations, favors execution time over code size; and
removes stack probes. Note that the interactions between the -Ox option
and the loop_opt pragma are the same as those described in Table 2.4. For
more information about stack probes and ways of controlling their use,
see the following section, ‘‘Removing Stack Probes.”

Examples

cc -Oal file.c
This command tells the compiler to perform loop optimizations and relax
alias-checking when it compiles file.c. The compiler favors program

speed over program size, since the -Ot option is also specified by default.

cc —-c -0s file.c

2-46

Compiling with the cc Command

This command favors code size over execuiion speed when file.c is com-
piled:

cc -0d *.c

This command compiles and links all C source files with the default
extension (.c) in the current directory and disables optimization. This
command is most useful during the early stages of program development,
since it improves compilation speed.

Removing Stack Probes (-Gs)
Options

-Gs
#pragma check_stack([{on|off}])

You can reduce the size of a program and speed up execution slightly by
removing stack probes. You can do this either with the -Gs option or with
the check_stack pragma.

A “‘stack probe’’ is a short routine called on entry to a function to verify
that there is enough room in the program stack to allocate local variables
required by the function. The stack probe routine is called at every func-
tion entry point. Ordinarily, the stack probe routine generates a stack
overflow message when it determines that the required stack space is not
available. When stack-checking is turned off, the stack probe routine is
not called, and stack overflow can occur without being diagnosed (that is,
no error message is printed).

Use the -Gs option when you want to turn off stack-checking for an entire
module if you know that the program does not exceed the available stack
space. For example, stack probes may not be needed for programs that
make very few function calls, or that have only modest local variable
requirements. In the absence of the -Gs option, stack-checking is on.

Use the check_stack pragma when you want to turn stack-checking on or
off only for selected routines, leaving the default (as determined by the
presence or absence of the -Gs option) for the rest. When you want to turn
off stack-checking, put the following line before the definition of the
function you don’t want to check:

#pragma check stack (off)

2-47

XENIX C User’s Guide

Note that the preceding line disables stack-checking for all routines that
follow it in the source file, not just the routines on the same line. To rein-
state stack-checking, insert the following line:

#pragma check stack (on)

Note

For earlier versions of XENIX C, the check_stack pragma had a
different format: check stack+ to enable stack-checking and
check_stack- to disable “stack-checking. Although the XENIX C
Compiler still accepts this format, its use is discouraged, since it
may not be supported in future versions.

If no argument is given for the check stack pragma, stack-checking
reverts to the behavior specified on the command line: disabled if the -Gs
option is given, or enabled if otherwise. The interaction of the
check_stack pragma with the -Gs option is explained in greater detail in
Table 2.5.

Table 2.5
Using the check_stack Pragma

Compiled with
Syntax -Gs Option? Action

#pragma check_stack() yes Turns off stack-
checking for rou-
tines that follow

#pragma check_stack() no Turns on stack-
checking for rou-
tines that follow

fipragma check_stack(on) yes or no Turns - on stack-
checking for rou-
tines that follow

#pragma check_stack(off) yes or no Turns off stack-
checking for rou-
tines that follow

2-48

Compiling with the cc Command

Note

The -Gs option should be used with great care. Although it can
make programs smaller and faster, it may mean that the program
will not be able to detect certain execution errors.

Example
cc -Oals -Gs file.c

This example optimizes the file file.c by removing stack probes with the
-Gs option. The letters specified with the -O option tell the compiler to
relax alias-checking (a), perform loop optimization (1), and favor code
size over program speed (s). If you want stack-checking for only a few
functions in file.c, you can use the check_stack pragma around the
definitions of functions you want to check. Similarly, if you want to per-
form loop optimization on only a few functions in file.c, you can use the
loop_opt pragma around the definitions of functions on which you want
to perform loop optimization.

2.3.12 Enabling/Disabling Language Extensions (-Ze, -Za)
Option
-Ze Enables language extensions (default)

-Za Disables language extensions

The XENIX C Compiler is moving to support the ANSI C standard. In addi-
tion, it offers a number of features beyond those specified in the ANSI C
standard. These features are enabled when the -Ze (default) option is in
effect and disabled when the -Za option is in effect. They include the fol-
lowing:

e The cdecl, far, fortran, huge, near, and pascal keywords

e Use of casts to produce values, as in this example:

int *p;
((long *)p)++;

2-49

XENIX C User’s Guide

The preceding example could be rewritten to conform with ANSI C
as shown here:

p = (int *) ((char *)p + sizeof (long));

o Redefinitions of extern items as static, as follows:

extern int foo():
static int foo()

{1}
e Use of trailing commas (,) rather than an ellipsis (...) in function
declarations to indicate variable-length argument lists, such as:

int printf(char *,);

e Benign typedef redefinitions within the same scope, like this:
typedef int INT;

typedef int INT;

e Use of mixed character and string constants in an initializer, for
instance:

char arx([5] = {’a’, 'b’, "cde"};
e Use of bit fields with base types other than unsigned int or signed
int

Use the -Za option if you will be porting your program to other environ-
ments. The -Za option tells the compiler to treat extended keywords as
simple identifiers and disable the other extensions listed previously.
2.3.13 Packing Structure Members (-Zp)
Option

-Zpl[{1]2|4}]
#pragma pack([{1]24}])

2-50

Compiling with the cc Command

When storage is allocated for structures, structure members are ordinarily
stored as follows:

e Items of type char or unsigned char, or arrays containing items of
these types, are byte-aligned.

e Structures are word-aligned; structures of odd size are padded to
an even number of bytes.

e All other types of structure members are word aligned.

To conserve space, or to conform to existing data structures, you may
want to store structures more or less compactly. The -Zp option and the
pack pragma control how structure data are ‘‘packed’’ into memory.

Use the -Zp option when you want to specify the same packing for all
structures in a module. When you give the -Zp[n] option, where nis 1, 2,
or 4, each structure member after the first is stored on #n-byte boundaries,
depending on the option you choose. If you use the -Zp option without an
argument, structure members are packed on 1-byte boundaries.

On some processors, the -Zp option may result in slower program execu-
tion because of the time required to unpack structure members when they
are accessed. For example, on an 8086 processor, this option can reduce
efficiency if members with int or long type are packed in such a way that
they begin on odd-byte boundaries.

Use the pack pragma when you want to specify packing other than that
specified on the command line for particular structures. Give the pack(n)
pragma, where n is 1, 2, or 4, before structures that you want to pack
differently. To reinstate the packing given on the command line, give the
pack() pragma with no arguments.

Table 2.6 shows the interaction of the -Zp option with the pack pragma.

Table 2.6
Using the pack Pragma
Compiled with
Syntax -Zp Option? Action
#pragma pack() yes Reverts to packing

specified on the
command line for
structures that fol-

2-51

XENIX C User’s Guide

low

#pragma pack() no Reverts to default
packing for struc-
tures that follow

#pragma pack(n) yes or no Packs the following
structures to the
given byte boundary
until changed or
disabled

Example

cc =Zp prog.c
This command causes all structures in the program prog.c to be stored
without extra space for alignment of members on int boundaries.
2.3.14 Setting the Stack Size (-F)
Option

-F hexnum
The -F option sets the size of the program stack. A space must separate
the -F and hexnum. (This option applies only to the 286 compiler; 386
code uses a dynamic stack.)

The hexnum is a hexadecimal value representing the stack size in bytes.
The value must be less than OxFFFF hexadecimal (65,535 decimal).

If you do not specify this option, the start-up routine in the standard C
library sets the default stack size to 2K.

If you get a stack-overflow message, you may need to increase the size of
the stack. In contrast, if your program uses the stack very little, you may
save some space by decreasing the stack size.

The -F option is a linking option that affects executable files only; it does
not have any effect on source or object files.

Example

cc =F C00 *.o

2-52

Compiling with the cc Command

This example sets the stack size to CO0 hexadecimal (3K decimal) for the
program created by linking all of the object files in the current working
directory.

2.3.15 Restricting the Length of External Names (-nl)
Option

-nl number

The cc command allows you to restrict the length of external (public)
names by using the -nl option. The number is an integer specifying the
maximum number of significant characters in external names. The space
between -nl and number is optional.

‘When you use the -nl option, the compiler considers only the first number
characters of external names used in the program. The program may con-
tain external names longer than number characters; the extra characters
are simply ignored.

The -nl option is typically used to conserve space or to aid in creating
portable programs. The XENIX C Compiler imposes no restrictions on the
length of external names (although it uses only the first 31 characters), but
other compilers or linkers may produce errors when they encounter names
longer than a predetermined limit.
2.3.16 Labeling the Object File (-V)
Option

-V string
Use the -V (for ‘‘version’’) option to embed a text string in an object file.
The string must be enclosed in double quotation marks (" ") if it contains
white-space characters or embedded double quotation marks. A backslash

(V) must precede any embedded double quotation marks.

A typical use of the -V option is to label an object file with a version
number or copyright notice.

Example

cc -V"XENIX C Optimizing Compiler Version 5.0" main.c

2-53

XENIX C User’s Guide

This command places the following string in the object file main.o:

XENIX C Optimizing Compiler Version 5.0

2.3.17 Suppressing Default-Library Selection (-Z1)
Option
-ZI

Ordinarily, the compiler places the names of the default libraries for the
memory-model options you have chosen in the object file for the linker to
read. This allows the appropriate library to be linked with a program
automatically.

The -ZI1 option tells the compiler not to place the default library name in
the object file. As a result, the object file is slightly smaller.

The -Z1 option is useful when you are building a library of routines. Every
routine in the library need not contain the default-library information.
Although the -Z1 option saves only a small amount of space for a single
object file, the total space saved is significant in a library containing
many object modules. When you link a library of object modules created
with the -ZI option and a C program file compiled without the -ZI1 option,
the default-library information is supplied by the program file.

Example
cc one.c -Zl two.c
This example creates the following two object files:

1. An object file named orne.o that contains the default library infor-
mation

2. An object file named two.o that contains no default-library infor-
mation

When one.o and two.o are linked, the default-library information in one.o

causes the given library to be searched for any unresolved references in
either one.o or two.o.

2-54

Compiling with the cc Command

2.3.18 Changing the Default char Type (-J)
Option
-J

In XENIX C, the char type is signed by default, so if a char value is
widened to int type, the result is sign-extended. You can change this
default to unsigned with the -J option, causing the char type to be zero-
extended when widened to int type. However, if a char value is explicitly
declared signed, the -J option does not affect it, and the value is sign-
extended when widened to int type.

When you specify -J, the compiler automatically defines the identifier
_CHAR UNSIGNED.

2.3.19 Controlling the Calling Convention (-Gc¢)
Options

-Ge
fortran
pascal
cdecl

The -Gc option and the fortran, pascal, and cdecl keywords allow you to
control the function-calling and naming conventions so that your C pro-
grams can call and be called by functions that are written in FORTRAN
and Pascal.

Because C, unlike other languages such as XENIX Pascal and XENIX
FORTRAN, allows you to write functions that take variable numbers of
arguments, it must handle function calls differently. Languages such as
Pascal and FORTRAN normally push actual parameters to a function in
left-to-right order, with the last argument in the list being the last one
pushed on the stack. In contrast, C functions do not always know the
number of actual parameters, so they must push their arguments from
right to left, with the first argument in the list being the last one pushed.

Additionally, the calling function must remove the arguments from the
stack in C (rather than having the called function do it, as in Pascal and
FORTRAN). If the code for removing arguments is in the called function
(as in Pascal and FORTRAN), it appears only once; if it is in the calling

2-55

XENIX C User’s Guide

function (as in C), it appears every time there is a function call. Since
function calls are more numerous than individual functions, the
Pascal/[FORTRAN method is slightly smaller and more efficient.

The XENIX C Compiler has the ability to generate the Pascal/[FORTRAN
calling convention in one of several ways. The first is through the use of
the pascal and fortran keywords. When these keywords are applied to
functions, or to pointers to functions, they indicate a corresponding Pascal
or FORTRAN function. Therefore, the correct calling convention must be
used. In the following example, sort is declared as a function using the
alternative calling convention:

short pascal sort (char *, char *);

The pascal and fortran keywords can be used interchangeably. Use them
when you want to use the left-to-right calling sequence for selected func-
tions only.

The second method for generating the Pascal/[FORTRAN calling conven-
tion is to use the -Gc option. If you do this, the entire module is compiled
using the alternative calling convention. You might use this method to
make it possible to call all the functions in a C module from another
language, or to gain the performance and size improvement provided by
this calling convention. When you use -Ge to compile a module, the com-
piler assumes that all functions called from that module use the
Pascal/FORTRAN calling convention, even if the functions are defined
outside that module. Thus, using ~G¢ would normally mean that you can-
not call or define functions that take variable numbers of parameters, and
that you cannot call functions such as the C library functions that use the
C calling sequence. In addition, if you compile with the -Gc¢ option, either
you must declare the main function in the source program with the cdecl
keyword, or you must change the start-up routine so that it uses the
correct naming and calling conventions when calling main.

To overcome these restrictions, the cdecl keyword has been added to
XENIX C. This keyword is the ‘‘inverse’’ of the fortran and pascal key-
words. When applied to a function or function pointer, it indicates that the
associated function is to be called using the normal C calling convention.
This allows you to write C programs which take advantage of the more
efficient calling convention while still having access to the entire C
library, other C objects, and even user-defined functions that can take
variable-length argument lists.

Run-time library functions all use the C calling convention. Therefore,
care must be taken to declare them cdecl functions.

2-56

Compiling with the cc Command

Use of the pascal and fortran keywords, or the -Ge¢ option, also affects
the naming convention for the associated item (or, in the case of -Ge, all
items): the name is converted to uppercase (capital letters), and the lead-
ing underscore that C normally prefixes is not added. The pascal and for-
tran keywords can be applied to data items and pointers, as well as func-
tions; when applied to data items or pointers, these keywords force the
naming convention described above for that item or pointer.

The pascal, fortran, and cdecl keywords, like the near, far, and huge
keywords, are disabled by use of the -Za option. If this option is given,
these names are treated as ordinary identifiers, rather than keywords.

Examples

int cdecl var print (char*,...);

In this example, var print is allowed to have a variable number of argu-
ments by declaring it as a function using the normal right-to-left C func-
tion calling convention and naming conventions. The cdec/ keyword
overrides the left-to-right calling sequence set by use of the -G¢ option
when compiling the source file in which this declaration appears; if this
file is compiled without the -Ge option, cdec! has no effect since it is the
same as the default C convention.

float *pascal nroot (number, root)
This instruction declares nroot to be a function returning a pointer to a
value of type float. The function rroot uses the default calling sequence
(left-to-right) and naming conventions for XENIX FORTRAN and Pascal
programs.

long pascal index
This example simply changes the naming convention for the data item

index: it is included in the object file in all capital letters and without a
leading underscore.

2.3.20 Compiling Programs for DOS Environment (-dos, -FP)

The XENIX C compiler is capable of compiling programs that will exe-
cute in the DOS environment.

The -dos option instructs the compiler to use a different set of libraries
(from /usr/lib/dos) and a different linker (dosld(CP)). Note that programs

2-57

XENIX C User’s Guide

compiled with -des will not run in the XENIX environment. Many XENIX
system calls are not supported in DOS.

There are a variety of -FP options that can be used along with -dos to
control floating point operations. For more information on -FP and on
DOS cross-development in general, see ‘‘XENIX to DOS: A Cross-
Development System,”” in the XENIX C Library Guide, and ‘‘Writing
Portable Programs’’ in the XENIX C User’s Guide.

2.3.21 Displaying Compiler Passes (-d, -z)

The cc command is actually a driver program which executes a series of
compiler passes, perhaps an assembler pass, and a linker. It collects the
various options and files on its command line and distributes them to the
proper pass or to the linker. The XENIX C compiler is conceptually a
four-pass compiler. The function of the various compiler passes is out-
lined below.

Pass 0

Pass zero of the compiler is commonly termed the pre-processor. It han-
dles file inclusion, macro expansion and text substitution, and allows you
to define constructs for conditional compilation.

Pass 1

Pass one of the compiler is called the parser. It performs two functions:
(1) building a context-free grammar tree to pass to P2; and (2) construct-
ing a symbol table.

Pass 2

Pass two generates code. It walks the grammar tree constructed by pass
1, applies semantic rules to each syntactic construct, and produces the
binary code indicated by the semantic rules.

Pass 3

The third pass provides post-generation optimization. It analyzes the
code generated by pass 2 and applies optimization rules to alter the code
for better performance (such as elimination of redundant code, rearrange-
ment, etc.). It creates the object code and outputs listing files (if
requested).

The -d option displays the various passes and their arguments before they
are executed. The -z option shows the passes but does not execute them.

2-58

Chapter 3
Linking with

the cc Command

3.1 Introduction 3-1
3.2 The Default Linking Process 3-1
3.3 Passing Linker Information: The -link Option 3-1

3.3.1 Specifying Libraries 3-2
3.3.2 Specifying Linker Options 3-3

Linking with the cc Command

3.1 Introduction

Since the cc command controls linking as well as compiling, you can
specify linker options and libraries other than the default combined
library to be linked with your object files on the cc command line.

3.2 The Default Linking Process

When the cc command compiles a source file, it encodes the name of the
appropriate library in the object file. The library name embedded in the
library file is determined by the memory-model (-M) option you give on
the cc command line. (For a list of the libraries, see the ‘‘Compiling with
the cc Command’’ chapter of this guide.)

If you use the default memory-model option (-Ms), cc encodes the name
of the standard library that corresponds to the defaults.

When an object file is linked, the linker looks for libraries matching the
names encoded in the object file. The linker looks for these libraries first
in /usr/lib/286.

The result is that you do not ordinarily need to give library names on the
cc command line. For descriptions of the situations that require you to
specify libraries to the cc command, see the section on ‘‘Specifying
Libraries.”’

3.3 Passing Linker Information: The -link Option

To pass linker options or nondefault library names to the linker, give the
following options on the cc command line after any source- and object-
file names and cc options:

-link [link-libinfo)

Use the link-libinfo field to specify linker options, libraries, and library
search paths. Note that library names can also be specified with source-
and object-file names before the -link option on the command line, as
long as the library names have the .a extension. These library names are
searched before library names specified after the -link option. Refer to the
following sections for more information:

e “‘Specifying Libraries,”” to learn about specifying libraries and
library search paths

3-1

XENIX C User’s Guide

e “‘Specifying Linker Options,” for descriptions of the linker
options that apply to XENIX C.

If you use the -link option with the cc command, it must be the last option
on the command line.

3.3.1 Specifying Libraries

To link object files with libraries other than the default library, give the
names of the nondefault libraries on the cc command line. Library names
appearing before -link must have the .a extension; library names appear-

ing after -link may have blank extensions or no extensions. A space or
plus sign (+) must follow each library name except the last.

Since the object file already contains the names of the correct combined
library, you do not need to specify libraries unless you want to do any of
the following:

e Link with additional libraries

e Look for libraries in different locations

e Override the use of the default library

Linking with Additional Libraries
If you specify additional libraries to ce, the linker searches the libraries
you specify before it searches the default library to resolve external refer-
ences in the object files. It searches the libraries you specify in their order
of appearance on the command line.

If a library name includes a path specification, the linker searches only
that path for the library.

If you specify only a library name (without a path specification), the
linker searches in the following locations to find the given library file:

e The current working directory

e Any path specifications that you give in the link-libinfo field, in
their order of appearance on the command line

e The default location /usr/lib

3-2

Linking with the cc Command

If a library name without an extension appears after the -link option, the
linker automatically supplies the .a extension. If you want to link a library
file with an extension other than .a, you must specify the complete library
name.

Looking in Different Locations for Libraries

You can tell the linker to look in different locations for libraries by giving
a path specification in the /ink-libinfo field on the cc command line.

The linker looks for the default libraries in the same order as it looks for
libraries given on the command line.

Overriding Libraries Named in Object Files

If you do not want to link with the library whose name is included in the
object file, you can give the names of one or more different libraries
instead. You will want to specify a different library name if you have
renamed a standard library.

If you specify a new library name, the linker searches the new library to
resolve external references before it searches the library specified in the
object file.

If you want the linker to ignore the libraries named in the object file, you
must use the -NOD linker option. This option tells the linker to ignore the
default-library names encoded in the object files.

Example
cc fun.o text.o table.o care.o -link /testlib/newlibv3.a
This example links four object modules to create an executable file

named a.out. The linker searches /testlib/ newlibv3.a before searching the
default libraries to resolve references.

3.3.2 Specifying Linker Options
‘When you use the c¢ command to invoke the linker, any linker options
you specify (other than those supported by cc options such as -F and -Fm)

must appear after the -link option on the command line. All options begin
with the linker’s option character, the dash (-).

3-3

XENIX C User’s Guide

The following sections outline the rules for specifying linker options on
the cc command line.

Abbreviations

Since linker options are named according to their functions, some of these
options are quite long. You can abbreviate the options to save space and
effort. Be sure that your abbreviation is unique, so that the linker can
determine which option you want. (The minimum legal abbreviation for
each option is indicated in the syntax of the option.)

For example, several options begin with the letters ‘“NO”’; therefore,
abbreviations for those options must be longer than ‘““NO”’ to be unique.
You cannot use ‘“NO’’ as an abbreviation for the -NOIGNORECASE
option, since the linker cannot tell which of the options beginning with
““NO’’ you want. The shortest legal abbreviation for this option is -NOI.

Abbreviations must begin with the first letter of the option and must be
continuous through the last letter typed. No gaps or transpositions are
allowed.

Numerical Arguments

Some linker options take numerical arguments. A numerical argument
can be any of the following:

e A decimal number from 0 to 65,535

e An octal number from 0 to 0177777. A number is interpreted as
octal if it starts with 0. For example, the number /0 is a decimal
number, but the number 070 is an octal number, equivalent to § in
decimal

e A hexadecimal number from 0 to OXFFFF. A number is interpreted
as hexadecimal if it starts with Ox or 0X. For example, 0x/0 is a
hexadecimal number, equivalent to 16 in decimal

Differences from cc Options
If you are accustomed to using cc options, you should be aware that the

linker options work in a slightly different manner. Keep the following
differences in mind when you use linker options:

3-4

Linking with the cc Command

¢ Linker options can be abbreviated; cc options cannot. For example,
the linker option -NOIGNORECASE can be abbreviated to -NOL

¢ Case is not significant in linker options, as it is in cc options. For
example, -NOI and -noi are equivalent.

¢ Linker options on the command line affect all files in the linking

process, regardless of where the options appear in the link-libinfo
field.

This section summarizes the linker options that can be used with XENIX
C programs. Note that this section does not describe all available linker
options; for a complete list, refer to the 1d(CP) command in the XENIX
Programmer’s Reference Manual.

The following linker option is most commonly used with XENIX C pro-
grams:

-SE[GMENTS]:number
Controls the number of segments that the linker allows a program to
have. The default is 128, but you can set number to any value
(decimal, octal, or hexadecimal) in the range 1-1024 (decimal).

For each segment, the linker must allocate some space to keep track
of segment information. When you set the segment limit higher than
128, the linker allocates more space for segment information. For
programs with fewer than 128 segments, you can keep the storage
requirements of the linker at the lowest level possible by setting
number to reflect the actual number of segments in the program. The
linker displays an error message if the number of segments allocated
is too high for the amount of memory the linker has available.

The following linker options can be used with XENIX C programs, but
they perform the same actions as cc options. Therefore, you do not need
to use them unless you are compiling and linking in separate steps.

-M[AP][:number]

Creates a map file. This option is equivalent to using the -Fm option
with the cc command, except that you can give a number argument
with the -M option. The number argument is any positive integer
(decimal, octal, or hexadecimal) up to 65,535 (decimal) specifying
how many symbols are sorted in the map listing. If no number argu-
ment is given, a maximum of 2048 symbols is sorted. (In practice,
the number of sorted symbols is limited by the amount of free heap
space.) If a number argument is given, the alphabetical list of sym-
bols does not appear in the map file.

3-5

- XENIX C User’s Guide

-LI[NENUMBERS]
Creates a map file and includes the line numbers and associated
addresses of the source program. This option is equivalent to using
the -Zd option with the ce command. For more information about the
-Z.d option, see the ‘‘Compiling with the cc Command’’ chapter of
this guide.

-ST[ACK]:number
Specifies the size of the stack for your program, where number is any
positive value (decimal, octal, or hexadecimal) up to 65,535
(decimal) representing the size, in bytes, of the stack. This option is
equivalent to using the -F option of the cc command. For more infor-
mation about the -F option, see the ‘‘Compiling with the cc Com-
mand’’ chapter of this guide.

3-6

Chapter 4
Running C Programs

on XENIX

4.1 Introduction 4-1

4.2 Passing Command-Line Data to a Program 4-1

Running C Programs on XENIX

4.1 Introduction

After compiling and linking a program with the XENIX C Compiler and
linking with the linker, you will have an executable file that can be run
from the shell prompt.

XENIX uses the PATH environment variable to find executable files. You
can execute your program from any directory, as long as the executable
program file is in one of the directories on the path set in the PATH
environment variable.

Your program can also be executed by other programs, and you can write
it so that it will be capable of executing other programs. The exec and
system routines provided in the run-time library allow your program to
execute other programs. See the XENIX C Library Guide for a description
of these routines.

XENIX has several other unique capabilities that your program can use if
you write the program to take advantage of them. Among these capabili-
ties are the following:

e Receiving arguments from the command line
e Reading information from the environment
e Sending a message to the shell by returning an exit code

This chapter explains how to write programs to take advantage of the first
of these features, and how to use it once your program is completed.

4.2 Passing Command-Line Data to a Program

Your C program can access data from a command line or from the
environment. You can use the Bourne shell commands to place data in the
environment table. Command-line data are arguments that appear on the
same line as the program name when you execute the program.

To pass data to your program on the command line, give one or more
arguments after the program name when you execute the program. Each
argument must be separated from the arguments around it by one or more
spaces or tab characters, and may be enclosed in quotation marks ("). If
you want to give a single argument that includes spaces or tab characters,

4-1

XENIX C User’s Guide

enclose the argument in quotation marks. For example, if your C program
is called try, you might give it the following command line:

try 42 "de f" 16

In this case, the program will be executed and three arguments will be
passed: 42, def, and 16.

For a C program to read the data from the command line, the program
should declare two variables as arguments to the main function. These
variables and their contents are as follows:

Variable Contents
argc Number of arguments passed
argv Array of strings containing arguments

By declaring these variables as arguments to main, you make them avail-
able as local variables in the main function. The following example illus-
trates how to declare these arguments:

main (argc, argv)
int argc;
char *argv[];

The number of arguments appearing on the command line is passed as the
integer variable argc, and the command line is passed to the program as
the array of strings indicated by argv.

The first argument of any command line is the name of the program to be
executed. Therefore, the program name is the first string stored in argv, at
argv [0]. Since a program name must be given to run the program, the
integer value of argc is always at least 1. Therefore, if you pass two argu-
ments to your program, argc will have a value of 3 (two arguments and
the program name).

The first argument following the program name is stored at argv [1], the
second is stored at argv [2], and so on, to the last argument. There is a
third argument passed to the main function: envp, a pointer to the
environment table. This argument is an extension provided by the XENIX
C Compiler to support code ported from XENIX and other UNIX-like sys-
tems. When specified, it follows argv and is declared as follows:

char *envpl[]:

4-2

Running C Programs on XENIX

Although you can use this pointer to access the value of environment set-
tings, this usage is nonstandard and not recommended. The putenv and
getenv routines from the C run-time library accomplish the same task,
and are easier and safer to use. Using the putenv routine may change the
location of the environment table in memory, depending on memory
requirements. Therefore, the value given to envp at the beginning of the
program’s execution may not be valid throughout. In contrast, the putenv
and getenv routines access the environment table properly, even when its
location changes. These routines use the global variable environ
(described in the XENIX C Library Guide), which always points to the
correct table location.

Example

myprog ABC "abc e" 3 8
This command line executes the program named myprog and passes the
four command-line arguments to the main function. The arguments are
stored as null-terminated strings, and the number of arguments is stored in

argc. To access the last argument, for example, you would use an expres-
sion like the following:

argv[argc - 1]

Since the value of argc is 5 (counting the program name as an argument),
this expression is equivalent to argv[4], or the fifth string of the array.

4-3

Chapter 5
Working with Memory Models

5.1 Introduction 5-1
5.1.1 Memory Model Considerations 5-2

5.2 Near, Far, and Huge Addressing 5-3

5.3 Using the Standard Memory Models 5-4
5.3.1 Porting Considerations 5-5
5.3.2 Creating Small-Model Programs 5-6
53.3 Creating Medium-Model Programs 5-7
5.3.4 Creating Compact-Model Programs 5-7
5.3.5 Creating Large-Model Programs 5-9
5.3.6 Creating Huge-Model Programs 5-9
5.3.7 Segmentation Errors 5-10

5.4 Using the near, far, and huge Keywords 5-12
54.1 Library Support for near, far, and huge 5-14
5.4.2 Declaring Data with near, far, and huge 5-14 .
5.4.3 Declaring Functions with the near and far Keywords 5-18
5.4.4 Pointer Conversions 5-20

5.5 Creating Customized Memory Models 5-22

5.5.1 Code Pointers 5-24

5.5.2 Data Pointers 5-24

5.5.3 Setting Up Segments 5-25

5.5.4 Library Support for Customized Memory Models 5-26
5.6 Setting the Data Threshold 5-27
5.7 Naming Modules and Segments 5-28

5.8 Specifying Text and Data Segments 5-30

Working with Memory Models

5.1 Imtroduction

Expanding the computing power of microcomputers often means giving
the computer more ‘‘space’’ to work in. The Intel family of microproces-
sors (8080, 8086, 80286, and 80386) is a good example of such growth.
Each new processor was capable of addressing more memory space than
its predecessor.

The 8080 processor could address 64 kilobytes (64K) of memory, using
16-bit-wide address registers. For the 8086 processor, the address space
was expanded to one-megabyte (1M). However, rather than expand the
size of the address registers, a second set of ‘‘segment’’ registers was
added. These registers select 64K blocks of memory, known as segments,
within the one-megabyte address space. The 16-bit address registers then
select an offset from the beginning of a segment through a hardware
operation equivalent to shifting the segment register 4 bits (multiplying
by 16) and adding that to the offset value. This allows the 8086 to have a
larger address space, yet retain the 16-bit registers of the 8080 for back-
ward compatibility.

The same architecture is used for the 80286 processor, except that in the __

processor’s ‘‘protected mode’’ the 16-bit segment base values are shifted

over 8 bits instead of 4 as in the 8086 or in the 80286’s ‘‘real mode.”” The .

80286 thus uses a 24-bit address, capable of addressing up to 16 mega-
bytes of memory.

This segmented architecture can complicate the development of large
programs under the XENIX 86 and XENIX 286 Operating Systems. The
80386 processor with its 32-bit registers is not restricted by 64K seg-
ments; its segment size is 4096 Mbytes. It is therefore much more like
non-segmented architectures such as the Motorola 68000.

However, a substantial amount of software development is done in the
XENIX 86 and XENIX 286 environments. Understanding the potential
stumbling blocks in the 80286 world is necessary to develop large pro-
grams effectively. Error messages such as ‘“DGROUP allocation exceeds
64K, ““Not enough core,”” and ‘“Too big’’ can be incomprehensible
without an understanding of segment usage under XENIX System V.

There are two types of segments under XENIX. Text segments (also
called code segments) contain the actual machine instructions for the pro-
gram. Data segments contain all the programs data, such as global vari-
ables and the stack. Under XENIX, the program’s stack is included in the

first data segment. A program’s ‘‘memory model’’ determines how many
text and data segments the program is allowed to have.

5-1

XENIX C User’s Guide

5.1.1 Memory Model Considerations

If you do not specify a memory model, cc uses the small memory model
by default. This is sufficient for most programs.

You cannot use the small memory model if your program meets one or
more of the following three conditions:

1. Your program has more than 64K of code.

2. Your program has more than 64K of data.

3. Your program contains individual arrays that need to be larger than
If you decide that the small memory model will not be adequate for your
program, you have four options for larger memory models:

1. You can specify one of the other standard memory models
(medium, compact, large, or huge) using one of the -M options.

2. You can create a mixed-model program using the near, far, and
huge keywords.

3. You can create your own customized memory model using the
-Astring option.

4. Method 2 can be combined with either method 1 or method 3.

5-2

Working with Memory Models

Note

The only memory model supported for 80386 code is the pure small
model. It is important to note that all other memory models apply to
only 8086 and 80286 processors. Large and huge model programs
will not run on an 8086, and any program for the 8086 or 80286, of
any model, will run on an 80386, although the segment size is still
limited to 64K.

When generating code specifically for the 80386 processor under
SCO XENIX 386, the C compiler supports only ‘‘small’’ model pro-
grams, but without the 64K limit, since 80386 registers are all 32
bits wide, and its segments are over four billion bytes long. All
models are supported for 86/286 code.

Choosing a memory model for a program is a trade-off between size and
speed. Programs of all memory models have one ‘‘near’’ data segment
that is addressed through the processor’s DS segment register. References
to data in this segment require only a 16-bit address calculation. Large
and huge model programs may have one or more additional segments.
However, addressing data in these ‘‘far’’ segments requires loading a seg-
ment register in addition to calculating the offset within the segment.

5.2 Near, Far, and Huge Addressing

Understanding the terms ‘‘near,”” ‘‘far,”” and ‘‘huge’’ is crucial to under-
standing the concept of memory models. These terms indicate how data
can be accessed in the segmented architecture of the 80x86 family of
microprocessors (8086, 80186, 80286).

XENIX loads the code and data allocated by your program into °‘seg-
ments’’ of physical memory. Each segment is up to 64K long. With the
exception of impure small model programs, separate segments are always
allocated for the program code and data. Impure small model programs
fit all data and code into one segment. Except for this case, the minimum
number of segments allocated for a program is two; these two segments,
required for every program, are called ‘‘the default segments.’” The small
memory model uses only the two default segments. The other memory
models discussed in this chapter allow more than one code segment per
program, more than one data segment per program, or both.

In the 80x86 family of microprocessors, all memory addresses consist of
two parts:

5-3

XENIX C User’s Guide

1. A 16-bit number that represents the base address of a memory
segment

2. Another 16-bit number that gives an offset within that segment

The architecture of the 80x86 microprocessor is such that code can be
accessed within the default code or data segment using just the 16-bit
offset value. This is possible because the segment addresses for the
default segments are always known. This 16-bit offset value is called a
“‘near’’ address, and can be accessed with a ‘‘near’’ pointer. Since only
16-bit arithmetic is required to access any near item, near references to
code or data are smaller and more efficient.

When data or code lies outside the default segments, the address must use
both the segment and offset values. Such addresses are called ‘‘far’”’
addresses, and can be accessed by using ‘“far’’ pointers in a C program.
Accessing far data or code items is more expensive in terms of program
speed and size, but using them allows your programs to address all
memory, rather than just a 64K piece.

There is a third type of address in XENIX C: the ‘‘huge’” address. A huge
address is similar to a far address in that each consists of a segment value
and an offset value; but the two differ in the way address arithmetic is per-
formed on pointers. Because items (both code and data) referenced by far
pointers are still assumed to lie completely within the segment in which
they start, pointer-arithmetic is done only on the offset portion of the
address. This gain in pointer arithmetic efficiency is achieved, however,
by limiting the size of any single item to 64K. With data items, huge
pointers overcome this size limitation; pointer arithmetic is performed on
all 32 bits of the data item’s address, thus allowing data items referenced
by huge pointers to span more than one segment, provided they conform
to the rules outlined in the section on ‘‘Creating Huge-Model Programs.””

The rest of this chapter deals with the various methods you can use to
control whether your program makes far, near, or huge calls to access
code or data.

5.3 Using the Standard Memory Models

The standard libraries provided with the XENIX Development System
support five standard memory models. Using the standard memory models
is the simplest way to control how your program accesses code and data

in memory.

‘When you use the standard memory models, the compiler handles library
support for you. The library corresponding to the memory model you

5-4

Working with Memory Models

specify is used automatically. Each memory model has its own library,
except for the huge memory model, which uses the large-model library.

The advantage of using standard models for your programs is simplicity.
In the standard models, memory management is specified by compiler
options; since the standard models do not require the use of extended key-
words, they are the best way to write code that can be ported to other sys-
tems (particularly systems that do not use segmented architectures).

The disadvantage of using standard memory models exclusively is that
they may not produce the most efficient code. For example, if you have an
otherwise small-model program containing a large array that pushes the
total data size for your program over the 64K limit for small-model, it
may be to your advantage to declare the one array with the far keyword,
while keeping the rest of the program small model, as opposed to using
the standard compact-memory model for the entire program. For max-
imum flexibility and control over how your program uses memory, you
can combine the standard-memory-model method with the near, far, and
huge keywords described in ‘‘Using the near, far, and huge Keywords.”’

The -M option for cc is used to specify one of the five standard memory
models (small, medium, compact, large, or huge) at compile time. These
options are discussed in the next five sections.

Note

In the following sections, which describe in detail the different
memory-model addressing conventions, it is important to keep in
mind two common features of all five models:

1. No single source module can generate 64K or more of code.
2. No single data item can exceed 64K, unless it appears in a

huge-model program or it has been declared with the huge
keyword.

5.3.1 Porting Considerations

When porting software to XENIX System V on Intel processors from other
operating systems or other processors, it is important to recognize the
differences that arise from the Intel-segmented architecture. One com-
mon assumption is that an integer occupies the same number of bytes as a

5-5

XENIX C User’s Guide

pointer. While this is true for small models, it is not true for middle and
large models, and can cause many problems. Another common practice is
to use the integer O to denote a null pointer. For large and huge model
programs, 0 must be typecast to an appropriate pointer (typically a pointer
to a char, such as (char *)0 to assure that operations with pointers work
correctly.

5.3.2 Creating Small-Model Programs
Option
-Ms

The small-model option tells the compiler to create a program that occu-
pies one segment for both code and data. (Impure Small Model)

Impure small-model programs are typically C programs that are short or
have a limited purpose. Since code and data for these programs is limited
to 64K, the total size of a small-model program can never exceed 64K.
Most programs fit easily into this model. Using the -i flag, you can create
a pure small model program. A pure small model program has one seg-
ment of code and one segment of data for a total of 128K.

The default in small-model programs is that both code and data items are
accessed with near addresses. You can override the default for data by
using the far or huge keyword, and the default for code by using the far
keyword. (The huge keyword is relevant only to data items—specifically,
arrays and pointers to arrays).

The compiler creates small-model programs by default when you do not
specify a memory model. The -Ms option is provided for completeness;
you need never give it explicitly unless you have added one of the other
-M options to /etc/default/cc.

Impure Small Model

An ‘‘impure’’ program is one in which both text and data occupy the
same physical segment. Impure programs can be created for the 8086,
80186 or 80286 processor. There are no impure 80386 programs. The
maximum program size is 64K. The cc program creates impure small-
model programs by default on 8086/80286 systems. They can also be
created using the -Ms option.

5-6

Working with Memory Models

Pure Small Model

A ‘‘pure’” program is one where text and data are in separate segments.
The text is read-only and may be shared by several processes at once. On
8086/80186/80286 processors, the maximum program size is 128K (64K
code + 64K data). On the 80386 processor, the maximum program size is
8 gigabytes (4G code plus 4G data). Pure small-model programs are
created using the -i option. In this context, -i stands for ‘‘instruction’’
rather than ‘‘impure’’. This is the default on 80386 systems.

5.3.3 Creating Medium-Model Programs
Option
-Mm

The medium-model option provides a single segment for program data,
and multiple segments for program code. Each source module is given its
own code segment.

Medium-model programs are typically C programs that have a large
number of program statements (more than 64K of code), but a relatively
small amount of data (less than 64K). Program code can occupy any
amount of space and is given as many segments as needed; total program
data cannot be greater than 64K. The medium model provides a useful
trade-off between speed and space, since most programs refer more fre-
quently to data items than to code.

5.3.4 Creating Compact-Model Programs
Option

-Mc

The compact-model option directs the compiler to allow multiple
segments for program data but only one segment for the program code.

Compact-model programs are typically C programs that have large
amounts of data, but relatively small numbers of program statements. Pro-
gram data can occupy any amount of space and are given as many seg-
ments as needed.

5-7

XENIX C User’s Guide

The default in compact-model programs is that code items are accessed
with near addresses and data items are accessed with far addresses. You
can override the default by using the near and huge keywords for data,
and the far keyword for code.

Note

Note that in medium and compact models, NULL must be used
carefully in certain situations. NULL actually represents a null
data pointer. In memory models where code and data pointers are
the same size, it can be used with either. However, in memory
models where code and data pointers are different sizes, this is not
the case. Consider the following example:

void funcl(char *dp)

{

}
void func2(char (*fp) (void))
{

}

main ()

{

funcl (NULL) ;
func2 (NULL) ;
}

This example passes a 16-bit pointer to both funcl and func2 if
compiled in medium model, and a 32-bit pointer to both funcl and
func2 if compiled in compact model, unless prototypes are added to
the beginning of the program to indicate the types, or an explicit
cast is used on the argument to funcl (compact model) or func2
(medium model).

5-8

Working with Memory Models

5.3.5 Creating Large-Model Programs
Option
-Mil

The large-model option allows the compiler to create multiple segments
as needed for both code and data.

Large-model programs are typically very large C programs that use a
large amount of data storage during normal processiag.

The default in large-model programs is that both code and data items are
accessed with far addresses. You can override the default by using the
near and huge keywords for data, and the near keyword for code.

5.3.6 Creating Huge-Model Programs
Option
-Mh

The huge-model option is similar to the large-model option, except that
the restriction on the size of individual data items is removed for arrays.

However, some size restrictions apply to elements of huge arrays where
they are larger than 64K. To provide efficient addressing, array elements
are not permitted to cross segment boundaries. This has the following
implications:

1. No array element can be larger than 64K.

2. For any array larger than 128K, all elements must have a size in
bytes equal to a power of 2 (that is, 2 bytes, 4 bytes, 8 bytes, 16
bytes, and so on). However, if the array is 128K or smaller, its ele-
ments may be any size, up to and including 64K.

In huge-model programs, care must be taken when using the sizeof opera-
tor or when subtracting pointers. The C language defines the value
returned by the sizeof operator to be an unsigned int value, but the size in
bytes of a huge array is an unsigned long value. To solve this
discrepancy, the XENIX C Compiler produces the correct size of a huge
array when a type cast like the following is used:

(unsigned long)sizeof (huge_item)

5-9

XENIX C User’s Guide

Similarly, the C language defines the result of subtracting two pointers as
an int value. When subtracting two huge pointers, however, the result
may be a long int value. The XENIX C Compiler gives the correct result
when a type cast like the following is used:

(long) (huge_ptrl - huge ptr2)

5.3.7 Segmentation Errors

‘When compiling a small- or medium-model program, the compiler places
all data in the data segment. However, the compiler cannot know how
much total data is allocated in the segment. This is not determined until
link time, when data from all the object modules are combined by the
linker. If the linker finds that more than 64K have been allocated by the
compiler, the linker will return the error message:

DGROUP allocation exceeds 64K

Errors with Small- and Medium-Model Programs

If this error occurs with a small- or medium-model program, there are
three alternatives:

e Simply reduce the amount of data used by the program.
e Switch to the large-memory model.
e Create a hybrid-model program.

Hybrid models are created by declaring data using the ‘‘far’’ keyword and
compiling with the -Me flag. The compiler then allocates additional seg-
ments for the far data. Care must be taken when referencing data
declared in this manner. Since all the library functions will be expecting
near data, far data must be transferred into a near data buffer before being
passed to any library function, such as printf(). The hybrid model is best
suited for programs with one or more large, seldom-used arrays or data
structures where the rest of the program uses less than 64K of data.

5-10

Working with Memory Models

Errors with Large-Model Programs

For large-model programs, the compiler divides different kinds of data
into different segments. All initialized data is placed in DATA segments.
Uninitialized data is placed in BSS (Blank Storage Space) segments. A
large-model program may have as many DATA and BSS segments as
needed, but only one near DATA segment (the segment addressed by the
CPU DS register). For maximum efficiency, the compiler allocates as
much data as possible to the first DATA segment. However, since the
total amount of data is not known until all the object modules are linked
together, more than 64K of data might be allocated for the first DATA
segment. Thus, it is still possible to get the error DGROUP allocation
error from the linker even with a large-model program.

One possible solution to this problem is to reduce the amount of initial-
ized data in the program by declaring it uninitialized, then initializing at
runtime. Another possibility is to use the -Mt flag to force the compiler
to move some data out of the DATA segment. Normally, the compiler
places any initialized data item (single variable, array or structure) in the
first data segment if its size is less than 32767 bytes. The -Mt flag will
lower this limit. For example, -Mt1024 tells the compiler to place any
data item larger than 1024 bytes in its own segment. The drawback to
this solution is that, at runtime, a segment register must be loaded for
each access to that data. This may affect performance of the program.
This method is most appropriate if the program contains a few large
arrays or structures.

Another method of reducing the size of the first DATA segment is the use
of the -ND compiler flag. (See ‘‘Setting Up Segments’” in this chapter.)
When a module is compiled with this flag, all the data in the module will
be placed in its own data segment. Modules compiled using this flag
should contain data only, or data and functions that do not use any data
items declared in other modules.

80286 programs allocate their maximum stack size at runtime; the default
size is 4K. Since the stack must also fit in the first data segment, a prob-
lem will arise if there is not enough space in the first data segment to fit
both the data and the stack. If the size of the data plus the size of the
stack exceeds 64K, then, even if the linker will successfully link a pro-
gram, the program’s first data segment will be too large for the program to
run. This problem will be reported by the C shell with the message ‘Not
enough core.”” The Bourne shell will report the error with the message
“‘too big.”” The two possible solutions to this problem are to reduce the
stack size, or to reduce the amount of data in the first data segment. The
latter method is recommended, since reducing the stack size may cause
the program to run out of stack space.

XENIX C User’s Guide

Determining Segment Size

There are three utilities that are useful for finding and correcting prob-
lems related to program segmentation. The size utility, size(CP), takes
one or more executable or object file names as arguments, and prints the
size of the text, DATA, and BSS segments in bytes. This information is
helpful in determining exactly how much data is used by a program, and
how it is divided between the DATA and BSS segments. The hdr(C) util-
ity prints other information about an executable file, such as its memory
model and stack size. The fixhdr(CP) utility can be used (among other
things) to alter the stack size of any executable. This is useful for experi-
menting with different stack sizes without the need to relink, or for cases
where the source code is not available.

5.4 Using the near, far, and huge Keywords

One limitation of the predefined memory-model structure is that, when
you change memory models, all data and code address sizes are subject to
change. However, the XENIX C Compiler lets you override the default
addressing convention for a given memory model and access items with a
near, far, or huge pointer. This is done with the near, far, and huge key-
words. These special type modifiers can be used with a standard memory
model to overcome addressing limitations for particular data or code
items, or to optimize access to these items, without changing the address-
ing conventions for the program as a whole. Table 5.1 explains how the
use of these keywords affects the addressing of code or data, or pointers to
code or data.

Key-
word

Addressing of Code and Data
Declared with near, far, and huge

Data

Working with Memory Models

Table 5.1

Pointer
Function

Arithmetic

near

far

huge

Reside in default
data segment; refer-
enced with 16-bit
addresses (Pointers
to data are 16 bits)

May be anywhere in
memory, not
assumed to reside in
current data segment;
referenced with 32-
bit addresses
(Pointers to data are
32 bits)

May be anywhere in
memory, not
assumed to reside in
current data segment;
individual data items
(arrays) can exceed
64K in size; refer-
enced with 32-bit
addresses (Pointers
to data are 32 bits)

Assumed to be in
current code seg-
ment; referenced
with 16-bit addresses
(Pointers to functions
are 16 bits)

Not assumed to be in
current code seg-
ment; referenced
with 32-bit address
(Pointers to functions
are 32 bits)

Not
code

applicable to

Uses 16 bits

Uses 16 bits

Uses 32 bits for

data

Note

The near, far, and huge keywords are not standard parts of the C
language; they are meaningful only for systems that use a seg-
mented architecture similar to that of the 80x86 microprocessors.
Keep this in mind if you want your code to be ported to other sys-

tems.

XENIX C User’s Guide

In the XENIX C Compiler, the near, far, and huge keywords are enabled
by default. To treat these keywords as ordinary identifiers, you must give
the -Za option at compile time. This option is useful if you are concerned
with porting C programs from environments in which these are not key-
words for instance, if you are porting a program in which one of these
words is used as a label. For further information about the use and effects
of the -Za option, see the ‘‘Compiling with the cc Command’’ chapter of
this guide.

5.4.1 Library Support for near, far, and huge

When using the near, far, and huge keywords to modify addressing con-
ventions for particular items, you can usually use one of the standard
libraries (small, compact, medium, or large) with your program. The
large-model libraries are also appropriate for use with huge-model pro-
grams. However, you must use care when calling library routines. In gen-
eral, you cannot pass far pointers, or the addresses of far data items, to a
small-model library routine. Of course, you can always pass the value of a
far item to a small-model library routine. For example:

long far time val;

time (&time_val); /* Illegal */
printf("$1d\0, time val); /* Legal */

If you use the near, far, or huge keyword, it is strongly recommended
that you use function prototypes with argument-type lists to ensure that
all pointer arguments are passed to functions correctly. See the section on
‘‘Pointer Conversions,”’ for more information.

To learn more about library routines and memory models, see the XENIX
C Library Guide.

5.4.2 Declaring Data with near, far, and huge

The near, far, and huge keywords modify either objects or pointers to
objects. When using them to declare data or code (or pointers to data or
code), keep the following rules in mind:

¢ The keyword always modifies the object or pointer immediately to
its right. In complex declarations, think of the far keyword and the
item to its right as being a single unit. For example, in the case of
the declaration:

char far* *p;

5-14

Working with Memory Models

D is a pointer (whose size depends on the specified memory model)
to a far pointer to char. See the XENIX C Language Reference for
complete rules governing the use of special keywords in complex
declarations.

e If the item immediately to the right of the keyword is an identifier,
the keyword determines whether the item will be allocated in the
default data segment (near) or a separate data segment (far or
huge). For example:

char far a;
allocates a as an item of type char with a far address.

e If the item immediately to the right of the keyword is a pointer, the
keyword determines whether the pointer will hold a near address
(16 bits), a far address (32 bits), or a huge address (also 32 bits).
For example,

char far *p;
allocates p as a far pointer (32 bits) to an item of type char.
Examples

The examples in this section show data declarations using the near, far,
and huge keywords.

char a[3000]; /* small-model program */
char far b[30000];

The first declaration in the example allocates the array a in the default
data segment. By contrast, the array b in the second declaration may be
allocated in any far data segment. Since these declarations appear in a
small-model program, array a probably represents frequently used data
that was deliberately placed in the default segment for fast access. Array
b probably represents seldom used data that might make the default data
segment exceed 64K and force the programmer to use a larger memory
model if the array were not declared with the far keyword. The second
declaration uses a large array, because it is more likely that a programmer
would want to specify the address allocation size for items of substantial
size.

char a[3000]; /* large-model program */
char near b[3000];

5-15

XENIX C User’s Guide

In this example, access speed would probably not be critical for array a.
Even though it may or may not be allocated within the default data seg-
ment, it is always referenced with a 32-bit address. Array b is explicitly
allocated near to improve speed of access in this memory model (large).

char huge a{700001]; /* small-model program */
char huge *pa;

In this small-model program, a must be declared as huge because it is
larger than 64K. Using the huge keyword instead of the standard huge
memory model means that the price for using huge data is only paid for
this one large item. Other data can be accessed quickly within the default
segment. The pointer pa could be used to point to @. Any pointer arith-
metic for pa (such as pa++) would be performed using 32-bit arithmetic.

char *pa; /* small-model program */
char far *pb;

The pointer pa is declared as a near pointer to char in the example. The
pointer is near by default since the example appears in a small-model pro-
gram. By contrast, pb is allocated as a far pointer to char; pb could be
used to point to, and step through, an array of characters stored in a seg-
ment other than the default data segment. For example, pa might be used
to point to array a in the first example, while pb might be used to point to
array b.

char far * *pa; /* small-model program */
char far * *pa; /* large-model program */

The pointer declarations in the example illustrate the interaction between
the memory model chosen and the near and far keywords. Although the
declarations for pa are identical, in a small-model program, pa is declared
as a near pointer to an array of far pointers to type char, while in a large-
model program, pa is declared as a far pointer to an array of far pointers
to type char.

char far * near *pb; /* any model */
char far * far *pb;

In the first declaration in the example, pb is declared as a near pointer to
an array of far pointers to type char; in the second declaration, pb is
declared as a far pointer to an array of far pointers to type char. Note
that, in this example, the far and near keywords override the model-
specific addressing conventions shown in the example preceding the one
above; the declarations for pb would have the same effect, regardless of

Working with Memory Models

the memory model. The examples in the following table illustrate the far
and near keywords as used in declarations in a small-model program. It
also gives the size in bits of the address and the value and the type of the
value.

Table 5.2
Uses of 8086/80186/80286 near and far Keywords

Size of | Size of | Type of Value
Declaration Address | Value | Type of Value
char c; 16 8 data
char far d; 32 8 data
char *p; 16 16 near pointer
char far *q; 16 32 far pointer
char * far r; 32 16 near pointer1
char far * far s; 32 32 far pointer2
int foo(); 16 16 integer function
int far foo(); 32 16 integer function>

Notes

1 This example of a near 16-bit pointer which may lie in a far data segment is unlikely
to be useful; it is shown for syntactic completeness only.

2 This is similar to accessing data in a large-model program.

3 This example leads to trouble in most environments. The far call changes the CS
register, and makes run iime support unavailable.

The following example is from a middle-model compilation:
int near foo();

This allows a near call (to the routine foo) in a program where calls are
normally far.

If you are using one of the keywords, it would be advisable to check the
type of item in separate source files as the compiler does not do this.

If the -M3e option is used, the near keyword can address items in the pro-
gram segment itself and the far keyword can address items in segments
other than the one in which the program resides. The near keyword

XENIX C User’s Guide

defines an item with a 32-bit address (relative to DS). The far keyword
defines an item with a 48-bit address. Any data item, construct, or func-
tion can be addressed.

These keywords override the normal address length generated by the
compiler for variables and functions. In pure-text small-model programs,
far lets you access data and functions in segments outside the PATH and
DATA segments.

The examples in the table that follows show near and far keywords used
in declarations of pure-text small- and mixed-model programs configured
with the -M3e option:
Table 5.3
Uses of 80386 near and far Keywords

Declaration Address Size Allocation Size

char ¢; near (32 bits) 8 bits (data)

char far d; far (48 bits) 8 bits (data)

char *p; near (32 bits) 32 bits (near pointer)

char far *q; near (32 bits) 64 bits (far pointer)

char * far r; far (48 bits) 32 bits (near pointer)1

char far * far s; | far (48 bits) 64 bits (far pointe:r)2

int foo(); near (32 bits) function returning 32 bits

int far foo(); far (64/48 bits) | function returning 32 bits>
Notes

1 This example is shown for syntactic completeness only.
2 This resembles accessing data in a large-model program.

3 This example creates problems in most environments. The far call changes the CS
register, and makes run-time support unavailable.

5.4.3 Declaring Functions with the near and far Keywords

The rules for using the near and far keywords for functions are similar to
those for using them with data, as specified in the following list:

e The keyword always modifies the function or pointer immediately
to its right. For more information about rules for evaluating com-
plex declarations, see the XENIX C Language Reference.

Working with Memory Models

If the item immediately to the right of the keyword is a function,
then the keyword determines whether the function will be allo-
cated as near or far. For example:

char far fun():;

defines fur as a function called with a 32-bit address and returning
type char.

If the item immediately to the right of the keyword is a pointer to a

function, then the keyword determines whether the function will be

called using a near (16-bit) or far (32-bit) address. For example:
char (far * pfun) ();

defines pfun as a far pointer (32 bits) to a function returning type
char.

Function declarations must match function definitions.

The huge keyword cannot be applied to functions.

Examples

void char far fun(void); /* small model */
void char far fun(void)

{

In this example, fun is declared as a function returning type char. The
far keyword in the declaration means that fun must be called with a 32-
bit call.

XENIX C User’s Guide

static char far * near fun(); /* large model */
static char far * near fun()
{

In the large-model example, fun is declared as a near function that returns
a far pointer to type char. Such a function might be seen in a large-model
program as a helper routine that is used frequently, but only by the rou-
tines in its own module. Since all routines in a given module share the
same code segment, the function could always be accessed with a near
call. However, you could not pass a pointer to fun as an argument to
another function outside the module in which fun was declared.

void far *fun(void); /* small model */
void (far * pfun) () = fun;

The small-model example declares pfun as a far pointer to a function that
has a void return type, and then assigns the address of fun to pfun. In fact,
pfun could be used to point to any function accessed with a far call. Note
that if the function indicated by pfun has not been declared with the far
keyword, or if it is not far by default, then calling that function through
pfun would cause the program to fail.

double far * (far fun) (); /* compact model */
double far * (far *pfun)() = fun;

In this final example, pfun is declared as a far pointer to a function that
returns a far pointer to type double, and then assigns the address of fun to
pfun. This might be used in a compact-model program for a function that
is not used frequently and thus does not need to be in the default code
segment. Both the function and the pointer to the function must be
declared with the far keyword.

5.4.4 Pointer Conversions
Passing pointers as arguments to functions may cause automatic conver-
sions in the size of the pointer argument, since passing a pointer to a func-

tion forces the pointer size to the larger of the following two sizes:

e The default pointer size for that type, as defined by the memory
model used during compilation

For example, in medium-model programs, data-pointer arguments
are near by default, and code-pointer arguments are far by default.

5-20

Working with Memory Models

e The type of the argument

If a function prototype with argument types is given, the compiler per-
forms type-checking and enforces the conversion of actual arguments to
the declared type of the corresponding formal argument. However, if no
declaration is present or the argument-type list is empty, the compiler
will convert pointer arguments automatically to the default type or the
type of the argument whichever is larger. To avoid mismatched argu-
ments, you should always use a prototype with the argument types.

Examples

/* This program produces unexpected results in compact-,
** large-, or huge-model programs.

*/
main{)

{

int near *x;
char far *y;
int z = 1;

test_fun(x, y, z); /* x will be coerced to far
** pointer in compact, large,
** or huge model
*/

}

int test_fun(ptrl, ptr2, a)
int near *ptril;
char far *ptr2;
int a;

{
printf ("Value of a = %d\n", a);}

If the preceding example is compiled as a small-model program (with no
memory-model options or the -Ms option on cc command line) or
medium-model program (-Mm option), then the size of pointer argument
x is 16 bits, the size of pointer argument y is 32 bits, and the value printed
for a is 1. However, if the preceding example is compiled with the -Mc,
-Ml, or -Mh option, both x and y are automatically converted to far
pointers when they are passed to test_fun. Since ptrl, the first parameter
of test_fun, is defined as a near-pointer argument, it takes only 16 bits of
the 32 bits passed to it. The next parameter, ptr2, takes the remaining 16
bits passed to ptrl, plus 16 bits of the 32 bits passed to it. Finally, the
third parameter, a, takes the left-over 16 bits from p#r2, instead of the
value of z in the main function. This shifting process does not generate an
error message, since both the function call and the function definition are

5-21

XENIX C User’s Guide

legal, but in this case the program does not work as intended, since the
value assigned to a is not the value intended.

To pass ptrl as a near pointer, you should include a forward declaration
that specifically declares this argument for test fun as a near pointer, as
shown in the following example:

/* First, declare test_fun so the compiler knows in advance
** about the near pointer argument:

*/

int test_fun(int near*, char far *, int);

main()

{

int near *x;
char far *y;
int z = 1;

test_fun(x, y, 2z); /* now, x will not be coerced
** to a far pointer; it will be
** passed as a near pointer,
** no matter what memory
** model is used
*x/

}

int test_fun(ptrl, ptr2, a)
int near *ptrl;
char far *ptr2;
int a;

{
printf ("Value of a = %d\n", a);
}

Note that it would not be sufficient to reverse the definition order for
test_fun and main in the first example to avoid pointer coercions; the
pointer arguments must be declared in a forward declaration, as in the
second example.

5.5 Creating Customized Memory Models

A third method of managing memory models is to combine features of the
standard memory models to create your own customized memory model.
You should have a thorough understanding of C memory models and the
architecture of 8086 and 80286 processors before creating your own non-
standard memory models, since there is no library support—other than the
C start-up routines—for nonstandard memory models.

5-22

Working with Memory Models

The -Astring option lets you change the attributes of the standard memory
models to create your own memory models. The three letters in string
correspond to the code-pointer size, the data-pointer size, and the stack-
and data-segment setups, respectively. Because the letter allowed in each
field is unique to that field, you can give the letters in any order after -A.
All three letters must be present.

The standard-memory-model options (-Ms, -Mm, -Mc, -Ml, and -Mh)
can be specified in the -Mstring form. As an example of how to construct
memory models, the standard-memory-model options are listed with their
standard equivalents:

Standard Custom Equivalent

-Ms -Asnd
-Mm -Alnd
-Mc -Asfd
-Mi1 -Alfd
-Mh -Alhd

As an example of the use of customized models, you might want to create
a huge-compact model. This model would allow huge data items, but only
one code segment. The option for specifying this model would be -Ashd.

An even more common use of customized models is to set up segments.
(See the section on *‘Setting Up Segments,”’ for more information).

If you use a customized memory model for a program that includes both
far and near functions, be aware of the following issues:

e The chkstk library function should be called only in functions that
are compiled in the same model as the library being used. (For
compatibility with XENIX, the chkstk function name cannot be
model-encoded.)

e The interfaces to floating-point function calls are not model
encoded, so the same restriction is placed on functions containing
floating-point calls: they must be compiled with the same model as
the library being used.

5-23

XENIX C User’s Guide

Note

For the purposes of the descriptions that follow, the letters 1 (for
““long’”) and s (for ‘‘short’”) are used as code pointers to distinguish
them from the letters for data pointers in the memory-model string.

5.5.1 Code Pointers

Options
-Asxx Near code pointers
-Alxx Far code pointers

The letter s tells the compiler to generate near (16-bit) pointers and
addresses for all code items. This is the default for small- and compact-
model programs.

The letter 1 means that far (32-bit) pointers and addresses are used to

address all code items. Far pointers are the default for medium-, large-,
and huge-model programs.

5.5.2 Data Pointers

Options
-Anxx Near data pointers
-Afxx Far data pointers
-Ahxx Huge data pointers

Three sizes are available for data pointers: near, far, and huge. The letter
n tells the compiler to use near (16-bit) pointers and addresses for all
data. This is the default for small- and medium-model programs.

The letter f specifies that all data pointers and addresses are far (32-bit).
This is the default for compact- and large-model programs.

The letter h also specifies that all data pointers and addresses are far (32-
bit). This is the default for huge-model programs.

‘When far data pointers are used, no single data item may be larger than a
segment (64K) because address arithmetic is performed only on 16 bits

5-24

Working with Memory Models

(the offset portion) of the address. When huge data pointers are used, indi-
vidual data items can be larger than a segment (64K) because address
arithmetic is performed on the entire 32 bits of the address.

5.5.3 Setting Up Segments
Options

-Adxx Sets SS=DS
-Aulxx] Sets SS !=DS; DS reloaded on function entry
-Aw[xx] Sets SS !=DS; DS not reloaded on function entry

The letter d tells the compiler that the segment addresses stored in the SS
and DS registers are equal; that is, the stack segment and the default data
segment are combined into a single segment. This is the default for all
programs. In small- and medium-model programs, the stack plus all data
must occupy less than 64K; thus, any data item is accessed with only a
16-bit offset from the segment address in the SS and DS registers.

In compact-, large-, and huge-model programs, initialized global and
static data are placed in the default data segment. The address of this seg-
ment is stored in the DS and SS registers. All pointers to data, including
pointers to local data (the stack), are full 32-bit addresses. This is impor-
tant to remember when passing pointers as arguments in large-model pro-
grams. Although you may have more than 64K of total data in these
models, there can be no more than 64K of data in the default segment.
The -Gt and -ND options can be used to control allocation of items in the
default data segment if a program exceeds this limit. (For more informa-
tion about these options, see the section on ‘‘Setting the Data Threshold,””
and ‘‘Naming Modules anc¢ Segments.’”)

The letter u allocates different segments for the stack and the data seg-
ments. Each object file (module) is allocated its own segment for global
and static data items. Note that the -ND option, described in ‘‘Naming
Modules and Segments,”” must be specified along with the letter u to allo-
cate data segments other than the default. When the letter u is specified
with -ND, the address in the DS register is saved upon entry to each func-
tion, and the new DS value for the module in which the function was
defined is loaded into the register. The previous DS value is restored on
exit from the function. Therefore, only one data segment is accessible at
any given time. The -ND option can be used to combine these segments
into a single segment.

5-25

XENIX C User’s Guide

If a standard memory-model option precedes it on the command line, the
-Au option can be specified without any letters indicating data- or code-
pointer sizes. In this case, the program uses the specified memory model,
but different segments are set up for the stack and data segments.

A single segment must be allocated for the stack, and its address stored in
the SS register. The stack segment does not change throughout the entire
program.

The letter w, like the letter u, sets up a separate stack segment, but does
not automatically load the DS register at each module entry point. This
option is typically used when writing application programs that interface
with an operating system or with a program running at the operating-
system level. The operating system or the program running under the
operating system actually receives the data intended for the application
program and places that data in a segment; then the operating system or
program must load the DS register with the segment address for the appli-
cation program.

As with the -Au option, the -Aw option can be specified without data- and
code-pointer letters if a standard memory-model option precedes it on the
command line. In this case, the program uses the specified memory
model, but different segments are set up for the stack and data segments,
and the DS register is not reloaded at each module entry point.

Even though u and w set up a separate segment for the stack, the stack’s
size is still fixed at the defanlt unless this is overridden with the -F com-
piler option.

5.5.4 Library Support for Customized Memory Models

Most C programs make function calls to the routines in the C run-time
library. Library support is provided for the five standard memory models
(small, medium, compact, large, and huge) through four separate run-time
libraries. (Huge and large models both use the large-model library.) When
you write mixed-model programs, you are responsible for determining
which library (if any) is suitable for your program and for ensuring that
the appropriate library is used.

Library support is provided for customized memory models where the
stack and default data segments are combined into a single segment
(-Adxx), but not for customized memory models where these segments
are different (-Auxx, -Awxx, -Au, and -Aw). In the latter cases, you prob-
ably need to create a customized library to be used with your customized
memory model. Specify the library files and object files you want to use
when linking. Be sure to use the start-up routine from the appropriate

5-26

Working with Memory Models

library for your memory model. Table 5.2 shows the libraries from which
to extract the start-up routine for each customized memory model.

Table 5.4

Start-Up Routines for
Customized Memory Models

Memory-Model Option Use Start-Up from Library

-Asnx; -MS plus -Ax' /usr/lib/286/Sseg.o

-Asfx; -Ashx; -MC' plus /usr/lib/286/Cseg.o

-Ax

-Alnx; -MM plus -Ax' /usr/lib/286/Mseg.o

-Alfx; -Alhx, -ML plus /usr/lib/286/Lseg.o
-Ax; -MH plus -Ax'

Notes

1 x must be either u or w.

In general, library functions do not support customized memory models,
since a particular run-time routine may in turn call another library routine
that conflicts with your customized model.

5.6 Setting the Data Threshold
Option
-Gt[number)

By default, the compiler allocates all static and global data items within
the default data segment in the small and medium memory models. In
compact-, large-, and huge-model programs, only initialized static and
global data items are assigned to the default data segment. The -Gt option
causes all data items whose sizes are greater than or equal to number
bytes to be allocated to a new data segment. When number is specified, it
must follow the -Gt option immediately, with no intervening spaces.
When number is omitted, the default threshold value is 256. When the -Gt
option is omitted, the default threshold value is 32,767.

You can use the -Gt option only with compact-, large-, and huge-model
programs, since small- and medium-model programs have only one data

5-27

XENIX C User’s Guide

segment. The option is particularly useful with programs that have more
than 64K of initialized static and global data in small data items.

5.7 Naming Modules and Segments
Options

-NM modulename
=NT textsegment
-ND datasegment

‘“Module’’ is another name for an object file created by the C compiler.
Every module has a name. The compiler uses this name in error messages
if problems are encountered during processing. The module name is usu-
ally the same as the source-file name. You can change this name using the
-NM (for ‘“‘name module’’) option. The new modulename can be any
combination of letters and digits. The space between -NM and modu-
lename is optional.

A “‘segment’’ is a contiguous block of binary information (code or data)
produced by the C compiler. Every module except impure small has at
least two segments: a text segment containing the program instructions,
and a data segment containing the program data. Each segment in every
module has a name. The linker uses this name to define the order in which
the segments of the program appear in memory when loaded for execu-
tion. (Note that the segments in the group named DGROUP are an excep-
tion.)

Text and data segment names are normally created by the C compiler.
These default names depend on the memory model chosen for the pro-
gram. For example, in small-model programs, the text segment is named
_TEXT and the data segment is named _DATA. These names are the
same for all small-model modules, so all text segments from all modules
are loaded as one contiguous block, and all data segments from all
modules form another contiguous block.

In medium-model programs, the text from each module is placed in a
separate segment with a distinct name, formed by using the module base
name along with the suffix TEXT. The data segment is named DATA,
as in the small model.

In compact-model programs, the data from each module are placed in a
separate segment with a distinct name, formed by using the module base
name along with the suffix DATA. The exception to this is initialized
global and static data, which are put in the default data segment DATA.
The code segment is named _TEXT, as in the small model.

5-28

Working with Memory Models

In large- and huge-model programs, the text and data from each module
are loaded into separate segments with distinct names. Each text segment
is given the name of the module plus the suffix TEXT. The data from
each segment is placed in a private segment with a unique name (except
for initialized global and static data placed in the default data segment).
The naming conventions for text and data segments are summarized in
Table 5.3.

Table 5.5
Segment-Naming Conventions

Model Text Data Module
Small _TEXT _DATA filename
Medium module_TEXT _DATA filename
Compact _TEXT _DATA' filename
Large module TEXT _DATA1 filename
Huge module_TEXT _DATA' filename
Notes

1 _DATA is the name of default data segment; other data segments have unique private
names.

You can override the default names used by the C compiler (thus overrid-
ing the default loading order) by using the -NT (for ‘‘name text’’) and
-ND (for ‘‘name data’’) options. These options set to a given name the
names of the text and data segments in each module being compiled. The
textsegment argument used with the -NT option and the datasegment
argument used with the -ND option can be any combination of letters and
digits. The space between -NT and textsegment, like the space between
-ND and datasegment, is optional.

If you use the -ND option to change the name of the default data segment,
your program can no longer assume that the address contained in the
stack segment register (SS) is the same as the address in the data segment
register (DS). You must therefore compile your program either with the
-Mstring form of the memory-model option and the u option for the
segment-setup letter, or with the -M option for a standard memory model
followed by the -Mu option, as in the following example:

5-29

XENIX C User’s Guide

cc -Ms -Mu -ND DATAl progl.c

Use of the -Mu option forces the compiler to generate code to load DS
with the correct data-segment value on entry to the code. See the section
on *‘Creating Customized Memory Models,’’ for more information on the
options. All modules whose data segments have the same name have
these segments combined into a single segment named DATAI at link
time.

5.8 Specifying Text and Data Segments
Pragmas

#pragma alloc_text (textsegment, functionl[, function2]...)
#pragma same_seg (variablel[, variable2]...)

The alloc_text pragma gives you source-level control over the segment to
which particular functions are allocated. The same_seg pragma provides
information the compiler can use to generate better code.

If you use overlays or swapping techniques to handle large programs,
alloc_text allows you to tune the contents of their text segments for max-
imum efficiency. The alloc_text pragma must appear before the
definitions of any of the specified functions, but it may appear either
before or after the functions are declared or called. Any functions
specified in an alloc_text pragma must be either explicitly declared with
the far keyword or assumed to be far because of the memory model used
(medium, large, or huge).

The same_seg pragma tells the compiler to assume that the specified
external variables are allocated in the same data segment. You are respon-
sible for making sure that these variables are put in the same data seg-
ment; one way to do this is to specify the -ND option when you compile
the program. The same_seg pragma must appear before any of the
specified variables is used in executable code and after the variables are
declared. Variables specified in a same_seg pragma must be explicitly
declared with extern storage class, and they must either be explicitly
declared with the far keyword or assumed to be far because of the
memory model used (compact, large, or huge).

5-30

Chapter 6
Improving Program Speed

6.1 Introduction 6-1
6.2 Using Register Variables 6-1

6.3 Optimization Options and Pragmas 6-2
6.3.1 Defauit Optimization 6-3
6.3.2 Generating Intrinsic Functions 6-3
6.3.3 Relaxing Alias-Checking 6-4
6.3.4 Performing Loop Optimizations 6-4
6.3.5 Removing Stack Probes 6-5
6.3.6 Maximum Optimization 6-5

6.4 Choosing the Function-Calling Convention 6-5

6.5 Efficiency in Large Data Models 6-6

6.5.1 Changing Addressing with mnear, far, and huge
Keywords 6-6

6.5.2 Setting the Data Threshold 6-7

6.5.3 Controlling Segments Used for Allocation 6-7

6.6 Efficiency in Large Code Models 6-7

Improving Program Speed

6.1 Introduction

This chapter describes a number of ways that you can improve the execu-
tion speed of programs compiled with the XENIX C Compiler. These
techniques include:

¢ Using register variables

e Using optimization options and pragmas
¢ Choosing function-calling conventions
¢ Choosing and adjusting memory models

Where applicable, this chapter discusses the interactions between these
techniques and the trade-offs involved in using them.

6.2 Using Register Variables

One common way to write a program for maximum speed is to declare
selected local (auto) variables with register storage class. The declara-
tion of a register variable requests the compiler to use machine registers
when allocating space for the variable, if possible. The register storage
class can be specified for any variable, but register specifications are
ignored except for variables of type int or short or for pointer types that _
are the same size as type int.

Up to two register variables may be allocated per function. In lexical
order, the compiler takes the first two variables with register storage
class that meet the size criteria. Any later requests for register storage
class are ignored, so be sure to declare the most important register vari-
ables first. You may also want to declare register variables in parallel
scope to achieve the effect of having more than two register variables per
function.

The XENIX C Compiler automatically uses registers for variables within
loops. Using register declarations for such variables may interfere with
optimal loop code; you can experiment with various combinations of
register and nonregister declarations to determine which combinations
give the best results.

Register declarations can be used effectively for values, especially
pointers, that appear outside of loops. Since a certain amount of code is
required to save and restore registers, register declarations must be
applied to values that are accessed at least three times within a function
to cause any improvement in program speed.

6-1

XENIX C User’s Guide

Example

find string(arr of chars, string)
char *string;
char *arr of chars[];
{
int ix = 0;
register char *q;
while (*(g = string)) { /* string is not null */
{

register int i = ix;

/* search for entry whose first character
* matches first character of string, if any
*/

while (i < MAX ARR SIZE && *arr of chars(i] != *q)
itt; N

if (1 = MAX ARR SIZE)
return(l); /* no matching entry */

ix = i;

}

/* we’ve found an entry in arr of chars which
* might match string */

{
register char *p = arr of chars[ix];
vwhile (*p && *q && *p++ = *qg++)
r’
if ((*p — *q) = 0)
return(0) /* they match, return 0 */
/* otherwise continue checking for possible
* matches

*/
}

In this example, the function named find_string actually has three register
variables: ¢, i, and p. The function can use all three variables because i
is through being used by the time p is needed. Introducing the ix variable
to save the pointer from block-to-block speeds execution considerably
because most work is being done in register variables.

6.3 Optimization Options and Pragmas
The ce compiler/linker driver provides a number of optimization options
(-0, followed by one or more letters) that can improve program speed. In

addition, the XENIX C Compiler includes several pragmas that allow you
to control some of these optimizations on a local basis within a source

6-2

Improving Program Speed

program. The following sections outline these cc options and pragmas and
their effects.

6.3.1 Default Optimization

If no -O option is given, the compiler uses the -Ot option, which opti-
mizes programs for execution speed. However, this option does not
enable loop optimizations or intrinsics. Some optimizations, such as long
shifts, may be performed in line rather than using helper functions.

6.3.2 Generating Intrinsic Functions
The -Oi option generates intrinsic forms of the following functions:

e memset, memcpy, memcmp

e strset, strcpy, stremp, streat

e inp, outp

e _rotl, _rotr, Irotl, Irotr,

e min, max, abs
Intrinsics may be generated as in-line code or with different calling
sequences. In general, using intrinsics increases program size but
improves program speed. Note that the intrinsic forms of some functions
may have slightly different semantics: for example, the intrinsic form of
the memcpy function in compact- and large-model programs cannot han-
dle huge arrays, but the function form can.
As with -Ot, this option may increase program size due to the additional
code generated in line for each function. However, program execution is
faster because no instructions for calling and returning from functions
need to be performed.
The intrinsic pragma can be used to specify intrinsic functions on a local
basis for any of the functions listed above. For information about the use

of the intrinsic pragma, see the ‘‘Compiling with the c¢ Command”
chapter of this guide.

6-3

XENIX C User’s Guide

6.3.3 Relaxing Alias-Checking

The a option letter can be used with the 1, s, or t option letter to relax the
assumptions the compiler makes about the use of ‘‘aliases’’ in the pro-
gram. Use of the -Oa option can reduce the size of executable files and
speed program execution. This is especially recommended when you also
specify the -Ol option, since the compiler can detect a number of loop
optimizations when the -Oa option is in effect that it cannot detect when
-Oa is not in effect. However, before you specify -Oa, you must make
sure that your program does not use multiple aliases to refer to the same
memory location either directly or indirectly. For example, a program
might do this indirectly in functions that operate on a communal variable
and a pointer argument, or on multiple pointer arguments.

The -Oa option can be specified safely for programs that include calls to
functions with address-type arguments. In this case, the compiler assumes
that all variables whose addresses are passed to the function are modified,
even if -Oa is specified.

In the cases noted above, the use of -Oa is most likely to cause incorrect
optimizations within basic blocks (where most optimizations are applied)
and within whole loop bodies (where loop optimizations are applied). In
these cases, -Oa can still be specified safely even if aliases are used in the
program, provided that no memory location is referenced by more than
one name within any basic block or (if loop optimization is enabled) any
loop body.

For more information and specific examples, see the ‘‘Compiling with the
cc Command’’ chapter of this guide.

6.3.4 Performing Loop Optimizations

The -Ol option tells the compiler to perform loop optimizations. For best
performance, use -Ol in conjunction with the a option letter (-Oal), which
relaxes the assumptions the compiler makes about the use of aliases in the
program. Using -Oal instead of just -Ol allows the compiler to detect
many loop optimizations that it could not otherwise detect. For informa-
tion about possible restrictions on the uses of the -Oa option, see the
*‘Compiling with the ec Command”’ chapter of this guide.

You can control loop optimization on a local basis by specifying the
loop_opt pragma. Loop optimization is turned off for any functions fol-
lowing #pragma loop_opt(off) and turned on for any functions following
#pragma loop_opt(on) in a source program. This pragma overrides any
loop optimization specified on the cc command line.

6-4

Improving Program Speed

6.3.5 Removing Stack Probes

The -Gs option, described in the ‘‘Compiling with the c¢c Command”’
chapter of this guide; speeds program execution slightly by removing
calls to stack-checking routines known as ‘‘stack probes.”” Stack probes
verify that a program has enough stack space to allocate required local
variables. The potential disadvantage in removing stack probes is that
stack-overflow errors may occur without generating a diagnostic message.
However, this technique can be useful for programs that are known not to
exceed the available stack space.

You can also control stack checking on a local basis by specifying the
check stack pragma. Stack checking is turned off for any functions fol-
lowing a #pragma check_stack(off) pragma and turned on for any func-
tions following a #pragma check_stack(on) pragma in the source pro-
gram. This pragma overrides the stack checking (or removal of stack
checking) specified on the cc command line.

6.3.6 Maximum Optimization

The -Ox option combines the -Ot, -Ot, -Oa and -0l optimization options
described in this section. Provided that the restrictions outlined for each
optimization option do not apply, you can use the -Ox option to create the
fastest possible program.

6.4 Choosing the Function-Calling Convention

Because C functions can accept variable numbers of arguments, argu-
ments passed to these functions must be pushed on the stack from right to
left, with the first argument in the list being the last one pushed. In addi-
tion, the calling function, rather than the called function, is responsible
for removing arguments from the stack.

This convention results in somewhat slower programs than the alternative
convention used by XENIX FORTRAN and XENIX Pascal. In the
FORTRAN/Pascal convention, arguments are pushed on the stack from
left to right, in the order in which they are passed to the function, and the
called function removes arguments from the stack. Since the code for
removing arguments appears only once (in the called function) for the
FORTRAN/Pascal convention, rather than multiple times (every time a
function is called) as in the C convention, and since most programs have
fewer functions than function calls in a program, the FORTRAN/Pascal
calling convention usually results in smaller, faster programs.

6-5

XENIX C User’s Guide

You can specify the FORTRAN/Pascal calling convention for all func-
tions in a module by compiling with the -Ge option. The trade-off for
improved program speed is that you cannot call functions that use the C
calling convention or take variable numbers of arguments unless you
declare these functions, or pointers to these functions, with the edecl key-
word, which specifies the normal C calling conventions for these func-
tions.

If you do not want to specify the FORTRAN/Pascal convention for a
whole module, you can declare individual functions or pointers to func-
tions with the pascal or fortran keyword. Either of these keywords tells
the compiler that the function uses the FORTRAN/Pascal calling conven-
tions.

6.5 Efficiency in Large Data Models

Programs are most efficient when their data reside in the default data seg-
ment, that is, when the data can be accessed with 16-bit (near) addresses.
The XENIX C Compiler provides two standard memory models in which
all data reside in the default data segment: the small (default) model and
the medium model. The customized memory models that use near data
pointers (-Mnxx) also restrict program data to the default data segment.
Programs compiled with these models are restricted to 64K of total data.

For programs compiled with the compact, large, and huge memory
models, the compiler creates a default data segment containing all initial -
ized global and static data and creates an additional data segment for
each program module. Since accessing data outside the default data seg-
ment is slower than accessing data within the default data segment, pro-
granis will run faster if as many of their variables as possible are declared
in such a way that they are allocated in the default data segment. One
way to accomplish this is to initialize variables at the time you declare
them. This section discusses other ways of controlling the allocation of
data for large data models.

6.5.1 Changing Addressing with near, far, and huge Keywords

The near, far, and huge keywords allow you to specify explicitly the
addressing used for particular data items and functions. These keywords
override the default addressing conventions specified by the program’s
memory model. Thus, you can use them to improve the speed of access to
program data. For example, you can tell the compiler to allocate data
items in the default data segment for a compact-, large-, or huge-model
program by declaring the items (or pointers to the items) with the near
keyword. Alternatively, if a program has a small amount of code and data

6-6

Impreoving Program Speed

except for one particularly large array, you could compile the program
with the small or medium memory model and declare the array with the
far or huge keyword.

The disadvantage of using these keywords is that they are specific to the
MS-DOS/XENIX implementation of XENIX C and, thus, are not portable
to other operating environments.

For more information about near, far, and huge and for examples of their
use, see the ‘“Working with Memory Models’’ chapter in this guide.

6.5.2 Setting the Data Threshold

Another way to control allocation in large data models is to set a data
threshold by compiling with the -Gt option. This option is especially use-
ful if your program uses more than 64K of initialized static and global
data and does not fit in the default data segment. Any data items larger
than the value you specify are allocated to their own data segments.

6.5.3 Controlling Segments Used for Allocation

If programs compiled with large data models use external far data items,
you can tell the compiler which items reside in the same far data segment
by using the same_seg pragma. The variables you specify in this pragma
help the optimizer recognize common subexpressions involving data
loads. Note that you must also compile your program with the -ND option
to ensure that the variables you specify are allocated in the same segment.

For a description of the -ND option and the same_seg pragma, see the
*“Working with Memory Models’’ chapter of this guide.

6.6 Efficiency in Large Code Models

One linker option, -T, can result in smaller and faster executable files and
improved program-load times for programs that explicitly or implicitly
use far-function calls.

The -T option tells the linker to optimize far calls to procedures that lie in
the same segment as the caller. When you specify the -T option, the
linker optimizes 32-bit calls to procedures in the same segment as the cal-
ling procedure. Since the segment addresses of the calling and called pro-
cedures are the same, only a 16-bit call is required. If the -T option is
given, the linker removes the far call and replaces it with code that first
places CS on the stack, then makes a near call. The called procedure still

6-7

XENIX C User’s Guide

returns with a far (32-bit) return instruction. However, because both the
code segment (stored in CS) and the near address are on the stack, the far
return is done correctly. The linker also adds a NOP instruction so that
the five-byte far call is replaced by exactly five bytes of instructions.

Note

You may not want to use the -T option if your program includes
system-level assembly-language routines or if you are linking
object files that were compiled with a different C compiler.

6-8

Chapter 7
Object and Executable

File Formats

7.1 Introduction 7-1
7.2 1APX 286, 386 System Architecture 7-1
7.2.1 Memory Management 7-1
7.2.2 Logical Address Space 7-1
7.2.3 Logical-to-Physical Address Translation 7-2
7.3 The Intel Object Module Format 7-2
7.4 Definition of Terms 7-4
7.5 Module Identification and Attributes 7-6
7.6 Segment Definition 7-7
7.7 Segment Addressing 7-7
7.8 Symbol Definition 7-8
7.9 Indices 7-8
7.10 Conceptual Framework for Fixups 7-8
7.11 Self-Relative Fixups 7-13
7.12 Segment-Relative Fixups 7-14
7.13 Record Order 7-15
7.14 Introduction to the Record Formats 7-16
7.14.1 Title and Official Abbreviation 7-16

7.14.2 The Boxes 7-17
7.143 Rectyp 7-17

7.144 Record Length 7-17
7.14.5 Name 7-17

7.14.6 Number 7-17

7.14.7 Repeated or Conditional Fields 7-17
7.14.8 Chksum 7-18

7.149 BitFields 7-18

.14.10 T-Module Name 7-19
.14.11 Name 7-19

.14.12 Seg Attr 7-20

.14.13 Segment Length 7-22
.14.14 Segment Name Index 7-22
.14.15 Class Name Index 7-22
.14.16 Overlay Name Index 7-23
.14.17 Group Name Index 7-23
.14.18 Group Component Descriptor 7-24
7.14.19 Name 7-25

7.14.20 Eight-Leaf Descriptor 7-25
7.14.21 Public Base 7-26

7.14.22 Public Name 7-28

7.14.23 Public Offset 7-28

7.14.24 Type Index 7-28

7.14.25 External Name 7-28
7.14.26 Type Index 7-29

7.14.27 Line-Number Base 7-30
7.14.28 Line-Number 7-30
7.14.29 Line Number Offset 7-30
7.14.30 Segment Index 7-31
7.14.31 Enumerated Data Offset 7-31
7.14.32 Dat 7-32

7.14.33 Segment Index 7-32
7.14.34 Iterated Data Offset 7-32
7.14.35 Tterated Data Block 7-33
7.14.36 Repeat Count 7-33
7.14.37 Block Count 7-33

7.14.38 Content 7-33

7.14.39 Thread 7-35

7.14.40 Fixup 7-36

7.14.41 Mod Type 7-39

7.14.42 Comment Type 7-41
7.14.43 Comment 7-42

N NN

7.15 Numeric List of Record Typf)as 7-42
7.16 Type Representations for Communal Variables 7-43

7.17 The Segmented x.out Format 7-45

7.17.1 General Description of x.out 7-46

7.17.2 Example of File Layout 7-48

7.17.3 Iterated Segments 7-48

7.17.4 Non-Iterated Segments and Implicit bss 7-49
7.17.5 Large Model 7-49

7.17.6 Special Header Fields 7-49

7.17.7 Symbol Table 7-50

7.17.8 XENIX Executable Format 7-50

7.17.9 Selected Portions of Include Files 7-52

Object and Executable File Formats

7.1 Introduction

This chapter is divided into three sections. The first provides you with a
brief introduction to the architecture of the iAPX-286 and -386 proces-
sors.

The second section provides a discussion of the Intel (O)bject (M)odule
(F)ormat, which we follow. The implementation of this format makes it
possible to compile programs that run in both the XENIX and MS-DOS
environments.

The third section provides a brief description of our implementation of
the x.out format in a segmented environment. For detailed information,
see the x.out header file.

7.2 iAPX 286, 386 System Architecture

XENIX runs on both the 80286 and the 80386 processors in protected-
mode. This section provides a general introduction to the architecture of
protected mode operation. It does not discuss the various 80386 paging
mechanisms. For an in-depth discussion of the iAPX286 and iAPX386,
refer to the appropriate Programmer’s Technical Reference Manual pub-
lished by Intel.

7.2.1 Memory Management

Memory management provides a mapping from the logical addresses used
within a program to physical machine addresses. This serves two pur-
poses:

e Programs are not tied to any particular physical address.

e Access permissions to particular areas of memory can be con-
trolled.

7.2.2 Logical Address Space

The mapping of virtual addresses to physical addresses is achieved by
means of descriptor tables which are themselves resident in memory. At
any given moment, there are two alternate descriptor tables available: the
Global Descriptor Table (GDT) and the Local Descriptor Table (LDT).

The XENIX kernel uses the GDT to map the kernel’s virtual address
space. Each user process has its own LDT as part of its per-process data
which maps the logical address space of the process.

7-1

C User’s Guide

Each entry in a descriptor table specifies the base address, length and
access permissions of a particular segment of physical memory.

7.2.3 Logical-to-Physical Address Translation

Logical addresses consist of two parts: a segment selector used to select a
particular descriptor table entry, and an offset added to the base address
found in the descriptor table to give a physical memory address.

The segment selector is a 16-bit number containing three pieces of infor-
mation:

1. The Request Privilege Level (RPL) is encoded as the low order
two bits of the selector. The RPL is a feature of the system archi-
tecture protection scheme. Segment selectors in user processes
always have both of these bits set to indicate RPL 3, the lowest
privilege level.

2. The Table Indicator (TI) is encoded as the next most significant bit
(bit 2). The TI indicates whether address translation will use the
GDT (TI = 0) or the LDT (TI = 1). User processes can only access
the LDT; therefore the TI for a segment selector in a user process
is always 1.

3. The Index field is encoded as the high-order 13 bits of the selector.
This is used to index into the appropriate descriptor table and
select a particular entry.

A descriptor table entry having been selected, the offset is added to the
base address in physical memory to form a physical address.

Depending on the characteristics of the segment (as defined in the
descriptor table) the offset may be a 16- or 32-bit number. The offset will
be 16 bits on an 80286 processor or in a 16-bit segment on an 80386 pro-
cessor. The 32-bit offsets apply only to the 80386.

7.3 The Intel Object Module Format

This section presents the object record formats that define the relocatable
object language for the iAPX-86 family of microprocessors. The 8086
object language is the output of all language translators that have the
8086 as their target processor and are linked by the link editor. The 8086

7-2

Object and Executable File Formats

object language is input and output for object language processors such as
linkers and librarians.

Note

Except where otherwise noted, references to the 8086 in this docu-
ment refer to the 8086/80286/80386 processors. In general, the
8086/80286 references are made to 16-bit offsets and 64K segment
offsets, which do not apply to the 80386,

The 8086 object module formats permit you to specify relocatable
memory images that may be linked together. The formats allow efficient
use of the memory-mapping facilities of the 8086 microprocessor.

The following record formats, as described in this chapter, are supported.
Those formats preceded by an asterisk (*) deviate from the Intel®
specification.

Object Module Record Formats

T-Module Header Record
List of Names Record
*Segment Definition Record
*Group Definition Record
*Type Definition Record

Symbol Definition Records
*Public Names Definition Record
*External Names Definition Record
*Line Numbers Record

Data Records
Logical Enumerated Data Record
Logical Iterated Data Record

Fixup Record

*Module End Record
Comment Record

7-3

C User’s Guide

7.4 Definition of Terms

The following terms are used to describe 8086 relocation and linkage.

OMF

MAS

Object Module Formats

Memory Address Space. Note that the MAS is distinguished from
actual memory, which may occupy only a portion of the MAS.

MODULE

An “‘inseparable’’ collection of object code and other information
produced by a translator.

T-MODULE

A module created by a translator, such as C, Pascal or FORTRAN.
The following restrictions apply to object modules:

¢ Every module needs a name. Translators provide names for
T-Modules, giving a default name (possibly the filename or
a null name) if neither source code nor user specifies other-
wise.

e Every T-Module in a collection of linked modules must
have a different name so that symbolic debugging systems
can distinguish the various line numbers and local symbols.
This restriction is not required by 1d.

FRAME

LSEG

7-4

A contiguous region of MAS that can be addressed using a single
segment register. This concept is useful because the content of the
four 8086 segment registers defines four (possibly overlapping)
FRAMESs; no 16-bit address in the 8086 code can access a memory
location outside of the current four FRAMEs. On an 8086, a
FRAME must begin on a paragraph boundary (that is, a multiple of
16 bytes). On 80286 and 80386 processors, this restriction does
not apply. On an 80386, a FRAME is a region of up to (2*¥32)
bytes addressed by a single segment register.

Logical Segment. A contiguous region of memory whose contents
are determined at translation time (except for address-binding).
Neither size nor location in MAS is necessarily determined at
translation time; size, although partially fixed, may not be final
because the LSEG may be combined at LINK time with other
LSEGs, forming a single LSEG. On 8086/80286 processors, an

Object and Executable File Formats

LSEG must not be larger than 64K, so that it can fit in a FRAME.
This means that any byte in an LSEG may be addressed by a 16-bit
offset from the base of a FRAME covering the LSEG. An 80386
LSEG may be as much as (2**32) bytes in size and any byte in it
addressed by a 32-bit offset from the base of the FRAME contain-
ing the LSEG.

PSEG
Physical Segment. This term is equivalent to FRAME. Some peo-
ple prefer PSEG to FRAME because the terms PSEG and LSEG
reflect the physical and logical nature of the underlying segments.

FRAME NUMBER
This term is only used in reference to 8086 processors, or
80286/80386 processors operating in real address mode. Every
FRAME begins on a paragraph boundary. The paragraphs in MAS
can be numbered from O through 65535. These numbers, each of
which defines a FRAME, are called FRAME NUMBERS.

PARAGRAPH NUMBER
This term is equivalent to FRAME NUMBER.

PSEG NUMBER
This term is equivalent to FRAME NUMBER.

GROUP
A collection of LSEGs defined at translation time, whose final
locations in MAS are constrained such that there is at least one
FRAME that covers (contains) every LSEG in the collection.

The notation Gr A(X,Y,Z) means that LSEGs X, Y and Z form a
group whose name is A. The fact that X, Y and Z are all LSEGsin
the same group does not imply any ordering of X, Y and Z in MAS,

nor does it imply any contiguity between X, Y and Z.

The link editor does not currently allow an LSEG to be a member
of more than one group. The link editor ignores all attempts to
place an LSEG in more than one group.

CANONIC
Any location in the 8086 MAS is contained in exactly 4096 dis-
tinct FRAMESs; but one of these FRAMEs can be distinguished
because it has a higher FRAME NUMBER. This distinguished
FRAME is called ‘‘the canonic FRAME” of the location. The
canonic FRAME of a given byte is the FRAME so chosen that the
byte’s offset from that FRAME lies in the range 0 to 15 (decimal).
Thus, if FOO is a symbol defining a memory location, one may
speak of the ‘“‘canonic FRAME of FOO,” or of ‘““FOO’s canonic

7-5

C User’s Guide

FRAME.”” By extension, if S is any set of memory locations, then
there exists a unique FRAME that has the lowest FRAME
NUMBER in the set of canonic FRAMEs of the locations in S.
This unique FRAME is called the canonic FRAME of the set S.
Thus, we may speak of the canonic FRAME of an LSEG, or of a
group of LSEGs.

SEGMENT NAME
LSEGs are assigned segment names at translation time. These
names serve two purposes:

e They play a role at LINK time in determining which LSEGs
are combined with other LSEGs.

e They are used in assembly source code to specify groups.

CLASS NAME
LSEGs may optionally be assigned class names at translation time.
Classes define a partition on LSEGs: two LSEGs are in the same
class if they have the same class name.

The link editor applies the following semantics to class names.
The class name ‘““CODE’ or any class name whose suffix is
““CODE"’ implies that all segments.of that class contain only code
and may be considered read-only. Such segments may be overlaid
if the user specifies the module containing the segment as part of
an overlay.

OVERLAY NAME
LSEGs may optionally be assigned an overlay names. The overlay
name of an LSEG is ignored by ld (version 2.40 and later ver-
sions), but it is used by Intel relocation and linkage products.

COMPLETE NAME
The complete name of an LSEG consists of the segment name,
class name, and overlay name. LSEGs from different modules are
combined if their complete names are identical.

7.5 Module Identification and Attributes

A module header record is always the first record in a module and pro-
vides the module name.

In addition to a name, a module may have the attribute of being a main
program as well as having a specified starting address. When you are
linking multiple modules together, only one module with the main attri-
bute should be given.

7-6

Object and Executable File Formats

In summary, modules may or may not be main and may or may not have a
starting address.

7.6 Segment Definition

A module is a collection of object code defined by a sequence of records
produced by a translator. The object code represents contiguous regions
of memory whose contents are determined at translation time. These
regions are called LOGICAL SEGMENTS (LSEGs). A module defines
the attributes of each LSEG. The SEGMENT DEFINITION RECORD
(SEGDEF) is the vehicle by which all LSEG information (name, length,
memory alignment, and so on) is maintained. The LSEG information is
required when multiple LSEGs are combined and when segment addres-
sability is established. (See ‘‘Segment Addressing’’). The SEGDEF
records are required to follow the first header record.

7.7 Segment Addressing

The 8086/80286 addressing mechanism provides segment base registers
from which a 64-Kbyte region of memory, called a FRAME, may be
addressed. There are one code-segment base register (CS), two data-
segment base registers (DS, ES), and one stack-segment base register
(SS). The 80386 has two additional segment registers: FS and GS, and
can address up to (2**32) bytes of memory from each segment register.

The greatest possible number of LSEGs that may make up a memory
image far exceeds the number of available base registers. Thus, base
registers may require frequent loading. This would occur in a modular
program with many small data and/or code LSEGs.

Since such frequent loading of base registers is undesirable, it is a good
strategy to collect many small LSEGs together into a single unit that fits
in one memory frame so that all the LSEGs may be addressed using the
same base register value. This addressable unit is a GROUP. See
“‘Definition of Terms.”

To have addressability of objects within a GROUP, each GROUP must be
explicitly defined in the module. The GROUP DEFINITION RECORD
(GRPDEF) provides a list of constituent segments either by segment
name or by segment attribute such as ‘‘the segment defining symbol
FOO”’ or ‘‘the segments with class name ROM.”

7-7

C User’s Guide

The GRPDEF records within a module must follow all SEGDEF records
because GRPDEF records can reference SEGDEF records when defining
a GROUP. The GRPDEF records must also precede all other records
except header records, as Id must process them first.

7.8 Symbol Definition

The Id command supports three different types of records that fall into the
class of symbol definition records. The two most important types are
PUBLIC NAMES DEFINITION RECORDs (PUBDEFs) and EXTER-
NAL NAMES DEFINITION RECORDS (EXTDEFs). These types are
used to define globally visible procedures and data items and to resolve
external references. In addition, TYPDEF records are used by ld for the
allocation of communal variables. (See ‘‘Type Representations for Com-
munal Variables’’).

7.9 Indices

“Index’’ fields appear throughout this document. An index is an integer
that selects some particular item from a collection of such items. (This is
a list of examples: NAME INDEX, SEGMENT INDEX, GROUP
INDEX, EXTERNAL INDEX, TYPE INDEX.)

In general, indices must assume values quite large (that is, much larger
than 255). Nevertheless, a great number of object files will contain no
indices with values greater than 50 or 100. Therefore, indices will be
encoded in one or two bytes, as required.

The high-order (left-most) bit of the first (and possibly the only) byte
determines whether the index occupies one byte or two. If the bit is O,
then the index is a number between 0 and 127, occupying one byte. If the
bit is 1, then the index is a number between O and 32K-1, occupying two
bytes, and is determined. as follows: the low-order 8 bits are in the second
byte, and the high-order 7 bits are in the first byte.

7.10 Conceptual Framework for Fixups

A ““fixup’’ is some modification to object code, requested by a translator,
performed by 1d, achieving address-binding.

7-8

Object and Executable File Formats

Note

This definition of ‘‘fixup’’ accurately represents the viewpoint
maintained by Id. Nevertheless, the link editor can be used to
achieve modifications of object code (that is, ‘‘fixups’’) that do not
conform to this definition. For example, the binding of code to
either hardware floating-point or software floating-point subroutines
is a modification to an operation code, where the operation code is
treated as if it were an address. The previous definition of ‘fixup”’
is not intended to disallow or disparage object code modifications.

8086 translators specify a fixup with four data items:
e The place and type of a LOCATION to be fixed up.
e One of two possible fixup MODES.

e A TARGET, which is a memory address to which LOCATION
must refer.

e A FRAME defining a context within which the reference takes
place.

There are 5 types of LOCATION: a POINTER, a BASE, an OFFSET, a
HIBYTE, and a LOBYTE.

The vertical alignment of the following figure illustrates four points.
(Remember that the high-order byte of a word in 8086 memory is the byte
with the higher address.) The Id command does not require the presence
of the high- or low-order complement of these items. (For instance, in the
case of HIBYTE, a high-order word, it doesn’t matter if the low-order
word is present.)

e A BASE is the high-order word of a pointer.

¢ An OFFSET is the low-order word of a pointer.

e A HIBYTE is the high-order half of an OFFSET.

7-9

C User’s Guide

e A LOBYTE is the low-order half of an OFFSET.

| LOBYTE | HIBYTE |
OFFSET BASE

POINTER

LOCATION Types

A LOCATION is specified by two data: (1) the LOCATION type, and (2)
where the LOCATION is. The first is specified by the LOC subfield of the
LOCAT field of the FIXUP record; the second is specified by the DATA
RECORD OFFSET subfield of the LOCAT field of the FIXUP record.

The link editor supports two fixup MODEs: ‘‘self-relative’” and
‘‘segment-relative. ”’

Self-Relative fixups support the 8- and 16-bit offsets that are used in the
CALL, JUMP and SHORT-JUMP instructions. Segment-Relative fixups
support all other addressing modes of the 8086.

The TARGET is the location in MAS being referenced. (More explicitly,
the TARGET may be considered the lowest byte in the object being refer-
enced.) A TARGET is specified in one of eight ways. There are four
“‘primary’” ways, and four "secondary” ways. Each primary way of speci-
fying a TARGET uses two kinds of data: an INDEX-or-FRAME-
NUMBER “X’, and a displacement ‘D’.

e (T0) X is a SEGMENT INDEX. The TARGET is the Dth byte in
the LSEG identified by the INDEX.

e (T1) X'is a GROUP INDEX. The TARGET is the Dth byte in the
LSEG identified by the INDEX.

e (T2) X'is an EXTERNAL INDEX. The TARGET is the Dth byte
following the byte whose address is (eventually) given by the
External Name identified by the INDEX.

e (T3) X is a FRAME NUMBER. The TARGET is the Dth byte in
the FRAME identified by the FRAME NUMBER (that is, the
address of TARGET is (X*16)+D).

Each secondary way of specifying a TARGET uses only one data item:
the INDEX-or-FRAME-NUMBER X. An implicit displacement equal to
zero is assumed.

e (T4) X is a SEGMENT INDEX. The TARGET is the Oth (first)
byte in the LSEG identified by the INDEX.

7-10

/—\

Object and Executable File Formats

e (T5) X is a GROUP INDEX. The TARGET is the Oth (first) byte in
the LSEG in the specified group that is eventually LOCATEd
lowest in MAS.

e (T6) X is an EXTERNAL INDEX. The TARGET is the byte
whose address is the External Name identified by the INDEX.

e (T7) X is a FRAME NUMBER. The TARGET is the byte whose
20-bit address is (X*16).

Note

The link editor does not support methods T3 and T7.

The following nomenclature is used to describe a TARGET:

TARGET: SI(<segment name>), <displacement> [TO]
TARGET: GI (<group name>), <displacement> [T1]
TARGET: EI(<symbol name>), <displacement> [T2]

TARGET: SI(<segment name>) [T4]
TARGET: GI (<group name>) [T5]
TARGET: EI (<symbol name>) [T6]

The following examples illustrate how this notation is used:

TARGET: SI(CODE), 1024 The 1025th byte in the segment
““CODE"".

TARGET: GI(DATAAREA) The location in MAS of a group
called “‘DATAAREA”’.

TARGET: EI(SIN) The address of the external subrou-
tine ““SIN”’.

TARGET: EI(PAYSCHEDULE), 24 The 24th byte following the location
of an EXTERNAL data structure
called ““PAYSCHEDULE”.

Every 8086 memory reference is to a location contained within some
FRAME, where the FRAME is designated by the content of some seg-
ment register. For Id to form a correct, usable memory reference, it must

7-11

C User’s Guide

know what the TARGET is, and to which FRAME the reference is being
made. Thus, every fixup specifies such a FRAME in one of six ways.
Some use data X, which is in INDEX-or-FRAME-NUMBER, as above.
Others require no data.

The six methods of specifying frames are:

1.

(FO) X is a SEGMENT INDEX. The FRAME is the canonic
FRAME of the LSEG defined by the INDEX.

(F1) X is a GROUP INDEX. The FRAME is the canonic
FRAME defined by the group (that is, the canonic FRAME
defined by the LSEG in the group that is eventually LOCATEd
lowest in MAS).

(F2) X is an EXTERNAL INDEX. The FRAME is determined
when the External Name’s public definition is found. There are
three cases:

¢ (F2a) The symbol is defined relative to some LSEG, and
there is no associated GROUP. The LSEGs canonic
FRAME is specified.

e (F2b) The symbol is defined absolutely, without reference
to an LSEG, and there is no associated GROUP. The
FRAME is specified by the FRAME NUMBER subfield of
the PUBDEF record that gives the symbol’s definition.

e (F2c) Regardless of how the symbol is defined, there is an
associated GROUP. The canonic FRAME of the GROUP
is specified. (The group is specified by the GROUP
INDEX subfield of the PUBDEF Record.)

(F3) X is a FRAME NUMBER (specifying the obvious FRAME).

(F4) No X. The FRAME is the canonic FRAME of the LSEG
containing LOCATION.

(F5) No X. The FRAME is determined by the TARGET. There
are four cases:

e (F5a) The TARGET specifies a SEGMENT INDEX: in
this case, the FRAME is determined as in (FO).

¢ (FSb) The TARGET specifies a GROUP INDEX: in this
case, the FRAME is determined as in (F1).

e (F5c) The TARGET specifies an EXTERNAL INDEX: in
this case, the FRAME is determined as in (F2).

Object and Executable File Formats

e (F5d) The TARGET is specified with an explicit FRAME
NUMBER: in this case the FRAME is determined as in
(F3).

Note

The link editor does not support frame methods F2b, F3, or F5d.

Nomenclature describing FRAMEs is similar to the above nomenclature
for TARGETS.

FRAME: SI(<segment name>) [FO]

FRAME: GI (<group name>) [F1]

FRAME: EI (<symbol name>) [F2]

FRAME: LOCATION [F4]
FRAME: TARGET [F5]
FRAME: NONE [F6]

For an 8086 memory reference, the FRAME specified by a self-relative
reference is usually the canonic FRAME of the LSEG containing the
LOCATION, and the FRAME specified by a segment relative reference is
the canonic FRAME of the LSEG containing the TARGET.

7.11 Self-Relative Fixups

Self-relative fixups can be applied to LOCATIONS which are a 16- or

32-bit OFFSET or LOBYTES. (The result of applying a self-relative
fixup to any other type of LOCATION is undefined.)

Both the LOCATION and the TARGET must lie within the FRAME
specified for the fixup.

The value to be used in the fixup is defined as the displacement from the
byte in memory following the LOCATION to the TARGET.

If the LOCATION to be fixed-up is a LOBYTE, the fixup value must lie
in the range -128 to 127.

C User’s Guide

If the LOCATION to be fixed up is a 16-bit OFFSET, the fixup value must
lie in the range -32768 to 32767.

The fixup value is added to the existing contents of the LOCATION,
ignoring any overflow.

Self-relative fixups are typically applied to the relative displacement
values used in instructions such as conditional jumps.

7.12 Segment-Relative Fixups

Segment-relative fixups can be applied to any type of LOCATION.

The way in which a LOCATION containing a BASE component (that is, a
BASE or a POINTER) is fixed up depends on whether the code is to run
in real or virtual address mode. The contents of the BASE portion of a
LOCATION must ultimately be capable of being loaded into a segment
register; therefore, in real address mode this will be a paragraph number
and in virtual address mode this will be a selector value.

Fixup values for the BASE and OFFSET components of a LOCATION
are calculated as follows:

1.

7-14

In real address mode:

The base fixup value (FBVAL) is defined as the FRAME
NUMBER of the FRAME specified in the fixup.

The offset fixup value (FOVAL) is defined as the offset of the TAR-
GET from the start of the FRAME specified in the fixup. This
offset must be > 0 and < FFFF.

In protected mode:

The base fixup value (FBVAL) is defined as the segment selector
of the FRAME specified in the fixup.

The offset fixup value (FOVAL) is defined as the offset of the TAR-
GET from the start of the FRAME specified in the fixup. This
offset must be > 0 and < the maximum segment size implied by the
segment selector for the FRAME. (that is, (2**16)-1 for 80286 seg-
ments and 16-bit 80386 segments, or (2**32)-1 for 32-bit 80386
segments.

Object and Executable File Formats

The fixup values for BASE and OFFSET are applied to the LOCATION
as follows:

1. If the LOCATION is a BASE or a POINTER, then FBVAL is
stored in the BASE component of the LOCATION.

2. If the LOCATION is a POINTER, or a 16- or 32-bit OFFSET, or a
LOBYTE, then the offset fixup value (FOVAL) is added to the
existing contents of the OFFSET component of the LOCATION
ignoring any overflow.

3. If the LOCATION is a HIBYTE, then (FOVAL/256) is added to
the LOCATION, ignoring overflow.

7.13 Record Order

An object code file must contain a sequence of (one or more) modules, or
a library containing zero or more modules. A module is defined as a col-
lection of object code defined by a sequence of object records. The fol-
lowing syntax shows the valid orderings of records to form a module. In
addition, the given semantic rules provide information about how to inter-
pret the record sequence.

Note

The syntactic description language used below is defined in
WIRTH: CACM, November 1977, vol.#20, no.#11, pp.#822-823.
The character strings represented by capital letters above are not
literals, but are identifiers that are further defined in the section
describing the record formats.

C User’s Guide

object file = tmodule

tmodule = THEADR seg-grp {component} modtail

seg_grp = {LNAMES} {SEGDEF} {TYPDEF | EXTDEF | GRPDEF}
component = data | debug_record

data = content_def | thread_def | TYPDEF | PUBDEF | EXTDEF

debug_record = LINNUM

content_def = data_record {FIXUPP}

thread_def =~ = FIXUPP (containing only thread fields)
data_record = LIDATA |LEDATA

modtail = MODEND

The following rules apply:

A FIXUPP record always refers to the previous DATA record.

All LNAMES, SEGDEF, GRPDEF, TYPDEF, and EXTDEF records
must precede all records that refer to them.

COMENT records may appear anywhere in a file, except as the first or
last record in a file or module, or within a content_def.

7.14 Introduction to the Record Formats

The following pages present diagrams of record formats in schematic

form. Here is a sample record format, to illustrate the various conven-
tions.
SAMPLE RECORD FORMAT
(SAMREC)

REC RECORD CHK

TYP LENGTH NAME NUMBER SUM

xxH

= repea;ed =

7.14.1 Title and Official Abbreviation

At the top is the name of the record format described, with an official
abbreviation. To promote uniformity among various programs, including
translators and debuggers, the abbreviation should be used in both code
and documentation. The record format abbreviation is always six letters.

7-16

Object and Executable File Formats

7.14.2 The Boxes

Each format is drawn with boxes of two sizes. The narrow boxes
represent single bytes. The wide boxes represent two bytes each. The
wide dashed boxes represent a variable number of bytes, one or more,
depending upon content. The wide solid boxes represent 4-byte fields.

7.14.3 Rectyp

The first byte in each record contains a value between 0 and 255, indicat-
ing the record type. For records that have both 16- and 32-bit versions,
the low-order bit of the record type indicates the type: 0=16-bit, 1=32 bit.

7.14.4 Record Length

The second field in each record contains the number of bytes in the
record, exclusive of the first two fields.

7.14.5 Name

Any field that indicates a ‘“NAME’’ has the following internal structure:
the first byte contains a number between O and 127, inclusive, that indi-
cates the number of remaining bytes in the field. The remaining bytes are
interpreted as a byte string.

Most translators constrain the character set to be a subset of the ASCII
character set.

7.14.6 Number

A 4-byte NUMBER field represents a 32-bit unsigned integer, where the
first 8 bits (least-significant) are stored in the first byte (lowest address),
the next 8 bits are stored in the second byte, and so on.

7.14.7 Repeated or Conditional Fields

Some portions of a record format contain a field or a series of fields that
may be repeated one or more times. Such portions are indicated by the

“‘repeated’” or ‘‘rpt’’ brackets below the boxes.

Similarly, some portions of a record format are present only if some given
condition is true; these fields are indicated by similar ‘‘conditional’’ or

7-17

C User’s Guide

““‘cond’’ brackets below the boxes.

7.14.8 Chksum

The last field in each record is a check sum, which contains the 2’s com-
plement of the sum (modulo 256) of all other bytes in the record. There-
fore, the sum (modulo 256) of all bytes in the record equals O.

7.14.9 Bit Fields

Descriptions of contents of fields will sometimes be at the bit level.
Boxes with complete vertical lines drawn through them represent bytes or
words; the partial vertical lines indicate bit boundaries; thus the byte
represented below, has three bit-fields of 3-, 1-, and 4-bits.

"3 bits 1 bit " 4bits
T-MODULE HEADER RECORD
(THEADR)

REC RECORD T-MODULE CHK
'ggg LENGTH NAME SUM

Every module output from a translator must have a T-MODULE
HEADER RECORD.

Object and Executable File Formats

7.14.10 T-Module Name

The T-MODULE NAME provides a name for the T-MODULE.

LIST OF NAMES RECORD
(LNAMES)
REC RECORD CHK
TYP LENGTH NAME SUM

96H

lc repeated :>|

This Record provides a list of names that may be used in following SEG-
DEF and GRPDEF records as the names of Segments, Classes and/or
Groups.

The ordering of LNAMES records within a module, together with the ord-
ering of names within each LNAMES Record, induces an ordering on the
names. Thus, these names are considered to be numbered: 1, 2, 3, 4, ...
These numbers are used as ‘‘Name Indices’’ in the Segment Name Index,
Class Name Index and Group Name Index fields of the SEGDEF and
GRPDEF Records.

7.14.11 Name
This repeatable field provides a name, which may have zero length.

SEGMENT DEFINITION RECORD
(SEGDEF)

REC OVER-
TYP | RECORD | SEGMENT |SEGMENT | SEGMENT | CLASS | LAY |CHK
98H | LENGTH ATTR LENGTH | NAME | NAME | NAME |SUM
99H INDEX | INDEX | INDEX

SEGMENT INDEX values 1 through 32767, which are used in other
record types to refer to specific LSEGs, are defined implicitly by the
sequence in which SEGDEF Records appear in the object file.

C User’s Guide

In the RECORD TYPE field, 98H and 99H describe 16- and 32-bit seg-
ments, respectively.
7.14.12 Seg Attr

The SEG ATTR field provides information on various attributes of a seg-
ment, and has the following format:

ACBP FRAME OFFSET
NUMBER

T conditional ... =
repeat

The ACBP byte contains four numbers which are the A, C, B, and P attri-
bute specifications. This byte has the following format:

A o B | P

"A" (Alignment) is a 3-bit subfield that specifies the alignment attribute of
the LSEG. The semantics are defined as follows:

A=0 SEGDEEF describes an absolute LSEG.

A=1 SEGDEEF describes a relocatable, byte-aligned LSEG.

A=2 SEGDEF describes a relocatable, word-aligned LSEG.

A=3 SEGDEEF describes a relocatable, paragraph-aligned LSEG.
=4 SEGDEF describes a relocatable, page-aligned LSEG.

A=5 SEGDEEF describes a relocatable, double-word-aligned LSEG.
(386 OMF only)

If A=0, the FRAME NUMBER and OFFSET fields will be present. Using
Id, absolute segments may be used for addressing purposes only; for
example, defining the starting address of a ROM and defining symbolic
names for addresses within the ROM. ld will ignore any data specified as
belonging to an absolute LSEG.

7-20

Object and Executable File Formats

““C”’ (Combination) is a 3-bit subfield that specifies the combination attri-
bute of the LSEG. Absolute segments (A=0) must have combination zero
(C=0). For relocatable segments, the C field encodes a number (0,1,2,4,5,6
or 7) that indicates how the segment can be combined. The interpretation
of this attribute is best given by considering how two LSEGs are com-
bined:

e Let X,Y be LSEGs, and let Z be the LSEG resulting from the com-
bination of X,Y.

e LetLX and LY be the lengths of X and Y, and let MXY denote the
maximum of LX, LY.

¢ Let G be the length of any gap required between the X- and Y-
components of Z to accommodate the alignment attribute of Y.

e Tet LZ denote the length of the (combined) LSEG Z; let dx
(O<=dx<LX) be the offset in X the (combined) LSEG Z; let dx
(0<=dx<LX) be the offset in X of a byte, and let dy similarly be the
offset in Y of a byte.

The following table gives the length L.Z of the combined LSEG Z, and the
offsets dx” and dy’ in Z for the bytes corresponding to dx in X and dy in Y.
Intel defines additionally alignment types 5 and 6 and also processes code
and data placed in segment with align-type.

Combination Attribute Example

LZ dx’ dy

LX+LY+G dx dy+LX+G Public
LX+LY+G dx dy+LX+G Stack
MXY dx dy Common

o »n N A

The table has no lines for C=0, C=1, C=3, C=4 and C=7. C=0 indicates
that the relocatable LSEG may not be combined; C=1 and C=3 are
undefined. C=4 and C=7 are treated like C=2. C1, C4, and C7 all have
different meanings according to the Intel standard.

‘B’ (Big) is a 1-bit subfield which, if 1, indicates that the Segment
Length is exactly 2**16 (2**32 in the case of 32-bit segments). In this
case the SEGMENT LENGTH field must contain zero.

The ‘P’ field must always be zero. The ‘P’ field is the ‘‘Page
resident’’ field according to the Intel standard.

7-21

C User’s Guide

The FRAME NUMBER and OFFSET fields (present only for absolute
segments, A=0) specify the placement in MAS of the absolute segment.
The range of OFFSET is constrained to be between O and 15 inclusive. If
a value larger than 15 is desired for OFFSET, then an adjustment of the
FRAME NUMBER should be done.

7.14.13 Segment Length

The SEGMENT LENGTH field gives the length of the segment in bytes.
The length may be zero; if so, Id will not delete the segment from the
module. The SEGMENT LENGTH field is two bytes for a 16-bit segment
(Rectyp 98) and four bytes for a 32-bit segment (Rectyp 99). This is large
enough for numbers up to (2**16)-1 and (2**32)-1, respectively. The B
attribute bit in the ACBP field (see SEG ATTR section) must be used to
indicate a length of (2**16) or (2**32).

7.14.14 Segment Name Index

The Segment Name is a name the programmer or translator assigns to the
segment. Examples: CODE, DATA, STACK, TAXDATA,
MODULENAME_CODE. This field provides the Segment Name, by
indexing into the list of names provided by the LNAMES Record(s).

7.14.15 Class Name Index

The Class Name is a name the programmer or translator can assign to a
segment. If none is assigned, the name is null, and has length 0. The pur-
pose of Class Names is to allow the programmer to define a ‘‘handle’’
used in the ordering of the LSEGs in MAS. Examples: RED, WHITE,
BLUE; ROM FASTRAM, DISPLLAYRAM. This field provides the Class
Name, by indexing into the list of names provided by the LNAMES
Record(s).

7-22

Object and Executable File Formats

7.14.16 Overlay Name Index

Note

This is ignored in Id versions 2.40 and later, but supported in all ear-
lier versions. However, semantics differ from Intel semantics.

The Overlay Name is a name the translator and/or 1d, at the programmer’s
request, applies to a segment. The Overlay Name, like the Class Name,
may be null. This field provides the Overlay Name, by indexing into the
list of names provided by the LNAMES Record(s).

Note

The ““‘Complete Name’’ of a segment is a 3-component entity
comprising a Segment Name, a Class Name and an Overlay Name.
(The latter two components may be null.)

GROUP DEFINITION RECORD

(GRPDEF)
REC RECORD GROUP GROUP CHK
TYP LENGTH NAME COMPONENT | SUM
9AH INDEX DESCRIPTOR

&= repeated =

7.14.17 Group Name Index

The Group Name is a name by which a collection of LSEGs may be refer-
enced. The important property of such a group is that, when the LSEGs
are eventually fixed in MAS, there must exist some FRAME which “‘cov-
ers’’ every LSEG of the group.

The GROUP NAME INDEX field provides the Group Name, by indexing
into the list of names provided by the LNAMES Record(s).

7-23

C User’s Guide

7.14.18 Group Component Descriptor

Each GROUP COMPONENT DESCRIPTOR has the following format:

SI SEGMENT
(FFH) INDEX

The first byte of the DESCRIPTOR contains OFFH; the DESCRIPTOR
contains one field, which is a SEGMENT INDEX that selects the LSEG
described by a preceding SEGDEF record.

Intel defines 4 other group descriptor types, each with its own meaning.
They are OFEH, OFDH, OfBH, and OfAH. The link editor will treat all of
these values the same as OFFH (i.e., it always expects OFFH followed by
a segment index, and it does not check to see if the value is actually OFF).

TYPE DEFINITION RECORD
(TYPDEF)
REC RECORD NAME EIGHT LEAF CHK
'g‘g}]?l’ LENGTH (usually NULL) DESCRIPTOR SUM

|<: repeated :>|

The link editor uses TYPDEF records only for communal variable alloca-
tion. This is not Intel’s intended purpose. See ‘‘Type Representations for
Communal Variables.”’

As many ‘‘EIGHT LEAF DESCRIPTOR”’ fields as necessary are used to
describe a branch. (Every such field except the last in the record
describes eight leaves; the last such field describes from one to eight
leaves.)

TYPE INDEX values 1 through 32767, which are contained in other
record types to associate object types with object names, are defined
implicitly by the sequence in which TYPDEF records appear in the object
file.

7-24

Object and Executable File Formats

7.14.19 Name

Use of this field is reserved. Translators should place a single byte con-
taining O in it (the representation of a name of length zero).

7.14.20 Eight-Leaf Descriptor

This field can describe up to eight Leaves.

EN LEAF
DESCRIPTOR

| &= repeated —=> |
The EN field is a byte: the 8 bits, left to right, indicate if the following 8
Leaves (left to right) are Easy (bit=0) or Nice (bit=1).

The LEAF DESCRIPTOR field, which occurs between 1 and 8 times, has
one of the following formats:

Oto 128
129 0 to 64K-1
132 0to 16M-1
136 -2G-1102G-1

The first format (single byte), containing a value between 0 and 127,
represents a Numeric Leaf whose value is the number given.

The second format, with a leading byte containing 129, represents a
Numeric Leaf. The number is contained in the following two bytes.

The third format, with a leading byte containing 132, represents a
Numeric Leaf. The number is contained in the following three bytes.

7-25

C User’s Guide

The fourth format, with a leading byte containing 136, represents a
Signed Numeric Leaf. The number is contained in the following four
bytes, sign extended if necessary.

PUBLIC NAMES DEFINITION RECORD

(PUBDEF)

REC
TYP| RECORD | PUBLIC | PUBLIC | PUBLIC TYPE [CHK
gog LENGTH BASE NAME OFESET | INDEX [|SUM
1

This record provides a list of one or more PUBLIC NAMEs; for each one,
three data are provided: (1) a base value for the name, (2) the offset value
of the name, and (3) the type of entity represented by the name.

In the RECORD TYPE field, 90H and 91H describe 16- and 32-bit public
definition records, respectively.

7.14.21 Public Base

The PUBLIC BASE has the following format:

GROUP SEGMENT FRAME
INDEX INDEX NUMBER
|<: conditional =>|

The GROUP INDEX field has a format given earlier, and provides a
number between 0 and 32767 inclusive. A non-zero GROUP INDEX
associates a group with the public symbol, and is used as described in
““‘Conceptual Framework for Fixups,” case (F2c). A zero GROUP
INDEX indicates that there is no associated group.

The SEGMENT INDEX field has a format given earlier, and provides a
number between 0 and 32767, inclusive.

A non-zero SEGMENT INDEX selects an LSEG. In this case, the loca-

tion of each public symbol defined in the record is taken as a non-
negative displacement (given by a PUBLIC OFFSET field) from the first

7-26

Object and Executable File Formats

byte of the selected LSEG, and the FRAME NUMBER field must be
absent.

A SEGMENT INDEX of 0 (legal only if GROUP INDEX is also 0) means
that the location of each public symbol defined in the record is taken as a
displacement from the base of the FRAME defined by the value in the
FRAME NUMBER field.

The FRAME NUMBER is present if both the SEGMENT INDEX and
GROUP INDEX are zero.

A non-zero GROUP INDEX selects some group; this group is taken as the
““frame of reference’’ for references to all public symbols defined in this
record; that is, 1d will perform the following:

1. Any fixup of the form:

TARGET: EI(P)
FRAME: TARGET

(where ‘P’ is a public symbol in this PUBDEF record) will be
converted by ld to a fixup of the form:

TARGET: SK(L),d
FRAME: GI(G)

where ““SI(L)”’ and ‘‘d’’ are provided by the SEGMENT INDEX
and PUBLIC OFFSET fields. (The ‘‘normal’’ action would have
the frame specifier in the new fixup be the same as in the old fixup:
FRAME: TARGET.)

2. When the value of a public symbol, as defined by the SEGMENT
INDEX, PUBLIC OFFSET, and (optional) FRAME NUMBER
fields, is converted to a {base,offset} pair, the base part will be
taken as the base of the indicated group. If a non-negative 16-bit
offset cannot then complete the definition of the public symbol’s
value, an error occurs.

A GROUP INDEX of zero selects no group. ld will not aiter the FRAME
specification of fixups referencing the symbol, and will take, as the base
part of the absolute value of the public symbol, the canonic frame of the
segment (either LSEG or PSEG) determined by the SEGMENT INDEX
field.

7-27

C User’s Guide

7.14.22 Public Name

The PUBLIC NAME field gives the name of the object whose location in
MAS is made available to other modules. The name must contain one or
more characters.

7.14.23 Public Offset
The PUBLIC OFFSET field is a 16-bit value (Rectyp=90H), or a 32-bit
value (Rectyp=91H), which is either the offset of the Public Symbol with

respect to an LSEG (if SEGMENT INDEX > 0), or the offset of the Public
Symbol with respect to the specified FRAME (if SEGMENT INDEX = 0).

7.14.24 Type Index
The TYPE INDEX field identifies a single preceding TYPDEF (Type
Definition) Record containing a descriptor for the type of entity

represented by the Public Symbol. This field is ignored by 1d.

EXTERNAL NAMES DEFINITION RECORD

(EXTDEF)
REC RECORD EXTERNAL TYPE CHK
TYP LENGTH NAME INDEX SUM
8CH
[PR PP repeated = I

This record provides a list of external names, and for each name, the type
of object it represents. ld will assign to each External Name the value
provided by an identical Public Name (if such a name is found).

7.14.25 External Name

This field provides the name, which must have non-zero length, of an
external object.

Inclusion of a Name in an External Names Record is an implicit request
that the object file be linked to a module containing the same name
declared as a Public Symbol. This request obtains whether or not the
External Name is referenced within some FIXUPP Record in the module.

7-28

Object and Executable File Formats

The ordering of EXTDEF Records within a module, together with the ord-
ering of External Names within each EXTDEF Record, induces an order-
ing on the set of all External Names requested by the module. Thus,
External Names are considered to be numbered 1, 2, 3, 4, These
numbers are used as ‘‘External Indices’’ in the TARGET DATUM and/or
FRAME DATUM fields of FIXUPP Records to refer to a particular Exter-
nal Name.

Note

8086 External Names are numbered posiiively: 1,2,3,.. This is a
change from 8080 External Names, which were numbered starting
from zero: 0,1,2,.. This conforms with other 8086 Indices (Seg-
ment Index, Type Index, etc.) which use 0 as a default value with
special meaning.

External indices may not reference forward. For example, an external
definition record defining the kth object must precede any record referring
to that object with index k.

7.14.26 Type Index
This field identifies a single preceding TYPDEF (Type Definition) record
containing a descriptor for the type of object named by the External Sym-

bol.

The TYPE INDEX is used only in communal variable allocation by the
link editor.

7-29

C User’s Guide

LINE NUMBERS RECORD
(LINNUM)
REC
TYP RECORD LINE LINE LINE CHK
94H LENGTH NUMBER NUMBER NUMBER SUM
95H BASE OFFSET ‘
l P T repeated = I

This record provides the means by which a translator may pass the
correspondence between a line number in source code and the
corresponding translated code.

In the RECORD TYPE field, 94H and 95H describe 16- and 32-bit line
number records, respectively.

7.14.27 Line-Number Base

The LINE-NUMBER BASE has the following format:
GROUP INDEX SEGMENT

!\ (ignored) I INDEX]
The SEGMENT INDEX determines the location of the first byte of code
corresponding to some source line number.
7.14.28 Line-Number
A line number between 0 and 32767, inclusive, is provided in binary by
this field. The high-order bit is reserved for future use and must be zero.
7.14.29 Line Number Offset
The LINE-NUMBER OFFSET field is either a 16-bit value (Rectyp=94H)

or a 32-bit value (Rectyp=95H), which is the offset of the line number
with respect to an LSEG (if SEGMENT INDEX > 0).

7-30

Object and Executable File Formats

LOGICAL ENUMERATED DATA RECORD

(LEDATA)
REC
TYP RECORD SEGMENT |(ENUMERATED| DATA | CHK
AOH LENGTH INDEX DATA SUM
AlH OFFSET
repeat
&=

This record provides contiguous data from which a portion of an 8086
memory image may be constructed.

In the RECORD TYPE field, AOH and A1H describe 16- and 32-bit
LEDATA records, respectively.

7.14.30 Segment Index

This field must be non-zero and specifies an index relative to the SEG-
MENT DEFINITION RECORDS found previous to the LEDATA
RECORD.

7.14.31 Enumerated Data Offset

This field specifies either a 16-bit offset (Rectype=AOH) or a 32-bit offset
(Rectyp=A1H), that is relative to the base of the LSEG specified by the
SEGMENT INDEX and defines the relative location of the first byte of
the DAT field. Successive data bytes in the DAT field occupy succes-
sively higher locations of memory.

7-31

C User’s Guide

7.14.32 Dat

This field provides up to 1024 consecutive bytes of relocatable or abso-
lute data.

LOGICAL ITERATED DATA RECORD

(LIDATA)
REC
TYP RECORD SEGMENT ITERATED ITERATED CHK
A2H LENGTH INDEX DATA DATA SUM
A3H OFFSET BLOCK
[: repeated ﬁ]

This record provides contiguous data from which a portion of an 8086
memory image may be constructed.

In the RECORD TYPE field, A2H and A3H describe 16- and 32-bit
LIDATA records, respectively.

7.14.33 Segment Index

This field must be non-zero and specifies an index relative to the SEG-
DEF records found previous to the LIDATA RECORD.

7.14.34 Iterated Data Offset

This field specifies either a 16-bit offset (Rectype=A2H) or a 32-bit offset
(Rectyp=A3H), that is relative to the base of the LSEG specified by the
SEGMENT INDEX and defines the relative location of the first byte in

the ITERATED DATA BLOCK. Successive data bytes in the ITERATED
DATA BLOCK occupy successively higher locations of memory.

7-32

Object and Executable File Formats

7.14.35 Iterated Data Block

This repeated field is a structure specifying the repeated data bytes. The
structure has the following format:

REPEAT BLOCK CONTENT
COUNT COUNT

Note

The link editor cannot handle LIDATA records whose ITERATED
DATA BLOCK is larger than 512 bytes.

7.14.36 Repeat Count

This field specifies the number of times that the CONTENT portion of
this ITERATED DATA BLOCK is to be repeated. REPEAT COUNT
must be non-zero.

7.14.37 Block Count

This field specifies the number of ITERATED DATA BLOCKS that are to
be found in the CONTENT portion of this ITERATED DATA BLOCK. If
this field has value zero, then the CONTENT portion of this ITERATED
DATA BLOCK is interpreted as data bytes. If non-zero, then the CON-
TENT portion is interpreted as that number of ITERATED DATA
BLOCK:s.

7.14.38 Content

This field may be interpreted in one of two ways, depending on the value
of the previous BLOCK COUNT field.

If BLOCK COUNT is zero, then this field is a 1-byte count followed by
the indicated number of data bytes.

7-33

C User’s Guide

If BLOCK COUNT is non-zero, then this field is interpreted as the first
byte of another ITERATED DATA BLOCK.

Note

From the outermost level, the number of nested ITERATED DATA
BLOCKS is limited to 17, i.e., the number of levels of recursion is
limited to 17.

FIXUP RECORD
(FIXUPP)
REC
TYP RECORD THREAD CHK
9CH LENGTH or SUM
9DH FIXUP

| & repeated = |

This record specifies 0 or more fixups. Each fixup requests a modification
(fixup) to a LOCATION within the previous DATA record. A data record
may be followed by more than one fixup record that refers. Each fixup is
specified by a FIXUP field that specifies four data: a location, a mode, a
target and a frame. The frame and the target may be specified totally
within the FIXUP field, or may be specified by reference to a preceding
THREAD field.

A THREAD field specifies a default target or frame that may subse-
quently be referred to in identifying a target or a frame. Eight threads are
provided; four for frame specification and four for target specification.
Once a target or frame has been specified by a THREAD, it may be
referred to by following FIXUP fields (in the same or following FIXUPP
records), until another THREAD field with the same type (TARGET or
FRAME) and Thread Number (O - 3) appears (in the same or another FIX-
UPP record).

In the RECORD TYPE field, 9CH and 9DH describe 16- and 32-bit FIX-
UPP records, respectively.

7-34

Object and Executable File Formats

7.14.39 Thread

THREAD is a field with the following format.

TRD INDEX J

] &= conditional = I

The TRD DAT (ThReaD DATa) subfield is a byte with this internal struc-
ture:

ol o | z METHOD THRED

The ““Z”’ is a 1-bit subfield, currently without any defined function, that is
required to contain 0.

The ““D’’ subfield is one bit that identifies what type of thread is being
specified. If D=0, then a target thread is being defined; if D=1, then a
frame thread is being defined.

METHOD is a 3-bit subfield containing a number between 0 and 3 (D=0)
or a number between 0 and 6 (D=1).

If D=0, then METHOD = (0, 1, 2, 3,4, 5, 6, 7) mod 4, where the 0, ..., 7
indicate methods TO, ..., T7 of specifying a target. Thus, METHOD indi-
cates what kind of Index or Frame Number is required to specify the tar-
get, without indicating if the target will be specified in a primary or
secondary way. Note that methods 2b, 3, and 7 are not supported by Id.

If D=1, then METHOD =0, 1, 2, 4, 5, corresponding to methods FO, ..., of
specifying a frame. Here, METHOD indicates what kind (if any) of Index
is required to specify the frame. Note that methods 3 and 5d are not sup-
ported by ld.

THRED is a number between 0 and 3, and associates a Thread Number to
the frame or target defined by the THREAD field.

INDEX contains a Segment Index, Group Index, or External Index

depending on the specification in the METHOD subfield. This subfield
will not be present if F4 or F5 are specified by METHOD.

7-35

C User’s Guide

7.14.40 Fixup

FIXUP is a field with the following format:

LOCAT FIX FRAME TARGET TARGET
DAT DATUM DATUM DISPLACEMENT

| &= conditional = t &= conditional = | <= conditional = |

LOCAT is a byte pair with the following format:

1|Mm| roc’ " DATA RECORD OFFSET

M is a 1-bit subfield that specifies the mode of the fixups: self-relative
(M=0) or segment-relative (M=1).

Note

Self-Relative fixups may not be applied to LIDATA records.

LOC is a four-bit sub-field indicating the type of location that is to be
fixed up:

1

8 bit lobyte
- 16 bit offset
- 16 bit base
- 32 bit pointer
8 bit hibyte
- 16 bit offset (linker resolved)
- 32 bit offset
1 - 48 bit pointer
13 - 32 bit offset (linker resolved)

— 0 W AW = O
1

7-36

Object and Executable File Formats

LOC values 9, 11 and 13 are only valid in 32-bit FIXUPP records (record
type 9D). All other values of LOC are invalid.

The DATA RECORD OFFSET is a number between O and 1023,
inclusive, that gives the relative position of the lowest order byte of
LOCATION (the actual bytes being fixed up) within the preceding DATA
record. The DATA RECORD OFFSET is relative to the first byte in the
data fields in the DATA RECORD:s.

Note

It is possible for the value of DATA RECORD OFFSET to designate
a ‘“‘location’” within a REPEAT COUNT subfield or a BLOCK
COUNT subfield of the ITERATED DATA field. Such a reference
is an error. The action of Id on such a malformed record is
undefined.

FIX DAT is a byte with the following format:

R FRAME T | P | TARGT

Note

Frame method 2b, F3, and F5d are not supported. Target method T3
and T7 are not supported.

F is a 1-bit subfield that specifies whether the frame for this FIXUP is
specified by a thread (F=1) or explicitly (F=0).

FRAME is a number interpreted in one of two ways as indicated by the F
bit. If F is zero, FRAME is a number between O and 5 and corresponds to
methods FO, ..., F5 of specifying a FRAME. If F=1, then FRAME is a
thread number (0-3). It specifies the frame most recently defined by a
THREAD field that defined a frame thread with the same thread number.
(Note that the THREAD field may appear in the same, or in an earlier
FIXUPP record.)

7-37

C User’s Guide

“T”” is a 1-bit subfield that specifies whether the target specified for
this fixup is defined by reference to a thread (T=1), or is given explicitly
in the FIXUP field (T=0).

“P”’ is a 1-bit subfield that indicates whether the target is specified in a
primary way (requires a TARGET DISPLACEMENT, P=0) or specified in
a secondary way (requires no TARGET DISPLACEMENT, P=1). Since a
target thread does not have a primary/secondary attribute, the P bit is the
only field that specifies the primary/secondary attribute of the target
specification.

TARGT is interpreted as a 2-bit subfield. When T=0, it provides a
number between 0 and 3, corresponding to methods TO, ..., T3 or T4, ...,
T7, depending on the value of P (P can be interpreted as the high-order bit
of TO, ..., T7). When the target is specified by a thread (T=1), then
TARGT specifies a thread number (0-3).

FRAME DATUM is the ‘‘referent’” portion of a frame specification, and
is a Segment Index, a Group Index, an External Index. The FRAME
DATUM subfield is present only when the frame is specified neither by a
thread (F=0) nor explicitly by methods F4 or F5 or F6.

TARGET DATUM is the ‘‘referent’’ portion of a target specification, and
is a Segment Index, a Group Index, an External Index or a Frame Number.
The TARGET DATUM subfield is present only when the target is not
specified by a thread (T=0).

TARGET DISPLACEMENT is the displacement required by ‘‘primary’’
methods of specifying TARGETSs. This field is 2 bytes long in 16-bit FIX-
UPP records (Rectyp=9CH) and 4 bytes long in 32-bit FIXUPP records
(Rectyp=9DH). This subfield is present if P=0.

Note

All these methods are described in ‘‘Conceptual Framework for Fix-

(23

ups.

7-38

Object and Executable File Formats

MODULE END RECORD
(MODEND)

REC

TYP RECORD MOD START CHK

gll;II:II LENGTH TYP ADDRS SUM

|<: conditional :)|

This record serves two purposes. It denotes the end of a module and indi-
cates whether the module just terminated has a specified entry point for
initiation of execution. If the latter is true, the execution address is
specified.

In the RECORD TYPE field, 8AH and 8BH describe 16- and 32-bit
MODEND records, respectively.
7.14.41 Mod Type

This field specifies the attributes of the module. The bit allocation and
associated meanings are as follows:

MATIR | z | z | z | z | z | L

MATTR is a 2-bit subfield that specifies the following module attributes:

MATTR MODULE ATTRIBUTE

0 Non-main module with no START ADDRS
1 Non-main module with START ADDRS

2 Main module with no START ADDRS

3 Main module with START ADDRS

““L’* indicates whether the START ADDRS field is interpreted as a logi-
cal address that requires fixing up by ld. (IL=1). Note that with Id, L
must always equal 1.

7-39

C User’s Guide

““Z”’ indicates that this bit has not currently been assigned a function.
These bits are required to be zero.

Physical start addresses (L.=0) are not supported.

The START ADDRS field (present only if MATTR is 1 or 3) has the fol-
lowing format: '

START ADDRS
END FRAME TARGET TARGET
DAT DATUM DATUM DISPLACEMENT

(&= conditional = l &= conditional = | <¢=conditional = |

The starting address of a module has all the attributes of any other logical
reference found in a module. The mapping of a logical starting address to
a physical starting address is done in exactly the same manner as mapping
any other logical address to a physical address as specified in the discus-
sion of fixups and the FIXUPP record. The above subfields of the START
ADDRS field have the same semantics as the FIX DAT, FRAME
DATUM, TARGET DATUM, and TARGET DISPLACEMENT fields in
the FIXUPP record. Only ‘‘primary’’ fixups are allowed. Frame method
F4 is not allowed.

The TARGET DISPLACEMENT field is 2 bytes in a 16-bit MODEND
record (Rectyp=8AH) and 4 bytes in a 32-bit MODEND record
(Rectyp=8BH).

COMMENT RECORD
(COMENT)
REC RECORD COMMENT CHK
TYP LENGTH TYPE COMMENT SUM

38H

This record allows translators to include comments in object text.

7-40

Object and Executable File Formats

7.14.42 Comment Type

This field indicates the type of comment carried by this record. This
allows comments to be structured for those processes that wish to selec-
tively act on comments. The format of this field is as follows:

COMMENT
CLASS

NP | NL | Z z z Z Z Z

The NP (NOPURGE) bit, if 1, indicates that it is not able to be purged by
object file utility programs which implement the capability of deleting
COMENT record.

The NL (NOLIST) bit, if 1, indicates that the text in the COMMENT field
is not to be listed in the listing file of object file utility programs which
implement the capability of listing object COMMENT records.

The COMMENT CLASS field is defined as follows:

0 Language translator comment.
1 Intel copyright comment. The NP bit must be set.
2-155 Reserved for Intel use. (See note 1 below.)

156-255 Reserved for users. Intel products will apply no
semantics to these values. (See Note 2 below.)

NOTES:

1. Class value 159 is used to specify a library to add to the link
editor’s library search list. The comment field will contain the
name of the library. Note that unlike all other name specifications,
the library name is not prefixed with its length. Its length is deter-
mined by the record length.

2. Class value 156 is used to specify a DOS level number. When the
class value is 156, the comment field will contain a two-byte
integer specifying a DOS level number.

3. Class value 161 is used to indicate that the module contains
XENIX extensions to OMF, such as the various 32-bit record types.

7-41

C User’s Guide

7.14.43 Comment

This field provides the commentary information.

7.15 Numeric List of Record Types

*6E
*70
*72
*74
*76
*78
*TA
*7C
- *TE
80
*82
*84
*86
88
8A
8B
8C
8E
90
91

7-42

RHEADR
REGINT
REDATA
RIDATA
OVLDEF
ENDREC
BLKDEF
BLKEND
DEBSYM
THEADR
LHEADR
PEDATA
PIDATA

COMENT

MODEND
H386END
EXTDEF
TYPDEF
PUBDEF
MPUB386

*92
*93
94
95
96
98
99
9A
9C
9D
*9E
A0
Al
A2
A3
*Ad4
*A6
*A8

LOCSYM
MLOC386
LINNUM
MLIN386
LNAMES
SEGDEF
MSEG386
GRPDEF
FIXUPP
MFIX386
(none)
LEDATA
MLED386
LIDATA
MLID386
LIBHED
LIBNAM
LIBLOC

*AA LIBDIC

Object and Executable File Formats

Note

The record types marked with an asterisk are not supported by the
link editor. They will be ignored if they are found in an object
module.

7.16 Type Representations for Communal Variables

This section defines the XENIX standard for communal variable alloca-
tion on the 8086 and 80286.

A communal variable is an uninitialized public variable whose final size
and location are not fixed at compile time. Communal variables are simi-
lar to FORTRAN common blocks in that if a communal variable is
declared in more than one object module being linked together, then its
actual size will be the largest size specified in the several declarations. In
the C language, all uninitialized public variables are communal. The fol-
lowing example shows three different declarations of the same C commu-
nal variable:

char fool4}; /* In file a.ce */
char foo[l]; /* In file b.ce */
char foo[10247; /* In file c.ce */

If the objects produced from a.ce, b.c, and c.c are linked together, then the
linker will allocate 1024 bytes for the char array ‘‘foo.”

A communal variable is defined in the object text by an external
definition record (EXTDEF) and the type definition record (TYPDEF) to
which it refers.

The TYPDEF for a communal variable has the following format:

REC RECORD EIGHT LEAF CHK
%’g}l}' LENGTH 0 DESCRIPTOR SUM

7-43

C User’s Guide

The EIGHT LEAF DESCRIPTOR field has the following format:

EN LEAF
, DESCRIPTOR

The EN field specifies whether the next 8 leaves in the LEAF DESCRIP-
TOR field are EASY (bit = 0) or NICE (bit = 1). This byte is always zero
for TYPDEFS for communal variables.

The LEAF DESCRIPTOR field has one of the following two formats.
The format for communal variables in the default data segment (near
variables) is as follows:

NEAR VAR LENGTH VAR
62H TYP IN BITS SUBTYP

l &= optional => |

The VARiable TYPe field may be either SCALAR (7BH), STRUCT
(79H), or ARRAY (77H). The VAR SUBTYP field (if any) is ignored by
ld. The format for communal variables not in the default data segment
(far variables) is as follows:

FAR VAR NUMBER OF ELEMENT
61H TYP ELEMENTS TYPE
77TH INDEX

The VARiable TYPe field must be ARRAY (77H). The length field
specifies the NUMBER OF ELEMENTS, and the ELEMENT TYPE
INDEX is an index to a previously defined TYPDEF whose format is that
of a near communal variable.

The format for the LENGTH IN BITS or NUMBER OF ELEMENTS

fields is the same as the format for the LEAF DESCRIPTOR field,
described in the TYPDEEF record format section of this guide.

7-44

Object and Executable File Formats

Link Time Semantics

All EXTDEFs referencing a TYPDEF of the previously described formats
are treated as communal variables. All others are treated as externally
defined symbols for which a matching public symbol definition (PUB-
DEF) is expected. A PUBDEF matching a communal variable definition
will override the communal variable definition. Two communal variable
definitions are said to match if the names given in the definitions match.
If two matching definitions disagree as to whether a communal variable is
near or far, the linker will assume the variable is near.

If the variable is near, then its size is the largest specified for it. If the
variable is far, then the link editor issues a warning if there are conflicting
array element size specifications; if there are no such conflicts, then the
variable’s size is the element size times the largest number of elements
specified. The sum of the sizes of all near variables must not exceed 64K
bytes. The sum of the sizes of all far variables must not exceed the size
of the machine’s addressable memory space.

‘‘Huge’” Communal Variables

A far communal variable whose size is larger than 64K bytes will reside
in segments that are contiguous (8086) or have consecutive selectors
(80286). No other data items will reside in the segments occupied by a
huge communal variable.

If the linker finds matching huge and near communal variable definitions,
it issues a warning message, since it is impossible for a near variable to
be larger than 64K bytes.

7.17 The Segmented x.out Format

This section describes the executable object file format used in XENIX.
The format used is an extension to the existing ‘‘x.out’” format,
specifically enhanced for the segmented architecture of the 286 CPU.

The XENIX linker (/bin/ld, see the ‘‘1d: the Link Editor’ ‘chapter) will link

the Intel 86 Relocatable Object Format into the executable format
described in this section.

7-45

C User’s Guide

The XENIX product supports a subset of segmented omf. Other parts are
specified here for use by other vendors, and to reserve their meaning for
possible future use. Those parts supported in this release of XENIX are:

e The x.out header

e The x.out extended header

e The file segment table

e Multiple non-iterated text segments
e Multiple non-iterated data segments

e Symbol table segments in the format described herein.

Note specifically that the machine-dependent table is not supported. The
iterated text/data feature is supported by the kernel, but the XENIX linker
will expand iterated records.

7.17.1 General Description of x.out

The following is a general description of the x.out object file format,
extended to handle segmentation. It implements iterated text and data
segments, huge, large, middle and small model, as well as block align-
ment to improve the efficiency of loading executable files.

The extensions to the existing format consist of adding a file segment
table that describes and points to various (possibly block aligned) file seg-
ments. A file segment may contain a memory image, may indicate how to
construct a memory image (iterated text or data), or may contain symbols
or other non-executable information. In addition to the file segment table,
there is an optional machine-dependent table.

The header must be first in the object file, and the extended header must
immediately follow the header. The extended header indicates the seg-
ment and (optional) machine-dependent tables’ sizes and positions.
Although the segment table is not block aligned, individual entries will
line up on a multiple of 32 bytes (the size of a segment table entry). The
segment table indicates the sizes and positions of the remaining file seg-
ments. The file segments may be aligned on a boundary that is a multiple
of 512 bytes, with that mulitiple stored in the extended header, or at loca-
tion zero if the file segments are not block aligned.

7-46

Object and Executable File Formats

The segment table is an array of records describing the file segments,
each containing:

¢ A segment type: text, data, symbols, etc.

e Segment attributes, specific to the type of segment.

¢ A file pointer to the (possibly iterated) text/data for this segment.
e A physical size, the size of the segment in the file.

e A virtual size, the size the segment will occupy in memory.

e A location counter, this segment’s current base address, usually 0.

A sample of a segment table entry is shown below. The xs fields in this
data structure are referred to throughout the remaining discussion in this
section.

Segment table entry
struct xseg { /* x.out segment table entry */
unsigned shortxs_type; /* segment type */
unsigned short xs_attr; /* segment attributes */
unsigned short xs_seg; /* segment number */
unsigned short xs_sres; /* unused */
long xs_filpos; /* file position */
long Xs_psize; /* physical size (in file) */
long XS_vsize; /* virtual size (in core) */
long xs_rbase; /* relocation base address */
long xs_lIres; /* unused */
long xs_lres2; /* unused */
|8

The segment table is a contiguous array of the above structures. Each file
segment has a corresponding segment table entry that describes the
segment’s position xs_filpos and physical size xs_psize in the file. If there
is no associated file segment, both fields must be set to zero.

The kernel’s local descriptor table (LDT) can be built from the virtual
size, the segment type, and segment attribute fields.

7-47

C User’s Guide

7.17.2 Example of File Layout

This section provides an example of the layout of an x.out file where:
e The segment table has two entries (segments).
e The file page size is 512 bytes (xext.xe_pagesize=1).
e Both file segments are smaller than 512 bytes.
e The second file segment contains iterated data.
The file layout is illustrated below:
Accessing the machine-dependent table and the file segment table must
always be done through the absolute file pointers in the extended header.

The ordering of the two tables and file segments shown above is not
required to be consistent with the x.out XENIX specification.

7.17.3 Iterated Segments

The data structure for an iterated segment is shown below:

struct xiter {

long xi size; /* byte count */
long xi rep; /* replication count */
long xi offset; /* destination offset in segment */

}i

If the segment contains iterated text/data (indicated by a bit in the xs_aztr
field), the xs_filpos field is the file position of some number of iteration
records mixed with the text/data to be iterated. If any part of a segment is
iterated, then all of that segment is represented as iterated; non-iterated
portions may be represented by an iteration record with a replication
count of one.

The format of the text/data to be iterated is:

<iteration record> <text/data> <iteration record> <text/data> ...
where each <iteration record> is of the above ‘‘struct xiter’’ data struc-
ture. Each iteration record is followed by xi_size bytes of text/data that
are to be placed in the current segment at the specified offset xi_offset
xi_rep times. When xs_psize bytes of iteration records and text/data have
been expanded, the iteration is complete.

7-48

Object and Executable File Formats

Under XENIX, areas of memory that are initialized by more than one
iteration record will have the contents of those memory areas undefined.
Areas of memory that are not initialized by any iteration records will be
zeroed out. An iteration byte count xi_size of zero will not result in any
iteration. Portions of a segment that are to be bss should use an iteration
record with a non-zero byte count and replicate one or more zeroed data
bytes.

This representation of iterated text/data will handle iterations that contain
very large replication counts and/or very large non-iterated sizes.

7.17.4 Non-Iterated Segments and Implicit bss

If the iteration bit in xs_attr is not set, no iterations are required to initial -
ize the segment. If the implicit bss bit in the xs_attr field is set and the
virtual size is greater than the physical size, then the rest of the segment
(up to xs_vsize bytes) is filled with zeros by the kernel loader. This impli-
cit bss definition means that small and middle model executables’ single
data segments may still contain unexpanded bss without the use of expli-
cit iteration records.

Segments made up entirely of implicit *‘C’’ bss need only set the physical
size to zero, and set the implicit bss bit. This eliminates the need for any
file segment containing data or iteration records. If there are no iterations
and no implicit bss, the virtual size of the segment xs_vsize must be the
same as the physical size xs psize, and a single copy of the text/data
located at xs_filpos is all that is required to initialize the segment.

7.17.5 Large Model

With x.out format, large model is supported by allowing multiple logical
text and/or data segments. Middle and small models are simpler cases,
with perhaps single logical segments for data (or both text and data).
Iterated segments are independent of memory model.

7.17.6 Special Header Fields

The model bits in the x_renv field of the main header, XE_LDATA and
XE_LTEXT, usually indicate the default size of data and text pointers used
in the executable code. The kernel depends on these two bits to indicate
the size of data and text pointers passed in system calls. However, since
multiple segments are allowed in small and middle model, there can be
little other meaning attached to these bits. Passing near data and/or text
pointers implies use of the first data and text segments, respectively.

7-49

C User’s Guide

Also in the x_reny field, the absolute bit, XE_ABS, identifies a standalone
executable file. When this bit is set, the extended header stack size field
is used as the default physical load address. The XENIX kernel loader
will not load a binary if the XE_ABS bit is set. The XENIX boot loader
will not load a binary unless the XE_ABS bit is set. See the 1d(CP) com-
mand in the XENIX Reference for information about how to set the
XE_ABS bit and the physical load address.

7.17.7 Symbol Table

The data structure for the x.out symbol table is shown below:

struct sym { /* x.out symbol table entry */
unsigned short s_type;
unsigned short s_seg;
long s value;

b2

The symbol table differs from the previous x.out only in that the s seg
field now holds the selector of the segment that defines the symbol. If the
symbol is absolute, the value field holds the symbol’s value; otherwise, it
holds the offset in the indicated segment to which the symbol refers.

The symbol name trails the above ‘struct sym’’ data structure in the form
of a null terminated string. The type field values are defined in
lusrlincludel sysirelsym.h.

The use of the xs_seg field in the segment table is undefined for symbol
table segments. Its use may be defined by the particular symbol table for-
mat used.

7.17.8 XENIX Executable Format

XENIX does not execute binaries that make use of selectors below 0x3f or
selectors that do not have the low 3 bits set (LDT, ring 3). XENIX also
requires that the first data selector be after the last text selector. Binaries
are allowed to have zero length segments or ‘‘holes’ (unused selectors)
in text or data, but holes in text may not contain data selectors, and holes
in data may not contain fext selectors.

The fields, xext.xe_eseg:xexec.x_entry, must contain the initial cs:ip of
the user process.

Small model impure binaries (text and data combined into a single seg-
ment) must have a single file segment, of type data, with a selector of at

7-50

Object and Executable File Formats

least 0x47. It must contain all text, followed by all data, followed by bss.
The sizes of each must be stored in the x_text, x data and x_bss fields of
the main header. XENIX will use the value stored in the xext.xe eseg
field as the text selector, which must be at least 0x3f and less than the
data selector. All text/data/bss binaries are executable through the text
selector, and all text/data/bss binaries are readable and writable through
the data selector. XENIX maps the text selector to the same memory as
the data selector.

In addition to the above, the XENIX linker generates binaries that con-
form to the following:

o Text selectors start at 0x3f.

e Data selectors start at the first free selector past text.

e All text selectors are contiguous.

e All data selectors are contiguous.

e Small model impure binaries conform to the above specification,
with 0x47 as the data selector. In the symbol table, the selector
0x47 is associated with data symbols, and the selector 0x3f is asso-
ciated with text symbols, to allow adb and nm to present con-
sistent data to the user.

7-51

C User’s Guide

7.17.9 Selected Portions of Include Files

The following are selected portions of the wusr/include/sys/a.out.h and
usr/includelsysirelsym.h include files.

struct xexec {
/* x.out header */
unsigned shortx magic;
/* magic number */
unsigned shortx ext;
/* size of header extension */

long X _text;

/* size of text segment */
long x_data;

/* size of initialized data */
long X bss;

/* size of uninitialized data */
long X_syms;

/* size of symbol table */
long x_reloc;

/* relocation table length */
long X _entry;

/* entry offset, see xe eseg */
char X_cpu;

/* cpu type & byte/word order */
char x_relsym;

/* relocation & symbol format */
unsigned shortx renv;
/* run-time environment */

7-52

Object and Executable File Formats

struct xext {

/* x.out header extension */
long xe trsize;

/* size of text relocation */
long xe drsize;

/* size of data relocation */
long xe drsize;

/* size of data relocation */

long xe_dbase;

/* data relocation base */
long xe_stksize;

/* stack size (if XE FS set) */
long Xe segpos;

/* segment table position */
long Xe_segsize;

/* segment table size */
long xe ndtpos;

/* machine dependent table position */
long xe mdtsize;

/* machine dependent table size */
char xe mdttype;

/* machine dependent table type */
char xe_pagesize;

/* file pagesize, in multiples of 512 */
char xe_ostype;

/* operating system type */
char Xe Oosvers;

/* operating system version */
unsigned short xe eseg;

/* entry segment (hardware dependent) */
unsigned short xe sres;

/* reserved */

~
*

Definitions for xexec.x renv (short).

version compiled for

extra (zero)

set if segmented x.out

set if absolute (set up for physical address)
set if segment table contains iterated text/data
set if huge model data

set if floating point hardware required

set if large model text

set if large model data

set if text overlay

set if fixed stack

set if text pure

set if separate I & D

set if executable

%%k Sk OE % oF Ok X 3 3k b % % % %
fDm’UI—hOQ,rfl—hD")—‘-SDm&g

*
~

7-53

C User’s Guide

#define XE V2 0x4000

/* up to and including 2.3 */
#define XE V3 0x8000

/* after version 2.3 */
#define XE VERS 0xc000

/* version mask */

#define XE SEG0x0800
/* segment table present */
#define XE ABS0x0400
/* absolute memory image (standalone) */

#define XE ITER 0x0200
/* iterated text/data present */
#define XE HDATA 0x0100

/* huge model data */
#define XE_FPHOx0080
/* floating point hardware required */

#define XE ITEXT 0x0040
/* large model text */
#define XE IDATA 0x0020
/* large model data */
#define XE OVER 0x0010
/* text overlay */
#define XE FS 0x0008
/* fixed stack */
#define XE PURE 0x0004

/* pure text */
#define XE SEP0x0002

/* separate I & D */
#define XE EXEC 0x0001

/* executable */

struct xseg {

/* x.out segment table entry */
unsigned shortxs type;

/* segment type */
unsigned shortxs attr;

/* segment attributes */
unsigned shortxs seg;

/* segment number */
unsigned shortxs sres;

/* unused */

long xs_filpos;

/* file position */
long xs_psize;

/* physical size (in file) */
long xS vsize;

/* virtual size (in core) */
long xs_rbase;

/* relocation base address */
long xs_lres;

/* unused */
long xs_lres2;

/* unused */

}i

7-54

Object and Executable File Formats

struct xiter {
/* x.out iteration recoxrd */

long %1 _size;

/* byte count */
long xi_rep;

/* # of repetitions */
long xi offset;

/* destination offset in segment */

struct sym {
/* x.out symbol table entry */
unsigned shorts type;
unsigned shorts_seg;

long s value;
i
/*
* Definitions for xe mdttype
*/

#defineXE MDINONE O

/* no machine dependent table */
#defineXF, MDT286 1

/* iRPX286 LDT */

/*
* Definitions for xe ostype
*/
#defineXE OSNONE 0
#defineXE OSXENIX 1
/* XENIX */
#defineXE OSRMX 2
/* iRMX */
/%
* Definitions for xe_osvers
*/
#defineXE OSXV3 1
/* XENIX */
/%
* Definitions for xs type:
* Values from 64 to 127 are reserved.
*/
#defineXS TNULL 0 /* unused segment */
#defineXs TTEXT 1 /* text segment */
#defineXS TDATA 2 /* data segment */
#defineXS TSYMS 3 /* symbol table segment */
#defineXS TREL4 /* relocation segment */

7-55

C User’s Guide

/*
* Definitions for xs attr:
* The top bit is set if the file segment represents
* a memory image. The other 15 bits’ definitions
* depend on the type of file segment.
*/
#define XS AMEM 0x8000
/* segment represents a memory image */
#define XS AMASK Ox7fff
/* type specific field mask */
/*
* Definitions for xs attr, built by or’ing the following
* bit patterns: these values are valid for XS TTEXT and
* XS TDATA file segments only.
*/
#define XS AITER 0x0001
/* contains iteration records */
#define XS AHUGE 0x0002
/* contains huge element */
#define XS 2BSS 0x0004
/* contains implicit bss */
#define XS APURE 0x0008

/* is read-only, may be shared */
#define XS AEDOWN 0x0010
/* segment expands downward */

/*
* Definitions for xs attr.
* These values are valid for XS TSYMS file segments only.
*/
#define XS SXSEG 0x0001

/* x.out segmented format */

When using the xs_seg field, note that if the XS_AMEM bit is set in the
xs_attr field, the file segment represents a memory image, and the value
placed in this field should be the segment number as used by the hardware
to reference the segment. This is the actual value placed in the segment
register. For the 286, it is simply an LDT selector (under XENIX, if the
privilege level is not 3, the file will not be executed). Otherwise the seg-
ment is not a memory image, and the contents of the field is not defined.
File segments other than memory images may define and use this field as
needed.

There are two bits in the xexec.x cpu field that are used to indicate the
CURRENT byte and word ordering of the non-character data fields of the
header, extended header, segment table and symbol table. These bits,
XC_BSWAP and XC_WSWAP, do not indicate the byte and word ordering
of the target cpu, XC_CPU.

The segment table is not block aligned. No individual segment table
entry may straddle a block boundary.

7-56

Chapter 8
C Language Compatibility
with Assembly Language

8.1 Introduction 8-1

8.2 C Calling Sequence for 8086/80286 8-1

8.3 Entering an 8086/80286 Assembly Routine 8-2

8.4 8086/80286 Return Values 8-2

8.5 Exiting an 8086/80286 Routine 8-2

8.6 8086/80286 Program Example 8-3

8.7 80386 C Language Calling Sequence 8-4

8.8 Entering an 80386 Assembly-Language Routine 8-4
8.9 80386 Return Values 8-5

8.10 Exiting a 80386 Routine 8-7

8.11 80386 Program Example 8-7

C Language Compatibility with Assembly Language

8.1 Introduction

This appendix explains how to use 8086/286/386 assembly language rou-
tines with C language programs and functions. In particular, it explains
how to call assembly language routines from C language programs and
how to call C language functions from an assembly language routine.

This assembly language interface is especially useful for those assembly
language programmers whose wish to use the functions of the standard C
library and other C libraries.

Note

Two different calling conventions are available. The 8086/80286
calling convention is established by configuring C language pro-
grams with the -M0, -M1, or -M2 option. The 80386 calling con-
vention is established by configuring C language programs with the
-M3 option.

8.2 C Calling Sequence for 8086/80286

To receive values from C language function calls or to pass values to C
functions, assembly language routines must follow the C argument pass-
ing conventions. C language function calls pass their arguments to the
given functions by pushing the value of each argument onto the stack.
The call pushes the value of the last argument first and the first argument
last. If an argument is an expression, the call computes the expression’s
value before pushing it onto the stack.

Arguments with char, int, or unsigned type occupy a single word (16
bits) on the stack. Arguments with long type occupy a double word (32
bits) with the value’s high order word occupying the first word. Argu-
ments with float type are converted to double type (64 bits). Note that
char type arguments are zero-extended to int type before being pushed on
the stack.

If an argument is a structure, the function call pushes the last word of the
structure first and each successive word in turn until the first word is
pushed.

After a function returns control to a routine, the calling routine is respon-
sible for removing arguments from the stack.

8-1

C User’s Guide

8.3 Entering an 8086/80286 Assembly Routine

Assembly language routines that receive control from C function calls
should preserve the contents of the bp, si, and di registers and set the bp
register to the current sp register value before proceeding with their tasks.
The following example illustrates the recommended instruction sequence
for entry to an assembly language routine:

entry:
push bp
mov bp, sp
push di
push si

This is the same sequence used by the C compiler.

If this sequence is used, the last argument passed by the function call
(which is also the first argument given in the call’s argument list) is at
address ‘‘[bp+4]’’. Subsequent arguments begin at address ‘‘[bp+6]’’ or
“‘[bp+8]’ depending on the size of the first argument.

This sequence is strongly recommended even if the si and di registers are
not modified, since it allows backtracing with the adb program during
program debugging.

8.4 8086/80286 Return Values

Assembly language routines that wish to return values to a C language
program or receive return values from C functions must follow the C
return value conventions. C functions place return values that have int,
char, or unsigned type in the ax register. They place values with long
type in the ax and dx registers, with the high order word in dx.

To return a structure or a floating point value, C functions place the
address of the given value in the ax register. The structure or floating
point value must be in a static area in memory. Long addresses are
returned in the ax and dx registers with the segment selector in dx.

8.5 Exiting an 8086/80286 Routine

Assembly language routines that return control to C programs should
restore the values of the bp, si, and di registers before returning control.
The following example illustrates the recommended instruction sequence
for exiting a routine:

8-2

C Language Compatibility with Assembly Language

pop si

pop di

mov sp, bp
pop bp

ret

This sequence does not change the ax, bx, cx, or dx registers or any of the
segment registers. The sequence does not remove arguments from the
stack. This is the responsibility of the calling routine.

8.6 8086/80286 Program Example

To illustrate the assembly language interface, consider the following
example of a C function:

add (i, 3)
int 1i,3;
{
return (i+7) ;

}

If written as an assembly language routine, this function must save the
proper registers, retrieve the arguments from the stack, add the argu-
ments, place the return value in the ax register, then restore registers and
return control. The following is a example of how the routine can be
written:

_add:
push bp
mov bp, sp
push di
push si

mov ax, [bp+4]
add ax, [bpt6]

pop si

pop di

mov sp, bp
pop bp

ret

If, on the other hand, the C function is to be called by an assembly
language routine, the routine must contain instructions that push the argu-

8-3

C User’s Guide

ments on the stack in the proper order, call the function, and clear the
stack. It may then use the return value in the ax register. The following
is an example of the instructions that can do this:

push <j value>
push <i value>
call _add
add sp,*4

Note that the C compiler does not preserve es over calls. Assembly
language routines need not preserve es and should not assume that it will
be preserved if they make calls to routines written in C.

8.7 80386 C Language Calling Sequence

To receive values from 80386 C language function calls, or to pass values
to 80386 C language functions, assembly-language routines must follow
the 80386 C language argument-passing conventions.

C language function calls pass arguments to the function by pushing each
argument onto the stack. The call pushes the last function argument first
and the first function argument last onto the stack. If an argument is an
expression, the call computes the expression’s value before pushing it
onto the stack.

Arguments with char, int, unsigned, short, or long type occupy a dou-
bleword (32 bits or 4 bytes) on the stack. Arguments with float type are
converted to double type (64 bits or 8 bytes). Note that char, unsigned
char, short, and unsigned short type arguments are sign extended or
zero extended, respectively, to int type before being pushed onto the
stack.

If an argument is a structure, the function call pushes the last word of the
structure first and each successive word in turn until the first word of the
structure is pushed onto the stack.

After a function returns control to the calling routine, the calling routine
is responsible for removing all function arguments from the stack.

8.8 Entering an 80386 Assembly-Language Routine
Assembly-language routines that receive control from 80386 C function

calls should preserve the contents of the ebp, esi, edi, and ebx registers.
In addition, the routines should set the ebp register to the current esp

8-4

C Language Compatibility with Assembly Language

register value before proceeding with their tasks. The following example
illustrates a recommended instruction sequence for entry to an assembly-
language routine:

entry:
push ebp
mov ebp, esp
push edi
push esi
push ebx

Note that this is the same routine that the compiler uses after pushing the
function arguments onto the stack.

If this sequence is used, the last function argument pushed by the function
call (which is also the first argument in the function’s argument list) is at
address ‘‘[ebp+8]’°. Subsequent arguments are at address ‘‘[ebp+12]’’ or
“‘[ebp+16]*’, depending on the size of the argument pushed onto the stack
at “‘8(ebp)”’.

8.9 80386 Return Values

Assembly-language routines that return values to a 80386 C language
program or receive return values from 80386 C language functions must
follow the 80386 C language return-value conventions. C language func-
tions place return values that have int, char, unsigned, short, and long
types in the eax register.

Floating-point values are returned to the top of the ndp 80287 stack. The
following example shows the recommended instruction sequence for
passing floating-point values:

float func(),f;
f = func(f)
fld DWORD PTR f
sub esp,8
fstp QWORD PTR [esp]
call func ; result in ST(0)
add esp,8
fstp DWORD PTR f

8-5

C User’s Guide

The following example shows the recommended instruction sequence for
returning floating-point values:

float fvalue;
return (fvalue);

fld fvalue ; result in ST(0)
pop edx

pop esi

pop edi

leave

ret

Far pointers are returned in the eax and edx registers. The offset is con-
tained in eax and the segment is contained in edx.

C language structure returns are returned to a buffer whose address is
passed as a hidden first parameter.

The following example shows the recommended instruction

struct shape
{
int stuff, to, f£ill, it, with;
} in, out, them();
out = them(in);

sub esp, 20
nov edi, esp
lea edi, in
mov ecx, 5
rep novsd
lea eax,out

structure copy input
struct onto stack

~e N

~

pass address of

push eax ; assignment as extra "hidden"
call them ;parameter
add esp, 24

The following example shows the recommended instruction sequence for
returning C language structure returns:

struct shape source;
return shape;
mov edi, [ebp+8]

mov esi, source
mov ecx,5

rep movsd

pop ebx

pop esi

pop edi

leave

ret

8-6

C Language Compatibility with Assembly Language

8.10 Exiting a 80386 Routine

Before returning control from an assembly-language routine to a 80386 C
language program, restore the ebp, esi, edi, and ebx registers. The fol-
lowing example illustrates the recommended instruction sequence for
exiting a routine:

pop ebx
pop esi
pop edi
leave
ret

This sequence does not save the eax, ecx, or edx register. These registers
are scratch registers for use by the compiler. If the routine modifies seg-
ment register es, ss, or ds, the routine must preserve the modified segment
registers. The sequence does not remove arguments from the stack. This
is the responsibility of the calling routine.

8.11 80386 Program Example

The following example illustrates a 80386 C language function that can
be written as an assembly-language routine. The function takes two
integer arguments and adds them together, returning the resultant value.

int add(i, 3J)
int i, j;

{

return(i + j);

}

If written as an assembly-language routine, this function must save the
proper registers, retrieve the arguments from the stack, add the argu-
ments, place the return value in the eax register, then restore the proper
registers and return control to the calling routine. The following is an
example of how the routine can be written:

8-7

C User’s Guide

_add:

push
mov

push
push
push

mov
add

pop
pop
pop
mov
pop
ret

ebp
ebp, esp
edi
esi
ebx

eax, [ebp+8]
eax, [ebp+12]

ebx
esi
edi
esp,
ebp

ebp

Note

In the above assembly-language routine, it is not necessary to save
the contents of the esi, edi, and ebx registers because the routine
does not modify their contents. If the esi, edi, or ebx register was
modified by the routine, its contents must be saved.

If the C language function is to be called by an assembly-language rou-
tine, the routine must contain instructions that push the arguments onto
the stack in the proper order, call the function, and clear the stack. It can
then use the return value in the eax register. The following is an example
of the instructions that perform this task:

push <j value>
push <i value>

call
add

8-8

_add

esp, 8

Chapter 9

Error Processing

9.1
9.2
9.3
9.4
9.5
9.6

Introduction 9-1

Using the Standard Error File 9-1
Using the erro Variable 9-2
Printing Error Messages 9-2
Using Error Signals 9-3

Encountering System Errors 9-4

Error Processing

9.1 Introduction

The XENIX system automatically detects and reports errors that occur
when using standard C library functions. Errors range from problems
with accessing files to allocating memory. In most cases, the sysiem sim-
ply reports the error and lets the program decide how to respond. The
XENIX system terminates a program only if a serious error has occurred,
such as a violation of memory space.

This chapter explains how to process errors, and describes the functions
and variables a program may use to respond to errors.

9.2 Using the Standard Error File

The standard error file is a special output file that can be used by a pro-
gram to display error messages. The standard error file is one of three
standard files (standard input, output, and error) automatically created for
the program when it is invoked.

The standard error file, like the standard output, is normally assigned to
the user’s terminal screen. Thus, error messages written to the file are
displayed on the screen. The file can also be redirected by using the
shell’s redirection symbol (>) For example, the following command
redirects the standard error file to the file errorlist:

dc 2>errorlist
In this case, subsequent error messages are written to the given file.

The standard error file, like the standard input and standard output, has
predefined file pointer and file descriptor values. The file pointer stderr
may be used in stream functions to copy data to the error file. The file
descriptor 2 may be used in low-level functions to copy data to the file.
For example, in the following program fragment, stderr is used to write
the message ‘“Unexpected end of file’” to the standard error file.

if ((c=getchar()) == EOF)
fprintf (stderr, "Unexpected end of file.\n");

The standard error file is not affected by the shell’s pipe symbol (I). This
means that even if the standard output of a program is piped to another

program, errors generated by the program will still appear at the terminal =&

screen (or in the appropriate file if the standard error is redirected).

9-1

C User’s Guide

9.3 Using the errno Variable

The errno variable is a predefined external variable which contains the
error number of the most recent XENIX system function error. Errors
detected by system functions, such as access permission errors and lack of
space, cause the system to set the errno variable to a number and return
control to the program. The error number identifies the error condition.
The variable may be used in subsequent statements to process the error.

The file errno.h contains manifest constant definitions for each error
number, and the external declaration of errmo. These constants may be
used in any program in which the line:

#include <errno.h>

is placed at the beginning of the program. The meaning of each manifest
constant is described in ‘‘Error Messages’’ of the XENIX C Library
Guide.

The errno variable is typically used immediately after a system function
has returned an error. In the following program fragment, errno is used to
determine the course of action after an unsuccessful call to the open func-
tion:

if ((fd=open("accounts", O _RDONLY)) == -1)
switch (errno) {
case (EACCES) :
fd = open ("/usr/tmp/accounts", 0 _RDONLY) ;
break;
default:
exit (errno);

}
In this example, if errno is equal to EACCES (a manifest constant), per-
mission to open the file accounts in the current directory is denied, so the
file is opened in the directory /usr/tmp instead. If the variable is any other
value, the program terminates.
9.4 Printing Error Messages
The perror function copies a short error message describing the most
recent system function error to the standard error file. The function call

has the form:

perror (s);

9-2

Error Processing

where s is a pointer to a string containing additional information about
the error.

The perror function places the given string before the error message and
separates the two with a colon (:). Each error message corresponds to the
current value of the errno variable. For example, in the following pro-
gram fragment, perror displays the message:

accounts: Permission denied.

if errno is equal to the constant EACCES:

if (errno == EACCES) {
perror ("accounts");
fd = open ("/usr/tmp/accounts", O_RDONLY);

All error messages displayed by perror are stored in an array named
sys_errno, an external array of character strings. The perror function
uses the variable errno as the index to the array element containing the
desired message. For more information on the perror function, see the
perror(S) manual page in the XENIX Reference.

9.5 Using Error Signals

Some program errors cause the XENIX system to generate error signals.
These signals are passed back to the program that caused the error and
normally terminate the program. The most common error signals are
SIGBUS, the bus error signal, SIGFPE, the floating point exception signal,
SIGSEGY, the segment violation signal, SIGSYS, the system call error sig-
nal, and SIGPIPE, the pipe error signal. Other signals are described in
signal(S) in the XENIX Reference.

A program can, if necessary, catch an error signal and perform its own
error processing by using the signal function. This function, as described
in the ‘“Using Signals’’ chapter of the XENIX Programmer’s Guide, can
set the action of a signal to a user-defined action. For example, the func-
tion call:

signal (SIGBUS, fixbus);
sets the action of the bus error signal to the action defined by the user-
supplied function fixbus. Such a function usually attempts to remedy the

problem, or at least display detailed information about the problem before
terminating the program.

9-3

C User’s Guide

For details about how to catch, redefine, and restore these signals, see
““Using Signals’’ in the XENIX Programmer’s Guide.

9.6 Encountering System Errors

Programs that encounter serious errors, such as hardware failures or inter-
nal errors, generally do not receive detailed reports on the cause of the
errors. Instead, the XENIX system treats these errors as ‘‘system errors,”’
and reports them by displaying a system error message on the system con-
sole. This section briefly describes some aspects of XENIX system errors
and how they relate to user programs. For a complete list and description
of XENIX system errors, sce messages(M) in the XENIX Reference.

Most system errors occur during calls to system functions. If the system
error is recoverable, the system will return an error value to the program
and set the errno variable to an appropriate value. No other information
about the error is available.

Although the system lets two or more programs share a given resource, it
does not keep close track of which program is using the resource at any
given time. When an error occurs, the system returns an error value to all
programs regardless of which caused the error. No information about
which program caused the error is available.

System errors that occur during routine I/O operations initiated by the
XENIX system itself generally do not affect user programs. Such errors
cause the system to display appropriate system error messages on the sys-
tem console.

Some system errors are not detected by the system until after the
corresponding function has returned successfully. Such errors occur when
data written to a file by a program has been queued for writing to disk at a
more convenient time, or when a portion of data to be read from disk is
found to already be in memory and the remaining portion is not read until
later. In such cases, the system assumes that the subsequent read or write
operation will be carried out successfully and passes control back to the
program along with a successful return value. If operation is not carried
out successfully, it causes a delayed error.

When a delayed error occurs, the system usually attempts to return an
error on the next call to a system function that accesses the same file or
resource. If the program has already terminated or does not make a suit-
able call, then the error is not reported.

9-4

Appendix A
Converting from Previous

Versions of the Compiler

A.1 Introduction A-1

A2 Differences between Versions 5.0 and 4.0 A-1
A.2.1 Enhancements and Additions A-1
A.2.2 Changes to the Language Syntax A-2
A.2.3 New Features for the XENIX Implementation of C A-3

A3 Differences between Versions 4.0 and 3.0 A-5
A.3.1 Enhancements and Additions A-5
A.3.2 Changes in the Language Syntax A-5
A.3.3 New Features for the XENIX Implementation of C A-8

Converting from Previous Versions of the Compiler

A.1 Introduction

This appendix describes differences between Version 5.0 and Version 4.0,
and between Version 4.0 and Version 3.0, of the XENIX C Compiler. If
you have an earlier version of the compiler, or if you have written pro-
grams for an earlier version, this chapter can help you convert your previ-
ous source code. The actions necessary to convert source code depend on
which of the earlier versions you have used.

Version 5.0 is an update of Version 4.0. Generally, the two versions are
compatible: most C source code written for Version 4.0 should compile
without change on the Version 5.0 compiler, although there are erroneous
C constructs allowed in Version 4.0 that are not allowed in Version 5.0,
and changes in the emerging ANSI C standard may force changes in
source programs (for more information, see the XENIX C Language Refer-
ence). In some cases you may be able to enhance your programs by revis-
ing them to take advantage of new library functions and other features
available with Version 5.0.

A.2 Differences between Versions 5.0 and 4.0

Changes in Version 5.0 since Version 4.0 fall into the following
categories:

¢ Enhancements and additions to the compiler software to allow for
more flexible programming, improved code generation, and
increased support for the developing ANSI standard

e Changes in the language syntax

e Changes in function operations, primarily to conform to the
specifications for these functions in the ANSI standard.

These features and the changes required to take advantage of them are
discussed in the following sections.

A.2.1 Enhancements and Additions

Enhancements for Version 5.0 include the following:

e Improved code generation, including loop optimization; improved
large-model code generation; and intrinsic functions

e Faster compilation speed

XENIX C Compiler User’s Guide

Support for code that will be loaded into read-only memory (ROM)

New error-message numbering

A.2.2 Changes to the Language Syntax

Some Version 5.0 changes were made to the C language syntax to make it
conform more closely to the new ANSI standard. Most of these changes do
not affect source code written for the Version 4.0 compiler. The changes
are summarized as follows:

Full function prototyping is supported in Version 5.0. A function
prototype is a forward declaration containing the types and, option-
ally, names of the parameters (if any) expected in the function call.
It can also include identifiers for the arguments, though they go out
of scope at the end of the prototype. Prototypes allow the compiler
to perform type checking on the actual arguments passed when the
function is called. If the compiler does not find a prototype, the
first occurrence of the function (definition or call) is used as the
basis of a prototype for that function. That prototype is used to per-
form type checking against subsequent calls, subsequent declara-
tions, or the definition. For more information about function proto-
typing, see the XENIX C Language Reference.

The const and volatile type specifiers have been implemented for
Version 5.0. The const type specifier declares an object as an
unmodifiable lvalue. It can be used for objects of any fundamental
or aggregate type or for pointers to objects of any type. The vola-
tile type specifier is implemented syntactically, but not semanti-
cally. For more information, see the XENIX C Language Reference.

Note

Programs that currently use const or volatile as identifiers must be
recoded to use other names.

In Version 5.0, variables of enum type are treated as if they were
of int type in all cases. Therefore, enum variables can be used in
indexing expressions and as operands of all relational and arith-
metic operators.

Converting from Previous Versions of the Compiler

e String concatenation is supported in Version 5.0. This feature
causes adjacent string literals to be concatenated into a single
string literal. This means, for example, that instead of using a
backslash before a new-line character to indicate continuation of a
long string literal, the literal can simply be broken into two or
more quoted string literals on separate lines. For more information,
see the XENIX C Language Reference.

e New preprocessor features in Version 5.0 include the string opera-
tor (#), which allows arguments in macro expansions to be
expanded into a string literal containing the expanded argument;
and the concatenation operator (##), which concatenates the
tokens on either side of the operator into a new token in macro
expansions. For more information, see the XENIX C Language
Reference.

Note

Previous versions of XENIX C allowed expansion of macro formal
arguments appearing in string literals and character constants. Pro-
grams that rely on this feature must be recoded to use the stringizing
operator. For information, see the discussion of string literals in the
XENIX C Language Reference.

e The long double data type is now supported; the long float data
type is no longer supported.

o The three-digit forms of hex escape sequences (\xddd) and octal
escape sequences (\ddd) are now supported.
e The unary plus (+) operator is allowed, but ignored semantically.

A.2.3 New Features for the XENIX Implementation of C

The following new cc command options have been added to the XENIX
implementation of the XENIX C Compiler for Version 5.0:

A-3

XENIX C Compiler User’s Guide

Option

Effect

Enables intrinsic code generation for all available
functions

Enables loop optimizations for an entire program

Forces consistent precision in floating-point math opera-
tions

Specifies the line width for source listings

Specifies the number of lines per page for source listings
Specifies subtitles for source listings

Specifies titles for source listings

Tells the compiler that the following file is a C source
file

Packs structures on one-, two-, or four-byte boundaries

The following new pragmas have been added to the XENIX implementa-
tion of the XENIX C Compiler for Version 5.0 to control the specified
features on a local basis:

A-4

Pragma
loop_opt
pack

intrinsic

function

same_seg

alloc_text

Effect
Turns loop optimizations on and off
Specifies packing alignment for structures

Specifies which functions are compiled as intrinsic func-
tions

Specifies which functions are compiled as standard
function calls

Tells the compiler to assume that specified variables are
allocated in the same far data segment

Specifies modules to be grouped into a specified far
code segment

Converting from Previous Versions of the Compiler

Note that the existing check_stack pragma uses the following new format
for specifying arguments:

#pragma check_stack({{onloff}])

A.3 Differences between Versions 4.0 and 3.0

Changes between Versions 4.0 and 3.0 fall into the same categories as
those between Versions 5.0 and 4.0.

e Enhancements and additions to the compiler software to allow for
more flexible programming, improved code generation, and
increased support for the developing ANSI standard

e Changes in the language syntax

These features and the changes required to take advantage of them are
discussed in the following sections.

A.3.1 Enhancements and Additions
Enhancements for Version 4.0 include the following:
e New options for cc and 1d
e Improved code optimization
e New memory models (compact and huge)
e Source listings
¢ Numbered error messages

e Huge arrays, allowing a single array to be larger than 64K
These changes should have no effect on Version 3.0 source code.

For information on changes to the syntax of the cc command line, see the
““‘Compiling with the cc Command’’ chapter of this guide.

A.3.2 Changes in the Language Syntax

Some Version 4.0 changes were made to the C language syntax to make it
conform more closely to the new ANSI standard. Most of these changes do
not affect source code written for the Version 3.0 compiler. The changes
are summarized as follows:

A-5

XENIX C Compiler User’s Guide

A-6

The \a escape sequence represents the bell (or alert) character in
Version 4.0.

You can make your source code more portable by using \a instead
of \x7. For more information, see the XENIX C Language Refer-
ence.

The signed keyword was added.

The signed keyword can be used to specify signed items. This key-
word is particularly useful for declaring signed char types in pro-
grams compiled with the -J option. (-J changes the default mode
for the char type to unsigned.) For more information on signed
types, see the XENIX C Language Reference.

The syntax was changed for making function calls with a variable
number of arguments.

The following two declarations contrast the Version 3.0 form and
the Version 4.0 form:

int func (int,): /* Forward declaration in
** Version 3.0 syntax

*/

int func (int,...): /* Forward declaration in
** Version 4.0 syntax

*/

This change was made to conform to changes in the ANSI standard
for the C language. Both forms are supported in Version 4.0 of the
XENIX C Compiler. XENIX recommends the use of the Version 4.0
form in all programs.

Prior to Version 4.0, the compiler allowed arbitrary strings of char-
acters after a syntactically correct preprocessor command. To con-
form to the new ANSI standard, this was disallowed in Version 4.0.

Beginning with Version 4.0, the following usage, for example,
causes the compiler to generate a warning message:

#endif Block ends here

In Versions 4.0 and later, such strings must be enclosed in com-
ment delimiters, as in the following example:

#endif /* Block ends here */

Converting from Previous Versions of the Compiler

Names of types defined with typedef are not keywords in Version
4.0, as they were in Version 3.0. In Version 4.0, these names are in
the same naming class as names of functions and variables, and
can be redefined in a nested block.

For more information, see the XENIX C Language Reference.
Beginning with Version 4.0, the #pragma directive is supported.

A ‘‘pragma’’ is an instruction to the compiler. Its syntax is similar
to the syntax of preprocessor directives, but its purpose is different.
The syntax is as follows:

#pragma charstring

The only pragma instruction supported in the XENIX C Compiler,
Version 4.0, is the check_stack pragma. This pragma is specific to
XENIX, and is discussed in greater detail in the ‘‘Compiling with
the cc Command’’ chapter of this guide.

Hexadecimal and octal integer constants are handled differently in
Version 4.0 than they are in Version 3.0.

For more information, see the XENIX C Language Reference.

The extended keywords fortran, pascal, cdecl, near, and huge are
enabled by default in Version 4.0. They can be disabled by giving
the -Za option on the command line.

Two new reserved words, const and volatile, were added but not
implemented for Version 4.0.

In Version 3.0, when a near pointer is converted to type long int, it
is first converted to type short int, then to long int; as a result, in
Version 3.0 the expression in the if statement evaluates as true in
the following fragment:

char *ptr = NULL;
long 1i;

i = (long) ptr;
if (i == 0L) {

XENIX C Compiler User’s Guide

In Version 4.0, the conversion order of near pointers to long
integers was changed so that it conforms to the order in which the
compiler does all other conversions that increase the length of a
variable: first the size, then the mode. (For example, the compiler
converts a variable with type char to type unsigned long by first
converting it to signed long, then to unsigned long.) Because of
this change, the preceding code now converts ptr to a far pointer
by loading the appropriate segment register value, then changing
that to a long integer. The expression following the if statement
would most likely be false in Version 4.0, since the segment regis-
ters do not usually contain 0.

A.3.3 New Features for the XENIX Implementation of C

The following features were added to the XENIX implementation of the C
compiler for Version 4.0:

Two new memory models: huge and compact
The huge, signed, and cdecl keywords
A pragma (check_stack) to control stack checking

The -J option to change the default mode for the char type to
unsigned

The -Gc option to specify the alternative calling sequence and
naming conventions used in XENIX Pascal and XENIX FORTRAN

These features are discussed in ‘“Working with Memory Models.”” In
most cases, they will not affect existing Version 3.0 source code. How-
ever, you may be able to improve your existing programs by modifying
them to take advantage of the new memory models or the huge keyword.

Appendix B

Writing Portable Programs

B.1
B.2
B.3

B4

B.S5
B.6
B.7

B.8

Introduction B-1
Program Portability B-2

Machine Hardware B-2

B.3.1 Byte Length B-2

B.3.2 Word Length B-2

B.3.3 Storage Alignment B-3
B.34 Byte Orderina Word B-4
B.3.5 BitFields B-5

B.3.6 Pointers B-6

B.3.7 Address Space B-8

B.3.8 Character Set B-8

Compiler Differences B-9

B.4.1 Signed/Unsigned char and Sign Extension B-9

B.4.2 Shift Operations B-9

B.4.3 Identifier Length B-10

B.4.4 Register Variables B-10

B.4.5 Type Conversion B-10

B.4.6 Functions with a Variable Number of Arguments B-12
B.4.7 Side Effects and Evaluation Order B-12

Environment Differences B-13
Portability of Data B-14
Type-Size Summary B-14

Byte-Ordering Summary B-16

Writing Portable Programs

B.1 Introduction

The standard definition of the C programming language leaves many
details to be decided in specific implementations of the language. These
unspecified features of the language detract from its portability and must
be studied when attempting to write portable C code.

Most of the issues affecting C portability arise from differences either in
target-machine hardware or in compilers. C was designed to compile
efficient code for the target machine (initially a Digital Equipment Cor-
poration PDP-11®), so many of the language features not precisely
defined are those that reflect a particular machine’s hardware characteris -
tics.

This appendix highlights the various aspects of C that may not be portable
across different machines and compilers. It also briefly discusses the por-
tability of a C program in terms of its environment. The environment is
determined by the system calls and library routines a program uses during
execution, file path names it requires, and other items not guaranteed to
be constant across different systems.

The C language has been implemented on many different computers with
widely different hardware characteristics, from small eight-bit micropro-
cessors to large mainframes. This appendix is concerned with the porta-
bility of C code in the MS-DOS and XENIX programming environments.
This is a more restricted problem to consider, since all MS-DOS and
XENIX operating systems to date run on hardware with the following
basic characteristics:

e ASCII character set

o FEight-bit bytes

e Two-byte or four-byte integers

¢ Two’s-complement arithmetic
These features are not formally defined for the language and may not be
found in all implementations of C. However, the remainder of this appen-
dix is devoted to those systems where these basic assumptions hold.
The C language definition contains no specification of how input and out-
put are performed. These specifications are left to system calls and
library routines on individual systems. Within XENIX systems there are

system calls and library routines that can be considered portable. This
version of the XENIX C Compiler includes system calls and library

B-1

XENIX C User’s Guide

routines that can be considered portable across XENIX and MS-DOS sys-
tems. The run-time library for the XENIX C Compiler for MS-DOS is com-
posed primarily of XENIX-compatible routines. By restricting the use of
XENIX routines to those included in the MS-DOS library, the XENIX pro-
grammer can develop MS-DOS programs in the XENIX environment; C
programs written on MS-DOS are easily portable to XENIX.

B.2 Program Portability

A program is ‘‘portable’” if it can be compiled and run successfully on
different machines without alteration. There are many ways to write port-
able programs. One way is to avoid using inherently nonportable
language features. Another is to isolate any nonportable interactions with
the environment, such as I/O to nonstandard devices. For example, pro-
grams should avoid hard-coded path names unless a path name is com-
mon to all systems.

Files required at compile time (such as include files) may also introduce
nonportability if the path names used are not the same on all machines.
In some cases, include files containing machine-specific definitions can
be used to make the source code itself portable.

B.3 Machine Hardware

Differences in the hardware of the various target machines and differences
in the corresponding C compilers cause the greatest number of portability
problems. This section lists problems commonly encountered.

B.3.1 Byte Length

By definition, the char data type in C must be large enough to hold as
positive integers all members of a machine’s character set. For the
machines described in this appendix, the char size is an eight-bit byte.

B.3.2 Word Length

The size of the basic data types for a given implementation are not for-
mally defined in the C language. Therefore, they often follow the most
natural size for the underlying machine. It is safe to assume that short is
no longer than long. Beyond that, no assumptions are portable. For
example, on some machines short is the same length as int, whereas on
others long is the same length as int.

B-2

Writing Portable Programs

Two areas where different int sizes affect program portability are the fol-
lowing:

1. Array indexing. For very large arrays, a variable of type int may
not be long enough to store the indices of the highest-numbered
array elements.

2. Pointer subtraction. On some machines, an int variable may not be
long enough to store the results of pointer subtraction. See the sec-
tion on ‘‘Pointers,”” for more information about this problem.

Programs that need to assume the size of a particular data type should
avoid hard-coded constants where possible. Such information can usually
be written in a fairly portable way. For example, the maximum positive
integer (on a two’s-complement machine) can be obtained with the fol-
lowing directive:

#define MAXPOS ((int) (((unsigned) -1) >> 1))
This is preferable to the following code:
#ifdef PDP11

#define MAXPOS 32767
felse

#endif

To find the number of bytes in an int, use sizeof(int) rather than 2, 4, or
some other nonportable constant.

B.3.3 Storage Alignment

The C language defines no particular layout for storage of data items rela-
tive to each other. The layout for storage of structure elements, or unions
within the structure or union, is also left undefined by the language.

Some processors require that data types longer than one byte be aligned
on even-byte address boundaries. Others, such as the 8086/8088, have no
such hardware restriction. However, even with these machines, most
compilers generate code that aligns words, structures, arrays, and long

B-3

XENIX C User’s Guide

words on even addresses or on even long-word addresses. Therefore, the
following code sequence may give different results, depending on specific
alignment requirements on different machines:

struct s_tag {
char c;
int i;
}:
printf ("$d\n", sizeof (struct s_tag));

This variation in data storage has two major implications: data accessed
as nonprimitive data types are not portable; and code that makes assump-
tions about the layout on a particular machine is not portable.

Therefore, unions containing structures are nonportable if the union is
used to access the same data in different ways. Unions are only likely to
be portable if they are used exclusively to store different data in the same
space at different times. For example, if the following union were used to
obtain four bytes from a long word, the code would not be portable:

union {
char c[4];
long 1w;
}ou;

The sizeof operator should always be used when reading and writing
structures, as follows:

struct s_tag st;

Qrite(fd, &st, sizeof(st)):
Using the sizeof operator ensures portability of the source code, but does
not produce a portable data file. Portability of data is discussed in the
“‘Portability of Data’’ section.

B.3.4 Byte Order in a Word

The variation in byte order in a word affects the portability of data more
than the portability of source code. However, any program that makes

B-4

Writing Portable Programs

use of knowledge of the internal byte order in a word is not portable. For
example, on some XENIX systems there is an include file, misc.h, that
contains the following structure declaration:

/*
* structure to access an
* integer in bytes
*/
struct {

char lobyte;

char hibyte;

}i

With certain less-restrictive compilers, this declaration could be used to
access the high- and low-order bytes of an integer separately and in a
completely nonportable way. The correct way to do this is to use mask
and shift operations to extract the required byte, as shown in the follow-
ing example: :

#define LOBYTE(i) (i & Oxff)
#define HIBYTE (i) ((i >> 8) & Oxff)

These definitions provide a portable way to extract the least-significant
and the next-least-significant bytes of an integer. Since the int type can
be either two or four bytes, depending on the machine, even these
definitions do not provide a completely portable way to access the bytes
of an int.

One result of the byte-ordering problem is that the following code
sequence will not always perform as intended:

int ¢ = 0;
read(fd, &c, 1);

On machines where the low-order byte is stored first, the value of ¢ is the
byte value read. On other machines, the byte is read into some byte other
than the low-order one, so the value of ¢ is different.

B.3.5 Bit Fields

Bit fields are not implemented in all C compilers. The XENIX C Com-
piler implements bit fields and allows them to have any length up to the
size of a long. However, in many implementations no bit field may be
larger than an int, and no bit field can overlap an int boundary. If neces-
sary, the compiler will leave gaps and move to the next int boundary. To
ensure portability no individual field should exceed 16 bits.

B-5

XENIX C User’s Guide

The C language makes no guarantees about whether bit fields are
assigned left to right or right to left. Therefore, although bit fields may be
useful for storing flags and other small data items, their use in unions to
dissect bits from other data is definitely nonportable.

B.3.6 Pointers

The C language is fairly generous in allowing manipulation of pointers, to
the extent that most compilers do not generate warnings for nonportable
pointer operations. A common nonportable use of pointers is the use of
casts to assign one pointer to another pointer of a different data type. This
practice usually makes some assumption about the internal byte ordering
and layout of the data type, and is therefore nonportable. In the following
code, the byte order in the array c is not portable:

char c[4];
long *1p;

lp = (long *)&c[0];
*1lp = 0x12345678L;

Code like this is usually unnecessary or invalid. It is acceptable, however,
when the malloc function is used to allocate space for variables that do
not have char type. The routine is declared as type char *, and the return
value is cast to the type to be stored in the allocated memory. If this type
is not char *, then a compiler may issue a warning concerning illegal
type conversion. In addition, the malloc function is designed always to
return a starting address suitable for storing all types of data. A compiler
may not know this, so it may give an additional warning about possible
data-alignment problems. In the following example, malloc is used to
obtain memory for an array of 50 integers:

extern char *malloc():;
int *ip;
ip = (int *)malloc(50 * sizeof (int)):;

This example will elicit a warning message from some compilers.
The XENIX C Language Reference states that a pointer can be assigned

(or cast) to an integer large enough to hold it. Note that the size of the int
type depends on the given machine and implementation. This type is

B-6

Writing Portable Programs

long on some machines and short on others. The size may also be
modified by near and far declarations. In general, do not assume that the
following statement is always true:

sizeof (char *) == sizeof (int)

For example, the followmg construction is nonportable, assummg that the
function identifier func is not previously declared:

int p;
p = (char *)func();

This example assumes that a char pointer has the same length as an int.

Another consequence of different-sized int types on different machines is
that pointer subtraction may not give the expected results. As an example
of this case, subtracting pointers to the beginning and end of a very large
array may give a result that is too large to store in an int variable, as
shown in the following example:

int arr[20000], *b = arr, *e = &arr[20000];

int diff;.

diff = e - b; /* result too large to store in
int variable diff */

To correct this problem, coerce the result of the pointer subtraction long
type, then assign the result to a variable of unsigned int type, as shown in
the following example:

unsigned int udiff;

udiff = (long) ({(int huge *)e - (int huge *)b);

In most implementations, the null pointer value NULL is defined to be
the int value 0. The length of the O value can lead to problems for func-
tions that expect pointer arguments longer than an int. For portable code,
always use the following form to pass a NULL value of the correct size:

func((char *)NULL);

B-7

XENIX C User’s Guide

B.3.7 Address Space

The address space available to a program varies considerably from sys-
tem to system. Some small processors allow only 64K for program text
and data combined. Others allow up to 64K of data and 64K of program
text. Larger machines may allow considerably more text and possibly
more data as well.

Large programs, or programs that require large data areas, may have por-
tability problems on small machines.

B.3.8 Character Set

The C language does not require the use of the ASCII character set. In fact,
the only character-set requirements are that all characters must fit in the
char data type, and all characters must have positive values.

In the ASCII character set, all characters have values between O and 127
and therefore can be represented in seven bits. On an eight-bits-per-byte
machine they are all positive, regardless of whether char is treated as
signed or unsigned.

A set of character-classi fication macros is included as part of the run-time
library for the XENIX C Compiler. These macros should be used for most
tests on character quantities. The macros are defined in the include file
ctype.h, and described in the XENIX C Library Guide. They appear on the
pages headed isalnum-isascii and iscntrl-isxdigit.

The character-classi fication macros provide insulation from the internal
structure of the character set. In addition, the names of the macros are
often more meaningful than the equivalent line of code. Compare the fol-
lowing two lines:

if (isupper(c))

if((c >= 'A") && (c <= '12"))

With some of the other macros, such as isxdigit to test for a hexadecimal
digit, the advantage is even greater. Also, the internal implementation of
the macros makes them more efficient than an explicit test with an if
statement.

Writing Portable Programs

B.4 Compiler Differences

There are a number of C compilers running under various operating sys-
tems. The main areas of differences between compilers are outlined in
this section.

B.4.1 Signed/Unsigned char and Sign Extension

The current state of the signed versus unsigned char problem is best
described as unsatisfactory. The sign-extension problem is a serious bar-
rier to writing portable C, and the best solution at present is to write
defensive code that does not rely on particular implementation features.

B.4.2 Shift Operations

The left-shift operator (<<) shifts its operand a number of bits left, filling
vacated bits with zeros. This is called a logical shift. When the right-shift
operator (>>) is applied to an unsigned quantity, it performs a logical-
shift operation; when it is applied to a signed quantity, the vacated bits
may be filled with zeros (logical shift) or with sign bits (arithmetic shift).
The decision is implementation dependent, and code that assumes a par-
ticular implementation is nonportable.

With compilers that use arithmetic right shift, it is necessary to shift and
mask the appropriate number of high-order bits to avoid sign extension, as
follows:

char c¢;

c = (c > 3) & O0x1f;

You can also avoid sign extension by using the divide operator (/) as fol-
lows:

char c;

c=c / 8;

B-9

XENIX C User’s Guide

B.4.3 Identifier Length

The use of long symbols and identifier names will cause portability prob-
lems with some compilers. To avoid these problems, a program should
keep the following symbols as short as possible:

e Cpreprocessor symbols
e Clocal symbols
¢ Cexternal symbols

Some loaders also place restrictions on the number of unique characters
in C external symbols. Symbols unique in the first six characters are
unique to most C-language processors.

In some C implementations, the case of letters in identifiers is not
significant.

B.4.4 Register Variables

The number and type of register variables in a function depend on the
machine hardware and the compiler. Excess and invalid register declara-
tions are treated as nonregister declarations and should not cause a porta-
bility problem. On an 8086 or 8088 processor, up to two register declara-
tions are significant, and they must be applied to types of size int or
smaller.

Since the compiler ignores excess variables of register type, the most
important register-type variables should be declared first. In this way,
register variables that the compiler ignores will be those that are the least
important.

B.4.5 Type Conversion

The C language has some rules for implicit type conversion; it also allows
explicit type conversions by type casting. The most common portability
problem in implicit type conversion is unexpected sign extension. This is
a potential problem whenever something of type char is compared with
an int.

B-10

Writing Portable Programs

The following example will never evaluate true on a machine that sign-
extends char types but treats hexadecimal numbers as unsigned:

char c;

if (c == 0x80) {

The following construction is also nonportable:

char c;
unsigned int u;

if (u == (unsigned)c) {

)
Two problems can arise in the preceding example:

1. The char type may be considered either signed or unsigned,
depending on the implementation.

2. For implementations that consider the char type to be signed, two
different methods of carrying out the conversion are possible: the
char value may be sign extended to int type first, then converted to
unsigned type; or the char type may be converted to an unsigned
type of the same size, then zero extended to int length.

The only safe comparison between char type and int is the following:

int c¢;

if(c == 'x') {
}

This comparison is reliable because C guarantees all character constants
to be positive.

B-11

XENIX C User’s Guide

Type conversion also occurs when arguments are passed to functions.
Types char and short become int. Extending the char type can produce
unexpected results. For example, the following program yields a result of
-128 on some machines:

char ¢ = 128;
printf("$d\n",c);

The unexpected negative value is produced because ¢ is converted to int
when it is passed to the printf function. The function itself has no
knowledge of the original type of the argument and is expecting an int.
The correct way to handle this situation is to code defensively and allow
for the possibility of sign extension, as in the following example:

char ¢ = 128;
printf("%d\n", c & Oxff);

B.4.6 Functions with a Variable Number of Arguments

Functions with a variable number of arguments present a particular porta-
bility problem if the type of the arguments is also variable. In such cases
the code is dependent on the size of various data types. For portability,
these cases should be avoided.

B.4.7 Side Effects and Evaluation Order

The C language makes few guarantees about the order of evaluaiion of
operands in an expression or arguments to a function call. Therefore, the
following statement is almost never portable:

func (i++, i++);

Even the following statement is unwise if func is ever likely to be
replaced by a macro, since the macro may use i more than once:

func (i++) ;

Certain XENIX-compatible macros commonly appear in user programs;
some of these use their argument only once, and therefore can safely be
called with a side-effect argument. To determine whether a macro handles
side effects correctly, examine the code for that macro to see whether or
not the argument is evaluated more than once.

Operands to the following operators are guaranteed to be evaluated left to
right:

, && Il 2

Writing Portable Programs

Note that the comma operator here is a separator for two C statements. A
list of items separated by commas in a declaration list is not guaranteed to
be processed left to right. Therefore, the following declaratior on an 8086
or 8038 processor, where only two register variables may be declared,
could give any two of the four variables register type, depending on the
compiler:

register int a, b, ¢, d;

To give register storage to the most important variables, use separate
declaration statements and declare the most important variables first. The
order of processing of individual declaration statements is guaranteed to
be sequential in the following statements:

register int a;
register int b;
register int c;
register int d;

B.5 Environment Differences

Most programs make system calls and use library routines for various ser-
vices. This section indicates some of those routines that are not always
portable and those that particularly aid portability.

System calls specific to an operating system are not portable if they are
not present on all other operating-system implementations of C. Most of
the system calls defined in the XENIX run-time library are compatible
with DOS system calls and are therefore portable to a DOS environment.

Any program is nonportable that contains hard-coded path names to files
or directories, or that contains user identifier numbers, log-in names, ter-
minal lines or other system-dependent parameters. These types of con-
stants should be in header files, passed as command-line arguments, or
obtained from the environment.

Note that the members of the printf and scanf families of functions,
including fprintf, fscanf, printf, sprintf, scanf, vfprintf, vprintf,
vsprintf, and sscanf, have evolved in several ways, and some features are
not completely portable. Some of the format-conversion characters have
changed their meanings, in particular those relating to uppercase and
lowercase in the output of hexadecimal numbers and the specification of
long integers on 16-bit word machines. The XENIX C specifications for
these routines are given in the XENIX C Library Guide.

Users should be wary of porting object files that reference the setjmp or
longjmp functions from XENIX to MS-DOS, unless these object files were

B-13

XENIX C User’s Guide

compiled with the -dos option. The MS-DOS versions of these functions
use a larger buffer size and may cause memory to be overwritten. Such
object files can be ported from MS-DOS to XENIX without problems, and
the corresponding source files can be ported in either direction.

B.6 Portability of Data

Data files are almost always nonportable across different central-
processing-unit (CPU) architectures. As mentioned above, structures,
unions, and arrays have varying internal layout and padding requirements
on different machines. In addition, byte ordering within words and actual
word length may differ.

The only way to achieve data-file portability is to write and read data files
as one-dimensional character arrays. This procedure prevents alignment
and padding problems if the data are written and read as characters, and
interpreted that way. Thus ASCII text files can usually be moved between
different machine types without significant problems.

B.7 Type-Size Summary

Table B.1 summarizes the sizes of the various data types as defined in the
XENIX C Compiler, Version 5.0.

Table B.1
C Type Sizes
Type Name
(Alternate Names) Storage Range of Values
char 1 byte -128 to 127
(signed char)
int Implementation (-32,768 to 32,767 for
(signed) dependent (2 bytes |XENIX C Version 5.0)
(signed int) in XENIX C 5.0)
short 2 bytes -32,768 to 32,767
(short int)
(signed short)

Writing Portable Programs

(signed short int)
long 4 bytes -2,147,483,648 to
(long int) 2,147,483,647
(signed long)
(signed long int)
unsigned! char 1 byte 0to 255
unsigned Implementation (0 to 65,535
(unsigned int) dependent (2 bytes {for XENIX C 5.0)
in XENIX C 5.0)
unsigned short 2 bytes 0to 65,535
(unsigned short int)
unsigned long 4 bytes 0 to 4,294,967,295
(unsigned long int)
enum Implementation (0 to 65,535 for
dependent (2 bytes |XENIX C 5.0)
in XENIX C 5.0)
float 4 bytes Approximately
3.4E-38 to 3.4E+38
(7-digit precision)
double 8 bytes Approximately
1.7E-308 to 1.7E+308
(15-digit precision)
long double Implementation Approximately
dependent (8 bytes |1.7E-308 to 1.7E+308
in XENIX C 5.0) (15-digit precision)

1

Any type size modified by the unsigned keyword can be modified by the signed key-
word instead. The signed keyword is useful if the -J option has been used to change
the default sign of the char type.

XENIX C User’s Guide

B.8 Byte-Ordering Summary

Tables B.2 and B.3 summarize byte ordering for short and long types,
respectively. The following conventions are used in these tables: ’

1. The lowest physically addressed byte of the data item is a0; al has
the byte address a0 + 1, and so on.

2. The least-significant byte of the data item is b0; bl is the next
least significant, and so on.

Since byte ordering is machine specific, any program that actually makes
use of the following information is guaranteed to be nonportable: °

Table B.2
Byte Ordering for Short Types

CPU Byte Order
a0 al
8086 b0 b1
80286 b0 bl
PDP-11® b0 bl
VAX-11® b0 b1
M68000 bl b0
Z83000® bl b0

Writing Portable Programs

Table B.3
Byte Ordering for Long Types

CPU Byte Order
a0 al a2 a3
8086 b0 bl b2 b3
80286 b0 bl b2 b3
PDP-11® b2 b3 b0 bl
VAX-11® b0 bl b2 b3
M68000 b3 b2 bl b0
Z8000® b3 b2 bl b0

Appendix C
Writing Programs
for Read-Only Memory

C.1 Introduction C-1

C.2 XENIX-Dependent Library Routines C-1

Writing Programs for Read-Only Memory

C.1 Introduction

This appendix presents information for developers who will be download-
ing code written with the XENIX C Compiler into read-only memory
(ROM). Code of this type is more commonly known as ‘‘ROMable”’
code. Information is given about the run-time library routines that directly
interface with XENIX.

C.2 XENIX-Dependent Library Routines

Because ROMable programs are often run outside a XENIX environment,
they cannot include calls to run-time library routines that perform their
operations through calls to XENIX functions. Table C.1 lists the library
routines that call XENIX functions.

Table C.1
MS-DOS-Dependent Library Routines

abort _exit fwrite read
access ifclose getch rmdir
chdir fgetc getewd scanf
chmod fgetchar getpid sopen
chsize fgets gets sprintf
close flush getw sscanf
creat fopen labs stat
dup fprintf localtime system
dup2 fputc locking tell

eof fputchar Iseek time
execl fputs mkdir tmpfile
execle fread mktemp unlink
execlp freopen open utime
execlpe fscanf perror viprintf
execv fseek printf vprintf
execve fstat putch vsprintf
execvp ftell puts write
execvpe ftime putw

A program containing calls to any of these routines cannot run in a non-
XENIX environment unless you do one of the following:

e Write replacements for these XENIX-dependent routines as needed.

¢ Edit the program to remove the calls to the listed routines.

XENIX C User’s Guide

¢ Obtain the library source files from XENIX and edit them so that
they do not include XENIX function calls, and write functional
equivalents of the XENIX functions that can be called from your
program.

Note that certain functions that are not listed above may call XENIX func-

tions indirectly: that is, they may be part of a series of nested calls that
call routines in the list.

C-2

Appendix D

C Error Messages and Exit
Codes

D.1
b.2

D.3

D4

Introduction D-1

Command-Line Error Messages D-1

D.2.1 Command-Line Fatal-Error Messages D-1
D.2.2 Command-Line Error Messages D-1
D.2.3 Command-Line Warning Messages D-4

Compiler Error Messages D-5

D.3.1 Fatal-Error Messages D-7

D.3.2 Compilation-Error Messages D-12
D.3.3 Warning Messages D-28

D.3.4 Compiler Limits D-37

Compiler Exit Codes D-39

C Error Messages and Exit Codes

D.1 Introduction
This appendix lists error messages you may encounter as you develop a

program, and gives a brief description of actions you can take to correct
the errors. It also describes the exit codes returned by the compiler.

D.2 Command-Line Error Messages

Messages that indicate errors on the command line used to invoke the
compiler have one of the following formats:

command line fatal error DIxxx: messagetext (fatal error)
command line error D2xxx: messagetext (error)
command line warning D4xxx: messagetext (warning error)

If possible, the compiler continues operation, printing a warning message.
In some cases, command-line errors are fatal and the compiler terminates
processing.

D.2.1 Command-Line Fatal-Error Messages

The following messages identify fatal errors. The compiler driver cannot
recover from a fatal error; it terminates after printing the error message.

D1000 UNKNOWN COMMAND LINE FATAL ERROR
The compiler detected an unknown fatal-error condition.

D1001 could not execute ‘filename’
The compiler could not find the given file in the current work-
ing directory or any of the other directories nmamed in the
PATH variable.
D1002 too many open files, cannot redirect ‘filename’
No more file descriptors were available to redirect the output
of the -P option to a file.

D.2.2 Command-Line Error Messages
When the compiler driver encounters any of the errors listed in this sec-

tion, it continues compiling the program (if possible) and outputs addi-
tional error messages. However, no object file is produced.

XENIX C User’s Guide

D2000 UNKNOWN COMMAND LINE ERROR
The compiler detected an unknown error condition.

D2001 too many symbols predefined with -D
Too many symbolic constants were defined using the -D option
on the command line.

The limit on command-line definitions is normally 16; you can
use the -U or -u option to increase the limit to 20.

D2002 a previously defined model specification has
been overridden
Two different memory models were specified; the model
specified later on the command line was used.

D2003 missing source file name
You did not give the name of the source file to be compiled.

D2007 badoption flag, would overwrite ‘stringl’ with
’string2’
The specified option was given more than once, with
conflicting arguments stringl and string?2.

D2008 too many option flags, ’string’
Too many letters were given with the specified option (for
example, with the -O option).

D2009 wunknown option character in ‘optionstring’
One of the letters in the given option was not recognized.

D2012 too many linker flags on command line
You tried to pass more than 128 separate options and object
files to the linker.

D2013 incomplete model specification
Not enough characters were given for the -Astring option. The
option requires all three letters (to specify the data-pointer
size, code-pointer size, and segment setup, respectively).

D2014 -ND not allowed with -Ad
You cannot rename the default data segment unless you give
the -Auwxx option (SS != DS, load DS) on the command line.

C Error Messages and Exit Codes

D2015 assembly files are not handled
You gave a file name with an extension of .asm on the com-
mand line. Because the compiler cannot invoke the XENIX
Macro Assembler (masm) automatically, it cannot assemble
such files.

D2016 -~-Gw and -ND name are incompatible
You tried to rename the default data segment to the given
name when you specified the -Gw option.

Renaming the default data segment is illegal in this case
because the -Gw option requires the -Awxx option.

D2017 -Gw and ~Au flags are incompatible
You tried to specify the -Auxx option (SS != DS, load DS)
with the -Gw option.

Specifying -Awxx with -Gw is illegal because the -Gw option
requires the -Awxx option.

D2018 cannot open linker cmd file
The response file used to pass object-file names and options to
the linker could not be opened.

This error may have occurred because another read-only file
had the same name as the response file.

D2019 cannot overwrite the source file, ‘name’
You specified the source file as an output-file name.

The compiler does not allow the source file to be overwritten
by one of the compiler output files.

D2020 ~Gc option requires extended keywords to be
enabled (~Ze)
The -Ge option and the -Za option were specified on the same
command line.

The -Gc option requires the extended keyword cdecl to be
enabled if library functions are to be accessible.

D2021 invalid numerical argument ’string’
A non-numerical string was specified following an option that
required a numerical argument.

D2022 cannot open help file, cc.hlp
The -help option was given, but the file containing the help

D-3

XENIX C User’s Guide

messages (cc.hlp) was not in the default directory
(/usr/lib/286) or in any of the directories specified by the
PATH environment variable.

D2023 invalid model specification - small model
only

D.2.3 Command-Line Warning Messages

The messages listed in this section indicate potential problems but do not
hinder compilation and linking.

D4000 UNKNOWN COMMAND LINE WARNING
An unknown fatal condition has been detected by the com-
piler.

D4001 listing has precedence over assembly output
Two different listing options were chosen; the assembly listing
is not created,

D4002 ignoring unknown flag ’siring’
One of the options given on the command line was not recog-
nized and is ignored.

D4003 80186/286 selected over 8086 for code
generation
Both the -G0 option and either the -G1 or -G2 option were
given; -G1 or -G2 takes precedence.

D4004 optimizing for time over space
This message confirms that the -Ot option is used for optimiz-
ing.

D4006 only one of -P/-E/~EP allowed, -P selected
Only one preprocessor output option can be specified at one

time. '

D4007 -C ignored (must also specify -P or -E
or -EP)
The -C option must be used in conjunction with one of the
preprocessor output flags, -E, -EP, or -P.

D4008 non-standard model -- defaulting to small
model libraries
A nonstandard memory model was specified with the option.
The library search records in the object model were set to use
the small-model libraries.

D-4

C Error Messages and Exit Codes

D4009 threshold only for far/huge data, ignored
The -Gt option cannot be used in memory models that have
near data pointers. It can be used only in compact, large, and
huge models.

D4010 -Gp not implemented, ignored
The MS-DOS version of XENIX C does not support profiling.

D401l preprocessing overrides source
listing
Only a preprocessor listing was generated, since the compiler
cannot generate both a source listing and a preprocessor listing
at the same time.

D4012 function declarations override source
listing
The compiler cannot generate both a source-listing file and the
function prototype declarations at the same time.

D4013 combined listing has precedence over object
listing
When -Fc is specified along with either -FI or -Fa, the com-
bined listing (-Fc) is created.

D4014 invalid value number for ’string’. Default number
is used
An invalid value was given in a context where a particular
numerical value was expected.

D4017 conflicting stack checking options - stack
checking disabled
Both the -Ge and the -Gs flags are given in one compile com-
mand (-Ge enables stack checking, -Gs disables it).

D.3 Compiier Error Messages

The error messages produced by the C compiler fall into three categories:

1.

2.

3.

Fatal-error messages
Compilation-error messages

Warning messages

The messages for each category are listed below in numerical order, with
a brief explanation of each error. To look up an error message, first

D-5

XENIX C User’s Guide

determine the message category, then find the error number. All messages
give the file name and line number where the error occurs.
Fatal-Error Messages
Fatal-error messages indicate a severe problem, one that prevents the
compiler from processing your program any further. These messages have
the following format:

filename(line) : fatal error Clxxx: messagetext
After the compiler displays a fatal-error message, it terminates without
producing an object file or checking for further errors.

Compilation-Error Messages

Compilation-error messages identify actual program errors. These mes-
sages appear in the following format:

filename(line) : error C2xxx: messagetext

The compiler does not produce an object file for a source file that has
compilation errors in the program. When the compiler encounters such
errors, it attempts to recover from the error. If possible, it continues to
process the source file and produce error messages. If errors are too
numerous or too severe, the compiler stops processing.

Warning Messages

Warning messages are informational only; they do not prevent compila-

tion and linking. These messages appear in the following format:
filename(line) : warning C4xxx: messagetext

You can use the -W option to control the level of warnings that the com-

piler generates. This option is described in the ‘‘Compiling with the cc
Command’’ chapter of this guide.

C Error Messages and Exit Codes

D.3.1 Fatal-Error Messages

The following messages identify fatal errors. The compiler cannot
recover from a fatal error; it terminates after printing the error message.

C1000 UNKNOWN FATAL ERROR
An unknown error condition has been detected by the com-
piler.

C1001 Internal Compiler Error
The compiler detected an internal inconsistency.

Note that the file name refers to an internal compiler file, not
your source file.

Cl1l002 out of heap space
The compiler has run out of dynamic memory space. This usu-
ally means that your program has many symbols and/or com-
plex expressions.

To correct the problem, divide the file into several smaller
source files, or break expressions into subexpressions.

C1003 error count exceedsn; stopping compilation
Errors in the program were too numerous or too severe to
allow recovery, and the compiler must terminate.

C1004 unexpected EOF

This message appears when you have insufficient space on the
default disk drive for the compiler to create the temporary files
it needs. The space required is approximately two times the
size of the source file. This message can also occur when a
comment does not have a closing delimiter (*/), or when an #if
directive occurs without a corresponding closing #endif direc-
tive.

Cl1005 string too big for buffer
A string in a compiler intermediate file overflowed a buffer.

C1l006 write error on compiler intermediate file

The compiler was unable to create the intermediate files used
in the compilation process.

D-7

XENIX C User’s Guide

The following conditions commonly cause this error:

1. XENIX system file or inode table is full at time of com-
pilation

2. Not enough space on a device containing a compiler
intermediate file

C1007 unrecognized flag ‘string’ in ‘option’
The string in the command-line option was not a valid option.

C1009 compiler 1limit possibly a recursively
defined macro
The expansion of a macro exceeds the available space.

Check to see if the macro is recursively defined, or if the
expanded text is too large.

Cl010 compiler limit : macro expansion too big
The expansion of a macro exceeds the available space.

C1012 bad parenthesis nesting - missing ’character’
The parentheses in a preprocessor directive were not matched;
character is either a left or right parenthesis.

Cl013 cannot open source file filename’
The given file either did not exist, could not be opened, or was
not found. Make sure your environment settings are valid and
that you have given the correct path name for
the file.

Cl014 too many include files
Nesting of #include directives exceeds 10 levels.

Cl016 #if[nldef expected an identifier
You must specify an identifier with the #ifdef and #ifndef
directives.

C1017 invalid integer constant expression
The expression in an #if directive must evaluate to a
constant.

C1018 unexpected ‘#elif’

The #elif directive is legal only when it appears within an #if,
#ifdef, or #ifndef directive.

D-8

C Error Messages and Exit Codes

C1019 unexpected ‘#else’
The #else directive is legal only when it appears within an #if,
#ifdef, or #ifndef directive.

C1020 unexpected ‘#endif’
An #endif directive appears without a matching #if, #ifdef, or
#ifndef directive.

C1021 bad preprocessor command ’‘string’
The characters following the number sign (#) do not form a
valid preprocessor directive.

Cl022 expected ‘#endif’
An #if, #ifdef, or #ifndef directive was not terminated with an
#endif directive.

Cl026 parser stack overflow, please simplify your
program
Your program cannot be processed because the space required
to parse the program causes a stack overflow in the compiler.

To solve this problem, try to simplify your program.

C1027 DGROUP data allocation exceeds 64K
More than 64K of variables was allocated to the default data

segment.

For compact-, medium-, large-, or huge-model programs, use
the -Gt option to move items into separate segments.

C1032 cannot open object listing file ‘filename’
One of the following statements about the file name or path
name given (filename) is true:

1. The given name is not valid.

2. The file with the given name cannot be opened for
lack of space.

3. A read-only file with the given name already exists.
Cl1033 cannot open assembly-language output file
‘filename’

One of the conditions listed under error message C1032
prevents the given file from being opened.

D-9

XENIX C User’s Guide

C1034 cannot open source file ’filename’
One of the conditions listed under error message C1032
prevents the given file from being opened.

C1035 expression too complex, please simplify
The compiler cannot generate the code for a complex expres-
sion. Break the expression into simpler subexpressions and
recompile.

C1036 cannot open source listing file ’filename’
One of the conditions listed under error message C1032
prevents the given file from being opened.

C1037 cannot open object file ’filename’
One of the conditions listed under error message C1032
prevents the given file from being opened.

C1039 unrecoverable heap overflow in Pass 3
The post-optimizer compiler pass overflowed the heap and
could not continue. '

Try recompiling with the -Od option (see ‘‘Compiling with the
cc Command’’) or try rewriting the function containing the
line that caused the error.

C1040 unexpected EOF in source file ’filename’
The compiler detected an unexpected end-of-file condition
while creating a source listing or mingled source/object list-
ing.

This error probably occurred because the source file was
edited during compilation.

C1041 cannot open compiler intermediate file - no
more files
The compiler could not create intermediate files used in the
compilation process because no more file handles were avail-
able.

Cl1042 cannot open compiler intermediate file - no
such file or directory
The compiler could not create intermediate files used in the
compilation process because the /tmp directory did not exist.

C1043 cannot open compiler intermediate file

The compiler could not create intermediate files used in the
compilation process. The exact reason is unknown.

D-10

C Error Messages and Exit Codes

C1044 out of disk space for compiler intermediate
file
The compiler could not create intermediate files used in the
compilation process because no more space was available.

To correct the problem, make more space available on the disk
and recompile.

C1045 floating point overflow
The compiler generated a floating-point exception while doing
constant arithmetic on floating-point items at compile time, as
in the following example:

float fp val = 1.0el00;

In this example, the double-precision constant 1.0el00
exceeds the maximum allowable value for a floating-point
data item.

C1047 too many option flags, ‘string
The option appeared too many times. The string contains the
occurrence of the option that caused the error.

C1048 Unknown option ’character’ in ’optionstring’
The character was not a valid letter for optionstring.

C1049 invalid numerical argument ’string’
A numerical argument was expected instead of string.

Cl050 code segment ’segmentname’ too large
A code segment grew to within 36 bytes of 64K during
compilation.

A 36-byte pad is used because of a bug in some 80286 chips
that can cause programs to exhibit strange behavior when,
among other conditions, the size of a code segment is within
36 bytes of 64K.

C1052 too many #if/#ifdef’s
You have exceeded the maximum nesting level for #if/#ifdef
directives.

C1053 compiler limit : struct/union nesting
Structure and union definitions were nested to more than 10
levels.

XENIX C User’s Guide

Cl1054 compiler limit : initializers too deeply
nested
The compiler limit on nesting of initializers was exceeded.
The limit ranges from 10 to 15 levels, depending on the com-
bination of types being initialized.

To correct this problem, simplify the data type being initial-
ized to reduce the levels of nesting, or assign initial values in
separate statements after the declaration.

Cl1056 compiler limit : out of macro expansion space
The compiler has overflowed an internal buffer during the
expansion of a macro; reduce the complexity of the macro.

Cl1057 unexpected EOF in macro expansion;
(missing ’)’?)
The compiler has encountered the end of the source file while
gathering the arguments of a macro invocation. Usually this is
the result of a missing closing parenthesis ()) on the macro
invocation.

C1059 out of near heap space
The compiler has run out of storage for items that it stores in
the ‘‘near’’ (default data segment) heap. This usually means
that your program has too many symbols or complex expres-
sions. To correct the problem, divide the file into several
smaller source files, or break expressions into smaller subex-
pressions.

C1060 out of far heap space
The compiler has run out of storage for items that it stores in
the ““far’” heap. Usually this is the result of too many symbols
in the symbol table.

D.3.2 Compilation-Error Messages

The messages listed below indicate that your program has errors. When
the compiler encounters any of the errors listed in this section, it contin-
ues parsing the program (if possible) and outputs additional error mes-
sages. However, no object file is produced.

C2000 UNKNOWN ERROR
The compiler detected an unknown error condition.

C2001 newline in constant
A new-line character in a character or string constant was not
in the correct escape-sequence format (\n).

C Error Messages and Exit Codes

C2002 out of macro actual parameter space
Arguments to preprocessor macros exceeded 256 bytes.

C2003 expected ’‘defined id’
The identifier to be checked in an #if directive was not
enclosed in parentheses.

C2004 expected ‘defined(id)’
An #if directive caused a syntax error.

C2005 #line expected a line number
A {#line directive lacked the required line-number
specification.

C2006 #include expected a file name
An #include directive lacked the required file-name
specification.

C2007 #define syntax
A #define directive caused a syntax error.

C2008 ’character’ : unexpected in macro definition
The given character was used incorrectly in a macro
definition.

C2009 reuse of macro formal ’‘identifier’
The given identifier was used twice in the formal-parameter
list of a macro definition.

C2010 ’character’ : unexpected in formal list
The given character was used incorrectly in the formal-
parameter list of a macro definition.

C2011 ‘identifier’ : definition too big
The given macro definitions exceeded 256 bytes.

€2012 missing name following <’
An #include directive lacked the required file-name
specification.

C2013 missing >’
The closing angle bracket (>) was missing from an #include
directive.

XENIX C User’s Guide

C2014 preprocessor command must start as first
non whitespace
Non-white-space characters appear before the number sign (#)
of a preprocessor directive on the same line.

C2015 too many chars in constant
A character constant containing more than one character or
escape sequence was used.

C2016 no closing single quote
A character constant was not enclosed in single quotation
marks.

C2017 illegal escape sequence
The character or characters after the escape character (\) did
not form a valid escape sequence.

€C2018 unknown character ‘Oxcharacter’
The given hexadecimal number does not correspond to a char-
acter.

C2019 expected preprocessor command, found ’‘character’
The given character followed a number sign (#), but it was not
the first letter of a preprocessor directive.

€2020 bad octal number ‘character’
The given character was not a valid octal digit.

C2021 expected exponent value, not ’character’
The given character was used as the exponent of a floating-
point constant but was not a valid number.

C2022 ‘number’ : too big for char
The number was too large to be represented as a character.

C2023 divide by 0
The second operand in a division operation (/) evaluated to
zero, giving undefined results.

C2024 mod by O
The second operand in a remainder operation (%) evaluated to
zero, giving undefined results.

C2025 ‘identifier’ : enum/struct/union type redefinition
The given identifier had already been used for an enumeration,
structure, or union tag.

C Error Messages and Exit Codes

C2026 ‘identifier’ : member of enum redefinition
The given identifier had already been used for an enumeration
constant, either within the same enumeration type or within
another enumeration type with the same visibility.

C2028 struct/union member needs to be inside a

struct/union
Structure and union members must be declared within the
structure or union.

This error may be caused by an enumeration declaration that
contains a declaration of a structure member, as in the follow-

ing example:
enum a {
january,
february,
int march; /* structure declaration:
** illegal
*/

}i

C2029 ‘identifier’ : bit-fields allowed only in structs
Only structure types may contain bit fields.

C2030 ‘identifier’ : struct/union member redefinition
The identifier was used for more than one member of the same
structure or union.

C2031 “identifier’ : function cannot be

struct/union member
The given function was declared to be a member of a struc-

ture.
To correct this error, use a pointer to the function instead.

C2032 'identifier’ : base type with near/far/huge
not allowed
The given structure or union member was declared with the
near, far, or huge keyword.

C2033 ’identifier’ : bit-field cannot have indirection
The given bit field was declared as a pointer (*), which is not
allowed.

XENIX C User’s Guide

C2034 'identifier’ : bit-field type too small for
number of bits
The number of bits specified in the bit-field declaration
exceeded the number of bits in the given base type.

C2035 enum/struct/union ‘identifier’ : unknown size
The given structure or union had an undefined size.

C2036 left of ‘member’ must have struct/union type
The expression before the member-selection operator (->) was
not a pointer to a structure or union type, or the expression
before the member-selection operator (.) did not evaluate to a
structure or union. In this message, member is a member desig-
nator in one of the following forms:

—>identifier
. identifier

C2037 left of ’-> or ’.” specifies undefined
struct/union ’identifier’
The expression before the member-selection operator (-> or .)
identified a structure or union type that was not defined.

C2038 ‘identifier’ : not struct/union member
The given identifier was used in a context that required a
structure or union member.

C2039 ’->' requires struct/union pointer
The expression before the member-selection operator (->) was
a structure or union name, not a pointer to a structure or union
as expected.

C2040 ".’” requires struct/union name
The expression before the member-selection operator (.) was
a pointer to a structure or union, not a structure or union name
as expected.

C2041 keyword ‘enum’ illegal
The enum keyword appeared in a structure or union declara-
tion, or an enum type definition was not formed correctly.

C2042 signed/unsigned keywords mutually exclusive
The signed and unsigned keywords may not appear in the same
declaration.

C2043 illegal break
A break statement is legal only when it appears within a do,
for, while, or switch statement.

C Error Messages and Exit Codes

C2044 illegal continue
A continue statement is legal only when it appears within a
do, for, or while statement.

C2045 ‘identifier’ : label redefined
The given label appeared before more than one statement in
the same function.

C2046 illegal case
The case keyword may appear only within a switch statement.

C2047 illegal default
The default keyword may appear only within a switch state-
ment.

C2048 more than one default
A switch statement contained more than one default label.

C2049 cast has illegal formal parameter list
A formal parameter list was given in a type-cast expression.

C2050 non-integral switch expression
A switch expression was not integral.

C2051 case expression not constant
Case expressions must be integral constants.

C2052 case expression not integral
Case expressions must be integral constants.

C2053 case value number already used
The given case value was already used in this switch state-
ment.

C2054 expected (" to follow ‘identifier’
The context requires parentheses after the function identifier.

C2055 expected formal parameter list, not a type
list
An argument-type list appeared in a function definition instead
of a formal parameter list.

C2056 illegal expression
An expression was illegal because of a previous error. (The
previous e-Tor may not have produced an error message.)

XENIX C User’s Guide

C2057 expected constant expression
The context requires a constant expression.

C2058 constant expression is not integral
The context requires an integral constant expression.

C2059 syntax error : ‘token’
The given token caused a syntax error.

C2060 syntax error : EOF
The end of the file was encountered unexpectedly, causing a
syntax error. This error can be caused by a missing closing
curly brace (}) at the end of your program.

C2061 syntax error : identifier ‘identifier’
The given identifier caused a syntax error.

C2062 type ‘type’ unexpectéd
The given type was misused.

C2063 ‘identifier’ : not a function
The given identifier was not declared as a function, but an
attempt was made to use it as a function.

C2064 term does not evaluate to a function
An attempt was made to call a function through an expression
that did not evaluate to a function pointer.

C2065 ‘identifier’ : undefined
The given identifier was not defined.

C2066 cast to function returning . . . is illegal
An object was cast to a function type.

C2067 cast to array type is illegal
An object was cast to an array type.

C2068 illegal cast
A type used in a cast operation was not a legal type.

C2069 cast of void’ term to non-void
The void type was cast to a different type.

C2070 illegal sizeof operand
The operand of a sizeof expression was not an identifier or a

type name.

C Error Messages and Exit Codes

C2071 ‘class’ : bad storage class
The given storage class cannot be used in this context.

C2072 ‘identifier’ : initialization of a function
An attempt was made to initialize a function.

C2073 ‘identifier’ : cannot initialize array in function
An attempt was made to initialize the given array within a
function. Arrays can be initialized only at the external level.

C2074 cannot initialize struct/union in function
An attempt was made to initialize the given structure or union
within a function. Structures and unions can be initialized only
at the external level.

C2075 'identifier’ : array initialization needs
curly braces
The braces ({ }) around the given array initializer were miss-
ing. :

C2076 ‘identifier’ : struct/union initialization needs
curly braces
The braces ({ }) around the given structure or union initializer
were missing.

C2077 non-integral field initializer ’‘identifier’
An attempt was made to initialize a bit-field member of a
structure with a nonintegral value.

C2078 too many initializers
The number of initializers exceeded the number of objects to
be initialized.

C2079 ‘expression’ uses undefined struct/union
The given identifier was declared as a structure or union type
that had not been defined.

C2082 redefinition of formal parameter ‘identifier
A formal parameter to a function was redeclared within the
function body.

C2083 array ’‘identifier’ already has a size
The dimensions of the given array had already been declared.

C2084 function ’identifier’ already has a body
The given function had already been defined.

D-19

XENIX C User’s Guide

C2085 ‘identifier’ : not in formal parameter list
The given parameter was declared in a function definition for
a nonexistent formal parameter.

C2086 ‘identifier’ : redefinition
The given identifier was defined more than once.

C2087 ‘identifier’ : missing subscript
The definition of an array with multiple subscripts was missing
a subscript value for a dimension other than the first dimen-
sion, as in the following example:

int func(a)
char a{l10][1; /* Illegal */

}
int func(a)

char a[][5]; /* Legal */
{

}
C2088 use of undefined enum/struct/union ’‘identifier

The given identifier referred to a structure or union type that
was not defined.

C2089 typedef specifies a near/far function
The use of the near or far keyword in a typedef declaration
conflicted with the use of near or far for the declared item, as
in the following example:

typedef int far FARFUNC();
FARFUNC near *fp;

C2090 function returns array
A function cannot return an array. (It can return a pointer to an
array.)

C2091 function returns function

A function cannot return a function. (It can return a pointer to
a function.)

D-20

C Error Messages and Exit Codes

C2092 array element type cannot be function
Arrays of functions are not allowed; however, arrays of
pointers to functions are allowed.

C2092 cannot initialize a static or struct with
address of automatic vars
You cannot use the address of an auto variable in the initial-
izer of a static item.

C2094 label ‘identifier’ was undefined
The function did not contain a statement labeled with the
given identifier.

C20095 function: actual has type void: parameter number
An attempt was made to pass a void argument to a function.
Formal parameters and arguments to functions cannot have
type void; they can, however, have type void * (pointer to
void).

C2096 struct/union comparison illegal
You cannot compare two structures or unions. (You can, how-
ever, compare individual members within structures and
unions.)

C2097 illegal initialization
An attempt was made to initialize a variable using a noncon-
stant value.

C2098 non-address expression
An attempt was made to initialize an item that was not an
lvalue.

C2099 non-constant offset
An initializer used a nonconstant offset.

C2100 illegal indirection
The indirection operator (*) was applied to a nonpointer value.

C2101 ‘&’ on constant
The address-of operator (&) did not have an lvalue as its
operand.

C2102 ‘&’ requires lvalue

The address-of operator must be applied to an Ivalue expres-
sion.

D-21

XENIX C User’s Guide

€2103 's’ on register variable
An attempt was made to take the address of a register variable.

C2104 ‘s’ on bit-field
An attempt was made to take the address of a bit field.

C2105 ‘operator’ needs lvalue
The given operator did not have an lvalue operand.

C2106 ‘operator’ : left operand must be lvalue
The left operand of the given operator was not an lvalue.

C2107 illegal index, indirection not allowed
A subscript was applied to an expression that did not evaluate
to a pointer.

C2108 non-integral index
A nonintegral expression was used in an array subscript.

C2109 subscript on non-array
A subscript was used on a variable that was not an array.

€C2110 ‘+' : 2 pointers
An attempt was made to add one pointer to another.

C2111 pointer + non-integral value
An attempt was made to add a nonintegral value to a pointer.

C2112 illegal pointer subtraction
An attempt was made to subtract pointers that did not point to
the same type.

C2113 "~ : right operand pointer
The right operand in a subtraction operation (—) was a pointer,
but the left operand was not.

C2114 ‘operator’ : pointer on left; needs integral
right
The left operand of the given operator was a pointer; the right
operand must be an integral value.

C2115 ’‘identifier’ : incompatible types
An expression contained incompatible types.

C2116 operator : bad left (or right) operand

The specified operand of the given operator was illegal for that
operator.

D-22

C Error Messages and Exit Codes

C2117 ‘operator’ : illegal for struct/union
Structure and union type values are not allowed with the given
operator.

C2118 negative subscript
A value defining an array size was negative.

C2119 ‘typedefs’ both define indirection
Two typedef types were used to declare an item and both
typedef types had indirection. For example, the declaration of
p in the following example is illegal:

typedef int *P_ INT;

typedef short *P_SHORT;

/* this declaration is illegal */
P_SHORT P_INT p;:

C2120 'void’ illegal with all types
The void type was used in a declaration with another type.

C2121 typedef specifies different enum
An attempt was made to use a type declared in a typedef state-
ment to specify both an enumeration type and another type.

C2122 typedef specifies different struct
An attempt was made to use a type declared in a typedef state-
ment to specify both a structure type and another type.

C2123 typedef specifies different union
An attempt was made to use a type declared in a typedef state-
ment to specify both a union type and another type.

C2125 identifier : allocation exceeds 64K
The given item exceeds the size limit of 64K.

The only items that are allowed to exceed 64K are huge
arrays.

C2126 identifier : automatic allocation exceeds 32K
The space allocated for the local variables of a function
exceeded the limit of 32K.

C2127 parameter allocation exceeds 32K
The storage space required for the parameters to a function
exceeded the limit of 32K.

D-23

XENIX C User’s Guide

C2128 identifier : huge array cannot be aligned to seg-
ment boundary
The given array violated one of the restrictions imposed on
huge arrays; see the ‘*Working with Memory Models’’ chapter
for more information on these restrictions.

C2129 static function ’‘identifier’ not found
A forward reference was made to a static function that was
never defined.

C2130 #line expected a string containing the
file name
A file name was missing from a #line directive.

C2131 attributes specify more than one
near/far/huge
More than one near, far, or huge attribute was applied to an
item, as in the following example:

typedef int near NINT;
NINT far a; /* Illegal */

C2132 syntax error : unexpected identifier
An identifier appeared in a syntactically illegal context.

C2133 array ’identifier’ : unknown size
An attempt was made to declare an unsized array as local vari-
able, as in the following example:

int mat_add(arrayl)
int arrayll[]: /* Legal */
{
int array2{]; /* Illegal */

}
C2134 identifier : struct/union too large

The size of a structure or union exceeded the compiler limit
(232 bytes).

2135 missing ‘)’ in macro expansion
A macro reference with arguments was missing a closing
parenthesis ().

C2137 empty character constant

The illegal character constant ** was used.

D-24

C Error Messages and Exit Codes

C2138 unmatched close comment ’/*’
The compiler detected an open-comment delimiter (/*)
without a matching close-comment delimiter (¥/).

This error usually indicates an attempt to use illegal nested
commernts.

C2139 type following ‘type’ is illegal
An illegal type combination such as the following was used:

long char a;

C2140 argument type cannot be function
returning ...
A function was declared as a formal parameter of another
function, as in the following example:

int funcl(a)
int a(); /* Illegal */

C2141 value out of range for enum constant
An enumeration constant had a value outside the range of
values allowed for type int.

C2142 ellipsis requires three periods
The compiler detected the token ‘“..”” and assumed that ‘...’
was intended.

C2143 syntax error : missing ‘tokenl’ before ’token2’
The compiler expected tokenl to appear before token2. This
message may appear if a required closing curly brace (}), right
parenthesis ()), or semicolon (3) is missing.

C2144 syntax error : missing ’foken’ before type ‘type’
The compiler expected the given token to appear before the
given type name. This message may appear if a required clos-
ing curly brace (}), right parenthesis ()), or semicolon (;) is
missing.

2145 syntax error : missing ’toker’ before
identifier
The compiler expected the given token to appear before an
identifier. This message may appear if a semicolon (;) does not
appear after the last declaration of a block.

D-25

XENIX C User’s Guide

C2146 syntax error : missing ’token’ before identif-
ier ’‘identifier’
The compiler expected the given token to appear before the
given identifier.

C2147 array : unknown size
An attempt was made to increment an index or pointer to an
array whose base type has not yet been declared.

C2148 array too large
An array exceeded the maximum legal size (2” bytes).

C2149 identifier : named bit-field cannot have 0 width
The given named bit field had a zero width. Only unnamed bit
fields are allowed to have zero width.

C2150 identifier : bit-field must have type int, signed
int, or unsigned int
The ANSI C standard requires bit fields to have types of int,
signed int, or unsigned int. This message appears only if you
compiled your program with the -Za option.

c2151 more than one cdecl/fortran/pascal
attribute specified
More than one keyword specifying a function-calling conven-
tion was given.

C2152 identifier : pointers to functions with different
attributes
An attempt was made to assign a pointer to a function declared
with one calling convention (cdecl, fortran, or pascal) to a
pointer to a function declared with a different calling conven-
tion.

C2153 hex constants must have at least 1 hex digit
At least one hexadecimal digit must follow the ‘‘x”’. The hexa-
decimal constants Ox and 0X are illegal.

C2154 ‘name’ : does not refer to a segment
The name was the first identifier given in an alloc_text pragma
argument list and it is already defined as something other than
a segment name.

C2155 ‘name’ : already in a segment

The function name appears in more than one alloc_text
pragma.

D-26

C Error Messages and Exit Codes

C2156 pragma must be at outer level
Certain pragmas must be specified at a global level, outside a
function body, and there is an occurrence of one of these prag-
mas within a function.

C2157 ‘name’ : must be declared before use in
pragma list
The function name in the list of functions for an alloc_text
pragma has not been declared prior to being referenced in the
list.

C2158 ‘name’ : is a function
Name was specified in the list of variables in a same_segment
pragma, but was previously declared as a function.

C2159 more than one storage class specified
Tllegal declaration—only one storage class is allowed.

C2160 ## cannot occur at the beginning of
macro definition
A macro definition cannot begin with a token-pasting (##)
operator.

C21l6l ## cannot occur at the end of a
macro definition
A macro definition cannot end with a token-pasting (##)
operator.

2162 expected macro formal parameter
The token following a stringizing operator (#) must be a for-
mal parameter name.

2163 ’string’ : not available as an intrinsic
A function specified in the list of functions for an intrinsic or
function pragma is not one of the functions available in intrin-
sic form.

C2165 ‘keyword’” : cannot modify pointers to data
Bad use of fortran, pascal or cdecl keyword to modify pointer
to data.

C2167 'name’ : too many actual parameters for
intrinsic
A reference to the intrinsic function name contains too many
actual parameters.

D-27

XENIX C User’s Guide

C2168 ‘name’ : too few actual parameters for
intrinsic
A reference to the intrinsic function rame contains too few
actual parameters.

C2169 ‘name’ : is an intrinsic, it cannot be defined
An attempt was made to provide a function definition for a
function already declared as an intrinsic.

C2170 identifier : intrinsic not declared as a function
You tried to use the intrinsic pragma for an item other than a
function, or for a function that does not have an intrinsic form.

C2177 constant too big
Information was lost because a constant value was too large to
be represented in the type to which it was assigned. (1)

C2171 ‘operator’ : bad operand
Hllegal operand type for the specified unary operator.

D.3.3 Warning Messages

The messages listed in this section indicate potential problems but do not
hinder compilation and linking. The number in parentheses at the end of
each warning-message description gives the minimum warning level that
must be set for the message to appear.

C4000 UNKNOWN WARNING
The compiler detected an unknown error condition.

C4001 macro ’‘identifier requires parameters
The given identifier was defined as a macro taking one or more
arguments, but it was used in the program without arguments.

0

C4002 too many actual parameters for macro ‘identifier’
The number of actual arguments specified with the given
identifier was greater than the number of formal parameters
given in the macro definition of the identifier. (1)

C4003 not enough actual parameters for macro
‘identifier’
The number of actual arguments specified with the given
identifier was less than the number of formal parameters given
in the macro definition of the identifier. (1)

D-28

C Error Messages and Exit Codes

C4004 missing close parenthesis after ‘defined’
The closing parenthesis was missing from an #f defined
phrase. (1)

C4005 ‘identifier’ : redefinition
The given identifier was redefined. (1)

C4006 #undef expected an identifier
The name of the identifier whose definition was to be removed
was not given with the #undef directive. (1)

C4009 string too big, trailing chars truncated
A string exceeded the compiler limit on string size. To correct
this problem, break the string into two or more strings. (1)

C4011 identifier truncated to ‘identifier
Only the identifier’s first 31 characters are significant. (1)

C4014 ’identifier’ : bit-field type must be unsigned
The given bit field was not declared as an unsigned type.

Bit fields must be declared as unsigned integral types. A
conversion has been supplied. (1)

C4015 ‘identifier’ : bit-field type must be integral
The given bit field was not declared as an integral type.

Bit fields must be declared as unsigned integral types. A
conversion has been supplied. (1)

C4016 ‘identifier’ : no function return type
The given function had not yet been declared or defined, so the
return type was unknown.

The default return type (int) is assumed. (2)

C4017 cast of int expression to far pointer
A far pointer represents a full segmented address. On an
8086/8088 processor, casting an int value to a far pointer may
produce an address with a meaningless segment
value. (1)

C4020 too many actual parameters
The number of arguments specified in a function call was
greater than the number of parameters specified in the
argument-type list or function definition. (1)

D-29

XENIX C User’s Guide

C4021 too few actual parameters
The number of arguments specified in a function call was less
than the number of parameters specified in the argument-type
list or function definition. (1)

C4022 pointer mismatch : parametern
The pointer type of the given parameter was different from the
pointer type specified in the argument-type list or function
definition. (1)

C4024 different types : parametern
The type of the given parameter in a function call did not
agree with the type given in the argument-type list or function
definition. (1)

C4025 function declaration specified variable
argument list
The argument-type list in a function declaration ended with a
comma or a comma followed by ellipsis dots (,...), indicating
that the function could take a variable number of arguments,
but no formal parameters were declared for the function. (1)

C4026 function was declared with formal argu-
ment list
The function was declared to take arguments, but the function
definition did not declare formal parameters. (1)

C4027 function was declared without formal argu-
ment list
The function was declared to take no arguments (the
argument-type list consisted of the word veid), but formal
parameters were declared in the function definition or argu-
ments were given in a call to the function. (1)

C4028 parametern declaration different
The type of the given parameter did not agree with the
corresponding type in the argument-type list or with the
corresponding formal parameter. (1)

C4029 declared parameter list different from
definition
The argument-type list given in a function declaration did not
agree with the types of the formal parameters given in the
function definition. (1)

D-30

C Error Messages and Exit Codes

C4030 first parameter list 1is longer than
the second
A function was declared more than once with different
argument-type lists in the declarations. (1)

C4031 second parameter 1list is longer than
the first
A function was declared more than once with different
argument-type lists. (1)

C4032 unnamed struct/union as parameter
The structure or union type being passed as an argument was
not named, so the declaration of the formal parameter cannot
use the name and must declare the type. (1)

C4033 function must return a value

A function is expected to return a value unless it is declared as

void. (2)

C4034 sizeof returns O
The sizeof operator was applied to an operand that yielded a
size of zero. (1)

C4035 identifier : no return value
A function declared to return a value did not do so. (2)

C4036 unexpected formal parameter list
A formal parameter list was given in a function declaration.
The formal parameter list is ignored. (1)

C4037 ‘identifier’ : formal parameters ignored
No storage class or type name appeared before the declarators
of formal parameters in a function declaration, as in the fol-
lowing example:

int *f(a,b,c);

The formal parameters are ignored. (1)

C4038 ’identifier’ formal parameter has bad
storage class
The given formal parameter was declared with a storage class
other than auto or register. (1)

C4039 ‘identifier’ : function used as an argument
A formal parameter to a function was declared to be a func-
tion, which is illegal. The formal parameter is converted to a
function pointer. (1)

D-31

XENIX C User’s Guide

C4040 near/far/huge on ’identifier’ ignored
The near or far keyword has no effect in the declaration of the
given identifier and is ignored. (1)

C4041 formal parameter ’‘identifier’ is redefined
The given formal parameter was redefincd in the function
body, making the corresponding actual argument unavailable
in the function. (1)

C4042 'identifier’ : has bad storage class
The specified storage class cannot be used in this context (for
example, function parameters cannot be given extern class).
The default storage class for that context was used in place of
the illegal class. (1)

C4043 'identifier’ : void type changed to int
An item other than a function was declared to have void type.

1

C4044 huge on ‘identifier’ ignored, must be an array
The huge keyword was used to declare the given nonarray
item. (1)

C4045 ‘identifier : array bounds overflow
Too many initializers were present for the given array. The
excess initializers are ignored. (1)

C4046 ‘s’ on function/array, ignored
An attempt was made to apply the address-of operator (&) to a
function or array identifier. (1)

C4047 ‘operator’ : different levels of indirection
An expression involving the specified operator had incon-
sistent levels of indirection. (1)

The following example illustrates this condition:

char **p;
cher *qg;

D-32

C Error Messages and Exit Codes

C4048 array’s declared subscripts different
An array was declared twice with different sizes. The larger
size is used. (1)

C4049 ‘operator’ : indirection to different types
The indirection operator (¥) was used in an expression tc
access values of different types. (1)

C4051 data conversion
Two data items in an expression had different types, causing
the type of one item to be converted. (2)

C4052 different enum types
Two different enum types were used in an expression. (1)

C4053 at least one void operand
An expression with type void was used as an operand. (1)

C4056 overflow in constant arithmetic

The result of an operation exceeded 0x7FFFFFEF. (1)

C4057 overflow in constant multiplication

The result of an operation exceeded Ox7FFFFFEF. (1)

C4058 address of frame variable taken, DS != SS
The program was compiled with the default data segment (DS)
not equal to the stack segment (SS), and the program tried to
point to a frame variable with a near pointer. (1)

C4059 segment lost in conversion
The conversion of a far pointer (a full segmented address) to a
near pointer (a segment offset) resulted in the loss of the seg-
ment address. (1)

C4060 conversion of long address to short address
The conversion of a long address (a 32-bit pointer) to a short
address (a 16-bit pointer) resulted in the loss of the segment
address. (1)

c4061 long/short mismatch in argument :
conversion supplied
The base types of the actual and formal arguments of a func-
tion were different. The actual argument is converted to the
type of the formal parameter. (1)

C4062 near/far mismatch in argument: conver-
sion supplied

D-33

XENIX C User’s Guide

The pointer sizes of the actual and formal arguments of a func-
tion were different. The actual argument is converted to the
type of the formal parameter. (1)

C4063 ‘identifier’ : function too large for

post-optimizer

The given function was not optimized because not enough
space was available. To correct this problem, reduce the size
of the function by dividing it into two or more smaller func-
tions. (0)

C4064 procedure too large, skipping description optim—

ization and continuing
Some optimizations for a function were skipped because not
enough space was available for optimization. (0)

To correct this problem, reduce the size of the function by
dividing it into two or more smaller functions.

The description in this message may appear as any of the
following:

loop inversion
branch sequence
cross jump

C4065 recoverable heap overflow in post-optimizer

- some optimizations may be missed

Some optimizations were skipped because not enough space
was available for optimization. To correct this problem, reduce
the size of the function by dividing it into two or more smaller
functions. (0)

C4066 local symbol table overflow - some local

symbols may be missing in listings

The listing generator ran out of heap space for local variables,
so the source listing may not contain symbol-table information
for all local variables.

C4067 unexpected characters following ‘’directive’

D-34

directive - newline expected
Extra characters followed a preprocessor directive, as in the
following example (1):

#endif NO_EXT_KEYS

C Error Messages and Exit Codes

This is accepted in Version 3.0, but not in Versions 4.0 and 5.0.
Versions 4.0 and 5.0 require comment delimiters, such as the
following:

#endif /* NO_EXT KEYS */

C4068 unknown pragma
The compiler did not recognize a pragma and ignored it. (1)

C4069 conversion of near pointer to long integer
A near pointer was converted to a long integer, which involves
first extending the high-order word with the current data-
segment value, not 0 as in Version 3.0. (1)

C4071 ‘identifier’ : no function prototype given
The given function was called before the compiler found the
corresponding function prototype. (3)

a

C4072 Insufficient memory to process debug- %%
ging information
You compiled the program with the -Zi option, but not enough
memory was available to create the required debugging infor-
mation. (1)

C4073 scoping too deep, deepest scoping merged
when debugging
Declarations appeared at a static nesting level greater than 13.
As a result, all declarations will seem to appear at the same
level. (1)

C4074 non standard extension used - ‘extension’
The given nonstandard language extension was used when the
-Ze option was in effect. These extensions are given in the
“‘Compiling with the cc Command’’ chapter of this guide. (If
the -Za option is in effect, this condition generates an error.)

€)

C4075 size of switch expression or case constant
too large - converted to int
A value appearing in a switch or case statement was larger
than an int. The compiler converts the illegal value to an int.

1
C4076 ‘type’ : may be used on integral types only

The type modifiers signed and unsigned can be combined
only with other integral types.

D-35

XENIX C User’s Guide

C4077 unknown check_stack option
Unknown option given when using the old form of the
check_stack pragma. The option must be empty, +, or -.

C4079 unexpected char ‘character’
Unexpected separator character found in argument list of a
pragma.

C4080 missing segment name
The first argument in the argument list for the alloc_text
pragma is missing a segment name. This happens if the first
token in the argument list is not an identifier.

C4081 expected a comma
There is a missing comma (,) between two arguments of a
pragma.

C4082 expected an identifier
There is a missing identifier in list of arguments to a pragma.

C4083 missing "(’
There is a missing opening parenthesis (() in the argument list
for a pragma.

C4084 expected a pragma keyword
The token following the pragma keyword is not an identifier.

C4085 expected [onloff]
Bad argument given for new form of check_stack pragma.

C4086 expected [1I214]
Bad argument given for pack pragma.

C4087 ‘name’ : declared with void parameter list
The function name was declared as taking no parameters, but a
call to the function specifies actual parameters.

C4090 different ‘const’ attributes
The program passed a pointer to a const item to a function
where the corresponding formal parameter is a pointer to a
non-const item, which means the item could be modified by
the function undetected.

C4091 no symbols were declared
An empty declaration was detected. (2)

D-36

C Error Messages and Exit Codes

C4092 untagged enum/struct/union declared
no symbols
An empty declaration was detected that used an untagged
enumy/struct/union. (2)

C4093 unescaped newline in character constant in
non-active code
The constant expression of an #if, #elif, #ifdef, or #ifndef
preprocessor directive evaluated to 0, making the following
code inactive, and a new-line character appeared between a
single or double quotation mark and the matching single or
double quotation mark in that inactive code.

C4094 unexpected newline
A new-line character appeared in a pragma where a comma,
right parenthesis, or identifier was expected, as in the follow-
mng
examples:

#pragma intrinsic (memset
#pragma intrinsic (memset,

C4095 too many arguments for pragma
More than one argument was given for a pragma that can take
only one argument.

D.3.4 Compiler Limits

To operate the XENIX C Compiler, you must have sufficient disk space
available for the compiler to create temporary files used in processing.
The space required is approximately two times the size of the source file.
Table D.1 summarizes the limits imposed by the C compiler. If your pro-

gram exceeds one of these limits, an error message will inform you of the
problem.

D-37

XENIX C User’s Guide

Table D.1
Limits Imposed by the C Compiler

Program Item Description Limit

String literals Maximum length of a 512 bytes
string, including the ter-
minating null character

(\0)

Constants Maximum size of a con-
stant is determined by its
type; see the XENIX C
Language Reference for
a discussion of constants

Identifiers Maximum length of an 31 bytes (addi-
identifier tional characters
are discarded)

Declarations Maximum level of nest- 10 levels
ing for structure/union
definitions
Preprocessor Maximum size of a 512 bytes
directives macro definition

Maximum number of 8 arguments
actual arguments to a
macro definition

Maximum length of an 256 bytes
actual preprocessor
argument

Maximum level of nest- 32 levels
ing for #if, #ifdef, and
#ifndef directives

Maximum level of nest- 10 levels
ing for include files

D-38

C Error Messages and Exit Codes

The compiler does not set explicit limits on the number and complexity of
declarations, definitions, and statements in an individual function or in a
program. If the compiler encounters a function or program that is too
large or too complex to be processed, it produces an error message to that
effect.

D.4 Compiler Exit Codes
All the programs in the XENIX C Compiler package return an exit code
(sometimes called an ‘‘errorlevel’’ code) that can be used by other pro-
grams such as make. If the program finishes without errors, it returns a
code of 0. The code returned varies depending on the error encountered.
Code Meaning
0 No fatal error

2 Program error (such as compiler error)

4 System level error (such as out of disk space or compiler inter-
nal error)

D-39

Replace this Page
with Tab Marked:

Index

W R Y W W W ORY W
AR A 5 T B e S &

P W U W W NP W WP N WY N W B W W Wy

Index

{ } (braces) 1-5
[] (brackets) 1-5
| (bar) 1-5
- (dash) option character
linker 3-3
- (hyphen) option character, cc 2-4
_ (underscore), in names 2-10, 2-21

A

Address space B-8
Addresses
components 5-3
far 5-4
huge 5-4
near 5-4
Alias checking 2-38
Alignment See Storage alignment
alloc_text pragma 5-30
argc variable 4-2
Arguments
linker options 3-4
listing options 2-11
macros D-41
main function See main function
variable number of 2-55, 6-5, B-12
Argument-type list 2-35
argv variable 4-2
Assembly language
interface 8-7
return values 8-5
routines
entry 8-4
exit 8-7

Assembly language interface, described 8-1

Assembly-listing files
creating 2-9, 2-10
extensions 2-11
format 2-20

B

Bar (1) 1-5

BASE 7-9
Bibliography 1-8

Bit fields B-5

Bold font 1-5

Braces ({ }) 1-5
Brackets ([]) 1-5
Byte length B-2
Byte order B-16, B-4

C

C calling conventions
described 8-1
C compiler
compiler pass options 2-58
d option 2-58
DOS Cross Development Options 2-57
dos option 2-57
FP option 2-57
functions of the passes 2-58
impure small model 5-6
M option 2-4
manifest defines 2-26
model and segment options 2-4
pure small model 5-7
z option 2-58
C language
calling sequence 8-4
interface with assembly language 8-7
return values 8-5
-c option 2-7
-C option 2-29
Call sequence 8-1
Calling conventions
C2-55,6-5
controlling
cdecl keyword 2-56
fortran and pascal keywords 2-56
-Gc option 2-56
FORTRAN/Pascal 2-55, 6-5
Calling sequence
assembly language 8-4
C language 8-4
Canonic Frame 7-6

I-1

Index

Capital letters
small 1-5
use of 1-5
Case significance
linker 3-5
cc command
exit codes D-41
file processing 2-2
format 2-2
cc options
-A 5-22,5-24,5-25
assembly listing 2-9, 2-10
-c2-7
-C2-29
command line, order 2-4
comments, preserving 2-29
constants and macros, defining 2-24
-D2-24
data segments, naming 5-28, 5-30, 6-7
data threshold, setting 5-27
default char type, changing 2-55
default libraries 2-5
differences from linker options 3-4
-E2-28
-EP 2-28
external names, restricting length of 2-53
-F3-6
-Fa 2-10, 2-20
-Fc 2-10
-Fe 2-9
-F12-10
-Fm 2-10
-Fo 2-7
format 2-4
FORTRAN/Pascal, calling convention 2-56
-Fs 2-10
function declarations, generating 2-35
-Gc 2-56
-Gs 2-47, 6-4
-Gt 5-27
-help 2-6
-12-30
include files, searching for 2-30
-J 2-55
language extensions, disabling 2-49
line numbers 2-36
-link 2-2, 3-1
linker information, passing 3-1
listing 2-6
maximum optimization 2-38
-Mc 5-7
memory models
code-pointer size 5-24
compact 5-7

-2

cc options (continued)

memory models (continued)
data-pointer size 5-24
default libraries 2-4
huge 5-9
large 5-9
medium 5-7
mixed 5-22,5-24,5-25
segments, setting up 5-25
small 5-6

-Mh 5-9

-M15-9

-Mm 5-7

-Ms 5-6

naming
executable files 2-9
modules 5-28
object files 2-7

-ND 5-28, 5-30, 6-7

-nl 2-53

-NM 5-28

-NT 5-28

-02-9

-Oa 2-38, 6-3

object files
labeling 2-53
naming 2-7
specifying 2-2

object listing 2-9, 2-10

-Od 2-36, 2-42

-0i 2-38,2-42,6-3

-012-38, 2-44, 6-4

-Op 2-45

optimization
alias checking, relaxing 2-38, 6-3
code size 2-38, 2-46
disabling 2-36, 2-42
execution time 2-38, 2-46, 6-3
floating-point results, consistent 2-45
intrinsic functions 2-38, 2-42, 6-3
loops 2-38, 2-44, 6-4
maximum 2-46
-0i6-3
program speed 6-2

option character
hyphen (-) 2-4

-Os 2-46

-0t 2-46, 6-3

-Ox 2-38,2-46

-P2-28

predefined identifiers, removing definitions

2-27
preprocessed listing 2-28
preprocessor

cc options (continued)
preprocessor (continued)
-C2-29
-D2-24
-Uand -u 2-27

source files, specifying 2-2, 2-6

source listing 2-10
source/object listing 2-10

special keywords, disabling 5-14

-Ss 2-13
-St 2-13

stack probes, removing 2-47, 6-4

standard places, ignoring 2-30

structure members, packing 2-51

subtitle 2-13
suppressing
library selection 2-54
linking 2-7
syntax checking 2-34
-Te 2-3,2-6
text segments, naming 5-28
titles 2-13
-U and -u 2-27
-V 2-53
Version 4.0, new for A-8
Version 5.0, new for A-3
-W0, -W1,-W2, and -W3 2-33
warning level 2-33
-X2-30
-Za 2-49, 5-14
-Zd 3-6
-Zg 2-35
-7i2-36
-Z12-54
-Zp 2-51
-Zs2-34
cdecl keyword
defined 2-56
-Gc option, used with 6-6
include files, used in 2-50
-Za option, used with 2-49
char type, changing default 2-55
Character
classification, macros B-8
set B-8
types
signed B-9
unsigned B-9
check_stack pragma 2-47, 6-4
Class name, LSEG 7-6

Code pointers, mixed memory models 5-24
Code size, optimization 2-38, 2-46

Combination Attribute 7-21
Command line

Index

Command line (continued)
arguments
executable file 4-1
cc 2-2
error messages D-1
length, maximum 2-2
Commands
notational conventions 1-5
COMMENT 7-40
RECORD 7-40
Comments, preserving 2-29
Compact memory models See Memory models
Compilation
conditional 2-50
error messages D-6
Compiler
differences, other compilers
portability problems B-9
differences, Version 4.0
cc options A-8
enhancements and additions A-5
language changes A-5
differences, Version 5.0
enhancements and additions A-1
language changes A-2
new cc options A-3
pragmas, new A-4
documentation 1-1
error messages See Error messages, compiler
limits D-40
naming conventions 2-21
stopping 2-2
Compiler, converting from previous versions
See Compiler differences
Compiler guide, organization 1-2
Compiler options See cc options
Complete name, LSEG 7-6
Conditional compilation 2-24, 2-50
Constants
defining 2-24
manifest See Constants, symbolic
size, maximum D-40
symbolic 2-24
Controlling
linker 3-3
preprocessor 2-27
segments 3-5
stack size 3-6
Conventions, notational 1-5
Conversion
near pointers to long integers A-7
pointer arguments 5-20
Correctable error messages D-6
crt0.0 See Start-up routine

Index

ctype.h macros B-8 ebx register 8-7
Customized memory models See Mixed memory ecx register 8-7
models edi register 8-4, 8-7
edx register 8-5, 8-7
EIGHT
D LEAF

DESCRIPTOR 7-25
EIGHT LEAF DESCRIPTOR 7-24

. Ellipses, use of 1-5
é%ggg:n 24 environ variable 4-3
cc 2-58 Envxronn:ngnt
Dash (-) portability problems B-13
table

linker option character 3-3
Data
passing to programs 4-1

pointer to 4-2
variable names, notational conventions 1-

portability B-14 Va;‘ﬁ‘gﬁ%DE 230
segment LIB 3-2
data threshold, setting 5-27 PATH 4-1
default, contents 5-27 SET 4-1

default name 5-28
mixed memory models 5-25
naming 5-28

types, size of B-2

envp variable 4-2
-EP option 2-28
errno variable

Data pointers, mixed memory models 5-24 gzg:r?geil-ga
_DATA segment 5-28 E
Data Structures fror mgls srages
x.out symbol table 7-50 comprier
Data threshold, setting 5-27 commf:;q lmlf): lg'l
Debugging, preparing for compl abllo nD _6
-Zi and -Od options 2-36 gorrectable D-

fatal D-6, D-7
identifying 2-31

object files, used in 3-2 redirecting 2-31

suppressing selection 2-54 fo Waitn;nf E:O%I’Ee;g ages, compiler
DGROUP group 5-28 rmat e $4ges, comp

source listings 2-14
warning messages, setting level of 2-33
Errorlevel codes See Exit codes

Declarations, maximum level of nesting D-40
Default libraries

Differences from previous versions See
Compiler differences
Directory names, notational conventions 1-5

Documentation, compiler 1-1 Errc(;rtihi ng signals 9-3
DOS Cross Development oy
. delayed 9-4
C compiler 2-57 .
. ermo variable 9-2
dos option
error constants 9-2
cc 2-57

dosld command 2-57 error numbers 9-2

DS register 5-25 printing error messages 9-2
processing 9-1
routine system I/O 9-4
; sharing resources 9-4
E signals 9-3
standard error file 9-1
system 9-4
-E option 2-28 esi register 8-4, 8-7
eax register 8-5, 8-7 esp register 8-4
ebp register 8-4, 8-7 Evaluation order B-12

-4

exec function 4-1
Executable files
cc command and 2-3
command-line arguments 4-1
extensions 2-9
naming, default 2-9
naming with cc 2-9
passing data to 4-1
running 4-1
Executable Format 7-50
Execution-time optimization 2-38, 2-46, 6-3
Exit code D-41
Extensions
executable files 2-9
listing files, defaults for 2-10
map files 2-11
object files 2-8
object-listing files 2-11
source-listing files 2-11
source/object-listing files 2-11
External names 2-53

F

-F option 3-6
-Fa option 2-10, 2-20
Far keyword 5-18
far keyword
default addressing conventions 5-12
effects
data declarations 5-14, 6-6
function declarations 5-18
library routines, used with 5-14
small-model programs, used in 5-6
-Za option, used with 2-49
Far pointers 5-12
Fatal-error messages D-6, D-7
-Fc option 2-10
-Fe option 2-9
File names
notational conventions 1-5
Files
assembly listing 2-10, 2-20
executable See Executable files
listing, preprocessed 2-28
map
creating 2-10, 2-13, 3-5, 3-6
default names 2-11
listing formats 2-22
-MAP linker option 3-5
object
cc command, used with 2-2, 2-3

Index

Files (continued)
object (continued)
listing 2-10, 2-11, 2-19
source 2-2
source listing See Source-listing files

source/object listing See Source/object-listing

files
temporary
space requirements D-40

FIXUP

RECORD 7-34
FIXUPP 7-34
Fixups

definition 7-8

segment............. relative 7-10, 7-14

selfrelative 7-10, 7-13
-Fl option 2-10
Floating point

operations

optimizing for consistency in 2-45

-Fm option 2-10
-Fo option 2-7
fortran keyword 2-49, 2-56, 6-6
FP option

cc 2-57
FRAME

definition 7-4

specifying 7-11
FRAME NUMBER 7-5
-Fs option 2-10
function pragma 2-42
Functions

arguments, variable number of 2-55, 6-5, B-

12
calling conventions
C 2-55,6-5
FORTRAN/Pascal 2-55, 6-5
declarations
generating 2-35
near and far keywords 5-18

G

-Gc option 2-56

getenv function 4-2

Global symbols See Public symbols
GROUP 7-5

Group Definition Record 7-23
GRPDEF 7-23

-Gs option 2-47, 6-4

-Gt option 5-27

I-5

Index
H

Hardware Reference Numbers 7-56
-help option
cc 2-6
HIBYTE 7-9
Huge arrays 5-9
huge keyword 2-49
data declarations, effects in 5-14, 6-6
default addressing conventions 5-12
library routines, used with 5-14
small-model programs, used in 5-6
Huge memory model See Memory models
Huge pointers 5-12
Hyphen (-), cc option character 2-4

-I option 2-30
iAPX....286,386
address translation
logical to physical 7-2
descriptor tables 7-1
GDT 7-1
LDT 7-1
logical address space 7-1
memory management 7-1
pointers
to logical addresses 7-1
protected mode 7-1
segment selector 7-2
INDEX field 7-2
RPL field 7-2
TI field 7-2
system architecture 7-1
Identifier length See Names, length
Identifiers
length, maximum D-40
predefined
listed 2-26
M_I862-26
M_I86xM 2-26
M_XENIX 2-26
removing definitions of 2-27
Implicit bss 7-49
Include files
directory specification 2-30
nesting, maximum level of D-41
portability problems B-2
search path 2-30
INCLUDE variable

I-6

INCLUDE variable (continued)
overriding 2-30

Index fields 7-8

Indices 7-8

intrinsic pragma 2-42

Ttalics 1-5

Iterated Segments 7-48

J

-J option 2-55

K

Key sequences, notational conventions 1-.

Keywords
cdecl 2-49, 2-56, 6-6
far 5-18
far See far keyword
fortran 2-49, 6-6
huge See huge keyword
near 5-18

near See near keyword
pascal 2-49, 6-6

special 2-49

Version 4.0, new for A-8

L

Language extensions
disabling 2-49
listed 2-49
Large memory model See Memory models
large
Large Model 7-49
LIB variable 3-2
Libraries
creating
-Z1, compiling modules with 2-54
default
ignoring 3-3
-M options 2-5, 3-1
overriding 3-3
suppressing selection 2-54
mixed-model programs 5-26
names in object files 3-1
search

Libraries (continued)
search (continued)
path 3-2, 3-3
specifying 3-2
standard places 3-2
Library
routines
exec 4-1
getenv 4-2
intrinsic forms 2-43
putenv 4-2
system 4-1
XENIX dependent C-1
LIDATA 7-32
Limits
compiler D-40
LINE
NUMBERS
RECORD 7-30
-LINENUMBERS (-LI) linker option 3-6
-link option 2-2, 3-1
Linker
error messages 2-31
Linker options
abbreviations 3-4
case sensitivity 3-5
cc options, differences from 3-4
command line, order on 3-5
default libraries, ignoring 3-3
line numbers, displaying 3-6
-LINENUMBERS (-LI) 3-6
map file 3-5
-MAP (-M) 3-5
-NODEFAULTLIBRARYSEARCH (-NOD)
overriding default libraries 3-3
numerical arguments 3-4
rules 3-3
segments
number of 3-5
-SEGMENTS (-SE) 3-5
stack size, setting 2-52, 3-6
-STACK (-ST) 3-6
-T6-7
translating far calls 6-7
LINNUM 7-30
List of Names Record 7-19
Listing cc options 2-6
Listing files
assembly 2-9, 2-10, 2-20
map 2-10
object 2-9, 2-10, 2-19
preprocessed 2-28
source 2-9, 2-10, 2-14
source/object 2-10, 2-20

Index

LNAMES 7-19
LOBYTE 7-10
LOCATION, types 7-9
LOGICAL
ITERATED
DATA
RECORD 7-32

Logical Segment 7-5
Long pointers See Far pointers
Loop optimization 2-44, 6-4
loop_opt pragma 2-37, 2-44, 6-4
LSEG 7-5

M

M option
cc2-4
Macro definitions D-40
Macros
arguments, maximum number D-41
character classification B-8
defined 2-24
notational conventions 1-5
main function
arguments to 4-1
Manifest constants, notational conventions 1-5
Manifest defines
C compiler 2-26
Map files
creating 2-10, 2-13, 3-5
extensions 2-11, 3-6
-Fm option 2-13
format 2-22
-MAP linker option 3-5
program entry point 2-23
segment lists 2-22
symbol tables 2-22
-MAP linker option 3-5
MAS 7-4
-Mc option 5-7
Medium memory model See Memory models
Memory Address Space 7-4
Memory addresses See Addresses
Memory models
compact 5-7
default 5-2, 5-6
huge 5-9
large 5-9
mediom 5-7
mixed See Mixed memory models
options
code-pointer size 5-24

1-7

Index

Memory models (continued)
options (continued)
compact mode} 5-7
data-pointer size 5-24
default libraries 2-5
huge model 5-9
large model 5-9
medium model 5-7
segment setup 5-25
small model 5-6
small 5-2, 5-6, 5-18
standard
advantages 5-5
common features 5-5
disadvantages 5-5
Version 4.0, new for A-8
Memory models, customized See Mixed
memory models
-Mh option 5-9
M_I86 identifier 2-26
M_I86xM identifier 2-26
Mixed memory models
code pointers 5-24
creating 5-22
data pointers 5-24
library support 5-26
near, far, huge keywords 5-12
segment setup options 5-25
-Ml option 5-9
-Mm option 5-7
MODE 7-10
MODEND 7-39
MODULE 7-4
END
RECORD 7-39
Module header record 7-6
Modules, naming 5-28
-Ms option 5-6
M_XENIX identifier 2-26

N

Names
conventions 2-57
executable files 2-9
external 2-53
global 2-10, 2-21
length B-10
modules, changing 5-28
object files 2-7
segments, changing 5-28
underscores (_), using in 2-10, 2-21

I-8

Naming conventions
compiler 2-21
segments 5-29 -
-ND option 5-28, 5-30, 6-7
Near keyword 5-18
near keyword
data declarations, effects in 5-14, 6-6
default addressing conventions 5-12
function declarations, effects in 5-18
library routines, used with 5-14
Near pointer 5-12
Nesting
declarations D-40
include files D-41
preprocessor directives D-41
-nl option 2-53
-NM option 5-28

-NODEFAULTLIBRARYSEARCH (-NOD)

linker option
default libraries, overriding 3-3
Non-Iterated Segments 7-49
Notational conventions 1-5
-NT option 5-28
Numeric record types 7-42

0]

-O (optimization) options 2-37
-0 option 2-9
-Oa option, cc 2-38, 6-3
Object File Format
Executable 7-45
Object files
cc command 2-2, 2-3
default extension 2-2, 2-6
extensions 2-8
labeling 2-53
library names in 3-1
naming 2-7
specifying to cc 2-2
Object listing See Object-listing files
Object Module Formats 7-3, 7-4
Object-listing files
creating 2-10
extensions 2-11
format 2-19
-Od option 2-36
OFFSET 7-9
-Oi option 2-38, 6-3
-Ol option 2-38, 2-44, 6-4
OMF 7-4
omf Subset 7-46

-Op option 2-45
Optimization
alias checking, relaxing 2-38, 6-3
code size 2-38, 2-46
consistent floating-point results 2-38, 2-45
default 2-1, 2-46
disabling 2-36, 2-38, 2-42
execution time 2-38, 6-3
intrinsic functions 2-42
intrinsic pragmas 6-3
listing files 2-12
loops 2-44, 6-4
maximum 2-38, 2-46
options 2-37
stack probes, removing 2-47, 6-4
Optimizing See Optimization
Optional fields, notational conventions 1-5
Options, cc See cc options
Options, linker See Linker options
-Os option 2-46
-Ot option 2-46, 6-3
Overlay Name, LSEG 7-6
Overview 1-1
-Ox option 2-38, 2-46

P

-P option 2-28
pack pragma 2-51
Packing
structure members 2-51
PARAGRAPH NUMBER 7-5
pascal keyword 2-49, 2-56, 6-6
Path names
notational conventions 1-5
portability problems B-2
PATH variable 4-1
perror function 9-2
Physical Segment 7-5
Placeholders 1-5
Pointers
arguments, size conversion 5-20
code 5-24
far 5-12,5-24
huge 5-12
manipulation B-6
near
conversion to long integers A-7
customized memory models 5-24
near keywords, used with 5-12
subtracting in huge-model programs 5-9
Portability

Index

Portability (continued)
address space B-8
bit fields B-5
byte length B-2
byte order B-16, B-4
case distinctions B-10
character set B-8
data B-14
data types, size of B-2
environment differences B-13
evaluation order B-12
functions with variable number of arguments
B-12
guidelines B-2
hardware B-2
identifier length B-10
include files B-2
path names B-2
pointer manipulation B-6
register variables B-10
shift operations B-9
side effects B-12
sign extension B-9
signed and unsigned char types B-9
storage alignment B-3
type conversion B-10
word length B-2
Pragmas
alloc_text 5-30
check_stack 2-47, 6-4
function 2-42
intrinsic 2-42
loop_opt 2-37, 2-44, 6-4
pack 2-51
same_seg 5-30, 6-7
Version 4.0, new for A-8
Version 5.0, new for A-4
Preprocessor
macro arguments, maximum number of D-41
macro definitions, maximum size of D-40
nesting, maximum level of D-41
options
comments, preserving 2-29
-D 2-24
predefined identifiers, removing definitions
of 2-27
use 2-24
Product names, notational conventions 1-5
Prompts 1-5
PSEG
definition 7-5
NUMBER 7-5
PUBDEF 7-26
PUBLIC

19

Index

PUBLIC (continued)
NAMES
DEFINITION
RECORD 7-26

Public names See External names
Public names See Public symbols
Public symbols, listing 2-13, 3-5
putenv function 4-2

Q

Quotation marks, use of 1-5

R

Record format, sample 7-16
Record formats 7-3
Record order 7-15
Record types 7-43

numeric 7-42
Register variables 6-1, B-10
Registers

eax 8-5, 8-7

ebp 8-4, 8-7

ebx 8-7

ecx 8-7

edi 8-4, 8-7

edx 8-5, 8-7

esi 8-4, 8-7

esp 8-4
Relocatable memory images 7-3
Return codes See Exit Codes
Return values 8-2

assembly language 8-5
Routine entry sequence 8-2
Routine exit sequence 8-2
Routines

assembly language

entry 8-4
exit 8-7

Run file See Executable file

S

same_seg pragma 5-30, 6-7
Sample x.out File 7-48
Search paths

I-10

Search paths (continued)
changing
include files 2-30
libraries 3-3
include files 2-30
libraries 3-2
SEGDEF 7-19
Segment addressing 7-7
Segment definition 7-7
Segment definition record 7-19
Segment lists
map files 2-22
source listings 2-19
Segment Name, LSEG 7-6
Segment Numbers 7-56
Segment registers 8-7

Segment Relative fixups 7-10
Segment Relative Fixups 7-14
Segments

data

default name 5-28
mixed memory models 5-25
names 5-28
naming 5-28
threshold, effect of 5-27
default 5-3
defined 5-3
names, changing 5-28
naming conventions 5-29
nurmber allowed 3-5
setting up 5-25
source listing 2-19
stack 5-25
text
default name 5-28
naming 5-28
-SEGMENTS (-SE) linker option 3-5
SelfRelative fixups 7-10, 7-13
SET variable 4-1
Shift operations B-9
Short pointers See Near pointers
Side effects B-12
Sign extension B-9
Signals
catching 9-3
on program errors 9-3
Signed char type B-9
sizeof operator 5-9
Small capitals, use of 1-5

Small memory model See Memory models

Small model 5-18
impure 5-6
pure 5-7

Source files

Source files (continued)
default extension 2-2, 2-6
specifying to cc 2-2
Sourc. listing See Source-listing files
Source-listing files
creating 2-10
described 2-9
error messages 2-14
extensions 2-11
format 2-14, 2-15
segment lists 2-19
subtitles 2-13
symbol tables 2-17
titles 2-13
Source/object-listing files
creating 2-10
extensions 2-11
format 2-20
Special Header Fields 7-49
Special keywords, disabling 5-14
-Ss option 2-13
SS register 5-25
-St option 2-13
Stack
probes 2-47, 6-4
segments, mixed memory models 5-25
size
default for C programs 2-52
setting 2-52, 3-6
Stack order 8-1
-STACK (-ST) linker option 3-6
Standard files
redirecting 9-1
Standard places
changing 2-30
ignoring 2-30
libraries 3-2
stderr, the standard error file 9-1
Storage alignment B-3
Strings
length, maximum D-40
notational conventions 1-5
Structures, packing 2-51
Subtitles, source listings 2-13
Switches See Options
Symbol definition 7-8
Symbol Table 7-50
Symbol tables
map files, used in 2-22 .
object files, used in (-Zi option) 2-36
source listings, used in 2-17

Syntax conventions See Notational conventions

sys_errno array, described 9-3
System errors

Index

System errors (continued)
described 9-4
reporting 9-4

system function 4-1

T

-T linker option 6-7
TARGET 7-10
-Tc option 2-3, 2-6
_TEXT segment 5-28
Text segments
default name 5-28
naming 5-28
THEADR 7-18
Titles, source listings 2-13

T Module Header Record (THEADR)

7-18
TYPDEF 7-24
Types

checking 2-35
conversion B-10

U

-U and -u options 2-27

Underscore (_) in names 2-10, 2-21
Unsigned char type B-9

Uppercase letters, use of 1-5

v

-V option 2-53
Variables, register See Register variables
Vertical bar (1) 1-5

W

-WO0, -W1, -W2, and -W3 options 2-33
Warning error messages 2-33, D-30, D-6
Wild card

characters 2-7

I-11

Index

X

-X option 2-30
x.out
file layout 7-48
general description 7-46
implicit bss 7-49
iterated segments 7-48
large model 7-49
non.......iterated segments 7-49
special fields 7-49
symbol table 7-50
x.out Examples 7-52
x.out Executable Format 7-50
x.out Format 7-45
x.out Include Files 7-52
x.out Segmented OMF Specification 7-45

Z

Z option
cc 2-58
-Za option 2-49, 5-14
-Zd option 3-6
-Zg option 2-35
-Zi option 2-36
-Z1 option 2-54
-Zp option 2-51
-Zs option 2-34

w@@@@ﬁ@@@@%@@@@&@%@@&@@%@@@@@@@%@O@@&WQO@Q@@@@@@@@@@%@@@@@@%@@@&@@ﬁ%@@@@%@@%@@%ﬁ%%‘

A e R AR A A0 A6 4B Gk O dh R SR A D A B B B SR D A S A6 e D A A Ah A B S D e S EX. ¥ T PP Yy Yy yyy Yy Yy Y vy vy sy T Y Yy rE ey ry -y

ith Tab Marked
C LIBRARY
GUIDE

W1

Replace this Page

XENIX System V

Development System

C Library Guide

Information in this document is subject to change without notice and does not represent
a commitment on the part of The Santa Cruz Operation, Inc. nor Microsoft Corporation.
The software described in this document is furnished under a license agreement or
nondisclosure agreement. The software may be used or copied only in accordance with
the terms of the agreement. It is against the law to copy this software on magnetic tape,
disk, or any other medium for any purpose other than the purchaser’s personal use.

Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988 Microsoft
Corporation.

All rights reserved.

Portions © 1983, 1984, 1985, 1986, 1987, 1988 The Santa Cruz Operation, Inc.

All rights reserved.

ALL USE, DUPLICATION, OR DISCLOSURE WHATSOEVER BY THE
GOVERNMENT SHALL BE EXPRESSLY SUBJECT TO RESTRICTIONS AS SET
FORTH IN SUBDIVISION (b) (3) (ii) FOR RESTRICTED RIGHTS IN COMPUTER
SOFTWARE AND SUBDIVISION (b) (2) FOR LIMITED RIGHTS IN TECHNICAL
DATA, BOTH AS SET FORTH IN FAR 52.227-7013.

Microsoft, MS-DOS, and XENIX are registered trademarks of Microsoft Corporation.

SCO Document Number: XG-10-10-88-5.0/2.3

Contents

1 Introduction

1.1 Aboutthe CLibrary 1-1

1.2 About ThisManual 1-1

1.3 Notational Conventions 1-4

Using C Library Routines

Introduction 2-1
Identifying Functions and Macros 2-1
Including Files 2-3
Declaring Functions 2-4
Stack Checking onEntry 2-5
Argument-Type Checking 2-5
ErrorHandling 2-6
Filenames and Pathnames 2-7
Floating-Point Support 2-8
0 Using Huge Arrays with Library Functions 2-9

—oouanp i

Global Variables and Standard Types

Introduction 3-1

The daylight, timezone, and tzname Variables = 3-1
errno, sys_errlist, sys_nerr 3-2

environ 3-2

Standard Types 3-2

DN WwWN =

Run-Time Routines by Category

Introduction 4-1

Buffer Manipulation 4-1

Character Classification and Conversion 4-2
Database-Manipulation Routines 4-3

Data Conversion 4-3

Directory Operation 4-4

File Handling 4-5

Group and Password File Control Routines 4-6
Inputand Output Routines 4-7

Math 4-11

Memory Allocation 4-13

Message-Control Routines 4-14

Pipes 4-14

Process Control 4-16

APAABRRARALAARE A WDLOLHYW W NNNNDORRONEN N
AU W~

— e b = \O 00]
L= O

NNNNNNNS 9
Nk~

Random-Number Generation 4-18
Screen Processing 4-18

Searching and Sorting 4-22
Semaphore-Control Routines 4-23
Shared-Memory Routines 4-23
String Manipulation 4-24

System Accounting 4-26
Terminal Control 4-27

Time 4-27

Miscellaneous 4-28

Include Files

Introduction 5-1
/usr/include Files 5-1
fusr/include/sysFiles 5-8

Using the Standard I/O Functions

Introduction 6-1

Using Command Line Arguments 6-4

Using the Standard Files 6-5

Using the Data Stream Functions 6-12

Using More Data Stream Functions 6-24

Using the Low-Level Functions 6-28

UsingFile Descriptors 6-28

Controlling Terminal Lines Using termio and ioctl{)

Screen Processing

Introduction 7-1

Preparing the Screen 7-7

Using the Standard Screen 7-11
Creating and Using Windows ~ 7-20
Using Other Window Functions 7-34
Combining Movement with Action 7-40
Controlling the Terminal 7-40
Advanced Topics 7-44

-ii-

Character and String Processing

Introduction §8-1

Using the Character Functions ~ 8-1
Testing for Punctuation 8-5
Using the String Functions 8-7

Inwio»-.n

Using Process Control

Introduction 9-1

Using Processes 9-1

Calling aProgram 9-2

Stopping aProgram 9-3

Starting a New Program 9-3

Executing a Program Througha Shell 9-7
Duplicating aProcess 9-7

Waiting foraProcess 9-8

Inheriting OpenFiles 9-9

Program Example 9-10

OOVVOOVLVVY © ®Wmx o0
=OO~IAWMDMWN—

-y
=]
(el

Using the Event Manager

10.1 Introduction 10-1

10.2 Using the Event Manager 10-1

10.3 Events 10-3

104 Event Manager Calls 10-5

10.5 Configuration Files 10-10

10.6 Event Manager C Language Definitions and Syntax 10-13
10.7 Summary of Event Manager C Syntax 10-14

10.8 ASample Program 10-18

11 Writing and Using Pipes

11.1 Introduction 11-1

11.2 Opening aPipetoaNew Process 11-1
11.3 Reading and Writing toaProcess 11-2
114 ClosingaPipe 11-3

11.5 Opening aLow-Level Pipe 11-3

11.6 Program Examples 11-5

11.7 Named Pipes 11-8

12 Using System Resources
12.1 Introduction 12-1
12.2 Allocating Memory 12-1

12.3 Overview of File Locking 12-8
12.4 Locking Files Under XENIX 12-9

-1ii -

12.5 Locking Files Under UNIX SystemV 12-11

12.6 Message Operations 12-23

12.7 Overview of Semaphores 12-50

12.8 Using Semaphores Under XENIX 12-50

12.9 Using Semaphores Under UNIX System V. 12-57
12.10 Getting Semaphores 12-63

12.11 Overview of Shared Memory 12-86

12.12 Using Shared Memory 12-87

12.13 Using Shared Memory Under UNIX System V. 12-96
12.14 Shared Memory Data Structures 12-97

A Library Routine Error Messages

A.l Introduction A-1
A2 ermo Values A-1
A3 Math Errors A-8

Common Libraries

Introduction B-1

Run-Time Routines B-1

Global Variables B-5

Include Files B-6

Differences Between Routines CommontoMS-DOS B-7

b WN =

XENIX to DOS:A Cross Development System

Introduction C-1

Creating Source Files C-2

Compiling aDOS Source File C-2

Using Assembly Language Source Files C-4
Creating and Linking Object Files C-4
Running and Debugging a DOS Program C-5
Transferring Programs Between Systems C-5
Creating DOS Libraries C-7

Common Run-Time Routines C-7

Common System-Wide Variables C-9
CommonInclude Files C-10

Differences Between Common Routines C-11
Differences in Definitions C-21

NNNNONNNNNNNN A PEEEE %
el i Ko NV I SN U S

W= O

-iv -

Chapter 1

Introduction

1.1 About the C Library 1-1
1.2 About This Manual 1-1

1.3 Notational Conventions 1-4

Introduction

1.1 About the C Library

J

The Microsoft® C Run-Time Library is a set of more than 200 predefined &
functions and macros designed for use in C programs. The run-time
library makes programming easier by providing the following:

e An interface to operating-system functions (such as opening and
closing files)

e Fast and efficient functions to perform common programming tasks
(such as string manipulation), sparing the programmer the time and
effort needed to write such functions

The run-time library provides many basic functions that are not provided
by the C language, including input and output, storage allocation, and
process control, among others.

The run-time library is further designed to be compatible with the Draft
Proposed American National Standard -— Programming Language C
(referred to as ANSI C), except for the internationalization functions.
Appendix B also lists the functions that conform to the ANSI C standard.

The functions in the Microsoft C Run-Time Library are designed to main-
tain compatibility between XENIX® and UNIX and MS-DOS® systems.
Unless otherwise noted, all XENIX routines may be assumed to be compa-
tible with the UNIX system and most other UNIX-like systems.

In general, compatible functions share the same name. If you are
interested in writing portable programs, refer to Appendix B, ‘‘Common
Libraries.”” This appendix lists those functions that are common to both
the XENIX and MS-DOS libraries, and describes any significant differences
in the operation of common libraries. (Note that the term ‘‘MS-DOS’’ is
used in this manual to refer to both MS-DOS and PC-DOS.)

1.2 About This Manual

The C Library Guide describes the contents of the C Run-Time Library.
To use this manual, you should be familiar with the C language and with
XENIX. You should also know how to compile and link C programs on
the XENIX system. To learn about the C language, refer to the C
Language Reference. If you have questions about compiling or linking C
programs, see the XENIX C User’s Guide.

This manual should be used with the Subroutines(S) section of the XENIX

Programmer’s Reference. While the C Library Guide provides general
information about using the library routines, and describes the routines

1-1

C Library Guide

according to different categories of functions, the Subroutines(S) section
gives detailed descriptions of the run-time routines in alphabetical order.
Once you become familiar with the types of routines available and the
rules for using them, you will likely use the XENIX Programmer’s Refer-
ence most often.

Note

Throughout this manual, references to the Subroutines(S) section of
the XENIX Programmer’s Reference will be given simply as name(S)
where name is the name of the library routine.

The chapters of this manual are organized as follows:

Chapter 2, ‘‘Using C Library Routines,”’ gives general rules for under-
standing and using C library routines and mentions special considerations
that apply to certain routines. This chapter will likely become valuable
as a reference.

Chapter 3, ‘‘Global Variables and Standard Types,”’ describes variables
and types that are declared and defined in the run-time library and used by
the library routines. This chapter cross-references to the include file that
defines or declares these variables and types. You may find them useful in
your own routines.

Chapter 4, ‘‘Run-Time Routines by Category,’” breaks down the run-time
library routines by category, lists the routines that fall into each category,
and discusses considerations that apply to each category as a whole. This
chapter complements the Subroutines(S) section of the XENIX Reference
Manual, making it easier to locate routines by task. Once you decide on
the routines you want, simply turn to the appropriate manual pages in the
Subroutines(S) section for a detailed description.

Chapter 5, ‘‘Include Files,”” summarizes the contents of each include file
provided with the run-time library, and lists the routines that use it.

Chapter 6, ‘‘Using the Standard I/ O Functions,’” describes the input and
output functions already provided by the system. Further, this chapter
explains how to use these I/ O functions.

Chapter 7, ‘‘Screen Processing,”’ describes the functions of the curses

and terminfo libraries, and explains how to use these functions to control
the terminal screen.

1-2

Introduction

Chapter 8, ‘‘Character and String Processing,”” describes the system-
provided functions for character and string processing.

Chapter 9, ‘“Using Process Control,”” describes the process control func-
tions available with the standard C library.

Chapter 10, ‘“Using the Event Manager,”’ describes the the Event driver
routines available with the XENIX.

Chapter 11, ‘‘Creating and Using Pipes,’’ describes how to create and use
pipes. Further, the functions provided in the standard library for control-
ling pipes are described.

Chapter 12, ‘‘System Resources’’ describes system resource functions.
These functions let a program dynamically allocate memory, share
memory with other programs, lock files against access by other programs,
and use semaphores.

The appendixes for this guide provide more detailed information about
error messages and about MS-DOS-compatible routines. Appendix A,
““Error Messages,”” describes the error values and messages that can
appear when using library routines. Appendix B, ‘‘Common Libraries,”’
lists routines of the XENIX C library that are compatible both with rou-
tines of the same name on MS-DOS systems and with routines that conform
to the ANSI C standard. Appendix B also describes differences (if any)
between the XENIX and MS-DOS versions of the routines and discusses
common global variables and include files.

Appendix C, ‘“XENIX to DOS: A Cross Development System,’” provides a
variety of tools to create programs that can be executed under control of
the DOS operating system. The DOS cross development system lets you
create, compile, and link DOS programs on the XENIX system and
transfer these programs to a DOS system for execution and debugging.

1-3

C Library Guide

1.3 Notational Conventions

The following notational conventions are used throughout this manual:

Example Description
of Convention of Convention
Examples The typeface shown in the left column is used

Language elements

ENVIRONMENT,
VARIABLES,
and MACROS

placeholders

1-4

to simulate the appearance of information that
would be printed on the screen or by a printer.
For example, the following command line is
printed in this special typeface:

cc -Foout.o -DTRUE=1 file.c

When discussing this command line in text,
items appearing on the command line, such as
out.o, also appear in a special typeface.

Bold type indicates elements of the C language
that must appear in source programs as shown.
Text that is normally shown in bold type
includes operators, keywords, library functions,
commands, options, and preprocessor direc-
tives. Examples are shown below:

+= #if defined() int
if -Fa fopen
main sizeof

Bold capital letters are used for environment
variables, symbolic constants, and macros.

Words in italics are placeholders that you must
supply in command-line and option
specifications and in the text for types of infor-
mation. Consider the following option:

-H number

Note that number is italicized to indicate that it
represents a general form for the -H option. In
an actual command, you would supply a partic-
ular number for the placeholder number.

Occasionally, italics are also used to emphasize
particular words in the text.

Introduction

Missing code Vertical ellipses are used in program examples
to indicate that a portion of the program is
omitted. For instance, in the following excerpt,
the ellipses between the statements indicate
that intervening program lines occur but are not
shown:

count = 0;

*pct++;

[optional items] Brackets enclose optional fields in command-
line and option specifications. Consider the fol-
lowing option specification:

-Didentifier[=[string]]

The placeholder identifier indicates that you
must supply an identifier when you use the -D
option. The outer brackets indicate that you are
not required to supply an equal sign (=) and a
string following the identifier. The inner brack-
ets indicate that you are not required to enter a
string following the equal sign, but if you do
supply a string, you must also supply the equal
sign.

Single brackets are used in C-language array
declarations and subscript expressions. For
instance, af10] is an example of brackets in a C
subscript expression.

Repeating Horizontal ellipses are used in syntax examples

elements... to indicate that more items having the same
form may be entered. For example, in the
Bourne shell, several paths can be specified in
the PATH command, as shown in the following
syntax:

PATH([=]path[;path]...

1-5

C Library Guide

{choicellchoice2}

“‘Defined terms’’

KEY+KEY

1-6

Braces and a vertical bar indicate that you have
a choice between two or more items. Braces
enclose the choices, and vertical bars separate
the choices. You must choose one of the items
unless all of the items are also enclosed in dou-
ble square brackets.

For example, the -W (warning-level) compiler
option has the following syntax:

W (0111213}

You can use -W1, -W2, or -W3 to display
different levels of warning messages or -W0 to
suppress all warning messages.

Quotation marks set off terms defined in the
text. For example, the term ‘‘far”” appears in
quotation marks the first time it is defined.

Some C constructs require quotation marks.
Quotation marks required by the language have
the form " ” rather than *‘ ”’. For example, a C
string used in an example would be shown in
the following form:

"abe"

Small capital letters are used for the names of
keys and key sequences, such as ENTER and
CTRL+C. Key sequences to be pressed simul-
taneously are indicated by the key names in
small caps separated by a plus sign (CTRL+C).

Chapter 2
Using C Library Routines

2.1 Introduction 2-1

2.2 Identifying Functions and Macros 2-1
2.3 Including Files 2-3

24 Declaring Functions 2-4

2.5 Stack Checking on Entry 2-5

2.6 Argument-Type Checking 2-5

2.7 Error Handling 2-6

2.8 Filenames and Pathnames 2-7

2.9 Floating-Point Support 2-8

2.10 Using Huge Arrays with Library Functions 2-9

Using C Library Routines

2.1 Introduction

To use a C library routine, simply call it in your program, just as if the
routine were defined in your program. The C library functions are stored,
in compiled form, in the library files that accompany your C compiler
software.

At link time, your program must be linked with the appropriate C library
file or files to resolve the references to the library functions and provide _
the code for the called library functions. Information about the procedures ~
for linking with the C library can be found in the XENIX C User’s Guide.

In most cases you must prepare for the call to the run-time library func-
tion by performing one or both of the following steps:

1. Include a given file in your program. Many routines require
definitions and declarations that are provided by an include file.

2. Provide declarations for library functions that return values of any
type other than int. The compiler expects all functions to have int
return type unless declared otherwise. You can provide these
declarations by including the C library file containing the declara-
tions or by explicitly declaring the functions within your program.

These are the minimum steps required; you may also want to take other
steps, such as enabling type checking for the arguments in function calls.

This chapter discusses the procedures for preparing to use run-time
library routines, and special rules (such as filename and pathname con-
ventions) that may apply to some routines.

2.2 Identifying Functions and Macros

The words ‘‘function”” and ‘‘routine’” are used interchangeably
throughout this manual, and in fact most of the routines in the C run-time
library are C functions; that is, they consist of compiled C statements.
However, some routines are implemented as ‘‘macros.”” A macro is an
identifier defined with the C preprocessor directive #define to represent a
value or expression. Like a function, a macro can be defined to take zero
or more arguments, which replace formal parameters in the macro
definition. For more information on defining and using macros, see the
XENIX C Language Reference.

The macros defined in the C run-time library behave like functions: they

take arguments and return values, and they are invoked in a similar
manner. The primary advantage of using macros is that they execute

2-1

C Library Guide

faster. Macros are expanded (replaced by their definitions) during prepro-
cessing, so the overhead required for a function call is eliminated. How-
ever, unlike a function, which is defined only once, regardless of the
number of times it is called, each occurrence of a macro is expanded
before the program is compiled. Macros can therefore increase the size of
a program, particularly when they appear many times. In several cases,
the C library offers both macro and function versions of the same library
routine. This allows you to opt between speed of execution and compact
program size, whichever is more important to the application.

Some important differences between functions and macros include the
following:

e Some macros may treat arguments with side effects incorrectly if
the macro is defined so that arguments are evaluated more than
once. See the example that follows this list.

e A macro identifier does not have the same properties as a function
identifier. In particular, a macro identifier does not evaluate to an
address, as a function identifier does. You cannot, therefore, use a
macro identifier in contexts requiring a pointer. For instance, if you
give a macro identifier as an argument in a function call, the value
represented by the macro is passed; if you give a function identifier
as an argument in a function call, the address of the function is
passed.

e Since macros are not functions, they cannot be declared, nor can
pointers to macro identifiers be declared. Thus, type checking can-
not be performed on macro arguments. The compiler does, how-
ever, detect cases where the wrong number of arguments is
specified for the macro.

e The library routines implemented as macros are defined through
preprocessor directives in the library include files. To use a library
macro, you must include the appropriate file, or the macro will be
undefined.

The routines that are implemented as macros are noted in the
Subroutines(S) section of the XENIX Reference. You can examine partic-
ular macro definitions in the corresponding include file to determine
whether arguments with side effects will cause problems.

2-2

Using C Library Routines

For example, the following program fragment uses the toupper routine
from the standard C library:

#include <ctype.h>

int a = 'm’;
a = toupper (at+);

The toupper routine is implemented as a macro; its definition in ctype.h
is as follows:

#define toupper(c) ((islower(c)) ? _toupper(c) : (c))

The definition uses the conditional operator (? :). In the conditional
expression, the argument c is evaluated twice: once to determine whether
or not it is lowercase, and once to return the appropriate result. This
causes the argument a++ to be evaluated twice, thus increasing a twice
rather than once. As a result, the value operated on by islower differs
from the value operated on by _toupper.

Not all macros have this effect; you can determine whether a macro will
handle side effects properly by examining the macro definition before
using it.

2.3 Including Files

Many run-time routines use macros, constants, and types that are defined
in separate include files. To use these routines, you must incorporate the
specified file (using the preprocessor directive #include) into the source
file being compiled.

The contents of each include file are different, depending on the needs of
specific run-time routines. However, in general, include files contain
combinations of the following:

e Definitions of manifest constants
For example, the constant BUFSIZ, which determines the
hardware-dependent size of buffers for buffered input and output
operations, is defined in stdio.h.

e Definitions of types
Some run-time routines take data structures as arguments or return
values with structure types. Include files set up the required struc-

ture definitions. For example, most stream input and output opera-
tions use pointers to a structure of type FILE, defined in stdio.h.

2-3

C Library Guide

e Function declarations

Declarations provide the return type of a function; this is required
for any function that returns a value with type other than int. (See
‘‘Declaring Functions.’”)

e Macro definitions

Some routines in the run-time library are implemented as macros.
The definitions for these macros are contained in the include files.
To use one of these macros, you must include the appropriate file.

The include file or files needed by each routine can be found in the
Subroutines(S) section of the XENIX Programmer’s Reference on the
manual page for the routine.

2.4 Declaring Functions

Whenever you call a library function that returns any type of value but an
int, you should make sure that the function is declared before it is called.
The easiest way to do this is to include the file containing declarations for
that function, causing the appropriate declarations to be placed in your
program. The function declaration in the include file provides the return
type of the function.

Your program can contain more than one declaration of the same function
as long as the declarations are compatible. This is an important feature to
remember if you have older programs whose function declarations do not
contain argument-type lists. For instance, if your program contains the
declaration

char *calloc();
you can also include the following declaration:
char *calloc{(unsigned, unsigned):;

Although the two declarations are not identical, they are compatible, so
no conflict occurs.

If you wish, you can provide your own function declarations instead of
using the declarations in the library include files. However, you should
consult the declarations in the include files to make sure that your
declarations are correct.

2-4

Using C Library Routines

2.5 Stack Checking on Entry

Stack checking means that, on entry to a routine, the stack is first checked
to determine whether or not there is room for the local variables used by
that routine. If there is, space is allocated by adjusting the stack pointer.
Otherwise, a ‘‘stack overflow’’ run-time error occurs. If stack checking is
disabled, the compiler assumes there is enough stack space. If in fact
there is not sufficient space on the stack, you may overwrite memory loca
tions in the data segment and receive no warning.

All XENIX library routines are compiled with stack checking enabled.

2.6 Argument-Type Checking

Microsoft C offers a type-checking feature for the arguments in a function
call. Type checking is performed whenever an argument-type list is
present in a function declaration and the declaration appears before the
definition or use of the function in a program. For information on the form
of the argument-type list and the type-checking method, see the XENIX C
Language Reference.

For functions that you write yourself, you must set up argument-type lists
that invoke type checking. You can also use the -Zg command-line option
to cause the compiler to generate a list of function declarations for all
functions defined in a particular source file; the list can then be incor-
porated into your program. See the XENIX C User’s Guide for details on
using the -Zg option.

For functions in the C run-time library, type checking is always enabled.
Only limited type checking can be performed on functions that take a
variable number of arguments. The following run-time functions are
affected by this limitation:

-o In calls to printf and scanf, type checking is performed only on the
first argument: the format string.

e In calls to fprintf, fscanf, sprintf, and sscanf, type checking is
performed on the first two arguments: the file or buffer and the for-
mat string.

e In calls to open, only the first two arguments are type checked: the
pathname and the open flag.

2-5

C Library Guide

s Incalls to execl, execle, execlp, and execlpe, type checking is per-
formed on the first two arguments: the pathname and the first argu-
ment pointer.

2.7 Error Handling

‘When calling a function, it is a good idea to provide for detection and
handling of error returns, if any. Otherwise, your program may produce
unexpected results.

For run-time library functions, you can determine the expected return
value from the return-value discussion on each library page. In some
cases no established error return exists for a function. This usually occurs
when the range of legal return values makes it impossible to return a
unique error value.

The description of some functions in the Subroutines(S) section of the
XENIX Programmer’s Reference indicates that when an error occurs, a
global variable named errno is set to a value indicating the type of error.
Note that you cannot depend on errno being set unless the description of
the function explicitly mentions the errno variable.

When using functions that set errno, you can test the errno values
against the error values defined in errno.h, or you can use the perror
function if you want to print the system error message to standard error
(stderr). For a list of errno values and the associated error messages, see
““Error Messages’’ in this guide.

When you use errmo and perror remember that the value of errnmo
reflects the error value for the last call that set errmo. To prevent
misleading results, you should always test the return value before access-
ing errno, to verify that an error actually occurred. Once you determine
that an error has occurred, use errno or perror immediately. Otherwise,
the value of errno may be changed by intervening calls.

The math functions set errno upon error in the manner described on the
manual page for each math function in the Subroutines(S) section of the
XENIX Programmer’s Reference. Math functions handle errors by invok-
ing a function named matherr. You can choose to handle math errors
differently by writing your own error function and naming it matherr.
When you provide your own matherr function, that function is used in
place of the run-time library version. You must follow certain rules when
writing your own matherr function, as outlined in matherr(S).

You can check for errors in stream operations by calling the ferror func-
tion. The ferror function detects whether the error indicator has been set

2-6

Using C Library Routines

for a given stream. When the stream is closed or rewound, the error indi-
cator is cleared automatically; or you can reset it by calling the clearerr
function.

Errors in low-level input and output operations cause errno to be set.

The feof function tests for end-of-file on a given stream. An end-of-file
condition in low-level input and output can be detected with the eof func
tion or when a read operation returns 0 as the number of bytes read.

2.8 Filenames and Pathnames

Many functions in the run-time library accept strings representing path-
names and filenames as arguments. The functions process the arguments
and pass them to the operating system, which is ultimately responsible for
creating and maintaining files and directories. Thus, it is important to
keep in mind not only the C conventions for strings, but also the operating
system rules for filenames and pathnames and (where portability to MS-
DOS systems is an issue) the differences between XENIX and MS-DOS
rules. There are three considerations:

1. Case sensitivity
2. Subdirectory conventions

3. Delimiters for pathname components

Both the C language and the XENIX operating system are case-sensitive,
which means that they distinguish between uppercase and lowercase
letters. The MS-DOS operating system, however, does not use case
differences to distinguish between otherwise identical names. So, while
“FILEA’’ and ‘‘fileA’’ refer to two different files on a XENIX system,
they refer to the same file on an MS-DOS system. If you want to prepare
portable code, do not take advantage of the case-sensitivity of C and
XENIX when specifying filenames.

By convention, some include files are stored in a subdirectory named sys
on XENIX systems. If portability to MS-DOS systems is a concern, be
aware that this XENIX convention is not used on all MS-DOS systems.

The XENIX and MS-DOS operating systems differ in the way they handle
pathnames. XENIX uses the forward slash (/) to delimit the components
of pathnames, while MS-DOS ordinarily uses the backslash (\). Note, how-
ever, that MS-DOS recognizes the forward slash as a delimiter in situations
where a pathname is expected. Thus, you can produce portable code by
using the forward slash, as long as the context is not ambiguous and a
pathname is clearly expected in the program.

2-7

C Library Guide

2.9 Floating-Point Support

The math functions supplied in the C run-time library require floating-
point support to perform calculations with real numbers. This support can
be provided by the floating-point libraries that accompany your compiler
software or by an 8087 or 80287 coprocessor. (For information on select-
ing and using a floating-point library with your program, see the XENIX C
User’s Guide.) The names of the functions that require floating-point sup-
port are listed below: :

acos cabs modf log hypot
asin ceil ecvt tan strtod
atan cos exp tanh sin
atan2 cosh fabs pow sinh
atof . floor fevt frexp sqrt
bessel fmod ldexp gevt

T The bessel function does not correspond to a single function, but to six functions named
j0, j1, jn, y0, y1, and yn.

In addition, the printf family of functions (fprintf, printf, sprintf,
viprintf, vprintf, and vsprintf) requires support for floating-point input
and output if used to print floating-point values.

The C compiler tries to detect whether floating-point values are used in a
program so that supporting functions are loaded only if required. This
behavior saves a considerable amount of space for programs that do not
require floating-point support.

When you use a floating-point type character in the format string for a
printf or scanf call (fprintf, printf, sprintf, vfprintf, vprintf, vsprintf,
cscanf, fscanf, scanf, or sscanf), make sure that you specify floating-
point values or pointers to floating-point values in the argument list to
correspond to any floating-point type characters in the format string. The
presence of floating-point arguments allows the compiler to detect
floating-point values. If a floating-point type character is used to print an
integer argument, for example, floating-point values will not be detected
because the compiler does not actually read the format string used in the
printf and scanf functions. For instance, the following program results in
incorrect results at run-time:

main() /* THIS EXAMPLE PRODUCES AN ERROR */
{
long 1 = 10L;
printf ("$£", 1);
}

2-8

Using C Library Routines

In the preceding example, the functions for floating-point I/O are not
loaded for the following reasons:

¢ No floating-point arguments are given in the call to printf.
e No floating-point values are used anywhere else in the program.

As a result, the %f is not recognized as a valid format, and the system .
simply displays the letter f. i

The following is a corrected version of the above call to printf:

main() /* THIS EXAMPLE WORKS JUST FINE */

{

long 1 = 10L;

printf("%$£f", (double) 1):;
}

This version corrects the error by casting the long integer value to
double.

2.10 Using Huge Arrays with Library Functions

In programs that use small, compact, medium, and large memory models,
Microsoft C lets you use arrays exceeding the 64K (kilobyte) limit of
physical memory in these models by explicitly declaring the arrays as
huge. (See your compiler guide for a complete discussion of memory
models and the near, far, and huge keywords.) However, you cannot
generally pass huge data items as arguments to C library functions. In the
compact-model library used by compact-model programs, and in the
large-model library used by both large-model and huge-model programs,
only the following functions use argument arithmetic that works with
huge items:

fread memeccpy memcemp memicmp
fwrite memchr memcpy memset

With this set of functions, you can read from, write to, copy, initialize, or
compare huge arrays; a huge array can be passed without difficulty to any
of these functions in a compact-, large-, or huge-model program.

Note that there is a semantic difference between the function and intrinsic
versions of the memset, memcpy, and memcmp library routines. The
function versions of these routines support huge pointers in compact and
large model, but the intrinsic versions do not support huge pointers.

2-9

Chapter 3
Global Variables
and Standard Types

3.1 Introduction 3-1

3.2 The daylight, timezone, and tzname Variables 3-1
3.3 ermo, sys_errlist, sys_nerr 3-2

34 environ 3-2

3.5 Standard Types 3-2

Global Variables and Standard Types

3.1 Introduction

The C run-time library contains definitions for a number of variables and
types used by library routines. You can access these variables and types
by including in your program the files in which they are declared or by
giving appropriate declarations in your program, as shown in this chapter.

3.2 The daylight, timezone, and tzname Variables

The daylight, timezone, and tzname variables are used by several of the
time and date functions to make adjustments for local time. The variables
are declared as follows in the include file time.h:

int daylight;
long timezone;
char *tzname[2];

The values of the variables are determined by the setting of an environ-
ment variable named TZ. You can adjust local time by setting the TZ
environment variable. The value of the environment variable TZ must be
a three-letter time zone, followed by a signed or unsigned number giving
the difference in hours between Greenwich mean time and local time. The
number is positive west of Greenwich, and negative east of Greenwich.
The number may be followed by a three-letter daylight-saving-time
(DST) zone. For example, the following shell environment statement
specifies that the local time zone is EST (Eastern standard time), that
local time is five hours earlier than Greenwich mean time, and that EDT
is the name of the time zone when daylight saving time is in effect:

SET TZ=ESTSEDT

Omitting the DST zone means that daylight saving time is never in effect:

SET TZ=EST5

When you call the ftime or localtime function, the values of the three
variables daylight, timezone, and tzname are determined from the TZ
setting. The daylight variable is given a nonzero value if a DST zone is
present in the TZ setting; otherwise, daylight is 0. The timezone variable
is assigned the difference in seconds (calculated by converting the hours
given in the TZ setting) between Greenwich mean time and local time.
The first element of the tzname variable is the string value of the three-
letter time zone from the TZ setting; the second element is the string
value of the DST zone. If the DST zone is omitted from the TZ setting,
tzname[1] is an empty string.

3-1

C Library Guide

The ftime and localtime functions call another function, tzset, to assign
values to the three global variables from the TZ setting. You can also call
tzset directly if you like; see the tzset reference in the ‘“Time’” section of
“‘Run-Time Routines by Category.”’

3.3 errno, sys_errlist, sys_nerr

The errno, sys_errlist, and sys_nerr variables are used by the perror
function to print error information. When an error occurs in a system-
level call, the errno variable is set to an integer value to reflect the type
of error. The perror function uses the errno value to look up (index) the
corresponding error message in the sys_errlist table. The value of the
sys_nerr variable is defined as the number of elements in the sys_errlist
array. For a listing of the errno values and the corresponding error mes-
sages, see ‘‘Error Messages’’ in this guide.

3.4 environ

The environ variable provides access to memory areas containing
process-specific information. This variable is an array of pointers to the
strings that constitute the process environment. The environment consists
of one or more entries of the form

name=string

where name is the name of an environment variable and string is the
value of that variable. The string may be empty. The initial environment
settings are taken from the shell environment at the time of program exe-
cution.

The getenv and putenv routines use the environ variable to access and
modify the environment table. When putenv is called to add or delete
environment settings, the environment table changes size. The table’s
location in memory may also change, depending on the program’s
memory requirements. The environ variable is adjusted in these cases
and will always point to the correct table location.

3.5 Standard Types

A number of run-time library routines use values whose types are defined
in include files. These types are listed and described as follows, and the
include file that defines each type is given. For a list of the actual type
definitions, see the description of the appropriate include file in the
““Include Files’’ chapter.

3-2

Standard Type

clock _t

FILE

jmp_buf

size_t

stat

time_t

timeb

tm

utimbuf

Global Variables and Standard Types

Description

The clock_t type, defined in time.h, stores time
values and is used by the clock function.

The FILE structure, defined in stdio.h, is the
structure used in all stream input and output
operations. The fields of the FILE structure store
information about the current state of the stream.

The jmp_buf type, defined in setjmp.h, is an
array type rather than a structure type. It defines
the buffer used by the setjmp and longjmp rou-
tines to save and restore the program environment.

The size_t type, defined in stddef.h and several
other include files, is the unsigned integral result
of the sizeof operator.

The stat structure, defined in sys/stat.h, contains
file-status information returned by the stat and
fstat routines.

The time_t type, defined in time.h, represents
time values in the time routine.

The timeb structure, defined in sys/timeb.h, is
used by the ftime routine to store the current sys-
tem time in a broken-down format.

The tm structure, defined in time.h, is used by the
asctime, gmtime, and localtime functions to store
and retrieve time information.

The utimbuf structure, defined in sys/utime.h,
stores file access and modification times used by
the utime function to change file-modification
dates.

3-3

C Library Guide

3-4

va_list

The va_list array type, defined in varargs.h, is
used to hold information needed by the va_arg
macro and the va_end routine. The called func-
tion declares a variable of type va_list, which may
be passed as an argument to another function.

Chapter 4

Run-Time Routines

by Category

a.1
42
43
44
45
4.6
4.7
4.8
49

Introduction 4-1

Buffer Manipulation 4-1

Character Classification and Conversion 4-2
Database-Manipulation Routines 4-3

Data Conversion 4-3

Directory Operation 4-4

File Handling 4-5

Group and Password File Control Routines 4-6
Input and Output Routines 4-7

49.1 Standard I/O Routines 4-8

4.9.2 Stream I/O Routines 4-8
49.3 Low-Level I/O Routines 4-10

4.10 Math 4-11

4.11 Memory Allocation 4-13

4.12 Message-Control Routines 4-14

4.13 Pipes 4-14

4.14 Process Control 4-16

4.15 Random-Number Generation 4-18

4.16 Screen Processing 4-18

4.17 Searching and Sorting 4-22

4.18 Semaphore-Control Routines 4-23
4.19 Shared-Memory Routines 4-23
4.20 String Manipulation 4-24

4.21 System Accounting 4-26

4.22 Terminal Control 4-27

4.23 Time 4-27

4.24 Miscellaneous 4-28

Run-Time Routines by Category

4.1 Introduction

This chapter describes the major categories of routines included in the C
run-time libraries. The discussions of these categories are intended to
give a brief overview of the capabilities of the run-time library. Some
categories of routines, such as ‘‘Input and Output,’’ are discussed in some
detail, to help show how the routines are used in programs. For a com-
plete description of the syntax and use of each routine, see the
Subroutines(S) section of the XENIX Programmer’s Reference. Another
source of more detailed information is found in the ‘‘Using System
Resources’’ chapter of the XENIX Programmer’s Guide.

4.2 Buffer Manipulation

The following buffer-manipulation routines are useful for working with
areas of memory on a character-by-character basis. Buffers are arrays of
characters (bytes). However, unlike strings, they are not usually ter-
minated with a null character (\0). Therefore, the buffer-manipulation rou-
tines always take a length or count argument.

Routine Use

memccpy Copies characters from one buffer to another, until
a given character or a given number of characters
has been copied.

memchr Returns a pointer to the first occurrence, within a

specified number of characters, of a given charac-
ter in the buffer.

memcmp Compares a specified number of characters from
two buffers.

memcpy Copies a specified number of characters from one
buffer to another.

memset Uses a given character to initialize a specified
number of bytes in the buffer.

Function declarations for the buffer-manipulation routines are given in the
include file memory.h.

For more information on the buffer manipulation routines, see
memory (S) in the XENIX Programmer’s Reference.

4-1

C Library Guide

4.3 Character Classification and Conversion

The following character classification and conversion routines let you test
individual characters in a variety of ways and convert between uppercase
and lowercase characters.

Routine Use

isalnum Tests for alphanumeric character (letters and digits)

isalpha Tests for alphabetic character (uppercase and lower-
case letters)

isascii Tests for ASCII character (0-127)

iscntrl Tests for control character (ASCII 0-31 and 127)

isdigit Tests for decimal digit (0-9)

isgraph Tests for printable character except space (ASCII 33-
126)

islower Tests for lowercase character

isprint Tests for printable character (ASCII 32-126)

ispunct Tests for punctuation character (neither control nor
alphanumeric)

isspace Tests for white space character (space, tab, carriage
return, newline, vertical tab, or form feed)

isupper Tests for uppercase character

isxdigit Tests for hexadecimal digit (0-9, a-f, A-F)

toascii Converts character to ASCII code

tolower Tests character and converts to lowercase if
uppercase

_tolower Converts character to lowercase (unconditional)

toupper Tests character and converts to uppercase if
lowercase

_toupper Converts character to uppercase (unconditional)

For more information on the character classification and conversion rou-
tines, see the ‘‘Character and String Processing’’ chapter in this guide and
ctype (S) and conv (S) in the XENIX Programmer’s Reference.

Run-Time Routines by Category

4.4 Database-Manipulation Routines

The following routines are available when you specify the library dbm on
the compile line. They are provided to give you the tools to perform sim-
ple manipulations of a very large database. For more information, see
dbm (S) in the XENIX Programmer’s Reference.

Routine Use

dbminit Opens a database file for accessing

delete Deletes a key and its associated contents

fetch Accesses data stored under a key

firstkey Returns the first key in the database

nextkey Returns the next key following any specified key in
the database

store Stores data under a key

4.5 Data Conversion

The data-conversion routines convert numbers to strings of ASCII charac-
ters and vice versa. These routines are implemented as functions; all are
declared in the include file stdlib.h. For details on the use of these func-
tions, see the appropriate manual pages in the Subroutines(S) section of
the XENIX Programmer’s Reference.

Routine Use

a64l Converts a base-64 representation to a long
atof Converts string to float

atoi Converts string to int

atol Converts string to long

ecvt Converts double to string

fevt Converts double to string

gevt Converts double to string

4-3

C Library Guide

itoa
Itoa

Itol3

13tol

164a
sgetl
sputl
strtod
strtol
strtoul

ultoa

Converts int to string
Converts long to string

Converts a list of long integers to a list of 3-byte
integers

Converts a list of 3-byte integers to a list of long
integers

Converts a long into a base-64 representation
Returns a long stored with sputl

Stores a long in memory

Converts string to double

Converts string to a long integer

Converts string to an unsigned long integer

Converts unsigned long to string

4.6 Directory Operation

The following routines provide control over the special files called direc-

tories. For a full

description of their use, see the manual entries

directory(S) and getdents(S).

Routine

closedir
opendir

readdir
rewinddir

seekdir

telldir

4-4

Use
Closes the named directory stream and frees the struc-
ture associated with the directory pointer

Opens the directory named by a filename and associ-
ates a directory stream with it

Returns a pointer to the next directory entry

Resets the position of the named directory stream to
the beginning of the directory

Sets the position of the next readdir operation on the
directory stream

Returns the current location associated with the
named directory stream

Run-Time Routines by Category

4.7 File Handling

The following file-handling routines work on a file designated by a path-
name, or by a ‘‘file descriptor.”” A descriptor is a file-management struc-
ture obtained from an open, creat, dup, fcntl, or pipe system call. The
file-handling routines provide or modify information about the designated
file. Directories and devices are treated as special files by the XENIX sys-
tem, so the file-handling routines control their use as well.

Routine Use

access Checks file-permission setting

chdir Changes current working directory
chmod Changes file-permission setting

chown Changes file owner and group

chsize Changes file size

fentl Controls open files

fstat Gets file-status information

getewd Gets current working directory

ioctl Controls character devices

isatty Checks for character device

link Links an existing file to a new pathname
locking Locks or unlocks areas of a file

mknod Creates a directory, special file, or ordinary file
mktemp Creates a unique filename

mount Mounts a file system on a directory

stat Gets file-status information on named file
umask Sets default-permission mask

umount Unmounts file system mounted by mount

4-5

C Library Guide

unlink Deletes a file
ustat Gets status information about a file system
utime Sets file access and modification times

The access, chmod, chown, chroot, link, mknod, stat, unlink, and
utime routines operate on files specified by a pathname or filename. The
stat routine is declared in sys/stat.h.

The chsize, fentl, fstat, ioctl, isatty, and locking routines work with files
designated by a file descriptor.

The mount and umount routines accept pointers to pathnames to mount
and unmount removable file systems on device files.

The ustat routine, which returns information about mounted file systems,
works with devices specified by device numbers. To use ustat, you must
include sys/types.h and ustat.h.

The mktemp and umask routines have slightly different functions than
the above routines. The mktemp routine creates a unique filename. Pro-
grams can use mktemp to create unique filenames that do not conflict
with the names of existing files. The umask routine sets the default per-
mission mask for any new files created in a program.

For additional information on any of the file-handling routines, see the
Subroutines(S) section of the XENIX Programmer’s Reference.
4.8 Group and Password File Control Routines
The group and password file control routines provide you with low-level
control of the group and password files. Access to these files is restricted
to the system administrator. However, you can still search the files. For
information on both the group and the password files, see the ‘‘Include
Files’> chapter. For information on a specific routine, see the
Subroutines(S) section in the XENIX Programmer’s Reference.

Routine Use

endgrent Closes the group file

endpwent Closes the password file

getgrent Reads the next line of the group file

4-6

Run-Time Routines by Category

getgrgid Searches the group file from the beginning for a
match to group ID

getgrnam Searches the group file from the beginning for a
match to a name

getpass Reads a password from /dev/tty, or from the stan-
dard input if /dev/tty cannot be opened

getpw Searches the password file for the specified user ID,
and returns the matching line to the buffer

getpwent Reads the next line in the password file

getpwnam Searches the password file from the beginning for a
matching name

getpwuid Searches the password file from the beginning for a
matching user ID

putpwent Writes a line on the stream in the same format as
that of /ete/passwd

setgrent Rewinds the group file

setpwent Rewinds the password file

4.9 Input and Output Routines
The input and output routines of the C run-time library let you read and
write data to and from files and devices. In C there are no predefined file
structures; all data are treated as sequences of bytes. This section pro-
vides information on using the input and output (J/O) routines; three basic
categories of functions are discussed:

e Standard I/O Routines

e Stream I/O Routines

o Tow-Level I/O Routines

4-7

C Library Guide

4.9.1 Standard I/O Routines

The standard I/O routines let you read from and write to the standard J
input and output files. The following sections explain how to read from 4
and write to the standard input and output.

Routine Use

getchar Reads a character from stdin
gets Reads a line from stdin

printf Writes formatted data to stdout
putchar Writes a character to stdout
puts Writes a line to stdout

scanf Reads formatted data from stdin

4.9.2 Stream I/O Routines

The standard I/O routines described earlier allow programs to read from
the standard input and write to the standard output. Use the stream 1/O
routines to access files not already connected to the program. The stream
I/O routines allow a program to open and access ordinary files as if they
were a stream of characters.

Routine Use

clearerr Clears the error indicator for a stream

fclose Closes a stream

fdopen Opens a stream using its descriptor

feof Tests for end-of-file on a stream

ferror Tests for error on a stream <
filush Flushes a stream

fgetc Reads a character from a stream (function version)

fgets
fileno
fopen
fprintf
fputc
fputs
fread
freopen
fscanf
fwrite
getc
getchar
gets
getw
printf
putc
putchar
puts
putw
scanf
setbuf
setvbuf

sprintf

Run-Time Routines by Category

Reads a string from a stream

Gets file descriptor associated with a stream
Opens a stream

Writes formatted data to a stream

Writes a character to a stream (function version)
‘Writes a string to a stream

Reads unformatted data from a stream
Reassigns a FILE pointer

Reads formatted data from a stream

Writes unformatted data items to a stream
Reads a character from a stream (macro version)
Reads a character from stdin (macro version)
Reads a line from stdin

Reads a binary int item from stream

Writes formatted data to stdout

Writes a character to a stream (macro version)
Writes a character to stdout (macro version)
Writes a line to a stream

Writes a binary int item to a stream

Reads formatted data from stdin

Controls stream buffering

Controls stream buffering and buffer size

Writes formatted data to string

4-9

C Library Guide

sscanf
tmpfile
ungetc
viprintf
vprintf

vsprintf

Reads formatted data from string
Creates a temporary file

Places a character in the buffer
Writes formatted data to a stream
Writes formatted data to stdout

Writes formatted data to a string

4.9.3 Low-Level /0 Routines

The following low-level routines provide direct access to files and peri-
pheral devices, such as drives and printers. They are actually direct calls
to the routines used in XENIX to read from and write to files and peri-
pheral devices. The low-level functions give a program the same control
over a file or device as the system, letting it access the file or device in
ways that the stream functions do not. However, low-level functions,
unlike stream functions, do not provide buffering or any other useful ser-

vices of the stream

functions. This means that any program that uses the

low-level functions must handle input and output.

Routine
close
creat
dup
dup2
eof
fseek
ftell
Iseek
open

read

4-10

Use

Closes a file

Creates a file

Creates a second descriptor for a file
Reassigns a descriptor to a file

Tests for end-of-file

Repositions FILE pointer to a given location
Gets current FILE pointer position
Repositions file pointer to a given location
Opens a file

Reads data from a file

Run-Time Routines by Category

rewind Repositions FILE pointer to beginning of a stream
write Writes data to a file
4.10 Math

The following math routines let you perform common mathematical cal-
culations. All math routines work with floating-point values and therefore
require floating-point support (see ‘‘Floating-Point Support’ in the
‘‘Using C Library Routines’’ chapter). Function declarations for the math
routines are given in the include file math.h.

Routine Use

abs Calculates absolute value of an integer

acos Calculates arc cosine

asin Calculates arc sine

atan Calculates arc tangent

atan2 Calculates arc tangent

bessel Bessel functions (see j0, j1, jn, y0, y1, yn, below)
cabs Finds absolute value of a complex number

ceil Finds integer ceiling

cos Calculates cosine

cosh Calculates hyperbolic cosine

erf Calculates error function

erfc Calculates complementary error function

exp Calculates exponential function

fabs Finds absolute value

floor Finds largest integer less than or equal to argument
fmod Finds floating-point remainder

C Library Guide

frexp
gamma
hypot

J0, j1, jm,
y0,y1, yn

Idexp
log
log10
matherr
modf
pow

rand,
srand

sin
sinh
sqrt
tan

tanh

Calculates an exponential value
Calculates log gamma
Calculates hypotenuse of right triangle

Calculates Bessel functions of the first and second
kinds for real arguments and integer orders

Calculates argument times 27

Calculates natural logarithm

Calculates base-10 logarithm

Handles math errors

Breaks down argument into integer and fractional parts

Calculates a value raised to a power

Generates a pseudo-random number
(srand generates the seed)

Calculates sine
Calculates hyperbolic sine
Finds square root
Calculates tangent

Calculates hyperbolic tangent

The matherr routine is invoked by the math functions when errors occur.
This routine is defined in the library, but can be redefined by the user if
different error-handling procedures are desired. The user-defined matherr
function, if given, must conform to the specifications given in

matherr(S).

You are not required to supply a definition for matherr. If no definition is
present, the default error returns for each routine are used. For a descrip-
tion of the routine’s error returns, see matherr(S) in the XENIX
Programmer’s Reference.

Run-Time Routines by Category

The trigonometric functions, sin, cos, tan, asin, acos, atan, and atan2, are
described in detail in trig(S) in the XENIX Programmer’s Reference. For
explanations of exp, log, log 10, pow, and sqrt, see exp(S).

4.11 Memory Allocation

The following memory-allocation routines let you allocate, free, and real-
locate blocks of memory. They are declared in the include file malloc.h.

Routine Use

calloc Allocates storage for array

free Frees a block allocated with calloc, malloc, or real-
loc

malloc Allocates a block

realloc Reallocates a block

sbhrk Resets break value

The calloc and malloc routines allocate memory blocks. The malloc rou-
tine allocates a given number of bytes, while calloc allocates and initial -
izes to 0 an array with elements of a given size.

The realloc routine reallocates a memory block, either by changing its
size or changing its location; the contents of the block remain unchanged.

A low-level memory-allocation routine is provided by sbrk. It increases
the program’s break value (the address of the first location beyond the end
of the default data segment), allowing the program to take advantage of
available unallocated memory.

4-13

C Library Guide

Note

In general, a program that uses the sbrk routine should not use the
other memory-allocation routines, although their use is not prohi-
bited. In particular, using sbrk to decrease the break value may
cause unpredictable results from subsequent calls to the other
memory-allocation routines.

4.12 Message-Control Routines

The following message-control routines provide the medium for interpro-
cess communication. To use the message-control routines, you must
include sys/types.h, sys/ipc.h, and sys/msg.h at the beginning of your
program. Message operations are outlined in msgop (S) in the XENIX
Programmer’s Reference, and in the XENIX System VI386 Programmer’s
Guide.

Routine Use
msgctl Provides for message-control operations
msgget Returns a message queue identifier
msgsnd Sends a message to a queue
msgrey Reads a message from a queue

4.13 Pipes

A ‘‘pipe’’ is an artificial file that a program can create and use to pass
information to other programs. A pipe is similar to a file in that it has a
file pointer or a file descriptor, or both, and can be read from or written to
using the input and output functions of the standard library. Unlike a file,
a pipe does not represent a specific file or device. Instead, a pipe
represents temporary storage in memory that is independent of the
program’s own memory and is controlled entirely by the system.

Run-Time Routines by Category

Routine Use

pclose Closes a pipe opened by popen

pipe Opens a pipe for reading and writing

popen Opens a pipe between a calling process and a com-
mand

Pipes pass information between programs, just as the shell pipe symbol (1)
passes the output of one program to the input of another. This eliminates
the need to create temporary files to pass information to other programs.
A pipe can also be used as a temporary storage place for a single program.
A program can write to the pipe, then read that information back at a later
time.

The standard library provides several pipe functions. The popen and
pclose functions control both a pipe and a process. The popen function
opens a pipe and creates a new process at the same time, making the new
pipe the standard input or output of the new process. This function is typi-
cally used in programs that need to call another program and pass sub-
stantial amounts of data to that program.

The stream 1/O functions, including fscanf and fprintf, can read from or
write to a pipe opened by popen. Stream I/O functions are outlined in
‘“‘Stream I/O Routines’’ in this chapter.

The pclose function closes a pipe opened by popen and waits for termina-
tion of the corresponding process.

The pipe function gives low-level access to a pipe. This function is simi-
lar to open (S), but opens the pipe for both reading and writing, returning
two file descriptors instead of one. The program can either use both sides
of the pipe or close the one it does not need. This function typically opens
a pipe in preparation for linking it to a child process.

The low-level input and output functions read and write can read from
and write to a pipe. The low-level I/O functions are described in the
““Low-Level I/O Routines’’ section. Pipe file descriptors are used in the
same way as other file descriptors.

4-15

C Library Guide

4.14 Process Control

The term ‘‘process’’ refers to a program being executed by XENIX. A
process consists of instructions and data and a table of information about
the program, such as its allocated memory, open files, and current execu-
tion status. Whenever you execute a program, you start a process.

The system identifies each process with a unique ID number. These pro-
cess ID numbers allow the system to run several processes simultaneously
without confusing them. The following are process control routines:

Routine
abort
alarm
execl

execle

execlp

€xecy

€xecve

execvp

exit
_exit
fork
getpgrp
getpid
getppid

gsignal

4-16

Use

Aborts a process

Sets the alarm of the calling process
Executes child process with argument list

Executes child process with argument list and given
environment

Executes child process using PATH variable and
argument list

Executes child process with argument array

Executes child process with argument array and given
environment

Executes child process using PATH variable and
argument array

Terminates process

Terminates process without flushing buffers
Creates a new process

Gets group process ID number

Gets process ID number

Gets parent process ID number

Raises the signal; used with ssignal

Run-Time Routines by Category

kill Sends a signal to a process or group of process

lock Locks a process in main memory

monitor Prepares an execution profile; used with profil

nap Suspends a process for a period of time, or until a sig-

nal is received

nice Decreases CPU priority of a process

pause Suspends a process until a specified signal is received

proctl Controls active processes or groups of processes

profil Creates an execution-time profile of a section of core
memory

ptrace Allows parent process to trace execution of a child
process

rdchk Checks to see if there is data to be read

sbrk Alters amount of space allocated to the data segment

of the calling process

setpgrp Sets group ID of a process

signal Allows a process to handle signals

sleep Suspends execution of calling process for a period of
time

ssignal Implements software signals

system Executes a XENIX command

times Gets execution times of processes and child processes

ulimit Provides control over process limits

wait Suspends the calling process until it traps a specified

signal or until a child process stops

C Library Guide

4.15 Random-Number Generation

The following random-number routines generate pseudo-random numbers
using the linear congruent algorithm and 48-bit integer arithmetic. The
other three routines, srand48, seed48, and lcong48, are complex in
nature. For a full description of the use of these pseudo-random-number
generators, see drand48 (S) in the XENIX Programmer’s Reference.

Routine Use

drand48, erand48 Returns a non-negative double-precision
floating-point value uniformly distributed
over the interval [0.0, 1.0]

Irand48, nrand48 Returns a non-negative long integer. um-
formly distributed over the interval [0, 23]

mrand48, jrand48 Returns a signed long 1nteger umformly dis-
tributed over the interval [- 2 23]

4.16 Screen Processing

The screen processing functions allow you to use the capabilities pro-
vided by the curses and terminfo libraries. These libraries provide func-
tions for creating and updating windows on the screen, getting input from
the terminal, setting terminal modes, and optimizing the motion of the
cursor on the screen.

A discussion of the screen processing functions is beyond the scope of
this section. Chapter 7, ‘‘Screen Processing’’ describes in detail the func-
tions listed and explains how to call the appropriate libraries in the com-
pile command line. For further information, refer to curses(S) and
terminfo (S) in the XENIX Programmer’s Reference.

Routine Use

addch Adds a character to the standard screen

addstr Adds a string to the standard screen

addkey Defines a new function key.

box Draws a box, using the specified characters

clear glears the standard screen and sets the clear
ag

4-18

clearok

cirtobot
cirtoeol
crmode, nocrmode

delch
deleteln
delwin
dmpiwin
echo, noecho
endwin

erase

getch
getstr
gettmode
getyx
inch
initscr
insch
insertln

keypad

leaveok

Run-Time Routines by Category

Sets or clears the clear flag

Clears the standard screen from the current
position to the bottom of the screen

Clears the standard screen from the current
position to the end of the current line

Sets or clears CBREAK mode for the termi-
nal

Deletes a character from the standard screen
Deletes a line from the standard screen
Deletes a window

Saves the contents of a window to a file.
Sets or clears ECHO mode for the terminal
Terminates screen processing

Clears the screen without setting the clear
flag

Gets a character from the standard input
Gets a string from the standard input

Gets the 7y mode

Saves the current line and column positions
Reads a character from the standard screen
Initializes the standard screen

Inserts a character on the standard screen
Inserts a line on the standard screen

This macro allows function key sequences
to be considered as a single token.

Sets or clears the cursor flag

C Library Guide

longname

move

mv<func>

mveur
mvwin
newwin

nl, nonl

overlay

overwrite

printw
raw, noraw

refresh

resetty
savetty

scanw

scroll
scrollok
setterm

standend

4-20

Returns the full name of the terminal
corresponding to a termcap or terminfo
identifier

Moves the pointer to a specified position

Moves the cursor and performs the function
call

Moves the cursor
Moves a window
Creates a new window

Sets or clears NEWLINE mode for the ter-
minal

Lays one window over another, without des-
troying the lower window

Writes the contents of one window over
another, destroying the contents of the
lower window

Prints formatted data to the standard screen

Sets or clears RAW mode for a terminal

Updates the standard screen to show any
changes

Restores terminal flags saved with savetty
Saves current terminal flags

Reads formatted data from the standard
input

Scrolls a window up a line
Sets or clears the scroll flag
Sets the terminal type

Restores normal attribute for the standard
screen

standout

subwin

touchwin

waddch
waddstr
wclear

wclrtobot

wclrtoeol

wdelch
wdeleteln

werase

wgetch
wgetstr
winch
winsch
winsertin
wmove
wprintw

wrefresh

wscanw

Run-Time Routines by Category

Sets standout attribute for the standard
screen

Creates a subwindow

“Touches’> a window for a subsequent
refresh or wrefresh

Adds a character to a window
Adds a string to a window
Clears a window and sets the clear flag

Clears a window from the current position
to the bottom of the screen

Clears a window from the current position
to the end of the line

Deletes a character from a window
Deletes a line from a window

Clears a window without setting the clear
flag

Gets a character from the standard input
Gets a string from the standard input
Reads a character from a window or screen
Inserts characters in a window

Inserts a line in a window

Moves a window

Prints formatted data to a window

Updates the screen to show changes in a
window

Gets formatted data from the standard input

4-21

C Library Guide

wstandend

wstandout

Clears standout mode for a window or a
screen '

Sets standout mode for a window or a
screen

4.17 Searching and Sorting

The following routines provide the means to perform searches and/or
sorts using a number of different algorithms.

Routine
bsearch
ftw
hcreate
hdestroy
hsearch
Ifind

Isearch

gsort
tdelete
tfind
tsearch

twalk

Use

Performs binary search

Walks a hierarchical file tree

Allocates sufficient space for the hash table
Destroys the hash table

Manages a hash table

Performs linear search for given value

Performs linear search for given value, which is
added to array if not found

Performs quick sort

Deletes a node from a binary tree
Searches a binary tree for a datum
Builds and accesses a binary tree

Traverses a binary tree

The bsearch, Ifind, Isearch, and gsort functions provide helpful binary-
search, linear-search, and quick-sort utilities. For detailed information on
these routines, see bsearch (S), hsearch (S), Isearch (S), and tsearch (S)
in the XENIX Programmer’s Reference.

4-22

Run-Time Routines by Category

4.18 Semaphore-Control Routines

The following semaphore routines control the semaphores that signal
when a resource is available or locked. For detailed information, see
semctl(S) and other appropriate pages in the Subroutines(S) section of the
XENIX Programmer’s Reference, and the XENIX Programmer’s Guide.

Routine
creatsem

nbwaitsem

opensem

semget

semct

semop

sigsem

waitsem

Use
Creates a binary semaphore

Provides the calling process with access to the
semaphore; returns the error ENAVAIL if the
resource is in use

Opens a semaphore for use by a process

Returns the semaphore identifier associated with
key

Provides a variety of semaphore-control opera-
tions

Allows the execution of an array of semaphore
operations on a set of semaphores

Signals a process waiting for a semaphore that it
may proceed and use the resource governed by the
semaphore

Provides the calling process with access to the
semaphore; puts the calling process to sleep if the
resource is in use

4.19 Shared-Memory Routines

The following shared memory routines provide control functions for the
use of shared memory segments. For details, see shmop(S) in the XENIX

Programmer’s Reference.
Routine Use
ftok Forms a key to provide to the msgget, semget, and

shmget system calls (for interprocess communica-
tion).

4-23

C Library Guide

sdenter Indicates that the current process is about to
access the contents of a shared data segment

sdfree Detaches the current process from the shared data
segment that is attached at the specified address

sdget Attaches a shared data segment to the data space
of the current process

sdgetv Returns the version number of the data segment at
the specified address

sdleave Indicates that the current process has finished

modifying the contents of the shared data seg-
ment; alters the version number on exiting

sdwaitv Forces the current process to sleep until the ver-
sion number of the indicated segment is no longer
equal to the value vaum

shmat Attaches the shared memory segment associated
with the shared memory identifier specified by
shmid to the data segment of the calling process

shmectl Provides control of various shared-memory opera-
tions

shmdt Detaches the calling process’s data segment from
the shared memory segment located at a specified
address
shmget Gets a shared memory segment associated with a
key
4.20 String Manipulation

The following string functions concatenate, compare, copy, and count the
number of characters in a string. Many string functions have two forms:

e aform that manipulates all characters in the string
e aform that manipulates a given number of characters

This gives a program very fine control over all or part of a string.

4-24

Run-Time Routines by Category

All string functions work on null-terminated character strings. When
working with character arrays that do not end with a null character, you
can use the buffer-manipulation routines, described earlier in this chapter.

Routine Use

strcat Appends a string

strchr Fif}ds first occurrence of a given character in
string

strcmp Compares two strings

strcpy Copies one string to another

strespn Finds first occurrence of a character from given

character set in string

strdup Duplicates string

strlen Finds length of string

strncat Appends characters of string

strncmp Compares characters of two strings

strncpy Copies characters of one string to another

strpbrk Finds first occurrence of character from one string
in another

strrchr Finds last occurrence of given character in string

strspn Fix_lds first substring from given character set in
string

strtok Finds next token in string

The sections that follow describe the string functions; for further informa-
tion, refer to string (S) in the XENIX Programmer’s Reference.

4-25

C Library Guide

4.21 System Accounting

The following system accounting routines are typically used by the sys-.
tem administrator to check and manipulate the contents of the system
accounting files. For additional information, see getut(S) and other
pages in the XENIX Programmer’s Reference.

Routine Use

acct Enables or disables system accounting.

cuserid Returns a pointer to a string that represents the
login name of the owner of the current process.

endutent Closes the currently opened file.

getutent Reads the next entry from a system accounting
file.

getlogin Returns a pointer to the login name as found in the
file fetc/utmp.

getuid Searches forward from the current file position
until it encounters an entry of the specified
identification.

getuline Searches forward from the current file position

until it encounters an entry of the specified line.

putuline Writes an entry (in the utmp format) in the system
accounting file.

setutent Resets the input stream to the beginning of the
file.
utmpname Allows the user to alter the name of the file exam-

ined. Default is fetc/utmp.

ttyslot Returns the index of the current user’s entry in the
letc/utmp file.

4-26

Run-Time Routines by Category

4.22 Terminal Control

The terminal-control routines let you use the capabilities provided by the
terminal capability database, termcap (M). For more details, see
termcap (S) in the XENIX Programmer’s Reference.

Routine Use
tgetent Extracts the entry for a terminal buffer
tgetflag Returns 1 if the specified identification capability

is present in the terminal’s entry in the
fetc/termcap file; returns zero if it is not

tgetnum Returns the numeric value of the specified
identification capability. Returns -1 if the terminal
is not in the /etc/termcap file

tgetstr Gets the string value of the specified identification
capability and places it in a buffer
tgoto Returns a cursor-addressing string
tputs Decodes the leading padding information of the
string
4.23 Time

The following time routines let you obtain the current time, then convert
and store it according to your particular needs. The current time is always
taken from the system time.

Routine Use

asctime Converts time from structure to character string

clock Returns the elapsed CPU time for a process

ctime anverts time from long integer to character
string

ftime Gets current system time as structure

gmtime Converts time from integer to structure

4-27

C Library Guide

localtime Converts time from integer to structure with local
correction

stime Sets the system time

time Gets current system time as long integer

tzset Sets external time variables from environment

time variable

The time and ftime functions return the current time as the number of
seconds elapsed since Greenwich mean time, January 1, 1970. This value
can be converted, adjusted, and stored in a variety of ways, using the
asctime, ctime, gmtime, and localtime functions.

The clock function returns the elapsed CPU time for the calling process.

The ftime function requires two include files: sys/types.h and
sys/timeb.h. The ftime function is declared in sys/timeb.h. The
remainder of the time functions are declared in the include file time.h.

When you want to use ftime or localtime to make adjustments for local
time, you must define an environment variable named TZ. See Section
3.2 on the global variables daylight, timezone, and tzname for a discus-
sion of the TZ variable; TZ is also described in tzset (S) in the XENIX
Programmer’ s Reference.

4.24 Miscellaneous

The ‘‘miscellaneous’’ category covers a number of commonly used rou-
tines that do not fit easily into any of the other categories.

Routine Use

assert Checks the validity of a given expression.

ctermid Returns a pointer to a string that contains the
filename of the controlling terminal of the calling
process.

defopen Opens the default file specified by filename. Cal-

ling defopen with NULL closes the default file.

4-28

defread

fxlist

getenv

getopt

logname

longjmp

nlist

perror

putenv

regex

regcmp

setgid

setjmp

Run-Time Routines by Category

Reads the previously opened file from the begin-
ning until it encounters a line beginning with a
specified pattern; then returns a pointer to the first
character in the line following the pattern.

Performs the same function as xlist, except that
fxlist accepts a pointer to a previously opened file
instead of the filename of a file.

Searches the environment list for a string and
returns the associated value.

Returns the next option letter that matches a letter
in a string of recognized option letters.

Returns a pointer to the null-terminated login
name (determined by the environment variable).

Restores the environment saved by the last call of
setjmp (see setjmp below).

Examines the executable output file and extracts a
list of values that is matched to a specified name
list; matches the name type and value to be
inserted into the next two fields in the output file.

Produces a short message on the standard error,
stderr, describing the last error encountered dur-
ing a system call from a C program.

Changes or adds the value of an environment vari-
able.

Executes a compiled regular expression against a
string.

Compiles a regular expression and returns a
pointer to the compiled form.

Sets the real and effective group IDs of the calling
process.

Performs a nonlocal goto, saves its stack environ-
ment, and returns zero.

4-29

C Library Guide

setuid Sets the real and effective user IDs of the
calling process.

shutdn Flushes all information in the core memory and
halts the CPU.

swab Swaps bytes.

sync Updates the super-block; causes all information in

memory that should be on disk to be written out.

tmpfile Creates a temporary file and returns a correspond-
ing file pointer.

tmpnam Generates a unique filename for a temporary file.

ttyname Returns a pointer to the null-terminated pathname
of the terminal device associated with the file
descriptor.

uname Returns a null-terminated character string naming
the current XENIX system.

xlist Functions identically to nlist, but uses different

data structures with more information, such as
segment value and longer symbol names (see
nlist).

The assert routine is a macro and is defined in assert.h. The setjmp.h and
longjmp.h functions are declared in setjmp.h.

The assert macro is typically used to test for program logic errors; it
prints a message when a given ‘‘assertion’’ fails to hold true. Defining the
identifier NDEBUG to any value causes occurrences of assert to be
removed from the source file, thus allowing you to turn off assertion
checking without modifying the source file.

The getenv and putenv routines provide access to the environment table.
The global variable environ also points to the environment table, but it is
recommended that you use the getenv and putenv routines to access and
modify environment settings rather than accessing the environment table
directly.

4-30

Run-Time Routines by Category

The perror routine prints the system error message, along with an
optional user-supplied message, for the last system-level call that pro-
duced an error. The error number is obtained from the errne variable. The
system message is taken from the sys_errlist array. The errno variable is
guaranteed to be set upon error for only those routines that explicitly
mention the errno variable in the ‘‘Return Value’’ section of the manual
pages in the Subroutines(S) section of the XENIX Programmer’s Refer-
ence.

The setjmp and longjmp functions save and restore a stack environment.
These routines let you execute a nonlocal goto.

4-31

Chapter 5

Include Files

5.1 Introduction 5-1
5.2 fusrfinclude Files 5-1

5.3 /fusrfinclude/sys Files 5-8

Include Files

5.1 Introduction

The include files in the XENIX system are divided into two groups:
e those that reference system information (kept in /usr/include/sys)
o those that may be useful to individual users (kept in /usr/include)

This demarcation is not absolute and you may find yourself using a
number of the include files in the /usr/sys directory.

This chapter briefly describes all the XENIX include files. Descriptions of
include files are divided into two sections, user include files and system
include files.

5.2 /usr/include Files

The following section describes the function of each include file and lists
the routines that may be found in each. The include files may also contain
macro and constant definitions, type definitions, function declarations,
and structure definitions.

Declarations or definitions of special interest will be noted. For detailed
information on a particular routine, see the appropriate page in
Subroutines(S) in the XENIX Programmer’s Reference, or File Formats(F)
in the XENIX User’s Reference.

ar.h
ar.h defines file archiving. It sets the value of the archive file’s unique

identifier, the ‘‘archive number.”” The structure ar_hdr defines the
header inserted before each file in an archive.

assert.h
Defines a macro that is useful in verifying the validity of a specified C

statement. For more information, see assert(S) in the XENIX
Programmer’s Reference.

5-1

C Library Guide

core.h

Defines the location and size of a core-image file. For detailed informa-
tion on the structure of core files, see core(F) in the XENIX User’s Refer-
ence.

ctype.h

Defines a number of macros that classify ASCII-coded integer values by
doing a table lookup. For a complete list of the available macros, see
ctype(S) in the XENIX Programmer’s Reference.

curses.h

Provides a number of routines that control screen and cursor functions.
For a complete list of all the available functions, see curses(S) in the
XENIX Programmer’s Reference.

dbm.h

Defines the following routines:

dbminit firstkey
delete nextkey
fetch store

These routines are used for handling very large (up to one billion blocks)
databases. For more detailed information, see dbm(S) in the XENIX
Programmer’s Reference.

dumprestor.h

Defines the format of the header record and the first record of each
description. When incremental dumps are made onto magnetic tapes, the
files that are dumped are preceded by information defined by the structure
spcl.

The structure idates describes an entry to the file where the dump history
is kept.

Include Files

errno.h

This file contains definitions of error codes that are passed to the external
variable errno. When an error condition occurs during a system call, the
kernel sets the errno variable to the appropriate value. For a complete list
of these error codes and descriptions of how they occur, see ‘‘System
Error Values.””

For information on error handling, see perror(S) in the XENIX
Programmer’s Reference.

execargs.h

Provides information for the shell. Not for use by the user.

fentLh

Provides the values for the file-control function fentl. For a description of
the values, see fentl(S) in the XENIX Programmer’s Reference.

ftw.h

Contains predefined values for an integer used by the system call ftw.
These values represent the status of the object that ftw is examining.
grp.h

Defines a structure, group, which returns pointers to information about
entries in the file /etc/group. For more information, see getgrent(S) in the
XENIX Programmer’s Reference.

macros.h

Defines a number of useful macros (some for string handling, others for
library routines).

5-3

C Library Guide

malloc.h

Defines the mallinfo structure (which contains information on memory
allocation). Defines the following routines:

free mallinfo
malloc mallopt
realloc

For more information, see malloc(S) in the XENIX Programmer’s Refer-
ence.

math.h

Defines the following math routines:

acos erfc j1 sin
asin exp jn sinh
atan fabs Idexp sqrt
atan2 floor log tan
atof fmod logl0 tanh
ceil frexp matherr yo
cos gamma modf yl
cosh hypot pow yn
erf jo

It also defines a number of useful mathematical constants.

For detailed information on the math functions, see bessel(S), exp(S),
floor(S), gamma(S), hypot(S), sinh(S), and trig(S) in the XENIX
Programmer’s Reference.

For information on matherr return values, see ‘‘System Error Values.”

5-4

Include Files

memory.h

Defines the following routines:
memccpy memcpy
memchr memset

memcmp movedata

These routines are used for buffer manipulation.

mnttab.h

The structure mnttab defines the format of the /etc/mnttab file. This file
keeps a record of special files mounted using the mount command. For
more information, see mount(S) in the XENIX Programmer’s Reference.

mon.h

Defines two structures, mon and monhdr. These structures determine the
format of the buffer in which monitor stores information on the execution
profile of a specified program. For more information, see monitor(S) and
profil(S) in the XENIX Programmer’s Reference.

pwd.h
Defines two structures, passwd and comment, which determine the for-
mat of the entries in the /etc/passwd file and the format of the comments

associated with these entries. For details on the structure of the entries,
see getpwent(S) in the XENIX Programmer’s Reference.

regexp.h

Defines the following routines:

advance getrnge
compile step
ecmp

5-5

C Library Guide

These functions compile regular C language expressions and return
pointers to the compiled forms. For a detailed description, see regexp(S)
in the XENIX Programmer’s Reference.

sd.h

Defines a number of flags for the sdget system call. Defines the sdget sys-
tem call. For more information, see sdget(S) in the XENIX Programmer’s
Reference.

search.h

Defines a structure, entry, and an enumeration type, action, for the

hsearch system call. Defines an enumeration type, visit, for the tsearch
system call.

setjmp.h

Provides data to ensure that the setjmp and longjmp system calls are
machine independent.

sgtty.h

Defines the structure sgttyb for the stty and gtty system calls. Defines the
stty and gtty system calls, terminal modes, delay algorithms, speeds, and
ioctl arguments. Defines the structure tchars, which handles special char-
acters. For more information, see ioctl(S), stty(C), and tty(M) in the
XENIX Programmer’s Reference.

signal.h

Defines the values that can be assigned to signal by the kernel. These
values are returned to the calling process upon receipt of an error. For
more details, see signal(S) in the XENIX Programmer’s Reference.
stand.h

Provides the necessary information and structures for the operation of the
system in STANDALONE mode.

5-6

Include Files

stdio.h

Defines the standard buffered input and output routines. The files stdin,
stdout, and stderr are defined. The following routines are defined:

ftell rewind
getchar setbuf
putchar

Macros are defined for clearerr, feof, ferror, and fileno.

For details on how to use the standard I/O routines, see the following rou-
tines in Subroutines(S) in the XENIX Programmer’s Reference.

close ferror putc
ctermid open puts

cuserid popen read
fclose printf scanf

string.h

Defines the following string-manipulation routines:

stremp strncmp
strespn strspn
strlen

For details, see string(S) in the XENIX Programmer’s Reference.

termio.h

Defines characters and modes for the terminal interface. In addition, a
structure is defined for the ioctl system calls. For more information, see
ioctl(S) XENIX Programmer’s Reference and tty(M) in the XENIX User’s
Reference.

time.h
Defines the structure for the conversion of time to ASCI format. Defines

the routine tzset and the variables timezone, daylight, and tzname. For
details, see ctime(S) in the XENIX Programmer’s Reference.

5-7

C Library Guide

unistd.h

Defines the flag values for the lock system call. For details, see lock(S) in
the XENIX Programmer’s Reference.

ustat.h

Defines the structure ustat, which returns information about a given
mounted file system. For details, see ustat(S) in the XENIX Programmer’s
Reference.

utmp.h

Defines the format for the /etc/utmp system accounting file. For details,
see utmp(M) in the XENIX User’s Reference.

values.h

Defines various values for machine-dependent variables.

varargs.h

Contains macros for use in variable-argument functions. Provided to
allow portability of C language code.

5.3 fusr/include/sys Files

The following include files are system files. Many of them define system
parameters or contain information used by the kernel.

a.out.h

Declares the following structures:

aexec xexec xlist

bexec xext xseg
nlist xiter

These structures define (respectively): the a.out header, the b.out header,
the structure for the nlist library call, the x.out header, the x.out header

5-8

Include Files

extension, the x.out iteration record, the structure for the xlist library call,
and the x.out segment-table entry.

For more detailed information, see the XENIX C User’'s Guide and
a.out(F) in the XENIX User’s Reference.

acct.h

Defines the structure acet, used in system accounting. For more informa-
tion, see acct(F) in the XENIX User’s Reference. and accton(ADM) in the
XENIX System Administrator’s Guide.

assert.h

Defines the assert macro. For more details, see assert(S) in the XENIX
Programmer’s Reference.

brk.h

Defines the commands for break control.

buf.h

Defines the structures buf and hbuf. The buf structure provides access to
an I/O buffer for device drivers, and the hbuf structure provides fast
access to the buffers through hashing.

callo.h

Defines the structure callo, which allows a clock interrupt for a specific
period.

conf.h

Defines the structures linesw,bdevsw, and cdevsw, which are an array of

function declarations to a line discipline switch, a block device switch,
and a character device switch, respectively.

5-9

C Library Guide

dir.h

Defines the structure direct, which contains the value for the maximum
directory size.

errno.h

Contains the values for the errno variable. The kernel sets the errno vari-
able upon encountering an error. Math routines also set it. For more infor-
mation, see perror(S) in the XENIX Programmer’s Reference.

fblk.h

Defines the structure fblk, which contains the address of the next free
block.

file.h

Defines a structure, file, which holds the read/write pointer associated
with each open file.

filsys.h

Defines the structure of the super-block and a number of fundamental sys-
tem variables.

ino.h

Defines the structure of the inode as it appears on a disk block.

inode.h

Contains definitions of the structures iisem, iisd, and inode. The iisem
structure provides information about the semaphores related to a given
inode. The iisd structure provides information about the shared data seg-
ments allocated to the inode. The inode structure provides information
about the inode itself.

Include Files

iobuf.h

Defines the structure of the I/O buffer for each block device.

ioctl.h

Defines macros for I/O control.

ipc.h

Provides constant definitions for the interprocess communications (IPC)
report. For more information, see ipc(S) in the XENIX Programmer’s
Reference.

lock.h

Defines flag values for the locking of resources.

locking.h

Defines flag values for the locking system call. Defines the structure
locklist, which provides the structure for the linked list of lock regions.
machdep.h

Defines machine-dependent variables (such as the number of descriptor
table entries and clock timing).

map.h

Defines the structure map, which holds the location of the swapmap.
mmu.h

For memory-management purposes, defines constants for the descriptor
tables.

5-11

C Library Guide

mount.h

Defines the structure mount. One is allocated for every device mounted.
For more information, see mount(S) in the XENIX Programmer’s Refer-
ence.

msg.h

Defines the structures msqid_ds, msg, msgbuf, and msqinfo, which pro-
vide (respectively) the data structure for interprocess messages, a struc-
ture for each message in the queue, the user message buffer for the
msgsnd and msgrecv system calls, and a structure containing information
about the state of the message queue.

For more information on interprocess communication, see ipcs(ADM),
msgctl(S), msgget(S), and msgop(S) in the XENIX Programmer’s Refer-
ence.

param.h

Contains a number of parameters vital to the system: the system’s
adjustable parameters, priorities, signals, MMU (Memory Management
Unit) constants, macros for unit conversion, and definitions of the funda-
mental constants of the implementation.

proc.h

Defines the structures proc and xproc, which, when they may be swapped
out, hold all the vital information on processes.

reg.h

Defines constants that provide an index of the available registers relative
to AX.

Include Files

relsym.h

Provides definitions for the following structure types associated with the
executable- file format:

asym sym
bsym xreloc
reloc

relsym86.h

Contains the declarations for the 8086/80286 symbol table and relocation
record structures. The structures dosexec, desctab, and srel86 are
defined. The dosexec structure is provided for MS-DOS support, desctab
provides the structure of the descriptor table, and srel86 provides the
structure for segment relocation (which is necessary for medium- and
large-model memory support).

sd.h

Defines the shared data table. See the following reference to sdu.h.

sdu.h

Defines values for the shared data flags, which are used by the shared data
system calls:

sdenter sdfree
sdget sdgetv
sdleave sdwaitv

For more information, see Subroutines(S) in the XENIX Programmer’s
Reference.

C Library Guide

sem.h

Defines the structures used by the semaphore operations system call,
semop. The structures are as follows:

sem seminfo
sembuf sem_undo
semid_ds

For detailed information, see semop(S) in the XENIX Programmer’s
Reference.

signal.h

Defines the values for the signal constants. For more information, see
signal(S) in the XENIX Programmer’s Reference.

sites.h

Provides values for system constants that are used in the structure defined
in utsname.h.

stat.h

Defines the structure stat, which returns a structure to both the stat and
fstat system calls. Also defines a number of constants.

sysinfo.h

Defines the structures sysinfo and syswait, which hold information about
the state of the system and its processes.

sysmacros.h

Defines a number of machine-dependent macros.

Include Files

systm.h
Defines the structures sysent and idt, which define the format for the

system-entry table and the interrupt descriptor table. It also defines a
number of random variables and functions used by more than one routine.

text.h

Defines the structure text, which provides the format for text segments. It
also defines a number of constants.

timeb.h

Defines the structure timeb, which is returned by the ftime system call.
For more information, see time(S) in the XENIX Programmer’s Reference.

times.h

Defines the structure tms, which is returned by the routine times. For
more information, see times(S) in the XENIX Programmer’s Reference.

ttold.h

Defines the structures sgtty and tc, which contain information for the stty
and gtty system calls. It also defines the terminal modes.

tty.h
Defines the structures:

cblock inter
chead tty
clist

The tty structure formats the information for I/O for each character
device. The remaining structures define a number of internal state vari-
ables and device commands.

C Library Guide

types.h

Defines the structure saddr and numerous machine-dependent variables.

ulimit.h

Defines values passed to the ulimit system call.

user.h

Defines the structure user, which contains all the data on a user process
that doesn’t need to be referenced (and is swapped with the process). The
standard error codes are also redefined here.

utsname.h

Defines the structure utsname, which provides general information about
system characteristics.

var.h

Defines the structure var.

5-16

Chapter 6
Using the
Standard I/0O Functions

6.1 Introduction 6-1
6.1.1 Preparing for the I/O Functions 6-1
6.1.2 Special Names 6-1
6.1.3 Special Macros 6-3

6.2 Using Command Line Arguments 6-4

6.3 Using the Standard Files 6-5
6.3.1 Reading From the Standard Input 6-6
6.3.2 Writing to the Standard Output 6-9
6.3.3 Program Example 6-11

6.4 Using the Data Stream Functions 6-12
6.4.1 Using File Pointers 6-13
6.4.2 Opening aFile 6-14
6.4.3 Reading a Single Character 6-15
6.4.4 Reading a String from a File 6-15
6.4.5 Reading Records from a File 6-16
6.4.6 Reading Formatted Data From a File 6-17
6.4.7 Writing a Single Character 6-18
6.4.8 Writing a String to a File 6-19
6.4.9 Writing Formatted Output 6-19
6.4.10 Writing Records to a File 6-20
6.4.11 Testing for the End of a File 6-21
6.4.12 Testing For File Errors 6-21
6.4.13 Closing a File 6-22
6.4.14 Program Example 6-22

6.5 Using More Data Stream Functions 6-24
6.5.1 Using Buffered Input and Output 6-24
6.5.2 Reopening a File 6-25
6.5.3 Setting the Buffer 6-26
6.5.4 Puatting a Character Back into a Buffer 6-26

6.5.5 Flushing a File Buffer 6-27
6.6 Using the Low-Level Functions 6-28

6.7 Using File Descriptors 6-28
6.7.1 Opening a File 6-29
6.7.2 Reading Bytes From a File 6-30
6.7.3 Writing Bytes to a File 6-30
6.74 Closing a File 6-31
6.7.5 Program Examples 6-31
6.7.6 Using Random Access I/ O 6-34
6.7.7 Moving the Character Pointer 6-34
6.7.8 Moving the Character Pointer in a Data Stream 6-35
6.7.9 Rewinding a File 6-36
6.7.10 Getting the Current Character Position 6-36

6.8 Controlling Terminal Lines Using termio and ioctl() 6-37
6.8.1 Setting Serial Communications Parameters 6-41
6.8.2 Parity Handling 6-41
6.8.3 Maintaining tty Parameters 6-42

Using the St