
XENIX® System V

Development System

C Language Guide

Information in this document is subject to change without notice and does not represent
a commitment on the part of The Santa Cruz Operation, Inc. nor Microsoft Corporation.
The software described in this document is furnished under a license agreement or
nondisclosure agreement. The software may be used or copied only in accordance with
the terms of the agreement. It is against the law to copy this software on magnetic tape,
disk, or any other medium for any purpose other than the purchaser's personal use.

Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988 Microsoft
Corporation.
All rights reserved.
Portions © 1983,1984,1985,1986,1987,1988 The Santa Cruz Operation, Inc.
All rights reserved.

ALL USE, DUPLICATION, OR DISCLOSURE WHATSOEVER BY THE
GOVERNMENT SHALL BE EXPRESSLY SUBJECT TO RESTRICTIONS AS SET
FORTH IN SUBDIVISION (b) (3) (ii) FOR RESTRICTED RIGHTS IN COMPUTER
SOFTWARE AND SUBDIVISION (b) (2) FOR LIMITED RIGHTS IN TECHNICAL
DATA, BOTH AS SET FORTH IN FAR 52.227-7013.

Microsoft, MS-DOS, and XENIX are registered trademarks of Microsoft Corporation.

SCO Document Number: XG-1O-I0-88-5.0/2.3

Replace this Page
with Tab Marked:

C User's
Guide

XENIX® System V

Development System

C User's Guide

Information in this document is subject to change without notice and does not represent
a commitment on the part of The Santa Cruz Operation, Inc. nor Microsoft Corporation.
The software described in this document is furnished under a license agreement or
nondisclosure agreement. The software may be used or copied only in accordance with
the terms of the agreement. It is against the law to copy this software on magnetic tape,
disk, or any other medium for any purpose other than the purchaser's personal use.

Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988 Microsoft
Corporation.
All rights reserved.
Portions © 1983, 1984, 1985, 1986, 1987, 1988 The Santa Cruz Operation, Inc.
All rights reserved.

ALL USE, DUPLICATION, OR DISCLOSURE WHATSOEVER BY THE
GOVERNMENT SHALL BE EXPRESSLY SUBJECT TO RESTRICTIONS AS SET
FORTH IN SUBDIVISION (b) (3) (ii) FOR RESTRICTED RIGHTS IN COMPUTER
SOFTWARE AND SUBDIVISION (b) (2) FOR LIMITED RIGHTS IN TECHNICAL
DATA, BOTH AS SET FORTH IN FAR 52.227-7013.

Microsoft, MS-DOS, and XENIX are registered trademarks of Microsoft Corporation.

SCO Document Number: XG-1O-1O-88-5.0/2.3

Contents

1 Introduction

1.1 Overview 1-1
1.2 About This Guide 1-1
1.3 New Features 1-3
1.4 Notational Conventions 1-5
1.5 Books about C 1-7

2 Compiling with the cc Command

2.1 Introduction 2-1
2.2 The Basics: Compiling and Linking C Programs 2-2
2.3 Using cc Options 2-4

3 Linking with the cc Command

3.1 Introduction 3-1
3.2 The Default Linking Process 3-1
3.3 Passing Linker Information: The -link Option 3-1

4 Running C Programs on XENIX

4.1 Introduction 4-1
4.2 Passing Command-Line Data to a Program 4-1

5 Working with Memory Models

5.1 Introduction 5-1
5.2 Near,Far,andHugeAddressing 5-3
5 .3 Using the Standard Memory Models 5-4
5.4 U sing the near, far, and huge Keywords 5-12
5.5 Creating Customized Memory Models 5-22
5.6 Setting the Data Threshold 5-27
5.7 Naming Modules and Segments 5-28
5.8 Specifying Text and Data Segments 5-30

-i-

6 Improving Program Speed

6.1 Introduction 6-1
6.2 Using Register Variables 6-1
6.3 Optimization Options and Pragmas 6-2
6.4 Choosing the Function-Calling Convention 6-5
6.5 Efficiency in Large Data Models 6-6
6.6 Efficiency in Large Code Models 6-7

7 Object and Executable File Formats

7.1 Introduction 7-1
7.2 iAPX286, 386 System Architecture 7-1
7.3 The Intel Object Module Format 7-2
7.4 Definition of Terms 7-4
7.5 Module Identification and Attributes 7-6
7.6 Segment Definition 7-7
7.7 Segment Addressing 7 -7
7.8 Symbol Definition 7-8
7.9 Indices 7-8
7.10 Conceptual Framework for Fixups 7-8
7.11 Self-Relative Fixups 7-l3
7.12 Segment-Relative Fixups 7-14
7.13 Record Order 7-15
7.14 Introduction to the Record Formats 7 -16
7.15 Numeric List of Record Types 7 -42
7.16 Type Representations for Communal Variables 7-43
7.17 The Segmented x.outFormat 7-45

8 C Language Compatibility with Assembly Language

8.1 Introduction 8-1
8.2 C Calling Sequence for 8086/80286 8-1
8.3 Entering an 8086/80286 Assembly Routine 8-2
8.4 8086/80286 Return Values 8-2
8.5 Exiting an 8086/80286 Routine 8-2
8.6 8086/80286 Program Example 8-3
8.7 80386 C Language Calling Sequence 8-4
8.8 Entering an 80386 Assembly-Language Routine 8-4
8.9 80386 Return Values 8-5
8.10 Exiting a 80386 Routine 8-7
8.11 80386 Program Example 8-7

- ii-

9 Error Processing

9.1 Introduction 9-1
9.2 U sing the Standard Error File 9-1
9.3 UsingtheerrnoVariable 9-2
9.4 Printing Error Messages 9-2
9.S Using Error Signals 9-3
9.6 Encountering System Errors 9-4

A Converting from Previous Versions of the Compiler

A.l Introduction A-I
A.2 Differences between VersionsS.Oand4.0 A-I
A.3 Differences between Versions 4.0 and 3.0 A-S

B Writing Portable Programs

B.l Introduction B-1
B.2 Program Portability B-2
B.3 Machine Hardware B-2
B.4 Compiler Differences B-9
B.S Environment Differences B-13
B.6 Portability of Data B-14
B.7 Type-Size Summary B-l4
B.8 Byte-Ordering Summary B-16

C Writing Programs for Read-Only Memory

C.l Introduction C-l
C.2 XENIX-Dependent Library Routines C-l

D C Error Messages and Exit Codes

D.l Introduction D-l
D.2 Command-Line Error Messages D-l
D.3 Compiler Error Messages D-S
D.4 Compiler Exit Codes D-4l

- iii-

Chapter 1

Introduction

1.1 Overview 1-1

1.2 About This Guide 1-1

1.3 New Features 1-3

1.4 Notational Conventions 1-5

1.5 Books about C 1-7

Introduction

1.1 Overview

The C language is a powerful general-purpose programming language
that can generate efficient, compact, and portable code. The Microsoft® C
Compiler (cc) for the XENIX® operating system is a full implementation
of the C language as defined by its authors, Brian W. Kernighan and
Dennis M. Ritchie, in The C Programming Language.

XENIX C offers several important features to help you increase the
efficiency of your C programs. You can choose among five standard
memory models (small, medium, compact, large, and huge) to set up the
combination of data and code storage that best suits your program. For
flexibility and even greater efficiency, the XENIX C Compiler allows you
to "mix" memory models by using special declarations in your program.

The C language itself does not provide such standard features as input and
output capabilities and string-manipulation features. These capabilities
are provided as part of the run-time library of functions that accompanies
the XENIX C Compiler. Because the functions that require interaction
with the operating system (for example, input and output) are logically
separate from the language itself, the C language is especially suited for
producing portable code.

The portability of your XENIX C programs is increased by the use of a
common run-time library for XENIX and MS-DOS® installations. Using
the routines in this library, you can transport programs easily from a
XENIX development environment to an MS-DOS machine, or vice versa.
For more information on the common library for XENIX and MS-DOS, see
the XENIX C Library Guide.

Compared with other programming languages, C is extremely flexible
concerning data conversions and nonstandard constructions. The XENIX
C Compiler offers several levels of warnings to help you control this flexi­
bility; programs in an early stage of development can be processed using
the full warning capabilities of the compiler to catch mistakes and unin­
tentional data conversions. An experienced C programmer can use a
lower warning level for programs that contain intentionally nonstandard
constructions. For more information about this feature, see Chapter 2,
"Compiling with the cc Command."

1.2 About This Guide

This guide explains how to use the XENIX C Compiler to compile, link,
and run C programs on your XENIX system. The guide assumes that you
are familiar with the C language and with XENIX, and that you know how
to create and edit a C-Ianguage source file on your system. All examples

1-1

XENIX C User's Guide

in this guide were generated with the 286 C compiler.

If you have questions about the C language, tum to the XENIX C
Language Reference included in this package. The XENIX C Library
Guide documents the run-time library routines you can use in your C pro­
grams.

The following describes the remaining chapters of the XENIX C User's
Guide:

Chapter 2, "Compiling with the cc Command," describes how to compile
a program using the cc compiler driver. This chapter describes the options
most commonly used to control preprocessing, compiling, and output of
files.

Chapter 3, "Linking with the cc Command," describes how to link object
files using the cc command. This chapter explains how the linker searches
for libraries, shows how to specify libraries for linking, and describes the
linker options that can be used for C programs.

Chapter 4, "Running C Programs on XENIX," explains how to run your
executable program file, and discusses features specific to the XENIX
implementation of C. The chapter tells how to pass data from XENIX to a
program at execution time, and how to return an exit code from your pro­
gram to XENIX.

Chapter 5, "Working with Memory Models," describes methods of
managing memory models. These methods are useful for writing pro­
grams that use more than 64K (kilobytes) of code or data. This chapter
also discusses "mixed-model" programming (combining features from
the five standard memory models).

Chapter 6, "Improving Program Speed," gives suggestions and hints for
maximizing program speed.

Chapter 7, "Object and Executable File Formats," describes the system
architecture of the 80x86 microprocessor family, the object module for­
mat that the C compiler follows, and the format of the x.out file in a seg­
mented environment.

Chapter 8, "C Language Compatibility with Assembly Language,"
describes how you can embed assembly language subroutines within C
language programs.

Chapter 9, "Error Processing," describes how to process errors detected
in calls to the C library routines and explains the functions and variables a
program may use to respond to these errors.

1-2

Introduction

Appendix A, "Converting from Previous Versions of the Compiler,"
summarizes the differences between Version 5.0 of the XENIX C Com­
piler and previous versions. This appendix gives instructions for convert­
ing programs written for versions prior to 5.0 to the format accepted by
Version 5.0.

Appendix B, "Writing Portable Programs," lists some of the C language
features that are implementation-dependent, and offers suggestions for
increasing program portability.

Appendix C, "Writing Programs for Read-Only Memory," gives informa­
tion about modifying start-up code and initializing floating-point support
for programs that will be put in read-only memory.

Appendix D, "C Error Messages and Exit Codes," lists and describes the
error messages and exit codes generated by the XENIX C Compiler and by
the cc command. It also lists and explains run-time error messages pro­
duced by executable programs written in C.

1.3 New Features

Several useful features have been added to Version 5.0 of the XENIX C
Compiler. This section summarizes features added since Version 4.0. For
information about differences between Version 5.0 and versions prior to
4.0, see' 'Converting from Previous Versions of the Compiler."

New features include the following:

Feature Description

New cc options Option

-Oi

-01

-Op

-Sp

Action

Generates intrinsic forms for certain
library functions

Enables loop optimizations

Forces consistent precision in the
results of floating-point math opera­
tions

Specifies lines per page for source
listings

1-3

XENIX C User's Guide

-Ss

-St

-Tc

New pragmas Pragma

alloc text

function

intrinsic

loop_opt

pack

Specifies subtitles for source listings

Specifies titles for source listings

Specifies C source files for files
without extensions

Action

Names the code segment used to
allocate specified functions

Disables intrinsic-function genera­
tion for particular functions

Specifies functions that will have
intrinsic forms generated

Controls program loop optimization
on a local basis

Specifies byte boundaries for struc­
ture packing

Provides information about far data
allocation that the compiler uses to
perform optimizations

const keyword Declares that a value will not change during
program execution.

Language changes The C language syntax and semantics have
been modified in certain cases to correspond
with recent updates to the Draft Proposed
American National Standard-Programming
Language C (hereinafter referred to as the
"ANSI C standard"). Consult "Converting
from Previous Versions of the Compiler," and
the XENIX C Language Reference for more
information.

New library functions All library functions defined in the ANSI C stan­
dard are supported, except the functions added
for international-language support. Some exist­
ing functions have been modified and
enhanced.

1-4

Introduction

1.4 Notational Conventions

The following notational conventions are used throughout this guide:

Example
of Convention

Examples

Language elements

ENVIRONMENT
VARIABLES,
and MACROS

placeholders

Description
of Convention

The typeface shown in the left column is used
to simulate the appearance of information that
would be printed on the screen or by a printer.
For example, the following command line is
printed in this special typeface:

cc -Foout.o -DTRUE=l file.c

When this command line is discussed in text,
items appearing on the command line, such as
out.o, also appear in the special typeface.

Bold type indicates elements of the C language
that must appear in source programs as shown.
Text that is normally shown in bold type
includes operators, keywords, library functions,
commands, options, and preprocessor direc­
tives.
Examples are shown below:

+=
if

#if defined()
-Fa

main size of

int
fopen

Bold capital letters are used for environment
variables, symbolic constants, and macros.

Words in italics are placeholders that you must
supply in command-line and option
specifications and in the text for types of infor­
mation. Consider the following option:

-H number

Note that number is italicized to indicate that it
represents a general form for the -H option. In
an actual command, you would supply a partic-

1-5

XENIX C User's Guide

Missing code

[optional items]

Repeating
elements ...

1-6

ular number for the placeholder number.

Occasionally, italics are also used to emphasize
particular words in the text.

Vertical ellipses are used in program examples
to indicate that a portion of the program is
omitted. For instance, in the following excerpt,
the ellipses between the statements indicate
that intervening program lines occur but are not
shown:

count = 0;

*pc++;

Brackets enclose optional fields in command­
line and option specifications. Consider the fol­
lowing option specification:

-Didentifier[= [stringJ]

The placeholder identifier indicates that you
must supply an identifier when you use the -D
option. The outer brackets indicate that you are
not required to supply an equal sign (=) and a
string following the identifier. The inner brack­
ets indicate that you are not required to enter a
string following the equal sign, but if you do
supply a string, you must also supply the equal
sign.

Single brackets are used in C-Ianguage array
declarations and subscript expressions. For
instance, a[1 OJ is an example of brackets in a C
subscript expression.

Horizontal ellipses are used in syntax examples
to indicate that more items having the same
form may be entered. For example, in the
Bourne shell, several paths can be specified in
the PATH command, as shown in the following
syntax:

PATH [=]path[;path]. ..

{choicellchoice2 }

"Defined terms"

KEY+KEY

1.5 Books about C

Introduction

Braces and a vertical bar indicate that you have
a choice of two or more items. Braces enclose
the choices, and vertical bars separate them.
You must choose one of them items unless all
of them are also enclosed in double square
brackets.

For example, the -W (warning-level) compiler
option has the following syntax:

-W {O I I I 2 I 3}

You can use -WI, -W2, or -W3 to display
different levels of warning messages or -WO to
suppress all warning messages.

Quotation marks set off terms defined in the
text. For example, the term "far" appears in
quotation marks the first time it is defined.

Some C constructs require quotation marks.
Quotation marks required by the language have
the form" " rather than" ". For example, a C
string used in an example would be shown in
the following form:

"abc"

Small capital letters are used for the names of
keys and key sequences, such as Enter and
Ctrl-C. Key sequences to be pressed simultane­
ously are indicated by the key names in small
caps separated by a plus sign (Ctrl-C).

The manuals in this documentation package provide a complete
programmer's reference for XENIX C. They do not, however, teach you
how to program in C. If you are new to C or to programming, you may
want to familiarize yourself with the language by reading one or more of
the following books:

Hancock, Les, and Morris Krieger. The C Primer. New York:
McGraw-Hill Book Co., Inc., 1982.

1-7

XENIX C User's Guide

Hansen, Augie. Proficient C. Bellevue, Washington: Microsoft
Press, 1986.

Harbison, Samuel P., and Greg L. Steele. C: A Reference
Manual. Englewood Cliffs, New Jersey: Prentice-Hall Software
Series, 1987.

Kernighan, Brian W., and Dennis M. Ritchie. The C Program­
ming Language. Englewood Cliffs, New Jersey: Prentice-Hall,
Inc., 1978.

Kochan, Stephen. Programming in C. Hasbrouck Heights, New
Jersey: Hayden Book Company, Inc., 1983.

Plum, Thomas. Learning to Program in C. Cardiff, New Jersey:
Plum Hall, Inc., 1983.

Schildt, Herbert. C Made Easy. Berkeley, California: Osborne
McGraw Hill, 1985.

Schustack, Steve. Variations in C. Bellevue, Washington: Micro­
soft Press, 1985.

These books are listed for your convenience only.

1-8

Chapter 2

Compiling with the

cc Command

2.1 Introduction 2-1

2.2 The Basics: Compiling and Linking C Programs 2-2
2.2.1 The cc Command 2-2

2.3 Using cc Options 2-4

57

2.3.1 Setting Processor and Memory Model (-M) 2-4
2.3.2 Specifying Help (-help) 2-6
2.3.3 Specifying Source Files (-Tc) 2-6
2.3.4 Compiling without Linking (-c) 2-7
2.3.5 Naming the Object File (-Fo) 2-7
2.3.6 Naming the Executable File (-Fe) (-0) 2-8
2.3.7 Creating Listing Files 2-9
2.3.8 Controlling the Preprocessor 2-24
2.3.9 Checking for Program Errors 2-31
2.3.l0 Preparing for Debugging (-Zi, -Od) 2-36
2.3.11 Optimizing 2-37
2.3.12 Enabling/Disabling Language Extensions (-Ze, -Za) 2-49
2.3.13 Packing Structure Members (-Zp) 2-50
2.3.14 Setting the Stack Size (-F) 2-52
2.3.15 Restricting the Length of Extemal Names (-nl) 2-53
2.3.16 Labeling the Object File (-V) 2-53
2.3.17 Suppressing Default-Library Selection (-Zl) 2-54
2.3.18 Changing the Default char Type (-J) 2-55
2.3.19 Controlling the Calling Convention (-Gc) 2-55
2.3.20 Compiling Programs for DOS Environment (-dos, -FP) 2-

2.3.21 Displaying Compiler Passes (-d, -z) 2-58

Compiling with the cc Command

2.1 Introduction

This chapter explains how to compile and link using the cc command and
discusses commonly used cc options. The cc command is the only com­
mand you need to compile and link your C source files. The cc command
executes the three compiler passes, then automatically invokes Id, the
Linker, to link your files.

Using the cc options described in this chapter, you can control and modify
the tasks performed by the command. For example, you can direct cc to
create an object-listing file or a preprocessed listing. Options also let you
give information that applies to the compilation process; you can specify
the definitions for manifest (symbolic) constants and macros, and the
kinds of warning messages you want to see.

For a quick overview of the more commonly used options, enter:

cc -help

"The Basics: Compiling and Linking C Programs" explains the basic use
of the cc command to produce an executable program.

"Using cc Options," describes the cc options.

The -help option is described in greater detail in the "Using cc Options"
section of this chapter.

The cc command automatically optimizes your program. You never have
to give an optimizing instruction unless you want to change the way cc
optimizes, request more sophisticated optimizations, or disable optimiza­
tion altogether. For more information on these choices, see the "Optimiz­
ing" subsection of the "Using cc Options" section later in this chapter.

For information about linking object files and libraries using the cc com­
mand, see the "Linking with the cc Command" chapter of this guide.

For a discussion of the cc options that control memory models, see the
"Working with Memory Models" chapter in this guide.

For a summary of the cc command and its options, see the XENIX C
Language Reference.

2-1

XENIX C User's Guide

2.2 The Basics: Compiling and Linking C Programs

This section explains how to use cc to compile and link C programs and
discusses the rules and conventions that apply to file names and options
used with cc.

2.2.1 The cc Command

The cc command has the following form:

cc [option] file ... [option ... file ...] [-link[link-libinfo]]

Each option is one of the command-line options described in the "Using
cc Options" section of this chapter, in the "Working with Memory
Models" chapter, and in the "Improving Program Speed" chapter of this
guide.

Each file names a source or object file to be processed or a library to be
searched at link time. See the section "Specifying Source and Object
Files" for information about specifying source and object files.

The cc command automatically specifies the appropriate library to be
used during linking; however, you can use the -link option with the
optional link-libinfo argument to specify additional or different libraries,
library search paths, and options to be used during linking. You can also
specify linker options in the linkoptions argument. For information about
specifying different libraries and linker options, see the' 'Linking with the
cc Command" chapter of this guide.

You can give any number of options, file names, and library names on the
command line, provided that the command line does not exceed 128 char­
acters.

Specifying Source and Object Files

The cc command can process source files, object files, library files, or any
combination of these. It uses the file-name extension (the period plus any
letters that follow it) to determine what kind of processing the file needs,
as shown in the following list:

• If the file has a .c extension, cc compiles the file.

• If the file has a .0 extension, cc processes the file by invoking the
linker.

2-2

Compiling with the cc Command

• If the file has a .a extension, cc passes the file to the linker to be
searched, unless the -c option is given to suppress linking. For a
description of the -c option, see the section on "Compiling without
Linking."

• If the extension is omitted, cc assumes an extension of .0 , If the
extension is anything other than .c , .0 , or .a , cc assumes the file is
an object file unless the file name is specified in association with
the -Tc option. If the file name is specified with the -Tc option, cc
assumes the file is a C source file. For a description of the -Tc
option, see the section on "Specifying Source Files. "

Examples

cc a.c b.c c.o d.o

This command line compiles the files a.c and b.c, creating object files
named a.o and b.o. These object files are then linked with c.o and d.o to
form an executable file named a.out.

cc a.c b.c c.o -Tcd.src

This command performs the same operations as the preceding command
line, except that the -Tc option indicates that d.src is a source file, not an
object file. Thus, the files a.c, b.c, and d.src are compiled, creating object
files named a.o, b.o, and d.o. These object files are then linked with c.o to
form an executable file named a.out.

Creating Executable Files

When cc compiles source files, it creates object files. By default, these
object files have the same base names as the corresponding source files,
but with the extension .0 instead of .c. (The base name of a file extension
is the portion of the name preceding the period, but excluding the path
specification, if any.) You can use the -Fo option to give a different name
to an object file.

Unless the -c option is given, cc links these object files, along with any .0

files you give on the command line, to form an executable file. If only .0

files are given on the command line, cc skips the compilation stage and
simply links the files.

2-3

XENIX C User's Guide

2.3 Using cc Options

The cc command offers a large number of command options to control
and modify the compiler's operation. Options begin with a dash (-) and
contain one or more letters.

Options can appear anywhere on the cc command line. In general, an
option applies to all files that follow it on the command line, and it does
not affect files preceding it there. However, not all options follow this
rule; see the discussion of a particular option for information ort its
behavior. Keep in mind that most cc options apply only to the compila­
tion process. Unless specifically noted, options do not affect any object
files given on the command line.

2.3.1 Setting Processor and Memory Model (-M)

The -M option sets the program configuration. This configuration defines
the program's memory model, word order, and data threshold. It also
enables C language enhancements such as the use of the full 286 instruc­
tion set and special keywords.

cc -Mstring special.c

The string contains the argument that defines the configuration. It may be
any combination of the following (though s, m, c, I, h are mutually
exclusive):

2-4

s Create a small model program. This is the default.

m Create a middle model program.

c Create a compact model program.

h

e

o

Create a large model program.

Create a huge model program.

Enable the keywords: far, near, huge, pascal and for­
tran. Also enables certain non-ANSI extensions neces­
sary to ensure compatibility with existing versions of the
C compiler. (This applies only to compiler versions that
support features of ANSI C.)

Use only 8086 instructions for code generation. This is
the default on 8086/80186/80286 systems.

Compiling with the cc Command

1 Use the extended 80186 instruction set.

2 Use the extended 80286 instruction set.

3 Use the extended 80386 instruction set. This is the
default on 80386 systems.

b Reverse the word order for long types, putting the high
order word first. The default is the low order word first.

tnum Causes all static and global data items whose size is
greater than num bytes to be allocated to a new data seg­
ment. Num, the data "threshold" defaults to 32,767.
This option can only be used in large model programs
(-MI). Its main use is to move data out of the near data
segment to allow room for the stack.

d

cc -Ml -Mt12 recursive.c

Do not assume (during compilation) that the registers SS
and DS will have the same contents at run-time. Warn­
ing: This option has no library or nmtime support on
XENIX. It will not cause the stack to be put in a
separate segment. It may be of use for DOS cross­
development.

-M3 is the default on 80386 systems. Although it is usually advantageous
to enable the appropriate instruction set, you are not required to do so. If
you have an 80286 processor, for example, but you want your code to be
able to run on an 8086, you should not use the 80186/80188 or 80286
instruction set.

Note

The m, c, I, h, b, t, and d arguments are compatible only with the
-MO, -Ml, or -M2 option. The sand e arguments are compatible
with -MO, -MI, -M2, or -M3.

For a complete description of memory models and segment options, see
the "Working with Memory Models" chapter in this guide.

2-5

XENIX C User's Guide

The memory-model option you choose determines the name of the stan­
dard libraries that cc places in the object file it creates. These libraries are
then considered the default libraries, since the linker searches for them by
default.

Table 2.1 shows each memory-model option and the corresponding library
name that cc embeds in the object file.

Table 2.1

cc Options and Default Libraries

Memory-Model Default
Option Libraries

-Ms Slibc.a
Slibcfp.a

-Mm Mlibc.a
Mlibcfp.a

-Mc Clibc.a
Clibcfp.a

-MI or -Mh Llibc.a
Llibfp.a

2.3.2 Specifying Help (-help)

Option

-help

This option displays a list of the most commonly used compiler options.

2.3.3 Specifying Source Files (-Tc)

Option

-Tc sourcefile

The -Tc option tells the cc command that the given file is a C source file.
Zero or more spaces can appear between -Tc and the source-file name.

If this option does not appear, cc assumes that files with the extension .c
are C source files, files with the extension .a are libraries, and files with

2-6

Compiling with the cc Command

any other extension or with no extension are object files. If you use the
-Tc option, cc treats the given file as a C source file, regardless of its
extension, if any. A separate -Tc option must appear for each source file
that has an extension other than .c .

Example

cc rnain.c -Tc test.prg -Tc collate.prg print.prg

In this example, the cc command compiles the three source files main.c,
test.prg, and coilateprg. Since the file printprg is given without a -Tc
option, cc treats it as an object file. Thus, after compiling the three source
files, cc links the object files main.o, test.o, coilate.o, and printprg.

2.3.4 Compiling without Linking (-c)

Option

-c

The -c (for "compile-only") option suppresses linking. Source files given
on the command line are compiled, but the resulting object files are not
linked, no executable file is created, and any object files specified on the
command line are ignored. This option is useful when you are compiling
individual source files that do not make up a complete program.

The -c option applies to the entire cc command line, regardless of the
option's position in the command line.

Example

cc -c *.c

This command line compiles, but does not link, all files with the exten­
sion .c in the current working directory.

2.3.5 Naming the Object File (-Fo)

Option

-FoobJfile

By default, cc gives each object file it creates the base name of the
corresponding source file plus the extension .0. The -Fo option lets you
give different names to object files or create them in a different directory.

2-7

XENIX C User's Guide

If you are compiling more than one source file, you can give the -Fo
option for each source file to rename the corresponding object file.

Keep the following rules in mind when using this option:

• The objfile argument must appear immediately after the option,
with no intervening spaces.

• Each -Fo option applies to the next source file that appears on the
command line after the option.

You are free to supply any name and any extension you like for the
objfile. However, it is recommended that you use the conventional .0

extension because the linker uses .0 as the default extension when pro­
cessing object files.

If you do not give a complete object file name with the -Fo option (that is,
if you do not give an object file name with a base and an extension), cc
names the object files according to the following rule:

• If you give only a directory specification following the -Fo option,
cc creates the object file in the given directory and uses the default
file name (the base name of the source file plus .0).

When you give a directory specification, it must end with a forward slash
(I) so that cc can distinguish between a directory specification and a file
name.

Example

cc -F%bjectl/this.c that.c -Fo/src/newthose.o those.c

In this example, the first -Fo option tells the compiler to create, in the
/objectl directory, the object files this.o (created as a result of compiling
this.c) and that.o (created as a result of compiling that.c). The second -Fo
option tells the compiler to create the object file named newthose.o
(created as a result of compiling those.c) in the /src directory.

2.3.6 Naming the Executable File (-Fe) (-0)

Option

-Feexefile
-0 exefile

2-8

Compiling with the cc Command

By default, cc gives the name a.out to the executable file. In XENIX, -Fe
and -0 are the same, except that, syntactically, the file name must come
immediately after -Fe, whereas blanks can be between the -0 and the file
name. The -Fe option lets you give the executable file a different name or
create it in a different directory.

Since cc creates only one executable file, you can give the -Fe option
anywhere on the command line. If more than one -Fe option appears, cc
gives the executable file the name specified in the last -Fe option on the
command line.

The -Fe option applies only in the linking stage. If you specify the -c
option to suppress linking, -Fe has no effect.

Examples

cc -Fe/bin/process *.c
cc -0 /bin/process *.c

These examples compile and link all source files with the extension .c in
the current working directory. The resulting executable file is named pro­
cess and is created in the directory /bin.

2.3.7 Creating Listing Files

A number of listing options are available with the cc command. You can
create a source listing, a map listing, or one of several kinds of object list­
ings. You can also set title and subtitle of the source listing from the com­
mand line and control the length of source-listing lines and pages.

The options available for producing listings and controlling their appear­
ances are described in this section.

Note

Listings produced by the cc command may contain names that begin
with more than one underscore (for example, chkstk) or that end
with the suffix QQ. Names that use these conventions are reserved
for internal use by the compiler, and should not be used in your pro­
grams, except for those documented in the XENIX C Library Guide.
Moreover, you should avoid creating global names that begin with
an underscore. Since the compiler automatically adds another lead­
ing underscore, these names will have two leading underscores and
might conflict with the names reserved by the compiler.

2-9

XENIX C User's Guide

Types of Listings (-Fs, -FI, -Fa, -Fe, -Fm)

Options

-Fs[listfiles]
-Fl[listfile]
-Fa [listfile]
-Fe [lis tfi Ie]
-Fm[mapfile]

Source listing
Object listing
Assembly listing
Combined source and object listing
Map file that lists segments, in order

This section describes how to use command-line options to create list­
ings. For an example of each type of listing and a description of the infor­
mation it contains, see "Formats for Listings" later in this section.

When using an option described in this section, the listfile argument, if
given, must follow the option immediately, with no intervening spaces.
The listfile can be a file specification or a path specification. It can also be
omitted.

Note

When you give just a path speci fication as the listfile argument, the
path specification must end with a forward slash (/) so that cc can
distinguish it from an ordinary file name.

When you give a path speci fication as the argument to a listing option, or
if you omit the argument altogether, cc uses the default file name for the
listing type. Table 2.2 gives the default names used for each type of list­
ing. The table also shows the default extensions, which are used when you
give a file-name argument that lacks an extension.

2-10

Compiling with the ee Command

Table 2.2

Default File Names and Extensions

Default Default
Option Listing Type File Name l Extension2

-Fs Source Base name of .s
source file plus .S

-FI Object Base name of .L
source file plus .L

-Fa Assembly Base name of .s
source file plus .s

-Fe Combined Base name of .L
source-object source file plus .L

-Fm Map Base name of first .map
object file on the
command line
plus .map

Notes:

1 The default file name is used when the option is given with no argument or with a
path specification as the argument.

2 The default extension is used when a file name lacking an extension is given.

Since you can process more than one file at a time with the ee command,
the order in which you give listing options and the kind of argument you
give for each option (file specification or path specification) affect the
result. Table 2.3 summarizes the effects of each option with each type of
argument.

2-11

XENIX C User's Guide

Option

-Fa, -Fe,
-FI, -Fs

-Fm

Notes:

Table 2.3

Arguments to Listing Options

File-Name
Argument

Creates a
listing for
next source
file on com­
mand line;
uses default
extension if
no extension
is supplied

Uses given
file name for
the map file;
uses default
extension if
no extension
is supplied

Path
Argument l

Creates listings
in the given
location for
every source
file listed after
the option on
the command
line; uses
default names

Creates map
file in the given
directory; uses
default name

No
Argument

Creates listings in
the current direc­
tory for every
source file listed
after the option on
the command line;
uses default names

Uses default name

1 When you give just a path specification as the argument, the path specification must end
with a forward slash (/) so that cc can distinguish it from an ordinary file name.

Only one type of object or assembly listing can be produced for each
source file. The -Fe option overrides the -Fa and -FI options; whenever
you use -Fe, a combined listing is produced. If you apply both the -Fa and
the -FI options to one source file, only the last listing specified on the
command line is produced. If you specify both the -Fa and the -Fs options
to one source file, a combined listing is produced.

Note

The ee command optimizes by default, so listing files reflect the
optimized code. Since optimization may involve rearrangement of
code, the correspondence between your source file and the machine
instructions may not be clear, especially when you use the -Fe
option to mingle the source and assembly codes. To produce a list­
ing without optimizing, use the -Od option (discussed in the
"Preparing for Debugging" section) with the listing option.

2-12

Compiling with the cc Command

The map file is produced during the linking stage. If linking is suppressed
with the -c option, the -Fm option has no effect.

Examples

cc -Fshello.src -Fchello.cmb hello.c

In this example, cc creates a source listing called hello.src and a com­
bined source and assembly listing called hello.cmb. The object file has
the default name hello.o.

cc -Fshello.src -Fshello.lst -Fchello.cod hello.c

This command produces a source listing called hello. 1st rather than
hello.src, since the last name provided has precedence. This example also
produces an object-listing file named hello.cod. The object file in this
example has the default name hello.o.

Setting Titles (-St) and Subtitles (-Ss)

Options

-St "title"
-Ss "subtitle"

The -St and -Ss options set the title and subtitle, respectively, for source
listings. The quotation marks (" ") around the title or subtitle argument
can be omitted if the title or subtitle does not contain space or tab charac­
ters. The space between -St or -Ss and its arguments is optional.

The title appears in the upper left comer of each page of the source list­
ing. The subtitle appears below the title.

The -St or -Ss option applies to the remainder of the command line or
until the next occurrence of -St or -Ss on the command line. These
options do not cause source listings to be created. They take effect only
when the -Fs option is also used to create a source listing.

Examples

cc -St "Income Tax" -Ss 4-14 -Fs tax*.c

This command compiles and links all source files beginning with tax and
ending with the default extension (.c) in the current working directory.

2-13

XENIX C User's Guide

Each page of the source listing contains the title Income Tax in the upper
left comer. The subtitle 4-14 appears below the title on each page.

cc -c -Fs -St "Calc Prog" -Ss"count" ct. c -Ss"sort" srt. c

In this command, cc compiles two source files and creates two source list­
ings. Each source listing has a unique subtitle, but both listings have the
title Calc Prog.

Formats for Listings

The following sections describe and show examples of the five types of
listings available with the cc command. For information on how to create
these listings, see' 'Types of Listings" earlier in this chapter.

Source Listing

Source listings are helpful in debugging programs as they are being
developed. These listings are also useful for documenting the structure of
a finished program.

The source listing contains the numbered source-code lines of each pro­
cedure in the source file, along with any diagnostic messages that were
generated. If the source file compiles with no errors more serious than
warning errors, the source listing also includes tables of local symbols,
global symbols, and parameter symbols for each function. If the compiler
is unable to finish compilation, it does not generate symbol tables.

At the end of the source listing is a summary of the segment sizes in your
program. This summary is useful for analyzing the program's memory
requirements.

Any error messages that occurred during compilation appear in the listing
after the line that caused the error, as shown in the following example:

2-14

Compiling with the cc Command

1 char hexvalue[10];
2
3 main ()
4 {
5 long htoi ();

printf ("P lease enter the hex value you want to convert: \n") ;
scanf ("%s", hexvalue);

6
7
8
9

printf ("The integer value of the hex value is %ld\n", htoi (hexvalue));

10
11 long htoi(hexvalue)
12 char *hexvalue;
13 {
14
15
16
17
18
19
20
21
22
23
24

register char *ptr=hexvalue;
int i=O;
long n=O;
long exp16 () ;
while (*ptr != '\0') {
if (*ptr >= 'a' && *ptr <= 'f')

*ptr -= 87;
else if (*ptr >= ']v && *ptr <= 'F')

*ptr -= 55;
else

*ptr -= 48;
25 ptr+;
*****bomb.c (25) error 59: syntax error
26 }

The line number given in the error message corresponds to the number of
the source line immediately above the message in the source listing.

The following example shows the source listing for a simple C program.
The command used to obtain the output would be:

cc -St"Hex to ASCII" -St"2/25/87" HextoASCII.c

2-15

XENIX C User's Guide

Hex to ASCII
2/25/87

Line# Source Line

1 char hexvalue[10];
2
3 mainO
4 {
5 long htoi ();

PAGE 1
02-25-87
10:44:23

XENIX C Compiler Version 3.00.17

6
7

printf("Please enter the hex value you want to convert:O);
scanf ("%s", hexvalue);

8 printf ("The integer value of the hex value is %ldO, htoi (hexvalue)) ;
9
10
11 long htoi(hexvalue)
12 char *hexvalue;
13{
14 register char *ptr=hexvaluei
15 int i=O;
16 long n=O;
17 long expI6();
18 while (*ptr != , ') {
19 if (*ptr >= 'a' && *ptr <= 'f')
20 *ptr -= 87;
21 else if (*ptr >= 'A' && *ptr <= 'F')
22 *ptr -= 55; 23
24 *ptr -= 48;
25 ptr++;
26
27 ptr -= 1;
28 while (ptr>=hexvalue)
29 {
30 n+= (*ptr*exp16(i));
31 i++;
32 ptr--; 33
34 return(n);
35
htoi Local Symbols CRName

i .
ptr .
n ..
hexvalue. .

36
37 long exp16 (exp)
38 int exp;
39 {

auto
auto
auto
param

40 long result=l;
41 int j;
42 for (j=l; j<=exp; j++)
43 result *= 16;
44 return(result);
45

2-16

Class TyPe Size Offset Register i
-0008
*** si
-0004

0004

Compiling with the cc Command

Hex to A
2/25/87 02-25-87

10:44:23

XENIX C Compi~er Version 3.00.17

e};p16 Local Symbols

Name Class Type

j . .
result.
e},:p ..

Global Symbols

Name

exp16
hexvalue.
htoi ..
main ..
printf.
scanf .

auto
auto
param

Class

global
conmon
global
global
ex"tern
ex"tern

Code size 00e8 (232)
Data size 005f (95)
Bss size 0000 (0)

No errors detected

Type

near function
struct/array
near function
near function
near function
near function

Size Offset Register

-0006
-0004

0004

Size Offset

OOae
10

*** 0038
*** 0000

At the end of each function, a table of local symbols is given, as shown in
the following example for the function htoi:

htoi Local Symbols

Name Class Type Size Offset Register

i auto -0008
ptr auto *** si
n auto -0004
hexvalue. param 0004

2-17

XENIX C User's Guide

The following list shows the contents of each column in the symbol table:

Column Contents

Name

Class

Type

Size

Offset

The name of each local symbol in the function.

Either auto if the symbol is a nonstatic local variable, or
param if the symbol is a formal parameter.

Not used for local symbols.

Not used for local symbols.

The symbol's offset address relative to the frame pointer
(that is, the BP register). The Offset number is positive for
param symbols and negative for auto symbols with auto
storage class.

Register Blank unless the variable is stored in a register, in which
case, this column indicates the register (SI or DI).

At the end of the source code, a table of global symbols is given, as
shown in the following example:

Name Class Type Size Offset

exp16 global near function *** OOae
hexvalue. common struct/array 10 ***
htoi. global near function *** 0038
main. global near function *** 0000
printf. extern near function *** ***
scanf extern near function *** ***

The following list shows the contents of each column:

2-18

Column Contents

Name

Class

Type

Each global symbol, external symbol, and statically allo­
cated variable declared in the source file.

Either global, common, extern, or static, depending on how
the symbol was defined in the source file.

A simplified version of the symbol's type as declared in
the source file.

Compiling with the cc Command

For functions, this entry is either near function or far func­
tion, depending on which memory model was used and
how the function was declared. For a pointer, this entry is
near pointer,far pointer, or huge pointer. For enumeration
variables, this entry is into For structures, unions, and
arrays, this entry is struct/array.

Size Used only for variables. Specifies the number of bytes of
storage allocated for the variable. Since the amount of
storage allocated for an external array may not be known,
its Size entry may be undefined.

Offset Used only for symbols with an entry of global or static in
the Class column.

For variables, this entry gives the relative offset of the
variable's storage in the logical data segment for the pro­
gram file being compiled. Since the linker usually com­
bines several logical data segments into a physical seg­
ment, this number is useful only for determining the rela­
tive position of storage of variables. For functions, this
entry gives the relative offset of the start of the function in
the logical code segment. For small-model programs, the
linker combines logical code into a single physical seg­
ment' so this entry is useful for determining the relative
positions of different functions defined in the same source
file. However, for medium-, large-, and huge-model pro­
grams, each logical code segment becomes a unique physi­
cal segment. In these cases, this entry gives the actual
offset of the function in its run-time code segment.

The last table in the source listing shows the segments used and their size,
as in the following example:

Code size
Data size
Bss size

0103 (259)
005f (95)
0000 (0)

The number of bytes in each segment is given first in hexadecimal, and
then in decimal (in parentheses).

Object Listing

The -FI option produces an object listing. The object listing contains the
instruction encoding and assembly code for your program. The line
numbers are shown in the listing as comments. The instruction-encoding

2-19

XENIX C User's Guide

is on the left and the assembly code on the right, as shown in the follow­
ing 286 example:

; Line 4
PUBLIC main

main PRCC NEAR
*** 000000
*** 000001

000003
000005

Line 6
000008
OOOOOb
OOOOOc
OOOOOf

Assembly Listing

55
8b ec
33 cO
e8 00 00

b8 00 00
50
e8 00 00
83 c4 02

push bp
mov bp,sp
xor ax,ax

call chkstk

mov a~,OFFSET DGROUP:$S G12
push a~
call _printf
add sp,2

The -Fa option produces an assembly listing. It contains the assembly
code corresponding to your C source file, as shown in the following 286
example:

; Line 4
PUBLIC main

main PROC NEAR
push bp
mov bp,sp
xor ax,ax
call chkstk

Line 6
mov aX,OFFSET DGROUP:$SG12
push ax
call _printf
add sp,2

Note that the example shows the same code as in the object listing exam­
ple, except that the instruction encoding is omitted.

The listing generated by the -Fa option in Versions 5.0 and later of the
XENIX C Compiler can be used as input to the XENIX Macro Assembler
(masm).

2-20

Compiling with the cc Command

Combined Source and Object Listing

The -Fc option produces a combined source and object listing. This shows
each line of your source program followed by the corresponding line (or
lines) of machine instructions, as in the following 286 example:

TEXT SEGMENT
; 1*** char hexvalue[10);
; 1***
; 1 *** main ()
; 1 *** {
; Line 4

PUBLIC main
main PROC NEAR

*** 000000
*** 000001
*** 000003
*** 000005

; 1*** long htoi();

55
8b ec
33 cO
e8 00 00

push bp
mov bp,sp
xor ax,ax

call chkstk

; 1*** printf("Please enter the hex value you want to convert: 0) ;
Line 6

*** 000008
*** OOOOOb
*** OOOOOc
*** OOOOOf

b8 00 00
50
e8 00 00
83 c4 02

; 1 *** scanf ("%5", hexvalue);

mov ax,OFFSET DGROUP:$SG12
push ax
call yrintf
add sp,2

Note that this sample is like the object-listing sample, except that the
source-program line is provided in addition to the line number.

When you examine a listing file, you will notice that the names of glo­
bally visible functions and variables begin with an underscore, as shown
in the following example. (This part of the listing is the same for all three
kinds of listings.):

EXTRN _printf:NEAR
EXTRN scanf:NEAR
EXTRN - chkstk:NEAR
EXTRN __ aNlmul:NEAR
EXTRN aNNalshl:NEAR
EXTRN hexvalue:TBYTE

The XENIX C Compiler automatically prefixes an underscore to all global
names. If you write assembly-language routines to interface with your C
program, this naming convention is important; see the section on "Con­
trolling the Preprocessor" for more information.

2-21

XENIX C User's Guide

The listing may also contain names that begin with more than one under­
score (for example, chkstk in the example). Identifiers with more than
one leading underscore are reserved for internal use by the compiler, and
should not be used in your programs, except for those documented in the
KENIK C Library Guide. Moreover, you should avoid creating global
names that begin with an underscore. Since the compiler automatically
adds another leading underscore, these names will have two, and might
conflict with the names reserved by the compiler.

Map File

The -Fm option produces a map file. The map file contains a list of seg­
ments in order of their appearance within the load module. As an exam­
pIe, consider the following 386 example:

Start Length Name
003f:00000000 015CDH TEXT
003f:000015dO OOOOOH C ETEXT

Class
CODE
ENDCODE

The information in the Start column shows the 20-bit address (in hexade­
cimal) of each segment, relative to the beginning of the load module. The
load module begins at location zero. The Length column gives the length
of the segment in bytes; the Name column gives the name of the segment,
and the Class column gives information about the segment type.

The starting address and name of each group appear after the list of seg­
ments. An example of a group listing follows:

Origin
OlEA: 0

Group
DGROUP

In this example, DGROUP is the name of the data group. DGROUP is
the only group used for data segments by programs compiled with the
XENIX C Compiler, Version 5.0.

The following map file contains two lists of global symbols: the first list
is sorted in ASCII-character order by symbol name and the second is by
symbol address. A maximum of 2048 symbols can be sorted in each list.
(To increase the number of sorted symbols, you must specify the -MAP
linker option with the number argument to create the map file; see the

2-22

Compiling with the cc Command

"Linking with the cc Command" chapter of this guide for details.) The
notation Abs appears next to the names of absolute symbols (symbols con­
taining 16-bit constant values that are not associated with program
addresses) .

Many of the global symbols that appear in the map file are symbols used
internally by the XENIX C Compiler. These usually begin with one or
more leading underscores or end with QQ. The following 286 example
illustrates this:

Address Publics by Name

003F:0096 STKHQQ
0047:1D86 brkctl -
003F:04BO edata
0047:0910 end

-

0047:00EC abrkp
0047:009C abrktb -
0047:00EC abrktbe
003F:9876 Abs acrtmsg
0000:9876 Abs acrtused

0047:0240 argc
0047:0242 argv -

Address Publics by Value

003F:0010 main
003F:0047 htoi
003F:00DA exp16

-
003F:0113 chkstk
003F:0129 astart
003F:01C5 cintDIV

The addresses of the external symbols are in the "selector:offset" format,
showing the location of the symbol relative to zero (the beginning of the
load module).

2-23

XENIX C User's Guide

Following the lists of symbols, the map file gives the program entry point,
as shown in the following example:

Program entry point at 003F:0129

2.3.8 Controlling the Preprocessor

The cc command provides several options that control the operation of
the C preprocessor. You can define macros and manifest (symbolic) con­
stants from the command line, change the search path for include files,
and stop compilation of a source file after the preprocessing stage to pro­
duce a preprocessed source- file listing.

The C preprocessor recognizes only preprocessor directives. It treats the
source file as a text file, processing substitutions and definitions as
directed. The preprocessor can be run on a file at any stage of develop­
ment, whether or not the file is a complete C source file. In fact, the
preprocessor is not restricted to processing C files; it can be run on any
kind of file. However, input files to the preprocessor must follow the
preprocessor rules; therefore, not all arbitrary text files may be suitable
for use with the preprocessor. See the XENIX C Language Reference for a
complete discussion of C preprocessor directives and the format expected
for preprocessor input.

Defining Constants and Macros (-D)

Option

-D identifier[= [string]]

The -D option lets you define a constant or macro used in your source file.
The identifier is the name of the constant or macro and string is its value
or meaning. Note that spaces are permitted (but not required) between -D
and the identifier.

If you leave out both the equal sign and string, the given constant or
macro is assumed to be defined, and its value is set to 1. For example,
-DSET is sufficient to define SET.

If you give the equal sign with an empty string, the given constant or
macro is considered defined; its definition is the empty string. This
definition effectively removes all occurrences of the identifier from the
source file. For example, to remove all occurrences of register, use the
following option:

-Dregister=

2-24

Compiling with the cc Command

Note that the identifier register is still considered to be defined.

The effect of using the -D option is the same as using a preprocessor
#define directive at the beginning of your source file: the identifier is
defined in the source file being compiled either until an #Undef directive
removes the definition or until the end of the file is reached.

You can supply a command-line definition for an identifier that is also
defined within the source file. However, you must use #Undef to remove
the source-file definition, unless the source-file definition is identical to
the command-line definition. The command-line definition remains in
effect until the identifier is removed with an #Undef directive.

Normally, up to 17 definitions are allowed on the command line. Using
either the -Za option or the -J option on the command line reduces the
number of definitions allowed to 16; using both of these options reduces
the number to 15. If you need to define more than the maximum number
of identifiers, you can remove certain predefined definitions from the
command line. See the discussion of the -U and -u options in the section
on "Removing Definitions of Predefined Identifiers," for more informa­
tion.

The -D option is especially useful with the #if and #ifdef directives
because you can control conditional-compilation directives in the source
file from the command line.

Examples

cc -D NEED=2 main.c

This example defines the manifest constant NEED in the source file
main.c. This definition is equivalent to placing the directive at the top of
the source file as shown in the following example:

#define NEED 2

For the next example, suppose a source file named other.c contains the
following fragment:

#if defined (NEED)

#endif

Suppose further that other.c does not explicitly define NEED (that is, no
#define directive for NEED is present). Then all statements between the

2-25

XENIX C User's Guide

#if and the #endif directives are compiled only if you supply a definition
of NEED by using -D. For instance, the following command is sufficient
to compile all statements following the #if directive:

cc -DNEED main.c

Note that NEED does not have to be set to a specific value to be con­
sidered defined. The following command, in contrast, causes the state­
ments in the #if block to be ignored (not compiled):

cc main.c

Predefined Identifiers (Manifest Defines)

The compiler defines several identifiers that are useful in writing portable
programs. These are known "manifest defines." You can use these
identifiers to compile code sections conditionally, depending on the pro­
cessor and operating system being used. They begin with "M_" for
"manifest." The predefined identifiers and their functions are as follows:

2-26

Identifier

M 186

M SYS3

M SYS5

M BITFIELDS

Function

This is an Intel processor.

This is Unix System III compatible.

This is Unix System V compatible.

This compiler supports bitfields.

M WORD SWAP

M XENIX

M In86

M I86mM

CHAR UNSIGNED - -

orM LDATA

M STEXT

orM LTEXT

Compiling with the cc Command

The word-within-a-longword order is
swapped with respect to the DEC
PDPll.

Always defined, this identi fies target
operating system as XENIX.

Depending on -MO, -Ml, -M2 or
-M3, M 1386 is defined with 386
compiler unless -dos is used.

Always defined, this identifies
memory model, where m is either S
(small model), C (compact model), M
(medium model), L (large model), or
H (huge model). If huge model is
used, both M I86LM and M I86HM
are defined. - Small model- is the
default. Memory models are dis­
cussed in "Working with Memory
Models."

This is defined only when the -J
option is given to make the char type
unsigned by default. For more infor­
mation, see the section on "Changing
the Default char Type."

Depending on -MO, -Ml, or -M2.

Depending on -MO, -Ml, or -M2.

Removing Definitions of Predefined Identifiers (-U, -u)

Options

-U identifier
-u

The -U (for "undefine") option turns off the definition of one of the
predefined identifiers discussed in the previous section; one or more

2-27

XENIX C User's Guide

spaces may separate the -U and identifier. You can specify more than one
-U option on the same command line. The -u option turns off all
definitions.

These options are useful if you want to give more than the maximum
number of definitions (16, if the -Za or -J option is used; 15, if both
options are given; or 17, otherwise) on the command line, or if you have
other uses for the predefined identifiers. For each definition of a
predefined identifier you remove, you can substitute a definition of your
own on the command line. When the definitions of all predefined
identifiers are removed, you can specify up to 512 command-line
definitions.

Example

cc -UM XEN1X -UM 186 work.c

This example removes the definitions of two predefined identifiers. Note
that the -U option must be given twice to do this.

Producing a Preprocessed Listing (-P, -E, -EP)

Options

-P Writes preprocessed output to a file
-E Writes preprocessed output to standard

output; includes #line directives
-EP Writes preprocessed output to standard output

The -P, -E, and -EP options produce listings of preprocessed files. These
options allow you to examine the output of the C preprocessor.

The preprocessed listing file is identical to the original source file except
that all preprocessor directives are carried out, macro expansions are per­
formed, and comments are removed. All three options suppress compila­
tion; no object file or listing is produced, even if you specify an -Fo
option or a listing-file option on the cc command line.

The -P option writes the preprocessed listing to a file with the same base
name as the source file, but with an .i extension.

The -E option copies the preprocessed listing to the standard output (usu­
ally your terminal). It places a #line directive in the output at the

2-28

Compiling with the cc Command

beginning and end of each included file and around lines removed by
preprocessor commands that specify conditional compilation.

The -E option is useful when you want to resubmit the preprocessed list­
ing for compilation. The #line directives renumber the lines of the prepro­
cessed file, so that errors generated in later stages of processing refer to
the original source file rather than to the preprocessed file.

The -EP option combines features of the -E and -P options; the file is
preprocessed and copied to the standard output, but no #line directives
are added.

Examples

cc -P main.c

This example creates the preprocessed file main.i from the source file
main.c.

cc -E add.c > preadd.c

This command creates a preprocessed file with inserted #line directives
from the source file add.c. The output is redirected to the file preadd.c.

cc -EP add.c

The command shown here produces the same preprocessed output as the
second example, but without the #line directives. The output appears on
the screen.

Preserving Comments (-C)

Option

-C

Normally, comments are stripped from a source file in the preprocessing
stage, since they do not serve any purpose in later stages of compiling.
The -C (for "comment") option preserves comments during preprocess­
ing. The -C option is valid only when the -E, -P, or -EP option is also
used.

Example

cc -P -c sample.c

2-29

XENIX C User's Guide

The example produces a listing named sample.i. The listing file contains
the original source file, including comments, with all preprocessor direc­
tives expanded or replaced.

Searching for Include Files (-I, -X)

Options

-I directory
-X

The -I and -X options temporarily override the default search paths for
include files. (Default path is /usr/include.)

You can add to the list of directories searched by using the -I (for
"include") option. This option causes the compiler to search the direc­
tory or directories you specify before searching the default path
lusrlinclude. The space between -I and directory is optional. You can add
more than one include directory by giving the -I option more than once in
the cc command. The directories are searched in order of their appearance
in the command line.

The directories are searched only until the specified include file is found.
If the file is not found in the given directories or the standard places, the
compiler prints an error message and stops processing. When this occurs,
you must restart compilation with a corrected directory specification.

You can prevent the C compiler from searching the default paths for
include files by using the -X (for "exclude") option. When cc sees the -X
option, it considers the list of standard places to be empty. This option is
often used with the -I option to define the location of include files that
have the same names as include files found in other directories, but that
contain different definitions.

Examples

cc -I /include -1/alt/include main.c

In this example, cc looks for the include files requested by main.c in the
following order: first in the directory linclude, then in the directory
laltlinclude, and finally in the default directory lusrlinclude.

cc -x -I /alt/include main.c

2-30

Compiling with the cc Command

As shown in this example, the compiler looks for include files only in the
directory faltfinclude. First the -X option tells cc to consider the list of
standard places empty; then the -I option specifies one directory to be
searched.

2.3.9 Checking for Program Errors

You may encounter several different kinds of error messages when you
compile, link, and run a XENIX C program.

Several cc options are available to control the types of warnings gen­
erated at compile time, help with syntax checking, and verify compatibil­
ity between the actual arguments and formal parameters of a function
during the early stages of program development. This section describes
these options.

Understanding Error Messages

Error messages can appear at different stages of program development:

• In the compiling stage, the compiler generates a broad range of
error and warning messages to help you locate errors and potential
problems in your source files.

• During the linking stage, the linker is responsible for generating
error messages.

• During program execution, any error messages you see are run­
time error messages. ThIS category includes messages about
floating-point exceptions, which are errors generated by an 8087 or
80287 coprocessor.

Other utilities included in this package, such as the XENIX Linker (Id)
and the make program-maintenance utility, generate their own error mes­
sages.

When you are compiling and linking using the cc command, you may see
both compiler and linker messages. Compiler messages have numbers
preceded by the letter C, and linker messages have numbers preceded by
the letter L.

You can also distinguish the type of a message by its format. See "C
Error Messages and Exit Codes" in this guide for a description of com­
piler error-message formats, a list of actual compiler error messages, and
explanations of the circumstances that cause them.

Compiler error messages are sent to the standard output, which is usually
your terminal. If you are using the C shell, you can redirect the messages

2-31

XENIX C User's Guide

to a file by using the standard redirection symbols at the end of your com­
mand line:

>&.

If you are using the Bourne shell, you can redirect the messages to a file
by using the standard redirection syntax:

cmd > outputfile 2>&1

Example

Assume the following source file named rm.c:

#include <stdio.h>

main (argc, argv)
int argc;
char argv[];

register int i;
char *name;

for (i = 1; i < arg; ++i)
if (unlink(name = argv[i]))

printf("couldn't delete %s
perror("");
}

, name);

The following C shell command line redirects error messages to a file
named rm.err:

cc rm.c >& rm.err

In the previous command, only output that ordinarily goes to the console
screen is redirected. The error-message file rm.err contains the following
information:

rm.c
rm.c(ll): error C2065: 'arg' : undefined
nm.c(12): warning C4047: '=' : different levels of indirection

2-32

Compiling with the cc Command

Based on the errors generated, you can correct rm.c as shown below:

#include <stdio.h>

main (argc, argv)
int argc;
char *argv [J ;

register int i;
char *name;

/* corrects warning C4047 */

for (i = 1; i < argc; ++i) /* corrects error C2065 */
if (unlink (name = argv [iJ)) {

printf("couldn't delete %s : ", name);
perror("");
}

Setting the Warning Level (-W, -w)

Option

-W{OIII213}
-w

You can suppress warning messages produced by the compiler by using
the -W (for' 'warning' ') option. Compiler warning messages are any mes­
sages beginning with C4; see "C Error Messages and Exit Codes," for a
full listing. Warnings indicate potential problems (rather than actual
errors) with statements that may not be compiled as you intend. The -W
options affect only source files given on the command line; they do not
apply to object files.

The -WO option turns off warning messages. This option is useful when
you compile programs that deliberately include questionable statements.
The -WO option applies to the remainder of the command line or until the
next occurrence of a -W option on the command line. The -w option has
the same effect as the -WO option.

The -WI option (the default) causes the compiler to display most warning
messages.

2-33

XENIX C User's Guide

The -W2 option causes the compiler to display an intermediate level of
warning messages. Level-2 warnings mayor may not indicate serious
problems; they include the following:

• Use of functions with no declared return type

• Failure to put return statements in functions with non-void return
types

• Data conversions that would cause loss of data or precision

The -W3 option displays the highest level of warning messages, including
warnings about the uses of non-ANSI features and extended keywords and
about function calls before the appearance of function prototypes in the
program.

Note that the warning messages in "Error Messages and Exit Codes"
indicate the warning level that must be set (that is, the number for the
appropriate -W option) for the message to appear.

Example

cc -W3 crunch.c print.c

This example enables all possible warning messages when the crunch.c
and print.c source files are compiled.

Checking Syntax (-Zs)

Option

-Zs

The -Zs option causes the compiler to perform only a syntax check on the
source files that follow the option on the command line. This option pro­
vides a quick way to find and correct syntax errors before you try to com­
pile and link a source file.

When you give the -Zs option, the compiler does not generate code or
produce object files, object listings, or executable files. However, the
compiler does display error messages if the source file has syntax errors.
You can specify the -Fs option on the same command line to generate a
source listing that shows these error messages. For more information
about the -Fs option, see the section on "Creating Listing Files."

2-34

Compiling with the cc Command

Example

cc -Zs test*.c

This command causes the compiler to perform a syntax check on all
source files in the current working directory that begin with test and end
with the default extension (.c). The compiler displays messages for any
errors found.

Generating Function Declarations (-Zg)

Option

-Zg

The -Zg option generates a function declaration for each function defined
in the source file. The function declaration includes the function return
type and an argument-type list created from the types of the formal
parameters of the function. Any function declarations already present in
the source file are ignored.

The generated list of declarations is written to the standard output. It can
be saved in a file using shell redirection.

When the -Zg option is used, the source file is not compiled. As a result,
no object file or listing is produced.

The list of declarations is helpful for verifying that actual arguments and
formal parameters of a function are compatible. You can save the list and
include it in your source file to cause the compiler to perform type­
checking. The presence of a declared argument-type list for a function
"turns on" the compiler's type-checking between actual arguments to a
function (given in the function call) and the formal parameters of a func­
tion.

This type-checking can be a helpful feature in writing and debugging C
programs, especially when working with older C programs. Argument
type checking is a recent addition to the C language, so many existing C
programs will not have argument-type lists. See the XENIX C Language
Reference for more information about function declarations and
argument-type lists.

You can use the -Zg option even if your source program already contains
some function declarations. The compiler accepts more than one
occurrence of a function declaration, as long as the declarations do not

2-35

XENIX C User's Guide

conflict. No conflict occurs when one declaration has an argument-type
list and another declaration of the same function does not, as long as the
return types are identical.

Note

If you use the -Zg option and your program contains formal parame­
ters that have structure, enumeration, or union type (or pointers to
such types), then the declaration for each structure, enumeration, or
union type must have a tag. For example, use the following form:

struct tagA

} Ai

Example

cc -Zg file.c > filedecls.h

This command causes the compiler to generate argument-type lists for
functions defined in file.c. The list of declarations is redirected to
filedecls.h.

2.3.10 Preparing for Debugging (-Zi, -Od)

Options

-Zi Creates object file for use with the source-level debugger sdb
-Od Disables code optimization to help with debugging

The -Zi option produces an object file containing full symbolic­
debugging information for use with the source-level debugger. This
object file includes full symbol-table information and line numbers. If the
-Zi option is given with no explicit -0 options, all optimizations involv- (
ing code motion and rearrangement are suppressed, although simple
optimizations are still performed. If any explicit -0 options are given, all
requested optimizations are performed.

The -Od option tells the compiler not to perform most optimizations.
Some peephole optimizations and other simple optimizations are still

2-36

Compiling with the cc Command

peIiormed. (Without the -Od option, the default is to optimize.) You may
want to use this option when you plan to use a symbolic debugger with
your object file, since optimization can involve rearrangement of instruc­
tions that make it difficult for you to recognize and correct your code
when debugging. However, turning off optimizations may increase the
size of the code generated to the point where it might not be possible to
link your program.

Other optimization options are discussed in the section on "Optimizing."

Example

cc -Zi -Od test.c

This command produces an object file named test.o that contains line
numbers corresponding to the line numbers of test.c. Limited optimiza­
tion is peIiormed.

2.3.11 Optimizing

The optimizing capabilities available with the XENIX C Compiler can
reduce the storage space or execution time required for a program. This is
achieved by eliminating unnecessary instructions and rearranging code.
The compiler peIiorms some optimizations by default. You can use the -0
options, the loop_opt pragma (described in the section on "Loop Optimi­
zation"), and the intrinsic pragma (described in the section under "Gen­
erating Intrinsic Functions") to exercise greater control over the optimi­
zations peIiormed. In addition, you can use the -Gs option or
check_stack pragma to reduce program size and speed up execution.

Controlling Optimization (-0 Options)

Option

-Ostring
#pragma loop opt([{on loft}])
#pragma intrinsic(functionl [,function2] • .•)
#pragma function(functionl [,function2] • ••)

2-37

XENIX C User's Guide

Note

This option is valid only for 286 code (generated using the M2 com­
piler flag).

The -0 options give you control over the optimization procedures that the
compiler performs. One or more of the letters in string following the -0
let you choose how the compiler performs optimization:

Letter Optimizing Procedure

a Relaxes alias checking

d Disables optimization

Enables intrinsic functions

Enables loop optimization

p Improves consistency of floating-point results

s Favors code size during optimization

t Favors execution speed during optimization (the default)

x Maximizes optimization

The letters can appear in any order; for example, -Oat and -Ota have the
same effect. More than one -0 option can be given; the compiler uses the
last -0 option given if any conflict arises. Each option applies to all
source files following that option on the command line.

The following sections discuss the various optimization options and their
effects.

Relaxing Alias Checking (-Oa)

The a option letter can be used with the I, s, or t option letter to relax the
assumptions the compiler makes about the use of "aliases" in the pro­
gram. Aliases are mUltiple names (that is, symbolic references) for the
same memory location in a program. Most commonly, aliases occur as a
result of code similar to that shown in the following example:

2-38

Compiling with the cc Command

func ()
{

int x, *Pi

P &Xi /* now "x" and "*p" refer to the same */
/* memory location */

Use of the -Oa option can reduce the size of executable files and speed
program execution. Its use is especially recommended when you also
specify the -01 option, since the compiler can detect a number of loop
optimizations when the -Oa option is in effect that it cannot detect when
-Oa is not in effect. However, before you specify -Oa, you must make
sure that your program does not use aliases either directly or indirectly.

The use of aliases is important only if both names are actually used to
reference the memory location. The following example illustrates the use
of aliases:

func ()
{

int x, *Pi

P &Xi

/* ... expressions involving only *p */

Since all access to the memory location labeled x is through the pointer p,
x has no significance in the function. To illustrate, June could be rewritten
as the following pair of functions:

2-39

XENIX C User's Guide

funcl ()
{

int x;

func2(&x) ;

func2(p)

int *p;
{

/* ... expressions involving *p */

In this equivalent fonn, the alias created in funcl is insignificant, since
the memory location is not referenced at all and func2 does not use
aliases since x is not even in the scope of the function. The -Oa option
can be safely specified in compiling either of these equivalent fonns.

In addition to the obvious cases discussed above, aliases can be created
through the use of pointers in other, more subtle ways. Two such cases
involving the use of pointers as function arguments are illustrated in the
following example:

int x;

func(p)

int *p;

/* ... expressions involving *p and x */

In this example, x is a communal variable, so the function can be called
with func(&x). The -Oa option can be used safely only if it is known that

2-40

Compiling with the cc Command

June is never invoked with the address of x as an argument.

func (pl, p2)

int *pl, *p2;
{

/* ... expressions involving *pl and *p2 */

In this example, the function may be invoked with the same value for
both arguments (that is, June(p,p) or June(&x,&x)). Thus, the -Oa option
can be safely specified only if it is known that the function is always
called with distinct values for the two arguments.

One use of aliases occurs so frequently that a special provision has been
made for it. When the compiler encounters a call to a function with
address-type arguments, it always assumes that all variables whose
addresses are passed to the function are modified. If such function calls
appear in a program, the -Oa option can be specified safely even though
the function call results in an alias for each variable whose address is
passed. The following example illustrates how the compiler handles- this
case:

func1 ()
{

int x, y, a, b;

x = a + b;

func2(&a);

y = a + b;

As shown, when the compiler encounters the function call June2(&a), it
assumes that the function modifies a, even if the -Oa option has been
specified. The compiler generates code to evaluate each instance of the
expression a + b, rather than eliminating a common subexpression
incorrectly.

2-41

XENIX C User's Guide

Although you should convert programs that use aliases if you plan to
compile them with the -Oa option, it is helpful to know the units of a pro­
gram where the optimizations affected by the use of -Oa are applied. This
information indicates where the uses of aliases are most likely to cause
incorrect optimizations if -Oa is specified. The following list describes
the program units where such optimizations are performed:

• All of the C optimizations, except for loop optimizations, that may
be affected by the incorrect use of -Oa are applied at the level of
basic blocks. In the XENIX C Compiler, the -Oa option can gen­
erally be used even if aliases are employed, provided no memory
location is referenced by more than one name within any basic
block. (A "basic block" is a contiguous sequence of statements,
with a unique entry point and exit point and no branching in
between. In C programs, basic blocks most often appear as the
clauses of if statements, switch statements, loop bodies, or func­
tion bodies, although they may also occur as sequences of state­
ments delimited by user labels.)

• Loop optimizations are applied at the level of whole loop bodies.
Thus, if loop optimization is enabled, -Oa can generally be used
even if aliases are employed, provided that no memory location is
referenced by more than one name within any basic block or loop
body.

Disabling Optimization (-Od)

The -Od option turns off most optimizations. This is useful in the early
stages of program development to avoid optimizing code that will later be
changed. Because optimization may involve rearrangement of instruc­
tions, you may also want to specify the -Od option when you use a
debugger with your program or when you want to examine an object-file
listing. If you optimize before debugging, it can be difficult to recognize
and correct your code. However, note that turning off or restricting optim­
ization of a program usually increases the size of the generated code. If
your program contains a module that is close to the 64K limit on com­
piled code, turning off optimization may cause the module to exceed the
limit.

Generating Intrinsic Functions (-Oi)

The -Oi option tells the compiler to generate intrinsic functions instead of
function calls for certain functions. Intrinsic functions may be in-line
functions, may use special argument-passing conventions, or (in some
cases) may do nothing. Programs that use intrinsic functions are faster

2-42

Compiling with the cc Command

because they do not include the overhead associated with function calls.
However, they may be larger because of the additional code that is gen­
erated.

Note

This option is only supported for the 286 compiler.

The following functions have intrinsic forms:

• memset, memcpy, and memcmp

• strset, strcpy, strcmp, and strcat

• inp and outp

• _rotl, _rotr, _Irotl, and _lrotr

• min, max, and abs

Note

Intrinsic versions of the memset, memcpy, and memcmp functions
in compact- and large-model programs cannot handle huge arrays or
huge pointers. To use huge arrays or huge pointers with these func­
tions, you must compile your program with the huge memory model
(that is, using the -Mh option on the command line).

You can use the intrinsic pragma to generate intrinsic functions only for
selected functions. This pragma has the following format:

#pragma intrinsic (junction1 [function2] ...)

2-43

XENIX C User's Guide

The intrinsic pragma aftects the specified functions from the point where
the pragma appears until either the end of the source file or the next func­
tion pragma specifying any of the same functions. The function pragma
has the following format:

#pragma function (jul1ctioni [junction2] ...)

Note that you can also use the function pragma selectively to generate
function calls instead of intrinsic functions when you compile a program
with the -Oi option.

Note

The only pragma applicable to 386 code is the pack pragma; all oth­
ers are not valid.

Loop Optimization (-01)

The -01 option tells the compiler to perform loop optimizations. For best
performance, the -01 option should be specified along with the a option
letter (-Oal), since the compiler can detect more loop optimizations when
it relaxes its assumptions about the use of aliases.

You can use the loop _opt pragma to turn loop optimization on or off for
selected functions. When you want to turn off loop optimization, put the
following line before the code on which you don't want to perform loop
optimization:

#pragma loop_opt (off)

Note that the preceding line disables loop optimization for all code that
follows it in the source file, not just the routines on the same line. To rein­
state loop optimization, insert the following line:

#pragma loop_opt (on)

If no argument is given to the loop opt pragma, loop optimization reverts
to the behavior specified on the command line: enabled if the -Ox or -01
option is in effect, and disabled otherwise. The interaction of the loop _opt

2-44

Compiling with the cc Command

pragma with the -01 and -Ox options is explained in greater detail in
Table 2.4.

Table 2.4

Using the loop_opt Pragma

Syntax

#pragma loop _ optO

#pragma loop _ optO

#pragma loop_opt (on)

#pragmaloop_opt(ofl)

Compiled with
20x or 201?

no

yes

yes or no

yes or no

Action

Turns off optimiza­
tion for loops that
follow

Turns on optimiza­
tion for loops that
follow

Turns on optimiza­
tion for loops that
follow

Turns off optimiza­
tion for loops that
follow

Achieving Consistent Floating-Point Results (-Op)

The -Op option is useful when floating-point results must be consistent
within a program. This option changes the way in which the program han­
dles floating-point values by default.

Ordinarily the compiler stores each floating-point value in an 80-bit regis­
ter. In subsequent references to that value, the compiler reads the value
from the register. When the final value is written to memory, it is trun­
cated, since floating-point types are allocated fewer than 80 bits of
storage (32 bits for the float type and 64 bits for the double type). Thus,
the value stored in the register may actually be more precise than the
same value stored in a floating-point variable. Since the value is truncated
each time it is written to memory, over the course of the program the
value stored in the machine register may become quite different from the
value that is written to memory.

If you use the -Op option, when floating-point values are referenced, the
compiler reloads them from floating-point variables rather than from
registers. Using -Op gives less precise results than using registers, and it
may increase the size of the generated code. However, it gives you more

2-45

XENIX C User's Guide

control over the truncation (and hence the consistency) of floating-point
values.

Optimizing for Speed and Code Size (-Ot, -Os)

When you do not give a -0 option to the cc command, it automatically
uses -Ot, meaning that program-execution speed is favored in the optimi­
zation. Wherever the compiler has a choice between producing smaller
(but perhaps slower) and larger (but perhaps faster) code, the compiler
generates faster code. For example, when the -Ot option is in effect, the
compiler generates intrinsic functions to perform shift operations on long
operands.

To cause the compiler to favor smaller code size instead, use the -Os
option. For example, when the -Os option is in effect, the compiler uses
function calls to perform shift operations on long operands.

Producing Maximum Optimization (-Ox)

The -Ox option is a shorthand way to combine optimizing options to pro­
duce the fastest possible program. Its effect is the same as using the fol­
lowing options on the same command line:

-Oailt -Gs

That is, the -Ox option relaxes alias checking, generates all intrinsics for
the functions listed in the section "Generating Intrinsic Functions," per­
forms loop optimizations, favors execution time over code size; and
removes stack probes. Note that the interactions between the -Ox option
and the loop _opt pragma are the same as those described in Table 2.4. For
more information about stack probes and ways of controlling their use,
see the following section, "Removing Stack Probes."

Examples

cc -Oal file.c

This command tells the compiler to perform loop optimizations and relax
alias-checking when it compiles file.c. The compiler favors program
speed over program size, since the -Ot option is also specified by default.

cc -c -Os file.c

2-46

Compiling with the cc Command

This command favors code size over execution speed when file.c is com­
piled:

cc -Od *.c

This command compiles and links all C source files with the default
extension (.c) in the current directory and disables optimization. This
command is most useful during the early stages of program development,
since it improves compilation speed.

Removing Stack Probes (-Gs)

Options

-Gs
#pragma check_stack([{onlofl}])

You can reduce the size of a program and speed up execution slightly by
removing stack probes. You can do this either with the -Gs option or with
the check_stack pragma.

A "stack probe" is a short routine called on entry to a function to verify
that there is enough room in the program stack to allocate local variables
required by the function. The stack probe routine is called at every func­
tion entry point. Ordinarily, the stack probe routine generates a stack
overflow message when it determines that the required stack space is not
available. When stack-checking is turned off, the stack probe routine is
not called, and stack overflow can occur without being diagnosed (that is,
no error message is printed).

Use the -Gs option when you want to tum off stack-checking for an entire
module if you know that the program does not exceed the available stack
space. For example, stack probes may not be needed for programs that
make very few function calls, or that have only modest local variable
requirements. In the absence of the -Gs option, stack-checking is on.

Use the check_stack pragma when you want to tum stack-checking on or
off only for selected routines, leaving the default (as determined by the
presence or absence of the -Gs option) for the rest. When you want to tum
off stack-checking, put the following line before the definition of the
function you don't want to check:

#pragma check stack (off)

2-47

XENIX C User's Guide

Note that the preceding line disables stack-checking for all routines that
follow it in the source file, not just the routines on the same line. To rein­
state stack-checking, insert the following line:

#pragma check stack (on)

Note

For earlier versions of XENIX C, the check_stack pragma had a
different format: check _ stack+ to enable stack-checking and
check_stack- to disable stack-checking. Although the XENIX C
Compiler still accepts this format, its use is discouraged, since it
may not be supported in future versions.

If no argument is given for the check stack pragma, stack-checking
reverts to the behavior specified on the command line: disabled if the -Gs
option is given, or enabled if otherwise. The interaction of the
check_stack pragma with the -Gs option is explained in greater detail in
Table 2.5.

Table 2.5

Using the check_stack Pragma

Compiled with
Syntax -Gs Option? Action

#pragma check_stackO yes Turns off stack-
checking for rou-
tines that follow

#pragma check _ stackO no Turns on stack-
checking for rou-
tines that follow

#pragma check_stack(on) yes or no Turns on stack-
. checking for rou-
tines that follow

#pragma check_stack(off) yes or no Turns off stack-
checking for rou-
tines that follow

2-48

Compiling with the cc Command

Note

The -Gs option should be used with great care. Although it can
make programs smaller and faster, it may mean that the program
will not be able to detect certain execution errors.

Example

cc -Oals -Gs file.c

This example optimizes the file .file.c by removing stack probes with the
-Gs option. The letters specified with the -0 option tell the compiler to
relax alias-checking (a), perform loop optimization (I), and favor code
size over program speed (s). If you want stack-checking for only a few
functions in file.c, you can use the check_stack pragma around the
definitions of functions you want to check. Similarly, if you want to per­
form loop optimization on only a few functions infile.c, you can use the
loop _opt pragma around the definitions of functions on which you want
to perform loop optimization.

2.3.12 Enabling/Disabling Language Extensions (-Ze, -Za)

Option

-Ze Enables language extensions (default)
-Za Disables language extensions

The XENIX C Compiler is moving to support the ANSI C standard. In addi­
tion' it offers a number of features beyond those specified in the ANSI C
standard. These features are enabled when the -Ze (default) option is in
effect and disabled when the -Za option is in effect. They include the fol­
lowing:

• The cdecl, far, fortran, huge, near, and pascal keywords

• Use of casts to produce values, as in this example:

int *p;
((long *)p) ++;

2-49

XENIX C User's Guide

The preceding example could be rewritten to conform with ANSI C
as shown here:

p = (int *) ((char *)p + sizeof (long));

• Redefinitions of extern items as static, as follows:

extern int foo();
static int faa ()
{ }

• Use of trailing commas (,) rather than an ellipsis (...) in function
declarations to indicate variable-length argument lists, such as:

int printf(char *,);

• Benign typedef redefinitions within the same scope, like this:

typedef int INT;
typedef int INT;

• Use of mixed character and string constants in an initializer, for
instance:

char arr[5] { , a', , b', "cde"};

• Use of bit fields with base types other than unsigned int or signed
int

Use the -Za option if you will be porting your program to other environ­
ments. The -Za option tells the compiler to treat extended keywords as
simple identifiers and disable the other extensions listed previously.

2.3.13 Packing Structure Members (-Zp)

Option

-Zp[{11214}]
#pragma pack([{11214}])

2-50

Compiling with the cc Command

When storage is allocated for structures, structure members are ordinarily
stored as follows:

• Items of type char or unsigned char, or arrays containing items of
these types, are byte-aligned.

• Structures are word-aligned; structures of odd size are padded to
an even number of bytes.

• All other types of structure members are word aligned.

To conserve space, or to conform to existing data structures, you may
want to store structures more or less compactly. The -Zp option and the
pack pragma control how structure data are "packed" into memory.

Use the -Zp option when you want to specify the same packing for all
structures in a module. When you give the -Zp[n] option, where n is 1,2,
or 4, each structure member after the first is stored on n-byte boundaries,
depending on the option you choose. If you use the -Zp option without an
argument, structure members are packed on I-byte boundaries.

On some processors, the -Zp option may result in slower program execu­
tion because of the time required to unpack structure members when they
are accessed. For example, on an 8086 processor, this option can reduce
efficiency if members with int or long type are packed in such a way that
they begin on odd-byte boundaries.

Use the pack pragma when you want to specify packing other than that
specified on the command line for particular structures. Give the pack(n)
pragma, where n is 1, 2, or 4, before structures that you want to pack
differently. To reinstate the packing given on the command line, give the
packO pragma with no arguments.

Table 2.6 shows the interaction of the -Zp option with the pack pragma.

Syntax

#pragma packO

Table 2.6

Using the pack Pragma

Compiled with
-Zp Option?

yes

Action

Reverts to packing
specified on the
command line for
structures that fol-

2-51

XENIX C User's Guide

#pragma packO no

#pragma pack(n) yes or no

Example

cc -Zp prog.c

low
Reverts to default
packing for struc­
tures that follow

Packs the following
structures to the
given byte boundary
until changed or
disabled

This command causes all structures in the program prog.c to be stored
without extra space for alignment of members on int boundaries.

2.3.14 Setting the Stack Size (-F)

Option

-F hexnum

The -F option sets the size of the program stack. A space must separate
the -F and hexnum. (This option applies only to the 286 compiler; 386
code uses a dynamic stack.)

The hexnum is a hexadecimal value representing the stack size in bytes.
The value must be less than OxFFFF hexadecimal (65,535 decimal).

If you do not specify this option, the start-up routine in the standard C
library sets the default stack size to 2K.

If you get a stack-overflow message, you may need to increase the size of
the stack. In contrast, if your program uses the stack very little, you may
save some space by decreasing the stack size.

The -F option is a linking option that affects executable files only; it does
not have any effect on source or object files.

Example

cc -F COO *.0

2-52

Compiling with the cc Command

This example sets the stack size to COO hexadecimal (3K decimal) for the
program created by linking all of the object files in the current working
directory.

2.3.15 Restricting the Length of External Names (-nl)

Option

-nl number

The cc command allows you to restrict the length of external (public)
names by using the -nl option. The number is an integer specifying the
maximum number of significant characters in external names. The space
between -nl and number is optional.

When you use the -n} option, the compiler considers only the first number
characters of external names used in the program. The program may con­
tain external names longer than number characters; the extra characters
are simply ignored.

The -nl option is typically used to conserve space or to aid in creating
portable programs. The XENIX C Compiler imposes no restrictions on the
length of external names (although it uses only the first 31 characters), but
other compilers or linkers may produce errors when they encounter names
longer than a predetermined limit.

2.3.16 Labeling the Object File (-V)

Option

-V string

Use the -V (for "version") option to embed a text string in an object file.
The string must be enclosed in double quotation marks (" ") if it contains
white-space characters or embedded double quotation marks. A backslash
(\) must precede any embedded double quotation marks.

A typical use of the -V option is to label an object file with a version
number or copyright notice.

Example

cc -V"XENIX C Optimizing Compiler Version 5.0" main.c

2-53

XENIX C User's Guide

This command places the following string in the object file main.o:

XENIX C Optimizing Compiler Version 5.0

2.3.17 Suppressing Default-Library Selection (-Zl)

Option

-Zl

Ordinarily, the compiler places the names of the default libraries for the
memory-model options you have chosen in the object file for the linker to
read. This allows the appropriate library to be linked with a program
automatically.

The -Zl option tells the compiler not to place the default library name in
the object file. As a result, the object file is slightly smaller.

The -Zl option is useful when you are building a library of routines. Every
routine in the library need not contain the default-library information.
Although the -Zl option saves only a small amount of space for a single
object file, the total space saved is significant in a library containing
many object modules. When you link a library of object modules created
with the -Zl option and a C program file compiled without the -Zl option,
the default-library information is supplied by the program file.

Example

CC one.c -Zl two.c

This example creates the following two object files:

1. An object file named one.o that contains the default library infor­
mation

2. An object file named two.o that contains no default-library infor­
mation

When one.o and two.o are linked, the default-library information in one.o
causes the given library to be searched for any unresolved references in
either one.o or two.O.

2-54

Compiling with the cc Command

2.3.18 Changing the Default char Type (-J)

Option

-J

In XENIX C, the char type is signed by default, so if a char value is
widened to int type, the result is sign-extended. You can change this
default to unsigned with the -J option, causing the char type to be zero­
extended when widened to int type. However, if a char value is explicitly
declared signed, the -J option does not affect it, and the value is sign­
extended when widened to int type.

When you specify -J, the compiler automatically defines the identifier
CHAR UNSIGNED. - -

2.3.19 Controlling the Calling Convention (-Gc)

Options

-Gc
fortran
pascal
cdecl

The -Gc option and the fortran, pascal, and cdecl keywords allow you to
control the function-calling and naming conventions so that your C pro­
grams can call and be called by functions that are written in FORTRAN
and Pascal.

Because C, unlike other languages such as XENIX Pascal and XENIX
FORTRAN, allows you to write functions that take variable numbers of
arguments, it must handle function calls differently. Languages such as
Pascal and FORTRAN normally push actual parameters to a function in
left-to-right order, with the last argument in the list being the last one
pushed on the stack. In contrast, C functions do not always know the
number of actual parameters, so they must push their arguments from
right to left, with the first argument in the list being the last one pushed.

Additionally, the calling function must remove the arguments from the
stack in C (rather than having the called function do it, as in Pascal and
FORTRAN). If the code for removing arguments is in the called function
(as in Pascal and FORTRAN), it appears only once; if it is in the calling

2-55

XENIX C User's Guide

function (as in C), it appears every time there is a function call. Since
function calls are more numerous than individual functions, the
Pascal/FORTRAN method is slightly smaller and more efficient.

The XENIX C Compiler has the ability to generate the Pascal/FORTRAN
calling convention in one of several ways. The first is through the use of
the pascal and fortran keywords. When these keywords are applied to
functions, or to pointers to functions, they indicate a corresponding Pascal
or FORTRAN function. Therefore, the correct calling convention must be
used. In the following example, sort is declared as a function using the
alternative calling convention:

short pascal sort(char *, char *);

The pascal and fortran keywords can be used interchangeably. Use them
when you want to use the left-to-right calling sequence for selected func­
tions only.

The second method for generating the Pascal/FORTRAN calling conven­
tion is to use the -Gc option. If you do this, the entire module is compiled
using the alternative calling convention. You might use this method to
make it possible to call all the functions in a C module from another
language, or to gain the performance and size improvement provided by
this calling convention. When you use -Gc to compile a module, the com­
piler assumes that all functions called from that module use the
Pascal/FORTRAN calling convention, even if the functions are defined
outside that module. Thus, using -Gc would normally mean that you can­
not call or define functions that take variable numbers of parameters, and
that you cannot call functions such as the C library functions that use the
C calling sequence. In addition, if you compile with the -Gc option, either
you must declare the main function in the source program with the cdecl
keyword, or you must change the start-up routine so that it uses the
correct naming and calling conventions when calling main.

To overcome these restrictions, the cdecl keyword has been added to
XENIX C. This keyword is the "inverse" of the fortran and pascal key­
words. When applied to a function or function pointer, it indicates that the
associated function is to be called using the normal C calling convention.
This allows you to write C programs which take advantage of the more
efficient calling convention while still having access to the entire C
library, other C objects, and even user-defined functions that can take
variable-length argument lists.

Run-time library functions all use the C calling convention. Therefore,
care must be taken to declare them cdecl functions.

2-56

Compiling with the cc Command

Use of the pascal and fortran keywords, or the -Gc option, also affects
the naming convention for the associated item (or, in the case of -Gc, all
items): the name is converted to uppercase (capital letters), and the lead­
ing underscore that C normally prefixes is not added. The pascal and for­
tran keywords can be applied to data items and pointers, as well as func­
tions; when applied to data items or pointers, these keywords force the
naming convention described above for that item or pointer.

The pascal, fortran, and cdecl keywords, like the near, far, and huge
keywords, are disabled by use of the -Za option. If this option is given,
these names are treated as ordinary identifiers, rather than keywords.

Examples

int cdecl var_print (char*, ...);

In this example, var yrint is allowed to have a variable number of argu­
ments by declaring it as a function using the normal right-to-Ieft C func­
tion calling convention and naming conventions. The cdecl keyword
overrides the left-to-right calling sequence set by use of the -Gc option
when compiling the source file in which this declaration appears; if this
file is compiled without the -Gc option, cdecl has no effect since it is the
same as the default C convention.

float *pascal nroot(number, root)

This instruction declares nroot to be a function returning a pointer to a
value of type float. The function nroot uses the default calling sequence
(left-to-right) and naming conventions for XENIX FORTRAN and Pascal
programs.

long pascal index

This example simply changes the naming convention for the data item
index: it is included in the object file in all capital letters and without a
leading underscore.

2.3.20 Compiling Programs for DOS Environment (-dos, -FP)

The XENIX C compiler is capable of compiling programs that will exe­
cute in the DOS environment.

The -dos option instructs the compiler to use a different set of libraries
(from /usrllib/dos) and a different linker (dosld(CP». Note that programs

2-57

XENIX C User's Guide

compiled with -dos will not run in the XENIX environment. Many XENIX
system calls are not supported in DOS.

There are a variety of -FP options that can be used along with -dos to
control floating point operations. For more information on -FP and on
DOS cross-development in general, see "XENIX to DOS: A Cross­
Development System," in the XENIX C Library Guide, and "Writing
Portable Programs" in the XENIX C User's Guide.

2.3.21 Displaying Compiler Passes (-d, -z)

The cc command is actually a driver program which executes a series of
compiler passes, perhaps an assembler pass, and a linker. It collects the
various options and files on its command line and distributes them to the
proper pass or to the linker. The XENIX C compiler is conceptually a
four-pass compiler. The function of the various compiler passes is out­
lined below.

Pass 0
Pass zero of the compiler is commonly termed the pre-processor. It han­
dles file inclusion, macro expansion and text substitution, and allows you
to define constructs for conditional compilation.

Pass 1
Pass one of the compiler is called the parser. It performs two functions:
(1) building a context-free grammar tree to pass to P2; and (2) construct­
ing a symbol table.

Pass 2
Pass two generates code. It walks the grammar tree constructed by pass
1, applies semantic rules to each syntactic construct, and produces the
binary code indicated by the semantic rules.

Pass 3
The third pass provides post-generation optImIzation. It analyzes the
code generated by pass 2 and applies optimization rules to alter the code
for better performance (such as elimination of redundant code, rearrange­
ment, etc.). It creates the object code and outputs listing files (if
requested).

The -d option displays the various passes and their arguments before they
are executed. The -z option shows the passes but does not execute them.

2-58

Chapter 3

Linking with

the cc Command

3.1 Introduction 3-1

3.2 The Default Linking Process 3-1

3.3 Passing Linker Infonnation: The -link Option 3-1
3.3.1 Specifying Libraries 3-2
3.3.2 Specifying Linker Options 3-3

Linking with the cc Command

3.1 Introduction

Since the cc command controls linking as well as compiling, you can
specify linker options and libraries other than the default combined
library to be linked with your object files on the cc command line.

3.2 The Default Linking Process

When the cc command compiles a source file, it encodes the name of the
appropriate library in the object file. The library name embedded in the
library file is determined by the memory-model (-M) option you give on
the cc command line. (For a list of the libraries, see the' 'Compiling with
the cc Command" chapter of this guide.)

If you use the default memory-model option (-Ms), cc encodes the name
of the standard library that corresponds to the defaults.

When an object file is linked, the linker looks for libraries matching the
names encoded in the object file. The linker looks for these libraries first
in /usrllib/286.

The result is that you do not ordinarily need to give library names on the
cc command line. For descriptions of the situations that require you to
specify libraries to the cc command, see the section on "Specifying
Libraries.' ,

3.3 Passing Linker Information: The -link Option

To pass linker options or nondefault library names to the linker, give the
following options on the cc command line after any source- and object­
file names and cc options:

-link [link-lib info]

Use the link-libinfo field to specify linker options, libraries, and library
search paths. Note that library names can also be specified with source­
and object- file names before the -link option on the command line, as
long as the library names have the .a extension. These library names are
searched before library names specified after the -link option. Refer to the
following sections for more information:

• "Specifying Libraries," to learn about specifying libraries and
library search paths

3-1

XENIX C User's Guide

• ' 'Specifying Linker Options,' , for descriptions of the linker
options that apply to XENIX C.

If you use the -link option with the cc command, it must be the last option
on the command line.

3.3.1 Specifying Libraries

To link object files with libraries other than the default library, give the
names of the nondefault libraries on the cc command line. Library names
appearing before -link must have the .a extension; library names appear­
ing after -link may have blank extensions or no extensions. A space or
plus sign (+) must follow each library name except the last.

Since the object file already contains the names of the correct combined
library, you do not need to specify libraries unless you want to do any of
the following:

• Link with additional libraries

• Look for libraries in different locations

• Override the use of the default library

Linking with Additional Libraries

If you specify additional libraries to cc, the linker searches the libraries
you specify before it searches the default library to resolve external refer­
ences in the object files. It searches the libraries you specify in their order
of appearance on the command line.

If a library name includes a path specification, the linker searches only
that path for the library.

If you specify only a library name (without a path specification), the
linker searches in the following locations to find the given library file:

• The current working directory

• Any path specifications that you give in the link-libinfo field, in
their order of appearance on the command line

• The default location lusrllib

3-2

Linking with the cc Command

If a library name without an extension appears after the -link option, the
linker automatically supplies the .a extension. If you want to link a library
file with an extension other than .a, you must specify the complete library
name.

Looking in Different Locations for Libraries

You can tell the linker to look in different locations for libraries by giving
a path specification in the link-libinfo field on the cc command line.

The linker looks for the default libraries in the same order as it looks for
libraries given on the command line.

Overriding Libraries Named in Object Files

If you do not want to link with the library whose name is included in the
object file, you can give the names of one or more different libraries
instead. You will want to specify a different library name if you have
renamed a standard library.

If you specify a new library name, the linker searches the new library to
resolve external references before it searches the library specified in the
object file.

If you want the linker to ignore the libraries named in the object file, you
must use the -NOD linker option. This option tells the linker to ignore the
default-library names encoded in the object files.

Example

cc £un.o text.o table.o care.o -link Itestlib/newlibv3.a

This example links four object modules to create an executable file
named a.out. The linker searches Itestlibl newlibv3.a before searching the
default libraries to resolve references.

3.3.2 Specifying Linker Options

When you use the cc command to invoke the linker, any linker options
you specify (other than those supported by cc options such as -F and -Fm)
must appear after the -link option on the command line. All options begin
with the linker's option character, the dash (-).

3-3

XENIX C User's Guide

The following sections outline the rules for specifying linker options on
the cc command line.

Abbreviations

Since linker options are named according to their functions, some of these
options are quite long. You can abbreviate the options to save space and
effort. Be sure that your abbreviation is unique, so that the linker can
determine which option you want. (The minimum legal abbreviation for
each option is indicated in the syntax of the option.)

For example, several options begin with the letters "NO"; therefore,
abbreviations for those options must be longer than "NO" to be unique.
You cannot use "NO" as an abbreviation for the -NOIGNORECASE
option, since the linker cannot tell which of the options beginning with
"NO" you want. The shortest legal abbreviation for this option is -NO!.

Abbreviations must begin with the first letter of the option and must be
continuous through the last letter typed. No gaps or transpositions are
allowed.

Numerical Arguments

Some linker options take numerical arguments. A numerical argument
can be any of the following:

• A decimal number from 0 to 65,535

• An octal number from 0 to 0177777. A number is interpreted as
octal if it starts with O. For example, the number 10 is a decimal
number, but the number 010 is an octal number, equivalent to 8 in
decimal

• A hexadecimal number from 0 to OxFFFF. A number is interpreted
as hexadecimal if it starts with Ox or OX. For example, Ox10 is a
hexadecimal number, equivalent to 16 in decimal

Differences from cc Options

If you are accustomed to using cc options, you should be aware that the
linker options work in a slightly different manner. Keep the following
differences in mind when you use linker options:

3-4

Linking with the cc Command

• Linker options can be abbreviated; cc options cannot. For example,
the linker option -NOIGNORECASE can be abbreviated to -NO I.

• Case is not significant in linker options, as it is in cc options. For
example, -NOI and -noi are equivalent.

• Linker options on the command line affect all files in the linking
process, regardless of where the options appear in the link-libinfo
field.

This section summarizes the linker options that can be used with XENIX
C programs. Note that this section does not describe all available linker
options; for a complete list, refer to the Id(CP) command in the XENIX
Programmer's Reference Manual.

The following linker option is most commonly used with XENIX C pro­
grams:

-SE[GMENTS]:number
Controls the number of segments that the linker allows a program to
have. The default is 128, but you can set number to any value
(decimal, octal, or hexadecimal) in the range 1-1024 (decimal).

For each segment, the linker must allocate some space to keep track
of segment information. When you set the segment limit higher than
128, the linker allocates more space for segment information. For
programs with fewer than 128 segments, you can keep the storage
requirements of the linker at the lowest level possible by setting
number to reflect the actual number of segments in the program. The
linker displays an error message if the number of segments allocated
is too high for the amount of memory the linker has available.

The following linker options can be used with XENIX C programs, but
they perform the same actions as cc options. Therefore, you do not need
to use them unless you are compiling and linking in separate steps.

-M[AP] [:number]
Creates a map file. This option is equivalent to using the -Fm option
with the cc command, except that you can give a number argument
with the -M option. The number argument is any positive integer
(decimal, octal, or hexadecimal) up to 65,535 (decimal) specifying
how many symbols are sorted in the map listing. If no number argu­
ment is given, a maximum of 2048 symbols is sorted. (In practice,
the number of sorted symbols is limited by the amount of free heap
space.) If a number argument is given, the alphabetical list of sym­
bols does not appear in the map file.

3-5

XENIX C User's Guide

-LI[NENUMBERS]
Creates a map file and includes the line numbers and associated
addresses of the source program. This option is equivalent to using
the -Zd option with the cc command. For more information about the
-Zd option, see the "Compiling with the cc Command" chapter of
this guide.

-ST[ACK]:number

3-6

Specifies the size of the stack for your program, where number is any
positive value (decimal, octal, or hexadecimal) up to 65,535
(decimal) representing the size, in bytes, of the stack. This option is
equivalent to using the -F option of the cc command. For more infor­
mation about the -F option, see the "Compiling with the cc Com­
mand" chapter of this guide.

Chapter 4

Running C Programs

onXENIX

4.1 Introduction 4-1

4.2 Passing Command-Line Data to a Program 4-1

Running C Programs on XENIX

4.1 Introduction

After compiling and linking a program with the XENIX C Compiler and
linking with the linker, you will have an executable file that can be run
from the shell prompt.

XENIX uses the PATH environment variable to find executable files. You
can execute your program from any directory, as long as the executable
program file is in one of the directories on the path set in the PATH
environment variable.

Your program can also be executed by other programs, and you can write
it so that it will be capable of executing other programs. The exec and
system routines provided in the run-time library allow your program to
execute other programs. See the XENIX C Library Guide for a description
of these routines.

XENIX has several other unique capabilities that your program can use if
you write the program to take advantage of them. Among these capabili­
ties are the following:

• Receiving arguments from the command line

• Reading information from the environment

• Sending a message to the shell by returning an exit code

This chapter explains how to write programs to take advantage of the first
of these features, and how to use it once your program is completed.

4.2 Passing Command-Line Data to a Program

Your C program can access data from a command line or from the
environment. You can use the Bourne shell commands to place data in the
environment table. Command-line data are arguments that appear on the
same line as the program name when you execute the program.

To pass data to your program on the command line, give one or more
arguments after the program name when you execute the program. Each
argument must be separated from the arguments around it by one or more
spaces or tab characters, and may be enclosed in quotation marks (" "). If
you want to give a single argument that includes spaces or tab characters,

4-1

XENIX C User's Guide

enclose the argument in quotation marks. For example, if your C program
is called try, you might give it the following command line:

try 42 "de fll 16

In this case, the program will be executed and three arguments will be
passed: 42, del, and 16.

For a C program to read the data from the command line, the program
should declare two variables as arguments to the main function. These
variables and their contents are as follows:

Variable Contents

argc Number of arguments passed

argv Array of strings containing arguments

By declaring these variables as arguments to main, you make them avail­
able as local variables in the main function. The following example illus­
trates how to declare these arguments:

main (argc, argv)
int argc;
char *argv [J;

The number of arguments appearing on the command line is passed as the
integer variable argc, and the command line is passed to the program as
the array of strings indicated by argv.

The first argument of any command line is the name of the program to be
executed. Therefore, the program name is the first string stored in argv, at
argv [0]. Since a program name must be given to run the program, the
integer value of argc is always at least 1. Therefore, if you pass two argu­
ments to your program, argc will have a value of 3 (two arguments and
the program name).

The first argument following the program name is stored at argv [1], the
second is stored at argv [2], and so on, to the last argument. There is a
third argument passed to the main function: envp, a pointer to the
environment table. This argument is an extension provided by the XENIX
C Compiler to support code ported from XENIX and other UNIX-like sys­
tems. When specified, it follows argv and is declared as follows:

char *envp [J;

4-2

Running C Programs on XENIX

Although you can use this pointer to access the value of environment set­
tings, this usage is nonstandard and not recommended. The putenv and
getenv routines from the C run-time library accomplish the same task,
and are easier and safer to use. Using the putenv routine may change the
location of the environment table in memory, depending on memory
requirements. Therefore, the value given to envp at the beginning of the
program's execution may not be valid throughout. In contrast, the putenv
and getenv routines access the environment table properly, even when its
location changes. These routines use the global variable environ
(described in the XENIX C Library Guide), which always points to the
correct table location.

Example

myprog ABC "abc e" 3 8

This command line executes the program named myprog and passes the
four command-line arguments to the main function. The arguments are
stored as null-terminated strings, and the number of arguments is stored in
argc. To access the last argument, for example, you would use an expres­
sion like the following:

argv [argc - 1]

Since the value of argc is 5 (counting the program name as an argument),
this expression is equivalent to argv [4 J, or the fifth string of the array.

4-3

Chapter 5

Working with Memory Models

5.1 Introduction 5-1
5.1.1 Memory Model Considerations 5-2

5.2 Near, Far, and Huge Addressing 5-3

5.3 U sing the Standard Memory Models 5-4
5.3.1 Porting Considerations 5-5
5.3.2 Creating Small-Model Programs 5-6
5.3.3 Creating Medium-Model Programs 5-7
5.3.4 Creating Compact-Model Programs 5-7
5.3.5 Creating Large-Model Programs 5-9
5.3.6 Creating Huge-Model Programs 5-9
5.3.7 Segmentation Errors 5-10

5.4 Using the near, far, and huge Keywords 5-12
5.4.1 Library Support for near, far, and huge 5-14
5.4.2 Declaring Data with near, far, and huge 5-14
5.4.3 Declaring Functions with the near and far Keywords 5-18
5.4.4 Pointer Conversions 5-20

5.5 Creating Customized Memory Models 5-22
5.5.1 Code Pointers 5-24
5.5.2 Data Pointers 5-24
5.5.3 Setting Up Segments 5-25
5.5.4 Library Support for Customized Memory Models 5-26

5.6 Setting the Data Threshold 5-27

5.7 Naming Modules and Segments 5-28

5.8 Specifying Text and Data Segments 5-30

Working with Memory Models

5.1 Introduction

Expanding the computing power of microcomputers often means giving
the computer more "space" to work in. The Intel family of microproces­
sors (8080, 8086, 80286, and 80386) is a good example of such growth.
Each new processor was capable of addressing more memory space than
its predecessor.

The 8080 processor could address 64 kilobytes (64K) of memory, using
16-bit-wide address registers. For the 8086 processor, the address space
was expanded to one-megabyte (1M). However, rather than expand the
size of the address registers, a second set of "segment" registers was
added. These registers select 64K blocks of memory, known as segments,
within the one-megabyte address space. The 16-bit address registers then
select an offset from the beginning of a segment through a hardware
operation equivalent to shifting the segment register 4 bits (multiplying
by 16) and adding that to the offset value. This allows the 8086 to have a
larger address space, yet retain the 16-bit registers of the 8080 for back­
ward compatibility.

The same architecture is used for the 80286 processor, except that in the
processor's "protected mode" the 16-bit segment base values are shifted
over 8 bits instead of 4 as in the 8086 or in the 80286's "real mode." The
80286 thus uses a 24-bit address, capable of addressing up to 16 mega­
bytes of memory.

This segmented architecture can complicate the development of large
programs under the XENIX 86 and XENIX 286 Operating Systems. The
80386 processor with its 32-bit registers is not restricted by 64K seg­
ments; its segment size is 4096 Mbytes. It is therefore much more like
non-segmented architectures such as the Motorola 68000.

However, a substantial amount of software development is done in the
XENIX 86 and XENIX 286 environments. Understanding the potential
stumbling blocks in the 80286 world is necessary to develop large pro­
grams effectively. Error messages such as "DGROUP allocation exceeds
64K," "Not enough core," and "Too big" can be incomprehensible
without an understanding of segment usage under XENIX System V.

There are two types of segments under XENIX. Text segments (also
called code segments) contain the actual machine instructions for the pro­
gram. Data segments contain all the programs data, such as global vari­
abIes and the stack. Under XENIX, the program's stack is included in the
first data segment. A program's "memory model" determines how many
text and data segments the program is allowed to have.

5-1

XENIX C User's Guide

5.1.1 Memory Model Considerations

If you do not specify a memory model, cc uses the small memory model
by default. This is sufficient for most programs.

You cannot use the small memory model if your program meets one or
more of the following three conditions:

1. Your program has more than 64K of code.

2. Your program has more than 64K of data.

3. Your program contains individual arrays that need to be larger than
64K.

If you decide that the small memory model will not be adequate for your
program, you have four options for larger memory models:

1. You can specify one of the other standard memory models
(medium, compact, large, or huge) using one of the -M options.

2. You can create a mixed-model program using the near, far, and
huge keywords.

3. You can create your own customized memory model using the
-Astring option.

4. Method 2 can be combined with either method 1 or method 3.

5-2

Working with Memory Models

Note

The only memory model supported for 80386 code is the pure small
model. It is important to note that all other memory models apply to
only 8086 and 80286 processors. Large and huge model programs
will not run on an 8086, and any program for the 8086 or 80286, of
any model, will run on an 80386, although the segment size is still
limited to 64K.

When generating code specifically for the 80386 processor under
sca XENIX 386, the C compiler supports only "small" model pro­
grams, but without the 64K limit, since 80386 registers are all 32
bits wide, and its segments are over four billion bytes long. All
models are supported for 86/286 code.

Choosing a memory model for a program is a trade-off between size and
speed. Programs of all memory models have one "near" data segment
that is addressed through the processor's DS segment register. References
to data in this segment require only a 16-bit address calculation. Large
and huge model programs may have one or more additional segments.
However, addressing data in these' 'far" segments requires loading a seg­
ment register in addition to calculating the offset within the segment.

5.2 Near, Far, and Huge Addressing

Understanding the terms "near," "far," and "huge" is crucial to under­
standing the concept of memory models. These terms indicate how data
can be accessed in the segmented architecture of the 80x86 family of
microprocessors (8086, 80186, 80286).

XENIX loads the code and data allocated by your program into "seg­
ments" of physical memory. Each segment is up to 64K long. With the
exception of impure small model programs, separate segments are always
allocated for the program code and data. Impure small model programs
fit all data and code into one segment. Except for this case, the minimum
number of segments allocated for a program is two; these two segments,
required for every program, are called "the default segments." The small
memory model uses only the two default segments. The other memory
models discussed in this chapter allow more than one code segment per
program, more than one data segment per program, or both.

In the 80x86 family of microprocessors, all memory addresses consist of
two parts:

5-3

XENIX C User's Guide

1. A 16-bit number that represents the base address of a memory
segment

2. Another 16-bit number that gives an offset within that segment

The architecture of the 80x86 microprocessor is such that code can be
accessed within the default code or data segment using just the 16-bit
offset value. This is possible because the segment addresses for the
default segments are always known. This 16-bit offset value is called a
"near" address, and can be accessed with a "near" pointer. Since only
16-bit arithmetic is required to access any near item, near references to
code or data are smaller and more efficient.

When data or code lies outside the default segments, the address must use
both the segment and offset values. Such addresses are called "far"
addresses, and can be accessed by using "far" pointers in a C program.
Accessing far data or code items is more expensive in terms of program
speed and size, but using them allows your programs to address all
memory, rather than just a 64K piece.

There is a third type of address in XENIX C: the "huge" address. A huge
address is similar to a far address in that each consists of a segment value
and an offset value; but the two differ in the way address arithmetic is per­
formed on pointers. Because items (both code and data) referenced by far
pointers are still assumed to lie completely within the segment in which
they start, pointer-arithmetic is done only on the offset portion of the
address. This gain in pointer arithmetic efficiency is achieved, however,
by limiting the size of any single item to 64K. With data items, huge
pointers overcome this size limitation; pointer arithmetic is performed on
all 32 bits of the data item's address, thus allowing data items referenced
by huge pointers to span more than one segment, provided they conform
to the rules outlined in the section on "Creating Huge-Model Programs."

The rest of this chapter deals with the various methods you can use to
control whether your program makes far, near, or huge calls to access
code or data.

5.3 Using the Standard Memory Models

The standard libraries provided with the XENIX Development System
support five standard memory models. Using the standard memory models
is the simplest way to control how your program accesses code and data
in memory.

When you use the standard memory models, the compiler handles library
support for you. The library corresponding to the memory model you

5-4

Working with Memory Models

specify is used automatically. Each memory model has its own library,
except for the huge memory model, which uses the large-model library.

The advantage of using standard models for your programs is simplicity.
In the standard models, memory management is specified by compiler
options; since the standard models do not require the use of extended key­
words, they are the best way to write code that can be ported to other sys­
tems (particularly systems that do not use segmented architectures).

The disadvantage of using standard memory models exclusively is that
they may not produce the most efficient code. For example, if you have an
otherwise small-model program containing a large array that pushes the
total data size for your program over the 64K limit for small-model, it
may be to your advantage to declare the one array with the far keyword,
while keeping the rest of the program small model, as opposed to using
the standard compact-memory model for the entire program. For max­
imum flexibility and control over how your program uses memory, you
can combine the standard-memory-model method with the near, far, and
huge keywords described in "Using the near, far, and huge Keywords."

The -M option for cc is used to specify one of the five standard memory
models (small, medium, compact, large, or huge) at compile time. These
options are discussed in the next five sections.

Note

In the following sections, which describe in detail the different
memory-model addressing conventions, it is important to keep in
mind two common features of all five models:

1. No single source module can generate 64K or more of code.

2. No single data item can exceed 64K, unless it appears in a
huge-model program or it has been declared with the huge
keyword.

5.3.1 Porting Considerations

When porting software to XENIX System V on Intel processors from other
operating systems or other processors, it is important to recognize the
differences that arise from the Intel-segmented architecture. One com­
mon assumption is that an integer occupies the same number of bytes as a

5-5

XENIX C User's Guide

pointer. While this is true for small models, it is not true for middle and
large models, and can cause many problems. Another common practice is
to use the integer 0 to denote a null pointer. For large and huge model
programs, 0 must be typecast to an appropriate pointer (typically a pointer
to a char, such as (char *)0 to assure that operations with pointers work
correctly.

5.3.2 Creating Small-Model Programs

Option

-Ms

The small-model option tells the compiler to create a program that occu­
pies one segment for both code and data. (Impure Small Model)

Impure small-model programs are typically C programs that are short or
have a limited purpose. Since code and data for these programs is limited
to 64K, the total size of a small-model program can never exceed 64K.
Most programs fit easily into this model. Using the -i flag, you can create
a pure small model program. A pure small model program has one seg­
ment of code and one segment of data for a total of 128K.

The default in small-model programs is that both code and data items are
accessed with near addresses. You can override the default for data by
using the far or huge keyword, and the default for code by using the far
keyword. (The huge keyword is relevant only to data items-specifically,
arrays and pointers to arrays).

The compiler creates small-model programs by default when you do not
specify a memory model. The -Ms option is provided for completeness;
you need never give it explicitly unless you have added one of the other
-M options to /etcldefault/ce.

Impure Small Model

An "impure" program is one in which both text and data occupy the
same physical segment. Impure programs can be created for the 8086,
80186 or 80286 processor. There are no impure 80386 programs. The
maximum program size is 64K. The cc program creates impure small­
model programs by default on 8086/80286 systems. They can also be
created using the -Ms option.

5-6

Working with Memory Models

Pure Small Model

A "pure" program is one where text and data are in separate segments.
The text is read-only and may be shared by several processes at once. On
8086/80186/80286 processors, the maximum program size is 128K (64K
code + 64K data). On the 80386 processor, the maximum program size is
8 gigabytes (40 code plus 40 data). Pure small-model programs are
created using the -i option. In this context, -i stands for "instruction"
rather than "impure". This is the default on 80386 systems.

5.3.3 Creating Medium-Model Programs

Option

-Mm

The medium-model option provides a single segment for program data,
and mUltiple segments for program code. Each source module is given its
own code segment.

Medium-model programs are typically C programs that have a large
number of program statements (more than 64K of code), but a relatively
small amount of data (less than 64K). Program code can occupy any
amount of space and is given as many segments as needed; total program
data cannot be greater than 64K. The medium model provides a useful
trade-off between speed and space, since most programs refer more fre­
quently to data items than to code.

5.3.4 Creating Compact-Model Programs

Option

-Me

The compact-model option directs the compiler to allow multiple
segments for program data but only one segment for the program code.

Compact-model programs are typically C programs that have large
amounts of data, but relatively small numbers of program statements. Pro­
gram data can occupy any amount of space and are given as many seg­
ments as needed.

5-7

XENIX C User's Guide

The default in compact-model programs is that code items are accessed
with near addresses and data items are accessed with far addresses. You
can override the default by using the near and huge keywords for data,
and the far keyword for code.

Note

Note that in medium and compact models, NULL must be used
carefully in certain situations. NULL actually represents a null
data pointer. In memory models where code and data pointers are
the same size, it can be used with either. However, in memory
models where code and data pointers are different sizes, this is not
the case. Consider the following example:

void funcl(char *dp)
{

void func2 (char (*fp) (void))
{

main ()
{

func1 (NULL) ;
func2(NULL);
}

This example passes a l6-bit pointer to both funcl and fune2 if
compiled in medium model, and a 32-bit pointer to both funei and
fune2 if compiled in compact model, unless prototypes are added to
the beginning of the program to indicate the types, or an explicit
cast is used on the argument to funcl (compact model) or fune2
(medium model).

5-8

Working with Memory Models

5.3.5 Creating Large-Model Programs

Option

-Ml

The large-model option allows the compiler to create multiple segments
as needed for both code and data.

Large-model programs are typically very large C programs that use a
large amount of data storage during normal processing.

The default in large-model programs is that both code and data items are
accessed with far addresses. You can override the default by using the
near and huge keywords for data, and the near keyword for code.

5.3.6 Creating Huge-Model Programs

Option

-Mh

The huge-model option is similar to the large-model option, except that
the restriction on the size of individual data items is removed for arrays.

However, some size restrictions apply to elements of huge arrays where
they are larger than 64K. To provide efficient addressing, array elements
are not permitted to cross segment boundaries. This has the following
implications:

1. No array element can be larger than 64K.

2. For any array larger than 128K, all elements must have a size in
bytes equal to a power of 2 (that is, 2 bytes, 4 bytes, 8 bytes, 16
bytes, and so on). However, if the array is 128K or smaller, its ele­
ments may be any size, up to and including 64K.

In huge-model programs, care must be taken when using the sizeof opera­
tor or when subtracting pointers. The C language defines the value
returned by the sizeof operator to be an unsigned int value, but the size in
bytes of a huge array is an unsigned long value. To solve this
discrepancy, the XENIX C Compiler produces the correct size of a huge
array when a type cast like the following is used:

(unsigned long)sizeof(huge_item)

5-9

XENIX C User's Guide

Similarly, the C language defines the result of subtracting two pointers as
an int value. When subtracting two huge pointers, however, the result
may be a long int value. The XENIX C Compiler gives the correct result
when a type cast like the following is used:

(long) (huge_ptrl - huge_ptr2)

5.3.7 Segmentation Errors

When compiling a small- or medium-model program, the compiler places
all data in the data segment. However, the compiler cannot know how
much total data is allocated in the segment. This is not determined until
link time, when data from all the object modules are combined by the
linker. If the linker finds that more than 64K have been allocated by the
compiler, the linker will return the error message:

DGROUP allocation exceeds 64K

Errors with Small- and Medium-Model Programs

If this error occurs with a small- or medium-model program, there are
three alternatives:

• Simply reduce the amount of data used by the program.

• Switch to the large-memory model.

• Create a hybrid-model program.

Hybrid models are created by declaring data using the "far" keyword and
compiling with the -Me flag. The compiler then allocates additional seg­
ments for the far data. Care must be taken when referencing data
declared in this manner. Since all the library functions will be expecting
near data, far data must be transferred into a near data buffer before being
passed to any library function, such as printfO. The hybrid model is best
suited for programs with one or more large, seldom-used arrays or data
structures where the rest of the program uses less than 64K of data.

5-10

Working with Memory Models

Errors with Large-Model Programs

For large-model programs, the compiler divides different kinds of data
into different segments. All initialized data is placed in DATA segments.
Uninitialized data is placed in BSS (Blank Storage Space) segments. A
large-model program may have as many DATA and BSS segments as
needed, but only one near DATA segment (the segment addressed by the
CPU DS register). For maximum efficiency, the compiler allocates as
much data as possible to the first DATA segment. However, since the
total amount of data is not known until all the object modules are linked
together, more than 64K of data might be allocated for the first DATA
segment. Thus, it is still possible to get the error DGROUP allocation
error from the linker even with a large-model program.

One possible solution to this problem is to reduce the amount of initial­
ized data in the program by declaring it uninitialized, then initializing at
runtime. Another possibility is to use the -Mt flag to force the compiler
to move some data out of the DATA segment. Normally, the compiler
places any initialized data item (single variable, array or structure) in the
first data segment if its size is less than 32767 bytes. The -Mt flag will
lower this limit. For example, -Mtl024 tells the compiler to place any
data item larger than 1024 bytes in its own segment. The drawback to
this solution is that, at runtime, a segment register must be loaded for
each access to that data. This may affect performance of the program.
This method is most appropriate if the program contains a few large
arrays or structures.

Another method of reducing the size of the first DATA segment is the use
of the -ND compiler flag. (See "Setting Up Segments" in this chapter.)
When a module is compiled with this flag, all the data in the module will
be placed in its own data segment. Modules compiled using this flag
should contain data only, or data and functions that do not use any data
items declared in other modules.

80286 programs allocate their maximum stack size at runtime; the default
size is 4K. Since the stack must also fit in the first data segment, a prob­
lem will arise if there is not enough space in the first data segment to fit
both the data and the stack. If the size of the data plus the size of the
stack exceeds 64K, then, even if the linker will successfully link a pro­
gram, the program's first data segment will be too large for the program to
run. This problem will be reported by the C shell with the message "Not
enough core." The Bourne shell will report the error with the message
"too big." The two possible solutions to this problem are to reduce the
stack size, or to reduce the amount of data in the first data segment. The
latter method is recommended, since reducing the stack size may cause
the program to run out of stack space.

5-11

XENIX C User's Guide

Determining Segment Size

There are three utilities that are useful for finding and correcting prob­
lems related to program segmentation. The size utility, size(CP), takes
one or more executable or object file names as arguments, and prints the
size of the text, DATA, and BSS segments in bytes. This information is
helpful in determining exactly how much data is used by a program, and
how it is divided between the DATA and BSS segments. The hdr(C) util­
ity prints other information about an executable file, such as its memory
model and stack size. The fixhdr(CP) utility can be used (among other
things) to alter the stack size of any executable. This is useful for experi­
menting with different stack sizes without the need to relink, or for cases
where the source code is not available.

5.4 Using the near, far, and huge Keywords

One limitation of the predefined memory-model structure is that, when
you change memory models, all data and code address sizes are subject to
change. However, the XENIX C Compiler lets you override the default
addressing convention for a given memory model and access items with a
near, far, or huge pointer. This is done with the near, far, and huge key­
words. These special type modifiers can be used with a standard memory
model to overcome addressing limitations for particular data or code
items, or to optimize access to these items, without changing the address­
ing conventions for the program as a whole. Table 5.1 explains how the
use of these keywords affects the addressing of code or data, or pointers to
code or data.

5-12

Key­
word

near

far

huge

Note

Working with Memory Models

Table 5.1

Addressing of Code and Data
Declared with near, far, and huge

Data

Reside in default
data segment; refer­
enced with 16-bit
addresses (Pointers
to data are 16 bits)

May be anywhere in
memory, not
assumed to reside in
current data segment;
referenced with 32-
bit addresses
(Pointers to data are
32 bits)

May be anywhere in
memory, not
assumed to reside in
current data segment;
individual data items
(arrays) can exceed
64K in size; refer­
enced with 32-bit
addresses (Pointers
to data are 32 bits)

Pointer
Function

Assumed to be in
current code seg­
ment; referenced
with 16-bit addresses
(Pointers to functions
are 16 bits)

Not assumed to be in
current code seg­
ment; referenced
with 32-bit address
(Pointers to functions
are 32 bits)

Not applicable to
code

Arithmetic

Uses 16 bits

Uses 16 bits

Uses 32 bits for
data

The near, far, and huge keywords are not standard parts of the C
language; they are meaningful only for systems that use a seg­
mented architecture similar to that of the 80x86 microprocessors.
Keep this in mind if you want your code to be ported to other sys­
tems.

5-13

XENIX C User's Guide

In the XENIX C Compiler, the near, far, and huge keywords are enabled
by default. To treat these keywords as ordinary identifiers, you must give
the -Za option at compile time. This option is useful if you are concerned
with porting C programs from environments in which these are not key­
words for instance, if you are porting a program in which one of these
words is used as a label. For further information about the use and effects
of the -Za option, see the "Compiling with the cc Command" chapter of
this guide.

5.4.1 Library Support for near, far, and huge

When using the near, far, and huge keywords to modify addressing con­
ventions for particular items, you can usually use one of the standard
libraries (small, compact, medium, or large) with your program. The
large-model libraries are also appropriate for use with huge-model pro­
grams. However, you must use care when calling library routines. In gen­
eral, you cannot pass far pointers, or the addresses of far data items, to a
small-model library routine. Of course, you can always pass the value of a
far item to a small-model library routine. For example:

long far time_val;

time(&time_val); /* Illegal */
printf("%ld\O, time_val); /* Legal */

If you use the near, far, or huge keyword, it is strongly recommended
that you use function prototypes with argument-type lists to ensure that
all pointer arguments are passed to functions correctly. See the section on
"Pointer Conversions," for more information.

To learn more about library routines and memory models, see the XENIX
C Library Guide.

5.4.2 Declaring Data with near, far, and huge

The near, far, and huge keywords modify either objects or pointers to
objects. When using them to declare data or code (or pointers to data or
code), keep the following rules in mind:

• The keyword always modifies the object or pointer immediately to
its right. In complex declarations, think of the far keyword and the
item to its right as being a single unit. For example, in the case of
the declaration:

char far* *p;

5-14

Working with Memory Models

p is a pointer (whose size depends on the specified memory model)
to a far pointer to char. See the XENlX C Language Reference for
complete rules governing the use of special keywords in complex
declarations.

• If the item immediately to the right of the keyword is an identifier,
the keyword determines whether the item will be allocated in the
default data segment (near) or a separate data segment (far or
huge). For example:

char far a;

allocates a as an item of type char with a far address.

• If the item immediately to the right of the keyword is a pointer, the
keyword determines whether the pointer will hold a near address
(16 bits), a far address (32 bits), or a huge address (also 32 bits).
For example,

char far *p;

allocates p as a far pointer (32 bits) to an item of type char.

Examples

The examples in this section show data declarations using the near, far,
and huge keywords.

char a[3000]; 1* small-model program *1
char far b[30000];

The first declaration in the example allocates the array a in the default
data segment. By contrast, the array b in the second declaration may be
allocated in any far data segment. Since these declarations appear in a
small-model program, array a probably represents frequently used data
that was deliberately placed in the default segment for fast access. Array
b probably represents seldom used data that might make the default data
segment exceed 64K and force the programmer to use a larger memory
model if the array were not declared with the far keyword. The second
declaration uses a large array, because it is more likely that a programmer
would want to specify the address allocation size for items of substantial
size.

char a[3000]; 1* large-model program *1
char near b[3000);

5-15

XENIX C User's Guide

In this example, access speed would probably not be critical for array a.
Even though it mayor may not be allocated within the default data seg­
ment' it is always referenced with a 32-bit address. Array b is explicitly
allocated near to improve speed of access in this memory model (large).

char huge a[70000];
char huge *pa;

1* small-model program *1

In this small-model program, a must be declared as huge because it is
larger than 64K. Using the huge keyword instead of the standard huge
memory model means that the price for using huge data is only paid for
this one large item. Other data can be accessed quickly within the default
segment. The pointer pa could be used to point to a. Any pointer arith­
metic for pa (such as pa++) would be performed using 32-bit arithmetic.

char *pa;
char far *pb;

1* small-model program *1

The pointer pa is declared as a near pointer to char in the example. The
pointer is near by default since the example appears in a small-model pro­
gram. By contrast, pb is allocated as a far pointer to char; pb could be
used to point to, and step through, an array of characters stored in a seg­
ment other than the default data segment. For example, pa might be used
to point to array a in the first example, while pb might be used to point to
array b.

char far * *pa;
char far * *pa;

1* small-model program *1
1* large-model program *1

The pointer declarations in the example illustrate the interaction between
the memory model chosen and the near and far keywords. Although the
declarations for pa are identical, in a small-model program, pa is declared
as a near pointer to an fu"Tay of far pointers to typt! char, while in a large­
model program, pa is declared as a far pointer to an array of far pointers
to type char.

char far * near *pb;
char far * far *pb;

1* any model *1

In the first declaration in the example, pb is declared as a near pointer to
an array of far pointers to type char; in the second declaration, pb is
declared as a far pointer to an array of far pointers to type char. Note
that, in this example, the far and near keywords override the model­
specific addressing conventions shown in the example preceding the one
above; the declarations for pb would have the same effect, regardless of

5-16

Working with Memory Models

the memory model. The examples in the following table illustrate the far
and near keywords as used in declarations in a small-model program. It
also gives the size in bits of the address and the value and the type of the
value.

Notes

Table 5.2

Uses of 8086/80186/80286 near and far Keywords

Size of Size of Type of Value

Declaration Address Value Type of Value

char c; 16 8 data

char far d; 32 8 data

char *p; 16 16 near pointer

char far *q; 16 32 far pointer

char * far r; 32 16 near pointer l

char far * far s; 32 32 far pointerL.

int fooO; 16 16 integer function

int far fooO; 32 16 integer function:)

This example of a near 16-bit pointer which may lie in a far data segment is unlikely
to be useful; it is shown for syntactic completeness only.

2 This is similar to accessing data in a large-model program.

3 This example leads to trouble in most environments. The far call changes the CS
register, and makes run time support unavailable.

The following example is from a middle-model compilation:

int near foo();

This allows a near call (to the routine faa) in a program where calls are
normally far.

If you are using one of the keywords, it would be advisable to check the
type of item in separate source files as the compiler does not do this.

If the -M3e option is used, the near keyword can address items in the pro­
gram segment itself and the far keyword can address items in segments
other than the one in which the program resides. The near keyword

5-17

XENIX C User's Guide

defines an item with a 32-bit address (relative to DS). The far keyword
defines an item with a 48-bit address. Any data item, construct, or func­
tion can be addressed.

These keywords override the normal address length generated by the
compiler for variables and functions. In pure-text small-model programs,
far lets you access data and functions in segments outside the PATH and
DATA segments.

The examples in the table that follows show near and far keywords used
in declarations of pure-text small- and mixed-model programs configured
with the -M3e option:

Table 5.3

Uses of 80386 near and far Keywords

Declaration Address Size Allocation Size

char c; near (32 bits) 8 bits (data)

char far d; far (48 bits) 8 bits (data)

char *p; near (32 bits) 32 bits (near pointer)

char far *q; near (32 bits) 64 bits (far pointer)

char * far r; far (48 bits) 32 bits (near pointer) 1

char far * far s; far (48 bits) 64 bits (far pointer)~

int foo(); near (32 bits) function returning 32 bits

int far foo(); far (64/48 bits) function returning 32 bitsJ

Notes

I This example is shown for syntactic completeness only.

2 This resembles accessing data in a large-model program.

3 This example creates problems in most environments. The far call changes the CS
register, and makes run-time support unavailable.

5.4.3 Declaring Functions with the near and far Keywords

The rules for using the near and far keywords for functions are similar to
those for using them with data, as specified in the following list:

• The keyword always modifies the function or pointer immediately
to its right. For more information about rules for evaluating com­
plex declarations, see the XENIX C Language Reference.

5-18

Working with Memory Models

• If the item immediately to the right of the keyword is a function,
then the keyword determines whether the function will be allo­
cated as near or far. For example:

char far fun () i

defines fun as a function called with a 32-bit address and returning
type char.

• If the item immediately to the right of the keyword is a pointer to a
function, then the keyword determines whether the function will be
called using a near (16-bit) or far (32-bit) address. For example:

char (far * pfun) () i

defines pfun as a far pointer (32 bits) to a function returning type
char.

• Function declarations must match function definitions.

• The huge keyword cannot be applied to functions.

Examples

void char far fun(void)i
void char far fun (void)

{

/* small model */

In this example, fun is declared as a function returning type char. The
far keyword in the declaration means that fun must be called with a 32-
bit call.

5-19

XENIX C User's Guide

static char far * near fun();
static char far * near fun ()

{

/* large model */

In the large-model example, fun is declared as a near function that returns
a far pointer to type char. Such a function might be seen in a large-model
program as a helper routine that is used frequently, but only by the rou­
tines in its own module. Since all routines in a given module share the
same code segment, the function could always be accessed with a near
call. However, you could not pass a pointer to fun as an argument to
another function outside the module in which fun was declared.

void far *fun(void); 1* small model *1
void (far * pfun) () = fun;

The small-model example declares pfun as a far pointer to a function that
bas a void return type, and then assigns the address of fun to pfun. In fact,
pfun could be used to point to any function accessed with a far call. Note
that if the function indicated by pfun has not been declared with the far
keyword, or if it is not far by default, then calling that function through
pfun would cause the program to fail.

double far * (far fun) ();
double far * (far *pfun) ()

1* compact model *1
fun;

In this final example, pfun is declared as a far pointer to a function that
returns a far pointer to type double, and then assigns the address offun to
pfun. This might be used in a compact-model program for a function that
is not used frequently and thus does not need to be in the default code
segment. Both the function and the pointer to the function must be
declared with the far keyword.

5.4.4 Pointer Conversions

Passing pointers as arguments to functions may cause automatic conver­
sions in the size of the pointer argument, since passing a pointer to a func­
tion forces the pointer size to the larger of the following two sizes:

• The default pointer size for that type, as defined by the memory
model used during compilation

5-20

For example, in medium-model programs, data-pointer arguments
are near by default, and code-pointer arguments are far by default.

Working with Memory Models

• The type of the argument

If a function prototype with argument types is given, the compiler per­
fonns type-checking and enforces the conversion of actual arguments to
the declared type of the corresponding fonnal argument. However, if no
declaration is present or the argument-type list is empty, the compiler
will convert pointer arguments automatically to the default type or the
type of the argument whichever is larger. To avoid mismatched argu­
ments, you should always use a prototype with the argument types.

Examples

/* This program produces unexpected results in compact-,
** large-, or huge-model programs.
*/

main (

int near *x;
char far *y;
int z = 1;

test_fun (x, y, z); /* x will be coerced to far
** pointer in compact, large,
** or huge model
*/

int test fun (ptr1, ptr2, a)
int near *ptr1;
char far *ptr2;
int a;

printf ("Value of a = %d\n", a);}

If the preceding example is compiled as a small-model program (with no
memory-model options or the -Ms option on cc command line) or
medium-model program (-Mm option), then the size of pointer argument
x is 16 bits, the size of pointer argument y is 32 bits, and the value printed
for a is 1. However, if the preceding example is compiled with the -Me,
-MI, or -Mh option, both x and y are automatically converted to far
pointers when they are passed to test Jun. Since ptr 1, the first parameter
of test Jun, is defined as a near-pointer argument, it takes only 16 bits of
the 32 bits passed to it. The next parameter, ptr2, takes the remaining 16
bits passed to ptrl, plus 16 bits of the 32 bits passed to it. Finally, the
third parameter, a, takes the left-over 16 bits from ptr2, instead of the
value of z in the main function. This shifting process does not generate an
error message, since both the function call and the function definition are

5-21

XENIX C User's Guide

legal, but in this case the program does not work as intended, since the
value assigned to a is not the value intended.

To pass ptr 1 as a near pointer, you should include a forward declaration
that specifically declares this argument for test Jun as a near pointer, as
shown in the following example:

/* First, declare test fun so the compiler knows in advance
** about the near pointer argument:
*/
int test fun(int near*, char far *, int);

main (

int near *x;
char far *y;
int z = 1;

test_fun (x, y, z); /* now, x will not be coerced
** to a far pointer; it will be
** passed as a near pointer,
** no matter what memory
** model is used
*/

int test fun(ptr1, ptr2, a)
int near *ptr1;
char far *ptr2;
int a;

printf ("Value of a %d\n", a);
}

Note that it would not be sufficient to reverse the definition order for
test Jun and main in the first example to avoid pointer coercions; the
pointer arguments must be declared in a forward declaration, as in the
second example.

5.5 Creating Customized Memory Models

A third method of managing memory models is to combine features of the
standard memory models to create your own customized memory model.
You should have a thorough understanding of C memory models and the
architecture of 8086 and 80286 processors before creating your own non­
standard memory models, since there is no library support-other than the
C start-up routines-for nonstandard memory models.

5-22

Working with Memory Models

The -Astring option lets you change the attributes of the standard memory
models to create your own memory models. The three letters in string
correspond to the code-pointer size, the data-pointer size, and the stack­
and data-segment setups, respectively. Because the letter allowed in each
field is unique to that field, you can give the letters in any order after -A.
All three letters must be present.

The standard-memory-model options (-Ms, -Mm, -Me, -MI, and -Mh)
can be specified in the -Mstring form. As an example of how to construct
memory models, the standard-memory-model options are listed with their
standard equivalents:

Standard Custom Equivalent

-Ms -Asnd

-Mm -Alnd

-Me -Asfd

-MI -Alfd

-Mh -Alhd

As an example of the use of customized models, you might want to create
a huge-compact model. This model would allow huge data items, but only
one code segment. The option for specifying this model would be -Ashd.

An even more common use of customized models is to set up segments.
(See the section on "Setting Up Segments," for more information).

If you use a customized memory model for a program that includes both
far and near functions, be aware of the following issues:

• The ehkstk library function should be called only in functions that
are compiled in the same model as the library being used. (For
compatibility with XENIX, the ehkstk function name cannot be
model-encoded.)

• The interfaces to floating-point function calls are not model
encoded, so the same restriction is placed on functions containing
floating-point calls: they must be compiled with the same model as
the library being used.

5-23

XENIX C User's Guide

Note

For the purposes of the descriptions that follow, the letters I (for
"long") and s (for "short") are used as code pointers to distinguish
them from the letters for data pointers in the memory-model string.

5.5.1 Code Pointers

Options

-As.xx
-Alxx

Near code pointers
Far code pointers

The letter s tells the compiler to generate near (16-bit) pointers and
addresses for all code items. This is the default for small- and compact­
model programs.

The letter I means that far (32-bit) pointers and addresses are used to
address all code items. Far pointers are the default for medium-, large-,
and huge-model programs.

5.5.2 Data Pointers

Options

-Anxx
-Afxx
-Ahxx

Near data pointers
Far data pointers
Huge data pointers

Three sizes are available for data pointers: near, far, and huge. The letter
n tells the compiler to use near (l6-bit) pointers and addresses for all
data. This is the default for small- and medium-model programs.

The letter f specifies that all data pointers and addresses are far (32-bit).
This is the default for compact- and large-model programs.

The letter h also specifies that all data pointers and addresses are far (32-
bit). This is the default for huge-model programs.

When far data pointers are used, no single data item may be larger than a
segment (64K) because address arithmetic is performed only on 16 bits

5-24

Working with Memory Models

(the offset portion) of the address. When huge data pointers are used, indi­
vidual data items can be larger than a segment (64K) because address
arithmetic is performed on the entire 32 bits of the address.

5.5.3 Setting Up Segments

Options

-Adxx
-Au [xx]
-Aw[xx]

Sets SS = DS
Sets SS ! = DS; DS reloaded on function entry
Sets SS != DS; DS not reloaded on function entry

The letter d tells the compiler that the segment addresses stored in the SS
and DS registers are equal; that is, the stack segment and the default data
segment are combined into a single segment. This is the default for all
programs. In small- and medium-model programs, the stack plus all data
must occupy less than 64K; thus, any data item is accessed with only a
16-bit offset from the segment address in the SS and DS registers.

In compact-, large-, and huge-model programs, initialized global and
static data are placed in the default data segment. The address of this seg­
ment is stored in the DS and SS registers. All pointers to data, including
pointers to local data (the stack), are full 32-bit addresses. This is impor­
tant to remember when passing pointers as arguments in large-model pro­
grams. Although you may have more than 64K of total data in these
models, there can be no more than 64K of data in the default segment.
The -Gt and -ND options can be used to control allocation of items in the
default data segment if a program exceeds this limit. (For more informa­
tion about these options, see the section on "Setting the Data Threshold,"
and "Naming Modules an~ Segments.")

The letter u allocates different segments for the stack and the data seg­
ments. Each object file (module) is allocated its own segment for global
and static data items. Note that the -ND option, described in "Naming
Modules and Segments," must be specified along with the letter u to allo­
cate data segments other than the default. When the letter u is specified
with -ND, the address in the DS register is saved upon entry to each func­
tion, and the new DS value for the module in which the function was
defined is loaded into the register. The previous DS value is restored on
exit from the function. Therefore, only one data segment is accessible at
any given time. The -ND option can be used to combine these segments
into a single segment.

5-25

XENIX C User's Guide

If a standard memory-model option precedes it on the command line, the
-Au option can be specified without any letters indicating data- or code­
pointer sizes. In this case, the program uses the specified memory model,
but different segments are set up for the stack and data segments.

A single segment must be allocated for the stack, and its address stored in
the SS register. The stack segment does not change throughout the entire
program.

The letter w, like the letter u, sets up a separate stack segment, but does
not automatically load the DS register at each module entry point. This
option is typically used when writing application programs that interface
with an operating system or with a program running at the operating­
system level. The operating system or the program running under the
operating system actually receives the data intended for the application
program and places .that data in a segment; then the operating system or
program must load the DS register with the segment address for the appli­
cation program.

As with the -Au option, the -Aw option can be specified without data- and
code-pointer letters if a standard memory-model option precedes it on the
command line. In this case, the program uses the specified memory
model, but different segments are set up for the stack and data segments,
and the DS register is not reloaded at each module entry point.

Even though u and w set up a separate segment for the stack, the stack's
size is still fixed at the default unless this is overridden with the -F com­
piler option.

5.5.4 Library Support for Customized Memory Models

Most C programs make function calls to the routines in the C run-time
library. Library support is provided for the five standard memory models
(small, medium, compact, large, and huge) through four separate run-time
libraries. (Huge and large models both use the large-model library.) When
you write mixed-model programs, you are responsible for determining
which library (if any) is suitable for your program and for ensuring that
the appropriate library is used.

Library support is provided for customized memory models where the
stack and default data segments are combined into a single segment
(-Adxx), but not for customized memory models where these segments
are different (-AllXX', -Awxx, -Au, and -Aw). In the latter cases, you prob­
ably need to create a customized library to be used with your customized
memory model. Specify the library files and object files you want to use
when linking. Be sure to use the start-up routine from the appropriate

5-26

Working with Memory Models

library for your memory model. Table 5.2 shows the libraries from which
to extract the start-up routine for each customized memory model.

Notes

Table 5.4

Start-Up Routines for
Customized Memory Models

Memory-Model Option Use Start-Up from Library

-Asnx; -MS plus _Axl lusrlIib/286/Sseg.o

-Asfx; -Ashx; _MC I plus lusrlIib/286/Cseg.o
-Ax

-Alnx; -MM plus _Axl lusrlIib/286/Mseg.o

-Alfx; -Alhx; -ML plus
-Ax; -MH plus _Axl

lusr llib/286/Lseg.o

1 x must be either u or w.

In general, library functions do not support customized memory models,
since a particular run-time routine may in tum call another library routine
that conflicts with your customized model.

5.6 Setting the Data Threshold

Option

-Gt[number]

By default, the compiler allocates all static and global data items within
the default data segment in the small and medium memory models. In
compact-, large-, and huge-model programs, only initialized static and
global data items are assigned to the default data segment. The -Gt option
causes all data items whose sizes are greater than or equal to number
bytes to be allocated to a new data segment. When number is specified, it
must follow the -Gt option immediately, with no intervening spaces.
When number is omitted, the default threshold value is 256. When the -Gt
option is omitted, the default threshold value is 32,767.

You can use the -Gt option only with compact-, large-, and huge-model
programs, since small- and medium-model programs have only one data

5-27

XENIX C User's Guide

segment. The option is particularly useful with programs that have more
than 64K of initialized static and global data in small data items.

S.7 Naming Modules and Segments

Options

-NM modulename
-NT textsegment
-ND datasegment

"Module" is another name for an object file created by the C compiler.
Every module has a name. The compiler uses this name in error messages
if problems are encountered during processing. The module name is usu­
ally the same as the source-file name. You can change this name using the
-NM (for "name module' ') option. The new modulename can be any
combination of letters and digits. The space between -NM and modu­
lename is optional.

A "segment" is a contiguous block of binary information (code or data)
produced by the C compiler. Every module except impure small has at
least two segments: a text segment containing the program instructions,
and a data segment containing the program data. Each segment in every
module has a name. The linker uses this name to define the order in which
the segments of the program appear in memory when loaded for execu­
tion. (Note that the segments in the group named DGROUP are an excep­
tion.)

Text and data segment names are normally created by the C compiler.
These default names depend on the memory model chosen for the pro­
gram. For example, in small-model programs, the text segment is named
_TEXT and the data segment is named _DATA. These names are the
same for all small-model modules, so all text segments from all modules
are loaded as one contiguous block, and all data segments from all
modules form another contiguous block.

In medium-model programs, the text from each module is placed in a
separate segment with a distinct name, formed by using the module base
name along with the suffix. TEXT. The data segment is named DATA,
as in the small model. - -

In compact-model programs, the data from each module are placed in a
separate segment with a distinct name, formed by using the module base
name along with the suffix. DATA. The exception to this is initialized
global and static data, which-are put in the default data segment _DATA.
The code segment is named _TEXT, as in the small model.

5-28

Working with Memory Models

In large- and huge-model programs, the text and data from each module
are loaded into separate segments with distinct names. Each text segment
is given the name of the module plus the suffix _TEXT. The data from
each segment is placed in a private segment with a unique name (except
for initialized global and static data placed in the default data segment).
The naming conventions for text and data segments are summarized in
Table 5.3.

Table 5.5

Segment-Naming Conventions

Model Text Data Module

Small TEXT DATA filename

Medium module TEXT DATA filename

Compact TEXT DATAl filename

Large module TEXT DATAl filename

Huge module TEXT DATAl filename

Notes

I _DATA is the name of default data segment; other data segments have unique private
names.

You can override the default names used by the C compiler (thUS overrid­
ing the default loading order) by using the -NT (for "name text") and
-ND (for' 'name data' ') options. These options set to a given name the
names of the text and data segments in each module being compiled. The
textsegment argument used with the -NT option and the datasegment
argument used with the -ND option can be any combination of letters and
digits. The space between -NT and textsegment, like the space between
-ND and datasegment, is optional.

If you use the -ND option to change the name of the default data segment,
your program can no longer assume that the address contained in the
stack segment register (SS) is the same as the address in the data segment
register (DS). You must therefore compile your program either with the
-Mstring form of the memory-model option and the u option for the
segment-setup letter, or with the -M option for a standard memory model
followed by the -Mu option, as in the following example:

5-29

XENIX C User's Guide

cc -Ms -Mu -ND DATAl progl.c

Use of the -Mu option forces the compiler to generate code to load DS
with the correct data-segment value on entry to the code. See the section
on "Creating Customized Memory Models," for more information on the
options. All modules whose data segments have the same name have
these segments combined into a single segment named DATAl at link:
time.

5.8 Specifying Text and Data Segments

Pragmas

#pragma alloc text (textsegment, junctionl[, junction2] ...)
#pragma same seg (variablel[, variable2] ...)

The alloc_text pragma gives you source-level control over the segment to
which particular functions are allocated. The same_seg pragma provides
information the compiler can use to generate better code.

If you use overlays or swapping techniques to handle large programs,
alloc _text allows you to tune the contents of their text segments for max­
imum efficiency. The alloc _text pragma must appear before the
definitions of any of the specified functions, but it may appear either
before or after the functions are declared or called. Any functions
specified in an alloc _text pragma must be either explicitly declared with
the far keyword or assumed to be far because of the memory model used
(medium, large, or huge).

The same _ seg pragma tells the compiler to assume that the specified
external variables are allocated in the same data segment. You are respon­
sible for making sure that these variables are put in the same data seg­
ment; one way to do this is to specify the -ND option when you compile
the program. The same _ seg pragma must appear before any of the
specified variables is used in executable code and after the variables are
declared. Variables specified in a same _seg pragma must be explicitly
declared with extern storage class, and they must either be explicitly
declared with the far keyword or assumed to be far because of the
memory model used (compact, large, or huge).

5-30

Chapter 6

Improving Program Speed

6.1 Introduction 6-1

6.2 Using Register Variables 6-1

6.3 Optimization Options and Pragmas 6-2
6.3.1 Default Optimization 6-3
6.3.2 Generating Intrinsic Functions 6-3
6.3.3 Relaxing Alias-Checking 6-4
6.3.4 Performing Loop Optimizations 6-4
6.3.5 Removing Stack Probes 6-5
6.3.6 Maximum Optimization 6-5

6.4 Choosing the Function-Calling Convention 6-5

6.5 Efficiency in Large Data Models 6-6
6.5.1 Changing Addressing with near, far, and huge

Keywords 6-6
6.5.2 Setting the Data Threshold 6-7
6.5.3 Controlling Segments Used for Allocation 6-7

6.6 Efficiency in Large Code Models 6-7

Improving Program Speed

6.1 Introduction

This chapter describes a number of ways that you can improve the execu­
tion speed of programs compiled with the XENIX C Compiler. These
techniques include:

• Using register variables

• U sing optimization options and pragmas

• Choosing function-calling conventions

• Choosing and adjusting memory models

Where applicable, this chapter discusses the interactions between these
techniques and the trade-offs involved in using them.

6.2 Using Register Variables

One common way to write a program for maximum speed is to declare
selected local (auto) variables with register storage class. The declara­
tion of a register variable requests the compiler to use machine registers
when allocating space for the variable, if possible. The register storage
class can be specified for any variable, but register specifications are
ignored except for variables of type int or short or for pointer types that "
are the same size as type int.

Up to two register variables may be allocated per function. In lexical
order, the compiler takes the first two variables with register storage
class that meet the size criteria. Any later requests for register storage
class are ignored, so be sure to declare the most important register vari­
abIes first. You may also want to declare register variables in parallel
scope to achieve the effect of having more than two register variables per
function.

The XENIX C Compiler automatically uses registers for variables within
loops. Using register declarations for such variables may interfere with
optimal loop code; you can experiment with various combinations of
register and nonregister declarations to determine which combinations
give the best results.

Register declarations can be used effectively for values, especially
pointers, that appear outside of loops. Since a certain amount of code is
required to save and restore registers, register declarations must be
applied to values that are accessed at least three times within a function
to cause any improvement in program speed.

6-1

XENIX C User's Guide

Example

find string(arr of chars, string)
char-* st ring; - -
char *arr of chars[);
{ - -

int ix = 0;
register char *q;
while (* (q = string))
{

register int i = ix;

/* string is not null */

/* search for entry whose first character
* matches first character of string, if any

*/

while (i < MAX_ARR_SIZE && *arr_of_chars[i) != *q)
i++;

if (i = MAX_ARR_SIZE)
return(l); /* no matching entry */

ix = i;

/* we've found an entry in arr of chars which
* might match string */ --

register char *p = arr of chars[ix];
while (*p && *q && *p++ - *q++)

if ((*p - *q) = 0)
return (0) /* they match, return 0 */

/* otherwise continue checking for possible
* matches
*/

In this example, the function named find string actually has three register
variables: q, i, and p. The function canuse all three variables because i
is through being used by the time p is needed. Introducing the ix variable
to save the pointer from block-to-block speeds execution considerably
because most work is being done in register variables.

6.3 Optimization Options and Pragmas

The cc compiler/linker driver provides a number of optimization options
(-0, followed by one or more letters) that can improve program speed. In
addition, the XENIX C Compiler includes several pragmas that allow you
to control some of these optimizations on a local basis within a source

6-2

Improving Program Speed

program. The following sections outline these cc options and pragmas and
their effects.

6.3.1 Default Optimization

If no -0 option is given, the compiler uses the -Ot option, which opti­
mizes programs for execution speed. However, this option does not
enable loop optimizations or intrinsics. Some optimizations, such as long
shifts, may be performed in line rather than using helper functions.

6.3.2 Generating Intrinsic Functions

The -Oi option generates intrinsic forms of the following functions:

• memset, memcpy, memcmp

• strset, strcpy, strcmp, strcat

• inp,outp

• _ rotl, _ rotr, _lrotl, _lrotr,

• min, max, abs

Intrinsics may be generated as in-line code or with different calling
sequences. In general, using intrinsics increases program size but
improves program speed. Note that the intrinsic forms of some functions
may have slightly different semantics: for example, the intrinsic form of
the memcpy function in compact- and large-model programs cannot han­
dle huge arrays, but the function form can.

As with -Ot, this option may increase program size due to the additional
code generated in line for each function. However, program execution is
faster because no instructions for calling and returning from functions
need to be performed.

The intrinsic pragma can be used to specify intrinsic functions on a local
basis for any of the functions listed above. For information about the use
of the intrinsic pragma, see the "Compiling with the cc Command"
chapter of this guide.

6-3

XENIX C User's Guide

6.3.3 Relaxing Alias-Checking

The a option letter can be used with the I, s, or t option letter to relax the
assumptions the compiler makes about the use of "aliases" in the pro­
gram. Use of the -Oa option can reduce the size of executable files and
speed program execution. This is especially recommended when you also
specify the -01 option, since the compiler can detect a number of loop
optimizations when the -Oa option is in effect that it cannot detect when
-Oa is not in effect. However, before you specify -Oa, you must make
sure that your program does not use multiple aliases to refer to the same
memory location either directly or indirectly. For example, a program
might do this indirectly in functions that operate on a communal variable
and a pointer argument, or on multiple pointer arguments.

The -Oa option can be specified safely for programs that include calls to
functions with address-type arguments. In this case, the compiler assumes
that all variables whose addresses are passed to the function are modified,
even if -Oa is specified.

In the cases noted above, the use of -Oa is most likely to cause incorrect
optimizations within basic blocks (where most optimizations are applied)
and within whole loop bodies (where loop optimizations are applied). In
these cases, -Oa can still be specified safely even if aliases are used in the
program, provided that no memory location is referenced by more than
one name within any basic block or (if loop optimization is enabled) any
loop body.

For more information and specific examples, see the' 'Compiling with the
cc Command" chapter of this guide.

6.3.4 Performing Loop Optimizations

The -01 option tells the compiler to perform loop optimizations. For best
performance, use -01 in conjunction with the a option letter (-Oal), which
relaxes the assumptions the compiler makes about the use of aliases in the
program. Using -Oal instead of just -01 allows the compiler to detect
many loop optimizations that it could not otherwise detect. For informa­
tion about possible restrictions on the uses of the -Oa option, see the
"Compiling with the cc Command" chapter of this guide.

You can control loop optimization on a local basis by specifying the
loop_opt pragma. Loop optimization is turned off for any functions fol­
lowing #pragma loop _ opt(oft) and turned on for any functions following
#pragma loop _ opt(on) in a source program. This pragma overrides any
loop optimization specified on the cc command line.

6-4

Improving Program Speed

6.3.5 Removing Stack Probes

The -Gs option, described in the "Compiling with the cc Command"
chapter of this guide; speeds program execution slightly by removing
calls to stack-checking routines known as "stack probes." Stack probes
verify that a program has enough stack space to allocate required local
variables. The potential disadvantage in removing stack probes is that
stack -overflow errors may occur without generating a diagnostic message.
However, this technique can be useful for programs that are known not to
exceed the available stack space.

You can also control stack checking on a local basis by specifying the
check stack pragma. Stack checking is turned off for any functions fol­
lowing a #pragma check_stack(ofl) pragma and turned on for any func­
tions following a #pragma check_stack(on) pragma in the source pro­
gram. This pragma overrides the stack checking (or removal of stack
checking) specified on the cc command line.

6.3.6 Maximum Optimization

The -Ox option combines the -Ot, -Ot, -Oa and -01 optimization options
described in this section. Provided that the restrictions outlined for each
optimization option do not apply, you can use the -Ox option to create the
fastest possible program.

6.4 Choosing the Function-Calling Convention

Because C functions can accept variable numbers of arguments, argu­
ments passed to these functions must be pushed on the stack from right to
left, with the first argument in the list being the last one pushed. In addi­
tion' the calling function, rather than the called function, is responsible
for removing arguments from the stack.

This convention results in somewhat slower programs than the alternative
convention used by XENIX FORTRAN and XENIX Pascal. In the
FORTRAN/pascal convention, arguments are pushed on the stack from
left to right, in the order in which they are passed to the function, and the
called function removes arguments from the stack. Since the code for
removing arguments appears only once (in the called function) for the
FORTRAN/pascal convention, rather than multiple times (every time a
function is called) as in the C convention, and since most programs have
fewer functions than function calls in a program, the FORTRAN/Pascal
calling convention usually results in smaller, faster programs.

6-5

XENIX C User's Guide

You can specify the FORTRAN/Pascal calling convention for all func­
tions in a module by compiling with the -Gc option. The trade-off for
improved program speed is that you cannot call functions that use the C
calling convention or take variable numbers of arguments unless you
declare these functions, or pointers to these functions, with the cdecl key­
word, which specifies the normal C calling conventions for these func­
tions.

If you do not want to specify the FORTRAN/Pascal convention for a
whole module, you can declare individual functions or pointers to func­
tions with the pascal or fortran keyword. Either of these keywords tells
the compiler that the function uses the FORTRAN/Pascal calling conven­
tions.

6.5 Efficiency in Large Data Models

Programs are most efficient when their data reside in the default data seg­
ment, that is, when the data can be accessed with 16-bit (near) addresses.
The XENIX C Compiler provides two standard memory models in which
all data reside in the default data segment: the small (default) model and
the medium model. The customized memory models that use near data
pointers (-Mnxx) also restrict program data to the default data segment.
Programs compiled with these models are restricted to 64K of total data.

For programs compiled with the compact, large, and huge memory
models, the compiler creates a default data segment containing all initial­
ized global and static data and creates an additional data segment for
each program module. Since accessing data outside the default data seg­
ment is slower than accessing data within the default data segment, pro­
grams will run faster if as many of their variables as possible are declared
in such a way that they are allocated in the default data segment. One
way to accomplish this is to initialize variables at the time you declare
them. This section discusses other ways of controlling the allocation of
data for large data models.

6.5.1 Changing Addressing with near, far, and huge Keywords

The near, far, and huge keywords allow you to specify explicitly the
addressing used for particular data items and functions. These keywords
override the default addressing conventions specified by the program's
memory model. Thus, you can use them to improve the speed of access to
program data. For example, you can tell the compiler to allocate data
items in the default data segment for a compact-, large-, or huge-model
program by declaring the items (or pointers to the items) with the near
keyword. Alternatively, if a program has a small amount of code and data

6-6

Improving Program Speed

except for one particularly large array, you could compile the program
with the small or medium memory model and declare the array with the
far or huge keyword.

The disadvantage of using these keywords is that they are specific to the
MS-DOS/XENIX implementation of XENIX C and, thus, are not portable
to other operating environments.

For more information about near, far, and huge and for examples of their
use, see the "Working with Memory Models" chapter in this guide.

6.5.2 Setting the Data Threshold

Another way to control allocation in large data models is to set a data
threshold by compiling with the -Gt option. This option is especially use­
ful if your program uses more than 64K of initialized static and global
data and does not fit in the default data segment. Any data items larger
than the value you specify are allocated to their own data segments.

6.5.3 Controlling Segments Used for Allocation

If programs compiled with large data models use external far data items,
you can tell the compiler which items reside in the same far data segment
by using the same_seg pragma. The variables you specify in this pragma
help the optimizer recognize common sUbexpressions involving data
loads. Note that you must also compile your program with the -ND option
to ensure that the variables you specify are allocated in the same segment.

For a description of the -ND option and the same _ seg pragma, see the
"Working with Memory Models" chapter of this guide.

6.6 Efficiency in Large Code Models

One linker option, -T, can result in smaller and faster executable files and
improved program-load times for programs that explicitly or implicitly
use far-function calls.

The -T option tells the linker to optimize far calls to procedures that lie in
the same segment as the caller. When you specify the -T option, the
linker optimizes 32-bit calls to procedures in the same segment as the cal­
ling procedure. Since the segment addresses of the calling and called pro­
cedures are the same, only a 16-bit call is required. If the -T option is
given, the linker removes the far call and replaces it with code that first
places CS on the stack, then makes a near call. The called procedure still

6-7

XENIX C User's Guide

returns with a far (32-bit) return instruction. However, because both the
code segment (stored in CS) and the near address are on the stack, the far
return is done correctly. The linker also adds a NOP instruction so that
the five-byte far call is replaced by exactly five bytes of instructions.

Note

You may not want to use the -T option if your program includes
system-level assembly-language routines or if you are linking
object files that were compiled with a different C compiler.

6-8

Chapter 7

Object and Executable

File Formats

7.1 Introduction 7-1

7.2 iAPX 286, 386 System Architecture 7-1
7.2.1 Memory Management 7-1
7.2.2 Logical Address Space 7-1
7.2.3 Logical-to-Physical Address Translation 7-2

7.3 The Intel Object Module Format 7-2

7.4 Definition of Terms 7-4

7.5 Module Identification and Attributes 7-6

7.6 Segment Definition 7-7

7.7 Segment Addressing 7-7

7.8 Symbol Definition 7-8

7.9 Indices 7-8

7.10 Conceptual Framework for Fixups 7-8

7.11 Self-Relative Fixups 7-13

7.12 Segment-Relative Fixups 7-14

7.13 Record Order 7-15

7.14 Introduction to the Record Formats 7 -16
7.14.1 Title and Official Abbreviation 7-16
7.14.2 The Boxes 7-17
7.14.3 Rectyp 7-17

7.14.4 Record Length 7-17
7.14.5 Name 7-17
7.14.6 Number 7-17
7.14.7 Repeated or Conditional Fields 7 -17
7.14.8 Chksum 7-18
7.14.9 Bit Fields 7-18
7.14.10 T-Module Name 7-19
7.14.11 Name 7-19
7.14.12 Seg Attr 7-20
7.14.13 Segment Length 7-22
7.14.14 Segment Name Index 7-22
7.14.15 Class Name Index 7-22
7.14.16 Overlay Name Index 7-23
7.14.17 Group Name Index 7-23
7.14.18 Group Component Descriptor 7-24
7.14.19 Name 7-25
7.14.20 Eight-Leaf Descriptor 7-25
7.14.21 Public Base 7-26
7.14.22 Public Name 7-28
7.14.23 Public Offset 7-28
7.14.24 Type Index 7-28
7.14.25 External Name 7-28
7.14.26 Type Index 7-29
7.14.27 Line-Number Base 7-30
7.14.28 Line-Number 7-30
7.14.29 Line Number Offset 7-30
7.14.30 Segment Index 7-31
7.14.31 Enumerated Data Offset 7-31
7.14.32 Dat 7-32
7.14.33 Segment Index 7-32
7.14.34 Iterated Data Offset 7-32
7.14.35 Iterated Data Block 7-33
7.14.36 Repeat Count 7-33
7.14.37 Block Count 7-33
7.14.38 Content 7-33
7.14.39 Thread 7-35
7.14.40 Fixup 7-36
7.14.41 Mod Type 7-39
7.14.42 Comment Type 7-41
7.14.43 Comment 7-42

7.15 Numeric List of Record TYP~s 7-42

7.16 Type Representations for Communal Variables 7-43

7.17 The Segmented x.out Format 7 -45

7.17.1 General Description of x.out 7 -46
7.17.2 Example of File Layout 7 -48
7.17.3 Iterated Segments 7 -48
7.17.4 Non-Iterated Segments and Implicit bss 7-49
7.17.5 Large Model 7-49
7.17.6 Special Header Fields 7-49
7.17.7 Symbol Table 7-50
7.17.8 XENIX Executable Format 7-50
7.17.9 Selected Portions of Include Files 7 -52

Object and Executable File Formats

7.1 Introduction

This chapter is divided into three sections. The first provides you with a
brief introduction to the architecture of the iAPX-286 and -386 proces­
sors.

The second section provides a discussion of the Intel (O)bject (M)odule
(F)onnat, which we follow. The implementation of this fonnat makes it
possible to compile programs that run in both the XENIX and MS-DOS
environments.

The third section provides a brief description of our implementation of
the x.out fonnat in a segmented environment. For detailed infonnation,
see the x.out header file.

7.2 iAPX 286, 386 System Architecture

XENIX runs on both the 80286 and the 80386 processors in protected­
mode. This section provides a general introduction to the architecture of
protected mode operation. It does not discuss the various 80386 paging
mechanisms. For an in-depth discussion of the iAPX286 and iAPX386,
refer to the appropriate Programmer's Technical Reference Manual pub­
lished by Intel.

7.2.1 Memory Management

Memory management provides a mapping from the logical addresses used
within a program to physical machine addresses. This serves two pur­
poses:

• Programs are not tied to any particular physical address.

• Access pennissions to particular areas of memory can be con­
trolled.

7.2.2 Logical Address Space

The mapping of virtual addresses to physical addresses is achieved by
means of descriptor tables which are themselves resident in memory. At
any given moment, there are two alternate descriptor tables available: the
Global Descriptor Table (GDT) and the Local Descriptor Table (LDT).

The XENIX kernel uses the GDT to map the kernel's virtual address
space. Each user process has its own LDT as part of its per-process data
which maps the logical address space of the process.

7-1

C User's Guide

Each entry in a descriptor table specifies the base address, length and
access permissions of a particular segment of physical memory.

7.2.3 Logical-to-Physical Address Translation

Logical addresses consist of two parts: a segment selector used to select a
particular descriptor table entry, and an offset added to the base address
found in the descriptor table to give a physical memory address.

The segment selector is a 16-bit number containing three pieces of infor­
mation:

1. The Request Privilege Level (RPL) is encoded as the low order
two bits of the selector. The RPL is a feature of the system archi­
tecture protection scheme. Segment selectors in user processes
always have both of these bits set to indicate RPL 3, the lowest
privilege level.

2. The Table Indicator (TI) is encoded as the next most significant bit
(bit 2). The TI indicates whether address translation will use the
GDT (TI = 0) or the LDT (TI = 1). User processes can only access
the LDT; therefore the TI for a segment selector in a user process
is always 1.

3. The Index field is encoded as the high-order 13 bits of the selector.
This is used to index into the appropriate descriptor table and
select a particular entry.

A descriptor table entry having been selected, the offset is added to the
base address in physical memory to fonn a physical address.

Depending on the characteristics of the segment (as defined in the
descriptor table) the offset may be a 16- or 32-bit number. The offset will
be 16 bits on an 80286 processor or in a 16-bit segment on an 80386 pro­
cessor. The 32-bit offsets apply only to the 80386.

7.3 The Intel Object Module Format

This section presents the object record formats that define the relocatable
object language for the iAPX-86 family of microprocessors. The 8086
object language is the output of all language translators that have the
8086 as their target processor and are linked by the link editor. The 8086

7-2

Object and Executable File Formats

object language is input and output for object language processors such as
linkers and librarians.

Note

Except where otherwise noted, references to the 8086 in this docu­
ment refer to the 8086/80286/80386 processors. In general, the
8086/80286 references are made to 16-bit offsets and 64K segment
offsets, which do not apply to the 80386.

The 8086 object module formats permit you to specify relocatable
memory images that may be linked together. The formats allow efficient
use of the memory-mapping facilities of the 8086 microprocessor.

The following record formats, as described in this chapter, are supported.
Those formats preceded by an asterisk (*) deviate from the Intel ®
specification.

Object Module Record Formats

T -Module Header Record
List of Names Record
*Segment Definition Record
*Group Definition Record
*Type Definition Record

Symbol Definition Records
*Public Names Definition Record
*Extemal Names Definition Record
*Line Numbers Record

Data Records
Logical Enumerated Data Record
Logical Iterated Data Record

Fixup Record
*Module End Record
Comment Record

7-3

C User's Guide

7.4 Definition of Terms

The following terms are used to describe 8086 relocation and linkage.

OMF

MAS

Object Module Formats

Memory Address Space. Note that the MAS is distinguished from
actual memory, which may occupy only a portion of the MAS.

MODULE
An "inseparable" collection of object code and other information
produced by a translator.

T-MODULE
A module created by a translator, such as C, Pascal or FORTRAN.

The following restrictions apply to object modules:

• Every module needs a name. Translators provide names for
T-Modules, giving a default name (possibly the filename or
a null name) if neither source code nor user specifies other­
wise.

• Every T-Module in a collection of linked modules must
have a different name so that symbolic debugging systems
can distinguish the various line numbers and local symbols.
This restriction is not required by ld.

FRAME

LSEG

7-4

A contiguous region of MAS that can be addressed using a single
segment register. This concept is useful because the content of the
four 8086 segment registers defines four (possibly overlapping)
FRAMEs; no 16-bit address in the 8086 code can access a memory
location outside of the current four FRAMEs. On an 8086, a
FRAME must begin on a paragraph boundary (that is, a multiple of
16 bytes). On 80286 and 80386 processors, this restriction does
not apply. On an 80386, a FRAME is a region of up to (2**32)
bytes addressed by a single segment register.

Logical Segment. A contiguous region of memory whose contents
are determined at translation time (except for address-binding).
Neither size nor location in MAS is necessarily determined at
translation time; size, although partially fixed, may not be final
because the LSEG may be combined at LINK time with other
LSEGs, forming a single LSEG. On 8086/80286 processors, an

PSEG

Object and Executable File Formats

LSEG must not be larger than 64K, so that it can fit in a FRAME.
This means that any byte in an LSEG may be addressed by a 16-bit
offset from the base of a FRAME covering the LSEG. An 80386
LSEG may be as much as (2**32) bytes in size and any byte in it
addressed by a 32-bit offset from the base of the FRAME contain­
ing the LSEG.

Physical Segment. This term is equivalent to FRAME. Some peo­
ple prefer PSEG to FRAME because the terms PSEG and LSEG
reflect the physical and logical nature of the underlying segments.

FRAME NUMBER
This term is only used in reference to 8086 processors, or
80286/80386 processors operating in real address mode. Every
FRAME begins on a paragraph boundary. The paragraphs in MAS
can be numbered from 0 through 65535. These numbers, each of
which defines a FRAME, are called FRAME NUMBERS.

PARAGRAPH NUMBER
This term is equivalent to FRAME NUMBER.

PSEGNUMBER
This term is equivalent to FRAME NUMBER.

GROUP
A collection of LSEGs defined at translation time, whose final
locations in MAS are constrained such that there is at least one
FRAME that covers (contains) every LSEG in the collection.

The notation Gr A(X,Y,Z) means that LSEGs X, Y and Z form a
group whose name is A. The fact that X, Y and Z are all LSEGs in
the same group does not imply any ordering of X, Y and Z in MAS,
nor does it imply any contiguity between X, Y and Z.

The link editor does not currently allow an LSEG to be a member
of more than one group. The link editor ignores all attempts to
place an LSEG in more than one group.

CANONIC
Any location in the 8086 MAS is contained in exactly 4096 dis­
tinct FRAMEs; but one of these FRAMEs can be distinguished
because it has a higher FRAME NUMBER. This distinguished
FRAME is called "the canonic FRAME" of the location. The
canonic FRAME of a given byte is the FRAME so chosen that the
byte's offset from that FRAME lies in the range 0 to 15 (decimal).
Thus, if Faa is a symbol defining a memory location, one may
speak of the "canonic FRAME of Faa," or of "Faa's canonic

7-5

C User's Guide

FRAME." By extension, if S is any set of memory locations, then
there exists a unique FRAME that has the lowest FRAME
NUMBER in the set of canonic FRAMEs of the locations in S.
This unique FRAME is called the canonic FRAME of the set S.
Thus, we may speak of the canonic FRAME of an LSEG, or of a
group of LSEGs.

SEGMENT NAME
LSEGs are assigned segment names at translation time. These
names serve two purposes:

• They play a role at LINK time in determining which LSEGs
are combined with other LSEGs.

• They are used in assembly source code to specify groups.

CLASS NAME
LSEGs may optionally be assigned class names at translation time.
Classes define a partition on LSEGs: two LSEGs are in the same
class if they have the same class name.

The link editor applies the following semantics to class names.
The class name "CODE" or any class name whose suffix is
"CODE" implies that all segments of that class contain only code
and may be considered read-only. Such segments may be overlaid
if the user specifies the module containing the segment as part of
an overlay.

OVERLAY NAME
LSEGs may optionally be assigned an overlay names. The overlay
name of an LSEG is ignored by ld (version 2.40 and later ver­
sions), but it is used by Intel relocation and linkage products.

COMPLETE NAME
The complete name of an LSEG consists of the segment name,
class name, and overlay name. LSEGs from different modules are
combined if their complete names are identical.

7.5 Module Identification and Attributes

A module header record is always the first record in a module and pro­
vides the module name.

In addition to a name, a module may have the attribute of being a main
program as well as having a specified starting address. When you are
linking multiple modules together, only one module with the main attri­
bute should be given.

7-6

Object and Executable File Formats

In summary, modules mayor may not be main and mayor may not have a
starting address.

7.6 Segment Definition

A module is a collection of object code defined by a sequence of records
produced by a translator. The object code represents contiguous regions
of memory whose contents are determined at translation time. These
regions are called LOGICAL SEGMENTS (LSEGs). A module defines
the attributes of each LSEG. The SEGMENT DEFINITION RECORD
(SEGDEF) is the vehicle by which all LSEG information (name, length,
memory alignment, and so on) is maintained. The LSEG information is
required when mUltiple LSEGs are combined and when segment addres­
sability is established. (See "Segment Addressing"). The SEGDEF
records are required to follow the first header record.

7.7 Segment Addressing

The 8086/80286 addressing mechanism provides segment base registers
from which a 64-Kbyte region of memory, called a FRAME, may be
addressed. There are one code-segment base register (CS), two data­
segment base registers (DS, ES), and one stack-segment base register
(SS). The 80386 has two additional segment registers: FS and GS, and
can address up to (2**32) bytes of memory from each segment register.

The greatest possible number of LSEGs that may make up a memory
image far exceeds the number of available base registers. Thus, base
registers may require frequent loading. This would occur in a modular
program with many small data and/or code LSEGs.

Since such frequent loading of base registers is undesirable, it is a good
strategy to collect many small LSEGs together into a single unit that fits
in one memory frame so that all the LSEGs may be addressed using the
same base register value. This addressable unit is a GROUP. See
"Definition of Terms."

To have addressability of objects within a GROUP, each GROUP must be
explicitly defined in the module. The GROUP DEFINITION RECORD
(GRPDEF) provides a list of constituent segments either by segment
name or by segment attribute such as "the segment defining symbol
FOO" or "the segments with class name ROM."

7-7

C User's Guide

The GRPDEF records within a module must follow all SEGDEF records
because GRPDEF records can reference SEGDEF records when defining
a GROUP. The GRPDEF records must also precede all other records
except header records, as ld must process them first.

7.8 Symbol Definition

The ld command supports three different types of records that fall into the
class of symbol definition records. The two most important types are
PUBLIC NAMES DEFINITION RECORDs (PUBDEFs) and EXTER­
NAL NAMES DEFINITION RECORDS (EXTDEFs). These types are
used to define globally visible procedures and data items and to resolve
external references. In addition, TYPDEF records are used by ld for the
allocation of communal variables. (See "Type Representations for Com­
munal Variables' ').

7.9 Indices

"Index" fields appear throughout this document. An index is an integer
that selects some particular item from a collection of such items. (This is
a list of examples: NAME INDEX, SEGMENT INDEX, GROUP
INDEX, EXTERNAL INDEX, TYPE INDEX.)

In general, indices must assume values quite large (that is, much larger
than 255). Nevertheless, a great number of object files will contain no
indices with values greater than 50 or 1 00. Therefore, indices will be
encoded in one or two bytes, as required.

The high-order (left-most) bit of the first (and possibly the only) byte
determines whether the index occupies one byte or two. If the bit is 0,
then the index is a number between 0 and 127, occupying one byte. If the
bit is 1, then the index is a number between 0 and 32K-l, occupying two
bytes, and is determined as follows: the low-order 8 bits are in the second
byte, and the high-order 7 bits are in the first byte.

7.10 Conceptual Framework for Fixups

A "fixup" is some modification to object code, requested by a translator,
performed by ld, achieving address-binding.

7-8

Object and Executable File Formats

Note

This definition of "fixup" accurately represents the viewpoint
maintained by ld. Nevertheless, the link: editor can be used to
achieve modifications of object code (that is, "fixups' ') that do not
conform to this definition. For example, the binding of code to
either hardware floating-point or software floating-point subroutines
is a modification to an operation code, where the operation code is
treated as if it were an address. The previous definition of "fixup"
is not intended to disallow or disparage object code modifications.

8086 translators specify a fixup with four data items:

• The place and type of a LOCATION to be fixed up.

• One of two possible fixup MODES.

• A TARGET, which is a memory address to which LOCATION
must refer.

• A FRAME defining a context within which the reference takes
place.

There are 5 types of LOCATION: a POINTER, a BASE, an OFFSET, a
HIBYTE, and a LOBYTE.

The vertical alignment of the following figure illustrates four points.
(Remember that the high-order byte of a word in 8086 memory is the byte
with the higher address.) The ld command does not require the presence
of the high- or low-order complement of these items. (For instance, in the
case of HIBYTE, a high-order word, it doesn't matter if the low-order
word is present.)

• A BASE is the high-order word of a pointer.

• An OFFSET is the low-order word of a pointer.

• A HIBYTE is the high-order half of an OFFSET.

7-9

C User's Guide

• A LOBYTE is the low-order half of an OFFSET.

I LOBYTE I HIBYTE I
I OFFSET I BASE

POINTER

LOCATION Types

A LOCATION is specified by two data: (1) the LOCATION type, and (2)
where the LOCATION is. The first is specified by the LOC subfield of the
LOCAT field of the FIXUP record; the second is specified by the DATA
RECORD OFFSET subfield of the LOCAT field of the FIXUP record.

The link editor supports two fixup MODEs: "self-relative" and
, , segment-relative. "

Self-Relative fixups support the 8- and 16-bit offsets that are used in the
CALL, JUMP and SHORT-JUMP instructions. Segment-Relative fixups
support all other addressing modes of the 8086.

The TARGET is the location in MAS being referenced. (More explicitly,
the TARGET may be considered the lowest byte in the object being refer­
enced.) A TARGET is specified in one of eight ways. There are four
, 'primary" ways, and four "secondary" ways. Each primary way of speci­
fying a TARGET uses two kinds of data: an INDEX-or-FRAME­
NUMBER 'X', and a displacement 'D'.

• (TO) X is a SEGMENT INDEX. The TARGET is the Dth byte in
the LSEG identified by the INDEX.

• (Tl) X is a GROUP INDEX. The TARGET is the Dth byte in the
LSEG identified by the INDEX.

• (T2) X is an EXTERNAL INDEX. The TARGET is the Dth byte
following the byte whose address is (eventually) given by the
External Name identified by the INDEX.

• (T3) X is a FRAME NUMBER. The TARGET is the Dth byte in
the FRAME identified by the FRAME NUMBER (that is, the
address of TARGET is (X*16)+D).

Each secondary way of specifying a TARGET uses only one data item:
the INDEX-or-FRAME-NUMBER X. An implicit displacement equal to
zero is assumed.

• (T4) X is a SEGMENT INDEX. The TARGET is the Oth (first)
byte in the LSEG identified by the INDEX.

7-10

Object and Executable File Formats

• (TS) X is a GROUP INDEX. The TARGET is the Oth (first) byte in
the LSEG in the specified group that is eventually LOCATEd
lowest in MAS.

• (T6) X is an EXTERNAL INDEX. The TARGET is the byte
whose address is the External Name identified by the INDEX.

• (T7) X is a FRAME NUMBER. The TARGET is the byte whose
20-bit address is (X*16).

Note

The link editor does not support methods T3 and T7.

The following nomenclature is used to describe a TARGET:

TARGET: SI «segment name», <displacement> [TO]

TARGET: GI «group name», <displacement> [Tl]

TARGET: EI «symbol name», <displacement> [T2]

TARGET: SI «segment name» [T4]

TARGET: GI «group name» [TS]

TARGET: EI «symbol name» [T6]

The following examples illustrate how this notation is used:

TARGET: SI(CODE), 1024

TARGET: GI(DATAAREA)

TARGET: EI(SIN)

The 102Sth byte in the segment
"CODE".

The location in MAS of a group
called "DATAAREA".

The address of the external subrou­
tine "SIN".

TARGET: EI(PAYSCHEDULE),24 The 24th byte following the location
of an EXTERNAL data structure
called "PAYSCHEDULE".

Every 8086 memory reference is to a location contained within some
FRAME, where the FRAME is designated by the content of some seg­
ment register. For ld to form a correct, usable memory reference, it must

7-11

C User's Guide

know what the TARGET is, and to which FRAME the reference is being
made. Thus, every fixup specifies such a FRAME in one of six ways.
Some use data X, which is in INDEX-or-FRAME-NUMBER, as above.
Others require no data.

The six methods of specifying frames are:

1. (FO) X is a SEGMENT INDEX. The FRAME is the canonic
FRAME of the LSEG defined by the INDEX.

2. (FI) X is a GROUP INDEX. The FRAME is the canonic
FRAME defined by the group (that is, the canonic FRAME
defined by the LSEG in the group that is eventually LOCATEd
lowest in MAS).

3. (F2) X is an EXTERNAL INDEX. The FRAME is determined
when the External Name's public definition is found. There are
three cases:

• (F2a) The symbol is defined relative to some LSEG, and
there is no associated GROUP. The LSEGs canonic
FRAME is specified.

• (F2b) The symbol is defined absolutely, without reference
to an LSEG, and there is no associated GROUP. The
FRAME is specified by the FRAME NUMBER subfield of
the PUBDEF record that gives the symbol's definition.

• (F2c) Regardless of how the symbol is defined, there is an
associated GROUP. The canonic FRAME of the GROUP
is specified. (The group is specified by the GROUP
INDEX subfield of the PUBDEF Record.)

4. (F3) X is a FRAME NUMBER (specifying the obvious FRAME).

7-12

S. (F4) No X. The FRAME is the canonic FRAME of the LSEG
containing LOCATION.

6. (FS) No X. The FRAME is determined by the TARGET. There
are four cases:

• (FSa) The TARGET specifies a SEGMENT INDEX: in
this case, the FRAME is determined as in (FO).

• (FSb) The TARGET specifies a GROUP INDEX: in this
case, the FRAME is determined as in (FI).

• (FSc) The TARGET specifies an EXTERNAL INDEX: in
this case, the FRAME is determined as in (F2).

Note

Object and Executable File Formats

• (FSd) The TARGET is specified with an explicit FRAME
NUMBER: in this case the FRAME is detennined as in
(F3).

The link editor does not support frame methods F2b, F3, or FSd.

Nomenclature describing FRAMEs is similar to the above nomenclature
for TARGETs.

FRAME: SI «segment name» [FO]

FRAME: GI «group name» [Fl]

FRAME: EI «symbol name» [F2]

FRAME: LOCATION [F4]

FRAME: TARGET [FS]

FRAME: NONE [F6]

For an 8086 memory reference, the FRAME specified by a self-relative
reference is usually the canonic FRAME of the LSEG containing the
LOCATION, and the FRAME specified by a segment relative reference is
the canonic FRAME of the LSEG containing the TARGET.

7.11 Self-Relative Fixups

Self-relative fixups can be applied to LOCATIONS which are a 16- or
32-bit OFFSET or LOBYTES. (The result of applying a self-relative
fixup to any other type of LOCATION is undefined.)

Both the LOCATION and the TARGET must lie within the FRAME
specified for the fixup.

The value to be used in the fixup is defined as the displacement from the
byte in memory following the LOCATION to the TARGET.

If the LOCATION to be fixed-up is a LOBYTE, the fixup value must lie
in the range -128 to 127.

7-13

C User's Guide

If the LOCATION to be fixed up is a 16-bit OFFSET, the fixup value must
lie in the range -32768 to 32767.

The fixup value is added to the existing contents of the LOCATION,
ignoring any overflow.

Self-relative fixups are typically applied to the relative displacement
values used in instructions such as conditional jumps.

7.12 Segment-Relative Fixups

Segment-relative fixups can be applied to any type of LOCATION.

The way in which a LOCATION containing a BASE component (that is, a
BASE or a POINTER) is fixed up depends on whether the code is to run
in real or virtual address mode. The contents of the BASE portion of a
LOCATION must ultimately be capable of being loaded into a segment
register; therefore, in real address mode this will be a paragraph number
and in virtual address mode this will be a selector value.

Fixup values for the BASE and OFFSET components of a LOCATION
are calculated as follows:

1. In real address mode:

The base fixup value (FBVAL) is defined as the FRAME
NUMBER of the FRAME specified in the fixup.

The offset fixup value (FOVAL) is defined as the offset of the TAR­
GET from the start of the FRAME specified in the fixup. This
offset must be 2:: 0 and ::; FFFF.

2. In protected mode:

7-14

The base fixup value (FBVAL) is defined as the segment selector
of the FRAME specified in the fixup.

The offset fixup value (FOVAL) is defined as the offset of the TAR­
GET from the start of the FRAME specified in the fixup. This
offset must be 2:: 0 and::; the maximum segment size implied by the
segment selector for the FRAME. (that is, (2**16)-1 for 80286 seg­
ments and 16-bit 80386 segments, or (2**32)-1 for 32-bit 80386
segments.

Object and Executable File Formats

The fixup values for BASE and OFFSET are applied to the LOCATION
as follows:

1. If the LOCATION is a BASE or a POINTER, then FBVAL is
stored in the BASE component of the LOCATION.

2. If the LOCATION is a POINTER, or a 16- or 32-bit OFFSET, or a
LOBYTE, then the offset fixup value (FOVAL) is added to the
existing contents of the OFFSET component of the LOCATION
ignoring any overflow.

3. If the LOCATION is a HIBYTE, then (FOVAL/256) is added to
the LOCATION, ignoring overflow.

7.13 Record Order

An object code file must contain a sequence of (one or more) modules, or
a library containing zero or more modules. A module is defined as a col­
lection of object code defined by a sequence of object records. The fol­
lowing syntax shows the valid orderings of records to form a module. In
addition, the given semantic rules provide information about how to inter­
pret the record sequence.

Note

The syntactic description language used below is defined in
WIRTH: CACM, November 1977, vol.#20, no.#l1 , pp.#822-823.
The character strings represented by capital letters above are not
literals, but are identifiers that are further defined in the section
describing the record formats.

7-15

C User's Guide

object file
tmodule
seg~rp

component
data
debug_record
contenCdef
thread_def
data_record
modtail

= tmodule
= THEADR seg-grp {component} modtail
= {LNAMES} {SEGDEF} {TYPDEF I EXTDEF I GRPDEF}
= data I debug_record
= contenCdef I thread_def I TYPDEF I PUBDEF I EXTDEF
=LINNUM
= data_record {FIXUPP}
= FIXUPP (containing only thread fields)
= LIDATA I LEDATA
= MODEND

The following rules apply:

• A FIXUPP record always refers to the previous DATA record.

• All LNAMES, SEGDEF, GRPDEF, TYPDEF, and EXTDEF records
must precede all records that refer to them.

• COMENT records may appear anywhere in a file, except as the first or
last record in a file or module, or within a contenCdef.

7.14 Introduction to the Record Formats

The following pages present diagrams of record formats in schematic
form. Here is a sample record format, to illustrate the various conven­
tions.

SAMPLE RECORD FORMAT

(SAMREC)

~R-E-C--'--R-E-C-O-R-D---'- - - - - - - - - - - - I I SCUHMK I

L--~_;_J_--,--_L_E_N_G_T_H_----, ____ ~~~~ ___ --'-___ N_U_M_B_E_R __ ---'-" __ ----'"

I ¢::: repeated :::} I

7.14.1 Title and Official Abbreviation

At the top is the name of the record format described, with an official
abbreviation. To promote uniformity among various programs, including
translators and debuggers, the abbreviation should be used in both code
and documentation. The record format abbreviation is always six letters.

7-16

Object and Executable File Formats

7.14.2 The Boxes

Each fonnat is drawn with boxes of two sizes. The narrow boxes
represent single bytes. The wide boxes represent two bytes each. The
wide dashed boxes represent a variable number of bytes, one or more,
depending upon content. The wide solid boxes represent 4-byte fields.

7.14.3 Rectyp

The first byte in each record contains a value between 0 and 255, indicat­
ing the record type. For records that have both 16- and 32-bit versions,
the low-order bit of the record type indicates the type: O=16-bit, 1=32 bit.

7.14.4 Record Length

The second field in each record contains the number of bytes in the
record, exclusive of the first two fields.

7.14.5 Name

Any field that indicates a "NAME" has the following internal structure:
the first byte contains a number between 0 and 127, inclusive, that indi­
cates the number of remaining bytes in the field. The remaining bytes are
interpreted as a byte string.

Most translators constrain the character set to be a subset of the ASCII
character set.

7.14.6 Number

A 4-byte NUMBER field represents a 32-bit unsigned integer, where the
first 8 bits (least-significant) are stored in the first byte (lowest address),
the next 8 bits are stored in the second byte, and so on.

7.14.7 Repeated or Conditional Fields

Some portions of a record fonnat contain a field or a series of fields that
may be repeated one or more times. Such portions are indicated by the
"repeated" or "rpt" brackets below the boxes.

Similarly, some portions of a record fonnat are present only if some given
condition is true; these fields are indicated by similar "conditional" or

7-17

C User's Guide

"cond" brackets below the boxes.

7.14.8 Chksum

The last field in each record is a check sum, which contains the 2's com­
plement of the sum (modulo 256) of all other bytes in the record. There­
fore, the sum (modulo 256) of all bytes in the record equals O.

7.14.9 Bit Fields

Descriptions of contents of fields will sometimes be at the bit level.
Boxes with complete vertical lines drawn through them represent bytes or
words; the partial vertical lines indicate bit boundaries; thus the byte
represented below, has three bit-fields of3-, 1-, and 4-bits.

REC
TYP
80H

3 bits 4 bits

T-MODULE HEADER RECORD

(THEADR)

RECORD
LENGTH NAME SUM

-;~~~;;~~~-~I CHK I
L--__ -'--_____ ->-- __________ _

Every module output from a translator must have aT-MODULE
HEADER RECORD.

7-18

Object and Executable File Formats

7.14.10 T-Module Name

The T-MODULE NAME provides a name for the T-MODULE.

REC
TYP
96H

LIST OF NAMES RECORD

(LNAMES)

RECORD
LENGTH ---~~~---I ~3~ I

'--------'--------'-- - - - - - - - - - - -
I ¢:: repeated => I

This Record provides a list of names that may be used in following SEG­
DEF and GRPDEF records as the names of Segments, Classes and/or
Groups.

The ordering ofLNAMES records within a module, together with the ord­
ering of names within each LNAMES Record, induces an ordering on the
names. Thus, these names are considered to be numbered: 1, 2, 3,4, ...
These numbers are used as "Name Indices" in the Segment Name Index,
Class Name Index and Group Name Index fields of the SEGDEF and
GRPDEF Records.

7.14.11 Name

This repeatable field provides a name, which may have zero length.

REC
TYP RECORD
98H LENGTH
99H

SEGMENT DEFINITION RECORD
(SEGDEF)

ATTR LENGTH NAME NAME NAME SUM
INDEX INDEX INDEX

S~~~~~T SEGMENT S~~~~~J-c~~~s-~-~iNlHKI
"-------'-------'-------- ------ ------ -----

SEGMENT INDEX values 1 through 32767, which are used in other
record types to refer to specific LSEGs, are defined implicitly by the
sequence in which SEGDEF Records appear in the object file.

7-19

C User's Guide

In the RECORD TYPE field, 98H and 99H describe 16- and 32-bit seg­
ments, respectively.

7.14.12 Seg Attr

The SEG ATTR field provides infonnation on various attributes of a seg­
ment, and has the following fonnat:

ACBP FRAME OFFSET
NUMBER

¢= conditional =>
repeat

The ACBP byte contains four numbers which are the A, C, B, and P attri­
bute specifications. This byte has the following fonnat:

A C

"A" (Alignment) is a 3-bit subfield that specifies the alignment attribute of
the LSEG. The semantics are defined as follows:

A=O SEGDEF describes an absolute LSEG.

A=1 SEGDEF describes a relocatable, byte-aligned LSEG.

A=2 SEGDEF describes a relocatable, word-aligned LSEG.

A=3 SEGDEF describes a relocatable, paragraph-aligned LSEG.

A=4 SEGDEF describes a relocatable, page-aligned LSEG.

A=5 SEGDEF describes a relocatable, double-word-aligned LSEG.
(386 OMF only)

If A=O, the FRAME NUMBER and OFFSET fields will be present. Using
Id, absolute segments may be used for addressing purposes only; for
example, defining the starting address of a ROM and defining symbolic
names for addresses within the ROM. Id will ignore any data specified as
belonging to an absolute LSEG.

7-20

Object and Executable File Formats

"c" (Combination) is a 3-bit subfield that specifies the combination attri­
bute of the LSEG. Absolute segments (A=O) must have combination zero
(C=O). For relocatable segments, the C field encodes a number (0,1,2,4,5,6
or 7) that indicates how the segment can be combined. The interpretation
of this attribute is best given by considering how two LSEGs are com­
bined:

• Let X,Y be LSEGs, and let Z be the LSEG resulting from the com­
bination of X,Y.

• Let LX and LY be the lengths of X and Y, and let MXY denote the
maximum of LX, LY.

• Let G be the lep..gth of any gap required between the X- and Y­
components of Z to accommodate the alignment attribute of Y.

• Let LZ denote the length of the (combined) LSEG Z; let dx
(O<=dx<LX) be the offset in X the (combined) LSEG Z; let dx
(O<=dx<LX) be the offset in X of a byte, and let dy similarly be the
offset in Y of a byte.

The following table gives the length LZ of the combined LSEG Z, and the
offsets dx' and dy' in Z for the bytes corresponding to dx in X and dy in Y.
Intel defines additionally alignment types 5 and 6 and also processes code
and data placed in segment with align-type.

Combination Attribute Example

C LZ dx' dy'

2 LX+LY+G dx dy+LX+G Public

5 LX+LY+G dx dy+LX+G Stack

6 MXY dx dy Common

The table has no lines for C=O, C=l, C=3, C=4 and C=7. C=O indicates
that the relocatable LSEG may not be combined; C=l and C=3 are
undefined. C=4 and C= 7 are treated like C=2. C 1, C4, and C7 all have
different meanings according to the Intel standard.

"B" (Big) is a I-bit subfield which, if 1, indicates that the Segment
Length is exactly 2**16 (2**32 in the case of 32-bit segments). In this
case the SEGMENT LENGTH field must contain zero.

The "P" field must always be zero. The "P" field is the "Page
resident" field according to the Intel standard.

7-21

C User's Guide

The FRAME NUMBER and OFFSET fields (present only for absolute
segments, A=O) specify the placement in MAS of the absolute segment.
The range of OFFSET is constrained to be between 0 and 15 inclusive. If
a value larger than 15 is desired for OFFSET, then an adjustment of the
FRAME NUMBER should be done.

7.14.13 Segment Length

The SEGMENT LENGTH field gives the length of the segment in bytes.
The length may be zero; if so, Id will not delete the segment from the
module. The SEGMENT LENGTH field is two bytes for a 16-bit segment
(Rectyp 98) and four bytes for a 32-bit segment (Rectyp 99). This is large
enough for numbers up to (2**16)-1 and (2**32)-1, respectively. The B
attribute bit in the ACBP field (see SEG ATTR section) must be used to
indicate a length of (2**16) or (2**32).

7.14.14 Segment Name Index

The Segment Name is a name the programmer or translator assigns to the
segment. Examples: CODE, DATA, STACK, TAXDATA,
MODULENAME_CODE. This field provides the Segment Name, by
indexing into the list of names provided by the LNAMES Record(s).

7.14.15 Class Name Index

The Class Name is a name the programmer or translator can assign to a
segment. If none is assigned, the name is null, and has length O. The pur­
pose of Class Names is to allow the programmer to define a "handle"
used in the ordering of the LSEGs in MAS. Examples: RED, WHITE,
BLUE; ROM FASTRAM, DISPLAYRAM. This field provides the Class
Name, by indexing into the list of names provided by the LNAMES
Record(s).

7-22

Object and Executable File Formats

7.14.16 Overlay Name Index

Note

This is ignored in ld versions 2.40 and later, but supported in all ear­
lier versions. However, semantics differ from Intel semantics.

The Overlay Name is a name the translator and/or ld, at the programmer's
request, applies to a segment. The Overlay Name, like the Class Name,
may be null. This field provides the Overlay Name, by indexing into the
list of names provided by the LNAMES Record(s).

Note

The "Complete Name" of a segment is a 3-component entity
comprising a Segment Name, a Class Name and an Overlay Name.
(The latter two components may be null.)

GROUP DEFINITION RECORD

(GRPDEF)

REC
TYP
9AH

RECORD
LENGTH

INDEX DESCRIPTOR
--i~iYi --I~~i8~~ I ~~ I

'-----'---------~- --- - -- - --- ---- --- -- ---
I <= repeated ~ I

7.14.17 Group Name Index

The Group Name is a name by which a collection of LSEGs may be refer­
enced. The important property of such a group is that, when the LSEGs
are eventually fixed in MAS, there must exist some FRAME which "cov­
ers" every LSEG of the group.

The GROUP NAME INDEX field provides the Group Name, by indexing
into the list of names provided by the LNAMES Record(s).

7-23

C User's Guide

7.14.18 Group Component Descriptor

Each GROUP COMPONENT DESCRIPTOR has the following format:

~------------] SI SEGMENT
(FFH) INDEX

The first byte of the DESCRIPTOR contains OFFH; the DESCRIPTOR
contains one field, which is a SEGMENT INDEX that selects the LSEG
described by a preceding SEGDEF record.

Intel defines 4 other group descriptor types, each with its own meaning.
They are OFEH, OFDH, OfBH, and OfAH. The link editor will treat all of
these values the same as OFFH (i.e., it always expects OFFH followed by
a segment index, and it does not check to see if the value is actually OFF).

TYPE DEFINITION RECORD

(TYPDEF)

,--I_!_~_,--_~_~_~_g_~_~_-,--(USU~¢~~~~ I ~~~~~ l ~~ I
I ¢=: repeated =} I

The link editor uses TYPDEF records only for communal variable alloca­
tion. This is not Intel's intended purpose. See "Type Representations for
Communal Variables. "

As many "EIGHT LEAF DESCRIPTOR" fields as necessary are used to
describe a branch. (Every such field except the last in the record
describes eight leaves; the last such field describes from one to eight
leaves.)

TYPE INDEX values I through 32767, which are contained in other
record types to associate object types with object names, are defined
implicitly by the sequence in which TYPDEF records appear in the object
file.

7-24

Object and Executable File Formats

7.14.19 Name

Use of this field is reserved. Translators should place a single byte con­
taining 0 in it (the representation of a name of length zero).

7.14.20 Eight-Leaf Descriptor

This field can describe up to eight Leaves.

[3 ------------J EN LEAF
DESCRIPTOR

I <== repeated => I

The EN field is a byte: the 8 bits, left to right, indicate if the following 8
Leaves (left to right) are Easy (bit=O) or Nice (bit=I).

The LEAF DESCRIPTOR field, which occurs between 1 and 8 times, has
one of the following formats:

129 Ot064K-1

132 Oto 16M-1

136 -20-1 to 20-1

The first format (single byte), containing a value between 0 and 127,
represents a Numeric Leaf whose value is the number given.

The second format, with a leading byte containing 129, represents a
Numeric Leaf. The number is contained in the following two bytes.

The third format, with a leading byte containing 132, represents a
Numeric Leaf. The number is contained in the following three bytes.

7-25

C User's Guide

The fourth format, with a leading byte contammg 136, represents a
Signed Numeric Leaf. The number is contained in the following four
bytes, sign extended if necessary.

PUBLIC NAMES DEFINITION RECORD

(PUBDEF)

~~~ RECORD ~~~~~~I~~~;~ PUBLIC -~~-lHK I 
L-~_~_~--,-L_E_N_G_T_H--,-__ ~~~~ _ ~~~~ --L.._O_F_F_SE_T--,-_ :~~~~ SUM 

I ¢=: ......... repeated ......... => I 

This record provides a list of one or more PUBLIC NAMEs; for each one, 
three data are provided: (1) a base value for the name, (2) the offset value 
of the name, and (3) the type of entity represented by the name. 

In the RECORD TYPE field, 90H and 91H describe 16- and 32-bit public 
definition records, respectively. 

7.14.21 Public Base 

The PUBLIC BASE has the following format: 

[:~~i(:I:~~~~~: I N~~ 
I ¢=: conditional => I 

The GROUP INDEX field has a format given earlier, and provides a 
number between 0 and 32767 inclusive. A non-zero GROUP INDEX 
associates a group with the public symbol, and is used as described in 
"Conceptual Framework for Fixups," case (F2c). A zero GROUP 
INDEX indicates that there is no associated group. 

The SEGMENT INDEX field has a format given earlier, and provides a 
number between 0 and 32767, inclusive. 

A non-zero SEGMENT INDEX selects an LSEG. In this case, the loca­
tion of each public symbol defined in the record is taken as a non­
negative displacement (given by a PUBLIC OFFSET field) from the first 

7-26 



Object and Executable File Formats 

byte of the selected LSEG, and the FRAME NUMBER field must be 
absent. 

A SEGMENT INDEX of 0 (legal only if GROUP INDEX is also 0) means 
that the location of each public symbol defined in the record is taken as a 
displacement from the base of the FRAME defined by the value in the 
FRAME NUMBER field. 

The FRAME NUMBER is present if both the SEGMENT INDEX and 
GROUP INDEX are zero. 

A non-zero GROUP INDEX selects some group; this group is taken as the 
"frame of reference" for references to all public symbols defined in this 
record; that is, ld will perform the following: 

1. Any fixup of the form: 

TARGET: EI(P) 
FRAME: TARGET 

(where "P" is a public symbol in this PUBDEF record) will be 
converted by ld to a fixup of the form: 

TARGET: SI(L),d 
FRAME: GI(G) 

where "SI(L)" and "d" are provided by the SEGMENT INDEX 
and PUBLIC OFFSET fields. (The "normal" action would have 
the frame specifier in the new fixup be the same as in the old fixup: 
FRAME: TARGET.) 

2. When the value of a public symbol, as defined by the SEGMENT 
INDEX, PUBLIC OFFSET, and (optional) FRAME NUMBER 
fields, is converted to a {base,offset} pair, the base part will be 
taken as the base of the indicated group. If a non-negative 16-bit 
offset cannot then complete the definition of the public symbol's 
value, an error occurs. 

A GROUP INDEX of zero selects no group. ld will not alter the FRAME 
specification of fixups referencing the symbol, and will take, as the base 
part of the absolute value of the public symbol, the canonic frame of the 
segment (either LSEG or PSEG) determined by the SEGMENT INDEX 
field. 

7-27 



C User's Guide 

7.14.22 Public Name 

The PUBLIC NAME field gives the name of the object whose location in 
MAS is made available to other modules. The name must contain one or 
more characters. 

7.14.23 Public Offset 

The PUBLIC OFFSET field is a 16-bit value (Rectyp=90H), or a 32-bit 
value (Rectyp=91H), which is either the offset of the Public Symbol with 
respect to an LSEG (if SEGMENT INDEX> 0), or the offset of the Public 
Symbol with respect to the specified FRAME (if SEGMENT INDEX = 0). 

7.14.24 Type Index 

The TYPE INDEX field identifies a single preceding TYPDEF (Type 
Definition) Record containing a descriptor for the type of entity 
represented by the Public Symbol. This field is ignored by ld. 

EXTERNAL NAMES DEFINITION RECORD 

(EXTDEF) 

,---~_l_~_"---_~_~~_g_~_E_---,-__ ~~L _ 1 ___ ~~~_:: l ~~ I 
¢::: ........... repeated ........... => I 

This record provides a list of external names, and for each name, the type 
of object it represents. ld will assign to each External Name the value 
provided by an identical Public Name (if such a name is found). 

7.14.25 External Name 

This field provides the name, which must have non-zero length, of an 
external object. 

Inclusion of a Name in an External Names Record is an implicit request 
that the object file be linked to a module containing the same name 
declared as a Public Symbol. This request obtains whether or not the 
External Name is referenced within some FIXUPP Record in the module. 

7-28 



Object and Executable File Formats 

The ordering of EXTDEF Records within a module, together with the ord­
ering of External Names within each EXTDEF Record, induces an order­
ing on the set of all External Names requested by the module. Thus, 
External Names are considered to be numbered 1, 2, 3, 4, .... These 
numbers are used as "External Indices" in the TARGET DATUM and/or 
FRAME DATUM fields of FIXUPP Records to refer to a particular Exter­
nal Name. 

Note 

8086 External Names are numbered positively: 1,2,3, ... This is a 
change from 8080 External Names, which were numbered starting 
from zero: 0,1,2, ... This conforms with other 8086 Indices (Seg­
ment Index, Type Index, etc.) which use 0 as a default value with 
special meaning. 

External indices may not reference forward. For example, an external 
definition record defining the kth object must precede any record referring 
to that object with index k. 

7.14.26 Type Index 

This field identifies a single preceding TYPDEF (Type Definition) record 
containing a descriptor for the type of object named by the External Sym­
bol. 

The TYPE INDEX is used only in communal variable allocation by the 
link editor. 

7-29 



C User's Guide 

LINE NUMBERS RECORD 

(LINNUM) 

,-----.--.---------,- - - - - - - - - -

REC 
TYP 
94H 
95H 

RECORD 
LENGTH 

LINE 
NUMBER 

BASE 
'----__ '----___ ----J _________ _ 

LINE 
NUMBER 

LINE 
NUMBER 
OFFSET 

I ¢::: ........... repeated ........... => I 

CHK 
SUM 

This record provides the means by which a translator may pass the 
correspondence between a line number in source code and the 
corresponding translated code. 

In the RECORD TYPE field, 94H and 95H describe 16- and 32-bit line 
number records, respectively. 

7.14.27 Line-Number Base 

The LINE-NUMBER BASE has the following format: 

l------------r-----------] GROUP INDEX SEGMENT 
(ignored) INDEX 

----------- -----------

The SEGMENT INDEX determines the location of the first byte of code 
corresponding to some source line number. 

7.14.28 Line-Number 

A line number between 0 and 32767, inclusive, is provided in binary by 
this field. The high-order bit is reserved for future use and must be zero. 

7.14.29 Line Number Offset 

The LINE-NUMBER OFFSET field is either a 16-bit value (Rectyp=94H) 
or a 32-bit value (Rectyp=95H), which is the offset of the line number 
with respect to an LSEG (if SEGMENT INDEX> 0). 

7-30 



Object and Executable File Formats 

LOGICAL ENUMERKIED DKIA RECORD 

(LEDATA) 

,----r--------,'- - - - - - - - - -

REC 
TYP 
AOH 
AIH 

RECORD 
LENGTH 

SEGMENT 
INDEX 

'----'--------'- - - - - - - - - -

ENUMERATED DATA 
DATA 

OFFSET 

CHK 
SUM 

This record provides contiguous data from which a portion of an 8086 
memory image may be constructed. 

In the RECORD TYPE field, AOH and AIH describe 16- and 32-bit 
LEDATA records, respectively. 

7.14.30 Segment Index 

This field must be non-zero and specifies an index relative to the SEG­
MENT DEFINITION RECORDS found previous to the LEDATA 
RECORD. 

7.14.31 Enumerated Data Offset 

This field specifies either a 16-bit offset (Rectype=AOH) or a 32-bit offset 
(Rectyp=AIH), that is relative to the base of the LSEG specified by the 
SEGMENT INDEX and defines the relative location of the first byte of 
the DAT field. Successive data bytes in the DAT field occupy succes­
sively higher locations of memory. 

7-31 



C User's Guide 

7.14.32 Dat 

This field provides up to 1024 consecutive bytes of relocatable or abso­
lute data. 

LOGICAL ITERIfI'ED DATA RECORD 

(LIDATA) 

r--r-I-~-r---~-~-~-g-~-~----'·- ~~~~;; -r-I-T-~R-.I\.I\.-~l-'AE-D--'I- ~;lE~ -, m~ , 
A3H OFFSET BLOCK 

'-----'---------''-- - - - - - - - - - --'------'-- - - - - - - - - -

I¢=: repeated =>1 

This record provides contiguous data from which a portion of an 8086 
memory image may be constructed. 

In the RECORD TYPE field, A2H and A3H describe 16- and 32-bit 
LIDATA records, respectively. 

7.14.33 Segment Index 

This field must be non-zero and specifies an index relative to the SEG­
DEF records found previous to the LIDATA RECORD. 

7.14.34 Iterated Data Offset 

This field specifies either a 16-bit offset (Rectype=A2H) or a 32-bit offset 
(Rectyp=A3H), that is relative to the base of the LSEG specified by the 
SEGMENT INDEX and defines the relative location of the first byte in 
the ITERATED DATA BLOCK. Successive data bytes in the ITERATED 
DATA BLOCK occupy successively higher locations of memory. 

7-32 



Object and Executable File Formats 

7.14.35 Iterated Data Block 

This repeated field is a structure specifying the repeated data bytes. The 
structure has the following fonnat: 

Note 

The link editor cannot handle LIDATA records whose ITERATED 
DATA BLOCK is larger than 512 bytes. 

7.14.36 Repeat Count 

This field specifies the number of times that the CONTENT portion of 
this ITERATED DATA BLOCK is to be repeated. REPEAT COUNT 
must be non-zero. 

7.14.37 Block Count 

This field specifies the number of ITERATED DATA BLOCKS that are to 
be found in the CONTENT portion of this ITERATED DATA BLOCK. If 
this field has value zero, then the CONTENT portion of this ITERATED 
DATA BLOCK is interpreted as data bytes. If non-zero, then the CON­
TENT portion is interpreted as that number of ITERATED DATA 
BLOCKs. 

7.14.38 Content 

This field may be interpreted in one of two ways, depending on the value 
of the previous BLOCK COUNT field. 

If BLOCK COUNT is zero, then this field is a I-byte count followed by 
the indicated number of data bytes. 

7-33 



C User's Guide 

If BLOCK COUNT is non-zero, then this field is interpreted as the first 
byte of another ITERATED DATA BLOCK. 

Note 

From the outermost level, the number of nested ITERATED DATA 
BLOCKS is limited to 17, i.e., the number of levels of recursion is 
limited to 17. 

REC 
TYP 
9CH 
9DH 

FIXUP RECORD 

(FIXUPP) 

RECORD 
LENGTH or SUM 

FIXUP 

--T~--l CHK I 
'-----'---------'-- - - - - - - - - - - -

I ¢:::: repeated => I 

This record specifies 0 or more fixups. Each fixup requests a modification 
(fixup) to a LOCATION within the previous DATA record. A data record 
may be followed by more than one fixup record that refers. Each fixup is 
specified by a FIXUP field that specifies four data: a location, a mode, a 
target and a frame. The frame and the target may be specified totally 
within the FIXUP field, or may be specified by reference to a preceding 
THREAD field. 

A THREAD field specifies a default target or frame that may subse­
quently be referred to in identifying a target or a frame. Eight threads are 
provided; four for frame specification and four for target specification. 
Once a target or frame has been specified by a THREAD, it may be 
referred to by following FIXUP fields (in the same or following FIXUPP 
records), until another THREAD field with the same type (TARGET or 
FRAME) and Thread Number (0 - 3) appears (in the same or another FIX­
UPP record). 

In the RECORD TYPE field, 9CH and 9DH describe 16- and 32-bit FIX­
UPP records, respectively. 

7-34 



Object and Executable File Formats 

7.14.39 Thread 

THREAD is a field with the following format. 

TRD I ~ ~ ~ ~ ~I~~~~ ~ ~ ~ ~ ~ ] 
I ¢= conditional ~ I 

The TRD DAT (ThReaD DATa) subfield is a byte with this internal struc­
ture: 

METHOD THRED 

The "Z" is a I-bit subfield, currently without any defined function, that is 
required to contain 0. 

The "D" subfield is one bit that identifies what type of thread is being 
specified. If D=O, then a target thread is being defined; if D=I, then a 
frame thread is being defined. 

METHOD is a 3-bit subfield containing a number between ° and 3 (D=O) 
or a number between ° and 6 (D= 1). 

If D=O, then METHOD = (0, 1,2,3,4,5,6,7) mod 4, where the 0, ... , 7 
indicate methods TO, ... , T7 of specifying a target. Thus, METHOD indi­
cates what kind of Index or Frame Number is required to specify the tar­
get, without indicating if the target will be specified in a primary or 
secondary way. Note that methods 2b, 3, and 7 are not supported by Id. 

If D=I, then METHOD = 0,1,2,4,5, corresponding to methods FO, ... , of 
specifying a frame. Here, METHOD indicates what kind (if any) of Index 
is required to specify the frame. Note that methods 3 and 5d are not sup­
ported by Id. 

THRED is a number between ° and 3, and associates a Thread Number to 
the frame or target defined by the THREAD field. 

INDEX contains a Segment Index, Group Index, or External Index 
depending on the specification in the METHOD subfield. This subfield 
will not be present if F4 or F5 are specified by METHOD. 

7-35 



C User's Guide 

7.14.40 Fixup 

FIXUP is a field with the following fonnat: 

LOCAT F~ I --~~~~;; --1-- --~~~~~; --J ----~~~~; ---I 
'--____ --'--_D_!\_T_'--- __ ~~~~~ _ _ _ _ ~~~~~ _ _ ~~s_p!:~~~~~~~ 

I ¢= conditional => I ¢= conditional => I ¢= conditional => I 

LOCAT is a byte pair with the following fonnat: 

I ¢=......... 10 byte ......... =:} I ¢=......... hi byte ......... =:} I 

IIIIHI LOC 
DATA RECORD OFFSET II 

M is a I-bit subfield that specifies the mode of the fixups: self-relative 
(M=O) or segment-relative (M=l). 

Note 

Self-Relative fixups may not be applied to LIDATA records. 

LOC is a four-bit sub-field indicating the type of location that is to be 
fixed up: 

0 8 bit lobyte 

16 bit offset 

2 16 bit base 

3 32 bit pointer 

4 8 bit hibyte 

5 16 bit offset (linker resolved) 

9 32 bit offset 

11 48 bit pointer 

13 32 bit offset (linker resolved) 

7-36 



Object and Ex£cutable File Formats 

LOC values 9, 11 and 13 are only valid in 32-bit FIXUPP records (record 
type 9D). All other values of LOC are invalid. 

The DATA RECORD OFFSET is a number between 0 and 1023, 
inclusive, that gives the relative position of the lowest order byte of 
LOCATION (the actual bytes being fixed up) within the preceding DATA 
record. The DATA RECORD OFFSET is relative to the first byte in the 
data fields in the DATA RECORDs. 

Note 

It is possible for the value of DATA RECORD OFFSET to designate 
a "location" within a REPEAT COUNT subfield or a BLOCK 
COUNT subfield of the ITERATED DATA field. Such a reference 
is an error. The action of Id on such a malformed record is 
undefined. 

FIX DAT is a byte with the following format: 

FRAME 
II T II p II TARGT 

Note 

Frame method 2b, F3, and F5d are not supported. Target method T3 
and T7 are not supported. 

F is a I-bit subfield that specifies whether the frame for this FIXUP is 
specified by a thread (F=I) or explicitly (F=O). 

FRAME is a number interpreted in one of two ways as indicated by the F 
bit. If F is zero, FRAME is a number between 0 and 5 and corresponds to 
methods FO, ... , F5 of specifying a FRAME. If F=l, then FRAME is a 
thread number (0-3). It specifies the frame most recently defined by a 
THREAD field that defined a frame thread with the same thread number. 
(Note that the THREAD field may appear in the same, or in an earlier 
FIXUPP record.) 

7-37 



C User's Guide 

"T" is a I-bit sub field that specifies whether the target specified for 
this fixup is defined by reference to a thread (T=I), or is given explicitly 
in the FIXUP field (T=O). 

"P" is a I-bit subfield that indicates whether the target is specified in a 
primary way (requires a TARGET DISPLACEMENT, P=O) or specified in 
a secondary way (requires no TARGET DISPLACEMENT, P=I). Since a 
target thread does not have a primary/secondary attribute, the P bit is the 
only field that specifies the primary/secondary attribute of the target 
specification. 

TARGT is interpreted as a 2-bit subfield. When T=O, it provides a 
number between ° and 3, corresponding to methods TO, ... , T3 or T4, ... , 
T7, depending on the value of P (P can be interpreted as the high-order bit 
of TO, ... , T7). When the target is specified by a thread (T=l), then 
TARGT specifies a thread number (0-3). 

FRAME DATUM is the "referent" portion of a frame specification, and 
is a Segment Index, a Group Index, an External Index. The FRAME 
DATUM subfield is present only when the frame is specified neither by a 
thread (F=O) nor explicitly by methods F4 or F5 or F6. 

TARGET DATUM is the' 'referent" portion of a target specification, and 
is a Segment Index, a Group Index, an External Index or a Frame Number. 
The TARGET DATUM subfield is present only when the target is not 
specified by a thread (T=O). 

TARGET DISPLACEMENT is the displacement required by "primary" 
methods of specifying TARGETs. This field is 2 bytes long in I6-bit FIX­
UPP records (Rectyp=9CH) and 4 bytes long in 32-bit FIXUPP records 
(Rectyp=9DH). This subfield is present if P=O. 

Note 

All these methods are described in "Conceptual Framework for Fix­
ups." 

7-38 



Object and Executable File Formats 

REC 
TYP 
8AH 
8BH 

MODULE END RECORD 

(MODEND) 

RECORD MOD 
LENGTH TYP 

-----------8 START CHK 
ADDRS SUM 

-----------

I¢= conditional ==>1 

This record serves two purposes. It denotes the end of a module and indi­
cates whether the module just terminated has a specified entry point for 
initiation of execution. If the latter is true, the execution address is 
specified. 

In the RECORD TYPE field, 8AR and 8BR describe 16- and 32-bit 
MODEND records, respectively. 

7.14.41 Mod Type 

This field specifies the attributes of the module. The bit allocation and 
associated meanings are as follows: 

MATIR II z II z II z II z II z II L II 

MATTR is a 2-bit subfield that specifies the following module attributes: 

MATTR MODULE ATTRIBUTE 

o Non-main module with no START ADDRS 

1 Non-main module with START ADDRS 

2 Main module with no START ADDRS 

3 Main module with START ADDRS 

"L" indicates whether the START ADDRS field is interpreted as a logi­
cal address that requires fixing up by ld. (L=l). Note that with ld, L 
must always equal 1. 

7-39 



C User's Guide 

"Z" indicates that this bit has not currently been assigned a function. 
These bits are required to be zero. 

Physical start addresses (L=O) are not supported. 

The START ADDRS field (present only if MATTR is 1 or 3) has the fol­
lowing fonnat: 

STARTADDRS 

I END 1---~---1---~~~~;--- TARGET 

DAT __ ~~~~~ _ _ _ _ ~~~~~ _ _ DISPLACEMENT 

I ¢= conditional => I ¢= conditional => I ¢= conditional => I 

The starting address of a module has all the attributes of any other logical 
reference found in a module. The mapping of a logical starting address to 
a physical starting address is done in exactly the same manner as mapping 
any other logical address to a physical address as specified in the discus­
sion of fixups and the FIXUPP record. The above subfields of the START 
ADDRS field have the same semantics as the FIX DAT, FRAME 
DATUM, TARGET DATUM, and TARGET DISPLACEMENT fields in 
the FIXUPP record. Only' 'primary" fixups are allowed. Frame method 
F4 is not allowed. 

The TARGET DISPLACEMENT field is 2 bytes in a 16-bit MODEND 
record (Rectyp=8AH) and 4 bytes in a 32-bit MODEND record 
(Rectyp=8BH). 

REC RECORD 
TYP LENGTH 
88H 

COMMENT RECORD 

(COMENT) 

COMMENT 
TYPE 

-----------J!:j CHK 
COMMENT SUM 

-----------

This record allows translators to include comments in object text. 

7-40 



Object and Executable File Formats 

7.14.42 Comment Type 

This field indicates the type of comment carried by this record. This 
allows comments to be structured for those processes that wish to selec­
tively act on comments. The format of this field is as follows: 

II NPIINLII z II z II z II z II z II z II 
COMMENT 

CLASS 

The NP (NOPURGE) bit, if 1, indicates that it is not able to be purged by 
object file utility programs which implement the capability of deleting 
COMENT record. 

The NL (NOLIST) bit, if 1, indicates that the text in the COMMENT field 
is not to be listed in the listing file of object file utility programs which 
implement the capability of listing object COMMENT records. 

The COMMENT CLASS field is defined as follows: 

o Language translator comment. 

Intel copyright comment. The NP bit must be set. 

2-155 Reserved for Intel use. (See note 1 below.) 

156-255 Reserved for users. Intel products will apply no 
semantics to these values. (See Note 2 below.) 

NOTES: 

1. Class value 159 is used to specify a library to add to the link 
editor's library search list. The comment field will contain the 
name of the library. Note that unlike all other name specifications, 
the library name is not prefixed with its length. Its length is deter­
mined by the record length. 

2. Class value 156 is used to specify a DOS level number. When the 
class value is 156, the comment field will contain a two-byte 
integer specifying a DOS level number. 

3. Class value 161 is used to indicate that the module contains 
XENIX extensions to OMF, such as the various 32-bit record types. 

7-41 



C User's Guide 

7.14.43 Comment 

This field provides the commentary information. 

7.15 Numeric List of Record Types 

*6E RHEADR *92 LOCSYM 

*70 REGINT *93 MLOC386 

*72 REDATA 94 LINNUM 

*74 RIDATA 95 MLIN386 

*76 OVLDEF 96 LNAMES 

*78 ENDREC 98 SEGDEF 

*7A BLKDEF 99 MSEG386 

*7C BLKEND 9A GRPDEF 

*7E DEBSYM 9C FIXUPP 

80 THEADR 9D MFIX386 

*82 LHEADR *9E (none) 

*84 PEDATA AO LEDATA 

*86 PIDATA Al MLED386 

88 COMENT A2 LIDATA 

8A MODEND A3 MLID386 

8B H386END *A4 LIBHED 

8C EXTDEF *A6 LIBNAM 

8E TYPDEF *A8 LIBLOC 

90 PUBDEF *AA LIBDIC 

91 MPUB386 

7-42 



Object and Executable File Formats 

Note 

The record types marked with an asterisk are not supported by the 
link editor. They will be ignored if they are found in an object 
module. 

7.16 Type Representations for Communal Variables 

This section defines the XENIX standard for communal variable alloca­
tion on the 8086 and 80286. 

A communal variable is an uninitialized public variable whose final size 
and location are not fixed at compile time. Communal variables are simi­
lar to FORTRAN common blocks in that if a communal variable is 
declared in more than one object module being linked together, then its 
actual size will be the largest size specified in the several declarations. In 
the C language, all uninitialized public variables are communal. The fol­
lowing example shows three different declarations of the same C commu­
nal variable: 

char faa [4]; 
char faa [1]; 
char faa [1024] ; 

/* In file a.ce */ 
/* In file b.ce */ 
/* In file c.ce */ 

If the objects produced from a.ce, b.c, and c.c are linked together, then the 
linker will allocate 1024 bytes for the char array' 'foo." 

A communal variable is defined in the object text by an external 
definition record (EXTDEF) and the type definition record (TYPDEF) to 
which it refers. 

The TYPDEF for a communal variable has the following format: 

REC RECORD 
TYP LENGTH 0 
8EH 

;;I~;';; ~~~; aHK 
DESCRIPTOR SUM 

-----------

7-43 



C User's Guide 

The EIGHT LEAF DESCRIPTOR field has the following fonnat: 

B -----------------] EN LEAF 
DESCRIPTOR 

----------------

The EN field specifies whether the next 8 leaves in the LEAF DESCRIP­
TOR field are EASY (bit = 0) or NICE (bit = 1). This byte is always zero 
for TYPDEFS for communal variables. 

The LEAF DESCRIPTOR field has one of the following two fonnats. 
The format for communal variables in the default data segment (near 
variables) is as follows: 

---~~~~i~ ---1- --~JiT~~~ ---J 
'-----'-----'------------- -----------

I ¢= optional => I 

The VARiable TYPe field may be either SCALAR (7BH), STRUCT 
(79H), or ARRAY (77H). The VAR SUBTYP field (if any) is ignored by 
Id. The fonnat for communal variables not in the default data segment 
(far variables) is as follows: 

FAR 
61H 

VAR 
TYP 
77H INDEX 

ii~~~~~i T -~~i~p~;;; -J 
'---------''-----'-- - - - - - - - - - - - -- - - - - - - - - - - -

The VARiable TYPe field must be ARRAY (77H). The length field 
specifies the NUMBER OF ELEMENTS, and the ELEMENT TYPE 
INDEX is an index to a previously defined TYPDEF whose fonnat is that 
of a near communal variable. 

The format for the LENGTH IN BITS or NUMBER OF ELEMENTS 
fields is the same as the fonnat for the LEAF DESCRIPTOR field, 
described in the TYPDEF record fonnat section of this guide. 

7-44 



Object and Executable File Formats 

Link Time Semantics 

All EXTDEFs referencing a TYPDEF of the previously described fonnats 
are treated as communal variables. All others are treated as externally 
defined symbols for which a matching public symbol definition (PUB­
DEF) is expected. A PUBDEF matching a communal variable definition 
will override the communal variable definition. Two communal variable 
definitions are said to match if the names given in the definitions match. 
If two matching definitions disagree as to whether a communal variable is 
near or far, the linker will assume the variable is near. 

If the variable is near, then its size is the largest specified for it. If the 
variable is far, then the link editor issues a warning if there are conflicting 
array element size specifications; if there are no such conflicts, then the 
variable's size is the element size times the largest number of elements 
specified. The sum of the sizes of all near variables must not exceed 64K 
bytes. The sum of the sizes of all far variables must not exceed the size 
of the machine's addressable memory space. 

"Huge" Communal Variables 

A far communal variable whose size is larger than 64K bytes will reside 
in segments that are contiguous (8086) or have consecutive selectors 
(80286). No other data items will reside in the segments occupied by a 
huge communal variable. 

If the linker finds matching huge and near communal variable definitions, 
it issues a warning message, since it is impossible for a near variable to 
be larger than 64K bytes. 

7.17 The Segmented x.out Format 

This section describes the executable object file fonnat used in XENIX. 
The fonnat used is an extension to the existing "x.out" fonnat, 
specifically enhanced for the segmented architecture of the 286 CPU. 

The XENIX linker (lbinlld, see the "ld: the Link Editor"chapter) will link 
the Intel 86 Relocatable Object Fonnat into the executable fonnat 
described in this section. 

7-45 



C User's Guide 

The XENIX product supports a subset of segmented omf. Other parts are 
specified here for use by other vendors, and to reserve their meaning for 
possible future use. Those parts supported in this release of XENIX are: 

• The x.out header 

• The x.out extended header 

• The file segment table 

• Multiple non-iterated text segments 

• Multiple non-iterated data segments 

• Symbol table segments in the format described herein. 

Note specifically that the machine-dependent table is not supported. The 
iterated text/data feature is supported by the kernel, but the XENIX linker 
will expand iterated records. 

7.17.1 General Description of x.out 

The following is a general description of the x.out object file format, 
extended to handle segmentation. It implements iterated text and data 
segments, huge, large, middle and small model, as well as block align­
ment to improve the efficiency of loading executable files. 

The extensions to the existing format consist of adding a file segment 
table that describes and points to various (possibly block aligned) file seg­
ments. A file segment may contain a memory image, may indicate how to 
construct a memory image (iterated text or data), or may contain symbols 
or other non-executable information. In addition to the file segment table, 
there is an optional machine-dependent table. 

The header must be first in the object file, and the extended header must 
immediately follow the header. The extended header indicates the seg­
ment and (optional) machine-dependent tables' sizes and positions. 
Although the segment table is not block aligned, individual entries will 
line up on a multiple of 32 bytes (the size of a segment table entry). The 
segment table indicates the sizes and positions of the remaining file seg­
ments. The file segments may be aligned on a boundary that is a multiple 
of 512 bytes, with that multiple stored in the extended header, or at loca­
tion zero if the file segments are not block aligned. 

7-46 



Object and Executable File Formats 

The segment table is an array of records describing the file segments, 
each containing: 

• A segment type: text, data, symbols, etc. 

• Segment attributes, specific to the type of segment. 

• A file pointer to the (possibly iterated) text/data for this segment. 

• A physical size, the size of the segment in the file. 

• A virtual size, the size the segment will occupy in memory. 

• A location counter, this segment's current base address, usually O. 

A sample of a segment table entry is shown below. The xs fields in this 
data structure are referred to throughout the remaining discussion in this 
section. 

stmct xseg { 

}; 

unsigned shortxs_type; 
unsigned short xs_attr; 
unsigned short xs_seg; 
unsigned short xs_sres; 
long xs_filpos; 
long xs_psize; 
long xs_ vsize; 
long xs_rbase; 
long xs_lres; 
long xs_Ires2; 

Segment table entry 

/* x.out segment table entry * / 
/* segment type */ 
/* segment attributes * / 
/* segment number */ 
/* unused */ 

/* file position * / 
/* physical size (in file) */ 
/* virtual size (in core) */ 
/* relocation base address */ 
/* unused */ 
/* unused */ 

The segment table is a contiguous array of the above structures. Each file 
segment has a corresponding segment table entry that describes the 
segment's position xs Jr1pos and physical size xs ysize in the file. If there 
is no associated file segment, both fields must be set to zero. 

The kernel's local descriptor table (LDT) can be built from the virtual 
size, the segment type, and segment attribute fields. 

7-47 



C User's Guide 

7.17.2 Example of File Layout 

This section provides an example of the layout of an x.out file where: 

• The segment table has two entries (segments). 

• The file page size is 512 bytes (xext.xe yagesize= I). 

• Both file segments are smaller than 512 bytes. 

• The second file segment contains iterated data. 

The file layout is illustrated below: 
Accessing the machine-dependent table and the file segment table must 
always be done through the absolute file pointers in the extended header. 
The ordering of the two tables and file segments shown above is not 
required to be consistent with the x.out XENIX specification. 

7.17.3 Iterated Segments 

The data structure for an iterated segment is shown below: 

struct xiter 
long 
long 
long 

} ; 

xi_size; 
xi_rep; 
xi_offset; 

/ * byte count * / 
/* replication count */ 
/* destination offset in segment */ 

If the segment contains iterated text/data (indicated by a bit in the xs attr 
field), the xs Jilpos field is the file position of some number of itenrtion 
records mixed with the text/data to be iterated. If any part of a segment is 
iterated, then all of that segment is represented as iterated; non-iterated 
portions may be represented by an iteration record with a replication 
count of one. 

The format of the text/data to be iterated is: 

<iteration record> <text/data> <iteration record> <text/data> ... 

where each <iteration record> is of the above "struct xiter" data struc­
ture. Each iteration record is followed by xi size bytes of text/data that 
are to be placed in the current segment at the specified offset xi_offset 
xi _rep times. When xs ysize bytes of iteration records and text/data have 
been expanded, the iteration is complete. 

7-48 



Object and Executable File Formats 

Under XENIX, areas of memory that are initialized by more than one 
iteration record will have the contents of those memory areas undefined. 
Areas of memory that are not initialized by any iteration records will be 
zeroed out. An iteration byte count xi_size of zero will not result in any 
iteration. Portions of a segment that are to be bss should use an iteration 
record with a non-zero byte count and replicate one or more zeroed data 
bytes. 

This representation of iterated text/data will handle iterations that contain 
very large replication counts and/or very large non-iterated sizes. 

7.17.4 Non-Iterated Segments and Implicit bss 

If the iteration bit in xs aUr is not set, no iterations are required to initial­
ize the segment. If the implicit bss bit in the xs _ aUr field is set and the 
virtual size is greater than the physical size, then the rest of the segment 
(up to xs vsize bytes) is filled with zeros by the kemelloader. This impli­
cit bss definition means that small and middle model executables' single 
data segments may still contain unexpanded bss without the use of expli­
cit iteration records. 

Segments made up entirely of implicit' 'C" bss need only set the physical 
size to zero, and set the implicit bss bit. This eliminates the need for any 
file segment containing data or iteration records. If there are no iterations 
and no implicit bss, the virtual size of the segment xs _vsize must be the 
same as the physical size xs ysize, and a single copy of the text/data 
located at xs Jtlpos is all that is required to initialize the segment. 

7.17.5 Large Model 

With x.out format, large model is supported by allowing multiple logical 
text and/or data segments. Middle and small models are simpler cases, 
with perhaps single logical segments for data (or both text and data). 
Iterated segments are independent of memory model. 

7.17.6 Special Header Fields 

The model bits in the x renv field of the main header, XE_LDATA and 
XE_LTEXT, usually indicate the default size of data and text pointers used 
in the executable code. The kernel depends on these two bits to indicate 
the size of data and text pointers passed in system calls. However, since 
multiple segments are allowed in small and middle model, there can be 
little other meaning attached to these bits. Passing near data and/or text 
pointers implies use of the first data and text segments, respectively. 

7-49 



C User's Guide 

Also in the x renv field, the absolute bit, XE_ABS, identifies a standalone 
executable file. When this bit is set, the extended header stack size field 
is used as the default physical load address. The XENIX kernel loader 
will not load a binary if the XE_ABS bit is set. The XENIX boot loader 
will not load a binary unless the XE_ABS bit is set. See the Id(CP) com­
mand in the XENIX Reference for information about how to set the 
XE_ABS bit and the physical load address. 

7.17.7 Symbol Table 

The data structure for the x.out symbol table is shown below: 

struct sym { 
unsigned short 
unsigned short 
long 

} ; 

/* x.out symbol table entry */ 
s_type; 
s_seg; 
s_value; 

The symbol table differs from the previous x.out only in that the s _seg 
field now holds the selector of the segment that defines the symbol. If the 
symbol is absolute, the value field holds the symbol's value; otherwise, it 
holds the offset in the indicated segment to which the symbol refers. 

The symbol name trails the above "struct sym" data structure in the form 
of a null terminated string. The type field values are defined in 
lusrlincludel syslrelsym.h. 

The use of the xs seg field in the segment table is undefined for symbol 
table segments. Its use may be defined by the particular symbol table for­
mat used. 

7.17.8 XENIX Executable Format 

XENIX does not execute binaries that make use of selectors below Ox3f or 
selectors that do not have the low 3 bits set (LDT, ring 3). XENIX also 
requires that the first data selector be after the last text selector. Binaries 
are allowed to have zero length segments or "holes" (unused selectors) 
in text or data, but holes in text may not contain data selectors, and holes 
in data may not contain text selectors. 

The fields, xext.xe eseg:xexec.x entry, must contain the initial cs:ip of 
the user process. - -

Small model impure binaries (text and data combined into a single seg­
ment) must have a single file segment, of type data, with a selector of at 

7-50 



Object and Executable File Formats 

least Ox47. It must contain all text, followed by all data, followed by bss. 
The sizes of each must be stored in the x text, x data and x bss fields of 
the main header. XENIX will use the value stored in the xext.xe eseg 
field as the text selector, which must be at least Ox3f and less than the 
data selector. All text/datafbss binaries are executable through the text 
selector, and all text/datafbss binaries are readable and writable through 
the data selector. XENIX maps the text selector to the same memory as 
the data selector. 

In addition to the above, the XENIX linker generates binaries that con­
form to the following: 

• Text selectors start at Ox3f. 

• Data selectors start at the first free selector past text. 

• All text selectors are contiguous. 

• All data selectors are contiguous. 

• Small model impure binaries conform to the above specification, 
with Ox47 as the data selector. In the symbol table, the selector 
Ox47 is associated with data symbols, and the selector Ox3f is asso­
ciated with text symbols, to allow adb and nm to present con­
sistent data to the user. 

7-51 



C User's Guide 

7.17.9 Selected Portions of Include Files 

The following are selected portions of the usrlincludel sysla.out.h and 
usrlincludel syslrelsym.h include files. 

struct xexec { 

}; 

7-52 

/* x.out header */ 
unsigned short x magic; 

/* magic-number * / 
unsigned short x ext; 

/* size of header extension */ 
long x text; 

/* size of text segment */ 
long x data; 

/* size of initialized data */ 
long x bss; 

/* size of uninitialized data 
long x syms; 

/* size of symbol table * / 
long x reloc; 

/* relocation table length */ 
long x_entry; 

*/ 

/* entry offset, see xe_eseg */ 
char x cpu; 

/* cpu tYPe & byte/word order */ 
char x relsym; 

/* relocation & symbol format */ 
unsigned shortx renv; 

/* run-time environment * / 



struct 

}; 

/* 

Object and Executable File Formats 

xext { 

/* x.out header extension */ 
long xe trsize; 

/* size of text relocation */ 
long xe drsize; 

/* size of data relocation */ 
long xe drsize; 

/*-size of data relocation */ 
long xe_dbase; 

/* data relocation base */ 
long xe stksize; 

/* stack size (if XEJS set) */ 
long xe segpos; 

/* segment table position */ 
long xe segsize; 

/* segment table size * / 
long xe mdtpos; 

/* machine dependent table posi hon */ 
long xe mdtsize; 

/* machine dependent table size */ 
char xe mdttype; 

/* machine dependent table type */ 
char xe pagesize; 

/* file pagesize, in mUltiples of 512 
char xe_ostype; 

/* operating system type * / 
char xe_osvers; 

/* operating system version */ 
unsigned short xe eseg; 

*/ 

/* entry segment (hardware dependent) */ 
unsigned short xe sres; 

/* reserved * / 

* Definitions for xexec.x renv (short). 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 

* 
* 
* 
*/ 

vv 
xx 
s 
a 
i 
h 
f 
t 
d 
o 
f 

P 
s 
e 

version compiled for 
extra (zero) 
set if segmented x.out 
set if absolute (set up for physical address) 
set if segment table contains iterated text/data 
set if huge model data 
set if floating point hardware required 
set if large model text 
set if large model data 
set if text overlay 
set if fixed stack 
set if text pure 
set if separate I & D 
set if executable 

7-53 



C User's Guide 

#define XE V2 Ox4000 
/* up to and including 2.3 */ 

#define XE_V3 Ox8000 
/* after version 2.3 */ 

#define XE VERS OxcOOO 
/* version mask */ 

#define XE_SEGOx0800 
/* segment table present */ 

#define XE_ABSOx0400 
/* absolute memory image (standalone) * / 

#define XE ITER Ox0200 
/* iterated text/data present * / 

#define XE HDATA Ox0100 
/ * huge model data * / 

#define XE FPHOx0080 
/* floating pcint hardware required */ 

#define XE LTEXT Ox0040 
/* large model text * / 

#define XE illATA Ox0020 
/* large model data * / 

#define XE_OVER OxOOlO 
/* text overlay */ 

#define XE FS Ox0008 
/* fixed stack */ 

#define XE PURE Ox0004 
/* pure text * / 

#define XE SEPOx0002 
/* separate I & 0 */ 

#define XE EXEC OxOOOl 
/* executable */ 

struct xseg { 
/* x.out segment table entry */ 
unsigned short xs type; 

/* segment type * / 
unsigned shortxs attr; 

/* segment attributes */ 
unsigned shortxs seg; 

/ * segment number * / 
unsigned short xs sres; 

/* unused-*/ 
long xs filpos; 

/* file position * / 
long xs psize; 

/* physical size (in 
long xs vsize; 

file) 

/* virtual size (in core) 
long xs rbase; 

*/ 

*/ 

/* relocation base address */ 
long xs Ires; 

/* unused*/ 
long xs Ires2; 

/* unused-*/ 
}; 

7-54 



Object and Executable File Formats 

struct xiter { 
/* x.out iteration record */ 
long xi size; 

/ * byte count * / 
long xi rep; 

/* # of repetitions */ 
long xi offset; 

/* destination offset in segment */ 
}; 

struct syrn { 
/* x.out 
unsigned 
unsigned 
long 

symbol table entry */ 
short s_type; 
short s _ seg; 

s_value; 
} ; 

/* 
Definitions for xe_mdttype 

*/ 
#defineXE_MDTNONE 

/* no machine dependent table */ 
#defineXE MDT286 1 

/*-iAPX286 LDT */ 

/* 

* Definitions for xe_ostype 
*/ 

#defineXE OSNONE 0 
#defineXE-OSXENIX 

/*-XENIX */ 
#defineXE OSRMX 2 

/*-iRMX */ 

/* 
* Definitions for xe osvers 
*/ 

#de fine XE_OSXV3 1 
/* XENIX */ 

/* 
* Definitions for xs type: 
* Values from 64 to 127 are reserved. 
*/ 

#defineXS TNULL 
#de fine XS-TTEXT 
#defineXS-TDATA 
#de fine XS-TSYMS 
#de fine XS =TREL4 

1 
2 
3 

/* unused segment */ 
/* text segment */ 
/* data segment */ 
/* symbol table segment * / 
/* relocation segment */ 

7-55 



C User's Guide 

/* 

* 
* 
* 
* 
*/ 

Definitions for xs attr: 
The top bit is set if the file segment represents 
a memory image. The other 15 bits' definitions 
depend on the type of file segment. 

#define XS AMEM Ox8000 
/* segment represents a memory image */ 

#define XS_AMASK Ox7fff 
/* type specific field mask */ 

/* 
* Definitions for xs attr, built by or'ing the following 
* bit patterns: these values are valid for XS TTEXT and 

XS_TD~ file segments only. -
*/ 

#define XS_AITER OxOOOl 
/* contains iteration records */ 

#define XS AHUGE Ox0002 
/* contains huge element */ 

#define XS_ABSS Ox0004 
/* contains implicit bss */ 

#define XS_APURE Ox0008 
/* is read-only, may be shared */ 

#define XS_AEDOWN OxOOl0 
/ * segment expands downward * / 

/* 
Definitions for xs attr. 

* These values are valid for XS_TSYMS file segments only. 
*/ 

#define XS SXSEG OxOOOl 
/* x.out segmented format */ 

When using the xs seg field, note that if the XS_AMEM bit is set in the 
xs _ attr field, the fife segment represents a memory image, and the value 
placed in this field should be the segment number as used by the hardware 
to reference the segment. This is the actual value placed in the segment 
register. For the 286, it is simply an LDT selector (under XENIX, if the 
privilege level is not 3, the file will not be executed). Otherwise the seg­
ment is not a memory image, and the contents of the field is not defined. 
File segments other than memory images may define and use this field as 
needed. 

There are two bits in the xexec.A_cpU field that are used to indicate the 
CURRENT byte and word ordering of the non-character data fields of the 
header, extended header, segment table and symbol table. These bits, 
XC_BSW AP and XC_ WSWAP, do not indicate the byte and word ordering 
of the target cpu, XC_CPU. 

The segment table is not block aligned. No individual segment table 
entry may straddle a block boundary. 

7-56 



Chapter 8 

C Language Compatibility 

with Assembly Language 

8.1 Introduction 8-1 

8.2 C Calling Sequence for 8086/80286 8-1 

8.3 Entering an 8086/80286 Assembly Routine 8-2 

8.4 8086/80286 Return Values 8-2 

8.5 Exiting an 8086/80286 Routine 8-2 

8.6 8086/80286 Program Example 8-3 

8.7 80386 C Language Calling Sequence 8-4 

8.8 Entering an 80386 Assembly-Language Routine 8-4 

8.9 80386 Return Values 8-5 

8.10 Exiting a 80386 Routine 8-7 

8.11 80386 Program Example 8-7 





C Language Compatibility with Assembly Language 

8.1 Introduction 

This appendix explains how to use 8086/286/386 assembly language rou­
tines with C language programs and functions. In particular, it explains 
how to call assembly language routines from C language programs and 
how to call C language functions from an assembly language routine. 

This assembly language interface is especially useful for those assembly 
language programmers whose wish to use the functions of the standard C 
library and other C libraries. 

Note 

Two different calling conventions are available. The 8086/80286 
calling convention is established by configuring C language pro­
grams with the -MO, -M1, or -M2 option. The 80386 calling con­
vention is established by configuring C language programs with the 
-M3 option. 

8.2 C Calling Sequence for 8086/80286 

To receive values from C language function calls or to pass values to C 
functions, assembly language routines must follow the C argument pass­
ing conventions. C language function calls pass their arguments to the 
given functions by pushing the value of each argument onto the stack. 
The call pushes the value of the last argument first and the first argument 
last. If an argument is an expression, the call computes the expression's 
value before pushing it onto the stack. 

Arguments with char, int, or unsigned type occupy a single word (16 
bits) on the stack. Arguments with long type occupy a double word (32 
bits) with the value's high order word occupying the first word. Argu­
ments with float type are converted to double type (64 bits). Note that 
char type arguments are zero-extended to int type before being pushed on 
the stack. 

If an argument is a structure, the function call pushes the last word of the 
structure first and each successive word in turn until the first word is 
pushed. 

After a function returns control to a routine, the calling routine is respon­
sible for removing arguments from the stack. 

8-1 



C User's Guide 

8.3 Entering an 8086/80286 Assembly Routine 

Assembly language routines that receive control from C function calls 
should preserve the contents of the bp, si, and di registers and set the bp 
register to the current sp register value before proceeding with their tasks. 
The following example illustrates the recommended instruction sequence 
for entry to an assembly language routine: 

entry: 
push 
mov 
push 
push 

bp 
bp,sp 
di 
si 

This is the same sequence used by the C compiler. 

If this sequence is used, the last argument passed by the function call 
(which is also the first argument given in the call's argument list) is at 
address "[bp+4]". Subsequent arguments begin at address "[bp+6]" or 
"[bp+8] " depending on the size of the first argument. 

This sequence is strongly recommended even if the si and di registers are 
not modified, since it allows backtracing with the adb program during 
program debugging. 

8.4 8086/80286 Return Values 

Assembly language routines that wish to return values to a C language 
program or receive return values from C functions must follow the C 
return value conventions. C functions place return values that have int, 
char, or unsigned type in the ax register. They place values with long 
type in the ax and dx registers, with the high order word in dx. 

To return a structure or a floating point value, C functions place the 
address of the given value in the ax register. The structure or floating 
point value must be in a static area in memory. Long addresses are 
returned in the ax and dx registers with the segment selector in dx. 

8.5 Exiting an 8086/80286 Routine 

Assembly language routines that return control to C programs should 
restore the values of the bp, si, and di registers before returning control. 
The following example illustrates the recommended instruction sequence 
for exiting a routine: 

8-2 



C Language Compatibility with Assembly Language 

pop si 
pop di 
mov sp, bp 
pop bp 
ret 

This sequence does not change the ax, bx, ex, or dx registers or any of the 
segment registers. The sequence does not remove arguments from the 
stack. This is the responsibility of the calling routine. 

8.6 8086/80286 Program Example 

To illustrate the assembly language interface, consider the following 
example of a C function: 

add(i, j) 
int i,j; 
{ 

return(i+j)i 

If written as an assembly language routine, this function must save the 
proper registers, retrieve the arguments from the stack, add the argu­
ments, place the return value in the ax register, then restore registers and 
return control. The following is a example of how the routine can be 
written: 

add: -
push bp 
mov bp,sp 
push di 
push si 

mov ax, [bp+4] 
add ax, [bp+6] 

pop si 
pop di 
mov sp, bp 
pop bp 
ret 

If, on the other hand, the C function is to be called by an assembly 
language routine, the routine must contain instructions that push the argu-

8-3 



C User's Guide 

ments on the stack in the proper order, call the function, and clear the 
stack. It may then use the return value in the ax register. The following 
is an example of the instructions that can do this: 

push < j value> 
push <i value> 
call add 
add sPr *4 

Note that the C compiler does not preserve es over calls. Assembly 
language routines need not preserve es and should not assume that it will 
be preserved if they make calls to routines written in C. 

8.7 80386 C Language Calling Sequence 

To receive values from 80386 C language function calls, or to pass values 
to 80386 C language functions, assembly-language routines must follow 
the 80386 C language argument-passing conventions. 

C language function calls pass arguments to the function by pushing each 
argument onto the stack. The call pushes the last function argument first 
and the first function argument last onto the stack. If an argument is an 
expression, the call computes the expression's value before pushing it 
onto the stack. 

Arguments with char, int, unsigned, short, or long type occupy a dou­
bleword (32 bits or 4 bytes) on the stack. Arguments with float type are 
converted to double type (64 bits or 8 bytes). Note that char, unsigned 
char, short, and unsigned short type arguments are sign extended or 
zero extended, respectively, to int type before being pushed onto the 
stack. 

If an argument is a structure, the function call pushes the last word of the 
structure first and each successive word in turn until the first word of the 
structure is pushed onto the stack. 

After a function returns control to the calling routine, the calling routine 
is responsible for removing all function arguments from the stack. 

8.8 Entering an 80386 Assembly-Language Routine 

Assembly-language routines that receive control from 80386 C function 
calls should preserve the contents of the ebp, esi, edi, and ebx registers. 
In addition, the routines should set the ebp register to the current esp 

8-4 



C Language Compatibility with Assembly Language 

register value before proceeding with their tasks. The following example 
illustrates a recommended instruction sequence for entry to an assembly­
language routine: 

entry: 
push ebp 
mov ebp,esp 
push edi 
push esi 
push ebx 

Note that this is the same routine that the compiler uses after pushing the 
function arguments onto the stack. 

If this sequence is used, the last function argument pushed by the function 
call (which is also the first argument in the function's argument list) is at 
address "[ebp+8]". Subsequent arguments are at address "[ebp+12]" or 
" [ebp+ 16]' " depending on the size of the argument pushed onto the stack 
at "8(ebp)". 

8.9 80386 Return Values 

Assembly-language routines that return values to a 80386 C language 
program or receive return values from 80386 C language functions must 
follow the 80386 C language return-value conventions. C language func­
tions place return values that have int, char, unsigned, short, and long 
types in the eax register. 

Floating-point values are returned to the top of the ndp 80287 stack. The 
following example shows the recommended instruction sequence for 
passing floating-point values: 

float func () ,f; 
f = func (f) 

fld DWORD PTR f 
sub esp, 8 
fstp QWORD PTR [esp] 
call func result in ST(O) 
add esp,8 
fstp DWORD PTR f 

8-5 



C User's Guide 

The following example shows the recommended instruction sequence for 
returning floating-point values: 

float fvalue; 
return (fvalue); 

fld fvalue 
pop edx 
pop esi 
pop edi 
leave 
ret 

result in ST (O) 

Far pointers are returned in the eax and edx registers. The offset is con­
tained in eax and the segment is contained in edx. 

C language structure returns are returned to a buffer whose address is 
passed as a hidden first parameter. 

The following example shows the recommended instruction 

struct shape 
{ 

int stuff, to, fill, it, with; 
} in, out, them(); 
out = them (in) ; 

sub esp, 20 
mov edi,esp 
lea edi,in ; structure copy input 
mov ecx,5 ; struct onto stack 
rep movsd 
lea eax,out ; pass address of 
push eax ; assignment as extra "hidden" 
call them ; parameter 
add esp, 24 

The following example shows the recommended instruction sequence for 
returning C language structure returns: 

8-6 

struct shape source; 
return shape; 

mov edi, [ebp+8] 
mov esi,source 
mov ecx,5 
rep movsd 
pop ebx 
pop esi 
pop edi 
leave 
ret 



C Language Compatibility with Assembly Language 

8.10 Exiting a 80386 Routine 

Before returning control from an assembly-language routine to a 80386 C 
language program, restore the ebp, esi, edi, and ebx registers. The fol­
lowing example illustrates the recommended instruction sequence for 
exiting a routine: 

pop ebx 
pop esi 
pop edi 
leave 
ret 

This sequence does not save the eax, ecx, or edx register. These registers 
are scratch registers for use by the compiler. If the routine modifies seg­
ment register es, ss, or ds, the routine must preserve the modified segment 
registers. The sequence does not remove arguments from the stack. This 
is the responsibility of the calling routine. 

8.11 80386 Program Example 

The following example illustrates a 80386 C language function that can 
be written as an assembly-language routine. The function takes two 
integer arguments and adds them together, returning the resultant value. 

int add (if j) 
int if j; 
{ 
return (i + j); 
} 

If written as an assembly-language routine, this function must save the 
proper registers, retrieve the arguments from the stack, add the argu­
ments, place the return value in the eax register, then restore the proper 
registers and return control to the calling routine. The following is an 
example of how the routine can be written: 

8-7 



C User's Guide 

add: 
push ebp 
mov ebp,esp 
push edi 
push esi 
push ebx 

mov eax, [ebp+8] 
add eax, [ebp+12] 

pop ebx 
pop esi 
pop edi 
mov esp, ebp 
pop ebp 
ret 

Note 

In the above assembly-language routine, it is not necessary to save 
the contents of the esi, edi, and ebx registers because the routine 
does not modify their contents. If the esi, edi, or ebx register was 
modified by the routine, its contents must be saved. 

If the C language function is to be called by an assembly-language rou­
tine, the routine must contain instructions that push the arguments onto 
the stack in the proper order, call the function, and clear the stack. It can 
then use the return value in the eax register. The following is an example 
of the instructions that perform this task: 

8-8 

push <j value> 
push <i value> 
call add 
add esp,8 



Chapter 9 

Error Processing 

9.1 Introduction 9-1 

9.2 Using the Standard Error File 9-1 

9.3 Using the ermo Variable 9-2 

9.4 Printing Error Messages 9-2 

9.5 Using Error Signals 9-3 

9.6 Encountering System Errors 9-4 





Error Processing 

9.1 Introduction 

The XENIX system automatically detects and reports errors that occur 
when using standard C library functions. Errors range from problems 
with accessing files to allocating memory. In most cases, the sy;)~~m sim­
ply reports the error and lets the program decide how to respond. The 
XENIX system terminates a program only if a serious error has occurred, 
such as a violation of memory space. 

This chapter explains how to process errors, and describes the functions 
and variables a program may use to respond to errors. 

9.2 Using the Standard Error File 

The standard error file is a special output file that can be used by a pro­
gram to display error messages. The standard error file is one of three 
standard files (standard input, output, and error) automatically created for 
the program when it is invoked. 

The standard error file, like the standard output, is normally assigned to 
the user's terminal screen. Thus, error messages written to the file are 
displayed on the screen. The file can also be redirected by using the 
shell's redirection symbol (» For example, the following command 
redirects the standard error file to the file errorlist: 

dc 2>errorlist 

In this case, subsequent error messages are written to the given file. 

The standard error file, like the standard input and standard output, has 
predefined file pointer and file descriptor values. The file pointer stderr 
may be used in stream functions to copy data to the error file. The file 
descriptor 2 may be used in low-level functions to copy data to the file. 
For example, in the following program fragment, stderr is used to write 
the message' 'Unexpected end of file" to the standard error file. 

if ( (c=getchar()) == EOF) 
fprintf (stderr, "Unexpected end of file. \n") ; 

The standard error file is not affected by the shell's pipe symbol (I ). This 
means that even if the standard output of a program is piped to another 
program, errors generated by the program will still appear at the terminal 
screen (or in the appropriate file if the standard error is redirected). 

9-1 



C User's Guide 

9.3 Using the errno Variable 

The errno variable is a predefined external variable which contains the 
error number of the most recent XENIX system function error. Errors 
detected by system functions, such as access permission errors and lack of 
space, cause the system to set the errno variable to a number and return 
control to the program. The error number identifies the error condition. 
The variable may be used in subsequent statements to process the error. 

The file errno.h contains manifest constant definitions for each error 
number, and the external declaration of errno. These constants may be 
used in any program in which the line: 

#include <errno.h> 

is placed at the beginning of the program. The meaning of each manifest 
constant is described in "Error Messages" of the XENIX C Library 
Guide. 

The errno variable is typically used immediately after a system function 
has returned an error. In the following program fragment, errno is used to 
determine the course of action after an unsuccessful call to the open func­
tion: 

if ( (fd=open ("accounts", 0 RDONLY)) == -1 ) 
switch (errno) { -

case (EACCES) : 
fd = open("/usr/tmp/accounts",O_RDONLY); 
break; 

default: 
exit(errno); 

In this example, if errno is equal to EACCES (a manifest constant), per­
mission to open the file accounts in the current directory is denied, so the 
file is opened in the directory lusrltmp instead. If the variable is any other 
value, the program terminates. 

9.4 Printing Error Messages 

The perror function copies a short error message describing the most 
recent system function error to the standard error file. The function call 
has the form: 

perror (s); 

9-2 



Error Processing 

where s is a pointer to a string containing additional infonnation about 
the error. 

The perror function places the given string before the error message and 
separates the two with a colon (:). Each error message corresponds to the 
current value of the errno variable. For example, in the following pro­
gram fragment, perror displays the message: 

accounts: Permission denied. 

if errno is equal to the constant EACCES: 

if ( errno == EACCES ) { 
perror("accounts"); 
fd = open ("/usr/tmp/accounts", O_RDONLY); 

All error messages displayed by perror are stored in an array named 
sys errno, an external array of character strings. The perror function 
uses the variable errno as the index to the array element containing the 
desired message. For more infonnation on the perror function, see the 
perror(S) manual page in the XENIX Reference. 

9.5 Using Error Signals 

Some program errors cause the XENIX system to generate error signals. 
These signals are passed back to the program that caused the error and 
nonnally tenninate the program. The most common error signals are 
SIGBUS, the bus error signal, SIGFPE, the floating point exception signal, 
SIGSEGV, the segment violation signal, SIGSYS, the system call error sig­
nal, and SIGPIPE, the pipe error signal. Other signals are described in 
signal(S) in the XENIX Reference. 

A program can, if necessary, catch an error signal and perfonn its own 
error processing by using the signal function. This function, as described 
in the "Using Signals" chapter of the XENIX Programmer's Guide, can 
set the action of a signal to a user-defined action. For example, the func­
tion call: 

signal (SIGBUS, fixbus); 

sets the action of the bus error signal to the action defined by the user­
supplied function fixbus. Such a function usually attempts to remedy the 
problem, or at least display detailed infonnation about the problem before 
tenninating the program. 

9-3 



C User's Guide 

For details about how to catch, redefine, and restore these signals, see 
"Using Signals" in the XENIX Programmer's Guide. 

9.6 Encountering System Errors 

Programs that encounter serious errors, such as hardware failures or inter­
nal errors, generally do not receive detailed reports on the cause of the 
errors. Instead, the XENIX system treats these errors as "system errors," 
and reports them by displaying a system error message on the system con­
sole. This section briefly describes some aspects of XENIX system errors 
and how they relate to user programs. For a complete list and description 
of XENIX system errors, see messages(M) in the XENIX Reference. 

Most system errors occur during calls to system functions. If the system 
error is recoverable, the system will return an error value to the program 
and set the errno variable to an appropriate value. No other information 
about the error is available. 

Although the system lets two or more programs share a given resource, it 
does not keep close track of which program is using the resource at any 
given time. When an error occurs, the system returns an error value to all 
programs regardless of which caused the error. No information about 
which program caused the error is available. 

System errors that occur during routine I/O operations initiated by the 
XENIX system itself generally do not affect user programs. Such errors 
cause the system to display appropriate system error messages on the sys­
tem console. 

Some system errors are not detected by the system until after the 
corresponding function has returned successfully. Such errors occur when 
data written to a file by a program has been queued for writing to disk at a 
more convenient time, or when a portion of data to be read from disk is 
found to already be in memory and the remaining portion is not read until 
later. In such cases, the system assumes that the subsequent read or write 
operation will be carried out successfully and passes control back to the 
program along with a successful return value. If operation is not carried 
out successfully, it causes a delayed error. 

When a delayed error occurs, the system usually attempts to return an 
error on the next call to a system function that accesses the same file or 
resource. If the program has already terminated or does not make a suit­
able call, then the error is not reported. 

9-4 



Appendix A 

Converting from Previous 

Versions of the Compiler 

A.I Introduction A-I 

A.2 Differences between Versions 5.0 and 4.0 A-I 
A.2.I Enhancements and Additions A-I 
A.2.2 Changes to the Language Syntax A-2 
A.2.3 New Features for the XENIX Implementation of C A-3 

A.3 Differences between Versions 4.0 and 3.0 A-5 
A.3.1 Enhancements and Additions A-5 
A.3.2 Changes in the Language Syntax A-5 
A.3.3 New Features for the XENIX Implementation of C A-8 





Converting from Previous Versions of the Compiler 

A.I Introduction 

This appendix describes differences between Version 5.0 and Version 4.0, 
and between Version 4.0 and Version 3.0, of the XENIX C Compiler. If 
you have an earlier version of the compiler, or if you have written pro­
grams for an earlier version, this chapter can help you convert your previ­
ous source code. The actions necessary to convert source code depend on 
which of the earlier versions you have used. 

Version 5.0 is an update of Version 4.0. Generally, the two versions are 
compatible: most C source code written for Version 4.0 should compile 
without change on the Version 5.0 compiler, although there are erroneous 
C constructs allowed in Version 4.0 that are not allowed in Version 5.0, 
and changes in the emerging ANSI C standard may force changes in 
source programs (for more information, see the XENIX C Language Refer­
ence). In some cases you may be able to enhance your programs by revis­
ing them to take advantage of new library functions and other features 
available with Version 5.0. 

A.2 Differences between Versions 5.0 and 4.0 

Changes in Version 5.0 since Version 4.0 fall into the following 
categories: 

• Enhancements and additions to the compiler software to allow for 
more flexible programming, improved code generation, and 
increased support for the developing ANSI standard 

• Changes in the language syntax 

• Changes in function operations, primarily to conform to the 
specifications for these functions in the ANSI standard. 

These features and the changes required to take advantage of them are 
discussed in the following sections. 

A.2.I Enhancements and Additions 

Enhancements for Version 5.0 include the following: 

• Improved code generation, including loop optimization; improved 
large-model code generation; and intrinsic functions 

• Faster compilation speed 

A-I 



XENIX C Compiler User's Guide 

• Support for code that will be loaded into read-only memory (ROM) 

• New error-message numbering 

A.2.2 Changes to the Language Syntax 

Some Version 5.0 changes were made to the C language syntax to make it 
conform more closely to the new ANSI standard. Most of these changes do 
not affect source code written for the Version 4.0 compiler. The changes 
are summarized as follows: 

• Full function prototyping is supported in Version 5.0. A function 
prototype is a forward declaration containing the types and, option­
ally, names of the parameters (if any) expected in the function call. 
It can also include identifiers for the arguments, though they go out 
of scope at the end of the prototype. Prototypes allow the compiler 
to perform type checking on the actual arguments passed when the 
function is called. If the compiler does not find a prototype, the 
first occurrence of the function (definition or call) is used as the 
basis of a prototype for that function. That prototype is used to per­
form type checking against subsequent calls, subsequent declara­
tions, or the definition. For more information about function proto­
typing, see the XENIX C Language Reference. 

• The const and volatile type specifiers have been implemented for 
Version 5.0. The const type specifier declares an object as an 
unmodifiable lvalue. It can be used for objects of any fundamental 
or aggregate type or for pointers to objects of any type. The vola­
tile type specifier is implemented syntactically, but not semanti­
cally. For more information, see the XENIX C Language Reference. 

Note 

Programs that currently use const or volatile as identifiers must be 
recoded to use other names. 

• In Version 5.0, variables of enum type are treated as if they were 
of int type in all cases. Therefore, enum variables can be used in 
indexing expressions and as operands of all relational and arith­
metic operators. 

A-2 



Converting from Previous Versions of the Compiler 

• String concatenation is supported in Version 5.0. This feature 
causes adjacent string literals to be concatenated into a single 
string literal. This means, for example, that instead of using a 
backslash before a new-line character to indicate continuation of a 
long string literal, the literal can simply be broken into two or 
more quoted string literals on separate lines. For more information, 
see the XENIX C Language Reference. 

• New preprocessor features in Version 5.0 include the string opera­
tor (#), which allows arguments in macro expansions to be 
expanded into a string literal containing the expanded argument; 
and the concatenation operator (##), which concatenates the 
tokens on either side of the operator into a new token in macro 
expansions. For more information, see the XENIX C Language 
Reference. 

Note 

Previous versions of XENIX C allowed expansion of macro formal 
arguments appearing in string literals and character constants. Pro­
grams that rely on this feature must be recoded to use the stringizing 
operator. For information, see the discussion of string literals in the 
XENIX C Language Reference. 

• The long double data type is now supported; the long float data 
type is no longer supported. 

• The three-digit forms of hex escape sequences (\xddd) and octal 
escape sequences (\ddd) are now supported. 

• The unary plus (+) operator is allowed, but ignored semantically. 

A.2.3 New Features for the XENIX Implementation of C 

The following new cc command options have been added to the XENIX 
implementation of the XENIX C Compiler for Version 5.0: 

A-3 



XENIX C Compiler User's Guide 

Option 

-Oi 

-01 

-Op 

-SI 

-Sp 

-Ss 

-St 

-Tc 

-Zp 

Effect 

Enables intrinsic code generation for all available 
functions 

Enables loop optimizations for an entire program 

Forces consistent precision in floating-point math opera­
tions 

Specifies the line width for source listings 

Specifies the number of lines per page for source listings 

Specifies subtitles for source listings 

Specifies titles for source listings 

Tells the compiler that the following file is a C source 
file 

Packs structures on one-, two-, or four-byte boundaries 

The following new pragmas have been added to the XENIX implementa­
tion of the XENIX C Compiler for Version 5.0 to control the specified 
features on a local basis: 

A-4 

Pragma Effect 

loop _opt Turns loop optimizations on and off 

pack Specifies packing alignment for structures 

intrinsic Specifies which functions are compiled as intrinsic func­
tions 

function Specifies which functions are compiled as standard 
function calls 

same _ seg Tells the compiler to assume that specified variables are 
allocated in the same far data segment 

alloc text Specifies modules to be grouped into a specified far 
code segment 



Converting from Previous Versions of the Compiler 

Note that the existing check_stack pragma uses the following new format 
for specifying arguments: 

#pragma check _stack([ {onloff}]) 

A.3 Differences between Versions 4.0 and 3.0 

Changes between Versions 4.0 and 3.0 fall into the same categories as 
those between Versions S.O and 4.0. 

• Enhancements and additions to the compiler software to allow for 
more flexible programming, improved code generation, and 
increased support for the developing ANSI standard 

• Changes in the language syntax 
These features and the changes required to take advantage of them are 
discussed in the following sections. 

A.3.t Enhancements and Additions 

Enhancements for Version 4.0 include the following: 

• New options for cc and Id 

• Improved code optimization 

• New memory models (compact and huge) 

• Source listings 

• Numbered error messages 

• Huge arrays, allowing a single array to be larger than 64K 
These changes should have no effect on Version 3.0 source code. 

For information on changes to the syntax of the cc command line, see the 
"Compiling with the cc Command" chapter of this guide. 

A.3.2 Changes in the Language Syntax 

Some Version 4.0 changes were made to the C language syntax to make it 
conform more closely to the new ANSI standard. Most of these changes do 
not affect source code written for the Version 3.0 compiler. The changes 
are summarized as follows: 

A-S 



XENIX C Compiler User's Guide 

• The \a escape sequence represents the bell (or alert) character in 
Version 4.0. 

You can make your source code more portable by using \a instead 
of '..Jt.7. For more information, see the XENIX C Language Refer­
ence. 

• The signed keyword was added. 

The signed keyword can be used to specify signed items. This key­
word is particularly useful for declaring signed char types in pro­
grams compiled with the -J option. (-J changes the default mode 
for the char type to unsigned.) For more information on signed 
types, see the XENIX C Language Reference. 

• The syntax was changed for making function calls with a variable 
number of arguments. 

The following two declarations contrast the Version 3.0 form and 
the Version 4.0 form: 

int func (int,); /* Forward declaration in 
** Version 3.0 syntax 
*/ 

int func (int, ... ) ; /* Forward declaration in 
** Version 4.0 syntax 
*/ 

This change was made to conform to changes in the ANSI standard 
for the C language. Both forms are supported in Version 4.0 of the 
XENIX C Compiler. XENIX recommends the use of the Version 4.0 
form in all programs. 

• Prior to Version 4.0, the compiler allowed arbitrary strings of char­
acters after a syntactically correct preprocessor command. To con­
form to the new ANSI standard, this was disallowed in Version 4.0. 

A-6 

Beginning with Version 4.0, the following usage, for example, 
causes the compiler to generate a warning message: 

#endif Block ends here 

In Versions 4.0 and later, such strings must be enclosed in com­
ment delimiters, as in the following example: 

#endif /* Block ends here */ 



Converting from Previous Versions of the Compiler 

• Names of types defined with typedef are not keywords in Version 
4.0, as they were in Version 3.0. In Version 4.0, these names are in 
the same naming class as names of functions and variables, and 
can be redefined in a nested block. 

For more information, see the XENIX C Language Reference. 

• Beginning with Version 4.0, the #pragma directive is supported. 

A "pragma" is an instruction to the compiler. Its syntax is similar 
to the syntax of preprocessor directives, but its purpose is different. 
The syntax is as follows: 

#pragma charstring 

The only pragma instruction supported in the XENIX C Compiler, 
Version 4.0, is the check _stack pragma. This pragma is specific to 
XENIX, and is discussed in greater detail in the "Compiling with 
the cc Command" chapter of this guide. 

• Hexadecimal and octal integer constants are handled differently in 
Version 4.0 than they are in Version 3.0. 

For more information, see the XENIX C Language Reference. 

• The extended keywords fortran, pascal, cdecl, near, and huge are 
enabled by default in Version 4.0. They ~an be disabled by giying 
the -Za option on the command line. 

• Two new reserved words, const and volatile, were added but not 
implemented for Version 4.0. 

• In Version 3.0, when a near pointer is converted to type long int, it 
is first converted to type short int, then to long int; as a result, in 
Version 3.0 the expression in the if statement evaluates as true in 
the following fragment: 

char *ptr = NULL; 
long i; 

i = (long) ptr; 
if (i == OL) { 

A-7 



XENIX C Compiler User's Guide 

In Version 4.0, the conversion order of near pointers to long 
integers was changed so that it confonns to the order in which the 
compiler does all other conversions that increase the length of a 
variable: first the size, then the mode. (For example, the compiler 
converts a variable with type char to type unsigned long by first 
converting it to signed long, then to unsigned long.) Because of 
this change, the preceding code now converts ptr to a far pointer 
by loading the appropriate segment register value, then changing 
that to a long integer. The expression following the if statement 
would most likely be false in Version 4.0, since the segment regis­
ters do not usually contain O. 

A.3.3 New Features for the XENIX Implementation of C 

The following features were added to the XENIX implementation of the C 
compiler for Version 4.0: 

• Two new memory models: huge and compact 

• The huge, signed, and cdecl keywords 

• A pragma (check_stack) to control stack checking 

• The -J option to change the default mode for the char type to 
unsigned 

• The -Gc option to specify the alternative calling sequence and 
naming conventions used in XENIX Pascal and XENIX FORTRAN 

These features are discussed in "Working with Memory Models." In 
most cases, they will not affect existing Version 3.0 source code. How­
ever, you may be able to improve your existing programs by modifying 
them to take advantage of the new memory models or the huge keyword. 

A-8 



Appendix B 

Writing Portable Programs 

B.1 Introduction B-1 

B.2 Program Portability B-2 

B.3 Machine Hardware B-2 
B.3.1 Byte Length B-2 
B.3.2 Word Length B-2 
B.3.3 Storage Alignment B-3 
B.3A Byte Order in a Word B-4 
B.3.5 Bit Fields B-5 
B.3.6 Pointers B-6 
B.3.7 Address Space B-S 
B.3.S Character Set B-S 

BA Compiler Differences B-9 
BA.1 Signed/Unsigned char and Sign Extension B-9 
BA.2 Shift Operations B-9 
BA.3 Identifier Length B-10 
BAA Register Variables B-10 
BA.5 Type Conversion B-10 
BA.6 Functions with a Variable Number of Arguments B-12 
BA.7 Side Effects and Evaluation Order B-12 

B.5 Environment Differences B-13 

B.6 Portability of Data B-14 

B.7 Type-Size Summary B-14 

B.S Byte-Ordering Summary B-16 





Writing Portable Programs 

B.I Introduction 

The standard definition of the C programming language leaves many 
details to be decided in specific implementations of the language. These 
unspecified features of the language detract from its portability and must 
be studied when attempting to write portable C code. 

Most of the issues affecting C portability arise from differences either in 
target-machine hardware or in compilers. C was designed to compile 
efficient code for the target machine (initially a Digital Equipment Cor­
poration PDP-ll®), so many of the language features not precisely 
defined are those that reflect a particular machine's hardware characteris­
tics. 

This appendix highlights the various aspects of C that may not be portable 
across different machines and compilers. It also briefly discusses the por­
tability of a C program in terms of its environment. The environment is 
determined by the system calls and library routines a program uses during 
execution, file path names it requires, and other items not guaranteed to 
be constant across different systems. 

The C language has been implemented on many different computers with 
widely different hardware characteristics, from small eight-bit micropro­
cessors to large mainframes. This appendix is concerned with the porta­
bility of C code in the MS-DOS and XENIX programming environments. 
This is a more restricted problem to consider, since all MS-DOS and 
XENIX operating systems to date run on hardware with the following 
basic characteristics: 

• ASCII character set 

• Eight-bit bytes 

• Two-byte or four-byte integers 

• Two's-complement arithmetic 

These features are not formally defined for the language and may not be 
found in all implementations of C. However, the remainder of this appen­
dix is devoted to those systems where these basic assumptions hold. 

The C language definition contains no specification of how input and out­
put are performed. These specifications are left to system calls and 
library routines on individual systems. Within XENIX systems there are 
system calls and library routines that can be considered portable. This 
version of the XENIX C Compiler includes system calls and library 

B-1 



XENIX C User's Guide 

routines that can be considered portable across XENIX and MS-DOS sys­
tems. The run-time library for the XENIX C Compiler for MS-DOS is com­
posed primarily of XENIX -compatible routines. By restricting the use of 
XENIX routines to those included in the MS-DOS library, the XENIX pro­
grammer can develop MS-DOS programs in the XENIX environment; C 
programs written on MS-DOS are easily portable to XENIX. 

B.2 Program Portability 

A program is "portable" if it can be compiled and run successfully on 
different machines without alteration. There are many ways to write port­
able programs. One way is to avoid using inherently nonportable 
language features. Another is to isolate any nonportable interactions with 
the environment, such as I/O to nonstandard devices. For example, pro­
grams should avoid hard-coded path names unless a path name is com­
mon to all systems. 

Files required at compile time (such as include files) may also introduce 
nonportability if the path names used are not the same on all machines. 
In some cases, include files containing machine-speci fic definitions can 
be used to make the source code itself portable. 

B.3 Machine Hardware 

Differences in the hardware of the various target machines and differences 
in the corresponding C compilers cause the greatest number of portability 
problems. This section lists problems commonly encountered. 

B.3.1 Byte Length 

By definition, the char data type in C must be large enough to hold as 
positive integers all members of a machine's character set. For the 
machines described in this appendix, the char size is an eight-bit byte. 

B.3.2 Word Length 

The size of the basic data types for a given implementation are not for­
mally defined in the C language. Therefore, they often follow the most 
natural size for the underlying machine. It is safe to assume that short is 
no longer than long. Beyond that, no assumptions are portable. For 
example, on some machines short is the same length as int, whereas on 
others long is the same length as into 

B-2 



Writing Portable Programs 

'!\vo areas where different int sizes affect program portability are the fol­
lowing: 

1. Array indexing. For very large arrays, a variable of type int may 
not be long enough to store the indices of the highest-numbered 
array elements. 

2. Pointer subtraction. On some machines, an int variable may not be 
long enough to store the results of pointer subtraction. See the sec­
tion on "Pointers," for more information about this problem. 

Programs that need to assume the size of a particular data type should 
avoid hard-coded constants where possible. Such information can usually 
be written in a fairly portable way. For example, the maximum positive 
integer (on a two's-complement machine) can be obtained with the fol­
lowing directive: 

#define MAXPOS ((int) ( ((unsigned) -1) » 1)) 

This is preferable to the following code: 

#ifdef PDP11 
#define MAXPOS 32767 
#else 

#endif 

To find the number of bytes in an int, use sizeof(int) rather than 2,4, or 
some other nonportable constant. 

B.3.3 Storage Alignment 

The C language defines no particular layout for storage of data items rela­
tive to each other. The layout for storage of structure elements, or unions 
within the structure or union, is also left undefined by the language. 

Some processors require that data types longer than one byte be aligned 
on even-byte address boundaries. Others, such as the 8086/8088, have no 
such hardware restriction. However, even with these machines, most 
compilers generate code that aligns words, structures, arrays, and long 

B-3 



XENIX C User's Guide 

words on even addresses or on even long-word addresses. Therefore, the 
following code sequence may give different results, depending on specific 
alignment requirements on different machines: 

struct s_tag { 
char c; 
int i; 
} ; 

printf ("%d\n", sizeof (struct s_tag)); 

This variation in data storage has two major implications: data accessed 
as nonprimitive data types are not portable; and code that makes assump­
tions about the layout on a particular machine is not portable. 

Therefore, unions containing structures are nonportable if the union is 
used to access the same data in different ways. Unions are only likely to 
be portable if they are used exclusively to store different data in the same 
space at different times. For example, if the following union were used to 
obtain four bytes from a long word, the code would not be portable: 

union 
char c [4] ; 
long lw; 
} u; 

The size of operator should always be used when reading and writing 
structures, as follows: 

struct s_tag st; 

write (fd, &st, sizeof(st)); 

U sing the sizeof operator ensures portability of the source code, but does 
not produce a portable data file. Portability of data is discussed in the 
, 'Portability of Data" section. 

B.3.4 Byte Order in a Word 

The variation in byte order in a word affects the portability of data more 
than the portability of source code. However, any program that makes 

B-4 



Writing Portable Programs 

use of knowledge of the internal byte order in a word is not portable. For 
example, on some XENIX systems there is an include file, mise.h, that 
contains the following structure declaration: 

1* 
* structure to access an 
* integer in bytes 
*1 
struct { 

char lobyte; 
char hibyte; 
} ; 

With certain less-restrictive compilers, this declaration could be used to 
access the high- and low-order bytes of an integer separately and in a 
completely nonportable way. The correct way to do this is to use mask 
and shift operations to extract the required byte, as shown in the follow­
ing example: 

#define LOBYTE (i) (i & Oxff) 
#define HIBYTE (i) ((i» 8) & Oxff) 

These definitions provide a portable way to extract the least-significant 
and the next-Ieast-signi ficant bytes of an integer. Since the int type can 
be either two or four bytes, depending on the machine, even these 
definitions do not provide a completely portable way to access the bytes 
of an int. 

One result of the byte-ordering problem is that the following code 
sequence will not always perform as intended: 

int c = 0; 

read (fd, &c, 1); 

On machines where the low-order byte is stored first, the value of c is the 
byte value read. On other machines, the byte is read into some byte other 
than the low-order one, so the value of c is different. 

B.3.5 Bit Fields 

Bit fields are not implemented in all C compilers. The XENIX C Com­
piler implements bit fields and allows them to have any length up to the 
size of a long. However, in many implementations no bit field may be 
larger than an int, and no bit field can overlap an int boundary. If neces­
sary, the compiler will leave gaps and move to the next int boundary. To 
ensure portability no individual field should exceed 16 bits. 

B-5 



XENIX C User's Guide 

The C language makes no guarantees about whether bit fields are 
assigned left to right or right to left. Therefore, although bit fields may be 
useful for storing flags and other small data items, their use in unions to 
dissect bits from other data is definitely nonportable. 

B.3.6 Pointers 

The C language is fairly generous in allowing manipulation of pointers, to 
the extent that most compilers do not generate warnings for nonportable 
pointer operations. A common nonportable use of pointers is the use of 
casts to assign one pointer to another pointer of a different data type. This 
practice usually makes some assumption about the internal byte ordering 
and layout of the data type, and is therefore nonportable. In the following 
code, the byte order in the array c is not portable: 

char c[4]; 
long *lp; 

lp = (long *)&c[O]; 
*lp = Ox12345678L; 

Code like this is usually unnecessary or invalid. It is acceptable, however, 
when the malloc function is used to allocate space for variables that do 
not have char type. The routine is declared as type char *, and the return 
value is cast to the type to be stored in the allocated memory. If this type 
is not char *, then a compiler may issue a warning concerning illegal 
type conversion. In addition, the malloc function is designed always to 
return a starting address suitable for storing all types of data. A compiler 
may not know this, so it may give an additional warning about possible 
data-alignment problems. In the following example, malloc is used to 
obtain memory for an array of 50 integers: 

extern char *malloc( ); 
int *ip; 

ip = (int *)malloc(50 * sizeof(int)); 

This example will elicit a warning message from some compilers. 

The XENIX C Language Reference states that a pointer can be assigned 
(or cast) to an integer large enough to hold it. Note that the size of the int 
type depends on the given machine and implementation. This type is 

B-6 



Writing Portable Programs 

long on some machines and short on others. The size may also be 
modified by near and far declarations. In general, do not assume that the 
following statement is always true: 

sizeof(char *) == sizeof(int) 

For example, the following construction is nonportable, assuming that the 
function identifierJunc is not previously declared: 

int Pi 
P = (char *)func( ); 

This example assumes that a char pointer has the same length as an into 

Another consequence of different-sized int types on different machines is 
that pointer subtraction may not give the expected results. As an example 
of this case, subtracting pointers to the beginning and end of a very large 
array may give a result that is too large to store in an int variable, as 
shown in the following example: 

int arr[20000], *b = arr, *e = &arr[20000]i 
int diffi. 
diff = e - bi /* result too large to store in 

int variable diff */ 

To correct this problem, coerce the result of the pointer subtraction long 
type, then assign the result to a variable of unsigned int type, as shown in 
the following example: 

unsigned int udiffi 
udiff = (long) ((int huge *)e - (int huge *)b) i 

In most implementations, the null pointer value NULL is defined to be 
the int value O. The length of the 0 value can lead to problems for func­
tions that expect pointer arguments longer than an int. For portable code, 
always use the following form to pass a NULL value of the correct size: 

func( (char *)NULL )i 

B-7 



XENIX C User's Guide 

B.3.7 Address Space 

The address space available to a program varies considerably from sys­
tem to system. Some small processors allow only 64K for program text 
and data combined. Others allow up to 64K of data and 64K of program 
text. Larger machines may allow considerably more text and possibly 
more data as well. 

Large programs, or programs that require large data areas, may have por­
tability problems on small machines. 

B.3.8 Character Set 

The C language does not require the use of the ASCII character set. In fact, 
the only character-set requirements are that all characters must fit in the 
char data type, and all characters must have positive values. 

In the ASCII character set, all characters have values between 0 and 127 
and therefore can be represented in seven bits. On an eight-bits-per-byte 
machine they are all positive, regardless of whether char is treated as 
signed or unsigned. 

A set of character-classi fication macros is included as part of the run-time 
library for the XENIX C Compiler. These macros should be used for most 
tests on character quantities. The macros are defined in the include file 
ctype.h, and described in the XENIX C Library Guide. They appear on the 
pages headed isalnum-isascii and iscntrl-isxdigit. 

The character-classi fication macros provide insulation from the internal 
structure of the character set. In addition, the names of the macros are 
often more meaningful than the equivalent line of code. Compare the fol­
lowing two lines: 

if(isupper(c) ) 

if ( (c >= I A') & & (c <= I Z I ) ) 

With some of the other macros, such as isxdigit to test for a hexadecimal 
digit, the advantage is even greater. Also, the internal implementation of 
the macros makes them more efficient than an explicit test with an if 
statement. 

B-8 



Writing Portable Programs 

B.4 Compiler Differences 

There are a number of C compilers running under various operating sys­
tems. The main areas of differences between compilers are outlined in 
this section. 

B.4.1 Signed/Unsigned char and Sign Extension 

The current state of the signed versus unsigned char problem is best 
described as unsatisfactory. The sign-extension problem is a serious bar­
rier to writing portable C, and the best solution at present is to write 
defensive code that does not rely on particular implementation features. 

B.4.2 Shift Operations 

The left-shift operator «<) shifts its operand a number of bits left, filling 
vacated bits with zeros. This is called a logical shift. When the right-shift 
operator (») is applied to an unsigned quantity, it performs a logical­
shift operation; when it is applied to a signed quantity, the vacated bits 
may be filled with zeros (logical shift) or with sign bits (arithmetic shift). 
The decision is implementation dependent, and code that assumes a par­
ticular implementation is nonportable. 

With compilers that use arithmetic right shift, it is necessary to shift and 
mask the appropriate number of high-order bits to avoid sign extension, as 
follows: 

char c; 

c = (c » 3) & Oxlf; 

You can also avoid sign extension by using the divide operator (/) as fol­
lows: 

char c; 

c = c / 8; 

B-9 



XENIX C User's Guide 

B.4.3 Identifier Length 

The use of long symbols and identifier names will cause portability prob­
lems with some compilers. To avoid these problems, a program should 
keep the following symbols as short as possible: 

• C preprocessor symbols 

• C local symbols 

• C external symbols 

Some loaders also place restrictions on the number of unique characters 
in C external symbols. Symbols unique in the first six characters are 
unique to most C-Ianguage processors. 

In some C implementations, the case of letters in identifiers is not 
significant. 

B.4.4 Register Variables 

The number and type of register variables in a function depend on the 
machine hardware and the compiler. Excess and invalid register declara­
tions are treated as nonregister declarations and should not cause a porta­
bility problem. On an 8086 or 8088 processor, up to two register declara­
tions are significant, and they must be applied to types of size int or 
smaller. 

Since the compiler ignores excess variables of register type, the most 
important register-type variables should be declared first. In this way, 
register variables that the compiler ignores will be those that are the least 
important. 

B.4.S lYpe Conversion 

The C language has some rules for implicit type conversion; it also allows 
explicit type conversions by type casting. The most common portability 
problem in implicit type conversion is unexpected sign extension. This is 
a potential problem whenever something of type char is compared with 
an int. 

B-IO 



Writing Portable Programs 

The following example will never evaluate true on a machine that sign­
extends char types but treats hexadecimal numbers as unsigned: 

char c; 

if (c Ox80) { 

The following construction is also nonportable: 

char c; 
unsigned int u; 

if (u (unsigned) c) 

Two problems can arise in the preceding example: 

1. The char type may be considered either signed or unsigned, 
depending on the implementation. 

2. For implementations that consider the char type to be signed, two 
different methods of carrying out the conversion are possible: the 
char value may be sign extended to int type first, then converted to 
unsigned type; or the char type may be converted to an unsigned 
type of the same size, then zero extended to int length. 

The only safe comparison between char type and int is the following: 

int c; 

if(c 'x') { 

This comparison is reliable because C guarantees all character constants 
to be positive. 

B-ll 



XENIX C User's Guide 

Type conversion also occurs when arguments are passed to functions. 
Types char and short become int. Extending the char type can produce 
unexpected results. For example, the following program yields a result of 
-128 on some machines: 

char c = 128; 
printf("%d\n",c); 

The unexpected negative value is produced because c is converted to int 
when it is passed to the printf function. The function itself has no 
knowledge of the original type of the argument and is expecting an int. 
The correct way to handle this situation is to code defensively and allow 
for the possibility of sign extension, as in the following example: 

char c = 128; 
printf("%d\n", c & Oxff); 

B.4.6 Functions with a Variable Number of Arguments 

Functions with a variable number of arguments present a particular porta­
bility problem if the type of the arguments is also variable. In such cases 
the code is dependent on the size of various data types. For portability, 
these cases should be avoided. 

B.4.7 Side Effects and Evaluation Order 

The C language makes few guarantees about the order of evaluation of 
operands in an expression or arguments to a function call. Therefore, the 
following statement is almost never portable: 

func (i++, i++); 

Even the following statement is unwise if func is ever likely to be 
replaced by a macro, since the macro may use i more than once: 

func (i++) ; 

Certain XENIX-compatible macros commonly appear in user programs; 
some of these use their argument only once, and therefore can safely be 
called with a side-effect argument. To determine whether a macro handles 
side effects correctly, examine the code for that macro to see whether or 
not the argument is evaluated more than once. 

Operands to the following operators are guaranteed to be evaluated left to 
right: 

&& ?: 

B-12 



Writing Portable Programs 

Note that the comma operator here is a separator for two C statements. A 
list of items separated by commas in a declaration list is not guaranteed to 
be processed left to right. Thelefore, the following declaratiop on an 808(, 
or 8038 processor, where only two register variables may b~ declared, 
could give any two of the four variables register type, depending on the 
compiler: 

register int a, b, c, di 

To give register storage to the most important variables, use separate 
declaration statements and declare the most important variables first. The 
order of processing of individual declaration statements is guaranteed to 
be sequential in the following statements: 

register int ai 
register int bi 
register int Ci 
register int di 

B.S Environment Differences 

Most programs make system calls and use library routines for various ser­
vices. This section indicates some of those routines that are not always 
portable and those that particularly aid portability. 

System calls specific to an operating system are not portable if they are 
not present on all other operating-system implementations of C. Most of 
the system calls defined in the XENIX run-time library are compatible 
with DOS system calls and are therefore portable to a DOS environment. 

Any program is nonportable that contains hard-coded path names to files 
or directories, or that contains user identifier numbers, log-in names, ter­
minal lines or other system-dependent parameters. These types of con­
stants should be in header files, passed as command-line arguments, or 
obtained from the environment. 

Note that the members of the printf and scanf families of functions, 
including fprintf, fscanf, printf, sprintf, scanf, vfprintf, vprintf, 
vsprintf, and sscanf, have evolved in several ways, and some features are 
not completely portable. Some of the format-conversion characters have 
changed their meanings, in particular those relating to uppercase and 
lowercase in the output of hexadecimal numbers and the specification of 
long integers on 16-bit word machines. The XENIX C specifications for 
these routines are given in the XENIX C Library Guide. 

Users should be wary of porting object files that reference the setjmp or 
longjmp functions from XENIX to MS-DOS, unless these object files were 

B-13 



XENIX C User's Guide 

compiled with the -dos option. The MS-DOS versions of these functions 
use a larger buffer size and may cause memory to be overwritten. Such 
object files can be ported from MS-DOS to XENIX without problems, and 
the corresponding source files can be ported in either direction. 

B.6 Portability of Data 

Data files are almost always nonportable across different central­
processing-unit (CPU) architectures. As mentioned above, structures, 
unions, and arrays have varying internal layout and padding requirements 
on different machines. In addition, byte ordering within words and actual 
word length may differ. 

The only way to achieve data- file portability is to write and read data files 
as one-dimensional character arrays. This procedure prevents alignment 
and padding problems if the data are written and read as characters, and 
interpreted that way. Thus ASCII text files can usually be moved between 
different machine types without significant problems. 

B.7 Type-Size Summary 

Table B.l summarizes the sizes of the various data types as defined in the 
XENIX C Compiler, Version 5.0. 

Type Name 
(Alternate Names) 

char 
( signed char) 

int 
(signed) 
(signed int) 

short 
(short int) 
(signed short) 

B-14 

Table B.1 

C Type Sizes 

Storage 

1 byte 

Implementation 
dependent (2 bytes 
in XENIX C 5.0) 

2 bytes 

Range of Values 

-128 to 127 

(-32,768 to 32,767 for 
XENIX C Version 5.0) 

-32,768 to 32,767 



Writing Portable Programs 

(signed short int) 

long 4 bytes -2,147,483,648 to 
(long int) 2,147,483,647 
(signed long) 
(signed long int) 

unsigned I char 1 byte o to 255 

unsigned Implementation (0 to 65,535 
(unsigned int) dependent (2 bytes for XENIX C 5.0) 

in XENIX C 5.0) 

unsigned short 2 bytes o to 65,535 
(unsigned short int) 

unsigned long 4 bytes o to 4,294,967,295 
(unsigned long int) 

enum Implementation (0 to 65,535 for 
dependent (2 bytes XENIXC5.0) 
in XENIX C 5.0) 

float 4 bytes Approximately 
3.4E-38 to 3.4E+38 
(7 -digit precision) 

double 8 bytes Approximately 
1.7E-308 to 1.7E+308 
(15-digit precision) 

long double Implementation Approximately 
dependent (8 bytes 1.7E-308 to 1.7E+308 
in XENIX C 5.0) (15-digit precision) 

Any type size modified by the unsigned keyword can be modified by the signed key­
word instead. The signed keyword is useful if the oJ option has been used to change 
the default sign of the char type. 

B-15 



XENIX C User's Guide 

B.8 Byte-Ordering Summary 

Tables B.2 and B.3 summarize byte ordering for short and long types, 
respectively. The following conventions are used in these tables: 

I. The lowest physically addressed byte of the data item is aO; al has 
the byte address aO + 1, and so on. 

2. The least-significant byte of the data item is bO; bl is the next 
least significant, and so on. 

Since byte ordering is machine specific, any program that actually makes 
use of the following information is guaranteed to be nonportable: ' 

B-16 

Table B.2 

Byte Ordering for Short Types 

CPU 

8086 

80286 

PDP-Il® 

VAX-II® 

M68000 

Z8000® 

Byte Order 

aO al 

bO bl 

bO bl 

bO bl 

bO bl 

bl bO 

bl bO 



Writing Portable Programs 

Table B.3 

Byte Ordering for Long Types 

CPU 

8086 

80286 

PDP-ll® 

VAX-ll® 

M68000 

Z8000® 

Byte Order 

aO al a2 a3 

bO bi b2 b3 

bO bi b2 b3 

b2 b3 bO bi 

bO bi b2 b3 

b3 b2 bi bO 

b3 b2 bi bO 

B-1? 





Appendix C 

Writing Programs 

for Read-Only Memory 

C.I Introduction C-I 

C.2 XENIX-Dependent Library Routines C-I 





Writing Programs for Read-Only Memory 

C.l Introduction 

This al'pelldix presents information fo::: developers who will be download­
ing code written with the XENIX C Compiler into read-only memory 
(ROM). Code of this type is more commonly known as "ROMable" 
code. Information is given about the run-time library routines that directly 
interface with XENIX. 

C.2 XENIX-Dependent Library Routines 

Because ROMabie programs are often run outside a XENIX environment, 
they cannot include calls to run-time library routines that perform their 
operations through calls to XENIX functions. Table C.I lists the library 
routines that call XENIX functions. 

Table C.l 

Ms-noS-Dependent Library Routines 

abort exit fwrite read 
access H'close getch rmdir 
chdir fgetc getcwd scanf 
chmod fgetchar getpid sopen 
chsize fgets gets sprintf 
close flush getw sscanf 
creat fopen labs stat 
dup fprintf localtime system 
dup2 fputc locking tell 
eof fputchar lseek time 
execl fputs mkdir tmpfile 
execle fread mktemp unlink 
execlp freopen open utime 
execlpe fscanf perror vfprintf 
execv fseek printf vprintf 
execve fstat putch vsprintf 
execvp ftell puts write 
execvpe ftime putw 

A program containing calls to any of these routines cannot run in a non­
XENIX environment unless you do one of the following: 

• Write replacements for these XENIX-dependent routines as needed. 

• Edit the program to remove the calls to the listed routines. 

C-I 



XENIX C User's Guide 

• Obtain the library source files from XENIX and edit them so that 
they do not include XENIX function calls, and write functional 
equivalents of the XENIX functions that can be called from your 
program. 

Note that certain functions that are not listed above may call XENIX func­
tions indirectly: that is, they may be part of a series of nested calls that 
call routines in the list. 

C-2 



AppendixD 

C Error Messages and Exit 
Codes 

D.I Introduction D-I 

D.2 Command-Line Error Messages D-I 
D.2.1 Command-Line Fatal-Error Messages D-I 
D.2.2 Command-Line Error Messages D-I 
D.2.3 Command-Line Warning Messages D-4 

D.3 Compiler Error Messages D-5 
D.3.1 Fatal-Error Messages D-7 
D.3.2 Compilation-Error Messages D-12 
D.3.3 Warning Messages D-28 
D.3.4 Compiler Limits D-37 

D.4 Compiler Exit Codes D-39 





C Error Messages and Exit Codes 

D.l Introduction 

This appendix lists error messages you may encounter as you develop a 
program, and gives a brief description of actions you can take to correct 
the errors. It also describes the exit codes returned by the compiler. 

D.2 Command-Line Error Messages 

Messages that indicate errors on the command line used to invoke the 
compiler have one of the following formats: 

command line fatal error Dlxxx: messagetext 
command line error D2xxx: messagetext 
command line warning D4xxx: messagetext 

(fatal error) 
(error) 
(warning error) 

If possible, the compiler continues operation, printing a warning message. 
In some cases, command-line errors are fatal and the compiler terminates 
processing. 

D.2.l Command-Line Fatal-Error Messages 

The following messages identify fatal errors. The compiler driver cannot 
recover from a fatal error; it terminates after printing the error message. 

D1000 UNKNOWN COMMAND LINE FATAL ERROR 
The compiler detected an unknown fatal-error condition. 

D100l could not execute 'filename' 
The compiler could not find the given file in the current work­
ing directory or any of the other directories named in the 
PATH variable. 

D1002 too many open files, cannot redirect 'filename' 
No more file descriptors were available to redirect the output 
of the -P option to a file. 

D.202 Command-Line Error Messages 

When the compiler driver encounters any of the errors listed in this sec­
tion, it continues compiling the program (if possible) and outputs addi­
tional error messages. However, no object file is produced. 

D-l 



XENIX C User's Guide 

D-2 

D2000 UNKNOWN COMMAND LINE ERROR 
The compiler detected an unknown error condition. 

D2001 too many symbols predefined with -D 
Too many symbolic constants were defined using the -D option 
on the command line. 

The limit on command-line definitions is normally 16; you can 
use the -U or -u option to increase the limit to 20. 

D2002 a previously defined model specification has 
been overridden 
Two different memory models were specified; the model 
specified later on the command line was used. 

D2003 missing source file name 
You did not give the name of the source file to be compiled. 

D2007 bad option flag, would overwrite 'string]' with 
'string2' 
The specified option was given more than once, with 
conflicting arguments string 1 and string2. 

D2008 too many option flags, 'string' 
Too many letters were given with the specified option (for 
example, with the -0 option). 

D2009 unknown optioncharacter in 'optionstring' 
One of the letters in the given option was not recognized. 

D2012 too many linker flags on command line 
You tried to pass more than 128 separate options and object 
files to the linker. 

D2013 incomplete model specification 
Not enough characters were given for the -Astring option. The 
option requires all three letters (to specify the data-pointer 
size, code-pointer size, and segment setup, respectively). 

D2014 -ND not allowed with -Ad 
You cannot rename the default data segment unless you give 
the -Auxx option (SS != DS, load DS) on the command line. 



C Error Messages and Exit Codes 

D20l5 assembly files are not handled 
You gave a file name with an extension of .asm on the com­
mand line. Because the compiler cannot invoke the XENIX 
Macro Assembler (masm) automatically, it cannot assemble 
such files. 

D20l6 -Gw and -ND name are incompatible 
You tried to rename the default data segment to the given 
name when you specified the -Gw option. 

Renaming the default data segment is illegal in this case 
because the -Gw option requires the ·Awxx option. 

D20l7 -Gw and -Au flags are incompatible 
You tried to specify the -Auxx option (SS != DS, load DS) 
with the -Gw option. 

Specifying -Auxx with ·Gw is illegal because the -Gw option 
requires the -Awxx option. 

D20l8 cannot open linker cmd file 
The response file used to pass object- file names and options to 
the linker could not be opened. 

This error may have occurred because another read-only file 
had the same name as the response file. 

D20l9 cannot overwrite the source file, 'name' 
You specified the source file as an output-file name. 

The compiler does not allow the source file to be overwritten 
by one of the compiler output files. 

D2020 -Gc option requires extended keywords to be 
enabled (-Ze) 
The -Gc option and the -Za option were specified on the same 
command line. 

The -Gc option requires the extended keyword cdecl to be 
enabled if library functions are to be accessible. 

D202l invalid numerical argument 'string' 
A non-numerical string was specified following an option that 
required a numerical argument. 

D2022 cannot open help file, cc.hlp 
The -help option was given, but the file containing the help 

D-3 



XENIX C User's Guide 

messages (cc.hlp) was not in the default directory 
(/usr/lib/286) or in any of the directories specified by the 
PATH environment variable. 

D2023 invalid model specification - small model 
only 

D.2.3 Command-Line Warning Messages 

The messages listed in this section indicate potential problems but do not 
hinder compilation and linking. 

D-4 

D4000 UNKNOWN COMMAND LINE WARNING 
An unknown fatal condition has been detected by the com­
piler. 

D4001 listing has precedence over assembly output 
1\vo different listing options were chosen; the assembly listing 
is not created. 

D4002 ignoring unknown flag 'string' 
One of the options given on the command line was not recog­
nized and is ignored. 

D4003 80186/286 selected over 8086 for code 
generation 
Both the -GO option and either the -Gl or -G2 option were 
given; -Gl or -G2 takes precedence. 

D4004 optimizing for time over space 
This message confirms that the -Ot option is used for optimiz­
ing. 

D4006 only one of -P/-E/-EP allowed, -P selected 
Only one preprocessor output option can be specified at one 
time. 

D4007 -C ignored (must also specify -P or -E 
or -EP) 
The -C option must be used in conjunction with one of the 
preprocessor output flags, -E, -EP, or -Po 

D4008 non-standard model -- defaulting to small 
model libraries 
A nonstandard memory model was specified with the option. 
The library search records in the object model were set to use 
the small-model libraries. 



C Error Messages and Exit Codes 

D4009 threshold only for far/huge data, ignored 
The -Gt option cannot be used in memory models that have 
near data pointers. It can be used only in compact, large, and 
huge models. 

D4010 -Gp not implemented, ignored 
The MS-DOS version of XENIX C does not support profiling. 

D4011 preprocessing overrides source 
listing 
Only a preprocessor listing was generated, since the compiler 
cannot generate both a source listing and a preprocessor listing 
at the same time. 

D4012 function declarations override source 
listing 
The compiler cannot generate both a source-listing file and the 
function prototype declarations at the same time. 

D4013 combined listing has precedence over object 
listing 
When -Fe is specified along with either -Fl or -Fa, the com­
bined listing (-Fe) is created. 

D4014 invalid value number for 'string'. Default number 
is used 
An invalid value was given in a context where a particular 
numerical value was expected. 

D4017 conflicting stack checking options - stack 
checking disabled 
Both the -Ge and the -Gs flags are given in one compile com­
mand (-Ge enables stack checking, -Gs disables it). 

D.3 Compiler Error Messages 

The error messages produced by the C compiler fall into three categories: 

1. Fatal-error messages 

2. Compilation-error messages 

3. Warning messages 

The messages for each category are listed below in numerical order, with 
a brief explanation of each error. To look up an error message, first 

D-5 



XENIX C User's Guide 

determine the message category, then find the error number. All messages 
give the file name and line number where the error occurs. 

Fatal-Error Messages 

Fatal-error messages indicate a severe problem, one that prevents the 
compiler from processing your program any further. These messages have 
the following format: 

filename(line) :fatal error Clxxx: messagetext 

After the compiler displays a fatal-error message, it terminates without 
producing an object file or checking for further errors. 

Compilation-Error Messages 

Compilation-error messages identify actual program errors. These mes­
sages appear in the following format: 

filename( line) .' error C2xxx.' messagetext 

The compiler does not produce an object file for a source file that has 
compilation errors in the program. When the compiler encounters such 
errors, it attempts to recover from the error. If possible, it continues to 
process the source file and produce error messages. If errors are too 
numerous or too severe, the compiler stops processing. 

Warning Messages 

Warning messages are informational only; they do not prevent compila­
tion and linking. These messages appear in the following format: 

filename(line) : warning C4xxx: messagetext 

You can use the -W option to control the level of warnings that the com­
piler generates. This option is described in the "Compiling with the cc 
Command" chapter of this guide. 

D-6 



C Error Messages and Exit Codes 

D.3.1 Fatal-Error Messages 

The following messages identify fatal errors. The compiler cannot 
recover from a fatal error; it terminates after printing the error message. 

CIOOO UNKNOWN FATAL ERROR 
An unknown error condition has been detected by the com­
piler. 

CIOOI Internal Compiler Error 
The compiler detected an internal inconsistency. 

Note that the file name refers to an internal compiler file, not 
your source file. 

CI002 out of heap space 
The compiler has run out of dynamic memory space. This usu­
ally means that your program has many symbols and/or com­
plex expressions. 

To correct the problem, divide the file into several smaller 
source files, or break expressions into subexpressions. 

CI003 error count exceedsn; stopping compilation 
Errors in the program were too numerous or too severe to 
allow recovery, and the compiler must terminate. 

CI004 unexpected EOF 
This message appears when you have insufficient space on the 
default disk drive for the compiler to create the temporary files 
it needs. The space required is approximately two times the 
size of the source file. This message can also occur when a 
comment does not have a closing delimiter (*/), or when an #if 
directive occurs without a corresponding closing #endif direc­
tive. 

C100S string too big for buffer 
A string in a compiler intermediate file overflowed a buffer. 

C1006 write error on compiler intermediate file 
The compiler was unable to create the intermediate files used 
in the compilation process. 

D-7 



XENIX C User's Guide 

D-8 

The following conditions commonly cause this error: 

1. XENIX system file or inode table is full at time of com­
pilation 

2. Not enough space on a device containing a compiler 
intermediate file 

Cl007 unrecognized flag 'string' in 'option' 
The string in the command-line option was not a valid option. 

Cl009 compiler limit possibly a recursively 
defined macro 
The expansion of a macro exceeds the available space. 

Check to see if the macro is recursively defined, or if the 
expanded text is too large. 

ClOlO compiler limit : macro expansion too big 
The expansion of a macro exceeds the available space. 

Cl012 bad parenthesis nesting - missing 'character' 
The parentheses in a preprocessor directive were not matched; 
character is either a left or right parenthesis. 

Cl013 cannot open source file 'filename' 
The given file either did not exist, could not be opened, or was 
not found. Make sure your environment settings are valid and 
that you have given the correct path name for 
the file. 

CI014 too many include files 
Nesting of #include directives exceeds 10 levels. 

CI016 #if[n]def expected an identifier 
You must specify an identifier with the #ifdef and #ifndef 
directives. 

CI017 invalid integer constant expression 
The expression in an #if directive must evaluate to a 
constant. 

Cl018 unexpected '#elif' 
The #elif directive is legal only when it appears within an #if, 
:ftlfdef, or #ifndef directive. 



C Error Messages and Exit Codes 

C1019 unexpected '#else' 
The #eIse directive is legal.only when it appears within an #if, 
#ifdef, or #ifndef directive. 

C1020 unexpected '#endif' 
An #endif directive appears without a matching #if, #ifdef, or 
#ifndef directive. 

C1021 bad preprocessor command 'string' 
The characters following the number sign (#) do not form a 
valid preprocessor directive. 

C1022 expected '#endif' 
An #if, #ifdef, or #ifndef directive was not terminated with an 
#endif directive. 

C1026 parser stack overflow, please simplify your 
program 
Your program cannot be processed because the space required 
to parse the program causes a stack overflow in the compiler. 

To solve this problem, try to simplify your program. 

C1027 DGROUP data allocation exceeds 64K 
More than 64K of variables was allocated to the default data 
segment. 

For compact-, medium-, large-, or huge-model programs, use 
the -Gt option to move items into separate segments. 

C1032 cannot open object listing file 'filename' 
One of the following statements about the file name or path 
name given (filename) is true: 

I. The given name is not valid. 

2. The file with the given name cannot be opened for 
lack of space. 

3. A read-only file with the given name already exists. 

C1033 cannot open assembly-language output file 
'filename' 
One of the conditions listed under error message CI032 
prevents the given file froi11 being opened. 

D-9 



XENIX C User's Guide 

Cl034 cannot open source file 'filename' 
One of the conditions listed under error message CI032 
prevents the given file from being opened. 

Cl035 expression too complex, please simplify 
The compiler cannot generate the code for a complex expres­
sion. Break the expression into simpler subexpressions and 
recompile. 

Cl036 cannot open source listing file 'filename' 
One of the conditions listed under error message CI032 
prevents the given file from being opened. 

Cl037 cannot open object file 'filename' 
One of the conditions listed under error message C 1 032 
prevents the given file from being opened. 

Cl039 unrecoverable heap overflow in Pass 3 
The post-optimizer compiler pass overflowed the heap and 
could not continue. 

Try recompiling with the -Od option (see' 'Compiling with the 
cc Command" ) or try rewriting the function containing the 
line that caused the error. 

Cl040 unexpected EOF in source file 'filename' 
The compiler detected an unexpected end-of-file condition 
while creating a source listing or mingled source/object list­
ing. 

This error probably occurred because the source file was 
edited during compilation. 

Cl04l cannot open compiler intermediate file - no 
more files 
The compiler could not create intermediate files used in the 
compilation process because no more file handles were avail­
able. 

Cl042 cannot open compiler intermediate file - no 
such file or directory 
The compiler could not create intermediate files used in the 
compilation process because the /tmp directory did not exist. 

Cl043 cannot open compiler intermediate file 

D-IO 

The compiler could not create intermediate files used in the 
compilation process. The exact reason is unknown. 



C Error Messages and Exit Codes 

CI044 out of disk space for compiler intermediate 
file 
The compiler could not create intennediate files used in the 
compilation process because no more space was available. 

To correct the problem, make more space available on the disk 
and recompile. 

CI045 floating point overflow 
The compiler generated a floating-point exception while doing 
constant arithmetic on floating-point items at compile time, as 
in the following example: 

float fp_val = 1.OelOO; 

In this example, the double-precision constant i.OelOO 
exceeds the maximum allowable value for a floating-point 
data item. 

CI047 too manyoption flags, 'string' 
The option appeared too many times. The string contains the 
occurrence of the option that caused the error. 

CI048 Unknown option 'character' in 'optionstring' 
The character was not a valid letter for optionstring. 

CI049 invalid numerical argument 'string' 
A numerical argument was expected instead of string. 

CI050 code segment 'segmentname' too large 
A code segment grew to within 36 bytes of 64K during 
compilation. 

A 36-byte pad is used because of a bug in some 80286 chips 
that can cause programs to exhibit strange behavior when, 
among other conditions, the size of a code segment is within 
36 bytes of 64K. 

CI052 too many #if/#ifdef's 
You have exceeded the maximum nesting level for #if/#ifdef 
directives. 

CI053 compiler limit : struct/union nesting 
Structure and union definitions were nested to more than 10 
levels. 

D-l1 



XENIX C User's Guide 

CI054 compiler limit : initializers too deeply 
nested 
The compiler limit on nesting of initializers was exceeded. 
The limit ranges from 10 to 15 levels, depending on the com­
bination of types being initialized. 

To correct this problem, simplify the data type being initial­
ized to reduce the levels of nesting, or assign initial values in 
separate statements after the declaration. 

CI056 compiler limit : out of macro expansion space 
The compiler has overflowed an internal buffer during the 
expansion of a macro; reduce the complexity of the macro. 

CI057 unexpected EOF in macro expansion; 
(missing ') '?) 

The compiler has encountered the end of the source file while 
gathering the arguments of a macro invocation. Usually this is 
the result of a missing closing parenthesis 0) on the macro 
invocation. 

CI059 out of near heap space 
The compiler has run out of storage for items that it stores in 
the "near" (default data segment) heap. This usually means 
that your program has too many symbols or complex expres­
sions. To correct the problem, divide the file into several 
smaller source files, or break expressions into smaller subex­
pressions. 

CI060 out of far heap space 
The compiler has run out of storage for items that it stores in 
the "far" heap. Usually this is the result of too many symbols 
in the symbol table. 

D.3.2 Compilation-Error Messages 

The messages listed below indicate that your program has errors. When 
the compiler encounters any of the errors listed in this section, it contin­
ues parsing the program (if possible) and outputs additional error mes­
sages. However, no object file is produced. 

C2000 UNKNOWN ERROR 
The compiler detected an unknown error condition. 

C2001 newline in constant 

D-12 

A new-line character in a character or string constant was not 
in the correct escape-sequence format (\0). 



C Error Messages and Exit Codes 

C2002 out of macro actual parameter space 
Arguments to preprocessor macros exceeded 256 bytes. 

C2003 expected 'defined id' 
The identifier to be checked in an #if directive was not 
enclosed in parentheses. 

C2004 expected ~efined(id)' 
An #if directive caused a syntax error. 

C2005 #line expected a line number 
A #line directive lacked the required line-number 
specification. 

C2006 #include expected a file name 
An #include directive lacked the required file-name 
specification. 

C2007 #define syntax 
A #define directive caused a syntax error. 

C2008 'character' : unexpected in macro definition 
The given character was used incorrectly in a macro 
definition. 

C2009 reuse of macro formal 'identifier' 
The given identifier was used twice in the formal-parameter 
list of a macro definition. 

C2010 'character' : unexpected in formal list 
The given character was used incorrectly in the formal­
parameter list of a macro definition. 

C2011 'identifier' : definition too big 
The given macro definitions exceeded 256 bytes. 

C2012 missing name following ~' 
An #include directive lacked the required file-name 
specification. 

C2013 missing '>' 
The closing angle bracket (» was missing from an #include 
directive. 

D-13 



XENIX C User's Guide 

C2014 preprocessor command must start as first 
non whitespace 
Non-white-space characters appear before the number sign (#) 
of a preprocessor directive on the same line. 

C2015 too many chars in constant 
A- character constant containing more than one character or 
escape sequence was used. 

C2016 no closing single quote 
A character constant was not enclosed in single quotation 
marks. 

C2017 illegal escape sequence 
The character or characters after the escape character (\) did 
not form a valid escape sequence. 

C2018 unknown character 'Oxcharacter' 
The given hexadecimal number does not correspond to a char­
acter. 

C2019 expected preprocessor command, found 'character' 
The given character followed a number sign (#), but it was not 
the first letter of a preprocessor directive. 

C2020 bad octal number 'character' 
The given character was not a valid octal digit. 

C2021 expected exponent value, not 'character' 
The given character was used as the exponent of a floating­
point constant but was not a valid number. 

C2022 'number' : too big for char 
The number was too large to be represented as a character. 

C2023 divide by 0 
The second operand in a division operation (/) evaluated to 
zero, giving undefined results. 

C2024 mod by 0 
The second operand in a remainder operation (%) evaluated to 
zero, giving undefined results. 

C2025 'identifier' : enum/struct/union type redefinition 
The given identifier had already been used for an enumeration, 
structure, or union tag. 

D-14 



C Error Messages and Exit Codes 

C2026 'identifier' : member of enum redefinition 
The given identifier had already been used for an enumeration 
constant, either within the same enumeration type or within 
another enumeration type with the same visibility. 

C2028 struct/union member needs to be inside a 
struct/union 
Structure and union members must be declared within the 
structure or union. 

This error may be caused by an enumeration declaration that 
contains a declaration of a structure member, as in the follow­
ing example: 

enum a 
january, 
february, 
int march; /* structure declaration: 

** illegal 
*/ 

} ; 

C2029 'identifier' : bit-fields allowed only in structs 
Only structure types may contain bit fields. 

C2030 'identifier' : struct/union member redefinition 
The identifier was used for more than one member of the same 
structure or union. 

C2031 'identifier' function cannot be 
struct/union member 
The given function was declared to be a member of a struc­
ture. 

To correct this error, use a pointer to the function instead. 

C2032 'identifier': base type with near/far/huge 
not allowed 
The given structure or union member was declared with the 
near, far, or huge keyword. 

C2033 'identifier' : bit-field cannot have indirection 
The given bit field was declared as a pointer (*), which is not 
allowed. 

D-15 



XENIX C User's Guide 

C2034 'identifier' bit-field type too small for 
number of bits 
The number of bits specified in the bit-field declaration 
exceeded the number of bits in the given base type. 

C2035 enum/struct/union 'identifier' : unknown size 
The given structure or union had an undefined size. 

C2036 left of 'member' must have struct/union type 
The expression before the member-selection operator (-» was 
not a pointer to a structure or union type, or the expression 
before the member-selection operator (.) did not evaluate to a 
structure or union. In this message, member is a member desig­
nator in one of the following forms: 

- >identifier 
. identifier 

C2037 left of '->' or " specifies undefined 
struct/union 'identifier' 
The expression before the member-selection operator (-> or .) 
identified a structure or union type that was not defined. 

C2038 'identifier' : not struct/union member 
The given identifier was used in a context that required a 
structure or union member. 

C2039 '->' requires struct/union pointer 
The expression before the member-selection operator (-» was 
a structure or union name, not a pointer to a structure or union 
as expected. 

C2040 '.' requires struct/union name 
The expression before the member-selection operator (.) was 
a pointer to a structure or union, not a structure or union name 
as expected. 

C2041 keyword 'enum' illegal 
The enum keyword appeared in a structure or union declara­
tion' or an enum type definition was not formed correctly. 

C2042 signed/unsigned keywords mutually exclusive 
The signed and unsigned keywords may not appear in the same 
declaration. 

C2043 illegal break 

D-16 

A break statement is legal only when it appears within a do, 
for, while, or switch statement. 



C Error Messages and Exit Codes 

C2044 illegal continue 
A continue statement is legal only when it appears within a 
do, for, or while statement. 

C2045 'identifier' : label redefined 
The given label appeared before more than one statement in 
the same function. 

C2046 illegal case 
The case keyword may appear only within a switch statement. 

C2047 illegal default 
The default keyword may appear only within a switch state­
ment. 

C2048 more than one default 
A switch statement contained more than one default label. 

C2049 cast has illegal formal parameter list 
A formal parameter list was given in a type-cast expression. 

C2050 non-integral switch expression 
A switch expression was not integral. 

C2051 case expression not constant 
Case expressions must be integral constants. 

C2052 case expression not integral 
Case expressions must be integral constants. 

C2053 case value number already used 
The given case value was already used in this switch state­
ment. 

C2054 expected' (' to follow 'identifier' 
The context requires parentheses after the function identifier. 

C2055 expected formal parameter list, not a type 
list 
An argument-type list appeared in a function definition instead 
of a formal parameter list. 

C2056 illegal expression 
An expression was illegal because of a previous error. (The 
previous e'Tor may not have produced an error message.) 

D-17 



XENIX C User's Guide 

C2057 expected constant expression 
The context requires a constant expression. 

C2058 constant expression is not integral 
The context requires an integral constant expression. 

C2059 syntax error : 'token' 
The given token caused a syntax error. 

C2060 syntax error : EOF 
The end of the file was encountered unexpectedly, causing a 
syntax error. This error can be caused by a missing closing 
curly brace (}) at the end of your program. 

C2061 syntax error : identifier 'identifier' 
The given identifier caused a syntax error. 

C2062 type 'type' unexpected 
The given type was misused. 

C2063 'identifier' : not a function 
The given identifier was not declared as a function, but an 
attempt was made to use it as a function. 

C2064 term does not evaluate to a function 
An attempt was made to call a function through an expression 
that did not evaluate to a function pointer. 

C2065 'identifier' : undefined 
The given identifier was not defined. 

C2066 cast to function returning 
An object was cast to a function type. 

is illegal 

C2067 cast to array type is illegal 
An object was cast to an array type. 

C2068 illegal cast 
A type used in a cast operation was not a legal type. 

C2069 cast of ~oid' term to non-void 
The void type was cast to a different type. 

C2070 illegal sizeof operand 

D-18 

The operand of a sizeof expression was not an identifier or a 
type name. 



C Error Messages and Exit Codes 

C2071 'class' : bad storage class 
The given storage class cannot be used in this context. 

C2072 'identifier' : initialization of a function 
An attempt was made to initialize a function. 

C2073 'identifier' : cannot initialize array in function 
An attempt was made to initialize the given array within a 
function. Arrays can be initialized only at the external level. 

C2074 cannot initialize struct/union in function 
An attempt was made to initialize the given structure or union 
within a function. Structures and unions can be initialized only 
at the external level. 

C2075 'identifier' array initialization needs 
curly braces 
The braces ({ }) around the given array initializer were miss­
ing. 

C2076 'identifier' : struct/union initialization needs 
curly braces 
The braces ({}) around the given structure or union initializer 
were missing. 

C2077 non-integral field ini tializer 'identifier' 
An attempt was made to initialize a bit-field member of a 
structure with a nonintegral value. 

C2078 too many initializers 
The number of initializers exceeded the number of objects to 
be initialized. 

C2079 'expression' uses undefined struct/union 
The given identifier was declared as a structure or union type 
that had not been defined. 

C2082 redefinition of formal parameter 'identifier' 
A formal parameter to a function was redeclared within the 
function body. 

C2083 array 'identifier' already has a size 
The dimensions of the given array had already been declared. 

C2084 function 'identifier' already has a body 
The given function had already been defined. 

D-19 



XENIX C User's Guide 

C2085 'identifier' : not in formal parameter list 
The given parameter was declared in a function definition for 
a nonexistent formal parameter. 

C2086 'identifier' : redefinition 
The given identifier was defined more than once. 

C2087 'identifier' : missing subscript 
The definition of an array with multiple subscripts was missing 
a subscript value for a dimension other than the first dimen­
sion, as in the following example: 

int func (a) 
char a [ 10] [] i 

{ 

int func (a) 
char a [] [5] i 

{ 

1* Illegal *1 

1* Legal *1 

C2088 use of undefined enum/struct/union 'identifier' 
The given identifier referred to a structure or union type that 
was not defined. 

C2089 typedef specifies a near/far function 
The use of the near or far keyword in a typedef declaration 
conflicted with the use of near or far for the declared item, as 
in the following example: 

typedef int far FARFUNC( )i 
FARFUNC near *fPi 

C2090 function returns array 
A function cannot return an array. (It can return a pointer to an 
array.) 

C209l function returns function 

D-20 

A function cannot return a function. (It can return a pointer to 
a function.) 



C Error Messages and Exit Codes 

C2092 array element type cannot be function 
Arrays of functions are not allowed; however, arrays of 
pointers to functions are allowed. 

C2093 cannot initialize a static or .:;;truct with 
address of automatic vars 
You cannot use the address of an auto variable in the initial­
izer of a static item. 

C2094 label 'identifier' was undefined 
The function did not contain a statement labeled with the 
given identifier. 

C 2095 function: actual has type void: parameter number 
An attempt was made to pass a void argument to a function. 
Formal parameters and arguments to functions cannot have 
type void; they can, however, have type void * (pointer to 
void). 

C2096 struct/union comparison illegal 
You cannot compare two structures or .unions. (You can, how­
ever, compare individual members within structures and 
unions.) 

C2097 illegal initialization 
An attempt was made to initialize a variable using a noncon­
stant value. 

C2098 non-address expression 
An attempt was made to initialize an item that was not an 
lvalue. 

C2099 non-constant offset 
An initializer used a nonconstant offset. 

C2100 illegal indirection 
The indirection operator (*) was applied to a nonpointer value. 

C2101 '&' on constant 
The address-of operator (&) did not have an lvalue as its 
operand. 

C2102 '&' requires lvalue 
The address-of operator must be applied to an lvalue expres­
sion. 

D-21 



XENIX C User's Guide 

C2103 '&' on register variable 
An attempt was made to take the address of a register variable. 

C2104 '&' on bit-field 
An attempt was made to take the address of a bit field. 

C21 0 5 'operator' needs 1 val ue 
The given operator did not have an lvalue operand. 

C2106 'operator' : left operand must be lvalue 
The left operand of the given operator was not an lvalue. 

C2107 illegal index, indirection not allowed 
A subscript was applied to an expression that did not evaluate 
to a pointer. 

C2108 non-integral index 
A nonintegral expression was used in an array subscript. 

C2109 subscript on non-array 
A sUbscript was used on a variable that was not an array. 

C2110 '+' : 2 pointers 
An attempt was made to add one pointer to another. 

C2111 pointer + non-integral value 
An attempt was made to add a nonintegral value to a pointer. 

C2112 illegal pointer subtraction 
An attempt was made to subtract pointers that did not point to 
the same type. 

C2113 '-' : right operand pointer 
The right operand in a subtraction operation (-) was a pointer, 
but the left operand was not. 

C2114 'operator' : pointer on left; needs integral 
right 
The left operand of the given operator was a pointer; the right 
operand must be an integral value. 

C2115 'identifier' : incompatible types 
An expression contained incompatible types. 

C2116 operator: bad left (or right) operand 

D-22 

The specified operand of the given operator was illegal for that 
operator. 



C Error Messages and Exit Codes 

C2117 'operator' : illegal for struct/union 
Structure and union type values are not allowed with the given 
operator. 

C2118 negative subscript 
A value defining an array size was negative. 

C2119 'typedefs' both define indirection 
Two typedef types were used to declare an item and both 
typedef types had indirection. For example, the declaration of 
p in the following example is illegal: 

typedef int *P_INTi 
typedef short *p SHORTi 
/* this declaration is illegal */ 
P SHORT P_INT Pi 

C2120 ~oi~ illegal with all types 
The void type was used in a declaration with another type. 

C2121 typedef specifies different enum 
An attempt was made to use a type declared in a typedef state­
ment to specify both an enumeration type and another type. 

C2122 typedef specifies different struct 
An attempt was made to use a type declared in a typedef state­
ment to specify both a structure type and another type. 

C2123 typedef specifies different union 
An attempt was made to use a type declared in a typedef state­
ment to specify both a union type and another type. 

C2125 identifier : allocation exceeds 64K 
The given item exceeds the size limit of 64K. 

The only items that are allowed to exceed 64K are huge 
arrays. 

C2126 identifier : automatic allocation exceeds 32K 
The space allocated for the local variables of a function 
exceeded the limit of 32K. 

C2127 parameter allocation exceeds 32K 
The storage space required for the parameters to a function 
exceeded the limit of 32K. 

D-23 



XENIX C User's Guide 

C2128 identifier : huge array cannot be aligned to seg­
ment boundary 
The given array violated one of the restrictions imposed on 
huge arrays; see the "Working with Memory Models" chapter 
for more information on these restrictions. 

C2129 static function 'identifier' not found 
A forward reference was made to a static function that was 
never defined. 

C2130 #line expected a string containing the 
file name 
A file name was missing from a #line directive. 

C2131 attributes specify more than one 
near/far/huge 
More than one near, far, or huge attribute was applied to an 
item, as in the following example: 

typedef int near NINT; 
NINT far a; /* Illegal */ 

C2132 syntax error : unexpected identifier 
An identifier appeared in a syntactically illegal context. 

C2133 array 'identifier' : unknown size 
An attempt was made to declare an unsized array as local vari­
able, as in the following example: 

int mat add (arrayl) 
int arrayl[]; 
{ 
int array2[]; 

/* Legal */ 

/* Illegal */ 

C2134 identifier : struct/union too large 
The size of a structure or union exceeded the compiler limit 
(232 bytes). 

C2135 missing ')' in macro expansion 
A macro reference with arguments was missing a closing 
parenthesis 0). 

C2137 empty character constant 
The illegal character constant" was used. 

D-24 



C Error Messages and Exit Codes 

C2138 unmatched close comment '/*' 
The compiler detected an open-comment delimiter (/*) 
without a matching close-comment delimiter (*/). 

This error usually indicates an attempt to use illegal nested 
comments. 

C2139 type following 'type' is illegal 
An illegal type combination such as the following was used: 

long char a; 

C2140 argument type cannot be function 
returning ... 
A function was declared as a formal parameter of another 
function, as in the following example: 

int funcl (a) 
int a ( ); /* Illegal */ 

C2141 value out of range for enum constant 
An enumeration ~onstant had a value outside the range of 
values allowed for type into 

C2142 ellipsis requires three periods 
The compiler detected the token " .. " and assumed that " ... " 
was intended. 

C2143 syntax error missing 'tokenl' before 'token2' 
The compiler expected token} to appear before token2. This 
message may appear if a required closing curly brace 0), right 
parenthesis 0), or semicolon (;) is missing. 

C2144 syntax error : missing 'token' before type 'type' 
The compiler expected the given token to appear before the 
given type name. This message may appear if a required clos­
ing curly brace 0), right parenthesis 0), or semicolon (;) is 
missing. 

C2145 syntax error : missing 'token' before 
identifier 
The compiler expected the given token to appear before an 
identifier. This message may appear if a semicolon (;) does not 
appear after the last declaration of a block. 

D-25 



XENIX C User's Guide 

C2146 syntax error : missing 'token' before identif­
ier 'identifier' 
The compiler expected the given token to appear before the 
given identifier. 

C2147 array : unknown size 
An attempt was made to increment an index or pointer to an 
array whose base type has not yet been declared. 

C2148 array too large 
An array exceeded the maximum legal size (232 bytes). 

C2149 identifier : named bit-field cannot have 0 width 
The given named bit field had a zero width. Only unnamed bit 
fields are allowed to have zero width. 

C2150 identifier : bit-field must have type int, signed 
inti or unsigned int 
The ANSI C standard requires bit fields to have types of int, 
signed int, or unsigned int. This message appears only if you 
compiled your program with the -Za option. 

C2151 more than one cdecl/fortran/pascal 
attribute specified 
More than one keyword specifying a function-calling conven­
tion was given. 

C2152 identifier : pointers to functions with different 
attributes 
An attempt was made to assign a pointer to a function declared 
with one calling convention (cdecl, fortran, or pascal) to a 
pointer to a function declared with a different calling conven­
tion. 

C2153 hex constants must have at least 1 hex digit 
At least one hexadecimal digit must follow the "x". The hexa­
decimal constants Ox and OX are illegal. 

C2154 'name' : does not refer to a segment 
The name was the first identifier given in an alloc_text pragma 
argument list and it is already defined as something other than 
a segment name. 

C2155 'name' : already in a segment 

D-26 

The function name appears in more than one alloc text 
pragma. 



C Error Messages and Exit Codes 

C2156 pragma must be at outer level 
Certain pragmas must be specified at a global level, outside a 
function body, and there is an occurrence of one of these prag­
mas within a function. 

C2157 'name': must be declared before use in 
pragma list 
The function name in the list of functions for an alloc text 
pragma has not been declared prior to being referenced iii. the 
list. 

C2158 'name' is a function 
Name was specified in the list of variables in a same_segment 
pragma, but was previously declared as a function. 

C2159 more than one storage class specified 
Illegal declaration -only one storage class is allowed. 

C2160 ## cannot occur at the beginning of a 
macro definition 
A macro definition cannot begin with a token-pasting (##) 
operator. 

C2161 ## cannot occur at the end of a 
macro definition 
A macro definition cannot end with a token-pasting (##) 
operator. 

2162 expected macro formal parameter 
The token following a stringizing operator (#) must be a for­
mal parameter name. 

2163 'string' : not available as an intrinsic 
A function specified in the list of functions for an intrinsic or 
function pragma is not one of the functions available in intrin­
sic form. 

C2165 'keyword' : cannot modify pointers to data 
Bad use of fortran, pascal or cdecl keyword to modify pointer 
to data. 

C2167 'name' : too many actual parameters for 
intrinsic 
A reference to the intrinsic function name contains too many 
actual parameters. 

D-27 



XENIX C User's Guide 

C2168 'name' : too few actual parameters for 
intrinsic 
A reference to the intrinsic function name contains too few 
actual parameters. 

C2169 'name' : is an intrinsic, it cannot be defined 
An attempt was made to provide a function definition for a 
function already declared as an intrinsic. 

C 21 7 a identifier : intrinsic not declared as a function 
You tried to use the intrinsic pragma for an item other than a 
function, or for a function that does not have an intrinsic form. 

C2177 constant too big 
Information was lost because a constant value was too large to 
be represented in the type to which it was assigned. (1) 

C2171 'operator' : bad operand 
Illegal operand type for the specified unary operator. 

D.3.3 Warning Messages 

The messages listed in this section indicate potential problems but do not 
hinder compilation and linking. The number in parentheses at the end of 
each warning-message description gives the minimum warning level that 
must be set for the message to appear. 

C4000 UNKNOWN WARNING 
The compiler detected an unknown error condition. 

C4001 macro 'identifier' requires parameters 
The given identifier was defined as a macro taking one or more 
arguments, but it was used in the program without arguments. 
(1) 

C4002 too many actual parameters for macro 'identifier' 
The number of actual arguments specified with the given 
identifier was greater than the number of formal parameters 
given in the macro definition of the identifier. (1) 

C4003 not enough actual parameters for macro 
'identifier' 

D-28 

The number of actual arguments specified with the given 
identifier was less than the number of formal parameters given 
in the macro definition of the identifier. (1) 



C Error Messages and Exit Codes 

C4004 missing close parenthesis after 'defined' 
The closing parenthesis was missing from an #if defined 
phrase. (1) 

C4005 'identifier' : redefinition 
The given identifier was redefined. (1) 

C4006 #undef expected an identifier 
The name of the identifier whose definition was to be removed 
was not given with the #Undef directive. (1) 

C4009 string too big, trailing chars truncated 
A string exceeded the compiler limit on string size. To correct 
this problem, break the string into two or more strings. (1) 

C4011 identifier truncated to 'identifier' 
Only the identifier's first 31 characters are significant. (1) 

C4014 'identifier' : bit-field type must be unsigned 
The given bit field was not declared as an unsigned type. 

Bit fields must be declared as unsigned integral types. A 
conversion has been supplied. (1) 

C4015 'identifier' : bit-field type must be integral 
The given bit field was not declared as an integral type. 

Bit fields must be declared as unsigned integral types. A 
conversion has been supplied. (1) 

C4016 'identifier' : no function return type 
The given function had not yet been declared or defined, so the 
return type was unknown. 

The default return type (int) is assumed. (2) 

C4017 cast of int expression to far pointer 
A far pointer represents a full segmented address. On an 
8086/8088 processor, casting an int value to a far pointer may 
produce an address with a meaningless segment 
value. (1) 

C4020 too many actual parameters 
The number of arguments specified in a function call was 
greater than the number of parameters specified in the 
argument-type list or function definition. (1) 

D-29 



XENIX C User's Guide 

C4021 too few actual parameters 
The number of arguments specified in a function call was less 
than the number of parameters specified in the argument-type 
list or function definition. (1) 

C4022 pointer mismatch : parametern 
The pointer type of the given parameter was different from the 
pointer type specified in the argument-type list or function 
definition. (1) 

C4024 different types: parametern 
The type of the given parameter in a function call did not 
agree with the type given in the argument-type list or function 
definition. (1) 

C4025 function declaration specified variable 
argument list 
The argument-type list in a function declaration ended with a 
comma or a comma followed by ellipsis dots (, .•• ), indicating 
that the function could take a variable number of arguments, 
but no formal parameters were declared for the function. (1) 

C4026 function was declared with formal argu­
ment list 
The function was declared to take arguments, but the function 
definition did not declare formal parameters. (1) 

C4027 function was declared without formal argu­
ment list 
The function was declared to take no arguments (the 
argument-type list consisted of the word void), but formal 
parameters were declared in the function definition or argu­
ments were given in a call to the function. (1) 

C4028 parametern declaration different 
The type of the given parameter did not agree with the 
corresponding type in the argument-type list or with the 
corresponding formal parameter. (1) 

C4029 declared parameter list different from 
definition 

D-30 

The argument-type list given in a function declaration did not 
agree with the types of the formal parameters given in the 
function definition. (1) 



C Error Messages and Exit Codes 

C4030 first parameter list is longer than 
the second 
A function was declared more than once with different 
argument-type lists in the declarations. (1) 

C4031 second parameter list is longer than 
the first 
A function was declared more than once with different 
argument-type lists. (1) 

C4032 unnamed struct/union as parameter 
The structure or union type being passed as an argument was 
not named, so the declaration of the formal parameter cannot 
use the name and must declare the type. (1) 

C4033 function must return a value 
A function is expected to return a value unless it is declared as 
void. (2) 

C4034 sizeof returns 0 
The sizeof operator was applied to an operand that yielded a 
size of zero. (1) 

C4035 identifier : no return value 
A function declared to return a value did not do so. (2) 

C4036 unexpected formal parameter list 
A formal parameter list was given in a function declaration. 
The formal parameter list is ignored. (1) 

C4037 'identifier' : formal parameters ignored 
No storage class or type name appeared before the declarators 
of formal parameters in a function declaration, as in the fol­
lowing example: 

int *f(a,b,c); 

The formal parameters are ignored. (1) 

C4038 'identifier' formal parameter has bad 
storage class 
The given formal parameter was declared with a storage class 
other than auto or register. (1) 

C4039 'identifier' : function used as an argument 
A formal parameter to a function was declared to be a func­
tion, which is illegal. The formal parameter is converted to a 
function pointer. (1) 

D-31 



XENIX C User's Guide 

C4040 near/far/huge on 'identifier' ignored 
The near or far keyword has no effect in the declaration of the 
given identifier and is ignored. (1) 

C4041 formal parameter 'identifier' is redefined 
The given fOImal pafamet~r was redefin~d in the function 
body, making the corresponding actual argument unavailable 
in the function. (1) 

C4042 'identifier' : has bad storage class 
The specified storage class cannot be used in this context (for 
example, function parameters cannot be given extern class). 
The default storage class for that context was used in place of 
the illegal class. (1) 

C4043 'identifier' : void type changed to int 
An item other than a function was declared to have void type. 
(1) 

C4044 huge on 'identifier' ignored, must be an array 
The huge keyword was used to declare the given nonarray 
item. (1) 

C4045 'identifier' : array bounds overflow 
Too many initializers were present for the given array. The 
excess initializers are ignored. (1) 

C4046 '&' on function/array, ignored 
An attempt was made to apply the address-of operator (&) to a 
function or array identifier. (1) 

C4047 'operator' : different levels of indirection 

D-32 

An expression involving the specified operator had incon­
sistent levels of indirection. (1) 

The following example illustrates this condition: 

char **p; 
chc_:>::' *q; 

p q; 



C Error Messages and Exit Codes 

C4048 array's declared subscripts different 
An array was declared twice with different sizes. The larger 
size is used. (1) 

C4049 'operator' : indirection to different types 
The indirection operator (*) was used in an eXDression to 
access values of different types. (1) 

C4051 data conversion 
Two data items in an expression had different types, causing 
the type of one item to be converted. (2) 

C4052 different enum types 
Two different enum types were used in an expression. (1) 

C4053 at least one void operand 
An expression with type void was used as an operand. (1) 

C4056 overflow in constant arithmetic 
The result of an operation exceeded Ox7F ....... F ....... Fr"""TF ...... F-.y-F<rOF. (1) 

C4057 overflow in constant multiplication 
The result of an operation exceeded Ox7FFFFFFF. (1) 

C4058 address of frame variable taken, D8 != 88 
The program was compiled with the default data segment (nS) 
not equal to the stack segment (SS), and the program tried to 
point to a frame variable with a near pointer. (1) 

C4059 segment lost in conversion 
The conversion of a far pointer (a full segmented address) to a 
near pointer (a segment offset) resulted in the loss of the seg­
ment address. (1) 

C4060 conversion of long address to short address 
The conversion of a long address (a 32-bit pointer) to a short 
address (a 16-bit pointer) resulted in the loss of the segment 
address. (1) 

C4061 long/short mismatch in argument: 
conversion supplied 
The base types of the actual and formal arguments of a func­
tion were different. The actual argument is converted to the 
type of the formal parameter. (1) 

C4062 near/far mismatch in argument: conver­
sion supplied 

D-33 



XENIX C User's Guide 

The pointer sizes of the actual and fonnal arguments of a func­
tion were different. The actual argument is converted to the 
type of the fonna! parameter. (1) 

C4063 'identifier' : function too large for 
post-optimizer 
The given function was not optimized because not enough 
space was available. To correct this problem, reduce the size 
of the function by dividing it into two or more smaller func­
tions. (0) 

C4064 procedure too large, skipping description optim­
ization and continuing 
Some optimizations for a function were skipped because not 
enough space was available for optimization. (0) 

To correct this problem, reduce the size of the function by 
dividing it into two or more smaller functions. 

The description in this message may appear as any of the 
following: 

loop inversion 
branch sequence 
cross jump 

C4065 recoverable heap overflow in post-optimizer 
- some optimizations may be missed 
Some optimizations were skipped because not enough space 
was available for optimization. To correct this problem, reduce 
the size of the function by dividing it into two or more smaller 
functions. (0) 

C4066 local symbol table overflow - some local 
symbols may be missing in listings 
The listing generator ran out of heap space for local variables, 
so the source listing may not contain symbol-table infonnation 
for all local variables. 

C4067 unexpected characters following 'directive' 
directive - newline expected 

D-34 

Extra characters followed a preprocessor directive, as in the 
following example (1): 

#endif NO EXT KEYS 



C Error Messages and Exit Codes 

This is accepted in Version 3.0, but not in Versions 4.0 and 5.0. 
Versions 4.0 and 5.0 require comment delimiters, such as the 
following: 

#endif /* NO EXT KEYS */ 

C4068 unknown pragma 
The compiler did not recognize a pragma and ignored it. (1) 

C4069 conversion of near pointer to long integer 
A near pointer was converted to a long integer, which involves 
first extending the high-order word with the current data­
segment value, not 0 as in Version 3.0. (1) 

C4071 'identifier' : no function prototype given 
The given function was called before the compiler found the 
corresponding function prototype. (3) 

C4072 Insufficient memory to process debug­
ging information 
You compiled the program with the -Zi option, but not enough 
memory was available to create the required debugging infor­
mation. (1) 

C4073 scoping too deep, deepest scoping merged 
when debugging 
Declarations appeared at a static nesting level greater than 13. 
As a result, all declarations will seem to appear at the same 
level. (1) 

C4074 non standard extension used - 'extension' 
The given nonstandard language extension was used when the 
-Ze option was in effect. These extensions are given in the 
"Compiling with the cc Command" chapter of this guide. (If 
the -Za option is in effect, this condition generates an error.) 
(3) 

C4075 size of switch expression or case constant 
too large - converted to int 
A value appearing in a switch or case statement was larger 
than an int. The compiler converts the illegal value to an int. 
(1) 

C4076 'type' : may be used on integral types only 
The type modifiers signed and unsigned can be combined 
only with other integral types. 

D-35 



XENIX C User's Guide 

C4077 unknown check stack option 
Unknown option gIven when using the old form of the 
check_stack pragma. The option must be empty, +, or-. 

C4079 unexpected char 'character' 
Unexpected separator character found in argument list of a 
pragma. 

C4080 missing segment name 
The first argument in the argument list for the alloc_text 
pragma is missing a segment name. This happens if the first 
token in the argument list is not an identifier. 

C4081 expected a comma 
There is a missing comma (,) between two arguments of a 
pragma. 

C4082 expected an identifier 
There is a missing identifier in list of arguments to a pragma. 

C4083 missing' (' 
There is a missing opening parenthesis ( ) in the argument list 
for a pragma. 

C4084 expected a pragma keyword 
The token following the pragma keyword is not an identifier. 

C4085 expected [onloff] 
Bad argument given for new form of check _stack pragma. 

C4086 expected [11214] 
Bad argument given for pack pragma. 

C4087 'name' : declared with void parameter list 
The function name was declared as taking no parameters, but a 
call to the function specifies actual parameters. 

C4090 different 'canst' attributes 
The program passed a pointer to a const item to a function 
where the corresponding formal parameter is a pointer to a 
non-const item, which means the item could be modified by 
the function undetected. 

C4091 no symbols were declared 
An empty declaration was detected. (2) 

D-36 



C Error Messages and Exit Codes 

C4092 untagged enum/struct/union declared 
no symbols 
An empty declaration was detected that used an untagged 
enum/struct/union. (2) 

C4093 unescaped newline in character constant in 
non-active code 
The constant expression of an #if, #elif, #ifdef, or #ifndef 
preprocessor directive evaluated to 0, making the following 
code inactive, and a new-line character appeared between a 
single or double quotation mark and the matching single or 
double quotation mark in that inactive code. 

C4094 unexpected newline 
A new-line character appeared in a pragma where a comma, 
right parenthesis, or identifier was expected, as in the follow­
ing 
examples: 

#pragma intrinsic (memset 
#pragma intrinsic (memset, 

C4095 too many arguments for pragma 
More than one argument was given for a pragma that can take 
only one argument. 

D.3.4 Compiler Limits 

To operate the XENIX C Compiler, you must have sufficient disk space 
available for the compiler to create temporary files used in processing. 
The space required is approximately two times the size of the source file. 

Table D.I summarizes the limits imposed by the C compiler. If your pro­
gram exceeds one of these limits, an error message will inform you of the 
problem. 

D-37 



XENIX C User's Guide 

Table D.I 

Limits Imposed by the C Compiler 

Program Item 

String literals 

Constants 

Identifiers 

Declarations 

Preprocessor 
directives 

D-38 

Description 

Maximum length of a 
string, including the ter­
minating null character 
(\0) 

Maximum size of a con­
stant is determined by its 
type; see the XENIX C 
Language Reference for 
a discussion of constants 

Maximum length of an 
identifier 

Maximum level of nest­
ing for structure/union 
definitions 

Maximum size of a 
macro definition 

Maximum number of 
actual arguments to a 
macro definition 

Maximum length of an 
actual preprocessor 
argument 

Maximum level of nest­
ing for #if, #ifdef, and 
#ifndef directives 

Maximum level of nest­
ing for include files 

Limit 

512 bytes 

31 bytes (addi­
tiona! characters 
are discarded) 

10 levels 

512 bytes 

8 arguments 

256 bytes 

32 levels 

10 levels 



C Error Messages and Exit Codes 

The compiler does not set explicit limits on the number and complexity of 
declarations, definitions, and statements in an individual function or in a 
program. If the compiler encounters a function or program that is too 
large or too complex to be processed, it produces an error message to that 
effect. 

D.4 Compiler Exit Codes 

All the programs in the XENIX C Compiler package return an exit code 
(sometimes called an "errorlevel" code) that can be used by other pro­
grams such as make. If the program finishes without errors, it returns a 
code of O. The code returned varies depending on the error encountered. 

Code Meaning 

o No fatal error 

2 Program error (such as compiler error) 

4 System level error (such as out of disk space or compiler inter­
nal error) 

D-39 





Replace this Page 
with Tab Marked: 

Index 





Index 

{ } (braces) 1-5 
[ ] (brackets) 1-5 
I (bar) 1-5 
- (dash) option character 

linker 3-3 
- (hyphen) option character, cc 2-4 
_ (underscore), in names 2-10, 2-21 

A 

Address space B-8 
Addresses 

components 5-3 
far 5-4 
huge 5-4 
near 5-4 

Alias checking 2-38 
Alignment See Storage alignment 
alloc_text pragma 5-30 
argc variable 4-2 
Arguments 

linker options 3-4 
listing options 2-11 
macros D-41 
main function See main function 
variable number of 2-55,6-5, B-12 

Argument-type list 2-35 
argv variable 4-2 
Assembly language 

interface 8-7 
return values 8-5 
routines 

entry 8-4 
exit 8-7 

Assembly language interface, described 8-1 
Assembly-listing files 

creating 2-9, 2-10 
extensions 2-11 
format 2-20 

B 

Bar (I) 1-5 
BASE 7-9 
Bibliography 1-8 
Bit fields B-5 
Bold font 1-5 
Braces ({ }) 1-5 
Brackets ([ ]) 1-5 
Byte length B-2 
Byte order B-16, B-4 

c 

C calling conventions 
described 8-1 

C compiler 
compiler pass options 2-58 
d option 2-58 
DOS Cross Development Options 2-57 
dos option 2-57 
FP option 2-57 
functions of the passes 2-58 
impure small model 5-6 
M option 2-4 
manifest defines 2-26 
model and segment options 2-4 
pure small model 5-7 
z option 2-58 

C language 
calling sequence 8-4 
interface with assembly language 8-7 
return values 8-5 

-c option 2-7 
-C option 2-29 
Call sequence 8-1 
Calling conventions 

C 2-55, 6-5 
controlling 

cdec1 keyword 2-56 
fortran and pascal keywords 2-56 
-Gc option 2-56 

FORTRAN/Pascal 2-55,6-5 
Calling sequence 

assembly language 8-4 
C language 8-4 

Canonic Frame 7-6 

1-1 



Index 

Capita1letters 
sma111-5 
use of 1-5 

Case significance 
linker 3-5 

cccommand 
exit codes D-41 
file processing 2-2 
format 2-2 

cc options 
-A 5-22,5-24, 5-25 
assembly listing 2-9, 2-1 ° 
-c 2-7 
-C 2-29 
command line, order 2-4 
comments, preserving 2-29 
constants and macros, defining 2-24 
-D 2-24 
data segments, naming 5-28, 5-30, 6-7 
data threshold, setting 5-27 
default char type, changing 2-55 
default libraries 2-5 
differences from linker options 3-4 
-E 2-28 
-EP2-28 
external names, restricting length of 2-53 
-F3-6 
-Fa 2-10, 2-20 
-Fc 2-10 
-Fe 2-9 
-F12-1O 
-Fm2-1O 
-Fo 2-7 
format 2-4 
FORTRAN/pascal, calling convention 2-56 
-Fs 2-10 
function declarations, generating 2-35 
-Gc 2-56 
-Gs 2-47, 6-4 
-Gt 5-27 
-help 2-6 
-12-30 
include files, searching for 2-30 
-J 2-55 
language extensions, disabling 2-49 
line numbers 2-36 
-link 2-2,3-1 
linker information, passing 3-1 
listing 2-6 
maximum optimization 2-38 
-Mc 5-7 
memory models 

1-2 

code-pointer size 5-24 
compact 5-7 

cc options (continued) 
memory models (continued) 

data-pointer size 5-24 
default libraries 2-4 
huge 5-9 
large 5-9 
medium 5-7 
mixed 5-22, 5-24, 5-25 
segments, setting up 5-25 
small 5-6 

-Mh 5-9 
-MI5-9 
-Mm5-7 
-Ms 5-6 
naming 

executable files 2-9 
modules 5-28 
object files 2-7 

-ND 5-28, 5-30, 6-7 
-nI2-53 
-NM 5-28 
-NT 5-28 
-02-9 
-Oa 2-38, 6-3 
object files 

labeling 2-53 
naming 2-7 
specifying 2-2 

object listing 2-9, 2-10 
-Od 2-36, 2-42 
-Oi 2-38, 2-42, 6-3 
-012-38,2-44, 6-4 
-Op 2-45 
optimization 

alias checking, relaxing 2-38, 6-3 
code size 2-38, 2-46 
disabling 2-36, 2-42 
execution time 2-38, 2-46, 6-3 
floating-point results, consistent 2-45 
intrinsic functions 2-38, 2-42, 6-3 
loops 2-38, 2-44, 6-4 
maximum 2-46 
-Oi 6-3 
program speed 6-2 

option character 
hyphen (-) 2-4 

-Os 2-46 
-Ot 2-46, 6-3 
-Ox 2-38, 2-46 
-P2-28 
predefined identifiers, removing definitions 

2-27 
preprocessed listing 2-28 
preprocessor 



cc options (continued) 
preprocessor (continued) 

-C 2-29 
-D 2-24 
-U and -u 2-27 

source files, specifying 2-2,2-6 
source listing 2-10 
source/object listing 2-10 
special keywords, disabling 5-14 
-Ss 2-13 
-St 2-13 
stack probes, removing 2-47,6-4 
standard places, ignoring 2-30 
structure members, packing 2-51 
subtitle 2-13 
suppressing 

library selection 2-54 
linking 2-7 

syntax checking 2-34 
-Tc 2-3, 2-6 
text segments, naming 5-28 
titles 2-13 
-U and -u 2-27 
-V 2-53 
Version 4.0, new for A-8 
Version 5.0, new for A-3 
-WO, -WI, -W2, and -W3 2-33 
warning level 2-33 
-X 2-30 
-Za 2-49,5-14 
-Zd 3-6 
-Zg 2-35 
-Zi 2-36 
-Zl2-54 
-Zp 2-51 
-Zs 2-34 

cdecl keyword 
defined 2-56 
-Gc option, used with 6-6 
include files, used in 2-50 
-Za option, used with 2-49 

char type, changing default 2-55 
Character 

classification, macros B-8 
set B-8 
types 

signed B-9 
unsigned B-9 

check_stack pragma 2-47,6-4 
Class name, LSEG 7-6 
Code pointers, mixed memory models 5-24 
Code size, optimization 2-38, 2-46 
Combination Attribute 7-21 
Command line 

Index 

Command line (continued) 
arguments 

executable file 4-1 
cc 2-2 
error messages D-l 
length, maximum 2-2 

Commands 
notational conventions 1-5 

COMMENT 7 -40 
RECORD 7-40 

Comments, preserving 2-29 
Compact memory models See Memory models 
Compilation 

conditional 2-50 
error messages D-6 

Compiler 
differences, other compilers 

portability problems B-9 
differences, Version 4.0 

cc options A-8 
enhancements and additions A-5 
language changes A-5 

differences, Version 5.0 
enhancements and additions A-I 
language changes A-2 
new cc options A-3 
pragmas, new A-4 

documentation 1-1 
error messages See Error messages, compiler 
limits D-40 
naming conventions 2-21 
stopping 2-2 

Compiler, converting from previous versions 
See Compiler differences 

Compiler guide, organization 1-2 
Compiler options See cc options 
Complete name, LSEG 7-6 
Conditional compilation 2-24,2-50 
Constants 

defining 2-24 
manifest See Constants, symbolic 
size, maximum D-40 
symbolic 2-24 

Controlling 
linker 3-3 
preprocessor 2-27 
segments 3-5 
stack size 3-6 

Conventions, notational 1-5 
Conversion 

near pointers to long integers A-7 
pointer arguments 5-20 

Correctable error messages D-6 
crtO.o See Start-up routine 

1-3 



Index 

ctype.h macros B-8 
Customized memory models See Mixed memory 

models 

ebx register 8-7 
ecx register 8-7 
edi register 8-4, 8-7 
edx register 8-5, 8-7 
EIGHT 

D 

-D option 2-24 
d option 

cc 2-58 
Dash (-) 

linker option character 3-3 
Data 

passing to programs 4-1 
portability B-14 
segment 

data threshold, setting 5-27 
default, contents 5-27 
default name 5-28 
mixed memory models 5-25 
naming 5-28 

types, size of B-2 
Data pointers, mixed memory models 5-24 
_DATA segment 5-28 
Data Structures 

x.out symbol table 7-50 
Data threshold, setting 5-27 
Debugging, preparing for 

-Zi and -Od options 2-36 
DecIarations, maximum level of nesting D-40 
Default libraries 

object files, used in 3-2 
suppressing selection 2-54 

DGROUP group 5-28 
Differences from previous versions See 

Compiler differences 
Directory names, notational conventions 1-5 
Documentation, compiler 1-1 
DOS Cross Development 

C compiler 2-57 
dos option 

cc 2-57 
dosld command 2-57 
DS register 5-25 

E 

-E option 2-28 
eax register 8-5, 8-7 
ebp register 8-4, 8-7 

1-4 

LEAF 
DESCRIPTOR 7-25 

EIGHT LEAF DESCRIPTOR 7-24 
Ellipses, use of 1-5 
environ variable 4-3 
Environment 

portability problems B-13 
table 

pointer to 4-2 
variable names, notational conventions 1-
variables 

INCLUDE 2-30 
LIB 3-2 
PATH 4-1 
SET 4-1 

envp variable 4-2 
-EP option 2-28 
ermo variable 

defined 9-2 
described 9-2 

Error messages 
compiler 

command line D-1 
compilation D-6 
correctable D-6 
fatal D-6, D-7 
identifying 2-31 
redirecting 2-31 
warning D-30, D-6 

format See Error messages, compiler 
source listings 2-14 
warning messages, setting level of 2-33 

Errorlevel codes See Exit codes 
Errors 

catching signals 9-3 
delayed 9-4 
ermo variable 9-2 
error constants 9-2 
error numbers 9-2 
printing error messages 9-2 
processing 9-1 
routine system I/O 9-4 
sharing resources 9-4 
signals 9-3 
standard error file 9-1 
system 9-4 

esi register 8-4, 8-7 
esp register 8-4 
Evaluation order B-12 



exec function 4-1 
Executable files 

cc command and 2-3 
command-line arguments 4-1 
extensions 2-9 
naming, default 2-9 
naming with cc 2-9 
passing data to 4-1 
running 4-1 

Executable Fonnat 7-50 
Execution-time optimization 2-38,2-46,6-3 
Exit code D-41 
Extensions 

executable files 2-9 
listing files, defaults for 2-10 
map files 2-11 
object files 2-8 
object-listing files 2-11 
source-listing files 2-11 
source/object-listing files 2-11 

External names 2-53 

F 

-F option 3-6 
-Fa option 2-10, 2-20 
Far keyword 5-18 
far keyword 

default addressing conventions 5-12 
effects 

data declarations 5-14,6-6 
function declarations 5-18 

library routines, used with 5-14 
small-model programs, used in 5-6 
-Za option, used with 2-49 

Far pointers 5-12 
Fatal-error messages D-6, D-7 
-Fc option 2-10 
-Fe option 2-9 
File names 

notational conventions 1-5 
Files 

assembly listing 2-10, 2-20 
executable See Executable files 
listing, preprocessed 2-28 
map 

creating 2-10,2-13,3-5,3-6 
default names 2-11 
listing fonnats 2-22 
-MAP linker option 3-5 

object 
cc command, used with 2-2, 2-3 

Index 

Files (continued) 
object (continued) 

listing 2-10,2-11,2-19 
source 2-2 
source listing See Source-listing files 
source/object listing See Source/object-listing 

files 
temporary 

space requirements D-40 
FlXUP 

RECORD 7-34 
FlXUPP7-34 
Fixups 

definition 7-8 
segment.. ........... relative 7-10, 7-14 
self.. ..... relative 7-10,7-13 

-Fl option 2-10 
Floating point 

operations 
optimizing for consistency in 2-45 

-Fm option 2-10 
-Fo option 2-7 
fortran keyword 2-49, 2-56, 6-6 
FPoption 

cc 2-57 
FRAME 

definition 7-4 
specifying 7-11 

FRAME NUMBER 7-5 
-Fs option 2-10 
function pragma 2-42 
Functions 

arguments, variable number of 2-55,6-5, B-
12 

calling conventions 
C 2-55, 6-5 
FORTRAN/Pascal 2-55,6-5 

declarations 
generating 2-35 
near and far keywords 5-18 

G 

-Gc option 2-56 
getenv function 4-2 
Global symbols See Public symbols 
GROUP 7-5 
Group Definition Record 7-23 
GRPDEF7-23 
-Gs option 2-47, 6-4 
-Gt option 5-27 

1-5 



Index 

H 

Hardware Reference Numbers 7-56 
-help option 

cc 2-6 
HIBYTE 7-9 
Huge arrays 5-9 
huge keyword 2-49 

data declarations, effects in 5-14, 6-6 
default addressing conventions 5-12 
library routines, used with 5-14 
small-model programs, used in 5-6 

Huge memory model See Memory models 
Huge pointers 5-12 
Hyphen (-), cc option character 2-4 

I 

-I option 2-30 
iAPX .... 286,386 

address translation 
logical to physical 7-2 

descriptor tables 7-1 
GDT7-1 
LDT 7-1 

logical address space 7-1 
memory management 7-1 
pointers 

to logical addresses 7-1 
protected mode 7-1 
segment selector 7-2 

INDEX field 7-2 
RPL field 7-2 
TI field 7-2 

system architecture 7-1 
Identifier length See Names, length 
Identifiers 

length, maximum D-40 
predefined 

listed 2-26 
M_I862-26 
M_I86xM 2-26 
M_XENIX 2-26 
removing definitions of 2-27 

Implicit bss 7-49 
Include files 

directory specification 2-30 
nesting, maximum level of D-41 
portability problems B-2 
search path 2-30 

INCLUDE variable 

1-6 

INCLUDE variable (continued) 
overriding 2-30 

Index fields 7-8 
Indices 7-8 
intrinsic pragma 2-42 
Italics 1-5 
Iterated Segments 7-48 

J 

-J option 2-55 

K 

Key sequences, notational conventions 1-: 
Keywords 

cdecl2-49, 2-56, 6-6 
far 5-18 
far See far keyword 
fortran 2-49, 6-6 
huge See huge keyword 
near 5-18 
near See near keyword 
pascal 2-49, 6-6 
special 2-49 
Version 4.0, new for A-8 

L 

Language extensions 
disabling 2-49 
listed 2-49 

Large memory model See Memory models 
large 

Large Model 7-49 
LIB variable 3-2 
Libraries 

creating 
-Zl, compiling modules with 2-54 

default 
ignoring 3-3 
-M options 2-5, 3-1 
overriding 3-3 
suppressing selection 2-54 

mixed-model programs 5-26 
names in object files 3-1 
search 



Libraries (continued) 
search (continued) 

path 3-2, 3-3 
specifying 3-2 
standard places 3-2 

Library 
routines 

exec 4-1 
getenv 4-2 
intrinsic forms 2-43 
putenv 4-2 
system 4-1 
XENIX dependent C-1 

LIDATA 7-32 
Limits 

compiler D-40 
LINE 

NUMBERS 
RECORD 7-30 

-LINENUMBERS (-LI) linker option 3-6 
-link option 2-2, 3-1 
Linker 

error messages 2-31 
Linker options 

abbreviations 3-4 
case sensitivity 3-5 
cc options, differences from 3-4 
command line, order on 3-5 
~efault libraries, ignoring 3-3 
hne numbers, displaying 3-6 
-LINENUMBERS (-LI) 3-6 
map file 3-5 
-MAP (-M) 3-5 
-NODEFAULTLIBRARYSEARCH (-NOD) 

overriding default libraries 3-3 
numerical arguments 3-4 
rules 3-3 
segments 

number of 3-5 
-SEGMENTS (-SE) 3-5 
stack size, setting 2-52,3-6 
-STACK ( -ST) 3-6 
-T6-7 
translating far calls 6-7 

LINNDM7-30 
List of Names Record 7-19 
Listing cc options 2-6 
Listing files 

assembly 2-9, 2-10, 2-20 
map 2-10 
object 2-9, 2-10, 2-19 
preprocessed 2-28 
source 2-9, 2-10, 2-14 
source/object 2-10, 2-20 

Index 

LNAMES 7-19 
LOBYTE 7-10 
LOCATION, types 7-9 
LOGICAL 

ITERATED 
DATA 

RECORD 7-32 
Logical Segment 7-5 
Long pointers See Far pointers 
Loop optimization 2-44, 6-4 
loop_opt pragma 2-37,2-44,6-4 
LSEG7-5 

M 

M option 
cc 2-4 

Macro definitions D-40 
Macros 

arguments, maximum number D-41 
character classification B-8 
defined 2-24 
notational conventions 1-5 

main function 
arguments to 4-1 

Manifest constants, notational conventions 1-5 
Manifest defines 

C compiler 2-26 
Map files 

creating 2-10, 2-13, 3-5 
extensions 2-11, 3-6 
-Fm option 2-13 
format 2-22 
-MAP linker option 3-5 
program entry point 2-23 
segment lists 2-22 
symbol tables 2-22 

-MAP linker option 3-5 
MAS 7-4 
-Mc option 5-7 
Medium memory model See Memory models 
Memory Address Space 7-4 
Memory addresses See Addresses 
Memory models 

compact 5-7 
default 5-2, 5-6 
huge 5-9 
large 5-9 
medium 5-7 
mixed See Mixed memory models 
options 

code-pointer size 5-24 

1-7 



Index 

Memory models (continued) 
options (continued) 

compact model 5-7 
data-pointer size 5-24 
default libraries 2-5 
huge model 5-9 
large model 5-9 
medium model 5-7 
segment setup 5-25 
small model 5-6 

small 5-2, 5-6, 5-18 
standard 

advantages 5-5 
common features 5-5 
disadvantages 5-5 

Version 4.0, new for A-8 
Memory models, customized See Mixed 

memory models 
-Mh option 5-9 
M_I86 identifier 2-26 
M_I86xM identifier 2-26 
Mixed memory models 

code pointers 5-24 
creating 5-22 
data pointers 5-24 
library support 5-26 
near, far, huge keywords 5-12 
segment setup options 5-25 

-Ml option 5-9 
-Mm option 5-7 
MODE 7-10 
MODEND7-39 
MODULE 7-4 

END 
RECORD 7-39 

Module header record 7-6 
Modules, naming 5-28 
-Ms option 5-6 
M_XENIX identifier 2-26 

N 

Names 
conventions 2-57 
executable files 2-9 
external 2-53 
global 2-10, 2-21 
length B-1O 
modules, changing 5-28 
object files 2-7 
segments, changing 5-28 
underscores C), using in 2-10, 2-21 

1-8 

Naming conventions 
compiler 2-21 
segments 5-29 

-ND option 5-28, 5-30, 6-7 
Near keyword 5-18 
near keyword 

data declarations, effects in 5-14, 6-6 
default addressing conventions 5-12 
function declarations, effects in 5-18 
library routines, used with 5-14 

Near pointer 5-12 
Nesting 

declarations D-40 
include files D-41 
preprocessor directives D-41 

-nl option 2-53 
-NM option 5-28 
-NODEFAULTLIBRARYSEARCH (-NOD) 

linker option 
default libraries, overriding 3-3 

Non-Iterated Segments 7-49 
Notational conventions 1-5 
-NT option 5-28 
Numeric record types 7-42 

o 

-0 (optimization) options 2-37 
-0 option 2-9 
-Oa option, cc 2-38,6-3 
Object File Format 

Executable 7-45 
Object files 

cc command 2-2, 2-3 
default extension 2-2, 2-6 
extensions 2-8 
labeling 2-53 
library names in 3-1 
naming 2-7 
specifying to cc 2-2 

Object listing See Object-listing files 
Object Module Formats 7-3, 7-4 
Object-listing files 

creating 2-10 
extensions 2-11 
format 2-19 

-Od option 2-36 
OFFSET 7-9 
-Oi option 2-38, 6-3 
-01 option 2-38, 2-44, 6-4 
OMF7-4 
omf Subset 7-46 



-Op option 2-45 
Optimization 

alias checking, relaxing 2-38, 6-3 
code size 2-38, 2-46 
consistent floating-point results 2-38, 2-45 
default 2-1, 2-46 
disabling 2-36, 2-38, 2-42 
execution time 2-38, 6-3 
intrinsic functions 2-42 
intrinsic pragmas 6-3 
listing files 2-12 
loops 2-44, 6-4 
maximum 2-38, 2-46 
options 2-37 
stack probes, removing 2-47, 6-4 

Optimizing See Optimization 
Optional fields, notational conventions 1-5 
Options, cc See cc options 
Options, linker See Linker options 
-Os option 2-46 
-Ot option 2-46, 6-3 
Overlay Name, LSEG 7-6 
Overview 1-1 
-Ox option 2-38, 2-46 

p 

-P option 2-28 
pack pragma 2-51 
Packing 

structure members 2-51 
PARAGRAPH NUMBER 7-5 
pascal keyword 2-49, 2-56, 6-6 
Path names 

notational conventions 1-5 
portability problems B-2 

PATH variable 4-1 
perror function 9-2 
Physical Segment 7-5 
Placeholders 1-5 
Pointers 

arguments, size conversion 5-20 
code 5-24 
far 5-12,5-24 
huge 5-12 
manipulation B-6 
near 

conversion to long integers A-7 
customized memory models 5-24 
near keywords, used with 5-12 

subtracting in huge-model programs 5-9 
Portability 

Index 

Portability (continued) 
address space B-8 
bit fields B-5 
byte length B-2 
byte order B-16, B-4 
case distinctions B-lO 
character set B-8 
data B-14 
data types, size of B-2 
environment differences B-13 
evaluation order B-12 
functions with variable number of arguments 

B-12 
guidelines B-2 
hardware B-2 
identifier length B-lO 
include files B-2 
path names B-2 
pointer manipulation B-6 
register variables B-I0 
shift operations B-9 
side effects B-12 
sign extension B-9 
signed and unsigned char types B-9 
storage alignment B-3 
type conversion B-lO 
word length B-2 

Pragmas 
alloc_text 5-30 
check_stack 2-47, 6-4 
function 2-42 
intrinsic 2-42 
loop_opt 2-37, 2-44, 6-4 
pack 2-51 
same_seg 5-30, 6-7 
Version 4.0, new for A-8 
Version 5.0, new for A-4 

Preprocessor 
macro arguments, maximum number of D-41 
macro definitions, maximum size of D-40 
nesting, maximum level of D-41 
options 

comments, preserving 2-29 
-D 2-24 
predefined identifiers, removing definitions 

of 2-27 
use 2-24 

Product names, notational conventions 1-5 
Prompts 1-5 
PSEG 

definition 7-5 
NUMBER 7-5 

PUBDEF7-26 
PUBLIC 

1-9 



Index 

PUBLIC (continued) 
NAMES 

DEFINITION 
RECORD 7-26 

Public names See External names 
Public names See Public symbols 
Public symbols, listing 2-13, 3-5 
putenv function 4-2 

Q 

Quotation marks, use of 1-5 

R 

Record format, sample 7-16 
Record formats 7-3 
Record order 7-15 
Record types 7-43 

numeric 7-42 
Register variables 6-1, B-I0 
Registers 

eax 8-5, 8-7 
ebp 8-4, 8-7 
ebx 8-7 
ecx 8-7 
edi 8-4, 8-7 
edx 8-5, 8-7 
esi 8-4, 8-7 
esp 8-4 

Relocatable memory images 7-3 
Return codes See Exit Codes 
Return values 8-2 

assembly language 8-5 
Routine entry sequence 8-2 
Routine exit sequence 8-2 
Routines 

assembly language 
entry 8-4 
exit 8-7 

Run file See Executable file 

s 

same _seg pragma 5-30, 6-7 
Sample x.out File 7-48 
Search paths 

1-10 

Search paths (continued) 
changing 

include files 2-30 
libraries 3-3 

include files 2-30 
libraries 3-2 

SEGDEF7-19 
Segment addressing 7-7 
Segment definition 7-7 
Segment definition record 7-19 
Segment lists 

map files 2-22 
source listings 2-19 

Segment Name, LSEG 7-6 
Segment Numbers 7-56 
Segment registers 8-7 
Segment ............ Relative fixups 7-10 
Segment ............ Relative Fixups 7-14 
Segments 

data 
default name 5-28 
mixed memory models 5-25 
names 5-28 
naming 5-28 
threshold, effect of 5-27 

default 5-3 
defined 5-3 
names, changing 5-28 
naming conventions 5-29 
number allowed 3-5 
setting up 5-25 
source listing 2-19 
stack 5-25 
text 

default name 5-28 
naming 5-28 

-SEGMENTS ( -SE) linker option 3-5 
Self ...... Relative fixups 7-10,7-13 
SET variable 4-1 
Shift operations B-9 
Short pointers See Near pointers 
Side effects B-12 
Sign extension B-9 
Signals 

catching 9-3 
on program errors 9-3 

Signed char type B-9 
sizeof operator 5-9 
Small capitals, use of 1-5 
Small memory model See Memory models 
Small model 5-18 

impure 5-6 
pure 5-7 

Source files 



Source files (continued) 
default extension 2-2,2-6 
specifying to cc 2-2 

Sourc.:.. listing See Source-listing files 
Source-listing files 

creating 2-10 
described 2-9 
error messages 2-14 
extensions 2-11 
fonnat 2-14,2-15 
segment lists 2-19 
subtitles 2-13 
symbol tables 2-17 
titles 2-13 

Source/object-listing files 
creating 2-10 
extensions 2-11 
fonnat 2-20 

Special Header Fields 7-49 
Special keywords, disabling 5-14 
-Ss option 2-13 
SS register 5-25 
-St option 2-13 
Stack 

probes 2-47, 6-4 
segments, mixed memory models 5-25 
size 

default for C programs 2-52 
setting 2-52, 3-6 

Stack order 8-1 
-STACK (-ST) linker option 3-6 
Standard files 

redirecting 9-1 
Standard places 

changing 2-30 
ignoring 2-30 
libraries 3-2 

stderr, the standard error file 9-1 
Storage alignment B-3 
Strings 

length, maximum D-40 
notational conventions 1-5 

Structures, packing 2-51 
Subtitles, source listings 2-13 
Switches See Options 
Symbol definition 7-8 
Symbol Table 7-50 
Symbol tables 

map files, used in 2-22 . 
object files, used in (-Zi option) 2-36 
source listings, used in 2-17 

Syntax conventions See Notational conventions 
sys_errno array, described 9-3 
System errors 

System errors (continued) 
described 9-4 
reporting 9-4 

system function 4-1 

T 

-T linker option 6-7 
TARGET 7-10 
-Tc option 2-3,2-6 
_TEXT segment 5-28 
Text segments 

default name 5-28 
naming 5-28 

THEADR 7-18 
Titles, source listings 2-13 
T ........... MODULE 7-4 

Index 

T ........... Module Header Record (THEADR) 
7-18 

TYPDEF7-24 
Types 

checking 2-35 
conversion B-IO 

u 

-U and -u options 2-27 
Underscore C) in names 2-10, 2-21 
Unsigned char type B-9 
Uppercase letters, use of 1-5 

v 

-v option 2-53 
Variables, register See Register variables 
Vertical bar (I) 1-5 

w 

-WO, -WI, -W2, and -W3 options 2-33 
Warning error messages 2-33, D-30, D-6 
Wild card 

characters 2-7 

1-11 



Index 

x 

-x option 2-30 
x.out 

file layout 7-48 
general description 7-46 
implicit bss 7-49 
iterated segments 7-48 
large model 7-49 
non ...... .iterated segments 7-49 
special fields 7-49 
symbol table 7-50 

x.out Examples 7-52 
x.out Executable Format 7-50 
x.out Format 7-45 
x.out Include Files 7-52 
x.out Segmented OMF Specification 7-45 

z 

z option 
cc 2-58 

-Za option 2-49, 5-14 
-Zd option 3-6 
-Zg option 2-35 
-Zi option 2-36 
-Zloption 2-54 
-Zp option 2-51 
-Zs option 2-34 

1-12 



Replace this Page 
with Tab Marked: 

CLIBRARY 
GUIDE 





XENIX® System V 

Development System 

C Library Guide 





Information in this document is subject to change without notice and does not represent 
a commitment on the part of The Santa Cruz Operation, Inc. nor Microsoft Corporation. 
The software described in this document is furnished under a license agreement or 
nondisclosure agreement. The software may be used or copied only in accordance with 
the terms of the agreement. It is against the law to copy this software on magnetic tape, 
disk, or any other medium for any purpose other than the purchaser's personal use. 

Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988 Microsoft 
Corporation. 
All rights reserved. 
Portions © 1983, 1984, 1985, 1986, 1987, 1988 The Santa Cruz Operation, Inc. 
All rights reserved. 

ALL USE, DUPLICATION, OR DISCLOSURE WHATSOEVER BY THE 
GOVERNMENT SHALL BE EXPRESSLY SUBJECT TO RESTRICTIONS AS SET 
FORTH IN SUBDMSION (b) (3) (ii) FOR RESTRICTED RIGHTS IN COMPUTER 
SOFTWARE AND SUBDIVISION (b) (2) FOR LIMITED RIGHTS IN TECHNICAL 
DATA, BOTH AS SET FORTH IN FAR 52.227-7013. 

Microsoft, MS-DOS, and XENIX are registered trademarks of Microsoft Corporation. 

SCO Document Number: XG-1O-1O-88-5.0/2.3 





Contents 

1 Introduction 

1.1 About the C Library 1-1 
1.2 About This Manual 1-1 
1.3 Notational Conventions 1-4 

2 Using C Library Routines 

2.1 Introduction 2-1 
2.2 Identifying Functions and Macros 2-1 
2.3 Including Files 2-3 
2.4 Declaring Functions 2-4 
2.5 Stack Checking on Entry 2-5 
2.6 Argument-Type Checking 2-5 
2.7 Error Handling 2-6 
2.8 Filenames and Pathnames 2-7 
2.9 Floating-Point Support 2-8 
2.1 0 Using Huge Arrays with Library Functions 2-9 

3 Global Variables and Standard Types 

3.1 Introduction 3-1 
3.2 The daylight, timezone, and tzname Variables 3-1 
3.3 errno, sys_errlist, sys_nerr 3-2 
3.4 environ 3-2 
3.5 Standard Types 3-2 

4 Run-Time Routines by Category 

4.1 Introduction 4-1 
4.2 Buffer Manipulation 4-1 
4.3 Character Classification and Conversion 4-2 
4.4 Database-Manipulation Routines 4-3 
4.5 Data Conversion 4-3 
4.6 Directory Operation 4-4 
4.7 File Handling 4-5 
4.8 Group and Password File Control Routines 4-6 
4.9 Input and Output Routines 4-7 
4.10 Math 4-11 
4.11 Memory Allocation 4-13 
4.12 Message-Control Routines 4-14 
4.13 Pipes 4-14 
4.14 Process Control 4-16 

-i-



4.15 Random-NumberGeneration 4-18 
4.16 Screen Processing 4-18 
4.17 Searching and Sorting 4-22 
4.18 Semaphore-Control Routines 4-23 
4.19 Shared-Memory Routines 4-23 
4.20 String Manipulation 4-24 
4.21 System Accounting 4-26 
4.22 Terminal Control 4-27 
4.23 Time 4-27 
4.24 Miscellaneous 4-28 

5 Include Files 

5.1 Introduction 5-1 
5.2 /usr/include Files 5-1 
5.3 /usr/include/sysFiles 5-8 

6 Using the Standard I/O Functions 

6.1 Introduction 6-1 
6.2 U sing Command Line Arguments 6-4 
6.3 Using the Standard Files 6-5 
6.4 U sing the Data Stream Functions 6-12 
6.5 U sing More Data Stream Functions 6-24 
6.6 Using the Low-Level Functions 6-28 
6.7 Using File Descriptors 6-28 
6.8 Controlling Terminal Lines Using termio and ioctlO 6-3 7 

7 Screen Processing 

7.1 Introduction 7-1 
7.2 Preparing the Screen 7-7 
7 .3 Using the Standard Screen 7 -11 
7.4 Creating and Using Windows 7 -20 
7.5 U sing Other Window Functions 7 -34 
7.6 Combining Movement with Action 7 -40 
7.7 Controlling the Terminal 7 -40 
7.8 Advanced Topics 7 -44 

- ii-



8 Character and String Processing 

8.1 Introduction 8-1 
8.2 Using the Character Functions 8-1 
8.3 Testing for Punctuation 8-5 
8 A Using the String Functions 8-7 

9 Using Process Control 

9.1 Introduction 9-1 
9 .2 Using Processes 9-1 
9.3 Calling a Program 9-2 
9 A Stopping a Program 9-3 
9.5 Starting aNew Program 9-3 
9.6 Executing a Program Through a Shell 9-7 
9.7 Duplicating a Process 9-7 
9.8 Waiting for a Process 9-8 
9.9 Inheriting Open Files 9-9 
9.10 Program Example 9-10 

10 Using the Event Manager 

10.1 Introduction 10-1 
10.2 Using the Event Manager 10-1 
10.3 Events 10-3 
lOA Event Manager Calls 10-5 
10.5 Configuration Files 10-10 
10.6 EventManagerCLanguage Definitions and Syntax 10-13 
10.7 Summary of Event Manager C Syntax 10-14 
10.8 ASampleProgram 10-18 

11 Writing and Using Pipes 

11.1 Introduction 11-1 
11.2 Opening a Pipe to a New Process 11-1 
11.3 Reading and Writing to a Process 11-2 
11.4 Closing a Pipe 11-3 
11.5 Opening a Low-Level Pipe 11-3 
11.6 Program Examples 11-5 
11.7 Named Pipes 11-8 

12 Using System Resources 

12.1 Introduction 12-1 
12.2 Allocating Memory 12-1 
12.3 Overview of File Locking 12-8 
1204 Locking Files UnderXENIX 12-9 

- iii-



12.5 Locking Files Under UNIX System V 12-11 
12.6 Message Operations 12-23 
12.7 Overview of Semaphores 12-S0 
12.8 Using Semaphores UnderXENIX 12-S0 
12.9 Using Semaphores Under UNIX System V 12-S7 
12.10 Getting Semapbores 12-63 
12.11 Overview of Shared MeI110ry 12-86 
12.12 Using Shared Memory 12-87 
12.13 Using Shared Memory Under UNIX System V 12-96 
12.14 Shared Memory Data Structures 12-97 

A Library Routine Error Messages 

A.1 Introduction A-I 
A.2 ermo Values A-I 
A.3 Math Errors A-8 

B Common Libraries 

B.1 Introduction B-1 
B.2 Run-Time Routines B-1 
B.3 Global Variables B-S 
B.4 Include Files B-6 
B.S Differences Between Routines Common to MS-DOS B-7 

C XENIX to DOS: A Cross Development System 

C.1 Introduction C-1 
C.2 Creating Source Files C-2 
C.3 Compiling a DOS Source File C-2 
C.4 U sing Assembly Language Source Files C-4 
C.S Creating and Linking Object Files C-4 
C.6 RunningandDebuggingaDOSProgram C-S 
C.7 Transferring Programs Between Systems C-S 
C.8 Creating DOS Libraries C-7 
C.9 Common Run-Time Routines C-7 
C.10 Common System-Wide Variables C-9 
c.11 Common Include Files C-10 
c.12 Differences Between Common Routines C-11 
C.13 Differences in Definitions C-21 

-iv -



Chapter 1 

Introduction 

1.1 About the C Library 1-1 

1.2 About This Manual 1-1 

1.3 Notational Conventions 1-4 





Introduction 

1.1 About the C Library 

The Microsoft® C Run-Time Library is a set of more than 200 predefined 
functions and macros designed for use in C programs. The run-time 
library makes programming easier by providing the following: 

• An interface to operating-system functions (such as opening and 
closing files) 

• Fast and efficient functions to perform common programming tasks 
(such as string manipulation), sparing the programmer the time and 
effort needed to write such functions 

The run-time library provides many basic functions that are not provided 
by the C language, including input and output, storage allocation, and 
process control, among others. 

The run-time library is further designed to be compatible with the Draft 
Proposed American National Standard - Programming Language C 
(referred to as ANSI C), except for the internationalization functions. 
Appendix B also lists the functions that conform to the ANSI C standard. 

The functions in the Microsoft C Run-Time Library are designed to main­
tain compatibility between XENIX® and UNIX and MS-DOS® systems. 
Unless otherwise noted, all XENIX routines may be assumed to be compa­
tible with the UNIX system and most other UNIX-like systems. 

In general, compatible functions share the same name. If you are 
interested in writing portable programs, refer to Appendix B, "Common 
Libraries. " This appendix lists those functions that are common to both 
the XENIX and MS-DOS libraries, and describes any significant differences 
in the operation of common libraries. (Note that the term "MS-DOS" is 
used in this manual to refer to both MS-DOS and PC-DOS.) 

1.2 About This Manual 

The C Library Guide describes the contents of the C Run-Time Library. 
To use this manual, you should be familiar with the C language and with 
XENIX. You should also know how to compile and link C programs on 
the XENIX system. To learn about the C language, refer to the C 
Language Reference. If you have questions about compiling or linking C 
programs, see the XENIX C User's Guide. 

This manual should be used with the Subroutines(S) section of the XENIX 
Programmer's Reference. While the C Library Guide provides general 
information about using the library routines, and describes the routines 

1-1 



C Library Guide 

according to different categories of functions, the Subroutines(S) section 
gives detailed descriptions of the run-time routines in alphabetical order. 
Once you become familiar with the types of routines available and the 
rules for using them, you will likely use the XENIX Programmer's Refer­
ence most often. 

Note 

Throughout this manual, references to the Subroutines(S) section of 
the XENIX Programmer's Reference will be given simply as name(S) 
where name is the name of the library routine. 

The chapters of this manual are organized as follows: 

Chapter 2, "Using C Library Routines," gives general rules for under­
standing and using C library routines and mentions special considerations 
that apply to certain routines. This chapter will likely become valuable 
as a reference. 

Chapter 3, "Global Variables and Standard Types," describes variables 
and types that are declared and defined in the run-time library and used by 
the library routines. This chapter cross-references to the include file that 
defines or declares these variables and types. You may find them useful in 
your own routines. 

Chapter 4, "Run-Time Routines by Category," breaks down the run-time 
library routines by category, lists the routines that fall into each category, 
and discusses considerations that apply to each category as a whole. This 
chapter complements the Subroutines(S) section of the XENIX Reference 
Manual, making it easier to locate routines by task. Once you decide on 
the routines you want, simply tum to the appropriate manual pages in the 
Subroutines(S) section for a detailed description. 

Chapter 5, "Include Files," summarizes the contents of each include file 
provided with the run-time library, and lists the routines that use it. 

Chapter 6, "Using the Standard II 0 Functions," describes the input and 
output functions already provided by the system. Further, this chapter 
explains how to use these II 0 functions. 

Chapter 7, "Screen Processing," describes the functions of the curses 
and terminfo libraries, and explains how to use these functions to control 
the terminal screen. 

1-2 



Introduction 

Chapter 8, "Character and String Processing," describes the system­
provided functions for character and string processing. 

Chapter 9, "Using Process Control," describes the process control func­
tions available with the standard C library. 

Chapter 10, "Using the Event Manager," describes the the Event driver 
routines available with the XENIX. 

Chapter 11, "Creating and Using Pipes," describes how to create and use 
pipes. Further, the functions provided in the standard library for control­
ling pipes are described. 

Chapter 12, "System Resources" describes system resource functions. 
These functions let a program dynamically allocate memory, share 
memory with other programs, lock files against access by other programs, 
and use semaphores. 

The appendixes for this guide provide more detailed information about 
error messages and about MS-DOS-compatible routines. Appendix A, 
"Error Messages," describes the error values and messages that can 
appear when using library routines. Appendix B, "Common Libraries," 
lists routines of the XENIX C library that are compatible both with rou­
tines of the same name on MS-DOS systems and with routines that conform 
to the ANSI C standard. Appendix B also describes differences (if any) 
between the XENIX and MS-DOS versions of the routines and discusses 
common global variables and include files. 

Appendix C, "XENIX to DOS: A Cross Development System," provides a 
variety of tools to create programs that can be executed under control of 
the DOS operating system. The DOS cross development system lets you 
create, compile, and link DOS programs on the XENIX system and 
transfer these programs to a DOS system for execution and debugging. 

1-3 



C Library Guide 

1.3 Notational Conventions 

The following notational conventions are used throughout this manual: 

Example 
of Convention 

Examples 

Description 
of Convention 

The typeface shown in the left column is used 
to simulate the appearance of information that 
would be printed on the screen or by a printer. 
For example, the following command line is 
printed in this special typeface: 

cc -Foout.o -DTRUE=l file.c 

When discussing this command line in text, 
items appearing on the command line, such as 
out.O, also appear in a special typeface. 

Language elements Bold type indicates elements of the C language 
that must appear in source programs as shown. 
Text that is normally shown in bold type 
includes operators, keywords, library functions, 
commands, options, and preprocessor direc­
tives. Examples are shown below: 

ENVIRONMENT, 
VARIABLES, 
and MACROS 

placeholders 

1-4 

+= 
if 

#if defined() 
-Fa 

main sizeof 

int 
fop en 

Bold capital letters are used for environment 
variables, symbolic constants, and macros. 

Words in italics are placeholders that you must 
supply in command-line and option 
specifications and in the text for types of infor­
mation. Consider the following option: 

-H number 

Note that number is italicized to indicate that it 
represents a general form for the -H option. In 
an actual command, you would supply a partic­
ular number for the placeholder number. 

Occasionally, italics are also used to emphasize 
particular words in the text. 



Missing code 

[optional items] 

Repeating 
elements ... 

Introduction 

Vertical ellipses are used in program examples 
to indicate that a portion of the program is 
omitted. For instance, in the following excerpt, 
the ellipses between the statements indicate 
that intervening program lines occur but are not 
shown: 

count 0; 

*pc++; 

Brackets enclose optional fields in command­
line and option specifications. Consider the fol­
lowing option specification: 

-Didentifier[ = [string]] 

The placeholder identifier indicates that you 
must supply an identifier when you use the -D 
option. The outer brackets indicate that you are 
not required to supply an equal sign (=) and a 
string following the identifier. The inner brack­
ets indicate that you are not required to enter a 
string following the equal sign, but if you do 
supply a string, you must also supply the eq~al 
sign. 

Single brackets are used in C-language array 
declarations and subscript expressions. For 
instance, a[ 1 OJ is an example of brackets in a C 
subscript expression. 

Horizontal ellipses are used in syntax examples 
to indicate that more items having the same 
form may be entered. For example, in the 
Bourne shell, several paths can be specified in 
the PATH command, as shown in the following 
syntax: 

PATH[=]path[;path] ... 

1-5 



C Library Guide 

{choicellchoice2 } 

"Defined tenus" 

KEY+KEY 

1-6 

Braces and a vertical bar indicate that you have 
a choice between two or more items. Braces 
enclose the choices, and vertical bars separate 
the choices. You must choose one of the items 
unless all of the items are also enclosed in dou­
ble square brackets. 

For example, the -W (warning-level) compiler 
option has the following syntax: 

-W {O I I I 2 I 3} 

You can use -WI, -W2, or -W3 to display 
different levels of warning messages or -WO to 
suppress all warning messages. 

Quotation marks set off tenus defined in the 
text. For example, the tenu "far" appears in 
quotation marks the first time it is defined. 

Some C constructs require quotation marks. 
Quotation marks required by the language have 
the fonu " " rather than " ". For example, a C 
string used in an example would be shown in 
the following fonu: 

"abc" 

Small capital letters are used for the names of 
keys and key sequences, such as ENTER and 
CTRL+C. Key sequences to be pressed simul­
taneously are indicated by the key names in 
small caps separated by a plus sign (CTRL+C). 



Chapter 2 

Using C Library Routines 

2.1 Introduction 2-1 

2.2 Identifying Functions and Macros 2-1 

2.3 Including Files 2-3 

2.4 Declaring Functions 2-4 

2.5 Stack Checking on Entry 2-5 

2.6 Argument-Type Checking 2-5 

2.7 Error Handling 2-6 

2.8 Filenames and Pathnames 2-7 

2.9 Floating-Point Support 2-8 

2.10 Using Huge Arrays with Library Functions 2-9 





Using C Library Routines 

2.1 Introduction 

To use a C library routine, simply call it in your program, just as if the 
routine were defined in your program. The C library functions are stored, 
in compiled fonn, in the library files that accompany your C compiler 
software. 

At link time, your program must be linked with the appropriate C library 
file or files to resolve the references to the library functions and provide 
the code for the called library functions. Infonnation about the procedures 
for linking with the C library can be found in the KENIK C User's Guide. 

In most cases you must prepare for the call to the run-time library func­
tion by perfonning one or both of the following steps: 

1. Include a given file in your program. Many routines require 
definitions and declarations that are provided by an include file. 

2. Provide declarations for library functions that return values of any 
type other than int. The compiler expects all functions to have int 
return type unless declared otherwise. You can provide these 
declarations by including the C library file containing the declara­
tions or by explicitly declaring the functions within your program. 

These are the minimum steps required; you may also want to take other 
steps, such as enabling type checking for the arguments in function calls. 

This chapter discusses the procedures for preparing to use run-time 
library routines, and special rules (such as filename and pathname con­
ventions) that may apply to some routines. 

2.2 Identifying Functions and Macros 

The words "function" and "routine" are used interchangeably 
throughout this manual, and in fact most of the routines in the C run-time 
library are C functions; that is, they consist of compiled C statements. 
However, some routines are implemented as "macros." A macro is an 
identifier defined with the C preprocessor directive #define to represent a 
value or expression. Like a function, a macro can be defined to take zero 
or more arguments, which replace fonnal parameters in the macro 
definition. For more infonnation on defining and using macros, see the 
XENIK C Language Reference. 

The macros defined in the C run-time library behave like functions: they 
take arguments and return values, and they are invoked in a similar 
manner. The primary advantage of using macros is that they execute 

2-1 



C Library Guide 

faster. Macros are expanded (replaced by their definitions) during prepro­
cessing, so the overhead required for a function call is eliminated. How­
ever, unlike a function, which is defined only once, regardless of the 
number of times it is called, each occurrence of a macro is expanded 
before the program is compiled. Macros can therefore increase the size of 
a program, particularly when they appear many times. In several cases, 
the C library offers both macro and function versions of the same library 
routine. This allows you to opt between speed of execution and compact 
program size, whichever is more important to the application. 

Some important differences between functions and macros include the 
following: 

• Some macros may treat arguments with side effects incorrectly if 
the macro is defined so that arguments are evaluated more than 
once. See the example that follows this list. 

• A macro identifier does not have the same properties as a function 
identifier. In particular, a macro identifier does not evaluate to an 
address, as a function identifier does. You cannot, therefore, use a 
macro identifier in contexts requiring a pointer. For instance, if you 
give a macro identifier as an argument in a function call, the value 
represented by the macro is passed; if you give a function identifier 
as an argument in a function call, the address of the function is 
passed. 

• Since macros are not functions, they cannot be declared, nor can 
pointers to macro identifiers be declared. Thus, type checking can­
not be performed on macro arguments. The compiler does, how­
ever, detect cases where the wrong number of arguments is 
specified for the macro. 

• The library routines implemented as macros are defined through 
preprocessor directives in the library include files. To use a library 
macro, you must include the appropriate file, or the macro will be 
undefined. 

The routines that are implemented as macros are noted in the 
Subroutines(S) section of the XENIX Reference. You can examine partic­
ular macro definitions in the corresponding include file to determine 
whether arguments with side effects will cause problems. 

2-2 



Using C Library Routines 

For example, the following program fragment uses the toupper routine 
from the standard C library: 

#include <ctype.h> 

int a = 'm'; 
a = toupper(a++); 

The toupper routine is implemented as a macro; its definition in ctype.h 
is as follows: 

#define toupper(c) ((islower(c))? _toupper(c) : (c) ) 

The definition uses the conditional operator (? :). In the conditional 
expression, the argument c is evaluated twice: once to detennine whether 
or not it is lowercase, and once to return the appropriate result. This 
causes the argument a++ to be evaluated twice, thus increasing a twice 
rather than once. As a result, the value operated on by islower differs 
from the value operated on by _ toupper. 

Not all macros have this effect; you can detennine whether a macro will 
handle side effects properly by examining the macro definition before 
using it. 

2.3 Including Files 

Many run-time routines use macros, constants, and types that are defined 
in separate include files. To use these routines, you must incorporate the 
specified file (using the preprocessor directive #include) into the source 
file being compiled. 

The contents of each include file are different, depending on the needs of 
specific run-time routines. However, in general, include files contain 
combinations of the following: 

• Definitions of manifest constants 

For example, the constant BUFSIZ, which detennines the 
hardware-dependent size of buffers for buffered input and output 
operations, is defined in stdio.h. 

• Definitions of types 

Some run-time routines take data structures as arguments or return 
values with structure types. Include files set up the required struc­
ture definitions. For example, most stream input and output opera­
tions use pointers to a structure of type FILE, defined in stdio.h. 

2-3 



C Library Guide 

• Function declarations 

Declarations provide the return type of a function; this is required 
for any function that returns a value with type other than int. (See 
"Declaring Functions.' ') 

• Macro definitions 

Some routines in the run-time library are implemented as macros. 
The definitions for these macros are contained in the include files. 
To use one of these macros, you must include the appropriate file. 

The include file or files needed by each routine can be found in the 
Subroutines(S) section of the XENIX Programmer's Reference on the 
manual page for the routine. 

2.4 Declaring Functions 

Whenever you call a library function that returns any type of value but an 
int, you should make sure that the function is declared before it is called. 
The easiest way to do this is to include the file containing declarations for 
that function, causing the appropriate declarations to be placed in your 
program. The function declaration in the include file provides the return 
type of the function. 

Your program can contain more than one declaration of the same function 
as long as the declarations are compatible. This is an important feature to 
remember if you have older programs whose function declarations do not 
contain argument-type lists. For instance, if your program contains the 
declaration 

char *calloc( ); 

you can also include the following declaration: 

char *calloc(unsigned, unsigned); 

Although the two declarations are not identical, they are compatible, so 
no conflict occurs. 

If you wish, you can provide your own function declarations instead of 
using the declarations in the library include files. However, you should 
consult the declarations in the include files to make sure that your 
declarations are correct. 

2-4 



Using C Library Routines 

2.5 Stack Checking on Entry 

Stack checking means that, on entry to a routine, the stack is first checked 
to determine whether or not there is room for the local variables used by 
that routine. If there is, space is allocated by adjusting the stack pointer. 
Otherwise, a "stack overflow" run-time error occurs. If stack checking is 
disabled, the compiler assumes there is enough stack space. If in fact 
there is not sufficient space on the stack, you may overwrite memory loca­
tions in the data segment and receive no warning. 

All XENIX library routines are compiled with stack checking enabled. 

2.6 Argument-Type Checking 

Microsoft C offers a type-checking feature for the arguments in a function 
call. Type checking is performed whenever an argument-type list is 
present in a function declaration and the declaration appears before the 
definition or use of the function in a program. For information on the form 
of the argument-type list and the type-checking method, see the XENIX C 
Language Reference. 

For functions that you write yourself, you must set up argument-type lists 
that invoke type checking. You can also use the -Zg command-line option 
to cause the compiler to generate a list of function declarations for all 
functions defined in a particular source file; the list can then be incor­
porated into your program. See the XENIX C User's Guide for details on 
using the -Zg option. 

For functions in the C run-time library, type checking is always enabled. 
Only limited type checking can be performed on functions that take a 
variable number of arguments. The following run-time functions are 
affected by this limitation: 

.' • In calls to printf and scanf, type checking is performed only on the 
first argument: the format string. 

• In calls to fprintf, fscanf, sprintf, and sscanf, type checking is 
performed on the first two arguments: the file or buffer and the for­
mat string. 

• In calls to open, only the first two arguments are type checked: the 
pathname and the open flag. 

2-5 



C Library Guide 

• In calls to exeel, exeele, exeelp, and exeelpe, type checking is per­
formed on the first two arguments: the pathname and the first argu­
ment pointer. 

2.7 Error Handling 

When calling a function, it is a good idea to provide for detection and 
handling of error returns, if any. Otherwise, your program may produce 
unexpected results. 

For run-time library functions, you can determine the expected return 
value from the return-value discussion on each library page. In some 
cases no established error return exists for a function. This usually occurs 
when the range of legal return values makes it impossible to return a 
unique error value. 

The description of some functions in the Subroutines(S) section of the 
XENIX Programmer's Reference indicates that when an error occurs, a 
global variable named errno is set to a value indicating the type of error. 
Note that you cannot depend on errno being set unless the description of 
the function explicitly mentions the errno variable. 

When using functions that set errno, you can test the errno values 
against the error values defined in errno.h, or you can use the perror 
function if you want to print the system error message to standard error 
(stderr). For a list of errno values and the associated error messages, see 
"Error Messages" in this guide. 

When you use errno and perror remember that the value of errno 
reflects the error value for the last call that set errno. To prevent 
misleading results, you should always test the return value before access­
ing errno, to verify that an error actually occurred. Once you determine 
that. an error has occurred, use errno or perror immediately. Otherwise, 
the value of errno may be changed by intervening calls. 

The math functions set errno upon error in the manner described on the 
manual page for each math function in the Subroutines(S) section of the 
XENIX Programmer's Reference. Math functions handle errors by invok­
ing a function named math err . You can choose to handle math errors 
differently by writing your own error function and naming it matherr. 
When you provide your own matherr function, that function is used in 
place of the run-time library version. You must follow certain rules when 
writing your own matherr function, as outlined in matherr(S). 

You can check for errors in stream operations by calling the ferror func­
tion. The ferror function detects whether the error indicator has been set 

2-6 



Using C Library Routines 

for a given stream. When the stream is closed or rewound, the error indi­
cator is cleared automatically; or you can reset it by calling the c1earerr 
function. 

Errors in low-level input and output operations cause errno to be set. 

The feof function tests for end-of-file on a given stream. An end-of-file 
condition in low-level input and output can be detected with the eof func­
tion or when a read operation returns 0 as the number of bytes read. 

2.8 Filenames and Pathnames 

Many functions in the run-time library accept strings representing path­
names and filenames as arguments. The functions process the arguments 
and pass them to the operating system, which is ultimately responsible for 
creating and maintaining files and directories. Thus, it is important to 
keep in mind not only the C conventions for strings, but also the operating 
system rules for filenames and pathnames and (where portability to MS­
DOS systems is an issue) the differences between XENIX and MS-DOS 
rules. There are three considerations: 

1. Case sensitivity 

2. Subdirectory conventions 

3. Delimiters for pathname components 

Both the C language and the XENIX operating system are case-sensitive, 
which means that they distinguish between uppercase and lowercase 
letters. The MS-DOS operating system, however, does not use case 
differences to distinguish between otherwise identical names. So, while 
"FILEA" and "fileA" refer to two different files on a XENIX system, 
they refer to the same file on an MS-DOS system. If you want to prepare 
portable code, do not take advantage of the case-sensitivity of C and 
XENIX when specifying filenames. 

By convention, some include files are stored in a subdirectory named sys 
on XENIX systems. If portability to MS-DOS systems is a concern, be 
aware that this XENIX convention is not used on all MS-DOS systems. 

The XENIX and MS-DOS operating systems differ in the way they handle 
pathnames. XENIX uses the forward slash (/) to delimit the components 
of pathnames, while MS-DOS ordinarily uses the backslash (\). Note, how­
ever, that MS-DOS recognizes the forward slash as a delimiter in situations 
where a pathname is expected. Thus, you can produce portable code by 
using the forward slash, as long as the context is not ambiguous and a 
pathname is clearly expected in the program. 

2-7 



C Library Guide 

2.9 Floating-Point Support 

The math functions supplied in the C run-time library require floating­
point support to perfonn calculations with real numbers. This support can 
be provided by the floating-point libraries that accompany your compiler 
software or by an 8087 or 80287 coprocessor. (For infonnation on select­
ing and using a floating-point library with your program, see the XENlX C 
User's Guide.) The names of the functions that require floating"'point sup­
port are listed below: 

acos cabs modf log hypot 
asin ceil ecvt tan strtod 
atan cos exp tanh sin 
atan2 cosh fabs pow sinh 
atof floor fcvt frexp sqrt 
bessel! fmod Idexp gcvt 

1 The bessel function does not correspond to a single function, but to six functions named 
jO, jl, jD, yO, yl, and YD. 

In addition, the printf family of functions (fprintf, printf, sprintf, 
vfprintf, vprintf, and vsprintf) requires support for floating-point input 
and output if used to print floating-point values. 

The C compiler tries to detect whether floating-point values are used in a 
program so that supporting functions are loaded only if required. This 
behavior saves a considerable amount of space for programs that do not 
require floating-point support. 

When you use a floating-point type character in the fonnat string for a 
printf or scanf call (fprintf, printf, sprintf, vfprintf, vprintf, vsprintf, 
cscanf, fscanf, scanf, or sscanf), make sure that you specify floating­
point values or pointers to floating-point values in the argument list to 
correspond to any floating-point type characters in the fonnat string. The 
presence of floating-point arguments allows the compiler to detect 
floating-point values. If a floating-point type character is used to print an 
integer argument, for example, floating-point values will not be detected 
because the compiler does not actually read the fonnat string used in the 
printf and scanf functions. For instance, the following program results in 
incorrect results at run-time: 

2-8 

main ( ) 
{ 

/* THIS EXAMPLE PRODUCES AN ERROR */ 

long 1 = lOL; 
printf("%f", 1); 

} 



Using C Library Routines 

In the preceding example, the functions for floating-point I/O are not 
loaded for the following reasons: 

• No floating-point arguments are given in the call to printf. 

• No floating-point values are used anywhere else in the program. 

As a result, the %/ is not recognized as a valid fonnat, and the system , 
simply displays the letter f. 

The following is a corrected version of the above call to printf: 

main ( ) 
{ 

/* THIS EXAMPLE WORKS JUST FINE */ 

long 1 = lOL; 
printf ("%f", (double) 1); 

} 

This version corrects the error by casting the long integer value to 
double. 

2.10 Using Huge Arrays with Library Functions 

In programs that use small, compact, medium, and large memory models, 
Microsoft C lets you use arrays exceeding the 64K (kilobyte) limit of 
physical memory in these models by explicitly declaring the arrays as 
huge. (See your compiler guide for a complete discussion of memory 
models and the near, far, and huge keywords.) However, you cannot 
generally pass huge data items as arguments to C library functions. In the 
compact-model library used by compact-model programs, and in the 
large-model library used by both large-model and huge-model programs, 
only the following functions use argument arithmetic that works with 
huge items: 

fread 
fwrite 

memccpy 
memchr 

memcmp 
memcpy 

memicmp 
memset 

With this set of functions, you can read from, write to, copy, initialize, or 
compare huge arrays; a huge array can be passed without difficulty to any 
of these functions in a compact-, large-, or huge-model program. 

Note that there is a semantic difference between the function and intrinsic 
versions of the memset, memcpy, and memcmp library routines. The 
function versions of these routines support huge pointers in compact and 
large model, but the intrinsic versions do not support huge pointers. 

2-9 





Chapter 3 

Global Variables 

and Standard Types 

3.1 Introduction 3-1 

3.2 The daylight, timezone, and tzname Variables 3-1 

3.3 errno, sys_errlist, sys_nerr 3-2 

3.4 environ 3-2 

3.5 Standard Types 3-2 





Global Variables and Standard Types 

3.1 Introduction 

The C run-time library contains definitions for a number of variables and 
types used by library routines. You can access these variables and types 
by including in your program the files in which they are declared or by 
giving appropriate declarations in your program, as shown in this chapter. 

3.2 The daylight, timezone, and tzname Variables 

The daylight, timezone, and tzname variables are used by several of the 
time and date functions to make adjustments for local time. The variables 
are declared as follows in the include file time.h: 

int daylight; 
long timezone; 
char *tzname[2]; 

The values of the variables are determined by the setting of an environ­
ment variable named TZ. You can adjust local time by setting the TZ 
environment variable. The value of the environment variable TZ must be 
a three-letter time zone, followed by a signed or unsigned number giving 
the difference in hours between Greenwich mean time and local time. The 
number is positive west of Greenwich, and negative east of Greenwich. 
The number may be followed by a three-letter daylight-saving-time 
(DST) zone. For example, the following shell environment statement 
specifies that the local time zone is EST (Eastern standard time), that 
local time is five hours earlier than Greenwich mean time, and that EDT 
is the name of the time zone when daylight saving time is in effect: 

SET TZ=EST5EDT 

Omitting the DST zone means that daylight saving time is never in effect: 

SET TZ=EST5 

When you call the ftime or localtime function, the values of the three 
variables daylight, timezone, and tzname are determined from the TZ 
setting. The daylight variable is given a nonzero value if a DST zone is 
present in the TZ setting; otherwise, daylight is O. The timezone variable 
is assigned the difference in seconds (calculated by converting the hours 
given in the TZ setting) between Greenwich mean time and local time. 
The first element of the tzname variable is the string value of the three­
letter time zone from the TZ setting; the second element is the string 
value of the DST zone. If the DST zone is omitted from the TZ setting, 
tzname[l] is an empty string. 

3-1 



C Library Guide 

The ftime and localtime functions call another function, tzset, to assign 
values to the three global variables from the TZ setting. You can also call 
tzset directly if you like; see the tzset reference in the "Time" section of 
"Run-Time Routines by Category." 

3.3 errno, sys _ err list, sys _ nerr 

The errno, sys errlist, and sys nerr variables are used by the perror 
function to print error informatiOn. When an error occurs in a system­
level call, the errno variable is set to an integer value to reflect the type 
of error. The perror function uses the errno value to look up (index) the 
corresponding error message in the sys _ errlist table. The value of the 
sys _ nerr variable is defined as the number of elements in the sys _ errlist 
array. For a listing of the errno values and the corresponding error mes­
sages, see' 'Error Messages" in this guide. 

3.4 environ 

The environ variable provides access to memory areas containing 
process-specific information. This variable is an array of pointers to the 
strings that constitute the process environment. The environment consists 
of one or more entries of the form 

name=string 

where name is the name of an environment variable and string is the 
value of that variable. The string may be empty. The initial environment 
settings are taken from the shell environment at the time of program exe­
cution. 

The getenv and putenv routines use the environ variable to access and 
modify the environment table. When putenv is called to add or delete 
environment settings, the environment table changes size. The table's 
location in memory may also change, depending on the program's 
memory requirements. The environ variable is adjusted in these cases 
and will always point to the correct table location. 

3.5 Standard Types 

A number of run-time library routines use values whose types are defined 
in include files. These types are listed and described as follows, and the 
include file that defines each type is given. For a list of the actual type 
definitions, see the description of the appropriate include file in the 
"Include Files" chapter. 

3-2 



Standard Type 

clock t 

FILE 

jmp_buf 

size t 

stat 

time t 

timeb 

tm 

utimbuf 

Global Variables and Standard Types 

Description 

The clock _ t type, defined in time.h, stores time 
values and is used by the clock function. 

The FILE structure, defined in stdio.h, is the 
structure used· in all stream input and output 
operations. The fields of the FILE structure store 
information about the current state of the stream. 

The jmp _ buf type, defined in setjmp.h, is an 
array type rather than a structure type. It defines 
the buffer used by the setjmp and longjmp rou­
tines to save and restore the program environment. . 

The size _ t type, defined in stddef.h and several 
other include files, is the unsigned integral result 
of the sizeof operator. 

The stat structure, defined in sys/stat.h, contains 
file-status information returned by the stat and 
fstat routines. 

The time t type, defined in time.h, represents 
time values in the time routine. 

The timeb structure, defined in sys/timeb.h, is 
used by the ftime routine to store the current sys­
tem time in a broken-down format. 

The tm structure, defined in time.h, is used by the 
asctime, gmtime, and localtime functions to store 
and retrieve time information. 

The utimbuf structure, defined in sys/utime.h, 
stores file access and modification times used by 
the utime function to change file-modification 
dates. 

3-3 



C Library Guide 

va list 

3-4 

The va_list array type, defined in varargs.h, is 
used to hold information needed by the va _ arg 
macro and the va end routine. The called func­
tion declares a variable of type va_list, which may 
be passed as an argument to another function. 



Chapter 4 

Run-Time Routines 

by Category 

4.1 Introduction 4-1 

4.2 Buffer Manipulation 4-1 

4.3 Character Classification and Conversion 4-2 

4.4 Database-Manipulation Routines 4-3 

4.5 Data Conversion 4-3 

4.6 Directory Operation 4-4 

4.7 File Handling 4-5 

4.8 Group and Password File Control Routines 4-6 

4.9 Input and Output Routines 4-7 
4.9.1 Standard I/O Routines 4-8 
4.9.2 Stream I/O Routines 4-8 
4.9.3 Low-Level I/O Routines 4-10 

4.10 Math 4-11 

4.11 Memory Allocation 4-13 

4.12 Message-Control Routines 4-14 

4.13 Pipes 4-14 

4.14 Process Control 4-16 

4.15 Random-Number Generation 4-18 



4.16 Screen Processing 4-18 

4.17 Searching and Sorting 4-22 

4.18 Semaphore-Control Routines 4-23 

4.19 Shared-Memory Routines 4-23 

4.20 String Manipulation 4-24 

4.21 System Accounting 4-26 

4.22 Tenninal Control 4-27 

4.23 Time 4-27 

4.24 Miscellaneous 4-28 



Run-Time Routines by Category 

4.1 Introduction 

This chapter describes the major categories of routines included in the C 
run-time libraries. The discussions of these categories are intended to 
give a brief overview of the capabilities of the run-time library. Some 
categories of routines, such as "Input and Output," are discussed in some 
detail, to help show how the routines are used in programs. For a com­
plete description of the syntax and use of each routine, see the 
Subroutines(S) section of the XENIX Programmer's Reference. Another 
source of more detailed information is found in the "Using System 
Resources" chapter oftheXENIXProgrammer's Guide. 

4.2 Buffer Manipulation 

The following buffer-manipulation routines are useful for working with 
areas of memory on a character-by-character basis. Buffers are arrays of 
characters (bytes). However, unlike strings, they are not usually ter­
minated with a null character (\0). Therefore, the buffer-manipulation rou­
tines always take a length or count argument. 

Routine 

memccpy 

memchr 

memcmp 

memcpy 

memset 

Use 

Copies characters from one buffer to another, until 
a given character or a given number of characters 
has been copied. 

Returns a pointer to the first occurrence, within a 
specified number of characters, of a given charac­
ter in the buffer. 

Compares a specified number of characters from 
two buffers. 

Copies a specified number of characters from one 
buffer to another. 

Uses a given character to initialize a specified 
number of bytes in the buffer. 

Function declarations for the buffer-manipulation routines are given in the 
include file memory.h. 

For more information on the buffer manipulation routines, see 
memory (S) in the XENIX Programmer's Reference. 

4-1 



C Library Guide 

4.3 Character Classification and Conversion 

The following character classification and conversion routines let you test 
individual characters in a variety of ways and convert between uppercase 
and lowercase characters. 

Routine 

isalnum 

isalpha 

isascii 

iscntrl 

isdigit 

isgraph 

islower 

isprint 

ispunct 

isspace 

isupper 

isxdigit 

toascii 

tolower 

tolower 

toupper 

_toupper 

Use 

Tests for alphanumeric character (letters and digits) 

Tests for alphabetic character (uppercase and lower­
case letters) 

Tests for ASCII character (0-127) 

Tests for control character (ASCII 0-31 and 127) 

Tests for decimal digit (0-9) 

Tests for printable character except space (ASCII 33-
126) 

Tests for lowercase character 

Tests for printable character (ASCII 32-126) 

Tests for punctuation character (neither control nor 
alphanumeric) 

Tests for white space character (space, tab, carriage 
return, newline, vertical tab, or form feed) 

Tests for uppercase character 

Tests for hexadecimal digit (0-9, a-f, A-F) 

Converts character to ASCII code 

Tests character and converts to lowercase if 
uppercase 

Converts character to lowercase (unconditional) 

Tests character and converts to uppercase if 
lowercase 

Converts character to uppercase (unconditional) 

For more information on the character classification and conversion rou­
tines, see the "Character and String Processing" chapter in this guide and 
ctype (S) and conv (S) in the XENIX Programmer's Reference. 

4-2 



Run-Time Routines by Category 

4.4 Database-Manipulation Routines 

The following routines are available when you specify the library dbm on 
the compile line. They are provided to give you the tools to perform sim­
ple manipulations of a very large database. For more information, see 
dbm (S) in the XENIX Programmer's Reference. 

Routine 

dbminit 

delete 

fetch 

firstkey 

nextkey 

store 

Use 

Opens a database file for accessing 

Deletes a key and its associated contents 

Accesses data stored under a key 

Returns the first key in the database 

Returns the next key following any specified key in 
the database 

Stores data under a key 

4.5 Data Conversion 

The data-conversion routines convert numbers to strings of ASCII charac­
ters and vice versa. These routines are implemented as functions; all are 
declared in the include file stdlib.h. For details on the use of these func­
tions, see the appropriate manual pages in the Subroutines(S) section of 
the XENIX Programmer's Reference. 

Routine Use 

a641 Converts a base-64 representation to a long 

atof Converts string to float 

atoi Converts string to int 

atol Converts string to long 

eevt Converts double to string 

fevt Converts double to string 

gevt Converts double to string 

4-3 



C Library Guide 

ito a Converts int to string 

Itoa Converts long to string 

Itol3 Converts a list of long integers to a list of 3-byte 
integers 

13tol Converts a list of 3-byte integers to a list of long 
integers 

164a 

sgetl 

sputl 

strtod 

strtol 

strtoul 

ultoa 

Converts a long into a base-64 representation 

Returns a long stored with sputl 

Stores a long in memory 

Converts string to double 

Converts string to a long integer 

Converts string to an unsigned long integer 

Converts unsigned long to string 

4.6 Directory Operation 

The following routines provide control over the special files called direc­
tories. For a full description of their use, see the manual entries 
directory(S) and getdents(S). 

4-4 

Routine 

c10sedir 

opendir 

readdir 

rewinddir 

seekdir 

telldir 

Use 

Closes the named directory stream and frees the struc­
ture associated with the directory pointer 

Opens the directory named by a filename and associ­
ates a directory stream with it 

Returns a pointer to the next directory entry 

Resets the position of the named directory stream to 
the beginning of the directory 

Sets the position of the next readdir operation on the 
directory stream 

Returns the current location associated with the 
named directory stream 



Run-Time Routines by Category 

4.7 File Handling 

The following file-handling routines work on a file designated by a path­
name, or by a "file descriptor." A descriptor is a file-management struc­
ture obtained from an open, creat, dup, fcntl, or pipe system call. The 
file-handling routines provide or modify information about the designated 
file. Directories and devices are treated as special files by the XENIX sys­
tem, so the file-handling routines control their use as well. 

Routine Use 

access Checks file-permission setting 

chdir Changes current working directory 

chmod Changes file-permission setting 

chown Changes file owner and group 

chsize Changes file size 

fcntl Controls open files 

fstat Gets file-status information 

getcwd Gets current working directory 

ioctl Controls character devices 

isatty Checks for character device 

link Links an existing file to a new pathname 

locking Locks or unlocks areas of a file 

mknod Creates a directory, special file, or ordinary file 

mktemp Creates a unique filename 

mount Mounts a file system on a directory 

stat Gets file-status information on named file 

umask Sets default-permission mask 

umount Unmounts file system mounted by mount 

4-5 



C Library Guide 

unlink Deletes a file 

ustat Gets status information about a file system 

utime Sets file access and modification times 

The access, chmod, chown, chroot, link, mknod, stat, unlink, and 
utime routines operate on files specified by a pathname or filename. The 
stat routine is declared in sys/stat.h. 

The chsize, fcntl, fstat, ioctl, isatty, and locking routines work with files 
designated by a file descriptor. 

The mount and umount routines accept pointers to pathnames to mount 
and unmount removable file systems on device files. 

The ustat routine, which returns information about mounted file systems, 
works with devices specified by device numbers. To use ustat, you must 
include sys/types.h and ustat.h. 

The mktemp and umask routines have slightly different functions than 
the above routines. The mktemp routine creates a unique filename. Pro­
grams can use mktemp to create unique filenames that do not conflict 
with the names of existing files. The umask routine sets the default per­
mission mask for any new files created in a program. 

For additional information on any of the file-handling routines, see the 
Subroutines(S) section of the XENlX Programmer's Reference. 

4.8 Group and Password File Control Routines 

The group and password file control routines provide you with low-level 
control of the group and password files. Access to these files is restricted 
to the system administrator. However, you can still search the files. For 
information on both the group and the password files, see the "Include 
Files" chapter. For information on a specific routine, see the 
Subroutines(S) section in the XENIX Programmer's Reference. 

Routine Use 

endgrent Closes the group file 

endpwent Closes the password file 

getgrent Reads the next line of the group file 

4-6 



getgrgid 

getgrnam 

getpass 

getpw 

getpwent 

getpwnam 

getpwuid 

putpwent 

setgrent 

setpwent 

Run-Time Routines by Category 

Searches the group file from the beginning for a 
match to group ID 

Searches the group file from the beginning for a 
match to a name 

Reads a password from /dev/tty, or from the stan­
dard input if /dev/tty cannot be opened 

Searches the password file for the specified user ID, 
and returns the matching line to the buffer 

Reads the next line in the password file 

Searches the password file from the beginning for a 
matching name 

Searches the password file from the beginning for a 
matching user ID 

Writes a line on the stream in the same format as 
that of /etc/passwd 

Rewinds the group file 

Rewinds the password file 

4.9 Input and Output Routines 

The input and output routines of the C run-time library let you read and 
write data to and from files and devices. In C there are no predefined file 
structures; all data are treated as sequences of bytes. This section pro­
vides information on using the input and output (I/O) routines; three basic 
categories of functions are discussed: 

• Standard I/O Routines 

• Stream I/O Routines 

• Low-Level I/O Routines 

4-7 



C Library Guide 

4.9.1 Standard I/O Routines 

The standard I/O routines let you read from and write to the standard 
input and output files. The following sections explain how to read from 
and write to the standard input and output. 

Routine Use 

getchar Reads a character from stdin 

gets Reads a line from stdin 

printf Writes formatted data to stdout 

putchar Writes a character to stdout 

puts Writes a line to stdout 

scanf Reads formatted data from stdin 

4.9.2 Stream I/O Routines 

The standard I/O routines described earlier allow programs to read from 
the standard input and write to the standard output. Use the stream I/O 
routines to access files not already connected to the program. The stream 
I/O routines allow a program to open and access ordinary files as if they 
were a stream of characters. 

Routine Use 

c1earerr Clears the error indicator for a stream 

fclose Closes a stream 

fdopen Opens a stream using its descriptor 

feof Tests for end-of-file on a stream 

ferror Tests for error on a stream 

mush Flushes a stream 

fgetc Reads a character from a stream (function version) 

4-8 



fgets 

fileno 

fop en 

fprintf 

fputc 

fputs 

fread 

freopen 

fscanf 

fwrite 

getc 

getchar 

gets 

getw 

printf 

putc 

putchar 

puts 

putw 

scanf 

setbuf 

setvbuf 

sprintf 

Run-Time Routines by Category 

Reads a string from a stream 

Gets file descriptor associated with a stream 

Opens a stream 

Writes formatted data to a stream 

Writes a character to a stream (function version) 

Writes a string to a stream 

Reads unformatted data from a stream 

Reassigns a FILE pointer 

Reads formatted data from a stream 

Writes unformatted data items to a stream 

Reads a character from a stream (macro version) 

Reads a character from stdin (macro version) 

Reads a line from stdin 

Reads a binary int item from stream 

Writes formatted data to stdout 

Writes a character to a stream (macro version) 

Writes a character to stdout (macro version) 

Writes a line to a stream 

Writes a binary int item to a stream 

Reads formatted data from stdin 

Controls stream buffering 

Controls stream buffering and buffer size 

Writes formatted data to string 

4-9 



C Library Guide 

sscanf Reads fonnatted data from string 

tmpfile Creates a temporary file 

ungetc Places a character in the buffer 

vfprintf Writes fonnatted data to a stream 

vprintf Writes fonnatted data to stdout 

vsprintf Writes fonnatted data to a string 

4.9.3 Low-Level I/O Routines 

The following low-level routines provide direct access to files and peri­
pheral devices, such as drives and printers. They are actually direct calls 
to the routines used in XENIX to read from and write to files and peri­
pheral devices. The low-level functions give a program the same control 
over a file or device as the system, letting it access the file or device in 
ways that the stream functions do not. However, low-level functions, 
unlike stream functions, do not provide buffering or any other useful ser­
vices of the stream functions. This means that any program that uses the 
low-level functions must handle input and output. 

4-10 

Routine 

close 

creat 

dup 

dup2 

eof 

fseek 

ftell 

Iseek 

open 

read 

Use 

Closes a file 

Creates a file 

Creates a second descriptor for a file 

Reassigns a descriptor to a file 

Tests for end-of-file 

Repositions FILE pointer to a given location 

Gets current FILE pointer position 

Repositions file pointer to a given location 

Opens a file 

Reads data from a file 



Run-Time Routines by Category 

rewind Repositions FILE pointer to beginning of a stream 

write Writes data to a file 

4.10 Math 

The following math routines let you perform common mathematical cal­
culations. All math routines work with floating-point values and therefore 
require floating-point support (see "Floating-Point Support" in the 
"Using C Library Routines" chapter). Function declarations for the math 
routines are given in the include file math.h. 

Routine Use 

abs Calculates absolute value of an integer 

acos Calculates arc cosine 

asin Calculates arc sine 

atan Calculates arc tangent 

atan2 Calculates arc tangent 

bessel Bessel functions (see jO, jl, jn, yO, yl, yn, below) 

cabs Finds absolute value of a complex number 

ceil Finds integer ceiling 

cos Calculates cosine 

cosh Calculates hyperbolic cosine 

erf Calculates error function 

erfc Calculates complementary error function 

exp Calculates exponential function 

fabs Finds absolute value 

floor Finds largest integer less than or equal to argument 

fmod Finds floating-point remainder 

4-11 



C Library Guide 

frexp 

gamma 

hypot 

jO,jl,jn, 
yO,yl,yn 

Idexp 

log 

loglO 

matherr 

modf 

pow 

rand, 
srand 

sin 

sinh 

sqrt 

tan 

tanh 

Calculates an exponential value 

Calculates log gamma 

Calculates hypotenuse of right triangle 

Calculates Bessel functions of the first and second 
kinds for real arguments and integer orders 

Calculates argument times 2exp 

Calculates natural logarithm 

Calculates base-IO logarithm 

Handles math errors 

Breaks down argument into integer and fractional parts 

Calculates a value raised to a power 

Generates a pseudo-random number 
(srand generates the seed) 

Calculates sine 

Calculates hyperbolic sine 

Finds square root 

Calculates tangent 

Calculates hyperbolic tangent 

The math err routine is invoked by the math functions when errors occur. 
This routine is defined in the library, but can be redefined by the user if 
different error-handling procedures are desired. The user-defined matherr 
function, if given, must conform to the specifications given in 
matherr(S). 

You are not required to supply a definition for matherr. If no definition is 
present, the default error returns for each routine are used. For a descrip­
tion of the routine's error returns, see matherr(S) in the XENIX 
Programmer's Reference. 

4-12 



Run-Time Routines by Category 

The trigonometric functions, sin, eos, tan, asin, acos, atan, and atan2, are 
described in detail in trig(S) in the XENIX Programmer's Reference. For 
explanations of exp, log, log 10, pow, and sqrt, see exp(S). 

4.11 Memory Allocation 

The following memory-allocation routines let you allocate, free, and real­
locate blocks of memory. They are declared in the include file malloc.h. 

Routine 

calloc 

free 

malloc 

realloc 

sbrk 

Use 

Allocates storage for array 

Frees a block allocated with calloe, malloc, or real­
loc 

Allocates a block 

Reallocates a block 

Resets break value 

The calloc and malloc routines allocate memory blocks. The malloc rou­
tine allocates a given number of bytes, while calloe allocates and initial­
izes to 0 an array with elements of a given size. 

The realloc routine reallocates a memory block, either by changing its 
size or changing its location; the contents of the block remain unchanged. 

A low-level memory-allocation routine is provided by sbrk. It increases 
the program's break value (the address of the first location beyond the end 
of the default data segment), allowing the program to take advantage of 
available unallocated memory. 

4-13 



C Library Guide 

Note 

In general, a program that uses the sbrk routine should not use the 
other memory-allocation routines, although their use is not prohi­
bited. In particular, using sbrk to decrease the break. value may 
cause unpredictable results from subsequent calls to the other 
memory-allocation routines. 

4.12 Message-Control Routines 

The following message-control routines provide the medium for interpro­
cess communication. To use the message-control routines, you must 
include sys/types.h, sys/ipc.h, and sys/msg.h at the beginning of your 
program. Message operations are outlined in msgop (S) in the XENIX 
Programmer's Reference, and in the XENIX System V/386 Programmer's 
Guide. 

Routine Use 

msgctl Provides for message-control operations 

msgget Returns a message queue identifier 

msgsnd Sends a message to a queue 

msgrcv Reads a message from a queue 

4.13 Pipes 

A "pipe" is an artificial file that a program can create and use to pass 
information to other programs. A pipe is similar to a file in that it has a 
file pointer or a file descriptor, or both, and can be read from or written to 
using the input and output functions of the standard library. Unlike a file, 
a pipe does not represent a specific file or device. Instead, a pipe 
represents temporary storage in memory that is independent of the 
program's own memory and is controlled entirely by the system. 

4-14 



Routine 

pclose 

pipe 

popen 

Run-Time Routines by Category 

Use 

Closes a pipe opened by popen 

Opens a pipe for reading and writing 

Opens a pipe between a calling process and a com­
mand 

Pipes pass information between programs, just as the shell pipe symbol (I) 
passes the output of one program to the input of another. This eliminates 
the need to create temporary files to pass information to other programs. 
A pipe can also be used as a temporary storage place for a single program. 
A program can write to the pipe, then read that information back at a later 
time. 

The standard library provides several pipe functions. The pop en and 
pclose functions control both a pipe and a process. The popen function 
opens a pipe and creates a new process at the same time, making the new 
pipe the standard input or output of the new process. This function is typi­
cally used in programs that need to call another program and pass sub­
stantial amounts of data to that program. 

The stream I/O functions, including fscanf and fprintf, can read from or 
write to a pipe opened by popen. Stream I/O functions are outlined in 
"Stream I/O Routines" in this chapter. 

The pclose function closes a pipe opened by popen and waits for termina­
tion of the corresponding process. 

The pipe function gives low-level access to a pipe. This function is simi­
lar to open (S), but opens the pipe for both reading and writing, returning 
two file descriptors instead of one. The program can either use both sides 
of the pipe or close the one it does not need. This function typically opens 
a pipe in preparation for linking it to a child process. 

The low-level input and output functions read and write can read from 
and write to a pipe. The low-level I/O functions are described in the 
"Low-Level I/O Routines" section. Pipe file descriptors are used in the 
same way as other file descriptors. 

4-15 



C Library Guide 

4.14 Process Control 

The term "process" refers to a program being executed by XENIX. A 
process consists of instructions and data and a table of information about 
the program, such as its allocated memory, open files, and current execu­
tion status. Whenever you execute a program, you start a process. 

The system identifies each process with a unique ID number. These pro­
cess ID numbers allow the system to run several processes simultaneously 
without confusing them. The following are process control routines: 

Routine 

abort 

alarm 

execl 

execle 

execlp 

execv 

execve 

execvp 

exit 

exit 

fork 

getpgrp 

getpid 

getppid 

gsignal 

4-16 

Use 

Aborts a process 

Sets the alarm of the calling process 

Executes child process with argument list 

Executes child process with argument list and given 
environment 

Executes child process using PATH variable and 
argument list 

Executes child process with argument array 

Executes child process with argument array and given 
environment 

Executes child process using PATH variable and 
argument array 

Terminates process 

Terminates process without flushing buffers 

Creates a new process 

Gets group process ID number 

Gets process ID number 

Gets parent process ill number 

Raises the signal; used with ssignal 



kill 

lock 

monitor 

nap 

nice 

pause 

proctl 

profil 

ptrace 

rdchk 

sbrk 

setpgrp 

signal 

sleep 

ssignal 

system 

times 

ulimit 

wait 

Run-Time Routines by Category 

Sends a signal to a process or group of process 

Locks a process in main memory 

Prepares an execution profile; used with profil 

Suspends a process for a period of time, or until a sig­
nal is received 

Decreases CPU priority of a process 

Suspends a process until a specified signal is received 

Controls active processes or groups of processes 

Creates an execution-time profile of a section of core 
memory 

Allows parent process to trace execution of a child 
process 

Checks to see if there is data to be read 

Alters amount of space allocated to the data segment 
of the calling process 

Sets group ID of a process 

Allows a process to handle signals 

Suspends execution of calling process for a period of 
time 

Implements software signals 

Executes a XENIX command 

Gets execution times of processes and child processes 

Provides control over process limits 

Suspends the calling process until it traps a specified 
signal or until a child process stops 

4-17 



C Library Guide 

4.15 Random-Number Generation 

The following random-number routines generate pseudo-random numbers 
using the linear congruent algorithm and 48-bit integer arithmetic. The 
other three routines, srand48, seed48, and Icong48, are complex in 
nature. For a full description of the use of these pseudo-random-number 
generators, see drand48 (S) in the XENlX Programmer's Reference. 

Routine 

drand48, erand48 

Irand48, nrand48 

mrand48, jrand48 

4.16 Screen Processing 

Use 

Returns a non-negative double-precision 
floating-point value uniformly distributed 
over the interval [0.0, 1.0] 

Returns a non-negative long integer uni­
formly distributed over the interval [0,231

] 

Returns a signed long integer uniformly dis­
tributed over the interval [_23

\ 231
] 

The screen processing functions allow you to use the capabilities pro­
vided by the curses and terminfo libraries. These libraries provide func­
tions for creating and updating windows on the screen, getting input from 
the terminal, setting terminal modes, and optimiZing the motion of the 
cursor on the screen. 

A discussion of the screen processing functions is beyond the scope of 
this section. Chapter 7, "Screen Processing" describes in detail the func­
tions listed and explains how to call the appropriate libraries in the com­
pile command line. For further information, refer to curses (S) and 
terminfo (S) in the XENlX Programmer's Reference. 

Routine 

addch 

addstr 

addkey 

box 

clear 

4-18 

Use 

Adds a character to the standard screen 

Adds a string to the standard screen 

Defines a new function key. 

Draws a box, using the specified characters 

Clears the standard screen and sets the clear 
flag 



c1earok 

c1rtobot 

c1rtoeol 

crDlode, nocrDlode 

delch 

deleteln 

delwin 

dDlpmn 

echo, noecho 

endwin 

erase 

getch 

getstr 

gettDlode 

getyx 

inch 

initscr 

insch 

insertln 

keypad 

leaveok 

Run-TiDle Routines by Category 

Sets or clears the clear flag 

Clears the standard screen from the current 
position to the bottom of the screen 

Clears the standard screen from the current 
position to the end of the current line 

Sets or clears CBREAK mode for the termi­
nal 

Deletes a character from the standard screen 

Deletes a line from the standard screen 

Deletes a window 

Saves the contents of a window to a file. 

Sets or clears ECHO mode for the terminal 

Terminates screen processing 

Clears the screen without setting the clear 
flag 

Gets a character from the standard input 

Gets a string from the standard input 

Gets the tty mode 

Saves the current line and column positions 

Reads a character from the standard screen 

Initializes the standard screen 

Inserts a character on the standard screen 

Inserts a line on the standard screen 

This macro allows function key sequences 
to be considered as a single token. 

Sets or clears the cursor flag 

4-19 



C Library Guide 

longname 

move 

mv<func> 

mvcur 

mvwin 

newwin 

nl, nonl 

overlay 

overwrite 

printw 

raw, noraw 

refresh 

resetty 

savetty 

scanw 

scroll 

scrollok 

setterm 

standend 

4-20 

Returns the full name of the terminal 
corresponding to a termcap or terminfo 
identifier 

Moves the pointer to a specified position 

Moves the cursor and performs the function 
call 

Moves the cursor 

Moves a window 

Creates a new window 

Sets or clears NEWLINE mode for the ter­
minal 

Lays one window over another, without des­
troying the lower window 

Writes the contents of one window over 
another, destroying the contents of the 
lower window 

Prints formatted data to the standard screen 

Sets or clears RAW mode for a terminal 

Updates the standard screen to show any 
changes 

Restores terminal flags saved with savetty 

Saves current terminal flags 

Reads formatted data from the standard 
input 

Scrolls a window up a line 

Sets or clears the scroll flag 

Sets the terminal type 

Restores normal attribute for the standard 
screen 



standout 

subwin 

touchwin 

vvaddch 

vvaddstr 

vvclear 

vvclrtobot 

vvclrtoeol 

vvdelch 

vvdeleteln 

vverase 

vvgetch 

vvgetstr 

winch 

winsch 

winsertln 

vvmove 

vvprintvv 

vvrefresh 

vvscanvv 

Run-Time Routines by Category 

Sets standout attribute for the standard 
screen 

Creates a subwindow 

"Touches" a window for a subsequent 
refresh orvvrefresh 

Adds a character to a window 

Adds a string to a window 

Clears a window and sets the clear flag 

Clears a window from the current position 
to the bottom of the screen 

Clears a window from the current position 
to the end of the line 

Deletes a character from a window 

Deletes a line from a window 

Clears a window without setting the clear 
flag 

Gets a character from the standard input 

Gets a string from the standard input 

Reads a character from a window or screen 

Inserts characters in a window 

Inserts a line in a window 

Moves a window 

Prints formatted data to a window 

Updates the screen to show changes in a 
window 

Gets formatted data from the standard input 

4-21 



C Library Guide 

wstandend 

wstandout 

Clears standout mode for a window or a 
screen 

Sets standout mode for a window or a 
screen 

4.17 Searching and Sorting 

The following routines provide the means to perform searches and/or 
sorts using a number of different algorithms. 

Routine 

bsearch 

ftw 

hcreate 

hdestroy 

hsearch 

lfind 

Isearch 

qsort 

tdelete 

tfind 

tsearch 

twalk 

Use 

Performs binary search 

Walks a hierarchical file tree 

Allocates sufficient space for the hash table 

Destroys the hash table 

Manages a hash table 

Performs linear search for given value 

Performs linear search for given value, which is 
added to array if not found 

Performs quick sort 

Deletes a node from a binary tree 

Searches a binary tree for a datum 

Builds and accesses a binary tree 

Traverses a binary tree 

The bsearch, lfind, Isearch, and qsort functions provide helpful binary­
search, linear-search, and quick-sort utilities. For detailed information on 
these routines, see bsearch (S), hsearch (S), Isearch (S), and tsearch (S) 
in the XENlX Programmer's Reference. 

4-22 



Run-Time Routines by Category 

4.18 Semaphore-Control Routines 

The following semaphore routines control the semaphores that signal 
when a resource is available or locked. For detailed information, see 
semctl(S) and other appropriate pages in the Subroutines(S) section of the 
XENIX Programmer's Reference, and the XENIX Programmer's Guide. 

Routine 

creatsem 

nbwaitsem 

opensem 

semget 

semd 

semop 

sigsem 

waitsem 

Use 

Creates a binary semaphore 

Provides the calling process with access to the 
semaphore; returns the error ENAV AIL if the 
resource is in use 

Opens a semaphore for use by a process 

Returns the semaphore identifier associated with a 
key 

Provides a variety of semaphore-control opera­
tions 

Allows the execution of an array of semaphore 
operations on a set of semaphores 

Signals a process waiting for a semaphore that it 
may proceed and use the resource governed by the 
semaphore 

Provides the calling process with access to the 
semaphore; puts the calling process to sleep if the 
resource is in use 

4.19 Shared-Memory Routines 

The following shared memory routines provide control functions for the 
use of shared memory segments. For details, see shmop(S) in the XENIX 
Programmer's Reference. 

Routine 

ftok 

Use 

Forms a key to provide to the msgget, semget, and 
shmget system calls (for interprocess communica­
tion). 

4-23 



C Library Guide 

sdenter 

sdfree 

sdget 

sdgetv 

sdleave 

sdwaitv 

shmat 

shmctl 

shmdt 

shmget 

Indicates that the current process is about to 
access the contents of a shared data segment 

Detaches the current process from the shared data 
segment that is attached at the specified address 

Attaches a shared data segment to the data space 
of the current process 

Returns the version number of the data segment at 
the specified address 

Indicates that the current process has finished 
modifying the contents of the shared data seg­
ment; alters the version number on exiting 

Forces the current process to sleep until the ver­
sion number of the indicated segment is no longer 
equal to the value vnum 

Attaches the shared memory segment associated 
with the shared memory identifier specified by 
shmid to the data segment of the calling process 

Provides control of various shared-memory opera­
tions 

Detaches the calling proc:ess's data segment from 
the shared memory segment located at a specified 
address 

Gets a shared memory segment associated with a 
key 

4.20 String Manipulation 

The following string functions concatenate, compare, copy, and count the 
number of characters in a string. Many string functions have two forms: 

• a form that manipulates all characters in the string 

• a form that manipulates a given number of characters 

This gives a program very fine control over all or part of a string. 

4-24 



Run-Time Routines by Category 

All string functions work on null-terminated character strings. When 
working with character arrays that do not end with a null character, you 
can use the buffer-manipulation routines, described earlier in this chapter. 

Routine 

strcat 

strchr 

strcmp 

strcpy 

strcspn 

strdup 

strlen 

strncat 

strncmp 

strncpy 

strpbrk 

strrchr 

strspn 

strtok 

Use 

Appends a string 

Finds first occurrence of a given character in 
string 

Compares two strings 

Copies one string to another 

Finds first occurrence of a character from given 
character set in string 

Duplicates string 

Finds length of string 

Appends characters of string 

Compares characters of two strings 

Copies characters of one string to another 

Finds first occurrence of character from one string 
in another 

Finds last occurrence of given character in string 

Finds first substring from given character set in 
string 

Finds next token in string 

The sections that follow describe the string functions; for further informa­
tion' refer to string (S) in the XENIX Programmer's Reference. 

4-25 



C Library Guide 

4.21 System Accounting 

The following system accounting routines are typically used by the sys-. 
tern administrator to check and manipulate the contents of the system 
accounting files. For additional information, see getut (S) and other 
pages in the XENIX Programmer's Reference. 

Routine 

acct 

cuserid 

endutent 

getutent 

getlogin 

getuid 

getuline 

putuline 

setutent 

utmpname 

ttyslot 

4-26 

Use 

Enables or disables system accounting. 

Returns a pointer to a string that represents the 
login name of the owner of the current process. 

Closes the currently opened file. 

Reads the next entry from a system accounting 
file. 

Returns a pointer to the login name as found in the 
file /etc!utmp. 

Searches forward from the current file position 
until it encounters an entry of the specified 
identi fication. 

Searches forward from the current file position 
until it encounters an entry of the specified line. 

Writes an entry (in the utmp format) in the system 
accounting file. 

Resets the input stream to the beginning of the 
file. 

Allows the user to alter the name of the file exam­
ined. Default is /etc!utmp. 

Returns the index of the current user's entry in the 
/ etc! utmp file. 



Run-Time Routines by Category 

4.22 Terminal Control 

The tenninal-control routines let you use the capabilities provided by the 
tenninal capability database, termcap (M). For more details, see 
termcap (S) in the XENlX Programmer's Reference. 

Routine 

tgetent 

tgetflag 

tgetnum 

tgetstr 

tgoto 

tputs 

4.23 Time 

Use 

Extracts the entry for a tenninal buffer 

Returns 1 if the specified identification capability 
is present in the tenninal' s entry in the 
/etc/termcap file; returns zero if it is not 

Returns the numeric value of the specified 
identification capability. Returns -1 if the tenninal 
is not in the /etc/termcap file 

Gets the string value of the specified identification 
capability and places it in a buffer 

Returns a cursor-addressing string 

Decodes the leading padding infonnation of the 
string 

The following time routines let you obtain the current time, then convert 
and store it according to your particular needs. The current time is always 
taken from the system time. 

Routine 

asctime 

clock 

ctime 

ftime 

gmtime 

Use 

Converts time from structure to character string 

Returns the elapsed CPU time for a process 

Converts time from long integer to character 
string 

Gets current system time as structure 

Converts time from integer to structure 

4-27 



C Library Guide 

localtime 

stime 

time 

tzset 

Converts time from integer to structure with local 
correction 

Sets the system time 

Gets current system time as long integer 

Sets external time variables from environment 
time variable 

The time and ftime functions return the current time as the number of 
seconds elapsed since Greenwich mean time, January 1, 1970. This value 
can be converted, adjusted, and stored in a variety of ways, using the 
asctime, ctime, gmtime, and localtime functions. 

The clock function returns the elapsed CPU time for the calling process. 

The ftime function requires two include files: sys/types.h and 
sys/timeb.h. The ftime function is declared in sys/timeb.h. The 
remainder of the time functions are declared in the include file time.h. 

When you want to use ftime or localtime to make adjustments for local 
time, you must define an environment variable named TZ. See Section 
3.2 on the global variables daylight, timezone, and tzname for a discus­
sion of the TZ variable; TZ is also described in tzset (S) in the XENlX 
Programmer's Reference. 

4.24 Miscellaneous 

The "miscellaneous" category covers a number of commonly used rou­
tines that do not fit easily into any of the other categories. 

Routine 

assert 

ctermid 

defopen 

4-28 

Use 

Checks the validity of a given expression. 

Returns a pointer to a string that contains the 
filename of the controlling terminal of the calling 
process. 

Opens the default file specified by filename. Cal­
ling defopen with NULL closes the default file. 



defread 

fxlist 

getenv 

getopt 

logname 

longjmp 

nlist 

perror 

putenv 

regex 

regcmp 

setgid 

setjmp 

Run-Time Routines by Category 

Reads the previously opened file from the begin­
ning until it encounters a line beginning with a 
specified pattern; then returns a pointer to the first 
character in the line following the pattern. 

Performs the same function as xlist, except that 
fxlist accepts a pointer to a previously opened file 
instead of the filename of a file. 

Searches the environment list for a string and 
returns the associated value. 

Returns the next option letter that matches a letter 
in a string of recognized option letters. 

Returns a pointer to the null-terminated login 
name (determined by the environment variable). 

Restores the environment saved by the last call of 
setjmp (see setjmp below). 

Examines the executable output file and extracts a 
list of values that is matched to a specified name 
list; matches the name type and value to be 
inserted into the next two fields in the output file. 

Produces a short message on the standard error, 
stderr, describing the last error encountered dur­
ing a system call from a C program. 

Changes or adds the value of an environment vari­
able. 

Executes a compiled regular expression against a 
string. 

Compiles a regular expression and returns a 
pointer to the compiled form. 

Sets the real and effective group IDs of the calling 
process. 

Performs a nonlocal goto, saves its stack environ­
ment, and returns zero. 

4-29 



C Library Guide 

setuid 

shutdn 

swab 

sync 

tmpfile 

tmpnam 

ttyname 

uname 

xlist 

Sets the real and effective user IDs of the 
calling process. 

Flushes all information in the core memory and 
halts the CPU. 

Swaps bytes. 

Updates the super-block; causes all information in 
memory that should be on disk to be written out. 

Creates a temporary file and returns a correspond­
ing file pointer. 

Generates a unique filename for a temporary file. 

Returns a pointer to the null-terminated pathname 
of the terminal device associated with the file 
descriptor. 

Returns a null-terminated character string naming 
the current XENIX system. 

Functions identically to nlist, but uses different 
data structures with more information, such as 
segment value and longer symbol names (see 
nlist). 

The assert routine is a macro and is defined in assert.h. The setjmp.h and 
longjmp.h functions are declared in setjmp.h. 

The assert macro is typically used to test for program logic errors; it 
prints a message when a given "assertion" fails to hold true. Defining the 
identifier NDEBUG to any value causes occurrences of assert to be 
removed from the source file, thus allowing you to tum off assertion 
checking without modifying the source file. 

The getenv and putenv routines provide access to the environment table. 
The global variable environ also points to the environment table, but it is 
recommended that you use the getenv and putenv routines to access and 
modify environment settings rather than accessing the environment table 
directly. 

4-30 



Run-Time Routines by Category 

The perror routine prints the system error message, along with an 
optional user-supplied message, for the last system-level call that pro­
duced an error. The error number is obtained from the errno variable. The 
system message is taken from the sys errlist array. The errno variable is 
guaranteed to be set upon error for-only those routines that explicitly 
mention the errno variable in the "Return Value" section of the manual 
pages in the Subroutines(S) section of the XENIX Programmer's Refer­
ence. 

The setjmp and longjmp functions save and restore a stack environment. 
These routines let you execute a nonlocal goto. 

4-31 





Chapter 5 

Include Files 

5.1 Introduction 5-1 

5.2 /usr/inc1ude Files 5-1 

5.3 /usr/inc1ude/sys Files 5-8 





Include Files 

5.1 Introduction 

The include files in the XENIX system are divided into two groups: 

• those that reference system information (kept in lusrlincludel sys) 

• those that may be useful to individual users (kept in lusrlinclude) 

This demarcation is not absolute and you may find yourself using a 
number of the include files in the lusrlsys directory. 

This chapter briefly describes all the XENIX include files. Descriptions of 
include files are divided into two sections, user include files and system 
include files. 

5.2 /usr/include Files 

The following section describes the function of each include file and lists 
the routines that may be found in each. The include files may also contain 
macro and constant definitions, type definitions, function declarations, 
and structure definitions. 

Declarations or definitions of special interest will be noted. For detailed 
information on a particular routine, see the appropriate page in 
Subroutines(S) in the XENIX Programmer's Reference, or File Formats(F) 
in the XENIX User's Reference. 

ar.h 

ar.h defines file archiving. It sets the value of the archive file's unique 
identifier, the "archive number." The structure ar hdr defines the 
header inserted before each file in an archive. -

assert.h 

Defines a macro that is useful in verifying the validity of a specified C 
statement. For more information, see assert(S) in the XENIX 
Programmer's Reference. 

5-1 



C Library Guide 

core.h 

Defines the location and size of a core-image file. For detailed informa­
tion on the structure of core files, see core(F) in the XENIX User's Refer­
ence. 

ctype.h 

Defines a number of macros that classify ASCII-coded integer values by 
doing a table lookup. For a complete list of the available macros, see 
ctype(S) in the XENIX Programmer's Reference. 

curses.h 

Provides a number of routines that control screen and cursor functions. 
For a complete list of all the available functions, see curses(S) in the 
XENIX Programmer's Reference. 

dbm.h 

Defines the following routines: 

dbminit 
delete 
fetch 

firstkey 
nextkey 
store 

These routines are used for handling very large (up to one billion blocks) 
databases. For more detailed information, see dbm(S) in the XENIX 
Programmer's Reference. 

dump restor .h 

Defines the format of the header record and the first record of each 
description. When incremental dumps are made onto magnetic tapes, the 
files that are dumped are preceded by information defined by the structure 
spcl. 

The structure idates describes an entry to the file where the dump history 
is kept. 

5-2 



Include Files 

errno.h 

This file contains definitions of error codes that are passed to the external 
variable errno. When an error condition occurs during a system call, the 
kernel sets the errno variable to the appropriate value. For a complete list 
of these error codes and descriptions of how they occur, see "System 
Error Values." 

For information on error handling, see perror(S) in the XENlX 
Programmer's Reference. 

execargs.h 

Provides information for the shell. Not for use by the user. 

fcntl.h 

Provides the values for the file-control function fcntl. For a description of 
the values, see fcntl(S) in the XENlX Programmer's Reference. 

ftw.h 

Contains predefined values for an integer used by the system call ftw. 
These values represent the status of the object that ftw is examining. 

grp.h 

Defines a structure, group, which returns pointers to information about 
entries in the file fete! group. For more information, see getgrent(S) in the 
XENlX Programmer's Reference. 

macros.h 

Defines a number of useful macros (some for string handling, others for 
library routines). 

5-3 



C Library Guide 

malloc.h 

Defines the mallinfo structure (which contains information on memory 
allocation). Defines the following routines: 

free 
malloc 
realloc 

mallinfo 
mallopt 

For more information, see malloc(S) in the XENIX Programmer's Refer­
ence. 

math.h 

Defines the following math routines: 

acos erfc jl sin 
asin exp jn sinh 
atan fabs Idexp sqrt 
atan2 floor log tan 
atof fmod log10 tanh 
ceil frexp matherr yO 
cos gamma modf yl 
cosh hypot pow yn 
erf jO 

It also defines a number of useful mathematical constants. 

For detailed information on the math functions, see bessel(S), exp(S), 
f1oor(S), gamma(S), hypot(S), sinh(S), and trig(S) in the XENIX 
Programmer's Reference. 

For information on matherr return values, see "System Error Values. " 

5-4 



memory.h 

Defines the following routines: 

memccpy 
memchr 
memcmp 

memcpy 
memset 
movedata 

These routines are used for buffer manipulation. 

mnttab.h 

Include Files 

The structure mnttab defines the format of the letclmnttab file. This file 
keeps a record of special files mounted using the mount command. For 
more information, see mount(S) in the XENlX Programmer's Reference. 

mon.h 

Defines two structures, mon and monhdr. These structures determine the 
format of the buffer in which monitor stores information on the execution 
profile of a specified program. For more information, see monitor(S) and 
profileS) in the XENlX Programmer's Reference. 

pwd.h 

Defines two structures, passwd and comment, which determine the for­
mat of the entries in the letclpasswd file and the format of the comments 
associated with these entries. For details on the structure of the entries, 
see getpwent(S) in the XENlX Programmer's Reference. 

regexp.h 

Defines the following routines: 

advance 
compile 
ecmp 

getrnge 
step 

5-5 



C Library Guide 

These functions compile regular C language expressions and return 
pointers to the compiled forms. For a detailed description, see regexp(S) 
in the XENIX Programmer's Reference. 

sd.h 

Defines a number of flags for the sdget system call. Defines the sdget sys­
tem call. For more information, see sdget(S) in the XENIX Programmer's 
Reference. 

search.h 

Defines a structure, entry, and an enumeration type, action, for the 
hsearch system call. Defines an enumeration type, visit, for the tsearch 
system call. 

setjmp.h 

Provides data to ensure that the setjmp and longjmp system calls are 
machine independent. 

sgtty.h 

Defines the structure sgttyb for the stty and gtty system calls. Defines the 
stty and gtty system calls, terminal modes, delay algorithms, speeds, and 
ioctl arguments. Defines the structure tchars, which handles special char­
acters. For more information, see ioctl(S), stty(C), and tty(M) in the 
XENIX Programmer's Reference. 

signal.h 

Defines the values that can be assigned to signal by the kernel. These 
values are returned to the calling process upon receipt of an error. For 
more details, see signal(S) in the XENIX Programmer's Reference. 

stand.h 

Provides the necessary information and structures for the operation of the 
system in STANDALONE mode. 

5-6 



Include Files 

stdio.h 

Defines the standard buffered input and output routines. The files stdin, 
stdout, and stderr are defined. The following routines are defined: 

ftell 
getchar 
putchar 

rewind 
setbuf 

Macros are defined for clearerr, feof, ferror, and fileno. 

For details on how to use the standard I/O routines, see the following rou­
tines in Subroutines(S) in the XENIX Programmer's Reference. 

close 
ctermid 
cuserid 
fclose 

string.h 

ferror 
open 
pop en 
printf 

pute 
puts 
read 
scanf 

Defines the following string-manipulation routines: 

stremp 
strcspn 
strlen 

strnemp 
strspn 

For details, see string(S) in the XENIX Programmer's Reference. 

termio.h 

Defines characters and modes for the terminal interface. In addition, a 
structure is defined for the ioetl system calls. For more information, see 
ioctl(S) XENIX Programmer's Reference and tty(M) in the XENIX User's 
Reference. 

time.h 

Defines the structure for the conversion of time to ASCII format. Defines 
the routine tzset and the variables timezone, daylight, and tzname. For 
details, see etime(S) in the XENIX Programmer's Reference. 

5-7 



C Library Guide 

unlstd.h 

Defines the flag values for the lock system call. For details, see 10ck(S) in 
the XENIX Programmer's Reference. 

ustat.h 

Defines the structure ustat, which returns information about a given 
mounted file system. For details, see ustat(S) in the XENIX Programmer's 
Reference. 

utmp.h 

Defines the format for the letc!utmp system accounting file. For details, 
see utmp(M) in the XENIX User's Reference. 

values.h 

Defines various values for machine-dependent variables. 

varargs.h 

Contains macros for use in variable-argument functions. Provided to 
allow portability of C language code. 

5.3 lusr/includel sys Files 

The following include files are system files. Many of them define system 
parameters or contain information used by the kernel. 

a.out.h 

Declares the following structures: 

aexec 
bexec 
nlist 

xexec 
xext 
xiter 

xlist 
xseg 

These structures define (respectively): the a.out header, the b.out header, 
the structure for the nlist library call, the x.out header, the x.out header 

5-8 



Include Files 

extension, the x.out iteration record, the structure for the x1ist library call, 
and the x.out segment-table entry. 

For more detailed information, see the XENlX C User's Guide and 
a.out(F) in the XENlX User's Reference. 

acct.h 

Defines the structure acct, used in system accounting. For more informa­
tion, see acct(F) in the XENlX User's Reference. and accton(ADM) in the 
XENlX System Administrator's Guide. 

assert.h 

Defines the assert macro. For more details, see assert(S) in the XENlX 
Programmer's Reference. 

brk.h 

Defines the commands for break control. 

buf.h 

Defines the structures buf and hbuf. The buf structure provides access to 
an I/O buffer for device drivers, and the hbuf structure provides fast 
access to the buffers through hashing. 

callo.h 

Defines the structure callo, which allows a clock interrupt for a specific 
period. 

conf.h 

Defines the structures linesw,bdevsw, and cdevsw, which are an array of 
function declarations to a line discipline switch, a block device switch, 
and a character device switch, respectively. 

5-9 



C Library Guide 

dir.h 

Defines the structure direct, which contains the value for the maximum 
directory size. 

errno.h 

Contains the values for the errno variable. The kernel sets the errno vari­
able upon encountering an error. Math routines also set it. For more infor­
mation, see perror(S) in the XENIX Programmer's Reference. 

fblk.h 

Defines the structure fblk, which contains the address of the next free 
block. 

file.h 

Defines a structure, file, which holds the read/write pointer associated 
with each open file. 

filsys.h 

Defines the structure of the super-block and a number of fundamental sys­
tem variables. 

ino.h 

Defines the structure of the inode as it appears on a disk block. 

inode.h 

Contains definitions of the structures iisem, iisd, and inode. The iisem 
structure provides information about the semaphores related to a given 
inode. The iisd structure provides information about the shared data seg­
ments allocated to the inode. The inode structure provides information 
about the inode itself. 

5-10 



Include Files 

iobuf.h 

Defines the structure of the I/O buffer for each block device. 

ioctl.h 

Defines macros for I/O control. 

ipc.h 

Provides constant definitions for the interprocess communications (IPC) 
report. For more information, see ipc(S) in the XENIX Programmer's 
Reference. 

lock.h 

Defines flag values for the locking of resources. 

locking.h 

Defines flag values for the locking system call. Defines the structure 
locklist, which provides the structure for the linked list of lock regions. 

machdep.h 

Defines machine-dependent variables (such as the number of descriptor 
table entries and clock timing). 

map.h 

Defines the structure map, which holds the location of the swapmap. 

mmu.h 

For memory-management purposes, defines constants for the descriptor 
tables. 

5-11 



C Library Guide 

mount.h 

Defines the structure mount. One is allocated for every device mounted. 
For more information, see mount(S) in the XENIX Programmer's Refer­
ence. 

msg.h 

Defines the structures msqid _ ds, msg, msgbuf, and msqinfo, which pro­
vide (respectively) the data structure for interprocess messages, a struc­
ture for each message in the queue, the user message buffer for the 
msgsnd and msgrecv system calls, and a structure containing information 
about the state of the message queue. 

For more information on interprocess communication, see ipcs(ADM), 
msgctJ(S), msgget(S), and msgop(S) in the XENIX Programmer's Refer­
ence. 

param.h 

Contains a number of parameters vital to the system: the system's 
adjustable parameters, priorities, signals, MMU (Memory Management 
Unit) constants, macros for unit conversion, and definitions of the funda­
mental constants of the implementation. 

proc.h 

Defines the structures proc and xproc, which, when they may be swapped 
out, hold all the vital information on processes. 

reg.h 

Defines constants that provide an index of the available registers relative 
to AX. 

5-12 



Include Files 

relsym.h 

Provides definitions for the following structure types associated with the 
executable- file format: 

asym 
bsym 
reloc 

relsym86.h 

sym 
xreloc 

Contains the declarations for the 8086/80286 symbol table and relocation 
record structures. The structures dosexec, desctab, and srel86 are 
defined. The dosexec structure is provided for MS-DOS support, desctab 
provides the structure of the descriptor table, and srel86 provides the 
structure for segment relocation (which is necessary for medium- and 
large-model memory support). 

sd.h 

Defines the shared data table. See the following reference to sdu.h. 

sdu.h 

Defines values for the shared data flags, which are used by the shared data 
system calls: 

sdenter 
sdget 
sdleave 

sdfree 
sdgetv 
sdwaitv 

For more information, see Subroutines(S) in the XENIX Programmer's 
Reference. 

5-13 



C Library Guide 

sem.h 

Defines the structures used by the semaphore operations system call, 
semop. The structures are as follows: 

sem 
sembuf 
semid ds 

seminfo 
sem undo 

For detailed information, see semop(S) in the XENlX Programmer's 
Reference. 

signal.h 

Defines the values for the signal constants. For more information, see 
signal(S) in the XENlX Programmer's Reference. 

sites.h 

Provides values for system constants that are used in the structure defined 
in utsname.h. 

stat.h 

Defines the structure stat, which returns a structure to both the stat and 
fstat system calls. Also defines a number of constants. 

sysinfo.h 

Defines the structures sysinfo and syswait, which hold information about 
the state of the system and its processes. 

sysmacros.h 

Defines a number of machine-dependent macros. 

5-14 



Include Files 

systm.h 

Defines the structures sysent and idt, which define the format for the 
system-entry table and the interrupt descriptor table. It also defines a 
number of random variables and functions used by more than one routine. 

text.h 

Defines the structure text, which provides the format for text segments. It 
also defines a number of constants. 

timeb.h 

Defines the structure timeb, which is returned by the ftime system call. 
For more information, see time(S) in the XENIX Programmer's Reference. 

times.h 

Defines the structure tms, which is returned by the routine times. For 
more information, see times(S) in the XENIX Programmer's Reference. 

ttold.h 

Defines the structures sgtty and te, which contain information for the stty 
and gtty system calls. It also defines the terminal modes. 

tty.h 

Defines the structures: 

ebloek inter 
ehead tty 
elist 

The tty structure formats the information for I/O for each character 
device. The remaining structures define a number of internal state vari­
abIes and device commands. 

5-15 



C Library Guide 

types.h 

Defines the structure saddr and numerous machine-dependent variables. 

ulirnit.h 

Defines values passed to the ulirnit system call. 

user.h 

Defines the structure user, which contains all the data on a user process 
that doesn't need to be referenced (and is swapped with the process). The 
standard error codes are also redefined here. 

utsname.h 

Defines the structure utsname, which provides general information about 
system characteristics. 

var.h 

Defines the structure var. 

5-16 



Chapter 6 

Using the 

Standard 1/0 Functions 

6.1 Introduction 6-1 
6.1.1 Preparing for the I/O Functions 6-1 
6.1.2 Special Names 6-1 
6.1.3 Special Macros 6-3 

6.2 Using Command Line Arguments 6-4 

6.3 Using the Standard Files 6-5 
6.3.1 Reading From the Standard Input 6-6 
6.3.2 Writing to the Standard Output 6-9 
6.3.3 Program Example 6-11 

6.4 Using the Data Stream Functions 6-12 
6.4.1 Using File Pointers 6-13 
6.4.2 Opening a File 6-14 
6.4.3 Reading a Single Character 6-15 
6.4.4 Reading a String from a File 6-15 
6.4.5 Reading Records from a File 6-16 
6.4.6 Reading Formatted Data From a File 6-17 
6.4.7 Writing a Single Character 6-18 
6.4.8 Writing a String to a File 6-19 
6.4.9 Writing Formatted Output 6-19 
6.4.10 Writing Records to a File 6-20 
6.4.11 Testing for the End of a File 6-21 
6.4.12 Testing For File Errors 6-21 
6.4.13 Closing a File 6-22 
6.4.14 Program Example 6-22 

6.5 Using More Data Stream Functions 6-24 
6.5.1 Using Buffered Input and Output 6-24 
6.5.2 Reopening a File 6-25 
6.5.3 Setting the Buffer 6-26 
6.5.4 Putting a Character Back into a Buffer 6-26 



6.5.5 Flushing a File Buffer 6-27 

6.6 Using the Low-Level Functions 6-28 

6.7 Using File Descriptors 6-28 
6.7.1 Opening a File 6-29 
6.7.2 Reading Bytes From a File 6-30 
6.7.3 Writing Bytes to a File 6-30 
6.7.4 Closing a File 6-31 
6.7.5 Program Examples 6-31 
6.7.6 Using Random Access II 0 6-34 
6.7.7 Moving the Character Pointer 6-34 
6.7.8 Moving the Character Pointer in a Data Stream 6-35 
6.7.9 Rewinding a File 6-36 
6.7.10 Getting the Current Character Position 6-36 

6.8 Controlling Tenninal Lines Using tennio and ioctlO 6-37 
6.8.1 Setting Serial Communications Parameters 6-41 
6.8.2 Parity Handling 6-41 
6.8.3 Maintaining tty Parameters 6-42 



Using the Standard I/O Functions 

6.1 Introduction 

Nearly all programs use some form of input and output. Some programs 
read from or write to files stored on disk. Others write to devices such as 
line printers. Many programs read from and write to the user's terminal. 
For this reason, the standard C library provides several predefined input 
and output functions that a programmer can use in programs. 

This chapter explains how to use the I/O functions in the standard C 
library. In particular, it describes: 

• Standard I/O Routines 

• Command line arguments 

• Standard input and output files 

• Data "stream" functions for ordinary files 

• Low-level functions for ordinary files 

• Random access functions 

6.1.1 Preparing for the I/O Functions 

To use the standard I/O functions, a program must include the file stdio.h, 
which defines the needed macros and variables. To include this file, place 
the following line at the beginning of the program: 

#include <stdio.h> 

The actual functions are contained in the library file libc .a. This file is 
automatically read whenever you compile a program, so no special argu­
ment is needed when you invoke the compiler. 

6.1.2 Special Names 

The standard I/O library uses many names for special purposes. In gen­
eral, these names can be used in any program that has included the stdio.h 
file. The following is a list of the special names: 

stdin The name of the standard input file. 

stdout The name of the standard output file. 

6-1 



C Library Guide 

stderr 

EOF 

NULL 

FILE 

BUFSIZ 

The name of the standard error file. 

The value returned by the read routines on an 
end-of-file or an error. 

The null pointer, returned by pointer-valued func­
tions, to indicate an error. 

The name of the file type used to declare pointers 
into data structures (data streams.) 

The size in bytes (default is 1024) suitable for an 
I/O buffer supplied by the user. 

The stdin, stdout, and stderr files are created automatically when a pro­
gram is executed. Since the bulk of input and output of most programs is 
through the user's terminal, the system normally assigns stdin to the 
user's terminal keyboard and stdout and stderr to the user's terminal 
screen. 

Every file opened for access by the I/O functions has a unique pointer 
associated with it called a file pointer. This pointer, defined with the 
predefined type FILE found in the stdio.h file, points to a structure that 
contains information about the file, such as the location of the buffer, the 
current character position in the buffer, and the status of the file (whether 
the file is being read or written to). The pointer can be given a valid 
pointer value with the fopen, fdopen, or freopen function, as described 
later in this chapter. Thereafter, the file pointer can be used to refer to 
that file until the file is explicitly closed with the fclose function. 

Typically, a file pointer is defined with the following statement: 

FILE *infile; 

The standard input, output, and error files, like other opened files, have 
corresponding file pointers. Unlike other file pointers, the standard file 
pointers are predefined in the stdio.h file. This means a program can use 
these pointers to read and write from the standard files without first using 
the fopen function to open them. 

The predefined file pointers are typically used when a program needs to 
alternate between the standard input or output file and an ordinary file. 
Although the predefined file pointers have type FILE, they are constants, 
not variables. They must not be assigned values. 

6-2 



Using the Standard 1/0 Functions 

Redirecting and Piping Input and Output 

The XENIX system lets you redirect the standard input and output using 
the shell's redirection symbols. This allows a program to use other dev­
ices and files as sources of input and output instead of the terminal's key­
board and screen. 

Use the XENIX redirection symbols «, » and the pipe symbol (D to 
redefine the standard input and standard output for a particular program. 
The left angle bracket, <, instructs the shell to treat the named file as 
stdin, while the right angle bracket, >, instructs the shell to treat the 
named file as stdout. For example, the following command line opens the 
file phonelist as the standard input to the program dial: 

dial <phonelist 

If the file does not exist, the system displays an error message and stops 
the program. Similarly, the following command line directs the output of 
the program dial to the file savephone: 

dial > savephone 

If savephone does not already exist, the shell automatically creates it. 

Use the pipe symbol, I, to direct the output of one program to the input of 
another. For example, the following command line connects the standard 
output of dial to the standard input of we: 

dial I we 

Note that the standard input of dial and the standard output of we are not 
affected. When the program on the output side of a pipe terminates, the 
system automatically places the constant value EOF in the standard input 
of the program on the input side. 

6.1.3 Special Macros 

The functions getc, getchar, putc, put char , feof, ferror, and fileno are 
actually macros, not functions. This means that you cannot redeclare 
them or use them as targets for a breakpoint when debugging. 

6-3 



C Librai! Guide 

6.2 Using Command Line Arguments 

The XENIX system lets you pass information to a program at the same 
time you invoke it for execution. You can do this with command line 
arguments. 

A XENIX command line is the line you type to invoke a program. A com­
mand line argument is anything you type in a XENIX command line. A 
command line argument can be a filename, an option, or a number. The 
first argument in any command line must be the filename of the program 
you wish to execute. 

When you enter a command line, the system reads the first argument and 
loads the corresponding program. It also counts the other arguments, 
stores them in memory in the same order in which they appear on the line, 
and passes the count and the locations to the main function of the pro­
gram. The function can then access the arguments by accessing the 
memory in which they are stored. 

To access the arguments, the main function must have two parameters: 
argc, an integer variable containing the argument count, and argv, an 
array of pointers to the argument values. You can define the parameters 
by using the lines: 

main (argc, argv) 
int argc; 
char *argv [ J ; 

at the beginning of the main program function. When a program begins 
execution, argc contains the count, and each element in argv contains a 
pointer to one argument. 

An argument is stored as a null-terminated string (Le., a string ending 
with a null character, \0). The first string (at "argv[O]") is the program 
name. The argument count is never less than 1, since the program name is 
always considered the first argument. 

6-4 



Using the Standard 1/0 Functions 

In the following example, the command line arguments are read and then 
echoed on the terminal screen. This program is similar to the XENIX 
echo command. 

main (argc, argv) 
int argc; 

/* echo arguments */ 

char *argv[]; 
{ 

int i; 

for (i = 1; i < argc; i++) 
printf("%s%c", argv[i], 

(i<argc-1) ? ' , : '\n'); 

In the example above, an extra space character is added at the end of each 
argument to separate it from the next argument. This is required, since 
the system automatically removes leading and trailing whitespace charac­
ters (i.e., spaces and tabs) when it reads the arguments from the command 
line. Adding a newline character to the last argument is for convenience 
only; it causes the shell prompt to appear on the next line after the pro­
gram terminates. 

When entering arguments on a command line, make sure each argument 
is separated from the others by one or more whitespace characters. If an 
argument must contain whitespace characters, enclose that argument in 
double quotatiori marks. For example, in the command line 

display 3 4 "echo hello" 

the string "echo hello" is treated as a single argument Also, enclose in 
double quotation marks any argument that contains characters recognized 
by the shell (e.g., <, >, I ,and "). 

You should not change the values of the argc and argv variables. If 
necessary, assign the argument value to another variable and change that 
variable instead. You can give other functions in the program access to 
the arguments by assigning their values to external variables. 

6.3 Using the Standard Files 

Whenever you invoke a program for execution, the XENIX system 
automatically creates a standard input, a standard output, and a standard 
error file to handle a program's input and output needs. Since the bulk of 
input and output of most programs is through the user's own terminal, the 

6-5 



C Library Guide 

system normally assigns the user's terminal keyboard and screen as the 
standard input and output, respectively. The standard error file, which 
receives any error messages generated by the program, is also assigned to 
the terminal screen. 

A program can read and write to the standard input and output files with 
the getchar, gets, scanf, putchar, puts, and printf functions. The stan­
dard error file can be accessed using the data streaming functions 
described in the section "Using Data Stream I/O" later in this chapter. 

The XENIX system lets you redirect the standard input and output using 
the shell's redirection symbols. This allows a program to use other dev­
ices and files as its chief source of input and output in place of the 
terminal's keyboard and screen. 

The following sections explain how to read from and write to the standard 
input and output. They also explain how to redirect the standard input 
and output. 

6.3.1 Reading From the Standard Input 

You can read from the standard input with the getchar, gets, and scanf 
functions. 

The getchar function reads one character at a time from the standard 
input. The function call has the form: 

c = get char () 

where c is the variable to receive the character. It must have int type. 
The function normally returns the character read, but will return the end­
of-file value, EOF, if the end of a file or an error is encountered. 

6-6 



Using the Standard 1/0 Functions 

The getchar function is typically used in a conditional loop to read a 
string of characters from the standard input. For example, the following 
function reads cnt number of characters from the keyboard: 

readn (p, cnt) 
char p [ J; 
int cnt; 
{ 

int i,c; 

i = 0; 
while ( i<cnt ) 

if (( p[i++J = getchar() == EOF ) { 
p[iJ = 0; 
return(EOF); 

return(O); 

Note that if getchar is reading from the keyboard, it waits for characters 
to be entered before returning. 

The gets function reads a string of characters from the standard input and 
copies the string to a given memory location. The function call has the 
form: 

gets (s) 

where s is a pointer to the location to receive the string. The function 
reads characters until it finds a newline character, then replaces the new­
line character with a null character (\0) and copies the resulting string to 
memory. The function returns the null pointer value NULL if the end of 
the file or an error is encountered. Otherwise, it returns the value of s. 

The function gets is typically used to read a full line from the standard 
input. For example, the following program fragment reads a line from the 
standard input, stores it in the character array cmdln and calls a function 
(called parse), if no error occurs: 

char cmdln[SIZE]; 

if (gets(cmdln) != NULL) 
parse () ; 

In this case, the length of the string is assumed to be less than SIZE. 

Note that gets cannot check the length of the string it reads, so overflow 
can occur. 

6-7 



C Library Guide 

The scanf function reads one or more values from the standard input 
where a value may be a character string or a decimal, octal, or hexade­
cimal number. The function call has the form: 

scan f (jormat, argptr ...) 

where format is a pointer to a string that defines the format of the values 
to be read and argptr is one or more pointers to the variables that will 
receive the values. There must be one argptr for each format given in the 
format string. The format may be %s for a string, %c for a character, and 
%d, %0, or %x for a decimal, octal, or hexadecimal number, respectively. 
(Other formats are described in scanf(S), in the XENIX Programmer's 
Reference.) The function normally returns the number of values it read 
from the standard input, but it will return the value BOP if the end of the 
file or an error is encountered. 

Unlike the getchar and gets functions, scanf skips all whitespace charac­
ters, reading only those characters which make up a value. It then con­
verts the characters, if necessary, into the appropriate string or number. 

The scanf function is typically used whenever formatted input is required 
(i.e., input that must be entered in a special way or that has a special 
meaning). For example, in the following program fragment, scanf reads 
both a name and a number from the same line: 

char name[20]; 
int number; 

scanf("%s %d", name, &number); 

In this example, the string %s %d defines what values are to be read (a 
string and a decimal number). The string is copied to the character array 
name and the number to the integer variable number. Note that pointers 
to these variables are used in the call and not the actual variables them­
selves. 

6-8 



Using the Standard I/O Functions 

When reading from the keyboard, scanf waits for values to be entered 
before returning. Each value must be separated from the next by one or 
more whitespace characters (such as spaces, tabs, or even newline charac­
ters). For example, for the function 

scanf("%s %d %c", name, age, sex); 

an acceptable input is: 

John 27 
M 

If the value is a number, it must have the appropriate digits; that is, a 
decimal number must have decimal digits, octal numbers must have octal 
digits, and hexadecimal numbers must have hexadecimal digits. 

If scanf encounters an error, it immediately stops reading the standard 
input. Before scanf can be used again, the illegal character that caused 
the error must be removed from the input using the getchar function. 

You may use the getchar, gets, and scanf functions in a single program. 
Just remember that each function reads the next available character, mak­
ing that character unavailable to the other functions. 

Note that when the standard input is the terminal keyboard, the getchar, 
gets, and scanf functions usually do not return a value until at least one 
newline character has been entered. This is true even if only one charac­
ter is desired. If you wish to have immediate input on a single keystroke, 
see the the raw function call described in "Setting a Terminal Mode" in 
the "Screen Processing" chapter of this Guide. 

6.3.2 Writing to the Standard Output 

You can write to the standard output with the putchar, puts, and printf 
functions. 

The putchar function writes a single character to the output buffer. The 
function call has the form: 

putchar (c) 

where c is the character to be written. The function normally returns the 
same character it wrote, but will return the value EOF if an error is 
encountered. 

6-9 



C Library Guide 

The function is typically used in a conditional loop to write a string of 
characters to the standard output. For example, the following function 
writes ent number of characters plus a newline character to the standard 
output: 

writen (p,cnt) 
char p [ J; 
int cnt; 
{ 

int i; 

for (i=O; i<=cnt; i++) 
put char ( (i != cnt) p[iJ , \n'); 

The puts function copies the string found at a given memory location to 
the standard output. The function call has the form: 

puts (s) 

where s is a pointer to the location containing the string. The string may 
be any number of characters, but must end with a null character (\0). The 
function writes each character in the string to the standard output and 
replaces the null character at the end of the string with a newline charac­
ter. 

Since the function automatically appends a newline character, it is typi­
cally used when writing full lines to the standard output. For example, 
the following program fragment writes one of three strings to the standard 
output: 

char c; 

switch (c) 
case' l' : 

puts("Continuing ... "); 
break; 

case' 2' : 
puts ("All done."); 
break; 

default: 
puts("Sorry, there was an error."); 

The string to be written depends on the value of e. 

6-10 



Using the Standard I/O Functions 

The printf function writes one or more values to the standard output 
where the value is a character string or a decimal, octal, or hexadecimal 
number. The function automatically converts numbers into the proper 
display format. The function call has the form: 

printfiformat[,arg] ... ) 

where format is a pointer to a string which describes the format of each 
value to be written and arg is one or more variables containing the values 
to be written. There must be one arg for each format in the format string. 
The formats may be %s for a string, %c for a character, and %d, %0, or 
%x for a decimal, octal, or hexadecimal number, respectively. (Other for­
mats are described in printf(S), in the XENIX Programmer's Reference.) 
If a string is requested, the corresponding arg must be a pointer. The func­
tion normally returns zero, but will return a nonzero value if an error is 
encountered. 

The printf function is typically used when formatted output is required 
(i.e., when the output must be displayed in a certain way). For example, 
you may use the function to display a name and number on the same line 
as in the following example. 

char name [ ]; 
int number; 

printf ("%8 %d", name, number); 

In this example, the string %s %d defines the type of output to be 
displayed (a string and a number separated by a space). The output 
values are copied from the character array name and the integer variable 
number. 

You may use the putchar, puts, and printf functions in a single program. 
Just remember that the output appears in the same order as it is written to 
the standard output. 

6.3.3 Program Example 

This section shows how you can use the standard input and output files to 
perform useful tasks. The ccstrip (for "control character strip") program 
defined below strips out all ASCII control characters from its input except 
for newline and tab. You can use this program to display text or data files 
that contain characters that may disrupt your terminal screen. 

6-11 



C Library Guide 

#include <stdio.h> 

main() /* ccstrip: strip nth characters */ 
{ 

int c; 
while ((c = getchar ()) != EOF) 

if ((c >= , , && c < 0177) I I 
c = '\t' II c = '\n') 
putchar (c) ; 

exit (0); 

You can strip and display the contents of a single file by changing the 
standard input of the ccstrip program to the desired file. The command 
line: 

ccstrip < doc.t 

reads the contents of the file doc.t, strips out control characters, then 
writes the stripped file to the standard output. 

If you wish to strip several files at the same time, you can create a pipe 
between the cat command and ccstrip. 

To read and strip the contents of the files filel, file2, and file3, and then 
display them on the standard output, enter the command: 

cat filel file2 file3 I ccstrip 

If you wish to save the stripped files, you can redirect the standard output 
of ccstrip. For example, this command line writes the stripped files to the 
file clean: 

cat filel file2 file3 I ccstrip >clean 

Note that the exit function is used at the end of the program to ensure that 
any program which executes the ccstrip program will receive a normal 
termination status (typically 0) from the program when it completes. An 
explanation of the exit function and how to execute one program under 
control of another is given in the "Writing and Using Pipes" chapter. 

6.4 Using the Data Stream Functions 

The functions described so far have all read from the standard input and 
written to the standard output. The next step is to show functions that 
access files not already connected to the program. One set of standard I/O 
functions allows a program to open and access ordinary files as if they 
were a "data stream" of characters. For this reason, the functions are 
called the data stream functions. 

6-12 



Using the Standard I/O Functions 

The term "stream" in this section refers to a data structure used in the 
stdio routines described here. It should not be confused with data struc­
tures of the same name in any other product or package. 

Unlike the standard input and output files, a file to be accessed by a data 
stream function must be explicitly opened with the fopen function. The 
function can open a file for reading, writing, or appending. A program 
can read from a previously opened file with the getc, fgetc, fgets, fgetw, 
fread, and fscanf functions. It can write to a previously opened file with 
the putc, fputc, fputs, fputw, fwrite, and fprintf functions. A program 
can test for the end of the file or for an error with the feof and ferror 
functions. A program can close a file with the fclose function. 

6.4.1 Using File Pointers 

Every file opened for access by the data stream functions has a unique 
pointer called a file pointer associated with it. This pointer, defined with 
the predefined type FILE, found in the stdio.h file, points to a structure 
that contains information about the file, such as the location of the buffer 
(the intermediate storage area between the actual file and the program), 
the current character position in the buffer, and whether the file is being 
read or written. The pointer can be given a valid pointer value with the 
fopen function as described in the next section. (The NULL value, like 
FILE, is defined in the stdio.h file. ) Thereafter, the file pointer may be 
used to refer to that file until the file is explicitly closed with the fclose 
function. 

Typically, a file pointer is defined with the statement: 

FILE *infilei 

The standard input, output, and error files, like other opened files, have 
corresponding file pointers. These file pointers are named stdin for stan­
dard input, stdout for standard output, and stderr for standard error. 
Unlike other file pointers, the standard file pointers are predefined in the 
stdio.h file. This means that a program may use these pointers to read and 
write from the standard files without first using the fopen function to open 
them. 

The predefined file pointers are typically used when a program needs to 
alternate between the standard input or output file and an ordinary file. 
Although the predefined file pointers have type FILE, they are constants, 
not variables. They must not be assigned values. 

6-13 



C Library Guide 

6.4.2 Opening a File 

The fopen function opens a given file and returns a pointer (called a file 
pointer) to a structure containing the data necessary to access the file. 
The pointer may then be used in subsequent data stream functions to read 
from or write to the file. See fopen(S) in the XENIX Programmer's Refer­
ence. 

The function call has the form: 

fp = fopen(filename, type) 

where fp is the pointer to receive the file pointer, filename is a pointer to 
the name of the file to be opened and type is a pointer to a string that 
defines how the file is to be opened. The type string may be r for reading, 
w for writing, and a for appending, (open for writing at the end of the file). 

A file may be opened for different operations at the same time if separate 
file pointers are used. For example, the following program fragment 
opens the file named /usr/accounts for both reading and writing: 

FILE *rp, *wp, *fopen(); 

rp = fopen("!usr!accounts","r"); 
wp = fopen("!usr!accounts","a"); 

Opening an existing file for writing destroys the old contents. Opening an 
existing file for appending leaves the old contents unchanged and causes 
any data written to the file to be appended to the end. 

Trying to open a nonexistent file for reading causes an error. Trying to 
open a nonexistent file for writing or appending causes a new file to be 
created. Trying to open any file for which the program does not have 
appropriate permission causes an error. 

The function normally returns a valid file pointer, but will return the 
value NULL if an error on opening the file is encountered. It is wise to 
check for the NULL value after each function call to prevent reading or 
writing after an error. 

6-14 



Using the Standard I/O Functions 

6.4.3 Reading a Single Character 

The getc and fgetc functions return a single character read from a given 
file, and return the value EOF if the end of the file or an error is encoun­
tered. The function calls have the form: 

c = getc (stream) 

and 

c = fgetc (stream) 

where stream is the file pointer to the file to be read and c is the variable 
to receive the character. The return value is always an integer. 

The functions are typically used in conditional loops to read a string of 
characters from a file. For example, the following program fragment con'­
tinues to read characters from the file given to it by in/de until the end of 
the file or an error is encountered: 

int i; 
char buf [MAX] ; 
FILE *infile; 

while ((c=getc (infile)) != EOF) 

buf[i++]=c; 

The only difference between the functions is that getc is defined as a 
macro, and fgetc as a true function. This means that, unlike getc, fgetc 
may be passed as an argument in another function, used as a target for a 
breakpoint when debugging, or used to avoid any side effects of macro 
processing. 

6.4.4 Reading a String from a File 

The fgets function reads a string of characters from a file and copies the 
string to a given memory location. The function call has the form: 

fgets (s,n,stream) 

where s is be a pointer to the location to receive the string, n is a count of 
the maximum number of characters to be in the string, and stream is the 
file pointer of the file to be read. The function reads n-J characters or up 
to the first newline character, whichever occurs first. The function 
appends a null character (\0) to the last character read and then stores the 
string at the specified location. The function returns the null pointer value 
NULL if the end of the file or an error is encountered. Otherwise, it 
returns the pointer s. 

6-15 



C Library Guide 

The function is typically used to read a full line from a file. For example, 
the following program fragment reads a string of characters from the file 
given by myfile. 

char cmdln[MAX]; 
FILE *myfile; 

if ( fgets( cmdln, MAX, myfile ) != NULL) 
parse ( cmdln ); 

In this example, fgets copies the string to the character array cmdln. 

6.4.5 Reading Records from a File 

The fread function reads one or more records from a file and copies them 
to a given memory location. The function call has the form: 

fread (ptr, size, nitems, stream) 

where ptr is a pointer to the location to receive the records, size is the size 
(in bytes) of each record to be read, nitems is the number of records to be 
read, and stream is the file pointer of the file to be read. The ptr may be a 
pointer to a variable of any type (from a single character to a structure). 
The size, an integer, should give the numbers of bytes in each item you 
wish to read. One way to ensure this is to use the sizeof function on the 
pointer ptr (see the example below). The function always returns the 
number of records it read, regardless of whether or not the end of the file 
or an error is encountered. 

6-16 



Using the Standard I/O Functions 

The function is typically used to read binary data from a file. For exam­
pIe, the following program fragment reads two records from the file given 
by database and copies the records into the structure person. 

# include <stdio.h> 

#define dbname "dbfile" 

typedef struct 
{ 

main () 
{ 

char name[20]; 
int age; 

record; 

FILE *database, *fopen(); 
record person[2]; 

if ((database = fopen (dbname, "w")) == NULL) 
printf ("Cannot open %s\n",dbname); 
exit(l); 

fread(char * person, sizeof(record), 2, database); 
printf("record is %d\n",sizeof(record)); 
printf ("person is %d\n", sizeof (person)); 

Note that since fread does not explicitly indicate errors, the feof and fer­
ror function~ should be used to detect end of the file and errors. These 
functions are described later in this chapter. 

6.4.6 Reading Formatted Data From a File 

The fscanf function reads formatted input from a given file and copies it 
to the memory location given by the respective argument pointers, just as 
the scanf function reads from the standard input. The function call has the 
form: 

fscanf (stream, format, argptr ... ) 

where stream is the file pointer of the file to be read, format is a pointer to 
the string that defines the format of the input to be read, and argptr is one 
or more pointers to the variables that are to receive the formatted input. 
There must be one argptr for each format given in the format string. The 
format may be %s for a string, %c for a character, and %d, %0, or %x for 
a decimal, octal, or hexadecimal number, respectively. (Other formats are 

6-17 



C Library Guide 

described in scanf (S) in the XENIX Programmer's Reference.) The func­
tion nonnally returns the number of arguments it read, but will return the 
value BOP if the end of the file or an error is encountered. 

The function is typically used to read files that contain both numbers and 
text. For example, this program fragment reads a name and a decimal 
number from the file given by file: 

FILE *file; 
int pay; 
char name[20]; 

fscanf(file,"%s %d\n", name, &pay); 

This program fragment copies the name to the character array name and 
the number to the integer variable pay. 

6.4.7 Writing a Single Character 

The putc and fputc functions write single characters to a given file. The 
function calls have the form: 

putc (c, stream) 

and 

fputc (c, stream) 

where c is the character to be written and stream is the file pointer to the 
file to receive the character. The function normally returns the character 
written, but will return the value BOP if an error is encountered. 

The putc function is defined as a macro and may have undesirable side 
effects resulting from argument processing. In such cases, the equivalent 
function fputc should be used. 

These functions are typically used in conditional loops to write a string of 
characters to a file. For example, the following program fragment writes 
characters from the array name to the file given by out. 

6-18 

FILE *out; 
char name [MAX] ; 
int i; 

for (i=O; i<MAX; i++) 
fputc( name[i], out); 



Using the Standard 1/0 Functions 

The only difference between the putc and fputc functions is that putc is 
defined as a macro and fputc as an actual function. This means that 
fputc, unlike putc, may be used as an argument to another function, as 
the target of a breakpoint when debugging, and to avoid the side effects of 
macro processing. 

6.4.8 Writing a String to a File 

The fputs function writes a string to a given file. The function call has the 
form: 

fputs (s,stream) 

where s is a pointer to the string to be written, and stream is the file 
pointer to the file. 

The function is typically used to copy strings from one file to another. 
For example, in the following program fragment, gets and fputs are com­
bined to copy strings from the standard input to the file given by out. 

FILE *out; 
char cmdln[MAX]; 

if ( gets ( cmdln != EOF 
fputs( cmdln, out); 

The function normally returns zero, but will return EOF if an error is 
encountered. 

6.4.9 Writing Formatted Output 

The fprintf function writes formatted output to a given file, just as the 
printf function writes to the standard output. The function call has the 
form: 

fprintf (stream, format [, arg ] ... ) 

where stream is the file pointer of the file to be written to, format is a 
pointer to a string which defines the format of the output, and arg is one 
or more arguments to be written. There must be one arg for each format 
in the format string. The formats may be %s for a string, %c for a charac­
ter, and %d, %0, or %x for a decimal, octal, or hexadecimal number, 
respectively. (Other formats are described in printf(S) in the XENIX 
Reference.) If a string is requested, the corresponding arg must be a 
pointer, otherwise, the actual variable must be used. The function 

6-19 



C Library Guide 

nOImally returns zero, but will return a nonzero number if an error is 
encountered. 

The function is typically used to write output that contains both numbers 
and text. For example, to write a name and a decimal number to the file 
given by outftle, use the following program fragment: 

FILE *outfile; 
int pay; 
char name[20]; 

fprintf(outfile,"%s %d\n", name, pay); 

The name is copied from the character array name, and the number from 
the integer variable pay. 

6.4.10 Writing Records to a File 

The fwrite function writes one or more records to a given file. The func­
tion call has the form: 

fwrite (ptr, size, nitems, stream) 

where ptr is a pointer to the first record to be written, size is the size (in 
bytes) of each record, nitems is the number of records to be written, and 
stream is the file pointer of the file. The ptr may point to a variable of 
any type (from a single character to a structure). The size should give the 
number of bytes in each item to be written. One way to ensure this is to 
use the sizeof function (see the example below). The function always 
returns the number of items actually written to the file whether or not the 
end of the file or an error is encountered. 

The function is typically used to write binary data to a file. For example, 
the following program fragment writes two records to the file given by 
database. 

FILE *database; 
struct record { 

char name [20] ; 
int age; 

person [2] ; 

fwrite((char*)person, sizeof(struct record), 2, database); 

The records are copied from the structure person. 

6-20 



Using the Standard I/O Functions 

Since the function does not report the end of the file or errors, the feof and 
ferror functions should be used to detect these conditions. 

6.4.11 Testing for the End of a File 

The feof function returns the value -1 if a given file has reached its end. 
The function call has the fonn: 

feof (stream) 

where stream is the file pointer of the file. The function returns -1 only if 
the file has reached its end, otherwise it returns O. The return value is 
always an integer. 

The feof function is typically used after those functions whose return 
value is not a clear indicator of an end-of-file condition. For example, in 
the following program fragment the function checks for the end of the file 
after each character is read. The reading stops as soon as feof returns -1. 

char name [ 10] ; 
FILE *stream; 

do 
fread( name, sizeof(name) , 1, stream ); 

while(!feof( stream )); 

6.4.12 Testing For File Errors 

The ferror function tests a given data stream file for an error. The func­
tion call has the fonn: 

ferror (stream) 

where stream is the file pointer of the file to be tested. The function 
returns a nonzero (true) value if an error is detected, otherwise it returns 
zero (false). The function returns an integer value. 

The function is typically used to test for errors before perfonning a subse­
quent read or write to the file. For example, in the following program 
fragment ferror tests the file given by stream. 

6-21 



C Library Guide 

char *buf; 
char x[5]; 

while ( ! ferror (stream) 
fread(buf, sizeof(x), 10, stream); 

If it returns zero, the next item in the file given by stream is copied to but 
Otherwise, execution passes to the next statement. 

Further use of a file after a error is detected may cause undesirable 
results. 

6.4.13 Closing a File 

The fclose function closes a file by breaking the connection between the 
file pointer and the structure created by fopen. Closing a file empties the 
contents of the corresponding buffer and frees the file pointer for use by 
another file. The function call has the form: 

fclose (stream) 

where stream is the file pointer of the file to close. The function normally 
returns 0, but will return -1 if an error is encountered. 

The fclose function is typically used to free file pointers when they are no 
longer needed. This is important because usually no more than 60 files 
can be open at the same time. For example, the following program frag­
ment closes the file given by infile when the file has reached its end: 

FILE *infile; 

if ( feof(infile) ) 
fclose( infile ); 

Note that whenever a program terminates normally, the fclose function is 
automatically called for each open file, so no explicit call is required 
unless the program must close a file before its end. Also, the function 
automatically calls fflush to ensure that everything written to the file's 
buffer actually gets to the file. 

6.4.14 Program Example 

This section shows how you can use the data stream functions you have 
seen so far to perform useful tasks. The following program, which counts 
the characters, words, and lines found in one or more files, uses the fopen, 
fprintf, getc, and fclose functions to open, close, read, and write to the 
given files. The program incorporates a basic design that is common to 
other XENIX programs, namely it uses the filenames found in the 

6-22 



Using the Standard I/O Functions 

command line as the files to open and read, or if no names are present, it 
uses the standard input. This allows the program to be invoked on its 
own, or be the receiving end of a pipe. 

#include <stdio.h> 

main(argc, argv) /* wc: count lines, words, chars */ 
int argc; 
char *argv [J ; 
{ 

int c, i, inword; 
FILE *fp, *fopen(); 
long linect, wordct, charct; 
long tlinect = 0, twordct = 0, tcharct = 0; 

i = 1; 
fp = stdin; 
do 
{ 

if (argc > 1 && 
(fp=fopen (argv[iJ, "r")) == NULL) { 
fprintf (stderr, "wc: can't open %s\n", 

argv[iJ) ; 
continue; 

linect = wordct = charct = inword = 0; 
while ((c = getc (fp)) != EOF) { 

charct++; 
if (c == '\n') 

linect++; 
if (c == , , I I c == '\t' I I c == '\n') 

inword = 0; 
else if (inword == 0) 

inword = 1; 
wordct++; 

printf ("%7ld %7ld %7ld", linect, wordct, 
charct) ; 

printf (argc > 1 ? " %s\n" : "\n", argv[iJ); 
fclose (fp) ; 
tlinect += linect; 
twordct += wordct; 
tcharct += charct; 

while (++i < argc); 
if (argc > 2) 

printf ("%7ld %7ld %7ld total \n", tlinect, 
twordct, tcharct); 

exit (0); 

The program uses fp as the pointer to receive the current file pointer. Ini­
tially, this is set to stdin in case no filenames are present in the command 
line. If a filename is present, the program calls fopen and assigns the file 
pointer to fp. If the file cannot be opened (in which case fopen returns 

6-23 



C Library Guide 

NULL), the program writes an error message to the standard error file 
stderr with the fprintf function. The function prints the format string 
"we: can't open %s", replacing the %s with the name pointed to by 
argvfiJ· 

Once a file is opened, the program uses the getc function to read each 
character from the file. As it reads characters, the program keeps a count 
of the number of characters, words, and lines. The program continues to 
read until the end of the file is encountered, that is, when getc returns the 
value EOF. 

Once a file has reached its end, the program uses the printf function to 
display the character, word, and line counts on the standard output. The 
format string in this function causes the counts to be displayed as long 
decimal numbers with no more than 7 digits. The program then closes the 
current file with the fclose function and examines the command line argu­
ments to see if there is another filename. 

When all files have been counted, the program uses the printf function to 
display a grand total at the standard output, then stops execution with the 
exit function. 

6.5 Using More Data Stream Functions 

The data stream functions allow more control over a file than just open­
ing, reading, writing, and closing. The functions also let a program take 
an existing file pointer and reassign it to another file (similar to redirect­
ing the standard input and output files) as well as manipulate the buffer 
that is used for intermediate storage between the file and the program. 

6.5.1 Using Buffered Input and Output 

Buffered I/O is an input and output technique used by the XENIX system 
to cut down the time needed to read from and write to files. Buffered I/O 
lets the system collect the characters to be read or written, and then 
transfer them all at once rather than one character at a time. This reduces 
the number of times the system must access the I/O devices and conse­
quently provides more time for running user programs. Not all files have 
buffers. For example, files associated with terminals, such as the standard 
input and output, are not buffered. This prevents unwanted delays when 
transferring the input and output. When a file does have a buffer, the 
buffer size in bytes is given by the mainfest constant BUFSIZ, which is 
defined in the stdio.h file. 

6-24 



Using the Standard I/O Functions 

When a file has a buffer, the data stream functions read from and write to 
the buffer instead of the file. The system keeps track of the buffer and 
when necessary, fills it with new characters (when reading) or flushes 
(copies) it to the file (when writing). Normally, a buffer is not directly 
accessible to a program, however a program can define its own buffer for 
a file with the setbuf function. The function also lets a program change a 
buffered file to be an unbuffered one. The ungetc function lets a program 
put a character it has read back into the buffer, and the mush function lets 
a program flush the buffer before it is full. 

6.5.2 Reopening a File 

The freopen function closes the file associated with a given file pointer, 
then opens a new file and gives it the same file pointer as the old file. The 
function call has the form: 

freopen (newfile, type, stream) 

where newftle is a pointer to the name of the new file, type is a pointer to 
the string that defines how the file is to be opened ( r for read, w for writ­
ing, and a for appending), and stream is the file pointer of the old file. 
The function returns the file pointer stream if the new file is opened. Oth­
erwise, it returns the null pointer value NULL. 

The freopen function is used chiefly to attach the predefined file pointers 
stdin, stdout, and stderr to other files. For example, the following pro­
gram fragment opens the file named by new/tie as the new standard output 
file: 

char *newfile; 
FILE *nfile; 

nfile = freopen(newfile,"w",stdout); 

This has the same effect as using the redirection symbols in the command 
line of the program. 

6-25 



C Library Guide 

6.5.3 Setting the Buffer 

The setbuf function changes the buffer associated with a given file to the 
program's own buffer. It can also change the access to the file to no 
buffering. The function call has the fonn: 

setbuf (stream, buj) 

where stream is a file pointer and buf is a pointer to the new buffer, or is 
the null pointer value NULL if no buffering is desired. If a buffer is given, 
it must be BUFSIZ bytes in length, where BUFSIZ is a manifest constant 
found in stdio.h. 

The function is typically used to to create a buffer for the standard output 
when it is assigned to the user's tenninal, thus, improving execution time 
by eliminating the need to write one character to the screen at a time. For 
example, the following program fragment changes the buffer of the stan­
dard output to the location pointed to by p: 

char *p; 

p=malloc( BUFSIZ ); 
setbuf ( stdout, p ); 

The new buffer is BUFSIZ bytes long. 

The function may also be used to change a file from buffered to 
unbuffered input or output. Unbuffered input and output generally 
increase the total time needed to transfer large numbers of characters to 
or from a file, but give the fastest transfer speed for individual characters. 

The setbuf function should be called immediately after opening a file and 
before reading or writing to it. Furthennore, the fclose or fHush function 
must be used to flush the buffer before tenninating the program. If not 
used, some data written to the buffer may not be written to the file. 

6.5.4 Putting a Character Back into a Buffer 

The ungetc function puts a character back into the buffer of a given file. 
The function call has the fonn: 

ungetc (c, stream) 

where c is the character to put back and stream is the file pointer of the 
file. The function nonnally returns the same character it put back, but 
will return the value EOF if an error is encountered. 

6-26 



Using the Standard I/O Functions 

The function is typically used when scanning a file for the first character 
of a string of characters. For example, the following program fragment 
puts the first character that is not a whitespace character back into the 
buffer of the file given by inflie, allowing the subsequent call to gets to 
read that character as the first character in the string: 

FILE *infile; 
char name[20]; 

while ( isspace ( c=getc (infile) ) ) 

ungetc( c, stdin ); 
gets( name, stdin ); 

Putting a character back into the buffer does not change the corresponding 
file; it only changes the next character to be read. 

The function can only put a character back if one has been previously 
read. The function cannot put more than one character back at a time. 
This means that if three characters are read, then only the last character 
can be put back, never the first two. 

The value EOF must never be put back in the buffer. 

6.5.5 Flushing a File Buffer 

The mush function empties the buffer of a given file by immediately writ­
ing the buffer contents to the file. The function call has the form: 

fflush (stream) 

where stream is the file pointer of the file. The function normally returns 
zero, but will return the value EOF if an error is encountered. 

The function is typically used to guarantee that the contents of a partially 
filled buffer are written to the file. For example, the following program 
fragment empties the buffer for the file given by outtty if the error condi­
tion given by errflag is O. 

FILE *outtty; 
int errflag; 

if (errflag == 0) 
fflush( outtty ); 

6-27 



C Library Guide 

Note that fflush is automatically called by the fclose function to empty 
the buffer before closing the file. This means that no explicit call to mush 
is required if the file is also being closed. 

The function ignores any attempt to empty the buffer of a file opened for 
reading. 

6.6 Using the Low-Level Functions 

The low-level functions provide direct access to files and peripheral dev­
ices. They are actually direct calls to the routines used in the XENIX 
operating system to read from and write to files and peripheral devices. 
The low-level functions give a program the same control over a file or 
device as the system, letting it access the file or device in ways that the 
data stream functions do not. However, low-level functions, unlike data 
stream functions, do not provide buffering or any other useful services of 
the data stream functions. This means that any program that uses the 
low-level functions has the complete burden of handling input and output. 

The low-level functions, like the data stream functions, cannot be used to 
read from or write to a file until the file has been opened. A program may 
use the open function to open an existing or new file. A file can be 
opened for reading, writing, or appending. 

Once a file is opened for reading, a program can read bytes from it with 
the read function. A program can write to a file opened for writing or 
appending with the write function. A program can close a file with the 
close function. 

6.7 Using File Descriptors 

Each file that has been opened for access by the low-level functions has a 
unique integer called a "file descriptor" associated with it. A file 
descriptor is similar to a file pointer in that it identifies the file. A file 
descriptor is unlike a file pointer in that it does not point to any specific 
structure. Instead, the descriptor is used internally by the system to 
access the necessary information. Since the system maintains all infor­
mation about a file, the only way to access a file in a program is through 
the file descriptor. 

There are three predefined file descriptors Gust as there are three 
predefined file pointers) for the standard input, output, and error files. The 
descriptors are 0 for the standard input, 1 for the standard output, and 2 
for the standard error file. As with predefined file pointers, a program 
may use the predefined file descriptors without explicitly opening the 
associated files. 

6-28 



Using the Standard 110 Functions 

Note that if the standard input and output files are redirected, the system 
changes the default assignments for the file descriptors 0 and 1 to the 
named files. This is also true if the input or output is associated with a 
pipe. File descriptor 2 normally remains attached to the terminal. 

6.7.1 Opening a File 

The open function opens an existing or new file and returns a file descrip­
tor for that file. The function call has the form: 

fd = open (name, access [, mode] ); 

where fd is the integer variable to receive the file descriptor, name is a 
pointer to a string containing the filename, access is an integer expression 
giving the type of file access, and mode is an integer number giving a new 
file's permissions. The function normally returns a file descriptor (a posi­
tive integer), but will return -1 if an error is encountered. 

The access expression is formed by using one or more of the following 
manifest constants: 0_ RDONLY for reading, 0_ WRONLY for writing, 
0_ RDWR for both reading and writing, 0 _APPEND for appending to the 
end of an existing file, and 0_ CREAT for creating a new file. (Other con­
stants are described in open(S) in the KENIK Programmer's Reference.) 
The logical OR operator ( I ) may be used to combine the constants. The 
mode is used only if 0 _ CREAT is given. For example, in the following 
program fragment, the function is used to open the existing file named 
lusrlaccounts for reading, and create the new file named lusrltmplscratch 
for writing: 

int in, out; 

in = open ( "/usr/accounts", ° ROONLY ); 

out = open( "/usr/trrp/scratch", O_WRONLY I O_CREAT, 0755 ); 

In the XENIX system, each file has 9 bits of protection information which 
control read, write, and execute permission for the owner of the file, for 
the owner's group, and for all others. A three-digit octal number is the 
most convenient way to specify the permissions. In the example above, 
the octal number 0755 specifies read, write, and execute permission for 
the owner, read and execute permission for the group, and read and exe­
cute permission for everyone else. 

Note that if 0 _ CREAT is given and the file already exists, the function 
destroys the file's old contents. 

6-29 



C Library Guide 

6.7.2 Reading Bytes From a File 

The read function reads one or more bytes of data from a given file and 
copies them to a given memory location. The function call has the form: 

nJead = read (jd, buf, n); 

where n _read is the variable to receive the count of bytes actually read, fd 
is the file descriptor of the file, buf is a pointer to the memory location to 
receive the bytes read, and n is a count of the desired number of bytes to 
be read. The function normally returns the same number of bytes as 
requested, but will return fewer if the file does not have that many bytes 
left to be read. The function returns 0 if the file has reached its end, or -1 
if an error is encountered. 

When the file is a terminal, read normally reads only up to the next new­
line. 

The number of bytes to be read is arbitrary. The two most common 
values are 1, which means one character at a time, and 512, which 
corresponds to the physical block size on many peripheral devices. 

6.7.3 Writing Bytes to a File 

The write function writes one or more bytes from a given memory loca­
tion to a given file. The function call has the form: 

n_written = write (jd, buf, n); 

where n written is the variable to receive a count of bytes actually writ­
ten, fd is the file descriptor of the file, buf is the name of the buffer con­
taining the bytes to be written, and n is the number of bytes to be written. 

The function always returns the number of bytes actually written. It is 
considered an error if the return value is not equal to the number of bytes 
requested to be written. 

The number of bytes to be written is arbitrary. The two most common 
values are 1, which means one character at a time and 512, which 
corresponds to the physical block size on many peripheral devices. 

6-30 



Using the Standard 1/0 Functions 

6.7.4 Closing a File 

The close function breaks the connection between a file descriptor and an 
open file, and frees the file descriptor for use with some other file. The 
function call has the form: 

close (jd) 

where fd is the file descriptor of the file to close. The function normally 
returns 0, but will return -1 if an error is encountered. 

The function is typically used to close files that are no longer needed. For 
example, the following program fragment closes the standard input if the 
argument count is greater than 1. 

if (argc >1) 
close ( 0 ); 

Note that all open files in a program are closed when a program ter­
minates normally or when the exit function is called, so no explicit call to 
close is required. 

6.7.5 Program Examples 

This section shows how to use the low-level functions to perform useful 
tasks. It presents three examples that incorporate the functions as the sole 
method of input and output. 

The first program copies its standard input to its standard output: 

#define BUFSIZE 512 

main() /* copy input to output */ 
{ 

char buff BUFSIZE ]; 
int n; 
while ((n = read( 0, buf, BUFSIZE )) > 0) 

write(l, buf, n); 
exit (0); 

The program uses the read function to read BUFSIZE bytes from the stan­
dard input (file descriptor 0). It then uses write to write the same number 
of bytes it read to the standard output (file descriptor 1). If the standard 
input file size is not a multiple of BUFSIZE, the last read returns a 
smaller number of bytes to be written by write, and the next call to read 

6-31 



C Library Guide 

returns zero. 

This program can be used like a copy command to copy the content of 
one file to another. You can do this by redirecting the standard input and 
output files. 

The second example shows how the read and write functions can be used 
to construct higher level functions like getchar and putchar. For exam­
pIe, the following is a version of getchar that perfonns unbuffered input: 

#define CMASK 0377 
/* for making chars> 0 */ 

getchar () 
/* unbuffered single character input */ 

char c; 
return((read(O, &c, 1) > 0) ? c & CMASK : EOF); 
} 

The variable c must be declared char, because read accepts a character 
pointer. In this case, the character being returned must be masked with 
octal 0377 to ensure that it is positive; otherwise sign extension may 
make it negative. 

The second version of getchar reads input in large blocks, but hands out 
the characters one at a time: 

#define CMASK 0377 
/* for making char's> 0 */ 

#define BUFSIZE 512 

get char () 
{ 

/* buffered version */ 

static char buf[BUFSIZE]; 
static char *bufp = bUf; 
static int n = 0; 

if (n == 0) /* buffer is empty */ 
n = read(O, buf, BUFSIZE); 
bufp = buf; 

return ((--n >= 0) 
*bufp++ & CMASK EOF) ; 

Again, each character must be masked with the octal constant 0377. 

6-32 



Using the Standard 1/0 Functions 

The final example is a simplified version of the XENIX utility, cp, a pro­
gram that copies one file to another. The main simplification is that this 
version copies only one file, and does not permit the second argument to 
be a directory. 

#define NULL 0 
#define BUFSIZE 512 
#define PMODE 0644 /* RW for owner, 

R for group, others */ 

main (argc, argv) 
int argc; 

/* cp: copy f1 to f2 */ 

char *argv[]; 
{ 

int fl, f2, n; 
char buff BUFSIZE ]; 

if (argc != 3) 
error ("Usage: cp from to", NULL); 

if ((fl = open(argv[l], 0 RDONLY)) == -1) 
error ("cp: can't open %s", argv[lJ); 

if ((f2 = open (argv[2] , 0 CREAT I 0 WRONLY, 
PMODE)) ==-::"1) -

error ("cp: can't create %s", argv [2] ) ; 

while ((n = read(fl, buf, BUFSIZE)) > 0) 
if (write (f2, buf, n) != n) 

error ("cp: write error", NULL); 
exit (0); 

error (sl, s2) 
/* 

* print error message and die 
*/ 

char *sl, *s2; 
{ 

printf(sl, s2); 
printf ("\n") ; 
exit (1); 

There is a limit (usually 60) to the number of files that a program may 
have open simultaneously. Therefore, any program that intends to pro­
cess many files must be designed to reuse file descriptors by closing 
unneeded files. 

6-33 



C Library Guide 

6.7.6 Using Random Access 1/0 

Input and output operations on any file are nonnally sequential. This 
means each read or write takes place at the character position immedi­
ately after the last character read or written. The standard library, how­
ever, provides a number of data stream and low-level functions that allow 
a program to access a file randomly; that is, to exactly specify the posi­
tion it wishes to read from or write to next. 

The functions that provide random access operate on a file's "character 
pointer." Every open file has a character pointer that points to the next 
character to be read from that file, or the next place in the file to receive a 
character. Nonnally, the character pointer is maintained and controlled 
by the system, but the random access functions let a program move the 
pointer to any position in the file. 

6.7.7 Moving the Character Pointer 

The Iseek function, a low-level function, moves the character pointer in a 
file opened for low-level access to a given position. The function call has 
the fonn: 

lseek (jd, offset, origin); 

where fd is the file descriptor of the file, offset is the number of bytes to 
move the character pointer, and origin is the number that gives the start­
ing point for the move. It may be 0 for the beginning of the file, 1 for the 
current position, and 2 for the end. 

For example, the following call forces the current position in the file, 
whose descriptor is 3, to move to the 512th byte from the beginning of the 
file: 

lseek( 3, (long)512, 0 ) 

Subsequent reading or writing will begin at that position. Note that offset 
must be a long integer andfd and origin must be integers. 

6-34 



Using the Standard 1/0 Functions 

The function may be used to move the character pointer to the end of a 
file to allow appending, or to the beginning as in a rewind function. For 
example, the call: 

lseek (fd, (long) 0, 2); 

prepares the file for appending, and: 

lseek(fd, (long) 0, 0); 

rewinds the file (moves the character pointer to the beginning). Notice the 
"(long)O" argument; it could also be written as: 

OL 

Using Iseek, it is possible to treat files more or less like large arrays, at 
the price of slower access. For example, the following simple function 
reads any number of bytes from any arbitrary place in a file: 

get (fd, pos, buf, n) 
/* read n bytes from position pos */ 

int fd, n; 
long pos; 
char *buf; 
{ 

Iseek(fd, pos, 0); /* get to pos */ 
return (read(fd, buf, n)); 

6.7.8 Moving the Character Pointer in a Data Stream 

The fseek function, a data stream function, moves the character pointer in 
a file to a given location. The function call has the form: 

fseek (stream, offset, ptrname) 

where stream is the file pointer of the file, offset is the number of charac­
ters to move to the new position (it must be a long integer), and ptrname 
is the starting position in the file of the move (it must be 0 for beginning, 
1, for current position, or 2 for end of the file). The function normally 
returns zero, but will return the value EOF if an error is encountered. 

For example, the following program fragment moves the character pointer 
to the end of the file given by stream. 

FILE *stream; 

fseek(stream, (long) 0, 2); 

The function may be used on either buffered or unbuffered files. 

6-35 



C Library Guide 

6.7.9 Rewinding a File 

The rewind function, a data stream function, moves the character pointer 
to the beginning of a given file. The function call has the form: 

rewind (stream) 

where stream is the file pointer of the file. The function is equivalent to 
the following function call: 

fseek (stream, OL, 0) ; 

It is chiefly used as a more readable version of the call. 

6.7.10 Getting the Current Character Position 

The ftell function, a data stream function, returns the current position of 
the character pointer in the given file. The returned position is always 
relative to the beginning of the file. The function call has the form: 

p = ftell (stream) 

where stream is the file pointer of the file and p is the variable to receive 
the position. The return value is always a long integer. The function 
returns the value -1 if an error is encountered. 

The function is typically used to save the current location in the file so 
that the program can later return to that position. For example, the fol­
lowing program fragment first saves the current character position in 
oldp, then restores the file to this position if the current character position 
is greater than 800. 

FILE *outfile; 
long oldp; 

oldp = ftell( outfile ); 

if ((ftell( outfile )) > 800) 
fseek(outfile, oldp, 0); 

The ftell function is identical to the function call 

lseek ( fd, (long) 0, 1) 

where fd is the file descriptor of the given data stream file. 

6-36 



Using the Standard 1/0 Functions 

6.8 Controlling Terminal Lines Using termio and ioctiO 

Nonnal XENIX tenninal input is done on a line by line basis. When a 
process issues a read request to the XENIX tty driver, the driver gathers 
input characters until a newline or carriage return character is received, 
then passes the entire line to the calling process. However, applications 
programs often need to obtain each character as it is sent, without waiting 
for the newline character. Programs may change the handling of input 
and output characters using the ioctl(S) function. This function allows a 
program to change the tenninal' s default input configuration from a line 
at a time (called "canonical" or "cooked" input), to one character at a 
time (often called "raw" input), as well as mapping carriage return and 
linefeed characters. These functions apply to all types of tenninal 
oriented interfaces including serial ports, the XENIX console mul­
tiscreens, and network tty connections. If a tenninal's port (or "line") is 
a serial device, the program may also control the serial communication 
parameters of baud rate, parity, and data bits. 

All the tty control parameters are found in the structure called "tennio." 
This structure is defined in the file lusrlincludeltermio.h. The current 
values of this structure are retrieved using the ioctl(S) function call. The 
first parameter to the ioctl call is an open file descriptor that must be open 
as a tty device. The second parameter is the ioctl command to the tty 
driver (defined below), and the third parameter must be a pointer to a ter­
mio structure. This structure is used by the tty driver to either store or 
retrieve the current parameters. See termio(S) in the XENIX 
Programmer's Reference for more specific infonnation. 

Valid ioctl commands to the tty driver are: 

TCGETA 

TCSETA 

TCSETAW 

TCSETAF 

Gets the current values of the tty parameters, and 
store them into the tennio structure pointed to by 
the third argument. 

Immediately change the tty parameters to those 
given by the tennio structure. TCSETA can cause 
data corruption if parameter changes affect output 
and there are characters waiting to be sent. Using 
TCSETA W will eliminate this possibility. 

Waits for all pending output characters to be sent, 
then changes the tty parameters to those given by 
the tennio structure. This command should be used 
whenever the parameter changes may affect output. 

Waits for all pending output to be sent, then flushes 
the input queue and sets the new parameters. 

6-37 



C Library Guide 

The following program fragment demonstrates how to retrieve the current 
termio settings from the tty device open through the file descriptor fd: 

#include <termio.h> 
struct termio buf 
int fd; 

ioctl(fd, TCGETA, &buf ); 

Note that fd must be opened with openO before the ioctl statement. Also, 
note that since raw i/o is most often used on stdin, the most common 
usage of this ioctl is with the value 0 in the place of fd. Each of the 
configuration parameters is represented by bits in one of the four termio 
integer fields. Parameters which have only on or off settings are 
represented by a single bit. Those that have more than two possible 
values, such as baud rate, are represented as a binary number in a selected 
set of bits. The "c_ifiag" field contains input related parameters. 
"c_ofiag" contains parameters that affect output. "c_cfiag" contains 
serial communication parameters, and' 'c_lfiag" contains parameters that 
control the behavior of the tty driver itself. In addition to these four 
fields, the termio structure also contains the "c_line" field, which selects 
the current line discipline, and "c_cc," a character array containing the 
characters for end of file, end of line, interrupt, etc. A complete descrip­
tion of control modes may be found in termio(M) in the XENIX User's 
Reference. 

In order to receive individual character input, the program must tum off 
the ICANON bit in the c_lfiag field. When this bit is off, the meanings of 
the characters in c_cc[4] and c_cc[5] change. With ICANON on, these 
characters denote the end of file and end of line characters. Their default 
values are Ctrl-D and NULL, respectively. However, with ICANON off, 
these characters change to represent VMIN and VTIME, respectively. 
VMIN denotes the minimum number of characters that must be input 
before a read function will return. If VTIME is greater than 0, then a read 
call returns if VTIME tenths of seconds elapse and at least one character 
has been read. Since the value of VMIN is initially 4, (the value of the 
end of file character Ctrl-D, left over from canonical mode) the program 
must change it to 1 if single character reads are desired. 

While the ICANON bit is turned off, the tty driver still checks each 
incoming character for the interrupt, quit, stop, and start characters, and 
acts on them appropriately. If the process does not want these checks per­
formed, the ISIG bit in c_lfiag should be set to O. If you do not want each 
character echoed, the ECHO bit of c_lfiag should be set to O. The IXOFF 
bit should be set to 0 if you do not want the STOP character to halt tty 
output. 

6-38 



Using the Standard I/O Functions 

In addition to the ICANON parameter, the following parameters are also 
commonly modified by applications programs: 

ISIG 

ECHO 

IXOFF 

ICRNL 

ONLCR 

If this bit is set, the tty driver checks each incoming 
character against the special characters in c_cc, such as 
the interrupt and quit characters. If a match is found, the 
appropriate action is taken, and the special character is 
removed from the input data stream. For instance, if the 
interrupt character is found, a SIGINT signal is sent to 
all processes associated with that tty device. If a pro­
gram wants to keep the user from interrupting the pro­
gram, or the program is transferring binary data, then 
ISIG should be set to O. 

If the ECHO bit is set, all characters read in are echoed 
back to the terminal. Tum this bit off if the process 
desires input without echoing. 

If this bit is set (its default setting), then output from the 
program can be paused when the Ctrl-S character is 
received. Output is then stopped until the Ctrl-Q char­
acter is is received. If the IXANY parameter is set to 1, 
then any character may restart paused output. 

Carriage return characters (ASCII 13) in the input data 
stream are changed to newline characters (ASCII 11) if 
this bit is set to 1, its default setting. Applications that 
need to distinguish between the newline and carriage 
return characters should tum off this bit. 

This parameter is in the c_oftag field. If set to 1, 
ONLCR causes a carriage return and newline character 
pair to be output for each newline character sent by the 
program. 

6-39 



C Library Guide 

The following program demonstrates how to set up the tty driver as dis­
cussed above: 

#include <stdio.h> 
#include <termio.h> 
#include <fcntl.h> 

main 0 
{ 

char Chi 
int fd; 
struct termio tio, old_tio; 

/* get file descriptor to controlling terminal */ 
fd = open( "/dev/tty", O_RDWR); 

/* get original tty settings to restore later */ 

ioctl( fd, TCGE~, &old_tio ); 

/* get current modes again to alter */ 

ioctl( fd, TCGE~, &tio ); 

/* turn off line by line mode */ 
tio.c_iflag &= -ICANON; 

/* turn off character echo, special */ 
/* character checking, and flow control */ 
tio.c_lflag &= -(ISIG[ECHO[IXOFF); 

/* set minimum characters to receive */ 
/* to 1, and minimum timeout to 0 */ 
tio.c cc[VMINJ = 1; 
tio.c::::cc [VrIMEJ = 0; 

/* send new settings to tty driver */ 
ioctl( fd, TCSE~, &tio ); 

while ((ch = getchar ()) != 'q' ) 
printf ( "Received character %d\n", ch ); 

/* restore original tty parameters */ 
/* Use TCSETAW instead of TCSE~ to prevent */ 
/* corruption of any pending output * / 
ioctl( fd, TCSETAW, &old_tio ); 

exit (0); 

6-40 



Using the Standard I/O Functions 

6.8.1 Setting Serial Communications Parameters 

In addition to controlling character input, output, and translation, the ter­
mio structure also controls the serial communications parameters of baud 
rate, number of data bits, and parity. The baud rate is controlled by four 
bits of the c_cfiag field of the termio structure. These four bits allow for 
16 different baud rates. Each baud rate bit pattern is represented by the 
constants B50 (50 baud) through B9600 (9600 baud). Two external baud 
rate constants, EXTA, and EXTB, are also defined. The meanings of 
these settings are specific to the serial driver. All of the baud rate con­
stants are defined in the system include file termio.h. The constant 
CBAUD represents all the baud rate bits, and can be used to mask off the 
current baud rate setting while leaving all other bits in the field 
unchanged. The following program fragment demonstrates how to set the 
baud rate of a serial line to 2400 baud using CBAUD when the current 
baud rate is unknown: 

#include <termio.h> 

struct termio buf 
int fd; 

/* fd must be a valid file descriptor open to a tty device */ 
ioctl( fd, TCGE~, &buf ); 
buf.c_cflag = (buf.c_cflag & -CBAUD) I B2400; 
ioctl( fd, TCSE~, &buf); 

The constants CS5, CS6, CS7, and CS8 select five through eight data bits, 
respectively. The constant CSIZE is a mask for the data bit values, and 
can be used in the same way as CBAUD in the example above. The 
CSTOPB bit controls the number of stop bits in each byte. If set to 1, two 
stop bits are used, otherwise, one stop bit is used. 

6.8.2 Parity Handling 

Parity checking and generation is handled by the PARENB and PARODD 
bits of the c_lfiag field, and the INPCK, PARMRK, and IGNPAR bits of 
the c_ifiag field. If the P ARENB bit is set to 0, both parity generation on 
output characters and parity checking on input characters are disabled. If 
P ARENB is 1, parity generation on output is enabled, and input parity 
checking is controlled by the other four parameters. PARODD selects 
odd parity if set to 1, and even parity if set to O. If INPCK is 0, no parity 
checking is done on the input data stream. This allows parity generation 
on output without affecting input. If INPCK and IGNPAR are both set to 
1, then characters with parity errors are completely removed from the 

6-41 



C Library Guide 

input data stream. If INPCK is 1 but IGNPAR is 0, the results of a parity 
error is controlled by P ARMRK. If this parameter is 1, a parity error on 
input is indicated by the three character sequence 0377, 0, and X, where 
X is the erroneous character. If PARMRK is 0, parity errors are indicated 
by the receipt of a null (ASCII 0) character. 

6.8.3 Maintaining tty Parameters 

When a tty device is first opened, it has all of the parameters set to default 
values. The process may then change these values using the ioctlO call. 
However, these changes will stay in effect only as long as the device is 
open. When all processes have closed the device, all parameters are 
restored to their defaults. 

6-42 



Chapter 7 

Screen Processing 

7.1 Introduction 7-1 
7.1.1 Terminal Capability Descriptions 7-1 
7.1.2 Screen-Processing Overview 7-2 
7.1.3 Using the Library 7-3 
7.1.4 termcap curses Using /etc/termcap 7-6 
7.1.5 termcap curses Using terminfo 7-6 
7.1.6 terminfo curses Using terminfo 7-6 
7.1.7 Some Additional Notes 7-7 

7.2 Preparing the Screen 7 -7 
7.2.1 Initializing the Screen 7-7 
7.2.2 Using Terminal Capability and Type 7-8 
7.2.3 Using Default Terminal Modes 7-9 
7.2.4 Using Default Window Flags 7-9 
7.2.5 Using the Default Terminal Size 7-10 
7.2.6 Terminating Screen Processing 7 -10 

7.3 Using the Standard Screen 7-11 
7.3.1 Adding a Character 7-11 
7.3.2 Adding a String 7-12 
7.3.3 Printing Strings, Characters,and Numbers 7-12 
7.3.4 Reading a Character from the Keyboard 7 -13 
7.3.5 Reading a String from the Keyboard 7-14 
7.3.6 Reading Strings, Characters, and Numbers 7-15 
7.3.7 Moving the Current Position 7 -16 
7.3.8 Inserting a Character 7-16 
7.3.9 Inserting a Line 7-17 
7.3.10 Deleting a Character 7-17 
7.3.11 Deleting a Line 7-18 
7.3.12 Clearing the Screen 7-18 
7.3.13 Clearing a Part of the Screen 7-19 
7.3.14 Refreshing from the Standard Screen 7-19 

7.4 Creating and Using Windows 7 -20 
7.4.1 Creating a Window 7-20 
7.4.2 Creating a Subwindow 7-21 



7.4.3 Accessing Window Structure 7-22 
7.4.4 Adding and Printing to a Window 7-23 
7.4.5 Reading and Scanning for Input 7-24 
7.4.6 Moving the Current Position in a Window 7-26 
7.4.7 Inserting Characters and Lines 7-27 
7.4.8 Deleting Characters and Lines 7-28 
7.4.9 Clearing the Window Screen 7-28 
7.4.10 Saving from a Window 7-30 
7.4.11 Refreshing from a Window 7-30 
7.4.12 Overlaying Windows 7-31 
7.4.13 Overwriting a Screen 7-32 
7.4.14 Moving a Window 7-32 
7.4.15 Reading a Character from a Window 7-33 
7.4.16 Touching a Window 7-34 
7.4.17 Deleting a Window 7-34 

7.5 Using Other Window Functions 7-34 
7.5.1 Drawing a Box 7-35 
7.5.2 Displaying Bold Characters 7-35 
7.5.3 Restoring Normal Characters 7-36 
7.5.4 Getting the Current Position 7-37 
7.5.5 Setting Window Flags 7-38 
7.5.6 Scrolling a Window 7-39 

7.6 Combining Movement with Action 7-40 

7.7 Controlling the Terminal 7 -40 
7.7.1 Setting a Terminal Mode 7-40 
7.7.2 Clearing a Terminal Mode 7 -41 
7.7.3 Moving the Terminal's Cursor 7-42 
7.7.4 Getting the Terminal Mode 7-43 
7.7.5 Saving and Restoring the Terminal Flags 7 -43 
7.7.6 Setting a Terminal Type 7-43 
7.7.7 Reading the Terminal N arne 7-44 

7.8 Advanced Topics 7-44 
7.8.1 Multiple Attributes 7-44 
7.8.2 Saving and Restoring tty Settings 7-45 
7.8.3 Output Mapping Features 7-45 



Screen Processing 

7.1 Introduction 

This chapter explains how to use the curses and terminfo screen process­
ing libraries. These libraries provide functions to create and update screen 
windows, get input from the tenninal in a screen-oriented way, and 
optimize the motion of the cursor on the screen. 

The curses library is the standard screen processing library provided with 
this and previous versions of XENIX. The terminfo(S) library is a new 
library that provides the same functions as the curses library plus the fol­
lowing additional screen processing capabilities: 

• soft-label control 

• tenncap conversion 

• character attribute control 

• function key return values 

• line-graphic drawing 

In addition, the terminfo(M) tenninal capabilities database file can be 
redefined by the tenninal capabilities compiler, tic. For more infonna­
tion, see tic (M) in the XENlX User's Reference. 

7.1.1 Terminal Capability Descriptions 

There are two different versions of the curses library distributed with the 
XENIX system. The principal difference between the two versions is that 
each draws its tenninal descriptions from a different tenninal capability 
database. 

The termcap curses is the original XENIX version of curses. It is 
designed to use the letcltermcap database of tenninal descriptions. 
termcap is described in the termcap(M) manual page. You may, how­
ever, use the terminfo tenninal capability database instead of termcap. 

The terminfo curses library is a recently developed compatible version 
of curses with extended functionality. It is designed to use the terminfo 
database of tenninal descriptions. This database is described in the 
terminfo(M) manual page. It is not possible to use letcltermcap with ter­
minfo curses. 

This chapter primarily discusses termcap curses. Since terminfo curses 
is an extended, yet compatible, version of curses, this chapter also 
describes the basic terminfo curses routines. 

7-1 



C Library Guide 

The termcap curses routines are summarized in the curses(S) manual 
page. The terminfo curses routines are completely summarized in the 
terminfo(S) manual page. The extensions provided by terminfo curses 
over termcap curses are not described in this chapter. 

The terminfo curses package available with XENIX includes a number of 
extensions over other versions of curses. These extensions provide for 
superior handling of typeahead and function keys. These extensions 
require that programs using terminfo curses be compiled with the XENIX 
extensions library (-Ix). 

7.1.2 Screen-Processing Overview 

Screen processing gives a program a simple and efficient way to use the 
capabilities of the terminal attached to the program's standard input files 
and output files. Screen processing does not rely on the terminal's type. 
Instead, the screen-processing functions use the following XENIX termi­
nal capability files to tailor their actions for any given terminal. 

This makes a screen-processing program terminal independent. The pro­
gram can be run with any terminal as long as that terminal is described in 
the appropriate terminal capability file. Programs using terminal func­
tions must use the proper terminal capability file. 

For curses programs, use 

letcltermcap 

For terminfo programs, use 

lusrl liblterminfo 

The screen-processing functions access a terminal screen by working 
through intermediate screens and windows in memory. 

• A screen represents what the entire terminal screen should look 
like. A screen can be composed of one or more windows. 

• A window represents what some portion of the terminal screen 
should look like. A window can be as small as a single character or 
as large as an entire screen. 

Before a screen or window can be used, it must be created using the 
newwin or subwin function. These functions define the size of the screen 
or window in terms of lines and columns. 

7-2 



Screen Processing 

Each position in a screen or window represents a place for a single char­
acter and corresponds to a similar place on the terminal screen. Positions 
are numbered according to line and column. For example, the position in 
the upper-left corner of a screen or window is numbered (0,0) and the 
position immediately to its right is (0,1). 

A typical screen has 24 lines and 80 columns. Its upper-left corner 
corresponds to the upper-left corner of the terminal screen. A window, on 
the other hand, can be any size (within the limits of the actual screen). Its 
upper-left corner can correspond to any position on the terminal screen. 
For convenience, the initscr function, which initializes a program for 
screen processing, also creates a default screen, stdscr (standard screen). 
The stdscr can be used without first creating it explicitly with the newwin 
or subwin function. The function also creates curscr (current screen), 
which contains a copy of what is currently on the terminal screen. 

To display characters on the terminal screen, a program must write these 
characters to a screen or window using screen-processing functions, such 
as addch and waddch. If necessary, a program can move to the desired 
position in the screen or window by using the move and wmove func­
tions. Once characters are added to a screen or window, the program can 
copy the characters to the terminal screen by using the refresh or 
wrefresh function. These functions update the terminal screen according 
to what has changed in the given screen or window. Since the terminal 
screen is not changed until a program calls refresh or wrefresh, a pro­
gram can maintain several different windows, each containing different 
characters for the same portion of the terminal screen. The program can 
choose which window should actually be displayed before updating. 

A program can continue to add new characters to a screen or window as 
needed and edit these characters by using functions such as insertln, 
deleteln, and clear. A program can also combine windows to make a 
composite screen using the overlay and overwrite functions. In each 
case, the refresh or wrefresh function is used to copy the changes to the 
terminal screen. 

7.1.3 Using the Library 

To execute library functions in a program, you must declare the library's 
include file in your program, and then link the library's object code to 
your compiled program. The include file contains data types and vari­
abIes used in the library functions. 

7-3 



C Library Guide 

Declaring the include File 

To declare the library's include file, add the appropriate include statement 
to the beginning of your program. 

For curses programs, use 

#define M_TERMCAP 
#include <curses.h> 

For terminfo programs, use 

#define M_ TERMINFO 
#include <curses.h> 

Specifying the Screenprocessing Library 

To link your compiled program with the library functions, specify the 
screen-processing library file on the C compiler command line when you 
start the compiler. 

For curses programs, type 

cc files -lcurses -Itermcap 

For terminfo programs, type 

cc files -ltinfo -Ix 

where 

• files are the names of the files compiled, and linked with the library 
functions. 

• -I specifies the library filename linked with the compiled program. 
Note that -I requires you to omit the lib portion of the library 
filename. 

The screen-processing functions are contained in following libraries: 

For curses library functions, use 

libcurses.a 
libtermcap .a 

7-4 



Screen Processing 

For terminfo library functions, use 

libtinfo.a 

For example, following the command line compiles the files main.c and 
intfc and copies the executable program to the file sample after linking 
the curses screen-processing-library files to the program: 

cc main.c intf.c -lcurses -ltermcap -0 sample 

The curses and terminfo screen-processing libraries contain a variety of 
predefined names. These names refer to variables, manifest constants, and 
types that can be used with the library functions. The following table lists 
these names: 

Type 

WINDOW* 

WINDOW* 

char* 

bool 

char 

int 

int 

int 

int 

Table 7.1 

Screen Processing Special Names 

Name 

curscr 

stdscr 

tty type 

LINES 

COLS 

ERR 

OK 

Description 

A pointer to the current version of the ter­
minal screen 

A pointer to the default screen used for 
updating when no explicit screen is 
defined 

A pointer to the default terminal type if 
the type cannot be determined 

The terminal type flag; if set, it causes the 
terminal specification in Def_term to be 
used, regardless of the real terminal type 

A pointer to the full name of the current 
terminal 

The number of lines on the terminal 

The number of columns on the terminal 

The error flag; returned by functions on 
an error 

The okay flag; returned by functions on 
successful operation 

7-5 



C Library Guide 

7.1.4 termcap curses Using /etc/termcap 

term cap curses is used with the letcltermcap tenninal description data­
base. You must place the lines: 

#define M TERMCAP 
#include <curses.h> 

in your code and link the program with the command: 

cc files -ltcap -ltermcap 

instead of: 

cc files -Icurses -ltermcap 

This functionality is specific to and not portable outside of XENIX. 

7.1.5 termcap curses Using terminfo 

You can use termcap curses with the terminfo database. To do this, you 
must place the lines: 

#define M TERMCAP 
#include <curses.h> 

and link the program with the command: 

cc files -ltcap -ltinfo 

This functionality is specific to and is not portable outside of XENIX. It is 
useful primarily as a transitional step in converting from termcap to ter­
minfo. 

7.1.6 terminfo curses Using terminfo 

In this method you use terminfo curses with the terminfo database. To 
do this you must place the lines: 

#define M TERMINFO 
#include <curses.h> 

and link your program with the command: 

cc files -ltinfo 

7-6 



Screen Processing 

7.1.7 Some Additional Notes 

Since curses.h, tcap.h, and tinfo.h all include stdio.h and termio.h, you 
should not include either of those files in your program. 

Note that: 

#include <tcap.h> 

is equivalent to: 

#define M TERM CAP 
#include <curses.h> 

and that: 

#include <tinfo.h> 

is equivalent to: 

#define M TERMINFO 
#include <curses.h> 

Types and Constants 

Name Description 

reg A storage class. It is the same as register storage class. 

bool A type. It is the same as char type. 

TRUE The Boolean true value (1). 

FALSE The Boolean false value (0). 

7.2 Preparing the Screen 

The initscr and end win functions initialize and terminate programs that 
use the screen-processing functions. The following sections describe 
these functions and how they affect the terminal. 

7.2.1 Initializing the Screen 

The initscr function initializes screen processing for programs by allocat­
ing the required memory space for the screen-processing functions and 
variables, and setting the screen to the proper mode. 

7-7 



C Library Guide 

The function call has the following syntax: 

initscrO 

No arguments are required. For example, in the following program frag­
ment, initscr initializes the screen-processing functions. 

main () 
{ 

initscr () ; 
if (! (strcmp (ttytype, "unknown") ) ) 

fprintf (stderr, "Terminal type can't display screen."); 

In the above example, the strcmp function checks to see if the predefined 
variable tty type set to the specified terminal type unknown. 

7.2.2 Using Terminal Capability and Type 

The initscr function examines the terminal-capability descriptions 
specified in the terminal capabilities database to prepare the screen­
processing functions for creating and updating terminal screens. 

For curses programs, initscr examines 

letcltermcap 

For terminfo programs, initscr examines 

lusrl liblterminfo 

The descriptions define the character sequences required to perform a 
given operation on a given terminal. These sequences are used by the 
screen-processing functions to add, insert, delete, and move characters on 
the screen. The descriptions are automatically read from the file when 
screen processing is initialized, so direct access by a program is not 
required. 

The initscr function use the shell's TERM variable to determine which 
terminal-capability description to use. The TERM variable is usually 
assigned an identifier when a user logs in. This identifier defines the ter­
minal type and is associated with a terminal-capability description in the 
letcltermcap file (curses) or lusrl/iblterminIol srclti.st.src file (terminfo). 

If the TERM variable has no value, the functions use the default terminal 
type in the library's predefined variable Del_term. This variable initially 

7-8 



Screen Processing 

has the value unknown (unknown terminal), but the user can change it to 
any desired value. This must be done before calling the initscr function. 

In some cases, it is desirable to force the screen-processing functions to 
use the default terminal type. This can be done by setting the library's 
predefined variable My term to the value 1. The full name of the current 
terminal is stored in the-predefined variable tty type. 

For more information on terminal capabilities, types, and identifiers, see 
termcap (F) and terminfo (M) in the XENIX User's Reference. 

7.2.3 Using Default Terminal Modes 

The initscr function automatically sets a terminal to default operation 
modes. These modes define how the terminal displays characters sent to 
the screen and how it responds to characters typed at the keyboard. The 
initscr function sets the terminal to ECHO mode, which causes charac­
ters typed at the keyboard to be displayed on the screen, and to RAW 
mode, which causes characters to be used as direct input (no editing or 
signal processing is done). 

The default terminal modes can be changed by using the appropriate 
functions described in "Setting a Terminal Mode." If the modes are 
changed, they must be changed immediately after calling initscr. For 
more information on terminal modes, see tty (M) in the XENIX User's 
Reference. 

Note 

The terminal-mode functions should be used only in conjunction 
with other screen-processing functions. They should not be used 
alone. 

7.2.4 Using Default Window Flags 

The initscr function automatically clears the cursor, scroll, and clear 
flags of the standard screen to their default values. These flags, called the 
window flags, define how the refresh function affects the terminal screen 
when updating the standard screen. When clear, the cursor flag prevents 
the terminal's cursor from moving back to its original location after the 
screen is updated. The scroll flag prevents scrolling on the screen. The 

7-9 



C Library Guide 

clear flag prevents the characters on the screen from being cleared before 
being updated. These flags can be changed by using the functions 
described in "Setting Window Flags." 

7 .2.5 Using the Default Terminal Size 

The initscr function sets the terminal screen size to a default number of 
lines and columns. The default values are given in the predefined vari­
ables LINES and COLS. You can change the default size of a terminal by 
setting the variables to new values. This should be done before the first 
call to initscr. If it is done after the first call, a second call to initscr 
must be made to delete the existing standard screen and create a new one. 

7.2.6 Terminating Screen Processing 

The endwin function terminates the screen processing in a program by 
freeing all memory resources allocated by the screen-processing func­
tions and restoring the terminal to the state before screen processing 
began. No arguments are required. The function call has the following 
form: 

endwinO 

To restore the terminal to its previous state, the endwin function must be 
used before leaving a program that has called the initscr function. The 
function is generally the last function call in the program. For example, in 
the following program fragment, initscr and endwin form the beginning 
and end of the program: 

#include <curses.h> 1* use <terminfo.h> for terminfo functions *1 
1* use <curses.h> for curses functions *1 

main 0 
{ 

initscr(); 

. 1* Program body *1 

endwinO; 
} 

end win must not be called if initscr has not been called. Also, endwin 
should be called before any call to the exit function. The endwin function 
must also be called if the gettmode and setterm functions have been 
called, even if initscr has not. 

7-10 



Screen Processing 

7.3 Using the Standard Screen 

The following sections explain how to use the standard screen, stdscr, to 
display and edit characters on the terminal screen. 

7.3.1 Adding a Character 

The addch function adds a given character to the standard screen and 
moves the character pointer one position to the right. The function call 
has the following form: 

addch(ch) 

where ch gives the character to be added. It must have char type. For 
example, in the following program fragment, if the current cursor position 
is (0, 0), the addch function call places the letter A at (0, 0) and moves the 
cursor pointer to (0, 1) to the standard screen: 

addch (' A') ; 

Other characters used by the addch function are as follows: 

Character Description 

\n New-line. Deletes all characters from the current 
position to the end of the line and moves the pointer 
one line down. If the newline flag is set, the addch 
function deletes the characters and moves the pointer 
to the beginning of the next line. 

\r Return. Moves the pointer to the beginning of the 
current line. 

\t Tab. Moves the pointer to the next tab stop, adding 
enough spaces to fill the gap between the current posi­
tion and the stop. Tab stops are placed at every eight 
character positions. 

The addch function returns ERR if it encounters an error, such as illegal 
scrolling. 

7-11 



C Library Guide 

7.3.2 Adding a String 

The addstr function adds a string of characters to the standard screen, 
placing the first character of the string at the current position and moving 
the pointer one position to the right for each character in the string. The 
function call has the following form: 

addstr(str) 

where str is a character pointer to the given string. For example, in the 
following program fragment, if the current cursor position is (0,0), the 
addstr function call places the beginning of the string line at (0,0) and 
moves the cursor pointer to (0,4), while adding each character of the 
string: 

addstr(nlinen)i 

If the string contains new-line, return, or tab characters, the addstr func­
tion performs the same actions as described for the addch function. If the 
string does not fit on the current line, the string is truncated. 

The addstr function returns ERR if it encounters an error, such as illegal 
scrolling. 

7.3.3 Printing Strings, Characters, and Numbers 

The printw function prints one or more values to the standard screen, 
where a value can be a string, a character, or a decimal, octal, or hexade­
cimal number. The function call has the following form: 

printw(fint [,argJ, arg2]) 

where 

• fmt is a pointer to a string that defines the format of the values. A 
format may be %s for a string, %c for a character, or %d, %0, or 
%x for a decimal, octal, or hexadecimal number, respectively. 
(Other formats are described in printf (S) in the XENlX 
Programmer's Reference.) If %s is given, the corresponding arg 
must be a character pointer. For other formats, the actual value, or 
a variable containing the value, can be given. 

• arg is a value to be printed. If more than one arg is given, each 
must be separated from the preceding argument with a comma (,). 
For each arg given, there must be a corresponding format given in 
fmt. 

7-12 



Screen Processing 

This function is typically used to copy both numbers and strings to the 
standard screen at the same time. For example, in the following program 
fragment, if the current cursor position is (0,0), the printw function call 
prints the string given by the variable name starting at cursor position 
(0,0). The printw function then prints the number 15 one space after the 
name string. 

printw("%s %d", name, 15); 

The functbn returns ERR if it enconnters an error, such as illegal scrol­
ling. 

7.3.4 Reading a Character from the Keyboard 

The getch function reads a single character from the terminal keyboard 
and returns the character as a value. The function call has the following 
form: 

c = getchO 

where c is the variable to receive the character. 

This function is typically used to read a series of individual characters. 
For example, in the following program fragment characters are read and 
stored until a new-line character or the end-of-file character is encoun­
tered, or until the buffer size has been reached: 

char c, p [MAX] ; 
int i; 

i = 0; 
while ((c=getch()) != '\n' && c != EOF && i <MAX) 

p[i++] = c; 

If the terminal is set to ECHO mode, getch updates the character to the 
standard screen; otherwise, the screen remains unchanged. If the terminal 
is not set to RAW or NOECHO mode, getch automatically sets the termi­
nal to CBREAK mode, then restores the previous mode after reading the 
character. Terminal modes are described in "Controlling the Terminal." 

The function returns ERR if it encounters an error, such as illegal scrol­
ling. 

7-13 



C Library Guide 

Keypad Mode 

Keypad mode allows an application to handle function key sequences 
such that certain sequences of characters are recognized as a single token. 
Each token is identified by a unique integer to the application. These 
integer values are all greater than 255 so as not to conflict with any valid 
Ascn characters, and are #defined in the file tcap.h. 

To add additional function key sequences to those already defined in 
tcap.h, the application can call: 

addkey(string, value) 
char *str; 
int val; 

where string is the key sequence to add and val is the unused integer 
greater than 255 that is to identify the function key. 

In order to use this functionality, the application must invoke the macro 

keypad (win, TRUE) 

soon after calling initscrO. In the above example, win is the window from 
which reads will be taken. 

7.3.5 Reading a String from the Keyboard 

The getstr function reads a string of characters from the terminal key­
board and updates the string to a given location. The function call has the 
following form: 

getstr(str) 

where str is a character pointer to the variable or location to receive the 
string. When typed at the keyboard, the string must end with a new-line 
character or with the end-of-file character. The extra character is replaced 
by a null character when the string is stored. You must ensure that str has 
adequate space to store the typed string. 

This function typically reads names and other text from the keyboard. For 
example, in the following program fragment, getstr reads a filename from 
the keyboard and stores it in the array name: 

char name[20]; 

getstr(name); 

If the terminal is set to ECHO mode, getstr updates the string to the stan­
dard screen. If the terminal is not set to RAW or NOECHO mode, the 
function automatically sets the terminal to CBREAK mode, then restores 

7-14 



Screen Processing 

the previous mode after reading the character. Terminal modes are 
described in "Controlling the TerminaL" 

The function returns ERR if it encounters an error, such as illegal scrol­
ling. 

7.3.6 Reading Strings, Characters, and Numbers 

The scanw function reads one or more values from the terminal keyboard 
and copies the values to given locations. A value can be a string, a char­
acter, or a decimal, octal, or hexadecimal number. The function call has 
the following form: 

scanw(fint, [argptrl, arg2]) 

where 

• fmt is a pointer to a string defining the format of the values to be 
read. 

• argptr is a pointer to the variable to receive a value. If more than 
one argptr is given, each must be separated from the preceding 
item with a comma (,). For each argptr given, there must be a 
corresponding format given in fmt. A format can be %s for a 
string, %c for a character, or %d, %0, or %x for a decimal, octal, or 
hexadecimal number, respectively. (Other formats are described in 
printf(S) in the XENlX Programmer's Reference.) 

This function typically reads a combination of strings and numbers from 
the keyboard. For example, in the following program fragment, scanw 
reads a name and a number from the keyboard: 

char name[20]; 
int id; 

scanw ("%s %d", name, &id); 

In this example, the input values are stored in the character array name 
and the integer variable id. 

If the terminal is set to ECHO mode, the function copies the string to the 
standard screen. If the terminal is not set to RAW or NOECHO mode, the 
function automatically sets the terminal to CBREAK mode, then restores 
the previous mode after reading the character. The function returns ERR if 
it encounters an error, such as illegal scrolling. 

7-15 



C Library Guide 

7.3.7 Moving the Current Position 

The move function moves the pointer to the given position. The function 
call has the following form: 

move(y,x) 

where 

• y is an integer value giving the new row position. 

• x is an integer value giving the new column position. 

For example, if the current position is (0,0), the following function call 
moves the pointer to line 5, column 4: 

move (5, 4); 

The function returns ERR if it encounters an error, such as illegal scrol­
ling. 

7.3.8 Inserting a Character 

The insch function inserts a character at the current position and shifts 
the character previously at that position (and all characters to its right) 
one position to the right. The function call has the following form: 

insch(e) 

where e is the character to be inserted. 

This function is typically used to insert a series of characters into an 
existing line. For example, in the following program fragment, insch is 
used to insert the number of characters given by ent into the standard 
screen at the current position: 

int cnt; 
char *string; 

while (cnt ! = 0) 
insch(string[cnt]); 
cnt--; 
} 

The function returns ERR if it encounters an error, such as illegal scrol­
ling. 

7-16 



Screen Processing 

7.3.9 Inserting a Line 

The insertln function inserts a blank line at the current posItIOn and 
moves the line previously at that position (and all lines below it) down 
one line, causing the last line to move off the bottom of the screen. The 
function call has the following form: 

insertlnO 

No arguments are required. 

This function is used to insert additional lines of text in the standard 
screen. For example, in the following program fragment, insertln is used 
to insert a blank line when the count in ent is equal to 79: 

int cnt; 

if (cnt == 79) { 
insertln () ; 

The function returns ERR if it encounters an error, such as illegal scrol­
ling. 

7.3.10 Deleting a Character 

The delch function deletes the character at the current position and shifts 
the character to the right of the deleted character (and all characters to its 
right) one position to the left. The last character on the line is replaced by 
a space. The function call has the following form: 

delchO 

No arguments are required. 

This function is typically used to delete a series of characters from the 
standard screen. For example, in the following program fragment, delch 
deletes the character at the current position as long as the count in ent is 
not zero: 

7-17 



C Library Guide 

int cnt; 

while (cnt != 0) 
delch () ; 
cnt--; 
} 

The function returns ERR if it encounters an error, such as illegal scrol­
ling. 

7.3.11 Deleting a Line 

The deleteln function deletes the current line and shifts the line below the 
deleted line (and all lines below it) one line up, leaving the last line on 
the screen blank. The function call has the following fonn: 

deletelnO 

No arguments are required. 

The deleteln function is used to delete existing lines from the standard 
screen. For example, in the following program fragment, deleteln is used 
to delete a line from the standard screen if the count in ent is 79: 

int cnt; 

if (cnt == 79) { 
deleteln(); 

The function returns ERR if it encounters an error, such as illegal scrol­
ling. 

7.3.12 Clearing the Screen 

The clear and erase functions clear all characters from the standard 
screen by replacing them with spaces. The functions are typically used to 
prepare the screen for new text. 

The clear function clears all characters from the standard screen,moves 
the pointer to (0,0), and sets the standard screen's clear flag. The flag 
causes the next call to the refresh function to clear all characters from 
the tenninal screen. 

The erase function clears the standard screen, but does not set the clear 
flag. For example, in the following program fragment, clear clears the 

7-18 



screen if the input value is 12: 

char c; 

if ( (c=getch () ) 
clear(); 
refresh(); 

12) { 

7.3.13 Clearing a Part of the Screen 

Screen Processing 

The c1rtobot and c1rtoeol functions clear one or more characters from the 
standard screen by replacing the characters with spaces. The functions are 
typically used to prepare a part of the standard screen for new characters. 

The c1rtobot function clears the screen from the current position to the 
bottom of the screen. For example, if the current position is (10,0), the 
following c1rtobot function call clears all characters from line 10 and all 
lines below line 10: 

clrtobot () ; 
refresh () ; 

The clrtoeol function clears the standard screen from the current position 
to the end of the current line. For example, if the current position is 
(10,10), the following c1rtoeol function call clears all characters from 
(10,10) to (10,79); the characters at the beginning of the line remain 
unchanged: 

clrtoeol(); 

Note that both the c1rtobot and c1rtoeol functions do not change the 
current cursor position. Each refresh function call updates the modified 
standard screen to the terminal screen. 

7.3.14 Refreshing from the Standard Screen 

The refresh function updates the terminal screen by copying one or more 
characters from the standard screen to the terminal. The function 
effectively changes the terminal screen to reflect the new contents of the 
standard screen. The function call has the following form: 

refreshO 

7-19 



C Library Guide 

No arguments are required. 

This function is used solely to display changes to the standard screen. The 
function copies only those characters that have changed since the last call 
to refresh and leaves any existing text on the terminal screen. For exam­
ple, in the following program fragment, refresh is called twice: 

addstr("The first time.\n"); 
refresh(); 
addstr("The second time.\n"); 
refresh () ; 

In this example, the first call to refresh copies the string "The first 
time. " to the terminal screen. The second call copies only the string 
"The second time." to the terminal, since the original string has not 
changed. 

The function returns ERR if it encounters an error, such as illegal scrol­
ling. If an error is encountered, the function attempts to update as much 
of the screen as possible without causing the scroll. 

7.4 Creating and Using Windows 

The following sections explain how to create and use windows to display 
and edit text on the terminal screen. 

7.4.1 Creating a Window 

The newwin function creates a window and returns a pointer that can be 
used in subsequent screen-processing functions. The function call has the 
following form: 

win = newwin(lines, cols, beginy, begin_x) 

where 

• win is the pointer variable to receive the return value. 

• lines and cols are integer values that give the total number of lines 
and columns in the window, respectively. 

• beginy and begin_x are integer values that give the line and 
column positions, respectively, of the upper-left corner of the win­
dow when displayed on the terminal screen. The win variable must 
be a pointer of type WINDOW. 

7-20 



Screen Processing 

The newwin function is typically used in programs that maintain a set of 
windows, displaying different windows at different times or alternating 
between windows as needed. For example, in the following program frag­
ment, newwin creates a new window on the standard screen and assigns a 
pointer to this window to the variable midscreen: 

WINDOW *midscreen; 

midscreen = newwin(5, 10, 9, 35); 

The window has 5 lines and 10 columns. The upper-left comer of the win­
dow is placed at the position (9,35) on the tenninal screen. 

If either lines or cols is zero, the function automatically creates a window 
that has LINES lines or COLS columns, where LINES and COLS are the 
predefined constants that give the total number of lines and columns on 
the tenninal screen. For example, the following function call creates a 
new window whose upper-left comer is at position (0,0) and that has 
LINES lines and COLS columns: 

newwin (0, 0, 0, 0) 

You must not create windows that exceed the dimensions of the actual 
screen. 

The newwin function returns the value (WINDOW*) ERR on an error, 
such as "insufficient memory for the new window." 

7 .4.2 Creating a Subwindow 

The sub win function creates a subwindow and returns a pointer to the 
new window. A subwindow is a window that shares all or part of the char­
acter space of another window and provides an alternate way to access 
the characters in that space. The function call has the following fonn: 

swin = subwin(win, lines, cols, beginy, begin_x) 

where 

• swin is the pointer variable to receive the return value. 

• win is the pointer to the window to contain the new subwindow. 

• lines and cols are integer values that give the total number of lines 
and columns in the subwindow, respectively. 

7-21 



C Library Guide 

• beginy and begin_x are integer values that give the line and 
column positions, respectively, of the upper-left comer of the 
subwindow when displayed on the terminal screen. The swin vari­
able must be a pointer of type WINDOW. 

The subwin function is typically used to divide a large window into 
separate regions. For example, in the following program fragment, 
subwin creates the subwindow named cmdmenu in the lower part of the 
standard screen: 

WINDOW *cmdmenu: 

cmdmenu = subwin(stdscr, 5, 80, 19, 0); 

In this example, changes to cmdmenu affect the standard screen as well. 

The sub win function returns the value (WINDOW*) ERR on an error, such 
as insufficient memory for the new window. 

7.4.3 Accessing Window Structure 

The following termcap macros are provided to allow you to get useful 
information on the structure of windows you have created. 

getdim(win, y, x) Gets dimensions of window win specified as coordi­
nates y and x. 

getorg(win, y, x) Locates origin (upper left point) of win expressed 
asyandx. 

is_standout(win) Determines if window win is in standout mode. 

iscuroftO Determines if cursor is in invisible mode. 

tscroll(win, bi) Enables or disables scrolling in window win based 
on the value of boolean flag bf (1 enables, 0 dis­
ables). 

autoftush(bf) Suspends explicit flushing of output buffers in a 
wrefreshO command when the boolean flag bfis O. 
The output buffer will still be refreshed when it is 
full but not on each call to wrefreshO. The default 
mode is to flush the buffer after each call to 
wrefreshO· 

7-22 



Screen Processing 

7.4.4 Adding and Printing to a Window 

The waddch, waddstr, and wprintw functions add and print characters, 
strings, and numbers to a given window. 

The waddch function adds a given character to the given window and 
moves the character pointer one position to the right. The function call 
has the following form: 

waddch ( win, c) 

where 

• win is a pointer to the window to receive the character. 

• c is the character to be added, which must have char type. 

For example, if the current position in the window midscreen is (0,0), the 
function call below places the letter A at this position and moves the 
pointer to (0,1): 

waddch (midscreen, 'A') 

The waddstr function adds a string of characters to the given window, 
placing the first character of the string at the current position and moving 
the pointer one position to the right for each character in the string. The 
function call has the following form: 

waddstr(win, str) 

where 

• win is a pointer to the window to receive the string. 

• str is a character pointer to the given string. 

For example, if the current position is (0,0), the following function call 
places the beginning of the string line at this position and moves the 
pointer to (0,4): 

waddstr(midscreen, "line"); 

The wprintw function prints one or more values in the given window, 
where a value may be a string, a character, or a decimal, octal, or hexade­
cimal number. The function call has the following form: 

wprintw(win,fint[, argJ, arg2]) 

where 

• win is a pointer to the window to receive the values. 

7-23 



C Library Guide 

• fmt is a pointer to a string that defines the format of the values. A 
format may be %s for a string, %c for a character, or %d, %0, or 
%x for a decimal, octal, or hexadecimal number, respectively. 
(Other formats are described in printf (S) in the XENlX 
Programmer's Reference.) 

• arg is a value to be printed. If more than one arg is given, each 
must be separated from the preceding one with a comma (,). For 
each arg given, there must be a corresponding format given in fmt. 
If %s is given, the corresponding arg must be a character pointer. 
For other formats, the actual value or a variable containing the 
value can be given. 

This function is typically used to copy both numbers and strings to the 
standard screen at the same time. For example, in the following program 
fragment, wprintw prints a name and then the number 15 at the current 
position in the window midscreen: 

char *name; 

wprintw (midscreen, "%s %d", name, 15); 

Note that when a new-line, return, or tab character is given to a waddch, 
waddstr, or wprintw function, the functions perform the same actions as 
described for the addch function. The functions return ERR if they 
encounter an error, such as illegal scrolling. 

7.4.5 Reading and Scanning for Input 

The wgetch, wgetstr, and wscanw functions read characters, strings, and 
numbers from the standard input file and usually echo the values by copy­
ing them to the given window. 

The wgetch function reads a single character from the standard input file 
and returns the character as a value. The function call has the following 
form: 

c = wgetch (win) 

where 

• win is a pointer to a window. 

• c is the character variable to receive the character. 

7-24 



Screen Processing 

This function is typically used to read a series of characters from the key­
board. For example, in the following program fragment, wgetch reads 
characters until a colon (:) is found: 

char c, dir[MAX]; 
int i; 

i = 0; 
while ((c=wgetch(cmdrnenu)) != 

dir[i++] = Ci 

, . , 
&& i <MAX) 

The wgetstr function reads a string of characters from the terminal key­
board and copies the string to a given location. The function call has the 
following form: 

wgetstr(win, str) 

where 

• win is a pointer to a window. 

• str is a character pointer to the variable or location to receive the 
string. When typed at the keyboard, the string must end with a 
new-line character or with the end-of-file character. The extra 
character is replaced by a null character when the string is stored. 
You must ensure that str has adequate space for storing the typed 
string. 

This function typically reads names and other text from the keyboard. For 
example, in the following program fragment, wgetstr reads a string from 
the keyboard and stores it in the array filename: 

char filename[20]i 

wgetstr(cmdrnenu, filename)i 

The wscanw function reads one or more values from the standard input 
file and copies the values to given locations. A value can be a string, a 
character, or a decimal, octal, or hexadecimal number. The function call 
has the following form: 

wscanw(win,jmt [, argptrl, arg2]) 

where 

• win is a pointer to a window. 

• jmt is a pointer to a string defining the format of the values to be 
read. 

7-25 



C Library Guide 

• argptr is a pointer to the variable to receive a value. If more than 
one argptr is given, each must be separated from the preceding by 
a comma (,). For each argptr given, there must be a corresponding 
format given in fmt. A format can be %s for a string, %c for a 
character, or %d, %0, or %x for a decimal, octal, or hexadecimal 
number, respectively. (Other formats are described in seanf(S) in 
the XENIX Programmer's Reference.) 

This function typically reads a combination of strings and numbers from 
the keyboard. For example, in the following program fragment wseanw 
reads a name and a number from the keyboard: 

char name[20]; 
int id; 

wscanw("%s %d", name, &id); 

In this example, the input values are stored in the character array name 
and the integer variable id. 

If you set the terminal to ECHO mode, the function copies the string to 
the standard screen. If you do set not the terminal to RAW or NOECHO 
mode, the function automatically sets the terminal to CBREAK mode, 
then restores the previous mode after reading the character. 

The function returns ERR if it encounters an error, such as illegal scrol­
ling. 

7.4.6 Moving the Current Position in a Window 

The wmove function moves the current position in a given window. The 
function call has the following form: 

wmove(win, y, x) 

where 

• win is a pointer to a window. 

• y is an integer value that gives the new line position. 

• x is an integer value that gives the new column position. 

For example, the following function call moves the current position in the 
window midscreen to (4,4): 

wmove(midscreen, 4, 4) 

The function returns ERR if it encounters an error, such as illegal scrol­
ling. 

7-26 



Screen Processing 

7.4.7 Inserting Characters and Lines 

The winsch and winsertln functions insert characters and lines into a 
given window. 

The winsch function inserts a character at the current position and shifts 
the character previously at that position (and all characters to its right) 
one position to the right. The function call has the following fonn: 

winsch ( win, c) 

where 

• win is a pointer to a window. 

• c is the character to be inserted. 

This function is typically used to edit the contents of the given window. 
For example, the following program fragment inserts the character X at 
the current position in the window midscreen: 

winsch(midscreen, 'X'); 

The winsertln function inserts a blank line at the current position and 
moves the existing line and all lines below it down one line, causing the 
last line to move off the bottom of the screen. The function call has the 
following fonn: 

winsertln (win) 

where win is a pointer to the window to receive the blank line. 

The winsertln function is used to insert lines into a window. For example, 
in the following program fragment, winsertln inserts a blank line at the 
top of the window cmdmenu, preparing it for a new line: 

char line[80]; 

wmove(cmdmenu, 3, 0); 
winsertln(cmdmenu); 
waddstr(cmdmenu, line); 

Both functions return ERR if they encounter errors, such as illegal scrol­
ling. 

7-27 



C Library Guide 

7.4.8 Deleting Characters and Lines 

The wdeich and wdeleteln functions delete characters and lines from the 
given window. 

The wdeich function deletes the character at the current position and 
shifts all characters to the right of the deleted character one position to 
the left. The last character on the line is replaced with a space. The func­
tion call has the following form: 

wdeich (win) 

where win is a pointer to a window. 

This function is typically used to edit the contents of the standard screen. 
For example, the following program fragment call deletes the character at 
the current position in the window midsereen: 

wdelch(midscreen}; 

The wdeleteln function deletes the current line and shifts all lines below 
the deleted line one line up, leaving the last line in the screen blank. The 
function call has the following form: 

wdeleteln (win) 

where win is a pointer to a window. 

This function is typically used to delete existing lines from a given win­
dow. For example, in the following program fragment, wdeleteln deletes 
the lines in midsereen until ent is equal to zero: 

int cnt; 

while (cnt != O) { 
wdeleteln(midscreen}; 
cnt--; 

7.4.9 Clearing the Window Screen 

The wclear, werase, wclrtobot, and wclrtoeol functions clear all or part 
of the characters from the given window by replacing them with spaces. 
The functions are typically used to prepare the window for new text. 

7-28 



Screen Processing 

The wclear function clears all characters from the window, moves the 
pointer to (0,0), and sets the standard screen's clear flag. The flag causes 
the next refresh function call to clear all characters from the terminal 
screen. The function call has the following form: 

wclear (win) 

where win is the window to be cleared. 

The werase function clears the given window and moves the pointer to 
(0,0), but does not set the clear flag. It is used whenever the contents of 
the terminal screen must be preserved. The function call has the following 
form: 

werase (win) 

where win is a pointer to the window to be cleared. 

The wclrtobot function clears the window from the current position to 
the bottom of the screen. The function call has the following form: 

wclrtobot (win) 

where win is a pointer to the window to be cleared. For example, if the 
current position in the window midscreen is (10,0), the following program 
fragment clears all characters from line 10 and all lines below line 10: 

wclrtobot(midscreen); 

The wclrtoeol function clears the standard screen from the current posi­
tion to the end of the current line. The function call has the following 
form: 

wclrtoeol (win) 

where win is a pointer to the window to be cleared. For example, if the 
current position in midscreen is (10,10), the following program fragment 
clears all characters from (10,10) to the end of the line; the characters at 
the beginning of the line remain unchanged: 

wclrtoeol(midscreen); 

Note that the wclrtobot and wclrtoeol functions do not change the 
current position. 

7-29 



C Library Guide 

7.4.10 Saving from a Window 

The dmpwinO function saves the contents of a window to a specified file. 
The infonnation in the window is saved without attributes. A call to 
dmpwinO takes the following fonn: 

dmpwin(win, fp, margin) 
WINDOW *win; 
FILE *fp; 
int margin; 

where win is the window to be dumped, fp is a pointer to the file where 
the infonnation must go, and margin is an integer value indicating the left 
margin justification of the saved infonnation in the file. 

This function allows the use of a printscreen function key. For example, 
you can implement a printscreen key by programming the key to signal 
you application to call dmpwin to save to a file and then print the file. 

7.4.11 Refreshing from a Window 

The wrefresh function updates the tenninal screen by copying one or 
more characters from the given window to the tenninal. The function 
effectively changes the tenninal screen to reflect the new contents of the 
window. The function call has the following fonn: 

wrefresh (win) 

where win is a pointer to a window. This function solely displays changes 
to the window. The function copies only those characters that have 
changed since the last call to wrefresh and leaves any existing text on the 
tenninal screen. For example, in the following program fragment, 
wrefresh is called twice: 

waddstr(cmdmenu, "Type a command name\n"); 
wrefresh(cmdmenu); 
waddstr (cmdmenu, "Command: If); 
wrefresh(cmdmenu); 

In this example, the first call to wrefresh copies the string "Type a com­
mand name" to the tenninal screen. The second call copies only the 
string "Command:" to the tenninal, since the original string has not 
changed. 

7-30 



Screen Processing 

Note 

If curser is given with wrefresh, the function restores the actual 
screen to its most recent contents. This is useful for implementing a 
redraw feature for screens that become cluttered with unwanted 
output. 

The function returns ERR if it encounters an error, such as illegal scrol­
ling. If an error is encountered, the function attempts to update as much 
of the screen as possible without causing the scroll. 

7.4.12 Overlaying Windows 

The overlay function copies all characters, except spaces, from one win­
dow to another, moving characters from their original positions in the first 
window to identical positions in the second. The function effectively lays 
the first window over the second, letting characters in the second window 
that would otherwise be covered by spaces remain unchanged. The func­
tion call has the following form: 

overlay (win} ,win2) 

where 

• win} is a pointer to the window to be copied. 

• win2 is a pointer to the window to receive the copied text. 

The starting positions of win} and win2 must match, otherwise an error 
occurs. If win} is larger than win2, the function copies only those lines 
and columns in win} that fit in win2. 

This function is typically used to build a composite screen from overlap­
ping windows. For example, in the following program fragment overlay 
is used to build the standard screen from two different windows: 

WINDOW *info, *cmdmenu; 

overlay (info, stdscr); 
overlay (cmdmenu, stdscr); 
refresh(); 

7-31 



C Library Guide 

Note that this function cannot be used with disjoint windows. (Windows 
that do not overlap.) 

7.4.13 Overwriting a Screen 

The overwrite function copies all characters, including spaces, from one 
window to another, moving characters from their positions in the first 
window to identical positions in the second. The function effectively 
writes the contents of the first window over the second, destroying the 
previous contents of the second window. Note that the windows must be 
overlapping in order to use this function. overwrite is typically used to 
display the contents of a temporary window in the middle of a larger win­
dow. The function call has the following form: 

overwrite (win], win2) 

where 

• win] is a pointer to the window to be copied. 

• win2 is a pointer to the window to receive the copied text. 

If win] is larger than win2, the function copies only those lines and 
columns in win] that fit in win2. 

For example, in the following program fragment, overwrite is used to 
copy the contents of a window to the standard screen: 

WINDOW *work; 

overwrite (work, stdscr); 
refresh(); 

7.4.14 Moving a Window 

The mvwin function moves a given window to a new position on the ter­
minal screen, causing the upper-left comer of the window to occupy a 
given line and column position. The function call has the following form: 

mvwin(win, y, x) 

where 

• win is a pointer to the window to be moved. 

• y is an integer value giving the line to which the comer is to be 
moved. 

7-32 



Screen Processing 

• x is an integer value giving the column the comer is to be moved 
to. 

This function is typically used to move a temporary window when an 
existing window under it contains information to be viewed. For example, 
in the following program fragment, mvwin moves the window named 
work to the upper-left comer of the terminal screen: 

WINDOW *work; 

mvwin (work, 0, 0); 

The function returns ERR if it encounters a error, such as an attempt to 
move part of a window off the edge of the screen. 

7.4.15 Reading a Character from a Window 

The inch and winch functions read a single character from the current 
pointer position in a window or screen. 

The inch function reads a character from the standard screen. The func­
tion call has the following form: 

c = inch 0 
where c is the character variable to receive the character read. 

The winch function reads a character from a given window or screen. The 
function call has the following form: 

c = winch (win) 

where win is the pointer to the window containing the character to be 
read. 

These functions are typically used to compare the actual contents of a 
window with what is assumed to be there. For example, in the following 
program fragment, inch and winch are used to compare the characters at 
position (0,0) in the standard screen and in the window named altscreen: 

char cl f c2; 

cl = inch () ; 
c2 = winch(altscreen); 
if (cl != c2) 

error(); 

Note that reading a character from a window does not alter the contents 
of the window. 

7-33 



C Library Guide 

7.4.16 Touching a Window 

The touchwin function makes the entire contents of a given window 
appear to be modified, causing a subsequent refresh call to copy all char­
acters in the window to the terminal screen. The function call has the fol­
lowing form: 

touchwin( win) 

where win is a pointer to the window to be touched. 

This function is typically used when two or more overlapping windows 
comprise the terminal screen. For example, the following function call is 
used to touch the window named leftscreen: 

touchwin(leftscreen}; 

A subsequent refresh copies all characters in leftscreen to the terminal 
screen. 

7.4.17 Deleting a Window 

The delwin function deletes a given window from memory, freeing the 
space previously occupied by the window for other windows or for 
dynamically allocated variables. 
The function call has the following form: 

delwin (win) 

where win is a pointer to the window to be deleted. 

This function is typically used to remove temporary windows from a pro­
gram or to free memory space for other uses. For example, the following 
function call removes the window named midscreen: 

delwin(midscreen}; 

7.5 Using Other Window Functions 

The following sections explain how to perform a variety of operations on 
existing windows, such as setting window flags and drawing boxes around 
the windows. 

7-34 



Screen Processing 

7.5.1 Drawing a Box 

The box function draws a box around a window using the given charac­
ters to form the horizontal and vertical sides. The function call has the 
following form: 

box(win, vert, hor) 

where 

• win is a pointer to the desired window. 

• vert is the vertical character. 

• hor is the horizontal character. 

Both vert and hor must have char type. 

This function is typically used to distinguish one window from another 
when combining windows on a single screen. For example, in the follow­
ing program fragment, box creates a box around the window in the lower 
half of the screen: 

WINDOW *cmdmenu; 

cmdmenu = subwin(stdscr, 5, 80, 19, 0); 
box (cmdmenu, 'I', '-'); 

If necessary, the function will leave the comers of the box blank to 
prevent illegal scrolling. 

7.5.2 Displaying Bold Characters 

The standout and wstandout functions set the standout character attri­
bute' causing characters subsequently added to the given window or 
screen to be displayed as bold characters. 

The standout function sets the standout attribute for characters added to 
the standard screen. The function call has the following form: 

standout 0 

No arguments are required. 

7-35 



C Library Guide 

The wstandout function sets the standout attribute of characters added to 
the given window or screen. The function call has the following form: 

wstandout( win) 

where win is a pointer to a window. 

These functions are typically used to make error messages or instructions 
clearly visible when displayed at the terminal screen. For example, in the 
following program fragment, standout sets the standout character attri­
bute before adding an error message to the standard screen: 

if (code = 5) { 
standout(); 
addstr("Illegal character.\n"); 
} 

Note that the actual appearance of characters with the standout attribute 
depends on the given terminal. This attribute is defined by the SO and SE 
(or US and UE) sequences given in the terminal's termcap or terminfo 
terminal-capability database entry. For more information, see 
termcap (M) or terminfo (M) in the XENlX User's Reference. 

7.5.3 Restoring Normal Characters 

The standend and wstandend functions restore the normal character 
attribute, causing characters subsequently added to a given window or 
screen to be displayed as normal characters. 

The standend function restores the normal attribute for the standard 
screen. The function call has the following form: 

standendO 

No arguments are required. 

This wstandend function restores the normal attribute for a given window 
or screen. The function call has the following form: 

wstandend (win) 

where win is a pointer to a window. 

These functions are typically used after an error message or instructions 
have been added to a screen using the standout attribute. For example, in 

7-36 



Screen Processing 

the following program fragment, standend restores the normal attribute 
after an error message has been added to the standard screen: 

if (code = 5) { 
standout{); 
addstr{"Illegal character.\n"); 
standend(); 
} 

Multiple Attributes 

It is possible to specify more than one attribute at a time for a given char­
acter. Each character in a window is represented by two bytes of informa­
tion. The low order byte represents the character itself, and the high order 
byte represents the attributes, if any, that the character requires. 

In the attribute byte the low three bits are predefined. The lowest bit 
represents A_STANDOUT, the second bit represents A_BLINK, and the 
third bit represents A_UNDERLINE. The last 5 bits are user definable. To 
turn the attributes on, use the function 

wattron(win, attribute) 

and to turn the attribute off, use the function: 

wattrofft win, attribute) 

For more information on defining your own character attributes, refer to 
the section on "Advanced Topics" later in this chapter. 

7.5.4 Getting the Current Position 

The getyx function copies the current line and column positions of a 
given window pointer to a corresponding pair of variables. The function 
call has the following form: 

getyx(win, y, x) 

where 

• win is a pointer to the window containing the pointer to be exam­
ined. 

• y is the integer variable to receive the line position. 

• x is the integer variable to receive the column position. 

7-37 



C Library Guide 

This function is typically used to save the current position so that the pro­
gram can return to the position at a later time. For example, in the follow­
ing program fragment, getyx saves the current line and column positions 
in the variables line and column: 

int line, column; 

getyx(stdscr, line, column); 

7.5.5 Setting Window Flags 

The leaveok, scrollok, and clearok functions set or clear the cursor, 
scroll, and clear-screen flags. The flags control the action of the refresh 
function when it is called for the given window. 

The leaveok function sets or clears the cursor flag, which defines how the 
refresh function places the terminal cursor and the window pointer after 
updating the screen. If the flag is set, refresh leaves the cursor after the 
last character to be copied and moves the pointer to the corresponding 
position in the window. If the flag is cleared, refresh moves the cursor to 
the same position on the screen as the current pointer position in the win­
dow. The function call has the following form: 

leaveok (win, state) 

where 

• win is a pointer to the window containing the flag to be set. 

• state is a Boolean value defining the state of the flag. 

If state is TRUE, the flag is set; if it is FALSE, the flag is cleared. For 
example, the following function call sets the cursor flag: 

leaveok(stdscr, TRUE); 

The scrollok function sets or clears the scroll flag for the given window. 
If the flag is set, scrolling through the window is allowed. If the flag is 
clear, no scrolling is allowed. The function call has the following form: 

scrollok (win, state) 

where 

• win is a pointer to a window. 

• state is a Boolean value defining how the flag is to be set. 

7-38 



Screen Processing 

If state is TRUE, the flag is set; if it is FALSE, the flag is cleared. The 
flag is initially clear, making scrolling illegal. 

The c1earok function sets and clears the clear flag for a given screen. The 
function call has the following form: 

c1earok (win, state) 

where 

• win is a pointer to the desired screen. 

• state is a Boolean value. 

The function sets the flag if state is TRUE, and clears the flag if it is 
FALSE. For example, the following function call sets the clear flag for 
the standard screen: 

clearok(stdscr, TRUE) 

When the clear flag is set, each refresh call to the given screen 
automatically clears the screen by passing a clear-screen sequence to the 
terminal. This sequence affects the terminal only; it does not change the 
contents of the screen. 

If c1earok is used to set the clear flag for the current screen curser, each 
call to refresh automatically clears the screen, regardless of which win­
dow is given in the call. 

7.5.6 Scrolling a Window 

The scroll function scrolls the contents of a given window upward one 
line. The function call has the following form: 

scroll (win) 

where win is a pointer to the window to be scrolled. This function should 
be used only in special cases. 

7-39 



C Library Guide 

7.6 Combining Movement with Action 

Many screen operations move the current position of a given window 
before performing an action on the window. For convenience, you can 
combine a number of functions with the movement prefix. This combina­
tion has the following form: 

mvJunc([win,]y, x[,argi, arg2]) 

where 

• June is the name of a function. 

• win is a pointer to the window to be operated on (stdscr is used if 
no window is given). 

• y is an integer value that states the line to move to. 

• x is an integer value that states the column to move to. 

• arg is a required argument for the given function. 

If more than one argument is required, they must be separated with com­
mas (,). For example, the following function call moves the position to 
(10,5) and adds the character X: 

mvaddch (10, 5, 'X'); 

The operation is the same as moving the position with the move function, 
then adding a character with addch. 

For a complete list of the functions that can be used with the movement 
prefix, see curses (S) and terminfo (S) in the XENIX Programmer's Refer­
ence. 

7.7 Controlling the Terminal 

The following sections explain how to set the terminal modes, how to 
move the cursor, and how to access other aspects of the terminal. These 
functions should be used only when using other screen-processing func­
tions. 

7.7.1 Setting a Terminal Mode 

The crmode, echo, nl, and raw functions set the terminal mode, causing 
subsequent input from the terminal's keyboard to process accordingly. 

7-40 



Screen Processing 

The crmode function sets the CBREAK mode for the terminal. This 
mode preserves the function of the signal keys, allowing signals to be sent 
to a program from the keyboard, but disables the function of the editing 
keys. The function call has the following form: 

crmodeO 

No arguments are required. 

The echo function sets the ECHO mode for the terminal, causing each 
character typed at the keyboard to be displayed at the terminal screen. 
The function call has the following form: 

echoO 

No arguments are required. 

The nl function sets a terminal to NEWLINE mode, causing all new-line 
characters to be mapped to a corresponding carriage-retum-new-line 
character combination. The function call has the following form: 

nlO 

No arguments are required. 

The raw function sets the RAW mode for the terminal, causing each char­
acter typed at the keyboard to be sent as direct input. The RAW mode dis­
ables the function of the editing and signal keys and disables the mapping 
of new-line characters into carriage-retum-new-line combinations. The 
function call has the following form: 

rawO 

No arguments are required. 

7.7.2 Clearing a Terminal Mode 

The nocrmode, noecho, nonl, and noraw functions clear the current ter­
minal mode, allowing input to be processed according to a previous 
mode. 

The nocrmode function clears a terminal from the CBREAK mode. The 
function call has the following form: 

nocrmodeO 

No arguments are required. 

7-41 



C Library Guide 

The noecho function clears a tenninal from the ECHO mode. This mode 
prevents characters typed at the keyboard from being displayed on the ter­
minal screen. The function call has the following fonn: 

noechoO 

No arguments are required. 

The nonI function clears a tenninal from NEWLINE mode, causing new­
line characters to be mapped into themselves, rather than be acted on by 
the screen. This lets the screen-processing functions optimize perfor­
mance. The function call has the following fonn: 

nonlO 

No arguments are required. 

The noraw function clears a tenninal from RAW mode, restoring nonnal 
editing and signal-generating functions to the keyboard. The function 
call has the following fonn: 

norawO 

No arguments are required. 

7.7.3 Moving the Terminal's Cursor 

The mvcur function moves the tenninal' s cursor from one position to 
another in an optimal fashion. The function call has the following fonn: 

mvcur(lasty, last_x, newy, new_x) 

where 

• last y and last _ x are integer values that give the last line and 
column positions of the cursor. 

• new y and new _x are integer values that give the new line and 
column positions of the cursor. 

For example, the following program fragment call moves the cursor from 
(10,5) to (3,0) on the tenninal screen: 

mvcur ( 10, 5, 3, 0 ) 

7-42 



Screen Processing 

Note 

The mvcur function should be used only in programs that do not use 
other screen-processing functions. This means the function can be 
used to perform optimal cursor motion without the aid of the other 
functions. For programs that do use other functions, the move, 
wmove, refresh, and wrefresh functions must be used to move the 
cursor. 

7.7.4 Getting the Terminal Mode 

The gettmode function returns the current tty mode. The function call has 
the following form: 

gettmodeO 

This function is normally called by the initscr function. 

7.7.5 Saving and Restoring the Terminal Flags 

The savetty function saves the current terminal flags and the resetty 
function restores the flags previously saved by the savetty function. These 
functions are performed automatically by the initscr and endwin func­
tions. They are not required when performing ordinary screen process­
ing. 

7.7.6 Setting a Terminal Type 

The setterm function sets the terminal type to a given type. The function 
call has the following form: 

setterm (name) 

where name is a pointer to a string containing the terminal type identifier. 
The function is normally called by the initscr function, but can be called 
separately in special cases. 

7-43 



C Library Guide 

7.7.7 Reading the Terminal Name 

The longname function returns the full name of the tenninal correspond­
ing to a given termcap or terminfo identifier. The function call has the 
following fonn: 

longname(termbuf, name) 

where 

• termbuJ is a pointer to the string containing the tenninal type 
identifier. 

• name is a default string to return if no tenninal name is found in 
termbuf 

The tenninal type identifier must exist in the letc/termcap file (curses) or 
lusrl/iblterminJo file (terminfo). 

This function is typically used to get the full name of the tenninal 
currently being used. Note that the current tenninar s identifier is stored 
in the variable tty type, which may be used to receive a new name. 

7.S Advanced Topics 

This section covers more advanced issues in screen processing topics. 
They provide added control for more extensive screen applications. 

7.S.1 Multiple Attributes 

It is possible to specify more than one attribute at a time for a given char­
acter. Each character in a window is represented by two bytes of infonna­
tion. The low order byte represents the character itself, and the high order 
byte represents the attributes, if any, that the character requires. 

In the attribute byte the low three bits are predefined. The lowest bit 
represents A_STANDOUT, the second bit represents A_BLINK, and the 
third bit represents A_UNDERLINE. The last 5 bits are user definable. 

7-44 



Screen Processing 

To establish your attributes at start-up time, initialize your variables in 
the following way: 

char *A4S; 
char *A4E; 
int *A4G; 

/* Attribute Start Sequence */ 
/* Attribute End Sequence */ 
/* Number of Magic Cookie Glitch Characters 

associated with attribute*/ 

You can identify the attributes using A _ ATTR4 through A _ ATTRS. 

7.S.2 Saving and Restoring tty Settings 

There are two functions to allow you to restore the default terminal set­
tings and then return to your terminal setup for curses. These functions 
are reset _ttyO and save _ttyO. They can also be used to implement shell 
escapes. For example. 

reset_tty () ; 
system (" sh") ; 
save_tty () ; 

7.S.3 Output Mapping Features 

Four functions are provided for users to define their own output mapping. 
These are blank functions that the programmer can fill in to provide any 
sort of custom handling desired. They are described below: 

tputch 

tputch(c) /* default version of tputch */ 

unsigned char c; 
{ 

putchar(c); 

This function is available for users to define their own handling of termi­
nal sequences. If you wish to implement special handling of outputting 
terminal sequences, you can write your own tputchO and curses will call 
the function whenever it is outputting sequences to the terminal. 

7-45 



C Library Guide 

mputch 

mputch(c) /* default version of mputch */ 

unsigned char Ci 
{ 

putchar(c)i 

This function is available for output mapping. If you wish to do your own 
output mapping you can write your own version of mputchO and it will be 
called by curses during output. 

obuftlush 

obufflush () /* default output buffer flushing */ 

fflush(stdout) 

You may define your own mechanism for flushing the output buffer. 
curses will call this routine when flushing output. 

returni 

This function is provided to allow the user to set up any special handling 
they might require for their customized routines. This function is called 
during initscrO. 

7-46 



Chapter 8 

Character and 

String Processing 

8.1 Introduction 8-1 

8.2 Using the Character Functions 8-1 
8.2.1 Testing for an ASCII Character 8-1 
8.2.2 Converting to ASCII Characters 8-2 
8.2.3 Testing for Alphanumerics 8-3 
8.2.4 Testing for a Letter 8-3 
8.2.5 Testing for Control Characters 8-4 
8.2.6 Testing for a Decimal Digit 8-4 
8.2.7 Testing for a Hexadecimal Digit 8-5 
8.2.8 Testing for Printable Characters 8-5 

8.3 Testing for Punctuation 8-5 
8.3.1 Testing for Whitespace 8-6 
8.3.2 Testing for Case in Letters 8-6 
8.3.3 Converting the Case of a Letter 8-7 

8.4 Using the String Functions 8-7 
8.4.1 Concatenating Strings 8-8 
8.4.2 Comparing Strings 8-8 
8.4.3 Copying a String 8-9 
8.4.4 Getting a String's Length 8-10 
8.4.5 Concatenating Characters to a String 8-10 
8.4.6 Comparing Characters in Strings 8-11 
8.4.7 Copying Characters to a String 8-11 
8.4.8 Reading Values from a String 8-12 
8.4.9 Writing Values to a String 8-13 





Character and String Processing 

8.1 Introduction 

Character and string processing is an important part of many programs. 
Programs regularly assign, manipulate, and compare characters and 
strings in order to complete their tasks. For this reason, the standard 
library provides a variety of character and string processing functions. 
These functions give a convenient way to test, translate, assign, and com­
pare characters and strings. 

To use the character functions in a program, the file ctype.h, which pro­
vides the definitions for special character macros, must be included in the 
program. The line: 

#include <ctype.h> 

must appear at the beginning of the program. 

To use the string functions, no special action is required. These functions 
are defined in the standard C library and are read whenever you compile a 
Cprogram. 

8.2 Using the Character Functions 

The character functions test and convert characters. Many character 
functions are defined as macros, and as such cannot be redefined or used 
as a target for a breakpoint when debugging. 

8.2.1 Testing for an ASCII Character 

The isascii function tests for characters in the ASCII character set; i.e., 
characters whose values range from 0 to 127. The function call has the 
form: 

isascii (c) 

where c is the character to be tested. The function returns a nonzero 
(true) value if the character is ASCII, otherwise it returns zero (false). For 
example, in the following program fragment, isascii determines whether 

8-1 



C Library Guide 

or not the value in c, read from the file given by data, is in the acceptable 
AS en range: 

FILE *data; 
int c; 

c fgetc (data) ; 
if (! isascii (c) ) 

notext(); 

In this example, a function named notext is called if the character is not in 
range. 

8.2.2 Converting to ASCn Characters 

The toascii function converts non-ASCII characters to Asen. The func­
tion call has the fonn: 

c = toascii (i) 

where c is the variable to receive the character, and i is the value to be 
changed. The function creates an Ascn character by truncating all but 
the low order 7 bits of the non-ASCn value. IT the i value is already an 
Asen character, no change takes place. For example, the function call: 

ascii = toascii(160); 

converts value 160 to 32, the Ascn value of the space character. 

The function is typically used to prepare non-ASen characters for display 
on the standard output. For example, in the following program fragment, 
toascii converts each character read from the file given by oddstrm: 

FILE *oddstrm; 
int c; 

c = toascii( getc( oddstrm ) ); 
if ( isprint (c) I I isspace (c) ) 

putchar(c); 

IT the resulting character is printable or is whitespace, it is written to the 
standard output. 

8-2 



Character and String Processing 

8.2.3 Testing for Alphanumerics 

The isalnum function tests for letters and decimal digits; i.e., the 
alphanumeric characters. The function call has the form: 

isalnum (c) 

where c is the character to test. The function returns a nonzero (true) 
value if the character is an alphanumeric, otherwise it returns zero (false). 
For example, the function call: 

isalnum (' l' ) 

returns a nonzero value, but the call: 

isalnum (' >' ) 

returns zero. 

8.2.4 Testing for a Letter 

The isalpha function tests for uppercase or lowercase letters; i.e., alpha­
betic characters. The function call has the form: 

isalpha (c) 

where c is the character to be tested. The function returns a nonzero 
(true) value if the character is a letter, otherwise it returns zero (false). 
For example, the function call: 

isalpha (' a' ) 

returns a nonzero value, but the call: 

isalpha('l') 

returns zero. 

8-3 



C Library Guide 

8.2.5 Testing for Control Characters 

The iscntrl function tests for control characters; i.e., characters whose 
ASCII values are in the range 0 to 31 or is 127. The function call has the 
fonn: 

iscntrl (c) 

where c is the character to be tested. The function returns a nonzero 
(true) value if the character is a control character, otherwise it returns 
zero (false). For example, in the program following fragment, iscntrl 
detennines whether or not the character in c read from the file given by 
infile is a control character: 

FILE *infile, *outfile; 
int c; 

c = fgetc(infile); 
if ( ! iscntrl (c) ) 

fputc( c, outfile ); 

The fpute function is ignored if the character is a control character. 

8.2.6 Testing for a Decimal Digit 

The isdigit function tests for decimal digits. The function call has the 
fonn: 

isdigit (c) 

where c is the character to be tested. The function returns a nonzero 
value if the character is a digit, otherwise it returns zero. For example, in 
the following program fragment, each new character in c is added to the 
running total if the character is a digit: 

8-4 

FILE *infile; 
int c, num; 

while ( isdigit( c=getc(infile) ) ) 
num = num*10 + c-48; 



Qaracter and String Processing 

8.2.7 Testing for a Hexadecimal Digit 

The isxdigit function tests for a hexadecimal digit; that is, a character 
that is either a decimal digit or an uppercase or lowercase letter in the 
range A to F. The function call has the form: 

isxdigit ( c) 

where c is. the character to be tested. The function returns a nonzero 
value if the character is a digit, otherwise it returns zero. For example, in 
the following program fragment, isxdigit tests whether a hexadecimal 
digit is read from the standard input: 

int C; 

c = getchar(); 
if ( isxdigit(c) 

hexmode(); 

In this example, a function named hexmode is called if a hexadecimal 
digit is read. 

8.2.8 Testing for Printable Characters 

The isprint function tests for printable characters; i.e., characters whose 
ASCII values range from 32 to 126. The function call has the form: 

isprint (c) 

where c is the character to be tested. The function returns a nonzero 
(true) value if the character is printable, otherwise it returns zero (false). 

8.3 Testing for Punctuation 

The ispunct function tests for punctuation characters; i.e., characters that 
are neither control characters nor alphanumeric characters. The function 
call has the form: 

ispunct (c) 

where c is the character to be tested. The function returns a nonzero 
(true) function if the character is a punctuation character, otherwise it 
returns zero (false). 

8-5 



C Library Guide 

8.3.1 Testing for Whitespace 

The isspace function tests for whitespace characters; i.e, the space, hor­
izontal tab, vertical tab, carriage return, fonnfeed, and newline charac­
ters. The function call has the fonn: 

isspace (c) 

where c is the character to be tested. The function returns a nonzero 
(true) value if the character is a whitespace character, otherwise it returns 
zero (false). 

8.3.2 Testing for Case in Letters 

The isupper and islower functions test for uppercase and lowercase 
letters, respectively. The function calls have the fonn: 

isupper (c) 

and 

islower (c) 

where c is the character to be tested. The function returns a nonzero 
(true) value if the character is the proper case, otherwise it returns zero 
(false). 
For example, the function call: 

isupper('b') 

returns zero (false), but the call: 

islower('b') 

returns a nonzero (true) value. 

8-6 



Character and String Processing 

8.3.3 Converting the Case of a Letter 

The tolower and toupper functions convert the case of a given letter. 
The function calls have the form: 

c = tolower (i) 

and 

c = toupper (i) 

where c is the variable to receive the converted letter, and i is the letter to 
be converted. For example, the function call: 

lower = tolower(,B ') 

converts B to b and assigns it to the variable [ower, and the call: 

upper = toupper('b') 

converts b to B and assigns it to the variable upper. 

The tolower function returns the character unchanged if it is not an 
uppercase letter. Similarly, the toupper function returns the character 
unchanged if it is not a lowercase letter. 

These functions are typically used to make the case of the characters read 
from a file or the standard input consistent. For example, in the following 
statement, tolower changes the character read from the standard input to 
lowercase before it is compared: 

if ( tolower ( get char () ) ! = ' y' ) 
exit(O); 

This conversion allows the user to enter either Y or y to prevent the state­
ment from executing the exit function. 

8.4 Using the String Functions 

The string functions concatenate, compare, copy, and keep track of the 
number of characters in a string. Two special string functions, sscanf and 
sprintf, let a program read from and write to a string in the same way the 
standard input and output can be read and written. These functions are 
convenient when reading or writing whole lines containing values of 
several different formats. 

8-7 



C Library Guide 

Many string functions have two forms: a form that manipulates all char­
acters in the string and one that manipulates a given number of charac­
ters. This gives programs very fine control over all or part of a string. 

8.4.1 Concatenating Strings 

The strcat function concatenates two strings by appending the characters 
of one string to the end of another. The function call has the form: 

strcat (dst, src) 

where dst is a pointer to the string to receive the new characters, and src 
is a pointer to the string containing the new characters. The function 
appends the new characters in the same order as they appear in src, then 
appends a null character (\0) to the last character in the new string. The 
function always returns the pointer dst. 

The function is typically used to build a string such as a full pathname 
from two smaller strings. For example, in the following program frag­
ment, strcat concatenates the string temp to the contents of the character 
array dir: 

char dir[MAX] = "/usr/"; 

strcat (dir, "temp"); 

8.4.2 Comparing Strings 

The strcmp function compares the characters in one string to those in 
another and returns an integer value showing the result of the comparison. 
The strcmp function call has the form: 

strcmp (sl, s2) 

where sl and s2 are the pointers to the strings to be compared. The func­
tion returns zero if the strings are equal (Le., if they have the same char­
acters in the same order). If the strings are not equal, the function returns 
the difference between the ASCII values of the first unequal pair of char­
acters. The value of the second string character is always subtracted from 
the first. For example, the function call: 

strcrnp ("Character A", "Character A"); 

8-8 



Character and String Processing 

returns zero, since the strings are identical in every way, but the function 
call : 

strcmp ("Character A", "Character B"), 

returns -1, since the ASCII value of B is one greater than A. 

Note that the strcmp function continues to compare characters until a 
mismatch is found. If one string is shorter than the other, the function 
usually stops at the end of the shorter string. For example, the function 
call: 

strcmp("Character A", "Character ") 

returns 65, that is, the difference between the null character at the end of 
the second string and the A in the first string. 

8.4.3 Copying a String 

The strcpy function copies a given string to a given location. The func­
tion call has the form: 

strcpy (dst, src) 

where src is a pointer to the string to be copied, and dst is a pointer to the 
location to receive the string. The function copies all characters in the 
source string src to the dst and appends a null character (\0) to the end of 
the new string. If dst contained a string before the copy, that string is des­
troyed. The function always returns the pointer to the new string. 

For example, in the following program fragment, strcpy copies the string 
, 'not available" to the location given by name: 

char na[] = "not available"; 
char name[20]; 

strcpy( name, na ); 

Note that the location to receive a string must be large enough to contain 
the string. The function cannot detect overflow. 

8-9 



C Library Guide 

8.4.4 Getting a String's Length 

The strlen function returns the number of character contained in a given 
string. The function call has the form: 

strlen (s) 

where s is a pointer to a string. The count includes all characters up to, 
but not including, the first null character. The return value is always an 
integer. 

In the following program fragment, strlen is used to determine whether or 
not the contents of inname are short enough to be stored in name: 

char *inname; 
char name [MAX] ; 

if ( strlen{inname) < MAX ) 
strcpy( name, inname); 

8.4.5 Concatenating Characters to a String 

The strncat function appends one or more characters to the end of a given 
string. The function call has the form: 

strncat (dst, src, n) 

where dst is a pointer to the string to receive the new characters, src is a 
pointer to the string containing the new characters, and n is an integer 
value giving the number of characters to be concatenated. The function 
appends the given number of characters to the end of the dst string, then 
returns the pointer dst. 

In the following program fragment, strncat copies the first three charac­
ters in letter to the end of cover. 

char cover[] = "cover"; 
char letter[] = "letter"; 

strncat( cover, letter, 3); 

This example creates the new string coverlet in cover. 

8-10 



Character and String Processing 

8.4.6 Comparing Characters in Strings 

The strncmp function compares one or more pairs of characters in two 
given strings and returns an integer value which gives the result of the 
comparison. The function call has the form: 

strncmp (sl, s2, n) 

where sl and s2 are pointers to the strings to be compared, and n is an 
integer value giving the number of characters to compare. The function 
returns zero if the first n characters are identical. Otherwise, the function 
returns the difference between the ASCII values of the first unequal pair of 
characters. The function generates the difference by subtracting the 
second string character from the first. 

For example, the function call: 

strncmp ("Character A", "Character B", 5) 

returns zero because the first five characters are identical, but the function 
call: 

strncmp ("Character A", "Character B", 11) 

returns -1 because the value of B is one greater than A. 

Note that the function continues to compare characters until a mismatch 
or the end of a string is found. 

8.4.7 Copying Characters to a String 

The strncpy function copies a given number of characters to a given 
string. The function call has the form: 

strncpy (dst, src, n) 

where dst is a pointer to the string to receive the characters, src is a 
pointer to the string containing the characters, and n is an integer value 
giving the number of characters to be copied. The function copies either 
the first n characters in src to dst, or if src has fewer than n characters, 
copies all characters up to the first null character. The function always 
returns the pointer dst. 

8-11 



C Library Guide 

In the following program fragment, strnepy copies the first three charac­
ters in date to day. 

char buf [MAX]; 
char date [29] = {"Fri Dec 29 09:35:44 EDT 1985"}; 
char *day = buf; 

strncpy( day, date, 3); 

In this example, day receives the string Fri. 

8.4.8 Reading Values from a String 

The sseanf function reads one or more values from a given character 
string and stores the values at a given memory location. The function is 
similar to the seanf function that reads values from the standard input. 
The function call has the form: 

sseanf (s, format, argptr .•• ) 

where s is a pointer to the string to be read, format is a pointer to the 
string defining the format of the values to be read, and argptr is a pointer 
to the variable that is to receive the values read. If more than one argptr 
is given, they must be separated with commas. The format string may 
contain the same formats as given for seanf (see seanf(S) in the XENIX 
Programmer's Reference). The function always returns the number of 
values read. 

The function is typically used to read values from a string containing 
several values of different formats, or to read values from a program's 
own input buffer. For example, in the following program fragment, sseanf 
reads two values from the string pointed to by datestr: 

char datestr[] = 

{"THU MAR 29 11:04:40 EST 1985"}; 
char month[4]; 
char year[5]; 

sscanf(datestr,"%*3s%3s%*2s%*8s%*3s%4s", 
month, year) ; 

printf("%s, %s\n",month,year); 

The first value (a three-character string) is stored at the location pointed 
to by month, the second value (a four-character string) is stored at the 
location pointed to by year. 

8-12 



Character and String Processing 

8.4.9 Writing Values to a String 

The sprintf function writes one or more values to a given string. The 
function call has the form: 

sprintf (s, format [, arg] ... ) 

where s is a pointer to the string to receive the value, format is a pointer 
to a string which defines the format of the values to be written, and arg is 
the variable or value to be written. If more than one arg is given, they 
must be separated by commas (,). The format string may contain the 
same formats as given for printf (see printf(S) in the XENIX 
Programmer's Reference}. After all values are written to the string, the 
function adds a null character (\O) to the end of the string. The function 
normally returns zero, but will return a nonzero value if an error is 
encountered. 

The function is typically used to build a large string from several values 
of different format. For example, in the following program fragment, 
sprintf writes three values to the string pointed to by cmd: 

char cmd[lOO]; 
char *doc = "/usr/src/cmd/cp.c"; 
int width = 50; 
int length = 60; 

sprintf (cmd, "pr -w%d -l%d %s\n", 
width,length,doc); 

system(cmd): 

In this example, the string created by sprintf is used in a call to the sys­
tem function. The first two values are the decimal numbers given by 
width and length. The last value is a string (a filename) and is pointed to 
by doc. The final string has the form: 

pr -w50 -160 /usr/src/cmd/cp.c 

Note that the string to receive the values must have sufficient length to 
store those values. The function cannot check for overflow. 

8-13 





Chapter 9 

Using Process Control 

9.1 Introduction 9-1 

9.2 Using Processes 9-1 

9.3 Calling a Program 9-2 

9.4 Stopping a Program 9-3 

9.5 Starting a New Program 9-3 

9.6 Executing a Program Through a Shell 9-7 

9.7 Duplicating a Process 9-7 

9.8 Waiting for a Process 9-8 

9.9 Inheriting Open Files 9-9 

9.10 Program Example 9-10 





Using Process Control 

9.1 Introduction 

This chapter describes the process control functions of the standard C 
library. The functions let a program call other programs, using a method 
similar to calling functions. 

There are a variety of process control functions. The system and exit 
functions provide the highest level of execution control and are used by 
most programs that need a straightforward way to call another program or 
terminate the current one. The execl, execv, fork, and wait functions 
provide low-level control of execution and are for those programs which 
must have very fine control over their own execution and the execution of 
other programs. Other process control functions such as abort and exec 
are described in detail in section (S) of the XENIX Programmer's Refer­
ence. 

The process control functions are a part of the standard C library. Since 
this library is automatically read when compiling a C program, no special 
library argument is required when invoking the compiler. 

9.2 Using Processes 

"Process" is the term used to describe a program executed by the XENIX 
system. A process consists of instructions and data, and a table of infor­
mation about the program, such as its allocated memory, open files, and 
current execution status. 

You create a process whenever you invoke a program through a shell. 
The system assigns a unique process ID to a program when it is invoked, 
and uses this ID to control and manage the program. The unique IDs are 
needed in a system running several processes at the same time. 

You can also create a process by directing a program to call another pro­
gram. This causes the system to perform the same functions as when it 
invokes a program through a shell. In fact, these two methods are actu­
ally the same method; invoking a program through a shell is nothing more 
than directing a program (the shell) to call another program. 

The XENIX system handles all processes in essentially the same way, so 
the sections that follow should give you valuable information for writing 
your own programs and an insight into the XENIX system itself. 

9-1 



C Library Guide 

9.3 Calling a Program 

The system function calls the given program, executes it, and then returns 
control to the original program. The function call has the form: 

system (command-line) 

where command-line is a pointer to a string containing a shell command 
line. The command line must be exactly as it would be entered at the ter­
minal; that is, it must begin with the program name followed by any 
required or optional arguments. For example, the call: 

system ("date") ; 

causes the system to execute the date command, which displays the 
current time and date on the standard output. The call: 

system(IIcat >response"); 

causes the system to execute the cat command. In this case, the standard 
output is redirected to the file response, so the command reads from the 
standard input and copies this input to the file response. 

The system function is typically used in the same way as a function call; 
to execute a program and return to the original program. For example, in 
the following program fragment, system calls a program whose name is 
given in the string cmd: 

char *name, *cmd; 

printf("Enter filename: "); 
scanf("%s", name); 
sprintf(cmd, "cat %s ", name); 
system (cmd) ; 

Note that the string in cmd is built using the sprintf function and contains 
the program name cat and an argument (the filename read by scanf'). The 
effect is to execute the cat command with the given filename. 

When using the system function, it is important to remember that buffered 
input and output functions, such as gete and pute, do not change the con­
tents of the buffer until it is ready to be read or flushed. If a program uses 
one of these functions, then executes a command with the system func­
tion, that command may read or write data not intended for its use. To 
avoid this problem, the program should clear all buffered input and output 
before making a call to the system function. You can do this for output 
with the mush function, and for input with the setbuf function described 
in the section "Using More Stream Functions" in "Using the Standard 
I/O Functions." 

9-2 



Using Process Control 

9.4 Stopping a Program 

The exit function stops program execution by returning control to the sys­
tem. The function call has the fonn: 

exit (status) 

where status is the integer value to be sent to the system as the tennina­
tion status. 

The function is typically used to tenninate a program before its nonnal 
end, such as after a serious error. For example, in the following program 
fragment, exit stops the program and sends the integer value "2" to the 
system if the fopen function returns the null pointer value NULL. 

FILE *ttyout; 

if ( fopen(ttyout,"r") 
exit(2); 

NULL ) 

Note that the exit function automatically closes each open file in the pro­
gram before returning to the system. This means no explicit calls to the 
fclose or close functions are required before an exit. 

9.S Starting a New Program 

The exec family of functions cause the system to overlay the calling pro­
gram with the given one, allowing the calling program to tenninate while 
the new program continues execution. There are several different fonns of 
exec; the differences are summarized in Table 4.1. The function names 
are given in the first column. The second column specifies whether the 
current PATH setting (see environ (M) in the XENIX User's Reference) is 
used to locate the file to be executed as the child process. 

The third column describes the method for passing arguments to the child 
process. Arguments may be passed as a list or as an array: in an argument 
list, the arguments to the child process are listed as separate arguments in 
the exec call; in an argument array, the arguments are stored in an array, 
and a pointer to the array is passed to the child process. The argument-list 
method is typically used when the number of arguments is constant or is 
known at compile time, while the argument -array method is useful when 
the number of arguments must be detennined at run time. 

9-3 



C Library Guide 

The last column specifies whether the child process inherits the environ­
ment settings of its parent or whether a table of environment settings can 
be passed to set up a different environment for the child process. 

Routine 

execl 

execle 

execlp 

execv 

execve 

execvp 

Table 9.1 

Forms of the exec Routine 

Use of 
PATH Setting 

Does not use 
PATH 

Does not use 
PATH 

Uses PATH 

Does not use 
PATH 

Does not use 
PATH 

Uses PATH 

Argument­
Passing 
Convention 

Argument list 

Argument list 

Argument list 

Argument array 

Argument array 

Argument array 

Environment 

Inherited from parent 

Pointer to environ­
ment table for child 
process passed as 
last argument 

Inherited from pdlent 

Inherited from parent 

Pointer to environ­
ment table for child 
process passed as 
last argument 

Inherited from parent 

The exec functions return control to the original program only if there is 
an error in finding the given program, such as a misspelled pathname or 
lack of execute permission. This allows the original program to check for 
errors and display an error message, if necessary. 

Note that the exec functions will not expand metacharacters «, >" ?, and 
[ ]) given in the argument list. If a program needs these features, simply 
use an exec function to call a shell and let the shell execute the command 
you want. 

9-4 



Using Process Control 

Examples: execl and execv 

The execl function call has the form: 

execl (pathnarne, command-name, argptr ... ) 

pathname is a pointer to a string containing the full pathname of the com­
mand you want to execute, command-name is a pointer to a string con­
taining the name of the program you want to execute, and argptr is one or 
more pointers to strings which contain the program arguments. Each 
argptr must be separated from any other argument by a comma. The last 
argptr in the list must be the null pointer value NULL. For example, in 
the call: 

execl("/bin/date", "date", NULL); 

the date command, whose full pathname is "/bin/date", takes no argu­
ments, and in the call: 

execl("/bin/cat", "cat", filel, file2, NULL); 

the cat command, whose full pathname is "/bin/cat", takes the pointers 
"file!" and "file2" as arguments. 

The execv function call has the form: 

execv (pathname, ptr); 

where pathname is the full pathname of the program you want to execute, 
and ptr is a pointer to an array of pointers. Each element in the array 
must point to a string. The array may have any number of elements, but 
the first element must point to a string containing the program name, and 
the last must be the null pointer, NULL. 

The execl and execv functions are typically used in programs that execute 
in two or more phases and communicate through temporary files (for 
example a two-pass compiler). The first part of such a program can call 
the second part by giving the name of the second part and the appropriate 

9-5 



C Library Guide 

arguments. For example, the following program fragment checks the 
status of "errflag," then either overlays the current program with the pro­
gram pass2, or displays an error message and quits: 

char *tmpfile; 
int errflag; 

if (errflag == 0) 
execl("/usr/bin/pass2", "pass2", tmpfile, 
NULL) ; 

else { 
fprintf (stderr, "Error %d: Quitting", 
errflag); 
exit(2); 

The execv function is typically used to pass arguments to a program when 
the precise number of arguments is not known beforehand. For example, 
the following program fragment reads arguments from the command line 
(beginning with the third one), copies the pointer of each to an element in 
cmd, sets the last element in cmd to NULL, and executes the cat com­
mand. 

char *cmd[ ]; 
int i; 

cmd[O] = "cat"; 
for (i=3; i<argc; i++) 

cmd[i] = argv[i]; 
cmd[argc] = NULL; 

execv("/bin/cat", cmd); 

The execl and execv functions return control to the original program only 
if there is an error in finding the given program (e.g., a misspelled path­
name or no execute permission). This allows the original program to 
check for errors and display an error message if necessary. For example, 
the following program fragment searches for the program display in the 
/usr/bin directory: 

execl("/usr/bin/display", "display", NULL); 
fprintf (stderr, "Can't execute ' display' \n"); 

If the program display is not found or lacks the necessary permissions, the 
original program resumes control and displays an error message. 

9-6 



Using Process Control 

9.6 Executing a Program Through a Shell 

A drawback of the exeel and execv functions is that they do not provide 
the metacharacter features of a shell. One way to overcome this problem 
is to use exeel to execute a shell and let the shell execute the command 
you want. 

The function call has the form: 

execI ("/bin/sh","sh","-c", command-line, NULL); 

where command-line is a pointer to the string containing the command 
line needed to execute the program. The string must be exactly as it 
would appear if it were entered at the terminal. 

For example, a program can execute the command: 

cat *.c 

(that contains the metacharacter * ) with the call: 

execl("/bin/sh", "sh", "-c", "cat *.c", NULL); 

In this example, the full patbname /bin/sh and command name sh start the 
shell. The argument -c causes the shell to treat the argument cat *.c as a 
whole command line. The shell expands the metacharacter and displays 
all files which end with something that the cat command cannot do by 
itself. 

9.7 Duplicating a Process 

The fork function splits an executing program into two independent and 
fully-functioning processes. The function call has the form: 

fork 0 
No arguments are required. 

The function is typically used to make multiple copies of any program 
that must take divergent actions as a part of its normal operation; e.g., a 
program that must use the exeel function, yet still continue to execute. 
The original program, called the "parent" process, continues to execute 
normally, just as it would after any other function call. The new process, 
called the "child" process, starts its execution at the same point, that is, 
just after the fork call. (The child never goes back to the beginning of the 
program to start execution.) The two processes are in effect synchronized, 
and continue to execute as independent programs. 

9-7 



C Library Guide 

The fork function returns a different value to each process. To the parent 
process, the function returns the process ID of the child. The process ID is 
always a positive integer and is always different than the parent's ill. To 
the child, the function returns 0. All other variables and values remain 
exactly as they were in the parent. 

The return value is typically used to determine which steps the child and 
parent should take next. For example, in the following program segment: 

char *cmd; 

if (fork () == 0) 
execl("/bin/sh", "sh", "-c", cmd, NULL); 

the child's return value, 0, causes the expression "forkO == 0" to be true, 
and therefore the execl function is called. The parent's return value, on 
the other hand, causes the expression to be false, and the function call is 
skipped. Executing the execl function causes the child to be overlayed by 
the program given by command. This does not affect the parent. 

If fork encounters an error and cannot create a child, it will return the 
value -1. It is a good idea to check for this value after each call. 

9.8 Waiting for a Process 

The wait function causes a parent process to wait until its child processes 
have completed their execution before continuing its own execution. The 
function call has the form: 

wait (ptr) 

where ptr is a pointer to an integer variable. It receives the termination 
status of the child from both the system and the child itself. The function 
normally returns the process ID of the terminated child, so the parent may 
check it against the value returned by fork. 

The function is typically used to synchronize the execution of a parent 
and its child, and is especially useful if the parent and child processes 
access the same files. For example, the following program fragment 

9-8 



Using Process Control 

causes the parent to wait while the program named by pathname (which 
has overlaid the child process) finishes its execution: 

int status; 
char *pathname; 
char *cmd [ ]; 

if' (fork () == 0) 
execv(pathname, cmd); 

wait(&status); 

The wait function always copies a status value to its argument. The 
status value is actually two 8-bit values combined into one. The low­
order 8 bits contains the termination status of the child as defined by the 
system. This status is zero for normal termination and nonzero for other 
kinds of termination, such as termination by an interrupt, quit, or hangup 
signal (see signal(S) in the XENIX Programmer's Reference for a descrip­
tion of the various kinds of termination). The next 8 bits contains the ter­
mination status of the child as defined by its own call to exit. If the child 
did not explicitly call the function, the status is zero. 

9.9 Inheriting Open Files 

Any program called by another program or created as a child process to a 
program automatically inherits the original program's open files and stan­
dard input, output, and error files. This means that if the file was open in 
the original program, it will be open in the new program or process. 

A new program also inherits the contents of the input and output buffers 
used by the open files of the original program. To prevent a new program 
or process from reading or writing data that is not intended for its use, 
these buffers should be flushed before calling the program or creating the 
new process. A program can flush an output buffer with the mush func­
tion, and an input buffer with setbuf. 

9-9 



C Library Guide 

9.10 Program Example 

This section shows how to use the process control functions to control a 
simple process. The following program starts a shell on the terminal given 
in the command line. The terminal is assumed to be connected to the sys­
tem through a line that has not been enabled for multi-user operation. 

#include <stdio.h> 

main (argc, argv) 
int argc; 
char *argv[ ]; 
{ 
int status; 

if (argc < 2) 
fprintf (stderr, "No tty given. \n"); 
exit (1) ; 

if (fork () == 0) { 
if (freopen (argv[l], "r", stdin) == NULL) 

exit(2); 
if (freopen (argv[l], "w", stdout) == NULL) 

exit (2); 
if (freopen (argv[l], "w", stderr) == NULL) 

exit(2); 
execl ("/bin/sh", "sh",NULL); 

wait (&status) ; 
if (status == 512) 

fprintf ("Bad tty name: %s\n", argv[l]); 

In this example, the fork function creates a duplicate copy of the pro­
gram. The child changes the standard input, output, and error files to the 
new tenninal by closing and reopening them with the freopen function. 
The tenninal name pointed to by argv must be the name of the device 
special file associated with the terminal, e.g., "/dev/tty03". The exeel 
function then calls the shell which uses the new tenninal as its standard 
input, output, and error files. 

The parent process waits for the child to terminate. The exit function ter­
minates the process if an error occurs when reopening the standard files. 
Otherwise, the process continues until the Ctrl-D key is pressed on the ter­
minal keyboard. 

9-10 



Chapter 10 

Using the Event Manager 

10.1 Introduction 10-1 

10.2 Using the Event Manager 10-1 
10.2.1 Operation and Semantics 10-1 
10.2.2 Event Generating Hardware 10-2 

10.3 Events 10-3 
10.3.1 Using the Event Queue 10-3 
10.3.2 Structure of an Event 10-4 
10.3.3 Event Field Macros 10-4 
10.3.4 Keyboard Events 10-5 

10.4 Event Manager Calls 10-5 
10.4.1 Debugging 10-9 

10.5 Configuration Files 10-10 
10.5.1 Event-Devices Configuration File 10-10 
10.5.2 Event-Terminals Configuration File 10-12 

10.6 Event Manager C Language Definitions and Syntax 10-13 

10.7 Summary of Event Manager C Syntax 10-14 
10.7.1 Event API function prototypes 10-14 
10.7.2 Function Invocation Syntax 10-14 

10.8 A Sample Program 10-18 





Using the Event Manager 

10.1 Introduction 

XENIX supports development of applications using mice and other graph­
ics input devices. Data from graphics input devices like mice is received 
by the application in the form of "events." An event represents a move­
ment or action on the part of the graphics input device. For example, 
moving a mouse generates a series of signals from the mouse that are 
interpreted as discrete events. An' 'up" motion of the mouse is inter­
preted as an "up" event. Events are accumulated in, and read from, an 
, 'event queue." Mouse support is provided by a series of utilities and 
system services collectively known as the event manager. The event 
manager consists of kernel functionality to read and manage graphic input 
device data, an event driver, and an Advanced Programmatic Interface 
(API). 

The programmatic interface allows applications software to be portable to 
systems with different event devices, such as a different brand of mouse or 
a mouse attached to a different port. The interface provides routines for 
opening and accessing an event queue. A variety of graphics input dev­
ices, such as mice, bitpads or the keyboard, may be used with the event 
driver. 

Since speed is of top priority in graphics applications, the event driver 
and the system routines are optimized for speed of access. 

10.2 Using the Event Manager 

This section describes four topics: operation and semantics, devices, API 
routines, and the event configuration files. This covers the basics of pro­
gram development with mouse support. 

10.2.1 Operation and Semantics 

To open an event queue, a process makes a library call. The process must 
indicate the classes (types) of devices it wants to use. Common classes for 
devices include "relative locator" devices (mice) or "absolute locator" 
devices (bitpads). The event manager interface then checks the 
configuration files to determine what physical devices are allowed to give 
input to the process's terminal. The devices listed in the configuration file 
are "associated" with that terminal. Associated devices of the proper 
class are opened for events with the initial call from the process. When a 
device is opened for events, data from the device is translated to events, 
and enqueued into the process's event queue. 

10-1 



C Library Guide 

Every event device is associated with some terminals or console mul­
tiscreens. To use an event device with the console, it should be associ­
ated with each multiscreen. In order for an application to use event dev­
ices, the devices must be associated with the terminal that invoked the 
application. It is possible for programs that are not running on any termi­
nal to use the mouse, but they cannot use the API. 

An event device is said to be "attached" to an event queue if the device 
has been opened and input from the device is being received by the event 
queue. Note that an application can choose whether or not to attach any 
associated event device to its event queue while it is running. For exam­
pIe if both a bitpad and a mouse are associated with a terminal, it is possi­
ble for the application to open only the mouse for input, and then close 
the mouse and open the bitpad without exiting. 

10.2.2 Event Generating Hardware 

Event devices work in one of three ways. These are relative locator, abso­
lute locator, and string. Most mice and trackballs are examples of rela­
tive locator devices. They are termed "relative" devices because the 
mouse generates events when it is moved relative to its previous position. 
The motion of the mouse generates the events, not the final position of the 
mouse. Relative locations are reported as signed 32 bit quantities. Bit 
pads and light pens are absolute locator devices. The pens are used on a 
sensitive pad, and the events are generated by the absolute position of the 
pen on the pad, not the relative motion of the pen. Absolute locations are 
reported as unsigned 32 bit quantities. The keyboard is a string graphics 
input device. This means that the events will be generated by pressing a 
key on the keyboard, such as an arrow key. Some devices can operate in 
multiple modes. For example, some mice can function in bitpad mode 
with the appropriate bitpad software. 

Many event devices have buttons; others do not. Three-button devices 
are viewed as having a left-button, a middle-button, and a right-button. 
Two button devices do not have a middle button. One button devices have 
only a middle button. Bits representing buttons are set to 1 when the but­
ton is depressed. Up to eight buttons can be read at a time. 

Under XENIX, devices are categorized like this: 

1. This is a relative locator device such as a mouse. 

2. This is an absolute locator device such as a bitpad. 

3. This is a device which generates a character stream. 

10-2 



Using the Event Manager 

4. This is any event device not within the previous categories. 

10.3 Events 

10.3.1 Using the Event Queue 

This interface allows an application to obtain sequential input from any 
number of event devices. Devices like mice, trackballs, bitpads, and the 
keyboard can be assigned to one or more terminals or multiscreens. 
When a process opens an event queue with more than one device 
attached, input from all the devices is intermixed in the event queue. This 
allows a process to "sleep on multiple devices" without recourse to the 
seiect(S) system call. 

An application makes a call to a library routine to open an event queue. 
That call attaches the event devices to the event queue. In general, an 
application may be using multiple devices. For example, an application 
would typically want to use a mouse and the keyboard. In cases where 
there are several devices attached to the terminal, for example multiple 
mice, calls are provided for listing the attached devices and including 
them or excluding them on an individual basis. 

The event driver maintains a circular queue of events. "Circular" means 
that if the total number of events in the queue exceeds the maximum 
number of events storable, that the oldest event is removed from the 
queue and an error condition is returned. 

The event queue is 'fed' by all the devices attached to the queue. An 
input mask may also be set which prevents certain classes of events from 
being inserted into the queue. For example, you may wish to exclude but­
ton events or movement events during some portions of your program. 

The application program reads the event queue by getting a pointer to the 
next event. When the application has copied or finished examining the 
event, it pops the event queue using ev yop. The next ev _read call will 
return a pointer to the next event in the queue, or NULL if the queue is 
empty. Multiple reads which are not separated by a call to pop the queue, 
return the same pointer. 

10-3 



C Library Guide 

10.3.2 Structure of an Event 

Events are timestamped as they enter the queue. The timestamp is the 
time of day in milliseconds when the event was enqueued. This times­
tamp is accurate to the extent of the interrupt timer rate which, for AT 
class machines, is 50Hz. 

Events have a tag field indicating the type of the event. There are four 
kinds of events': relative locator, absolute locator, string, and other. 

These four types of events have three possible event formats. string type 
events and other type events have the same structure. An event structure 
is a union of the possible types of events. Absolute and relative locator 
events have a byte for button state (up or down), four bytes each for X and 
Y coordinates, and space for additional information (currently unused). 
String events and other events use a character array to store the informa­
tion, along with a byte for the count. 

10.3.3 Event Field Macros 

These macros allow the application to take apart an event without know­
ing its internal structure. The parameter to these macros is a pointer to an 
event. Here are the macro definitions: 

/* Values for event tag */ 

T GrHER 
T BUTTON 
T STRING 

#define 
#define 
#define 
#define 
#define 

T ABS LCCATOR 
T REL LCCATOR 

/* Bit definitions for the buttons */ 

#define BUTTONl OxOl 
#define BUTTON2 Ox02 
#define BUTTON3 Ox08 
#define RT BUTTON BUTTONl 
#define MD BUTTON BUTTON2 
#define LT BUTTON BUTTON3 

/* Extracting fields */ 

#define EV TIME (x) 
#define EV-TAG(x) 
#define EV=BUFCNT(x) 

10-4 

( (x) . timestamp) 
((x) .tag) /* device making event*/ 
((x) .ul.bufcnt) /* nurn bytes in buffr */ 



#define EV BUTTONS (x) 
#define EV-BUF(x) 
#define EV-DX(v) 
#define ~DY (v) 
#define EV-X(v) 
#define EV=Y(v) 

( (x) . ul.buttons) 
( (x) . un .buf) 
( (v) . un . lac . rel. dx) 
((v) .un.loc.rel.dy) 
((v) .un.loc.abs.x) 
((v) .un.loc.abs.y) 

10.3.4 Keyboard Events 

Using the Event Manager 

/* pointer to buffer */ 
/* Relative X coordinate */ 
/* Relative Y coordinate */ 
/* Absolute X coordinate */ 
/* Absolute Y coordinate */ 

When the keyboard is being used to generate events, it is at least in raw 
mode. It may, in fact, be in scan-code pass through mode. It is up to the 
application to put it into scan code pass-through mode if that is desired. 
The default mode is raw mode. 

An application reading keyboard events should not assume that keyboard 
events are always one character. The application should check the bulent 
field in the event to see how many bytes of data the event contains. 

10.4 Event Manager Calls 

The event manager consists of routines for managing and accessing an 
event queue and the attached devices. This section lists and describes the 
routines. All of the event manager routines which return an integer return 
a negative number if they fail. All of these routines with the exception of 
ev init() and ev open() fail if the calling program does not have an open 
event queue. ev]nit opens the event queue for the calling program. 

The constants and types used in the event manager are defined in 
lusrlincludelmouse.h. 

ev_init 
ev_open 
ev_close 

Event Manager Library Calls 

Mandatory initialization (first routine invoked) 
Open the event queue, attach event devices 
Close the event queue and all attached devices 

10-5 



C Library Guide 

ev_count 
ev_read 
ev_pop 
ev_block 
ev_flush 
ev~etdev 
ev~indev 
ev _setemask 
ev~etemask 
ev_suspend 
ev_resume 

ev_initO 

ev_openO 

Return the number of events in the queue 
Get a pointer to the 'top' event 
Pop the 'top' event off the queue 
Sleep until the queue is nonempty 
Pop all the events 
Get a list of devices feeding the queue 
Exclude or later re-include a event device 
Mask out certain kinds of events 
Get the current event mask 
Suspend the active event queue (make it inactive) 
Resume the suspended event queue 

This must be the first event routine invoked. It initial­
izes the event queue. It reads infonnation from the 
configuration files into memory. It reports an error if 
there is a syntax error or inconsistency in the 
configuration files. If there is an error, it returns a 
small negative integer, otherwise it returns 0, indicat­
ing successful initialization. 

This routine opens an event queue for the process. 
All of the event devices which are associated with the 
tenninal, and whose class is masked in, are opened 
and added to the queue. 

The ev open routine takes an argument which is a 
pointer -to a device mask. The mask is a bitwise 
~Ring of any or all of the four values: D _STRING, 
D REL, DABS, and D OTHER. The function tries 
to-attach devices of the Indicated type(s) to the event 
queue. Upon exit it sets the mask to indicate what 
kinds of devices it has found. If ev open() cannot find 
any devices to attach to the queue,-it closes the queue 
and returns a negative number indicating an error. 

This routine returns a file descriptor if it succeeds. 
The file descriptor is used with the seiect(S)' system 
call. It should not be used for reading or writing. 

ev _ c1oseO Close the event queue and all associated devices. 

10-6 

This routine takes no arguments. 

ev _ countO returns the number of events in the queue. This rou­
tine takes no arguments. 



eVjlopO 

ev_flushO 

15 

Using the Event Manager 

This routine returns a pointer to the next element in 
the event queue or NULL if the queue is empty. Mul­
tiple calls to this routine return the same pointer until 
a call to ev yop is made. The routine takes no argu­
ments. 

This routine pops the next element off the queue. As 
soon as this routine is called the pointer returned by 
the most recent call to ev read must be considered 
invalid as the event driver may overwrite the pointed 
area with new information. 

The routine does not take any arguments. It fails if 
the queue is empty. Otherwise, it returns a number 
indicating how many events have been lost to queue 
overrun since the last ev _popO. For explanation, the 
queue is of fixed size and events may be lost if the 
application does not read the queue fast enough. That 
condition is called "queue overrun" because the 
event driver would overrun the tail of the queue if it 
wrote new events. The event driver provides a counter 
indicating the number of events it has lost. That 
counter is cleared when it succeeds in writing an 
event. A popO always causes a new slot to be avail­
able, which clears the overrun counter. The popO 
routine returns the old overrun counter so that an 
application is aware if events are being lost. 

This routine discards all the events currently in the 
queue. It does not take any arguments. 

This routine sets the current event mask. Events that 
are of a type that is currently masked in are allowed 
on the queue. The 16 bits of the mask have the follow­
ing definitions: 

o 

Where: 

10-7 



C Library Guide 

10-8 

R indicates Reserved 
a indicates "Other" Device Events 
b indicates Button Events 
c indicates String events 
d indicates Relative Locator movement events 
e indicates Absolute Locator movement events 

This routine takes an argument which is a pointer to 
an event mask. It fills in the mask pointed to with the 
event queue's current event mask. 

ev _getdev( dmask _ t, struct devinfo *) 

This routine is used to get information about the dev­
ices attached to the event queue. The argument to this 
routine is a device mask made from DRing toget.~er 
any or all of D_ABS, D_REL, D_S TRING , and 
D _OTHER, and a pointer to a struct devinfo. The 
function returns a pointer to the next device whose 
type is masked in. Consecutive calls will iterate 
through all the devices attached to the queue. The 
function should be called initially with (struct devinfo 
*) NULL and thereafter with the pointer it returns 
until it returns NULL. getdevO returns NULL if there 
are no devices of the requested class( es) present. 

The routine returns a pointer to a struct devinfo which 
is defined as follows: 

st:ruct devinfo { 

short handle; 
short class; 
short type; 
char *narre; 
char *key; 
short ruttons; 

/* not used by awlication * / 
/* REL, ABS, S'IRIN3 or OIHER */ 
/* Nurrber encx:x:ling the type of har:dwa:re * / 
/* Device narre, fran configuration files * / 
/* Device key, fran configuration files */ 
/* nun:ber of ruttans on the nouse * / 

Using the pointer returned by this routine and the 
ev _gindev() routine, an application can exclude a dev­
ice from feeding a queue, or later re-include it. 

If a terminal's (or multiscreeil's) keyboard is attached 
to an event queue, then keyboard input. will not be 



Using the Event Manager 

available from the normal keyboard device. The key­
board is a class STRING device always implicitly 
assigned to a tty, and thus, is attached whenever 
D_STRING devices are requested, even if it is not 
listed in the configuration files. 

ev _gindev(struct devinfo *, char) 

This routine is used to exclude or re-include a event 
device feeding the event queue. The pointer is 
obtained from a getdev call. The second argument has 
one of two values, INCLUDE or EXCLUDE, which 
are defined in lusrlincludelmouse.h. 

ev _ suspend() This call makes the open event queue inactive. If a 
process with an event queue forks a shell and wait for 
the subshell to complete, it should first suspend its 
event queue. That way an event queue can success­
fully be opened from within the forked shell. When 
the shell returns, the suspended event queue should be 
resumed. This routine does not take any arguments. 

ev _resume() This call complements ev _suspend. It restarts a 
suspended queue. This routine does not take any 
arguments. 

The ev _suspend and ev _resume routines are present because one termi­
nal (or multiscreen) cannot have two active event queues. Having more 
than one open queue leads to a situation where the input data destination 
is indeterminate. Whenever multiple applications are running con­
currently on one terminal (or screen), one of the event queues must be 
suspended. 

10.4.1 Debugging 

The event manager maintains an error-level variable which may be set by 
the application. The variable is an integer named ev errlev and it 
defaults to zero. When it is nonzero, the event manager prints out more 
verbose diagnostics. This may be helpful during debugging. 

10-9 



C Library Guide 

10.5 Configuration Files 

The two configuration files used by the Event Manager are 
/usr/lib/event/devices and /usr/lib/event/ttys. The former file indicates 
information about the event devices attached to the system. The latter file 
associates event devices with particular terminals or multiscreens. 

In both files, blank lines and lines beginning with a "#" character in the 
first column are comments. Entries may be continued onto subsequent 
lines by placing a backs lash (\) at the end of the line. 

10.5.1 Event-Devices Configuration File 

Entries in the devices file have the following format: 

key device class type [parm=value ... J 

Where: 

1. "key" is a unique identifier used to refer to this entry. The use of 
this key is analogous to the single-letter identifier in gettydefs(F). 
Keys are at most 20 characters. 

A device can be present in this file in different modes by giving it 
mUltiple entries with unique identifiers. The second configuration 
file uses these identifiers to select devices. 

2. "device" is the absolute pathname of the device file. For a serial 
device it may be the tty device or the equivalent entry in 
/dev/mouse; for a busmouse it is /dev/mouse/busmouseO or 
/dev/mouse/busmousel. 

3. "class" contains one of ABS, REL, STRING, or OTHER. It may 
have a "b" appended to indicate that the device can generate but­
ton events. This field is used by the library routines to determine 
what kind of device is present. This information is checked when a 
program opens an event queue. 

4. "type" indicates exactly what kind of device this is. This informa­
tion is passed into the driver so that it knows how to build the 
events. The keyword in this field must be present in the event­
devices table in master(F). Supported keywords in this field 
include: 

10-10 



Keyword 

keyboard 
mousems 
busmouse 
mousepc 
mouselO 
mousell 
mousel2 
mouse13 
mousel4 
mousel5 
mousel6 

Using the Event Manager 

Device 

the keyboard 
Microsoft serial mouse 
Any busmouse 
Mouse Systems serial mouse 
serial mouse mode 0 
serial mouse mode 1 
serial mouse mode 2 
serial mouse mode 3 
serial mouse mode 4 
serial mouse mode 5 
serial mouse mode 6 

5. ' 'parm" is a set of string = value pairs which provide hardware 
dependent information. The following keyword strings may be 
recognized: 

• "STTY=" Valid only for serial devices, provides informa­
tion about the serial characteristics of the line. If there are 
multiple items specified, they should be quoted by double 
quotes and separated by spaces as in STTY="CS71200". 

• "INIT=" Valid only for serial devices, defines an initiali­
zation string which is sent to the device after the serial 
characteristics of the line are established. The user must be 
able to open the device for writing. 

If the initialization string contains spaces or tabs it must be 
quoted. Nonprinting characters may be embedded using 
escaped octal notation, such as "\033" for the Escape char­
acter. 

Serial devices having multiple modes must have an initiali­
zation string present to put them into the desired mode. No 
error will be reported if there is no initialization string, but 
there is no guarantee that the device will operate in the 
desired mode. 

• "SENSITIVITY=" This provides a mechanism whereby 
locator devices with varying sensitivities and scales can be 
made to behave uniformly. The value is a hexadecimal 
number. Locations are multiplied by this value as they 
enter the event queue. Then they are divided (by shifting) 
by Ox2000. Using this mechanism, a device can be made to 
appear twice as sensitive by setting SENSITIVITY =4000 

10-11 



C Library Guide 

or three-fourths as sensitive by setting SENSI­
TIVITY =1800. 

Possible ratios include: 

Sample Values for SENSITIVITY 

SENSITIVITY (hex) 800 1000 1800 2000 2800 3000 3800 4000 6000 8000 

effective ratioing achieved 1/4 1/2 3/4 1 5/4 3/2 7/4 2 3 4 

• "NAME=" This gives the device a name which is avail­
able to the user or applications software. It may be anything 
the system administrator chooses and has no intrinsic 
definition. It is not passed into the driver. For example: 
NAME="Microsoft serial mouse" is an acceptable entry. 

10.5.2 Event-Terminals Configuration File 

This file lists the terminal to event device associations of the system. 

Entries in this file are of the form: 

device key [key... J 

where 

"device" 

"key" 

10-12 

is the filename of a terminal device or console 
multiscreen 

is the key identifier of a event device described in 
the devices file. 



Using the Event Manager 

10.6 Event Manager C Language Definitions and Syntax 

typedef short dmask t; 
typedef short emask=t; 

/* device mask type * / 
/* event mask type */ 

1* Bit Values for dmask ts */ 

4fdefine 
4fdefine 
4fdefine 
4fdefine 

D OTHER 
D REL 
DABS 
DSTR 

1* Values for event mask */ 

4fdefine 
4fdefine 
4fdefine 
4fdefine 
4fdefine 
4fdefine 

T OTHER 
T BUTI'ON 
T STRING 
T ABS :u:x::ATOR 
T REL :u:x::ATOR 
T :u:x::ATOR 

1* Values for action in ev_gindevO */ 

4fdefine 
4fdefine 

int 
int 
int 
EVENT* 
int 
int 
int 
struct gindev 
int 
int 
evrnask 
int 
int 

EXCLUDE 
INCLUDE 

ev open (dmask t *); 
ev=close 0; -
ev_count(); 
ev read(); 
evYoPO; 
ev_flushO; 
ev block 0; 
* ev getdev(dmask t, struct gindev *); 
ev gIndev (struct gindev *, char); 
ev-setemask(emask t); 
ev-getemask(emask-t *); 
ev-suspend(); -
ev = resume 0 ; 

o 
1 

10-13 



C Library Guide 

10.7 Summary of Event Manager C Syntax 

The following section gives the correct C language syntax for calling any 
of the Event Manager functions. 

10.7.1 Event API function prototypes 

The following declarations indicate the correct syntax for declaring the 
Event Manager functions. 

int ev init(void); 
int ev-open(unsigned short *); 
int ev-close(void); 
int ev-count(); 
int ev-block(void); 
EVENT *ev read(void); 
int ev poP(void); 
int ev-flush(void); 
int ev-setemask (unsigned short); 
int ev-getemask(unsigned short *); 
struct -devinfo *ev getdev(unsigned short ,struct devinfo *); 
int ev gindev(struct devinfo *,char ); 
int ev-suspend(void); 
int ev=resume(void); 

10.7.2 Function Invocation Syntax 

The following code fragments indicate the correct syntax for using any of 
the Event Manager system calls. 
To initialize the event library: 

10-14 

/* Read the system event configuration files */ 
ev_init (); 



Using the Event Manager 

To open an event queue with the keyboard and a mouse: 

/* Declare the device mask, open queue 
with keyboard and mouse */ 

dmask t dmask = D REL I D STRING; 
/* TrY to open th; event <peue */ 
ret = ev_open(&dmask); 
if ( ret < 0 I I dmask != D REL D STRING 

fail () ; 

To close the event queue: 

ev_close(); 

To block until there's an event in the queue: 

ret ev_block(); 

To read an event: 

EVENT *evp, *ev_read(); 

evp = ev read(); 
if (evp ~= (EVENT*) NULL) 

/* no events available */ 

To remove the last read event from the queue: 

The recommended methodology is for ev _blockO, ev _readO and ev _popO 
to be used together, as in the following example. 

10-15 



C Library Guide 

Block until an event is available, and then read it: 

EVENT *evp; 

ev_block(); 
evp = ev read () ; 
/* Examine, copy, or process event */ 
evyop () ; 

To count the number of events in the event queue: 

ev_count(); 

To flush the event queue: 

ev_flush(); 

To get the current event mask: 

emask t emask; 

ev_getemask(&emask); 

To set the event mask to only permit keyboard events: 

ev setemask(T_STRING); 

10-16 



Using the Event Manager 

To cycle through the devices attached to the event queue: 

struct devinfo * devp = NULL, *ev _getdev () i 

clrrask_t clrrask = D_REL I D_STRINGi 

while (devp = ev getdev(clrrask, devp)) != NULL ) 
/* ~e the structure returned */ 

To exclude a device from feeding the queue. A pointer to the device was 
previously obtained with ev ~etdevO: 

struct devinfo *devpi 

ev_gindev(devp, EXCLUDE) i 

To suspend our event queue: 

And to resume it: 

10-17 



C Library Guide 

10.8 A Sample Program 

The following sample program opens an event queue with a mouse and 
the keyboard. Note that depending on your system, you may have to 
configure system event parameters. The program prints events as they 
enter the queue: 

/* 

* 

* 

This program opens an event queue and with a relative device (mouse) 
and a string device (keyboard). It prints out information about 
events as they enter the queue. 

* 
* 
* 
* 

Since the keyboard is put into the event line discipline, we 
lose line discipline zero functionality like signals. Therefore 
the DEL key loses its special meaning. So we test each 
keyboard character against DEL and finish when we see one. 

*/ 
#include <fcntl.h> 
#include <sys/termio.h> 
#include <stdio.h> 
#include <signal.h> 
#include <sys/machdep.h> 
#include <sys/types.h> 
#include <sys/param.h> 
#include <sys/sysmacros.h> 
#include <sys/page.h> 
#include <sys/event.h> 
#include <rnouse.h> 

#defineDEL Ox7f 

char progname[80]; 
int kfd=-l,mfd=-l; 
struct termio ksave; 
extern int erma; 

main (argc,argv) 
int argc; 
char *argv; 
{ 

int 
long 
EVENT 

qfd,finish(),report(); 
time=-l; 

10-18 

*evp; 
char c; 
int ret; 
dmask_t dmask = D_STRING D_REL; 
extern int ev_errlev; 

ev err lev = 1; 
strcpy(progname,argv[O]); 
signal(SIGINT,finish); 
signal (SIGSEGV, report); 
signal(SIGSYS, report); 

/* Turn on event manager diagnostics */ 



Using the Event Manager 

printf ("\n"); 
ret = ev_init 0 ; 
printf("init == %d\n", ret); 
if(ret<O) 

finish 0 ; 
qfd = ev open (&dmask) ; 
printf ("open == %d\n", qfd); 
if ( qfd < 0 ) 

fail ("could not open event queue"); 
if ( dmask != D_STRING I D_REL ) 

fail ("could not attach mouse and keyboard") ; 
/* Events should be enqueued now */ 
while ( ev block() ) 

if ( (evp = ev read 0 ) != (EVENT *) NULL) { 
evprint(evp) ; 
evJlOp 0; 

return 0; 

fail (s) 
char *s; 
{ 

extern int errno; 

printf ("%s (%d): %s\n",progname,errno, s); 
finish 0 ; 
return 0; 

evprint(evp) 
EVENT *evp; 
{ 

static long time=-l; 

if (time == -1) 
time = evp->timestamp; 

if (EV TAG (*evp) & T STRING) { 
- printf ("time (%d) tag (%d) bufsize (%d) buf (%x) \n", 

EV_TIME(*evp)-time, 
EV_TAG(*evp) , 
EV_BUFCNT (*evp) , 
EV_BUF (*evp) [0]); 

if (EV BUF (*evp) == DEL) 
- finish 0 ; 

10-19 



C Library Guide 

else 
printf ("time (%ld) tag (%d) butts (%d) x (%ld) y (%ld) \n", 

EV TIME (*evp) - time, 
EV-,]:'I,.G(*evp) , 
EV-BUT'IDNS (*evp) , 
EV-DX(*evp) , 
EV-DY(*evp)) ; 

if (EV Bll'IDNS (*evp) = 7) 
-finish 0 ; 

return 0; 

finish 0 
{ 

ev close 0; 
prlntf ("done\n"); 
exit (0); 

report (s) 
int s; 
{ 

10-20 

printf ("got signal %d\n", s); 
finish(O); 



Chapter 11 

Writing and Using Pipes 

11.1 Introduction 11-1 

11.2 Opening a Pipe to a New Process 11-1 

11.3 Reading and Writing to a Process 11-2 

11.4 Closing a Pipe 11-3 

11.5 Opening a Low-Level Pipe 11-3 
11.5.1 Reading and Writing to a Low-Level Pipe 11-4 
11.5.2 Closing a Low-Level Pipe 11-5 

11.6 Program Examples 11-5 

11. 7 Named Pipes 11-8 





Writing and Using Pipes 

11.1 Introduction 

A pipe is an artificial file that a program may create and use to pass infor­
mation to other programs. A pipe is similar to a file in that it has a file 
pointer and/or a file descriptor and can be read from or written to using 
the input and output functions of the standard library. Unlike a file, a pipe 
does not represent a specific file or device. Instead, a pipe represents tem­
porary storage in memory that is independent of the program's own 
memory and is controlled entirely by the system. 

Pipes are chie fly used to pass information between programs, just as the 
shell pipe symbol ( I ), is used to pass the output of one program to the 
input of another. This eliminates the need to create temporary files to 
pass information to other programs. A pipe can also be used as a tem­
porary storage place for a single program. A program can write to the 
pipe, then read that information back at a later time. 

The standard library provides several pipe functions. The pop en and 
pclose functions control both a pipe and a process. The popen function 
opens a pipe and creates a new process at the same time, making the new 
pipe the standard input or output of the new process. The pclose function 
closes the pipe and waits for termination of the corresponding process. 
The pipe function, on the other hand, gives low-level access to a pipe. 
The function is similar to the open function, but opens the pipe for both 
reading and writing, returning two file descriptors instead of one. The 
program can either use both sides of the pipe or close the one it does not 
need. The low-level input and output functions read and write, can be 
used to read from and write to a pipe. Pipe file descriptors are used in the 
same way as other file descriptors. 

11.2 Opening a Pipe to a New Process 

The popen function creates a new process and then opens a pipe to the 
standard input or output file of that new process. The function call has the 
form: 

popen (command, type) 

where command is a pointer to a string that contains a shell command 
line, and type is a pointer to the string which defines whether the pipe is 
to be opened for reading or writing by the original process. It may be r 
for reading or w for writing. The function normally returns the file 
pointer to the open pipe, but will return the null pointer value NULL, if an 
error is encountered. 

11-1 



C Library Guide 

The function is typically used in programs that need to call another pro­
gram and pass substantial amounts of data to that program. For example, 
in the following program fragment, popen creates a new process for the 
cat command and opens a pipe for writing: 

FILE *pstrm; 

pstrm = popen{"cat >response","w"); 

The new pipe given by pstrm links the standard input of the command 
with the program. Data written to the pipe will be used as input by the 
cat command. 

11.3 Reading and Writing to a Process 

The fscanf, fprintf, and other stream functions may be used to read from 
or write to a pipe opened by the popen function. These functions have 
the same form as described in "Run-Time Routines by Category." 

The fscanf function can be used to read from a pipe opened for reading. 
For example, in the following program fragment, fscanf reads from the 
pipe given by pstrm. 

FILE *pstrm; 
char name[20]; 
int number; 

pstrm = popen{"cat","r"); 
fseanf (pstrm, "%s %d", name, &number); 

This pipe is connected to the standard output of the cat command, so 
fscanf reads the first name and number written by cat to its standard out­
put. 

The fprintf function can be used to read from a pipe opened for writing. 
For example, in the following program fragment, fprintf writes the string 
pointed to by but to the pipe given by pstrm: 

FILE *pstrm; 
ehar buf [MAX] ; 

pstrm = popen ("we", "w") ; 
fprintf (pstrm, "%s",buf) 

This pipe is connected to the standard input of the we command, so the 
command reads and counts the contents of buf. 

11-2 



Writing and Using Pipes 

11.4 Closing a Pipe 

The pclose function closes the pipe opened by the popen function. The 
function call has the fonn: 

pclose (stream) 

where stream is the file pointer of the pipe to be closed. The function nor­
mally returns the exit status of the command that was issued as the first 
argument of its corresponding popen, but will return the value -1, if the 
pipe was not opened by popen. 

For example, in the following program fragment, pclose closes the pipe 
given by pstrm if the end-of-file value, EOF, has been found in the pipe: 

FILE *pstrm; 

if (feof(pstrm)) 
pclose (pstrm); 

11.5 Opening a Low-Level Pipe 

The pipe function opens a pipe for both reading and writing. The func­
tion call has the fonn: 

pipe (it!) 

where fd is a pointer to a two-element array. It must have int type. Each 
element receives one file descriptor. The first element receives the file 
descriptor for the reading side of the pipe, and the other element receives 
the file descriptor for the writing side. The function nonnally returns 0, 
but will return the value -1, if an error is encountered. For example, in the 
following program fragment, pipe creates two file descriptors if no error 
is encountered: 

int chan[2]; 

if (pipe (chan) -1) 
exit(2); 

The array element chan[O] receives the file descriptor for the reading side 
of the pipe, and chan[ 1] receives it for the writing side. 

11-3 



C Library Guide 

The function is typically used to open a pipe in preparation for linking it 
to a child process. For example, in the following program fragment, pipe 
causes the program to create a child process if it successfully creates a 
pipe: 

int fd[2]; 

if (pipe(fd) != -1 ) 
if ( fork () == 0 

c1ose(fd[1]); 

Note that the child process closes the writing side of the pipe. The parent 
can now pass data to the child by writing to the pipe and the child can 
retrieve the data by reading the pipe. 

11.5.1 Reading and Writing to a Low-Level Pipe 

The read and write input and output functions can be used to read and 
write characters to a low-level pipe. These functions have the same form 
and operation described in "Run-Time Routines by Category." 

The read function can be used to read from the read side of an open pipe. 
For example, in the following program fragment, read reads MAX charac­
ters from the read side of the pipe given by chan: 

int chan [2]; 
char buf [MAX] ; 
int number; 

number = read(chan[O] , buf, MAX); 

In this example, read stores the characters in the array buf. 

Note that unless the end-of-file character is encountered, a read call waits 
for the given number of characters to be read before returning. 

11-4 



Writing and Using Pipes 

The write function can be used to write to the write side of a pipe. For 
example, in the following program fragment, write writes MAX charac­
ters from the character array buf to the writing side of the pipe given by 
chan: 

int chan [2] ; 
char buf [MAX] ; 
int number; 

pipe (chan) ; 
number = write(chan[l] , input, 512); 

If the write function finds that a pipe is too full, it waits until some char­
acters have been read before completing its operation. 

11.5.2 Closing a Low-Level Pipe 

The close function can be used to close the reading or the writing side of 
a pipe. The function has the same form and operation as described in 
"Run-Time Routines by Category." For example, the function call: 

close(chan[O]) 

closes the reading side of the pipe given by chan, and the call: 

close(chan[l]) 

closes the writing side. 

The system copies the end-of-file value, EOF, to a pipe when the process 
that made the original pipe and every process created or called by that 
process has closed the writing side of the pipe. This means, for example, 
that if a parent process is sending data to a child process through a pipe 
and closes the pipe to signal the end of the file, the child process will not 
receive the end-of-file value unless it has already closed its own write 
side of the pipe. 

11.6 Program Examples 

This section shows how to use the process control functions with the 
low-level pipe function to create functions similar to the popen and 
pclose functions. 

11-5 



C Library Guide 

The first example is a modified version of the popen function. The 
modified function identifies the new pipe with a file descriptor rather than 
a file pointer. It also requires a "mode" argument rather than a "type" 
rrgument, where the mode is 0 for reading or J for writing: 

#include <stdio.h> 

#define READ 0 
#define WRITE 1 
#define tst (a, b) (mode == READ ? (b) (a) ) 
static int popen-rid; 

popen(and, mode) 
char *cmd; 
int mode; 
{ 

int p[2]; 

if (pipe (p) < 0) 
return (NULL) ; 

if ((popen -rid = fork ()) == 0) { 
close(tst(p[WRITE], p[READ])); 
close (tst (0, 1)); 
dup(tst(p[READ], p[WRITE])); 
close(tst(p[READ], p[WRITE])); 
execl("/bin/sh", "sh", "-c", cmd, 0); 
exit(l); /* sh cannot be found */ 

if (popen-rid == -1) 
return (NULL) ; 

close(tst(p[READ], p[WRITE])); 
return(tst(p[WRITE], p[READ])); 

The function creates a pipe with the pipe function first. It then uses the 
fork function to create two copies of the original process. Each process 
has its own copy of the pipe. The child process decides whether it is sup­
posed to read or write through the pipe, then closes the other side of the 
pipe and uses execl to create the new process and execute the desired pro­
gram. The parent, on the other hand, closes the side of the pipe it does not 
use. 

The sequence of close functions in the child process is a trick used to link 
the standard input or output of the child process to the pipe. The first 
close determines which side of the pipe should be closed and closes it. If 
, 'mode" is WRITE, the writing side is closed; if READ, the reading side is 
closed. The second close closes the standard input or output depending 
on the mode. If the mode is WRITE, the input is closed; if READ, the out­
put is closed. The dup function creates a duplicate of the side of the pipe 

11-6 



Writing and Using Pipes 

that is still open. Since the standard input or output was closed immedi­
ately before this call, this duplicate receives the same file descriptor as 
the standard file. The system always chooses the lowest available file 
descriptor for a newly opened file. Since the duplicate pipe has the same 
file descriptor as the standard file, it becomes the standard input or output 
file for the process. Finally, the last close closes the original pipe, leaving 
only the duplic3;te. 

The following example is a modified version of the pclose function. The 
modified version requires a file descriptor as an argument rather than a 
file pointer. 

*include <signal.h> 

pclose(fd) 
int fd; 

/* close pipe fd */ 

{ 

int r, status; 
int (*hstat) (), (*istat) (), (*qstat) () ; 
extern int popen yid; 

close (fd); 

istat = signal (SIGINT, SIG IGN); 
qstat = signal(SIGQUIT, SIG IGN); 
hstat = signal(SIGHUP, SIG_IGN); 

while «r = 1.ITait (&status)) != popenyid && r != -1) 
, 

if (r == -1) 
status = -1; 

signal (SIGINT, istat); 
signal(SIGQUIT, qstat); 
signal (SIGHUP, hstat); 

return(status); 

The function closes the pipe first. It then uses a while statement to wait 
for the child process given by popen yid. If other child processes ter­
minate while it waits, it ignores them and continues to wait for the given 
process. It stops waiting as soon as the given process terminates or if no 
child process exists. The function returns the termination status of the 
child, or the value -1, if there was an error. 

The signal function calls used in this example ensure that no interrupts 
interfere with the waiting process. The first set of functions causes the 
process to ignore the interrupt, quit, and hang up signals. The last set 
restores the signals to their original status. The signal function is 

11-7 



C Library Guide 

described in detail in the "Using Signals" chapter of the XENIX 
Programmer's Guide. 

Note that both example functions use the external variable popenyid to 
store the process ID of the child process. If more than one pipe is to be 
opened, the popenyid value must be saved in another variable before 
each call to popen, and this value must be restored before calling pclose 
to close the pipe. The functions can be modified to support more than one 
pipe by changing the popenyid variable to an array indexed by a file 
descriptor. 

11.7 Named Pipes 

Named pipes are supported under XENIX System V. A named pipe is 
identical to a normal pipe, except that it has a name in the filesystem and 
it, therefore, stays around even when not being used. Named pipes are 
created by mknod(S), not pipe(S). 

Typically, named pipes are used as "dump locations." A deamon or 
server program creates and reads from a named pipe, while programs 
associated with the deamon or server program open(S) the pipe by name 
and write to it. 

A named pipe is used like a normal file (open(S), read(S), and write(S)). 
Data is read and removed from the pipe in a FIFO (' 'First in First out' ') 
manner. Data is written to the pipe in an atomic manner; that is, all data 
is written in a single write It is not intermixed with other process's writ­
ten data. The writes appear consecutively in the pipe when they are read. 
Thus, one process can open the pipe for writing, and another process can 
open the pipe for reading. 

The following routine creates a named pipe: 

11-8 

#include <sys/stat.h> 
extern int errnOi 

/* make a named pipe, mode 666 */ 
if (mknod("/u/eric/pipe", S IFIFO I 0666, 0) == -1) 

perror (" /u/eric/pipe") i /* An error occurred. * / 
exit (errno)i 



Use unlink(S) to remove a named pipe. 

if (unlink ("/u/eric/pipe") 
perror("/u/eric/pipe"); 
exit (errno) ; 

Writing and Using Pipes 

-1) { 

11-9 





Chapter 12 

Using System Resources 

12.1 Introduction 12-1 

12.2 Allocating Memory 12-1 
12.2.1 Allocating Space for a Variable 12-2 
12.2.2 Allocating Memory for an Array 12-3 
12.2.3 Reallocating Memory 12-4 
12.2.4 Freeing Unused Memory 12-4 
12.2.5 Tuning Memory Allocation 12-5 
12.2.6 Optimizing Memory Allocation 12-6 
12.2.7 Gathering Memory Allocation Information 12-7 
12.2.8 Accessing Additional Memory Segments 12-7 

12.3 Overview of File Locking 12-8 

12.4 Locking Files Under XENIX 12-9 
12.4.1 Preparing a File for Locking 12-10 
12.4.2 Locking a File 12-10 
12.4.3 Program Example Using Locking 12-11 

12.5 Locking Files Under UNIX System V 12-11 
12.5.1 Terminology 12-12 
12.5.2 File Protection 12-13 
12.5.3 Opening a File for Record Locking 12-14 
12.5.4 Setting a File Lock 12-14 
12.5.5 Setting and Removing Record Locks 12-17 
12.5.6 Getting Lock Information 12-20 
12.5.7 Handling Deadlocks 12-23 

12.6 Message Operations 12-23 
12.6.1 Getting Message Queues 12-27 
12.6.2 Example Program Using msgget 12-31 
12.6.3 Controlling Message Queues 12-34 
12.6.4 Example Program Using msgctl 12-35 
12.6.5 Operations for Messages 12-40 
12.6.6 Sending Messages 12-40 
12.6.7 Receiving Messages 12-41 



12.6.8 Example Program Using msgop 12-42 

12.7 Overview of Semaphores 12-50 

12.8 Using Semaphores Under XENIX 12-50 
12.8.1 Creating a Semaphore 12-51 
12.8.2 Opening a Semaphore 12-52 
12.8.3 Requesting Control of a Semaphore 12-53 
12.8.4 Checking the Status of a Semaphore 12-54 
12.8.5 Relinquishing Control of a Semaphore 12-54 
12.8.6 Program Example 12-55 

12.9 Using Semaphores Under UNIX System V 12-57 
12.9.1 Semaphore Data Structures and Arrays 12-59 

12.10 Getting Semaphores 12-63 
12.10.1 Example Program Using semget 12-67 
12.10.2 Controlling Semaphores 12-70 
12.10.3 Example Program Using semctl 12-71 
12.10.4 Example Program Using semop 12-82 

12.11 Overview of Shared Memory 12-86 

12.12 Using Shared Memory 12-87 
12.12.1 Creating a Shared Memory Segment 12-88 
12.12.2 Attaching a Shared Memory Segment 12-89 
12.12.3 Entering a Shared Memory Segment 12-90 
12.12.4 Leaving a Shared Memory Segment 12-91 
12.12.5 Getting the Current Version Number 12-92 
12.12.6 Waiting for a Version Number 12-93 
12.12.7 Freeing a Shared Memory Segment 12-94 
12.12.8 Program Example 12-94 

12.13 Using Shared Memory Under UNIX System V 12-96 

12.14 Shared Memory Data Structures 12-97 
12.14.1 Getting Shared rvlemorj Segments 12-100 
12.14.2 Example Program Using shmget 12-103 
12.14.3 Controlling Shared Memory 12-106 
12.14.4 Example Program Using shmctl 12-107 
12.14.5 Operations for Shared Memory 12-113 
12.14.6 Example Program Using shmop 12-114 



Using System Resources 

12.1 Introduction 

This chapter describes the XENIX C library functions that let programs 
share the resources of the XENIX system. The functions give a program 
the means to queue for the use and control of a given resource and to syn­
chronize its use with use by other programs. 

This chapter explains how to: 

• Allocate memory for dynamic storage 

• Lock a file to ensure exclusive use by a program 

• Use semaphores to control access to a resource 

• Use shared data to allow interaction between programs 

• Use message queues to communicate between processes 

XENIX System V supports two sets of each of these operations (except 
message queues): one set for XENIX and one for UNIX System V. The 
two memory allocation packages described are available in both systems. 
The file locking, semaphores, and shared data packages described are 
valid only for one system or the other. It is not possible to use these 
operations on both XENIX and UNIX in a compatible fashion. 

These sets of operations will be referred to in this chapter as either XENIX 
operations or UNIX System V operations. The UNIX System V operations 
are compatible with AT&T UNIX System V and should be used when 
software is intended for use on other System V operating systems that 
comply with the System V Interface Definition. 

The XENIX operations are compatible with previous versions of XENIX 
and should be used only if you are working with software which uses 
XENIX style operations. Programs using the XENIX operations must be 
linked with the XENIX library, using the -Ix option. 

12.2 Allocating Memory 

Some programs require significant changes to the size of their allocated 
memory space during different phases of their execution. The memory 
allocation functions of the standard C library let programs allocate space 
dynamically. This means a program can request a given number of bytes 
of storage for its exclusive use at the moment it needs the memory, then 
free this memory after it has finished using it. 

12-1 



C Library Guide 

There are four memory allocation functions; they are described as fol­
lows: 

Function 

malloc 
calloc 

realloc 

free 

Description 

Allocates memory for the first time. These functions 
allocate a given number of bytes and return a pointer 
to the new memory. 

Reallocates an existing memory, letting it to be used in 
a different way. 

Returns allocated memory to the system. 

Note that there are two versions of the malloc function available in 
XENIX System V: the standard version, and one that allocates memory 
more quickly. For more information, see malloc(S) in the XENIX 
Programmer's Reference. 

12.2.1 Allocating Space for a Variable 

The malloc function allocates space for a variable contammg a given 
number of bytes. The function call has the following form: 

malloc (size) 

where size is an unsigned integer that gives the number of bytes to be 
allocated. For example, the following function call allocates four bytes 
of storage: 

table = malloc (4) 

The function normally returns a pointer to the starting address of the allo­
cated space, but will return a null pointer value if there is not enough 
space to allocate. 

In the following program fragment, malloc is used to allocate space for 
ten different strings, each of different length. In addition, malloc returns 
the beginning address of each string to the array of pointers called string. 
In the following example, the strings are read from the standard input. 
Note that the strlen function is used to get the size in bytes of each string. 

12-2 



int i; 
char *ternp, *strings[10]; 
unsigned isize; 

for ( i=O; i<10; i++) { 
scanf("%s", temp); 
isize = strlen(ternp); 
string[i] = rnalloc(isize); 
} 

12.2.2 Allocating Memory for an Array 

Using System Resources 

The calloc function allocates storage for a given array and initializes each 
element in the new array to zero. The function call has the following 
form: 

calloc (n, size) 

where 

n is the number of elements in the array. 

size is the number of bytes in each element. 

The function normally returns a pointer to the starting address of the allo­
cated memory, but will return a null pointer value if there is not enough 
memory. For example, the following function call allocates sufficient 
memory for a 10-element array: 

table = calloc (10,4) 

Each element has four bytes. You use this function in programs that must 
process large arrays without knowing the size of an array in advance. For 
example, in the following program fragment, calloc is used to allocate 
storage for an array of values read from the standard input: 

int i; 
char *table; 
unsigned inurn; 

scanf("%d", &inurn); 
table = calloc (inurn, 4); 
for (i=O; i<inurn; i++) 

scanf("%d", table[i]); 

Note that the number of elements is read from the standard input before 
the elements are read. 

12-3 



C Library Guide 

12.2.3 Reallocating Memory 

The realloc function reallocates the memory at a given address without 
changing the contents of the memory. The function call has the following 
form: 

where 

realloc (ptr, size) 

ptr is a pointer to the starting address of the memory to be reallo­
cated. 

size is an unsigned number giving the new size in bytes of the real­
located memory. 

The function normally returns a pointer to the starting address of the allo­
cated memory, but will return a null pointer value if there is not enough 
memory to allocate. 

This function is typically used to keep storage as compact as possible. 
For example, the following program fragment uses realloc to remove 
table entries: 

main () 
{ 
char *table; 
int i; 
unsigned inurn; 

for (i=inum; i>-l; i--) { 
printf("%d\n", strings[i]); 
strings = realloc (strings, i*4); 
} 

In this example, an entry is removed after it has been printed at the stan­
dard output, by reducing the size of the allocated memory from its current 
length to the length given by "i*4". 

12.2.4 Freeing Unused Memory 

The free function frees unused memory that had been previously allo­
cated by a malloc, calloc, or realloc function call. The function call has 
the following form: 

free (ptr) 

12-4 



Using System Resources 

where ptr is the pointer to the starting address of the memory to be freed. 
This pointer must be the return value of a malloc, calloc, or realloc func­
tion. 

You use this function to free memory that is no longer used or to free 
memory to be used for other purposes. For example, in the following pro­
gram fragment free frees the allocated memory pointed to by strings if 
the first element is equal to zero: 

main () 

char *table; 

if ( table[O] == -1 
free (table); 

12.2.5 TIming Memory Allocation 

The memory allocation package available in the standard C library, 
libc .a, uses a linear search through all blocks to allocate space, starting at 
a roving start pointer. This algorithm is space-efficient and gives good 
perfonnance as long as the total number of blocks allocated is small. 
However, with a large number of blocks, this algorithm has serious per­
fonnance problems. 

XENIX System V includes a new memory allocation package that uses a 
different time/space algorithm. The new library functions allocate space 
quickly, but use space inefficiently when the number of blocks allocated 
is small. Programs that were close to running out of memory using the 
standard package cannot be easily changed to the new package. 

This new package improves perfonnance for programs that make heavy 
use of dynamic-memory allocation. This algorithm provides several tun­
able parameters so you can customize the algorithm. Instrumentation is 
provided to help you in the choice of values for these parameters. 

The new library package contains the same basic functions with the same 
functionality: malloc, free, realloc, and calloc. It also contains the new 
functions mallopt and mallinfo. 

The new package is provided in libmalloc .a, and can be linked by setting 
the -lmalloc flag on the cc command line. The standard package is kept 
in the standard C library, libc.a. The libc.a library is the default library. 

12-5 



C Library Guide 

Note 

Unless you specify the new package with -malloc, the standard 
package is automatically linked with your program. If you leave 
programs alone, they will work exactly the way they used to work. 

The interface to both packages is described in malloc(S) in the XENlX 
Programmer's Reference. The new interface is similar to the standard 
interface with functions having the same names. This lets you use the 
new package without changing code, but also protects the naive user from 
the interface change that would occur if the new package replaced the 
standard package. In addition, it insures that all modules will use the 
same allocation routines that an application program uses, avoiding frag­
mentation. 

The major difference between the standard and new packages is that, with 
the standard malloc, after a block is freed, but before another is allocated, 
the data in the freed block is valid. By default, the new package does not 
have this property. A compiler option lets you use this property, at the 
cost of two extra words of overhead per block. For more information on 
the memory allocation option, see the C User's Guide. 

The new malloc has the following additional functions: 

Function 

mallopt 

mallinfo 

Description 

Provides control over the allocation algorithm. 

Provides instrumentation describing memory usage. 

This infonnation can be used to determine optimal malloc operation 
using mallopt. 

12.2.6 Optimizing Memory Allocation 

The mallopt function provides control over the allocation algorithm. The 
function call has the following form: 

mallopt (cmd, value); 

where cmd sets the variables that let you tune the algorithm to allocate 
memory in the most efficient manner for the application. 

12-6 



Using System Resources 

The values available for cmd are: 

Value Description 

Sets the maximum size of blocks that are very 
quickly allocated in large groups. 

Sets the size of the large groups allocated when 
blocks less than the size of maxfast are encoun­
tered. 

Sets the grain used when rounding values. 

Preserves the data in a freed block until the next 
allocation (for compatibility with the other mal­
loc). 

The mallopt function can be called repeatedly, until the first block is 
allocated. 

12.2.7 Gathering Memory Allocation Information 

The mallinfo function provides instrumentation describing memory 
usage. It returns a structure that is defined in the <maUoc .h> include file. 
The function call has the following form: 

#include <malloc.h> 

struct mallinfo mi; 
mi=mallinfo(); 

For more information, see malloc(S) in the XENIX Programmer's Refer­
ence. 

12.2.8 Accessing Additional Memory Segments 

The brkctl(S) system call lets you access additional data segments. Use 
it only when malloc(S) is not sufficient. It is not available available 
under UNIX System V or XENIX System V 1.0. 

Small and medium model programs can use brkctl to access additional 
memory in a far data segment. Be sure to use the -Me option to cc(CP) 
when compiling programs using brkctl to enable the use of the far key­
word. For most applications, the -lbrkctl option to cc(CP) should be used 
to cause a special brkctl library to be linked with the program. This 

12-7 



C Library Guide 

library will simulate the use of an additional segment, through shared 
memory, if the brkctl fails. 

The brkctl function uses several other functions that manipulate the size 
of a data segment. The most useful function on systems with segmented 
architecture is the BR_NEWSEG command, which acts similar to a mal­
loc function as shown in the following program example. 

Example 

#include <sys/brk.h> 

#define FNULL (int far*)O 
#define FAILURE (int far*)-l 

rnainO 
{ 

int i,ji 
int far*fp, far*brkctl(); /*both fars are necessary*/ 

fp=brkctl(BR NEWSEG,40000L,FNULL); 
if (fp= =FAILURE) { 

perror ("brkctl failed"); 
exit (1); 

for (i=O;i<20000;++i) 
fp[i]=i+1; 

for (i=O;i<20000;++i) 
printf ("%d\n", fp [i] ) ; 

Note that this example allocates 40,000 bytes in a far data segment and 
fills this memory with the integers from 1 to 20,000. Since fp is a far 
pointer, it cannot be passed to the standard small or medium library func­
tions (e.g. strcpy) because they expect near pointers. 

12.3 Overview of File Locking 

Locking a file is a way to synchronize file use when several processes 
may require access to a single file. The standard C library provides three 
file locking functions: locking, lockf, and fcntl. These functions lock 
any given section of a file, preventing all other processes that wish to use 
the section from gaining access. A process can lock the entire file or 
only a small portion. In any case, only the locked section is protected; all 
other sections can be accessed by other processes as usual. For more 
information, see fcntl(S), lockf(S), and locking(S) in the XENIX 
Programmer's Reference. 

12-8 



Using System Resources 

This section provides a brief overview of the differences between file 
locking techniques under UNIX System V and XENIX. The UNIX System 
V file locking functions are lockf(S) and fcntl(S). The XENIX file locking 
function is locking(S). 

Function 

fcntl 

lockf 

locking 

Description 

Controls regions of open files allowing reads or 
writes of locked areas. 

Uses semaphores to lock a file specified by the file 
descriptor fildes. 

Locks or unlocks regions a file for reading and 
writing. 

The syntax and arguments for lockf and locking are essentially the same. 
The only difference is the preprocessor defines for the commands (for 
example, F _LOCK vs. LK_LOCK). The fcntl function is called in a 
manner similar to ioctl(S). There is no need to do a seek(S) before lock­
ing with fcntl, since it can do its own seek. 

All three locking functions are enforced by semaphore control. When 
another process tries to access an area that is locked, that process 
suspends execution or gets an error return. Note that it is possible to lock 
a region beyond the end of a file in all three functions. 

12.4 Locking Files Under XENIX 

File locking protects a file from the damage that may be caused if several 
processes try to read or write to the file at the same time. It also provides 
unhindered access to any portion of a file for a controlling process. File 
locking is performed under XENIX using the locking(S) function. 

Before you can lock a file, however, you must prepare it by using the 
open and lseek functions. 

To use the locking function, you must add the following include file to 
the beginning of the program: 

#include <sys/locking.h> 

The sysllocking.h file contains definitions for the modes used with the 
function. 

12-9 



C Library Guide 

12.4.1 Preparing a File for Locking 

Before a file can be locked, it must first be opened using the open func­
tion, then properly positioned using the lseek function, which in tum 
moves the file's character pointer to the first byte to be locked. 

The open function is used once at the beginning of the program to open 
the file. The Iseek function can be used any number of times to move the 
character pointer to each new section to be locked. For example, the fol­
lowing statements prepare the first 100 bytes at file position 1024 from 
the beginning of the reservations file for locking: 

fd = open("reservations", O_RDONLY); 
lseek(fd, 1024, 0); 

12.4.2 Locking a File 

The locking function locks one or more bytes of a given file. The function 
call has the following form: 

where 

locking (filedes, mode, size) 

JUedes is the file descriptor of the file to be locked. 

mode is an integer value that defines the type of lock to be applied 
to the file. 

size is a long integer value giving the size in bytes of the portion of 
the file section to be locked or unlocked. 

The mode can be LK_LOCK for locking the given bytes, or LK_ UNLCK 
for unlocking them. For example, in the following program fragment, 
locking locks 100 bytes at the current character pointer position in the file 
given by "fd": 

12-10 

#include <sys/locking.h> 

main () { 
int fd; 

fd = open ("data", 0 RDWR); 
locking (fd, LK_LOCK~ 100L); 



Using System Resources 

The function nonnally returns the number of bytes locked, but will return 
-1 if it ~ncounters an error. 

12.4.3 Program Example Using Locking 

This section shows you how to lock and unlock a small section in a file 
using the locking function. In the following program, the function locks 
100 bytes in a data file that is opened for reading and writing. The func­
tion accesses the locked portion of the file. Then locking is used again to 
unlock the file. 

Example 

#include <fcntl.h> 
#include <sys/types.h> 
#include <sys/locking.h> 

main () { 
int fd, err; 
char *data; 

fd = open (ndatan,O RDWR); 
if (fd = -1 ) { -

perror (nn); 

else { 

/* Open data for R/W */ 

lseek(fd, 100L, 0); /* Seek to pas 100 */ 
err = locking(fd, LK LOCK, 100L); /* Lock bytes 100-200 */ 
if (err = -1) { -

/* process error return */ 
} 

/* read or write bytes 100 - 200 in the file */ 

lseek(fd, 100L, 0); /* Seek to pas 100 */ 
locking (fd, LK_UNLCK, 100L); /* Unlock bytes 100-200 */ 

12.5 Locking Files Under UNIX System V 

Mandatory file, advisory file, and record locking can synchronize program 
that access the same stores of data simultaneously. 

Advisory file and record locking can coordinate self-synchronizing 
processes. In mandatory locking, the standard I/O subfunctions and I/O 

12-11 



C Library Guide 

system calls enforce the locking protocol. In this way, at the cost of a lit­
tle efficiency, mandatory locking double checks the programs against 
accessing the data out of sequence. 

The remainder of this section describes how file and record locking capa­
bilities can be used. 

12.5.1 Terminology 

The following terms are used in locking: 

Term 

Record 

Description 

A contiguous set of bytes in a file. The system 
does not impose any record structure on files. This 
can be done by the programs that use the files. 

Cooperating Processes 
Processes that work together in some well defined 
fashion to accomplish the tasks at hand. Processes 
that share files must request permission to access 
the files before using them. File access permis­
sions must be carefully set to restrict non­
cooperating processes from accessing those files. 
The system uses the term process interchangeably 
with the cooperating process to refer to a task 
obeying such protocols; 

Read (Share) Locks 

12-12 

U sed to gain limited access to sections of files. 
When a read lock is in place on a record, other 
processes can also read lock that record, in whole 
or in part. No other process, however, can have or 
obtain a write lock on an overlapping section of 
the file. If a process holds a read lock it can 
assume that no other process will be writing or 
updating that record at the same time. This access 
method also permits many processes to read the 
given record. This might be necessary when 
searching a file, without the contention involved if 
a write or exclusive lock were to be used. 



Using System Resources 

Write (Exclusive) Locks 
Used to gain complete control over sections of 
files. When a write lock is in place on a record, no 
other process can read or write lock that record, in 
whole or in part. If a process holds a write lock it 
can assume that no other process will be reading 
or writing that record at the same time. 

Mandatory Locking 

12.5.2 File Protection 

A form of record locking that does interact with 
the I/O subsystem. Access to locked records is 
enforced by the system calls chsize, creat, open, 
read, and write. 

If a record is locked, then the system restricts 
access of that record by any other process accord­
ing to the type of lock on the record. The control 
over records should still be performed by request­
ing an appropriate record lock before I/O opera­
tions, but an additional check is made by the sys­
tem before each I/O operation to ensure the record 
locking protocol is being honored. Mandatory 
locking offers an extra synchronization check, but 
at the cost of some additional system overhead. 

Access permissions for system files control who can read, write, or exe­
cute a file. These permissions can only be set by the owner of the file or 
by the super-user. Directory permissions will also affect how a file can be 
used and by whom. Note that if the directory permissions allow anyone 
to write in it, then files within the directory can be removed, even if those 
files do not have read, write or execute permission for that user. If your 
application warrants the use of record locking, make sure that the permis­
sions on your files and directories are set properly. A record lock, even a 
mandatory record lock, will only protect the portions of the files that are 
locked. Other parts of these files can still be corrupted. 

Only a few programs and/or system administrators should be able to read 
or write a data base. This can be done easily by setting the set-group-ID 
bit (using chmod(C)) of the data base accessing programs. The files can 
then be accessed by a few programs that obey the record locking protocol. 
An example of such file protection, although record locking is not used, is 
the mail(C) command. In that command only the mail command and the 
particular user can read and write in the unread mail files. 

12-13 



C Library Guide 

12.5.3 Opening a File for Record Locking 

Before you can lock a file or segment of a file you must have a valid open 
file descriptor. If read locks are to be done, then the file must be opened 
with at least read accessibility and likewise for write locks and write 
accessibility. The following example opens the file for both read and 
write access: 

Example 

#include <stdio.h> 
#include <errno.h> 
#include <fcntl.h> 

int fd; /* file descriptor */ 
char *filename; 

main (argc, argv) 
int argc; 
char *argv[]; 
{ 

extern void exit (), perror () ; 

/* get data base file name from command line and open the 
* file for read and write access. 
*/ 

if (argc < 2) { 
(void) fprintf (stderr, "usage: %s filename\n", argv[O]); 
exit (2); 

filename = argv[l]; 
fd = open (filename, 0 RDWR); 
if (fd < 0) { -

perror(filename); 
exit(2); 

The file is now open for you to perform both locking and I/O functions. 
You can then set a lock. 

12.5.4 Setting a File Lock 

There are several ways you can set a lock on a file. How you set a lock on 
a file will depend on how you want the lock to interact with the rest of the 
program, how you want the lock to perform, and your portability needs. 

12-14 



Using System Resources 

Two methods are given here, one using the fcntl(S) system call, the other 
using the lusrlgroup standards compatible lockf(S) library function call. 

Locking an entire file is just a special case of record locking. For both 
fcntl and lockf the concept and the effect of the lock are the same. The 
file is locked starting at a byte offset of zero (0) until the end of the max­
imum file size. This point extends beyond any real end of the file so that 
no lock can be placed on this file beyond this point. To do this, the value 
of the size of the l('ck is set to zero. The following sample code uses the 
fcntl(S) system call. 

Example 

#include <fcntl.h> 
#define ~'IRY 10 
int try; 
struct flock lck; 

try = 0; 

1* set up the record locking structure, the address of which 
* is passed to the fcntl system call. 
*1 

lck.l type = F WRLCK; 1* setting a write lock *1 
lck.l-whence =-0; 1* offset I start from beginning of file *1 
lck.l-start = OL; -
lck.l::)en = OL; /* until the end of the file address space */ 

1* Atterrpt locking MAX 'IRY times before giving up. *1 
while (fcntl(fd, F SETLK, &lck) < 0) { 

if (erma ~ EAGAIN I I erma = EACCES) { 
1* there might be other error cases in which 
* you might try again. 
*1 

if (++try < MAX 'IRY) { 
(void) sleep(2); 
continue; 

} 

(void) fprintf(stderr,"File busy try again later!\n"); 
return; 

perror ("fcntl") ; 
exit (2); 

12-15 



C Library Guide 

This portion of code tries to lock a file. This is attempted several times 
until one of the following things happens: 

• the file is locked 

• an error occurs 

• it gives up trying because MAX_TRY has been exceeded 

The following sample of code uses the lockf(S) function. 

Example 

#include <unistd.h> 
#define MAX_TRY 10 
int try; 
try = 0; 

/* make sure the file pointer 
* is at the beginning of the file. 
*/ 

lseek(fd, OL, 0); 

/* Attempt locking MAX TRY times before giving up. 
*/ -

while (lockf(fd, F TLOCK, OL) < 0) { 
if (errno::;; EAGAIN II errno = EACCES) { 

/* there might be other errors cases in which 
* you might try again. 
*/ 

if (++try < MAX TRY) 
sleep (2); 
continue; 

} 

(void) fprintf (stderr, "File busy try again later! \n") ; 
return; 

perror (" lockf") ; 
exit(2); 

Note that the lockf(S) sample appears to be more simple, but the fcntl(S) 
sample is more flexible. Using the fcntl(S) method, it is possible to set 
the type and start of the lock request simply by setting a few structure 
variables. The lockf(S) library system call merely sets write (exclusive) 
locks; an additional system call (lseek(S» is required to specify the start 
of the lock. 

12-16 



Using System Resources 

12.5.5 Setting and Removing Record Locks 

Locking a record is done the same way as locking a file except for the 
differing starting point and length of the lock. In the following sample 
session there are two records (these records may be in the same or 
different file) that must be updated simultaneously so that other processes 
get a consistent view of this information. (This type of problem comes 
up, for example, when updating the inter-record pointers in a doubly­
linked list.) To do this you must decide the following questions: 

• What do you want to lock? 

• For multiple locks, what order do you want to lock and unlock the 
records? 

• What do you do if you succeed in getting all the required locks? 

• What do you do if you fail to get all the locks? 

In managing record locks, you must plan a failure strategy in case you 
cannot obtain all the required locks. Different programs might: 

• wait a certain amount of time, and try again 

• abort the procedure and warn the user 

• let the process sleep until signaled that the lock has been freed 

• some combination of these 

In the sample session you will try to insert an entry into a doubly-linked 
list. For the example, assume that the record after which the new record 
is to be inserted has a read lock on it already. The lock on this record 
must be changed or promoted to a write lock so that the record can be 
edited. 

Promoting a lock (generally from read lock to write lock) is permitted if 
no other process is holding a read lock in the same section of the file. If 
there are processes with pending write locks that are sleeping on the same 
section of the file, the lock promotion succeeds and the other (sleeping) 
locks wait. Promoting (or demoting) a write lock to a read lock carries no 
restrictions. In either case, the lock is merely reset with the new lock 
type. Because the lusrlgroup lockf function does not have read locks, 
lock promotion is not applicable to that call. The following is an example 
of record locking with lock promotion. 

12-17 



C Library Guide 

struct record 

/* data portion a:: record -A/ 

long prev; /* index to previous record in the list */ 
long next; /* index to next record in the list */ 

} ; 
/* Lock promotion using fcntl(S) 
* When this function is entered it is assumed that there are read 
* locks on "here" and "next". 
* If write locks on "here" and "next" are obtained: 
* Set a write lock on "this". 
* Return index to "this" record. 
* If any write lock is not obtained: 
* Restore read locks on "here" and "next". 
* Remove all other locks. 
* Return a-I. 
*/ 

long 
set3lock (this, here, next) 
long this, here, next; 
{ 

12-18 

struct flock lck; 

lck.l type = F WRLCK; /* setting a write lock */ 
lck.l-whence =-0; /* offset 1 start from beginning of file */ 
lck.l-start = here; -
lck.l=len = sizeof(struct record); 

/* promote lock on "here" to write lock * / 
if (fcntl(fd, F_SETLKW, &lck) < 0) { 

return (-1); 
} 

/* lock "this" with write lock * / 
lck.l start = this; 
if (fcntl(fd, F SETLKW, &lck) < 0) 

/* Lock on "this" failed; 
* demote lock on "here" to read lock. */ 

lck.l type = F RDLCK.; 
lck.l-start = here; 
(void) fcntl(fd, F SETLKW, &lck); 
return (-1); -

/* promote lock on "next" to write lock */ 
lck.l start = next; 
if (fcntl(fd, F SETLKW, &lck) < 0) { 

/* Lock on "next" failed; 
* demote lock on "here" to read lock, */ 

lck.l type = F RDLCK.; 
lck.l-start = here; 
(void) fcntl(fd, F SETLK, &lck); 
/* and remove lock-on "this". */ 
lck.l type = F UNLCK; 
lck.l-start = this; 
(void) fcntl(fd, F SETLK, &lck); 
return (-I); /* cannot set lock, try again or quit */ 

return (this); 



Using System Resources 

The locks on these three recerds were all set to wait (sleep) if another 
process was blocking them from being set. This was done with the 
F _SETLKW command. If the F _SETLK command was used instead, the 
fcntl system calls would fail if blocked. The program would then have to 
be changed to handle the blocked condition in each of the error return 
sections. 

The following is another example using the lockf function. Since there 
are no read locks, all (write) locks are referenced generically as locks. 

Example 

1* Lock promotion using lockf(S) 
* When this function is entered it is assumed that there are 
* no locks on "here" and "next". 
* If locks are obtained: 
* Set a lock on "this". 
* Return index to "this" record. 
* If any lock is not obtained: 
* Remove all other locks. 
* Return a-I. 
*1 

#include <unistd.h> 

long 
set3lock (this, here, next) 
long this, here, next; 

/* lock "here" *1 
(void) lseek(fd, here, 0); 
if (lockf(fd, F_LOCK, sizeof(struct record» < 0) { 

return (-1); 

1* lock "this" *1 
(void) lseek(fd, this, 0); 
if (lockf(fd, F_LOCK, sizeof(struct record» < 0) { 

1* Lock on "this" failed. 
* Clear lock on "here". 
*1 

(void) lseek(fd, here, 0); 
(void) lockf(fd, F_ULOCK, sizeof(struct record»; 
return (-1); 

12-19 



C Library Guide 

Example (cont.) 

/* lock "next" */ 
(void) lseek(fd, next, 0); 
if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) { 

/* Lock on "next" failed. 
* Clear lock on "here", 
*/ 

(void) Iseek(fd, here, 0); 
(void) lockf(fd, F_ULOCK, sizeof(struct record)); 

/* and remove lock on "this". 
*/ 

(void) Iseek(fd, this, 0); 
(void) lockf(fd, F ULOCK, sizeof(struct record)); 
return (-1); 1* cannot set lock, try again or quit */ 

return (this); 

Locks are removed in the same manner as they are set, only the lock type 
is different (F _UNLCK or F _ULOCK). An unlock cannot be blocked by 
another process and will only affect locks that were placed by this pro­
cess. The unlock only affects the "Ick" section of the file defined in the 
first example. It is possible to unlock or change the type of lock on a sub­
section of a previously set lock. This may cause an additional lock (two 
locks for one system call) to be used by the operating system. This occurs 
if the subsection is from the middle of the previously set lock. 

12.5.6 Getting Lock Information 

You can determine which processes, if any, are blocking a lock from 
being set. This can be used as a simple test of the lock or as a means to 
find locks on a file. To do this, a lock is set up as in the previous exam­
ples and the F _GETLK command is used in the fcntl call. If the lock 
passed to fcntl would be blocked, the first blocking lock is returned to the 
process through the structure passed to fcntl. That is, the lock data passed 
to fcntl is overwritten by blocking lock information. This information 
includes Iyid and l_sysid, that are only used by F _GETLK. (For systems 
that do not support a distributed architecture the value in I_sysid should 
be ignored.) These fields uniquely identify the process holding the lock. 

For example, if a lock passed to fcnU using the F _ GETLK command 
would not be blocked by another process' lock, then the I type field is 
changed to F _ UNLCK and the remaining fields in the structure are 
unaffected. You can use this capability to print all the file segments 

12-20 



Using System Resources 

locked by other processes. Note that if there are several read locks over 
the same segment only one of these will be found. 

Example 

struct flock lck; 

/* Find and print "write lock" blocked segments of this file. * / 
(void) printf("sysid pid type start length\n"); 
lck.l whence = 0; 
lck.l-start = OL; 
lck.l :)en = OL; 
do { 

lck.l type = F WRLCK; 
(void) fcntl(fd, F GETLK, &lck); 
if (lck.l type != F UNLCK) { 

} 

(void) printf ("%5d %5d %c %8d %8d\n", 
lck.l sysid, 
lck.(pid, 
(lck.l_type = F_WRLCK) ? 'w' : 'R', 
lck.l start, 
lck.l-len) ; 

/* if this lock goes to the end of the address 
* space, no need to look further, so break out. 
*/ 

if (lck.l len = 0) 
break; 

/* otherwise, look for new lock after the one 
* just found. 
*/ 

lck.l_start += lCk.l_len; 

} while (lck.l_type != F_UNLCK); 

The fcntl call with the F _GETLK command will always return correctly 
(that is, it will not sleep or fail) if the values passed to it as arguments are 
valid. 

The lockf function with the F _TEST command can also be used to test if 
there is a process blocking a lock. This function does not, however, 

12-21 



C Library Guide 

return the infonnation about where the lock actually is and which process 
owns the lock. A function using lockf to test for a lock on a file follows: 

Example 

/* find a blocked record. */ 

/* seek to beginning of file */ 
(void) lseek(fd, 0, OL); 
/* set the size of the test region to zero (0) 
* to test until the end of the file address space. 
*/ 

if (lockf{fd, F TEST, OL) < 0) { 
switch (ermo) { 
case EACCES: 
case EAGAIN: 

(void) printf ("file is locked by another process\n") ; 
break; 

case EBADF: 
/* bad argument passed to lockf */ 
perror (" lockf") ; 
break; 

default: 
(void) printf ("lockf: unknown error <%d>\n", ermo); 

break; 

When a process forks, the child process receives a copy of the file 
descriptors that the parent process has opened. The parent and child also 
share a common file pointer for each file. If the parent were to seek to a 
point in the file, the child's file pointer would also be at that location. 
This feature has important implications when using record locking. The 
current value of the file pointer is used as the reference for the offset of 
the beginning of the lock, as described by I_start, when using a I_whence 
value of 1. If both the parent and child process set locks on the same file, 
there is a possibility that a lock will be set using a file pointer that was 
reset by the other process. This problem appears in the lockf(S) function 
call as well and is a result of the /usr/group requirements for record lock­
ing. 

If forking is used in a record locking program, the child process should 
close and reopen the file if either locking method is used. This will result 
in the creation of a new and separate file pointer that can be manipulated 
without this problem occurring. Another solution is to use the fcntl sys­
tem call with a I whence value of 0 or 2. This makes the locking func­
tion atomic, so that even processes sharing file pointers can be locked 
without difficulty. 

12-22 



Using System Resources 

12.5.7 Handling Deadlocks 

There is a certain level of deadlock detection/avoidance built into the 
record locking facility. This deadlock handling provides the same level 
of protection granted by the lusrl group standard lockf call. This deadlock 
detection is only valid for processes that are locking files or records on a 
single system. Deadlocks can only potentially occur when the system is 
about to put a record locking system call to sleep. A search is made for 
constraint loops of processes that would cause the system call to sleep 
indefinitely. If such a situation is found, the locking system call will fail 
and set errno to the deadlock error number. If a process wishes to avoid 
the use of the system's deadlock detection it should Sct its locks using 
F _SETLK instead of F _SETLKW. 

12.6 Message Operations 

This section describes the system calls for the message type of Inter­
Process Communication (IPC). The message type of IPC lets processes 
(executing programs) communicate through the exchange of data stored 
in buffers. This data is transmitted between processes in discrete portions 
called messages. Processes using this type of IPC can perform two opera­
tions, sending and receiving. 

Before a message cm be sent or received by a process, a process must 
have the operating system generate the necessary software mechanisms 
by using the msgget(S) system call. While doing this, the process 
becomes the owner/creator of the message facility and specifies the initial 
operation permissions for all other processes, including itself. Subse­
quently, the owner/creator can relinquish ownership or change the opera­
tion permissions using the msgctl(S) system call. However, the creator 
remains the creator as long as the facility exists. Other processes with 
permission can use msgctl to perform various other control functions. 

Processes that have permission and are attempting to send or receive a 
message can suspend execution if they are unsuccessful at performing 
their operation. That is, a process that is attempting to send a message 
can wait until the process that is to receive the message is ready, and vice 
versa. A process that specifies that execution is to be suspended is per­
forming a blocking message operation. A process that does not let its 
execution be suspended is performing a nonblocking message operation. 

12-23 



C Library Guide 

A process performing a blocking message operation can be suspended 
until one of three conditions occurs: 

• It is successful. 

• It receives a signal. 

• The facility is removed. 

System calls make these message capabilities available to processes. The 
calling process passes arguments to a system call, and the system call 
either successfully or unsuccessfully performs its function. If the system 
call is successful, it performs its function and returns applicable informa­
tion. Otherwise, a known error code (-1) is returned to the process, and an 
external error number variable errno is set accordingly. 

Before a message can be sent or received, a uniquely identified message 
queue and data structure must be created using msgget(S). The unique 
identifier created is called the msqid (message queue identifier); it is used 
to identify or reference the associated message queue and data structure. 

The message queue is used to store (header) information about each mes­
sage that is being sent or received. This information includes the follow­
ing for each message: 

• pointer to the next message on queue 

• message type 

• message text size 

• message text address 

There is one associated data structure for the uni,!uely identified message 
queue. This data structure contains the following information: 

• operation permissions data (operation permission structure) 

• pointer to first message on the queue 

• pointer to last message on the queue 

• current number of bytes on the queue 

• number of messages on the queue 

• maximum number of bytes on the queue 

• process identification number (PID) of last message sender 

12-24 



Using System Resources 

• PID of last message receiver 

• last message send time 

• last message receive time 

• last change time 

Note 

All include files discussed in this chapter are located in the 
lusrlinclude or lusrlincludel sys directories. 

In the C programming language, the data structure definition for the mes­
sage queue is as follows: 

struct msg 
{ 

}; 

struct msg 
long 
short 
short 

*rnsg_next; 
msg_type; 
msg_ts; 
msg_spot; 

/* ptr to next message on q */ 
/* message type */ 
/* message text size */ 
/* message text map address */ 

The structure msg is located in the lusrlincludelsyslmsg.h include file. 

The structure definition for the associated message queue data structure is 
as follows: 

}; 

struct ipc JJerm msgJJerm; 
struct msg *rnsg first; 
struct msg *msg-last; 
ushort msg_Cbytes; 
ushort 
ushort 
ushort 
ushort 
time t 
time-t 
time-t 

msg_qnum; 
msg qbytes; 
msg-lspid; 
msg-lrpid; 
msg-stime; 
msg-rtime; 
ms£:ctime; 

/* operation permission struct */ 
/* ptr to first message on q */ 
/* ptr to last message on q */ 
/* current * bytes on q */ 
/* * of messages on q */ 
/* max # of bytes on q */ 
/* pid of last msgsnd */ 
/* pid of last msgrcv */' 
/ * last msgsnd time * / 
/ * last msgrcv time * / 
/* last change time */ 

12-25 



C Library Guide 

The structure msqid ds is located in the <syslmsg.h> include file also. 
Note that the msgjlerm member of this stmcture uses ipc yerm as a 
template. The breakout for the operation permissions data structure is 
shown as follows: 

struct ipc perm 
{ -

} ; 

ushort 
ushort 
ushort 
ushort 
ushort 
ushort 
key_t key; 

uid; /* owner's user id */ 
gid; /* owner's group id */ 
cuid; /* creator's user id */ 
cgid; /* creator's group id */ 
mode; /* access modes */ 
seq; /* slot usage sequence number */ 
/* key */ 

The structure ipc perm is located in the <syslipc.h> include file; it is 
common for all IPC facilities. 

The msgget(S) system call performs two tasks when only the 
IPC_CREAT flag is set in the msgfJg argument that it receives: 

• getting a new msqid and creating an associated message queue 
and data structure for it 

• returning an existing msqid that already has an associated message 
queue and data structure 

The task performed is determined by the value of the key argument 
passed to the msgget system call. For this task, if the key is not already 
in use for an existing msqid, a new msqid is returned with an associated 
message queue and data structure created for the key. This occurs pro­
vided no system-tunable parameters would be exceeded. 

There is also a provision for specifying a key of value zero which is 
known as the private key (IPC_PRIVATE = 0); when specified, a new 
msqid is always returned with an associated message queue and data 
structure created for it unless a system-tunable parameter would be 
exceeded. 

For the second task, if a msqid exists for the key specified, the value of 
the existing msqid is returned. If you do not wish to have an existing 
msqid returned, specify (set) the IPC_EXCL flag in the msgflg argument 
passed to the system call. For more information, see "Example Program 
Using msgget." 

12-26 



Using System Resources 

When performing this task, the process that calls msgget becomes the 
owner/creator, and the associated data structure is initialized accordingly. 
Remember, ownership can be changed, but the creating process always 
remains with the creator. The creator of the message queue also deter­
mines the initial operation permissions for it. For more information, see 
"Controlling Message Queues." 

Once a uniquely identified message queue and data structure are created, 
you can use message operations msgop(S) and message control 
msgctl(S). 

Message operations consist of sending and receiving messages. System 
calls are provided for each of these operations; they are msgsnd(S) and 
msgrcv(S). For more information, see "Operations for Messages." 

Message control is performed using the msgctl system call. It helps you 
control the message facility in the following ways: 

• Determines the associated data structure status for msqid. 

• Changes operation permissions for a message queue. 

• Changes the size (msg qbytes) of the message queue for a particu-
lar msqid. -

• Removes a particular msqid from the operating system along with 
its associated message queue and data structure. 

For more information on the msgctl system call, see "Controlling Mes­
sage Queues." 

12.6.1 Getting Message Queues 

This section describes the msgget(S) system call along with an example 
program illustrating its use. The msgget system call returns the message 
queue identifier associated with key. The following include files are 
located in the lusrlincludel sys directory of the XENIX operating system: 

#include 
#include 
#include 

<sys/types.h> 
<sys/ipc.h> 
<sys/msg.h> 

int msgget (key, msgflg) 
key t key; 
int-msgflg; 

12-27 



C Library Guide 

The following line informs you that msgget is a function with two formal 
arguments that return an integer type value upon successful completion 
(msqid): 

int msgget (key, msgflg) 

The following two lines declare the types of the formal arguments: 

key t key; 
int-msgflg; 

where key_t is declared by a typedef in the <types.h> include file to be 
an integer. 

The integer returned from this function upon successful completion is the 
message queue identifier (msqid). 

The process calling the msgget system call must supply two arguments to 
be passed to the formal key and msgOg arguments. 

A new msqid with an associated message queue and data structure is pro­
vided if: 

• key is equal to IPC_PRIVATE 

• key is a unique number, and msgOg ANDed with IPC_CREAT is 
"true" (not zero) 

The value passed to the msgOg argument must be an integer value and 
specify the following: 

• access permissions 

• execution modes 

• control fields (commands) 

Access permissions determine the read/write attributes and execution 
modes determine the user, group, and other attributes of the msgOg argu­
ment. These are collectively referred to as operation permissions. The 
following table reflects the numeric values (expressed in octal notation) 
for the valid operation permissions codes. 

12-28 



Using System Resources 

Operation Permissions Octal Value 

Read by User 00400 

Write by User 00200 

Read by Group 00040 

Write by Group 00020 

Read by Others 00004 

Write by Others 00002 

A specific octal value is found by adding the octal values for the opera­
tion pennissions desired. That is, if read by user and read/write by others 
is desired, the code value would be 00406 (00400 plus 00006). There are 
constants located in the <msg .h> include file that can be used for the user 
(OWNER). 

Control commands are predefined constants (represented by all uppercase 
letters). The names of the constants that apply to the msgget system call 
along with their values follow. They are hereafter referred to as flags and 
are defined in the include file. 

Flag 

IPC_CREAT 

IPCY:XCL 

Value 

0001000 

0002000 

The value for msgOg is therefore a combination of operation pennissions 
and flags. After detennining the value for the operation pennissions as 
previously described, you can specify the desired flags. This is accom­
plished by bitwise OR-ing (I) them with the operation pennissions; the 
bit positions and values for the flags in relation to those of the operation 
pennissions make this possible. It is illustrated as follows: 

Variable 

IPC_CREAT 
1 OR-ed by user = 
msgflg 

Octal Value Binary Value 

01000 
00400 
01400 

o 000 001 000 000 000 
o 000 000 100 000 000 
0000001100000000 

12-29 



C Library Guide 

The msgflg value can be set by using the names of the flags in conjunc­
tion with the octal operation permissions value: 

msqid = msgget (key, (IPC_C:REAT 0400) ); 

msqid = msgget (key, (IPC_CREAT IPC EXCL I 0400)); 

As specified by msgget(S), success or failure of this system call depends 
upon the argument values for key and msgflg or system-tunable parame­
ters. The system call will attempt to return a new msqid if one of the fol­
lowing conditions is true: 

• Key is equal to IPC_PRIVATE 

• Key does not already have a msqid associated with it, and (msgflg 
ANDed IPC_CREAT) is "true" (not zero). 

The key argument can be set to IPC_PRIVATE in the following way: 

msqid = msgget (IPC_PRIVATE, msgflg); 

This alone will cause the system call to be attempted because it satisfies 
the first condition specified. Exceeding the MSGMNI system-tunable 
parameter always causes a failure. The MSGMNI system-tunable param­
eter determines the maximum number of unique message queues 
(msqid's) in the system. 

The second condition is satisfied if the value for key is not already associ­
ated with a msqid and the bitwise AND of msgflg and IPC_CREAT is 
"true" (not zero). This means that the key is unique (not in use) within 
the system for this facility type and that the IPC_CREAT flag is set 
(msgflg I IPC_CREAT). You can test if a flag is set by using the following 
bitwise AND (&): 

msgflg:=:x 1 x x x: (x = don't care) 
& IPC CREAT:=:O 1 0 0 0: 

result:=:O 1 0 0 0: (not zero) 

Since the result is not zero, the flag is set or "true." 

IPC_EXCL is another flag that works in conjunction with IPC_CREAT to 
have the system call fail if, and only if, a msqid exists for the specified 
key provided. This is necessary to prevent the process from thinking that 
it has received a new (unique) msqid when it has not. In other words, 
when both IPC_CREAT and IPC_EXCL are specified, a new msqid is 
returned if the system call is successful. 

12-30 



Using System Resources 

For more information on associated data structures, see msgget(S) in the 
XENIX Programmer's Reference. The specific failure conditions with 
error names are contained there also. 

12.6.2 Example Program Using msgget 

The program example in this section is a menu driven program that exer­
cises all possible combinations the msgget(S) system call. This program 
presents the method of passing arguments and receiving return values. 
The user-written program requirements are pointed out. 

This program begins (lines 4-8) with the required include files as 
specified by msgget(S) in the XENIX Programmer's Reference. Note that 
the <errno.h> include file is included as opposed to declaring errno as an 
external variable; either method will work. 

Variable names have been chosen to be as close as possible to those 
named in msgget(S). These names make the program more readable, and 
are legal since they are local to the program. The variables declared for 
this program and their purposes are as follows: 

Variable 

key 

opperm 

flags 

opperm_flags 

msqid 

Description 

Passes the value for the desired key. 

Stores the desired operation permissions. 

Stores the desired flags (flags). 

Stores the combination from the logical OR-ing of 
the opperm and flags variables; it then passes the 
msg8g argument in the system call. 

Returns the message queue identification number 
for a successful system call or the error code (-1) 
for an unsuccessful one. 

The program begins by prompting for a hexadecimal key, an octal opera­
tion permissions code, and for the flag combinations (flags) that are 
selected from a menu (lines 15-32). All possible combinations are 
allowed even though they might not be viable. This lets you look at the 
errors for illegal combinations. 

Next, the menu selection for the flags is combined with the operation per­
missions, and the result is stored at the address of the opperm flags vari-
able (lines 36-51). -

12-31 



C Library Guide 

The system call is made and the results stored at the address of the msqid 
variable (line 53). 

Since the msqid variable now contains a valid message queue identifier 
or the error code (-1), it is tested to see if an error occurred (line 55). If 
msqid equals -1, a message indicates that an error resulted, and the exter­
nal errno vari~ble is displayed (lines 57, 58). 

If no error occurred, the returned message queue identifier is displayed 
(line 62). 

The following program example is for the msgget(S) system call. In the 
example, the source program file is named msgget.c and the executable 
file is named msgget. 

Note that if you run the following code example, you must set the flag 
IPC_CREAT before IPC_EXECL. If you attempt to set IPC_EXECL 
before IPC_CREAT, an error condition will result. 

Example 

1 /*This is a program to illustrate 
2 **the message get, msgget(), 
3 **system call capabilities.*/ 

4 
5 
6 
7 
8 

9 
10 
11 
12 
13 
14 
15 
16 
17 

18 
19 
20 
21 
22 

12-32 

#include 
#include 
#include 
#include 
#include 

<stdio.h> 
<sys/types .h> 
<sys/ipc.h> 
<sys/msg. h> 
<errno.h> 

/*Start of main C language program* / 
main 0 
{ 

key t key; 
int - oppenn, flags; 

/*declare as long integer*/ 

int msqid, oppenn flags; 
/*Enter the desired key*/ 
printf ("Enter the desired key in hex = "); 
scanf ("%x", &key); 

/*Enter the desired octal operation 
permissions.*/ 

printf ("\nEnter the operation\n"); 
printf ("permissions in octal = "); 
scanf ("%0", &oppenn); 



Using System Resources 

Example (cont.) 

23 /*Set the desired flags.*/ 
24 printf ("\nEnter corresponding number to\n"); 
25 printf("set the desired flags:\n"); 
26 printf ("No flags = O\n"); 
27 printf ("IPC CREAT = 1 \n"); 
28 printf("IPC-EXCL = 2\n"); 
29 printf("IPC-CREAT and IPC EXCL = 3\n"); 
30 printf (" - Flags- = "); 

31 /*Get the flag(s) to be set.*/ 
32 scanf ("%d", &flags); 

33 /*Check the values.*/ 
34 printf ("\nkey =Ox%x, oppenn = 0%0, flags O%o\n", 
35 key, oppenn, flags); 

36 /*Incorporate the control fields (flags) with 
37 the operation pennissions*/ 
38 switch (flags) 
39 { 
40 case 0: /*No flags are to be set.*/ 
41 oppenn flags = (oppenn I 0); 
42 break;-
43 case 1: /*Set the IPC CREAT flag.*/ 
44 oppenn flags = (opperm I IPC CREAT); 
45 break;- -
46 case 2: /*Set the IPC_EXCL flag.*/ 
47 oppenn flags = (oppenn I IPC EXCL); 
48 break;- -
49 case 3: /*Set the IPC CREAT and IPC EXCL flags.*/ 
50 oppenn_flags = (oppenn I IPC CREAT IPC_EXCL); 
51 

52 /*Call the msgget system call.*/ 
53 msqid = msgget (key, oppenn_flags); 

54 /*Perfonn the following if the call is unsuccessful.*/ 
55 if (msqid == -1) 
56 { 
57 printf ("\nThe msgget system call failed! \n") ; 
58 printf ("The error number = %d\n", ermo); 
59 

60 /*Retum the msqid upon successful campletion.*/ 
61 else 
62 printf ("\nThe msqid = %d\n", msqid); 
63 exit (0); 
64 

12-33 



C Library Guide 

12.6.3 Controlling Message Queues 

This section describes how to use the msgctl(S) system call along with an 
example program that exercises all of its capabilities. The msgctl system 
call has the following syntax: 

#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/msg.h> 

int msgctl (msqid, cmd, buf) 
int msqid, cmd; 
struct msqid_ds *buf; 

The msgctl system call requires three arguments to be passed to it and 
returns an integer value. Upon successful completion, msgctl returns a 
zero value; when unsuccessful, it returns a-I. 

The msqid variable must be a valid, non-negative, integer value. In other 
words, it must have already been created by using the msgget system call. 

The cmd argument can be replaced by one of the following flags: 

Flag Description 

IPC_STAT Returns the status information contained in the associ­
ated data structure for the specified msqid, and places 
it in the data structure pointed to by bur in the user 
memory area. 

IPC_SET For the specified msqid, sets the effective user and 
group identification, operation permissions, and the 
number of bytes for the message queue. 

IPC_RMID Removes the specified msqid along with its associated 
message queue and data structure. 

You must be the owner/creator of the process or the super-user to use the 
IPC_SET or IPC_RMID flags. Read permission is required to use the 
IPC_STAT flag. 

The details of this system call are discussed in the following example pro­
gram for msgget. 

12-34 



Using System Resources 

12.6.4 Example Program Using msgctl 

The example program in this section is a menu driven program that exer­
cises all possible combinations msgctl(S). This program presents the 
method of passing arguments and receiving return values. The user­
written program requirements are pointed out. 

This program begins (lines 5-9) with the include files specified by msgctl 
in the XENIX Programmer's Reference. Note that in this program, errno 
is declared as an external variable, and therefore, the <errno.h> file does 
not have to be included. 

Variable and structure names have been chosen to be as close as possible 
to those named in msgctl. Their declarations are self-explanatory. These 
names make the program more readable, and are legal since they are local 
to the program. The variables are described as follows: 

Variable 

uid 

gid 

mode 

Purpose 

Stores the IPC_SET value for the effective user 
identi fication. 

Stores the IPC_SET value for the effective group 
identification. 

Stores the IPC_SET value for the operation permis­
sions. 

bytes Stores the IPC_SET value for the number of bytes in 
the message queue (msg_ qbytes). 

rtm Stores the return integer value from the system call. 

msqid Stores and passes the message queue identifier to the 
system call. 

command Stores the code for the desired flag so that subsequent 
processing can be performed on it. 

choice Determines which member is to be changed for the 
IPC_SET flag. 

msqid_ds Receives the specified message queue identifier's data 
structure when an IPC_STAT flag is performed. 

12-35 



C Library Guide 

buf A pointer passed to the system call which locates the 
data structure in the user memory area where the 
IPC_STAT flag is to place its return values or where 
the IPC_SET command gets the values to set. 

Note that the msqid_ds data structure in this program (line 16) uses the 
data structure located in the <msg.h> include file of the same name as a 
template for its declaration. This is a perfect example of the advantage of 
local variables. 

The next important thing to observe is that although buf is declared to be 
a pointer to a data structure of the msqid _ ds type, it must also be initial­
ized to contain the address of the user memory area data structure (line 
17). This completes the explanation for the required declarations. 

First, the program prompts for a valid message queue identifier which is 
stored at the address of the msqid variable (lines 19,20). This is required 
for every msgctl system call. 

Now you can enter the code for the desired flag (lines 21-27), and it is 
stored at the address of the command variable. The code is tested to 
determine the flag for subsequent processing. The flags and codes are 
described as follows: 

12-36 

Code and Description 

(code 1) The system call is performed (lines 37, 38) and 
the status information returned is printed out (lines 39-
46); only the members that can be set are printed out in 
this program. Note that if the system call is unsuccessful 
(line 106), the status information of the last successful 
call is printed out. In addition, an error message is 
displayed and the errno variable is printed out (lines 108, 
109). If the system call is successful, a message indicates 
this along with the message queue identifier used (lines 
111-114). 

(code 2) The first thing done is to get the current status 
information for the message queue identifier specified 
(lines 50-52). This is necessary because this example 
program provides for changing only one member at a 
time, and the system call changes all of them. Also, if an 
invalid value happened to be stored in the user memory 
area for one of these members, it would cause repetitive 
failures for this flag until corrected. 



Using System Resources 

The next thing the program does is to prompt for a code 
corresponding to the member to be changed (lines 53-59). 
This code is stored at the address of the choice variable 
(line 60). Now, depending upon the member picked, the 
program prompts for the new value (lines 66-95). The 
value is placed at the address of the appropriate member 
in the user memory area data structure, and the system 
call is made (lines 96-98). Depending upon success or 
failure, the program returns the same messages as for 
IPC_STAT above. 

IPC_RMID (code 3) The system call is performed (lines 100-103), 
and the msqid along with its associated message queue 
and data structure are removed from the system. Note 
that bur is not required as an argument to perform this 
control command and its value can be NULL. Depending 
upon the success or failure, the program returns the same 
messages as for the other control commands. 

The following is an example program for the msgctl system call. In the 
example the source program file is named msgctl.c and the executable file 
is named msgctl. 

Example 

1 /*This is a program to illustrate 
2 **the message control, msgctl(), 
3 **system call capabilities. 
4 */ 

5 /*Include necessary include files.*/ 
6 #include <stdio.h> 
7 #include <sys/types.h> 
8 #include <sys/ipc.h> 
9 #include <sys/msg.h> 

10 /*Start of main C language program*/ 
11 main 0 
12 { 
13 extern int erma; 
14 int uid, gid, mode, bytes; 
15 int rtrn, msqid, command, choice; 
16 struct msqid ds msqid ds, *buf; 
17 buf = &msqid=ds; -

18 /*Get the msqid, and command.*/ 
19 printf (nEnter the msqid = n); 
20 scanf (n%dn, &msqid); 
21 printf (n\nEnter the number for\nn); 
22 printf (nthe desired command: \nn) ; 
23 printf (nIPC_STAT = 1 \nn); 

12-37 



C Library Guide 

Example (cont.) 

24 
25 
26 
27 
28 
29 
30 

printf ("IPC SET 
printf (" IPC - RMID 
printf ("Entry 
scanf ("%d", &cormnand); 
/*Check the values.*/ 
printf (" \nmsqid =%d, 

msqid, cormnand); 

31 switch (cormnand) 
32 { 

2\n") ; 
3\n"); 
If) ; 

command = %d\n", 

33 case 1: /*Use msgctl () to duplicate 
34 the data structure fOL 
35 msqid in the msqid ds area pointed 
36 to by buf and then-print it out.*/ 
37 rtrn = msgctl (msqid, IPC_STAT, 
38 buf); 
39 printf ("\nThe USER ID = %d\n", 
40 buf->msg~rm.uid); 
41 printf ("The GROUP ID = %d\n", 
42 buf->msg~rm.gid); 

43 printf ("The operation permissions = 0%0 \n", 
44 buf->msg perm.mode) ; 
45 printf ("The-msg qbytes = %d\n", 
46 buf->msg qbYtes); 
47 break;-
48 case 2: /*Select and change the desired 
49 member(s) of the data structure.*/ 
50 /*Get the original data for this msqid 
51 data structure first.*/ 
52 rtrn = msgctl (msqid, IPC STAT, buf); 
53 printf ("\nEnter the nurnJ:)er for the\n"); 
54 printf ("member to be changed: \n") ; 
55 printf ("msg perm. uid = 1 \n") ; 
56 printf ("msgJ>erm.gid = 2\n"); 
57 printf (''msg.Jlerm.mode = 3\n"); 
58 printf (''msg qbytes = 4\n"); 
59 printf ("Entry = "); 

60 scanf ("%d", &choice); 
61 /*Only one choice is allowed per 
62 pass as an illegal entry will 
63 cause repetitive failures until 
64 msqid ds is updated with 
65 IPC_STAT.*/ 

66 switch (choice) { 
67 case 1: 
68 printf (II\nEnter USER ID = "); 

12-38 



Using System Resources 

Example (cont.) 

69 scanf ("%d", &uid); 
70 buf->msg perm.uid = uid; 
71 printf ("\nUSER ID = %d\n", 
72 buf->msg~rm.uid); 

73 break; 
74 case 2: 
75 printf ("\nEnter GROUP ID = "); 

76 scanf ("%d", &gid); 
77 buf->msg~rm.gid = gid; 
78 printf ("\nGROUP ID = %d\n", 
79 buf->msg~rm.gid); 

80 break; 
81 case 3: 
82 printf ("\nEnter MJDE = "); 
83 scanf ("%0", &mode); 
84 buf->msgJlerm.mode = mode; 
85 printf ("\nMJDE = O%o\n", 
86 buf->msg~rm.mode) ; 
87 break; 

88 case 4: 
89 printf("\nEnter msCLbytes = "); 

90 scanf ("%d", &bytes); 
91 buf->msg qbytes = bytes; 
92 printf ("\nmsg qbytes = %d\n", 
93 buf->msg_gbytes); 
94 break; 
95 

96 /*Do the change.*/ 
97 rtrn = msgctl (msqid, IPC_SET, 
98 buf); 
99 break; 

100 case 3: /*Remove the msqid along with its 
101 associated message queue 
102 and data structure.*/ 
103 rtrn = msgctl (msqid, IPC_RMID, NULL); 
104 
105 /*Perform the following if the call is unsuccessful.*/ 
106 if(rtrn = -1) 
107 { 
108 printf ("\nThe msgctl system call failed! \nn) ; 
109 printf ("The error number = %d\n", errno); 
110 
111 /*Return the msqid upon successful completion.*/ 
112 else 
113 printf ("\nMsgctl was successful for msqid = %d\n", 
114 msqid); 
115 exit (0); 
116 

12-39 



C Library Guide 

12.6.5 Operations for Messages 

This section describes the msgsnd(S) and msgrcv(S) system calls, along 
with an example program that exercises all of their capabilities. The 
msgop(S) system call has the following syntax: 

#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/msg.h> 

int msgsnd (msqid, msgp, msgsz, msgflg) 
int msqid; 
struct msgbuf *msgp; 
int msgsz, msgflg; 

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg) 
int msqid; 
struct msgbuf *msgpi 
int msgsz; 
long msgtyp; 
int msgflg; 

12.6.6 Sending Messages 

The msgsnd system call requires that you pass four arguments to it and it 
returns an integer value. Upon successful completion, a zero value is 
returned; when unsuccessful, msgsnd returns a -1. The msgsnd argu­
ments are described as follows: 

Argument 

msqid 

msgp 

msgsz 

12-40 

Description 

Must be a valid, non-negative, integer value. In 
other words, it must have already been created 
using the msgget system call. 

A pointer to a structure in the user-memory area 
that contains the type of the message and the mes­
sage to be sent. 

Specifies the length of the character array in the 
data structure pointed to by the msgp argument. 
This is the length of the message. The maximum 
size of this array is determined by the MSGMAX 
system-tunable parameter. 



msgflg 

Using System Resources 

Lets the blocking message operation perform if 
the IPC_NOWAIT flag is not set «msgfJg & 
IPC_NOWAIT) == 0); this would occur if the total 
number of bytes allowed on the specified message 
queue were in use (msg_qbytes or MSGMNB), or 
the total system-wide number of messages on all 
queues were equal to the system imposed limit 
(MSGTQL). If the IPC_NOWAIT flag is set, the 
system call will fail and return a-I. 

A msg_qbytes data structure member can be lowered from MSGMNB 
using the msgctl IPC_SET flag, but only the super-user can raise it after­
wards. 

12.6.7 Receiving Messages 

The msgrcv system call requires five arguments to be passed to it, and it 
returns an integer value. Upon successful completion, a value equal to 
the number of bytes received is returned when unsuccessful it returns a-I. 
The arguments are described as follows: 

Argument Description 

msqid Must be a valid, non-negative, integer value. In other 
words, it must have already been created by using the 
msgget system call. 

msgp A pointer to a structure in the user memory area that will 
receive the message type and the message text. 

msgsz Specifies the length of the message to be received. If its 
value is less than the message in the array, an error can 
be returned if desired; see the msgOg argument. 

msgtyp Picks the first message on the message queue of the par­
ticular type specified. If it is equal to zero, the first mes­
sage on the queue is received; if it is greater than zero, 
the first message of type msgtyp is received; if it is less 
than zero, the lowest type that is less than or equal to the 
absolute value of msgtyp is received. 

msgflg Lets the blocking message operation perform if the 
IPC_NOWAIT flag is not set «msgfJg & IPC_NOWAIT) 
== 0); this would occur if there is not a message on the 
message queue of the desired type (msgtyp) to be 
received. If the IPC_NOWAIT flag is set, the system call 

12-41 



C Library Guide 

will fail immediately when there is not a desired message 
on the queue. The msgflg system call can also specify 
that it fails if the message is longer than the size to be 
received. This is done by not setting the 
MSG_NOERROR flag in the msgflg argument «msgflg 
& MSG_NOERROR) == 0). If the MSG_NOERROR 
flag is set, the message is truncated to the length 
specified by the msgsz argument of msgrcv. 

Further details of this system call are discussed in the following example 
program. For more information, see "Example Program Using msgget." 

12.6.8 Example Program Using msgop 

The example program in this section is a menu driven program that exer­
cises all possible combinations of the msgsnd(S) and msgrcv(S) system 
calls. This program shows the method of passing arguments and receiv­
ing return values. The user-written program requirements are pointed out. 

This example begins (lines 5-9) by including the required include files as 
specified by the msgop. Note that in this program errno is declared as an 
external variable, and therefore, the <errno.h> file does not have to be 
included. 

Variable and structure names have been chosen to be as close as possible 
to those in msgop. Their declarations are self-explanatory. These names 
make the program more readable, and this is legal since they are local to 
the program. The variables are described as follows: 

Variable 

sndbuf 

rcvbuf 

12-42 

Purpose 

A buffer that contains a message to be sent (line 13); it 
uses the msgbufl data structure as a template (lines 
10-13). The msgbufl structure (lines 10-13) is almost 
an exact duplicate of the msgbuf structure contained in 
the <msg.h> include file. The only difference is that 
the character array for msgbufl contains the maximum 
message size (8192), where in msgbuf it is set to one 
(1) to satisfy the compiler. For this reason, msgbuf 
cannot be used directly as a template for the user­
written program. It is there so you can determine its 
members. 

A buffer that receives a message (line 13); it uses the 
msgbufl data structure as a template (lines 10-13). 



*msgp 

c 

flag 

flags 

choice 

rtrn 

msqid 

msgsz 

msgflg 

msgtyp 

Using System Resources 

A pointer (line 13) to both the sndbuf and rcvbuf 
t-ufters. 

A counter for inputting characters from the keyboard, 
storing them in the array, and keeping track of the mes­
sage length for the msgsnd system call; it is also used 
as a counter to output the received message for the 
msgrcv system call. 

Receives the input character from the getchar function 
(line 50). 

Stores the code of IPC_NOWAIT for the msgsnd sys­
tem call (line 61). 

Stores the code of the IPC_NOWAIT or 
MSG_NOERROR flags for the msgrcv system call 
(line 117). 

Stores the code for sending or receiving (line 30). 

Stores the return values from all system calls. 

Stores and passes the desired message queue identifier 
for both system calls. 

Stores and passes the size of the message to be sent or 
received. 

Passes the value of flag for sending or the value of 
flags for receiving. 

Specifies the message type for sending, or picks a mes­
sage type for receiving. 

Note that a msqid_ds data structure is set up in the program (line 21) with 
a pointer that is initialized to point to it (line 22); this lets the data struc­
ture members that are affected by message operations be observed. They 
are observed by using the msgctl (IPC_STAT) system call. 

The first thing the program prompts for is whether to send or receive a 
message. You must enter a corresponding code for the desired operation, 
and it is stored at the address of the choice variable (lines 23-30). 
Depending upon the code, the program proceeds as in the following 
msgsnd or msgrcv sections. 

12-43 



C Library Guide 

Using msgsnd 

When the code is to send a message, the msgp pointer is initialized (line 
33) to the address of the send data structure, sndbuf. Next, a message 
type must be entered for the message; it is stored at the address of the 
variable msgtyp (line 42), and then (line 43) it is put into the mtype 
member of the data structure pointed to by msgp. 

The program now prompts for a message to be entered from the keyboard 
and enters a loop of getting and storing characters into the mtext array of 
the data structure (lines 48-51). This will continue until an end of file is 
recognized, which for the getchar function is CTRL-D immediately fol­
lowing RETURN. When this happens, the size of the message is deter­
mined by adding one to the i counter (lines 52, 53) as it stores the mes­
sage beginning in the zero array element of mtext. Keep in mind that the 
message also contains the terminating characters, and the message will 
therefore appear to be three characters short of msgsz. 

The message is immediately echoed from the mtext array of the sndbuf 
data structure to provide feedback (lines 54-56). 

You must now decide whether to set the IPC_NOWAIT flag. The program 
requests a code of a 1 be entered for yes or anything else for no (lines 57-
65). It is stored at the address of the flag variable. If a 1 is entered, 
IPC_NOWAIT is logically OR-ed with msgflg; otherwise, msgftg is set to 
zero. 

The program performs the msgsnd system call (line 69). If it is unsuc­
cessful, a failure message is displayed along with the error number (lines 
70-72). If it is successful, the returned value, which should be zero, is 
printed (lines 73-76). 

Every time a message is successfully sent, the three elements are three 
members of the associated data structure that are updated. They are 
described as follows: 

Element Description 

msg_qnum Represents the total number of messages on the mes­
sage queue; it is incremented by 1. 

msg_lspid Contains the Process Identification (PID) number of 
the last process sending a message; it is set accord­
ingly. 

msg_stime Contains the time in seconds since January 1, 1970, 
Greenwich Mean Time (GMT) of the last message 
sent; it is set accordingly. 

12-44 



Using System Resources 

These members are displayed after every successful message send opera­
tion (lines 79-92). 

Using msgrcv 

If the code specifies that a message is to be received, the program contin­
ues execution as in the following paragraphs. 

The msgp pointer is initialized to the rcvbuf data structure (line 99). 

The message queue identifier of the next message is stored at the address 
ofmsqid (lines 100-103). 

The message type is requested, and it is stored at the address of msgtyp 
(lines 104-107). 

The program then requests code for the desired combination of control 
flags, and stores the code at the address of flags (lines 108-117). Depend­
ing upon the selected combination, msgflg is set accordingly (lines 118-
133). 

The program requests the number of bytes to be received and stores this 
number at the address of msgsz (lines 134-137). 

The program can now perform the msgrcv system call (line 144). If it is 
unsuccessful, the program displays a message and error number (lines 
145-148). If successful, a message indicates so, and the program displays 
the number of bytes returned, followed by the received message (lines 
153-159). 

When a message is successfully received, there are three elements of the 
associated data structure that are updated; they are described as follows: 

Element Description 

msg_qnum Contains the number of messages on the message 
queue; it is decremented by one. 

msg_Irpid Contains the process identification (PID) of the last 
process receiving a message; it is set accordingly. 

msg_rtime Contains the time in seconds since January 1, 1970, 
Greenwich Mean Time (GMT) that the last process 
received a message; it is set accordingly. 

12-45 



C Library Guide 

The example program for the msgop system call follows. In the example 
the source file is named msgop.c and the executable file is named msgop. 

Example 

1 /*This is a program to illustrate 
2 **the message operations, msgop(), 
3 **system call capabilities. 
4 */ 

5 
6 
7 
8 
9 

/*Include 
#include 
#include 
#include 
#include 

necessary include 
<stdio.h> 
<sys/types.h> 
<sys/ipc.h> 
<sys/msg .h> 

10 struct msgbufl { 
11 long mtype; 
12 char mtext[8192]; 
13 sndbuf, rcvbuf, *msgp; 

files.*/ 

14 /*Start of main C language program* / 
15 main() 
16 { 
17 extern int errno; 
18 int i, c, flag, flags, choice; 
19 int rtrn, msqid, msgsz, msgflg; 
20 long mtype, msgtyp; 
21 struct msqid ds msqid ds, *buf; 
22 buf = &msqid=ds; -

23 /*Select the desired operation.*/ 
24 printf ("Enter the corresponding\n"); 
25 printf ("code to send or\n"); 
2 6 printf ("recei ve a message: \n") ; 
27 printf ("Send 1 \n") ; 
28 printf ("Receive 2\n") ; 
29 printf ("Entry "); 
30 scanf ("%d", &choice); 

31 if (choice == 1) /*Send a message.*/ 
32 { 
33 msgp = &sndbuf; /*Point to user send structure.*/ 

34 printf ("\nEnter the msqid of\nn); 
35 printf ("the message queue to\nn); 
36 printf ("handle the message = "); 
37 scanf ("%d", &msqid); 

12-46 



Example (cont.) 

38 
39 
40 
41 
42 
43 

44 
45 

46 
47 

48 
49 
50 
51 

52 
53 

54 
55 
56 

57 
58 
59 
60 
61 
62 
63 
64 
65 

66 
67 

68 
69 
70 
71 
72 
73 
74 
75 
76 

77 
78 

Using System Resources 

/*Set the message type.*/ 
printf("\nEnter a positive integer\n"); 
printf ("message type (long) for the\n"); 
printf (''message = "); 
scanf ("%d", &msgtyp); 
msgp->mtype = msgt yp; 

/*Enter the message to send.*/ 
printf ("\nEnter a message: \n") i 

/*A contro1-d (Ad) terminates as 
EOF.*/ 

/*Get each character of the message 
and put it in the mtext array.*/ 

for(i = 0; ((c = getchar()) != EOF); i++) 
sndbuf.mtext[i) = c; 

/*Determine the message size.*/ 
msgsz = i + 1; 

/*Echo the message to send.*/ 
for(i = 0; i < msgsz; i++) 

putchar(sndbuf.mtext[i)); 

/*Set the IPC NOWAIT flag if 
desired.*/ -

printf ("\nEnter a 1 if you want the\n"); 
printf (lithe IPC NOWAIT flag set: "); 
scanf ("%d", &flag); 
if(flag = 1) 

msgflg 1= IPC NOWAIT; 
else -

msgflg = 0; 

/*Check the msgflg.*/ 
printf ("\nmsgflg = O%o\n", msgflg); 

/*Send the message.*/ 
rtrn = msgsnd(msqid, msgp, msgsz, msgflg); 
if (rtrn = -1) 
printf ("\nMsgsnd failed. Error = %d\n", 

errno)i 
else { 

/*Print the value of test which 
should be zero for successful.*/ 

printf ("\nValue returned = %d\n", rtrn); 

/*Print the size of the message 
sent.*/ 

12-47 



C Library Guide 

Example (cont.) 

79 

80 

81 

82 

83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 

printf ("\nMsgsz = %d\n", msgsz); 

/*Check the data structure update.*/ 

msgctl (msqid, IPC_STAT, buf); 

/*Print out the affected mernbers.*/ 

/*Print the incremented number of 
messages on the queue.*/ 

printf ("\nThe msg qnum = %d\n", 
buf->msg qnum); 

/*Print the process id of the last sender.*/ 
printf ("The msg lspid = %d\n", 

buf->msg lspid); 
/*Print the last send time.*/ 
printf("The msg stime = %d\n", 

buf->msg_ stilne) ; 

95 if(choice == 2) /*Receive a message.*/ 
96 { 
97 /*Initialize the message pointer 
98 to the receive buffer.*/ 
99 msgp = &rcvbuf; 

100 /*Specify the message queue which contains 
101 the desired message.*/ 
102 printf("\nEnter the msqid = "); 
103 scanf("%d", &msqid); 

104 /*Specify the specific message on the queue 
105 by using its type.*/ 
106 printf ("\nEnter the msgtyp = "); 

107 scanf ("%d", &msgtyp); 

108 /*Configure the control flags for the 
109 desired actions.*/ 
110 printf("\nEnter the corresponding code\n"); 
111 printf ("to select the desired flags: \n"); 
112 printf (nNo flags O\n") ; 
113 printf (nMSG NOERROR 1 \n") ; 
114 printf (nIPC-NOWAIT 2\n") ; 
115 printf ("MSG-NOERROR and IPC NOWAIT 3\n") ; 
116 printf(" - Flags "); 
117 scanf ("%d", &flags); 

118 switch (flags) { 
119 /*Set msgflg by ORing it with the appropriate 
120 flags (constants) .*/ 
121 case 0: 
122 msgflg = 0; 
123 break; 

12-48 



Example (cont.) 

124 
125 
126 
127 
128 
129 
130 
131 
132 
133 

134 
135 
136 
137 
138 
139 
140 
141 
142 

143 
144 

145 
146 
147 
148 
149 
150 
151 
152 

153 
154 
155 
156 

157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 

Using System Resources 

case 1: 
msgflg 1= MSG_NOERROR; 
break; 

case 2: 
msgflg 1= IPC _NOWAIT; 
break; 

case 3: 
msgflg 1= MSG _NOERROR IPC _ NOWAIT; 
break; 

/*Specify the number of bytes to receive.*/ 
printf ("\nEnter the number of bytes\n"); 
printf ("to receive (msgsz) = "); 
scanf ("%d", &msgsz); 
/*Check the values for the arguments.*/ 
printf ("\nmsqid =%d\n", msqid); 
printf ("\nmsgtyp = %d\n", msgtyp); 
printf ("\nmsgsz = %d\n", msgsz); 
printf ("\nmsgflg = O%o\n", msgflg); 

/*Call msgrcv to receive the message.*/ 
rtrn = msgrcv(msqid, msgp, rnsgsz, msgtyp, rnsgflg); 

if(rtrn = -1) 
printf ("\nMsgrcv failed. ") ; 
printf ("Error = %d\n", errno); 

else { 
printf ("\nMsgctl was successful \n") ; 
printf ("for rnsqid = %d\n", 

msqid) ; 

/*Print the number of bytes received, 
it is equal to the return 
value. */ 

printf ("Bytes received = %d\n", rtrn); 

/*Print the received message.*/ 
for(i = 0; i<=rtrn; i++) 

putchar(rcvbuf.rntext[i)); 

/*Check the associated data structure.*/ 
rnsgctl (msqid, IPC STAT, buf); 
/*Print the decremented number of rnessages.*/ 
printf ("\nThe msg qnurn = %d\n", buf->rnsg qnurn); 
/*Print the process id of the last receiver.*/ 
printf ("The msg lrpid = %d\n", buf->rnsg lrpid); 
/*Print the last message receive tirne*/­
printf("The rnsg_rtirne = %d\n", buf->rnsg_rtirne); 

12-49 



C Library Guide 

12.7 Overview of Semaphores 

The standard C library provides a group of functions, called the sema­
phore functions that you can use to control access to a given system 
resource. These functions create, open, and request control of sema­
phores. You can use semaphores to control a system resource, such as a 
data file, by requiring that a process gain control of the semaphore before 
attempting to access the resource. A process that wishes to take control 
of a semaphore away from another process must wait until that process 
relinquishes control. 

XENIX System V supports two sets of system calls for dealing with sema­
phore operations. These are referred to in subsequent descriptions as 
either XENIX semaphore or UNIX System V semaphores. 

The XENIX semaphore operations are compatible with previous releases 
of XENIX. Semaphores are regular files that have names and entries in the 
file system, but contain no data. Unlike other files, semaphores cannot be 
accessed by more than one process at a time. The system calls for mani­
pulating XENIX semaphores are: opensem, creatsem, sigsem, 
nbwaitsem, and waitsem. 

The UNIX System V semaphore operations are compatible with AT&T 
UNIX System V. The system calls for manipulating UNIX semaphore are: 
semop, semctl, and semget. 

XENIX and UNIX semaphores are not compatible. The operations men­
tioned are valid only for one type of semaphore, and cannot be applied to 
the other type. This section describes the XENIX semaphore operations in 
detail since these system calls are unique to the XENIX operating system. 
The next section describes the UNIX system semaphore operations in 
detail. For additional information on UNIX semaphore operations, see 
intro(S), semop(S), semctl(S), and semget(S) in the XENIX 
Programmer's Reference. 

12.8 Using Semaphores Under XENIX 

There are five XENIX semaphore functions; they are described as follows: 

Function 

creatsem 

12-50 

Description 

Creates a semaphore, returning a semaphore 
number that can be opened and used in subsequent 
semaphore functions. 



ope.:Jsem 

waitsem 

nbwaitsem 

sigsem 

Using System Resources 

Opens an existing semaphore for use by the given 
process. 

Requests control of a given semaphore for the cal­
ling process. If the semaphore is available, control 
is given immediately. Otherwise, the process 
waits. 

Requests control of a given semaphore for the cal­
ling process. If the semaphore is available, control 
is given immediately. If the semaphore is not 
available, nbwaitsem does not cause the calling 
process to wait and returns an error value. 

Causes a process to relinquish control of a given 
semaphore and to signal this fact to all processes 
waiting for the semaphore. 

12.8.1 Creating a Semaphore 

The creatsem function creates a semaphore, returning a semaphore 
number that can be used in subsequent semaphore functions. The function 
call has the following form: 

where 

creatsem (sem _name, mode) 

sem _ name is a character pointer to the name of the semaphore. 

mode is an integer value that defines the access mode of the sema­
phore. 

Semaphore names have the same syntax as regular filenames. The names 
must be unique. The function normally returns an integer semaphore 
number that is used in subsequent semaphore functions to refer to the 
semaphore. The function returns -1 if it encounters an error, such as 
creating a semaphore that already exists or using the name of an existing 
regular file. 

12-51 



C Library Guide 

The function is typically used at the beginning of one process to clearly 
define the semaphores it intends to share with other processes. For exam­
ple, in the following program fragment creatsem creates a semaphore 
named tty] before proceeding with its tasks: 

main () 
{ 
int ttyl; 
FILE fttyl; 

ttyl = creatsem("ttyl", 0777); 
fttyl = fopen("/dev/ttyOl", "w"); 

/* Program body. */ 

Note that fopen is used immediately after creatsem to open the 
IdevlttyO] file for writing. This is one way to make the association 
between a semaphore and a device clear. 

The mode "0777" defines the semaphore's access permissions. The per­
missions are similar to the permissions of a regular file. A semaphore can 
have read permission for the owner, for users in the same group as the 
owner, and for all other users. The write and execution permissions have 
no meaning. Thus, "0777" means read permission for all users. 

No more than one process ever need create a given semaphore; all other 
processes simply open the semaphore with the opensem function. Once 
created or opened, a semaphore can be accessed only by using the 
waitsem, nbwaitsem, or sigsem functions. The creatsem function can 
be used more than once during execution of a process. In particular, it 
can be used to reset a semaphore if a process fails to relinquish control 
before terminating. Before resetting a semaphore, you must remove the 
associated semaphore file using the unlink function. 

12.8.2 Opening a Semaphore 

The opensem function opens an existing semaphore for use by the given 
process. The function call has the following form: 

opensem (sem_name) 

where sem _name is a pointer to the name of the semaphore. This must be 
the same name used when creating the semaphore. The function returns a 
semaphore number that can be used in subsequent semaphore functions to 
refer to the semaphore. The function returns -1 if it encounters an error, 
such as trying to open a semaphore that does not exist or using the name 
of an existing regular file. 

12-52 



Using System Resources 

A process uses this function before it requests control of a given sema­
phore. A process need not use the function if it also created the sema­
phore. For example, in the following program fragment opensem is used 
to open the semaphore named semaphorel : 

main () 
{ 
int semI; 

if ( (semI = opensem("semaphorel"» != -1) 
waitsem (semI) ; 

In this example, the semaphore number is assigned to the variable semI. 
If the number is not -1, then semI is used in the semaphore function, 
waitsem, which requests control of the semaphore. 

You must not open a semaphore more than once during execution of a 
process. Although the opensem function does not return an error value, 
opening a semaphore more than once can lead to a system deadlock. 

12.8.3 Requesting Control of a Semaphore 

The waitsem function requests control of a given semaphore for the cal­
ling process. If the semaphore is available, control is given immediately. 
Otherwise, the process waits. The function call has the following form: 

waitsem (sem_num) 

where sem _ num is the semaphore number of the semaphore to be con­
trolled. If the semaphore is not available (if it is under control of another 
process), the function forces the requesting process to wait. If other 
processes are already waiting for control, the request is placed next in a 
queue of requests. When the semaphore becomes available, the first pro­
cess to request control receives it. When this process relinquishes con­
trol, the next process receives control, and so on. The function returns a 
-1 if it encounters an error, such as a request for a semaphore that does not 
exist or a request for a semaphore that is locked to a dead process. 

12-53 



C Library Guide 

The waitsem function is used whenever a given process wishes to access 
the device or system resource associated with the semaphore. For exam­
pIe, in the following program fragment, waitsem signals the intention to 
write to the file given by tty 1 : 

main () 
{ 

int ttyl; 
FILE fttyl; 

waitsem( ttyl ); 
fprintf( fttyl, "Changing tty driver\n"); 

The function waits until the current controlling process relinquishes con­
trol of the semaphore before returning to the next statement. 

12.8.4 Checking the Status of a Semaphore 

The nbwaitsem function requests control of a given semaphore, but does 
not cause the calling process to wait if the requested semaphore is not 
available. In other words, if the semaphore is not available, the function 
returns an error value. Otherwise, it gives immediate control of the sema­
phore to the calling process. The function call has the following form: 

nbwaitsem (sem_num) 

where sem num is the semaphore number of the semaphore to be 
checked. The function returns a -1 if another process has control of the 
semaphore or if it encounters an error, such as a request for a semaphore 
that does not exist. The function also returns a -1 if the process control­
ling the requested semaphore terminates without relinquishing control of 
the semaphore. 

The nbwaitsem function lets you take control of a semaphore without 
blocking, instead of using waitsem. 

12.8.5 Relinquishing Control of a Semaphore 

The sigsem function causes a process to relinquish control of a given 
semaphore and to signal this fact to all processes waiting for the sema­
phore. The function call has the following form: 

sigsem (sem_ num) 

where sem _ num is the semaphore number of the semaphore to relinquish. 

12-54 



Using System Resources 

The process must have created or opened the semaphore previously. 
Furthermore, the process must have previously taken control of the sema­
phore with the waitsem or nbwaitsem function. The function returns a -1 
if it encounters an error, such as trying to relinquish control of a sema­
phore that does not exist. 

You use this function after a process has finished accessing a device or 
system resource not responding to a semaphore. This lets waiting 
processes take control. For example, in the following program fragment 
sigsem signals the end of control of the semaphore tty1: 

main () 
{ 

int ttyl; 
FILE temp, fttyl; 

waitsem( ttyl ); 
while ((c=fgetc (temp)) ! = EOF) 

fputc (c, fttyl); 
sigsem( ttyl ); 

This example also signals the end of the copy operation to the 
semaphore's corresponding device, given by itty1. 

Note that a semaphore can become locked to a dead process if the process 
fails to relinquish control before terminating. In such a case, the 
creatsem function must reset the semaphore. 

12.8.6 Program Example 

This section shows you how to use the XENIX semaphore functions to 
control the access of a system resource. The following program creates 
five different processes that vie for control of a semaphore. Each process 
requests control of the semaphore five times, holding control for one 
second, then releasing it. Although the following program performs no 
meaningful work, it illustrates the use of XENIX semaphores. 

12-55 



C Library Guide 

Example 

#define NPROC 5 

char semf[] = "_kesemfXXXXXX"; 
int sem_num; 
int holdsem = 5; 

main () 
{ 

register if chid; 

mktemp (semf) ; 
if ((sem_num = creatsem(semf, 0777)) < 0) 

err ("creatsem") ; 
for (i = 1; i < NPROC; ++i) { 

if((chid = fork()) < 0) 
err ("No fork"); 

else if(chid == 0) { 

} 
doit(O); 

if((sem_num = opensem(semf)) < 0) 
err ("opensem") ; 

doit (i) ; 
exit(O); 

for (i = 1; i < NPROC; ++i) 
while(wait((int *)0) < 0) 

unlink (semf) ; 

doit (id) 
{ 

while (holdsem--) 

err (s) 
char *s; 
{ 

if (waitsem(sem_num) < 0) 
err("waitsem"); 

printf("%d\n", id); 
sleep(l); 
if(sigsem(sem num) < 0) 

err ("sigsem") ; 

perror(s); 
exit (1) ; 

12-56 



Using System Resources 

Program Notes 

The program contains a number of global variables. The semi array con­
tains the semaphore name used by the creatsem and opensem functions. 
The variable sem _ num is the semaphore number returned by creatsem 
and opensem and used eventually in waitsem and sigsem. Finally, the 
variable holdsem contains the number of times each process requests con­
trol of the semaphore. 

The main program function uses the mktemp function to create a unique 
name for the semaphore and then uses the name with creatsem to create 
the semaphore. Once the semaphore is created, the main process begins 
to create child processes. These processes will eventually vie for control 
of the semaphore. As each child process is created, it opens the sema­
phore and calls the doit function. When control returns from doit, the 
child process terminates. The parent process also calls the doit function, 
then waits for termination of each child process, and finally deletes the 
semaphore with the unlink function. 

The doit function calls the waitsem function to request control of the 
semaphore. The function waits until the semaphore is available; it then 
prints the process ID number (PID) to the standard output, waits one 
second, and relinquishes control using the sigsem function. 

Each step of the program is checked for possible errors. If an error is 
encountered, the program calls the err function. This function prints an 
error message and terminates the program. 

12.9 Using Semaphores Under UNIX System V 

This section describes the system calls for the semaphore type of Inter­
Process Communication (JPC). The semaphore type of JPC lets processes 
communicate through the exchange of semaphore values. A semaphore is 
a positive integer (0 through 32,767). Since many applications require 
the use of more than one semaphore, the UNIX operating system has the 
ability to create sets or arrays of semaphores. A semaphore set can con­
tain one or more semaphores up to a limit set by the system administrator. 
The tunable parameter, SEMMSL, has a default value of 25. You can 
create semaphore sets using the semget(S) system call. 

The process performing the semget(S) system call becomes the 
owner/creator, determines how many semaphores are in the set, and sets 
the operation permissions for the set. This process can subsequently 
relinquish ownership of the set or change the operation permissions using 
the semctl(S) (semaphore control). The creating process always remains 

12-57 



C Library Guide 

the creator as long as the facility exists. Other processes with permission 
can use semell to perform other contrc! functions. 

Provided a process has alter permission, it can manipulate a semaphore. 
Each semaphore within a set can be manipulated in two ways with the 
semop(S) system call: 

• incremented 

• decremented 

To increment a semaphore, pass an integer value to the semop(S) system 
call. To decrement a semaphore, pass a minus (-) value. 

The system ensures that only one process can manipulate a semaphore set 
at any given time. Simultaneous requests are performed sequentially in 
an arbitrary manner. 

A process can test for a semaphore value to be greater than a certain 
value by attempting to decrement the semaphore by one more than that 
value. If the process is successful, then the semaphore value is greater 
than that certain value. Otherwise, the semaphore value is not. While 
doing this, the process can have its execution suspended (IPC_NOWAIT 
flag not set) until the semaphore value would permit the operation (other 
processes increment the semaphore), or the semaphore facility is 
removed. 

Blocking and Nonblocking Semaphore Operation 

The ability to suspend execution is called a blocking semaphore opera­
tion. This ability is also available for a process that is testing a sema­
phore to become zero or equal to zero; only read permission is required 
for this test and it is accomplished by passing a value of zero to the 
semop(S) system call. 

On the other hand, if the process is not successful and the process does 
not request to have its execution suspended, it is called a nonblocking 
semaphore operation. In this case, the process is returned a known error 
code (-1), and the external errno variable is set accordingly. 

The blocking semaphore operation lets processes communicate based on 
the values of semaphores at different points in time. Remember also that 
IPC facilities . remain in the UNIX operating system until removed by a 
permitted process or until the system is reinitialized. 

Operating on a semaphore set is done by using the semop(S), semaphore 
operation system call. 

12-58 



Using System Resources 

When a set of semaphores is created, the first semaphore in the set is 
semaphore number zero. The last semaphore number in the set is one less 
than the total number in the set. 

An array of these blocking/nonblocking semaphore operations can be per­
formed on a set containing more than one semaphore. When performing 
an array of operations, the blocking/nonblocking semaphore operations 
can be applied to any or all of the semaphores in the set. Also, the opera­
tions can be applied in any order of semaphore number. However, no 
operations are done until they can all be done successfully. 

For example, if a process has successfully completed three of six opera­
tions on a set of ten semaphores but is blocked from performing the fourth 
operation, no changes are made to the set until the fourth and remaining 
operations are successfully performed. Additionally, any operation 
preceding or succeeding the blocked operation (including the blocked 
operation) can specify that at such time that all operations can be per­
formed successfully, that the operation be undone. Otherwise, the opera­
tions are performed and the semaphores are changed, or one nonblocking 
operation is unsuccessful and none are changed. All of this is commonly 
referred to as being atomically performed. 

The ability to undo operations requires the system to maintain an array of 
undo structures corresponding to the array of semaphore operations to be 
performed. If necessary, each semaphore operation that is to be undone 
has an associated adjust variable used for undoing the operation. 

Remember, any unsuccessful nonblocking operation for a single sema­
phore or a set of semaphores causes immediate return with no operations 
performed at alL When this occurs, a known error code (-1) is returned to 
the process, and the external variable errno is set accordingly. 

System calls make these semaphore capabilities available to processes. 
The calling process passes arguments to a system call, and the system call 
either successfully or unsuccessfully performs its function. If the system 
call is successful, it performs its function and returns the appropriate 
information. Otherwise, a known error code (-1) is returned to the pro­
cess, and the external variable errno is set accordingly. 

12.9.1 Semaphore Data Structures and Arrays 

Before semaphores can be used (operated on or controlled) a uniquely 
identified data structure and semaphore set (array) must be created. 
The unique identifier is called the semaphore identifier (semid); semid 
identifies or references a particular data structure and semaphore set. 

12-59 



C Library Guide 

The semaphore set contains a predefined number of structures in an array, 
one structure for each semaphore in the set. A user can select the number 
of semaphores (nsems) in a semaphore set. The following members are 
in each structure within a semaphore set: 

• a semaphore text map address 

• the process identification (PID) performing last operation 

• the number of processes awaiting the semaphore value to become 
greater than its current value 

• the number of processes awaiting the semaphore value to equal 
zero 

There is one associated data structure for the uniquely identified sema­
phore set. This data structure contains information related to the sema­
phore set as follows: 

• operation permissions data (operation permissions structure) 

• pointer to first semaphore in the set (array) 

• number of semaphores in the set 

• last semaphore operation time 

• last semaphore change time 

The C programming language data structure definition for the semaphore 
set (array member) is as follows: 

struct sem 
{ 

} ; 

ushort semval; 
short sempid; 
ushort semncnt; 
ushort semzcnt; 

/* semaphore text map address */ 
/* pid of last operation */ 
/* # awaiting semval > cval */ 
/* # awaiting semval = 0 */ 

It is located in the <sys/ sem.h> include file. 

12-60 



Using System Resources 

Likewise, the structure definition for the associated semaphore data struc­
ture is as follows: 

struct semid ds 
{ -

struct ipc JJerm sem ~rm; 
struct sem *sem base; 
ushort sem_nsems; 
time t sem otime; 
time-t sem:=ctime; 

} ; 

/* operation permission struct */ 
/* ptr to first semaphore in set */ 
/* # of semaphores in set */ 
/* last semop time * / 
/* last change time */ 

It is also located in the <sys/sem.h> include file. Note that the 
sem _perm member of this structure uses ipc _perm as a template. 

The ipc -perm data structure is the same for all IPC facilities, and it is 
located in the <syslipc.h> include file. It is shown in "Message Opera­
tions." 

The semget(S) system call performs the following two tasks when only 
the IPC_CREAT flag is set in the semflg argument that it receives: 

• gets a new semid and creates an associated data structure and 
semaphore set for it 

• returns an existing semid that already has an associated data struc­
ture and semaphore set 

The task performed is determined by the value of the key argument 
passed to the semget(S) system call. For the first task, if the key is not 
already in use for an existing semid, a new semid is returned with an 
associated data structure and semaphore set created for it, provided no 
system-tunable parameter would be exceeded. 

There is also a provision for specifying a key of value IPC_PRIVATE 
which is known as the private key. When specified, a new semid is 
always returned with an associated data structure and semaphore set 
created for it, unless a system-tunable parameter would be exceeded. 
When the ipcs command is performed, the KEY field for the semid is all 
zeros. 

When performing the first task, the process that calls semget becomes the 
owner/creator, and the associated data structure is initialized accordingly. 
Remember, ownership can be changed, but the creating process always 
remains the creator. (For more information, see "Controlling Sema­
phores.") The creator of the semaphore set also determines the initial 
operation permissions for the facility. 

12-61 



C Library Guide 

For the second task, if a semid exists for the key specified, the value of 
the existing semid is returned. If it is not desired to have an existing 
semid returned, a flag (IPC_EXCL) can be specified (set) in the semflg 
argument passed to the system call. The system call will fail if it is 
passed a value for the number of semaphores (nsems) that is greater than 
the number actually in the set. If you do not know how many semaphores 
are in the set, use 0 for nsems. For more information, see "Example Pro­
gram Using semget." 

Once a uniquely identified semaphore set and data structure are created, 
semaphore operations [semop(S)] and semaphore control [semctl] can be 
used. 

Semaphore operations consist of incrementing, decrementing, and testing 
for zero. A single system call is used to perform these operations. It is 
called semop. For details of this system call, see "Operations on Sema­
phores." 

The semctl(S) system call performs semaphore control. These control 
operations let you control the semaphore facility by: 

• Returning the value of a semaphore 

• Setting the value of a semaphore 

• Returning the process identification (PID) of the last process per­
forming an operation on a semaphore set 

• Returning the number of processes waiting for a semaphore value 
to become greater than its current value 

• Returning the number of processes waiting for a semaphore value 
to equal zero 

• Getting all semaphore values in a set and placing them in an array 
in user memory 

• Setting all semaphore values in a semaphore set from an array of 
values in user memory 

• Placing all data structure member values and status of a semaphore 
set into user memory area 

• Changing operation permissions for a semaphore set 

12-62 



Using System Resources 

• Removing a particular semid from the UNIX operating system 
along with its associated data structure and semaphore set 

For details of the semctl(S) system call, see "Controlling Semaphores." 

12.10 Getting Semaphores 

This section contains a detailed description of using the semget(S) sys­
tem call along with an example program illustrating its use. The function 
call has the following syntax: 

#include 
#include 
#include 

<sys/types.h> 
<sys/ipc.h> 
<sys/sem.h> 

int semget (key, nsems, semflg) 
key t key; 
int-nsems, semflg; 

The following line in the syntax informs you that semget is a function 
with three formal arguments that returns an integer type value upon suc­
cessful completion (semid): 

int semget (key, nsems, semflg) 

The next two lines declare the types of the formal arguments: 

key t key; 
int-nsems, semflg; 

where key _tis declared by a typedef in the types.h include file to be a 
long integer. 

Upon successful completion, the integer returns the semaphore set 
identifier (semid). 

As declared, the process calling the semget system call must supply three 
actual arguments to be passed to the formal key, nsems, and semOg argu­
ments. 

A new semid with an associated semaphore set and data structure is pro­
vided if either 

• key is equal to IPC_PRIVATE 

or 

• key is passed a unique hexadecimal integer, and semOg ANDed 
with IPC_CREAT is "tnl.e" (not zero). 

12-63 



C Library Guide 

The value passed to the semflg argument must be an integer type value 
and will specify the following: 

• access permissions 

• execution modes 

• control fields (commands) 

Access permissions determine the read/write attributes and execute 
modes determine the user/group/other attributes of the semflg argument. 
They are collectively referred to as operation permissions. The following 
table reflects the numeric values (expressed in octal notation) for the 
valid operation permissions codes: 

Operation 
Permissions Octal Value 

Read by User 00400 

Write by User 00200 

Read by Group 00040 

Write by Group 00020 

Read by Others 00004 

Write by Others 00002 

A specific octal value is derived by adding the octal values for the opera­
tion permissions desired. That is, if read by user and read/write by others 
is desired, the code value would be 00406 (00400 plus 00006). There are 
constants defined in the <sem.h> include file that can be used for the user 
(OWNER). They are as follows: 

SEM A 
SEM R 

0200 
0400 

/* alter permission by owner */ 
/* read permission by owner */ 

The following table contains the names of the constants that apply to the 
semget(S) system call along with their values. 

Value Flag 

IPC_CREAT 0001000 

IPC_EXCL 0002000 

12-64 



Using System Resources 

The value for semftg is, therefore, a combination of operation permissions 
and flags. After determining the value for the operation permissions as 
previously described, the desired flags can be specified. This 
specification is accomplished by bitwise OR-ing (I ) them with the opera­
tion permissions; the bit positions and values for the flags in relation to 
those of the operation permissions make this possible. It is illustrated as 
follows: 

Name Octal Value Binary Value 

01000 0000001000000000 

CWI ORed by User = 00400 o 000 000 100 000 000 

semftg = 01400 0000001100000000 

The semftg value can be easily set by using the names of the flags in con­
junction with the octal operation permissions value: 

semid = semget (key, nsems, (IPC_CREAT 0400»; 

semid = semget (key, nsems, (IPC_CREAT IPC EXCL I 0400»; 

As specified by semget(S), success or failure of this system call depends 
upon the actual argument values for key, nsems, semftg or system­
tunable parameters. The system call will attempt to return a new semid if 
one of the following conditions is true: 

• Key is equal to IPC_PRN ATE 

• Key does not already have a semid associated with it, and (semftg 
ANDed IPC_CREAT) is "true" (not zero). 

Key Argument IPC _PRIVATE 

The key argument can be set to IPC_PRIVATE in the following way: 

semid = semget (IPC_PRIVATE, nsems, semflg); 

12-65 



C Library Guide 

This alone will cause the system call to be attempted because it satisfies 
the first condition specified. Exceeding the SEMMNI, SEMMNS, or 
SEMMSL system-tunable parameters will always cause a failure. The 
parameters are described as follows: 

Parameter 

SEMMNI 

SEMMNS 

SEMMSL 

Description 

Determines the maximum number of unique sema­
phore sets (semid' s) in the system. 

Determines the maximum number of semaphores 
in all semaphore sets system wide. 

Determines the maximum number of semaphores 
in each semaphore set. 

The second condition is satisfied if the value for key is not already associ­
ated with a semid, and the bitwise ANDing of semftg and IPC_CREAT is 
"true" (not zero). This means that the key is unique (not in use) within 
the system for this facility type and that the IPC_CREAT flag is set 
(semftg I IPC_CREAT). The bitwise ANDing (&), which is the logical 
way of testing if a flag is set, is illustrated as follows: 

semflg = x 1 x x x 
& IPC CREAT 0 1 0 0 0 

result 0 1 0 0 0 

(x = immaterial) 

(not zero) 

Since the result is not zero, the flag is set or "true." SEMMNI, 
SEMMNS, and SEMMSL apply here also, just as for the first condition. 

IPC_EXCL is another flag used in conjunction with IPC_CREAT to 
exclusively have the system call fail if, and only if, a semid exists for the 
specified key provided. This is necessary to prevent the process from 
thinking that it has received a new (unique) semid when it has not. In 
other words, when both IPC_CREAT and IPC_EXCL are specified, a new 
semid is returned if the system call is successful. Any value for semftg 
returns a new semid if the key equals IPC_PRIVATE and no system­
tunable parameters are exceeded. 

For more information on associated data-structure initialization, see 
semget(S) in the XENIX Programmer's Reference. 

12-66 



Using System Resources 

12.10.1 Example Program Using semget 

The example program in this section is a menu driven program that exer­
cises all possible combinations the semget(S) system call. 

This program presents the method of passing arguments and receiving 
return values. The user-written program requirements are pointed out. 

This program begins (lines 4-8) by including the required header files as 
specified by semget(S). Note that the <errno.h> include file is included 
as opposed to declaring errno as an external variable; either method will 
work. 

Variable names have been chosen to be as close as possible to those listed 
in semget. These names make the program more readable, and this is 
legal since they are local to the program. The variables are described as 
follows: 

Variable Description 

key Passes the value for the desired key. 

opperm Stores the desired operation permissions. 

flags Stores the desired flags (flags). 

opperm_flagsStores the combination from the logical OR-ing of the 
opperm and flags variables; it is then used in the sys­
tem call to pass the semflg argument. 

semid Returns the semaphore set identification number for a 
successful system call or the error code (-1) for an 
unsuccessful one. 

The program begins by prompting for a hexadecimal key, an octal opera­
tion permissions code, and the flag combinations (flags) which are 
selected from a menu (lines 15-32). All possible combinations are 
allowed even though they might not be possible. This lets you observe 
the errors for illegal combinations. 

Next, the menu selection for the flags is combined with the operation per­
missions, and the result is stored at the address of the opperm flags vari-
able (lines 36-52). -

Then, the number of semaphores for the set is requested (lines 53-57), and 
its value is stored at the address of nsems. 

12-67 



C Library Guide 

The system call is made, and the result is stored at the address of the 
semid variable (lines 60,61). 

Since the semid variable now contains a valid semaphore set identifier or 
the error code (-1), it is tested to see if an error occurred (line 63). If 
semid equals -1, a message indicates that an error resulted and the exter­
nal errno variable is displayed (lines 65, 66). Remember that the exter­
nal errno variable is only set when a system call fails; it should only be 
tested immediately following system calls. 

If no error occurred, the returned semaphore set identifier is displayed 
(line 70). 

The example program for the semget(S) system call follows. In the 
example the source program file is named semget.c and the executable 
file is named semget. 

Example 

1 /*This is a program to illustrate 
2 **the semaphore get, semget(), 
3 **system call capabilities.*/ 

4 
5 
6 
7 
8 

#include 
#include 
#include 
#include 
#include 

<stdio.h> 
<sys/types.h> 
<sys/ipc.h> 
<sys/sem.h> 
<errno.h> 

9 /*Start of main C language program* / 
10 main 0 
11 { 
12 key_t key; /*declare as long integer*/ 
13 int oppenn, flags, nsems; 
14 int semid, oppenn_flags; 

15 /*Enter the desired key*/ 
16 printf ("\nEnter the desired key in hex = "); 
17 scanf ("%lx", &key); 

18 /*Enter the desired octal operation 
19 permissions.*/ 
20 printf ("\nEnter the operation\n"); 
21 printf ("permissions in octal = "); 
22 scanf ("%0", &oppenn); 

12-68 



Using System Resources 

Example (cont.) 

23 /*Set the desired flags.*/ 
24 printf ("\nEnter corresponding number to\n") ; 
25 printf ("set the desired flags: \n") ; 
26 printf ("No flags O\n"); 
27 printf ("IPC CREAT 1 \n"); 
28 printf("IPC-EXCL 2\n"); 
29 printf ("IPC-CREAT and IPC EXCL = 3\n"); 
30 printf(" - Flags = "); 
31 /*Get the flags to be set.*/ 
32 scanf ("%d", &flags); 

33 /*Error checking (debugging)*/ 
34 printf ("\nkey =Ox%lx, oppenn = 0%0, flags = O%o\n", 
35 key, oppenn, flags); 
36 /*Incorporate the control fields (flags) with 
37 the operation pennissions.*/ 
38 switch (flags) 
39 { 
40 case 0: /*No flags are to be set.*/ 
41 oppennJlags = (oppenn I 0); 
42 break; 
43 case 1: /*Set the IPC CREAT flag.*/ 
44 oppenn flags = (opperm I IPC CREAT); 
45 break;- -
46 case 2: /*Set the IPC EXCL flag.*/ 
47 oppenn_flags = (opperm I IPC_EXCL); 
48 break; 
49 case 3: /*Set the IPC CREAT and IPC EXCL 
50 flags.*/-
51 oppenn_flags = (oppenn I IPC_CREAT I IPC_EXCL); 
52 

53 /*Get the number of semaphores for this set.*/ 
54 printf("\nEnter the number of\n"); 
55 printf("desired semaphores for\n"); 
56 printf ("this set (25 max) = "); 
57 scanf ("%d", &nsems); 

58 /*Check the entry.*/ 
59 printf (II\nNsems = %d\n", nsems); 

60 /*Call the semget system call.*/ 
61 semid = semget(key, nsems, opperm_flags); 

62 /*Perform the following if the call is unsuccessful.*/ 
63 if(semid = -1) 
64 { 
65 printf ("The semget system call failed! \n"); 
66 printf (liThe error number = %d\n", ermo); 
67 
68 /*Retum the semid upon successful completion.*/ 
69 else 
70 printf ("\nThe semid = %d\n", semid); 
71 exit (0); 
72 

12-69 



C Library Guide 

12.10.2 Controlling Semaphores 

This section describes the semctl(S) system call along with an example 
program that exercises all of its capabilities. The semctl(S) system call 
has the following syntax: 

#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/sem.h> 

int semctl (semid, semnum, cmd, arg) 
int semid, cmd; 
int semnum; 
union semun 

int val; 
struct semid ds *buf; 
ushort *array; 

} arg; 

The semctl(S) system call requires four arguments to be passed to it, and 
it returns an integer value. The semid argument must be a valid, non­
negative, integer value that has already been created by using the 
semget(S) system call. 

The semnum argument is used to select a semaphore by its number. This 
relates to array (atomically performed) operations on the set. When a set 
of semaphores is created, the first semaphore is number 0, and the last 
semaphore has the number of one less than the total in the set. 

The cmd argument can be replaced by one of the following flags: 

Flag 

GETVAL 

SETVAL 

GETPID 

12-70 

Description 

Returns the value of a single semaphore within a 
semaphore set. 

Sets the value of a single semaphore within a sema­
phore set. 

Returns the Process Identifier (PID) of the process that 
performed the last operation on the semaphore within a 
semaphore set. 



Using System Resources 

GETNCNT Returns the number of processes waiting for the value 
of a particular semaphore to become greater than its 
current value. 

GETZCNT Returns the number of processes waiting for the value 
of a particular semaphore to be equal to zero. 

GETALL Returns the values for all semaphores in a semaphore 
set. 

SETALL Sets all semaphore values in a semaphore set. 

IPC_STAT Returns the status information contained in the associ­
ated data structure for the specified semid, and places 
it in the data structure pointed to by the buf pointer in 
the user memory area; arg.buf is the union member 
that contains the value of buf. 

IPC_SET For the specified semaphore set (semid), sets the 
effective user/group identification and operation per­
missions. 

IPC_RMID Removes the specified (semid) semaphore set along 
with its associated data structure. 

A process must have an effective user identification of 
OWNER/CREATOR or super-user to perform an IPC_SET or IPC_RMID 
flag. Read/write permission is required as applicable for the other flags. 

The arg argument is used to pass the system call the appropriate union 
member for the flag to be performed: 

• arg.val 

• arg.buf 

• arg.array 

For more information, see "Example Program Using semget." 

12.10.3 Example Program Using semctl 

The program example in this section is a menu driven program that exer­
cises all possible combinations of semctl(S). 

12-71 



C Library Guide 

This program presents the method of passing arguments and receiving 
return values. The user-written program requirements are pointed out. 

This program begins (lines 5-9) by including the required include files as 
specified by semctl(S). Note that in this program errno is declared as an 
external variable, and therefore the <errno.h> include file does not have 
to be included. 

Variable, structure, and union names have been chosen to be as close as 
possible to those listed in semetl. These names make the program more 
readable, and this is legal since they are local to the program. These are 
described as follows: 

Name Description 

semid_ds Receives the specified semaphore set identifier's data 
structure when an IPC_STAT flag is performed. 

c Receives the input values from the scanf(S) function, 
(line 117) when performing a SETALL flag. 

length 

uid 

A counter that increments through the union arg.array 
when displaying the semaphore values for a GET ALL 
(lines 97-99) flag, and when initializing the arg.array 
when performing a SETALL (lines 115-119) flag. 

A variable that tests for the number of semaphores in a 
set against the i counter variable (lines 97, 115). 

Stores the IPC_SET value for the effective user 
identi fication. 

gid Stores the IPC_SET value for the effective group 
identification. 

mode Stores the IPC_SET value for the operational permis­
sions. 

retm Stores the return integer from the system call which 
depends upon the control command or a -1 when unsuc­
cessful. 

semid Stores and passes the semaphore set identifier to the sys­
tem call. 

semnum Stores and passes the semaphore number to the system 
call. 

12-72 



Using System Resources 

cmd Stores the code for the desired flag so that subsequent 
processing can be perfonned on it. 

choice Detennines which member (uid, gid, mode) of the 
IPC_SET flag should be changed. 

arg.val Passes the system call a value to set (SETVAL) or stores 
(GETVAL) a value returned from the system call for a 
single semaphore (union member). 

arg.buf A pointer passed to the system call which locates the 
data structure in the user memory area where the 
IPC_STAT flag is to place its return values, or where the 
IPC_SET command gets the values to set (union 
member). 

arg.array Stores the set of semaphore values when getting 
(GET ALL) or initializing (SETALL) (union member). 

Note that the semid ds data structure in this program (line 14) uses the 
data structure located in the <sem.h> include file of the same name as a 
template for its declaration. 

The arg union (lines 18-22) serves three purposes in one: 

• The compiler allocates enough storage to hold the program's larg­
est member. Note that the array is declared to have 25 elements (0 
through 24 ).This number corresponds to the maximum number of 
semaphores allowed per set (SEMMSL), a system-tunable parame­
ter. 

• The buf pointer member (arg.buf) of the union is declared to be a 
pointer to a data structure of the semid _ ds type, it must also be ini­
tialized to contain the address of the user memory area data struc­
ture (line 24). 

• The pointer does not need to be reinitialized later. If it was used to 
increment through the array, it would need to be reinitialized just 
before calling the system call. 

12-73 



C Library Guide 

How semctI Works 

First, the program prompts for a valid semaphore set identifier, which is 
stored at the address of the semid variable (lines 25-27). This is required 
for all semctI(S) system calls. 

Then, the code for the desired flag must be entered (lines 28-42), and the 
code is stored at the address of the cmd variable. The code is tested to 
determine the flag for subsequent processing. The flags and code descrip­
tions are described as follows: 

Flag Description 

GETV AL (code 1) A message prompting for a semaphore 
number is displayed (lines 49,50). When it is entered, 
it is stored at the address of the semnum variable (line 
51). Then, the system call is performed, and the sema­
phore value is displayed (lines 52-55). If the system 
call is successful, a message indicates this along with 
the semaphore set identifier used (lines 195, 196); if 
the system call is unsuccessful, an error message is 
displayed along with the value of the external errno 
variable (lines 191-193). 

SETVAL (code 2) A message prompting for a semaphore 
number is displayed (lines 56,57). When it is entered, 
it is stored at the address of the semnum variable (line 
58). Next, a message prompts for th~ value the sema­
phore is to be set to, and it is stored as the argo val 
member of the union (lines 59, 60). Then, the system 
call is performed (lines 61, 63). Depending upon suc­
cess or failure, the program returns the same messages 
as for GETVAL above. 

GETPID (code 3) The system call is made immediately since all 
required arguments are known (lines 64-67) and the 
PID of the process performing the last operation is 
displayed. Depending upon success or failure, the pro­
gram returns the same messages as for GETVAL 
above. 

GETNCNT (code 4) A message prompting for a semaphore number 
is displayed (lines 68-72). When entered, it is stored at 
the address of the semnum variable (line 73). Then, 
the system call is performed, and the number of 
processes waiting for the semaphore to become greater 
than its current value is displayed (lines 74-77). 

12-74 



Using System Resources 

Depending upon success or failure, the program returns 
the same messages as GETV AL. 

GEfZCNT (code 5) A message prompting for a semaphore number 
is displayed (lines 78-81). "''ben it is entered, it is 
stored at the address of the semnum variable (line 82). 
Then the system call is performed and the number of 
processes waiting for the semaphore value to become 
equal to zero is displayed (lines 83, 86). Depending 
upon success or failure, the program returns the same 
messages as GETV AL. 

GETALL (code 6) The program first performs an IPC_STAT con­
trol command to determine the number of semaphores 
in the set (lines 88-93). The length variable is set to 
the number of semaphores in the set (line 91). Next, 
the system call is made and, upon success, the 
arg.array union member contains the values of the 
semaphore set (line 96). Now, a loop is entered which 
displays each element of the arg.array from zero to 
one less than the value of length (lines 97-103). The 
semaphores in the set are displayed on a single line, 
separated by a space. Depending upon success or 
failure, the program returns the same messages as 
GETVAL. 

SETALL (code 7) The program first performs an IPC_STAT con­
trol command to determine the number of semaphores 
in the set (lines 106-108). The length variable is set to 
the number of semaphores in the set (line 109). Next, 
the program prompts for the values to be set and enters 
a loop which takes values from the keyboard and ini­
tializes the arg.array union member to contain the 
desired values of the semaphore set (lines 113-119). 
The loop puts the first entry into the array position for 
semaphore number zero and ends when the semaphore 
number that is filled in the array equals one less than 
the value of length. The system call is then made 
(lines 120-122). Depending upon success or failure, 
the program returns the same messages as GETVAL. 

IPC_STAT (code 8) The system call is performed (line 127), and 
the status information returned is printed out (lines 
128-139); only the members that can be set are printed 
out in this program. Note that if the system call is 
unsuccessful, the status information of the last success­
ful one is printed out. In addition, an error message is 

12-75 



C Library Guide 

displayed, and the errno variable is printed out (lines 
191,192). 

IPC_SET (code 9) The program gets the current status infonna­
tion for the semaphore set identifier specified (lines 
143-146). This is necessary because this example pro­
gram provides for changing only one member at a time, 
and the semctl(S) system call changes all of them. 
Also, if an invalid value happened to be stored in the 
user memory area for one of these members, it would 
cause repetitive failures for this flag until corrected. 
The next thing the program does is to prompt for a 
code corresponding to the member to be changed (lines 
147-153). This code is stored at the address of the 
"choice" variable (line 154). Now, depending upon 
the member picked, the program prompts for the new 
value (lines 155-178). The value is placed at the 
address of the appropriate member in the user memory 
area data structure, and the system call is made (line 
181). Depending upon success or failure, the program 
returns the same messages as GETV AL. 

IPC_RMID (code 10) The system call is perfonned (lines 183-185). 
The semid along with its associated data structure and 
semaphore set is removed from the UNIX operating 
system. Depending upon success or failure, the pro­
gram returns the same messages as for the other control 
commands. 

The program example for the semctl(S) system call follows. In the exam­
ple the source program file is named semetl.e and the executable file is 
named semetl. 

12-76 



Using System Resources 

Example 

1 /*This is a program to illustrate 
2 **the semaphore control, semctl(), 
3 **system call capabilities. 
4 */ 

5 /*Include necessary include files.*/ 
6 #include <stdio.h> 
7 #include <sys/types.h> 
8 #include <sys/ipc.h> 
9 #include <sys/sem.h> 

10 /*Start of main C language program*/ 
11 main 0 
12 { 
13 extem int ermo; 
14 struct semid_ds semid_ds; 
15 int c, i, length; 
16 int uid, gid, mode; 
17 int retm, semid, semnum, cmd, choice; 
18 union semun { 
19 int val; 
20 struct semid ds *buf; 
21 ushort array[25]; 
22 arg; 

23 /*Initialize the data structure pointer.*/ 
24 aDJ.buf = &semid_ds; 

25 /*Enter the semaphore ID.*/ 
26 printf ("Enter the semid = "); 
27 scanf (n%dn, &semid); 

28 /*Choose the desired command.*/ 
29 printf (n\nEnter the number for\nn); 
30 printf ("the desired cmd: \n") ; 
31 printf ("GETVAL 1 \nn) ; 
32 printf ("SETVAL 2\n"); 
33 printf (nGETPID 3\n"); 
34 printf ("GETNCNT 4\n"); 
35 printf ("GETZCNT 5\n") ; 
36 printf ("GETAIJ.. 6\n"); 
37 printf ("SETAIJ.. 7\n"); 
38 printf (nIPC STAT 8\n") ; 
39 printf("IPC-SET 9\n"); 
40 printf(nIPC-RMID 10\n"); 
41 printf ("Entry ") ; 
42 scanf (n%dn, &cmd); 

43 /*Check entries.*/ 
44 printf (n\nsemid =%d, cmd = %d\n\n", 
45 semid, cmd); 

12-77 



C Library Guide 

Example (cont.) 

46 /*Set the command and do the call.*/ 
47 switch (cmd) 
48 { 

49 case 1: /*Get a specified value.*/ 
50 printf (II\nEnter the semnum = "); 
51 scanf ("%d", &semnum); 
52 /*00 the system call.*/ 
53 retm = semctl (semid, semnum, GETVAL, 0); 
54 printf ("\nThe semval = %d\n", retrn); 
55 break; 
56 case 2: /*Set a specified value.*/ 
57 printf ("\nEnter the semnum = "); 
58 scanf ("%d", &semnum); 
59 printf (II\nEnter the value = "); 
60 scanf("%d", &arg.val); 
61 /*00 the system call.*/ 
62 retm = semctl (semid, semnum, SETVAL, arg. val) ; 
63 break; 
64 case 3: /*Get the process 10.*/ 
65 retm = semctl (semid, 0, GETPID, 0); 
66 printf ("\nThe sempid = %d\n", retrn); 
67 break; 
68 case 4: /*Get the number of processes 
69 waiting for the se~aphore to 
70 become greater than its current 
71 value.*/ 
72 printf ("\nEnter the semnum = "); 
73 scanf ("%d", &semnum); 
74 /*00 the system call.*/ 
75 retm = semctl (semid, semnum, GETNCNT, 0); 
76 printf ("\nThe semncnt = %d", retrn); 
77 break; 

78 case 5: /*Get the number of processes 
79 waiting for the semaphore 
80 value to become zero.*/ 
81 printf (II\nEnter the semnum = "); 

82 scanf ("%d", &semnum); 
83 /*00 the system call.*/ 
84 retrn = semctl(semid, semnum, GETZCNT, 0); 
85 printf ("\nThe semzcnt = %d", retrn); 
86 break; 

87 case 6: /*Get all of the semaphores.*/ 
88 /*Get the number of semaphores in 
89 the semaphore set.*/ 
90 retm = semctl (semid, 0, 1PC_STAT, arg.buf); 
91 length = arg.buf->senl nsems; 
92 if(retrn == -1) - -
93 goto ERROR; 
94 /*Get and print all semaphores in the 
95 specified set.*/ 
96 retm = semctl (semid, 0, GETALL, arg.array); 
97 for (i = 0; i < length; i++) 

12-78 



Using System Resources 

Example (cont.) 

98 
99 printf("%d", arg.array[iJ); 

100 /*Separate each 
101 semaphore.*/ 
102 printf ("%c", , '); 
103 
104 break; 

105 case 7: /*Set all semaphores in the set.*/ 
106 /*Get the number of semaphores in 
107 the set.*/ 
108 retrn = semctl(semid, 0, IPe_S~, arg.buf); 
109 length = arg.buf->sem nsems; 
110 printf ("Length = %d\ri", length); 
111 if(retrn == -1) 
112 goto ERROR; 
113 /*Set the semaphore set values.*/ 
114 printf("\nEnter each value:\n"); 
115 for(i = 0; i < length; i++) 
116 { 
117 scanf ("%d", &c); 
118 arg.array[iJ = c; 
119 } 
120 /*Do the system call.*/ 
121 retrn = semctl(semid, 0, SETALL, arg.array); 
122 break; 

123 case 8: /*Get the status for the semaphore set.*/ 
125 /*Get and print the current status values.*/ 
127 retrn = semctl(semid, 0, IPe S~, arg.buf); 
128 printf ("\nThe USER ID = %d\d', 
129 arg.buf->sem~rm.uid); 
130 printf ("The GROUP ID = %d\n", 
131 arg.buf->sem~rm.gid); 
132 pr.intf ("The operation permissions = O%o\n", 
133 arg.buf->sem~rm.mode); 

134 printf ("The number of semaphores .in set = %d\n", 
135 arg.buf->sem nsems); 
136 printf ("The last semop time = %d\n", 
137 arg.buf->sem_otime); 

138 printf ("The last change time = %d\n", 
139 arg.buf->sem_ctime); 
140 break; 

141 case 9: /*Select and change the desired 
142 member of the data structure.*/ 
143 /*Get the current status values.*/ 
144 retrn = semctl(semid, 0, IPe S~, arg.buf); 
145 if(retrn == -1) -
146 goto ERROR; 
147 /*Select the member to change.*/ 
148 printf("\nEnter the number for the\n"); 
149 printf(''member to be changed:\n"); 
150 printf ("sem perm. uid = 1 \n") ; 
151 printf ("sem=:perm.gid = 2\n"); 

12-79 



C Library Guide 

Example (cont.) 

152 printf ("sem penn.mode = 3\n") ; 
153 printf (IIEntry = "); 
154 scanf ("%d", &choice); 
155 switch (choice) { 
156 case 1: /*Change the user 10.*/ 
157 printf("\nEnter USER ID = "); 
158 scanf ("%d", &uid); 
159 arg.buf->sem~nn.uid = uid; 
160 printf (II\nUSER ID = %d\n", 
161 arg.buf->sem~nn.uid); 

162 break; 

163 case 2: /*Change the group 10.*/ 
164 printf ("\nEnter GROUP ID = "); 
165 scanf ("%d", &gid); 
166 arg.buf->sem~nn.gid = gid; 
167 printf ("\nGROUP ID = %d\n", 
168 arg.buf->sem~nn.gid); 

169 break; 

170 case 3: /*Change the mode portion of 
171 the operation 
172 permissions.*/ 
173 printf (II\nEnter MJOE = "); 
174 scanf ("%0", &mode); 
175 arg.buf->sem~nn.mode = mode; 
176 printf ("\nMJOE = O%o\n", 
177 arg.buf->sem penn.mode); 
178 break;-
179 
180 /*00 the change.*/ 
181 retrn = semctl(semid, 0, 1PC_SET, arg.buf); 
182 break; 
183 case 10: /*Remove the semid along with its 
184 data structure. */ 
185 retrn = semctl (semid, 0, 1PC_RMIO, 0); 
186 } 
187 /*Perfonn the following if the call is unsuccessful.*/ 
188 if(retrn == -1) 
189 { 
190 ERROR: 
191 printf ("\n\nThe semctl system call failed! \n") ; 
192 printf (liThe error number = %d\n", errno); 
193 exit(O); 
194 } 
195 printf ("\n\nThe semctl system call was successful\n"); 
196 printf ("for semid = %d\n", semid); 
197 exit (0); 
198 

This section contains a detailed description of using the semop(S) system 
call along with an example program that exercises all of its capabilities. 

12-80 



Using System Resources 

The syntax found in semop(S) is as follows: 

#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/sem.h> 

int semop (semid, sops, nsops) 
int semid; 
struct sembuf **sops; 
W1signed nsops; 

The semop(S) system call requires three arguments to be passed to it, and 
it returns an integer value. Semop returns a zero value upon successful 
completion, if unsuccessful it returns a-I. 

Argument 

semid 

sops 

nsops 

Description 

Must be a valid, non-negative, integer value. In 
other words, it must have already been created by 
using the semget(S) system call. 

A pointer to an array of structures in the user 
memory area that contains the following for each 
semaphore to be changed: 

- the semaphore number 

- the operation to be performed 

- the flag (flags) 

The **sops declaration means that a pointer can 
be initialized to the address of the array, or the 
array name can be used since it is the address of 
the first element of the array. Sembuf is the tag 
name of the data structure used as the template for 
the structure members in the array; it is located in 
the <sys/sem.h> include file. 

Specifies the length of the array (the number of 
structures in the array). The maximum size of this 
array is determined by the SEMOPM system­
tunable parameter. Therefore, a maximum of 
SEMOPM operations can be performed for each 
semop(S) system call. 

12-81 



C Library Guide 

The semaphore number determines the particular semaphore (within the 
set) on which the operation is to be performed. 

The following values determine the operation to be performed: 

• A positive integer value means to increment the semaphore value 
by the value of the positive integer. 

• A negative integer value means to decrement the semaphore value 
by the absolute value of the negative integer. 

• A value of zero means to test if the semaphore value is equal to 
zero. 

The following flags can be used: 

Flag Description 

IPC_NOWAIT Can be set for any operations in the array. The sys­
tem call will return unsuccessfully without changing 
any semaphore values at all if any operation for 
which IPC_NOWAIT is set cannot be performed 
successfully. The system call will be unsuccessful 
when trying to decrement a semaphore more than its 
current value, or when testing for a semaphore to be 
equal to zero when it is not. 

SEM_ UNDO Will undo any operations in the array to be undone. 
Undoing is accomplished by using an array of adjust 
values for the operations that are to be undone. This 
is especially useful for resetting semaphore values at 
process exit time using exit(S). 

12.10.4 Example Program Using semop 

The program example in this section is a menu driven program that exer­
cises all possible combinations of the semop(S) system call. 

This program presents the method of passing arguments and receiving 
return values. The user-written program requirements are pointed out. 

This program begins (lines 5-9) by including the required include files as 
specified by shmop(S). Note that in this program errno is declared as an 
external variable, and therefore, the <errno.h> include file does not have 
to be included. 

12-82 



Using System Resources 

Variable and structure names have been chosen to be as close as possible 
to those in the syntax. These names make the program more readable and 
this is legal since the declarati0ns are local to the program. The declared 
variables are described as follows: 

Variable 

sembuf[10] 

sops 

retm 

flags 

nsops 

semid 

Description 

An array buffer (line 14) containing a maximum of 
ten sembuf type structures; SEMOPM, the max­
imum number of operations on a semaphore set for 
each semop(S) system call. 

A pointer (line 14) to sembuf[10] for the system 
call and for accessing the structure members 
within the array. 

Stores the return values from the system call. 

Stores the code of the IPC_NOWAIT or 
SEM_UNDO flags for the semop(S) system call 
(line 60). 

A counter (line 32) for initializing the structure 
members in the array; prints out each structure in 
the array (line 79). 

Specifies the number of semaphore operations for 
the system call; must be less than or equal to 
SEMOPM. 

Stores the desired semaphore set identifier for the 
system call. 

First, the program prompts for a semaphore set identifier that the system 
call is to perform operations on (lines 19-22). The semaphore identifier is 
stored at the address of the semid variable (line 23). 

A message is displayed requesting the number of operations to be per­
formed on this set (lines 25-27). The number of operations is stored at the 
address of the nsops variable (line 28). 

Next, a loop is entered to initialize the array of structures (lines 30-77). 
The semaphore number, operation, and operation command (flags) are 
entered for each structure in the array. The number of structures equals 
the number of semaphore operations (nsops) to be performed for the sys­
tem call, so nsops is tested against the i counter for loop control. Note 

12-83 



C Library Guide 

that sops is used as a pointer to each element (structure) in the array, and 
sops is incremented just like i. 

After the array is initialized, all of its elements are printed out for feed­
back (lines 78-85). 

The sops pointer is set to the address of the array (lines 86, 87). Sembuf 
could be used directly, if desired, instead of sops in the system call. 

The system call is made (line 89), and depending upon success or failure, 
a corresponding message is displayed. The results of the operation(s) can 
be viewed by using the semctl GET ALL flag. 

The example program for the semop(S) system call follows. In the exam­
ple the source program file is named semop.c and the executable file is 
named semop. 

Example 

1 /*This is a program to illustrate 
2 **the semaphore operations, semop(), 
3 **system call capabilities. 
4 */ 

5 /*Include necessary include files.*/ 
6 #include <stdio.h> 
7 #include <sys/types.h> 
8 #include <sys/ipc.h> 
9 #include <sys/sem.h> 

10 /*Start of main C language program*/ 
11 main 0 
12 { 
13 extern int errno; 
14 struct sembuf sembuf[10], *sops; 
15 char string[]; 
16 int retrn, flags, sem num, i, semid; 
17 unsigned nsops; -
18 sops = sembuf; /*Pointer to array sembuf.*/ 

19 /*Enter the semaphore ID.*/ 
20 printf ("\nEnter the semid of\n") ; 
21 printf ("the semaphore set to\n") ; 
22 printf ("be operated on = "); 
23 scanf ("%d", &semid); 
24 printf ("\nsemid = %d", semid); 

25 /*Enter the number of operations.*/ 
26 printf ("\nEnter the number of semaphore\n"); 
27 printf ("operations for this set = "); 

28 scanf ("%d", &nsops); 
29 printf ("\nnosops = %d", nsops); 

12-84 



Using System Resources 

Example (cont.) 

30 /*Initialize the array for the 
31 number of operations to be performed. * / 
32 for(i = 0; i < nsops; i++, sops++) 
33 { 

34 /*This determines the semaphore in 
35 the semaphore set.*/ 
36 printf ("\nEnter the semaphore\n"); 
37 printf ("number (sem num) = "); 

38 scanf("%d", &sem_num); 
39 sops->sem num = sem num; 
40 printf ("\nThe sem_nUin = %d", sops->sem_num); 

41 /*Enter a (-)number to decrement, 
42 an unsigned number (no +) to increment, 
43 or zero to test for zero. These values 
44 are entered as a string and converted 
45 to integer values.*/ 
46 printf ("\nEnter the operation for\nn); 
47 printf ("the semaphore (sem op) = "); 

48 scanf(n%sn, string); -
49 sops->sem op = atoi(string); 
50 printf ("\nsem_op = %d\n", sops->sem_op); 

51 /*Specify the desired flags.*/ 
52 printf (n\nEnter the corresponding\nn); 
53 printf (nnumber for the desired\nn); 
54 printf(nflags:\nn); 
55 printf ("No flags O\nn) ; 
56 printf (nIPC NOWAIT = 1 \nn) ; 
57 printf(nSEM-UNDO = 2\n"); 
58 printf (nIPC-NOWAIT and SEM UNDO = 3\nn); 
59 printf (n - Flags - = "); 
60 scanf (n%dn, &flags); 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 

switch (flags) 
{ 

case 0: 
sops->sem fig = 0; 
break; -

case 1: 
sops->sem fig = IPC_NOWAIT; 
break; -

case 2: 
sops->sem fig = SEM UNDO; 
break; - -

case 3: 

} 

sops->sem fig = IPC NOWAIT SEM_UNDO; 
break; -

printf (n\nFlags = O%o\nn, sops->sem _flg) ; 

12-85 



C Library Guide 

Example (cont.) 

78 /*Print out each structure in the array.*/ 
79 for(i = 0; i < nsops; i++) 
80 { 
81 printf("\nsem num = %d\n", sembuf[ij.sem num); 
82 printf("sem op = %d\n", sembuf[ij.sem op); 
83 printf("sem-flg = %o\n", sembuf[ij.sem flg); 
84 printf ("%c":-' '); -
85 

86 sops = sembuf; /*Reset the pointer to 
87 sembuf[Oj.*/ 

88 /*Do the semop system call.*/ 
89 retrn = semop(semid, sops, nsops); 
90 if(retrn == -1) { 
91 printf ("\nSemop failed. ") ; 
92 printf ("Error = %d\n", erma); 
93 } 
94 else { 
95 printf ("\nSemop was successful\n"); 
96 printf ("for semid = %d\n", semid); 

97 printf ("Value returned = %d\n", retrn); 
98 
99 

12.11 Overview of Shared Memory 

Shared memory is a method in which one process shares its allocated data 
space with another. Shared memory lets processes pool information in a 
central location and directly access that information without the burden 
of creating pipes or temporary files. 

The standard C library provides several functions to create, add, access, 
signal, and free shared-memory segments. XENIX System V supports two 
sets of system calls for dealing with shared-memory operations. These 
are referred to in subsequent descriptions as either XENIX shared memory 
or UNIX System V shared memory. 

The XENIX shared-memory operations are compatible with previous 
releases of XENIX. The system calls for manipulating XENIX shared 
memory are: sdget, sdfree, sdenter, sdleave, sdgetv, and sdwait. 

The system calls for manipUlating UNIX shared memory are: shmat, 
shmdt, shmctl, and shmget. 

12-86 



Using System Resources 

XENIX and UNIX shared memory are not compatible. The operations 
mentioned are valid only for one type of shared memory and cannot be 
mixed with the other type. This section describes the use of the XENIX 
shared-memory operations since these system calls are unique to the 
XENIX operating system. For more information on UNIX shared-memory 
operations, see intro(S), shmctl(S), and shmget(S) in the XENlX 
Programmer's Reference. 

12.12 Using Shared Memory 

The XENIX shared memory functions are described in this section. They 
are described as follows: 

sdget 

sdenter 

sdleave 

sdgetv 

sdwaitv 

sdfree 

Creates a shared memory segment for the current 
process and attaches the segment to the process's 
data space. Can also be used to attach an existing 
shared-memory segment to a process's data space. 

Signals a process's intention to access the contents 
of a shared memory segment. 

Signals a process's intention to leave a shared 
memory segment after reading or modifying its 
contents. 

Returns the current version number of the given 
memory segment. 

Causes a process to wait until the version number 
for the given segment is no longer equal to a given 
version number. 

Detaches the current process from the given 
shared memory segment. 

To use the shared data functions, you must put the following line at the 
beginning of the program: 

#include <sys/sd.h> 

This sd.h file contains definitions for the manifest constants and other 
macros used by the functions. 

12-87 



C Library Guide 

12.12.1 Creating a Shared Memory Segment 

The sdget function creates a shared memory segment for the current pro­
cess and attaches the segment to the process's data space. The function 
call has the following form: 

where 

sdget (path,flags [, size, mode] ) 

path is a character pointer to a valid pathname. 

flags is a long integer value which defines how the segment should 
be created. 

size is an integer value which defines the size in bytes of the seg­
ment to be created. 

mode is an integer value which defines the access permissions to 
be given to the segment. 

The flag can be a combination of SD_CREAT for creating the segment, 
and SD_RDONLY for attaching the segment for reading only or 
SD_ WRITE for attaching the segment for reading and writing. You can 
also use SD_UNLOCK for allowing simultaneous access to the shared seg­
ment by multiple processes. The values can be combined by a logical 
OR. The function returns the address of the segment if it has been suc­
cessfully created. Otherwise, the function returns -1. 

A process uses this function to create a segment that it will share with 
several other processes. For example, in the following program fragment, 
sdget creates a segment and attaches it for reading and writing. The 
address of the new segment is assigned to shared as follows: 

#include <sys/sd.h> 

main () 
{ 
char * shared; 

shared = sdget ( "/trnp/share", SD _ CREAT I SD _ WRI'IE, 512L, 0777 ); 
} 

When the segment is created, the size "SI2L" and the mode "0777" are 
used to define the segment's size in bytes and access permissions. Access 
permissions are similar to permissions given to regular files. A segment 
may have read or write permission for the owner of the process, for users 
belonging to the same group as the owner, and for all other users. 

12-88 



Using System Resources 

Execute permission for a segment has no meaning. For example, the 
mode "0777" means read and write permission for everyone, but 
"0660" means read and write permissions for the owner and group 
processes only. When first created, a segment is filled with zeroes. 

Note 

The SD_UNLOCK flag used on systems without hardware support 
for shared data may severely degrade the execution performance of 
the program. 

12.12.2 Attaching a Shared Memory Segment 

The sdget function can also be used to attach an existing shared memory 
segment to a process's data space. In this case, the function call has the 
following form: 

where 

sdget( path,flags ) 

path is a character pointer to the pathname of a shared memory 
segment created by some other process. 

flags is an integer value which defines how the segment should be 
attached. 

Theflag may be SD_RDONLY for attaching the segment for reading only, 
or SD_ WRITE for attaching the segment for reading and writing. If the 
function is successful, it returns the address of the new segment. Other­
wise, it returns -1. 

You use this function to attach any shared memory segment a process 
may wish to access. For example, in the following fragment, the program 

12-89 



C Library Guide 

uses sdget to attach the segments associated with the files /tmp/ share} 
and /tmp/share2, for reading and writing. The addresses of the new seg­
ments are assigned to the pointer variables, sharel and share2, as fol­
lows: 

#include <sys/sd.h> 

main () 

char *sharel, *share2; 

sharel sdget ( "/tmp/ sharel ", SD WRITE ); 
share2 = sdget( "/tmp/share2", SD WRITE ); 

sdget returns an error value to any process that attempts to access a 
shared memory segment without the necessary permissions. You define 
the segment permissions when you create the segment. 

12.12.3 Entering a Shared Memory Segment 

The sdenter function signals a process's intention to access the contents 
of a shared memory segment. A process should not access the contents of 
the segment unless it enters the segment. The function call has the fol­
lowing form: 

where 

sdenter (addr,flags) 

addr is a character pointer to the segment to be accessed. 

flag is an integer value which defines how the segment is to be 
accessed. 

The flag may be SD_RDONLY for indicating read only access to the seg­
ment, SD _ WRITE for indicating write access to the segment, or 
SD_NOWAIT for returning an error if the segment is locked and another 
process is currently accessing it. These values can also be combined by a 
logical OR. The function normally waits for the segment to become 
available before allowing access to it. A segment is not available if the 
segment has been created without an SD_UNLOCK flag and another pro­
cess is currently accessing it. 

12-90 



Using System Resources 

Once a process enters a segment, it can examine and modify the contents 
of the segment depending upon the read and write permissions established 
with sdenter. For example, in the following program fragment, sdenter 
enters the segment for reading and writing, then sets the first value in the 
segment to 0 if it is equal to 255: 

#include <sys/sd.h> 

main () 

char *share; 

share = sdget ( "/tmp / share", SD _WRITE ); 

sdenter(share, SD WRITE); 
if ( share [0] == 255 

share[O] = 0; 

In general, it is unwise to stay in a shared memory segment any longer 
than it takes to examine or modify the desired location. The sdleave 
function should be used after each access. When in a shared memory seg­
ment, a program should avoid using system functions. System functions 
can disrupt the normal operations required to support shared data and may 
cause some data to be lost. In particular, if a program creates a shared 
memory segment that cannot be shared simultaneously, the program must 
not call the fork function when it is also accessing that segment. 

12.12.4 Leaving a Shared Memory Segment 

The sdleave function signals a process's intention to leave a shared 
memory segment after reading or modifying its contents. The function 
call has the following form: 

sdleave (addr) 

where addr is a char pointer to the desired segment. The function returns 
-1 if it encounters an error, otherwise it returns O. The return value is 
always an integer. 

You should use this function after each access of the shared memory to 
terminate the access. If the segment's lock flag is set (segment not 
created with SD _UNLOCK), you must use the function after each access 

12-91 



C Library Guide 

to let other processes access the segment. For example, in the following 
program fragment, sdleave terminates each access to the segment given 
by shared. 

#include <sys/sd.h> 

main () 
{ 
int i = 0; 
char c, *share; 

share = sdget (n/tmp/sharen, SD_RDONLY); 

sdenter(share, SD_RDONLY); 
c = *share; 
sdleave(share) ; 

while (c!=O) { 
putchar(c); 
i++; 
sdenter(share, SD_RDONLY); 
c = share[i); 
sdleave(share); 

12.12.5 Getting the Current Version Number 

The sdgetv function returns the current version number of the given 
memory segment. The function call has the following form: 

sdgetv (addr) 

where addr is a character pointer to the desired segment. A segment's 
version number is initially zero, but it is incremented by one whenever a 
process leaves the segment using the sdleave function. Thus, the version 
number is a record of the number of times the segment has been accessed. 
The function's return value is always an integer. It returns -1 if it 
encounters an error. 

12-92 



Using System Resources 

You use this function to choose an action based on the current version 
number of the segment. For example, in the following program fragment, 
sdgetv detennines whether or not sdenter should be used to enter the seg­
ment given by shared: 

#include <sys/sd.h> 

main () 

char *shared; 

if (sdgetv(shared) > 10) 
sdenter(shared, SD_RDONLY); 

In this example, the segment is entered if the current version number of 
the segment is greater than 10. 

12.12.6 Waiting for a Version Number 

The sdwaitv function causes a process to wait until the version number 
for the given segment is no longer equal to a given version number. The 
function call has the following fonn: 

where 

sdwaitv (addr, vnum) 

addr is a character pointer to the desired segment 

vnum is an integer value which defines the version number to wait 
on 

The function nonnally returns the new version number. It returns -1 if it 
encounters an error. The return value is always an integer. 

You use this function to synchronize the actions of two separate 
processes. For example, in the following program fragment, sdwait waits 

12-93 



C Library Guide 

while the process corresponding to the version number, vnum, perfonns 
its operations in the segment: 

#include <sys/sd.h> 

main () 
{ 

char *share; 
int change; 

vnum = sdgetv( share); 
i=O; 
if ( sdwaitv( share, vnum ) == -1 ) 

fprintf(stderr, "Cannot find segment\n"); 
else 

sdenter(share, SD_RDONLY); 

If an error occurs while the program is waiting, an error message is 
printed. 

12.12.7 Freeing a Shared Memory Segment 

The sdfree function detaches the current process from the given shared 
memory segment. The function call has the following fonn: 

sdfree (addr) 

where addr is a character pointer to the segment to be freed. The function 
returns the integer value 0, if the segment is freed. Otherwise, it returns 
-1. 

If the process is currently accessing the segment, sdfree automatically 
calls sdleave to leave the segment before freeing it. 

The contents of segments that have been freed by all attached processes 
are destroyed. To reaccess the segment, a process must recreate it using 
the sdget function and the SD_CREAT flag. 

12.12.8 Program Example 

This section shows how to use the shared memory functions to share a 
single memory segment between two processes. The following program 
attaches a memory segment named /tmp/ share and then uses it to transfer 
infonnation to and from the child and parent processes. 

12-94 



Using System Resources 

Example (cont.) 

# include <sys/sd.h> 

main() 
{ 

char * share , message[12]; 
int i, vnum; 

share = sdget("/tmp/share",SD_CREATISD_WRITE, 512L, 0777); 

if (fork () =0) { 
for (i=O; i<4; i++) { 

sdenter(share, SO_WRITE); 
strncpy(message, share, 12); 
strncpy (share, "Shared data", 12); 
vnum=sdgetv(share); 
sdleave(share); 
sdwaitv(share, vnum+1); 
printf ("Child: %d - %s\n", i, message); 

sdenter(share, SO WRITE); 
strncpy(message, share, 12); 
strncpy (share, "Shared data", 12); 
sdleave(share); 
printf ("Child: %d - %s\n", i, message); 
exit (0); 
} 

for (i=O; i<5; i++) { 
sdenter(share, SO_WRITE); 
strncpy(message, share, 12); 
strncpy (share, "Data shared", 12); 
vnum=sdgetv(share); 
sdleave (share); 
sdwaitv(share, vnum+1); 
printf ("Parent: %d - %s\n", i, message); 
} 

sdfree(share); 

In this program, the child process inherits the memory segment created by 
the parent process. Each process accesses the segment five times. During 
the access, a process copies the current contents of the segment to the 
message variable and replaces the message with one of its own. It then 
displays message and continues the loop. 

To synchronize access to the segment, both the parent and child use the 
sdgetv and sdwaitv functions. While a process still has control of the 
segment, it uses sdgetv to assign the current version number to the vari­
able, vnum. It then uses this number in a call to sdwaitv to force itself to 
wait until the oth~r process has accessed the segment. Note that the 

12-95 



C Library Guide 

argument to sdwaitv is actually vnum+ 1. Since vnum was assigned 
before the sdleave call, it is exactly one less than the version number 
after the sdleave call. It is assigned before the sdleave call to ensure that 
the other process does not modify the current version number before the 
current process has a chance to assign it to vnum. 

The last time the child process accesses the segment, it displays the mes­
sage and exits without calling the sdwaitv function. This is to prevent the 
process from waiting forever, since the parent has already exited and can 
no longer modify the current version number. 

12.13 Using Shared Memory Under UNIX System V 

This section describes the system calls for the shared memory type of 
Inter-Process Communication (IPC). The shared memory type of IPC lets 
two or more processes (executing programs) share memory, and conse­
quently, the data contained there. This is done by letting processes set up 
access to a common memory address space. This sharing occurs on a seg­
ment basis, which is memory management hardware dependent. 

This sharing of memory provides fast means of exchanging data between 
processes. 

A process initially creates a shared memory segment facility using the 
shmget(S) system call. Upon creation, this process sets the overall opera­
tion permissions for the shared memory segment facility, sets its size in 
bytes, and can specify that the shared memory segment is for reference 
only (read-only) upon attachment. If the memory segment is not specified 
to be for reference only, all other processes with appropriate operation 
permissions can read from or write to the memory segment. 

The following two operations can be performed on a shared memory seg­
ment: 

Operation 

shmat(S) 

shmdt(S) 

12-96 

Description 

(shared memory attach) Lets processes associate 
themselves with the shared memory segment if 
they have permission. They can then read or write 
as allowed. 

(shared memory detach) Lets processes disassoci­
ate themselves from a shared memory segment. 
Therefore, they lose the ability to read from or 
write to the shared memory segment. 



Using System Resources 

The original owner/creator of a shared memory segment can relinquish 
ownership to another process using the shmctl(S) system call. However, 
the creating process remains the creator until the facility is removed or 
the system is reinitialized. Other processes with permission can perform 
other control functions on the shared memory segment using the 
shmctl(S) system call. 

For more information on shared memory system calls, see shmget(S), 
shmctl(S), shmat(S), and shmdt(S) in the XENIX Programmer's Refer­
ence. They make shared memory capabilities available to processes. The 
calling process passes arguments to a system call, and the system call 
either successfully or unsuccessfully performs its function. If the system 
call is successful, it performs its function and returns the appropriate 
information. Otherwise, a known error code (-1) is returned to the pro­
cess, and the external variable errno is set accordingly. 

12.14 Shared Memory Data Structures 

The sharing of memory between processes occurs on a virtual segment 
basis. There is one and only one instance of an individual shared memory 
segment existing in the operating system at any point in time. 

Before sharing of memory can be realized, a uniquely identified shared­
memory segment and data structure must be created. The unique 
identifier created is called shmid (shared memory identifier); it is used to 
identify or reference the associated data structure. The data structure 
includes the following for each shared memory segment: 

• operation permissions 

• segment size 

• segment descriptor 

• process identification of the process performing the last operation 

• process identification of creator 

• current number of processes attached 

• in memory number of processes attached 

• last attach time 

12-97 



C Library Guide 

• last detach time 

• last change time 

The C programming language data structure definition for the shared 
memory segment data structure is located in the /usrlincludelsyslshm.h 
include file. It is as follows: 

/* 
** There is a shared mem id data structure for 
** each segment in the system. 
*/ 

struct shmid ds 
struct ipc.YE!rm shm.YE!Dn; /* operation pennission struct */ 
int 
ushort 
ushort 
ushort 

sl1m segsz; /* segment size */ 
shm ytbf; / * addr of ds segment * / 

ushort 

shm lpid; /* pid of last shmop */ 
shm -CPid; /* pid of creator */ 
shm -nattch; /* used only for shminfo */ 

ushort shm-cnattch; /* used only for shminfo */ 
time t shm -atime; /* last shmat time * / 
time-t shm-dtime; /* last shmdt time */ 
timet shm=ctime; /* last change time */ 

}; 

Note that the shmyerm member of this structure uses ipc_perm as a 
template. 

The ipc yerm data structure is the same for all IPC facilities, and it is 
located in the <syslipc.h> include file. It is shown in "Message Opera­
tions." 

The shmget(S) system call performs two tasks when only the 
IPC_CREAT flag is set in the shmOg argument that it receives: 

• Gets a new shmid and creates an associated shared memory seg­
ment data structure for it 

• Returns an existing shmid that already has an associated shared 
memory segment data structure 

The task performed is determined by the value of the key argument 
passed to the shmget(S) system call. For the first task, if the key is not 
already in use for an existing shmid, a new shmid is returned with an 
associated shared memory segment data structure created for it provided 
no system-tunable parameters would be exceeded. 

12-98 



Using System Resources 

There is also a provision for specifying a key of value IPC_PRIVATE 
which is known as the private key; when specified, a new shmid is 
always returned with an associated shared memory segment data structure 
created for it unless a system-tunable parameter would be exceeded. 
When the ipcs command is performed, the KEY field for the shmid is all 
zeros. 

For the second task, if a shmid exists for the key specified, the value of 
the existing shmid is returned. If it is not desired to have an existing 
shmid returned, a flag (IPC_EXCL) can be specified (set) in the shmflg 
argument passed to the system call. The details of using this system call 
are discussed in "Example Program Using shmget." 

When performing the first task, the process that calls shmget becomes the 
owner/creator, and the associated data structure is initialized accordingly. 
Remember, ownership can be changed, but the creating process always 
remains the creator; see Section 12.14.3, "Controlling Shared Memory." 
The creator of the shared memory segment also determines the initial 
operation permissions for it. 

Once a uniquely identified shared memory segment data structure is 
created, shmop (shared memory segment operations) and shmctl(S) (con­
trol operations) can be used. 

Shared memory segment operations consist of attaching and detaching 
3hared memory segments. System calls are provided for each of these 
operations; they are shmat(S) and shmdt(S). For details of these system 
calls, see "Operations for Shared Memory." 

Shared memory segment control uses the shmctl(S) system call. It per­
mits you to control the shared memory facility in the following ways: 

• determines the associated data structure status for a shared 
memory segment (shmid) 

• changes operation permissions for a shared memory segment 

• removes a particular shmid from the operating system along with 
its associated shared memory segment data structure 

For more information on the shmctl(S) system call, see "Controlling 
Shared Memory." 

12-99 



C Library Guide 

12.14.1 Getting Shared Memory Segments 

This section describes the shmget(S) system call along with an example 
program illustrating its use. The syntax for shmget(S) is as follows: 

#include 
#include 
#include 

<sys/types.h> 
<sys/ipc.h> 
<sys/shm.h> 

int shmget (key, size, shmflg) 
key t key; 
unsigned int size; 
int shmflg; 

All of these include files are located in the lusrlincludel sys directory of 
the operating system. The following syntax line informs you that 
shmget(S) is a function with three formal arguments that returns an 
integer type value, upon successful completion (shmid): 

int shmget (key, size, shmflg) 

The following two lines declare the types of the formal arguments: 

key t key; 
unsigned int size; 
int shmflg; 

The variable key _tis declared by a typedef in the types.h include file to 
be a long integer. 

Upon successful completion, the integer returns shmid. 

As declared, the process calling the shmget(S) system call must supply 
three arguments to be passed to the formal key, size, and shmflg argu­
ments. 

A new shmid, with an associated shared-memory data structure, is pro­
vided if either 

or 
• key is equal to IPC_PRIV ATE 

• key is passed a unique long integer, and shmflg ANDed with 
IPC_CREAT is "true" (not zero). 

12-100 



Using System Resources 

The value passed to the shmflg argument must be an integer type value 
and will specify the following: 

• access permissions 

• execution modes 

• control fields (commands) 

Access permissions determine the read/write attributes and execution 
modes determine the user/group/other attributes of the shmflg argument. 
They are collectively referred to as operation permissions. Control fields 
pass the value of a predefined constant to shmflg. The following list 
reflects the numeric values (expressed in octal notation) for the valid 
operation permissions codes. 

Operation Permissions Octal Value 

Read by User 00400 

Write by User 00200 

Read by Group 00040 

Write by Group 00020 

Read by Others 00004 

Write by Others 00002 

A specific octal value is derived by adding the octal values for the opera­
tion permissions desired. That is, if read by the user and read/write by 
others is desired, the code value would be 00406 (00400 plus 00006). 
There are constants located in the shm.h header file that can be used for 
the user (OWNER). They are as follows: 

SHM R 0400 
SHM W 0200 

The following list contains the names of the constants that apply to the 
shmget system call along with their values: 

Flag 

IPC_CREAT 

IPC_EXCL 

Value 

0001000 

0002000 

12-101 



C Library Guide 

The value for shmflg is, therefore, a combination of operation permis­
sions and flags. After determining the value for the operation permis­
sions, the desired flags can be specified. You can accomplish this by bit­
wise ORing (I) them with the operation permissions; the bit positions and 
values for the flags in relation to those of the operation permissions make 
this possible. It is illustrated as follows: 

Name Octal Value Binary Value 

IPC CREAT a 1 a a a a 000 001 000 000 000 
I ORed by User a a 4 a a a 000 000 100 000 000 

shmflg a 1 4 a a a 000 001 100 000 000 

You can set the shmflg value by using the names of the flags in conjunc­
tion with the octal operation permissions value: 

shmid = shmget (key, size, (IPC_~ 0400)); 

shmid = shmget (key, size, (IPC_~ IPC EXCL I 0400))i 

As specified by shmget(S), success or failure of this system call depends 
upon the argument values for key, size, and shmflg, or on system-tunable 
parameters. The system call will attempt to return a new shmid if one of 
the following conditions is true: 

• key is equal to IPC_PRIVATE 

• key does not already have a shmid associated with it, and (shmftg 
& IPC_CREAT) is "true" (not zero) 

The key argument can be set to IPC_PRIVATE in the following way: 

shrnid = shrnget (IPC_PRIVATE, size, shrnflg)i 

This alone will cause the system call to be attempted because it satisfies 
the first condition specified. Exceeding the SHMMNI system-tunable 
parameter always causes a failure. The SHMMNI system-tunable param­
eter determines the maximum number of unique shared memory segments 
(shmids) in the operating system. 

The second condition is satisfied if the value for key is not already associ­
ated with a shmid and the bitwise ANDing of shmftg and IPC_CREAT is 
"true" (not zero). This means that the key is unique (not in use) within 
the UNIX operating system for this facility type and that the IPC_CREAT 

12-102 



Using System Resources 

flag is set (shmftg I IPC_CREAT). The bitwise ANDing (&) is illustrated 
as follows: 

shmflg = x 1 x x x 
& IPC CREAT 0 1 0 0 0 

result 0 1 0 0 0 

(x = immaterial) 

(not zero) 

Because the result is not zero, the flag is set or "true." SHMMNI applies 
here also, just as for condition one. 

IPC_EXCL is another flag used in conjunction with IPC_CREAT to have 
the system call fail if, and only if, a shmid exists for the specified key 
provided. This is necessary to prevent the process from thinking that it 
has received a new (unique) shmid when it has not. In other words, when 
both IPC_CREAT and IPC_EXCL are specified, a unique shmid is 
returned if the system call is successful. Any value for shmftg returns a 
new shmid if the key equals IPC_PRIVATE. 

The system call will fail if the value for the size argument is less than 
SHMMIN or greater than SHMMAX. These tunable parameters specify 
the minimum and maximum shared memory segment sizes. 

For specific associated data structure initialization for successful comple­
tion, see shmget(S) in the XENIX Programmer's Reference. The specific 
failure conditions with error names are contained there also. 

12.14.2 Example Program Using shmget 

The example program in this section is a menu driven program that exer­
cises all possible combinations the shmget(S) system call. 

This program presents the method of passing arguments and receiving 
return values. The user-written program requirements are pointed out. 

This program begins (lines 4-7) by including the required include files as 
specified by shmget(S). Note that the <errno.h> include file is included 
as opposed to declaring errno as an external variable; either method will 
work. 

12-103 



C Library Guide 

Variable names have been chosen to be as close as possible to those in the 
syntax for the system call. These names make the program more read­
able, and this is legal since they are local to the program. The variables 
are described as follows: 

Variable 

key 

oppenn 

flags 

opperm_flags 

shmid 

size 

Description 

Passes the value for the desired key. 

Stores the desired operation permissions. 

Stores the desired flags. 

Stores the combination from the logical GRing of 
the opperm and flags variables; it is then used in 
the system call to pass the shmflg argument. 

Returns the shared memory segment identification 
number for a successful system call or the error 
code (-1) for an unsuccessful one 

Specifies the shared memory segment size. 

The program begins by prompting for a hexadecimal key, an octal opera­
tion permissions code, and finally for the flag combinations (flags) which 
are selected from a menu (lines 14-31). All possible combinations are 
allowed even though they might not be viable. This allows observing the 
errors for illegal combinations. 

Next, the menu selection for the flags is combined with the operation per­
missions, and the result is stored at the address of the opperm _flags vari­
able (lines 35-50). 

A display then prompts for the size of the shared memory segment, and it 
is stored at the address of the size variable (lines 51-54). 

The system call is made and the result is stored at the address of the 
shmid variable (line 56). 

Since the shmid variable now contains a valid shmid or the error code 
(-1), it is tested to see if an error occurred (line 58). If shmid equals -1, a 
message indicates that an error resulted and the external errno variable is 
displayed (lines 60,61). If no error occurred, the returned shared memory 
segment identifier is displayed (line 65). 

The example program for the shmget(S) system call follows. In the exam­
ple the source program file is named shmget.c and the executable file is 
named shmget. 

12-104 



Using System Resources 

Example 

1 /*This is a program to illustrate 
2 **the shared memory get, shmget(), 
3 **system call capabilities.*/ 

4 
5 
6 
7 

#include 
#include 
#include 
#include 

<sys/types.h> 
<sys/ipc.h> 
<sys/shm.h> 
<errno.h> 

8 /*Start of main C language program*/ 
9 main () 

10 { 
11 key t key; /*declare as long integer*/ 
12 int-opperm, flags; 
13 int shmid, size, opperm flags; 
14 /*Enter the desired key*/ 
15 printf ("Enter the desired key in hex = "); 
16 scanf("%lx", &key); 

17 /*Enter the desired octal operation 
18 permissions.*/ 
19 printf ("\nEnter the operation\n"); 
20 printf (llpermissions in octal = "); 
21 scanf ("%0", &opperm); 

22 /*Set the desired flags.*/ 
23 printf ("\nEnter corresponding number to\n") ; 
24 printf("set the desired flags:\n"); 
25 printf ("No flags = O\n"); 
26 printf ("IPC CREAT = 1 \n") ; 
27 printf ("IPC - EXCL 2\n") ; 
28 printf("IPC-CREAT and IPC EXCL 3\n"); 
29 printf (" - Flags- ") ; 
30 /*Get the flag(s) to be set.*/ 
31 scanf ("%d", &flags); 

32 /*Check the values.*/ 
33 printf (II\nkey =Ox%lx, opperm = 0%0, flags = O%o\n", 
34 key, opperm, flags); 

35 /*Incorporate the control fields (flags) with 
36 the operation permissions*/ 
37 switch (flags) 
38 { 
39 case 0: /*No flags are to be set.*/ 
40 opperm flags = (opperm [ 0); 
41 break;-
42 case 1: /*Set the IPC_CREAT flag.*/ 
43 opperm flags = (opperm [ IPC CREAT); 
44 break;- -
45 case 2: /*Set the IPC EXCL flag.*/ 
46 opperm flags = (oppenn [ IPC_EXCL); 
47 break;-

12-105 



C Library Guide 

Example (cont.) 

48 case 3: /*Set the IPC_CREAT and IPC_EXCL flags.*/ 
49 opperm_flags = (opperm I IPC_CREAT I IPC_EXCL); 
50 

51 /*Get the size of the segment in bytes.*/ 
52 printf ("\nEnter the segment"); 
53 printf ("\nsize in bytes = "); 

54 scanf ("%d", &size); 

55 /*Ca11 the shmget system call.*/ 
56 shmid = shmget (key, size, oppe~flags); 

57 /*Perform the following if the call is unsuccessful.*/ 
58 if (shmid == -1) 
59 { 
60 printf ("\nThe shmget system call failed! \n") ; 
61 printf ("The error number = %d\n", errno); 
62 
63 /*Return the shmid upon successful completion.*/ 
64 else 
65 printf ("\nThe shmid = %d\n", shmid); 
66 exit(O); 
67 

12.14.3 Controlling Shared Memory 

This section gives a detailed description the shmctl(S) system call along 
with an example program that exercises all of its capabilities. The syntax 
found in shmctl(S) is as follows: 

#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/shm.h> 

int shmctl (shmid, cmd, buf) 
int shmid, cmd; 
struct shmid_ds *buf; 

The shmctl(S) system call requires three arguments to be passed to it, and 
shmctl(S) returns an integer value. Upon successful completion, shmctl 
returns a zero value; and if unsuccessful, shmctl returns a-I. 

The shmid variable must be a valid, non-negative, integer value. In other 
words, it must have already been created by using the shmget(S) system 
call. 

12-106 



Using System Resources 

The cmd argument can be replaced by one of following flags: 

IPC_RMID 

Description 

Returns the status information contained in the 
associated data structure for the specified shmid 
and places it in the data structure pointed to by the 
buf pointer in the user memory area. 

For the specified shmid, sets the effective user and 
group identification, and operation permissions. 

Removes the specified shmid along with its asso­
ciated shared memory segment data structure. 

A process must have an effective user identification of 
OWNER/CREATOR or super-user to perform an IPC_SET or IPC_RMID 
flag. A process must have read permission to perform the IPC_STAT flag. 

For more information, see' 'Example Program Using shmget." 

12.14.4 Example Program Using shmctl 

The program example in this section is a menu driven program that exer­
cises all possible combinations of shmctl(S). 

From studying this program, you can observe the method of passing argu­
ments and receiving return values. The user-written program require­
ments are pointed out. 

This program begins (lines 5-9) by including the required header files as 
specified by shmctl(S). Note in this program that errno is declared as an 
external variable, and therefore, the <errno.h> include file does not have 
to be included. 

Variable and structure names have been chosen to be as close as possible 
to those in the synopsis for the system call. Their declarations are self­
explanatory. These names make the program more readable, and it is per­
fectly legal since they are local to the program. The variables are 
described as follows: 

Variable 

uid 

Description 

Stores the IPC_SET value for the effective user 
identi fication. 

12-107 



C Library Guide 

gid 

mode 

retrn 

shmid 

command 

choice 

buf 

Stores the IPC_SET value for the effective group 
identification. 

Stores the IPC_SET value for the operation per­
missions. 

Stores the return integer value from the system 
call. 

Stores and passes the shared memory segment 
identifier to the system call. 

Stores the code for the desired flag so that subse­
quent processing can be performed on it. 

Determines which member for the IPC_SET flag 
that is to be changed. 

Receives the specified shared memory segment 
identifier's data structure when an IPC_STAT flag 
is performed. 

A pointer passed to the system call which locates 
the data structure in the user memory area where 
the IPC_STAT flag is to place its return values, or 
where the IPC_SET command gets the values to 
set. 

Note that the shmid _ ds data structure in this program (line 16) uses the 
data structure located in the shm.h include file of the same name as a 
template for its declaration. This is a perfect example of the advantage of 
local variables. 

Note also that although the *buf pointer is declared to be a pointer to a 
data structure of the shmid _ ds type, it must also be initialized to contain 
the address of the user memory area data structure (line 17). 

Now that all of the required declarations have been explained for this pro­
gram, this is how it works: 

First, the program prompts for a valid shared memory segment identifier 
which is stored at the address of the shmid variable (lines 18-20). This is 
required for every shmctl(S) system call. 

Now you can enter the code for the desired flag (lines 21-29); this is 
stored at the address of the command variable. The code is tested to 

12-108 



Using System Resources 

determine the flag for subsequent processing. The flags and code descrip­
tions are described as follows: 

Code Description 

(code 1) The system call is performed (lines 39, 
40) and the status infonnation returned is printed 
out (lines 41-71). Note that if the system call is 
unsuccessful (line 146), the status information of 
the last successful call is printed out. In addition, 
an error message is displayed and the errno vari­
able is printed out (lines 148, 149). If the system 
call is successful, a message indicates this along 
with the shared memory segment identifier used 
(lines 151-154). 

(code 2) The first thing done is to get the current 
status infonnation for the message queue identifier 
specified (lines 90-92). This is necessary because 
this example program provides for changing only 
one member at a time, and the system call changes 
all of them. Also, if an invalid value happened to 
be stored in the user-memory area for one of these 
members, it would cause repetitive failures for this 
flag until corrected. The next thing the program 
does is to prompt for a code corresponding to the 
member to be changed (lines 93-98). This code is 
stored at the address of the choice variable (line 
99). Now, depending upon the member picked, 
the program prompts for the new value (lines 
105-127). The value is placed at the address of the 
appropriate member in the user-memory-area data 
structure, and the system call is made (lines 128-
130). Depending upon success or failure, the pro­
gram returns the same messages as for IPC_STAT 
above. 

(code 3) The system call is perfonned (lines 132-
135), and the shmid along with its associated mes­
sage queue and data structure are removed from 
the operating system. Note that the buf pointer is 
not required as an argument to perfonn this con­
trol command and its value can be NULL. 
Depending upon the success or failure, the pro­
gram returns the same messages as for the other 
control commands. 

12-109 



C Library Guide 

The program example for the shmctl(S) system call follows. In the 
example, the source program file is named shmctl.c and the executable 
file is named shmctl. 

Example 

1 !*This is a program to illustrate 
2 **the shared memory control, shmctl(), 
3 **system call capabilities. 
4 */ 

5 /*Include necessary include files.*/ 
6 #include <stdio.h> 
7 #include <sys/types.h> 
8 #include <sys/ipc.h> 
9 #include <sys/shm.h> 

10 /*Start of main C language program*/ 
11 main 0 
12 { 
13 extern int ermo; 
14 int uid, gid, mode; 
15 int retrn, shmid, command, choice; 
16 struct shmid ds shmid ds, *buf; 
17 buf = &shmid=dsi -

18 /*Get the shmid, and command.*/ 
19 printf ("Enter the shmid = ") i 
20 scanf("%d", &shmid); 
21 printf (II\nEnter the number for\n"); 
22 printf (lithe desired comnand: \n") ; 

23 
24 
25 
28 
29 

printf ("IPC STAT 
printf("IPC-SET 
printf ("IPC-RMID 
printf ("Entry 
scanf ("%d", &command); 

30 /*Check the values.*/ 

l\n"); 
2\n"); 
3\n"); 
"); 

31 printf ("\nshmid =%d, comnand = %d\n", 
32 shmid, comnand); 

33 switch (command) 
34 { 
35 case 1: /*Use shmctl () to duplicate 
36 the data structure for 
37 shmid in the shmid ds area pointed 
38 to by buf and then-print it out.*/ 
39 retm = shmctl (shmid, IPC STAT, 
40 buf); -
41 printf ("\nThe USER ID = %d\n", 
42 buf->shm~rm.uid); 
43 printf (liThe GROUP ID = %d\n", 
44 buf->shm~rm.gid); 

12-110 



Example (cont.) 

45 
46 
47 
48 
49 
50 
51 

52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 

Using System Resources 

printf ("The creator's ID = %d\n", 
buf->shrn~rm.cuid); 

printf ("The creator's group ID = %d\n", 
buf->shrn~rm.cgid); 

pr!_ntf ("The operation permissions = 0%0 \n", 
buf->shrn~rm.mode); 

printf ("The slot usage sequence\n"); 

printf ("number = O%x\n", 
buf->shrn~rm.seq) ; 

printf ("The key= O%x\n", 
buf->shrn~rm.key); 

printf ("The segment size = %d\n", 
buf->shrn segsz); 

printf ("The-pid of last shrnop = %d\n", 
buf->shrn lpid); 

printf ("The-pid of creator = %d\nn, 
buf->shrn cpid); 

printf ("The-current # attached = %d\nn, 
buf->shrn nattch); 

printf (nThe In memory # attached = %d\nn, 
buf->shrn cnattach); 

printf(nThe last shrnat time = %d\nn, 
buf->shrn atime) ; 

printf (nThe last shrndt time = %d\nn, 
buf->shrn dtime) ; 

printf (nThe last change time = %d\n", 
buf->shrn ctime); 

break; -

/* Lines 73 - 87 deleted */ 

88 
89 

case 2: /*Select and change the desired 
member (s) of the data structure. * / 

90 
91 
92 

93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 

/*Get the original data for this shmid 
data structure first.*/ 

retrn = shrnctl (shmid, IPC_STAT, buf); 

printf (n\nEnter the number for the\nn) ; 
printf (nmember to be changed: \nn) ; 
printf(nshrn~rm.uid = l\nn); 
printf(nshrn~rm.gid = 2\nn); 
printf (nshrn ~rm.mode = 3\nn); 
printf (nEntry = n); 
scanf ("%dn, &choice); 
/*Only one choice is allowed per 

pa!;)s as an illegal entry will 
cause repetitive failures until 

shmid ds is updated with 
IPC_STAT.*/ 

12-111 



C Library Guide 

Example (cont.) 

105 switch (choice) { 
106 case 1: 
107 printf ("\nEnter USER ID = "); 
108 scanf ("%d", &uid); 
109 buf->shm~rm.uid = uid; 
110 printf ("\nUSER ID = %d\n", 
111 buf->shm~rm.uid); 

112 break; 
113 case 2: 
114 printf ("\nEnter GROUP ID = "); 
115 scanf("%d", &gid); 
116 buf->shm~rm.gid = gid; 
117 printf ("\nGROUP ID = %d\n", 
118 buf->shm~rm.gid); 
119 break; 

120 case 3: 
121 printf ("\nEnter M)DE = "); 
122 scanf ("%0", &mode); 
123 buf->shm~rm.mode = mode; 
124 printf ("\nM)DE = O%o\n", 
125 buf->shm~rm.mode); 

126 break; 
127 } 
128 /*Do the change.*/ 
129 retm = shmctl (shmid, IPC_SET, 
130 buf); 
131 break; 

132 case 3: /*Remove the shmid along with its 
133 associated 
134 data structure.*/ 
135 retm = shmctl (shmid, IPC RMID, (struct shmid ds *) 0 ); 
136 break; -

137 
138 /*Perform the following if the call is unsuccessful.*/ 
139 if(retm == -1) 
140 { 
141 printf ("\nThe shmctl system call failed! \n"); 
142 printf ("The error number = %d\n", errno); 
143 
144 /*Return the shmid upon successful completion.*/ 
145 else 
146 printf ("\nShmctl was successful for shmid = %d\n", 
147 shmid); 
148 exit (0); 
149 

12-112 



Using System Resources 

12.14.5 Operations for Shared Memory 

This section gives a detailed description of using the shmat(S) and 
shmdt(S) system calls, along with an example program that exercises all 
of their capabilities. The syntax for shmop(S) is as follows: 

#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/shm.h> 

char *shmat (shmid, shmaddr, shmflg) 
int shmid; 
char *shmaddr; 
int shmflg; 

int shmdt (shmaddr) 
char *shmaddr; 

Attaching a Shared Memory Segment 

The shmat(S) system call requires three arguments to be passed to it, and 
it returns a character pointer value. 

Upon successful completion, shmat returns the address in core memory 
where the process is attached to the shared memory segment and when 
unsuccessful returns (char *) -1. 

The shmid argument must be a valid, non-negative, integer value. In 
other words, it must have already been created by using the shmget(S) 
system call. 

The shmaddr argument can be NULL or user supplied when passed to 
the shmat(S) system call. If it is zero, the operating system picks the 
address of where the shared memory segment will be attached. If it is 
user supplied, the address must be a valid address that the operating sys­
tem would pick. You can improve portability by letting the operating sys­
tem pick addresses. 

12-113 



C Library Guide 

The shmflg argument is used to pass the SHM_RND and SHM_RDONLY 
flags to the shmat system call. 

For more information, see "Example Program Using shmget." 

Detaching Shared Memory Segments 

The shmdt(S) system call requires one argument to be passed to it, and 
shmdt(S) returns an integer value. 

Upon successful completion, shmdt returns a zero and when unsuccess­
ful, shmdt(S) returns a-I. 

For more information, see "Example Program Using shmget." 

12.14.6 Example Program Using shmop 

The program example in this section is a menu driven program that exer­
cises all possible combinations of shmat(S) and shmdt(S). The program 
presents the method of passing arguments and receiving return values. 
The user-written program requirements are pointed out. 

This program begins (lines 5-9) by including the required header files as 
specified by shmop(S). Note that in this program that errno is declared 
as an external variable, and therefore, the <errno.h> include file does not 
have to be included. 

Variable and structure names have been chosen to be as close as possible 
to those in the syntax. These names make the program more readable, 
and this is legal since they are local to the program. The variables are 
described as follows: 

Variable 

flags 

addr 

attach 

12-114 

Description 

Stores the codes of SHM_RND or 
SHM_RDONLY for the shmat(S) system call. 

Stores the address of the shared memory segment 
for the shmat(S) and shmdt(S) system calls. 

A loop counter for attaching and detaching. 

Stores the desired number of attach operations. 



shmid 

shmflg 

retrna 

retrn 

detach 

Using System Resources 

Stores and passes the desired shared memory seg­
ment identi fier. 

Passes the va~ue of flags to the shmat(S) system 
call. 

Stores the return value from shmat(S). 

Stores the return value from shmdt. 

Stores the desired number of detach operations. 

This example program combines both the shmat(S) and shmdt(S) system 
calls. The program prompts for the number of attachments and enters a 
loop until they are done for the specified shared memory identifiers. 
Then, the program prompts for the number of detachments to be per­
formed and enters a loop until they are done for the specified shared 
memory segment addresses. 

Using shmat 

The program prompts for the number of attachments to be performed, and 
the value is stored at the address of the attach variable (lines 17-21). A 
loop is entered using the attach variable and the i counter (lines 23-70) to 
perform the specified number of attachments. In this loop, the program 
prompts for a shared memory segment identifier (lines 24-27). The pro­
gram stores the identifier at the address of the shmid variable (line 28). 

Next, the program stores a NULL character at the address of the addr 
variable. The operating system then attaches the shared memory segment. 

The program then prompts for the desired flags settings (lines 37-44), and 
stores the settings at the address of the flags variable (line 45). The flags 
variable is tested to determine the value of the variable given to the 
shmftg variable and shmat(S) system call (lines 46-60). If the call 
returns successfully, the system displays the attached address (lines 66-
68). If the call returns unsuccessful, the system displays an error code 
(lines 62-63). 

Usingshmdt 

After the attach loop completes, the program prompts for the number of 
detach operations to be performed (lines 71-75), and the value is stored at 
the address of the detach variable (line 76). 

12-115 



C Library Guide 

A loop is entered using the detach variable and the i counter (lines 78-95) 
to perform the specified number of detachments. In this loop, the program 
prompts for the address of the shared memory segment to be detached 
(lines 79-83), and it is stored at the address of the addr variable (line 84). 
Then, the shmdt(S) system call is performed (line 87). If successful, the 
system displays a message stating so, along with the address that the seg­
ment was detached from (lines 92,93). If unsuccessful, the error number 
is displayed (line 89). The loop continues until it finishes. 

The example program for the shmop(S) system call follows. In the exam­
ple, the source file program is named shmop.c and the executable file is 
named shmop. 

12-116 



Using System Resources 

Example 

1 /*This is a program to illustrate 
2 **the shared memory operations, shmop(), 
3 **system call capabilities. 
4 */ 

5 /*Include necessary include files.*/ 
6 # include <stdio.h> 
7 #include <sys/types.h> 
8 #include <sys/ipc.h> 
9 #include <sys/shm.h> 

10 /*Start of main C language program*/ 
11 main () 
12 { 
13 extern int errno; 
14 int flags, i, attach; 
15 int shmid, shmflg, retrn, detach; char * addr, * retrna; 

16 /*Loop for attachments by this process.*/ 
17 printf ("Enter the number of\n"); 
18 printf ("attachments for this\n"); 
19 printf("process (1-4).\n"); 
20 printf (" Attachments = "); 

21 
22 

scanf ("%d", &attach); 
printf ("Number of attaches %d\n", attach); 

23 forti = 1; i <= attach; i++) { 
24 /*Enter the shared memory ID.*/ 
25 printf ("\nEnter the shmid of\n") ; 
26 printf ("the shared memory segment to\n"); 
27 printf ("be operated on = "); 
28 scanf ("%d", &shmid); 
29 printf ("\nshmid = %d\n", shmid); 

30 
31 
32 
33 
34 
35 
36 

37 
38 
39 
40 
41 
42 
43 
44 
45 

/*Set shmaddr to NULL.*/ 

addr = (char *) 0; 
printf ("The desired address = Ox%x\n", addr); 

/*Specify the desired f1ags.*/ 
printf ("\nEnter the corresponding\n"); 
printf ("number for the desired\n"); 
printf ("flags: \n") ; 
printf ("SHM RND = 1 \n"); 
printf ("SHM-RDONLY = 2\n"); 
printf("SHM-RND and SHM RDONLY = 3\n"); 
printf (" - Flags = "); 
scanf("%d", &flags); 

12-117 



C Library Guide 

Example (cont.) 

46 shmflg = 0; switch (flags) 
47 { 
48 case 1: 
49 shmflg = SHM RND; 
50 break;-
51 case 2: 
52 shmflg = SHM RDONLY; 
53 break;-
54 case 3: 
55 shmflg = SHM RND SHM_ RDONLY; 
56 break;-
57 
58 printf("\nFlags = O%o\n", shmflg); 

59 /*Do the shmat system call.*/ 
60 retrna = shmat(shmid, addr, shmflg); 
61 if(retrna == (char *) -1) { 
62 printf ("\nShmat failed. "); 
63 printf("Error = %d\n", errno); 
64 } 
65 else { 
66 printf ("\nShmat was successful\n"); 
67 printf ("for shmid = %d\n", shmid); 
68 printf ("The address = Ox%x\n", retrna); 
69 
70 

71 /*Loop for detachments by this process.*/ 
72 printf ("Enter the number of\n"); 
73 printf ("detachments for this\n") ; 
7 4 printf ("process (1-4). \n") ; 
75 printf (" Detachments = "); 

76 scanf ("%d", &detach); 
77 printf ("Number of dettaches = %d\n", detach); 
78 for(i = 1; i <= detach; i++) { 

79 /*Enter the value for shmaddr.*/ 
80 printf ("\nEnter the value for\n"); 
81 printf ("the shared memory address\n"); 
82 printf ("in hexadecimal: \n") ; 
83 printf (" Shmaddr = "); 

84 scanf ("%x", &addr); 
85 printf ("The desired address = Ox%x\n", addr); 

86 /*Do the shmdt system call.*/ 
87 retrn = shmdt(addr); 
88 if(retrn == -1) { 
89 printf ("Error = %d\n", errno); 
90 
91 else { 
92 printf ("\nShmdt was successful \n"); 
93 printf ("for address = O%x\n", addr); 

94 
95 
96 

12-118 



Appendix A 

Library Routine Error Messages 

A.I Introduction A-I 

A.2 errno Values A-I 

A.3 Math Errors A-8 





Library Routine Error Messages 

A.I Introduction 

This appendix lists and describes the values to which the eri'no variable 
can be set when an error occurs in a call to a library routine. Note that 
only some routines set the errno variable. The reference pages for the 
routines that set errno upon error explicitly mention the errno variable 
(see Subroutines(S) of the XENIX Programmer's Reference). This men­
tion will be found in the "Return Value" section of the reference page. If 
no mention of errno occurs, the routine does not set a value. 

An error message is associated with each errno value. This message, 
along with a user-supplied message, can be printed by using the perror 
function. 

The value of errno reflects the error value for the last call that set errno. 
This value is not automatically cleared by later successful calls. You 
should test for errors and print error messages immediately after a func­
tion call to obtain accurate results. 

The include file errno.h contains the definitions of the errno values. 

A.2 errno Values 

The following list gives the errno values used in the environment, the 
system error message corresponding to each value, and a brief description 
of the circumstances that cause each error: 

Value 

EPERM 

ENOENT 

Message 

Not owner 

Description 

Indicates an attempt to modify 
a file when the user is not the 
owner or a super-user. Also 
returned for attempts to per­
form actions allowed only to a 
super-user. 

No such file Occurs when a specified file 
or directory doesn't exist, or when a direc­

tory specified in a pathname 
doesn't exist. 

A-I 



C Library Guide 

Value 

ESRCH 

EINTR 

EIO 

ENXIO 

E2BIG 

ENOEXEC 

EBADF 

A-2 

Message 

No such process 

Description 

The process specified by pid 
in kill or ptrace cannot be 
found. 

Interrupted 
tern call 

s y s - An asynchronous signal 

110 error 

No such device or 
address 

Argument list too 
long 

Exec format error 

Bad file number 

(which the user has elected to 
catch) occurred during a sys­
tem call. If execution is 
resumed after processing the 
signal, it will appear as if the 
interrupted system call 
returned this error condition. 

A physical 110 error. May 
occur on a call following the 
one to which it actually 
applies. 

II 0 on a special file refers to a 
subdevice that doesn't exist or 
is beyond the limits of the 
device. It may also occur 
when, for example, a tape 
drive is not on line or no disk 
pack is loaded on a drive. 

An argument list longer than 
5120 bytes is presented to a 
member of the exec family. 

A request has been made to 
execute a file with valid per­
missions but without a valid 
"magic number" (see 
a.out (F) in the XENIX User's 
Reference). 

Either a file descriptor refers 
to no open file or a read 
request was made to a write­
only file (or vice versa). 



Value 

ECHILD 

EAGAIN 

ENOMEM 

EACCES 

EFAULT 

ENOTBLK 

Library Routine Error Messages 

Message Description 

No child processes A wait was executed by a pro­
cess that had not waited for 
child processes. 

No more processes A fork failed because the pro­
cess table was full or the user 
had the maximum number of 
processes. 

Not enough space 

Permission denied 

Bad address 

Block device 
required 

During an exec or sbrk, a 
request was made for more 
space than was available. 
Available space is a system 
parameter. The error may also 
occur if the arrangement of 
text, data, and stack segments 
requires too many registers or 
if there is not enough swap 
space during a fork. 

An attempt was made to 
access a file in a way denied 
by the protection system. 

The system encountered a 
hardware fault while attempt­
ing to use an argument from a 
system call. 

A non-block file was specified 
where a block device was 
required, e.g., mount. 

A-3 



C Library Guide 

EBUSY Device busy 

EEXIST File exists 

EXDEV Cross-device link 

ENODEV No such device 

ENOTDIR Not a directory 

EISDIR Is a directory 

EINVAL Invalid argument 

A-4 

An attempt was made to 
mount a device that was 
already mounted or an attempt 
was made to dismount a dev­
ice on which there was an 
active file (open file, current 
directory, mounted-on file, or 
active text segment). It will 
also occur if an attempt is 
made to enable accounting 
when it is already enabled. 

An existing file was specified 
in an inappropriate context, 
for example, the link file. 

A link to a file on another dev­
ice was attempted. 

An attempt was made to apply 
an inappropriate system call to 
a device, for example, a 
write-only device. 

A nondirectory was specified 
where a directory was 
required, for example, in a 
path prefix or as an argument 
to chdir. 

An attempt was made to write 
on a directory. 

An invalid argument, such as 
mentioning an undefined sig­
nal to signal was passed to a 
routine. Also set by the math 
functions described in 
Subroutines(S) of the XENIX 
Programmer's Reference. 



ENFILE 

EMFILE 

ENOTTY 

ETXTBSY 

EFBIG 

ENOSPC 

ESPIPE 

EROFS 

EMLINK 

Library Routine Error Messages 

File table overflow 

Too many open 
files 

Not a typewriter 

Text file busy 

File too large 

No space left on 
device 

Illegal seek 

Read-only file 
system 

Too many links 

The system's table of open 
files is full and (temporarily) 
no more opens can be 
accepted. 

No process can have more 
than 60 file descriptors open 
simultaneously. 

An attempt was made to write 
to a device other than the ter­
minal. 

An attempt was made to exe­
cute a pure-procedure program 
that is currently open for writ­
ing (or reading). Also indi­
cates an attempt to open for 
writing a pure-procedure pro­
gram that is being executed. 

The size of a file exceeded the 
maximum file size 
(1,082,201,088 bytes) or 
ulimit; for more information, 
see ulimit(S) in the XENIX 
Programmer's Reference. 

During a write to an ordinary 
file, there was no free space 
left on the device. 

An Iseek was issued to a pipe. 

An attempt to modify a file or 
directory was made on a dev­
ice mounted read only. 

An attempt was made to make 
more than the maximum 
number of links (1000) to a 
file. 

A-5 



C Library Guide 

EPIPE 

EDOM 

ERANGE 

EUCLEAN 

Broken pipe 

Math arg out of 
domain of func 

Math result not 
representable 

File system needs 
cleaning 

EDEADLOCK Would deadlock 

ENOTNAM Not a name file 

A-6 

A write was attempted on a 
pipe for which there is no pro­
cess to read the data. This 
condition normally generates 
a signal; the error is returned 
if the signal is ignored. 

The argument of a function in 
the math package is out of the 
domain of the function. 

The value of a function in the 
math package is not represent­
able within machine precision. 

An attempt was made to 
mount a file system whose 
super-block is not flagged 
clean. See mount(S) in the 
XENIX Programmer's Refer­
ence. 

A process's attempt to lock a 
file region would cause a 
deadlock between processes 
vying for control of that 
region. 

A creatsem, opensem, 
waitsem, or sigsem was 
issued using an invalid sema­
phore identifier. For more 
information, see the appropri­
ate manual pages in 
Subroutines(S) of the XENIX 
Programmer's Reference. 



ENAVAIL Not available 

EISNAM A name file 

ENOMSG No message of 
desired type 

EIDRM Identifier 
removed 

ENOLCK No locks 
available 

Library Routine Error Messages 

An opensem, waitsem, or sigsem was 
issued to a semaphore that has not 
been initialized by a call to ereatsem. 
A sigsem was issued to a semaphore 
out of sequence (that is, before the 
process has issued the corresponding 
waitsem to the semaphore). An 
nbwaitsem was issued to a semaphore 
guarding a resource that is currently in 
use by another process. The sema­
phore on which a process was waiting 
has been left in an inconsistent state 
when the process controlling the 
semaphore exits without relinquishing 
control properly (that is, without using 
a waitsem on the semaphore). For 
more information, see the appropriate 
manual page in Subroutines(S) of the 
XENIX Programmer's Reference. 

A name file (for example, a semaphore 
or shared data) was specified when not 
expected. 

An effort was made to receive a mes­
sage of a type that does not exist in the 
specified message queue (see 
msgop (S) in the XENIX Programmer's 
Reference). 

This error is returned to processes that 
resume execution due to the removal 
of an identifier for the file system's 
name space (see msgetl (S), 
semetl (S), and shmetl (S) in the 
XENIX Programmer's Reference). 

An attempt was made to lock a file 
region and there are no more free 
locks. 

A-7 



C Library Guide 

A.3 Math Errors 

The functions in the math library (the include file math.h) will either set 
errno to ERANGE or to EDaM (depending on which function is called). 
An errno value will be set if the calculation to be performed is inap­
propriate or would result in an overflow. 

A list of the functions in the math library and the values that they return 
follows: 

Function 

exp, pow 

pow 

log,loglO 

sqrt 

hypot, cabs 

sinh, cosh, tanh 

A-8 

Value 

ERANGE 

EDaM 

EDaM 

EDaM 

Description 

Set only for extremely huge argu­
ments. A huge value is returned in 
overflow conditions. 

Returns a huge negative value when x 
is nonpositive and y is not an integer, 
or when x and y are both zero. 

Returns a huge negative value when 
the argument given is nonpositive. 

Returns zero when the argument is 
negative. 

Both return the following line: 

sqrt(x*x + y*y) 

Overflows are precluded. 

Both sinh and cosh will return a huge 
value of an appropriate sign when the 
correct value would overflow. 



Appendix B 

Common Libraries 

B.1 Introduction B-1 

B.2 Run-Time Routines B-1 
B.2.1 Routines Common to MS-DOS and XENIX B-1 
B.2.2 Routines Specific to MS-DOS B-2 
B.2.3 ANSI Library B-4 

B.3 Global Variables B-5 
B.3.1 Variables Common to MS-DOS and XENIX B-5 
B.3.2 Variables Specific to MS-DOS B-5 

BA Include Files B-6 
BA.1 Include Files Common to MS-DOS and XENIX B-6 
BA.2 Include Files Specific to MS-DOS B-6 
BA.3 ANSI Include Files B-7 

B.5 Differences Between Routines Common to MS-DOS and 
XENIX B-7 

B.5.1 abort B-7 
B.5.2 access B-7 
B.5.3 chdir B-S 
B.5A chmod B-S 
B.5.5 creat B-S 
B.5.6 exec B-9 
B.5.7 fopen, freopen B-IO 
B.5.S fread B-IO 
B.5.9 fseek B-IO 
B.5.10 fstat B-ll 
B.5.11 ftell B-12 
B.5.12 ftime B-12 
B.5.13 fwrite B-12 
B.5.14 getpid B-12 
B.5.15 locking B-13 
B.5.16 10g,loglO B-13 
B.5.l7 lseek B-13 
B.5.1S open B-14 



B.5.19 read B-14 
B.5.20 signal B-14 
B.5.21 stat B-15 
B.5.22 system B-15 
B.5.23 umask B-16 
B.5.24 unlink B-16 
B.5.25 utime B-16 
B.5.26 write B-16 



Common Libraries 

B.1 Introduction 

This appendix lists and describes routines from the Microsoft C Run­
Time Library for XENIX that operate compatibly with C library routines 
on MS-DOS systems. The routines provide an identical interface to a set of 
operations useful on both XENIX and MS-DOS systems. 

With the exception of error returns, the math functions in the Microsoft C 
Run-Time Library for MS-DOS operate compatibly with the XENIX rou­
tines of the same names. Error returns for most math routines in the MS­
DOS library have been upgraded for compatibility with UNIX System V 
math-error handling. 

B.2 Run-Time Routines 

The following sections list routines from the MS-DOS C library that are 
compatible with XENIX routines. Routines specific to the MS-DOS 
environment are also listed. 

B.2.1 Routines Common to MS-DOS and XENIX 

The following is a list of the routines common to MS-DOS and XENIX: 

abore ceil execlp! fileno fwrite! 
abs chdir! execv! floor gcvt 
access! chmod2 execve! fmod getchar 2 chsize execvp! fopen! getcwd acos 
asctime clearerr execvpe! fprintf getenv . 2 close exit fputc getpid! asm 
assert 2 fputs gets cos exp 
atan 2 COsh2 fabs fread! getw 
atan22 creae fclose free gmtime 
atof ctime fcvt freopen! hypot 
atoi difftime fdopen frexp isalnum 
atol dup feof fscanf isalpha 
bessel3 dup2 ferror fseek! isascii 
bsearch ecvt mush fstae iscntrl 
cabs execl! fgetc ftell! isdigit 
calloc execle! fgets ftime! isgraph 

B-1 



C Library Guide 

islower 
isprint 
ispunct 
isspace 
isupper 
isxdigit 
Idexp2 
lfind 
localtime 
locking! 
log 
loglO 
longjmp 
Isearch 
Iseek! 
malloc 
mktemp 

modf 
onexit 
perror 
pow2 

printf 
putc 
putchar 
putenv 
puts 
putw 
qsort 
rand 
read! 
realloc 
rewind 
rmtmp 
sbrk 

scanf 
setbuf 
setjmp 
setvbuf 
signal! 

• 2 sm 
sinh2 
sprintf 
sqre 
srand 
sscanf 
stae 
strcat 
strchr 
strcmp 
strcpy 
strcspn 

strdup 
strlen 
strncat 
strncmp 
strncpy 
strpbrk 
strrchr 
strspn 
strtod 
strtok 
strtol 
swab 
system! 
tan2 

tanh2 

tempnam 
time 

tmpfile 
tmpnam 
toascii 
tolower 

tolower 
toupper 
_toupper 
tzset 
umask! 
ungetc 
unlink2 
utime! 
vfprintf 
vprintf 
vsprintf 
write! 

! Operates differently or has different meaning under MS-DOS than under XENIX. The 
differences are detailed in "Common Libraries" in this guide. 

2 Implements UNIX System V-style error returns. 

3 The bessel routine does not correspond to a single function, but to six functions named jO, 
jl, jD, yO, yl, and yo. They all implement Unix System V-style error returns. 

B.2.2 Routines Specific to MS-DOS 

The following routines are available only in the MS-DOS C library. Pro­
grammers who are writing code to be ported to XENIX systems should 
avoid using these routines. 

arc 
bdos 

bios disk 
= bios = equip list 

bios keybrd 
-bios - memsize 
=biosyrinter 

bios serialcom 
= bios = timeofday 

B-2 

dos keep 
=dos=open 

dos read 
- dos - setblock 
- dos - setdate 
- dos - setdrive 
- dos - setfileattr 
- dos - setftime 
-dos - settime 

_getbkcolor 
getch 
getche 
_getcolor 

getcursorposition 
=getfillmask 
_getimage 

getlinestyle 
=getlogcoord 



Common Libraries 

cgets -dos setvect _getphyscoord 
chain intr dos-write _getpixel 

-c1earS7 -
dosexterr gettextcolor 

- c1earscreen =ellipse _gettextposition 
-control87 enable _getvideoconfig 
cprintf eof halloc 
cscanf exit hard err 
dieeetomsbin tcloseall - hardresume -
disable ffree hardretn 

- displaycursor tgetchar =heapchk 
dmsbintoieee _fheapchk _heap set 

dos allocmem _fheapset _heapwalk 
-dos-close _fheapwalk hfree 
- dos-creat fieeetomsbin Jmagesize 
- dos - creatnew filelength inp 
- dos - findfirst ftoodfill inpw 
- dos - findnext ftushall int86 
- dos-freemem fmalloc int86x 
= dos =getdate tmsbintoieee intdos 
_ dos _getdiskfree fmsize intdosx 
_ dos _getdrive FP OFF isatty 
_ dos _getfileattr FP-SEG itoa 
_ dos _getftime _fpreset kbhit 
_ dos _gettime fputchar labs 
_ dos _getvect freect Uneto - spawnlp Irotl remove 
-Irotr rename spawnlpe 
ltoa rmdir spawnv 
_makepath rotl spawnve 
max rotr spawnvp 
memavl -searchenv spawnvpe 

min segread _spUtpath 
mkdir _ selectpalette stackavail 
movedata _ setactivepage status 
moveto setbkcolor strcmpi 
msize =setcliprgn strdate 

-nfree setcolor strlwr 
=nheapchk - setfillmask strncmpi 
_nheapset - setlinestyle strnicmp 
_nheapwalk _setlogorg strnset 

nmalloc setmode strrev 

B-3 



C Library Guide 

nmsize 
outp 
outpw 
outtext 

yie 
putch 
yutimage 
_rectangle 
remapallpalette 

=remappalette 

B.2.3 ANSI Library 

_setpixel 
settextcolor 

- settextposition 
- settextwindow 
- setvideomode 
- setviewport 
=setvisualpage 
sopen 
spawnl 
spawnle 

strset 
strstr 
strtime 

strupr 
tell 
ultoa 
ungetch 
_wrap on 

The Microsoft C Run-Time Library includes routines that conform to the 
Draft Proposed ANSI Standard (ANSI). These routines are listed as fol-
lows. Programs which must strictly adhere to ANSI should use only these 
routines. 

abort dimime freopen isspace printf 
abs div frexp isupper putc 
acos exit fscanf isxdigit putchar 
asctime exp fseek labs puts 
asin fabs fsetpos Idexp qsort 
assert fclose ftell Idiv raise 
aian feof fwrite localtime rand 
atan2 ferror getc log realloc 
atexit mush getchar loglO remove 
atof fgetc getenv longjmp rename 
atoi fgetpos gets malloc rewind 
atol fgets gmtime memchr scanf 
bsearch floor isalnum memcmp setbuf 
calloc fmod isalpha memcpy setjmp 
ceil fopen iscntrl memmove setvbuf 
clear err fprintf isdigit memset signal 
clock fputc isgraph mktime sin 
cos fputs islower modf sinh 
cosh fread isprint perror sprintf 
ctime free ispunct pow sqrt 

B-4 



Common Libraries 

B.3 Global Variables 

The following sections list global variables used in the MS-DOS C library 
that are also used in XENIX environment. The variables specific to the 
MS-DOS environment are also listed. 

B.3.1 Variables Common to MS-DOS and XENIX 

The following is a list of global variables used in the run-time library and 
available in both the MS-DOS and XENIX environments: 

daylight 
environ 
errno 
sys _ errlist 
sys nerr 
timezone 
tzname 

Note 

Not all values of errno available on XENIX are used by the MS-DOS 
run-time library. 

B.3.2 Variables Specific to MS-DOS 

The following global variables are available only in the MS-DOS C library. 
Programmers who are writing code to be ported to XENIX systems should 
avoid using these variables. 

doserrno 
-fmode 
_osmajor 

osminor 
ysp 

B-5 



C Library Guide 

B.4 Include Files 

Structure definitions, return value types, and manifest constants used in 
the descriptions of some of the common routines may vary from environ­
ment to environment and are therefore fully defined in a set of include 
files for each environment. Include files provided with the MS-DOS C 
library are compatible with include files of the same name on XENIX and 
UNIX systems. 

See "Common Libraries" in this guide for a list of the MS-DOS include 
files that are compatible with XENIX. (The include files that apply only to 
MS-DOS environments are also found there.) 

B.4.1 Include Files Common to MS-DOS and XENIX 

The following MS-DOS include files are compatible with the XENIX (and 
UNIX) include files of the same name: 

asserth 
ctypeh 
errnoh 
fcntlh 
mathh 

setjrnph 
signalh 
stdioh 
sys\lockingh 
sys\stath 

B.4.2 Include Files Specific to MS-DOS 

sys\timebh 
sys\typesh 
timeh 

The following include files are used only in MS-DOS environments and do 
not have counterparts on XENIX and UNIX systems: 

conio.h 
direct.h 
dos.h 
graph.h 

B-6 

io.h 
process.h 
share.h 
stdarg.h 

stdlib.h 
sys\utime.h 



Common Libraries 

B.4.3 ANSI Include Files 

The include files necessary to use the ANSI run-time library are as listed: 

assert.h 
ctype.h 
float.h 
limits.h 

math.h 
setjmp.h 
signal.h 
stdarg.h 

stdio.h 
stdlib.h 
string.h 
time.h 

B.S Differences Between Routines Common to MS-DOS and XENIX 

This section explains how the MS-DOS routines in the common library for 
XENIX and MS-DOS differ from their XENIX counterparts. These descrip­
tions are intended to be used in conjunction with the more detailed 
descriptions provided in the Subroutines(S) section of the XENIX 
Programmer's Reference. 

B.S.1 abort 

The MS-DOS version of the abort routine terminates the process by a call 
to raise(SIG_ABRT). Control is returned to the parent (calling) process 
with an exit status of 3 and the following message is printed to standard 
error: 

Abnormal program termination 

No core dump occurs on MS-DOS. 

B.S.2 access 

The access routine checks the access to a given file. Under MS-DOS, the 
real and effective user IDs are nonexistent. The permission (access) set­
ting can be any combination of the following values: 

Value Meaning 

04 Read 

02 Write 

00 Check for existence 

The "Execute" access mode (01) is not implemented. 

B-7 



C Library Guide 

In case of error, only the EACCES and ENOENT values may be returned 
for errno on MS-DOS. 

B.S.3 chdir 

In case of error, only the ENOENT value may be returned for errno on 
MS-DOS. 

B.S.4 chmod 

The chmod routine can set the "owner" access permissions for a given 
file, but all other permission settings are ignored. The mode argument can 
be anyone of the constant expressions shown in the following list's left­
most column; the equivalent XENIX value is shown in the right-most 
column: 

Constant Expression Meaning XENIX Value 

S IREAD Read by owner 0400 
S IWRITE Write by owner 0200 

S IREAD I S IWRITE Read and write by 0000 - -
owner 

The S IREAD and S IWRITE constants are defined in the sys\stat.h 
include file. Note that the OR operator ( I ) is used to combine these con­
stants to form read and write permission. 

If write permission is not given, the file is treated as a read-only file. Giv­
ing write-only permission is allowed, but has no effect; under MS-DOS, all 
files are readable. 

In case of error, only the ENOENT value may be returned for errno on 
MS-DOS. 

B.S.S creat 

The creat routine creates a new file or prepares an existing file for writ­
ing. If the file is created successfully, the access permissions are set as 
defined by the mode argument. Only "owner" permissions are allowed 
(see the section on "chmod"). 

B-8 



Common Libraries 

In case of error, only the EACCES, EMFILE, and ENOENT values may 
be returned for errno on MS-DOS. 

Use of the open routine is preferred over creat when creating or opening 
files in both MS-DOS and XENIX environments. 

B.5.6 exec 

The MS-DOS versions of the execl, execle, execlp, execlpe, execv, execve, 
execvpe, and execvp routines overlay the calling process, as in the 
XENIX environment. If there is not enough memory for the new process, 
the exec routine fails and returns to the calling process. Otherwise, the 
new process begins execution. 

Under MS-DOS, the exec routines do not perform the following functions: 

• Use the close-on-exec flag to determine open files for the new pro­
cess. 

• Disable profiling for the new process (profiling is not available 
under MS-DOS). 

• Pass signal settings to the child process. Under MS-DOS, all signals 
(including signals set to be ignored) are reset to the default in the 
child process. 

The combined size of all arguments (including the program name) in an 
exec routine under MS-DOS must not exceed 128 bytes. 

In case of error, the E2BIG, EACCES, ENOENT, ENOEXEC, and 
ENOMEM values may be returned for errno on MS-DOS. In addition, the 
EMFILE value may be used; under MS-DOS, the file must be opened to 
determine whether it is executable. 

B-9 



C Library Guide 

B.S.7 fopen, freopen 

The MS-DOS versions of the fopen and freopen routines open stream files 
just as they do in the XENIX environment. However, under MS-DOS the 
following additional values for the type string are available: 

Value Use 

t Opens the file in text mode. Opening a file in this mode 
causes translation of carriage-return -line-feed (CR-LF) 
character combinations into a single line feed (LF) on 
input. Similarly, on output, line feeds are translated into 
CR-LF combinations. 

b Opens the file in binary mode. This mode suppresses 
translation. 

The MS-DOS and XENIX versions of these routines also differ in their 
interpretation of append mode (a or a+). When append mode is specified 
in the MS-DOS version of fopen or freopen, the file pointer is repositioned 
at the end of the file prior to write operations. Thus, all write operations 
take place at the end of the file. 

In the XENIX versions, all write operations take place at the current posi­
tion of the file pointer. In append mode, the file pointer is initially posi­
tioned at the end of the file, but if the file pointer is later repositioned, 
write operations take place at the new position rather than at the end of 
the file. 

D.S.S fread 

The MS-DOS fread routine uses the low-level read function to carry out 
read operations. If the file has been opened in text mode, read replaces 
each CR-LF pair read from the file with a single LF character. The number 
of bytes returned is the number of bytes remaining after the CR-LF pairs 
have been replaced. Thus the return value may not always correspond to 
the actual number of bytes read. This is considered normal and has no 
implications for detecting the end of the file. 

B.S.9 fseek 

Both the MS-DOS and XENIX versions of the fseek routine move the file 
pointer to the given position. However, for streams opened in text mode, 
the MS-DOS version of fseek has limited use because CR-LF translations 
can cause fseek to produce unexpected results. Only two fseek operations 

B-IO 



Common Libraries 

are guaranteed to work on streams opened in text mode: seeking with an 
offset of 0 relative to any of the origin values, and seeking from the begin­
ning of the file with an offset value returned from a call to ftell. 

B.S.I0 fstat 

MS-DOS does not make as much information available for file handles as it 
does for full pathnames; thus the MS-DOS version of fstat returns less use­
ful information than does the stat routine. The MS-DOS fstat routine can 
detect device files, but it must not be used with directories. 

The structure returned by fstat contains the following members: 

Member 

st atime 

st ctime 

st dey 

st ino 

st mode 

st mtime 

st nlink 

st rdev 

st size 

st uid 

Meaning 

Time of last modification of file (same as st mtime and 
st_ctime). -

Time of last modification of file (same as st atime and 
st_mtime). -

Either the drive number of the disk containing the file, 
or the file handle in the case of a device (same as 
st_rdev). 

Not used. 

Not used. 

User read and write bits reflect the file's permission set­
ting. The S IFCHR bit is set for a device; 
otherwise, the S _ IFREG bit is set. 

Time of last modification of file (same as st atime and 
st_ ctime). -

Always 1. 

Either the drive number of the disk containing the file, 
or the file handle in the case of a device (same as 
st_dev). 

Size, in bytes, of the file. 

Not used. 

B-ll 



C Library Guide 

In case of error, only the EBADF value may be returned for errno on 
MS-DOS. 

B.S.11 ftell 

Both the MS-DOS and XENIX versions of the ftell routine ge! the current 
file-point.:!r position. In MS-DOS, howevei, for streams opened in text 
mode, the value returned by ftell may not reflect the physical byte offset, 
since text mode causes CR-LF translation. The ftell routine can be used in 
conjunction with the fseek routine to remember and return to file loca­
tions correctly. If you want the actual offset to a file position, open the 
stream in binary mode and perform type conversions as necessary. 

B.S.12 ftime 

Unlike the system time on XENIX systems, the MS-DOS system time does 
not include the concept of a default time zone. Instead, ftime uses the 
value of an MS-DOS environment variable named TZ to determine the 
time zone. The user can set the default time zone by setting the TZ vari­
able. If TZ is not explicitly set, the default time zone corresponds to the 
Pacific time zone. For details on the TZ variable, see "The daylight, 
timezone, and tzname Variables," in the "Global Variables and Stan­
dard Types" chapter or the Miscellaneous Features(M) section of the 
XENIX User's Reference. 

B.S.13 fwrite 

The MS-DOS fwrite routine uses the low-level write function to carry out 
write operations. If the file is opened in text mode, every line-feed (LF) 
character in the output is replaced by a carriage-return-line-feed (CR-LF) 
pair before being written. This does not affect the return value. 

B.S.14 getpid 

The getpid routine returns a process-unique number. Although the 
number may be used to uniquely identify the process, it does not have the 
same meaning as the process identification returned by getpid in the 
XENIX environment. 

B-12 



Common Libraries 

B.5.15 locking 

The MS-DOS and XENIX versions of the locking routine differ in several 
respects, as listed: 

• On MS-DOS, it is not possible to lock a file only against write 
access; locking a region of a file prevents both reading and writing 
in that region. Thus, setting LK RLCK in the lockirg call is 
equivalent to setting LK _ LOCK~ and setting LK _ NBRLCK is 
equivalent to setting LK _ NBLCK. 

• On MS-DOS, specifying LK _LOCK or LK _ RLCK will not cause a 
program to wait until the specified region of a file is unlocked. 
Instead, up to ten attempts are made to lock the file (one attempt 
per second). If the lock is still unsuccessful after 10 seconds, the 
locking function returns an error value. 

On XENIX, if the first attempt at locking fails, the locking process 
"sleeps" (suspends execution) and periodically "wakes" to 
attempt the lock again. There is no limit on the number of 
attempts, and the process can continue indefinitely. 

• On MS-DOS, locking of overlapping regions of a file is not allowed. 

• On MS-DOS, if more than one region of a file is locked, only one 
region can be unlocked at a time, and the region must correspond 
to a region that was previously locked. You cannot unlock more 
than one region at a time, even if the regions are adjacent. 

B.5.16 log,logl0 

Passing a 0 to log or log10 sets the errno variable to ED OM on XENIX, 
instead of setting it to ERANGE as it does on MS-DOS. 

B.5.17 lseek 

In case of error, only the EBADF and EINVAL values may be returned 
for errno on MS-DOS. 

B-13 



C Library Guide 

B.5.18 open 

Both the MS-DOS and XENIX versions of the open routine open a file 
by its handle. However, with MS-DOS, two additional oflag values 
(0 BINARY and 0 TEXT) are available and the 0 NDELAY and 
o SYNCW values are not available. -

The 0 _BINARY flag causes the file to be opened in binary mode, regard­
less of the default mode setting. Similarly, the 0 _TEXT flag causes the 
file to be opened in text mode. 

In case of error, only the EACCES, EEXIST, EMFILE, and ENOENT 
values may be used for errno on MS-DOS. 

B.5.19 read 

Both the MS-DOS and XENIX versions of the read routine read characters 
from the file given by a file handle. However, if the file has been opened 
in text mode, the MS-DOS version of read replaces each CR-LF pair read 
from the file with a single LF character. The number of bytes returned is 
the number of bytes remaining after the CR-LF pairs have been replaced. 
Thus, the return value may not always correspond to the actual number of 
bytes read. This is considered normal and has no implications for detect­
ing an end-of-file condition. 

In case of error, only the EBADF value may be used for errno on 
MS-DOS. 

B.5.20 signal 

The MS-DOS version of the signal routine can only handle the SIGINT, 
SIGFPE, SIGABRT, SIGILL, and SIGSEGV signals. In MS-DOS, SIG­
INT is defined to be INT 23H (the signal), SIGFPE corresponds to 
floating-point exceptions that are not masked, SIGABRT is the default 
abort handler, and SIGILL and SIGSEGV are undefined, but provided 
for ANSI compatibility. 

On MS-DOS, child processes executed through the exec or spawn routines 
do not inherit the signal settings of the parent process. All signal settings 
(including signals set to be ignored) are reset to the default settings in the 
child process. 

The MS-DOS version of signal uses only EINVAL for errno. 

B-14 



Common Libraries 

B.S.21 stat 

The stat routine returns a structure defining the current status of the given 
file or directory. The structure members returned by stat have the follow­
ing names and meanings on MS-DOS: 

Value 

st atime 

st ctime 

st dey 

st mode 

st mtime 

st nlink 

st rdev 

st size 

st uid 

Meaning 

Time of last modification of file (same as st mtime 
and st_ctime). -

Time of last modification of file (same as st atime 
and st_mtime). -

Drive number of the disk containing the file (same as 
st_rdev). 

Not used. 

Not used. 

User read and write bits reflect the file's permission 
setting. The S IFDIR bit is set for a device; other­
wise, the S _ IFREG bit is set. 

Time of last modification of file (same as st atime 
and st_ ctime). -

Always 1. 

Drive number of the disk containing the file (same as 
st_dev). 

Size, in bytes, of the file. 

Not used. 

In case of error, only the ENOENT value may be returned for errno on 
MS-DOS. 

B.S.22 system 

The system routine passes the given string to the operating system for 
execution. For MS-DOS to execute this string, the full pathname of the 
directory containing it must be assigned to the environment variable. If 
the string is a NULL, the system searches for COMMAND.COM. 

B-15 



C Library Guide 

The system call returns an error if the string cannot be found using these 
variables. Where a null pointer is passed, it sets errno to ENOENT and 
returns 0 if it ca.'1I1ot find COMMAND.COM, and 1 if it can. In case of 
error, only the E2BIG, ENOENT, ENOEXEC, and ENOMEM values 
may be returned for errno on MS-DOS. 

B.5.23 umask 

The umask routine can set a mask for "owner" read and write access 
permissions only. All other permissions are ignored. (See the discussion 
of the access routine above for details.) 

B.5.24 unlink 

The MS-DOS version of the unlink routine always deletes the given file. 
Since MS-DOS does not implement multiple "links" to the same file, 
unlinking a file is the same as deleting it. 

In case of error, only the EACCES and ENOENT values may be returned 
for errno on MS-DOS. 

B.5.25 utime 

The MS-DOS utime routine sets the file modification time only; MS-DOS 
does not maintain a separate access time. 

In case of error, the EACCES and ENOENT values may be returned for 
errno on MS-DOS. In addition, the EMFILE value may be used; under 
MS-DOS, the file must be opened to set the modification time. 

B.5.26 write 

Both the MS-DOS and XENIX versions of the write routine write a 
specified number of characters to the file named by the given file handle. 
However, in the MS-DOS version, if the file has been opened in text mode, 
every line-feed (LF) character in the output is replaced by a carriage­
return-line-feed (CR-LF) pair before being written. This does not affect the 
return value. 

In case of error, only the EBADF and ENOSPC values may be returned 
for errno on MS-DOS. 

B-16 



Appendix C 

XENIX to DOS: A Cross 

Development System 

C.l Introduction C-l 

C.2 Creating Source Files C-2 

C.3 Compiling a DOS Source File C-2 
C.3.l DOS Floating Point Flags C-3 

CA Using Assembly Language Source Files C-4 

C.5 Creating and Linking Object Files C-4 

C.6 Running and Debugging a DOS Program C-5 

C.7 Transferring Programs Between Systems C-5 

C. 8 Creating DOS Libraries C-7 

C.9 Common Run-Time Routines C-7 
C.9.l Common Routines for DOS and XENIX C-7 
C.9.2 Common Routines for DOS and UNIX System V C-8 
C.9.3 Routines Specific to DOS C-8 

C.IO Common System-Wide Variables C-9 
C.lO.l Common Variables for DOS and XENIX C-9 
C.lO.2 Common Variables for DOS and UNIX System V C-lO 
C.lO.3 Variables Specific to DOS C-lO 

C.II Common Include Files C-IO 
C.ll.l Common Include Files for DOS and XENIX C-lO 
C.ll.2 Common Include Files for DOS and UNIX System V C-

11 
C.ll.3 Include Files Specific to DOS C-ll 



C.I2 Differences Between Common Routines C-I1 
C.I2.1 abort C-ll 
C.I2.2 access C-12 
C.l2.3 chdir C-I2 
C.I2A chmod C-I2 
C.I2.5 creat C-13 
C.I2.6 exec C-13 
C.I2.7 fopen, freopen C-I4 
C.I2.8 fread C-I4 
C.I2.9 fseek C-I5 
C.I2.IO fstat C-I5 
C.I2.Il ftell C-16 
C.I2.l2 ftime C-I6 
C.I2.13 fwrite C-16 
C.I2.l4 getpid C-17 
C.I2.I5 locking C-17 
C.I2.l6 lseek C-17 
C.12.l7 open C-18 
C.12.l8 read C-18 
C.l2.l9 signal C-I8 
C.12.20 stat C-19 
C.12.21 system C-20 
C.12.22 umask C-20 
C.12.23 unlink C-20 
C.12.24 utime C-20 
C.l2.25 write C-20 

C.13 Differences in Definitions C-2I 



XENIX to DOS: A Cross Development System 

C.I Introduction 

The XENIX system provides a variety of tools to create programs that can 
be executed under the DOS operating system. The DOS cross develop­
ment system lets you create, compile, and link DOS programs on the 
XENIX system and transfer these programs to a DOS system for execution 
and debugging. 

The complete development system consists of: 

• The C program compiler cc 

• The assembler masm 

• The DOS linker dosld 

• The DOS libraries (in /usrllib/dos) 

• The DOS include files (in /usr/include/ dos) 

• The dos(C) commands 

The heart of the cross development system is the cc command. The com­
mand provides a special -dos option that directs the compiler to create 
code for execution under DOS. When -dos is given, cc uses the special 
DOS include files and libraries to create a program. The resulting pro­
gram file has the correct format for execution on any DOS system. 

The cc command uses the dosld program to carry out the last part of the 
compilation process, the creation of the executable program file. cc 
invokes the masm command only when XENIX assembly language source 
files are given in the command line. In most cases, cc invokes masm and 
dosld automatically. You can also invoke them directly when you need to 
perform special tasks. 

The last step in the cross development process is to transfer the execut­
able program files to a DOS system. Since DOS programs cannot be exe­
cuted or debugged on the XENIX system, you must copy the resulting pro­
grams to DOS before attempting execution. You can do this using the 
XENIX dos(C) commands. For example, the doscp command lets you 
copy files back and forth between XENIX and DOS disks. This means you 
can transfer program files from the XENIX system to a DOS system, or 
copy source files from a DOS system to XENIX. 

C-l 



C Library Guide 

C.2 Creating Source Files 

You can create program source files using either XENIX or DOS text edi­
tors. The most convenient way is to use a XENIX editor, such as vi, since 
this means you do not have to transfer the source files from the DOS sys­
tem to XENIX each time you make changes to the files. 

When creating source files, you should follow these simple rules: 

• Use the standard C language format for your source files. DOS C 
and assembler source files have the same format as XENIX source 
files. In fact, many DOS programs, if compiled without the -dos 
option, can be executed on the XENIX system. 

• Use the DOS naming conventions when giving file and directory 
names within a program; e.g., use "\" instead of "I" for the path­
name separator. Since the compiler does not check names, failure 
to follow the conventions will cause errors when the program is 
executed. 

• Use only the DOS include files and library functions. Most DOS 
include files and functions are identical to their XENIX counter­
parts. Others have only slight differences. F0r a list of the avail­
able DOS include files and functions, and a description of the 
differences between them and the corresponding XENIX files and 
functions, see section A.II of this appendix. 

If you use a function that does not exist, dosld displays an error message 
and leaves the linked output file incomplete. 

C.3 Compiling a DOS Source File 

You can compile a DOS C source file under XENIX by using the -dos 
option of the XENIX cc command. The command line has the form: 

cc -dos options filename 

where options are other cc command options (as described in Chapter 2 of 
the C User's Guide), and filename is the name of the source file you wish 
to compile. You can give more than one source file if desired. Each 
source filename must end with the" .c" extension. 

The cc command compiles each source file separately, creating an object 
file for each file. It then links all the object files together with the 
appropriate C libraries. The object files created by the cc command have 

C-2 



XENIX to DOS: A Cross Development System 

the same base name as the corresponding source file, but end with the 
" .0" extension instead of the ".c" extension. The linked program file 
has the name a.out if no name is explicitly given. 

For example, the command: 

cc -dos test.c 

compiles the source file test.c, and creates the object file test.o. It then 
calls dosld which links the object file with functions from the DOS 
libraries. The resulting program file is named a.out. 

You can use any number of cc options in the command line. The options 
work as described in Chapter 2 of the C User's Guide. For example, you 
may use the -0 option to explicitly name the resulting program file, or the 
-c option to create object files without creating a program file. In some 
cases, the default values for an option are different than when compiling 
for XENIX. In particular, the default directory for library files given with 
the -I option is /usrllib/dos. Note that the -p (for "profiling") option can­
not be used. 

C.3.1 DOS Floating Point Flags 

The -FPn options to the C compiler are used when generating programs 
targeted for DOS. These five flags control how the resulting program per­
forms floating point operations: 

-FPa 

-FPc 

-FPc87 

Generates subroutine calls to the "alter­
nate" floating point library. 
(lusrllib/dos/[SML]d/ibcJa.a) This library is 
faster than the standard math coprocessor 
emulation library, but not as accurate. 

Generates subroutine calls (as opposed to 
inline code) to the coprocessor emulation 
library. (lusrllib/dos/em.a) Programs com­
piled with this flag will do all floating point 
operations in software. 

Generates subroutine calls to the floating 
point library, which then uses the math 
coprocessor. (lusrllib/dos/87.a) A coproces­
sor must be installed to run programs com­
piled with this flag. 

C-3 



C Library Guide 

-FPi 

-FPi87 

Generates inline code that will check to see 
if a math coprocessor is present, use it if one 
is there, or call the emulation library if one 
is not. This is the default for DOS, and is the 
only method used for performing floating 
point operations under XENIX. 

Generates true inline code for the math 
coprocessor. A coprocessor must be 
installed to run a program compiled with 
this flag. 

Again, note that programs compiled with -FPa or -FPc will ignore a math 
coprocessor (8087, 80287) if one is installed, and programs compiled with 
-FPc87 and -FPi87 will not run if a math coprocessor is not installed. 

C.4 Using Assembly Language Source Files 

You can direct cc to assemble XENIX assembly language source files by 
including the files in the cc command line. Like C source files, assembly 
language source files may contain only calls to functions in the DOS 
libraries. Furthermore, the source files must follow the C calling conven­
tions described in the Macro Assembler User's Guide. The filename of an 
assembly language source file must end with the" .s" extension. 

When an assembly language source file is given, cc automatically invokes 
masm, the 8086/80286 assembler. The assembler creates an object file 
that can be linked with any other object file created by cc. 

You can invoke the assembler directly by using the masm command. The 
command creates an object file just as the cc command does, but does not 
create an executable file. For a description of the command and its 
options, see masm(CP) in the XENIX Reference. 

C.s Creating and Linking Object Files 

You can link DOS object files previously created by cc or masm by giv­
ing the names of the files in the cc command line. The object files must 
have been created with masm, or with cc using the -dos option. Object 
files created without using the -dos option cannot be linked to DOS pro­
grams. The object filenames must end with the" .0" extension. 

C-4 



XENIX to DOS: A Cross Development System 

When an object file is given, cc automatically invokes dosld (the DOS 
linker) which links the given object files with the appropriate C libraries. 
If there are no errors, dosld creates an executable program file named 
a.out. 

You can use dosld independently of cc. The command creates a DOS 
program file just as the cc command does, but does not accept source 
files. If it is necessary to invoke dosld, invoke the cc command with the 
-z flag to see a correct dosld command line. For a description of the com­
mand and its options, see dosld(CP) in the XENIX Programmer's Refer­
ence. 

Note 

DOS programs created by cc and dosld are completely compatible 
with the DOS system and can be executed on any such system. 
DOS programs cannot be executed on the XENIX system. 

C.6 Running and Debugging a DOS Program 

You can debug a DOS program by transferring the program file to a DOS 
system and using the DOS debugger, DEBUG, to load and execute the 
program. The following section explains how to transfer program files 
between systems. For a description of the DEBUG program, see the 
appropriate DOS guide. 

C.7 Transferring Programs Between Systems 

You can transfer programs between XENIX and DOS systems by using 
DOS floppy disks and the XENIX doscp command (see dos (C». The 
doscp command lets you copy files to a DOS floppy disk. 

The command has the form: 

doscp -r file.1 dev:file.2 

where -r is the required "raw" option, file.} is the XENIX name of the 
DOS program file you wish to transfer, dev is the full pathname of a 
XENIX system floppy disk drive, and file.2 is the full DOS patbname of 
the new program file on the DOS disk. The new filename must have the 
, , .exe" extension. The -r option ensures that the program file is copied. 

C-5 



C Library. Guide 

To transfer a XENIX program file to a DOS system, follow these steps: 

1. Insert a formatted DOS diskette into a XENIX system floppy disk 
drive. 

2. Use the doscp command to copy the program file to the disk. For 
example, to copy the program file a.out, to a file renamed test.exe 
on a DOS disk in floppy drive IdevlfdO, enter: 

doscp -r a.out /dev/fdO:/test.exe 

3. Remove the floppy disk from the drive. 

You can now insert the floppy disk into the floppy disk drive of the DOS 
system and invoke the program just as you would any other DOS pro­
gram. 

Note 

DOS program files that do not end with the .EXE or .COM extension 
cannot be loaded for execution under DOS. When transferring pro­
gram files from XENIX to DOS, you must make sure you rename 
a.out files to an appropriate .EXE or .COM file. 

On some XENIX systems, you may be able to create a DOS partition on 
the system hard disk and copy DOS program files to this partition instead 
of to floppy disks. To execute the program, you must reboot the system, 
loading the DOS operating system from the DOS partition. 

The file letcldefaultlmsdos is an easily configurable file that aliases 
default device names used by the dos(C) commands. For example, it now 
contains the lines: 

C=/dev/hdOd 
D=/dev/hdld 

Users using the dos(C) utilities can specify "C:" or "D:" on the com­
mand line, referring to the DOS partition on the first or second hard disk. 
For a complete description on using letcldefaultlmsdos, see the manual 
page dos(C) in the XENIX User's Reference and "Using XENIX and DOS 
On the Same Disk" in the XENIX System Administrator's Guide. 

C-6 



XENIX to DOS: A Cross Development System 

C.s Creating DOS Libraries 

You can create a library of your own DOS object files by using the XENIX 
ar command. The command copies object files created by the compiler 
to a given archive file. The command has the fom .. 

ar archive filename ... 

where archive is the name of an archive file, and filename is the name of 
the DOS object file you wish to add to the library. 

Note 

DOS libraries created on a XENIX system are not compatible with 
libraries created on a DOS system. 

C.9 Common Run-Time Routines 

The sections below list routines from the DOS C library that are compati­
hIe with XENIX and UNIX System V routines. Routines specific to the 
DOS environment are also listed. 

C.9.1 Common Routines for DOS and XENIX 

The following is a list of the common routines for DOS and XENIX. 

abort* ctime fprintf isascii modf sscanf tolower 
abs dup fpute isentrl open* stat* _toupper 
aeeess* dup2 fputs isdigit perror strcat umask* 
aeost eevt fread* isgraph powt strehr ungete 
asetime exed* free islower printf stremp unlink* 
asint execle* freopen* isprint pute strepy utime* 
assert exedp* frexp ispunet putehar strespn write* 
atant execv* fseanf isspaee putenv strdup 
atan2t execve* fseek* isupper puts strlen 
atof exeevp fstat* isxdigit putw strneat 
atoi exit ftell* Idexpt qsort strncmp 

C-7 



C Library Guide 

atol exp ftime* localtime rand strncpy 
besselt,tt fabs fwrite* locking* read* strpbrk 
bsearch fclose gcvt logt realloc strrchr 
cabs fcvt getc 10glOt rewind strspn 
calloc fdopen getchar longjmp sbrk strtok 
ceil feof getcwd lseek* scanf swab 
chdir* ferror getenv malloc setbuf system* 
chmod* fHush getpid* matherr setjmp tant 
chsize fgetc gets memccpy signal* tanht 
clearerr fgets getw memchr sint time 
close fileno gmtime memcmp sinht toascii 
cost floor hypot memcpy sprintf tolower 
cosht fmod isalnum memset sqrtt toupper 
creat* fopen* isalpha mktemp srand tzset 

* Operates differently or has a different meaning under DOS than under XENIX. 
t Implements UNIX System V -style error returns. 
tt Doesn't correspond to a single function, but to six functions named jO, jl, jn, yO, yl, and yn. 

C.9.2 Common Routines for DOS and UNIX System V 

The XENIX -compatible routines listed in the previous section are also 
compatible with the routines by the same names in UNIX System V 
environments. 

Note that most of the math functions in the DOS library implement error 
handling in the same manner as the UNIX System V routines by the same 
name. The math routines marked with a dagger (t) in the list are common 
routines for DOS and XENIX that implement System V-style error han­
dling. See Section C.9.1. 

C.9.3 Routines Specific to DOS 

The routines listed below are only available in the DOS C library. Pro­
grammers who are writing code to be ported to XENIX systems should 
avoid using these routines: 

bdos 
cgets 
cprintf 
cputs 

C-8 

flushall 
FP OFF 
FP-SEG 
fputchar 

isatty 
itoa 
kbhit 
labs 

segread 
setmode 
sopen 
spawnl 

strnset 
strrev 
strset 
strupr 



XENIX to DOS: A Cross Development System 

cscanf getch ltoa spawnle tell 
dosexterr getche mkdir spawnlp ultoa 
eof inp movedata spawnv ungetch 
exit int86 outp spawnve 

CcloseaU int86x putch spawnvp 
fgetchar intdos rename strcmpi 
ftlelength intdosx rmdir strlwr 

Section (DOS) in the XENIX Reference contains pages describing these 
routines. Refer to this section for more details on specific routines. 

C.IO Common System-Wide Variables 

The sections below list system-wide variables that are used in the DOS C 
library, as well as in XENIX and UNIX environments. 

These variables are set either by the super-user or the XENIX kernel (with 
the exception of the environ variable). Although they can be referenced, 
they cannot be altered. 

The variables specific to the DOS environment are also listed. 

C.IO.I Common Variables for DOS and XENIX 

The following is a list of system-wide variables used in the run-time 
library and available in both the DOS and XENIX environments: 

daylight 
sys_nerr 

Note 

environ 
timezone 

errno 
tzname 

Not all values of errno available on XENIX are used by the DOS 
run-time library. 

C-9 



C Library Guide 

C.IO.2 Common Variables for DOS and UNIX System V 

The XENIX-compatible system-wide variables listed in Section A.IO.I 
are also available in UNIX System V environments. There are no addi­
tional common variables for DOS and UNIX System V. 

C.IO.3 Variables Specific to DOS 

The following global variables are available only in the DOS C library. 
Programmers who are writing code to be ported to XENIX systems should 
avoid using these variables: 

doserrno 
-fmode 
_osmajor 
osminor 

ysp 

C.II Common Include Files 

Structure definitions, return value types, and manifest constants used in 
the descriptions of some of the common routines, may vary from environ­
ment to environment and are therefore fully defined in a set of include 
files for each environment. Include files provided with the DOS C library 
are compatible with include files by the same names on XENIX and UNIX 
systems. Some additional include files are compatible with include files 
by the same name in UNIX System V environments. 

Sections C.II.I and C.II.2 list the DOS include files that are compatible 
with XENIX and UNIX System V. The include files that apply only to 
DOS environments are listed in section C.II.3. 

C.I1.1 Common Include Files for DOS and XENIX 

The following DOS include files are compatible with the XENIX (and 
UNIX) include files by the same name: 

assert.h 
ctype.h 
errno.h 
Icntl.h 
math.h 

C-IO 

setjmp.h 
signal.h 
stdio.h 
time.h 
sys/ locking.h 

sys/stat.h 
sys/timeb.h 
sys/types.h 



XENIX to DOS: A Cross Development System 

C.ll.2 Common Include Files for DOS and UNIX System V 

The XENIX-compatible include files listed in section C.I1.1 are also com­
patible with the include files by the same names in UNIX System V 
environments. In addition, the names of the following DOS include files 
correspond to UNIX System V include files; however, the DOS include 
files may not contain all the constants and types defined in the 
corresponding UNIX System V include files. 

malloc.h 
memory.h 
search.h 
string.h 

C.ll.3 Include Files Specific to DOS 

The following include files are used only in DOS environments and do 
not have counterparts on XENIX and UNIX systems. 

conio.h 
direct.h 
dos.h 

io.h 
process.h 
share.h 

stdlib.h 
sys/utime.h 
v2tov3.h 

C.12 Differences Between Common Routines 

Sections C.12.1 through C.12.25 explain how the DOS routines in the 
common library for XENIX and DOS differ from their XENIX counter­
parts. These descriptions are intended to be used in conjunction with the 
more detailed descriptions of DOS and XENIX routines in the XENIX 
Reference. 

C.12.1 abort 

The DOS version of the abort routine terminates the process by a call to 
an exit routine rather than through a signal. Control is returned to the 
parent (calling) process with an exit status of 3 and the message: 

Abnormal program termination 

is sent to standard error. No core dump occurs on DOS. 

C-ll 



C Library Guide 

C.12.2 access 

The access routine checks the access to a given file. Under DOS, the real 
and effective user IDs I are non-existent. The permission (access) setting 
can be any combination of the following values. 

Value Meaning 

04 Read 

02 Write 

00 Check for existence 

The "Execute" access mode (01) is not implemented. 

In case of error, only the EACCES and ENOENT values may be returned 
for errno on DOS. 

C.12.3 chdir 

In case of error, only the ENOENT value may be returned for errno on 
DOS. 

C.12.4 chmod 

The chmod routine can set the "owner" access permissions for a given 
file, but all other permission settings are ignored. The mode argument 
can be anyone of the constant-expressions shown in the left column 
below; the equivalent XENIX value is shown in the right column. 

Constant-Expression 

S IRE AD 

S IWRITE 

S _ IREAD I S _ IWRITE 

Meaning 

Read by owner 

Write by owner 

Read and write by owner 

XENIX Value 

0400 

0200 

0000 

The S IREAD and S IWRITE constants are defined in the sys\stat.h 
include file. Note that-the OR operator (I) is used to combine these con­
stants to form read and write permission. 

C-12 



XENIX to DOS: A Cross Development System 

If write permission is not given, the file is treated as a read-only file. Giv­
ing write-only permission is allowed, but has no effect; under DOS, all 
files are readable. 

In case of error, only the ENOENT value may be returned for errno on 
DOS. 

C.12.S creat 

The creat routine creates a new file or prepares an existing file for writ­
ing. If the file is created, the access permissions are set as defined by the 
mode argument. Only "owner" permissions are allowed (see chmod 
above). 

In case of error, only the EACCES, EMFILE, and ENOENT values may 
be returned for errno on DOS. 

Use of the open routine is preferred over creat when creating or opening 
files in both DOS and XENIX environments. 

C.12.6 exec 

The DOS versions of the execl, execle, execlp, execv, execve, and 
execvp routines overlay the calling process, as in the XENIX environ­
ment. If there is not enough memory for the new process, the exec routine 
will fail and return to the calling process. Otherwise, the new process 
begins execution. 

Under DOS, the exec routines do not: 

• Use the close-on-exec flag to determine open files for the new pro­
cess. 

• Disable profiling for the new process (profiling is not available 
under DOS). 

• Pass on signal settings to the child process. Under DOS, all signals 
(including signals set to be ignored) are reset to the default in the 
child process. 

The combined size of all arguments (including the program name) in an 
exec routine under DOS must not exceed 128 bytes. 

In case of error, the E2BIG, EACCES, ENOENT, ENOEXEC, and 
ENOMEM values may be returned for errno on DOS. In addition, the 

C-13 



C Library Guide 

EMFILE value may be used; under DOS, the file must be opened to 
determine whether it is executable. 

C.12.7 fopen, freopen 

The DOS versions of the fopen and freopen routines open stream files 
just as they do in the XENIX environment. However, under DOS the fol­
lowing additional values for the type string are available. 

Value Meaning 

Opens the file in text mode. Opening a file in this mode 
causes translation of carriage retum/linefeed (CR-LF) 
character combinations into a single linefeed (LF) on 
input. Similarly, on output, linefeeds are translated into 
CR-LF combinations. 

b Opens the file in binary mode. This mode suppresses 
translation. 

See the DOS reference pages fopen(DOS) and freopen(DOS) in the 
XENIX Programmer's Reference for more information on their default set­
tings. 

The DOS and XENIX versions of these routines also differ in their 
interpretation of append mode ("a" or "a+"). When append mode is 
specified in the DOS version of fopen or freopen, the file pointer is repo­
sitioned to the end of the file before any write operation. Thus, all write 
operations take place at the end of the file. 

In the XENIX versions, all write operations take place at the current posi­
tion of the file pointer. In append mode, the file pointer is initially posi­
tioned at the end of the file, but if the file pointer is later repositioned, 
write operations take place at the new position rather than at the end of 
the file. 

C.12.S fread 

The DOS fread routine uses the low-level read function to carry out read 
operations. If the file has been opened in text mode, read replaces each 
CR-LF pair read from the file with a single LF character. The number of 
bytes returned is the number of bytes remaining after the the CR-LF pairs 
have been replaced. Thus, the return value may not always correspond to 
the actual number of bytes read. This is considered normal and has no 

C-14 



XENIX to DOS: A Cross Development System 

implications for detecting the end of the file. 

C.l2.9 fseek 

The DOS version of the fseek routine moves the file pointer to the given 
position, just as in the XENIX environment. However, for streams opened 
in text mode, fseek has limited use because carriage return-linefeed trans­
lations can cause fseek to produce unexpected results. The only fseek 
operations guaranteed to work on streams opened in text mode are: seek­
ing with an offset of zero relative to any of the origin values, or seeking 
from the beginning of the file with an offset value returned from a call to 
ftell. 

C.l2.l0 fstat 

DOS does not make as much information available for file handles as it 
does for full pathnames; thus, the DOS version of fstat returns less useful 
information than the stat routine. The DOS fstat routine can detect device 
files, but it must not be used with directories. 

The structure returned by fstat contains the following members. 

Member 

st mode 

st ino 

st dev 

st rdev 

st nlink 

st uid 

Meaning 

User read and write bits reflect the file's permis­
sion setting. The S _ IFCHR bit is set for a device; 
otherwise, the S _ IFREG bit is set. 

Not used. 

Either drive number of the disk containing the file, 
or the file handle in the case of a device. 

Either drive number of the disk containing the file, 
or the file handle in the case of a device. 

Always 1. 

Not used. 

Not used. 

C-15 



C Library Guide 

st size 

st_atime 

st mtime 

st ctime 

Size of the file in bytes. 

Time of last modification of file. 

Time of last modification of file (same as 
st_atime). 

Time of last modification of file (same as 
st_atime and st_mtime). 

In case of error, only the EBADF value may be returned for errno on 
DOS. 

C.I2.II ftell 

The DOS version of the ftell routine gets the current file pointer position, 
just as in the XENIX environment. However, for streams opened in text 
mode, the value returned by ftell may not reflect the physical byte offset, 
since text mode causes carriage return-linefeed translation. The ftell rou­
tine can be used in conjunction with the fseek routine to remember and 
return to file locations correctly. 

C.I2.I2 ftime 

Unlike the system time on XENIX systems, the DOS system time does not 
include the concept of a default time zone. Instead, ftime uses the value 
of a DOS environment variable named TZ to determine the time zone. 
The user can set the default time zone by setting the TZ variable. If TZ is 
not explicitly set, the default time zone corresponds to the Pacific Time 
Zone. See the reference page for ctime(S) in the XENIX Programmer's 
Reference for details on the TZ variable. 

C.I2.I3 fwrite 

The DOS fwrite routine uses the low-level write function to carry out 
write operations. If the file was opened in text mode, every linefeed (LF) 
character in the output is replaced by a carriage return-linefeed (CR-LF) 
pair before being written. This does not affect the return value. 

C-16 



XENIX to DOS: A Cross Development System 

C.12.14 getpid 

The getpid routine returns a process-unique number. Although the 
number may be used to uniquely identify the process, it does not have the 
same meaning as the process ID returned by getpid in the XENIX 
environment. 

C.12.1S locking 

The DOS and XENIX versions of the locking routine differ in several 
respects, as listed below. 

1. Under DOS, it is not possible to lock a file only against write 
access; locking a region of a file prevents both reading and writing 
in that region. This means that setting LK _ RLCK in the locking 
call is equivalent to setting LK _LOCK, and setting 
LK _ NBRLCK is equivalent to setting LK _ NBLCK. 

2. On DOS, specifying LK_LOCK or LK_RLCK will not cause a 
program to wait until the specified region of a file is unlocked. 
Instead, up to ten attempts are made to lock the file (one attempt 
per second). If the lock is still unsuccessful after 10 seconds, the 
locking function returns an error value. On XENIX, if the first 
attempt at locking fails, the locking process "sleeps" (suspends 
execution) and periodically "wakes" to attempt the lock again. 
There is no limit on the number of attempts, and the process can 
continue inde finitely. 

3. On DOS, locking of overlapping regions of a file is not allowed. 

4. On DOS, if more than one region of a file is locked, only one 
region can be unlocked at a time, and the region must correspond 
to a region that was previously locked. You cannot unlock more 
than one region at a time, even if the regions are adjacent. 

C.12.16 Iseek 

In case of error, only the EBADF and EINV AL values may be returned 
for errno on DOS. 

C-17 



C Library Guide 

C.12.17 open 

The open routine opens a file handle for a named file, just as in the 
XENIX environment. However, two additional oflag values (0 BINARY 
and 0 TEXT) are available and the 0 NDELAY and 0- SYNCW 
values are not available. - -

The 0 _BINARY flag causes the file to be opened in binary mode, regard­
less of the default mode setting. Similarly, the 0 _TEXT flag causes the 
file to be opened in text mode. 

In case of error, only the EACCES, EEXIST, EMFILE, and ENOENT 
values may be used for errno on DOS. 

C.12.18 read 

The DOS version of the read routine reads characters from the file given 
by a file handle, just as in the XENIX environment. However, if the file 
has been opened in text mode, read replaces each CR-LF pair read from 
the file with a single LF character. The number of-bytes returned is the 
number of bytes remaining after the the CR-LF pairs have been replaced. 
Thus, the return value may not always correspond with the actual number 
of bytes read. This is considered normal and has no implications for 
detecting an end-of-file condition. 

In case of error, only the EBADF value may be used for errno on DOS. 

C.12.19 signal 

The DOS version of the signal routine can only handle the SIGINT sig­
nal. In DOS, SIGINT is defined to be INT 23H (the CONTROL-C signal). 

On DOS, child processes executed through the exec or spawn routines do 
not inherit the signal settings of the parent process. All signal settings 
(including signals set to be ignored) are reset to the default settings in the 
child process. 

The DOS version of signal uses only the EINVAL for errno. 

C-18 



XENIX to DOS: A Cross Development System 

C.12.20 stat 

The stat routine returns a structure defining the current status of the given 
file or directory. The structure members returned by stat have the"follow­
ing names and meanings on DOS. 

Value 

st mode 

st ino 

st dev 

st rdev 

st nlink 

st uid 

st size 

st atime 

st mtime 

st ctime 

Meaning 

User read and write bits reflect the file's permis­
sion setting. The S IFDIR bit is set for a device; 
otherwise, the S _ IFREG bit is set. 

Not used. 

Drive number of the disk containing the file. 

Drive number of the disk containing the file. 

Always 1. 

Not used. 

Not used. 

Size of the file in bytes. 

Time of last modification of file. 

Time of last modification of file (same as 
st_atime). 

Time of last modification of file (same as 
st _ atime and st _ mtime). 

In case of error, only the ENOENT value may be returned for errno on 
DOS. 

C-19 



C Library Guide 

C.12.21 system 

The system routine passes the given string to the operating system for 
execution. For DOS to execute this string, the full pathname of the direc­
tory containing COMMAND. COM must be assigned to the COMSPEC or 
PATH environment variable. The system call returns an error if 
COMMAND.COM cannot be found using these variables. 

In case of error, only the E2BIG, ENOENT, ENOEXEC and ENOMEM 
values may be returned for errno on DOS. 

C.12.22 umask 

The umask routine can set a mask for "owner" read and write access 
permissions only. All other permissions are ignored. (See the discussion 
of the access routine above for details.) 

C.12.23 unlink 

The DOS version of the unlink routine always deletes the given file. 
Since DOS does not implement multiple "links" to the same file, unlink­
ing a file is the same as deleting it. 

In case of error, only the EACCES and ENOENT values may be returned 
for errno on DOS. 

C.12.24 utime 

The DOS utime routine sets the file modification time only; DOS does 
not maintain a separate access time. 

In case of error, the EACCES and ENOENT values may be returned for 
errno on DOS. In addition, the EMFILE value may be used; under DOS, 
the file must be opened to set the modification time. 

C.12.2S write 

The write routine writes a specified number of characters to the file 
named by the given file handle, just as in the XENIX environment. How­
ever, if the file has been opened in text mode, every linefeed (LF) charac­
ter in the output is replaced by a carriage return-linefeed (CR-LF) pair 
before being written. This does not affect the return value. 

C-20 



XENIX to DOS: A Cross Development System 

In case of error, only the EBADF and ENOSPC values may be returned 
for errno on DOS. 

C.13 Differences in Definitions 

Many of the special definitions given in intro(S) in the 
XENlXProgrammer'sReference do not apply to the common routines when 
used in the DOS environment. The following is a list of the differences. 

The process ID is still a unique integer, but does not have the same mean­
ing as in the XENIX environment. 

The parent process, process group, tty group, real user, real group, 
effective user and effective group IDs are not used by the common routines 
when run under DOS. Furthermore, there is no super-user or special 
processes in the DOS environment. 

The filenames in DOS have two parts: a filename and a filename exten­
sion. Filenames may be any combination of up to eight letters or digits. 
Filename extensions may be any combination of up to three letters or 
digits, preceded by a period (.). 

The pathnames in DOS may be any combination of directory names 
separated by a backslash (\). The slash (f) used in the XENIX environ­
ment is not allowed unless the user has redefined the leading character 
used with options in DOS command lines (this character is initially the 
slash). Directory names may be any combination of up to eight letters or 
digits. The special names "." and " .. " refer to the current directory and 
the parent directory, respectively. 

The drive names may be used at the begin of a pathname to specify a 
specific disk drive or device. Drives names are generally a letter or com­
bination of letters and digits followed by a colon (:). 

The access permissions in DOS are restricted to read and write by the 
owner of the file. Since all users own all files in DOS, access permissions 
do little more than define whether or not the file is a read-only file or can 
be modified. Execution permission and other permissions defined for files 
in the XENIX environment do not apply the files in the DOS environment. 

C-21 





Replace this Page 
with Tab Marked: 

Index 





Index 

> (redirection symbol) 6-3 
{ } (braces) 1-4 
[ ] (brackets) 1-4 
1 (bar) 1-4 
/ (forward slash), pathname delimiter used as 

2-7 ' 
1 (pipe symbol) 4-15, 6-3 
< (redirection symbol) 6-3 

a6414-3 
abort 

A 

described 4-16 
differences from XENIX version C-l1 
XENIX version, differences from B-7 

abs 
described 4-11 

access 
described 4-5 
differences from XENIX version C-12 
XENIX version, differences from B-7 

acct routine 4-26 
acct.h include file 5-9 
acos 

described 4-11 
floating-point support 2-8 

addch 4-18 
addch function 7-3, 7-11 
Adding 

characters 7 -11 
strings 7-12 
windows 7-22 

addstr 4-18 
addstr function 7-12 
alarm 4-16 
Allocation See Memory allocation 
ANSI 

include files B-7 
run-time library B-4 

ANSIC 
compatibility with 1-1 

a.out.h include file 5-8 
Archive file 5-1 
Archive number 5-1 

argc,argument count variable 
defining 6-4 
described 6-4 

Argument type 
checking 2-5 
lists 2-5 

Arguments 
macros, with side effects 2-3 
variable number 2-5 

argv,argument value array 
defining 6-4 
described 6-4 

ar.h include file 5-1 
asctime 4-27 
asin 

described 4-11 
floating-point support 2-8 

assert 4-28 
assert.h include file 5-1, 5-9 
atan 

described 4-11 
floating-point support 2-8 

atan2 
described 4-11 
floating-point support 2-8 

atof 4-3 
floating-point support 2-8 

atoi 4-3 
atol4-3 

B 

Backslash (\) 
pathname delimiter, used as 2-7 

Bar (I) 1-4 
Bessel functions 

described 4-11 
floating-point support 2-8 

Bold font 1-4 
bool flag 7-5 
box 4-18 
box function 7-35 
Braces ({ }) 1-4 
Brackets ([]) 1-4 
brk.h include file 5-9 
bsearch 4-22 
BSIZE, buffer size value 6-1 
Buffer manipulation 

include file 4-1 
memccpy 4-1 

I-I 



Index 

Buffer manipulation (continued) 
memchr4-1 
memcmp4-1 
memcpy 4-1 
memset4-1 
routines 5-5 

Buffered I/O 
character pointer 6-34 
creating 6-26 
described 6-24 
flushing a buffer 6-27 
returning a character 6-26 

buf.h include file 5-9 
Bytes 

reading from a file 6-30 
reading from a pipe 11-4 
writing to a file 6-30 
writing to a pipe 11-4 

c 

cabs 
described 4-11 
floating-point support 2-8 

cabs function A-8 
calloc 4-13 
calloc function 12-3 
callo.h include file 5-9 
Capital letters 

small 1-4 
use of 1-4 

Case sensitivity 
C language 2-7 
XENIX2-7 

CBREAKmode 
automatic setting 7-13, 7-14, 7-15,7-26 
clearing the terminal 7-41 
terminal configuration 7-41 

ceil 
floating-point support 2-8 

char type 7-5, 7-35 
Character classification and conversion 

isalnum 4-2 
isascii 4-2 
isgraph 4-2 
islower 4-2 

Character, classification and conversion 
isprint 4-2 
ispunct 4-2 
isspace 4-2 
isupper 4-2 
isxdigit 4-2 

1-2 

Character, classification and conversion 
(continued) 

toascii 4-2 
tolower 4-2 
_toupper 4-2 

Character functions, described 8-1 
Character pointer 

described 6-34 
moving 6-34, 6-35 
moving to start 6-36 
reporting position 6-36 

Characters 
adding 7-11 
alphabetic 8-3 
alphanumeric 8-3 
ASCII 8-1 
bold display 7-35 
control 8-4 
converting to 

ASCII 8-2 
lowercase 8-7 
uppercase 8-7 

decimal digits 8-4 
deleting 7-28 
hexadecimal digit 8-5 
inserting 7-16,7-27 
lowercase 8-6 
printable 8-5, 8-6 
printing 7-12 
processing, described 8-1 
punctuation 8-5 
reading 7-13,7-15,7-24,7-33 
reading from 

a file 6-15 
standard input 6-6 

restoring normal 7-36 
uppercase 8-6 
writing to 

a file 6-18 
standard output 6-9 

chdir 4-5 
differences from XENIX version C-12 
XENIX version, differences from B-8 

Child process, described 9-7 
chmod 

described 4-5 
differences from XENIX version C-12 
XENIX version, differences from B-8 

chown4-5 
chroot 4-5 
chsize 4-5 
clear 4-18 
clear flag 

clearing 7-9 



clear flag (continued) 
clear-screen sequence 7-39 
function set 7-29 
program example 7-18 

clear function 7-3, 7-18 
clearerr 2-6, 4-8 
Clearing 

screens 7-18,7-19,7-28 
tenninal modes 7-41 

clearok 4-18, 4-19 
clearok function 7-38,7-39 
clear-screen flag 7-38 
clock 4-27 
clock_t type 3-3 
close 4-10 

function 6-31 
closedir routine 4-4 
clrtobot 4-18, 4-19 
clrtobot function 7-19 
clrtoeoI4-18,4-19 
clrtoeol function 7-19 
COLS variable 7-5,7-10 
Command line 

arguments, storage order 6-4 
described 6-4 

Commands 
dbm4-3 
notational conventions 1-4 
tenncap 7-36 

Common library 
common routines, listed B-1 
global variables B-5 
include files B-6, C-1O 
listing of common routines C-7, C-8 
run-time routine, differences B-7 
run-time routines 

differences C-l1 
system-wide variables C-9 

Compatibility 
differences, listed B-7 
differences listed C-l1 
global variables B-5 
include files B-6, C-1O 
math routines B-1 
run-time routines B-1, C-7 
system-wide variables C-9 
UNIX and XENIX B-1 
XENIX and ANSI C 1-1 
XENIX and MS-DOS 1-1 
XENIX and UNIX 1-1 

conf.h include file 5-9 
Conventions, notational 1-4 
Conversion 

time 5-7 

Core file 5-2 
core.h include file 5-2 
cos 

described 4-11 
floating-point support 2-8 

cosh 
described 4-11 
floating-point support 2-8 

cosh function A-8 
creat 

described 4-10 

Index 

differences from XENIX version C-13 
XENIX version, differences from B-8 

Creating 
subwindows 7-21 
windows 7-20 

creatsem 4-23 
creatsem function 12-51 
cnnode 4-18, 4-19 
cnnode function 7-40, 7-41 
Cross development system 

assembly language source files C-4 
compiling a DOS source file C-2 
creating a DOS program C-5 
creating an DOS library C-7 
creating object files C-4 
creating source files C-2 
-dos option C-l 
dosld commands C-l 
elements of C-l 
from XENIX to DOS C-5 
linking object files C-4 
running a DOS program C-5 
DOS-specific routines C-8 
transfer of files C-l 
transferring programs C-5 

ctennid 4-28 
ctime 4-27 
ctype.h file 8-1 
ctype.h include file 5-2 
Current screen 7-3 
curscr pointer 7-3, 7-5, 7-31 
curses library 7-1, 7-3 
curses.h include file 5-2,7-4 
cursor flag 7-9, 7-38 
Cursor movement 7-1,7-42 
cuserid routine 4-26 

1-3 



Index 

D 

Data conversion 
a6414-3 
atof 4-3 
atoi 4-3 
atol4-3 
ecvt 4-3 
fcvt 4-3 
gcvt 4-3 
include files 4-3 
itoa 4-3 
13toI4-3 
164a 4-3 
Itoa 4-3 
ltol3 4-3 
sget14-3 
sput14-3 
strtol4-3 
strtoul4-3 
ultoa 4-3 

Data Stream functions 
accessing files 6-12 
accessing standard files 6-13 
described 6-12 
file pointers 6-13 
random access 6-34 

Database, large 5-2 
Database-manipulation routines 

dbminit4-3 
delete 4-3 
fetch 4-3 
firstkey 4-3 
nextkey 4-3 
store 4-3 

daylight variable 3-1 
dbm command 4-3 
dbm.h include file 5-2 
dbminit4-3 
Debugging, restrictions 6-3 
Declarations, function See Function declarations 
Default 

terminal modes 7-9 
terminal size 7-10 
window flags 7-9 

Definitions 
constant 5-1 
macro 5-1 
structure 5-1 
type 5-1 

defopen 4-28 
defread 4-29 
DeCterm variable 7-5, 7-8 

1-4 

de1ch 4-18,4-19 
de1ch function 7-17 
delete 4-3 
deleteln 4-18,4-19 
deleteln function 7-3, 7-18 
Deleting 

characters 7-28 
lines 7-18,7-28 
windows 7-34 

Delimiters for pathname components See 
Pathnames 

delwin 4-18, 4-19 
delwin function 7-34 
Directory names, notational conventions 1-4 
Directory operation routines 

closedir 4-4 
descriptions 4-4 
opendir 4-4 
readdir 4-4 
rewinddir 4-4 
seekdir 4-4 
telldir 4-4 

dir.h include file 5-10 
dmpwin function 7-30 
drand48 routine 4-18 
dumprestor.h include file 5-2 
Dumps 5-2 
dup 

described 4-10 
dup function 11-6 
dup2 

described 4-10 

E 

\ (backslash) 
pathname delimiter, used as 2-7 

E2BIG ermo value A-2 
EACCES ermo value A-3 
EAGAIN ermo value A-3 
EBADF ermo value A-2 
EBUSY ermo value A-3 
ECHILD ermo value A-3 
echo 4-18, 4-19 
echo function 7-40, 7-41 
ECHO mode 

clearing the mode 7-41 
copying to the standard screen 7-13,7-14,7-

15, 7-26 
terminal configuration 7-9, 7-41 

ecvt 4-3 
EDEADLOCK ermo value A-6 



ED OM ermo value A-6, A-8 
EEXISTermo value A-4 
EFAULT ermo value A-3 
EFBIG ermo value A-5 
EIDRM ermo value A-7 
EINTR ermo value A-2 
EINVAL ermo value A-4 
EIO ermo value A-2 
EISDIR ermo value A-4 
EISNAM ermo value A-7 
Ellipses, use of 1-4 
EMFILE ermo value A-5 
EMLINK ermo value A-5 
ENAVAIL ermo value A-6 
endgrent routine 4-6 
End-of-file 

condition 2-7 
testing 6-21 
value, EOF 6-1 

endpwent routine 4-6 
endutent routine 4-26 
endwin 4-18, 4-19 
endwin function 7-7, 7-10, 7-43 
ENFILE ermo value A-4 
ENODEV ermo value A-4 
ENOENTermo value A-I 
ENOEXEC ermo value A-2 
ENOLCK ermo value A-7 
ENOMEM ermo value A-3 
ENOMSG ermo value A-7 
ENOSPC ermo value A-5 
ENOTBLK ermo value A-3 
ENOTDIR ermo value A-4 
ENOTNAM ermo value A-6 
ENOTIY ermo value A-5 
environ variable 3-2 
Environment 

variable names, notational conventions 1-4 
Environment table 

described 4-30 
ENXIO ermo value A-2 
eof2-7,4-1O 
EOF, end-of-file value 6-1 
EPERM ermo value A-I 
EPIPE ermo value A-6 
erand48 routine 4-18 
ERANGE ermo value A-6, A-8 
erase 4-18,4-19 
erase function 7-18 
erf 

described 4-11 
erfc 

described 4-11 
EROFS ermo value A-5 

Index 

ERR 7-5 
ermo 

values 
description A-I 
E2BIG A-2 
EACCES A-3 
EAGAIN A-3 
EBADFA-2 
EBUSY A-3 
ECHILDA-3 
EDEADLOCK A-6 
EDOM A-6, A-8 
EEXIST A-4 
EFAULT A-3 
EFBIG A-5 
EIDRMA-7 
EINTRA-2 
EINVALA-4 
EIOA-2 
EISDIRA-4 
EISNAMA-7 
EMFILEA-5 
EMLINKA-5 
ENAVAILA-6 
ENFILEA-4 
ENODEVA-4 
ENOENT A-I 
ENOEXECA-2 
ENOLCKA-7 
ENOMEMA-3 
ENOMSGA-7 
ENOSPCA-5 
ENOTBLKA-3 
ENOTDIRA-4 
ENOTNAMA-6 
ENOTIY A-5 
ENXIOA-2 
EPERMA-I 
EPIPEA-6 
ERANGE A-6, A-8 
EROFSA-5 
ESPIPEA-5 
ESRCHA-2 
ETXTBSY A-5 
EUCLEANA-6 
EXDEV A-4 
list A-I 

variables A-I 
ermo variable 

described 2-6,3-2 
error numbers 4-30 
using 2-7 

ermo.h include file 5-3, 5-10, A-I 
Error messages 

1-5 



Index 

Error messages (continued) 
file 5-3 
math A-8 
system A-I 

Errors 
handling 

providing for 2-6 
stream operations 2-6 

indicator 
ferror, with 2-6 

returns 2-6 
testing files 6-21 

ESPIPE ermo value A-5 
ESRCH ermo value A-2 
/etc/termcap file 7-2 
ETXTBSY ermo value A-5 
EUCLEAN ermo value A-6 
example program, msgctl 12-35 
example program, msgget 12-31 
example program, msgop 12-42 
example program, semctl 12-71 
example program, semget 12-67 
example program, semop 12-82 
example program, shmct112-107 
example program, shmget 12-103 
example program, shmop 12-114 
EXDEV ermo value A-4 
exec family 

described 4-16 
differences from XENIX version C-13 
XENIX version, differences from B-9 

exec function 9-3 
execargs.h include file 5-3 
execl 

argument-type-checking limitations 2-6 
described 4-16 
differences from XENIX version C-13 
function 9-5 
XENIX version, differences from B-9 

execle 
argument-type-checking limitations 2-6 
described 4-16 
differences from XENIX version C-13 
XENIX version, differences from B-9 

execlp 
argument-type-checking limitations 2-6 
described 4-16 
differences from XENIX version C-13 
XENIX version, differences from B-9 

execlpe 
argument-type-checking limitations 2-6 

execv 
described 4-16 
differences from XENIX version C-13 

1-6 

execv (continued) 
function 9-5 
XENIX version, differences from B-9 

execve 
described 4-16 
differences from XENIX version C-13 
XENIX version, differences from B-9 

execvp 
described 4-16 
differences from XENIX version C-13 
XENIX version, differences from B-9 

exit 4-16 
function 9-3 

exit function 
required function 7-10 

exp 
described 4-11 
floating-point support 2-8 

exp function A-8 

F 

fabs 
described 4-11 
floating-point support 2-8 

fblk.h include file 5-10 
msgctl, using 12-34 
msgget, using 12-27 
msgop, using 12-40 
semctl, using 12-70 
semget flags 12-65 
semget, using 12-63 
semop, using 12-80 
shmctl, using 12-106 
shmget flags 12-102 
shmget, using 12-100 
shmop, using 12-113 
fclose 4-8 

function 6-22 
fclose function 

closing a file 6-2 
fcntl4-5 
fcntl.h include file 5-3 
fcvt 4-3 
fdopen 4-8 
fdopen routine 

valid pointer 6-2 
feof 2-7, 4-8 

function 6-21 
ferror 2-6, 4-8 

function 6-21 
fetch 4-3 



fflush 4-8 
function 6-27 

fgetc 4-8 
function 6-15 

fgets 4-8 
function 6-15 

FILE 
type 3-3 

File control routines 
group 4-6 
password 4-6 

File descriptors 
creating 6-29 
described 6-28 
freeing 6-31 
pipes 11-1 
predefined 6-28 

FILE, file pointer type 6-1 
File handling 

access 4-5 
chdir4-5 
chmod4-5 
chown4-5 
chsize 4-5 
fcnt14-5 
fstat 4-5 
getcwd 4-5 
include files 4-5 
ioct14-5 
isatty 4-5 
link 4-5 
locking 4-5 
mknod4-5 
mktemp4-5 
mount 4-5 
stat 4-5 
umask 4-5 
umount 4-5 
unlink 4-5 
ustat 4-5 
utime 4-5 

File names 
notational conventions 1-4 

File pointers 6-2 
creating 6-14 
defining 6-13 
described 6-13 
file descriptors 6-28 
FILE type 6-13 
freeing 6-22 
NULL value 6-13 
pipes 11-1 
predefined 6-13 
recreating 6-25 

File routines 
group and password control 

endgrent 4-6 
endpwent 4-6 
getgrent 4-6 
getgrgid 4-6 
getgmam 4-7 
getpass 4-7 
getpw 4-7 
getpwent 4-7 
getpwnam 4-7 
getpwuid 4-7 
putpwent 4-7 
setgrent 4-7 
setpwent 4-7 

FILE type 6-2 
file.h include file 5-10 
Filename conventions 2-7 
fileno 4-8 
Files 

archive 5-1 
buffers 6-24, 6-26, 6-27 
closing 6-22 

low-level access 6-31 
core 5-2 
/etc/tenncap 7-2, 7-8 
/etc/tenninfo 7-2 
include 5-1 
inherited by processes 9-9 
library 

libcurses.a 7-4 
libtermlib.a 7-4 

locking 12-8 
opening 6-14 

for low-level access 6-29 
pipes 4-14 
random access 6-34 
reading 

bytes 6-30 
characters 6-15 
formatted data 6-17 
records 6-16 
strings 6-15 

reopening 6-25 

Index 

standard error See Standard error files 
standard input See Standard input files 
standard output See Standard output files 
testing 

end-of-file condition 6-21 
for errors 6-21 

writing 
bytes 6-30 
characters 6-18 
formatted output 6-19 

1-7 



Index 

Files (continued) 
writing (continued) 

records 6-20 
strings 6-19 

filsys.h include file 5-10 
firstkey 4-3 
Flags 

clear 7-9, 7-18, 7-29, 7-39 
clear screen 7-38 
cursor 7-9, 7-38 
scroll 7-9, 7-38 
tenninal7-43 
window 7-38 
window default 7-9 

Floating point 
support 2-8 

floor 
described 4-11 
floating-point support 2-8 

fmod 
described 4-11 
floating-point support 2-8 

fopen 4-8 
differences from XENIX version C-14 
function 6-14 
XENIX version, differences from B-10 

fopen function 
reading and writing to a file 6-2 

fopen routine 
valid pointer 6-2 

fork 4-16 
function 9-7 

Format 
tenncap 7-9 

Formatted input 
reading from 

a file 6-17 
a pipe 11-2 
standard input 6-8 

Formatted output 
writing to 

a file 6-19 
a pipe 11-2 
standard output 6-11 

Forward slash (f), pathname delimiter, used as 
2-7 

fprintf 4-8 
argument-type-checking limitations 2-5 
function 6-19 

fputc 4-8 
function 6-18 

fputs 4-8 
function 6-19 

fread 4-8 

1-8 

fread 4-8 (continued) 
differences from XENIX version C-14 
XENIX version, differences from B-IO 

fread function 6-16 
free function 12-4 
freopen 4-8 

differences from XENIX version C-14 
function 6-25 
XENIX version, differences from B-1 0 

freopen routine 
valid pointer 6-2 

frexp 
described 4-11 
floating-point support 2-8 

fscanf 4-8 
argument-type-checking limitations 2-5 
function 6-17 

fseek 4-10 
differences from XENIX version C-15 
function 6-35 
XENIX version, differences from B-1 0 

fstat 
described 4-5 
differences from XENIX version C-15 
XENIX version, differences from B-ll 

fte1l4-10 
differences from XENIX version C-16 
function 6-36 
XENIX version, differences from B-12 

ftime 
described 4-27 
differences from XENIX version C-16 
XENIX version, differences from B-12 

ftok 4-23 
ftw.h include file 5-3 
Function declarations 2-5 
Functions 

addch 4-18 
addstr 4-18 
box 4-18 
clear 4-18 
clearok 4-18 
clrtobot 4-18 
clrtoeol 4-18 
crmode 4-18 
cursor 5-2 
declarations 5-1 
delch 4-18 
deleteln 4-18 
delwin 4-18 
echo 4-18 
endwin 4-18 
erase 4-18 
exit 7-10 



Functions (continued) 
getch 4-18 
getstr 4-18 
gettmode 4-18 
getyx 4-18 
inch 4-18 
initscr 4-18 
insch 4-18 
insertln 4-18 
leaveok 4-18 
longname 4-18 
math 

cabs A-8 
cosh A-8 
exp A-8 
hypot A-8 
library A-8 
log A-8 
10glO A-8 
pow A-8 
sinh A-8 
sqrt A-8 
tanh A-8 

message control 4-14 
move 4-18 
mv 4-18 
mvcur4-18 
mvwin4-18 
newwin 4-18 
n14-18 
nocrmode 4-18 
noecho 4-18 
non14-18 
noraw 4-18 
overlay 4-18 
overwrite 4-18 
pelose 4-14 
perror A-I 
pipe 4-14 

pelose 4-15 
pipe 4-15 
popen 4-15 
read 4-15 
write 4-15 

popen 4-14 
printw 4-18 
process control 

exec 9-3 
raw 4-18 
refresh 4-18 
resetty 4-18 
savetty 4-18 
scanw 4-18 
screen 5-2 

Index 

Functions (continued) 
screen processing 4-18 

addch 7-3, 7-11 
addstr 7-12 
box 7-35 
clear 7-3, 7-18 
clearok 7-38, 7-39 
clrtobot 7-19 
clrtoeol 7-19 
crmode 7-40 
delch 7-17 
delete In 7-3,7-18 
delwin 7-34 
echo 7-40 
endwin 7-7,7-10,7-43 
erase 7-18 
getch 7-13 
getstr 7-14 
gettmode 7-10,7-43 
getyx 7-37 
inch 7-33 
initscr See initscr function 
insch 7-16 
insertln 7-3,7-17 
leaveok 7-38 
long name 7-44 
move 7-3, 7-16, 7-43 
mv prefix 7-40 
mvcur7-42 
mvwin 7-32 
newwin 7-2, 7-20 
nI7-40,7-41 
nocrmode 7-41 
noecho 7-41 
non17-42 
noraw 7-42 
overlay 7-3,7-31 
overwrite 7-3,7-32 
printw 7-12 
raw 7-40, 7-41 
refresh See refresh function 
resetty 7-43 
savetty 7-43 
scanw 7-15 
scroll 7-39 
scrollok 7-38 
setterm 7-10,7-43 
standend 7-36 
standout 7-35 
subwin 7-2, 7-21 
touchwin 7-34 
waddch 7-3, 7-23 
waddstr 7-23 
welear 7-28 

1-9 



Index 

Functions (continued) 
screen processing 4-18 (continued) 

wclrtobot 7-28, 7-29 
wclrtoeol 7-28,7-29 
wde1ch 7-28 
wdeleteln 7-28 
werase 7-28, 7-29 
wgetch 7-24 
wgetstr 7-24, 7-25 
winch 7-33 
winsch 7-27 
winsertln 7-27 
wmove 7-3, 7-26, 7-43 
wprintw 7-23 
wrefresh 7-3, 7-30, 7-43 
wscanw 7-24, 7-25 
wstandend 7-36 
wstandout 7-36 

scroll 4-18 
scrollok 4-18 
setterm 4-18 
standend 4-18 
standout 4-18 
subwin 4-18 
touchwin 4-18 
waddch 4-18 
waddstr 4-18 
wclear 4-18 
wclrtobot 4-18 
wclrtoeol 4-18 
wde1ch 4-18 
wdeleteln 4-18 
werase 4-18 
wgetch 4-18 
wgetstr 4-18 
winch 4-18 
w~ndow See Functions, screen processing 
wmsch 4-18 
winsertln 4-18 
wmove 4-18 
wprintw 4-18 
wrefresh 4-18 
wscanw 4-18 
wstandend 4-18 
wstandout 4-18 

Functions, advantages over macros 2-1 
fwrite 4-8 

differences from XENIX version C-16 
function 6-20 
XENIX version, differences from B-12 

fxlist 4-29 

1-10 

G 

gamma 
described 4-11 

gcvt 4-3 
getc 4-8 

functi on 6-15 
getch 4-18, 4-19 
getch function 7-13 
getchar 4-8 
getchar function 6-6 

reading the standard input 4-8 
getcwd 4-5 
getenv 4-29 
getgrent routine 4-6 
getgrgid routine 4-6 
getgmam routine 4-7 
getlogin routine 4-26 
getopt 4-29 
getpass routine 4-7 
getpgrp 4-16 
getpid 

described 4-16 
differences from XENIX version C-16 
XENIX version, differences from B-12 

getppid 4-16 
getpw routine 4-7 
getpwent routine 4-7 
getpwnam routine 4-7 
getpwuid routine 4-7 
gets 4-8 

function 6-7 
gets function 

files 4-8 
getstr 4-18, 4-19 
getstr function 7-14 
getting message queues 12-27 
gettmode 4-18, 4-19 
gettmode function 7-10, 7-43 
getuid routine 4-26 
getuline routine 4-26 
getutent routine 4-26 
getw 4-8 
getyx 4-18,4-19 
getyx function 7-37 
Global variables 

accessing 3-1 
common library, used in B-5 
daylight 3-1 
environ 3-2 
ermo 



Global variables (continued) 
ermo (continued) 

described 3-2 
sys3rrlist 

described 3-2 
sys_nerr 3-2 
time zone 3-1 
tzname 3-1 

gmtime 4-27 
Goto, nonlocal 4-31 
Greenwich mean time 4-28 
Group files 4-6 
grp.h include file 5-3 
gsignal4-16 

H 

Huge arrays, used in library functions 2-9 
Huge pointers, used in library functions 2-9 
hypot 

described 4-11 
floating-point support 2-8 

hypot function A-8 

I 

inch 4-18, 4-19 
inch function 7-33 
Include file 

tenninfo.h 7-4 
Include files 

buffer manipulation routines, used with 4-1 
common library, used in B-6 
curses.h 7-4 
data conversion 4-3 
ermo.h A-I 
file handling 4-5 
in common library C-lO 
math routines 4-12 
math.h A-8 
memory allocation 4-13 
searching and sorting 4-22 
stdio.h 6-2 
string manipulation 4-24 
system 

acct.h 5-9 
a.out.h 5-8 
assert.h 5-9 
brk.h 5-9 

Include files (continued) 
system (continued) 

buf.h 5-9 
callo.h 5-9 
conf.h 5-9 
dir.h 5-10 
ermo.h 5-10 
fblk.h 5-10 
file.h 5-10 
filsys.h 5-10 
inode.h 5-10 
ino.h 5-10 
iobuf.h 5-11 
ioctl.h 5-11 
ipc.h 5-11 
lock.h 5-11 
locking.h 5-11 
machdep.h 5-11 
map.h5-11 
mmu.h5-11 
mount.h 5-12 
msg.h 5-12 
param.h 5-12 
proc.h 5-12 
reg.h 5-12 
relsym86.h 5-13 
relsym.h 5-13 
sd.h 5-13 
sdu.h 5-13 
sem.h 5-14 
signal.h 5-14 
sites.h 5-14 
stat.h 5-14 
sysinfo.h 5-14 
sysmacros.h 5-14 
systm.h 5-15 
text.h 5-15 
timeb.h 5-15 
times.h 5-15 
ttold.h 5-15 
tty.h 5-15 
types.h 5-16 
ulimit.h 5-16 
user.h 5-16 
utsname.h 5-16 
var.h 5-16 

time routines 4-27,4-28 
user 

ar.h 5-1 
assert.h 5-1 
core.h 5-2 
ctype.h 5-2 
curses.h 5-2 
dbm.h5-2 

Index 

1-11 



Index 

Include files (continued) 
user (continued) 

dumprestor.h 5-2 
ermo.h 5-3 
execargs.h 5-3 
fcntl.h 5-3 
ftw.h 5-3 
grp.h 5-3 
macros.h 5-3 
malloc.h 5-4 
math.h 5-4 
memory.h 5-5 
mnttab.h 5-5 
mon.h 5-5 
pwd.h 5-5 
regexp.h 5-5 
sd.h 5-6 
search.h 5-6 
setjmp.h 5-6 
sgtty.h 5-6 
signal.h 5-6 
stand.h 5-6 
stdio.h 5-7 
string.h 5-7 
termio.h 5-7 
time.h 5-7 
unlstd.h 5-8 
ustat.h 5-8 
utmp.h 5-8 
values.h 5-8 
varargs.h 5-8 

/usr/include 5-1 
/usr/include/sys 5-8 

Initializing screens 7-7 
initscr 4-18, 4-19 
initscr function 

clearing flags 7-9 
initializing screen processing 7-3,7-7,7-10 
returning TrY mode 7-43 
setting ECHO mode 7-9 
setting screen size 7-10 
terminal-capability descriptions 7-8 

inode.h include file 5-10 
ino.h include file 5-10 
Input/Output See I/O 
insch 4-18, 4-19 
insch function 7-16 
Inserting 

characters 7-16,7-27 
lines 7-17,7-27 

insertln 4-18, 4-19 
insertln function 7-3, 7-17 
int 7-5 
I/O 

1-12 

I/O (continued) 
low level 

close 4-10 
creat 4-10 
dup 4-10 
dup24-1O 
eof 4-10 
ermo, use of 2-7 
error handling 2-7 
fseek 4-10 
fte1l4-1O 
lseek 4-10 
open 4-10 
read 4-10 
rewind 4-10 
write 4-10 

stream 4-8 
I/O routines 

gets 4-8 
printf 4-8 
putchar 4-8 
puts 4-8 
scanf 4-8 
standard files 4-8 
stream 4-8 

iobuf.h include file 5-11 
ioctl4-5 
ioctl.h include file 5-11 
ipc.h include file 5-11 
isalnum 4-2 

function 8-3 
isaplha function 8-3 
isascii 4-2 
is ascii function 8-1 
isatty 4-5 
iscntrl function 8-4 
isdigit 4-2 
is digit function 8-4 
isgraph 4-2 
is lower 4-2 
is lower function 8-6 
isprint 4-2 
isprint function 8-5 
ispunct 4-2 
ispunct function 8-5 
isspace 4-2 
isspace function 8-6 
isupper4-2 
isupper function 8-6 
isxdigit 4-2 
isxdigit function 8-5 
Italics 1-4 
itoa 4-3 



J 

jO See Bessel functions 
j 1 See Bessel functions 
jrnp_buf type 3-3 
jn See Bessel functions 
jrand48 routine 4-18 

K 

Key sequences, notational conventions 1-4 
kill 4-16 

L 

13toI4-3 
164a 4-3 
1cong48 routine 4-18 
Idexp 

described 4-11 
floating-point support 2-8 

leaveok 4-18,4-19 
leaveok function 7-38 
Hind 4-22 
libcurses.a library file 7-4 
Library 

curses 7-1, 7-3 
cursor movement 7-1 
mathA-8 
screen processing 7-5 
screen updating 7-1 
terminfo 7-3 

libtermcap.a library file 7-4 
Lines 

deleting 7-18,7-28 
inserting 7-17, 7-27 

LINES variable 7-5, 7-10 
link 4-5 
Local time corrections 3-1 
localtime 4-27 
lock 4-16 
lock.h include file 5-11 
locking 

described 4-5 
differences from XENIX version C-17 
XENIX version, differences from B-13 

Locking files 
described 12-8 

Index 

Locking files (continued) 
preparation 12-10 
sys/locking.h file 12-9 

locking function 12-10 
locking.h include file 5-11 
log function A-8 
10g1O function A-8 
Logarithmic functions 

log 
described 4-11 
floating-point support 2-8 
XENIX version, differences from B-13 

10g10 
described 4-11 
floating-point support 2-8 
xENIX version, differences from B-13 

logname 4-29 
longjmp 4-29 
longname 4-18, 4-19 
longname function 7-44 
Low-level functions 

accessing files 6-28 
described 6-28 
file descriptors 6-28 
random access 6-34 

lrand48 routine 4-18 
lsearch 4-22 
lseek 

described 4-10 
differences from XENIX version C-17 
function 6-34 
XENIX version, differences from B-13 

ltoa 4-3 
lto134-3 

M 

machdep.h include file 5-11 
Macros 

advantages over functions 2-1 
arguments with side effects 2-3 
defining 5-2, 5-3, 5-7 
notational conventions 1-4 
restrictions on use 2-2 

Macros, special I/O functions 6-3 
macros.h include file 5-3 
malloc 4-13 

UNIX System V 12-5 
XENIX 12-5 

mallOC function 12-2 
malloc.h 4-13 
malloc.h include file 5-4 

1-13 



Index 

Manifest constants, notational conventions 1-4 
Manipulating 

databases 4-3 
map.h include file 5-11 
Math functions A-8 
Math routines 

routine list 5-4 
matherr 2-6, 4-11 
math.h 4-3, 4-12 
math.h include file 5-4, A-8 
memccpy 4-1 
memchr4-1 
memcmp4-1 
memcpy4-1 
Memory 

allocating arrays 12-3 
allocating'Dynamically 12-1 
allocating variables 12-2 
freeing allocated memory 12-4 
reallocating 12-4 

Memory allocation 5-4 
calloc 4-13 
include files 4-13 
malloc 4-13 
sbrk 4-13 

Memory allocation functions, described 12-1 
Memory models, huge arrays and huge pointers, 

used with 2-9 
Memory routines See Shared-memory routines 
memory.h 4-1 
memory.h include file 5-5 
memset 4-1 
Message operation permissions codes 12-29 
Message-control routines 

msgct14-14 
msgget 4-14 
msgrcv 4-14 
msgsnd 4-14 

Miscellaneous routines 
assert 4-28 
ctermid 4-28 
defopen 4-28 
defread 4-29 
fxlist 4-29 
getenv 4-29 
getopt 4-29 
logname 4-29 
longjmp 4-29 
nlist 4-29 
perror 4-29 
putenv 4-29 
regcmp 4-29 
regex 4-29 
setgid 4-29 

1-14 

Miscellaneous routines (continued) 
setjmp 4-29 
setuid 4-30 
shutdn 4-30 
swab 4-30 
sync 4-30 
tmpfile 4-30 
tmpnam4-30 
ttyname 4-30 
uname4-30 
xlist 4-30 

mknod4-5 
mktemp4-5 
mmu.h include file 5-11 
mnttab.h include file 5-5 
Modes 

CBREAK 
automatic setting 7-13, 7-14, 7-15, 7-26 
clearing the terminal 7-41 
terminal configuration 7-41 

ECHO 
clearing the mode 7-41 
copying to the standard screen 7-13, 7-1' 

7-15,7-26 
terminal configuration 7-9, 7-41 

NEWLINE 7-41, 7-42 
NOECHO 7-13, 7-14, 7-15, 7-26 
RAW 

direct character input 7-41 
direct input 7-9 
restoring editing and signal-generating 

functions 7-42 
terminal mode after reading 7-13,7-14, I 

15,7-26 
terminal 7-40,7-41,7-43 
terminal default 7-9 
TTY 7-43 

modf 
described 4-12 
floating-point support 2-8 

mon.h include file 5-5 
monitor 4-16 
mount 4-5 
mount.h include file 5-12 
move 4-18, 4-20 
move function 7-3,7-16,7-43 
Moving 

current position 7-16, 7-26 
cursor 7-42 
windows 7-32, 7-40 

mrand48 routine 4-18 
MS-DOS 

compatibility with 1-1 
specific routines B-2 



MS-DOS operating system B-1 
msgctl routine 4-14 
msgget flags 12-29 
msgget routine 4-14 
msg.h include file 5-12 
msgrcv routine 4-14 
msgsnd routine 4-14 
mv 4-18, 4-20 
mv function prefix 7-40 
mvcur 4-18,4-20 
mvcur function 7-42 
mvwin 4-18, 4-20 
mvwin function 7-32 
My-term variable 7-5, 7-9 

N 

nap 4-16 
nbwaitsem 4-23 
nbwaitsem function 12-54 
NEWLINE mode 7-41, 7-42 
newwin 4-18, 4-20 
newwin function 7-2, 7-20 
nextkey 4-3 
nice 4-16 
n14-18,4-20 
n1 function 7-40, 7-41 
nlist 4-29 
nocrmode 4-18, 4-19 
nocrmode function 7-41 
noecho 4-18,4-19 
noecho function 7-41 
NOECHO mode 7-13, 7-14, 7-15, 7-26 
non14-18,4-20 
nonl function 7-42 
Non10cal goto 4-31 
noraw 4-18, 4-20 
noraw function 7-42 
Notational conventions 1-4 
nrand48 routine 4-18 
NULL, null pointer value 6-1 
Numbers 

printing 7-12 
reading 7-15, 7-24 

o 

OK flag 7-5 
open 

Index 

open (continued) 
argument-type-checking limitations 2-5 
described 4-10 
differences from XENIX version C-17 
function 6-29 
XENIX version, differences from B-14 

opendir routine 4-4 
opensem 4-23 
opensem function 12-52 
Optional fields, notational conventions 1-4 
overlay 4-18,4-20 
overlay function 7-3, 7-31 
overwrite 4-18, 4-20 
overwrite function 7-3, 7-32 

p 

param.h include file 5-12 
Parent process, described 9-7 
Password files 4-6 
Path names 

notational conventions 1-4 
Pathnames 

conventions 2-7 
delimiters 2-7 

pause 4-16 
pclose 4-14 

function 11-3 
pclose function 4-15 
permission data structure 12-26 
perror 2-6, 4-29 
perror function A-I 
pipe 4-14 

function 11-3, 11-8 
pipe functions 

access to a process 4-15 
standard library 4-15 

Pipe symbol (I) 4-15, 6-3 
Pipes 

closing 11-3 
closing low-level access 11-5 
described 11-1 
description 4-14 
file 

descriptor 11-3 
descriptors 11-1 
pointer 11-1 
pointers 11-1 

low-level between processes 11-6 
named pipes 11-8 
opening for low-level access 11-3 
opening to a new process 11-1 

1-15 



Index 

Pipes (continued) 
pclose 4-14 
pipe 4-14 
popen 4-14 
process ID 11-1 
reading bytes 11-4 
reading from 11-2 
redefining standard input and output 6-3 
shell pipe symbol 11-1 
writing bytes 11-4 
writing to 11-2 

Placeholders 1-4 
Pointers 

current position 7-37 
file 6-2 
moving 7-16 
stderr 6-2 
stdin 6-2 
stdout 6-2 

popen 4-14 
function 11-1 

popen function 
opening a pipe process 4-15 

Portability 2-7 
Portability See Compatibility. 
pow 

described 4-12 
floating-point support 2-8 

pow function A-8 
Predefined 

types See Standard types 
printf 4-8 

argument-type-checking limitations 2-5 
family, floating-point support 2-8 
function 6-11 

printf function 
writing to the standard output 4-8 

Printing 
characters 7-12 
numbers 7-12 
strings 7-12 
windows 7-22 

printw 4-18, 4-20 
printw function 7-12 
Process 

termination status 9-3 
Process control 

abort 4-16 
alarm 4-16 
exec family 4-16 
execl4-16 
execle 4-16 
execlp 4-16 
execv 4-16 

1-16 

Process control (continued) 
execve 4-16 
execvp 4-16 
_exit 4-16 
fork 4-16 
getpgrp 4-16 
getpid 4-16 
getppid 4-16 
gsignal 4-16 
kill 4-16 
lock 4-16 
monitor 4-16 
nap 4-16 
nice 4-16 
pause 4-16 
proct14-16 
profil4-16 
ptrace 4-16 
rdchk 4-16 
sbrk 4-16 
setpgrp 4-16 
signal 4-16 
sleep 4-16 
ssignal 4-16 
system 4-16 
times 4-16 
ulimit4-16 
wait 4-16 

Process control functions, described 9-1 
Process ID 4-16 

described 9-1 
Processes 

calling a system program 9-2 
child 9-7 
communication by pipe 11-1 
described 9-1 
ID 9-1 
multiple copies 9-7 
parent 9-7 
splitting 9-7 
terminating 9-3 
termination status 9-9 
under shell control 9-7 
waiting 9-8 

proc.h include file 5-12 
proct14-16 
Product names, notational conventions 1-4 
profil4-16 
Program 

starting 9-3 
Programs, invoking 6-4 
Prompts 1-4 
ptrace 4-16 
putc 4-8 



putc 4-8 (continued) 
function 6-18 

putchar 4-8 
putchar function 6-9 

writing to the standard output 4-8 
putenv 4-29 
putpwent routine 4-7 
puts 4-8 

function 6-10 
puts function 

standard input and output files 4-8 
putuline routine 4-26 
putw 4-8 
pwd.h include file 5-5 

Q 

qsort 4-22 
Quotation marks, use of 1-4 

R 

rand 
described 4-11 

Random access functions 
character pointer 6-34 
described 6-34 

Random-number generation 
drand48 routine 4-18 
erand48 routine 4-18 
jrand48 routine 4-18 
lcong48 routine 4:..18 
lrand48 routine 4-18 
mrand48 routine 4-18 
nrand48 routine 4-18 
seed48 routine 4-18 
srand48 routine 4-18 

raw 4-18, 4-20 
raw function 7-40,7-41 
RAW mode 

direct input 7-9 
restoring editing and signal-generating 

functions 7-42 
terminal configuration 7-13, 7-14, 7-15, 7-26 

rdchk4-16 
read 

described 4-10 
differences from XENIX version C-18 
end-of-file condition 2-7 

Index 

read (continued) 
function 6-30 
XENIX version, differences from B-14 

read function 
low-level pipe 4-15 

readdir routine 4-4 
Reading 

characters 7-13,7-15,7-24,7-33 
numbers 7-15, 7-24 
strings 7-14,7-15,7-24 
terminal name 7-44 

realloc 4-13 
realloc function 12-4 
Records 

reading from a file 6-16 
writing to a file 6-20 

Redirection symbol «) 6-3 
Redirection symbol ( 

) 6-3 
refresh 4-18,4-20 
refresh function 

clearing characters on the screen 7-18,7-29, 
7-39 

moving the cursor 7-43 
terminal cursor 7-38 
updating different windows 7-3, 7-34 
updating the terminal screen 7-19 

Refreshing 
screens 7-19 
window, from 7-30 

regcmp 4-29 
regex 4-29 
regexp.h include file 5-5 
reg.h include file 5-12 
relsym86.h include file 5-13 
relsym.h include file 5-13 
resetty 4-18, 4-20 
resetty function 7-43 
Return value on error See Errors 
rewind 4-10 

function 6-36 
rewinddir routine 4-4 
Routines 

buffer manipulation 5-5 
category, by 4-1 
data stream 

fdopen 6-2 
fopen 6-2 
freopen 6-2 

database manipulation 4-3 
directory operation 4-4 
group file control 4-6 
I/O 

file operations 4-7 

1-17 



Index 

Routines (continued) 
math 5-4 

abs 4-11 
acos 4-11 
asin 4-11 
atan 4-11 
atan24-11 
bessel 4-11 
cabs 4-11 
ceil 4-11 
cos 4-11 
cosh 4-11 
erf 4-11 
erfc 4-11 
ermo, use of 2-6 
error handling 2-6,4-12 
exp 4-11 
fabs 4-11 
floor 4-11 
fmod4-11 
frexp 4-11 
gamma 4-11 
hypot 4-11 
include files 4-12 
jO,jl,jn,yO,yl,yn 4-11 
ldexp 4-11 
log 4-11 
log 10 4-11 
matherr 4-11 
modf 4-12 
pow 4-12 
rand 4-11 
sin 4-12 
sinh 4-12 
sqrt 4-12 
srand 4-11 
tan 4-12 
tanh 4-12 

message control 4-14 
MS-DOS specific B-2 
password file control 4-6 
random-number generation 4-18 
semaphore control 4-23 
shared memory 4-23 
system accounting control 4-26 
terminal control 4-27 

s 

XENIX to MS-DOS cross development C-l 
savetty 4-18, 4-20 
savetty function 7-43 

1-18 

Saving 
from a window 7-30 

sbrk 4-13, 4-16 
scanf 4-8 

argument-type-checking limitations 2-5 
family 2-8 
function 6-8 

scanf function 
reading standard input 4-8 

scanw 4-18,4-20 
scanw function 7-15 
Screen processing 7-2 
Screen processing functions 4-18 
Screen updating 7-1 
Screen-processing functions See Functions, 

screen processing 
Screen-processing library 7-5 
Screens 

clearing 7-18,7-19,7-28 
erasing 7 -18 
initializing 7-7 
memory 7-2 
overwriting 7-32 
preparing 7-7 
refreshing 7-19 

scroll 4-18, 4-20 
scroll flag 7-9, 7-38 
scroll function 7-39 
scrollok 4-18, 4-20 
scroll ok function 7-38 
sdenter 4-23 
sdenter function 12-90 
sdfree 4-24 
sdfree function 12-94 
sdget 4-24 
sdget function 12-88 
sdgetv 4-24 
sdgetv function 12-92 
sd.h include file 5-6, 5-13 
sdleave 4-24 
sdleave function 12-91 
sdu.h include file 5-13 
sdwaitv 4-24 
sdwaitv function 12-93 
search.h 4-22 
search.h include file 5-6 
Searching and sorting 

bsearch 4-22 
include files 4-22 
lfind 4-22 
lsearch 4-22 
qsort 4-22 

seed48 routine 4-18 
seekdir routine 4-4 



semaphore data structure 12-59 
Semaphore functions, described 12-50 
semaphore identifier 12-59 
semaphore IPC organization 12-59 
semaphore operation pennissions codes 12-64 
semaphore set (array) 12-59 
Semaphore-control routines 

creatsem 4-23 
nbwaitsem 4-23 
opensem 4-23 
resource allocation 4-23 
semct 4-23 
semget 4-23 
semop4-23 
sigsem 4-23 
waitsem 4-23 

Semaphores 
checking status 12-54 
creating 12-51 
described 12-50 
opening 12-52 
relinquishing control 12-54 
requesting control 12-53 

semct 4-23 
semget4-23 
sem.h include file 5-14 
semop 4-23 
setbuf 4-8 

function 6-26 
setgid 4-29 
setgrent routine 4-7 
setgrp 4-16 
setjmp 4-29 
setjmp.h include file 5-6 
setpwent routine 4-7 
settenn 4-18, 4-20 
settenn function 7-10, 7-43 
setuid 4-30 
setutent routine 4-26 
setvbuf 4-8 
sgetl4-3 
sgtty.h include file 5-6 
Shared data 

attaching segments 12-88 
creating segments 12-88 
described 12-86 
entering segments 12-90 
freeing segments 12-94 
leaving segments 12-91 
version number 12-92 
waiting for segments 12-93 

Shared memory 
description 12-86 

shared memory data structure 12-97 

Index 

shared memory identi fier 12-97 
Shared memory operation pennissions codes 

12-101 
shared memory segment 12-97 
shared memory, using 12-97 
Shared-memory routines 

ftok 4-23 
sdenter 4-23 
sdfree 4-24 
sdget 4-24 
sdgetv 4-24 
sd1eave 4-24 
sdwaitv 4-24 
shared segments 4-23 
shmat 4-24 
shmctl4-24 
shmdt4-24 
shmget 4-24 

Shell 
called as a separate process 9-7 

Shells 
directing 6-3 

shmat 4-24 
shmctl4-24 
shmdt 4-24 
shmget4-24 
shutdn 4-30 
Side effects in macro arguments 2-3 
signal 

described 4-16 
differences from XENIX version C-18 
XENIX version, differences from B-14 

signal.h include file 5-6, 5-14 
sigsem4-23 
sigsem function 12-54 
sin 

described 4-12 
floating-point support 2-8 

sinh 
described 4-12 
floating-point support 2-8 

sinh function A-8 
sites.h include file 5-14 
size_t type 3-3 
sleep 4-16 
Small capitals, use of 1-4 
Sorting See Searching and sorting 
sprintf 4-8 

argument-type-checking limitations 2-5 
function 8-13 

sputl4-3 
sqrt 

described 4-12 
floating-point support 2-8 

1-19 



Index 

sqrt function A-8 
srand 

described 4-11 
srand48 routine 4-18 
sscanf 

argument-type-checking limitations 2-5 
function 8-12 

ssignal 4-16 
Stack checking 2-5 
Standard error 

described 6-5 
Standard error file 4-8, 6-2 
Standard files 

described 6-5 
predefined file 

descriptors 6-28 
pointers 6-13 

reading and writing 6-6 
redirecting 6-6 

Standard input 
described 6-5 
reading 6-6 

characters 6-6 
formatted input 6-8 
strings 6-7 

Standard input file 
filename 6-2 
pipes 6-3 
redirecting 4-8, 6-3 
screen processing 7-2 

Standard I/O 
file 6-1 
functions 6-1 

Standard I/O routines 4-8 
Standard I/O routines See I/O routines 
Standard output 

described 6-5 
writing 6-9 

characters 6-9 
formatted output 6-11 
strings 6-10 

Standard output file 
filename 6-2 
pipes 6-3 
redirecting 4-8, 6-3 
screen processing 7-2 

Standard screen 7-3 
Standard types 

clock_t 3-3 
FILE 3-3 
jmp_buf3-3 
listed 3-2 
size_t 3-3 
stat See stat type 

1-20 

Standard types (continued) 
timeb 3-3 
time_t 3-3 
tm 3-3 
utimbuf3-3 

standend 4-18,4-20 
standend function 7-36 
stand.h include file 5-6 
standout 4-18, 4-20 
standout function 7-35 
Starting programs 9-3 
stat 

described 4-5 
differences from XENIX version C-18 
XENIX version, differences from B-15 

stat type 
described 3-3 

stat.h include file 5-14 
stderr file pointer 6-2 
stderr, standard error file pointer 6-1, 6-13 
stdin 

redirecting 6-3 
stdin file pointer 6-2 
stdin, standard input file pointer 6-1, 6-13 
stdio.h file 

described 6-1 
including 6-1 

stdio.h include file 
defining routines 5-7 
file pointer 6-2 

stdout 
redirecting 6-3 

stdout file pointer 6-2 
stdout, standard output file pointer 6-1, 6-13 
stdscr pointer 7-3, 7-5 
stime 4-27 
store 4-3 
strcat 4-25 

function 8-8 
strchr 4-25 
strcmp 4-25 

function 8-8 
strcpy 4-25 
strcpy function 8-9 
strcspn 4-25 
strdup 4-25 
Stream I/O 

clearerr 4-8 
described 4-8 
error handling 2-6 
fclose 4-8 
fdopen 4-8 
feof 4-8 
ferror4-8 



Stream I/O (continued) 
ffiush 4-8 
fgetc 4-8 
fgets 4-8 
fileno 4-8 
fopen 4-8 
fprintf 4-8 
fputc 4-8 
fputs 4-8 
fread 4-8 
freopen 4-8 
fscanf 4-8 
fwrite 4-8 
getc 4-8 
getchar 4-8 
gets 4-8 
getw 4-8 
printf 4-8 
putc 4-8 
putchar 4-8 
puts 4-8 
putw 4-8 
scanf 4-8 
setbuf 4-8 
setvbuf 4-8 
sprintf 4-8 
sscanf 4-8 
tmpfile 4-8 
ungetc 4-8 
vfprintf 4-8 
vprintf 4-8 
vsprintf 4-8 

String functions, described 8-7 
String manipulation 

include files 4-24 
strcat 4-25 
strchr 4-25 
strcmp 4-25 
strcpy 4-25 
strcspn 4-25 
strdup 4-25 
strlen 4-25 
strncat 4-25 
strncmp 4-25 
strncpy 4-25 
strpbrk 4-25 
strrchr 4-25 
strspn 4-25 
strtok 4-25 

string.h 4-24 
string.h include file 5-7 
String-manipulation routines 5-7 
Strings 

adding 7-12 

Strings (continued) 
comparing 8-8, 8-11 
concatenating 8-8, 8-10 
copying 8-9, 8-11 
length 8-10 
notational conventions 1-4 
printing 7 -12 
printing to 8-13 
processing, described 8-1 
reading 7-14,7-15,7-24 
reading from a file 6-15 

Index 

reading from standard input 6-7 
scanning 8-12 
writing to a file 6-19 
writing to standard output 6-10 

strlen 4-25 
function 8-10 

strncat 4-25 
function 8-10 

strncmp 4-25 
strncmp function 8-11 
strncpy 4-25 
strncpy function 8-11 
sti-pbrk 4-25 
strrchr 4-25 
strspn 4-25 
strtod 4-3 
strtok 4-25 
strtol4-3 
strtoul4-3 
Subdirectory conventions 2-7 
subwin 4-18, 4-21 
subwin function 7-2, 7-21 
swab 4-30 
sync 4-30 
Syntax conventions See Notational conventiom 
sys subdirectory 2-7 
sys_errlist 

described 3-2 
sys\t:imeb.h 4-28 
sys\t:ypes.h 4-28 
sys\utime.h 4-28 
sysinfo.h include file 5-14 
sys/locking.h file 12-9 
sysmacros.h include file 5-14 
sys_nerr 3-2 
system 4-16 

differences from XENIX version C-19 
function 9-2 

System 
resources 12-1 

system 
XENIX version, differences from B-15 

System accounting-control routines 

1-21 



Index 

System accounting-control routines 
(continued) 

accounting files 4-26 
acct 4-26 
cuserid 4-26 
endutent 4-26 
getIogin 4-26 
getuid 4-26 
getuline 4-26 
getutent 4-26 
putuline 4-26 
setutent 4-26 
ttyslot 4-26 
utmpname 4-26 

System programs 
calling as a separate process 9-2 

System resource functions, described 12-1 
System-wide variables 

in common library C-9 
systm.h include file 5-15 

T 

tan 
described 4-12 
floating-point support 2-8 

tanh 
described 4-12 
floating-point support 2-8 

tanh function A-8 
telldir routine 4-4 
TERM variable 7-8 
termcap command 7-36 
Terminal 

capability 7-8 
clearing modes 7-41 
control 7-40 
cursor 7-42 
default 7-10 
default modes 7-9 
flags 7-43 
modes 7-40, 7-43 
name 7-44 
type 7-8, 7-43 

Terminal-control routines 
tgetent 4-27 
tgetflag 4-27 
tgetnum 4-27 
tgetstr 4-27 
tgoto 4-27 
tputs 4-27 

termination status 

1-22 

termination status (continued) 
described 9-9 
processes 9-3 

terminfo library 7-3 
terminfo.h include file 7-4 
termio.h include file 5-7 
text.h include file 5-15 
tgetent routine 4-27 
tgetflag routine 4-27 
tgetnum routine 4-27 
tgetstr routine 4-27 
tgoto routine 4-27 
time 4-27 
Time 

routines 
asctime 4-27 
clock 4-27 
ctime 4-27 
ftime 4-27 
gmtime 4-27 
include files 4-27,4-28 
localtime 4-27 
stime 4-27 
time 4-27 
tzset 4-27 

timeb type 3-3 
timeb.h include file 5-15 
time.h 4-27, 4-28 
time.h include file 5-7 
times 4-16 
times.h include file 5-15 
time_t type 3-3 
time zone variable 3-1 
tm type 3-3 
tmpfile 4-8, 4-30 
tmpnam4-30 
toascii 4-2 

function 8-2 
tolower 4-2 

function 8-7 
touchwin 4-18, 4-21 
touchwin function 7-34 
toupper 4-2 

function 8-7 
tputs routine 4-27 
ttold.h include file 5-15 
tty.h include file 5-15 
ttyname 4-30 
ttyslot routine 4-26 
tty type variable 7-5, 7-9, 7-44 
Type 

char 7-35 
FILE 6-2 
terminal 7-43 



Type (continued) 
WINDOW(** 7-20 

types.h include file 5-16 
TZ environment variable 

described 3-1 
tzname variable 3-1 
tzset 4-27 

u 

ulimit 4-16 
ulimit.h include file 5-16 
ultoa 4-3 
umask 

described 4-5 
differences from XENIX version C-20 
XENIX version, differences from B-16 

umount4-5 
uname4-30 
Unbuffered I/O 

creating 6-26 
described 6-24 
low-level functions 6-28 

ungetc 4-8 
function 6-26 

UNIX 
compatibility with 1-1 

unlink 
described 4-5 
differences from XENIX version C-20 
XENIX version, differences from B-16 

unlstd.h include file 5-8 
Uppercase letters, use of 1-4 
user.h include file 5-16 
ustat 4-5 
ustat.h include file 5-8 
utimbuf type 3-3 
utime 4-5 

described 4-27 
differences from XENIX version C-20 
XENIX version, differences from B-16 

utmp.h include file 5-8 
utmpname routine 4-26 
utsname.h include file 5-16 

v 

values.h include file 5-8 
varargs.h include file 5-8 

Index 

var.h include file 5-16 
Variable, global See Global variables 
Variables 

allocating for arrays 12-3 
COLS 7-10 
DeCterm 7-8 
ermo A-I 
LINES 7-10 
memory allocation 12-2 
My_term 7-8 
TERM 7-8 
ttytype 7-8, 7-44 

Vertical bar (I) 1-4 
vfprintf 4-8 
vprintf 4-8 
vsprintf 4-8 

w 

waddch 4-18, 4-21 
waddch function 7-3, 7-23 
waddstr 4-18,4-21 
waddstrfunction 7-23 
wait 4-16 

function 9-8 
waitsem 4-23 
waitsem function 12-53 
wclear 4-18,4-21 
wclear function 7-29 
wclrtobot 4-18, 4-21 
wclrtobot function 7-29 
wclrtoeoI4-18,4-21 
wclrtoeol function 7-29 
wde1ch 4-18, 4-21 
wde1ch function 7-28 
wdeleteln 4-18, 4-21 
wdeleteln function 7-28 
werase 4-18,4-21 
werase function 7-29 
wgetch 4-18, 4-21 
wgetch function 7-24 
wgetstr 4-18,4-21 
wgetstr function 7-25 
winch 4-18, 4-21 
winch function 7-33 
Window functions See Functions, screen 

processing 
WINDOW* pointer 7-5 
WINDOW(** type 7-20, 7-21 
Windows 

adding 7-22 
creating 7-20 

1-23 



Index 

Windows (continued) 
current position 7-37 
default flags 7-9 
deleting 7-34 
dimension 7-22 
functions 7-2 
moving 7-26,7-32,7-40 
origins 7-22 
overlaying 7-31 
printing 7-22 
reading characters 7-33 
refreshing from 7-30 
save to a file 7-30 
scrolling 7-39 
setting flags 7-38 
structure 7-22 
subwindow 7-21 
touching 7-34 
using 7-20 

winsch 4-18,4-21 
winsch function 7-27 
winsertln 4-18,4-21 
winsertln function 7-27 
wmove 4-18, 4-21 
wmove function 7-3,7-26, 7-43 
wprintw 4-18, 4-21 
wprintw function 7-23 
wrefresh 4-18, 4-21 
wrefresh function 7-3, 7-30, 7-43 
write 

described 4-10 
differences from XENIX version C-20 
function 6-30 
XENIX version, differences from B-16 

write function 
writing to pipes 4-15 

wscanw 4-18, 4-21 
wscanw function 7-25 
wstandend 4-18,4-22 
wstandend function 7-36 
wstandout 4-18, 4-22 
wstandout function 7-36 

x 

xlist 4-30 

1-24 

y 

yO See Bessel functions 
y 1 See Bessel functions 
yn See Bessel functions" 



Replace this Page 
with Tab Marked: 

CLANGUAGE 
REFERENCE 





XENIX® System V 

Development System 

C Language Reference 





InfoIll1ation in this document is subject to change without notice and does not represent 
a commitment on the part of The Santa Cruz Operation, Inc. nor Microsoft Corporation. 
The software described in this document is furnished under a license agreement or 
nondisclosure agreement. The software may be used or copied only in accordance with 
the teIll1S of the agreement. It is against the law to copy this software on magnetic tape, 
disk, or any other medium for any purpose other than the purchaser's personal use. 

Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988 Microsoft 
Corporation. 
All rights reserved. 
Portions © 1983, 1984, 1985, 1986, 1987, 1988 The Santa Cruz Operation, Inc. 
All rights reserved. 

ALL USE, DUPLICATION, OR DISCLOSURE WHATSOEVER BY THE 
GOVERNMENT SHALL BE EXPRESSLY SUBJECT TO RESTRICTIONS AS SET 
FORTH IN SUBDIVISION (b) (3) (ii) FOR RESTRICTED RIGHTS IN COMPUTER 
SOFTWARE AND SUBDIVISION (b) (2) FOR LIMITED RIGHTS IN TECHNICAL 
DATA, BOTH AS SET FORTH IN FAR 52.227-7013. 

Microsoft, MS-DOS, and XENIX are registered trademarks of Microsoft Corporation. 

seo Document Number: XG-1O-1O-88-5.0/2.3 





Contents 

1 Introduction 

1.1 Overview of the C Language 1-1 
1.2 About This Manual 1-2 
1.3 Notational Conventions 1-4 

2 Elements ore 

2.1 Introduction 2-1 
2.2 Character Sets 2-1 
2.3 Constants 2-8 
2.4 Identifiers 2-14 
2.5 Keywords 2-15 
2.6 Comments 2-16 
2.7 Tokens 2-17 

3 Program Structure 

3.1 Introduction 3-1 
3.2 Source Program 3-1 
3.3 Source Files 3-3 
3.4 Functions and Program Execution 3-5 
3.5 Lifetime and Visibility 3-6 
3.6 Naming Classes 3-11 

4 Declarations 

4.1 Introduction 4-1 
4.2 Type Specifiers 4-2 
4.3 Declarators 4-8 
4.4 Variable Declarations 4-16 
4.5 Function Declarations (Prototypes) 4-31 
4.6 Storage Classes 4-37 
4.7 Initialization 4-44 
4.8 Type Declarations 4-51 
4.9 Type Names 4-53 

5 Expressions and Assignments 

5.1 Introduction 5-1 
5.2 COperands 5-1 
5.3 COperators 5-13 
5.4 Assignment Operators 5-30 

-i-



5.5 Precedence and Order of Evaluation 5-35 
5.6 Type Conversions 5-38 

6 State~ents 

6.1 Introduction 6-1 
6.2 The break Statement 6-2 
6.3 The Compound Statement 6-3 
6.4 The continue Statement 6-4 
6.5 The do Statement 6-4 
6.6 The Expression Statement 6-5 
6.7 The for Statement 6-6 
6.8 The goto and Labeled Statements 6-8 
6.9 The if Statement 6-9 
6.10 The Null Statement 6-10 
6.11 The return Statement 6-11 
6.12 The switch Statement 6-13 
6.13 The while Statement 6-15 

7 Functions 

7.1 Introduction 7 -1 
7.2 Function Definitions 7 -3 
7.3 Function Prototypes (Declarations) 7 -12 
7 A Function Calls 7 -14 

8 Preprocessor Directives and Prag~as 

8.1 Introduction 8-1 
8.2 Manifest Constants and Macros 8-2 
8.3 Include Files 8-10 
804 Conditional Compilation 8-12 
8.5 Line Control 8-17 
8.6 Pragmas 8-18 

A Differences Between K&R C and Microsoft C 

A.l Introduction A-I 

B Syntax Su~~ary 

B.l Tokens B-1 
B.2 Expressions B-7 
B.3 Declarations B-9 
BA Statements B-13 
B.5 Definitions B-14 
B.6 Preprocessor Directives B-15 
B.7 Pragmas B-15 

-ii-



Chapter 1 

Introduction 

1.1 Overview of the C Language 1-1 

1.2 About This Manual 1-2 

1.3 Notational Conventions 1-4 





Introduction 

1.1 Overview of the C Language 

The C language is a general-purpose programming language known for its 
efficiency, economy, and portability. While these characteristics make it a 
good choice for almost any kind of programming, C has proven especially 
useful in systems programming because it facilitates writing fast, com­
pact programs that are readily adaptable to other systems. Well-written C 
programs are often as fast as assembly-language programs, and they are 
typically easier for programmers to read and maintain. 

C was designed to combine efficiency and power in a relatively small 
language. C does not include built-in functions to perform tasks such as 
input and output, storage allocation, screen manipulation, and process 
control. To perform such tasks, C programmers rely on "run-time 
libraries," a set of predefined functions and macros. The run-time library 
functions available for use in Microsoft® C programs are discussed in a 
separate manual, the XENIX ® C Library Guide. 

C's design makes it both flexible and compact. Because the language is 
relatively sparse, it neither assumes nor imposes a particular program­
ming model. You can use the run-time routines supplied, or tailor your 
own variations for special purposes. The design also helps to isolate 
language features from processor-specific features in a particular C 
implementation, which makes it easier to write portable code. While the 
strict definition of the language makes it independent of any particular 
operating system or machine, you can easily add system-specific routines 
to take advantage of the most efficient features of a particular machine. 

Note 

Microsoft is committed to conformity with the developing standard 
for the C language as set forth in the Draft Proposed American 
National Standard - Programming Language C (hereinafter 
referred to as the ANSI C standard. Microsoft extensions to the 
ANSI C standard are noted in the text. Because the extensions are 
not a part of the ANSI C standard, their use may restrict portability 
of programs between systems. See your compiler guide for informa­
tion on enabling and disabling Microsoft extensions. 

1-1 



C Language Reference 

The C language includes the following significant features: 

• A full set of loop, conditional, and transfer statements to control 
program flow logically and efficiently and to encourage structured 
programming. 

• A large set of operators. Many of these operators correspond to 
common machine instructions, allowing a direct translation into 
machine code. The variety of operators allows you to specify 
different kinds of operations clearly and with a minimum of code. 

• Several sizes of integers, as well as single- and double-precision 
floating-point types. You can also design more complex data types, 
such as arrays and data structures, to suit specific program needs. 

• Declarations of "pointers" to variables and functions. A pointer to 
an item corresponds to the item's machine address. Pointers can 
make programs more efficient, since they let you refer to items in 
the same way the machine does. C also supports pointer arithmetic, 
which lets you access and manipulate memory addresses directly. 

• A C preprocessor that acts on the text of files before they are com­
piled. You can use the C preprocessor to define program constants, 
substitute fast macro definitions for function calls, and compile 
parts of programs based on specified conditions. 

C is a flexible language that leaves many programming decisions up to 
you. In keeping with this philosophy, C imposes few restrictions in 
matters such as type conversion. Although this characteristic of the 
language can make your programming job easier, you must know the 
language well to understand how programs will behave. 

1.2 About This Manual 

The C Language Reference defines the C language as implemented by 
Microsoft Corporation. It is intended as a reference for programmers 
experienced in C or other programming languages. Thorough knowledge 
of programming fundamentals is assumed. 

Consult your compiler guide for an explanation of how to compile and 
link C programs on your system; this manual also contains information 
specific to the implementation of C on your system. 

1-2 



Introduction 

This manual is organized as follows: 

Chapter 1, "Introduction," introduces this guide and outlines the nota­
tional conventions used in this manual. 

Chapter 2, "Elements of C," describes the letters, numbers, and symbols 
that can be used in C programs and the combinations of characters that 
have special meanings to the C compiler. 

Chapter 3, "Program Structure," discusses the components and structure 
of C programs and explains how C source files are organized. 

Chapter 4, "Declarations," describes how to specify the attributes of C 
variables, functions, and user-defined types. C provides a number of 
predefined data types and lets the programmer declare "aggregate" types 
and pointers. Function prototypes, a relatively new feature of C, are dis­
cussed in this chapter, as well as in Chapter 7, "Functions." 

Chapter 5,"Expressions and Assignments," describes the operands and 
operators that form C expressions and assignments. The chapter also 
discusses the type conversions and side effects that may occur when 
expressions are evaluated. 

Chapter 6, "Statements," describes C statements, which control the flow 
of program execution. 

Chapter 7, "Functions," discusses C functions. In particular, this chapter 
explains function prototypes, formal parameters, and return values. It also 
describes how to define, declare, and call functions. 

Chapter 8, "Preprocessor Directives and Pragmas," describes the instruc­
tions recognized by the C preprocessor, a text processor that is automati­
cally invoked before compilation. This chapter also introduces "prag­
mas," special instructions to the compiler that you can place in source 
files. 

Appendix A, "Differences," lists the differences between Microsoft C 
and the description of the C language found in Appendix A of The C Pro­
gramming Language by Brian W. Kernighan and Dennis M. Ritchie. 

Appendix B, "Syntax Summary," summarizes the syntax of the C 
language as implemented by Microsoft. 

1-3 



C Language Reference 

1.3 Notational Conventions 

This manual uses the following notational conventions: 

keywords 

placeholders 

Examples 

Input: output 

1-4 

Bold type indicates text that must be typed 
exactly as shown. Text that is shown in bold 
type includes C keywords, such as goto and 
char, and operators, such as the addition 
operator (+) and the multiplication operator 
(*). 

Terms in italics may appear in syntax 
descriptions or in the text. In these 
instances, the terms are being used as place­
holders that you would replace with specific 
terms or values in an actual C program. For 
example, in 

gotoname; 

name appears in italics to show that this is a 
general form for the goto statement. In an 
actual program statement, you must supply 
a particular identifier for the placeholder 
name. 

Occasionally, italics are used to emphasize 
particular words in the text. 

Examples of C programs and program ele­
ments appear in a special typeface to look 
similar to listings on the screen or the out­
put of commonly used computer printers: 

int x, Yi 

swap (&x, &y) i 

Some examples show both program output 
and user input; in these cases, input is 
shown in a darker font. 



Introduction 

Repeating ... elements Vertical ellipsis dots are used in program 
examples or syntax to indicate that a portion 
of the program is omitted. 

In the following example, the vertical 
ellipsis dots indicate that zero or more 
declarations, followed by one or more state­
ments' may appear between the braces: 

{ 
[declaration] 

statement 
[statement] 

In the following excerpt, two program lines 
are shown. The ellipsis dots between the 
lines indicate that additional program lines 
appear between these two lines but are not 
shown: 

int x, Yi 

swap (&x, &Y)i 

Horizontal ellipsis dots following an item 
indicate that more items of the same form 
may appear. For instance, 

= {expression [, expression] ... } 

indicates that one or more expressions 
separated by commas may appear between 
the braces ({ }). 

1-5 



C Language Reference 

[optional items] 

"Defined tenns" 

KEY+NAMES 

1-6 

Brackets enclose optional items in syntax 
descriptions. For example, 

return [expression]; 

is a syntax description showing that expres­
sion is an optional item in the return state­
ment. 

Single brackets are used to indicate brackets 
used by C-Ianguage array declarations and 
subscript expressions. For instance, a[10 1 is 
an example of brackets in a C subscript 
expression. 

Quotation marks set off tenns defined in 
the text. For example, the tenn "token" 
appears in quotation marks when it is 
defued. 

Some C constructs, such as strings, require 
quotation marks. Quotation marks required 
by the language have the fonn " " rather 
than " ". The following example shows a C 
string: 

"abc" 

Quotation marks also occasionally indicate 
a tenn that is being used in a colloquial 
sense. 

Names of special key combinations, such as 
CTRL+Z, appear in small capital letters. 



Chapter 2 

Elements of C 

2.1 Introduction 2-1 

2.2 Character Sets 2-1 
2.2.1 Letters, Digits, and Underscore 2-2 
2.2.2 White-Space Characters 2-2 
2.2.3 Punctuation and Special Characters 2-3 
2.2.4 Escape Sequences 2-4 
2.2.5 Operators 2-6 

2.3 Constants 2-8 
2.3.1 Integer Constants 2-8 
2.3.2 Floating-Point Constants 2-10 
2.3.3 Character Constants 2-11 
2.3.4 String Literals 2-12 

2.4 Identifiers 2-14 

2.5 Keywords 2-15 

2.6 Comments 2-16 

2.7 Tokens 2-17 





Elements of C 

2.1 Introduction 

This chapter describes the elements of the C programming language, 
including the names, numbers, and characters used to construct a e pro­
gram. The following topics are discussed in this chapter: 

• Character sets 

• Constants 

• Identifiers 

• Keywords 

• Comments 

• Tokens 

2.2 Character Sets 

Two character sets are defined for use in C programs: the "C character 
set" and the "representable character set." 

The C character set consists of the letters, digits, and punctuation marks 
having specific meanings in the C language. You construct a C program 
by combining the characters of the C character set into meaningful state­
ments. 

The C character set is a subset of the representable character set. The 
representable character set includes each letter, digit, and symbol that can 
be represented graphically with a single character. The extent of the 
representable character set depends on the type of terminal, console, or 
character device being used. 

All characters in a C program must be part of the C character set. How­
ever, string literals, character constants, comments, and file names in 
#include directives can include any character from the representable 
character set. 

Since each character in the C character set has an explicit meaning in the 
language, the compiler generates error messages when it finds inappropri­
ate or inappropriately used characters in a program. 

The sections that follow describe the characters and symbols of the C 
character set and explain how and when to use them. 

2-1 



C Language Reference 

2.2.1 Letters, Digits, and Underscore 

The C character set includes the uppercase and lowercase letters of the 
English alphabet, the 10 decimal digits of the Arabic number system, and 
the underscore C) character. 

• Uppercase English letters 

AB CDEFG HIJKLMNO PQRS TUV WXYZ 

• Lowercase English letters 

abc de f g h ij kIm n 0 p q r stu v w x y z 

• Decimal digits 

0123456789 

• Underscore character C) 

These characters are used to form the constants, identifiers, and keywords 
described later in this chapter. 

The C compiler treats uppercase and lowercase letters as distinct charac­
ters. For example, if a lowercase a is specified in an identifier, you cannot 
substitute an uppercase A; you must use the lowercase letter. 

2.2.2 White-Space Characters 

The space, tab, line-feed, carriage-return, form-feed, vertical-tab, and 
new-line characters are called "white-space characters" because they 
serve the same purpose as the spaces between words and lines on a 
printed page. These characters separate the items you define, such as con­
stants and identifiers, from other items in a program. 

The C compiler ignores white-space characters unless you use them as 
separators or as components of character constants or string literals. 
Therefore, you can use extra white-space characters to make a program 
more readable. The compiler also treats comments as white space. (Com­
ments are described in "Comments.") 

2-2 



Elements of C 

2.2.3 Punctuation and Special Characters 

The punctuation and special characters in the C character set have various 
uses, from organizing program text to defining the tasks that the compiler 
or compiled program will carry out. Table 2.1 lists the punctuation and 
special characters in the C character set. 

Character 

? 

( 

{ 

} 

< 

Table 2.1 

Punctuation and Special Characters 

Name Character Name 
Comma Exclamation mark 

Period Vertical bar 

Semicolon Forward slash 

Colon \ Backslash 

Question mark Tilde 

Single quotation mark + Plus sign 

Double quotation mark # Number sign 

Left parenthesis % Percent sign 

Right parenthesis & Ampersand 

Left bracket Caret 

Right bracket * Asterisk 

Left brace Minus sign 

Right brace = Equal sign 

Left angle bracket > Right angle bracket 

These characters have special meanings in C. Their uses are described 
throughout this manual. Any punctuation character from the representable 
character set that does not appear in Table 2.1 can be used only in string 
literals, character constants, comments, and file names in #include direc­
tives. 

2-3 



C Language Reference 

2.2.4 Escape Sequences 

Strings and character constants can contain "escape sequences." Escape 
sequences are character combinations representing white-space and non­
graphic characters. An escape sequence consists of a backs lash (\) fol­
lowed by a letter or by a combination of digits. 

Escape sequences are typically used to specify actions such as carriage 
returns and tab movements on terminals and printers and to provide literal 
representations of nonprinting characters and characters that normally 
have special meanings, such as the double-quotation-mark character ("). 
Table 2.2 lists the C escape sequences. 

Escape 
Sequence 

\n 

\t 

\v 

\b 

\r 

\f 

\a 
\, 

\" 

\\ 

\ddd 

\xddd 

Name 

Table 2.2 

Escape Sequences 

New line 

Horizontal tab 

Vertical tab 

Backspace 

Carriage return 

Form feed 

Bell (alert) 

Single quotation mark 

Double quotation mark 

Backslash 

ASCII character in octal notation 

ASCII character in hexadecimal notation 

If a backslash precedes a character that does not appear in Table 2.2, the 
backslash is ignored and the character is represented literally. For exam­
ple, the pattern \c represents the character c in a string literal or character 
constant. However, the use of lowercase letters in escape sequences is 
reserved by ANSI for future standardization. Therefore, occurrences of 
undefined escape sequences, though currently innocuous, could pose 
future portability problems. 

2-4 



Elements of C 

The sequence \ddd lets you specify any character in the ASCII (American 
Standard Code for Information Interchange) character set as a three-digit 
octal character code. Similarly, the sequence ~ddd lets you specify any 
ASCII character as a three-digit hexadecimal character code. For example, 
you can give the ASCII backspace character as the normal C escape 
sequence (\b), or you can code it as \010 (octal) or \.x008 (hexadecimal). 

You can use only the digits 0 through 7 in an octal escape sequence. 
Though you do not need to use all three digits (as in the form shown in the 
previous paragraph), you must use at least one. For example, you can 
specify the ASCII backspace character in octal notation as \10. Similarly, 
you must use at least one digit for a hexadecimal escape sequence, but 
you can omit the second and third digits. Therefore you could specify the 
hexadecimal escape sequence for the backspace character either as \.x08 
or as \.x8. 

Note 

When you use octal and hexadecimal escape sequences in strings, it 
is safest to give all three digits of the escape sequence. If you don't 
specify all digits of the escape sequence, and the character immedi­
ately following the escape sequence happens to be an octal or hexa­
decimal digit, the compiler interprets that character as part of the 
sequence. For example, if you printed the string ''\.x07Bell", the 
result would be {ell because \.x07B is interpreted as the ASCII left­
brace character (n. The string \.x007Bell (note the two leading 
zeros) is the correct way to represent the bell character followed by 
the word Bell. The string \.x7Bell would generate a compiler diag­
nostic message because 7BE hexadecimal is too big a number to fit 
in one byte. 

Escape sequences let you send nongraphic control characters to a display 
device. For example, the escape character \033 is often used as the first 
character of a control command for a terminal or printer. Some escape 
sequences are device specific. For instance, the vertical tab and form feed 
(\v and \f) do not affect screen output, but they do perform appropriate 
operations for a printer. 

You should always represent nongraphic characters by escape sequences 
in C programs, since using the characters directly may generate compiler 
diagnostic messages. 

You can also use the backslash character (\) as a continuation character. 
When a new-line character immediately follows the backslash, the 

2-5 



C Language Reference 

compiler ignores the backslash and the new line and treats the next line as 
part of the previous line. This is useful primarily for preprocessor 
definitions longer than a single line. In the past this feature was also used 
to create strings longer than one line. However, the string concatenation 
feature (see "String Literals") is now preferred for creating long string 
literals. 

2.2.5 Operators 

"Operators" are symbols (both single characters and character combina­
tions) that specify how values are to be manipulated. Each symbol is 
interpreted as a single unit, called a "token." (Tokens are defined in 
"Tokens.") 

Table 2.3 lists the symbols that make up the C unary operators and names 
each operator. Table 2.4 lists the C binary and ternary operators and 
names them. You must specify operators exactly as they appear in the 
tables, with no white space between the characters of multicharacter 
operators. Note that three operator symbols (asterisk, minus sign, and 
ampersand) appear in both tables. Their interpretation as unary or binary 
depends on the context in which they appear. The sizeof operator is not 
included in these tables. It consists of a keyword (size of) rather than a 
symbol, and is listed in "Keywords." 

Operator 

* 
& 

+ 

Table 2.3 

U nary Operators 

Name 

Logical NOT 

Bitwise complement 

Arithmetic negation 

Indirection 

Address of 

Unary plusa 

a The unary plus operator is implemented syntactically, but not semanti­
cally. 

2-6 



Elements of C 

Table 2.4 

Binary and Ternary Operators 

Operator Name Operator Name 

+ Addition && Logical AND 

Subtraction 

* Multiplication Logical OR 

Division Sequential 
evaluation 

% Remainder ?: Conditional a 

« Left shift ++ Increment 

» Right shift Decrement 

< Less than = Simple assign-
ment 

<= Less than or += Addition 
equal to assignment 

> Greater than = Subtraction 
assignment 

>= Greater than *= Multiplication 
or equal to assignment 

Equality 1= Division 
assignment 

!= Inequality %= Remainder 
assignment 

& Bitwise AND »= Right -shift 
assignment 

Bitwise «= Left-shift 
inclusive OR assignment 

Bitwise &= Bitwise-
exclusive OR AND-

assignment 

1= Bitwise = Bitwise 
inclusive-OR exclusive-OR 
assignment assignment 

2-7 



C Language Reference 

The conditional operator is a ternary operator, not a mul­
ticharacter operator. A conditional expression has the fol­
lowing form: e.\pression ? e.\pression : expression. 

For a complete description of each operator, see the "Expressions and 
Assignments" chapter. 

2.3 Constants 

A constant is a number, character, or character string that can be used as a 
value in a program. A constant's value cannot be modified. 

The C language has four kinds of constants: integer constants, floating­
point constants, character constants, and string literals. 

2.3.1 Integer Constants 

Syntax 

digits 

Oodigits 

Oxhdigits 
OXhdigits 

An "integer constant" is a decimal, octal, or hexadecimal number that 
represents an integral value in one of the following forms: 

• A' 'decimal constant" has the form digits, where digits represents 
one or more decimal digits (0 through 9), the first of which is not a 
zero. 

• An "octal constant" has the form Oodigits, where odigits 
represents one or more octal digits (0 through 7). The leading zero 
is required. 

• A' 'hexadecimal constant" has the form Oxhdigits or OXhdigits, 
where hdigits represents one or more hexadecimal digits (0 
through 9 and either uppercase or lowercase a through! The lead­
ing Ox or OX is required. 

2-8 



Elements of C 

No white-space characters can separate the digits of an integer constant. 

Table 2.5 gives examples of the three fonns of integer constants. 

Decimal Constants 

10 
132 
32179 

Table 2.5 

Examples of Integer Constants 

Octal Constants 

012 
0204 
076663 

Hexadecimal Constants 

Oxa orOxA 
Ox84 
Ox7 db3 or Ox7DB3 

Integer constants always specify positive values. If you need to use a 
negative value, place a minus sign (-) in front of a constant to fonn a con­
stant expression with a negative value. (In this case, the minus sign is 
interpreted as the unary arithmetic negation operator.) 

Every integer constant is given a type based on its value. A constant's 
type determines which conversions must be perfonned when the constant 
is used in an expression or when the minus sign (-) is applied, as summar­
ized in the following rules: 

• Decimal constants are considered signed quantities and are given 
int type, or long type if the size of the value requires it. 

• Octal and hexadecimal constants are given int, unsigned int, long, 
or unsigned long type, depending on the size of the constant. If the 
constant can be represented as an int, it is given int type. If it is 
larger than the maximum positive value that can be represented by 
an int, but small enough to be represented in the same number of 
bits as an int, it is given unsigned int type. Similarly, a constant 
that is too large to be represented as an unsigned int is given long 
or unsigned long type, if necessary. 

Table 2.6 shows the ranges of values and the corresponding types for octal 
and hexadecimal constants on a machine whose int type is 16 bits long. 

2-9 



C Language Reference 

Table 2.6 

Types Assigned to Octal and Hexadecimal Constants 

Hexadecimal Range Octal Range Type 

OxO- Ox7FFF 0-077777 int 
Ox8000 - OxFFFF 0100000 - 0177777 unsigned int 
Ox 1 0000 - Ox7FFFFFFF 0200000 - 017777777777 long 
Ox80000000 - OxFFFFFFFF 020000000000 - 037777777777 unsigned long 

The consequence of the typing rules shown in Table 2.6 is that hexade­
cimal and octal constants are always zero extended when converted to 
longer types. (For more information on type conversions, see the 
"Expressions and Assignments." chapter.) 

You can force any integer constant to be given long type by appending 
the letter lor L to the end of the constant. Table 2.7 illustrates some forms 
of long integer constants. 

Table 2.7 

Examples of Long Integer Constants 

Decimal Constants Octal Constants 

10L 012L 
791 01151 

Hexadecimal Constants 

OxaLorOxAL 
Ox4fl or Ox4FI 

Types are described in the "Declarations" chapter and conversions are 
described in the "Expressions and Assignments" chapter. 

2.3.2 Floating-Point Constants 

Syntax 

[digits][.digits][E le[ -I+]digits] 

A "floating-point constant" is a decimal number that represents a signed 
real number. The value of a signed real number includes an integer por­
tion, a fractional portion, and an exponent. The digits are zero or more 
decimal digits (0 through 9), and E (or e) is the exponent symbol. You can 
omit either the digits before the decimal point (the integer portion of the 
value) or the digits after the decimal point (the fractional portion), but not 
both. You can leave out the decimal point only if you include an 
exponent. 

2-10 



Elements of C 

The exponent consists of the exponent symbol (E or e) followed by a con­
stant integer value. The integer value may be negative. No white-space 
characters can separate the digits or characters of the constant. 

Floating-point constants always specify positive values. However, you 
can place a minus sign (-) in front of the constant to fonn a constant 
floating-point expression with a negative value. In this case, the minus 
sign is treated as an arithmetic operator. 

All floating-point constants have type double. 

Examples 

The following examples illustrate some fonns of floating-point constants 
and expressions: 

15.75 
1. 57 5E1 
1575e-2 
-0.0025 
-2.5e-3 
25E-4 

You can omit the integer portion of the floating-point constant, as shown 
in the following examples: 

-.125 
-.175E-2 

2.3.3 Character Constants 

Syntax 

'char' 

A "character constant" is fonned by enclosing a single character from 
the representable character set within single quotation marks (' '). An 
escape sequence is regarded as a single character and is therefore valid in 
a character constant. Note that escape characters must be represented by 
escape sequences or diagnostic messages will be generated. The value of 
a character constant is the numerical value of the character. 

In the syntax above, char can be any character from the representable 
character set (including any escape sequence) except a single quotation 
mark ('), backslash (\), or new-line character (\0). To use a single quota­
tion mark or backslash character as a character constant, precede it with a 
backslash, as shown in Table 2.8. 

2-11 



C Language Reference 

Table 2.8 

Examples of Character Constants 

Constant Value 
, , Single blank space 

'a' Lowercase a 

'?' Question mark 

'\b' Backspace 

'\xIB' ASCII escape character 

'\" Single quotation mark 
,\\, Backslash 

Character constants have type int, and are therefore sign extended in type 
conversions. (See "Type Conversions," for more infonnation.) 

2.3.4 String Literals 

Syntax 

"characters" ["characters"]". 

A "string literal" is a sequence of characters from the representable 
character set enclosed in double quotation marks (" "). This example 
demonstrates a simple string literal: 

"This is a string literal." 

In a string literal, characters is a placeholder for zero or more characters 
from the representable character set, including any escape sequence. The 
double quotation mark ("), backs lash (\), or new line must be represented 
by their escape sequences (\", \\, and \n). Non-printing characters should 
always be represented by a corresponding escape sequence. Each escape 
sequence is considered a single character. 

To force a new line within a string literal, enter the new-line (\n) escape 
sequence at the point in the string where you want the line broken, as fol­
lows: 

"Enter a number between 1 and lOO\nOr press Return" 

2-12 



Elements of C 

The traditional way to form string literals that take up more than one line 
is to type a backs lash, then press RETURN. The backs lash causes the 
compiler to ignore the following new-line character. For example, the 
string literal 

"Long strings can be bro\ 
ken into two or more pieces." 

is identical to the string 

"Long strings can be broken into two or more pieces." 

Two or more string literals separated only by white space will be con­
catenated into a single string. For example, long strings passed as literals 
to the printf function can now be continued in any column of a succeed­
ing line without affecting their appearance when output, if entered as fol­
lows: 

printf ("This is the first half of the string," 
" this is the second half") 

As long as each part of the string is enclosed in double quotation marks, 
the parts will be concatenated and output as a single string: 

This is the first half of the string, this is the second half 

You can use string concatenation anywhere you might previously have 
used a backslash followed by a new-line character to enter strings longer 
than one line. Because ensuing strings can start in any column of the 
source code without affecting their on-screen representation, strings can 
be positioned to enhance source-code readability. For example, the fol­
lowing pointer, initialized as two distinct string literals separated only by 
white space, is stored as a single string. When properly referenced, as in 
the following example, it produces a result identical to the previous 
example: 

char *string = "This is the first half of the string," 
" this is the second half" 

printf ("%s" , string) ; 

To use a double quotation mark or backslash within a string literal, pre­
cede it with a backslash as shown in the following examples: 

"First\\Second" 

"\ "Yes, I do, \" she said." 

2-13 



C Language Reference 

Note that an escape sequence (such as \\ or \") within a string literal 
counts as a single character. 

The characters of a string are stored in order at contiguous memory loca­
tions. A null character (represented by the \0 escape sequence) is 
automatically appended to, and marks the end of, each string literal. Each 
string in a program is generally considered to be distinct; however, two 
identical strings are not guaranteed to receive separate storage. Therefore, 
programs should not be designed to allow modification of string literals 
during execution. 

String literals have type array of char (char [ D. This means that a string 
is an array with elements of type char. The number of elements in the 
array is equal to the number of characters in the string, plus one for the 
terminating null character. 

2.4 Identifiers 

Syntax 

letter 1_[ letter Idigit 1_] •.. 

"Identifiers" are the names you supply for variables, types, functions, 
and labels in your program. An identifier is a sequence of one or more 
letters, digits, or underscores ( ) that begins with a letter or underscore. 
Identifiers can contain any mllnber of characters, but only the first 31 
characters are significant to the compiler. (Other programs that read the 
compiler output, such as the linker, may recognize even fewer charac­
ters.) 

You create an identifier by specifying it in the declaration of a variable, 
type, or function. You can then use the identifier in later program state­
ments to refer to the associated item. Although statement labels are a spe­
cial kind of identifier and have their own naming class, their creation is 
similar to that of variables and functions. (Declarations are described in 
the "Declarations" chapter. Statement labels are described in the 
"Statements" chapter.) 

Because the C compiler considers uppercase and lowercase letters dis­
tinct characters, you can create distinct identifiers that have the same 
spelling but different cases for one or more of the letters. 

An identifier cannot have the same spelling and case as a keyword of the 
language. Keywords are described in "Keywords." 

2-14 



Elements of C 

You should not use leading underscores in identifiers you create: 
identifiers beginning with an underscore can cause conflicts with the 
names of system routines or variables, and produce errors. Programs con­
taining names beginning with leading underscores are not guaranteed to 
be portable. 

Note 

Some linkers may further restrict the number and type of characters 
for globally visible symbols. (Visibility is defined in "Lifetime and 
Visibility.") Also the linker, unlike the compiler, may not distin­
guish between uppercase and lowercase letters. Consult your linker 
documentation for information about naming restrictions imposed 
by the linker. 

Examples 

The following are examples of identifiers: 

j 
cnt 
templ 
top_ofyage 
skip12 

Since uppercase and lowercase letters are considered distinct characters, 
each of the following identifiers is unique: 

add 
ADD 
Add 
aDD 

2.5 Keywords 

"Keywords" are predefined identifiers that have special meanings to the 
C compiler. They can be used only as defined. The name of a program 
item cannot have the same spelling and case as a C keyword. 

2-15 



C Language Reference 

The C language has the following keywords: 

auto 
break 
case 
char 
const 
continue 
default 
do 

double 
else 
enum 
extern 
float 
for 
goto 
if 

int 
long 
register 
return 
short 
signed 
size of 
static 

struct 
switch 
typedef 
union 
unsigned 
void 
volatile 
while 

You cannot redefine keywords. However, you can specify text to be sub­
stituted for keywords before compilation by using C preprocessor direc­
tives (see the "Functions" chapter). 

The volatile keyword is implemented syntactically, but currently has no 
semantics associated with it. You cannot use volatile as a variable name 
in your programs. 

The following identifiers may be keywords in some implementations. See 
your compiler guide for more information. 

cdecl 
far 
fortran 
huge 
near 
pascal 

2.6 Comments 

Syntax 

/* characters */ 

A "comment" is a sequence of characters that is treated as a single 
white-space character by the compiler, but is otherwise ignored. In a com­
ment, characters can include any combination of characters from the 
representable character set, including new-line characters, but excluding 
the "end comment" delimiter (*/). Comments can occupy more than one 
line, but they cannot be nested. 

2-16 



Elements of C 

Comments can appear anywhere a white-space character is allowed. 
Since the compiler treats a comment as a single white-space character, 
you cannot include comments within tokens. However, since the com­
piler ignores the characters of the comment, you can include keywords in 
comments without producing errors. 

To suppress compilation of a large portion of a program or a program seg­
ment that contains comments, bracket the desired portion of code with the 
#if and #endif preprocessor directives, rather than "commenting out" the 
code (see "Conditional Compilation"). 

Examples 

The following examples illustrate some comments: 

/* Comments can separate and document 
lines of a program. */ 

/* Comments can contain keywords such as for 
and while. */ 

/***************************************** 
Comments can occupy several lines. 

*****************************************/ 

Since comments cannot contain nested comments, the following example 
causes an error: 

/* You cannot /* nest */ comments */ 

The error occurs because the compiler recognizes the first *1, after the 
word nest, as the end of the comment. It tries to process the remaining 
text and produces an error when it cannot do so. 

2.7 Tokens 

In a C source program, the basic element recognized by the compiler is 
the character group known as a "token." A token is source-program text 
the compiler will not attempt to further analyze into component elements. 

2-17 



C Language Reference 

For example, the following program fragment uses the word elsewhere as 
the name of a function. Although else is a keyword in C, there is no con­
fpsion between the function name token and the C keyword token it con­
tains. 

main() 
{ 

int i = 0; 
if (i) 
elsewhere () 

However, if you were to type elsewhere as else where with a space 
between else and where, the preceding example would elicit a compiler 
diagnostic message noting the lack of a semicolon before the else key­
word. 

The operators, constants, identifiers, and keywords described in this 
chapter are examples of tokens. Punctuation characters such as brackets 
([ ]), braces ({ }), angle brackets « », parentheses, and commas are also 
tokens. 

Tokens are delimited by white-space characters and by other tokens, such 
as operators and punctuation characters. To prevent the compiler from 
breaking an item down into two or more tokens, white-space characters 
are not permitted within an identifier, multicharacter operator, or key­
word. 

When the compiler interprets tokens, it includes as many characters as 
possible in a single token before moving on to the next token. Because of 
this behavior, the compiler may not interpret tokens as you intended if 
they are not properly separated by white space. 

Example 

Consider the following expression: 

i+++j 

In this example, the compiler first makes the longest possible operator 
( ++) from the three plus signs, then processes the remaining plus sign as 
an addition operator (+). Thus, the expression is interpreted as (i + +) + (j), 
not (i) + (++j). In this and similar cases, use white space and parentheses 
to avoid ambiguity and ensure proper expression evaluation. 

2-18 



Chapter 3 

Program Structure 

3.1 Introduction 3-1 

3.2 Source Program 3-1 

3.3 Source Files 3-3 

3.4 Functions and Program Execution 3-5 

3.5 Lifetime and Visibility 3-6 
3.5.1 Blocks 3-6 
3.5.2 Lifetime 3-7 
3.5.3 Visibility 3-7 
3.5.4 Summary 3-9 

3.6 Naming Classes 3-11 





Program Structure 

3.1 Introduction 

This chapter defines tenns used later in this manual to describe the C 
language, and discusses the structure of C source programs. It gives an 
overview of features of C that are described in detail in other chapters. 
The syntax and meaning of declarations and definitions are discussed in 
the "Declarations" chapter and the chapter on "Functions." The C 
preprocessor and pragmas are described in "Preprocessor Directives and 
Pragmas." 

3.2 Source Program 

A C "source program" is a collection of any number of directives, prag­
mas, declarations, definitions, and statements. These constructs are dis­
cussed briefly in the following paragraphs. To be valid constructs in 
Microsoft C, each must have the syntax described in this manual, though 
they can appear in any order in the program (subject to the rules outlined 
throughout this manual). However, order of appearance does affect how 
variables and functions can be used in a program. (See "Lifetime and 
Visibility," for more infonnation.) 

Directives 

A "directive" instructs the C preprocessor to perfonn a specific action on 
the text of the program before compilation. 

Pragmas 

A "pragma" instructs the compiler to perfonn a particular action at com­
pile time. 

Declarations and Definitions 

A "declaration" establishes an association between the name and the 
attributes of a variable, function, or type. In C, all variables must be 
declared before being used. 

A "definition" of a variable establishes the same aSSOCiatIOns as a 
declaration, but also causes storage to be allocated for the variable. 
Therefore, all definitions are implicitly declarations, but not all declara­
tions are definitions. For example, variable declarations that begin with 
the extern storage-class specifier are "referencing, " rather than 
"defining," declarations. Referencing declarations do not cause storage 
to be allocated and cannot be initialized. (For more infonnation on 
storage classes, see the "Declarations" chapter.) 

3-1 



C Language Reference 

"Function declarations" (or "prototypes") establish the name of the 
function, its return type, and, optionally, its fonnal parameters. A function 
definition includes the same elements as the prototype, plus the function 
body. If you do not supply an explicit declaration for a function, the com­
piler constructs a prototype from whatever infonnation is available in the 
first reference to the function, whether that is a definition or a call. 

Both function and variable declarations may appear inside or outside a 
function definition. Any declaration within a function definition is said to 
appear at the "internal" (local) level. A declaration outside all function 
definitions is said to appear at the "external" (global) level. 

Variable definitions, like declarations, can appear at the internal level or 
at the external level. Function definitions always occur at the external 
level. 

Note that declarations of types (for example, structure, union, and 
typedef declarations) that do not include the name of a variable of the 
type being declared do not cause storage allocation. 

Example 

The following example illustrates a simple C source program. This source 
program defines the function named main and declares the function 
named print! with a prototype. The program uses defining declarations to 
initialize the global variables x and y. The local variables z and w are 
declared, but not initialized. Storage is allocated for all these variables, 
but only x, y, U, and v contain meaningful values when declared because 
they are initialized either explicitly or implicitly. The values in z and w 
are not meaningful until values are assigned to them in the executable 
statements. 

3-2 



Program Structure 

int x = 1; /* Defining declarations */ 
int y = 2; /* of external variables * / 

extern int printf (char *, ... ); /* FLmction "prototype" 

main () 

int z; 
int w; 

static int v; 

extern int u; 

or declaration */ 

/* FLmction definition 
for main function */ 

/* Definitions for 
/* two uninitialized 

/* local variables 

*/ 
*/ 

*/ 

/* Definition of variable 
with global lifetime */ 

/* Referencing declaration 
of external variable 
defined elsewhere */ 

z = y + x; /* Executable statements */ 
w = y - x; 
printf ("z= %d w= %d", z, w); 

printf ("v= %d u= %d", v, u); 

3.3 Source Files 

A source program can be divided into one or more "source files." A C 
source file is a text file containing all or part of a C source program. (For 
example, a source file may contain just a few of the functions that the pro­
gram needs.) When you compile a program, you must separately compile, 
and then link, the individual source files composing the total program. 
You can also use the #include directive to combine separate source files 
into larger source files before you compile. (For information on 
"include" files, see the "Preprocessor Directives and Pragmas" chapter.) 

A source file can contain any combination of complete directives, prag­
mas, declarations, and definitions. You cannot split items such as function 
definitions or large data structures between source files. The last character 
in a source file must be a new-line character. 

A source file need not contain executable statements. For example, you 
may find it useful to place definitions of variables in one source file and 
then declare references to these variables in other source files that use 
them. This technique makes the definitions easy to find and change. For 
the same reason, manifest constants and macros are often organized into 
separate include files that may be referenced in source files as required. 

3-3 



C Language Reference 

Directives in a source file apply only to that source file and its include 
files. Moreover, each directive applies only to the part of the file that fol­
lows the directive. To apply a common set of directives to a whole source 
program, you must include the directives in all source files that make up 
the program. 

Pragmas usually affect a specific region of a source file. The implementa­
tion determines the specific compiler action that a pragma defines. (Your 
compiler guide describes the effects of particular pragmas.) 

Example 

The following example illustrates a C source program contained in two 
source files. Once you have compiled these source files, you can link and 
then execute them as a single program. 

The main and max functions are assumed to be in separate files, and exe­
cution of the program is assumed to begin with the main function. 

/************************************************************ 
Source file 1 - main function 

************************************************************/ 

#define ONE 1 
#define TWO 2 
#define THREE 3 

extern int max(int a, int b); /* Function prototype */ 

main () /* Function definition */ 

int w = ONE, x = TWO, Y = THREE; 
int z = 0; 
z = max (x,y) ; 
w = max (z,w) ; 

In Source file 1 (above), a prototype of the max function is declared. This 
kind of declaration is sometimes called a "forward declaration." The 
definition for the main function includes calls to max. 

The lines beginning with a number sign (#) are preprocessor directives. 
These directives tell the preprocessor to replace the identifiers ONE, 
TWO, and THREE with the corresponding number throughout Source file 
1. However, the directives do not apply to Source file 2 (follows), which 
will be separately compiled and then linked with Source file 1. 

3-4 



Program Structure 

/************************************************************ 
Source file 2 - definition of max function 

************************************************************/ 

int max (int a, int b) 

if ( a > b ) 
return (a); 

else 
return (b); 

/* Note formal parameters are 
included in function header */ 

Source file 2 contains the function definition for max. This definition 
satisfies the calls to max in Source file 1. Note that the definition for max 
follows the fonn specified in the ANSI C standard. For more infonnation 
on this new fonn and function prototyping, see the "Functions" chapter. 

3.4 FUnctions and Program Execution 

Every C program has a primary function that must be named main. The 
main function serves as the starting point for program execution. It usu­
ally controls program execution by directing the calls to other functions 
in the program. A program usually stops executing at the end of main, 
although it can tenninate at other points in the program for a variety of 
reasons depending on the execution environment. 

The source program usually has more than one function, with each func­
tion designed to perfonn one or more specific tasks. The main function 
can call these functions to perfonn their respective tasks. When main 
calls another function, it passes execution control to the function so that 
execution begins at the first statement in the function. The function 
returns control when a return statement is executed or when the end of 
the function is reached. 

You can declare any function, including main, to have parameters. When 
one function calls another, the called function receives values for its 
parameters from the calling function. These values are called "argu­
ments." You can declare fonnal parameters to main so that it can 
receive values from outside the program. (Most commonly, these argu­
ments are passed from the command line when the program is executed.) 

Traditionally, the first three parameters of the main function are declared 
to have the names argc, argv, and envp. The argc parameter is declared 
to hold the total number of arguments passed to main. The argv parame­
ter is declared as an array of pointers, each element of which points to a 

3-5 



C Language Reference 

string representation of an argument passed to main. The envp parameter 
is a pointer to a table of string values that set up the environment in which 
the program executes. 

The operating system supplies values for the argc, argv, and envp param­
eters, and the user supplies the actual arguments to main. The operating 
system, not the C language, determines the argument-passing convention 
used on a particular system. For more information, see your compiler 
guide. . 

If you declare formal parameters to a function, you must declare them 
when you define the function. Function declarations are described in the 
"Declarations," and "Functions" chapters, including function 
definitions. 

3.5 Lifetime and Visibility 

To understand how a C program works, you must understand the rules that 
determine how variables and functions can be used in the program. Three 
concepts are crucial to understanding these rules: the "block" (or com­
pound statement), "lifetime" (sometimes called extent), and "visibility" 
(sometimes called scope). 

3.5.1 Blocks 

A block is a sequence of declarations, definitions, and statements 
enclosed within braces. There are two types of blocks in C. The "com­
pound statement" (discussed more fully in the "Statements" chapter) is 
one type of block. The other, the "function definition," consists of a com­
pound statement comprising the function body plus the function's associ­
ated "header" (the function name, return type, and formal parameters). A 
block may encompass other blocks, with the exception that no block can 
contain a function definition. A block within other blocks is said to be 
"nested" within the encompassing blocks. 

Note that, while all compound statements are enclosed within braces, not 
everything enclosed within braces constitutes a compound statement. For 
example, though the specifications of array, structure, or enumeration ele­
ments may appear within braces, they are not considered compound state­
ments. 

3-6 



Program Structure 

3.5.2 Lifetime 

"Lifetime" is the period, during execution of a program, in which a vari­
able or function exists. All functions in a program exist at all times during 
its execution. 

Lifetime of a variable may be internal (local) or external (global). An 
item with a local lifetime (a "local item") has storage and a defined 
value only within the block where the item is defined or declared. A local 
item is allocated new storage each time the program enters that block, 
and it loses its storage (and hence its value) when the program exits the 
block. If the lifetime of the variable is global (a "global item"), it has 
storage and a defined value for the entire duration of a program. 

The following rules specify whether a variable has local or global life­
time: 

• Variables declared at the internal level (that is, within a block) 
usually have local lifetimes. You can ensure global lifetime for a 
variable within a block by including the static storage class 
specifier in its declaration. Once declared static, the variable will 
retain its value from one entry of the block to the next. However, it 
will still be "visible" only within its own block and blocks nested 
within its own block. (Visibility of objects is discussed in the next 
section. For information on storage-class specifiers, see the 
"Declarations" chapter.) 

• Variables declared at the external level (that is, outside all blocks 
in the program) always have global lifetimes. 

3.5.3 Visibility 

An item's "visibility" determines the portions of the program in which it 
can be referenced by name. An item is visible only in portions of a pro­
gram encompassed by its "scope," which may be limited (in order of 
increasing restrictiveness) to the file, function, block, or function proto­
type in which it appears. 

In C, only a label name is always confined to function scope. (For more 
information on labels and label names, see the chapter on "Statements. ") 
The scope of any other item is determined by the level at which its 
declaration occurs. An item declared at the external level has file scope 
and is visible everywhere within the file. If its declaration occurs within a 
block (including the list of formal parameters in a function definition), the 
item's scope is limited to that block and blocks nested within that block. 
Formal parameter names declared in the parameter list of a function 

3-7 



C Language Reference 

prototype have scope only from the completion of the parameter declara­
tion to the end of the function declarator. 

Note 

Although an item with a global lifetime exists throughout the execu­
tion of the source program (for example, an externally declared 
variable or a local variable declared with the static keyword), it 
may not be visible in all parts of the program. 

An item is said to be "globally visible" if it is visible, or if you can use 
appropriate declarations to make it visible, in all the source files making 
up the program. (For more information on visibility between source files, 
also known as "linkage," see the chapter on "Declarations.' ') 

The following rules govern the visibility of variables and functions within 
a program: 

• Variables declared or defined at the global level (that is, outside all 
blocks in the program) are visible from their point of definition or 
declaration to the end of the source file. You can use appropriate 
declarations to make such variables visible in other source files, as 
described in "Storage Classes." However, variables declared at 
the global level with the static storage-class specifier are visible 
only within the source file in which they are defined. 

• In general, variables declared or defined at the local level (that is, 
within a block) are visible only from their point of declaration or 
definition to the end of the block actually containing the definition 
or declaration. 

• Variables from outer blocks (including those declared at the global 
level) are visible in all inner blocks. However, the visibility of 
variables is said to "nest" within blocks. For instance, a block 
within another block can contain declarations for variables whose 
identifiers (names) are the same as variables in enclosing blocks. 
Such redefinitions prevail only within the inner block, however. 
Outer-block definitions are restored as the inner blocks are exited. 

• Functions with static storage class are visible only in the source 
file in which they are defined. All other functions are globally visi­
ble. (For more information on function declarations, see "Function 
Definitions (Prototypes)." 

3-8 



Program Structure 

3.5.4 Summary 

Table 3.1 summarizes the main factors determining lifetime and visibility 
of variables and functions. However, the table does not cover all possible 
cases. For more information, see the' 'Declarations" chapter. 

Note 

A Microsoft extension to the ANSI C standard provides that func­
tions declared at an internal level may have global visibility. This 
feature should not be relied upon where portability of source code is 
a consideration. See your compiler guide for information on ena­
bling Microsoft extensions. 

3-9 



C Language Reference 

Table 3.1 

Summary of Lifetime and Visibility 

Storage 
Class 

Level Item Specifier Lifetime Visibility 

External Variable static Global Restricted to 
definition source file in 

which it occurs 

Variable extern Global Remainder 
declaration of source file 

Function static Global Restricted 
prototype to single 
or definition source file 

Function extern Global Remainder 
prototype of source file 

Internal Variable extern Global Block 
declaration 

Variable static Global Block 
definition 

Variable auto or Local Block 
definition register 

Example 

The following program example illustrates blocks, nesting, and visibility 
of variables. In the example, there are four levels of visibility: the exter­
nal level and three block levels. Assuming that the function print[ is 
defined elsewhere in the program, the values will be printed to the screen 
as noted in the comments preceding each statement. 

3-10 



Program Structure 

#include <stdio.h> 

/* i defined at external level: */ 
int i = 1; 

/* main function defined at external level: */ 
main 0 
{ 

/* prints 1 (value of external level i): */ 
printf ("%d\n", i); 

/* begin first nested block: */ 
{ 

/* i and j defined at internal level: */ 
int i = 2, j = 3; 

/* prints 2, 3: */ 
printf ("%d\n%d\n", i, j); 

/* begin second nested block: */ 
{ 

/* i is redefined: */ 
int i = 0; 

/* prints 0, 3: */ 
printf ("%d\n%d\n", i, j); 

/* end of second nested block: */ 
} 

/* prints 2 (outer definition restored): */ 
printf ("%d\n", i); 

/* end of first nested block: */ 
} 

/* prints 1 (external level definition restored): */ 
printf ("%d\n", i); 

3.6 Naming Classes 

In any C program, identifiers are used to refer to many different kinds of 
items. When you write a C program, you provide identifiers for the func­
tions, variables, formal parameters, union members, and other items the 
program uses. C lets you use the same identifier for more than one pro­
gram item, as long as you follow the rules outlined in this section. (For a 
definition of an identifier, see the "Elements of C" chapter.) 

3-11 



C Language Reference 

The compiler sets up , 'naming classes" to distinguish between the 
identifiers used for different kinds of items. The names within each class 
must be unique to avoid conflict, but an identical name can appear in 
more than one naming class. This means that you can use the same 
identifier for two or more different items, provided that the items are in 
different namh,g classes. The compiler can resolve references based on 
the context of the identifier in the program. 

The following list describes the kinds of items you can name in C pro­
grams and the rules for naming them: 

3-12 

Variables and functions The names of variables and functions are in 
a naming class with formal parameters, 
typedef names and enumeration constants. 
Therefore, variable and function names 
must be distinct from other names in this 
class that have the same visibility. 

However, you can redefine variable and 
function names within program blocks, as 
described in "Lifetime and Visibility." 

Formal parameters The names of formal parameters to a func­
tion are grouped with the names of the 
function's variables, so the formal parame­
ter names should be distinct from the vari­
able names. You cannot redeclare the for­
mal parameters at the top level of the func­
tion. However, the names of the formal 
parameters may be redefined (that is, used 
to refer to different items) within subsequent 
blocks nested within the function body. 

Enumeration constants Enumeration constants are in the same nam­
ing class as variable and function names. 
This means that the names of enumeration 
constants must be distinct from all variable 
and function names with the same visibility, 
and distinct from the names of other 
enumeration constants with the same visi­
bility. However, like variable names, the 
names of enumeration constants have nested 
visibility, so you can redefine them within 
blocks. (Nested visibility is discussed in 
"Lifetime and Visibility.") 



typedef names 

Tags 

Members 

Statement labels 

Example 

Program Structure 

The names of types defined with the typedef 
keyword are in a naming class with variable 
and function names. Therefore, typedef 
names must be distinct from all variable and 
function names with the same visibility, as 
well as from the names of formal parame­
ters and enumeration constants. Like vari­
able names, names used for typedef types 
can be redefined within program blocks. See 
"Lifetime and Visibility." 

Enumeration, structure, and union tags are 
grouped in a single naming class. These tags 
must be distinct from other tags with the 
same visibility. Tags do not conflict with 
any other names. 

The members of each structure and union 
form a naming class. The name of a member 
must, therefore, be unique within the struc­
ture or union, but it does not have to be dis­
tinct from other names in the program, 
including the names of members of different 
structures and unions. 

Statement labels form a separate naming 
class. Each statement label must be distinct 
from all other statement labels in the same 
function. Statement labels do not have to be 
distinct from other names or from label 
names in other functions. 

Since structure tags, structure members, and variable names are in three 
different naming classes, the three items named student in the following 
example do not conflict. The context of each item allows correct interpre­
tation of each occurrence of student in the program. 

3-13 



C Language Reference 

For example, when student appears after the struct keyword, the compiler 
recognizes it as a structure tag. When student appears after a member­
selection operator (-> or .), the name refers to the structure member. In 
other contexts, student refers to the structure variable. 

3-14 

struct student { 
char student[20]; 
int class; 
int id; 
} student; 



Chapter 4 

Declarations 

4.1 Introduction 4-1 

4.2 Type Specifiers 4-2 
4.2.1 Storage for Fundamental Types 4-5 
4.2.2 Range of Values 4-7 
4.2.3 Data-Type Categories 4-7 

4.3 Declarators 4-8 
4.3.1 Array, Pointer, and Function Declarators 4-9 
4.3.2 Complex Declarators 4-9 
4.3.3 Declarators with Special Keywords 4-13 

4.4 Variable Declarations 4-16 
4.4.1 Simple Variable Declarations 4-17 
4.4.2 Enumeration Declarations 4-18 
4.4.3 Structure Declarations 4-20 
4.4.4 Union Declarations 4-24 
4.4.5 Array Declarations 4-25 
4.4.6 Pointer Declarations 4-27 

4.5 Function Declarations (Prototypes) 4-31 
4.5.1 Formal Parameters 4-32 
4.5.2 Return Type 4-32 
4.5.3 The List of Formal Parameters 4-33 
4.5.4 Summary 4-34 

4.6 Storage Classes 4-37 
4.6.1 Variable Declarations at the Global Level 4-38 
4.6.2 Variable Declarations at the Local Level 4-41 
4.6.3 Function Declarations at the Global and Local Levels 4-44 

4.7 Initialization 4-44 
4.7.1 Fundamental and Pointer Types 4-45 
4.7.2 Aggregate Types 4-47 
4.7.3 String Initializers 4-50 



4.8 Type Declarations 4-51 
4.8.1 Structure, Union, and Enumeration Types 4-51 
4.8.2 Using typedef Declarations 4-52 

4.9 Type Names 4-53 



Declarations 

4.1 Introduction 

This chapter describes the form and constituents of C declarations for 
variables, functions, and types. C declarations have the form 

[sc-specifier] [type-specifier] declarator[ =initializer] [,declarator[ =initializer] ] ... 

where sc-specifier is a storage-class specifier; type-specifier is the name 
of a defined type; and initializer gives the value or sequence of values to 
be assigned to the variable being declared. The declarator is an identifier 
that can be modified with brackets ([ ]), asterisks (*), or parentheses «( ». 
You must explicitly declare all C variables before using them. You can 
declare a C function explicitly with a function prototype. If you do not 
provide a prototype, one is created automatically from whatever informa­
tion is included in the first reference to the function, whether that refer­
ence is a definition or a call. 

The C language includes a standard set of data types. You can add your " 
own data types by declaring new ones based on types already defined. 
You can declare arrays, data structures, and pointers to both variables and 
functions. 

C declarations require one or more "declarators." A declarator is an 
identifier that can be modified with brackets ([]), asterisks (*), or 
parentheses «( » to declare an array, pointer, or function type, respec­
tively. When you declare simple variables (such as character, integer, and 
floating-point items), or structures and unions of simple variables, the 
declarator is just an identifier. 

Four storage-class specifiers are defined in C: auto, extern, register, and 
static. The storage-class specifier of a declaration affects how the 
declared item is stored and initialized and which parts of a program can 
reference the item. Location of the declaration within the source program 
and the presence or absence of other declarations of the variable are also 
important factors in determining the visibility of variables. 

Function prototype declarations are presented in "Function Declarations 
(Prototypes)" in this chapter and in the "Functions" chapter of this 
guide. For information on function definitions, see the "Functions" 
chapter. 

4-1 



C Language Reference 

4.2 TYpe Specifiers 

The C language provides definitions for a set of basic data types, called 
"fundamental' ' types. Their names are listed in Table 4.1. 

Table 4.1 

Fundamental Types 

Integral Typesa 
Floating-Point 
Types Other 

char 

int 

short 

long 

signed 

unsigned 

enum 

b 

d 

float 

double 

long doubleb 

voidC 

const 

volatiled 

The optional keywords signed and unsigned can precede any 
of the integral types, except enum, and can also be used alone 
as type specifiers, in which case they are understood as signed 
int and unsigned int, respectively. When used alone, the key­
word int is assumed to be signed. When used alone, the key­
words long and short are understood as long int and short into 

The long double type is semantically equivalent to double, 
but is syntactically distinct. 

The keyword void has three uses: as a function return type, as 
an argument-type list for a function that will take no argu­
ments, and to modify a pointer. 

The volatile keyword is implemented syntactically, but not 
semantically. 

Enumeration types are considered fundamental types. 

4-2 



Declarations 

Note 

The long float type is no longer supported, and occurrences of it in 
old code should be changed to double. 

The signed char, signed int, signed short int, and signed long int types, 
together with their unsigned counterparts and enum, are called 
"integral" types. The float, double, and long double type specifiers are 
referred to as "floating" or "floating-point" types. You can use any 
integral or floating-point type specifier in a variable or function declara­
tion. 

You can use the void type to declare functions that return no value or to 
declare a pointer to an unspecified type. When the keyword void occurs 
alone within the parentheses following a function name, it is not inter­
preted as a type specifier. In that context void indicates only that the 
function accepts no arguments. Function types are discussed in "Function 
Declarations (Prototypes)." 

The const type specifier declares an object as nonmodifiable. The const 
keyword can be a modifier for any fundamental or aggregate type, or to 
modify a pointer to an object of any type. A const type specifier can 
modify a typedef. A declaration that includes the keyword const as a 
modifier of an aggregate type declarator indicates that each element of 
the aggregate type is unmodifiable. If an item is declared with only the 
const type specifier, its type is taken to be const int. A const object may 
be placed in a read-only region of storage. 

The volatile type specifier declares an item whose value may legitimately 
be changed by something beyond the control of the program in which it 
appears. The volatile keyword can be used in the same circumstances as 
const ( previously described). An item can be both const and volatile, in 
which case the item could not be legitimately modified by its own pro­
gram, but could be modified by some asynchronous process. The volatile 
keyword is implemented syntactically, but not semantically. 

You can create additional type specifiers with typedef declarations (see 
"Type Declarations "). When used in a declaration, such specifiers may 
only be modified by the const and volatile modifiers. 

Type specifiers are commonly abbreviated, as shown in Table 4.2. Integral 
types are signed by default. Thus, if you omit the unsigned keyword from 
the type specifier, the integral type is signed, even if you do not specify 
the signed keyword. 

4-3 



C Language Reference 

In some implementations, you can specify a compiler option that changes 
the default char type from signed to unsigned. When this option is in 
effect, the abbreviation char means the same as unsigned char, and you 
must use the signed keyword to declare a signed character value. Com­
piler options are described in your compiler guide. 

Note 

This manual generally uses the abbreviated forms of the type 
specifiers listed in Table 4.2 rather than the long forms, and it 
assumes that the char type is signed by default. Therefore, 
throughout this manual, char stands for signed char. 

Table 4.2 

Type Specifiers and Abbreviations 

Type Specifier Abbreviations 

signed chara char 

signed int signed, int 

signed short int short, signed short 

signed long int long, signed long 

unsigned charb 

unsigned int unsigned 

unsigned short int unsigned short 

unsigned long int unsigned long 

float 

const int const 

volatile int volatile 

const volatile int const volatile 

a When you make the char type unsigned by default (by speci­
fying the appropriate compiler option), you cannot abbreviate 
signed char. 

b 

4-4 

When you make the char type unsigned by default (by speci­
fying the appropriate compiler option), you can abbreviate 
unsigned char as char. 



Declarations 

4.2.1 Storage for Fundamental Types 

Table 4.3 summarizes the storage associated with each fundamental type 
and gives the range of values that can be stored in a variable of each type. 
Since the void type specifier is only used to denote a function with no 
return value or a pointer to an unspecified type, it is not included in the 
table. Similarly, the table does not include const or volatile because a 
variable type modified by const or volatile retains its storage size and can 
contain any value within range for its fundamental type. 

Table 4.3 

Storage and Range of Values for Fundamental Types 

Type 

char 

int 

short 

long 

unsigned char 

unsigned 

unsigned short 

unsigned long 

float 

double 

long double 

Storage 

1 byte 

implementation 
defined 

2 bytes 

4 bytes 

1 byte 

implementation 
defined 

2 bytes 

4 bytes 

4 bytes 

8 bytes 

8 bytes 

Range of Values (Internal) 

-128 to 127 

-32,768 to 32,767 

-2,147,483,648 to 2,147,483,647 

o to 255 

o to 65,535 

o to 4,294,967,295 

IEEE-standard notation; 
discussed below 

IEEE-standard notation; 
discussed below 

IEEE-standard notation; 
discussed below 

The char type stores the integer value of a member of the representable 
character set. That integer value is the ASCII code corresponding to the 
specified character. Since the char type is interpreted as a signed, I-byte 
integer, a char variable can store values in the range -128 to 127, 
although only the values from 0 to 127 have character equivalents. Simi­
larly, an unsigned char variable can store values in the range 0-255. 

Note that the C language does not define the storage and range associated 
with the int and unsigned int types. Instead, the size of a signed or 

4-5 



C Language Reference 

unsigned int item is the standard size of an integer on a particular 
machine. For example, on a 16-bit machine the int type is usually 16 bits, 
or 2 bytes. On a 32-bit machine the int type is usually 32 bits, or 4 bytes. 
Thus, the int type is equivalent to either the short int or the long int type, 
and the unsigned int type is equivalent to either the unsigned short or 
the unsigned long type, depending on the implementation. 

The type specifiers int and unsigned int (or simply unsigned) define cer­
tain features of the C language (for instance, the enum type discussed 
later in "Type Declarations "). In these cases, the definitions of int and 
unsigned int for a particular implementation determine the actual 
storage. 

Note 

The int and unsigned int type specifiers are widely used in C pro­
grams because they let a particular machine handle integer values in 
the most efficient way for that machine. However, since the sizes of 
the int and unsigned int types vary, programs that depend on a 
specific int size may not be portable to other machines. To make 
programs more portable, you can use expressions with the sizeof 
operator instead of hard-coded data sizes. The actual sizes of int 
and unsigned int are discussed in your compiler guide. 

Floating-point numbers use the IEEE (Institute of Electrical and Electron-
, ics Engineers, Inc.) format. Values with float type have 4 bytes, consisting 

of a sign bit, an 8-bit excess-I27 binary exponent, and a 23-bit mantissa. 
The mantissa represents a number between 1.0 and 2.0. Since the high­
order bit of the mantissa is always 1, it is not stored in the number. This 
representation gives a range of approximately 3.4E-38 to 3.4E+38 for 
type float. 

Values with double type have 8 bytes. The format is similar to the float 
format except that it has an ll-bit excess-I023 exponent and a 52-bit 
mantissa, plus the implied high-order 1 bit. This format gives a range of 
approximately 1.7E-308 to 1.7E+308 for type double. 

4-6 



· Declarations 

4.2.2 Range of Values 

The range of values for a variable is bounded by the minimum and max­
imum values that can be represented internally in a given number of bits. 
However, because of C's conversion rules (discussed in detail in the 
"Expressions and Assignments" chapter), you cannot always use the 
maximum or minimum value for a constant of a particular type in an 
expression. 

For example, the constant expression -32768 consists of the arithmetic 
negation operator (-) applied to the constant value 32,768. Since 32,768 is 
too large to represent as a short int, it is given the long type. Conse­
quently, the constant expression -32768 has long type. You can only 
represent -32,768 as a short int by type-casting it to the short type. No 
information is lost in the type cast, since -32,768 can be represented inter­
nally in 2 bytes. 

Similarly, a value such as 65,000 can only be represented as an unsigned 
short by type-casting the value to unsigned short type or by giving the 
value in octal or hexadecimal notation. The value 65,000 in decimal nota­
tion is considered a signed constant. It is given the long type because 
65,000 does not fit into a short. You can cast this long value to the 
unsigned short type without loss of information, since 65,000 can fit in 2 
bytes when it is stored as an unsigned number. 

Octal and hexadecimal constants may have either signed or unsigned 
type, depending on their size (see' 'Integer Constants," for more informa­
tion). However, the method used to assign types to octal and hexadecimal 
constants ensures that they always behave like unsigned integers in type 
conversions. 

4.2.3 Data-1Ype Categories 

The C data types fall into two general categories, called scalar and aggre­
gate. Scalar types include pointers and arithmetic types. Arithmetic types 
include all floating and integral types, as described in this section. Aggre­
gate types include arrays and structures. Table 4.4 illustrates the 
categories of C data types. 

4-7 



C Language Reference 

Table 4.4 

C Data-Type Categories 

Categories 
Integral Types 

Arithmetic Types 

Scalar Types 

Floating Types 

Aggregate Types 

4.3 Dedarators 

Syntax 

identifier 
declarator[ [constant-expression] ] 
*declarator 
(declarator) 

Data Types 
char 
int 
short 
long 
signed 

unsigned 
enum 

enum 

float 
double 
long double 

Pointers 
Arrays 
Structures 

The C language lets you declare ' 'arrays' , of values, ' 'pointers' , to 
values, and "functions returning" values of specified types. You must use 
a "declarator" to declare these items. 

A "declarator" is an identifier that may be modified by brackets ([]), 
asterisks (*), or parentheses (( )) to declare an array, pointer, or function 
type, respectively. Declarators appear in the array, pointer, and function 
declarations described later in this chapter. The following section 
discusses the rules for forming and interpreting declarators. 

4-8 



Declarations 

4.3.1 Array, Pointer, and Function Declarators 

When a declarator consists of an unmodified identifier, the item being 
declared has a base type. If the identifier is followed by brackets ([ ]), the 
type is modified to an array type. If asterisks (*) appear to the left of an 
identifier, the type is modified to a pointer type. If the identifier is fol­
lowed by parentheses, the type is modified to aJunction returning type. 

A declarator must include a type specifier to be a complete declaration. 
The type specifier gives the type of the elements of an array type, the type 
of object addressed by a pointer type, or the return type of a function. 

The sections on array, pointer, and function declarations later in this 
chapter discuss each type of declaration in detail. 

The following examples illustrate the simplest forms of declarators: 

Example 1 

This example declares an array of int values named list: 

int list[20]; 

Example 2 

The following example declares a pointer named cp to a char value: 

char *cp; 

Example 3 

The following declares a function named June, with no arguments, that 
returns a double value: 

double func(void); 

4.3.2 Complex Declarators 

You can enclose any declarator in parentheses to specify a particular 
interpretation of a complex declarator. 

A "complex" declarator is an identifier qualified by more than one array, 
pointer, or function modifier. You can apply various combinations of 

4-9 



C Language Reference 

array, pointer, and function modifiers to a single identifier. However, a 
declarator may not have the following illegal combinations: 

• An array cannot have functions as its elements. 

• A function cannot return an array or a function. 

In interpreting complex declarators, brackets and parentheses (that is, 
modifiers to the right of the identifier) take precedence over asterisks 
(that is, modifiers to the left of the identifier). Brackets and parentheses 
have the same precedence and associate from left to right. After the 
declarator has been fully interpreted, the type specifier is applied as the 
last step. By using parentheses you can override the default association 
order and force a particular interpretation. 

A simple way to interpret complex declarators is to read them from the 
inside out, using the following four steps: 

1. Start with the identifier and look to the right for brackets or 
parentheses (if any). 

2. Interpret these brackets or parentheses, then look to the left for 
asterisks. 

3. For each right parenthesis you encounter, apply rules 1 and 2 to 
everything within the parentheses. 

4. Apply the type specifier. 

Example 1 

In the following example, the steps are labeled in order and can be inter­
preted as follows: 

1. The identifier var is declared as 

2. a pointer to 

3. a function returning 

4. a pointer to 

5. an array of 10 elements, which are 

6. pointers to 

4-10 



Declarations 

7. char values. 

char * (* (*var) () ) [10]; 

7642135 

Examples 2 through 9 illustrate complex declarations further and show 
how parentheses can affect the meaning of a declaration. 

Example 2 

In the following example, the array modifier has higher priority than the 
pointer modifier, so var is declared to be an array. The pointer modifier 
applies to the type of the array elements; therefore, the array elements are 
pointers to int values. 

/* array of pointers to int values */ 

int *var [5] ; 

Example 3 

In the following example, parentheses give the pointer modifier higher 
priority than the array modifier, and var is declared to be a pointer to an 
array of five int values. 

/* pointer to array of int values */ 

int (*var) [5]; 

Example 4 

Function modifiers also have higher priority than pointer modifiers, so 
this example declares var to be a function returning a pointer to a long 
value. The function is declared to take two long values as arguments. 

/* function returning pointer to a long */ 

long *var(long,long); 

Example 5 

This example is similar to Example 3. Parentheses give the pointer 
modifier higher priority than the function modifier, and var is declared to 

4-11 



C Language Reference 

be a pointer to a function that returns a long value. Again, the function 
takes two long arguments. 

/* pointer to function returning long */ 

long (*var) (long, long) ; 

Example 6 

The elements of an array cannot be functions, but this example demon­
strates how to declare an array of pointers to functions instead. In this 
example, var is declared to be an array of five pointers to functions that 
return structures with two members. The arguments to the functions are 
declared to be two structures with the same structure type, both. Note 
that the parentheses surrounding *var[5 J are required. Without them, the 
declaration is an illegal attempt to declare an array of functions, as shown 
here: 

/* ILLEGAL */ 
struct both *var[5] ( struct both, struct both ); 

/* array of pointers to functions 
returning structures */ 

struct both { 
int a; 
char b; 
} ( *var[5] ) ( struct both, struct both ); 

Example 7 

This example shows how to declare a function returning a pointer to an 
array, since functions returning arrays are illegal. Here var is declared to 
be a function returning a pointer to an array of three double values. The 
function var takes one argument. The argument, like the return value, is a 
pointer to an array of three double values. The argument type is given by 
a complex abstract declarator. The parentheses around the asterisk in the 
argument type are required; without them, the argument type would be an 
array of three pointers to double values. For a discussion and examples of 
abstract dec1arators, see "Type Names." 

/* function returning pointer 
to an array of 3 double values */ 

double ( *var( double (*) [3] ) ) [3]; 

4-12 



Declarations 

Example 8 

As this example shows, a pointer can point to another pointer, and an 
array can contain arrays as elements. Here var is an array of five ele­
ments. Each element is a five-element array of pointers that point to 
unions, each of which have two members. 

/* array of arrays of pointers 
to pointers to unions */ 

union sign { 

Example 9 

int x; 
unsigned y; 
} **var [5] [5]; 

This example shows how the placement of parentheses changes the mean­
ing of the declaration. In this example, var is a five-element array of 
pointers to five-element arrays of pointers to unions. 

/* array of pointers to arrays 
of pointers to unions */ 

union sign * (*var[5]) [5]; 

4.3.3 Declarators with Special Keywords 

Your implementation of Microsoft C may include the following special 
keywords: 

l. cdecl 

2. far 

3. fortran 

4. huge 

5. near 

6. pascal 

4-13 



C Language Reference 

These keywords modify the meaning of variable and function declara­
tions. See your compiler guide for a full discussion of the effects of these 
special keywords. Note that the keywords near, far, and huge, apply only 
to 80286 programs. 

When a special keyword appears in a declarator, it modifies the item 
immediately to the right of the keyword. You can apply more than one 
special keyword to the same item. For example, you might modify a 
function identifier with both the far keyword and the pascal keyword. In 
this case, the order of the keywords does not matter (that is, far pascal 
and pascal far have the same effect). Thus the' 'binding" characteristics 
of the special keywords are the same as those of the type specifiers const 
and volatile. (The section "Type Specifiers," contains descriptions of the 
const and volatile keywords.) 

You can also use two or more special keywords in different parts of a 
declaration to modify the meaning of the declaration. For example, the 
following declaration contains two occurrences of the far keyword: 

int far * pascal far func(void); 

In this example, the pascal and far keywords modify the function 
identifier June. The return value of June is declared to be a far pointer to 
an int value. 

As in any C declaration, you can use parentheses to override the default 
interpretation of the declaration. The rules governing complex declarators 
also apply to declarations that use the special keywords. 

The following examples show the use of special keywords in declara­
tions. 

Example 1 

This example declares a huge array named database with 65,000 int ele­
ments. The huge keyword modifies the array declarator. 

int huge database[65000]; 

Example 2 

In this example, the far keyword modifies the asterisk to its right, making 
x a far pointer to a pointer to char. 

char * far * x; 

4-14 



Declarations 

This declaration is equivalent to the following declaration: 

char * (far *x); 

Example 3 

This example shows two equivalent declarations. Both declare calc as a 
function with the near and cdecl attributes. 

double near cdecl calc{double,double); 

double cdecl near calc{double,double); 

Example 4 

Example 4 also shows two declarations. The first declares a far fortran 
array of characters named initlist, and the second declares three far 
pointers named nextchar, prevchar, and currentchar. These pointers 
might be used to store the addresses of characters in the initlisf array. 
Note that the far keyword must be repeated before each declarator. 

char far fortran initlist[INITSIZE]; 

char far *nextchar, far *prevchar, far *currentchar; 

Example 5 

Example 5 shows a more complex declaration with several occurrences of 
the far keyword. 

char far *(far *getint) (int far *); 

6 5 2 1 3 4 

The following procedure would be used to interpret this declaration: 

1. The identifier getint is declared as a 

2. far pointer to 

3. a function taking 

4. a single argument that is a far pointer to an int value 

4-15 



C Language Reference 

5. and returning a far pointer to a 

6. char value. 

Note that the far keyword always modifies the item immediately to its 
right. 

4.4 Variable Declarations 

Syntax 

[sc-specifier] type-specifier declarator [, declarator] ... 

This section describes the form and meaning of variable declarations. In 
particular, it explains how to declare the following: 

Simple variables Single-value variables with integral or 
floating-point type 

Enumeration variables Simple variables with integral type that 
hold one value from a set of named integer 
constants 

Structures 

Unions 

Arrays 

Pointers 

Variables composed of a collection of 
values that may have different types 

Variables composed of several values of 
different types, which occupy the same 
storage space 

Variables composed of a collection of ele­
ments with the same type 

Variables that point to other variables and 
contain variable locations (in the form of 
addresses) instead of values 

In the general form of a variable declaration, type-specifier gives the data 
type of the variable and declarator gives the name of the variable, possi­
bly modified to declare an array or a pointer type. The type-specifier can 
be a compound, as when the type is modified by const, volatile, or one of 
the special keywords described in "Declarators with Special Keywords." 
You can define more than one variable in a declaration by using multiple 
declarators, separated by commas. For example, int const far *fp declares 
a variable named fp as a far pointer to a nonmodifiable int value. 

4-16 



Declarations 

The sc-specifier gives the storage class of the variable. In some contexts, 
you can initialize variables at the time you declare them. For information 
about storage classes and initialization, see the sections on "Storage 
Classes" and "Initialization, " respectively. 

4.4.1 Simple Variable Declarations 

Syntax 

[sc-specifier] type-specifier identifier [, identifier] ... ; 

The declaration of a simple variable specifies the variable's name and 
type. It can also specify the variable's storage class, as described in 
"Storage Classes." The identifier in the declaration is the variable's 
name. The type-specifier is the name of a defined data type. 

You can use a list of identifiers separated by commas (,) to specify several 
variables in the same declaration. Each identifier in the list names a vari­
able. All variables defined in the declaration have the same type. 

Example 1 

Example 1 declares a simple variable named x. This variable can hold 
any value in the set defined by the int type for a particular implementa­
tion. The simple object y is declared as a constant value of type int. It is 
initialized to the value 1, and is not modifiable. If the declaration of y was 
for an uninitialized external, it would receive an initial value of 0, and 
that value would be unmodifiable. 

int x; 
int canst y=l; 

Example 2 

This example declares two variables named reply and flag. Both vari­
ables have unsigned long type and hold unsigned integral values. 

unsigned long reply, flag; 

Example 3 

The following example declares a variable named order that has double 
type and can hold floating-point values. 

double order; 

4-17 



C Language Reference 

4.4.2 Enumeration Declarations 

Syntax 

enum [tag] {enum-list} [declarator [, declarator] ... ]; 

enum tag [identifier [, declarator] ... ]; 

An "enumeration declaration" gives the name of an enumeration vari­
able and defines a set of named integer constants (the "enumeration 
set' '). A variable with enumeration type stores one of the values of the 
enumeration set defined by that type. The integer constants of the 
enumeration set have int type; thus, the storage associated with an 
enumeration variable is the storage required for a single int value. 

Variables of enum type are treated as if they are of type int in all cases. 
They may be used in indexing expressions and as operands of all arith­
metic and relational operators. 

Enumeration declarations begin with the enum keyword and have the two 
forms shown at the beginning of this section and described below: 

• In the first form, enum-list specifies the values and names of the 
enumeration set. (The enum-list is described in detail below.) The 
optional tag is an identifier that names the enumeration type 
defined by enum-list. The declarator names the enumeration vari­
able. You can specify zero or more enumeration variables in a sin­
gle enumeration declaration. 

• The second form of the enumeration declaration uses a previously 
defined enumeration tag to refer to an enumeration type defined 
elsewhere. The tag must refer to a defined enumeration type, and 
that enumeration type must be currently visible. Since the 
enumeration type is defined elsewhere, enum-list does not appear 
in this type of declaration. Declarations of pointers to enumera­
tions and typedef declarations for enumeration types can use the 
enumeration tag before the enumeration type is defined. However, 
the enumeration definition must be encountered prior to any actual 
use of the typedef declaration or pointer. 

If a tag argument appears, but no declarator is given, the declaration con­
stitutes a declaration for an enumeration tag. 

4-18 



Declarations 

An enum-list has the following form: 

identifier [ = constant-expression] 
[, identifier [ = constant-expression] ... ] 

Each identifier in an enumeration list names a value of the enumeration 
set. By default, the first identifier is associated with the value 0, the next 
identifier is associated with the value 1, and so on through the last 
identifier in the declaration. The name of an enumeration constant is 
equivalent to its value. 

The optional phrase = constant-expression overrides the default sequence 
of values. Thus, if identifier = constant-expression appears in enum-list, 
the identifier is associated with the value given by constant-expression. 
The constant-expression must have int type and can be negative. The next 
identifier in the list is associated with the value of constant-expression + 
1, unless you explicitly associate it with another value. 

The following rules apply to the members of an enumeration set: 

• An enumeration set can contain duplicate constant values. For 
example, you could associate the value 0 with two different 
identi fiers named null and zero in the same set. 

• The identifiers in the enumeration list must be distinct from other 
identifiers with the same visibility, including ordinary variable 
names and identifiers in other enumeration lists. 

• Enumeration tags must be distinct from other enumeration, struc­
ture, and union tags with the same visibility. 

• A comma is allowed following the last item in the enumeration 
list. 

Example 1 

This example defines an enumeration type named day and declares a vari­
able named workday with that enumeration type. The value 0 is associ-

4-19 



C Language Reference 

ated with saturday by default. The identifier sunday is explicitly set to O. 
The remaining identifiers are given the values 1 through 5 by default. 

enum day { 
saturday, 
sunday = 0, 
monday, 
tuesday, 
wednesday, 
thursday, 
friday 
} workday; 

Example 2 

In this example, a value from the set defined in Example 1 is assigned to 
the variable today. Note that the name of the enumeration constant is 
used to assign the value. Since the day enumeration type was previously 
declared, only the enumeration tag is necessary. 

enum day today = wednesday; 

4.4.3 Structure Declarations 

Syntax 

struct [tag] {member-declaration-list} [declarator [, declarator] ... ]; 

struct tag [declarator [, declarator] ... ]; 

A "structure declaration" names a structure variable and specifies a 
sequence of variable values (called "members" of the structure) that can 
have different types. A variable of that structure type holds the entire 
sequence defined by that type. 

Structure declarations begin with the struct keyword and have two forms: 

• In the first form, a member-declaration-list specifies the types and 
names of the structure members. The optional tag is an identifier 
that names the structure type defined by member-declaration-list. 

• The second form uses a previously defined structure tag to refer to 
a structure type defined elsewhere. Thus, member-declaration-list 
is not needed as long as the definition is visible. Declarations of 
pointers to structures and typedefs for structure types can use the 
structure tag before the structure type is defined. However, the 
structure definition must be encountered prior to any actual use of 
the typedef or pointer. 

4-20 



Declarations 

In both fonns, each declarator specifies a structure variable. A declarator 
can also modify the type of the variabie to a pointer to the structure type, 
an array of structures, or a function returning a structure. If tag is given, 
but declarator does not appear, the declaration constitutes a type declara­
tion for a structure tag. 

Structure tags must be distinct from other structure, union, and enumera­
tion tags with the same visibility. 

A member-declaration-list argument contains one or more variable or 
bit field declarations. 

Each variable declared in the member-declaration list is defined as a 
member of the structure type. Variable declarations within the member­
declaration list have the same fonn as other variable declarations dis­
cussed in this chapter, except that the declarations cannot contain 
storage-class specifiers or initializers. The structure members can have 
any variable type: fundamental, array, pointer, union, or structure. 

A member cannot be declared to have the type of the structure in which it 
appears. However, a member can be declared as a pointer to the structure 
type in which it appears as long as the structure type has a tag. This lets 
you create linked lists of structures. 

A bit field declaration has the following fonn: 

type-specifier [identifier] : constant-expression; 

The constant-expression specifies the number of bits in the bitfield. The 
type-specifier has type int (signed or unsigned) and constant-expression 
must be a non-negative integer value. Arrays of bitfields, pointers to 
bitfields, and functions returning bitfields are not allowed. The optional 
identifier names the bitfield. Unnamed bitfields can be used as "dummy" 
fields, for alignment purposes. An unnamed bit field whose width is 
specified as 0 guarantees that storage for the member following it in the 
member-declaration list begins on an int boundary. 

Each identifier in a member-declaration list must be unique within the 
list. However, they do not have to be distinct from ordinary variable 
names or from identifiers in other member-declaration lists. 

4-21 



C Language Reference 

Note 

A Microsoft extension to the ANSI C standard allows char and long 
types (both signed and unsigned) for bitfields. Unnamed bit fields 
with base type long or char (signed or unsigned) force alignment 
to a boundary appropriate to the base type. 

Microsoft C does not implement signed bitfields. The syntax is 
allowed, but a bit field specified as signed is treated as unsigned in 
all conversions. 

Storage 

Structure members are stored sequentially in the order in which they are 
declared: the first member has the lowest memory address and the last 
member the highest. Storage for each member begins on a memory boun­
dary appropriate to its type. Therefore, unnamed spaces ("holes") may 
appear between structure members in memory. 

Bitfields are not stored across boundaries of their declared type. For 
example, a bit field declared with unsigned int type is packed into the 
space remaining (if any) if the previous bit field was of type unsigned int. 
Otherwise, it begins a new object on an int boundary. 

Example 1 

This example defines a structure variable named complex. This structure 
has two members with float type, x and y. The structure type has no tag 
and is therefore unnamed. 

struct { 
float x, y; 

} complex; 

Example 2 

This example defines a structure variable named temp. The structure has 
three members: name, id, and class. The name member is a 20-element 

4-22 



Declarations 

array, and id and class are simple members with int and long type, 
respectively. The identifier employee is the structure tag. 

struct employee { 

} temp; 

Example 3 

char name[20]; 
int id; 
long class; 

This example defines three structure variables: student, faculty, and staff. 
Each structure has the same list of three members. The members are 
declared to have the structure type employee, defined in Example 2. 

struct employee student, faculty, staff; 

Example 4 

This example defines a structure variable named x. The first two 
members of the structure are a char variable and a pointer to a float 
value. The third member, next, is declared as a pointer to the structure 
type being defined (sample). 

struct sample { 

X; 

Example 5 

char c; 
float *pf; 
struct sample *next; 

This example defines a two-dimensional array of structures named screen. 
The array contains 2000 elements. Each element is an individual structure 
containing four bitfield members: icon, color, underline, and blink. 

struct { 
unsigned icon : 8; 
unsigned color : 4; 
unsigned underline : 1; 
unsigned blink : 1; 

screen [25] [80]; 

4-23 



C Language Reference 

4.4.4 Union Declarations 

Syntax 

union [tag] {member-declaration-list} [declarator [, declarator.] .• ]; 

union tag[declarator[, declarator] ... ]; 

A "union declaration" names a union variable and specifies a set of vari­
able values, called "members" of the union, that can have different types. 
A variable with union type stores one of the values defined by that type. 

Union declarations have the same form as structure declarations, except 
that they begin with the union keyword instead of the struct keyword. 
The same rules govern structure and union declarations, except that 
bitfield members are not allowed in unions. 

Storage 

The storage associated with a union variable is the storage required for 
the largest member of the union. When a smaller member is stored, the 
union variable may contain unused memory space. All members are 
stored in the same memory space and start at the same address. The stored 
value is overwritten each time a value is assigned to a different member. 

Example 1 

This example defines a union variable with sign type and declares a vari­
able named number that has two members: svar, a signed integer, and 
uvar, an unsigned integer. This declaration allows the current value of 
number to be stored as either a signed or an unsigned value. The tag asso­
ciated with this union type is sign. 

union sign { 

Example 2 

int svar; 
unsigned uvar; 

number; 

This example defines a union variable named jack. The members of the 
union are, in order of their declaration, a pointer to a char value, a char 
value, and an array of float values. The storage allocated for jack is the 

4-24 



Declarations 

storage required for the 20-element array t, since t is the longest member 
of the union. Because there is no tag associated with the union, its type is 
unnamed. 

union 

Example 3 

char *a, b; 
float f[20J; 

jack; 

This example defines a two-dimensional array of unions named screen. 
The array contains 2000 elements. Each element of the array is an indivi­
dual union with two members: windowl and screenval. The windowl 
member is a structure with two bit field members, icon and color. The 
screenval member is an int. At any given time, each union element holds 
either the int represented by screenval or the structure represented by 
windowl. 

union 
struct { 

unsigned int icon : 8; 
unsigned color : 4; 

} windowl; 
int screenval; 

screen[25J [80J; 

4.4.5 Array Declarations 

Syntax 

type-specifier declarator [constant-expression]; 
type-specifier declarator [ ]; 

An "array declaration" names the array and specifies the type of its ele­
ments. It may also define the number of elements in the array. A variable 
with array type is considered a pointer to the type of the array elements, 
as described in the section on "Identifiers." 

Array declarations have the two forms shown at the beginning of this sec­
tion. Their syntax differs as follows: 

• In the first form, the constant-expression argument within the 
brackets specifies the number of elements in the array. Each ele­
ment has the type given by type-specifier, which can be any type 
except void. An array element cannot be a function type. 

4-25 



C Language Reference 

• The second form omits the constant-expression argument in brack­
ets. You can use this form only if you have initialized the array, 
declared it as a formal parameter, or declared it as a reference to 
an array explicitly defined elsewhere in the program. 

In both forms, declarator names the variable and may modify the 
variable's type. The brackets ([]) following declarator modify the 
declarator to array type. You can declare an array of arrays (a "multidi­
mensional" array) by following the array declarator with a list of brack­
eted constant expressions, as shown: 

type-specifier dec!arator[constant-expression] [constant-expression] ... 

Each constant-expression in brackets defines the number of elements in a 
given dimension: two-dimensional arrays have two bracketed expres­
sions, three-dimensional arrays have three, and so on. When you declare a 
multidimensional array within a function, you can omit the first constant 
expression if you have initialized the array, declared it as a formal param­
eter, or declared it as a reference to an array explicitly defined elsewhere 
in the program. 

You can define arrays of pointers to various types of objects by using 
complex declarators, as described in "Complex Declarators. " 

Storage 

The storage associated with an array type is the storage required for all of 
its elements. The elements of an array are stored in contiguous and 
increasing memory locations, from the first element to the last. No blanks 
separate the array elements in storage. 

Arrays are stored by row. For example, the following array consists of 
two rows with three columns each: 

char A[2] [3]; 

The three columns of the first row are stored first, followed by the three 
columns of the second row. This means that the last subscript varies most 
quickly. 

To refer to an individual element of an array, use a subscript expression, 
as described in "Subscript Expressions." 

4-26 



Declarations 

Example 1 

This example declares an array variable named scores with 10 elements, 
each of which has int type. The variable named game is declared as a 
simple variable with int type. 

int scores[10], game; 

Example 2 

This example declares a two-dimensional array named matrix. The array 
has 150 elements, each having float type. 

float matrix[10] [15]; 

Example 3 

This example declares an array of structures. This array has 100 ele­
ments; each element is a structure containing two members. 

struct { 
float x, y; 
} complex[100]; 

Example 4 

This example declares the type and name of an array of pointers to char. 
The actual definition of name occurs elsewhere. 

extern char *name[]; 

4.4.6 Pointer Declarations 

Syntax 

type-specifier * [modification-spec] declarator; 
extern char *name [ ]; 

A "pointer declaration" names a pointer variable and specifies the type 
of the object to which the variable points. A variable declared as a pointer 
holds a memory address. 

The type-specifier gives the type of the object, which can be any funda­
mental, structure, or union type. Pointer variables can also point to func­
tions, arrays, and other pointers. (For information on declaring more com­
plex pointer types, refer to the section on "Complex Dec1arators.") 

4-27 



C Language Reference 

By making type-specifier void, you can delay specification of the type to 
which the pointer refers. Such an item is referred to as a "pointer to 
void" (void *). A variable declared as a pointer to void can be used to 
point to an object of any type. However, in order to perform operations on 
the pointer or on the object to which it points, the type to which it points 
must be explicitly specified for each operation. Such conversion can be 
accomplished with a type cast. 

The modification-spec can be either const or volatile, or both. These 
specify, respectively, that the pointer will not be modified by the program 
itself (const), or that the pointer may legitimately be modified by some 
process beyond the control of the program (volatile). (For more informa­
tion on const and volatile, see "Type Specifiers.") 

The declarator names the variable and can include a type modifier. For 
example, if declarator represents an array, the type of the pointer is 
modified to pointer to array. 

You can declare a pointer to a structure, union, or enumeration type 
before you define the structure, union, or enumeration type. However, the 
definition must appear before the pointer can be used as an operand in an 
expression. You declare the pointer by using the structure or union tag 
(see Example 7 in this section). Such declarations are allowed because 
the compiler does not need to know the size of the structure or union to 
allocate space for the pointer variable. 

Storage 

The amount of storage required for an address and the meaning of the 
address depend on the implementation of the compiler. Pointers to 
different types are not guaranteed to have the same length. 

In some implementations, you can use the special keywords near, far, 
and huge to modify the size of a pointer. Declarations using special key­
words are described in "Declarators with Special Keywords." For more 
information on the meaning and use of these keywords, see your compiler 
guide. 

Example 1 

This example declares a pointer variable named message. It points to a 
variable with char type. 

char *message; 

4-28 



Declarations 

Example 2 

Example 2 declares an array of pointers named pointers. The array has 10 
elements; each element is a pointer to a variable with int type. 

int *pointers[lO]; 

Example 3 

This example declares a pointer variable named pointer; it points to an 
array with 10 elements. Each element in this array has int type. 

int (*pointer) [10]; 

Example 4 

This example declares a pointer variable, x, to a constant value. The 
pointer may be modified to point to a different int value, but the value to 
which it points may not be modified. 

int const *x; 

Example 5 

The variable y in Example 5 is declared as a constant pointer to an int 
value. The value it points to may be modified, but the pointer itself must 
always point to the same location: the address affixed object. Similarly, 
z is a constant pointer, but it is also declared to pomt to an int whose 
value will not be modified by the program. The additional specifier vola­
tile indicates that although the value of the const int pointed to by z can­
not be modified by the program, it could legitimately be modified by a 
process outside the program. The declaration of w specifies that the value 
pointed to will not be changed and that the program itself will not modify 
the pointer. However, some outside process could legitimately modify the 
pointer. 

canst int some object = 5 ; 
int other object = 37; 
int *const y = &fixed object; 
canst volatile *const-z = &some object; 
*const volatile w = &some_object; 

4-29 



C Language Reference 

Example 6 

This example declares two pointer variables that point to the structure 
type list. This declaration can appear before the definition of the list 
structure type (see Example 7), as long as the list type definition has the 
same visibility as the declaration. 

struct list *next, *previous; 

Example 7 

This example defines the variable line to have the structure type named 
list. The list structure type has three members: the first member is a 
pointer to a char value, the second is an int value, and the third is a 
pointer to another list structure. 

struct list 

} line; 

Example 8 

char *token; 
int count; 
struct list *next; 

This example declares the variable record to have the structure type id. 
Note that pname is declared as a pointer to another structure type named 
name. This declaration can appear before the name type is defined. 

struct id { 

Example 9 

unsigned int id_no; 
struct name *pname; 

} record; 

In this example, the pointer variable p is declared, but the void * preced­
ing the identifier p in the declaration means that p can be used later to 
point to any type object. The address of an int value is assigned to p, but 
no operations on the pointer itself are permitted unless it is explicitly con­
verted to the type to which it points. Similarly, indirect operations on the 
object pointed to by p are not permitted unless p is converted to a specific 
type. Finally, a cast is used to convert p to a pointer to int, and p is then 
incremented. 

4-30 



int i; 
void *Pi 

p = &i; 

(int *)p++; 

/* p declared as pointer to an object 
whose type is not specified */ 

/* address of integer i assigned to p 
but type of p itself is still not 
specified. An operation like p++ 
would not be pe:r:mitted yet * / 

/* incrementing p per:mitted when the 
cast converts it to pointer to int * / 

4.5 Function Declarations (Prototypes) 

Syntax 

Declarations 

[sc-spec] [type-spec] declarator(rJormal-parameter-list]) [, declarator-list] ... ; 

A "function declaration, " also called a "function prototype," establishes 
the name and return type of a function and may specify the types, formal 
parameter names, and number of arguments to the function. A function 
declaration does not define the function body. It simply makes informa­
tion about the function known to the compiler. This information enables 
the compiler to check the types of the actual arguments in ensuing calls to 
the function. 

If you do not provide a function prototype, the compiler constructs one 
from the first reference to the function it encounters, whether a call or a 
function definition. Whether such a prototype reflects the correct parame­
ter types can only be assured if the function definition occurs in the same 
source file. If the definition occurs in a different module, argument 
mismatch errors may not be detected. Function definitions are described 
in detail in "Function Prototypes (Declarations)." 

The sc-spec represents a storage-class specifier; it can be either extern or 
static. Storage-class specifiers are discussed in "Storage Classes." 

The type-spec gives the function's return type, and declarator names the 
function. If you omit type-spec from a function declaration, the function 
is assumed to return a value of type int. 

The Jormal-parameter-list is described in the next section. 

The final declarator-list in the syntax line represents further declarations 
on the same line. These may be other functions returning values of the 

4-31 



C Language Reference 

same type as the first function, or declarations of any variables whose 
type is the same as the first function's return type. Each such declaration 
must be separated from its predecessors and successors by a comma. 

4.5.1 Formal Parameters 

"Formal parameters" describe the actual arguments that can be passed to 
a function. In a function declaration, the parameter declarations establish 
the number and types of the actual arguments. They may also include 
identifiers of the formal parameters. Though the parameters may be omit­
ted from a function declaration, their inclusion is recommended, and they 
are mandatory in a true prototype. The extent of the information in the 
declaration influences the argument checking done on function calls that 
appear before the compiler has processed the function definition. 

Note 

Identifiers used to name the formal parameters in the prototype 
declaration are descriptive only. They go out of scope at the end of 
the declaration. Therefore, they need not be identical to the 
identifiers used in the declaration portion of the function definition. 
Using the same names may enhance readability, but this use has no 
other significance. 

4.5.2 Return Type 

Functions can return values of any type except arrays and functions. 
Therefore, the type-specifier argument of a function declaration can 
specify any fundamental, structure, or union type. You can modify the 
function identifier with one or more asterisks (*) to declare a pointer 
return type. 

Although functions cannot return arrays and functions, they can return 
pointers to arrays and functions. You can declare a function that returns a 
pointer to an array or function type by modifying the function identifier 
with asterisks (*), brackets ([]), and parentheses « ». Such a function 
identifier is known as a "complex declarator." Rules for forming and 
interpreting complex declarators are discussed in "Complex Declara­
tors." 

4-32 



Declarations 

4.5.3 The List of Formal Parameters 

All elements of the Jormal-parameter-list argument appearing within the 
parentheses following the function declarator are optional. The two fol­
lowing syntax variations illustrate the possibilities: 

[void] 
[register] [type-spec] [declarator[[, ... ][, ••. ]]] 

If fonnal parameters are omitted from the function declaration, the 
parentheses should contain the keyword void to specify that no arguments 
will ever be passed to the function. If the parentheses are left entirely 
empty, no infonnation is conveyed about whether arguments will be 
passed to the function and no checking of argument types is perfonned. 

Note 

Empty parentheses in a function declaration or definition represent 
an obsolete fonn not recommended for new code. Functions accept­
ing no arguments should be declared with the void keyword replac­
ing the list of fonnal parameters. This use of void is interpreted by 
context, and is distinct from uses of void as a type specifier. 

A declaration in the list of fonnal parameters can contain the register 
storage-class specifier, either alone or combined with a type specifier and 
an identifier. If register is not specified, the storage class is auto. The 
only explicit storage-class specifier pennitted is register. If the 
parentheses contain only the register keyword, the fonnal parameter is 
considered to represent an unnamed int for which register storage is 
being requested. 

If type-spec is included, it can specify the type name for any fundamental, 
structure, or union type (such as int). A declarator for a fundamental, 
structure, or union type is simply an identifier of a variable having that 
type. 

The declarator for a pointer, array, or function can be fonned by combin­
ing a type specifier, plus the appropriate modifier, with an identifier. 
Alternatively, an "abstract declarator" (that is, a declarator without a 
specified identifier) can be used. The section "Type Names" explains 
how to form and interpret abstract declarators. 

A full, partial, or empty list of formal parameters can be declared. If the 
list contains at least one declarator, a variable number of parameters can 

4-33 



C Language Reference 

be specified by ending the list with a comma followed by three periods 
(, •.. ), referred to as the "ellipsis notation." A function is expected to 
have at least as many arguments as there are declarators or type specifiers 
preceding the last comma. 

Note 

To maintain compatibility with previous versions, the compiler 
accepts a comma without trailing periods at the end of a declarator 
list to indicate a variable number of arguments. However, this is a 
Microsoft extension to the ANSI C standard. New code should use 
the comma followed by three periods. For information on enabling 
and disabling extensions, see your compiler guide. 

One other special construction is permitted as a formal parameter: void * 
represents a pointer to an object of unspecified type. Thus, in a call, the 
pointer can refer to any type of object after you convert the pointer (for 
example, with a cast) to a pointer to the desired type. Note that before 
operations can be performed on the pointer or the object it addresses, the 
pointer must be explicitly converted. For more information on void *, see 
"Pointer Declarations." 

4.5.4 Summary 

Function prototypes are optional, but strongly recommended. If included, 
the only elements absolutely required are the name of the function, the 
opening and closing parentheses following the name, and the final semi­
colon. If no return type is included, as in the following example, the func­
tion is assumed to return an int: 

/***** Obsolete form of function declaration *****/ 

minimal_declaration(); /* mayor may not 
accept arguments */ 

A full function prototype is the same as a function definition, except that 
instead of having a function "body," it is terminated by a semicolon (;) 
immediately following the closing parenthesis. 

Any appropriate combination of elements is permitted among the parame­
ter declarations, from no information (as in the obsolete form in the 
example above) to a full prototype of the function. If no prototype at all is 

4-34 



Declarations 

given, a de facto prototype is constructed from infonnation in the first 
reference to the function encountered in the source file. 

Example 1 

In this example, any infonnation included in the formal parameter list is 
used to check actual arguments appearing in calls to the function that 
occur before the compiler has processed the function definition. 

double func(void); /* returns a double, but 
* accepts no arguments 

*/ 
fun (void *); /* takes a pointer to an 

* unspecified type; 
* returns an int 

*/ 
char *true(long, long); /* takes two longs; 

* returns pointer to char 
*/ 

new (register a, char *); /* takes an int with request 
* for register storage, and 
* a pointer to char; 
* returns an int 

*/ 
void go (int * [], char *b); /* takes an array of pointers 

* to int using an abstract 
* declarator, and a pointer 
* to char; there is no return 

*/ 
void *tu(double v, ... ); /* takes at least one double; 

* other arguments may also be 
* given; returns a pointer 

* to an unspecified type 
*/ 

Example 2 

This example is a prototype for a function named add that takes two int 
arguments, represented by the identifiers numl and num2, and returns an 
int value. 

int add(int numl, int num2}; 

4-35 



C Language Reference 

Example 3 

This example declares a function named calc that returns a double value. 
The obsolete empty parentheses leave the issue of possible arguments to 
the function undefined. 

double calc () i 

Example 4 

This example is a prototype for a function named strfind that returns a 
pointer to char. The function accepts at least one argument, declared by 
the formal parameter char *ptr, to be a pointer to a char value. The for­
mal parameter list has one entry and ends with a comma followed by 
three periods, indicating that the function may take more arguments. 

char *strfind(char *ptr, ... ); 

Example 5 

This example declares a function with void return type (returning no 
value). The void keyword also replaces the list of formal parameters, so 
no arguments are expected for this function. 

void draw(void)i 

Example 6 

In this example, sum is declared as a function returning a pointer to an 
array of three double values. The sum function takes two double values 
as arguments. 

double (*sum(double, double)) [3]; 

Example 7 

In this example, the function named select is declared to take no argu­
ments and to return a pointer to a function. The pointer return value 
points to a function taking one iot argument, represented by the identifier 
number, and returning an int value. 

int (*select(void)) (int number); 

4-36 



Declarations 

Example 8 

In this example, the function prt is declared to take a pointer argument of 
any type and return an int value. A pointer to any type could be passed as 
an argument to prt without producing a type-mismatch warning. 

int prt(void *); 

Example 9 

This example shows the declaration of an array, named rainbow, of an 
unspecified number of constant pointers to· functions. Each of these takes 
at least one parameter of type int, as well as an unspecified number of 
other parameters. Each of the functions pointed to returns a long value. 

long (* const rainbow [ ]) (int, ... ) ; 

4.6 Storage Classes 

The "storage class" of a variable determines whether the item has a 
"local" or "global" lifetime. Variables with local lifetimes are allocated 
new storage each time execution control passes to the block in which they 
are defined. When execution control passes out of the block, the variables 
no longer have meaningful values. 

An item with a global lifetime exists and has a value throughout the exe­
cution of the program. All functions have global lifetimes. 

Although C defines only two types of storage classes, it provides the fol­
lowing four storage-class specifiers: 

4-37 



C Language Reference 

Table 4.5 

Storage-Class Specifiers 

Items declared with 

auto 

register 

static 

extern 

Have a 

local lifetime 

local lifetime 

global lifetime 

global lifetime 

The four storage-class specifiers have distinct meanings because they 
affect the visibility of functions and variables, as well as their storage 
class. The term "visibility" refers to the portion of the source program in 
which the variable or function can be referenced by name. An item with a 
global lifetime exists throughout the execution of the source program, but 
it may not be "visible" in all parts of the program. (Visibility and the 
related concept of lifetime are discussed in the chapter on "Program 
Structure. ") 

The placement of variable and function declarations within source files 
also affects storage class and visibility. Declarations outside all function 
definitions are said to appear at the "external level' '; declarations within 
function definitions appear at the "internallevel." 

The exact meaning of each storage-class specifier depends on two factors: 

• Whether the declaration appears at the external or internal level 

• Whether the item being declared is a variable or a function 

The sections that follow describe the meanings of storage-class specifiers 
in each kind of declaration and explain the default behavior when the 
storage-class specifier is omitted from a variable or function declaration. 

4.6.1 Variable Declarations at the Global Level 

In variable declarations at the global level (that is, outside all functions), 
you can use the static or extern storage-class specifier or omit the 
storage-class specifier entirely. You cannot use the auto and register 
storage-class specifiers at the global level. 

Variable declarations at the global level are either definitions of variables 
("defining declarations "), or references to variables defined elsewhere 
("referencing declarations "). 

4-38 



Declarations 

A global variable declaration that also initializes the variable (implicitly 
or explicitly) is a defining declaration of the variable. A definition at the 
global level can take several fonns: 

• A variable that you declare with the static storage-class specifier. 
You can explicitly initialize the static variable with a constant 
expression, as described in "Initialization. " If you omit the initial­
izer, the variable is initialized to 0 by default. For example, static 
int k = 16; and static int k; are both considered definitions of the 
variable k. 

• A variable that you explicitly initialize at the global level. For 
example, int j = 3; is a definition of the variable j. 

Once a variable is defined at the global level, it is visible throughout the 
rest of the source file in which it appears. The variable is not visible prj.or 
to its definition in the same source file. Also, it is not visible in other 
source files of the program, unless a referencing declaration makes it visi­
ble' as described later in this section. 

You can define a variable at the global level only once within a source 
file. If you give the static storage-class specifier, you can define another 
variable with the same name and the static storage-class specifier in a 
different source file. Since each static definition is visible only within its 
own source file, no conflict occurs. 

The extern storage-class specifier declares a reference to a variable 
defined elsewhere. You can use an extern declaration to make a definition 
in another source file visible, or to make a variable visible above its 
definition in the same source file. Once you have declared a reference to 
the variable at the global level, the variable is visible throughout the 
remainder of the source file in which the declared reference occurs. 

Declarations that use the extern storage-class specifier cannot contain 
initializers, since these declarations refer to variables whose values are 
defined elsewhere. 

For an extern reference to be valid, the variable it refers to must be 
defined once, and only once, at the global level. The definition can be in 
any of the source files that fonn the program. 

4-39 



C Language Reference 

One special case is not covered by the rules outlined above. You can omit 
both the storage-class specifier and the initializer from a variable declara­
tion at the global level; for example, the declaration int n; is a valid glo­
bal declaration. This declaration can have one of two different meanings, 
depending on the context: 

1. If there is a global defining declaration of a variable with the same 
name elsewhere in the program, the current declaration is assumed 
to be a reference to the variable in the defining declaration, exactly 
as if the extern storage-class specifier had been used in the 
declaration. 

2. If there is no global declaration of a variable with the same name 
elsewhere in the program, the declared variable is allocated 
storage at link time and initialized to o. This kind of variable is 
known as a "communal" variable. If more than one such declara­
tion appears in the program, storage is allocated for the largest size 
declared for the variable. For example, if a program contains two 
uninitialized declarations of i at the global level, int i; and char i;, 
storage space for an int value is allocated for i at link time. 

Uninitialized variable declarations at the global level are not recom­
mended for any file that might be placed in a library. 

Example 

The two source files in this example contain a total of three global 
declarations of i. Only one declaration contains an initialization; that 
declaration, int i = 3; , defines the global variable i with initial value 3. 
The extern declaration of i at the top of the first source file makes the glo­
bal variable visible above its definition in the file. Without the extern 
declaration, the main function could not reference the global variable i. 
The extern declaration of i in the second source file also makes the global 
variable visible in that source file. 

Assuming that the print! function is defined elsewhere in the program, all 
three functions perform the same task: they increase i and print it. The 
values 4, 5, and 6 are printed. 

If the variable i had not been initialized, it would have been set to 0 
automatically at link time. In this case, the values 1,2, and 3 would have 
been printed. 

4-40 



Source File One 

extern int i; /* reference to i, 
defined below */ 

main() 
{ 

i++; 
printf("%d\n", i); /* i equals 4 */ 
next (); 

int i = 3; /* definition of i */ 

next() 
{ 

i++; 
printf("%d\n", i); /* i equals 5 */ 
other (); 

Source File Two 

extern int i; 

other() 
{ 

i++; 

/* reference to i in 
first source file */ 

printf("%d\n", i); /* i equals 6 */ 

4.6.2 Variable Declarations at the Local Level 

Declarations 

You can use any of the four storage-class specifiers for variable declara­
tions at the local level. When you omit the storage-class specifier from 
such a declaration, the default storage class is auto. 

The auto storage-class specifier declares a variable with a local lifetime. 
An auto variable is visible only in the block in which it is declared. 
Declarations of auto variables can include initializers, as discussed in 
"Initialization. " Since variables with auto storage class are not initial­
ized automatically, you should either explicitly initialize them when you 

4-41 



C Language Reference 

declare them, or assign them initial values in statements within the block. 
The values of uninitialized auto variables are undefined. 

A static auto variable can be initialized with the address of any global or 
static item, but not with the address of another auto item, because the 
address of an auto item is not a constant. 

The register storage-class specifier tells the compiler to give the variable 
storage in a register, if possible. Register storage usually speeds access 
time and reduces code size. Variables declared with register storage class 
have the same visibility as auto variables. The number of registers that 
can be used for variable storage is machine-dependent. If no registers are 
available when the compiler encounters a register declaration, the vari­
able is given auto storage class and stored in memory. The compiler 
assigns register storage to variables in the order in which the declarations 
appear in the source file. Register storage, if available, is only guaranteed 
for int and pointer types that are the same size as an into 

A variable declared at the local level with the static storage-class 
specifier has a global lifetime but is visible only within the block in 
which it is declared. Unlike auto variables, static variables keep their 
values when the block is exited. You can initialize a static variable with a 
constant expression. A static variable is initialized only once, when pro­
gram execution begins; it is not reinitialized each time the block is 
entered. If you do not explicitly initialize a static variable, it is initialized 
to 0 by default. 

A variable declared with the extern storage-class specifier is a reference 
to a variable with the same name defined at the global level in any of the 
source files of the program. The local extern declaration is used to make 
the global-level variable definition visible within the block. Unless other­
wise declared at the global level, a variable declared with the extern key­
word is visible only in the block in which it is declared. 

Example 

In the following example, the variable i is defined at the global level with 
initial value 1. An extern declaration in the main function is used to 
declare a reference to the global-level i. The static variable a is initial­
ized to 0 by default, since the initializer is omitted. The call to print! 
(assuming the print! function is defined elsewhere in the source program) 
prints the values 1,0,0, and O. 

In the other function, the address of the global variable i is used to initial­
ize the static pointer variable external_i. This works because the global 
variable has static lifetime, meaning its address will always be the same. 
Next, the variable i is redefined as a local variable with initial value 16. 

4-42 



Declarations 

This redefinition does not affect the value of the global-level i, which is 
hidden by the use of its name for the local variable. The value of the glo­
bal i is now accessible only indirectly within this block, through the 
pointer external_i. Attempting to assign the address of the auto variable i 
to a pointer would not work, since it may be different each time the block 
is entered. The variable a is declared as a static variable and initialized 
to 2. This a does not conflict with the a in main, since static variables at 
the local level are visible only within the block in which they are 
declared. 

The variable a is increased by 2, giving 4 as the result. If the other func­
tion were called again in the same program, the initial value of a would 
be 4, since local static variables keep their values when the program exits 
and then re-enters the block in which they are declared. 

int i = 1; 

main{) 
{ /* reference to i, defined above: */ 

extern int i; 

other() 
{ 

/* initial value is zero; a is 
visible only within main: */ 

static int a; 

/* b is stored in a register, if possible: */ 
register int b = 0; 

/* default storage class is auto: */ 
int c = 0; 

/* values printed are 1, 0, 0, 0: */ 
printf ("%d\n%d\n%d\n%d\n", i, a, b, c); 
other{) ; 

/* address of global i assigned to pointer variable */ 
static int *external_ i = &i; 

/* i is redefined; global i no longer visible: * / 
int i = 16; 

/* this a is visible only within other: */ 
static int a = 2; 

a += 2; 
/* values printed are 16, 4, and 1: */ 
printf("%d\n%d\n%d\n", i, a, *external_i); 

4-43 



C Language Reference 

4.6.3 Function Declarations at the Global and Local Levels 

You can use either the static or the extern storage-class specifier in func­
tion declarations. Functions always have global lifetimes. 

The visibility rules for functions vary slightly from the rules for variables, 
as follows: 

• A function declared to be static is visible only within the source 
file in which it is defined. Functions in the same source file can call 
the static function, but functions in other source files cannot. You 
can declare another static function with the same name in a 
different source file without conflict. 

• Functions declared as extern are visible throughout all the source 
files that make up the program (unless you later redeclare such a 
function as static). Any function can call an extern function. 

• Function declarations that omit the storage-class specifier are 
extern by default. 

Note 

A Microsoft extension to the ANSI C standard provides that func­
tion declarations at the local level have the same meaning as func­
tion declarations at the global level. This means that a function is 
visible from its point of declaration through the rest of the source 
file. 

4.7 Initialization 

Syntax 

= initializer 

You can set a variable to an initial value by applying an initializer to the 
declarator in the variable declaration. The value or values of the initial­
izer are assigned to the variable. An equal sign (=) precedes the initial­
izer. 

4-44 



Declarations 

You can initialize variables of any type, provided that you obey the fol­
lowing rules: 

• Declarations that use the extern storage-class specifier cannot 
include initializers. 

• Variables declared at the global level can be initialized. If you do 
not explicitly initialize a variable at the global level, it is initial­
ized to 0 by default. 

• A constant expression can be used to initialize any variable 
declared with the static storage-class specifier. Variables declared 
to be static are initialized when program execution begins. If you 
do not explicitly initialize a static variable, it is initialized to 0 by 
default. 

• Variables declared with the auto and register storage-class 
specifiers are initialized each time execution control passes to the 
block in which they are declared. If you omit an initializer from 
the declaration of an auto or register variable, the initial value of 
the variable is undefined. 

• Aggregate types with auto storage class (arrays, structures, and 
unions) cannot be initialized. Only static aggregates and aggre­
gates declared at the global level can be initialized. 

• The initial values for global variable declarations and for all static 
variables, whether global or local, must be constant expressions. 
You can use either constant or variable values to initialize auto 
and register variables. 

The sections that follow describe how to initialize variables of fundamen­
tal, pointer, and aggregate types. 

4.7.1 Fundamental and Pointer Types 

Syntax 

= expression 

The value of expression is assigned to the variable. The conversion rules 
for assignment apply. 

A locally declared static variable can only be initialized with a constant 
value. Since the address of any globally declared or static variable is con­
stant, it may be used to initialize an local declared static pointer variable. 

4-45 



C Language Reference 

However, the address of an auto variable cannot be used as an initializer 
because it may be different for each execution of the block. 

Example 1 

In this example, x is initialized to the constant expression 10. 

int x = 10; 

Example 2 

In this example, the pointer px is initialized to 0, producing a "null" 
pointer. 

register int *px 0; 

Example 3 

This example uses a constant expression to initialize c to a constant value 
that cannot be modified. 

const int c = (3 * 1024); 

Example 4 

This example initializes the pointer b with the address of another vari­
able, x. The pointer a is initialized with the address of a variable named 
z. However, since it is specified to be a const, the variable a can only be 
initialized, never modified. It always points to the same location. 

int *b = &x; 
int *const a = &Z; 

Example 5 

The global variable GLOBAL is declared in Example 5 at the global level, 
so it has global lifetime. The local variable LOCAL has auto storage class 
and only has an address during the execution of the function in which it is 
declared. Therefore, attempting to initialize the static pointer variable lp 
with the address of LOCAL is not permitted. The static pointer variable 
gp can be initialized to the address of GLOBAL because that address is 
always the same. Similarly, *rp can be initialized because rp is a local 
variable and can have a non constant initializer. Each time the block is 
entered, LOCAL will have a new address, which will then be assigned to 
rp. 

4-46 



int GLOBAL ; 

int function (void) 
{ 

int LOCAL ; 
static int *lp = &LOCAL; /* Illegal declaration */ 
static int *gp = &GLOBAL; /* Legal declaration * / 
register int *:rp = &LOCAL; /* Legal declaration * / 

4.7.2 Aggregate Types 

Syntax 

= {initializer-list} 

Declarations 

The initializer-list is a list of initializers separated by commas. Each ini­
tializer in the list is either a constant expression or an initializer list. 
Therefore, an initializer list enclosed in braces can appear within another 
initializer list. This form is useful for initializing aggregate members of 
an aggregate type, as shown in the in this section. 

For each initializer-list, the values of the constant expressions are 
assigned, in order, to the corresponding members of the aggregate vari­
able. When a union is initialized, initializer-list must be a single constant 
expression. The value of the constant expression is assigned to the first 
member of the union. 

If initializer-list has fewer values than an aggregate type, the remaining 
members or elements of the aggregate type are initialized to O. If 
initializer-list has more values than an aggregate type, an error results. 
These rules apply to each embedded initializer list, as well as to the 
aggregate as a whole. 

The following example, declares P as a 4-by-3 array and initializes the 
elements of its first row to 1, the elements of its second row to 2, and so 
on through the fourth row: 

int P [4] [3] = { 
{ 1, 1, 1 } , 
{ 2, 2, 2 } , 
{ 3, 3, 3, }, 
{ 4, 4, 4, } , 

} ; 

4-47 



C Language Reference 

Note that the initializer list for the third and fourth rows contains commas 
after the last constant expression. The last initializer list ({ 4, 4, 4,) ) is also 
followed by a comma. These extra commas are permitted but not 
required; only commas that separate constant expressions from one 
another, and those that separate one initializer list from another, are 
required. 

If there is no embedded initializer list for an aggregate member, values 
are simply assigned, in order, to each member of the subaggregate. There­
fore, the initialization in the previous example is equivalent to the follow­
ing: 

int P [4] [3] = 

1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4 
} ; 

Braces can also appear around individual initializers in the list. 

When you initialize an aggregate variable, you must be careful to use 
braces and initializer lists properly. The following example illustrates the 
compiler's interpretation of braces in more detail: 

typedef struct { 
int nl, n2, n3; 

} triplet; 

triplet nlist[2J [3J = { 

} ; 

{ { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 }}, /* Line 1 */ 
{ { 10,11,12 }, { 13,14,15 }, { 16,17,18 }} /* Line 2 */ 

In this example, ntist is declared as a 2-by-3 array of structures, each 
structure having three members. Line 1 of the initialization assigns values 
to the first row of ntist, as follows: 

1. The first left brace on Line 1 signals the compiler that the first 
aggregate member of ntist (that is, nlist[O)) is initializing. 

2. The second left brace indicates that the first aggregate member of 
nlist[O] (that is, the structure at nlist[O][O)) is initializing. 

3. The first right brace ends initialization of the structure nlist[O][O]; 
the next left brace starts initializing nlist[O] [1]. 

4. The process continues until the end of the line, where the closing 
right brace ends initialization of ntist[O]. 

4-48 



Declarations 

Line 2 assigns values to the second row of nlist in a similar way. 

Note that the outer sets of braces enclosing the initializers on lines 1 and 
2 are required. The following construction, which omits the outer braces, 
would cause an error: 

triplet nlist [2] [3] = { 

{ 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 }, / * Line 1 * / 
{10,11,12 },{ 13,14,15 },{ 16,17,18} /* Line 2 */ 

} ; 

In this construction, the first left brace on line 1 initializes ntist[O}, which 
is an array of three structures. The values 1, 2, and 3 are assigned to the 
three members of the first structure. When the next right brace is encoun­
tered (after the value 3), initialization of ntist[O} is complete, and the two 
remaining structures in the three-structure array are automatically initial­
ized to O. Similarly, { 4,5,6} initializes the first structure in the second 
row of ntist. The remaining two structures of ntist[l] are set to O. When 
the compiler encounters the next initializer list ({ 7,8,9 }), it tries to ini­
tialize nlist[2}. Since ntist has only two rows, this attempt causes an 
error. 

Example 1 

In this example, the three int members of x are initialized to 1,2, and 3, 
respectively. The three elements in the first row of m are initialized to 
4.0; the elements of the remaining row of m are initialized to 0.0 by 
default. 

struct list { 
int i, j, k; 
float m[2] [3]; 
} x = { 

} ; 

Example 2 

1, 
2, 
3, 
{4.0, 4.0, 4.0} 

In this example, the union variable y is initialized. The first element of 
the union is an array, so the initializer is an aggregate initializer. The 
initializer list {' 1'} assigns values to the first row of the array. Since only 
one value appears in the list, the element in the first column is initialized 

4-49 



C Language Reference 

to the character 1, and the remaining two elements in the row are initial­
ized to the value zero by default. Similarly, the first element of the 
second row of x is initialized to the character 4, and the remaining two 
elements in the row are initialized to the value O. 

union 

char x [ 2] [3] ; 
int i, j, k; 
} y = { { 

} ; 

{' 1'} , 
{' 4'} } 

4.7.3 String Initializers 

Syntax 

= "characters" 

You can initialize an array of characters with a string literal. The follow­
ing example, initializes code as a four-element array of characters. The 
fourth element is the null character, which terminates all string literals. 

char code [ ] = "abc"; 

If you specify the array size and the string is longer than the specified 
array size, the extra characters are simply ignored. For example, the fol­
lowing declaration initializes code as a three-element character array: 

char code[3] = "abed"; 

Only the first three characters of the initializer are assigned to code. The 
character d and the string-terminating null character are discarded. 
Beware that this creates an unterminated string (that is, one without a 0 
value to mark its end) and generates a diagnostic message indicating the 
condition. 

If the string is shorter than the specified array size, the remaining ele­
ments of the array are initialized to 0 values. 

4-50 



Declarations 

4.8 Type Declarations 

A type declaration defines the name and members of a structure or union 
type, or the name and enumeration set of an enumeration type. You can 
use the name of a declared type in variable or function declarations to 
refer to that type. This is useful if many variables and functions have the 
same type. 

A typedef declaration defines a type specifier for a type. You can use 
typedef declarations to construct shorter or more meaningful names for 
types already defined by C or for types that you have declared. 

4.8.1 Structure, Union, and Enumeration Types 

Declarations of structure, union, and enumeration types have the same 
general form as variable declarations of those types. However, type 
declarations and variable declarations differ in the following ways: 

• In type declarations the variable identifier is omitted, since no 
variable is declared. 

• In type declarations tag is required; it names the structure, union, 
or enumeration type. 

• The member-declaration-list or enum-list defining the type must 
appear in the type declaration; the abbreviated form of variable 
declarations, in which tag refers to a type defined elsewhere, is 
not legal for type declarations. 

Example 1 

This example declares an enumeration type named status. The name of 
the type can be used in declarations of enumeration variables. The 
identifier loss is explicitly set to -1. Both bye and tie are associated with 
the value 0, and win is given the value 1. 

enum status { 
loss = -1, 
bye, 
tie = 0, 
win 
} ; 

4-51 



C Language Reference 

Example 2 

This example declares a structure type named student. A declaration 
such as struct student employee; can be used to define a structure variable 
with student type. 

struct student 
char name[20]; 
int id, class; 
} ; 

4.8.2 Using typedef Declarations 

Syntax 

typedef type-specifier declarator [, declarator] ... ; 

A typedef declaration is analogous to a variable declaration except that 
the typedef keyword replaces a storage-class specifier. A typedef 
declaration is interpreted in the same way as a variable or function 
declaration, but the identifier, instead of assuming the type specified by 
the declaration, becomes a synonym for the type. 

Note that a typedef declaration does not create types. It creates synonyms 
for existing types, or names for types that could be specified in other 
ways. When a typedef name is used as a type specifier, it can be com­
bined with certain type specifiers, but not others. Acceptable modifiers 
include const and volatile. In some implementations there are additional 
special keywords that can be used to modify a typedef. 

You can declare any type with typedef, including pointer, function, and 
array types. You can declare a typedef name for a pointer to a structure or 
union type before you define the structure or union type, as long as the 
definition has the same visibility as the declaration. 

Example 1 

This example declares WHOLE to be a synonym for int. Note that 
WHOLE could now be used in a variable declaration such as WHOLE i; 
or const WHOLE i;. However, the declaration long WHOLE i; would be 
illegal. 

typedef int WHOLE; 

4-52 



Declarations 

Example 2 

This example declares GROUP as a structure type with three members. 
Since a structure tag, club, is also specified, either the typedef name 
(GROUP) or the structure tag can be used in declarations. 

typedef struct club { 
char name[30]; 
int size, year; 
} GROUP ; 

Example 3 

This example uses the previous typedef name to declare a pointer type. 
The type PG is declared as a pointer to the GROUP type, which in tum is 
defined as a structure type. 

typedef GROUP *PG; 

Example 4 

Example 4 provides the type DRAWF for a function returning no value 
and taking two int arguments. This means, for example, that the declara­
tion DRAWF box; is equivalent to the declaration void box(int, int);. 

typedef void DRAWF(int, int); 

4.9 Type Names 

A "type name" specifies a particular data type. In addition to ordinary 
variable declarations and defined-type declarations, type names are used 
in three other contexts: in the formal-parameter lists of function declara­
tions, in type casts, and in sizeof operations. Formal-parameter lists are 
discussed in "Function Declarations." Type casts and sizeof operations 
are discussed in Sections 5.6.2 and 5.3.4, respectively. 

The type names for fundamental, enumeration, structure, and union types 
are simply the type specifiers for those types. 

4-53 



C Language Reference 

A type name for a pointer, array, or function type has the following fonn: 

type-specifier abstract-declarator 

An abstract-declarator is a declarator without an identifier, consisting of 
one or more pointer, array, or function modifiers. The pointer modifier (*) 
always precedes the identifier in a declarator; array ([ ]) and function «» 
modifiers follow the identifier. Knowing this, you can detennine where 
the identi fier would appear in an abstract declarator and interpret the 
declarator accordingly. For more infonnation and examples of complex 
declarators, see Section 4.3.2. 

Abstract declarators can be complex. Parentheses in a complex abstract 
declarator specify a particular interpretation, just as they do for the com­
plex declarators in declarations. 

Note 

The abstract declarator consisting of a set of empty parentheses, (), 
is not allowed because it is ambiguous. It is impossible to detennine 
whether the implied identifier belongs inside the parentheses (in 
which case it is an unmodified type) or before the parentheses (in 
which case it is a function type). 

The type specifiers established by typedef declarations also qualify as 
type names. 

Example 1 

This example gives the type name for' 'pointer to long" type. 

long * 

Example 2 

Examples 2 and 3 show how parentheses modify complex abstract 
declarators. Example 2 gives the type name for a pointer to an array of 
five int values. 

int (*) [5] 

4-54 



Declarations 

Example 3 

Example 3 specifies a pointer to a function taking no arguments and 
returning an int value. 

int (*) (void) 

4-55 





Chapter 5 

Expressions and Assignments 

5.1 Introduction 5-1 

5.2 C Operands 5-1 
5.2.1 Constants 5-2 
5.2.2 Identifiers 5-2 
5.2.3 Strings 5-3 
5.2.4 Function Calls 5-3 
5.2.5 Subscript Expressions 5-4 
5.2.6 Member-Selection Expressions 5-7 
5.2.7 Expressions with Operators 5-8 
5.2.8 Expressions in Parentheses 5-9 
5.2.9 Type-Cast Expressions 5-10 
5.2.10 Constant Expressions 5-10 
5.2.11 Side Effects 5-11 
5.2.12 Sequence Points 5-12 

5.3 C Operators 5-13 
5.3.1 Usual Arithmetic Conversions 5-13 
5.3.2 Complement and Unary Plus Operators 5-15 
5.3.3 Indirection and Address-of Operators 5-16 
5.3.4 The sizeof Operator 5-18 
5.3.5 Multiplicative Operators 5-19 
5.3.6 Additive Operators 5-21 
5.3.7 Shift Operators 5-23 
5.3.8 Relational Operators 5-24 
5.3.9 Bitwise Operators 5-26 
5.3.10 Logical Operators 5-27 
5.3.11 Sequential-Evaluation Operator 5-28 
5.3 .12 Conditional Operator 5-29 

5.4 Assignment Operators 5-30 
5.4.1 Lvalue Expressions 5-31 
5.4.2 Unary Increment and Decrement 5-32 
5.4.3 Simple Assignment 5-33 
5.4.4 Compound Assignment 5-34 



5.5 Precedence and Order of Evaluation 5-35 

5.6 Type Conversions 5-38 
5.6.1 Assignment Conversions 5-38 
5.6.2 Type-Cast Conversions 5-46 
5.6.3 Operator Conversions 5-46 
5.6.4 Function-Call Conversions 5-47 



Expressions and Assignments 

5.1 Introduction 

This chapter describes how to form expressions and make assignments in 
the C language. An "expression" is a combination of operands and 
operators that yields (" expresses") a single value. 

An "operand" is a constant or variable value that is manipulated in the 
expression. Each operand of an expression is also an expression, since it 
represents a single value. When an expression is evaluated, the resulting 
value depends on the relative precedence of operators in the expression 
and on "sequence points" and "side effects," if any. The precedence of 
operators determines how operands are grouped for evaluation. Side 
effects are changes caused by the evaluation of an expression. In an 
expression with side effects, the evaluation of one operand can affect the 
value of another. With some operators, the order in which operands are 
evaluated also affects the result of the expression. Section 5.2 describes 
the formats and evaluation rules for C operands, including discussions of 
side effects and sequence points. 

"Operators" specify how the operand or operands of the expression are 
manipulated. C operators are described in Section 5.3. 

In C, assignments are considered expressions because an assignment 
yields a value. Its value is the value being assigned. In addition to the 
simple-assignment operator (=), C offers complex-assignment operators 
that both transform and assign their operands. Assignment operators are 
described in Section 5.4. 

The value represented by each operand in an expression has a type that 
may be converted to a different type in certain contexts. Type conversions 
occur in assignments, type casts, function calls, and operations. (Section 
5.5 gives the precedence rules for C operators; side effects are discussed 
in Section 5.2.11 and type conversions in Section 5.6.) 

5.2 C Operands 

Operands in C include constants, identifiers, strings, function calls, sub­
script expressions, member-selection expressions, or more complex 
expressions formed by combining operands with operators or enclosing 
operands in parentheses. Any operand that yields a constant value is 
called a "constant expression." 

Every operand has a type. The following sections discuss the type of 
value each kind of operand represents. An operand can be "cast" (or 
temporarily converted) from its original type to another type by means of 
a "type-cast" operation. A type-cast expression can also form an 
operand of an expression. 

5-1 



C Language Reference 

5.2.1 Constants 

A constant operand has the value and type of the constant value it 
represents. A character constant has int type. An integer constant has int, 
long, unsigned int, or unsigned long type, depending on the integer's 
size and how the value is specified. Floating-point constants always have 
double type. String literals are considered arrays of characters and are 
discussed in Section 5.2.3. 

5.2.2 Identifiers 

An "identifier" names a variable or function. Every identifier has a type 
that is established when the identifier is declared. The value of an 
identifier depends on its type, as follows: 

• Identifiers of integral and floating types represent values of the 
corresponding type. 

• An identifier of enum type represents one constant value among a 
set of constant values. The value of the identifier is the constant 
value. Its type is int, by definition of the enum type. 

• An identifier of struct or union type represents a value of the 
specified struct or union type. 

• An identifier declared as a pointer represents a pointer to a value of 
the type specified in the pointer's declaration. 

• An identifier declared as an array represents a pointer whose value 
is the address of the first array element. The pointer addresses the 
type of the array elements. For if series is declared to be a 10-
element integer array, the identifier series represents the address of 
the array, and the subscript expression series[5] refers to an integer 
value which is the sixth element of series. Subscript expressions 
are discussed in Section 5.2.5. The address of an array does not 
change during program execution, although the values of the indi­
vidual elements can change. The pointer value represented by an 
array identifier is not a variable, so an array identifier cannot form 
the left-hand operand of an assignment operation. 

• An identifier declared as a function represents a pointer whose 
value is the address of the function. The pointer addresses a func­
tion returning a value of a specified type. The address of a function 
does not change during program execution; only the return value 
varies. Thus, function identifiers cannot be left-hand operands in 
assignment operations. 

5-2 

( 

\ 



Expressions and Assignments 

5.2.3 Strings 

Syntax 

"string" ["string"] 

A "string literal" is a character or sequence of adjacent characters 
enclosed in double quotation marks. Two or more adjacent string literals 
separated only by white space are concatenated into a single string literal. 
A string literal is stored as an array of elements with char type and ini­
tialized with the quoted sequence of characters. The string literal is 
represented by a pointer whose value is the address of the first array ele­
ment. The address of the string's first element is a constant, so the value 
represented by a string expression is a constant. 

Since string literals are effectively pointers, they can be used in the same 
contexts as pointers, and have the same restrictions as pointers. However, 
since they are not variables, neither string literals nor any of their ele­
ments can be the left-hand operand in an assignment operation. 

The last character of a string is always the null character. Though the null 
character is not visible in the string expression, it is added automatically 
as the last element when the string is stored. For example, the string 
"abc" actually has four characters rather than three. 

5.2.4 Function Calls 

Syntax 

expression ([expression-list]) 

A "function call" consists of an expression followed by an optional 
expression-list in parentheses, where 

• expression must evaluate to a function address (for example, a 
function identifier), and 

• expression-list is a list of expressions (separated by commas) 
whose values (the "actual arguments") are passed to the function. 
The expression-list argument can be empty. 

A function-call expression has the value and type of the function's return 
value. If the function's return type is void (that is, the function has been 
declared never to return a value), the function-call expression also has 
void type. If the called function returns control without executing a 
return statement, the value of the function-call expression is undefined. 

5-3 



C Language Reference 

(See the chapter on "Functions," for more information about function 
calls.) 

5.2.5 Subscript Expressions 

Syntax 

expressionl [expression2 ] 

A subscript expression represents the value at the address that is expres­
sion2 positions beyond expressionl. Usually, the value represented by 
expressionl is a pointer value, such as an array identifier, and expression2 
is an integral value. However, all that is required syntactically is that one 
of the expressions be of pointer type and the other be of integral type. 
Thus the integral value could be in the expressionl position and the 
pointer value could be in the brackets in the expression2, or "subscript," 
position. Whatever the order of values, expression2 must be enclosed in 
brackets ([ D. 

Subscript expressions are generally used to refer to array elements, but 
you can apply a subscript to any pointer. 

Unidimensional-Array References 

The subscript expression is evaluated by adding the integral value to the 
pointer value, then applying the indirection operator (*) to the result. 
(See Section 5.3.3 for a discussion of the indirection operator.) In effect, 
for a one-dimensional array, the following four expressions are 
equivalent, assuming that a is a pointer and b is an integer: 

a[b] 
*(a + b) 
* (b + a) 
b[a] 

According to the conversion rules for the addition operator (given in Sec­
tion 5.3.6), the integral value is converted to an address offset by multi­
plying it by the length of the type addressed by the pointer. 

For example, suppose the identifier line refers to an array of int values. 
The following procedure is used to evaluate the subscript expression 
line[i]: 

1. The integer value i is multiplied by the number of bytes defined as 
the length of an int item. The converted value of i represents i int 
positions. 

5-4 



Expressions and Assignments 

2. This converted value is added to the original pointer value (line) to 
yield an address that is offset i int positions from line. 

3. The indirection operator is applied to the new address. The result 
is the value of the array element at that position (intuitively, 
line[i]). 

Note 

The following subscript expression represents the value of the first 
element of line, since the offset from the address represented by line 
is 0: 

line[O] 

Similarly, an expression such as the following refers to the element 
offset five positions from line or the sixth element of the array: 

linerS] 

Multidimensional-Array Reference 

A subscript expression can be subscripted, as follows: 

expression] [expression2] [expressionJ] ... 

Subscript expressions associate from left to right. The left-most subscript 
expression, expression] [expression2] , is evaluated first. The address that 
results from adding expression] and expression2 forms a pointer expres­
sion; then expressionJ is added to this pointer expression to form a new 
pointer expression, and so on until the last subscript expression has been 
added. The indirection operator (*) is applied after the last subscripted 
expression is evaluated, unless the final pointer value addresses an array 
type (see Example 3). 

Expressions with multiple subscripts refer to elements of "multidimen­
sional arrays." A multidimensional array is an array whose elements are 
arrays. For example, the first element of a three-dimensional array is an 
array with two dimensions. 

5-5 



C Language Reference 

For the following examples, an array named prop is declared with three 
elements, each of which is a 4-by-6 array of int values. 

int prop [3] [4] [6] ; 
int i, *ip, (*ipp) [6]; 

Example 1 

This example shows how to refer to the second individual int element of 
prop. Arrays are stored by row, so the last subscript varies the most 
quickly; the expression prop[O][O][2] refers to the next (third) element of 
the array, and so on. 

i = prop [0] [0] [1]; 

Example 2 

This example shows a more complex reference to an individual element 
of prop. The expression is evaluated as follows: 

1. The first subscript, 2, is multiplied by the size of a 4-by-6 int array 
and added to the pointer value prop. The result points to the third 
4-by-6 array of prop. 

2. The second subscript, 1, is multiplied by the size of the 6-element 
int array and added to the address represented by prop[2]. 

3. Each element of the 6-element array is an int value, so the final 
subscript, 3, is multiplied by the size of an int before it is added to 
prop [2] fl]. The resulting pointer addresses the fourth element of 
the 6-element array. 

4. The indirection operator is applied to the pointer value. The result 
is the int element at that address. 

i = prop [2] [1] [3] ; 

Example 3 

Examples 3 and 4 show cases where the indirection operator is not 
applied. 

In Example 3, the expression prop[2][l] is a valid reference to the three­
dimensional array prop; it refers to a 6-element array (declared above 

5-6 



Expressions and Assignments 

Example 1). Since the pointer value addresses an array, the indirection 
operator is not applied. 

ip = prop [2] [1]; 

Example 4 

As in example 3, the result of the expression prop[2] in Example 4 is a 
pointer value addressing a two-dimensional array. 

ipp = prop[2]; 

5.2.6 Member-Selection Expressions 

Syntax 

expression.identi fier 
expression ->identifier 

A "member-selection expression" refers to members of structures and 
unions. Such an expression has the value and type of the selected 
member. As shown in the syntax line, a member-selection expression can 
have one of the two following forms: 

1. In the first form, expression.identifier, expression represents a 
value of struct or union type, and identifier names a member of 
the specified structure or union. 

2. In the second form, expression->identifier, expression represents a 
pointer to a structure or union, and identifier names a member of 
the specified structure or union. 

The two forms of member-selection expressions have similar effects. In 
fact, an expression involving the pointer selection operator (-» is a 
shorthand version of an expression using the period (.) if the expression 
before the period consists of the indirection operator (*) applied to a 
pointer value. (Section 5.3.3 discusses the indirection operator.) There­
fore, 

expression ->identi fier 

5-7 



C Language Reference 

is equivalent to 

(*expression }.identi fier 

when expression is a pointer value. 

Examples 1 through 3 refer to the following structure declaration: 

struct pair { 
int a; 
int b; 
struct pair *sp; 
} item, 1 i s t [1 0] ; 

Example 1 

In this example, the address of the item structure is assigned to the sp 
member of the structure. This means that item contains a pointer to itself. 

item. sp = &item; 

Example 2 

In this example, the pointer expression item.sp is used with the pointer 
selection operator (-» to assign a value to the member a. 

(item.sp)->a = 24; 

Example 3 

This example shows how to select an individual structure member from 
an array of structures. 

list [8].b = 12; 

5.2.7 Expressions with Operators 

Expressions with operators can be "unary," "binary," or "ternary" 
expressions. A unary expression consists of either a unary operator 
(' 'unop' ') prepended to an operand, or the sizeof keyword followed by an 
expression. The expression can be either the name of a variable or a cast 
expression. If expression is a cast expression it must be enclosed in 
parentheses. 

5-8 

unop operand 
sizeof expression 



Expressions and Assignments 

A binary expression consists of two operands joined by a binary operator 
("binop"): 

operand binop operand 

A ternary expression consists of three operands joined by the ternary 
operator (? :): 

operand? operand: operand 

Sections 5.3.1-5.3.12, describe the operators used in unary, binary, and 
ternary expressions. 

ExpreSsions with operators also include assignment expressions that use 
unary or binary assignment operators. The unary assignment operators are 
the increment (++) and decrement ( •. ) operators; the binary assignment 
operators are the simple-assignment operator (=) and the compound­
assignment operators (referred to as "compound-assign-ops"). Each 
compound-assignment operator is a combination of another binary opera­
tor with the simple-assignment operator. Assignment expressions have 
the following forms: 

operand++ 
operand- -
++operand 
- -operand 
operand = operand 
operand compound-assign-op operand 

Sections 5.4.1 - 5.4.4 describe the assignment operators in detail. 

5.2.8 Expressions in Parentheses 

You can enclose any operand in parentheses without changing the type or 
value of the enclosed expression. For example, in the the following 
expression, the parentheses around 10 + 5 mean that the value of 10 + 5 is 
the left operand of the division (/) operator. 

(10 + 5) / 5 

The result of (10 + 5) / 5 is 3. Without the parentheses, 10 + 5/5 would 
evaluate to 11. 

Although parentheses affect the way operands are grouped in an expres­
sion, they cannot guarantee a particular order of evaluation in all cases. 
Exceptions resulting from "side effects" are discussed in Section 5.2.11. 

5-9 



C Language Reference 

5.2.9 Type-Cast Expressions 

A type cast provides a method for explicit conversion of the type of an 
object in a specific situation. Type-cast expressions have the following 
form: 

(type-name) operand 

Casts can be used to convert objects of any scalar type to or from any 
other scalar type. Explicit type casts are constrained by the same rules 
that determine the effects of implicit conversions, discussed in "Assign­
ment Conversions." Additional restraints on casts may result from the 
actual sizes or representation of specific types on specific implementa­
tions. Representation is discussed in the "Declarations" chapter. For 
information on actual sizes of integral types and pointers, see your com­
piler guide. 

Any object may be cast to void type. However, if the type-name in a 
type-cast expression is not void, then operand cannot be a void expres­
sion. Any expression can be cast to void, but an expression of type void 
cannot be cast to any other type. For example, a function with void return 
type cannot have its return cast to another type. Note that a void * expres­
sion has a type pointer to void, not type void. If an object is cast to void 
type, the resulting expression cannot be assigned to any item. Similarly, a 
type-cast object is not an acceptable lvalue, so no assignment can be 
made to a type-cast object. Section 4.9 discusses type names. Section 
5.4.1 discusses Lvalues. Section 5.6 discusses type-cast conversions. 

5.2.10 Constant Expressions 

A constant expression is any expression that evaluates to a constant. The 
operands of a constant expression can be integer constants, character con­
stants, floating type constants, enumeration constants, type casts, sizeof 
expressions, and other constant expressions. You can use operators to 
combine and modify operands as described in Section 5.2.7, with the fol­
lowing restrictions: 

• You cannot use assignment operators (see Section 5.4) or the 
binary sequential-evaluation operator (,) in constant expressions. 

• You can use the unary address-of operator (&) only in certain ini­
tializations (as described in the last paragraph of this section). 

Constant expressions used in preprocessor directives are subject to addi­
tional restrictions. Consequently, they are known as "restricted constant 
expressions." A restricted constant expression cannot contain sizeof 

5-10 



Expressions and Assignments 

expressions, enumeration constants, type casts to any type, or floating­
type constants. It can, however, contain the special constant expression 
defined(identifier}. (For more information about this expression, see Sec­
tion 8.2.2, "The #define Directive. ") 

Constant expressions involving floating constants, casts to nonarithmetic 
types, and address-of expressions can only appear in initializers. The 
unary address-of operator (&) can only be applied to variables with fun­
damental, structure, or union types that are declared at the global level, or 
to subscripted array references. In these expressions, a constant expres­
sion that does not include the address-of operator can be added to or sub­
tracted from the address expression. 

5.2.11 Side Effects 

"Side effects" occur whenever the value of a variable is changed by 
expression evaluation. All assignment operations have side effects. Func­
tion calls may also have side effects if they change the value of an exter­
nally visible item, either by direct assignment or by indirect assignment 
through a pointer. 

The order of evaluation of expressions is defined by the specific imple­
mentation, except when the language guarantees a particular order of 
evaluation (as 'outlined in Section 5.5). 

For example, side effects occur in the following function call: 

add (i + 1, i = j + 2) 

The arguments of a function call can be evaluated in any order. The 
expression i + 1 can be evaluated before i = j + 2, or i = j + 2 can be 
evaluated before i + 1. The result is different in each case. 

Since unary increment and decrement operations involve assignments, 
such operations can cause side effects, as shown in the following exam­
ple: 

d 0; 
a = b++ = c++ = d++; 

In this example, the value of a is unpredictable. The value of d (initially 
0) could be assigned to c, then to b, and then to a before any of the vari­
ables are incremented. In this case, a would be equal to O. 

A second way to evaluate this expression begins by evaluating the 
operand c++ = d++. The value of d (initially 0) is assigned to c, and then 

5-11 



C Language Reference 

both d and c are incremented. Next, the value of c, now 1, is assigned to b, 
and b is incremented. Finally, the incremented value of b is assigned to a; 
in this case, the final value of a is 2. 

Since C does not define the order of evaluation of side effects, both 
evaluation methods discussed above are correct and either may be imple­
mented. To make sure that your code is portable and clear, avoid state­
ments that depend on a particular order of evaluation for side effects. 

5.2.12 Sequence Points 

Expressions involving assignment, unary "increment," unary "decre­
ment," or calling a function may have consequences incidental to their 
evaluation (side effects). When a "sequence point" is reached, every­
thing preceding the sequence point, including any side effects, is 
guaranteed to have been evaluated before evaluation begins on anything 
following the sequence point. 

Certain operators act as sequence points, including the following: 

• The logical-AND operator (&&) 

• The logical-OR operator (II) 

• The ternary operator (?:) 

• The sequential-evaluation operator (,) 

• The function-call operator (that is, the parentheses following a 
function name) 

Other sequence points include 

• the end of a full expression (that is, an expression that is not part of 
another expression) 

• any initializer 

• an expression in an expression statement 

• the control expressions in selection statements (if or switch) and 
iteration statements (do, while, or for) 

• the expression in a return statement 

5-!2 



Expressions and Assignments 

5.3 C Operators 

C operators take one operand (unary operators), two operands (binary 
operators), or three operands (the ternary operator). Assignment operators 
include both unary or binary operators; Section 5.4 describes the assign­
ment operators. 

Unary operators appear before their operand and associate from right to 
left. C includes the following unary operators: 

- - ! Negation and complement operators 

* & Indirection and address-of operators 

sizeof Size operator 

+ Unary plus operator 

Binary operators associate from left to right. C provides the following 
binary operators: 

* / % 

+-

« » 

< > <= >= -- != 

& I A 

&& II 

Multiplicative operators 

Additive operators 

Shift operators 

Relational operators 

Bitwise operators 

Logical operators 

Sequential-evaluation operator 

C has one ternary operator: the conditional operator (? :). It associates 
from right to left. 

5.3.1 Usual Arithmetic Conversions 

Most C operators perform type conversions to bring the operands of an 
expression to a common type or to extend short values to the integer size 
used in machine operations. The conversions performed by C operators 
depend on the specific operator and the type of the operand or operands. 
However, many operators perform similar conversions on operands of 
integral and floating types. These conversions are known as "arithmetic 

5-13 



C Language Reference 

conversions" because they apply to the types of values ordinarily used in 
arithmetic. 

The arithmetic conversions summarized in this section are called "usual 
arithmetic conversions." The discussion of each operator in the follow­
ing sections specifies whether or not the operator performs the usual arith­
metic conversions. It also specifies the additional conversions, if any, the 
operator performs. This is not a precedence order. It is an outline of an 
algorithm that is applied to each binary operator in the expression. 

Section 5.6 outlines the specific path of each type of conversion. In deter­
mining which conversions will actually take place, the following algo­
rithm is applied to each binary operation in the expression: 

1. Any operands of float type are converted to double type. 

2. If one operand has long double type, the other operand is con­
verted to long double type. 

3. If one operand has double type, the other operand is converted to 
double type. 

4. Any operands of char or short type are converted to int type. 

5. Any operands of unsigned char or unsigned short type are con­
verted to unsigned int type. 

6. If one operand is of unsigned long type, the other operand is con­
verted to unsigned long type. 

7. If one operand is of long type, the other operand is converted to 
long type. 

8. If one operand is of unsigned int type, the other operand is con­
verted to unsigned int type. 

The following example illustrates the application of the preceding algo­
rithm: 

5-14 

long 1; 
unsigned char uc; 
int i; 
f ( 1 + uc * i); 



Expressions and Assignments 

The preceding example would be converted as follows: 

1. uc is converted to an unsigned int (step 5). 

2. i is converted to an unsigned int (step 8). The multiplication is 
performed and the result is an unsigned into 

3. uc * i is converted to a long (step 7). 

The addition is performed and the result is type long. 

5.3.2 Complement and Unary Plus Operators 

The C complement operators are discussed in the following list: 

Note 

The arithmetic-negation operator produces the negative 
(two's complement) of its operand. The operand must be an 
integral or floating value. This operator performs the usual 
arithmetic conversions. 

The bitwise-complement operator produces the bitwise 
complement of its operand. The operand must be of 
integral type. This operator performs usual arithmetic 
conversions; the result has the type of the operand after 
conversion. 

The logical-NOT operator produces the value 0 if its 
operand is true (nonzero) and the value 1 if its operand is 
false (0). The result has int type. The operand must be an 
integral, floating, or pointer value. 

+ The unary plus operator preceding a parenthesized expres­
sion forces the grouping of the enclosed operations. It is 
used with expressions involving more than one associative 
or commutative binary operator. 

The unary plus operator (+) is implemented syntactically in Micro­
soft C, but has no semantics of any type associated with it. 

5-15 



C Language Reference 

Example 1 

In this example, the new value of x is the negative of 987, or -987. 

short x = 987 i 
x = -Xi 

Example 2 

In this example, the new value assigned to y is the one's complement of 
the unsigned value Oxaaaa, or Ox5555. 

unsigned short y = Oxaaaai 
Y = -Yi 

Example 3 

In this example, if x is greater than or equal to y, the result of the expres­
sion is 1 (true). If x is less than y, the result is 0 (false). 

if ( ! (x < Y)) i 

5.3.3 Indirection and Address-of Operators 

The C indirection and address-of operators are discussed in the following 
list: 

• The indirection operator accesses a value indirectly, through a 
pointer. The operand must be a pointer value. The result of the 
operation is the value addressed by the operand; that is, the value 
at the address specified by the operand. The type of the result is the 
type that the operand addresses. If the pointer value is invalid, the 
result is undefined. The specific conditions that invalidate a pointer 
value are implementation-de fined. The following list includes 
some of the most common: 

5-16 

The pointer is a null pointer. 

The pointer specifies the address of a local item that is not 
active at the time of the reference. 

The pointer specifies an address that is inappropriately 
aligned for the type of the object pointed to. 



Expressions and Assignments 

The pointer specifies an address not used by the executing 
program. 

• The address-of operator gives the address of its operand. The 
operand can be any value that is a valid left-hand value of an 
assignment operation. A function designator or array name can 
also be the operand of the address-of operator, although in these 
cases the operator is superfluous since function designators and 
array names are addresses. (Assignment operations are discussed 
in Section 5.4.) The result of the address operation is a pointer to 
the operand. The type addressed by the pointer is the type of the 
operand. 

You cannot apply the address-of operator to a bit field member of a struc­
ture (described in Section 4.4.3, "Structure Declarations") or to an 
identifier declared with the register storage-class specifier (described in 
Section 4.6). 

Examples 1 through 4 use the following declarations: 

int *pa, x; 
int a[20]; 
double d; 

Example 1 

In this example, the address-of operator (&) takes the address of the sixth 
element of the array a. The result is stored in the pointer variable pa. 

pa = &a[5]; 

Example 2 

In this example the indirection operator (*) is used to access the int value 
at the address stored in pa. The value is assigned to the integer variable x. 

x = *pa; 

Example 3 

In this example , the word True would be printed. This example demon­
strates that the result of applying the indirection operator to the address of 
x is the same as x. 

if (x == *&x) 
printf("True\n"); 

5-17 



C Language Reference 

Example 4 

This example demonstrates an appropriate application of the rule shown 
in Example 3. First the address of x is converted by a type cast to a 
pointer to a double type; then the indirection operator is applied to give a 
result of type double. 

d = * (double *) (&x) ; 

Example 5 

In this example, the function roundup is declared, and then two pointers 
to roundup are declared and initialized. The first pointer proundup is ini­
tialized using only the name of the function, while the second, pround, 
uses the address-of operator in the initialization. The initializations are 
equal. 

int roundup () ; 

int (*proundup) = roundup; 
int (*pround) = &roundup; 

5.3.4 The sizeof Operator 

The sizeof operator gives the amount of storage, in bytes, associated with 
an identifier or a type. This operator lets you avoid specifying machine­
dependent data sizes in your programs. 

A sizeof expression has the fonn 

sizeof expression 

An expression is either an identifier or a type-cast expression (that is, a 
type specifier enclosed in parentheses). If expression is a type-cast 
expression, it cannot be void. If it is an identifier, it cannot represent a 
bit field object or a function designator. 

When you apply the sizeof operator to an array identifier, the result is the 
size of the entire array rather than the size of the pointer represented by 
the array identifier. 

When you apply the sizeof operator to a structure or union type name, or 
to an identifier of structure or union type, the result is the actual size of 
the structure or union. This size may include internal and trailing padding 
used to align the members of the structure or union on memory 

5-18 



Expressions and Assignments 

boundaries. Thus, the result may not correspond to the size calculated by 
adding up the storage requirements of the individual members. 

Example 1 

This example uses the sizeof operator to pass the size of an int, which 
varies among machines, as an argument to a function named calloc. The 
buffer stores the value returned by the function. 

buffer = calloc(lOO, sizeof (int) ); 

Example 2 

In this example, strings is an array of pointers to char. The number of 
pointers is the number of elements in the array, but is not specified. It is 
easy to determine the number of pointers by using the sizeof operator to 
calculate the number of elements in the array. The const integer value 
string no is initialized to this number. Because it is a const value, 
string= no cannot be modified. 

static char *strings[] ={ 
"this is string one", 
"this is string two", 
"this is string three", 

} ; 
const int string_no = (sizeof strings)/(sizeof strings[O]); 

5.3.5 Multiplicative Operators 

The mUltiplicative operators perform multiplication (*), division (/), and 
remainder (%) operations. The operands of the remainder operator (%) 
must be integral. The multiplication (*) and division (/) operators can 
take integral- or floating-type operands; the types of the operands can be 
different. 

The multiplicative operators perform the usual arithmetic conversions on 
the operands. The type of the result is the type of the operands after 
conversion. 

5-19 



C Language Reference 

Note 

Since the conversions perfonned by the multiplicative operators do 
not provide for overflow or underflow conditions, infonnation may 
be lost if the result of a multiplicative operation cannot be 
represented in the type of the operands after conversion. 

The C multiplicative operators are described as follows: 

* 

/ 

The multiplication operator causes its two operands to be 
multiplied. 

The division operator causes the first operand to be divided 
by the second. If two integer operands are divided and the 
result is not an integer, it is truncated according to the fol­
lowing rules: 

• If both operands are positive or unsigned, the 
result is truncated toward O. 

• If either operand is negative, the direction of 
truncation of the result (either toward 0 or 
away from 0) is defined by the implementa­
tion. For more infonnation, see your compiler 
guide. 

The result of division by 0 is undefined. 

% The result of the remainder operator is the remainder when 
the first operand is divided by the second. If either or both 
operands are positive or unsigned, the result is positive. If 
either operand is negative the sign of the result is defined 
by the implementation. (For more infonnation, see your 
compiler guide.) If the right operand is zero, the result is 
undefined. 

These declarations are used for all of the following examples: 

5-20 

int i = 10, j = 3, n; 
double x = 2.0, y; 



Expressions and Assignments 

Example 1 

In this example, x is multiplied by i to give the value 20.0. The result has 
double type. 

y = x * i; 

Example 2 

In this example, 10 is divided by 3. The result is truncated toward 0, 
yielding the integer value 3. 

n = i / j; 

Example 3 

In this example, n is assigned the integer remainder, 1, when 10 is divided 
by 3. 

n = i % j; 

5.3.6 Additive Operators 

The additive operators perform addition (+) and subtraction (-). The 
operands can be integral or floating values. Some additive operations can 
also be performed on pointer values, as outlined under the discussion of 
each operator. 

The additive operators perform the usual arithmetic conversions on 
integral and floating operands. The type of the result is the type of the 
operands after conversion. Since the conversions performed by the addi­
tive operators do not provide for overflow or underflow conditions, infor­
mation may be lost if the result of an additive operation cannot be 
represented in the type of the operands after conversion. 

Addition (+) 

The addition operator (+) causes its two operands to be added. Both 
operands can have integral or floating types, or one operand can be a 
pointer and the other an integer. 

When an integer is added to a pointer, the integer value (i) is converted 
by multiplying it by the size of the value that the pointer addresses. After 
conversion, the integer value represents i memory positions, where each 
position has the length specified by the pointer type. When the converted 

5-21 



C Language Reference 

integer value is added to the pointer value, the result is a new pointer 
value representing the address i positions from the original address. The 
new pointer value addresses a value of the same type as the original 
pointer value. 

Subtraction (-) 

The subtraction operator (-) subtracts the second operand from the first. 
The following combinations of operands can be used with this operator: 

• Both operands integral or floating type values 

• Both operands pointer values to the same type 

• The first operand a pointer value and the second operand an integer 

When two pointers are subtracted, the difference is converted to a signed 
integral value by dividing the difference by the size of a value of the type 
that the pointers address. The result represents the number of memory 
positions of that type between the two addresses. The result is only 
guaranteed to be meaningful for two elements of the same array, as dis­
cussed in "Pointer Arithmetic, " later in this section. 

When an integer value is subtracted from a pointer value, the subtraction 
operator converts the integer value (i) by multiplying it by the size of the 
value that the pointer addresses. After conversion, the integer value 
represents i memory positions, where each position has the length 
specified by the pointer type. When the converted integer value is sub­
tracted from the pointer value, the result is the memory address i positions 
before the original address. The new pointer points to a value of the type 
addressed by the original pointer value. 

Pointer Arithmetic 

Additive operations involving a pointer and an integer give meaningful 
results only if the pointer operand addresses an array member and the 
integer value produces an offset within the bounds of the same array. 
When the integer value is converted to an address offset, the compiler 
assumes that only memory positions of the same size lie between the ori­
ginal address and the address plus the offset. 

This assumption is valid for array members. By definition, an array is a 
series of values of the same type; its elements reside in contiguous 
memory locations. However, storage for any types except array elements 
is not guaranteed to be completely filled. That is, blanks may appear 
between memory positions, even positions of the same type. Therefore, 

5-22 



Expressions and Assignments 

the results of adding to or subtracting from the addresses of any values 
but array elehlents are undefined. 

Similarly, when two pointer values are subtracted, the conversion 
assumes that only values of the same type, with no blanks, lie between the 
addresses given by the operands. 

On machines with segmented architecture (such as the 8086/8088), addi­
tive operations between pointer and integer values may not be valid in 
some cases. For example, an operation may result in an address that is 
outside the bounds of an array. See your compiler guide for more informa­
tion on memory models. 

The following declarations are used for both examples: 

int i = 4, j; 
float x[lO]; 
float *px; 

Example 1 

In this example, the value of i is multiplied by the length of a float and 
added to &x[ 4 J. The resulting pointer value is the address of x[8 J. 

px = &x[4] + i; /* equivalent to px = &x[4+i]; */ 

Example 2 

In this example, the address of the third element of x (given by x[i-2]) is 
subtracted from the address of the fifth element of x (given by xli]). The 
difference is divided by the length of a float; the result is the integer value 
2. 

j &x [i] - &x [i-2] ; 

5.3.7 Shift Operators 

The shift operators shift their first operand left «<) or right (») by the 
number of positions the second operand specifies. Both operands must be 
integral values. These operators perform the usual arithmetic conversions; 
the type of the result is the type of the left operand after conversion. 

For leftward shifts, the vacated right bits are set to O. For rightward shifts, 
the vacated left bits are filled based on the type of the first operand after 
conversion. If the type is unsigned, they are set to O. Otherwise, they are 
filled with copies of the sign bit. 

5-23 



C Language Reference 

The result of a shift operation is undefined if the second operand is nega­
tive. 

Since the conversions perfonned by the shift operators do not provide for 
overflow or underflow conditions, infonnation may be lost if the result of 
a shift operation cannot be represented in the type of the first operand 
after conversion. 

Example 

unsigned int x, y, Z; 

x = OxOOaa; 
y Ox5500; 

Z = (x « 8) + (y » 8); 

In this example, x is shifted left eight positions and y is shifted right eight 
positions. The shifted values are added, giving Oxaa55, and assigned to z. 

5.3.8 Relational Operators 

The binary relational operators compare their first operand to their second 
operand to test the validity of the specified relationship. The result of a 
relational expression is 1 if the tested relationship is true and 0 if it is 
false. The type of the result is int. 

The relational operators test the following relationships: 

< First operand less than second operand 

> First operand greater than second operand 

<= First operand less than or equal to second operand 

>= First operand greater than or equal to second operand 

First operand equal to second operand 

First operand not equal to second operand 

The operands can have integral, floating, or pointer type. The types of the 
operands can be different. Relational operators perfonn the usual arith­
metic conversions on integral and floating type operands. In addition, you 

5-24 



Expressions and Assignments 

can use the following combinations of operand types with relational 
operators: 

• Both operands of any relational operator can be pointers to the 
same type. For the equality (==) and inequality (!=) operators, the 
result of the comparison indicates whether or not the two pointers 
address the same memory location. For the other relational opera­
tors «, >, <=, and >=), the result of the comparison indicates the 
relative position of two memory addresses. 

Since the address of a given value is arbitrary, comparisons 
between the addresses of two unrelated values are generally mean­
ingless. However, comparisons between the addresses of different 
elements of the same array can be useful, since array elements are 
guaranteed to be stored in order from the first element to the last. 
The address of the first array element is "less than" the address of 
the last element. 

• A pointer value can be compared to the constant value ° for equal­
ity (==) or inequality (!=). A pointer with a value of 0, called a 
"null" pointer, does not point to a memory location. 

Example 1 

Because x and y are equal, the expression in Example 1 yields the value 0. 

int x = 0, y = 0; 
x < y 

Example 2 

The fragment in Example 2 initializes each element of array to a null 
character constant. 

char array [10] 
char *p ; 

for (p = array; p < &array[lO]; p++) 
*p = '\0' ; 

Example 3 

Example 3 declares an enumeration variable named col with the tag 
color. At any time, the variable may contain an integer value of 0, 1, or 2, 
which represents one of the elements of the enumeration set color: the 
color red, white, or green, respectively. If col contains ° when the if state­
ment is executed, any statements depending on the if will be executed. 

5-25 



C Language Reference 

enum color {red, white, green} col; 

if (col red) 

5.3.9 Bitwise Operators 

The bitwise operators perfonn bitwise-AND (&), inclusive-OR (I), and 
exclusive-OR C) operations. The operands of bitwise operators must have 
integral types, but their types can be different. These operators perfonn 
the usual arithmetic conversions; the type of the result is the type of the 
operands after conversion. 

The C bitwise operators are described as follows: 

& The bitwise-AND operator compares each bit of its first 
operand to the corresponding bit of its second operand. If 
both bits are 1, the corresponding result bit is set to 1. Oth­
erwise, the corresponding result bit is set to O. 

The bitwise-inclusive-OR operator compares each bit of its 
first operand to the corresponding bit of its second operand. 
If either bit is 1, the corresponding result bit is set to 1. 
Otherwise, the corresponding result bit is set to O. 

The bitwise-exclusive-OR operator compares each bit of 
its first operand to the corresponding bit of its second 
operand. If one bit is 0 and the other bit is 1, the 
corresponding result bit is set to 1. Otherwise, the 
corresponding result bit is set to o. 

The following declarations arc used for these examples: 

short i = O~abOO; 

short j = O~abcd; 

short n; 

Example 1 

The result assigned to II in Example 1 is the same as i (OxabOO hexade­
cimal). 

n = i & j; 

5-26 



Expressions and Assignments 

Example 2 

The bitwise-inclusive OR in Example 2 results in the value Oxabcd (hexa­
decimal). 

n = i I j; 

Example 3 

The bitwise-exclusive OR in Example 3 produces Oxcd (hexadecimal). 

n = i A j; 

5.3.10 Logical Operators 

The logical operators perform logical-AND (&&) and logical-OR (I D 
operations. The operands of the logical operators must have integral, 
floating, or pointer type. The types of the operands can be different. 

The operands of logical-AND and logical-OR expressions are evaluated 
from left to right. If the value of the first operand is sufficient to determine 
the result of the operation, the second operand is not evaluated. There is a 
sequence point after the first operand. 

Logical operators do not perform the usual arithmetic conversions. 
Instead, they evaluate each operand in terms of its equivalence to O. 

The result of a logical operation is either 0 or 1. The result's type is into 

The C logical operators are described as follows: 

&& The logical-AND operator produces the value I if both 
operands have nonzero values. If either operand is equal to 
0, the result is O. If the first operand of a logical-AND 
operation is equal to 0, the second operand is not 
evaluated. 

II The logical-OR operator performs an inclusive-OR opera­
tion on its operands. The result is 0 if both operands have 0 
values. If either operand has a nonzero value, the result is 
1. If the first operand of a logical-OR operation has a 
nonzero value, the second operand is not evaluated. 

5-27 



C Language Reference 

The following examples use these declarations: 

int w, x, y, Z; 

Example 1 

In this example, the print! function is called to print a message if x is less 
than y and y is less than z. If x is greater than y, the second operand (y < 
z) is not evaluated and nothing is printed. Note that this could cause prob­
lems in cases where the second operand has side effects that are being 
relied on for some other reason. 

if (x < y && Y < z) 
printf ("x is less than z\n"); 

Example 2 

In this example, if x is equal to either w, y, or z, the second argument to 
the print! function evaluates to true and the value 1 is printed. Otherwise, 
it evaluates to false and the value 0 is printed. As soon as one of the con­
ditions evaluates to true, evaluation ceases. 

printf ("%d" , (x==w x==y /I x==z)); 

5.3.11 Sequential-Evaluation Operator 

The sequential-evaluation operator evaluates its two operands sequen­
tially from left to right. There is a sequence point after the first operand. 
The result of the operation has the same value and type as the right 
operand. Each operand can be of any type. The sequential-evaluation 
operator does not perform type conversions between its operands. 

The sequential-evaluation operator, also called the "comma operator," is 
typically used to evaluate two or more expressions in contexts where only 
one expression is allowed. 

Commas can be used as separators in some contexts. However, you must 
be careful not to confuse the use of the comma as a separator with its use 
as an operator; the two uses are completely different. 

Example 1 

In this example, each operand of the for statement's third expression is 
evaluated independently. The left operand, i += i, is evaluated first; then 
the right operand, J- -, is evaluated. 

for ( i = j = 1; i + j < 20; i += i, j--); 

5-28 



Expressions and Assignments 

Example 2 

In the function call to June _one, three arguments, separated by commas, 
are passed: x, y + 2, and z. 

In the function call to June_two, parentheses force the compiler to inter­
pret the first comma as the sequential-evaluation operator. This function 
call passes two arguments to June two. The first argument is the result of 
the sequential-evaluation operation (x--, y + 2), which has the value and 
type of the expression y + 2; the second argument is z. 

func_one(x, y + 2, z); 
func_two( (x--, y + 2), z); 

5.3.12 Conditional Operator 

C has one ternary operator: the conditional operator (? :). It has the fol­
lowing form: 

operandI ? operand2 : operand3 

The expression operandI must have integral, floating, or pointer type. It is 
evaluated in terms of its equivalence to O. A sequence point follows 
operandI. Evaluation proceeds as follows: 

• If operand] does not evaluate to 0, operand2 is evaluated, and the 
result of the expression is the value of operand2. 

• If operandI evaluates to 0, operand3 is evaluated, and the result of 
the expression is the value of operand3. 

Note that either operand2 or operand3 is evaluated, but not both. 

The type of the result of a conditional operation depends on the type of 
operand2 or operand3, as follows: 

• If operand2 or operandJ has integral or floating type (their types 
can be different), the operator performs the usual arithmetic 
conversions. The type of the result is the type of the operands after 
conversion. 

• If both operand2 and operand3 have the same structure, union, or 
pointer type, the type of the result is the same structure, union, or 
pointer type. 

5-29 



C Language Reference 

• If both operands have type void, the result has type void. 

• If either operand is a pointer to an object of any type, and the other 
operand is a pointer to void, the pointer to the object is converted 
to a pointer to void and the result is a pointer to void. 

• If either operand2 or operandJ is a pointer and the other operand is 
a constant expression with the value 0, the type of the result is the 
pointer type. 

Example 1 

This example assigns the absolute value of i to j. If i is less than 0, -i is 
assigned to j. If i is greater than or equal to 0, i is assigned to j. 

j = (i < 0) ? (-i) : (i); 

Example 2 

In this example, two functions, /1 and12, and two variables, x and y, are 
declared. Later in the program, if the two variables have the same value, 
the function /1 is called. Otherwise,12 is called. 

void f1 (void) 
void f2(void) 
int x 
int y 

(x==y) ? (f1 () ) (f2 () ) 

5.4 Assignment Operators 

The assignment operators in C can both transform and assign values in a 
single operation. Using a compound-assignment operator to replace two 
separate operations can make your programs smaller and more efficient. 

C provides the following assignment operators: 

++ Unary increment 

Unary decrement 

5-30 



Expressions and Assignments 

= Simple assignment 

*= Multiplication assignment 

1= Division assignment 

%= Remainder assignment 

+= Addition assignment 

- Subtraction assignment 

«= Left -shift assignment 

»= Right -shift assignment 

&= Bitwise-AND assignment 

1= Bitwise-inclusive-OR assignment 

,.. = Bitwise-exclusive-OR assignment 

In assignment, the type of the right-hand value is converted to the type of 
the left-hand value. The specific conversion path, which depends on the 
two types, is outlined in detail in Section 5.6. 

5.4.1 Lvalue Expressions 

An assignment operation assigns the value of the right-hand operand to 
the storage location named by the left-hand operand. Therefore, the left­
hand operand of an assignment operation (or the single operand of a unary 
assignment expression) must be an expression that refers to a modifiable 
memory location. 

Expressions that refer to memory locations are called "lvalue expres­
sions." Expressions referring to modifiable locations are "modifiable 
lvalues. " One example of a modifiable lvalue expression is a variable 
name declared without the const specifier (non-const). The name of the 
variable denotes a storage location, while the value of the variable is the 
value stored at that location. 

The following C expressions may be lvalue expressions: 

• An identifier of integral, floating, pointer, structure, or union type 

5-31 



C Language Reference 

• A subscript ([ ]) expression that does not evaluate to an array or a 
function 

• A member-selection expression (-> or .), if the selected member is 
one of the aforementioned expressions 

• A unary-indirection (*) expression that does not refer to an array or 
function 

• An lvalue expression in parentheses 

• A const object (a nonmodifiable lvalue) 

Note 

Microsoft C includes an extension to the ANSI C standard allowing 
a type cast to a pointer type as an lvalue expression, as long as the 
size of the object does not change. The following example illus­
trates this feature: 

char *p 
int i; 
long 1; 

(long *) p = &1 ; 
(long) i = 1 ; 

/* legal cast */ 
/* illegal cast */ 

See your compiler guide for information on enabling and disabling 
the Microsoft extensions. 

5.4.2 Unary Increment and Decrement 

The unary assignment operators (++ and - -) increment and decrement 
their operand, respectively. The operand must have integral, floating, or 
pointer type and must be a modifiable (non-const) lvalue expression. 

An operand of integral or floating type is incremented or decremented by 
the integer value 1. The type of the result is the same as the operand type. 
An operand of pointer type is incremented or decremented by the size of 
the object it addresses. 

5-32 



Expressions and Assignments 

An incremented pointer points to the next object; a decremented pointer 
points to the previous object. 

An increment (++) or decrement (-) operator can appear either before or 
after its operand, with the following results: 

• When the operator appears before its operand, the operand is incre­
mented or decremented and its new value is the result of the 
expression. 

• When the operator appears after its operand, the immediate result 
of the expression is the value of the operand before it is incre­
mented or decremented. After that result is applied in context, the 
operand is incremented or decremented. 

Example 1 

In this example, the variable pos is compared to 0, then incremented. If 
pos was positive before being incremented, the next statement is exe­
cuted. First, the value of q is assigned to p. Then q and p are incremented. 

if (pos++ > 0) 
*p++ = *q++i 

Example 2 

In this example, the variable i is decremented before it is used as a sub­
script to line. 

if (line [--iJ != ' \n') 
returni 

5.4.3 Simple Assignment 

The simple-assignment operator assigns its right operand to its left 
operand. The conversion rules for assignment apply (see Section 5.6.1). 

Example 

In this example, the value of y is converted to double type and assigned 
to x: 

double Xi 

int Yi 

X = Yi 

5-33 



C Language Reference 

5.4.4 Compound Assignment 

The compound-assignment operators combine the simple-assignment 
operator with another binary operator. Compound-assignment operators 
perform the operation specified by the additional operator, then assign the 
result to the left operand. For example, a compound-assignment expres­
sion such as 

expression} += expression2 

can be understood as 

expression} = expression} + expression2 

However, the compound-assignment expression is not equivalent to the 
expanded version because the compound-assignment expression evalu­
ates expression} only once, while the expanded version evaluates expres­
sion} twice: in the addition operation and in the assignment operation. 

The operands of a compound-assignment operator must be of integral or 
floating type. Each compound-assignment operator perfonns the conver­
sions that the corresponding binary operator performs and restricts the 
types of its operands accordingly. The addition-assignment (+=) and 
subtraction-assignment (-=) operators may also have a left operand of 
pointer type, in which case the right-hand operand must be of integral 
type. The result of a compound-assignment operation has the value and 
type of the left operand. 

Example 

In this example, a bitwise-inclusive-AND operation is performed on n and 
MASK, and the result is assigned to n. The manifest constant MASK is 
defined with a #define preprocessor directive (this directive is discussed 
in Section 8.2.2.). 

#define MASK OxffOO 

n &= MASK; 

5-34 



Expressions and Assignments 

5.5 Precedence and Order of Evaluation 

The precedence and associativity of C operators affect the grouping and 
evaluation of operands in expressions. An operator's precedence is mean­
ingful only if other operators with higher or lower precedence are present. 
Expressions with higher-precedence operators are evaluated first. 

Table 5.1 summarizes the precedence and associativity of C operators, 
listing them in order of precedence from highest to lowest. Where several 
operators appear together in a line or large brace, they have equal pre­
cedence and are evaluated according to their associativity. 

Table 5.1 

Precedence and Associativity of C Operators 

Symbola 

() [] . -> 

- - ! * & 
++ - - sizeof casts 

* I % 

+ -

« » 

< > <= >= 

- - != 

& 

&& 

? : 

= *= 1= %= 
+= -= «= »= 
&= \= A= 

Type of Operation Associativity 

Expression Left to right 

Unarl Right to left 

Multiplicative Left to right 

Additive Left to right 

Shift Left to right 

Relational (inequality) Left to right 

Relational (equality) Left to right 

Bitwise AND Left to right 

Bitwise-exclusive OR Left to right 

Bitwise-inclusive OR Left to right 

Logical AND Left to right 

Logical OR Left to right 

Conditional Right to left 

Simple and Right to left 
compound 
assignmen{ 

Sequential evaluation Left to right 

5-35 



C Language Reference 

b 

Operators are listed in descending order of precedence. If 
several operators appear in the same line or in a large brace, 
they have equal precedence. 

All unary operators have equal precedence. 

All simple and compound-assignment operators have equal 
precedence. 

As Table 5.1 shows, operands conslstmg of a constant, an identifier, a 
string, a function call, a subscript expression, a member-selection expres­
sion, or a parenthetical expression have the highest precedence and asso­
ciate from left to right. Type-cast conversions have the same precedence 
and associativity as the unary operators. 

An expression can contain several operators with equal precedence. 
When several such operators appear at the same level in an expression, 
evaluation proceeds according to the associativity of the operator, either 
from right to left or from left to right. The direction of evaluation does not 
affect the results of expressions that include more than one multiplication 
(*), addition (+), or binary-bitwise (& I A) operator at the same level. The 
compiler is free to evaluate such expressions in any order, even when 
parentheses in the expression appear to specify a particular order. Only 
the sequential-evaluation (,), logical-AND (&&), logical-OR (II), ternary 
(?:) and function-call operators constitute sequence points, and therefore 
guarantee a particular order of evaluation for their operands. The 
function-call operator is the set of parentheses following the function 
identifier. The sequential-evaluation operator (,) is guaranteed to evaluate 
its operands from left to right. (Note that the comma separating argu­
ments in a function call is not the same as the sequential-evaluation 
operator and does not provide any such guarantee.) Sequence points are 
discussed in Section 5.2.12. 

The unary plus operator (+) is intended to force specific groupings in cer­
tain situations. It is implemented syntactically, but not semantically. For 
further information on unary operators, see Section 5.3.2, Complement 
and Unary Plus Operators. 

Logical operators also guarantee evaluation of their operands from left to 
right. However, they evaluate the smallest number of operands needed to 
determine the result of the expression. Thus, some operands of the expres­
sion may not be evaluated. For example, in the expression x & & Y+ +, the 
second operand, y++, is evaluated only if x is true (nonzero). Thus, y is 
not incremented if x is false (0). 

The following list shows the default groupings for several sample expres­
sions: 

5-36 



Expressions and Assignments 

a&bllc (a&b)llc 

a = b II c a = (b II c) 

q&&rlls-- (q&&r)lls--

In the first expression, the bitwise-AND operator (&) has higher pre­
cedence than the logical-OR operator (Ii), so a & b forn1s the first operand 
of the logical-OR operation. 

In the second expression, the logical-OR operator (II) has higher pre­
cedence than the simple-assignment operator (= ), so h II e" is grouped as 
the right-hand operand in the assignment. Note that the value assigned to 
a is either 0 or 1. 

The third expression shows a correctly formed expression that may pro­
duce an unexpected result. The logical-AND operator (&&) has higher 
precedence than the logical-OR operator Cli), so q && ,. is grouped as an 
operand. Since the logical operators guarantee evaluation of operands 
from left to right, q & & r is evaluated before s--. However, if q & & ,. 
evaluates to a nonzero value, s-- is not evaluated, and s is not decre­
mented. To correct this problem, s-- should appear as the first operand of 
the expression, or s should be decremented in a separate operation. 

The following expression is illegal and produces a diagnostic message at 
compile time: 

p = = 0 ? p += 1,' P += 2 (p = = 0 ? p += 1 " p) += 2 

In this expression, the equality operator (== ) has the highest precedence, 
so p = = 0 is grouped as an operand. The ternary operator (? :) has the 
next-highest precedence. Its first operand is p == 0, and its second 
operand is p += 1. However, the last operand of the ternary operator is 
considered to be p rather than p + = 2, since this occurrence of p binds 
more closely to the ternary operator than it does to the compound­
assignment operator. A syntax error occurs because + = 2 does not have a 
left-hand operand. You should use parentheses to prevent errors of this 
kind and produce more readable code. For example, you could use 
parentheses as shown to correct and clarify the preceding example: 

(p == 0) ? (p += 1) : (p += 2) 

5-37 



C Language Reference 

5.6 lYpe Conversions 

Type conversions are performed in the following cases: 

• When a value of one type is assigned to a variable of a different 
type 

• When a value of one type is explicitly cast to a different type 

• When an operator converts the type of its operand or operands 
before performing an operation 

• When a value is passed as an argument to a function 

Sections 5.6.1-5.6.4 outline the rules for each kind of conversion. 

5.6.1 Assignment Conversions 

In assignment operations, the type of the value being assigned is con­
verted to the type of the variable that receives the assignment. C allows 
conversions by assignment between integral and floating types, even if 
information is lost in the conversion. The conversion methods used 
depend on the types involved in the assignment, as described in Section 
5.3.1, "Usual Arithmetic Conversion," and Sections 5.6.1.1 - 5.6.1.5. 

Conversions from Signed Integral Types 

A signed integer is converted to a shorter signed integer by truncating the 
high-order bits, and to a longer signed integer by sign extension. 

When a signed integer is converted to an unsigned integer, the signed 
integer is converted to the size of the unsigned integer, and the result is 
interpreted as an unsigned value. 

No information is lost when a signed integer is converted to a floating 
value, except that some precision may be lost when a long int or 
unsigned long int value is converted to a float value. 

Table 5.2 summarizes conversions from signed integral types. This table 
assumes that the char type is signed by default. If you use a compile-time 
option to change the default for the char type to unsigned, the conver­
sions given in Table 5.3 for the unsigned char type apply instead of the 
conversions in Table 5.2. 

5-38 



Expressions and Assignments 

Table 5.2 

Conversions from Signed Integral Types 

From To Method 

chara short Sign extend 

char long Sign extend 

char unsigned char Preserve pattern; high-order bit loses 
function as sign bit 

char unsigned short Sign extend to short; convert short to 
unsigned short 

char unsigned long Sign extend to long; convert long to 
unsigned long 

char float Sign extend to long; convert long to 
float 

char double Sign extend to long; convert long to 
double 

char long double Sign extend to long; convert long to 
double 

short char Preserve low-order byte 

short long Sign extend 

short unsigned char Preserve low-order byte 

short unsigned short Preserve bit pattern; high-order bit loses 
function as sign bit 

short unsigned long Sign extend to long; convert long to 
unsigned long 

short float Sign extend to long; convert long to 
float 

short double Sign extend to long; convert long to 
double 

short long double Sign extend to long; convert long to 
double 

long char Preserve low-order byte 

5-39 



C Language Reference 

long 

long 

long 

long 

long 

long 

long 

a 

Note 

short Preserve low-order word 

unsigned char Preserve low-order byte 

unsigned short Preserve low-order word 

unsigned long Preserve bit pattern; high-order bit loses 
function as sign bit 

float Represent as float. If long cannot be 
represented exactly, some precision is 
lost. 

double Represent as double. If long cannot be 
represented exactly as a double, some 
precision is lost. 

long double Represent as double. If long cannot be 
represented exactly as a double, some 
precision is lost. 

All char entries assume that the char type is signed by 
default. 

The int type is equivalent to either the short type or the long type, 
depending on the implementation. Conversion of an int value 
proceeds the same as for a short or a long, whichever is appropriate. 

5-40 



Expressions and Assignments 

Conversions from Unsigned Integral Types 

An unsigned integer is converted to a shorter unsigned or signed integer 
by truncating the high-order bits, or to a longer unsigned or signed integer 
by zero extending. 

When an unsigned integer is converted to a signed integer of the same 
size, the bit pattern does not change. However, the value it represents 
changes if the sign bit is set. 

Unsigned integer values are converted to floating values by first convert­
ing the unsigned integer value to a signed long value, then converting that 
signed long value to a floating value. 

Table 5.3 summarizes conversions from unsigned integral types. 

Table 5.3 

Conversions from Unsigned Integral Types 

From To Method 

unsigned char char Preserve bit pattern; high-order bi 
becomes sign bit 

unsigned char short Zero extend 

unsigned char long Zero extend 

unsigned char unsigned short Zero extend 

unsigned char unsigned long Zero extend 

unsigned char float Convert to long; convert long to 
float 

unsigned char double Convert to long; convert long to 
double 

unsigned char long double Convert to long; convert long to 
double 

unsigned short char Preserve low-order byte 

unsigned short short Preserve bit pattern; high-order bit 
becomes sign bit 

unsigned short long Zero extend 

5-41 



C Language Reference 

unsigned short unsigned char Preserve low-order byte 

unsigned short unsigned long Zero extend 

unsigned short float Convert to long; convert long to 
float 

unsigned short double Convert to long; convert long to 
double 

unsigned short long double Convert to long; convert long to 
double 

unsigned long char Preserve low-order byte 

unsigned long short Preserve low-order word 

unsigned long long Preserve bit pattern; high-order bit 
becomes sign bit 

unsigned long unsigned char Preserve low-order byte 

unsigned long unsigned short Preserve low-order word 

unsigned long float Convert to long; convert long to 
float 

unsigned long double Convert to long; convert long to 
double 

unsigned long long double Convert to long; convert long to 
double 

Note 

The unsigned int type is equivalent either to the unsigned short 
type or to the unsigned long type, depending on the implementa­
tion. Conversion of an unsigned int value proceeds in the same 
way as conversion of an unsigned short or an unsigned long, 
whichever is appropriate. 

Conversions from unsigned long values to float, double, or long 
double are not accurate if the value being converted is larger than 
the maximum positive long value. 

5-42 



Expressions and Assignments 

Conversions from Floating-Point Types 

A float value converted to a double value undergoes no change in value. 
A double value converted to a float value is represented exactly, if possi­
ble. Precision may be lost if the value cannot be represented exactly. 

A floating value is converted to an integral value by first converting to a 
long, then from the long value to the specific integral value, as described 
in Table 5.4. The decimal portion of the floating value is discarded in the 
conversion to a long; if the result is still too large to fit into a long, the 
result of the conversion is undefined. 

Table 5.4 summarizes conversions from floating types. 

From 

float 

float 

float 

float 

float 

float 

float 

double 

double 

double 

double 

Table 5.4 

Conversions from Floating-Point Types 

To Method 

char Convert to long; convert long to char 

short Convert to long; convert long to short 

long Truncate at decimal point. If result is 
too large to be represented as long, 
result is undefined. 

unsigned short Convert to long; convert long to 
unsigned short 

unsigned long Convert to long; convert long to 
unsigned long 

double Change internal representation 

long double Change internal representation 

char Convert to float; convert float to char 

short Convert to float; convert float to short 

long Truncate at decimal point. If result is 
too large to be represented as long, 
result is undefined. 

unsigned short Convert to long; convert long to 
unsigned short 

5-43 



C Language Reference 

double unsigned long Convert to long; convert long to 
unsigned long 

double float Represent as a float. If double value 
cannot be represented exactly as float, 
loss of precision occurs. If value is too 
large to be represented as float, the 
result is undefined. 

long double char Convert to float; convert float to char 

long double short Convert to float; convert float to short 

long double long Truncate at decimal point. If result is 
too large to be represented as long, 
result is undefined. 

long double unsigned short Convert to long; convert long to 
unsigned short 

long double unsigned long Convert to long; convert long to 
unsigned long 

long double float Represent as a float. If double value 
cannot be represented exactly as float, 
loss of precision occurs. If value is too 
large to be represented as float, the 
result is undefined. 

long double double The long double value is treated as 
double. 

Note 

Conversions from float, double, or long double values to unsigned 
long are not accurate if the value being converted is larger than the 
maximum positive long value. 

Conversions to and from Pointer Types 

A pointer to one type of value can be converted to a pointer to a different 
type. However, the result may be undefined because of the alignment 
requirements and sizes of different types in storage. 

5-44 



Expressions and Assignments 

A pointer to void may be converted to or from a pointer to any type, 
without restriction. 

In some implementations, you can use the special keywords near, far, 
and huge to change the size of pointers within a program. The conversion 
path depends on your implementation. For example, on an 8086 proces­
sor, the compiler might use a segment-register value to convert a 16-bit 
pointer to a 32-bit pointer. For information about pointer conversions, see 
your compiler guide. 

A pointer value can also be converted to an integral value. The conver­
sion path depends on the size of the pointer and the size of the integral 
type, according to the following rules: 

• If the size of the pointer is greater than or equal to the size of the 
integral type, the pointer behaves like an unsigned value in the 
conversion, except that it cannot be converted to a floating value. 

• If the pointer is smaller than the integral type, the pointer is first 
converted to a pointer with the same size as the integral type, then 
converted to the integral type. The implementation determines 
how a pointer is converted to a longer pointer; for information 
about pointer conversions, see your compiler guide. 

Conversely, an integral type can be converted to a pointer type according 
to the following rules: 

• If the integral type is the same size as the pointer type, the conver­
sion simply causes the integral value to be treated as a pointer (an 
unsigned integer). 

• If the size of the integral type is different from the size of the 
pointer type, the integral type is first converted to the size of the 
pointer, using the conversion paths given in Tables 5.2 and 5.3. It is 
then treated as a pointer value. 

If the special keywords near, far, and huge are implemented, implicit 
conversions may be made on pointer values. In particular, the compiler 
may make assumptions about the default size of pointers and convert 
passed pointer values accordingly, unless a forward declaration is present 
to override the implicit conversion. For information about pointer conver­
sions, see your compiler guide. 

5-45 



C Language Reference 

Conversions from Other Types 

Since an enum value is an int value by definition, conversions to and 
from an enum value are the same as those for the int type. An int is 
equivalent to either a short or a long, depending on the implementation. 

No conversions between structure or union types are allowed. 

The void type has no value, by definition. Therefore, it cannot be con­
verted to any other type, and other types cannot be converted to void by 
assignment. However, you can explicitly cast a value to void type, as dis­
cussed in Section 5.6.2. 

5.6.2 lYpe-Cast Conversions 

You can use type casts to explicitly convert types. A type cast has the 
form 

(type-name)operand 

where type-name is a type and operand is a value to be converted to that 
type. (Type names are discussed in Section 4.9.) 

The operand is converted as though it had been assigned to a variable of 
type-name type. The conversion rules for assignments (outlined in Section 
5.6.1) apply to type casts as well. 

You can use the type name void in a cast operation, but you cannot assign 
the resulting expression to any item. 

5.6.3 Operator Conversions 

The conversions performed by C operators depend on the operator and on 
the type of the operand or operands. Many operators perform the usual 
arithmetic conversions, outlined in Section 5.3.1. 

C penn its some arithmetic with pointers. In pointer arithmetic, integer 
values are converted to express memory positions. (For more information, 
see the discussions of additive operators, Section 5.3.6, and subscript 
expressions, Section 5.2.5.) 

5-46 



Expressions and Assignments 

5.6.4 Function-Call Conversions 

The type of conversion performed on the arguments in a function call 
depends on the presence of a function prototype (forward declaration) 
with declared argument types for the called function. 

If a function prototype is present and includes declared argument types, 
the compiler performs type checking. The type-checking process is out­
lined in detail in the chapter on "Functions." 

If no function prototype is present, or if an old-style forward declaration 
omits the argument-type list, only the usual arithmetic conversions are 
performed on the arguments in the function call. These conversions are 
performed independently on each argument in the call. This means that a 
float value is converted to a double; a char or short value is converted to 
an int; and an unsigned char or unsigned short is converted to an 
unsigned into 

If the special keywords near, far, and huge are implemented, implicit 
conversions can also be made on pointer values passed to functions. You 
can override these implicit conversions by providing function prototypes 
to let the compiler perform type checking. For information about pointer 
conversions, see your compiler guide. 

5-47 





Chapter 6 

Statements 

6.1 Introduction 6-1 

6.2 The break Statement 6-2 

6.3 The Compound Statement 6-3 

6.4 The continue Statement 6-4 

6.5 The do Statement 6-4 

6.6 The Expression Statement 6-5 

6.7 The for Statement 6-6 

6.8 The goto and Labeled Statements 

6.9 The if Statement 6-9 

6.10 The Null Statement 6-10 

6.11 The return Statement 6-11 

6.12 The switch Statement 6-13 

6.13 The while Statement 6-15 

6-8 





Statements 

6.1 Introduction 

The statements of a C program control the flow of program execution. In 
C, as in other programming languages, several kinds of statements are 
available to perform loops, to select other statements to be executed, and 
to transfer control. This chapter describes C statements in alphabetical 
order, as follows: 

break statement 

compound statement 

continue statement 

do statement 

expression statement 

for statement 

goto and labeled statements 

if statement 

null statement 

return statement 

switch statement 

while statement 

C statements consist of keywords, expressions, and other statements. The 
following keywords appear in C statements: 

break 
case 
continue 

default 
do 
else 

for 
goto 
if 

return 
switch 
while 

The expressions in C statements are the expressions discussed in the 
"Expressions and Assignments" chapter. Statements appearing within C 
statements may be any of the statements discussed in this chapter. A 
statement that forms a component of another statement is called the 
"body" of the enclosing statement. Frequently the statement body is a 
"compound" statement: a single statement composed of one or more 
statements. 

The compound statement is delimited by braces ({ }); all other C state­
ments end with a semicolon(;). 

Any C statement may begin with an identifying label conslstmg of a 
name and a colon. Since only the goto statement recognizes statement 
labels, statement labels are described along with the goto statement in 
Section 6.8. 

When a C program is executed, its statements are executed in the order in 
which they appear in the program, except where a statement explicitly 
transfers control to another location. 

6-1 



C Language Reference 

6.2 The break Statement 

Syntax 

break; 

Execution 

The break statement tenninates the execution of the smallest enclosing 
do, for, switch, or while statement in which it appears. Control passes to 
the statement that follows the tenninated statement. A break statement 
can appear only within a do, for, switch, or while statement. 

Within nested statements, the break statement tenninates only the do, 
for, switch, or while statement that immediately encloses it. You can use 
a return or goto statement to transfer control out of the nested structure. 

Example 

This example processes an array of variable-length strings stored in lines. 
The break statement causes an exit from the interior for loop after the 
tenninating null character ( \0) of each string is found and its position is 
stored in lengths[iJ. Control then returns to the outer for loop. The vari­
able i is incremented and the process is repeated until i is greater than or 
equal to LENGTH. 

for (i = 0; i < LENGTH; i++) { 

6-2 

for (j = 0; j < WIDTH; j++) 
if (lines [iJ [jJ == ' \0') 

lengths[iJ = j; 
break; 



6.3 The Compound Statement 

Syntax 

{ 
[declaration] 

statement 
[statement] 

Execution 

Statements 

A compound statement typically appears as the body of another state­
ment, such as the if statement. When a compound statement is executed, 
its statements are executed in the order in which they appear, except 
where a statement explicitly transfers control to another location. The 
"Declarations" chapter describes the form and meaning of the declara­
tions that can appear at the head of a compound statement. 

Like other C statements, any of the statements in a compound statement 
can carry a label. Labeled statements are discussed in Section 6.8. 

Example 

In this example, if i is greater than 0, all of the statements in the com­
pound statement are executed in order. 

if (i > 0) { 
line [i] Xi 
X++i 
i--i 

6-3 



C Language Reference 

6.4 The continue Statement 

Syntax 

continue; 

Execution 

The continue statement passes control to the next iteration of the do, for, 
or while statement in which it appears, bypassing any remaining state­
ments in the do, for, or while statement body. The next iteration of a do, 
for, or while statement is determined as follows: 

• Within a do or a while statement, the next iteration starts by re­
evaluating the expression of the do or while statement. 

• Within a for statement, the next iteration starts by evaluating the 
loop expression of the for statement. Then it evaluates the condi­
tional expression and, depending on the result, either terminates or 
iterates the statement body. (The for statement is discussed in Sec­
tion 6.7.) 

Example 

In this example, the statement body is executed if i is greater than O. First 
f( i) is assigned to x; then, if x is equal to 1, the continue statemenl: is exe­
cuted. The rest of the statements in the body are ignored, and execution 
resumes at the top of the loop with the evaluation of i-- > o. 

while (i-- > 0) { 
x = f(i); 
if (x == 1) 

continue; 
y += x * Xi 

6.S The do Statement 

Syntax 

do 
statement 

while (expression); 

6-4 



Statements 

Execution 

The body of a do statement is executed on~ or more times until expres·· 
sion becomes false (0). Execution proceeds as follows: 

1. The statement body is executed. 

2. The expression is evaluated. If expression is false, the do state­
ment terminates and control passes to the next statement in the 
program. If expression is true (nonzero), the process is repeated, 
beginning with step 1. 

The do statement may also terminate when a break, goto, or return 
statement is executed within the statement body. 

Example 

In this do statement, the two statements y = j(x); and x-; are executed, 
regardless of the initial value of x. Then x > 0 is evaluated. If x is greater 
than 0, the statement body is executed again and x > 0 is reevaluated. The 
statement body is executed repeatedly as long as x remains greater than O. 
Execution of the do statement terminates when x becomes 0 or negative. 
The body of the loop is executed at least once. 

do { 
y = f (x) ; 
x--; 

} while (x > 0); 

6.6 The Expression Statement 

Syntax 

expression; 

Execution 

When an expression statement is executed, the expression is evaluated 
according to the rules outlined in the "Expressions and Assignments" 
chapter. 

In C, assignments are expressions. The value of the expression is the 
value being assigned (sometimes called the "right-hand value"). 

6-5 



C Language Reference 

Function calls are also considered expressions. The value of the expres­
sion is the value, if any, returned by the function. If a function returns a 
value, the expression statement usually includes an assignment to store 
the returned value when the function is called. The value returned by the 
function is usually used as an operand in another expression. If the value 
is to be used more than once, it can be assigned to another variable. If the 
value is neither used as an operand nor assigned, the function is called but 
the return value, if any, is not used. 

Example 1 

In this example, x is assigned the value of y + 3. 

x = (y + 3); 

Example 2 

In this example, x is incremented. 

x++; 

Example 3 

This example shows a function-call expression. The value of the expres­
sion, which includes any value returned by the function, is assigned to the 
variable z. 

z = f (x) + 3; 

6.7 The for Statement 

Syntax 

for ( [init-expression ]; [ cond-expression ]; [loop-expression] ) 
statement 

Execution 

The body of a for statement is executed zero or more times until the 
optional cond-expression becomes false. You can use the optional in it­
expres;siufl am.lloop-expression io iniiialize and change values during the 
for statement's execution. 

6-6 



Statements 

Execution of a for statement proceeds as follows: 

1. The init-expression, if any, is evaluated. 

2. The cond-expression, if any, is evaluated. Three results are possi­
ble: 

• If cond-expression is true (nonzero), statement is executed; 
then loop-expression, if any, is evaluated. The process then 
begins again with the evaluation of cond-expression. 

• If cond-expression is omitted, cond-expression is con­
sidered true, and execution proceeds exactly as described 
for case a. A for statement without a cond-expression argu­
ment terminates only when a break or return statement 
within the statement body is executed, or when a goto (to a 
labeled statement outside the for statement body) is exe­
cuted. 

• If cond-expression is false, execution of the for statement 
terminates and control passes to the next statement in the 
program. 

A for statement also terminates when a break, goto, or return statement 
within the statement body is executed. 

Example 

This example counts space ( '\x20' ) and tab ( '\t' ) characters in the array 
of characters named line and replaces each tab character with a space. 
First i, space, and tab are initialized to O. Then i is compared with the 
constant MAX; if i is less than MAX, the statement body is executed. 
Depending on the value of line [ i J, the body of one or neither of the if 
statements is executed. Then i is incremented and tested against MAX; the 
statement body is executed repeatedly as long as i is less than MAX. 

for (i = space = tab = 0; i < MAX; i++) { 
if (line[i] == , ') 

space++; 
if (line[i] == '\t') 

tab++; 
line [i] = , '; 

6-7 



C Language Reference 

6.8 The goto and Labeled Statements 

Syntax 

goto name; 

name: statement 

Execution 

The goto statement transfers control directly to the statement that has 
name as its label. The labeled statement is executed immediately after the 
goto statement is executed. A statement with the given label must reside 
in the same function, and the given label can appear before only one 
statement in the same function. 

A statement label is meaningful only to a goto statement; in any other 
context, a labeled statement is executed without regard to the label. 

A label name is simply an identifier. (Section 2.4 describes the rules that 
govern the construction of identifiers.) Each statement label must be dis­
tinct from other statement labels in the same function. 

Like other C statements, any of the statements in a compound statement 
can carry a label. Thus, you can use a goto statement to transfer into a 
compound statement. However, transferring into a compound statement is 
dangerous when the compound statement includes declarations that ini­
tialize variables. Since declarations appear before the executable state­
ments in a compound statement, transferring directly to an executable 
statement within the compound statement bypasses the initializations. 
The results are undefined. 

Example 

In this example, a goto statement transfers control to the point labeled 
exit if an error occurs. 

6-8 



if (errorcode > 0) 
goto exit; 

exit: 
return (errorcode); 

6.9 The if Statement 

Syntax 

if (expression) 
statementl 

[ else 
statement2 ] 

Execution 

Statements 

The body of an if statement is executed selectively, depending on the 
value of expression, described as follows: 

1. The expression is evaluated. 

• If expression is true (nonzero), statementl is executed. 

• If expression is false, statement2 is executed. 

• If expression is false and the else clause is omitted, 
statementl is ignored. 

2. Control passes from the if statement to the next statement in 
the program. 

Example 1 

In this example, the statement y = xli; is executed if i is greater than 0. If i 
is less than or equal to 0, i is assigned to x andf(x) is assigned to y. Note 
that the statement forming the if clause ends with a semicolon. 

if (i > 0) 
y xli; 

else { 
x = i; 
Y f (x) ; } 

6-9 



C Language Reference 

Note 

C does not offer an "else if" statement, but you can achieve the 
same effect by nesting if statements. An if statement can be nested 
within either the if clause or the else clause of another if statement. 

When nesting if statements and else clauses, use braces to group the 
statements and clauses into compound statements that clarify your 
intent. If no braces are present, the compiler resolves ambiguities by 
pairing each else with the most recent if lacking an else. 

Example 2 

In this example, the else clause is associated with the inner if statement. 
If i is less than or equal to 0, no value is assigned to x. 

if (i > 0) /* Without braces */ 
if (j > i) 

x = j; 
else 

x = i; 

Example 3 

In this example, the braces surrounding the inner if statement make the 
else clause part of the outer if statement. If i is less than or equal to 0, i is 
assigned to x. 

if (i > 0) { /* With braces */ 
if (j > i) 

x = j;} 
else 

x = i; 

6.10 The Null Statement 

Syntax 

6-10 



Statements 

Execution 

A "null statement" is a statement containing only a semicolon; it may 
appear wherever a statement is expected. Nothing happens when a null 
statement is executed. 

Statements such as do, for, if, and while require that an executable state­
ment appear as the statement body. The null statement satisfies the syntax 
requirement in cases that do not need a substantive statement body. 

As with any other C statement, you can include a label before a null state­
ment. To label an item that is not a statement, such as the closing brace of 
a compound statement, you can label a null statement and insert it 
immediately before the item to get the same effect. 

Example 

In this example, the loop expression of the for statement line [i + + J =0 ini­
tializes the first 10 elements of line to O. The statement body is a null 
statement, since no further statements are necessary. 

for (i = 0; i < 10; line[i++] = 0) 

6.11 The return Statement 

Syntax 

return [expression]; 

Execution 

The return statement terminates the execution of the function in which it 
appears and returns control to the calling function. Execution resumes in 
the calling function at the point immediately following the call. The 
value of expression, if present, is returned to the calling function. If 
expression is omitted, the return value of the function is undefined. 

By convention, parentheses enclose the expression argument of the 
return statement. However, C does not require the parentheses. 

If no return statement appears in a function definition, control automati­
cally returns to the calling function after the last statement of the called 
function is executed. The return value of the called function is undefined. 
If a return value is not required, declare the function to have void return 

6-11 



C Language Reference 

type. 

Example 

In this example, the main function calls two functions: sq and draw. The 
sq function returns the value of x * x to main, where the return value is 
assigned to y. The draw function is declared as a void function and does 
not return a value. An attempt to assign the return value of draw would 
cause a diagnostic message to be issued. 

main () 
{ 

void draw(int,int); 
long sq(int); 

y = sq(x); 
draw (x, y); 

long sq(x) 
int X; 
{ 

return (x * x); 

void draw(x,y) 
int x, y; 

return; 

6-12 



6.12 The switch Statement 

Syntax 

switch (expression) { 
[declaration] 

[case constant-expression :] 

[statement] 

[default : 
[statement] ] 

Execution 

Statements 

The switch statement transfers control to a statement within its body. 
Control passes to the statement whose case constant-expression matches 
the value of switch expression. The switch statement may include any 
number of case instances. Execution of the statement body begins at the 
selected statement and proceeds until the end of the body or until a state­
ment transfers control out of the body. 

The default statement is executed if no case constant-expression is equal 
to the value of switch expression. If the default statement is omitted, and 
no case match is found, none of the statements in the switch body is exe­
cuted. The default statement need not come at the end; it can appear any­
where in the body of the switch statement. 

The type of switch expression must be integral, but the resulting value is 
converted to int. Each case constant-expression is then converted using 
the usual arithmetic conversions. The value of each case constant­
expression must be unique within the statement body. If the type of 
switch expression is larger than int, a diagnostic message is issued. 

The case and default labels of the switch statement body are significant 
only in the initial test that determines where execution starts in the state­
ment body. All statements between the statement where execution starts 
and the end of the body are executed regardless of their labels, unless a 
statement transfers control out of the body entirely. 

6-13 



C Language Reference 

Note 

Declarations can appear at the head of the compound statement 
forming the switch body, but initializations included in the declara­
tions are not performed. The switch statement transfers control 
directly to an executable statement within the body, bypassing the 
lines that contain initializations. 

Example 1 

In this example, all three statements of the switch body are executed if c 
is equal to Execution control is transferred to the first statement 
(capa++;) and continues in order through the rest of the body. If c is 
equal to lettera and total are incremented. Only total is incremented if c 
is not equal to or 

switch (c) 

Example 2 

case 'A': 
capa++i 

case 'a': 
lettera++i 

default : 
total++i 

In this example, a break statement follows each statement of the switch 
body. The break statement forces an exit from the statement body after 
one statement is executed. If i is equal to -1, only n is incremented. The 
break following the statement n++; causes execution control to pass out 
of the statement body, bypassing the remaining statements. Similarly, if i 
is equal to 0, only z is incremented; if i is equal to 1, only p is incre­
mented. The final break statement is not strictly necessary, since control 
passes out of the body at the end of the compound statement, but it is 
included for consistency. 

6-14 



switch (i) { 

Multiple Labels 

case -1: 
n++; 
break; 

case a : 
z++; 
break; 

case 1 : 
p++; 
break; 

Statements 

A single statement can carry multiple case labels, as the following exam­
ple shows: 

case ' a' 
case ' b' 
case ' c' 
case ' d' 
case 'e' 
case ' f' hexcvt(c); 

Although you can label any statement within the body of the switch state­
ment, no statement is required to carry a label. You can freely intermingle 
statements with and without labels. Keep in mind, however, that once the 
switch statement passes control to a statement within the body, all fol­
lowing statements in the block are executed, regardless of their labels. 

6.13 The while Statement 

Syntax 

while (expression) 
statement 

Execution 

The body of a while statement is executed zero or more times until 
expression becomes false (0). Execution proceeds as follows: 

1. The expression is evaluated. 

2. If expression is initially false, the body of the while statement is 
never executed, and control passes from the while statement to the 
next statement in the program. 

6-15 



C Language Reference 

If expression is true (nonzero), the body of the statement is exe­
cuted and the process is repeated beginning at step 1. 

The while statement may also terminate when a break, goto, or return 
within the statement body is executed. 

Example 

This example copies characters from string2 to string}. If i is greater than 
or equal to 0, string2[i] is assigned to string} [i] and i is decremented. 
When i reaches or falls below 0, execution of the while statement ter­
minates. 

while (i >= 0) { 
stringl [iJ string2 [iJ; 
i--; 

6-16 



Chapter 7 

Functions 

7.1 Introduction 7-1 

7.2 Function Definitions 7-3 
7.2.1 Storage Class 7-4 
7.2.2 Return Type and Function Name 7-5 
7.2.3 Fonnal Parameters 7-7 
7.2.4 Function Body 7 -11 

7.3 Function Prototypes (Declarations) 7 -12 

7.4 Function Calls 7 -14 
7.4.1 Actual Arguments 7-17 
7.4.2 Calls with a Variable 7-20 
7.4.3 Recursive Calls 7-21 





Functions 

7.1 Introduction 

A function is an independent collection of declarations and statements, 
usually designed to perfonn a specific task. C programs have at least one 
function, the main function, and they may have other functions. This 
chapter describes how to define, declare, and call C functions. 

A function definition specifies the name of the function, the types and 
number of its fonnal parameters, and the declarations and statements that 
detennine what it does. These declarations and statements are called the 
"function body." The function definition also gives the function's return 
type and its storage class. If the return type and storage class are not 
stated explicitly, they default to int and extern, respectively. 

A function prototype (or declaration) establishes the name, return type, 
and storage class of a function fully defined elsewhere in the program. It 
can also include declarations giving the types and number of the 
function's fonnal parameters. The fonnal parameter declarations can 
name the fonnal parameters, although such names go out of scope at the 
end of the declaration. The storage class register can also be specified for 
a fonnal parameter. 

Example 

This example contrasts the concise and clear prototype declaration and 
definition fonnats, and illustrates that the function prototype has the same 
fonn as the function definition except that the prototype ends with a semi­
colon instead of a function body. 

The compiler uses the prototype or declaration to compare the types of 
actual arguments in subsequent calls to the function with the function's 
fonnal parameters, even in the absence of an explicit definition of the 
function. Explicit prototypes and declarations are optional for functions 
whose return type is into However, to ensure correct behavior, you must 
declare or define functions with other return types before calling them. 
(Function prototype declarations are discussed further in "Function 
Definitions (Prototypes)" in this chapter and in the "Declarations" 
chapter.) 

If no prototype or declaration is provided, a default prototype is created 
from whatever infonnation accompanies the first reference to the function 
name, whether that reference occurs in a call or a definition. However, 
such a default prototype may not adequately represent a subsequent 
definition of, or call to, the function. 

A function "call" passes execution control from the calling function to 
the called function. The actual arguments, if any, are passed by value to 

7-1 



C Language Reference 

the called function. Execution of a return statement in the called func­
tion returns control and possibly a value to the calling function. 

Note 

The use of function prototypes is strongly recommended. Some­
times they provide the only basis on which the compiler can enforce 
correct argument passing. Prototypes let the compiler either diag­
nose, or handle correctly, argument mismatches that would other­
wise be undetectable until program execution. 

The Microsoft C Compiler can generate function prototypes 
automatically from program source files. These can then be stored 
in a file that can be included in the compilation of the program. See 
your compiler guide for more information. 

/** Prototype-Style Function Declarations and Definitions **/ 

double new_style(int a, double *x); /* Function 
Prototype */ 

double alt_style (int, double *); /* Alternative 
Prototype form */ 

double old_style (); /* Obsolete 
* form of function 
* declaration 

*/ 
double new style(int a, double *real) /* Prototype-style */ 

{ - /* Function * / 
return (*real + a) /* Definition */ 

double alt_style (a , real) 
double *real ; 
int a ; 

return (*real + a) 

7-2 

/* Old Form of */ 
/ * Function * / 
/* Definition */ 



Functions 

7.2 Function Definitions 

Syntax 

[sc-specifier] [type-specifier] declarator (rJormal-parameter-list]) 
Junction-body 

A "function definition" specifies the name, fonnal parameters, and body 
of a function. It can also stipulate the function's return type and storage 
class. 

The optional sc-specifier gives the function's storage class, which must be 
either static or extern. 

The optional type-specifier and mandatory declarator together specify the 
function's return type and name. The declarator is a combination of the 
identifier that names the function and the parentheses following the func­
tion name. 

The Jormal-parameter-list is a sequence of fonnal parameter declarations 
separated by commas. The following syntax illustrates the fonn of each 
fonnal parameter in a fonnal parameter list. 

[register] type-specifier [declarator] 
[, ... ] 

The formal parameter list contains declarations for the function's parame­
ters. If no arguments are to be passed to the function, the list should con­
tain the keyword void. The empty parentheses form (( » can be used, but 
is obsolete and, if used, conveys no information about whether arguments 
will be passed. The formal parameter list can be full or partial. The 
second line of the syntax above shows the "ellipsis notation," a comma 
followed by three periods (, ... ). A partial formal parameter list can be ter­
minated by the ellipsis notation to indicate that there may be more argu­
ments passed to the function, but no more information is given about 
them. Type checking is not performed on such arguments. At least one 
formal parameter must precede the ellipsis notation and the ellipsis nota­
tion must be the last token in the formal parameter list. Without the 
ellipsis notation, the behavior of a function is undefined if it receives 
parameters in addition to those declared in the formal parameter list. 
When a prototype is available, argument checking and conversion are 
automatically performed. If no information is given concerning the for­
mal parameters, any undeclared arguments simply undergo the usual 
arithmetic conversions. 

7-3 



C Language Reference 

The type-specifier can be omitted only if register storage class is 
specified for a value of int type. 

The function-body is a compound statement contammg local variable 
declarations, references to externally declared items, and statements. 

Note 

The old forms for function declaration and definition are still sup­
ported, but considered obsolete. Use of the prototype form is recom­
mended in new code. The old function-definition form is 
represented in the following syntax: 

[ sc-specifier ] [ type-specifier] declarator ( [ identifier-list] ) 
[parameter-declarations] 
function-body 

The identifier-list is an optional list of identifiers that the function 
will use as the names of formal parameters. The parameter­
declaration arguments establish the types of the formal parameters. 

Sections 7.2.1-7.2.4 describe the parts of a function definition in detail. 

7.2.1 Storage Class 

The storage-class specifier in a function definition gives the function 
either extern or static storage class. If a function definition does not 
include a storage-class specifier, the storage class defaults to extern. You 
can explicitly give the extern storage-class specifier in a function 
definition, but it is not required. 

A function with static storage class is visible only in the source file in 
which it is defined. All other functions, whether they are given extern 
storage class explicitly or implicitly, are visible throughout all the source 
files that make up the program. 

If statk storage class is desired, it must be declared on the first 
occurrence of a declaration (if any) of the function, and on the definition 

. of the function. 

7-4 



Functions 

Note 

A Microsoft extension to the ANSI C standard offers some latitude 
on functions declared without a storage-class specifier. When the 
extensions arc enabled, a function originally declared without a 
storage class (or with extern storage class) is given static storage 
class if the function definition is in the same source file and expli­
citly specifies static storage class. For information on enabling and 
disabling extensions, see your compiler guide. 

7.2.2 Return Type and Function Name 

Syntax 

[sc-specifier ] [type-specifier] declarator (rJormal-parameter-listD 

The return type of a function establishes the size and type of the value 
returned by the function and corresponds to type-specifier in the syntax 
above. The type-specifier can specify any fundamental, structure, or union 
type. If you do not include type-specifier, the return type int is assumed. 

The declarator is the function identifier, which may be modified to a 
pointer type. The parentheses following the identifier establish the item as 
a function. Functions cannot return arrays or functions, but they can 
return pointers to any type, including arrays and functions. 

The return type given in the function definition must match the return 
type in declarations of the function elsewhere in the program. You need 
not declare functions with int return type before you call them, although 
prototypes are recommended so that correct argument checking will be 
enabled. However, functions with other return types must be defined or 
declared before they are called. 

A function's return type is used only when the function returns a value. A 
function returns a value when a return statement containing an expres­
sion is executed. The expression is evaluated, converted to the return 
value type if necessary, and returned to the point at which the function 
was called. If no return statement is executed, or if the return statement 

7-5 



C Language Reference 

does not contain an expression, the return value is undefined. If the cal­
ling function expects a return value, the behavior of the program is also 
undefined. 

Example 1 

In this example, the return type of add is int by default. The function has 
static storage class, which means that only functions in the same source 
file can call it. The formal parameters declared in the header include one 
int value, x, for which register storage is requested, and a second int 
value, y. The second function, subtract, is defined in the old form. Its 
return type is int by default. The formal parameters are declared between 
the header and the opening brace. 

/* prototype-style definition: */ 

static add (register x, int y) 
{ 

return (x+y); 

/* old-style definition: */ 

subtract (x , y) 
int x, y; 

return (x-y); 
} 

Example 2 

This example defines the STUDENT type with a typedef declaration and 
defines the function sortstu to have STUDENT return type. The function 
selects and returns one of its two structure arguments. This prototype­
style definition has the formal parameters declared in the header. In sub­
sequent calls to the function, the compiler checks to make sure the argu­
ment types are STUDENT. Efficiency would be enhanced by passing 
pointers to the structure, rather than the entire structure. 

7-6 



typedef struct 
char name[20]; 
int id; 
long class; 

STUDENT; 

/* return type is STUDENT: */ 

STUDENT sort stu (STUDENT a, STUDENT b) 
{ 

return ( (a.id < b.id) ? a : b ); 

Example 3 

Functions 

This example uses the old fonn to define a function returning a pointer to 
an array of characters. The function takes two character arrays (strings) as 
arguments and returns a pointer to the shorter of the two strings. A pointer 
to an array points to the type of the array elements; thus, the return type of 
the function is pointer to char. 

/* return type is char pointer: */ 

char *smallstr(sl, s2) 
char sl [ 1, s2 [ ] ; 
{ 

int i; 

i=O; 
while ( sl[il != '\0' && s2[i] != '\0' ) 

i++; 
if ( s 1 [i 1 == '\ 0 ' ) 

return (sl); 
else 

return (s2); 

7.2.3 Formal Parameters 

"Fonnal parameters" are variables that receive values passed to a func­
tion by a function call. In a function prototype-style definition, the 
parentheses following the function name contain complete declarations of 
the function's fonnal parameters. 

7-7 



C Language Reference 

Note 

In the old fonn of a function definition, the fonnal parameters were 
declared following the closing parenthesis, immediately before the 
beginning of the compound statement constituting the function 
body. In that fonn, an identifier list within the parentheses specifies 
the name of each of the fonnal parameters and the order in which 
they take on values in the function call. The identifier list consists 
of zero or more identifiers, separated by commas. The list must be 
enclosed in parentheses, even if it is empty. This fonn is obsolete 
and should not be used in new code. 

If at least one fonnal parameter occurs in the fonnal parameter list, the 
list can end with a comma followed by three periods (, ... ). This construc­
tion, called the "ellipsis notation," indicates a variable number of argu­
ments to the function. However, a call to the function is expected to have 
at least as many arguments as there are fonnal parameters before the last 
comma. In the obsolete definition fonn, the ellipsis notation can follow 
the last identifier in the identifier list. 

If no arguments are to be passed to the function, the list of fonnal parame­
ters is replaced by the keyword void. This use of void is distinct from its 
use as a type specifier. 

Note 

To maintain compatibility with previous versions, a Microsoft 
extension to the ANSI C standard allows a comma without trailing 
periods (,) at the end of the list of fonnal parameters to indicate a 
variable number of arguments. However, it is recommended that 
code be changed to incorporate the ellipsis notation. For infonna­
tion on enabling and disabling extensions, see your compiler guide. 

Fonnal parameter declarations specify the types, sizes, and identifiers of 
values stored in the fonnal parameters. In the obsolete function definition 
fonn. these declarations have the same fonn as other variable declara­
tions (see the "Declarations" chapter). However, in a function 
prototype-style definition, each identifier in the formal-parameter-list 
must be preceded by its appropriate type specifier. For example, in the 

7-8 



Functions 

following (obsolete form) definition of the function old, double x, y, z ; 
can be declared simply by separating identifiers with commas: 

void old(x, y, z) 
double z, y 
double x ; 

{ 

void new (double x, double y, double z) 
{ 

The function called new is defined in prototype format, with a list of for­
mal parameters in the parentheses. In this form, the type specifier double 
must be repeated for each identifier. 

The order and type of formal parameters, including any use of the ellipsis 
notation, must be the same in all the function declarations (if any) and in 
the function definition. The types of the actual arguments in calls to a 
function must be assignment compatible with the types of the correspond­
ing formal parameters, up to the point of the ellipsis notation. Arguments 
following the ellipsis are not checked. A formal parameter can have any 
fundamental, structure, union, pointer, or array type. 

The only storage class you can specify for a fonnal parameter is register. 
Undeclared identifiers in the parentheses following the function name are 
assumed to have int type. In the old function-definition form, formal 
parameter declarations can be in any order. 

The identifiers of the formal parameters are used in the function body to 
refer to the values passed to the function. These identifiers cannot be 
redefined in the outermost block of the function body, but they can be 
redefined in inner, nested blocks. 

In the obsolete form, only identifiers appearing in the identifier list can be 
declared as formal parameters. Functions having variable-length argu­
ment lists should use the new prototype fonn. You are responsible for 
determining the number of arguments passed, and for retrieving addi­
tional arguments from the stack within the body of the function. (For 
information about macros that let you do this in a portable way, see your 
compiler guide.) 

The compiler performs the usual arithmetic conversions independently on 
each formal parameter and on each actual argument, if necessary. After 

7-9 



C Language Reference 

conversion, no formal parameter is shorter than an int, and no formal 
parameter has float type. This means, for example, that declaring a formal 
parameter as a char has the same effect as declaring it as an int. 

If the near, far, and huge keywords are implemented, the compiler can 
also convert pointer arguments to the function. The conversions per­
formed depend on the default size of pointers in the program and the pres­
ence or absence of a list of argument types for the function. For specific 
information about pointer conversions, see your compiler guide. 

The converted type of each formal parameter determines the interpreta­
tion of the arguments that the function call places on the stack. A type 
mismatch between an actual argument and a formal parameter can cause 
the arguments on the stack to be misinterpreted. For example, if a 16-bit 
pointer is passed as an actual argument, then declared as a long formal 
parameter, the first 32 bits on the stack are interpreted as a long formal 
parameter. This error creates problems not only with the long formal 
parameter, but with any formal parameters that follow it. You can detect 
errors of this kind by declaring function prototypes for all functions. 

Example 

This example contains a structure-type declaration, a prototype of the 
function match, a call to match, and a prototype-style definition of match. 
Note that the same name, student, can be used without conflict both for 
the structure tag and for the structure variable name. 

The match function is declared to have two arguments: the first, 
represented by r, is a pointer to the struct student type; the second, 
represented by n, is a pointer to a value of type char. 

In the definition, the two formal parameters of the match function are 
declared in the formal parameter list in the parentheses following the 
function name, with the identifiers r and n. The parameter r is declared as 
a pointer to the struct student type; the parameter n is declared as a 
pointer to a char type value. 

The function is called with two arguments, both members of the student 
structure. Because there is a prototype of match, the compiler performs 
type checking between the actual arguments and the types specified in the 
prototype and between the actual arguments and the formal parameters in 
the definition. Since the types match, no warnings or conversions are 
necessarj. 

Note that the array name given as the second argument in the call evalu­
ates to a char pointer. The corresponding formal parameter is also 
declared as a char pointer and is used in subscripted expressions as 

7-10 



Functions 

though it were an array identifier. Since an array identifier evaluates to a 
pointer expression, the effect of declaring the fonnal parameter as char *n 
is the same as declaring it char n[]. 

Within the function, the local variable i is defined and used to monitor the 
current position in the array. The function returns the id structure member 
if the name member matches the array n; otherwise, it returns O. 

struct student { 
char name[20); 
int id; 
long class; 
struct student *nextstu; 

student; 

main () 
{ 

/* declaration of function prototype: */ 

int match ( struct student *r, char *n ); 

if (match (student.nextstu, student.name) > 0) { 

/* prototype style function definition */ 

match 
{ 

struct student *r, char *n ) 

int i 

while 

0; 

r->name[i) == n[i) ) 
if ( r->name[i++) == '\0' 

return (r->id); 
return (0); 

7.2.4 Function Body 

A "function body" is a compound statement contammg the statements 
that define what the function does. It can also contain declarations of vari­
ables used by these statements. (Section 6.3 discusses compound state­
men~s.) 

7-11 



C Language Reference 

All variables declared in a function body have auto storage class unless 
otherwise specified. When the function is called, storage is created for the 
local variables and local initializations are perfonned. Execution control 
passes to the first statement in the compound statement and continues 
sequentially until a return statement is executed or the end of the func­
tion body is encountered. Control then returns to the point at which the 
function was called. 

A return statement containing an expression must be executed if the 
function is to return a value. The return value of a function is undefined if 
no return statement is executed or if the return statement does not 
include an expression. 

7.3 Function Prototypes (Declarations) 

A "function prototype" declaration specifies the name, return type, and 
storage class of a function. It can also establish types and identifiers of 
some or all of the function's arguments. The prototype has the same for­
mat as the function definition, except that it is tenninated by a semicolon 
immediately following the closing parenthesis and therefore has no body. 
(See the "Declarations" chapter for a detailed description of the syntax 
of function declarations.) 

You can declare a function implicitly, or you can use a "function proto­
type" (sometimes called a "forward declaration") to declare it explicitly. 
A prototype is a declaration that precedes the function definition. In either 
case, the return type must agree with the return type specified in the func­
tion definition. 

If a call to a function precedes its declaration or definition, a default pro­
totype of the function is constructed, giving it int return type. The types 
and number of the actual arguments are used as the basis for declaring the 
fonnal parameters. Thus a call to the function is an implicit declaration, 
but the prototype generated may not adequately represent a subsequent 
definition of, or call to, the function. 

A prototype establishes the attributes of a function so that calls to the 
function that precede its definition (or occur in other source files) can be 
checked for argument- and return-type mismatches. If you specify the 
static storage-class specifier in a prototype, you must also specify the 
static storage class in the function definition. 

If you specify the extern storage-class specifier or omit the storage-class 
specifier entirely, the function has extern class. (For an explanation of 
the Microsoft extension that offers some latitude in function storage-class 
specification, see the Note in Section 7.2.1, "Storage Class.") 

7-12 



Functions 

Function prototypes have the following important uses: 

• They establish the return type for functions that return any type 
other than int. If you call such a function before you declare or 
define it, the results are undefined. Although functions that return 
int values do not require prototypes, they are recommended. 

• If the prototype contains a full list of parameter types, the types of 
the arguments occurring in a function call or definition can be 
checked. The prototype can include both the type of, and an 
identifier for, each expression that will be passed as an actual argu­
ment. However, such identifiers have scope only until the end of 
the declaration. The prototype can also reflect the fact that the 
number of arguments will be variable, or that there will be no argu­
ments passed. 

The parameter list in a prototype is a list of type names, separated 
by commas, corresponding to the actual arguments in the function 
call. The list is used for checking the correspondence of actual 
arguments in the function call with the formal parameters in the 
function definition. Without such a list, mismatches may not be 
revealed, so the compiler cannot generate diagnostic messages 
concerning them. (Type checking is further discussed in Section 
7.4.1, "Actual Arguments.") 

• Prototypes are used to initialize pointers to functions before those 
functions are defined. 

Example 

In this example, the function intadd is implicitly declared to return an int 
value, since it is called before it is defined. The compiler creates a proto­
type using the information in the first call. Therefore, when the second 
call to intadd is encountered, the compiler sees the mismatch between 
vall, which is a float, and the int type of the first argument in its self­
created prototype. The float is converted to an int and passed. Note that if 
the calls to intadd were reversed, the prototype created would expect a 
float as the first argument to intadd. When the second call is made, the 
variable a would be converted at the call, but when the value is actually 
passed to intadd, a diagnostic message would be issued because the int 
type specified in the definition does not match the float type in the 
compiler-created prototype. 

The function realadd returns a double value instead of an int value. 
Therefore, the prototype of realadd in the main function is necessary 
because the realadd function is called before it is defined. Note that the 
definition of realadd matches the forward declaration by specifying the 
double return type. 

7-13 



C Language Reference 

The forward declaration of realadd also establishes the types of its two 
arguments. The actual argument types match the types given in the 
declaration and also match the types of the formal parameters in the 
definition. 

main() 
{ 

int a = 0, b = 1; 
float val1= 2.0, val2 = 3.0; 

/* function prototype: */ 

double realadd(double x, double y); 

a = intadd (a, b); /* first call to intadd * / 
vall = realadd(val1, val2); 

a = intadd(val1,b); /* second call to intadd */ 

/* functions defined with formal parameters in header: */ 

intadd(int a, int b) 
{ 

return (a + b) ; 

double realadd(double x, double y) 
{ 

return (x + y); 

7.4 Function Calls 

Syntax 

expression([ expression-list]) 

A "function call" is an expression that passes control and actual argu­
ments (if any) to a function. In a function call, expression evaluates to a 
function address and expression-list is a list of expressions (separated by 
commas). The values of these latter expressions are the actual arguments 
passed to the function. If the function takes no arguments, expression-list 
can be empty. 

When the function call is executed: 

1. The expressions in expression-list are evaluated and converted 
using the usual arithmetic conversions. If a function prototype is 
available, the results of these conversions may be further con­
verted consistent with the formal parameter declarations. 

7-14 



Functions 

2. The expressions in expression-list are passed to the fonnal parame­
ters of the called function. The first expression in the list always 
corresponds to the first fonnal parameter of the function, the 
second expression corresponds to the second fonnal parameter, and 
so on through the list. Since the called function uses copies of the 
actual arguments, any changes it makes to the arguments do not 
affect the values of variables from which the copies may have been 
made. 

3. Execution control passes to the first statement in the function. 

4. The execution of a return statement in the body of the function 
returns control and possibly a value to the calling function. If no 
return statement is executed, control returns to the caller after the 
last statement of the called function is executed. In such cases, the 
return value is undefined. 

Note 

The expressions in the function argument list can be evaluated in 
any order, so arguments whose values may be changed by side 
effects from another argument have undefined values. The sequence 
point defined by the function-call operator guarantees only that all 
side effects in the argument list are evaluated before control passes 
to the called function. See the "Expressions and Assignments" 
chapter for more infonnation on sequence points. 

The only requirement in a function call is that the expression before the 
parentheses must evaluate to a function address. This means that a func­
tion can be called through any function-pointer expression. 

A function is called in much the same way it is declared. For instance, 
when you declare a function, you specify the name of the function, fol­
lowed by a list of fonnal parameters in parentheses. Similarly, when a 
function is called, you need only specify the name of the function, fol­
lowed by an argument list in parentheses. The indirection operator (*) is 
not required to call the function because the name of the function evalu­
ates to the function address. 

7-15 



C Language Reference 

The same principle applies when you call a function using a pointer. For 
example, suppose a function pointer has the following prototype: 

int (*fpointer) (int numl, int num2); 

The identifier fpointer is declared to point to a function taking two int 
arguments, represented by numl and num2, respectively, and returning an 
int value. A function call usingfpointer might look like this: 

(*fpointer) (3,4) 

The indirection operator (*) is used to obtain the address of the function 
to which fpointer points. The function address is then used to call the 
function. If a prototype of the pointer to the function precedes the call, the 
same checking will be performed as with any other function. 

Example 1 

In this example, the realcomp function is called in the statement rp = 
realcomp(a, b);. Two double arguments are passed to the function. The 
return value, a pointer to a double value, is assigned to rp. 

double *realcomp(double valuel, double value2)i 
double a, b, *rpi 

rp realcomp(a, b); 

Example 2 

In this example, the function call in main passes an integer variable and 
the address of the function lift to the function work: 

work (count, lift); 

Note that the function address is passed simply by giving the function 
identifier, since a function identifier evaluates to a pointer expression. To 
use a function identifier in this way, the function must be declared or 
defined before the identifier is used; otherwise, the identifier is not recog­
nized. In this case, a prototype for work is given at the beginning of the 
main function. 

The formal parameter function in work is declared to be a pointer to a 
function taking one int argument and returning a long value. The 
parentheses around the parameter name are required; without them, the 
declaration would specify a function returning a pointer to a long value. 

7-16 



Functions 

The function work calls the selected function by using the following func­
tion call: 

(*function) (i); 

One argument, i, is passed to the called function. 

main () 

/* function prototypes: */ 

long lift (int), step(int), drop(int); 
void work (int number, long (*function) (int i)); 

int select, count; 

select = 1; 
switch ( select ) { 

case 1: work(count, lift); 
break; 

case 2: work(count, step); 
break; 

case 3: work(count, drop); 

default: 
break; 

/* function definition with formal parameters in header: */ 

void work ( int number, long (*function) (int i) ) 
{ 

int i; 
long j; 

for (i = j = 0; i < number; i++) 
j += (*function) (i) ; 

7.4.1 Actual Arguments 

An actual argument can be any value with fundamental, structure, union, 
or pointer type. Although you cannot pass arrays or functions as parame­
ters, you can pass pointers to these items. 

7-17 



C Language Reference 

All actual arguments are passed by value. A copy of the actual argument 
is assigned to the corresponding fonnal parameter. The function uses this 
copy without affecting the variable from which it was originally derived. 

Pointers provide a way for a function to access a value by reference. 
Since a pointer to a variable holds the address of the variable, the func­
tion can use this address to access the value of the variable. Pointer argu­
ments allow a function to access arrays and functions, even though arrays 
and functions cannot be passed as arguments. 

The expressions in a function call are evaluated and converted as follows: 

• The usual arithmetic conversions are perfonned on each actual 
argument in the function call. If a prototype is available, the result­
ing argument type is compared to the prototype's corresponding 
fonnal parameter. If they do not match, either a conversion is per­
fonned, or a diagnostic message is issued. The fonnal parameters 
also undergo the usual arithmetic conversions. 

• If no prototype is available, the usual arithmetic conversions are 
perfonned on each actual argument before it is passed to the func­
tion. A prototype is created whose fonnal parameter types 
correspond to the types of the actual arguments after conversion. 

If the near, far, and huge keywords are implemented, implementation­
dependent conversions on pointer arguments can also be perfonned. For 
infonnation about pointer conversions, see your compiler guide. 

The number of expressions in the expression list must match the number 
of fonnal parameters, unless the function's prototype or definition expli­
citly specifies a variable number of arguments. In this case, the compiler 
checks as many arguments as there are type names in the list of fonnal 
parameters and converts them, if necessary, as described above. 

If the prototype's fonnal parameter list contains only the keyword void, 
the compiler expects zero actual arguments in the function call and zero 
fonnal parameters in the definition. A diagnostic message is issued if it 
finds otherwise. 

The type of each fonnal parameter also undergoes the usual arithmetic 
conversions. The converted type of each fonnal parameter detennines 
how the arguments on the stack are interpreted; if the type of the fennal 
parameter does not match the type of the actual argument, the data on the 
stack may be misinterpreted. 

7-18 



Functions 

Note 

Type mismatches between actual arguments and formal parameters 
can produce serious errors, particularly when the sizes are different. 
The compiler may not be able to detect these errors unless you 
declare complete prototypes of functions prior to calling them. In 
the absence of explicit prototypes, the compiler constructs proto­
types from whatever information is available in the first reference to 
the function. 

As an example of a serious error, consider a call to a function with 
an int argument. If the function is defined to take a long, and the 
definition occurs in a different module, the compiler-generated pro­
totype will not match the definition, but the error will not be 
detected because the separate modules will compile without diag­
nos tic messages. 

Example 

In this example, the swap function is declared in main to have two argu­
ments, represented respectively by identifiers numl and num2, both of 
which are pointers to int values. The formal parameters numl and num2 
in the prototype-style definition are also declared as pointers to int type 
values. In the following function call the address of x is stored in numl 
and the address of y is stored in num2. 

swap (&x, &y) 

Now two names, or "aliases," exist for the same location. References to 
*numl and *num2 in swap are effectively references to x and y in main. 
The assignments within swap actually exchange the contents of x and y. 
Therefore, no return statement is necessary. 

The compiler performs type checking on the arguments to swap because 
the prototype of swap includes argument types for each formal parameter. 
The identifiers within the parentheses of the prototype and definition can 
be the same or different. What is important is that the types of the actual 
arguments match those of the forrnal parameter lists in both the prototype 
and the eventual definition. 

7-19 



C Language Reference 

main () 

/* function prototype: */ 

void swap (int *numl, int *num2); 
int x, y; 

swap (&x, &y); 

/* function definition: */ 

void swap (int *numl, int *num2) 
{ 

int t; 

t = *numl; 
*numl *num2; 
*num2 = t; 

7.4.2 Calls with a Variable 

To call a function with a variable number of arguments, simply specify 
any number of arguments in the function call. If there is a prototype 
declaration of the function, a variable number of arguments can be 
specified by placing a comma followed by three periods (, ... ), the 
"ellipsis notation," at the end of the formal parameter list or list of argu­
ment types (see Section 4.5, "Function Declarations "). The function call 
must include one argument for each type name declared in the formal 
parameter list or the list of argument type. 

Similarly, the formal parameter list (or identifier list, in the obsolete 
form) in the function definition can end with the ellipsis notation to indi­
cate a variable number of arguments. For more information about the 
form of the formal parameter list, see Section 7.2, "Function 
Definitions.' , 

7-20 



Functions 

Note 

To maintain compatibility with previous versions, a Microsoft 
extension to the ANSI C standard allows a comma without trailing 
periods (,) at the end of the list of formal parameters to indicate a 
variable number of arguments. For information on enabling and 
disabling extensions, see your compiler guide. 

All the arguments specified in the function call are placed on the stack. 
The number of formal parameters declared for the function determines 
how many of the arguments are taken from the stack and assigned to the 
formal parameters. You are responsible for retrieving any additional argu­
ments from the stack and for determining how many arguments are 
present. For information about macros that you can use to handle a vari­
able number of arguments in a portable way, see your compiler guide. 

7.4.3 Recursive Calls 

Any function in a C program can be called recursively; that is, it can call 
itself. The C compiler allows any number of recursive calls to a function. 
Each time the function is called, new storage is allocated for the formal 
parameters and for the auto and register variables so that their values in 
previous, unfinished calls are not overwritten. Parameters are only 
directly accessible to the instance of the function in which they are 
created. Previous parameters are not directly accessible to ensuing 
instances of the function. 

Note that variables declared with static storage do not require new 
storage with each recursive call. Their storage exists for the lifetime of 
the program. Each reference to such a variable accesses the same storage 
area. 

Although the C compiler does not limit the number of times a function 
can be called recursively, the operating environment may impose a prac­
tical limit. Since each recursive call requires additional stack memory, 
too many recursive calls can cause a stack overflow. 

7-21 





Chapter 8 

Preprocessor Directives 

and Pragmas 

8.1 Introduction 8-1 

8.2 Manifest Constants and Macros 8-2 
8.2.1 Preprocessor Operators 8-2 
8.2.2 The #define Directive 8-3 
8.2.3 The #undef Directive 8-9 

8.3 Include Files 8-10 

8.4 Conditional Compilation 8-12 
8.4.1 The #if, #elif, #else, and #endif Directives 8-12 
8.4.2 The #ifdef and #ifndef Directives 8-16 

8.5 Line Control 8-17 

8.6 Pragmas 8-18 





Preprocessor Directives and Pragmas 

8.1 Introduction 

A "preprocessor directive" is an instruction to the C preprocessor. The C 
preprocessor is a text processor that manipulates the text of a source file 
as the first phase of compilation. Though the compiler ordinarily invokes 
the preprocessor in its first pass, the preprocessor can also be invoked 
separately to process text without compiling. 

Preprocessor directives are typically used to make source programs easy 
to change and easy to compile in different execution environments. Direc­
tives in the source file tell the preprocessor to perform specific actions. 
For example, the preprocessor can replace tokens in the text, insert the 
contents of other files into the source file, or suppress compilation of part 
of the file by removing sections of text. 

The C preprocessor recognizes the following directives: 

#define #if #line 

#elif #ifdef #Undef 

#else #ifndef 

#endif #include 

The number sign (#) must be the first non-white-space character on the 
line containing the directive; white-space characters can appear between 
the number sign and the first letter of the directive. Some directives 
include arguments or values. Any text that follows a directive (except an 
argument or value that is part of the directive) must be enclosed in com­
ment delimiters (/* */). 

Preprocessor directives can appear anywhere in a source file, but they 
apply only to the remainder of the source file in which they appear. 

A "preprocessor operator" is an operator that is only recognized as an 
operator within the context of preprocessor directives. There are only 
three preprocessor-specific operators: the "stringizing" operator (#), the 
"token-pasting" (##) operator, and the defined operator. The first two are 
discussed in the context of the #define directive, later in this chapter. The 
defined operator is also --discussed later in this chapter. "The #if, #elif, 
#else, and #endif Directives. " 

8-1 



C Language Reference 

A "pragma" is a "pragmatic," or practical, instruction to the C compiler. 
Pragmas in C source files are typically used to control the actions of the 
compiler in a particular portion of a program without affecting the pro­
gram as a whole. (Section 8.6 describes the syntClx for pragmas). How­
ever, the compiler implementation defines the particular pragmas that are 
available and their meanings. For information about the use and effects of 
specific pragmas, see your compiler guide. 

8.2 Manifest Constants and Macros 

The #define directive is typically used to associate meaningful identifiers 
with constants, keywords, and commonly used statements or expressions. 
Identifiers that represent constants are called "manifest constants." 
Identifiers that represent statements or expressions are called "macros." 

Once you have defined an identifier, you cannot redefine it to a different 
value without first removing the original definition. However, you can 
redefine the identifier with exactly the same definition. Thus, the same 
definition can appear more than once in a program. 

The #Undef directive removes the definition of an identifier. Once you 
have removed the definition, you can redefine the identifier to a different 
value. Sections 8.2.2 and 8.2.3 discuss the #define and #Undef directives, 
respectively. 

In practical terms there are two types of macros. "Object-like" macros 
take no arguments, while "function-like" macros can be defined to 
accept arguments so that they look and act like function calls. Because 
macros do not generate actual function calls, you can make programs fas­
ter by replacing function calls with macros. However, macros can create 
problems if you do not define and use them with care. You may have to 
use parentheses in macro definitions with arguments to preserve the 
proper precedence in an expression. Also, macros may not handle expres­
sions with side effects correctly. For more information, see the examples 
in Section 8.2.2, "The # define Directive. " 

8.2.1 Preprocessor Operators 

There are three preprocessor-specific operators, one of which is 
represented by the number sign (#), one by a double number sign (##), and 
thp thlrrl hu thp uTnrrl .riofino.ri 'T'h"" ""'f-..; .... rr~'7~ .... rr" ""'''' ..... f-" .. f#\ ~-~~~,.I:~~ ~ 
......... - ...... A ...... _ '"'J ...... .&.- "''-'.&.'''" '--"' ..... ""y. • ..a. .... J...... t.:)"'J.~~J.5.1.~l:.1.1.5 VP\.l.1u.l.V.1 \TTJ PJ.\",-\",-VUllJ.5 a. 

macro formal-parameter name in the body of a preprocessor macro causes 
the corresponding actual argument to be enclosed in string quotation 
marks. The "token-pasting" operator (##) allows tokens used as actual 
arguments to be concatenated to form other tokens. These two operators 

8-2 



Preprocessor Directives and Pragmas 

are used in the context of the #define directive and are described in Sec­
tions 8.2.2.1 and 8.2.2.2. 

Finally, the defined operator simplifies the writing of compound expres­
sions in certain macro directives. It is used in conditional compilation, 
and is therefore discussed in Section 8.4.1, "The #if, #elif, #else, and 
#endif Directives. " 

8.2.2 The #define Directive 

Syntax 

#define identifier substitution-text 
#define identifier(parameter-list) substitution-text 

The #define directive substitutes substitution-text for all subsequent 
occurrences of identifier in the source file. The identifier is replaced only 
when it forms a token. (Tokens are described in the "Elements of C" 
chapter and in the "Syntax Summary.") For instance, identifier is not 
replaced if it appears within a string or as part of a longer identifier. 

If parameter-list appears after identifier, the #define directive replaces 
each occurrence of identifier(parameter-list) with a version of the 
substitution-text argument that has actual arguments substituted for for­
mal parameters. 

The substitution-text argument consists of a series of tokens, such as key­
words, constants, or complete statements. One or more White-space char­
acters must separate substitution-text from identifier (or from the closing 
parenthesis following parameter-list). This white space is not considered 
part of the substituted text, nor is any white space following the last token 
of the text. Text longer than one line can be continued onto the next line 
by placing a backs lash (\) before the new-line character. 

The substitution-text argument can also be empty. Choosing this option 
removes occurrences of identifier from the source file. The identifier is 
still considered defined, however, and yields the value 1 when tested with 
the #if directive (discussed in Section 8.4.1). 

The optional parameter-list consists of one or more formal parameter 
names separated by commas. Each name in the list must be unique, and 
the list must be enclosed in parentheses. No spaces can separate identifier 

8-3 



C Language Reference 

and the opening parenthesis. The scope of a formal parameter name 
extends to the new line that ends substitution-text. 

Formal parameter names appear in substitution-text to mark the places 
where actual values will be substituted. Each parameter name can appear 
more than once in substitution-text, and the names can appear in any 
order. 

The actual arguments following an instance of identifier in the source file 
are matched to the corresponding formal parameters of parameter-list. 
Each formal parameter in substitution-text that is not preceded by a 
stringizing (#) or token-pasting (##) operator, or followed by a ## opera­
tor, is replaced by the corresponding actual argument. Any macros in the 
actual argument will be expanded before it replaces the formal parameter. 
(The # and ## operators are described in Sections 8.2.2.1 and 8.2.2.2.) The 
actual-argument list must have the same number of arguments as 
parameter-list. 

If the name of the macro being defined occurs in substitution-text (even as 
a result of another macro expansion), it is not expanded. 

Arguments with side effects sometimes cause macros to produce unex­
pected results. A given formal parameter may appear more than once in 
substitution-text. If that formal parameter is replaced by an expression 
with side effects, the expression, with its side effects, may be evaluated 
more than once (see Example 4 in Section 8.2.2.2, "Token-Pasting Opera­
tor"). 

Stringizing Operator (#) 

The number-sign or "stringizing" operator (#) is used only with macros 
that take arguments. If it precedes a formal parameter in the macro 
definition, the actual argument passed by the macro invocation is 
enclosed in quotation marks and treated as a string literal. The string 
literal then replaces each occurrence of a combination of the stringizing 
operator and formal parameter within the macro definition. White space 
preceding the first token of the actual argument and following the last 
token of the actual argument is ignored. Any white space between the 
tokens in the actual argument is reduced to a single white space in the 
resulting string literal. Thus, if a comment occurs between two tokens in 
the actual argument, it is reduced to a single white space. The resulting 
~tr1n(T l1tp1"~1 1~ ~l1tn1'Yl~tl("'~lhT ("'nn("'~tpn~tpr1 uTlth ~n" ~r11~("'pnt ~tMnn 
~-~~o ~~~-~-~ ~~ ~~~~U~~--~~J _~u_~~_u~~_~ .. ~~u ~~J ~~J~ __ AU ~_~AO 

literals from which it is separated only by white space. Furthermore, if a 
character contained in the argument normally requires an escape 
sequence when used in a string literal-for example, the quotation-mark 
(ft) or backslash (\) characters-the necessary escape backslash is 

8-4 



Preprocessor Directives and Pragmas 

automatically inserted before the character. The following example 
shows a macro definition that includes the stringizing operator and a main 
function that invokes the macro: 

#define stringer (x) printf (#x "\n") 

main () 
{ 

stringer (I will be in quotes in the printf function call); 
stringer ("I will be in quotes when printed to the screen"); 
stringer (This: \" prints an escaped double quote mark); 

Such invocations would be expanded during preprocessing, producing the 
following code: 

printf ("I will be in quotes in the printf function call" "\n"); 
printf("\"I will be in quotes when printed to the screen\"" "\n"); 
printf ("This \ \ \ II prints an escaped double quote mark") ; 

When the program is run, screen output for each line would be as follows: 

I will be in quotes in the printf function call 

"I will be in quotes when printed to the screen" 

This: \" prints an escaped double quote mark 

Note 

The Microsoft extension to the ANSI C standard that previously 
enabled expansion of macro formal arguments appearing in string 
literals and character constants is no longer supported. Code that 
relied on this extension should be rewritten using the stringizing (#) 
operator. 

8-5 



C Language Reference 

TOken-Pasting Operator (##) 

The double-number-sign or "token-pasting" operator (##) is USl.J in both 
object-like and function-like macros. It permits separate tokens to be 
joined into a single token, and therefore cannot be the first or last token in 
the macro definition. 

If a formal parameter in a macro definition is preceded or followed by the 
token-pasting operator, the formal parameter is immediately replaced by 
the unexpanded actual argument. Macro expansion is not performed on 
the argument prior to replacement. Then, each occurrence of the token­
pasting operator in substitution-text is removed, and the tokens preceding 
and following it are concatenated. The resulting token must be a valid 
token. If it is, the token is rescanned for possible replacement if it 
represents a macro name. Example 7 shows how tokens can be pasted 
together using the token-pasting operator. 

Example 1 

This example defines the identifier WIDTH as the integer constant 80 and 
defines LENGTH in terms of WIDTH and the integer constant 10. Each 
occurrence of LENGTH is replaced by (WIDTH + 10). In tum, each 
occurrence of WIDTH + 10 is replaced by the expression (80 + 10). 

#define WIDTH 
#define LENGTH 

80 
(WIDTH + 10) 

The parentheses around WIDTH + 10 are important because they control 
the interpretation in statements such as the following: 

var = LENGTH * 20; 

After the preprocessing stage the statement becomes 

var = (80 + 10) * 20; 

which evaluates to 1800. Without parentheses, the result is 

var = 80 + 10 * 20; 

which evaluates to 280. 

8-6 



Preprocessor Directives and Pragmas 

Example 2 

This example defines the identifier The definition is extended FILEMES­
SAGE. to a second line by using the convention of a backslash followed 
by a new-line character. 

#define FI:;:'EMESSACE "Attempt to create file \ 
failed because of insufficient space" 

Example 3 

This example defines three identifiers, REG1, REG2, and REG3. REG1 
and REG2 are defined as the keyword register. The definition of REG3 is 
empty, so each occurrence of REG3 is removed from the source file. 
These directives can be used to ensure that the program's most important 
variables (declared with REG 1 and REG2) are given register storage. 
(For an expanded version of this example, see the discussion of the #if 
directive in Section 8.4.1.) 

#define REG1 
#define REG2 
#define REG3 

Example 4 

register 
register 

This example defines a macro named MAX. Each occurrence of the 
identifier MAX after the definition in the source file is replaced by the 
expression 

((x) > (y» ? (x) : (y) 

where actual values replace the parameters x and y. For example, the 
occurrence 

MAX(1,2) 

is replaced by 

((1) > (2» ? (1) (2) 

and the occurrence 

MAX (i, s [i]) 

is replaced by 

((i) > (s[i]» ? (i) : (s[i]) 

#define MAX (x, y) ((x) > (y» ? (x) (y) 

8-7 



C Language Reference 

Because this macro is easier to read than the corresponding expression, 
the source program is easier to understand. 

Note that arguments with side effects may cause this macro to produce 
unexpected results. For example, the occurrence MAX(i, s[i++]) is 
replaced by ((i) > (s[i++])) ? (i) : (s[i++]). The expression (s[i++]) may 
be evaluated twice, so by the time the ternary expression has been fully 
evaluated, i will have been incremented either once or twice, depending 
on the result of the comparison. Example 5 

This example defines the macro MULT. Once the macro is defined, an 
occurrence such as MULT(3, 5) is replaced by (3) * (5). The parentheses 
around the parameters are important because they control the interpreta­
tion when complex expressions form the arguments to the macro. For 
instance, the occurrence MULT(3 + 4,5 + 6) is replaced by (3 + 4) * (5 + 
6), which evaluates to 77. Without the parentheses, the result would be 3 
+ 4 * 5 + 6. This result evaluates to 29 because the multiplication opera­
tor (*) has higher precedence than the addition operator (+). 

#define MULT(a,b) ((a) * (b)) 

Example 6 

This example defines two macros, one an object-like macro that expands 
to the string literal Hello, World!, and the other a function-like macro 
called show, which takes one argument. However, the definition of the 
second macro includes the stringizing operator (#) immediately preceding 
the formal parameter x. When an argument is passed to the show macro, 
the formal parameter is replaced by the actual argument enclosed in dou­
ble quotation marks, thus "stringizing" it. 

8-8 

#define GREETING Hello, World! 
#define show (x) printf(#x) 

main() 
{ 

show ( x + z ) i 
printf ("\n") i 

show(n /* some comment */ + p); 
printf ("\n"); 
show(GREETING)i /* GREETING is not expanded; */ 
printf("\n"); /* it is stringized instead */ 
ShO~·l (' \x' ) ; 



Preprocessor Directives and Pragmas 

As the preprocessor progresses through the source file, the references to 
show are expanded as follows: 

show( x + z); produces printj("x + z"); 

show(n /* comment */ + p); produces printj("n + p"); 

show(GREETING); produces printj("GREETING"); 

and finally, show(,\x'); produces printj('''\ \X' "); 

When the program is run, the screen output would be: 

x + z 
n + p 
GREETING 
, \x' 

Example 7 

This example illustrates use of both the ' 'stringizing' , and "token­
pasting" operators in specifying program output. 

#define paster(n) printf("token" #n " = %d", token##n) 

If token9 is declared, and the macro is called with a numeric argument 
like: 

paster (9) 

the macro yields: 

printf("token" "9" " %d", token9) 

which becomes 

printf("token9 = %d", token9) 

8.2.3 The #Undef Directive 

Syntax 

#Undef identifier 

The #Undef directive removes the current definition of identifier. Conse­
quently, subsequent occurrences of identifier are ignored by the prepro­
cessor. To remove a macro definition using #Undef, give only the macro 
identifier; do not give a parameter list. 

8-9 



C Language Reference 

You can also apply the #Undef directive to an identifier that has no previ­
ous definition. This ensures that the identifier is undefined. 

The #U;}def directive is typically paired with a #define directive to create 
a region in a source program in which an identifier has a special meaning. 
For example, a specific function of the source program can use manifest 
constants to define environment-specific values that do not affect the rest 
of the program. The #Undef directive also works with the #if directive 
(see Section 8.4.1) to control conditional compilation of the source pro­
gram. 

Example 

In this example, the #Undef directive removes definitions of a manifest 
constant and a macro. Note that only the identifier of the macro is given. 

#define WIDTH 
#define ADD (X, Y) 

#undef WIDTH 
#undef ADD 

8.3 Include Files 

Syntax 

#include ''path-spec'' 
#include <path-spec> 

80 
(X) + (Y) 

The #include directive adds the contents of a given "include file" to 
another file. You can organize constant and macro definitions into include 
files and then use #include directives to add these definitions to any 
source file. Include files are also useful for incorporating declarations of 
external variables and complex data types. You only need to define and 
name the types once in an include file created for that purpose. 

The #include directive tells the preprocessor to treat the contents of the 
named file as if they appeared in the source program at the point where 
the directive appears. The new text can also contain preprocessor direc­
tives. The preprocessor carries out directives in the new text, then contin­
ues processing the original text of the source file. 

8-10 



Preprocessor Directives and Pragmas 

The path-spec is a file name optionally preceded by a directory 
specification. It must name an existing file. The syntax of the file 
specification depends on the operating system the program is compiled 
on. 

The preprocessor uses the concept of a "standard" directory or direc­
tories to search for include files. The location of the standard directories 
for include files depends on the implementation and the operating system. 
For a definition of the standard directories, see your compiler guide. 

The preprocessor stops searching as soon as it finds a file with the given 
name. If you specify a complete, unambiguous path specification for the 
include file, between two sets of double quotation marks (" "), the 
preprocessor searches only that path specification and ignores the stan­
dard directories. 

If the path-spec enclosed in double quotation marks is an incomplete path 
specification, the preprocessor first searches the "parent" file's directory. 
A parent file is the file containing the #include directive. For example, if 
you include a file named file2 within a file named filel ,filel is the parent 
file. 

Include files can be "nested," that is, an #include directive can appear in 
a file named by another #include directive. For example, file2, above, 
could include file3. In this case, filel would still be the parent of file2, but 
would be the "grandparent" of file3. 

When include files are nested, directory searching begins with the direc­
tories of the parent file, then proceeds through the directories of any 
grandparent files. Thus, searching begins relative to the directory contain­
ing the source currently being processed. If the file is not found, the 
search moves to directories specified on the compiler command line. 
Finally, the standard directories are searched. 

If the file specification is enclosed in angle brackets, the preprocessor 
does not search the current working directory. It begins by searching for 
the file in the directories specified on the compiler command line, then in 
the standard directories. 

Nesting of include files can continue up to 10 levels. Once the nested 
#include is processed, the preprocessor continues to insert the enclosing 
include file into the original source file. 

Example 1 

This example adds the contents of the file named stdio.h to the source 
program. The angle brackets cause the preprocessor to search the standard 

8-11 



C Language Reference 

directories for stdio.h, after searching directories specified on the com­
mand line. 

#include <stdio.h> 

Example 2 

This example adds the contents of the file specified by defs.h to the source 
program. The double quotation marks mean that the preprocessor 
searches the directory containing the "parent" source file first. 

#include "defs.h" 

8.4 Conditional Compilation 

This section describes the syntax and use of directives that control "con­
ditional compilation." These directives let you suppress compilation of 
parts of a source file by testing a constant expression or identifier to deter­
mine which text blocks will be passed on to the compiler and which text 
blocks will be removed from the source file during preprocessing. 

8.4.1 The #if, #elif, #else, and #endif Directives 

Syntax 

#if restricted-constant-expression 
[ text-block] 

[ #elif restricted-constant-expression 
text-block] 

[ #elif restricted-constant-expression 
text-block] 

[ #else 
text-block] 

#endif 

The #if directive, together with the #elif, #else, and #endif directives, 
controls compilation of portions of a source file. Each #ii diredi ve in a 
source file must be matched by a closing #endif directive. Any number of 
#elif directives can appear between the #if and #endif directives, but at 
most one #else directive is allowed. The #else directive, if present, must 
be the last directive before #endif. 

8-12 



Preprocessor Directives and Pragmas 

The preprocessor selects one of the given occurrences of text-block for 
further processing. A block specified in text-block can be any sequence of 
text. It can occupy more than one line. Usually text-block is program text 
that has meaning to the compiler or the preprocessor. 

The preprocessor processes the selected text-block and passes it to the 
compiler. If text-block contains preprocessor directives, the preprocessor 
carries out those directives. 

Any text blocks not selected by the preprocessor are removed from the 
file during preprocessing. Thus, these text blocks are not compiled. 

The preprocessor selects a single text-block by evaluating the restricted 
constant expression following each #if or #elif directive until it finds a 
true (nonzero) restricted constant expression. It selects all text (including 
other preprocessor directives beginning with #) up to its associated #elif, 
#else, or #endif. 

If all occurrences of restricted-constant-expression are false, or if no #elif 
directives appear, the preprocessor selects the text block after the #else 
clause. If the #else clause is omitted, and all instances of restricted­
constant-expression in the #if block are false, no text block is selected. 

Each restricted-constant-expression follows the rules for restricted con­
stant expressions discussed in Section 5.2.10. Such expressions cannot 
contain sizeof expressions, type casts, or enumeration constants. How­
ever, they can contain the preprocessor operator defined in special con­
stant expressions, as shown by the following syntax: 

defined(identifier) 

This constant expression is considered true (nonzero) if the identifier is 
currently defined; otherwise, the condition is false (0). An identifier 
defined as empty text is considered defined. 

The #if, #elif, #else, and #endif directives can nest in the text portions of 
other #if directives. Each nested #else, #elif, or #endif directive belongs 
to the closest preceding #if directive. 

8-13 



C Language Reference 

Example 1 

In this example, the #if and #endif directives control compilation of one 
of three function calls. The function call to credit is compiled if the 
identifier CREDIT is defined. If the identifier DEBIT is defined, the func­
tion call to debit is compiled. If neither identifier is defined, the call to 
printerror is compiled. Note that CREDIT and credit are distinct 
identifiers in C because their cases are different. 

#if defined (CREDIT) 
credit () ; 

#elif defined (DEBIT) 
debit () ; 

#else 
printerror() ; 

#endif 

Example 2 

Examples 2 and 3 assume a previously defined manifest constant named 
DLEVEL. 

Example 2 shows two sets of nested #if, #else, and #endif directives. The 
first set of directives is processed only if DLEVEL > 5 is true. Otherwise, 
the second set is processed. 

#if DLEVEL > 5 
#define SIGNAL 1 
#if STACKUSE -- 1 

#define STACK 200 
#else 

#define STACK 100 
#endif 

#else 
#define SIGNAL 0 
#if STACKUSE == 1 

#define STACK 100 
#else 

#define STACK 50 
#endif 

#endif 

8-14 



Preprocessor Directives and Pragmas 

Example 3 

In Example 3, #elif and #else directives are used to make one of four 
choices, based on the value of DLEVEL. The manifest constant STACK is 
set to 0, 100, or 200, depending on the definition of DLEVEL. If DLEVEL 
is greater than 5, display(debugptr); is compiled and STACK is not 
defined. 

#if DLEVEL == 0 
#define STACK 0 

#elif DLEVEL == 1 
#define STACK 100 

#elif DLEVEL > 5 
display ( debugptr ); 

#else 
#define STACK 200 

#endif 

Example 4 

Example 4 uses preprocessor directives to control the meaning of register 
declarations in a portable source file. The compiler assigns register 
storage to variables in the order in which the register declarations appear 
in the source file. If a program contains more register declarations than 
the machine allows, the compiler honors earlier declarations over later 
ones. The program may be less efficient if the variables declared later are 
more heavily used. 

#define REGl 
#define REG2 

register 
register 

#if defined (M_86) 
#define REG3 
#define REG4 
#define REG5 

#else 
#define REG3 register 
#if defined(M 68000) 

#define REG4 
#define REG5 

register 
register 

#else 
#define REG4 
#define REG5 

#endif 

register 

#endif 

8-15 



C Language Reference 

The definitions listed in Example 4 can be used to give priority to the 
most important register declarations. REG1 and REG2 are defined as the 
register keyword to declare register storage for the two most important 
variables in the program. For example, in the following fragment, band c 
have higher priority than a or d: 

func(a) 

REG3 int a; 

REGl int b; 
REG2 int c; 
REG4 int d; 

When M _86 is defined, the preprocessor removes the REG3 identifier 
from the file by replacing it with empty text. This prevents a from receiv­
ing register storage at the expense of band c. When M _ 68000 is defined, 
all four variables are declared to have register storage. When neither 
M _86 nor M _68000 is defined, a, b, and c are declared with register 
storage. 

8.4.2 The #ifdef and #ifndef Directives 

Syntax 

#ifdef identifier 
#ifndef identifier 

The #ifdef and #ifndef directives perform the same task as the #if direc­
tive used with defined(identifier). You can use the #ifdef and #ifndef 
directives anywhere #if can be used. These directives are provided only 
for compatibility with previous versions of tne language. The 
defined (identifier) constant expression used with the #if directive is pre­
ferred. 

When the preprocessor encounters an #ifdef directive, it checks to see 
whether the identifier is currently defined. If so, the condition is true 
(nonzero); otherwise, the condition is false (0). 

8-16 



Preprocessor Directives and Pragmas 

The #ifndef directive checks for the opposite of the condition checked by 
#ifdef. If the identifier has not been defined (or its definition has been 
removed with #Undef) , the condition is true (nonzero). Otherwise, the 
condition is false (0). 

8.5 Line Control 

Syntax 

#line constant ["filename"] 

The #line directive tells the preprocessor to change the compiler's inter­
nally stored line number and file name to a given line number and file 
name. The compiler uses the line number and file name to refer to errors 
that it finds during compilation. The line number normally refers to the 
current input line, and the file name refers to the current input file. The 
line number is incremented after each line is processed. 

If you change the line number and file name, the compiler ignores the pre­
vious values and continues processing with the new values. The #line 
directive is typically used by program generators to cause error messages 
to refer to the original source file instead of to the generated program. 

The constant value in the #line directive can be any integer constant. The 
filename can be any combination of characters and must be enclosed in 
double quotation marks ("""). If filename is omitted, the previous file 
name remains unchanged. 

The current line number and file name are always available through the 
predefined identifiers LINE and FILE . You can use the 

LINE and FILE identifiers to- insert self-descriptive error 
messagesinto the program text. 

The __ FILE __ identifier expands to a string whose contents are the file 
name, surrounded by double quotation marks ("""). 

8-17 



C Language Reference 

Example 1 

In this example, the internally stored line number is set to 151 and the file 
name is changed to copy.c. 

#line 151 "copy.c" 

Example 2 

In this example, the macro ASSERT uses the predefined identifiers 
LINE and FILE to print an error message about the source 

fife if a gIven "assertion" IS not true. 

#define ASSERT (cond) if (! cond) \ 
{printf("assertion error line %d, file(%s)\n", \ 

LINE FILE )i} else 

8.6 Pragmas 

Syntax 

#pragma character-sequence 

A #pragma is an implementation-de fined instruction to the compiler. The 
character-sequence is a series of characters that gives a specific compiler 
instruction and arguments, if any. The number sign (#) must be the first 
non-white-space character on the line containing the pragma; white-space 
characters can separate the number sign and the word pragma. 

See your compiler guide for information about the pragmas available in 
your compiler implementation. 

8-18 



Appendix A 

Differences Between K&R C 

and Microsoft C 

A.I Introduction A-I 





Differences Between K&R C and Microsoft C 

A.I Introduction 

This appendix summarizes differences between Microsoft C and the 
description of the C language found in Appendix A of The C Program­
ming Language by Brian W. Kernighan and Dennis M. Ritchie, published 
in 1978 by Prentice-Hall, Inc. The following is a list of the differences 
with cross-references to the corresponding section numbers in The C Pro­
gramming Language: 

Section Number 
in Kernighan 
and Ritchie Microsoft C 

2.2 Identifiers (including those used in preprocessor direc­
tives) are significant to 31 characters. External identifiers 
are also significant to 31 characters. 

2.3 The identifiers asm and entry are no longer keywords. 
New keywords are const, volatile, enum, signed, and 
void. (The volatile keyword is implemented syntacti­
cally, but not semantically.) The identifiers cdecl, far, 
fortran, huge, near, and pascal may be keywords, 
depending on whether the corresponding options are 
enabled when a program is compiled (see your system 
documentation). 

2.4.1 As a result of the method used to assign types to hexade­
cimal and octal constants, these constants always act like 
unsigned integers in type conversions. 

2.4.3 Hexadecimal bit patterns consisting of a backs lash (\), the 
letter x, and up to three hexadecimal digits are permitted 
as character constants (for example, \:X012). 

Microsoft C defines three additional escape sequences: 
\v represents a vertical tab (VT) , \" represents the 
double-quotation-mark character, and \a represents the 
bell (also called alert). 

Character constants always have type int, with the result 
that they are sign extended in type conversions. 

Adjacent quoted string literals are concatenated and 
treated as a single null-terminated string. 

2.6 The short type is always 16 bits long, and the long type is 
32 bits long. The size of an int is machine dependent. On 

A-I 



C Language Reference 

A-2 

8086/8088, 80186, and 80286 processors an int is 16 bits 
long, and on 80386 and 68000 processors it is 32 bits 
long. 

4 The char type is signed by default, with the result that a 
char value is sign extended in type conversions. (In some 
implementations, the default for the char type can be 
changed to unsigned at compile time.) 

Two additional unsignrd types are supported: unsigned 
char and unsigned long. 

The keyword unsigned or signed can be applied as an 
adjective to an integer type. When unsigned appears 
alone, it means unsigned int. Similarly, when signed 
appears alone, it means int. The additional floating type 
long double is supported, but the long float type is no 
longer recognized. References to long float should be 
recoded to double. 

The type specifiers const and volatile can be used as 
modifiers for any fundamental, aggregate, or pointer type. 
The const keyword indicates that the object or pointer 
value will not be modified. The volatile keyword means 
the object may be changed by some process beyond the 
control of the currently running program. Both the syntax 
and semantics of const are implemented, but only the 
syntax of volatile is implemented. 

Microsoft C offers an additional fundamental type: the 
enum (enumeration) type. Variables of enum type are 
treated as integers in all cases. 

The keyword void has three different uses. As a function­
return-type specifier, it indicates that the function will not 
return a value. In an otherwise empty formal-parameter 
list, void means that no arguments will be passed. In the 
construction void *, it indicates a pointer to an object of 
unspecified type. 

6.4 If the near, far, and huge keywords are enabled, pointers 
of different sizes can be used in a program. Operations 
with pointers of different sizes can cause conversion of 
pointers; the path of the conversion is implementation 
defined. 



Differences Between K&R C and Microsoft C 

6.6 Arithmetic conversions carried out by the compiler are 
outlined in the "Expressions and Assignments" chapter. 
Although compatible with the Kernighan and Ritchie 
conversions, Microsoft C conversions are described in 
greater detail, including the specific path for each type of 
conversion. 

In addition to the usual arithmetic conversions, conver­
sions between pointers of different sizes can be routinely 
cJ.rried out when the near, far, and huge keywords are 
enabled. The path of the pointer conversions is imple­
mentation defined. 

7.2 In connection with the sizeof operator, a byte is defined 
as an 8-bit quantity. 

7.14 A structure can be assigned to another structure of the 
same type. 

8.2 The keywords enum, const, volatile, and void are addi­
tional type specifiers. The volatile keyword is imple­
mented syntactically, but not semantically. The keywords 
signed and unsigned can serve either as type specifiers or 
as adjectives modifying an integral type. 

Therefore, the following additional combinations are 
acceptable: 

signed char 
signed short 
signed short int 
signed long 
signed long int 
unsigned char 
unsigned short 
unsigned short int 
unsigned long 
unsigned long int 

The long float type is not recognized. The long double 
type is recognized and treated in all instances the same as 
double. 

8.4 The const and volatile keywords can be used to modify 
any fundamental, aggregate, or pointer object. The order 
of the type specifiers is not significant. 

A-3 



C Language Reference 

A-4 

Optional formal-parameter lists or argument-type lists 
can be included in function declarations to notify the 
compiler of the number and types of arguments expected 
in a function call. 

8.5 Bitfields can be declared to be any signed or unsigned 
integral type, except enUID. However, in expressions, 
bit fields are always treated as unsigned. 

The names of structure and union members are not 
required to be distinct from structure and union tags or 
from the names of other variables. 

No relationship exists between the members of two 
different structure types. 

8.6 Unions can be initialized by giving a value for the first 
member of the union. 

9.7 The expression of a switch can be any integral expres­
sion, but the value of the expression is always converted 
to an int type. An enUID type is permitted for expression. 
Each of the case constant expressions is cast to the type 
of expression. 

10.1 New styles for function declarations and definitions, as 
specified in the Draft Proposed American National Stan­
dard - Programming Language C, are completely sup­
ported. This includes the function prototype declaration, 
the prototype-style definition with formal parameters 
declared in the header, and the default creation of proto­
types from the first reference to a function (if no explicit 
prototype is provided). The old function declaration and 
definition forms are also supported. 

The formal parameter list in a function definition or 
declaration can end with a comma followed by three 
periods (, ... ) or just a comma (,) to indicate that the 
number of parameters is variable. The latter is supported 
only for compatibility with older versions of the compiler 
and should not be used in new code. 

12 The number sign (#) introducing the preprocessor direc­
tive can be preceded by any combination of white-space 
characters. White space can also separate the number 
sign and the preprocessor keyword. 



Differences Between K&R C and Microsoft C 

In addition to preprocessor directives, the source file can 
contain pragmas. Pragmas, like directives, are introduced 
by a number sign as the first non-white-space character in 
a line. The action defined by a particular pragma is imple­
mentation dependent. 

Three preprocessor-only operators are supported: the 
"stringizing" operator (#), the concatenation or "token­
pasting" operator (##), and the defined operator. 

12.3 The new combination #if defined (identifier) is intended 
to supplant the #ifdef and #ifndef directives. Use of the 
latter directives is discouraged. 

The new directive #elif (else if) is designed for use in #if 
and #if defined blocks. 

14.1 A structure or union can be assigned to another structure 
or union of the same type. Structures and unions can be 
passed by value to functions and returned by functions. 

In expressions involving the structure-pointer operator 
(-», the expression preceding the arrow must have the 
same type (or must be cast to the same type) as the struc­
ture to which the member on the right-hand side of the 
arrow belongs. 

17 The listed anachronisms are not recognized. 

A-5 





Appendix B 

Syntax Summary 

B.1 Tokens B-1 
B.l.1 Keywords B-1 
B.1.2 Identifiers B-2 
B.1.3 Constants B-2 
B.1.4 Strings B-5 
B.1.5 Operators B-6 
B.l.6 Separators B-6 

B.2 Expressions B-7 

B.3 Declarations B-9 

B.4 Statements B-13 

B.5 Definitions B-14 

B.6 Preprocessor Directives B-15 

B.7 Pragmas B-15 





B.I Tokens 

keyword 
identifier 
constant 
string 
operator 
separator 

B.1.1 Keywords 

auto 
break 
case 
char 
const 
continue 
default 
do 

double 
else 
enum 
extern 
float 
for 
goto 
if 

t Semantics not yet implemented 

int 
long 
register 
return 
short 
signed 
sizeof 
static 

Syntax Summary 

struct 
switch 
typedef 
union 
unsigned 
void 
volatilet 
while 

The following identifiers may be keywords in some implementations. For 
information, see your compiler guide. 

cdecl 
far 
fortran 
huge 
near 
pascal 

B-1 



C Language Reference 

B.1.2 Identifiers 

identifier: 
letter 
underscore 
identifier letter 
identifier underscore 
identifier digit 

letter-one of the following: 
abcdefghijklm 

nopqrstuvwxyz 

ABCDEFGHIJKLM 

NOPQRSTUVWXYZ 

underscore: 

digit-one of the following: 

0123456789 

B.1.3 Constants 

constant: 

integer-constant 

long-constant 

floating-point-constant 

char-constant 

enum-constant 

B-2 



integer-constant: 

o 
decimal-constant 

octal-constant 

hexadecimal-constant 

decimal-constant: 

nonzero-digit 

decimal-constant digit 

nonzero-digit-one of the following: 

123456789 

octal-constant: 

Ooctal-digit 

octal-constant octal-digit 

octal-digit-one of the following: 

01234567 

hexadecimal-constant: 

Oxhexadecimal-digit 

OXhexadecimal-digit 

hexadecimal-constant hexadecimal-digit 

hexadecimal-digit -one of the following: 
0123456789 
abcdef 
ABCDEF 

long-constant: 

integer-constant I 

integer-constant L 

Syntax Summary 

B-3 



C Language Reference 

floating-point-constant: 

fractional-constant exponent 

fractional-constant 

digit-seq exponent 

fractional-constant: 

digit-seq. digit-seq 

cc + 
+cc 
digit-seq. 

digit-seq: 

digit 

digit-seq digit 

exponent: 

e sign digit-seq 

E sign digit-seq 

e digit-seq 

E digit-seq 

sign: 

+ 

char-constant: 

'char' 

char: 

rep-char 

escape-sequence 

B-4 



Syntax Summary 

rep-char: 
Any single representable character except the single quotation-mark 
('), backslash (\), or new-line character. Note that the single­
quotation-mark character cannot be used alone in a character constant, 
and the double quotation-mark character cannot be used alone in a 
string literal. 

escape-sequence-one of the following: 

\' \" \\ \d \dd \ddd 

\xd \xdd \xddd \a \b \f 
\n \r \t \v 

enum-constant: 
identifier 

B.1.4 Strings 

string-literal: 

"char-seq" 

char-seq: 

char 

char-seq char 

B-5 



C Language Reference 

B.1.S Operators 

operator-one of the following: 

++ + 

* % « 
» < <= > >= 
-- != & 
&& II = += - = 
= 1= %= »= «= 
&= " = 1= ?: 
[ ] () -> 

B.1.6 Separators 

separator-one of the following: 

{ } 

* = # 

B-6 



B.2 Expressions 

expression: 
identifier 
constant 
string 
expression( expression-list) 
expression(void) 
expression [expression] 
expression.identi fier 
expression->identifier 
unary-expression 
binary-expression 
ternary-expression 
assignment-expression 
(expression) 
(type-name )expression 
constant-expression 

expression-list: 
expression 
expression-list, expression 

unary-expression: 
unop expression 
sizeof( expression) 

unop-one of the following: 
- - ! * & 

lvalue: 
identifier 
expression [expression] 
expression.expression 
expression ->expression 
*expression 
(type-name )expression 
(lvalue) 

Syntax Summary 

B-7 



C Language Reference 

type-name: 
See Section B.3, "Declarations. " 

binary-expression: 
expression binop expression 

binop-one of the following: 

* I % + 

« » < > <= 

>= != & 

&& II 

ternary-expression: 
expression? expression: e."l.preSSioll 

assig nment -expressi 011: 

lvalue++ 
lvalue--
++lvalue 
--lvalue 
lvalue assignment-op expression 

assignment-op-one of the following: 

= *= 1= %= += = 

«= »= &= 1= = 

constant-expression: 
identifier 
constant 
(type-name)constant-expressiol1 
unary-expression 
binary-expression 
ternary-expression 
(constant-expression) 

B-8 



B.3 Declarations 

declaration: 
sc-specifier 0pe-specifier-list declarator-list; 
0pe-specifier-/ist declarator-list; 
sc-specifier declarator-list; 
typedef 0pe-specifier-list declarator-list; 

sc-specifier: 
auto 
extern 
register 
static 

(\pe-specifier: 
char 
double 
long double 
ellzlnl-specifier 
float 
int 
long 
short 
struct-specifier 
(,pedef-name 
Ull i 0 n-s pe c)f! e r 
unsigned 
signed 
const 
volatile 
void 

type-specifier-list: 
type-specifier 
0'pe-specifier-list (I,pe-specifier 

enum-speczfier: 
enum tag {enum-list} 
enum {enum-list} 
enum tag 

Syntax Summary 

B-9 



C Language Reference 

tag: 
identifier 

enum-list: 
enumerator 
enum-list , enumerator 

enumerator: 
identifier 
identifier = constant-expression 

struct -specifier: 
strllct tag {member-declaration-list} 
strllct {member-declaration-list} 
strllct tag 

member-declaration-list: 
member-declaration 
member-declaration-list member-declaration 

member-declm"ation: 
type-specifier declarator-list; 
type-specifier identifier: constant-expression; 
type-specifier: constant-expression; 

declarator-list: 
declarator 
declarator = initializer 
declarator-list , declarator 

B-IO 



declarator: 
identifier 
modifier-list identifier 
declarator[ ] 
declarator[ constant-expression] 
*declarator 
declarator( void) 
declarator(rJormal-parameter-listD 
(dec larator) 

modifier-list 
modifier 
modifier-list modifier 

Jormal-parameter-list 
formal-parameter 
formal-parameter-list, formal-parameter 
formal-parameter-list, ••• 
formal-parameter-list, 

formal-parameter 
sc-spec type-spec declarator 
sc-spec type-spec abstract-declarator 

arg-type-list: 
type-name 
arg-type-list, type-name 
arg-type-list, ••. 
arg-type-list, 

type-name: 
type-sped fier 
type-sped fier abstract-declarator 

Syntax Summary 

B-ll 



C Language Reference 

abstract-dec larator: 

* 
modifier* 
[ ] 
(arg-type-list) 
*abstract-declarator 
abstract-dec larator* 
abstract-declarator[ ] 
abstract-dec larator[ constant-expression] 
[ ]abstract-declarator 
[constant-expression ]abstract -dec larator 
abstract-declarator(void) 
abstract-declarator(formal-parameter-list) 
abstract-declarator(arg-type-list) 
(abstract-declarator) 

initializer: 
expression 
{initializer-list} 

initializer-list: 
initializer 
initializer-list, initializer 

typedef-name: 
identifier 

union-specifier: 
union tag {member-declaration-list} 
union {member-declaration-list} 
union tag 

modifier: 
cdecl 
far 
fortran 
huge 
near 
pascal 

B-12 



Syntax Summary 

modifier-list 
modifier 
modifier-list modifier 

B.4 Statements 

statement: 
break; 
case constant-expression : statement 
compound-statement 
continue; 
default : statement 
do statement while(expression); 
expression; 
for ([expression]; [expression] ; [expression]) statement; 
goto identifier; 
identifier: statement 
if (expression) statement [else statement] 
, 
return [expression]; 
switch (expression) statement 
while (expression) statement 

compound-statement: 

{[declaration-list] [statement-list]} 

declaration-list: 
declaration 
declaration-list declaration 

statement-list: 
statement 
statement-list statement 

B-13 



C Language Reference 

B.5 Definitions 

definition: 
function-definition 
data-definition 

function-definition: 

[sc-specifier] [type-specifier] declarator (rJormal-parameter-listD 
compound-statement 

[sc-specifier] [type-specifier] declarator Uparameter-list]) 
fparameter-decs] compound-statement 

parameter-list: 
fixed-parameter-list 
variable-parameter-list 

fixed-parameter-list: 
identifier 
parameter-list, identifier 

variable-parameter-list: 
fixed-parameter-list, ••• 
fixed-parameter-list, 

parameter-decs: 
declaration 
declaration-list declaration 

data-definition: 
declaration 

B-14 



B.6 Preprocessor Directives 

directive: 
#define identifier [(fparameter-list])] [token-seq] 
#elif restricted-constant-expression 
#else 
#endif 
#if restricted-constant-expression 
#ifdef identifier 
#ifndefidentifier 
#include "string" 
#include <string> 
#line digit-seq 
#line digit-seq string 
#Undef identifier 

token-seq: 
token 
token-seq token 

restricted-constant-expression: 
defined (identifier) 
Any constant-expression except sizeof expressions, 
casts, and enumeration constants 

B.7 Pragmas 

pragma: 
#pragma char-seq 

Syntax Summary 

B-15 





Replace this Page 
with Tab Marked: 

Index 





Index 

-> (arrow), in member-selection 
expressions 5-7 

-> (member-selection operator) A-5, 5-7 
> (greater-than operator) 5-24 
»= (greater-than-or-equal-to operator) 5-24 
» (right-shift operator) 5-23 
<> (angle brackets) 8-10 
\ (backslash character) 2-4,2-5 
{ } (braces) 4-47, 6-1, 6-3 
[ ] (brackets) 1-6 
[\] (brackets) 

array declarators, used in 4-9, 4-25 
[\I] (brackets) 

subscript expressions, used in 5-4, 5-5 
? : (conditional operator) 5-29a 
? : (ternary operator) 5-13,5-29 
( ) (function modifier) 4-9 
# # (token-pasting operator) 

described 8-2, 8-5 
differences from Kernighan 

and Ritchie 8-1 
+ (addition operator) 5-21 
& (address-of operator) 5-17 
& (bitwise-AND operator) 5-26 
- (arithmetic negation operator) 5-15 
- (subtraction operator) 5-22 
- (two's complement operator) 5-15 
- (bitwise-complement operator) 5-15 
- (one's complement operator) 5-15 
~ (bitwise-exclusive-OR operator) 5-26 
I (bitwise-inclusive-OR operator) 5-26 
: (colon), with bitfield structure members 4-21 
, (comma) 

argument-type lists, used in 4-33 
declarations, used in 4-16, 4-31 
function calls, used in 5-3, 7-14 
initialization, used in 4-47 
sequential-evaluation operator 5-28 

-- (decrement operator) 5-32 
/ (division operator) 5-20 
... (ellipsis notation) 4-33 
== (equality operator) 5-24 
++ (increment operator) 5-32 
* (indirection operator) 5-16 
!= (inequality operator) 5-24 
« (left-shift operator) 5-23 
< (less-than operator) 5-24 
<= (less-than-or-equal-to operator) 5-24 
&& (logical-AND operator) 5-27 
! (logical-NOT operator) 5-15 

II (logical-OR operator) 5-27 
. (member-selection operator) 5-7 
* (multiplication operator) 5-20 
# (number sign) 8-1 
() (parentheses) 

complex declarators, used in 4-9 
expressions, used in 5-9 
function calls, used in 5-3 
function declarators, used in 4-9, 4-31 
macros, used in 8-8 

* (pointer modifier) 4-9, 4-27 
(quotation marks) 

notational conventions 1-6 
% (remainder operator) 5-20 
+ (unary plus operator) 5-15 
_ (underscore character) 2-14 

A 

Abstract declarators 4-54 
Actual arguments See Arguments, actual 
Addition operator (+) 5-21 
Address-of operator (&) 5-17 
Aggregate data-type category 4-7 
Aggregate types 

array 4-25 
initialization 4-45, 4-47 
structure 4-20 
union 4-24 

Anachronisms A-5 
AND operators 

bitwise (&) 5-26 
logical (&&) 5-27 

Angle brackets (<» 8-10 
ANSI standard 

enabling ANSI 1-1 
extensions 1-1 

Apostrophe (') See Escape sequences 
argc parameter 3-5 
Argument type checking 

conversions 7-18 
default prototypes 7-13 
formal parameters 7-9 
function calls 7-18 
variable-length parameter list 4-34 

Arguments 
actual 

1-1 



Index 

Arguments (continued) 
actual (continued) 

conversion 7-18 
evaluation, order of 7 -15 
macros 8-4, 8-8 
passing 7-17,7-18 
pointers 7-15,7-18 
side effects 7-15 
type checking 7-18 
variable number 7-20 

command line 3-5 
formal See Formal parameters 
main function 3-5 
variable number 4-33, 7-20 

Argument-type lists 
abstract declarator, used with 4-54 
default prototype 7 -13 
described 4-32 
pointer arguments, used with 4-34 
variable length 4-33 
void *, used with 4-34 
void keyword, used with 4-34 

argv parameter 3-5 
Arithmetic conversions 5-13, A-3 
Arithmetic data-type category 4-7 
Arithmetic negation operator (-) 5-15 
Array declarators ([ ]) 4-9, 4-25 
Arrays 

declarations 4-9,4-25 
elements 5-4 
identifiers 5-2 
initialization 4-45,4-47,4-50 
multidimensional 4-26, 5-5 
references to 5-2, 5-4 
storage 4-26, 5-6 
subscripts 5-4 

asm keyword A-I 
Assignments 

conversions 5-38 
defined 5-1 
expressions 5-9 
operators 5-30 

Associativity 
modifiers 4-10 
operators 5-35 

auto storage class 4-37,4-41,4-45 

B 

Backslash character (\) 2-4,2-5 
Backspace escape sequence (\b) 2-4 
Bell character (\a) 2-4, A-I 

1-2 

Binary expressions 5-8 
Binary operators, table 2-6,5-13 
Bitfields 4-21,4-22, A-4 
Bitwise-AND operator (&) 5-26 
Bitwise-complement operator n 5-15 
Bitwise-exclusive-OR operator n 5-26 
Bitwise-inclusive-OR operator (I) 5-26 
Blocks 3-6 
Braces ({ }) 

compound statement, used in 6-1, 6-3 
initialization, used in 4-47 

Brackets 
array declarators, used in 4-9, 4-25 
SUbscript expressions, used in 5-4, 5-5 

Brackets ([ ]) 1-6 
Branch statements 6-9, 6-13 
break statement 6-2 
Bytes, size of A-3 

c 

C character set 2-1 
Call by reference See Passing by reference 
Call by value See Passing by value 
Calls See function calls 
Carriage-return escape sequence (\r) 2-4 
case keyword 6-13 
Case sensitivity 2-2,2-14,2-15 
Casts See type casts 
cdecl keyword 2-16, 4-13, A-I 
char type 

conversion 5-39 
described 4-2 
differences from Kernighan 

and Ritchie A-2 
range of values 4-5 
storage 4-5 

Character constants 
differences from Kernighan 

and Ritchie A-I 
form 2-11 
sign extension 2-12 
type 2-12 

Character sets 2-1 
Characters 

backslash (\) 2-4, 2-5 
backspace escape sequence 2-4 
bell (\a) 2-4, A-I 
carriage-return escape sequence (\r) 2-4 
case 2-2,2-14,2-15 
continuation (\) 2-5 



Characters (continued) 
differences from Kernighan 

and Ritchie A-I 
digits 2-2 
double-quotation-mark escape 

sequence (\") 2-4 
escape sequences 2-4 
form-feed escape sequence (\f) 2-4 
hexadecimal escape sequences 2-4 
horizontal tab escape sequence (\1) 2-4 
letters 2-2 
new-line escape sequence (\n) 2-4 
octal escape sequences 2-4 
punctuavion 2-3 
single-quotation-mark escape sequence (\') 

2-4 
special 2-3 
underscore * _) 2-2 
vertical-tab escape sequence (\v) 2-4 
white space 2-2, 2-4 

Colon (:), with bitfield structure members 4-21 
Comma(,) 

argument-type lists, used in 4-33 
declarations, used in 4-16, 4-31 
function calls, used in 5-3, 7-14 
initialization, used in 4-47 
sequential-evaluation operator (,) 5-28 

Command-line arguments 3-5 
Comments 2-16 
Comparison operators See Also Relational 

operators 
Compilation, conditional 8-12,8-16 
Complement operators n 5-15 
Complex declarators 4-10,4-13 
Compound statements 6-3 
Compound-assignment operators 5-34 
Concatenation of string literals 2-13 
Concatenation operator, differences from 

Kernighan and Ritchie A-5 
Conditional compilation 8-12,8-16 
Conditional operator (1 :) 5-29 
Conditional statements 6-9,6-13 
const 

keyword A-I 
pointer modifier, used as 4-27 
type specifier 4-3 

Constant expressions 
case 6-13 
conversion 4-7 
defined (identifier) 8-13 
described 5-1 
directives, used in 5-10, 8-13 
form 5-10 
initializers 5-10 

Index 

Constant expressions (continued) 
restricted 5-10, 8-13 
switch statement, used in 6-13 

Constants 
character See Character constants 
conversion 4-7 
decimal integer 2-8, 2-9 
described 2-8 
enumeration 4-19 
floating point 2-10, 2-11, 4-6 
hexadecimal integer 

conversion 2-10, 4-7 
form 2-8 
type 2-9 

integer 
differences from Kernighan 

and Ritchie A-I 
form 2-8 
long 2-10 
negative 2-9 
octal See Octal constants 
type 2-9 

manifest 8-2, 8-3, 8-9 
string See String literals 
summarized B-2 
type 5-2 

Continuation character (\) 2-5 
continue statement 6-4 
Control, returning 6-11 
Conventions, notational 1-4 
Conversions 

actual arguments 7-18 
assignment 5-38 
constant expressions 4-7 
constants 4-7 
enumeration types 5-46 
floating types 5-43 
formal parameters 7-9, 7-18 
function call 5-47, 7-18 
function prototypes 5-47 
hexadecimal constants 4-7 
implicit 5-45 
octal constants 4-7 
operator 5-46 
pointer types 5-44 
range of values, effects on 4-7 
signed integral types 5-38,5-45 
structure types 5-46 
type cast 5-46 
union types 5-46 
unsigned integral types 5-41, 5-45 
usual arithmetic 5-13, A-3 
void type 5-46 

1-3 



Index 

D 

Data type categories 4-7 
Data types See Types 
Decimal integer constants 2-8, 2-9 
Declarations 

defining 3-2 
form 4-1 
formal parameter names 4-31 
formal parameters 7-7, 7-8 
forward See Function declarations 

(prototypes) 
function See Function declarations 

(prototypes) 
pointer 4-9, 4-27, 7-13 
referencing 3-2 
storage allocation 3-2 
summarized B-9 
type 4-51 
typedef 4-51,4-52 
variable 

array 4-25 
default storage class 4-40 
described 3-1 
enumeration 4-18 
external 4-38 
form 4-16 
global 4-38 
internal 4-38 
local 4-41 
multidimensional arrays 4-26 
pointer 4-27 
simple 4-17 
structure 4-20 
union 4-24 

Declarators 
abstract 4-54 
array 4-9 
complex 4-9, 4-10, 4-13 
described 4-8 
function 4-9 
parentheses, enclosed in 4-9 
pointer 4-9 
special keywords, used with 4-13 

Decrement operator (--) 5-32 
default keyword 6-13 
Default return type 4-31 
Default storage class 

function declarations 4-44 
global variable declarations 4-40 
local variable declarations 4-41 

#define directive 8-3 
defined (identifier) constant 

1-4 

defined (identifier) constant (continued) 
expression 8-13 

defined preprocessor operator 8-1, 
8-2, A-5 

Defining declaration 4-38 
Definitions 

function 
described 3-2,7-1,7-3 
full prototype form 7-3 
obsolete form 7-4 
storage class 7-4 
summarized B-14 
visibility 7-4 

removing 8-9 
storage allocation 3-2 
variable 

described 3-2,4-38 
storage class 4-38 
summarized B-14 
visibility 4-39,4-41,4-42 

Differences from Kernighan 
and Ritchie A-O 

Digits 2-2 
Dimensions See Multidimensional arrays 
Directives 

constant expressions, used in 5-10, 8-13 
#define 8-3 
described 3-1, 8-1 
differences from Kernighan 

and Ritchie A-4, A-5 
#elif 

described 8-12 
differences from Kernighan 

and Ritchie A-5 
nesting 8-13 

#else 8-12,8-13 
#endif8-12,8-13 
#if 8-12,8-13, A-5 
#ifdef 8-16, A-5 
#ifndef 8-16, A-5 
#include 8-10 
lifetime 3-3 
#line 8-17 
restricted constant expressions 5-10 
summarized B-15 . 
#Undef 8-9 

Division operator (() 5-20 
do statement 

described 6-4 
execution 

continuation of 6-4 
termination of 6-2 

Double quotation mark (") See 
Quotation marks 



double type 
conversion 5-43 
described 4-2 
internal representation 4-6 
range of values 4-5 
storage 4-5 

Double-quotation-rnark escape sequence 
See Escape sequences 

E 

Elements 5-4, 5-5 
#elif directive 

described 8-12 
differences from Kernighan 

and Ritchie A-5 
nesting 8-13 

Ellipsis notation ( ... ) 1-5 
#else directive 8-12, 8-13 
else keyword 6-9 
#endif directive 8-12, 8-13 
entry keyword A-I 
enum type speci fier 4-18 , A-I 
Enumeration constants 3-12, 4-19 
Enumeration expressions 5-2 
Enumeration set 4-18 
Enumeration types 

conversion 5-46 
declaration 4-18, 4-51 
described 4-2 
differences from Kernighan 

and Ritchie A-2 
identifiers 5-2 
range of values 4-5 
storage 4-5, 4-18 
tags 

defined 3-13 
naming class 3-13 
type declarations 4-51 
variable declarations 4-18 

Enumeration variables 4-16 
envp 3-5 
Equality operator (==) 5-24 
Escape sequences 

described 2-4 
differences from Kernighan 

and Ritchie A-I 
\' (single quotation mark) 2-4 
\a (bell) 2-4 
\b (backspace) 2-4 
\\ (backslash) 2-4 
\f (form feed) 2-4 

Index 

Escape sequences (continued) 
\" (double quotation mark) 2-4 
\n (new line) 2-4 
\r (carriage return) 2-4 
\t (horizontal tab) 2-4 
\v (vertical tab) 2-4 

Evaluation 
order of 5-27,5-36 
unary plus (+), forcing order with 5-15 

Execution See Program execution 
Exit from functions 6-11 
Exponents 2-10 
Expressions 

assignment 5-9 
binary 5-8 
case constant 6-13 
constant See Constant expressions 
described 5-1 
enumeration 5-2 
floating type 5-2 
function call 5-3 
grouping 5-35 
integral 5-2 
list 5-3 
lvalue 5-31 
member selection 5-7, A-5 
operators, used in 5-8 
order of evaluation 5-36 
parentheses, enclosed in 5-9 
pointer 5-2 
side effects 5-11 
statements 6-5 
string literal 5-3 
structure 5-2 
subscript 5-4, 5-5 
summarized B-7 
switch 6-13, A-4 
ternary 5-8 
type cast 5-10 
unary 5-8 
union 5-2 

Extensions to ANSI C standard 1-1 
extern storage class 

described 4-37 
function 

declarations 4-44 
definitions 7-4 

function declarations 7-12 
global variables 4-38 
local variables 4-41 

External declarations 
described 4-38 
function 4-44 

External level 3-2 

1-5 



Index 

F 

far keyword 
conversions 7-18 
described 4-13 
differences from Kernighan 

and Ritchie A-I 
listed 2-16 

Fields See Bitfields 
_Fll...E_ identifier 8-17 
Files 

inclusion 8-10 
name, changing 8-17 
nesting 8-11 

float type 
conversion 5-43 
described 4-2 
internal representation 4-6 
range of values 4-5 
storage 4-5 

Floating point 
constants 

form 2-10 
internal representation 4-6 
negative 2-11 

data-type category 4-7 
expressions 5-2 
identifiers 5-2 
types 

described 4-2 
internal representation 4-6 

types, conversion of 5-43 
for statement 

described 6-6 
execution continuation 6-4 
execution termination 6-2 

Forcing evaluation order 5-15 
Formal parameters 

conversion 7-9,7-18 
declaration 7-8 
described 4-32,7-7 
following function header 7-4 
identifiers 7-9 
list 7-3 
macro 8-3 
names 4-31 
naming class 3-12 
obsolete [unn 7-8 
storage class 7-9 
type checking 7-9, 7-18 

Form-feed escape sequence (\f) 2-4 
fortran keyword 2-16, 4-13, A-I 
Forward declarations See Function 

1-6 

Forward declarations See Function 
(continued) 

declarations (prototypes) 
Function 

body 7-4,7-11 
calls 

argument type checking 7-18 
arguments,variable number of 7-20 
conversions 5-47,7-18 
described 7-1 
expressions 5-3 
form 5-3, 7-14 
indirect 7 -15 
operator, used as sequence point 5-12 
pointers, use of7-15 
recursive 7-21 

declarations (prototypes) 
arguments, variable number of 4-33 
arguments, without 4-34 
default return type 4-31 
default storage class 4-44 
described 3-1,7-1,7-12 
differences from Kernighan 

and Ritchie A-3 
implicit 7-12 
parameter list 4-34 
pointer 4-31 
pointer arguments 4-34 
return type 4-32, 7-12 
return value 7-12 
storage class 4-44,7-12 
visibility 4-44, 7-12 

definition 
full prototype form 7-3 
obsolete form 7-4 

definitions See Definitions function 
modifier ( ) 4-9 
names See Identifiers 
pointers 7-13,7-15 
prototypes 

conversions 5-47 
defined 4-34, 7-1 

return type See Return type 
type See Return type 

Function-like macros 8-2 
Functions 

described 7-1 
exit from 6-11 
identifiers 5-2 
main 3-5 
naming class 3-12 
return value 6-11 



G 

Global 
level 3-2 
lifetime 3-6, 4-37 
variables 

described 3-8 
initialization 4-45 
references to 4-42 

visibility 3-7 
Global declarations 

variable 4-38 
goto statement 6-8 
Greater-than operator (» 5-24 
Greater-than-or-equal-to operator 

(>=) 5-24 
Grouping 5-35 

H 

Hexadecimal 
constants 

conversion 2-10, 4-7 
differences from Kernighan 

and Ritchie A-I 
form 2-8 
sign extension 2-10 
type 2-9 

escape sequences 2-4, A-I 
Horizontal-tab escape sequence (\1:) 2-4 
huge keyword 

conversion 7-18 
described 4-13 
diffurences from Kernighan 

and Ritchie A-I 
listed 2-16 

I 

Identifierlists 7-8 
Identifiers 

array 5-2 
characters allowed 2-14 
differences from Kernighan 

and Ritchie A-I 
enumeration 5-2 
_FILE_8-17 
floating type 5-2 

Index 

Identifiers (continued) 
formal parameters 7-9 
function 5-2 
integral 5-2 
length 2-14 
_LINE_8-17 
modified 4-9 
naming classes 3-11 
pointer 5-2 
structure 5-2 
summarized B-2 
union 5-2 

#if directive 8-12,8-13, A-5 
if statement 6-9 
#ifdef directive 8-16, A-5 
#ifndef directive 8-16, A-5 
#include directive 8-10 
Include files 8-10, 8-11 
Increment operator (++) 5-32 
Indirection operator (*) 5-16 
Inequality operator (!=) 5-24 
Initialization 

arrays 4-45, 4-47, 4-50 
auto storage class 4-45 
constant expressions 5-10 
differences from Kernighan 

and Ritchie A-4 
fundamental types 4-45 
global variables 4-45 
link time 4-40 
pointers 4-45 
register storage class 4-45 
restrictions 4-45 
static variables 4-45 
string literals 4-50 
structure variables 4-45,4-47 
union variables 4-45,4-47 

Insertion of files 8-10 
int type 

conversion 5-40 
described 4-2 
differences from Kernighan 

and Ritchie A-I 
portability 4-6 
range of values 4-5 
storage 4-5 

Integer constants 
decimal 2-8, 2-9 
differences from Kernighan 

and Ritchie A-I 
hexadecimal 2-8, 2-9, 2-10 
long 2-10 
negative 2-9 
octal 2-8,2-9,2-10 

1-7 



Index 

Integral 
data-type category 4-7 
expressions 5-2 
identifiers 5-2 
types 

conversion 5-38,5-41,5-45 
described 4-2 

Internal 
declarations 4-38 
representation 4-6, 4-7 

Internal level 3-2 
Italics 1-4 
Iterative statements 

do 6-4 
for 6-6 
while 6-15 

K 

Keywords 
differences from Kernighan 

and Ritchie A-I, A-3 
listed 2-15, B-1 
notational conventions 1-4 
special 4-13, 4-28 
statements, used in 6-1 
system dependent 2-16 

L 

Labeled statements 6-8 
Labels 

case 6-13 
default 6-13 
described 6-1 
form 6-8 
naming class 3-13 

Left-shift operator «<) 5-23 
Less-than operator ( <) 

See Relational operators 
Less-than-or-equal-to operator «=) 

See Relational operators 
Letters 2-2 
Lifetime 

described 3-6 
directives 3-3 
global 3-6,4-37 
local 3-6,4-37 

Line control 8-17 

1-8 

#line directive 8-17 
_LINE_ identifier 8-17 
Lines, continuation 2-5 
Linked lists 4-21 
Local 

declarations 4-41 
level 3-2 
lifetime 3-6, 4-37 
variables 3-8,7-12 

Logical-AND operator (&&) 5-27 
Logical-NOT operator (!) 5-15 
Logical-OR operator (II) 5-27 
-long type 

conversion 5-39 
described 4-2 
differences from Kernighan 

and Ritchie A-I 
range of values 4-5 
storage 4-5 

long-double type, conversion 5-44 
long-float type 4-2 
Loops 

do statement 6-4 
for statement 6-6 
while statement 6-15 

Lvalue expressions 5-31 

M 

Macros 
actual arguments 8-4 
#define directive 8-3 
described 8-2 
empty definition 8-3 
example, with arguments 8-8 
example, with side effects 8-8 
function like 8-2 
object like 8-2 
side effects of arguments 8-4 
#Undef, effect of 8-9 

Main function 3-5 
Manifest constants 8-2,8-3,8-9 
Members 

bitfields 4-21 
naming class 3-13 
referring to 5-7 
structure 4-20 
union 4-24 

Member-selection expressions 5-7, A-5 
Member-selection operators 

(-» and.) 5-7 
Member-selection operators 



Member-selection operators (continued) 
(-> and .) A-5 

Modifiers 
array 4-9,4-25 
associativity 4-10 
function 4-9 
pointer 4-9, 4-27 
precedence 4-10 

Multidimensional arrays 4-26, 5-5 
Multiplication operator (*) 5-20 

N 

Names See Identifiers 
Naming classes 3-11, A-4 
near keyword 

conversions 7-18 
described 4-13 
differences from Kernighan 

and Ritchie A-I 
listed 2-16 

Negation 5-15 
Nested visibility 3-8 
New-line escape sequence (\0) 2-4 
Nongraphic escape sequences 2-4 
NOT operator (!) See Logical-NOT operator 
Notational conventions 1-4 
Null statement 6-10 
Number sign (#) 8-1 

o 

Object-like macros 8-2 
Octal 

constants 
conversion 2-10, 4-7 
differences from Kernighan 

and Ritchie A-I 
form 2-8 
sign extension 2-10 
type 2-9 

escape sequences 2-4 
One's complement operator n 5-15 
Operands 5-1 
Operators 

addition (+) 5-21 
address of(&) 5-17 
arithmetic negation (-) 5-15 
assignment 

Index 

Operators (continued) 
assignment (continued) 

compound 5-34 
listed 5-30 
simple (=) 5-33 

associativity 5-35 
binary 

described 5-13 
table 2-6 

bitwise AND (&) 5-26 
bitwise complement n 5-15 
bitwise-exclusive OR n 5-26 
bitwise-inclusive OR (I) 5-26 
complement 5-15 
compound assignment 5.,.34 
conditional (? :) 5-29 
conversions 5-46 
decrement (--) 5-32 
differences from Kernighan 

and Ritchie A-5 
division (/) 5-20 
equality (==) 5-24 
expressions, used in 5-8 
increment (++) 5-32 
indirection (*) 5-16 
inequality (!=) 5-24 
left-shift «<) 5-23 
listed 2-6, B-6 
logical 

described 5-27 
evaluation, order of 5-27 

logical AND (&&) 5-27 
logical NOT (!) 5-15 
logical OR (II) 5-27 
multiplication (*) 5-20 
one's complement n 5-15 
precedence 5-35 
preprocessor 

differences from Kernighan 
and Ritchie A-5 

stringizing A-5 
token pasting A-5 

preprocessor specific, listed 8-2 
relational (>,<,<=,>=) 5-24 
remainder (%) 5-20 
right shift (») 5-23 
sequence points, used as 5-12 
sequential evaluation (,) 5-28 
shift «< and ») 5-23 
simple assignment (=) 5-33 
sizeof 5-18 
subtraction (-) 5-22 
ternary (?:) 5-13 
ternary (? :) 5-29 

1-9 



Index 

Operators (continued) 
two's complement (-) 5-15 
unary 2-6, 5-13 

OR operators 
bitwise exclusive n 5-26 
bitwise inclusive <D 5-26 
logical (II) 5-27 

Overview 1-1 

p 

Parameter list 4-34 
Parameters 

argc 3-5 
argv 3-5 
envp 3-5 
formal See Formal parameters 
macro 8-3 
main function 3-5 

Parentheses 
complex declarators, used in 4-9 
expressions, used in 5-9 
function calls, used in 5-3 
function declarators, used in 4-9, 4-31 
macros, used in 8-8 

pascal keyword 2-16, 4-13, A-I 
Passing by 

reference 7-18 
value 7-14, 7-18 

Pointer 
modifier (*) 4-9, 4-27 
void (void *) 4-27 

Pointer data-type category 4-7 
Pointers 

adding 5-22 
arithmetic 5-22 
comparisons·5-25 
const, modified by 4-27 
conversion 5-44 
declarations 4-9,4-27,7-13 
differences from Kernighan 

and Ritchie A-2 
expressions 5-2 
function calls through 7-15 
functions 7-13, 7-15 
identifiers 5-2 
implicit conversion 5-45 
initialization 4-45 
storage 4-28 
structure 4-27 
subtraction 5-22 

union 4-28 

1-10 

Pointers (continued) 
volatile, modified by 4-27 

Portability 4-6 
Pound sign (#) See Number sign 
Pragmas 

described 3-1,8-2 
differences from Kernighan 

and Ritchie A-5 
form 8-18 

Precedence 
modifiers 4-10 
operators 5-35 

Predefined identifiers 8-17 
Preprocessor directives See Directives 
Preprocessor operators 

described 8-1 
listed 8-2 

Program execution 3-5 
Program structure 3-1 
Prototypes, function 4-34, 7-1 
Punctuation characters 2-3 

Q 

II (quotation marks) 
#include directives, used in 8-10 
representation A-I 

\" (quotation marks) 
representation 2-4 

Quotation marks (\J) 
notational conventions 1-6 

Quotation marks (") 
#include directives, used in 8-10 

Quotation marks (") 
representation A-I, 2-4 

R 

Recursion 7-21 
Reference, passing by 7-18 
References to global 

variables 4-38,4-39,4-42 
Referencing declarations 4-38 
n:::gi:si.~r :siurag~ das:s 

described 4-42 
initialization 4-45 
lifetime 4-37 
local variables 4-41 



Relational operators (>,<,<=,>=) 5-24 
Representable character set 2-1 
Representation, internal 4-6, 4-7 
Reserved words See Keywords 
Restricted constant expressions 5-10,8-13 
return statement 6-11 
Return type 

declaration 7-12 
default 4-31 
described 4-32, 7-5 
implicit 7-12 

Return value 6-11,7-12 
Right-shift operator (») 5-23 

s 

Scalar data-type category 4-7 
Selection statements 6-9, 6-13 
Sensitivity, case 2-2 
Separators B-6 
Sequence points 

described 5-1, 5-12 
listed 5-12 
operators, other than 5-12 

Sequential-evaluation operator (,) 5-28 
Shift operators «< and ») 5-23 
short type 

conversion 5-39 
described 4-2 
differences from Kernighan 

and Ritchie A-I 
range of values 4-5 
storage 4-5 

Side effects 
expressions 5-1, 5-11 
macros, used with 8-4, 8-8 
sequence points, used with 5-12 

Sign extension 2-10, 2-12 
signed 

char type 4-2, A-3 
int type 4-2 
keyword 4-3, A-2 
long int type A-3 
long type 4-2, A-3 
short int type 4-2, A-3 
short type 4-2, A-3 
type 4-2, A-2 

Simple variable declarations 4-17 
Simple-assignment operator (=) 5-33 
Single-quotation-mark escape sequence (') 

See Escape sequences 
sizeof operator 5-18 

Source files 3-3 
Special characters 2-3 
Special keywords 

conversions 7-18 
declarators, used with 4-28 
differences from Kernighan 

and Ritchie A-I 
Standard directories 8-11 
Statement labels 

described 6-1 
form 6-8 
naming class 3-13 

Statements 
body 6-1 
break 6-2 
compound 6-3 
continue 6-4 
do 6-4 
expression 6-5 
for 6-6 
form 6-1 
goto 6-8 
if 6-9 
keywords 6-1 
labeled 6-1, 6-8 
listed 6-1 
null 6-10 
return 6-11 
summarized B-13 
switch 6-13 
while 6-15 

static storage class 
described 4-37 
function 

declarations 4-44,7-12 
definitions 7-4 

global variables 4-38 
initialization 4-45 
local variables 4-41 

Storage 
bitfields 4-22 
global 4-37 
local 4-37 
type 

char 4-5 
double 4-5 
float 4-5 
int 4-5 
long 4-5 
unsigned char 4-5 
unsigned int 4-5 
unsigned long 4-5 
void 4-5 

types 

Index 

1-11 



Index 

Storage (continued) 
types (continued) 

array 4-26,5-6 
enumeration 4-5, 4-18 
pointer 4-28 
structure 4-22 
union 4-24 

Storage allocation for variables 3-2 
Storage classes 

described 4-37 
formal parameters 7-9 
function 

declarations 7-12 
function declarations 4-44 
function definitions 7-4 
global variable declarations 4-40 
local variable declarations 4-41 

Storage-class specifiers 
auto 4-37, 4-41 
extern See extern storage class 
listed 4-37 
register 4-37, 4-41 
static See static storage class 

String concatenation 2-13 
String literals 

concatenation 2-13 
form 2-12,5-3 
initializers 4-50 
length 2-14,5-3 
storage 2-14 
type 2-14 

Stringizing preprocessor operator (#) 
described 8-2, 8-4 
differences from Kernighan 

and Ritchie A-5 
Strings See String literals 
struct type-specifier 4-20 
Structures 

conversion 5-46 
declaration 4-20,4-51 
differences from Kernighan 

and Ritchie A-3, A-4, A-5 
expressions 5-2 
identifiers 5-2 
initialization 4-45,4-47 
members See Members 
pointers to 4-28 
storage 4-22 
tags 

nwuing class 3-13 
type declarations 4-51 
variable declarations 4-20 

Subscript expressions 5-4, 5-5 
Subtraction operator (-) 5-22 

1-12 

switch statement 
constant expressions, used in 6-13 
described 6-13 
differences from Kernighan 

and Ritchie A-4 
termination of execution 6-2 

Symbolic constants See Manifest constants 
Syntax 

conventions See Notational conventions 
summary B-1 

System-dependent keywords 2-16 

T 

Tab escape sequences 2-4 
Tags 

enumeration 4-18,4-51 
naming class 3-13 
structure 4-20, 4-51 
union 4-51 

Ternary expressions 5-8 
Ternary operator (?:) 5-13 
Ternary operator (? :) 5-29 
Token-pasting preprocessor operator (##) 

described 8-2, 8-5 
differences from Kernighan 

and Ritchie A-5 
Tokens 2-6, 2-17, B-1 
Transfer statements 

break 6-2 
continue 6-4 
goto 6-8 
labeled statements 6-8 

Two's complement operator (-) 5-15 
Type 

checking See Arguments 
declarations 4-51 
modifiers 

differences from Kernighan 
and Ritchie A-3 

names 
argument-type lists, used in 4-34 
described 4-53 
sizeof, used with 5-18 
void 7-18 

specifiers 
abbreviations 4-3 
const 4-3 
differences from Kernighan 

and Ritchie A-I 
enum 4-2, 4-18 
fundamental types 4-2 



Type (continued) 
specifiers (continued) 

struct 4-20 
union 4-24 
volatile 4-3 

Type-cast conversions 5-46 
Type-cast expressions 

constraints 5-10 
defined 5-10 
void, to and from 5-10 

typedef 
declarations 4-51,4-52 
types 3-13, 4-52 

Types 
array 

declaration 4-9,4-25 
initialization 4-45,4-47,4-50 
multidimensional 4-26 
storage 4-26, 5-6 

char See char type 
const 

described 4-3 
pointers, used with 4-27 

conversions See Conversions 
differences from Kernighan 

and Ritchie A-I, A-2 
double 4-2, 4-5, 4-6 
enumeration See Enumeration types 
float See float type 
floating point 

described 4-2 
internal representation 4-6 

function See Return type 
fundamental 

declaration 4-17 
described 4-2 
differences from Kernighan 

and Ritchie A-2 
initialization 4-45 
listed 4-2 
range of values 4-5 
storage 4-5 

int See int type 
integral 

conversion 5-38,5-41,5-45 
described 4-2 

long double, differences from 
Kernighan and Ritchie A-2 

long float A-2 
long See long type 
pointer 

conversion 5-44 
declaration 4-9,4-27 
implicit conversion 5-45 

Index 

Types (continued) 
pointer (continued) 

initialization 4-45 
storage 4-28 

short See short type 
signed 

char 4-2, A-3 
int 4-2 
long 4-2 
short 4-2 

structure 
conversion 5-46 
declaration 4-20,4-51 
initialization 4-45,4-47 
pointers to 4-28 
storage 4-22 

typedef 3-13, 4-52 
union 

conversion 5-46 
declaration 4-24, 4-51 
initialization 4-45,4-47 
pointers to 4-28 
storage 4-24 

unsigned char See unsigned char type 
unsigned int See unsigned int type 
unsigned long See unsigned long type 
unsigned short See unsigned short type 
user defined 4-51, 4-52 
void 4-3, 4-5 
volatile 

described 4-3 
pointers, used with 4-27 

u 

Unary expressions 5-8 
Unary operators, table 2-6,5-13 
Unary plus operator (+) 5-15 
#Undef directive 8-9 
Underscore character CJ 2-2, 2-14 
Union declarations 

types 4-51 
variables 4-24 

union type specifier 4-24 
Unions 

conversion 5-46 
declaration 4-24, 4-51 
differences from Kernighan 

and Ritchie A-4, A-5 
expressions 5-2 
identifiers 5-2 
initialization 4-45,4-47 

1-13 



Index 

Unions (continued) 
members 

described 4-24 
naming class 3-13 
referring to 5-7 

pointers to 4-28 
storage 4-24 
tags 3-13,4-51 

unsigned 
char type 

conversion 5-41 
described 4-2 
differences from Kernighan 

and Ritchie A-2, A-3 
range of values 4-5 
storage 4-5 

int type 
conversion 5-42 
described 4-2 
portability 4-6 
range of values 4-5 
storage 4-5 

keyword 4-3, A-2 
long int type See unsigned long type 
long type 

conversion 5-42 
described 4-2 
differences from Kernighan 

and Ritchie A-2, A-3 
range of values 4-5 
storage 4-5 

short int type See unsigned short type 
short type 

conversion 5-41 
described 4-2 
differences from Kernighan 

and Ritchie A-3 
range of values 4-5 
storage 4-5 

type 4-2, A-2 
Unspecified type, pointer to (void *) 4-27 
User-defined types See Types 
Usual arithmetic conversions 5-13, A-3 

v 

Vaiul:: 
range of 4-5,4-7 

Values 
range of 4-5 

Values, passing by 7-14, 7-18 
Variable names See Identifiers 

1-14 

Variables 
array 

declaration 4-25 
initialization 4-47,4-50 
storage 4-26 

auto 4-37, 4-41, 4-45 
communal 4-40 
declarations 

array 4-9,4-25,4-26 
described 3-1 
enumeration 4-18 
external 4-38 
form 4-16 
fundamental types 4-17 
global 4-38, 4-40, 4-41 
internal 4-38 
local 4-41 
multidimensional arrays 4-26 
pointer 4-27 
simple 4-17 
structure 4-20 
summarized B-9 
union 4-24 
visibility 4-38 

definitions 
described 3-2,4-38 
summarized B-14 
visibility 4-39,4-41,4-42 

enumeration 4-18 
extern 4-38, 4-42 
fundamental types 4-17, 4-45 
global 3-8,4-38,4-42 
lifetime 

global 3-6,4-37,4-45 
local 3-8, 7-12 

local 3-8,7-12 
multidimensional arrays 4-26, 5-5 
naming class 3-12, A-4 
pointer 4-27, 4-28, 4-45 
register 4-42, 4-45 
simple 4-17 
static 4-38, 4-42, 4-45 
storage allocation 3-2 
structure 4-20, 4-22, 4-47 
union 4-24, 4-47 
visibility 4-38 

Vertical-tab escape sequence (\v) 2-4, A-I 
Visibility 

described 3-6 
function declarations 4-44,7-12 
function definitions 7-4 
global 3-7 
nested 3-8 
variable declarations 4-38 



Visibility (continued) 
variable definitions 4-39, 4-41, 4-42 

void 
argument-type list 4-32,4-34 
formal parameter list, used in A-2 
function-return type 4-32 
keyword A-I 
pointer modifier, used as A-2 
pointer to 4-27 
type name 7-18 

void type 
conversion 5-46 
described 4-2,4-3 
range of values 4-5 
storage 4-5 
type specifier A-2 

volatile 
keyword A-I 
pointer modifier, used as 4-27 
type specifier 4-3 

w 

while statement 
described 6-15 
execution, continuation of 6-4 
execution, termination of 6-2 

White-space characters 2-2,2-4 

Index 

1-15 















( 

\ 





( 





10-31-88 

SCO-514-21O-035 


